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1 INTRODUCTION 

1.1 Background 

The Midwest Guardrail System (MGS) is a semi-rigid, W-beam guardrail that has been 

accepted by the Federal Highway Administration (FHWA) as a Test Level 3 (TL-3) barrier under 

National Cooperative Highway Research Program (NCHRP) Report 350 [1-2]. The system has 

been tested in several specialized applications, including a long-span application in which three 

guardrail posts were removed, creating an open span of 25 ft (7.62 m) [3]. This configuration 

provides a clear span for small culverts or other obstructions, eliminating the need for a special 

culvert guardrail and a transition between the two systems. However, the guardrail posts near the 

culvert must be installed with their back faces flush with the front face of the culvert headwall, 

which may require lateral extension of the culvert and/or contraction of the roadway shoulder, 

and separate bridge rail systems are still required for culverts and bridges with lengths greater 

than 25 ft (7.62 m).  

In general, existing bridge rail systems are both costly and much stiffer than approach 

guardrails. This difference in stiffness between guardrail and bridge rail requires installation of 

approach guardrail transitions, which are also costly and further increase the cost of constructing 

a bridge rail system. A bridge rail with a lateral stiffness comparable to that of an approach 

guardrail system embedded in soil and with similar rail geometry could eliminate the need for 

the costly transition sections. Additionally, a more flexible bridge rail system that uses less 

material than existing bridge rails could substantially reduce the cost of construction. Such a 

barrier would also reduce dead loads on the bridge, thereby reducing the effective cost of the 

bridge rail even further. This system would be ideal for low-volume highway applications, in 

which the expected frequency of vehicle impacts is low and the need for controlling costs and 

bridge rail dead loads is high. Even though the cost of repairing this type of barrier would likely 
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be higher than conventional bridge rails, the low initial cost and low crash frequencies on low-

volume roadways could provide significant reductions in life-cycle costs. 

In recognition of the potential benefits of a low-cost bridge rail that could eliminate the 

need for transitions and/or reduce the required width of culverts, the Midwest States Regional 

Pooled Fund Program funded a research project to develop such a system that was compatible 

with the MGS.  

1.2 Research Objectives 

The purpose of this research study was to develop a W-beam bridge rail that would 

satisfy the TL-3 criteria described in the Manual for Assessing Safety Hardware (MASH) [4] and 

eliminate the need for an approach guardrail transition when used with the MGS. The new bridge 

rail, designated the MGS Bridge Rail, was to have the following features: 

• attach to the edge of a bridge deck or culvert head wall with spans greater than 25 ft 

(7.62 m); 

• provide a lateral stiffness and strength comparable to that of the MGS with posts 

embedded in soil; 

• allow controlled post rotation when lateral loads become high; and 

• provide a yielding post or post-to-deck connection that does not damage the bridge 

deck during most impacts. 

1.3 Research Approach 

The research project began with a literature review of previously crash-tested W-beam 

and other light-post bridge rails and their components, as well as W-beam guardrail systems and 

components deemed relevant to the design of the bridge rail. Concepts for the new design were 

developed through a brainstorming process and, eventually, were evaluated both analytically and 

through static and dynamic testing. 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

3 

Computer simulations were then undertaken to further evaluate the most promising 

design concepts when incorporated into a complete barrier system. These analyses were then 

used as a tool for finalizing the new barrier design. A prototype system was then constructed and 

subjected to full-scale crash tests under MASH criteria to verify the safety performance of the 

new barrier. Finally, conclusions and recommendations were made that pertain to the safety 

performance of the MGS Bridge Rail system. 
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2 LITERATURE REVIEW 

The first phase of the research project consisted of an extensive literature search of 

previous studies deemed relevant to the development of a bridge rail compatible with the MGS. 

Prior research concerning W-beam bridge and culvert railing systems, other steel bridge railing 

systems, weak-post guardrail systems, and connections between guardrail and system posts were 

reviewed and summarized in this section. 

2.1 Bridge Rail Design 

Design of roadside appurtenances, such as bridge rails, has evolved over time as 

improved guidelines and practices have been developed. Prior to the 1980s, bridge rail design 

was performed in accordance with the standards in various editions of the American Association 

of State Highway and Transportation Officials (AASHTO) Standard Specifications for Highway 

Bridges [5]. This document stipulated that bridge rails were to meet certain allowable stress 

design (ASD) requirements, which were based on an assumed elastic behavior. Alternatively, 

bridge rails could be crash tested for designs that did not meet the ASD requirements. 

As the importance of full-scale crash testing barriers became more apparent, guidelines 

and performance criteria were put forth by various organizations. Several of these were used for 

developing and testing bridge rails, including Transportation Research Circular (TRC) 191 [6], 

NCHRP Report 230 [7], the AASHTO Guide Specifications for Bridge Rails [8], NCHRP Report 

350 [2], and MASH. 

Beginning in 1986, the FHWA required that all bridge rails for use on federal aid projects 

meet full-scale crash testing criteria. Currently, NCHRP Report 350 criteria are required, 

pending approval of MASH to supersede this document. The FHWA released a memorandum in 

1997 which provided NCHRP Report 350 equivalency ratings to barriers tested under prior crash 

testing standards [9]. Additionally, an FHWA memorandum released in 2000 [10] specified that 
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barriers may be approved without testing should they be similar to previously-tested systems and 

would perform similarly based on analysis as described in the AASHTO LRFD Bridge Design 

Specifications [11]. 

2.2 Testing of Steel Bridge and Culvert Rails 

Various W-beam and other steel bridge and culvert railing systems currently accepted by 

the FHWA have been subjected to full-scale crash tests. These systems include nearly-rigid, 

semi-rigid, and flexible designs. Testing has been performed according to requirements set forth 

in various crash testing standards as discussed previously. Studies deemed relevant to this 

research effort included flexible bridge railing designs, side-mounted bridge railing designs, and 

top-mounted bridge railing designs in which the railing intruded a short distance onto the bridge 

deck. 

2.2.1 W-Beam Bridge Rails and Culvert Guardrails 

A number of W-beam bridge rails and culvert guardrails have been developed for both 

TL-2 and TL-3 performance criteria. These systems tend to be more flexible than most bridge 

railing systems and typically utilize steel post-to-deck attachment hardware. These systems are 

very close to the system to be designed in this study and are summarized below. 

2.2.1.1 California Type 15 Bridge Barrier Rail 

In 1959, the California Division of Highways Bridge Department developed the 

California Type 15 Bridge Barrier Rail [12]. This bridge railing was designed as an economical 

railing for use on bridges on secondary roads. The barrier incorporated a single steel 12-gauge 

(2.66-mm thick) W-beam rail mounted on steel W6x15.5 (W152x23) posts bolted to the outside 

edge of the concrete bridge deck at 6 ft - 3 in. (1.91 m) spacing. During testing, a 4,000-lb 

(1,814-kg) passenger vehicle impacted the rail at 55 mph (88.5 km/h) and at an angle of 30 

degrees, which produced severe wheel entrapment on posts and excessive rail deflections. 
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Although the behavior was deemed inadequate for freeway use, this design was considered 

suitable for low-speed secondary roads. However, as heavier, vehicles began using secondary 

roads with higher speeds, failures of the bridge rail began to occur [12]. In response to these 

failures, in 1967, the single W-beam was replaced with two 3½-in. (89-mm) square, structural 

steel tubular rails. This new tubular section proved capable of redirecting a 4,500-lb (2,041-kg) 

sedan travelling at a nominal speed of 60 mph (96.6 km/h) and at an angle of 15 degrees, but 

created a much more rigid rail section. Maximum permanent set of the rail was 0.21 ft (0.06 m), 

which indicated that the barrier would require approach guardrail transitions for both stiffness 

and geometry considerations when used with standard guardrail. 

2.2.1.2 Texas Type T6 and T8 Bridge Rails 

A tubular W-beam bridge rail was developed and tested in a 1978 study [13]. This bridge 

rail, the Texas Type T6, consisted of standard W6x8.5 (W152x12.6) guardrail posts spaced at 6 

ft - 3 in. (1.91 m) and attached to a base plate with welds that were designed to break during 

impact. The front flange of the post was fully welded while only a portion of the rear flange was 

welded to the plate. The tubular W-beam rail was fabricated by welding two standard 12-gauge 

(2.66-mm thick) W-beams back-to-back, which allowed the rail to act as its own blockout. A 

pipe-sleeve and ⅝-in. (15.9-mm) diameter button-head bolt connection was used between the rail 

and support posts. Stiffness and strength of the rail were considered comparable to the standard 

Texas Guard Fence, its guardrail counterpart [13]. Thus the rail did not require an approach 

transition. To connect to the approach guardrail, the tubular beam was extended 12 ft - 6 in. (3.81 

m) past each end of the bridge and attached to two guardrail posts. 

Note that the Type T6 bridge rail did not meet the elastic analysis and allowable stress 

design requirements of the AASHTO Standard Specifications for Highway Bridges, 12th Edition 

[5]. However, this barrier was successfully crash tested to meet the Transportation Research 
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Circular (TRC) 191 criteria [6]. The T6 smoothly redirected a 4,500-lb (2,041-kg) vehicle that 

impacted the barrier at 61.6 mph (99.1 km/h) and at an angle of 27.5 degrees and a 2,280-lb 

(1,034-kg) vehicle that impacted the rail at 58 mph (93.3 km/h) and at an angle of 14 degrees. 

The breakaway weld mechanism worked as desired, cleanly releasing several system posts 

during impact from the larger vehicle. Maximum dynamic deflection of the bridge rail in these 

tests was 33.1 in. (840 mm). Thus, the T6 bridge rail was deemed suitable for use on culverts and 

low bridges according to provisions in the AASHTO specification, and later according to the 

multiple-service-level 2 (MSL-2) requirements in NCHRP Report 230. 

With the adoption of NCHRP Report 350 by the FHWA, it was mandated that all barriers 

used on new construction projects on the National Highway System (NHS) must be tested 

according to the revised criteria. In an FHWA memorandum, the Texas T6 was classified as a 

TL-2 system based on successful performance in the NCHRP 230 MSL-2 tests [9]. However, the 

Texas Department of Transportation (DOT) believed that the barrier could meet TL-3 

performance criteria, which required that the system be subjected to testing at 62 mph (100 

km/h).  

In a 1998 full-scale crash test, the T6 bridge rail was impacted by a 4,409-lb (2,000-kg) 

pickup truck traveling 62.1 mph (99.9 km/h) and at an angle of 26.6 degrees [14]. Although the 

bridge rail contained and redirected the vehicle, the breakaway welds did not release, and 

significant wheel snag occurred on system posts. The posts that detached pulled some of the 

anchor bolts out of the deck, thereby damaging it. The vehicle rolled onto its left side, which 

caused the test to be classified as a failure according to NCHRP Report 350 criteria. Maximum 

dynamic deflection of the bridge rail during this test was 32.3 in. (820 mm), which closely 

matched the results of the TRC 191 testing. 
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In a later study, the post-to-base plate connection welds were redesigned based on static 

and dynamic test results to ensure weld failure and thereby prevent wheel snag [15]. The new 

weld detail specified a weld on only one side of the front flange instead of both in order to 

significantly lower the capacity of the connection. 

Test designation no. 3-11 of NCHRP Report 350 was then repeated in which a 4,409-lb 

(2,000-kg) pickup truck impacted the barrier at a speed of 63.1 mph (101.6 km/h) and at an angle 

of 25.4 degrees. The vehicle was successfully contained and redirected, but again rolled onto its 

side upon exiting the system. Peak dynamic deflection was 28 in. (710 mm).  

The repeated rollovers of the 2000P vehicle indicated that the T6 barrier was either too 

short, too stiff, or both. Note that the 27¾-in. (706-mm) tall, T6 railing was significantly stiffer 

than standard guardrail. Maximum dynamic deflections of the rail were in the range of 2.33 to 

2.69 ft (0.71 m to 0.82 m), which was significantly less than the 3.28 to 3.71 ft (1.0 to 1.13 m) 

deflections observed during tests of steel post, metric height guardrail [16-17]. Further, note that 

crash tests of strong-post, W-beam guardrail at the 27-in. (686-mm) top mounting height also 

produced vehicle rollover when subjected to test designation no. 3-11 of NCHRP Report 350 

[18]. 

After the second failed test, the post-to-deck connection was again redesigned to alter its 

failure mechanism [19]. The redesigned connection consisted of fully welding the front flange to 

the plate with non-breakaway welds to improve the weak-axis capacity of the post. Two ½-in. 

(13-mm) slots were cut in the front flange of the post to facilitate rupture under strong-axis loads. 

A plate was also welded to the back of the rear flange to induce tensile loads in the post-plate 

connection upon post rotation, thus facilitating failure. With these changes, another full-scale 

crash test was performed according to NCHRP Report 350 criteria, during which the connection 

behaved as desired, but the pickup rolled once again. 
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A finite element model of the Texas T6 bridge rail system was developed in a 2004 study 

to determine the performance trends causing failure and evaluate potential design changes [20]. 

Pendulum testing of the post-to-deck connection was used to support model development. This 

model was then calibrated to the most recent failed full-scale test, from which it was determined 

that a 27¾-in. (706-mm) top rail mounting height was inadequate for preventing rollover of a 

pickup truck due to rail height reduction upon post rotation. Thus, a modified T6 rail system was 

designed that used a 12-gauge (2.66-mm thick) tubular thrie-beam rail element in place of the 

tubular W-beam. Top-of-rail height for the system was raised to 31 in. (787 mm) due to the 

increased depth of the rail. Simulation results indicated that the tubular thrie-beam system should 

redirect the pickup truck while maintaining its stability.  

Texas Transportation Institute (TTI) revisited its finite element model of the Texas Type 

T6 bridge rail in a 2008 study [21]. Updated LS-DYNA software and vehicle models were used 

to calibrate a new model to the third failed full-scale test, which again demonstrated insufficient 

rail height. It was decided again to use a 12-gauge (2.66-mm thick) tubular thrie-beam element in 

place of the tubular W-beam rail to mitigate the chance for the small car test vehicle to underride 

the rail. The resulting system was renamed the Type T8 bridge rail. 

A series of pendulum tests was performed on the post-to-deck connection in which the 

size of the slots cut into the posts was varied. A design was sought that would mitigate bridge 

deck damage during an impact, or be usable on decks as thin as 6½ in. (165 mm) thick. An 

increased slot length of ⅞ in. (22 mm) was selected and implemented into the finite element 

model. The T8 bridge rail, with both the smaller and larger slot sizes, demonstrated satisfactory 

performance in simulations of NCHRP Report 350 test designation no. 3-11. 

A full-scale crash test was then performed on the T8 bridge rail using NCHRP Report 

350 criteria [22]. Posts with ⅞-in. (22-mm) slots were mounted on a 6½-in. (165-mm) thick 
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bridge deck. A 4,570-lb (2,073-kg) pickup truck impacted the bridge rail at a speed of 62.1 mph 

(99.9 km/h) and at an angle of 25.4 degrees, during which the bridge deck failed prior to the 

breakaway mechanism of the posts. The posts did not fully release, causing the rail to be pulled 

downward and significant wheel snag. Both these behaviors contributed to vehicle instability, 

and the truck rolled over. Maximum dynamic deflection was 2.44 ft (0.74 m). Post-test analysis 

showed that the load was applied to the posts at a lower height than anticipated. Thus, the force 

required to cause failure in the front flange of the posts was too large for the bridge deck to 

withstand, and the deck failed. 

A second full-scale crash test was performed on the T8 bridge rail mounted on a 6½-in. 

(165-mm) thick bridge deck [23]. Length of the slots in the tension flanges of the system posts 

was increased to 1 in. (25 mm). A plastic blockout was added that offset the rail 1 in. (25 mm) 

from the post to maintain the height of load application. In this test, a 4,522-lb (2,051-kg) pickup 

truck impacted the barrier at 62.1 mph (99.9 km/h) and at an angle of 23.8 degrees. The bridge 

deck once again failed, and the breakaway connection did not release as intended. The truck 

wheel again snagged on these posts and the rail was pulled down by the posts, both of which 

caused the vehicle to roll upon exiting the system. Maximum dynamic deflection was 1.91 ft 

(0.58 m). 

Following the failed test, the researchers concluded that a deeper offset block and longer 

slots in the front flanges of the posts may be required for successful system performance. 

Additionally, they recommended modifying the rail section to include tubular steel elements. 

These modifications could ensure load application on the posts is at sufficient height to maintain 

a large moment arm, such that the post flanges would rupture as desired and release the posts 

from the deck. However, no further testing has been performed. 
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The failure mechanisms utilized in the T6 and T8 bridge rail posts have proven 

unreliable. Due to variation in the baseplate welds, system posts, bridge deck strength, and/or 

height of load application on the post, the breakaway mechanisms have not released consistently 

during full-scale crash testing. This behavior has resulted in reduction of rail height and wheel 

snag on posts, both of which cause vehicle instability, and unacceptable bridge deck damage. 

While deeper blockouts could help maintain a higher moment arm of the applied force and rail 

height, the reliability of the rupturing mechanism has yet to be proven. Further increase in slot 

length will also decrease the already diminished capacity of the posts.  

2.2.1.3 Texas Low-Fill Culvert Guardrail 

A 1987 study investigated the use of a continuous W-beam guardrail across an entire 

bridge-length culvert [24]. This option was considered to be safer and more economical than 

using a rigid bridge rail and would eliminate the need for a transition section between the 

approach guardrail and the culvert rail. 

W-beam guardrail with reduced post spacing and shallow embedment over the culvert 

was crash tested and proved unsatisfactory. It was determined that the posts needed to be 

attached directly to the culvert deck to develop the required bending strength and lateral load 

capacity. Thus, a standard 12-gauge (2.66-mm thick) W-beam rail was mounted on W6x9 

(W152x13.4) posts and blockouts spaced at 6 ft - 3 in. (1.91 m). Posts were welded to steel base 

plates that were bolted to the culvert slab and embedded 18 in. (457 mm) into cohesion-less soil.  

In full-scale testing according to NCHRP Report 230 criteria, a 4,450-lb (2,019-kg) 

vehicle impacted the guardrail at 61.8 mph (99.4 km/h) and 25.3 degrees. The car was smoothly 

redirected and the maximum rail deflection was 32.4 in. (823 mm). Stiffness was considered 

similar to that of its approach rail, so no transition section was used. Performance met MSL-2 
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criteria as defined in NCHRP Report 230 which has been deemed equivalent to TL-2 of NCHRP 

Report 350. 

2.2.1.4 Nested W-Beam Guardrail for Low-Fill Culverts 

In a 1992 study, the Texas Low-Fill Culvert Guardrail was modified to decrease 

deflection of the system [25]. The Texas design required that the face of the W-beam be installed 

3 ft (0.91 m) from the head wall of the culvert, which increased the size and cost of the culvert 

system. The new design utilized nested, 12-gauge (2.66-mm thick) W-beam rail mounted on 

W6x9 (W152x13.4) posts and blockouts spaced at 3 ft - 1½ in. (095 m). Posts were welded to 

steel base plates that were bolted to the culvert deck and embedded 9 in. (229 mm) into soil. 

Splices were located at posts. The distance between the face of the W-beam and the head wall of 

the culvert was 1 ft - 4½ in. (0.42 m). Half-post spacing and nested guardrail were extended for 

two post spaces on both sides of the culvert system, after which standard guardrail continued. 

In crash testing, a 4,500-lb (2,041-kg) vehicle impacted the guardrail system at 61.0 mph 

(98.2 km/h) and at an angle of 28.2 degrees. The vehicle was smoothly redirected, and the 

system met all of the required NCRHP Report 230 safety performance criteria. Lateral 

permanent set of the barrier was 18⅝ in. (473 mm), which was significantly less than the 2.20 ft 

(0.67 m) observed in testing of the Texas Low-Fill Guardrail design, and the culvert was not 

damaged. Thus, the system satisfied the performance requirements for MSL-2 in NCHRP Report 

230, which was deemed equivalent to a TL-2 rating under NCHRP Report 350.  

This system proved to be significantly stiffer than the approach guardrail. For example, 

dynamic deflection of the MGS under NCHRP 350 impact conditions was 43.1 in. (1,094 mm) 

[1]. Thus, this system may need an approach transition due to its high stiffness. 
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2.2.1.5 Tennessee Type TBR-3 Bridge Rail 

The Tennessee Type TBR-3 Bridge Rail was analyzed in a 1994 study on Tennessee 

bridge rails [26]. This bridge rail utilized standard, 12-gauge (2.66-mm thick) W-beam rail 

mounted on W6x16 (W152x23.8) steel posts spaced at 6 ft - 3 in. (1.91 m) and bolted to either 

the bridge deck or a 6-in. (152-mm) high concrete curb. An Allowable Stress Design (ASD) 

analysis indicated that the rail could resist a one-span load of 13.6 kips (60.5 kN) at a height of 

21 in. (533 mm) when installed on a curb. Installation without the curb reduced the post capacity 

from 21.8 kips (97 kN) to 15.6 kips (69.4 kN). However, the one-span capacity of the rail 

remained 13.6 kips (60.5 kN), which was ruled sufficient to redirect 4,500-lb (2,041-kg) vehicles 

impacting at 30 mph (48.3 km/h) and 25 degrees. Based on analysis and crash tests of similar 

bridge rails, the Tennessee Type TBR-3 was accepted as a Test Level 1 (TL-1) barrier according 

to NCHRP Report 350. 

2.2.1.6 Top-Mounted W-Beam Bridge Rail for Low-Volume Roads  

A flexible, top-mounted W-beam bridge rail was developed in a 1996 study for use on 

longitudinal glulam timber bridge decks located on low-volume, low-speed roads [27]. The 

bridge rail utilized 12-gauge (2.66-mm thick) W-beam rail supported by W6x9 (W152x13.4) 

steel posts and blockouts spaced 6 ft - 3 in. (1.91 m) on center. Splices were located at posts, and 

W-beam backup plates were used at non-splice locations. Top rail mounting height was 27¾ in. 

(706 mm). The posts were bolted to a steel plate which was attached to the bridge deck surface. 

No transition section was used between the approach guardrail and bridge rail. 

In crash testing, a 4,412-lb (2,001-kg) pickup truck impacted the bridge rail at a speed of 

31.8 mph (51.2 km/h) and at an angle of 25.2 degrees, resulting in a maximum dynamic 

deflection of 13.5 in. (343 mm). The pickup was smoothly redirected and the test was deemed 

acceptable according to the TL-1 criteria in NCHRP Report 350. 
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2.2.1.7 Flexible Bridge Railing for Low-Volume Roads  

A flexible, W-beam bridge railing with a breakaway wood post system for use on 

longitudinal timber bridge decks on low-volume, low-speeds roads was developed in a 1997 

study [28]. The low-cost bridge rail utilized 12-gauge (2.66-mm thick) W-beam rail supported by 

4-in. x 6-in. (102-mm x 152-mm) nominal wood posts spaced 6 ft - 3 in. (1.91 m) on center. The 

posts were connected to the deck through two 5-in. x 5-in. x ⅜-in. (127-mm x 127-mm x 9.5-

mm) steel angles that were each anchored to the exterior edge of the bridge deck with a ¾-in. 

(19-mm) diameter, 12-in. (305-mm) long lag screw. Two ⅝-in. (15.9-mm) diameter bolts passed 

through the angles and the post. When loaded, these bolts caused a vertical split to develop in the 

post that allowed it to break free of the deck. As the railing was designed to be flexible, no 

transition section was used between the approach guardrail and bridge rail. 

Two full-scale crash tests were performed using NCHRP Report 350 TL-1 criteria. The 

first test resulted in the vehicle vaulting over the bridge rail, after which the top mounting height 

of the W-beam rail was increased from 24 in. (610 m) to 27¾ in. (706 mm). In the second full-

scale test, a 4,504-lb (2,043-kg) pickup truck impacted the bridge rail at 30.6 mph (49.2 km/h) 

and 24.9 degrees, resulting in a maximum dynamic deflection of 51.9 in. (1,318 mm). The truck 

was redirected but came to rest with the right wheels of the vehicle hanging off the bridge deck, 

and the bridge rail satisfied all criteria for TL-1 of NCHRP Report 350. 

2.2.1.8 TL-3 Guardrail with Half-Post Spacing for Low-Fill Culverts 

A 2002 study developed a W-beam guardrail for rigid attachment to box culverts that 

would meet the TL-3 criteria of NHCRP Report 350 [29]. The system utilized standard 12-gauge 

(2.66-mm thick) W-beam rail with a top mounting height of 27¾ in. (706 mm) mounted on steel 

W6x9 (W152x13.4) posts and 6-in. x 8-in. x 14-in. (152-mm x 203-mm x 356-mm) wood 

blockouts. Posts were spaced at 3 ft - 1½ in. (0.95 m) and attached with a base plate and bolts to 
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a simulated box culvert with a 7-in. (178-mm) thick concrete slab. A soil fill of 9 in. (229 mm) 

was used on the culvert. Post spacing in the approach guardrail was reduced from 6 ft - 3 in. 

(1.91 m) to 3 ft - 1½ in. (0.95 m) for six post spaces on either side of the culvert. 

Crash tests were performed on two different designs that featured different clear distances 

between the back of the guardrail posts and the culvert head wall. These clear distances were 18 

in. (457 mm) for the first test and 1 in. (25 mm) for the second test. The intended failure 

mechanism was for the post and plate to yield without any bolt or weld failure. In the first test, 

the barrier successfully redirected a 4,394-lb (1,993-kg) pickup truck impacting at a speed of 

64.2 mph (103.3 km/h) and at an angle of 25.3 degrees. In the second test, a 4,396-lb (1,994-kg) 

pickup truck impacted the barrier at a speed of 62.0 mph (99.7 km/h) and at an angle of 24.8 

degrees. The truck was redirected but rolled over upon exiting the system. Maximum dynamic 

deflection in the tests was 18.6 in. (473 mm). Based on the test results, it was recommended that 

the backside face of the steel posts be positioned at least 10 in. (254 mm) away from the front 

face of the culvert headwall. This system was considered an NCHRP Report 350 TL-3 barrier, 

provided this offset criterion was met.  

It is noted that the approach transition was not explicitly addressed in the research. No 

TL-3 testing for 27¾-in. (706-mm) high guardrail with half-post spacing has been performed to 

compare stiffness of the approach guardrail to the culvert rail. Simulation data for standard 

guardrail with half-post spacing impacted by a 4,400-lb (2,000-kg) sedan travelling at 60 mph 

(97 km/hr) and at an angle of 25 degrees to the rail predicted a maximum dynamic deflection of 

21.3 in. (541 mm) [30], which suggests that the systems were indeed compatible. However, 

without full-scale crash testing for verification, this cannot be stated conclusively.  
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2.2.1.9 TL-3 Guardrail with Standard-Post Spacing for Low-Fill Culverts 

In a 2008 study, a W-beam guardrail with standard, 6 ft - 3 in. (1.91 m) post spacing was 

developed for use on low-fill culverts [31]. The 12-gauge (2.66-mm thick) W-beam was 

mounted on W6x9 (W152x13.4) posts and 6-in. x 8-in. x 14-in. (152-mm x 203-mm x 356-mm) 

wood blockouts with a top mounting height of 27 in. (686 mm) Guardrail splices were located at 

posts. A new connection was developed between the post and the box culvert through use of 

dynamic pendulum testing. This connection consisted of four ⅞-in. (22-mm) diameter threaded 

rods embedded in a proprietary epoxy. Posts were welded to steel base plates that were attached 

to these threaded rods.  

A full-scale crash test was performed on the system in which the back face of the 

guardrail posts were positioned 18 in. (457 mm) from the front face of the culvert headwall and 

embedded in 9 in. (229 mm) of soil. A 9-in. (229-mm) thick deck was used for the culvert. 

During testing, a 4,614-lb (2,093-kg) pickup truck impacted the barrier at 62.9 mph (101 km/h) 

and at an angle of 23.9 degrees. The vehicle was smoothly redirected, even though the W-beam 

guardrail ruptured as the vehicle exited the system. The culvert was not damaged, and the post-

to-deck connection performed in a satisfactory manner. Thus, the system was deemed to satisfy 

the criteria of TL-3 in NCHRP Report 350, according to the researchers. 

While testing was done within acceptable tolerances for impact severity as defined in 

NCHRP Report 350, it should be noted that actual impact severity in the test was somewhat 

lower than nominal impact severity for test designation no. 3-11. As the W-beam rail element 

ruptured, the system had little to no reserve capacity for redirection. Therefore, even a slightly 

more severe accident, which could also fall within acceptable tolerances for impact severity, 

might result in a system failure. Thus, further investigation of this system may be warranted. 

Note that this system did not receive FHWA acceptance [32]. 
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2.2.2 W-Beam with Tube-Section Backup Bridge Rails 

Several bridge rails and culvert guardrails use W-beam rail sections with tubular backups. 

These systems tend to be quite stiff and require transitions, but several have post-to-deck 

attachment hardware that minimizes intrusion of the system onto the bridge deck.  

2.2.2.1 Texas T101 Bridge Rail  

A 1984 study investigated the performance of the Texas T101 bridge rail [33]. The T101 

bridge railing incorporated 12-gauge (2.66-mm thick) W-beam rail and two 4-in. x 3-in. x 3⁄16-in. 

(102-mm x 76-mm x 4.8-mm) structural steel tubes mounted on W6x20 (W152x29.8) posts that 

were welded to base plates and bolted to the top of the bridge deck. The steel posts were spaced 

at 8 ft - 4 in. (2.54 m), and the top mounting height of the W-beam was 27 in. (686 mm). The 

T101 system required an approach transition when used with standard strong-post guardrail. 

Seven full-scale crash tests were performed on the T101 bridge rail utilizing passenger 

vehicles and buses. In three crash tests with passenger vehicles, clean and smooth redirections 

occurred and the system met all safety criteria of TRC 191, with the exception that lateral 

decelerations were higher than permitted. However, greater decelerations were later permitted by 

NCHRP Report 350, therefore these decelerations were acceptable. In four full-scale crash tests 

utilizing buses, the vehicles were contained and redirected. However, in tests with a 32,000-lb 

(14,528-kg) intercity bus and a 7,000-lb (3,178-kg) school bus, the buses rolled onto their sides 

after impact with the bridge rail. The particular vehicle characteristics and interaction with the 

rail may have also contributed to the successful system performance with the other buses. Based 

on the performance in these tests, the Texas T101 Bridge Rail has been classified as TL-3 under 

NCRHP Report 350. 

Observations of extensive bridge deck damage in impacts with the Texas T101 prompted 

a 1985 study in which design variations were investigated [34]. Standard concrete bridge decks 
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were unable to withstand the required loads without significant cracking. Several design 

revisions were recommended, including strengthening the concrete bridge deck and changing the 

washers and base plate to induce tensile failure in the bolts. 

2.2.2.2 Ohio Box Beam Rail  

The Ohio Box Beam Rail utilized standard 12-gauge (2.66-mm thick) W-beam rail with 

an 8-in. x 4-in. x 3⁄16-in. (203-mm x 102-mm x 4.8-mm) tubular backup beam. Top mounting 

height of the W-beam was 27 in. (686 mm), and posts were W6x25 (W152x37.2) sections spaced 

at 6 ft - 3 in. (1.91 m) centers. Additional 6-in. (152-mm) long box beams were used above and 

below the backup rail at each post as blockouts. Posts were mounted with anchor bolts that 

extended through the exterior edge of the bridge deck and passed through the front flanges of the 

posts. As the system was near-rigid, it required an approach guardrail transition. 

The Ohio Box Beam Rail was crash tested under NCHRP Report 230 criteria for MSL-2 

in a 1987 study [35]. During testing, a 1,980-lb (898-kg) vehicle impacted the rail at 60.6 mph 

(97.5 km/h) and at an angle of 19.6 degrees, and a 4,790-lb (2,172-kg) vehicle impacted the rail 

at 60 mph (97 km/h) and at an angle of 25 degrees. In both tests, the vehicles were smoothly 

redirected, while the bridge rail and deck received only minor damage. The Ohio Box Beam 

Bridge Rail met all performance criteria for MSL-2, which is considered equivalent to TL-2 of 

NCRHP Report 350. 

2.2.2.3 Ohio Type 5 Culvert Guardrail  

The Ohio Department of Transportation (ODOT) Type 5 W-Beam Guardrail with a 

Tubular Backup originated from the Ohio Box Beam Bridge Rail, and is also known as ODOT 

GR-2.2 [36]. The standard system consisted of 12-gauge (2.66-mm thick) W-beam rail backed 

up with 8-in. x 4-in. x 3⁄16-in. (203-mm x 101-mm x 4.8-mm) structural tubing and supported by 

W6x25 (W152x37.2) steel posts spaced at 6 ft - 3 in. (1.91 m). Two additional 8-in. x 4-in. x 3⁄16-
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in. (203-mm x 101-mm x 4.8-mm) structural tubes were used as blockouts above and below the 

backup rail at each post. The W-beam rail had a top mounting height of 27¾ in. (706 mm). The 

system had a range of stiffness values depending on the post mounting conditions to the culvert, 

but always required a transition to connect to standard guardrail, which is the ODOT GR-3.4 

system. 

LS-DYNA finite element analyses of NCHRP Report 350 test designation nos. 3-10 and 

3-11 were performed on the standard system with the posts embedded in both concrete and soil. 

Based on these results, the standard ODOT GR-2.2 guardrail was classified as a TL-3 system 

across its range of stiffness. Additional analyses were performed to determine potential 

improvements to the rail, which included using two tubular backup rails, a lower rub-rail, and/or 

nested W-beams. All were found to reduce the propensity for wheel snag on system posts.  

Evaluation of the ODOT GR-3.4 transition revealed that it was much less stiff than the 

GR-2.2 guardrail. Thus, a modified transition was developed which used nested W-beam rails. 

With this modification, the guardrail and transition were accepted as a TL-3 system. However, 

no full-scale crash tests were performed. 

2.2.2.4 Michigan Side-Mounted W-Beam Rail 

The Michigan Side-Mounted W-Beam system was quite similar to the Ohio Box Beam 

Rail. The Michigan system used W6x25 (W152x37.2) posts spaced at 6 ft - 3 in. (1.905 m) that 

supported a 8-in. x 4-in. x 3⁄16-in. (203-mm x 102-mm x 4.8-mm) box beam and standard, 12-

gauge (2.66-mm thick) W-beam. Posts were attached directly to the bridge deck edge using 

anchor bolts. Alternatively, posts could be welded to spacer sections that were then bolted to the 

deck, which reduced rail encroachment onto the deck surface. Four 1¼-in. (31.8-mm) diameter 

anchor bolts were used, with the upper anchors positioned 8 in. (203 mm) above the lower 

anchors. Additional box beam blockouts were used above and below the box beam rail at each 
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post. The system was quite stiff and required an approach guardrail transition. No research, crash 

testing reports, or FHWA approval letters were found for this system during the literature review. 

2.2.3 Thrie-Beam Bridge Rails 

Many bridge rails utilizing thrie-beam rail elements have been developed and 

successfully tested. While these systems tend to be relatively stiff, several have post-to-deck 

attachment hardware that minimizes intrusion of the system onto the bridge deck. 

2.2.3.1 NCHRP SL-1 Barrier  

NCHRP Report 239 details the design and testing of a thrie-beam barrier rated Service 

Level 1 (SL-1) [37]. The 12-gauge (2.66-mm thick) thrie-beam guardrail had a top mounting 

height of 32 in. (813 mm). Posts were either 6-in. x 6-in. (152-mm x 152-mm) wood sections or 

steel TS6x3x¼ (TS152x76x6.4) sections spaced at 8 ft - 4 in. (2.54 m), both of which were 

designed to break away during impact. Wood posts were housed in sockets anchored to the side 

of the deck that developed the ultimate capacity of the posts, while steel posts were attached to 

the deck edge with a breakaway connection. This connection utilized two bolts anchored in the 

side of the concrete deck that passed through a steel base plate which extended above the deck. A 

bolt was passed through this plate, the post, and a bearing plate on the back side of the post that 

was designed to fail during impact. Wood posts were attached to the thrie-beam rail with 5⁄16-in. 

(7.9-mm) diameter bolts and washers, while hooked beam hangers were used to attach the thrie-

beam to steel posts. A bolt was passed through the straight end of the hanger to attach it to the 

thrie-beam, while the hooked end rested on top of the tube-section post. Following unsatisfactory 

performance of this connection, the wood-post connection was applied to the steel-post system.  

In testing, the steel-post SL-1 barrier was impacted by a 4,500-lb (2,041-kg) vehicle at 

61.7 mph (99.3 km/h) and at an angle of 16.6 degrees, twice with a 2,250-lb (1,021-kg) vehicle 

at 58.6 mph (94.3 km/h) and 60.0 mph (96.6 km/h), both at angles of 16.0 degrees, and once with 
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a 20,000-lb (9,072-kg) vehicle at 44.7 mph (71.9 km/h) and at an angle of 7.7 degrees. In all 

tests, the vehicles were smoothly redirected. Maximum barrier deflection of 30 in. (762 mm) 

occurred during the 4,500-lb (2,041-kg) vehicle impact. The wood-post system was also tested 

five times, but displayed varying results due to lack of uniformity in the wood posts. However, 

both systems were deemed acceptable as SL-1 barriers, which are considered equivalent to TL-2 

barriers under NCHRP Report 350. 

2.2.3.2 Nebraska Tubular Thrie-Beam 

The Nebraska Tubular Thrie-Beam Bridge Rail utilized a tubular thrie-beam rail formed 

by placing two separate 10-gauge (3.42-mm thick) thrie-beam elements back-to-back. Center 

mounting height of the rail was 23 in. (584 mm). The rail was supported by W6x25 (W152x37.2) 

posts which were welded to a base-plate and bolted to the deck with five cast-in-place bolts. 

Two crash tests were performed on the barrier in a 1987 study [35]. The barrier 

successfully redirected a 1,970-lb (893-kg) vehicle which impacted at 61.4 mph (98.8 km/h) and 

at an angle of 20 degrees and a 4,700-lb (2,132-kg) vehicle which impacted at 58.4 mph (94.0 

km/h) and at an angle of 24.3 degrees. The barrier met the MSL-2 criteria of NCHRP Report 230 

and was later classified as a TL-3 system under NCHRP Report 350. 

2.2.3.3 California Thrie-Beam Bridge Rail 

The California Thrie-Beam Bridge Rail consisted of 10-gauge (3.42-mm thick) thrie-

beam rail mounted on W6x15.5 (W152x23) posts and blockouts with a top mounting height of 

32 in. (813 mm). Posts were spaced at 6 ft - 3 in. (1.91 m) and side-mounted to the bridge deck 

with two 1¼-in. (31.8-mm) diameter upper anchors and two ¾-in. (19.1-mm) diameter lower 

anchors that passed through the front flange of each post. The upper anchors were positioned 5 

in. (127 mm) above the lower anchors. Minimum deck thickness for this system was 12 in. (305 

mm), and an approach guardrail transition was required. 
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Crash testing was performed on the California Thrie-Beam Bridge Rail in a 1993 study 

[38]. The barrier successfully redirected a 5,400-lb (2,449-kg) pickup truck impacting at 44.9 

mph (72.3 km/h) and at an angle of 21 degrees, and a 1,770-lb (803-kg) car impacting at 48.7 

mph (78.4 km/h) and at an angle of 18.3 degrees. Successful crash testing was also performed on 

the approach guardrail transition. Thus, the system performance satisfied Performance Level 1 

(PL-1) criteria as defined by AASHTO Guide Specifications for Bridge Rails, which was deemed 

equivalent to a TL-2 rating under NCHRP Report 350. 

2.2.3.4 Oregon Side-Mounted Thrie-Beam Bridge Rail 

The Oregon Side-Mounted Thrie-Beam Bridge Rail utilized 10-gauge (3.42-mm thick) 

thrie-beam rail mounted on W6x15 (W152x22.3) posts with a top mounting height of 27 in. (690 

mm). Posts were anchored to the edge of bridge decks with two ¾-in. (19.1-mm) diameter upper 

bolts and two lower concrete inserts. Minimum deck thickness for the rail was 15 in. (381 mm), 

and the system required an approach guardrail transition. 

Two full-scale crash tests were performed on the Oregon Side-Mounted Thrie-Beam 

Bridge Rail in a 1997 study [39]. The system successfully redirected a 1,970-lb (894-kg) car 

impacting at 52.2 mph (84.0 km/h) and at an angle of 19.7 degrees and a 5,737-lb (2,605-kg) 

pickup truck impacting at 46.1 mph (74.2 km/h) and at an angle of 20.9 degrees. Performance 

was deemed acceptable for PL-1, which was considered equivalent to a TL-2 rating under 

NCHRP Report 350. 

2.2.3.5 TBC-8000 Bridge Rail 

The thrie-beam and channel, or TBC-8000 bridge rail, was designed for use on 

longitudinal glulam timber bridge decks [40]. The system consisted of W6x15 (W152x22.3) 

posts and blockouts spaced at 6 ft - 3 in. (1.905 m) that supported 10-gauge (3.42-mm thick) 

thrie-beam rail and a C8x11.5 (C200x17) channel section. Top mounting height of the channel 
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section was 33¼ in. (845 mm). Posts were side-mounted to exterior base plates on the edge of 

the deck using four 1-in. (25.4-mm) diameter bolts. These plates were anchored with two 1-in. 

(25.4-mm) diameter threaded rods that extended 4 ft (1.22 m) into the deck and through an 

anchor plate. An approach guardrail transition was used with the system. 

The TBC-8000 was successfully crash tested to Performance Level 2 (PL-2) with an 

18,000-lb (8,165-kg) single-unit truck travelling 47.4 mph (76.3 km/h) and at an angle of 16.1 

degrees to the bridge rail. In the test, the vehicle was smoothly redirected, and maximum 

permanent set of the rail was 83⁄16 in. (208 mm). This barrier was considered a TL-4 system under 

NCHRP Report 350. 

2.2.3.6 TL-4 Thrie-Beam Bridge Rail for Glulam Timber Decks 

A TL-4 steel bridge rail for use on transverse glulam timber decks was developed in a 

2002 study [41]. Posts were side-mounted, W6x15 (W152x22.3) sections spaced at 8 ft (2.44 m) 

and bolted to upper and lower anchor plates. These anchor plates were attached to the top and 

bottom of the bridge deck with twelve ⅞-in. (22.2-mm) diameter through-deck bolts. Additional 

W6x15 (W152x22.3) sections were used to block the 10-gauge (3.42-mm thick) thrie-beam rail 

away from the posts. A steel 8-in. x 3-in. x 3⁄16-in. (203-mm x 76-mm x 4.8-mm) tube section 

was used as a second rail section that was mounted above the thrie-beam. An approach guardrail 

transition was used with the system. 

The system was crash tested according to NCHRP Report 350 criteria with a 4,396-lb 

(1,994-kg) pickup travelling at 58.2 mph (93.7 km/h) and at an angle of 25.5 degrees to the rail 

and with a 17,785-lb (8,067-kg) single-unit truck travelling at 47.5 mph (76.4 km/h) and at an 

angle of 14.6 degrees. Both vehicles were successfully redirected with maximum permanent sets 

of 4⅝ in. (117 mm) and 5⅜ in. (137 mm), respectively. Thus, the system met the TL-4 criteria 

presented in NCHRP Report 350.  
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2.2.3.7 TL-2 Thrie-Beam Bridge Rail for Glulam Timber Decks 

A TL-2 steel bridge rail for use on transverse glulam timber decks was developed in a 

2003 study [42]. This system was similar to the previously developed TL-4 system, but used 

W6x12 (W152x17.9) posts and blockouts, a C8x11.5 (C200x17) channel as the second beam 

element, and eight ⅞-in. (22.2-mm) diameter through-deck bolts in the post-to-deck attachment. 

This system also used an approach guardrail transition. 

In NCHRP Report 350 crash testing, a 4,334-lb (1,966-kg) pickup truck impacted the rail 

at a speed of 41.4 mph (66.6 km/h) and at an angle of 25.6 degrees. The vehicle was smoothly 

redirected, and maximum dynamic deflection of the rail was 3 in. (78 mm). Thus, the system met 

the TL-2 criteria presented in NCHRP Report 350. 

2.2.4 Tube-Section Bridge Rails 

Several bridge rails utilizing tube-section rail elements have been developed and 

successfully tested. These systems tend to be relatively stiff, but several have post-to-deck 

attachment hardware that minimizes intrusion of the system onto the bridge deck. 

2.2.4.1 California Type 18 Bridge Rail 

The California Type 18 Bridge Rail utilized W8x31 (W203x46.1) posts spaced at 8 ft 

(2.44 m) which supported a TS4x4x¼ (TS102x102x6.4) upper rail and blockout and a 

TS3x12x¼ (TS76x305x6.4) lower rail that was mounted on a pipe section blockout designed to 

crush and absorb energy during an impact. An additional, smaller rail could be mounted above 

the top rail if desired. Posts were anchored to the side of the deck with two 1¼-in. (31.8-mm) 

diameter upper bolts and two 1-in. (25.4-mm) diameter lower bolts. Upper bolts were positioned 

4½ in. (114 mm) above the lower bolts, and loops of rebar formed a cage around the bolts. 

Minimum bridge deck thickness for the bridge rail was 12 in. (305 mm), and the system required 

an approach guardrail transition. 
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Crash testing was performed on the California Type 18 Bridge Rail in a 1983 study [43]. 

The system successfully redirected a 1,850-lb (839-kg) car impacting at 59.7 mph (96.1 km/h) 

and 12 degrees and a 4,530-lb (2,055-kg) car impacting at 60.7 mph (97.7 km/h) and 23 degrees. 

Thus, the barrier met the safety criteria of MSL-2 defined in NCHRP Report 230 and was 

deemed equivalent to a TL-2 system under NCHRP Report 350. 

2.2.4.2 California Type 115, 116, and 117 Bridge Rails 

Three similar side-mounted, tubular bridge rails have been developed by the California 

DOT. The Type 115 Rail utilized W8x31 (W203x46.1) posts spaced at a minimum of 6 ft (1.83 

m) and a maximum of 8 ft (2.44 m) which supported two TS4x4x¼ (TS102x102x6.4) rails. Posts 

were anchored to the side of the deck with two 1¼-in. (31.8-mm) diameter upper bolts and two 

1-in. (25.4-mm) diameter lower bolts. The upper bolts were located 10 in. (254 mm) above the 

lower bolts, and the minimum deck thickness was 18 in. (457 mm). Alternatively, the upper bolts 

could be placed as close as 4½ in. (114 mm) to the lower bolts if additional loops of rebar were 

placed around the bolts, which reduced the required deck thickness to 12 in. (305 mm). The Type 

116 and 117 Bridge Rails were similar to the Type 115 Rail, but the Type 116 used one 

additional, smaller upper rail element and the Type 117 used two additional, smaller, upper rail 

elements. All three systems required approach guardrail transitions. 

The Type 115 Bridge Rail was crash tested in a 1993 study [38]. A 1,800-lb (816-kg) car 

impacting at 59.0 mph (95.0 km/h) and 19 degrees and a 5,470-lb (2,481-kg) pickup impacting at 

64.2 mph (103.3 km/h) and 21 degrees were successfully redirected. However, wheel snag 

occurred in the test with the car, and as such the system did not satisfy criteria for PL-2. 

However, the system met PL-1, and was considered equivalent to TL-2 under NCHRP Report 

350. The Type 116 and 117 Bridge Rails are also considered TL-2 barriers [44]. 
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2.2.4.3 Illinois Side-Mounted Bridge Rail 

The Illinois Side-Mounted Bridge Rail utilized a TS8x4x5⁄16 (TS203x102x7.9) upper rail 

and TS6x4x¼ (TS152x102x6.4) lower rail. Both rails were mounted on W6x25 (W152x37.2) 

posts spaced at 6 ft - 3 in. (1.91 m) that were side-mounted to the edge of the bridge deck using 

two 1-in. (25.4-mm) diameter upper bolts and two ⅝-in. (15.9-mm) diameter lower bolts. The 

upper bolts were placed 10 in. (254 mm) above the lower bolts, and deck thickness was 17 in. 

(432 mm), not including the bituminous wearing surface. Additional tube sections were placed 

between the post and deck as spacer sections. Due to the stiffness of the system, an approach 

guardrail transition would be required. 

The Illinois Side-Mounted Bridge Rail was full-scale crash tested three times in a 1997 

study [39]. The barrier redirected a 1,961-lb (890-kg) car impacting at 58.7 mph (94.4 mph) and 

20 degrees, a 5,797-lb (2,632-kg) pickup truck impacting at 63.6 mph (102.3 km/h) and 19.2 

degrees, and an 18,000-lb (8,172-kg) single-unit truck impacting at 50.8 mph (81.8 km/h) and 

15.1 degrees. Thus, the barrier met all performance criteria for PL-2 as defined by AASHTO and 

was considered equivalent to a TL-4 rating under NCHRP Report 350. 

2.3 Prior Weak-Post W-Beam Guardrail System Testing 

Weak-post, W-beam barriers have been investigated in prior research, including full-scale 

crash tests and finite element modeling. This section summarizes the research and testing of 

these systems that are relevant to the current project, including post-to-rail connections and rail 

splices. 

2.3.1 TL-2 Weak-Post W-Beam Guardrail System (SGR02a) 

The weak-post W-beam guardrail system, also known as the G2 guardrail or SGR02a, 

has been used in several states, including Pennsylvania, New York, Connecticut, Virginia, and 

North Carolina. The standard system utilizes S3x5.7 (S76x8.5) posts spaced at 12 ft - 6 in. (3.81 
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m), standard 12-gauge (2.66-mm thick) W-beam guardrail with a top mounting height of 30 in. 

(762 mm), and splices located at posts. A 5⁄16-in. (7.9-mm) diameter hex bolt and nut and a 1¾-

in. x 1¾-in. x ⅛-in. (44-mm x 44-mm x 3.2-mm) square washer attach the guardrail to each post. 

A 9⁄16-in. (14.3-mm) diameter shelf bolt located beneath the rail provides additional support 

against environmental loads. The design intent of the post-to-rail connection was for the bolt to 

fracture upon deflection of the post, ensuring that the rail is not pulled down upon post rotation. 

A median barrier variant of the system, the SGM02, was created by placing W-beam guardrails 

on both sides of the posts. 

Although the weak-post W-beam guardrail performed adequately under NCHRP Report 

230 criteria, the system has not performed well with higher center-of-gravity vehicles. This 

problem was first observed after the system caused a van to roll during crash testing [45]. The 

system was first tested under NCHRP Report 350 TL-3-11 conditions in a 1995 FHWA study, in 

which a 4,409-lb (2,000-kg) truck impacted the guardrail at a speed of 62.0 mph (99.8 km/h) and 

at an angle of 24.4 degrees [18]. During the test, the W-beam rail dropped, allowing three of the 

vehicle’s tires to override the guardrail and straddle it for the length of the system. The authors 

concluded that the vehicle most likely would have completely vaulted over the rail if the 

guardrail system had been longer. 

The most likely cause of the test failure was that the post-to-rail connection was 

inadequate. The connection must be strong enough to hold the rail in place until the guardrail 

posts begin to pull it down and then must break to avoid pulling the rail down. The report 

appears to indicate that, for this test, the rail dropped due to premature failure of the post-to-rail 

bolt connection. 

The G2 system was then tested under TL-2 conditions [18]. A 4,409-lb (2,000-kg) truck 

impacted the barrier at a speed of 44.1 mph (71.0 km/h) and at an angle of 26.1 degrees. In the 
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test, the guardrail system successfully redirected the vehicle while sustaining a maximum 

dynamic deflection of 4 ft - 6 in. (1.4 m). Thus, the system was accepted as an NCHRP Report 

350 TL-2 barrier. 

2.3.2 TL-3 Weak-Post W-Beam Guardrail System (SGR02b) 

Full-scale pickup truck crash tests were performed on the Pennsylvania Type 2 Class A 

weak-post W-beam guardrail in a 1999 study [46]. Although the barrier passed the first two tests, 

the speed was too low to meet TL-3 requirements. A third test was performed in which the 

pickup truck impacted the guardrail at a speed of 64 mph (103 km/h) and at an angle of 26.3 

degrees. In this test, the rail ruptured at a splice location and the pickup truck penetrated the 

barrier. 

In 2000, a study was undertaken to investigate the causes of unsatisfactory performance 

of the weak-post W-beam guardrail [47-48]. Under static testing, the post-to-rail connection for 

the existing system was found to fail inconsistently. Failure mechanisms in these tests consisted 

of bending and pullout of the square washer and stripping the threads off of the bolt. The bolt did 

not fracture as desired in any of the tests. Both failure mechanisms occurred at force levels 

greater than desired and required what the authors considered to be excessive displacement, 

which might allow the rail to be pulled downward by the post. Static testing of the 5⁄16-in. (7.9-

mm) diameter, ASTM A307 Grade A bolts revealed a wide range of failure stresses, as some 

fractured at stresses less than the minimum specified ultimate stress while others sustained 

significantly higher stresses before fracture. 

Maximum loading of the guardrail normally occurs as it is bent around a post. The 

weakest point in the guardrail is at the splice, where approximately 15 percent of the cross-

section is missing. Thus, the normal guardrail design places the weakest point of the guardrail at 

the point of maximum loading.  
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A revised post-to-rail connection system was designed which used an additional square 

washer and nut and a smaller, ¼-in. (6.4-mm) diameter bolt to isolate bolt fracture as the failure 

mechanism. Guardrail splices were moved to the midspan locations between the posts. This 

revised system was subjected to a test in which a 4,409-lb (2,000-kg) pickup impacted the 

guardrail at a speed of 62.3 mph (100.2 km/h) and at angle of 25.9 degrees [49]. During the test, 

a small tear initiated in the guardrail as it was pressed against the edge of a post flange. This tear 

produced a rupture of the entire guardrail element, which allowed the truck to penetrate the 

barrier. Small nicks were found in the guardrail at each post in the impact region, indicating that 

the failure was likely to be a common occurrence. 

Additionally, as the rail element dropped in front of the vehicle in the first TL-3 test, a 

stronger or more ductile connection may have been required. Isolation of bolt fracture as the 

failure mechanism resulted in a more consistent failure mechanism, but it decreased the ductility 

of the connection, as the bolts cannot yield appreciably before failure whereas the washers can. 

Stress waves that pass through a W-beam rail upon impact of a vehicle can be managed better by 

a ductile connection which can yield without failing, preventing premature release of the rail 

from downstream posts. 

A finite element model was developed for the guardrail system to examine the guardrail-

post interaction. This model confirmed that as the posts rotated and twisted, the flanges of the 

posts caused stress concentrations at the base of the rail which developed the nicks observed 

during testing. The post-to-rail connection was further revised with the addition of a 12-guage 

(2.66-mm thick) W-beam section backup plate at each post to prevent these nicks. Shelf bolts 

were eliminated on all but the end posts. The updated system was crash tested with a 4,409-lb 

(2,000-kg) pickup truck traveling at a speed of 62.3 mph (100.3 km/h) and at an angle of 25.3 

degrees to the guardrail [50]. In this test, the guardrail system initially contained and redirected 
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the pickup truck, but the guardrail dropped in front of the impact region and the vehicle was 

allowed to override the barrier. 

The rail mounting height was then increased to 32¼ in. (820 mm), and the post-to-rail 

connection bolt diameter was increased to 5⁄16 in. (7.9 mm). Shelf bolts were again added to 

support the W-beam rail. The redesigned system was tested with a 4,409-lb (2,000-kg) pickup 

truck travelling at a speed of 63.6 mph (102.4 km/h) and at an angle of 26.5 degrees [51]. The 

truck was successfully redirected by the guardrail and met all required performance criteria for 

an NCHRP Report 350 TL-3 barrier. 

Following the successful performance of the system in test designation no. 3-11, the same 

revised system was subjected to test designation no. 3-10 conditions to ensure the system still 

performed adequately in a small-vehicle impact [52]. The system successfully redirected a 1,806-

lb (820-kg) car which impacted the rail at a speed of 62.4 mph and at an angle of 21.1 degrees. 

Thus, the modified weak-post W-beam guardrail met all performance criteria for an NCHRP 

Report 350 TL-3 barrier. 

2.3.3 New York DOT W-Beam on Light Post Median Barrier 

The New York DOT W-Beam on Light Post Median Barrier consisted of standard 12-

gauge (2.66-mm thick) W-beams mounted on both sides of S3x5.7 (S76x8.5) posts. Guardrail 

splices were located at the posts, which were spaced at 12 ft - 6 in. (3.81 m), and the top 

mounting height of the W-beam guardrail was 32⅞ in. (835 mm). A 5⁄16-in. (7.9-mm) diameter 

hex bolt and nut and a 1¾-in. x 1¾-in. x ⅛-in. (44-mm x 44-mm x 3.2-mm) square washer 

attached the guardrails on both sides of each system post, and 9⁄16-in. (14.3-mm) diameter shelf 

bolts located beneath the rail provided additional support against environmental loads. This 

barrier was crash tested with a 4,409-lb (2,000-kg) pickup truck travelling at a speed of 63.1 mph 
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(101.5 km/h) and at an angle of 24.8 degrees [53]. In this test, the guardrail system successfully 

redirected the truck and met all performance criteria for an NCHRP Report 450 TL-3 barrier. 

2.4 Other Post-to-Rail Connections 

The connections between guardrail and system posts have been investigated under 

several research projects. Studies relevant to the current project are discussed in the following 

sections. 

2.4.1 Strong-Post (G4) Guardrail Post-to-Rail Connection 

The behavior of the post-to-rail connection of the G4 strong-post guardrail system was 

investigated in a 2002 study [54]. A total of 8 quasi-static tests were performed in which a 

standard ⅝-in. (15.9-mm) diameter button-head bolt was pulled through the ¾-in. (19.1-mm) 

wide slot in standard 12-gauge (2.66-mm thick) W-beam guardrail sections. Two tests were 

performed for each of four different load cases. For Cases 1 and 2, bolts were pulled through a 

single layer of W-beam, whereas for Cases 3 and 4, bolts were pulled through two layers of W-

beam. For Cases 1 and 3, bolts were positioned at the center of the slot in the W-beam(s), while 

in Cases 2 and 4, bolts were positioned at the edge of the slot. In all 8 tests, the connection failed 

when the guardrail deformed and allowed the bolt head to slip through. 

The tests demonstrated that the forces necessary to pull the bolt through the W-beam 

sections varied dramatically. These tests showed that the number of layers of guardrail at the 

pullout location has a greater effect on failure loads than bolt location within the slot. The 

average force recorded for Case 4 was more than three times that of Case 1. These results 

suggested that this connection does not create consistent failure loads, particularly for systems 

which have both splice and non-splice rail sections at posts.  
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2.4.2 T-31 Guardrail Countersunk Bolt Connection 

A 2006 paper presented the design of a proprietary strong-post W-beam guardrail system 

that utilized a countersunk bolt to attach the guardrail to system posts [55]. This bolt had a 

tapered head that ensured more uniform pullout forces, regardless of bolt position within the slot. 

Rail splices were placed at midspan locations to further reduce the post bolt pullout force. The 

connection was incorporated into a proprietary guardrail system that featured modified line posts 

and no blockouts, known as the T-31 Guardrail System. 

2.4.3 GMS Guardrail Mini Spacer Releasable Fastener 

A 2007 paper examined the behavior of guardrail post-to-rail connections for use in 

design of a proprietary guardrail system [56]. After analyzing the mechanics of rail release for 

existing post-to-rail connections in strong-post systems, the author asserted that relying on the 

motion of the system for guardrail release was disadvantageous. Motion of guardrail systems that 

use blockouts can be highly variable based on actual installation conditions, resulting in highly 

variable release loads and potentially preventing rail release. A connection was designed which 

consisted of a 5⁄16-in. (7.9-mm) diameter hex bolt and nut, a dome washer, a dome nut, and two 

circular release washers. This connection was designed to be strong under shear loads to prevent 

premature release of the rail, and weak in tension to prevent posts from pulling the rail down. 

Guardrail splices for the proprietary GMS Guardrail System were located at the posts. 

2.4.4 Nu-Guard 31 Connection 

Another proprietary guardrail system was developed in which the guardrail was released 

from system posts through fracture of the posts themselves [57]. In the system, W-beam 

guardrail was connected to U-channel line posts through vertical slots near the tops of the posts 

with a bolt, nut, and an oversized washer positioned between the guardrail and the post. Upon 
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post rotation, the bolt slid upward and fractured the edge of the slot. Guardrail splices for the 

proprietary Nu-Guard Guardrail System were located at the posts. 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

34 

3 BARRIER DESIGN 

3.1 Design Goals 

Two important components of the MGS Bridge Rail were the post-to-deck and post-to-

rail connections. To eliminate the need for an approach guardrail transition, the post design was 

required to develop rail stiffness, strength, and deflection characteristics comparable to those of 

guardrail posts embedded in soil. Further, a post system was needed that would transmit loads 

into the bridge deck without causing damage during most impacts. It was also desirable to 

minimize barrier encroachment onto the deck surface in order to reduce bridge construction 

costs. Finally, the post design and mounting system needed to be simple, economical, and usable 

on both newly constructed bridges as well as for retrofitting existing structures. 

The primary design goals for the bridge rail post were to develop sufficient stiffness and 

strength to match the lateral deflection of the MGS guardrail and absorb sufficient energy to 

limit tensile loading in the rail element. These objectives can be accomplished in one of two 

ways. A plastic hinge can be designed into a strong post that allows the post to bend at a 

prescribed load. Alternatively, a post can be selected that absorbs energy by bending at its base. 

The plastic hinge concept can be designed to absorb more energy, but it is also more costly to 

implement. Both of these design approaches were pursued as described in the following sections.  

3.1.1 Plastic Hinge Concepts 

Five plastic hinge concepts were identified as possible solutions to the bridge rail post 

problem. As described in the following sections, three of the plastic hinge concepts relied on a 

bolt tearing through a steel plate, a fourth relied upon rupture of a tube, and the last utilized 

crushing of an energy-absorbing foam. 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

35 

3.1.1.1 Top-Mounted, Lateral Steel Plate Tear-out  

One bolt tear-out concept was the top-mounted, lateral steel plate tear-out design. This 

concept utilized a steel plate that was connected to the top of the deck with a bolt that passed 

completely through the bridge deck. Upon impact, the post would bear against and rotate about 

the bottom of the deck and cause the through-deck bolt to tear through the top plate. Tear-out 

force would be tuned by adjusting the thickness of the tear-out plate. Sketches of this concept in 

deformed and undeformed states are shown in Figure 1. 

 
Figure 1. Lateral Plate Tear-out Concept 

Several different variations were developed for connecting the post to the bridge deck, 

but one final design was selected which displayed the greatest likelihood of behaving as desired. 

This design utilized one through-deck bolt and a tear-out plate that was butted against the post 

and attached with fillet welds on both sides to ensure adequate weld strength to initiate and 

sustain tearing. A lower angle section was bolted to the post and attached to the deck with the 

through-deck bolt. Slots were cut into the angle to attach the post, which allowed for variation in 
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bridge deck thickness. Gusset plates were welded to the angle to prevent it from bending during 

post rotation.  

To limit the pre-impact friction between the tear-out plate and the deck, the tear-out plate 

was designed with metal strips welded to its lower side on either side of the bolt hole, which 

created a small span with the plate. Spacing between the strips and the plate thickness were tuned 

such that the plate was unable to support excessive preload from the bolt without collapsing. 

Directions for installation specified that the bolt should be tightened down without collapsing the 

plate, thereby limiting the maximum amount of preload on the plate. Finally, a small offset was 

left between the edge of the post and the bridge deck to allow for tolerance in placing the 

through-deck bolt. A sketch of the final design of the lateral plate tear-out concept is shown in 

Figure 2. 

 
Figure 2. Final Lateral Plate Tear-out Concept 

An advantage of this concept was that tearing of the plate was expected to generate 

constant resistance to post rotation. When loaded, the through-deck bolt would bend and apply 

out-of-plane stress to the plate, which would help initiate tearing. Placement of the post on the 

side of the deck also minimized rail intrusion onto the deck. 

The greatest weakness of the concept was its ability to limit friction between the plate 

and the deck due to bolt preload. While a rudimentary mechanism was designed into the system 
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for this purpose, its effectiveness was unknown. Another weakness was that the tear-out plate 

would have to be butt-welded to system posts, creating an awkward section for states to stock 

and ship. Finally, extension of the tear-out plate several inches past the rail on the deck surface 

could allow for it to be damaged by snow plow operations. 

3.1.1.2 Flange Splice with Bolt Tear-out 

Another strong-post bolt tear-out concept was based on previous research performed by 

Safety By Design [58]. This concept utilized a wide-flange beam that was mounted to the side of 

the bridge deck. The tension flange and web of the beam were cut such that only the compression 

flange was a continuous member. Splice plates and bolts were then used to reconnect the tension 

flange of the post. Upon impact, the post would rotate about its compression flange at the 

location of the cut, causing the splice bolts to tear through either the tension flange or the splice 

plate. 

Two variations of the flange splice with bolt tear-out concept were developed. The first 

concept utilized two thin splice plates placed on the interior side of the tension flange on either 

side of the web. During impact, the bolts rotate with the post and tear through the splice plates. 

The second concept used a thick splice plate located between the bridge deck and the post. 

During impact, the bolts remain stationary relative to the post, tearing through the tension flange 

of the post as it rotates. One proposed modification was to install the tear-out bolts at angles to 

apply out-of-plane deformations in the tear-out material, thereby facilitating fracture. Sketches of 

the rotating bolts concept in deformed and undeformed states are shown in Figure 3, and a sketch 

of the stationary bolts concept is shown in Figure 4. 
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Figure 3. Flange Splice with Rotating Bolts Tear-out Concept 

 
Figure 4. Flange Splice with Stationary Bolts Tear-out Concept 

Upon further investigation of the tension flange splices, it was determined that both splice 

options were unsatisfactory. The stationary bolts design was expected to develop resistance 

forces that were significantly larger than desired due to the thickness of post flanges, while the 

rotating bolts design required wide splice plate sections to prevent the bolts from rupturing the 

plates in tension. This in turn required a wider and heavier post section, such as a W6x15 

(W152x22.3), to accommodate the wider plates. 
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A revised concept that used a stationary bolt was developed based on these concerns. A 

hollow structural section (HSS) member was used in place of a wide-flange beam as the bridge 

rail post. The tube was cut through its front face and both of its side faces while its rear face was 

left intact. A splice plate was placed between the post and the deck, and one or two tear-out bolts 

were passed through the splice plate and post. Upon impact, the bolts would tear through the post 

face. A sketch of the tube-splice connection is shown in Figure 5. 

 
Figure 5. Tube Splice, Stationary Bolts with HSS Post 

Strengths of this concept were that it minimized intrusion onto the bridge deck and the 

hardware required should be easy to fabricate. 

However, one weakness of this side-mounted connection was its anchoring system. To 

avoid contacting reinforcing bar in a standard slab-on-girder bridge deck, approximately 4 in. 

(102 mm) was required between the top of the deck and the anchor. This severely restricted the 

moment arm of the anchors, which resulted in much higher anchor bolt loads. There was concern 

that these high loads may not be attainable in retrofit applications. 

3.1.1.3 Side-Mounted Post with Bolt Tear-out  

Another concept was developed which used side-mounted anchor brackets and bolt tear-

out to absorb energy. Two variations of this concept were considered. For both, a bolt was 

passed through the post and would tear through the post itself upon rotation. An alternative was 
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considered in which the bolt tore through the mounting bracket, but due to fabrication costs of 

the brackets, it was decided to design the brackets such that they were reusable and the tear was 

produced in the posts. Tear-out force for these concepts could be tuned through selection of 

different post thicknesses and the location of the tear-out bolt. 

The first variation of this concept utilized a wide-flange post placed between two 

gusseted angle sections which were side-mounted to the deck. These angles were welded to a 

base plate to aid in installation. A bolt was passed through the wide-flange beam near its 

compression flange that extended through both angles. Upon impact, the post would rotate and 

cause the bolt to tear through the web of the post. A second, smaller bolt was positioned near the 

base of the post to prevent the post from rotating toward the deck under environmental loads. 

Sketches of this design are shown in Figure 6. 

 
Figure 6. Side-Mounted Post with Bolt Tear-out Concept with W-Beam Post 

The second variation of the post tear-out concept used a tubular post that was also side-

mounted between two gusseted angles. A bolt was passed through the post and both angles. This 

bolt would tear through both side faces of the post upon rotation. Again, a second, smaller bolt 

was added near the base of the post to prevent the post from rotating toward the deck. Sketches 

of this concept are shown in Figure 7. 
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Figure 7. Side-Mounted Post with Bolt Tear-out Concept with Tubular Post 

An advantage of this concept was that the side-mounted anchor brackets, which were 

reinforced with gussets, prevented preload in the tear-out bolt from applying friction to the post. 

Thus, posts were expected to develop more consistent resistance forces.  

A weakness of this concept was that the mounting brackets, which required significant 

strength in order to be reusable, would be expensive. The variation incorporating a wide-flange 

post also required the tear-out bolt to sustain load at its center-span, which would result in 

significant bending stresses. Thus, it was believed that the tubular post represented a better 

option as it would load the bolt near its supports and reduce bending in the bolt. 

3.1.1.4 Foam Crush  

Another energy absorbing mechanism considered for use in the design of the post-to-deck 

connection was crushing of an energy-absorbing foam as the post rotated. Foam was considered 

ideal as it can generate a relatively constant resistance across most of its crush distance. One 

concept was developed which consisted of a bent-plate steel socket that was side-mounted to the 

bridge deck and housed a mass of crushable foam material and the post. Both a triangular-shaped 

socket, in which crush of the foam was approximately uniform across the face of the post, and a 

rectangular-shaped socket were considered. For both, a bolt was passed through the lower edge 

of the post to prevent it from slipping out of the socket. Sketches of the triangular socket and 

rectangular socket are shown in Figure 8. 
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Figure 8. Foam Crush Concepts – Triangular (left) and Rectangular (right) 

Strength of this concept was that it was expected to display consistent post force-

deflection behavior. It was believed that due to its simple mechanism, it could easily be tuned to 

work as desired, provided the anchorage system was adequate. 

Weakness included that the concept required large and expensive sockets. Aging effects 

on the foam were also potentially problematic. An additional concern with the triangle-shaped 

socket was that post rotation would cause the foam to be pushed out of the socket. 

3.1.1.5 Socket Rupture  

Another concept was developed which absorbed energy through the rupture of a steel 

socket which housed the post. One embodiment of this concept consisted of a side-mounted, bent 

plate socket. A bolt was passed through both sides of the socket to support the post. Upon 

impact, the post was pressed against the socket, stretching it and eventually causing Mode III, or 

out-of-plane shear failures along both edges of the post flange. As the post rotated, these tears 

would move downward on the socket until, at a sufficiently low height, the post would be 

released from the socket. Notches could be cut into the top of the socket to facilitate fracture 

initiation. Sketches of this concept are shown in Figure 9. 
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Figure 9. Socket Rupture Concept 

A variation to the socket rupture concept was to place notches on the sides of the socket, 

rather than the back face. This would change the failure mode of the socket to Mode I fracture, in 

which the plate was fractured in tension. However, it was believed that this failure method would 

generate higher forces and be less consistent than Mode III, or out-of-plane shear fracture. Thus, 

this concept was not further pursued. 

Another proposed variation to the socket rupture concept was to place a post blockout 

between the bridge deck and the post. Essentially, this would place the post at the exterior of the 

socket. Notches would again be placed at the upper end of the blockout that would initiate either 

Mode I or Mode III fracture, and the blockout would be attached to the post with either bolts or 

welds and bolted to the edge of the bridge deck. To prevent the blockout from crushing during 

post rotation, internal reinforcement would be required at its lower end. The advantage of this 

concept was that it would allow a rail blockout to be used between the W-beam and bridge rail 

posts without encroaching onto the deck surface. A sketch of the post blockout is shown in 

Figure 10. 
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Figure 10. Socket Rupture with Blockout Concept 

The greatest weakness of the socket rupture concept was that it would not generate a 

constant resistance force at the top of the post. Upon post rotation, the fracture would begin at 

the top of the socket and then move downward. While the force required to propagate the 

fracture would remain constant, the decreasing moment arm due to the downward movement of 

the fracture location would cause resistance force at the top of the post to decrease. Energy 

absorbed by the post-to-deck connection would therefore decrease at a second-order rate, and 

developing sufficient total energy absorption would be difficult. Calculations showed that 

increasing the tear-out force early in the event would result in overly large top-of-post forces at 

the beginning of an impact with minimal gains in energy absorption due to the ratio of the tear-

out moment arm length to height of impact. Increases in the depth of the socket were considered 

to alter this ratio, but over the range of depths which were practical for construction, all gains in 

the amount of energy absorbed were accompanied by unacceptably large increases in force at the 

top of the post. 

3.1.1.6 Selection of Designs for Component Testing 

The top-mounted lateral steel plate tear-out and side-mounted post bolt tear-out concepts 

were selected as the primary strong-post designs for component testing. These were selected as 
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they were believed to provide the most reliable failure mechanisms. Specifically, the side-

mounted post tear-out concept eliminated the problem of bolt preload friction resisting post 

rotation. While this issue was not fully resolved for the lateral plate tear-out concept, it was 

believed that the design might mitigate its effects. The foam crush concept was also expected to 

work as desired, but due to potential problems with the foam aging, this concept was abandoned.  

The flange splice concept was not selected due to concerns that the post would not rotate 

as desired, and therefore the bolts would not tear through the posts. In design, it was assumed 

that the post would rotate about its rear flange, producing ideal motion of the front flange for 

tearing. However, the validity of this assumption was questioned, and this design was not 

selected for further analysis. As discussed previously, the socket rupture concept would not 

provide the desired results even under the assumed ideal behavior, thus it was not selected for 

testing. 

3.1.2 Post Yield Design Concepts 

The second design approach was to develop a post system that relied on post yield to 

absorb energy. Several different post types were considered, but S3x5.7 (S76x8.5) posts were 

selected based on their demonstrated performance and use in previously-developed systems, 

including cable barriers and weak-post W-beam guardrails. Prior research has shown that these 

posts generate roughly one-half the resistive force and energy absorption as standard W6x9 

(W152x13.4) guardrail posts rotating in soil. Thus, S-posts with half-post spacing should 

generate similar stiffness, strength, and deflection characteristics as the approach guardrail. 

For this design approach, a post-to-deck connection was sought that could attach the post 

in essentially a fixed configuration and be replaced or repaired quickly following impact. The 

attachment should not be damaged during impacts and it should not cause damage to the bridge 

deck. 
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3.1.2.1 Top-Mounted Post Welded to Base Plate  

One concept incorporated a base plate that was welded to the post and bolted to the top of 

the bridge deck. A second plate would be placed on the lower side of the bridge deck. During 

impact, the welds would develop the full capacity of the post, allowing it to yield. The post and 

base plate would require replacement after each significant impact. Sketches of this concept are 

shown in Figure 11. 

 
Figure 11. Top-Mounted Post Welded to Base Plate Concept 

The major strength of this design was its simplicity. However, it also had several 

weaknesses. First, similar connections have historically damaged bridge decks [14-15, 19-23, 

34]. As this concept was top-mounted, it also encroached significantly more onto the bridge deck 

than side-mounted designs. Further, the posts would have to be welded to base plates, which 

would create an awkward piece for states to store and ship, and post replacement could not be 

accomplished from the top of the bridge. 

3.1.2.2 Top-Mounted Socket Welded to Base Plate  

To eliminate the need to re-weld and replace a post and base plate assembly following 

each impact event, a concept was developed that consisted of a socket welded to a base plate 

which was bolted to the bridge deck. In this design, the post would rest in the socket and a shim 

would be inserted to snug the connection and prevent post release. Only the post would require 

replacement following an impact. Sketches of the top-mounted socket are shown in Figure 12. 
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Figure 12. Top-Mounted Socket Welded to Base Plate Concept 

Although this concept eliminated the problem of replacing non-standard parts following 

impacts, it had several weaknesses. One problem was that the socket, which would extend 

several inches above the bridge deck, could cause wheel snag. As the socket would also move 

the location of post bending higher, it would effectively make the barrier stiffer. Finally, the 

design still encroached significantly onto the bridge deck.  

3.1.2.3 Cast-in-Place Socket 

Another concept utilized a socket for the bridge rail post that would be cast-in-place in 

the bridge deck. The socket would be selected from either standard HSS or mechanical tubing 

sections, and a shim would be inserted to secure the post and prevent it from releasing. Only the 

post would require repair following impact. Deck capacity to resist applied loads would need to 

be provided through either internal reinforcement or other means. Sketches of this concept are 

shown in Figure 13. 

A weakness of this design was that the bridge rail encroached significantly onto the 

bridge deck. Retrofit applications of this concept may require the posts to be located even further 

inward onto the bridge deck for the deck to safely withstand post forces. Thus, the system may 

encroach onto the deck even further in retrofit applications. 
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Figure 13. Cast-in-Place Socket Concept 

3.1.2.4 Side-Mounted Post Welded to Base Plate 

Another concept utilized a post welded to a base plate that was side-mounted to the edge 

of the bridge deck. Cast-in-place anchors or threaded rods embedded in epoxy would be used to 

anchor the base plate to the deck. Sketches of this concept are shown in Figure 14. 

 
Figure 14. Side-Mounted Post Welded to Base Plate Concept 

This concept did not encroach onto the bridge deck and its estimated cost was low. 

However, the small moment arm of the side-mounted anchors would result in large loads on the 

anchors themselves, thereby increasing the risk of failure. Additionally, the part would have to 

be galvanized after the post was welded to the plate, and the size of the total structure would not 

be ideal for shipping and storage. Finally, the post would potentially bend at the height of the 

bolts, which would reduce wheel snag, but also would reduce the stiffness of the barrier. 
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3.1.2.5 Side-Mounted Post in Socket Welded to Base Plate  

Another side-mounted connection concept consisted of a tube section welded to a base 

plate which would be anchored to the side of the deck. The tube would be selected from standard 

HSS shapes, and the anchors would either be cast-in-place bolts or threaded rods embedded in 

epoxy. Alternatively, the socket could be formed from one continuous bent plate. Sketches of the 

connection are shown in Figure 15. 

 
Figure 15. Side-Mounted Post in Socket Welded to Base Plate Concept 

Strengths of this concept were that it did not encroach onto the bridge deck and that it 

eliminated the awkward section problem of the side-mounted post welded to base plate concept. 

However, weaknesses of this concept were that it still placed large loads on the anchors due to 

their small moment arms and that the socket might be damaged during impact. 

3.1.2.6 Side-Mounted, Top-Anchored Post  

Several variations of a concept featuring posts placed on the side of the deck with 

through-deck anchorage systems were considered. The upper anchorage utilized a steel strap that 

was either welded or bolted to the post. If bolted, a plate washer would be positioned on the 

backside of the post to help distribute the load. The lower anchorage was either a smaller anchor 

embedded in the side of the deck or a lower angle plate attached to the through-deck bolt. 

Sketches of these variations are shown in Figures 16 and 17. 
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Figure 16. Top-Anchored, Side Mounted Post Welded to Strap 

 
Figure 17. Top-Anchored Bent Plates Bolted to Post 

Strengths of these concept variations were that they encroached minimally onto the 

bridge deck surface and used simple and economical hardware. Weakness was that the top 

anchorages, which did not extend onto the deck as far as the lateral plate tear-out connection, 

might still be damaged by snow plow operations. Welding the top anchorage to the post would 

also create an awkward section, as previously discussed. Bolting the post to the anchorages was 

not ideal either, as the combination of the narrow post flanges and relatively large bolt size 

would significantly reduce the post cross-section at its point of maximum bending moment.  

3.1.2.7 Side-Mounted, Top-Anchored Socket  

Another form of the side-mounted, top-anchored design used a socket that would be 

anchored to the top and bottom of the deck using a through-deck bolt. The socket would be a 
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standard HSS shape, and the post would be supported by either a bolt that passed through the 

post and the socket, or a cap on the bottom of the socket. A shim would be used to snug the post 

inside the socket. Several variations of the anchorage system were developed. However, the final 

design consisted of a top strap that was welded to the socket and a bottom angle that was bolted 

to the socket, thereby allowing for variations in deck thickness. A sketch of this connection is 

shown in Figure 18. 

 
Figure 18. Side-Mounted, Top-Anchored Socket Concept 

Strengths of this concept were that it did not encroach significantly onto the deck surface 

and that only the post would require replacement following an impact. Weaknesses were the 

somewhat awkward shape of the angle and mounting strap assembly and the expense of 

fabricating sockets for each post. 

3.1.2.8 Selection of Design for Component Testing 

Several concepts were thought to be viable, including the cast-in-place socket, the side-

mounted bent plate socket, the top-anchored bent plates bolted to post, the top-anchored socket 

with lower angle, and the side-mounted post welded to base plate. The side-mounted bent plate 

socket was believed to be the most economical design, and thus it was selected for component 

testing.  
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Note that the ability of existing bridge decks to withstand loads imparted from both 

strong- and weak-post design concepts was unknown due to potential variations in bridge deck 

size, strength, and reinforcement layout. Thus, the ability of all design concepts to be retrofit to 

existing bridge decks was unknown. 

3.2 Post-to-Rail Connection  

The connection between the post and rail of a barrier plays an important role in system 

performance. The connection must be sufficiently strong such that it does not prematurely 

release downstream of the vehicle, which can allow the rail to drop and produce vehicle override. 

At the same time, the connection must be sufficiently weak such that it does not allow the rail to 

be pulled down by rotating posts, which may also produce vehicle override. This requirement is 

especially important in systems which do not utilize blockouts, which help maintain rail height 

during post rotation. 

Thus, the post-to-rail connection design needed to (1) withstand forces caused by stress 

waves in the rail to prevent premature release, (2) fail consistently as the post rotated such that 

the rail would not be pulled downward, and (3) be economical. Ideally, the connection would 

utilize standard and readily available components. A variety of preliminary concepts for post-to-

rail connections were developed which are described in the following sections. 

3.2.1 Standard Weak-Post Guardrail (G2) Connection 

The first design concept considered was the standard weak-post, W-beam guardrail (G2) 

connection. This utilized a 5⁄16-in. (7.9-mm) diameter ASTM A307 Grade A bolt which passed 

through the rail and tension flange of the post, a nut, and a large square washer placed on the 

traffic-side face of the W-beam rail. This connection was originally designed to release during 

impact through fracture of the bolt, but more recent research suggested the connection might also 

fail by thread stripping in the nut and pull-through of the washer [47-48]. As the new bridge rail 
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would have four times as many posts as the weak-post W-beam guardrail, shelf bolts would not 

be required to resist environmental loads and would therefore be omitted. A sketch of the 

standard G2 connection is shown in Figure 19. 

 
Figure 19. Standard G2 Connection 

The greatest strength of this connection was its simplicity and low cost. Potential 

weakness was the possible inconsistency of failure. Position of the bolt and washer within the 

slot, the number of layers of guardrail at the connection (i.e., splice or non-splice), and the 

variability of material properties could greatly influence the failure mechanism and load. As bolt 

fracture was believed to require the greatest load, it represented an upper limit that could be 

tuned to the desired level. 

3.2.2 TL-3 Weak-Post Guardrail Connection 

A connection based on that of the TL-3 weak-post, W-beam guardrail was also 

considered. This connection would consist of a bolt, two washers, two nuts, and would rely 

solely upon the fracture of the bolt for rail release [47-48]. The two washers would have 

sufficient bending strength to prevent pull-through, while the two nuts would not allow the 

threads on either the nuts or the bolt to strip. A sketch of this connection is shown in Figure 20. 
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Figure 20. TL-3 Weak-Post W-beam Guardrail Connection 

Strengths of this connection were its simplicity and low cost. A potential weakness was 

that the connection had little ductility and may not be able to absorb energy from stress waves in 

the guardrail, which could potentially lead to premature rail release from the posts. 

3.2.3 Keyway Release Concept 

Another design concept consisted of a keyway release mechanism located on the 

guardrail posts. The keyway would consist of a small diameter hole, through which the 

connection would be attached, positioned adjacent to a larger diameter hole such that as the post 

rotated, the bolt would slide from the smaller diameter hole to the larger diameter hole and 

release from the post. Sketches of the keyway concept are shown in Figure 21. 

 
Figure 21. Keyway Connection Concept 
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Two major problems were identified for the keyway concept. First, initial bolt preload 

would cause friction between the rail and post that could potentially prevent the movement 

required for release. Second, post rotations in the upstream or downstream direction might not 

result in proper rail release. 

3.2.4 Slotted Post Concept 

Another concept utilized a slot in the post and a bolt to connect the post to the rail. Upon 

impact, the post would rotate, and as the rail deflected it would pull the bolt through the edge of 

the slot, releasing it from the post. The slot would either be positioned in the web or flange of the 

post; however, no connection mechanism was developed utilizing the web. A sketch of this 

concept is shown in Figure 22. 

One problem identified with the slotted post concept was that it potentially conflicted 

with previously patented systems, including several cable barrier systems and the Nucor Nu-

Guard guardrail system [57]. 

 
Figure 22. Slotted Post Concept 

3.2.5 Hanger-Bracket Concept 

Several variations of a hanger-bracket concept were considered during the development 

of the post-to-rail connection. The bracket would rest on top of the post and be connected to the 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

56 

rail with a bolt. As the post rotated, the bracket would slip off the edge of the post to release the 

rail.  

One variation of this concept utilized two fingers that passed over the flange of the post 

on either side of the web to secure the hanger-bracket. The rail-connection bolt would be 

positioned with its head on the bracket side of the connection and the nut on the guardrail side of 

the connection, or backward from a standard connection, such that the bolt would not prevent the 

guardrail from laying flat against the post. Alternatively, the slot would be offset past the flange 

of the post such that the bolt could pass through the rail and hanger-bracket without contacting 

the post. Sketches of the backward bolt and offset slot variations are shown in Figure 23. 

 
Figure 23. Hanger-Bracket Finger Concept 

A variation of the hanger-bracket finger concept consisted of a bent plate that would pass 

over the entire post and rest outside both of the flanges. Bolts would be placed upstream and 

downstream of the post, immediately next to the flanges, to hold the bracket in place. The 

bracket would again be connected to the rail with either a backward bolt or an offset slot. A 

sketch of this concept is shown in Figure 24. Alternatively, the hanger-bracket could consist of a 

capped tube section that would fit around the top of the post and be attached to the rail or a bolt 

could be passed through the top of the tube to hold it in place on the post to eliminate the cap. 
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One problem with this hanger-bracket concept was that it might infringe on the patent of 

the King Block, a blockout which uses a similar support mechanism to aid in guardrail 

installation [59]. This connection would also be much more expensive than the other considered 

concepts. 

 
Figure 24. Hanger-Bracket Bolt Concept 

3.2.6 Keyway Guardrail Slot 

Another concept consisted of modification of the guardrail slot in an attempt to improve 

uniformity of bolt pullout forces. The modified guardrail slot would consist of larger diameter 

holes at both ends and a more slender region that connected the two. Overlap of the bolt head 

above and below the bolt would be greater in the center region than at the ends. In this way, the 

release loads at the edges of the slot would more closely match those at the center of the slot. A 

sketch of this concept is shown in Figure 25. 

 
Figure 25. Keyway Guardrail Slot Concept 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

58 

Shortcomings of this design were that the modified slot in the guardrail would require 

specially cut W-beam sections not used in other barrier designs and that the release loads at the 

center of the slot would be reduced due to its shape, thus, allowing potential premature release.  

3.2.7 Selection of Design for Component Testing 

While several of the concepts were believed to have the ability to function as desired, it 

was decided to use the standard weak-post W-beam (G2) system connection, which consisted of 

a 5⁄16-in. (7.9-mm) diameter ASTM A307 Grade A bolt, a nut, and a 1¾-in. (44-mm) square 

washer. This connection was the simplest and most economical of the concepts and made from 

readily available standard parts. Complimentary failure mechanisms of bolt fracture, pull-

through of the washer and guardrail slot, and stripping of bolt and nut threads would prevent the 

connection from developing excessive strength and pulling the rail down during post rotation. 

The ability of the washer and slot to deform would also give the connection ductility to absorb 

some of the impact energy, which would be important early in the event as stress waves passed 

through the W-beam rail. Although the connection was believed to fail prematurely in previous 

weak-post guardrail research [47-48], the new bridge rail would use four times as many posts. 

Thus, the rail would be supported in four times as many locations, and premature release was far 

less likely. For these reasons, the standard weak-post connection was selected as the primary 

design for the bridge rail.  
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4 COMPONENT TESTING 

4.1 Purpose 

Following the revision of the initial concepts, component tests were conducted to 

determine if the design concepts would perform as desired. Posts and post-to-deck attachments 

were dynamically tested to verify that appropriate resistive forces would be developed and 

sufficient energy would be absorbed by the system to safely redirect the vehicle. Static tests were 

performed on the connection between the W-beam rail and post to verify that the connection 

would release the rail at appropriate loads. Based on the results of the preliminary tests, the 

concepts were either further refined or abandoned. All static and dynamic tests were conducted 

at the MwRSF Proving Grounds in Lincoln, Nebraska. 

4.2 Dynamic Testing 

Seven dynamic bogie tests were conducted to explore the behavior of bridge rail posts 

and post-to-deck attachments. Two tests were used to examine the performance of the top-

mounted lateral plate tear-out concept using W6x9 (W152x13.4) posts, and three tests were 

performed on the side-mounted tubular post tear-out concept using HSS6x4x⅛ 

(HSS152x102x3.2) posts. Finally, two tests were performed on S3x5.7 (S76x8.5) posts using 

two different deck attachments. Target impact conditions for the first six tests were a speed of 20 

mph (32.2 km/h) and an angle of 90 degrees with respect to the longitudinal direction of the 

bridge rail. For the final test, the target speed was reduced to 15 mph (24.1 km/h). All posts were 

impacted 24⅞ in. (632 mm) above the ground line. The bogie test setup and tested concepts are 

shown in Figures 26 through 30. Full drawing sets for all tests are available in the project 

documentation but are not included in the report. 
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Figure 26. Bogie Testing Setup 
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Figure 27. Top-Mounted Lateral Plate Tear-out Concept 
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Figure 28. Side-Mounted Tubular Post Tear-out Concept 
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Figure 29. Side-Mounted Socket Concept 
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Figure 30. Side-Mounted, Top-Anchored Socket Concept 
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4.2.1 Dynamic Bogie Testing Equipment and Instrumentation 

Equipment and instrumentation utilized to collect and record data during the dynamic 

bogie tests included a bogie, a test jig, accelerometers, pressure tape switches, as well as digital 

video and still cameras. 

4.2.1.1 Bogie 

A rigid-frame bogie was used to impact the posts. A variable-height, detachable impact 

head was constructed and used in the testing. The bogie head was constructed of 8-in. (203-mm) 

diameter, ½-in. (12.7-mm) thick standard steel pipe, with ¾-in. (19.1-mm) neoprene belting 

wrapped around the pipe. The neoprene cushioned the contact between the steel impact tube and 

the steel posts, which helped prevent overly large spikes in acceleration. The impact head was 

bolted to the bogie vehicle to create a rigid frame with an impact height of 24⅞ in. (632 mm). 

The bogie with the impact head is shown in Figure 31. The weight of the bogie with the addition 

of the mountable impact head was 1,841 lb (835 kg) for test nos. MGSBRB-1 through 

MGSBRB-3, 1,837 lb (833 kg) for test nos. MGSBRB-4 and MGSBRB-5, 1,797 lb (815 kg) for 

test no. MGSBRB-6, and 1,860 lb (844 kg) for test no. MGSBRB-7. The weight of the bogie 

varied due to changes in transducers mounted onboard and repairs made to the bogie vehicle 

following the damage that was sustained during testing. 

For test nos. MGSBRB-1, MGSBRB-6, and MGSBRB-7, a pickup truck with a reverse 

cable tow system was used to propel the bogie. When the bogie reached the end of the guidance 

system, it was released from the tow cable, allowing it to be free rolling when it impacted the 

post. A remote braking system was installed on the bogie allowing it to be safely brought to a 

rest after the test. 

Test nos. MGSBRB-2 through MGSBRB-5 were conducted using a steel corrugated 

beam guardrail to guide the tire of the bogie vehicle. A pickup truck was used to push the bogie 
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vehicle to the required impact velocity. After reaching the target velocity, the push vehicle 

braked and allowed the bogie to roll ahead into the test article. 

 
 

 
Figure 31. Rigid Frame Bogie on Guidance Tracks 

4.2.1.2 Test Jig 

Dynamic bogie tests were conducted on the rigid concrete pavement at the Lincoln Air 

Park. As the lateral plate tear-out concept was designed to be top-mounted to a bridge deck using 

vertical, through-deck bolts, it could not be directly mounted to the apron. A test jig was 

fabricated utilizing an 8-in. (203-mm) long, HSS6x4x¼ (HSS152x102x6.4) section that was 

filled with concrete. A conduit was placed vertically through the concrete to house the through-

deck bolt for attaching the post to the jig. This conduit was positioned and supported by two 

lateral bolts. The tube section was welded to a ½-in. (12.7-mm) thick steel plate which was 

attached to the apron using 1-in. (25.4-mm) diameter threaded rods that were embedded in 
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epoxy. Additional ½-in. (12.7-mm) thick steel gusset plates were welded to the mounting plate 

and tube to further reinforce the section. After preliminary tests demonstrated that the edge of the 

unreinforced deck was not capable of developing the required loads, two 4-ft (1.22-m) long steel 

straps were welded to the jig and used to further anchor it to the deck with drop-in anchors. A 

drawing of the test jig is shown in Figure 32. A full drawing set of the test jig is available in the 

project documentation but is not included in the report. 

4.2.1.3 Accelerometers 

Three environmental shock and vibration sensor/recorder systems were used to measure 

bogie vehicle accelerations in the longitudinal, lateral, and vertical directions. All of the 

accelerometers were mounted near the center of gravity of the bogie.  

For test nos. MGSBRB-1 through MGSBRB-3, a two-arm piezoresistive accelerometer 

system was used that was developed by Endevco of San Juan Capistrano, California. Three 

accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations 

independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled 

using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of 

Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module 

(SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM memory and 8 

sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 

module rack. The module rack was configured with isolated power/event/communications, 

10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and 

module rack were crashworthy. The computer software program “DTS TDAS Control” and a 

customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data. 



 

 

A
ugust 11, 2010 

M
w

R
SF R

eport N
o. TR

P-03-226-10 

68

 
Figure 32. Lateral Plate Tear-out Concept Test Jig 
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A triaxial piezoresistive accelerometer system, Model EDR-4 6DOF-500/1200, was used 

for test nos. MGSBRB-4 through MGSBRB-7. This system was developed and manufactured by 

Instrumented Sensor Technology (IST) of Okemos, Michigan and includes three differential 

channels as well as three single-ended channels. The EDR-4 6DOF-500/1200 was configured 

with 24 MB of RAM memory, a range of ±500 g’s, a sample rate of 10,000 Hz, and a 1,677 Hz 

anti-aliasing filter. “EDR4COM” and “DynaMap Suite” computer software programs and a 

customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.  

For all seven bogie tests, a triaxial piezoresistive accelerometer system, Model EDR-3, 

also developed by IST of Okemos, Michigan was used. The EDR-3 was configured with 256 kB 

of RAM memory, a range of ±200 g’s, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. 

The computer software program “DynaMax 1 (DM-1)” and a customized Microsoft Excel 

worksheet were used to analyze and plot the accelerometer data. 

4.2.1.4 Pressure Tape Switches 

Three pressure tape switches, spaced at 18-in. (457-mm) intervals and placed near the 

end of the bogie track, were used to determine the speed of the bogie just before impact. As the 

left-front or right-front tire of the bogie passed over each tape switch, a strobe light was fired 

sending an electronic timing signal to the data acquisition system. The system recorded the 

signals and the time each occurred. The speed was then calculated using the spacing between the 

sensors and the time between the signals. Strobe lights and high-speed video analysis are used 

only as a backup in the event that vehicle speeds cannot be determined from the electronic data. 

4.2.1.5 Digital Video and Still Cameras 

High-speed AOS VITcam digital video cameras and JVC digital video cameras were 

used to document each dynamic test. All high-speed AOS cameras had a frame rate of 500 

frames per second and all JVC digital video cameras had a frame rate of 29.97 frames per 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

70 

second. A Nikon D50 digital still camera was also used to document pre- and post-test conditions 

for all tests. 

For dynamic test no. MGSBRB-1, one AOS VITcam high-speed digital video camera 

was used to record video imagery of the dynamic testing. However, no high-speed footage was 

taken due to technical difficulties. Two JVC digital video cameras were also used, with one 

positioned to the side of the test apparatus and the other positioned downstream and to the side of 

the test apparatus. 

For dynamic test nos. MGSBRB-2 through MGSBRB-5, one AOS VITcam and one AOS 

X-PRI high-speed digital video camera were used, with one positioned to the side of the test 

apparatus and zoomed-in on the tear-out region and the other positioned to the side of the test 

apparatus, but set to capture the entire bogie-post interaction. Two JVC digital video cameras 

were also used and were positioned to the side of the test apparatus with one camera placed on 

either side of the post. 

For dynamic test no. MGSBRB-6, two AOS VITcam high-speed digital video cameras 

were used to record video imagery of the dynamic testing. However, no high-speed footage was 

taken due to technical difficulties. Two JVC digital video cameras were also used, with one 

positioned downstream and to the side of the test apparatus and the other positioned to the side of 

the test apparatus. 

For dynamic test no. MGSBRB-7, two AOS X-PRI high-speed digital video cameras 

were used, with one positioned to the side of the test apparatus to record the action of the entire 

post and the other also positioned to the side of the test apparatus, but its zoom settings were set 

to focus on the base of the post. Three JVC digital video cameras were also used, with one 

positioned in-line and upstream of the bogie’s path and the other two positioned to the side of the 

test apparatus with one camera placed on either side of the post. 
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4.2.2 End of Test Determination 

During impact, the data acquisition systems record accelerations of the bogie, including 

vibrations of the vehicle before and after the event. Thus, the instruments continued to collect 

data beyond the failure of the post, and the end of the test requires definition. 

In general, the end of test time was identified as the time that the vibration peaks in the 

acceleration trace subsided back toward zero and it was clear that the continued vibrations were 

not caused by interaction with the post. Additionally, test duration was limited by the bogie-post 

contact time so that there were no unreasonably long test durations. 

4.2.3 Data Processing 

The electronic accelerometer data obtained in dynamic testing was filtered using the SAE 

Class 60 Butterworth filter conforming to the SAE J211/1 specifications. The pertinent 

acceleration signal was extracted from the bulk of the data signals. The processed acceleration 

data was then multiplied by the mass of the bogie to get the impact force using Newton’s Second 

Law. Next, the acceleration trace was integrated to find the change in velocity verses time. Initial 

velocity of the bogie, calculated from the pressure switch data, was then used to determine the 

bogie velocity, and the calculated velocity trace was integrated to find the bogie’s displacement. 

This displacement is also the displacement of the post. Combining the previous results, a force 

vs. deflection curve was plotted for each test. Finally, integration of the force vs. deflection curve 

provided the energy vs. deflection curve for each test. 

4.3 Strong-Post Dynamic Bogie Test Results 

The information desired from the bogie tests was the relation between the force on the 

post and deflection of the post at the impact location. This data was then used to find total energy 

dissipated during each test, which was equal to the area under the force vs. deflection curve. 
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It should be noted that although the acceleration data was applied to the impact location, 

the data came from the center of gravity of the bogie. This added some error to the data, since the 

bogie was not perfectly rigid and vibrations in the bogie were recorded. The bogie may have also 

rotated during impact, causing differences in accelerations between the bogie center of mass and 

the bogie impact head. While these issues may affect the data, the data was still valid. Filtering 

procedures were applied to the data to smooth out vibrations, and rotations of the bogie during 

testing were minor. Significant pitch angles did develop late in some tests as the bogie overrode 

the post, however, these occurred after the post-bogie interaction of interest. One useful aspect of 

the accelerometer data was that it included influences of the post inertia on the reaction force. 

This was important as the mass of the post would affect barrier performance as well as bogie test 

results. 

The accelerometer data for each test was processed in order to obtain acceleration, 

velocity, and displacement curves, as well as force vs. deflection and energy vs. deflection 

curves. The values described herein were calculated from the EDR-3 data curves. Although for 

most tests, the transducers produced similar results, the EDR-3 has historically provided accurate 

results, and was the only accelerometer used in all tests. Thus, these plots are included in the 

text. Test results for all transducers are provided in Appendix A. 

For the bridge rail to have stiffness and strength similar to the approach guardrail, the 

bridge rail posts were required to have resistive forces similar to posts embedded in soil. Thus, it 

was desired that the strong-post concepts develop a resistive force of approximately 6 to 8 kips 

(26.7 to 35.6 kN) at the center of the guardrail for a deflection of 15 in. (381 mm). This behavior 

would result in total energy absorption, through 15 in. (381 mm) of deflection, of 90 to 120 kip-

in. (10.1 to 13.6 kJ). Note that for the weak-post concepts, it was desired that the post resistive 
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force and energy absorption be approximately one-half of the target values for the strong-post 

systems. A summary of all bogie testing results is shown in Table 1. 

Table 1. Dynamic Testing Results 

 
 

4.3.1 Test No. MGSBRB-1 

The first bogie test was performed on the side-mounted tubular post tear-out concept. An 

HSS6x4x⅛ (HSS152x102x3.2) post was mounted on the edge of the apron and impacted by the 

bogie travelling at a speed of 21.0 mph (33.7 km/h) perpendicular to the strong axis of the post. 

Upon impact of the bogie, the anchor rods bent downward and applied a prying force to the 

unreinforced concrete deck. This resulted in failure of the deck as the rods broke through the 

surface of a large section of concrete. 

Inspection of the post after the test revealed that the bolt did not tear through the post as 

desired. However, local bearing damage, which was expected to precede tear-out, was found on 

both sides of the post. These failures caused deformations of ⅜ in. (9.5 mm) and ½ in. (12.7 mm) 

at the bolt holes on either side of the post. 

No high-speed video footage was recorded due to technical difficulties with the 

equipment. However, the real-time video footage recorded by the digital cameras indicated that 

Test No. Date Post Concept Peak Force
Maximum 
Deflection

Energy   
(15 in.) Failure Type

MGSBRB-1 4/21/2008
HSS6x4x1/8 

(HSS152x102x3.2)
Tubular Post 

Tear-out
6.3 kips     

(27.9 kN)
34.2 in.    

(869 mm)
60.7 kip-in. 

(6.9 kJ)
Concrete failure due to 

threaded  rod prying

MGSBRB-2 5/16/2008
W6x9   

(W152x13.4)
Lateral Plate 

Tear-out
8.6 kips     

(38.2 kN)
11.8 in.    

(299 mm)
70.1 kip-in. 

(7.9 kJ)
Bolt head pulled out of 

tear-out plate

MGSBRB-3 5/16/2008
HSS6x4x1/8 

(HSS152x102x3.2)
Tubular Post 

Tear-out
7.1 kips     

(31.5 kN)
43.9 in.  

(1,114 mm)
58.4 kip-in. 

(6.6 kJ)
Some post tearing, 

crushing of post base

MGSBRB-4 6/9/2008
W6x9   

(W152x13.4)
Lateral Plate 

Tear-out
9.9 kips     

(44.1 kN)
41.9 in.    

(1,065 mm)
98.6 kip-in. 
(11.1 kJ)

Some plate tearing, post 
web buckling

MGSBRB-5 6/9/2008
HSS6x4x1/8 

(HSS152x102x3.2)
Tubular Post 

Tear-out
8.1 kips    

(36.0 kN)
42.9 in.   

(1,090 mm)
74.9 kip-in. 

(8.5 kJ)
Tearing of post faces 

through entire post depth

MGSBRB-6 11/13/2008
S3x5.7         

(S76x8.5)
Bent Plate 

Socket
4.6 kips     

(20.4 kN)
30.5 in.    

(774 mm)
48.6 kip-in. 

(5.5 kJ)
Bending of socket and 
threaded rod fracture

MGSBRB-7 1/20/2009
S3x5.7         

(S76x8.5)
Top-Anchored 

Socket
6.7 kips    

(29.9 kN)
12.6 in.    

(319 mm)
31.4 kip-in. 

(3.5 kJ)
Concrete failure due to 

through-bolt pullout
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the concrete failed early in the event, after which the post rotated until it became braced against 

the edge of the deck. After becoming braced, the post provided continued resistance against the 

bogie’s motion as it travelled up and over the post. Photographs of the system damage are shown 

in Figure 33. Force vs. deflection and energy vs. deflection curves for test no. MGSBRB-1 are 

shown in Figure 34. 

4.3.2 Test No. MGSBRB-2 

The second bogie test was conducted on the top-mounted lateral plate tear-out concept, 

which utilized a W6x9 (W152x13.4) post welded to a 3⁄16-in. (4.8-mm) thick tear-out plate. As 

the anchorage of the test jig was originally designed to be the same as that of test no. MGSBRB-

1, which failed, the system was redesigned. Two 48-in. x 4-in. x ⅜-in. (1,219-mm x 102-mm x 

9.5-mm) strips of steel were welded to the back of the test jig that extended laterally above the 

deck. Each strap had holes through which ¾-in. (19.1-mm) diameter Red Head Multi-Set II 

Drop-In anchors were passed to anchor the straps to the concrete. These anchors were previously 

dynamically tested by MwRSF to determine their ultimate shear capacity [60]. Four drop-in 

anchors were used to anchor the bracket in addition to the previously-discussed threaded rods. 

In the test, the bogie impacted the W6x9 (W152x13.4) post perpendicular to its strong 

axis at an initial velocity of 23.4 mph (37.6 km/h). The through-deck bolt bent, and the plate 

began tearing along two failure planes in out-of-plane shear. At the same time, the bottom angle 

plate bent in the region between its two gusset plates. After tearing through 1½ in. (38 mm) of 

the plate, the bolt head slipped through the opening in the plate. The post assembly then bent and 

was overridden by the bogie, after which the two bolts that anchored the bottom of the post 

fractured and completely released the post. 
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Figure 33. System Damage, Test No. MGSBRB-1 
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Figure 34. Transducer Data, Test No. MGSBRB-1 (EDR-3) 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

Fo
rc
e 
(k
)

Deflection (in.)

Force vs. Deflection At Impact Location

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50

En
er
gy
 (k

‐in
.)

Deflection (in.)

Energy vs. Deflection At Impact Location



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

77 

Although the tear-out mechanism was only partially successful, the developed forces 

were in the desired range. However, energy absorption was insufficient. Thus, the concept 

demonstrated that, with modification, it could provide the desired resistance to post rotation. 

Photographs of the system damage are shown in Figure 35. Force vs. deflection and energy vs. 

deflection curves for test no. MGSBRB-2 are shown in Figure 36. 

4.3.3 Test No. MGSBRB-3 

The third bogie test was performed on the side-mounted tubular post tear-out concept. As 

this concept’s anchorage system failed during test no. MGSBRB-1, a revised anchorage system 

was developed. The new anchorage system was identical to that used for the test jig in test no. 

MGSBRB-2. 

In this test, the bogie impacted the HSS6x4x⅛ (HSS152x102x3.2) post with an initial 

velocity of 20.4 mph (32.8 m/s) perpendicular to the strong axis of the post. Upon impact, the 

post rotated about its base, causing the ⅝-in. (15.9-mm) diameter bolt to tear through the walls of 

the post as desired. However, after the bolt tore through a distance of approximately 2 in. (51 

mm), the base of the post collapsed and folded in on itself. This caused the tear-out to stop, and 

the center of rotation of the post moved from its base to the bolt. As rotation continued, the 

bottom of the post was further crushed as it was pressed against the mounting bracket. The post 

continued to provide resistance to the motion of the bogie as the post was never released from 

the bracket. Photographs of the system damage are shown in Figure 37. Force vs. deflection and 

energy vs. deflection curves for test no. MGSBRB-3 are shown in Figure 38. 

The tear-out mechanism was only partially successful and developed a resistive force that 

was approximately one-half the desired level. However, the resistive force was higher early in 

the event when the tear-out mechanism was operating. This result indicated that the tear-out 
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Figure 35. System Damage, Test No. MGSBRB-2 
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Figure 36. Transducer Data, Test No. MGSBRB-2 (EDR-3) 
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Figure 37. System Damage, Test No. MGSBRB-3 
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Figure 38. Transducer Data, Test No. MGSBRB-3 (EDR-3) 
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concept could likely create the desired resistive force. Thus, the concept required modification to 

isolate tear-out as the post failure mechanism. 

4.3.4 Test No. MGSBRB-4 

Following the unsatisfactory test results from test nos. MGSBRB-2 and MGSBRB-3, 

both strong-post concepts were modified in an attempt to improve performance and generate the 

desired behavior. Two modifications were made to the lateral plate tear-out concept. First, a plate 

washer was positioned between the tear-out plate and the bolt head to prevent the bolt head from 

slipping through the tear-out hole prematurely. A third gusset plate was also added at the center 

of the bottom angle plate to prevent the angle from yielding when loaded. 

During the test, the bogie impacted the W6x9 (W152x13.4) post perpendicular to its 

strong axis with an initial velocity of 22.4 mph (36.1 km/h). Upon impact, the post began to 

rotate and initiated the desired tear-out failure in the lateral plate. However, during this rotation, 

the web of the post buckled as the post was pressed against the lower-gusseted angle plate. The 

angle did not yield due to the inclusion of the third gusset plate. As the web buckled, the post 

continued to rotate. However, the tear-out failure, which had progressed through approximately 2 

in. (51 mm) of the plate, failed to continue. The web buckled, and the post rotated until the front 

and back flanges of the post nearly came into contact, at which point deformation ended. The 

bogie then overrode the post. 

The developed resistive forces were near target levels through much of the event, and 

energy absorption was adequate. However, performance of the post was inconsistent as the tear-

out mechanism stalled, and the web buckled. The post did not fully release from the deck as 

desired. Photographs of the system damage are shown in Figure 39. Force vs. deflection and 

energy vs. deflection curves for test no. MGSBRB-4 are shown in Figure 40. 
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Figure 39. System Damage, Test No. MGSBRB-4 
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Figure 40. Transducer Data, Test No. MGSBRB-4 (EDR-3) 
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4.3.5 Test No. MGSBRB-5 

For test no. MGSBRB-5, the tubular post tear-out concept was modified by welding a 

steel cap over the bottom end of an HSS6x4x⅛ (HSS152x102x3.2) post and filling the bottom 6 

in. (152 mm) of the post with grout. The cap and grout were intended to prevent the post from 

crushing, forcing the bolt to tear through the tube faces. 

During the test, the bogie impacted the HSS6x4x⅛ (HSS152x102x3.2) post 

perpendicular to its strong axis with an initial velocity of 23.0 mph (37.0 km/h). The post 

immediately began to rotate about its base and initiated the desired tear-out failure. As the base 

came under compression, the weld between the end-cap and the post failed, allowing the end-cap 

to separate from the post. The bottom portion of the post compressed and caused approximately 

2 in. (51 mm) of grout at the bottom of the post to fail through crushing. In spite of this crushing, 

the post itself yielded minimally, and the tear-out failure proceeded across nearly the entire depth 

of the post. As the tear-out failure reached the back face of the post, the front and back faces of 

the post bent, offsetting the lower portion of the post from the top. Photographs of the system 

damage are shown in Figure 41. Force vs. deflection and energy vs. deflection curves for test no. 

MGSBRB-5 are shown in Figure 42. 

Although the tear-out mechanism worked as desired, the resistive forces generated were 

smaller than the desired level of 6 to 8 kips (26.7 to 35.6 kN). A thicker post or different bolt 

location would be required to achieve the desired resistive force. 

4.3.6 Discussion of Strong-Post Bogie Testing Results 

The first five bogie tests demonstrated that the strong-post designs faced two major 

problems. First, it was difficult to obtain the desired behavior in the steel tear-out mechanism, 

thus requiring more elaborate and expensive systems than originally envisioned. Second, the load 
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Figure 41. System Damage, Test No. MGSBRB-5 
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Figure 42. Transducer Data, Test No. MGSBRB-5 (EDR-3) 
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transmitted from the post into the deck was quite large and was believed to have the potential for 

damaging the bridge deck. Due to the flexible nature of the rail, the load would be localized to 

posts near the point of impact, rather than distributed to a larger number of posts as with a stiffer 

rail. To distribute the load through a larger portion of the deck, larger and more expensive post-

to-deck connections would be required. For these reasons, the strong-post system was abandoned 

in favor of a weak-post bridge rail. 

4.4 Weak-Post Bogie Test Results 

Two bogie tests were performed on the weak-post concepts produced during preliminary 

design. These tests were performed with the concepts mounted on a 6-ft long x 4-ft wide x 8-in. 

thick (1.83-m x 1.22-m x 203-mm) test section of bridge deck which was constructed following 

the results of the strong-post bogie tests. Results for these tests are shown in the following 

sections. 

4.4.1 Test No. MGSBRB-6 

The first test on the weak-post concept utilized an S3x5.7 (S76x8.5) post housed in a ¼-

in. (6.4-mm) thick bent-plate socket. Two ¾-in. (19.1-mm) threaded rods were embedded in 

epoxy in the side of the bridge deck and used to fasten the socket to the deck. A strap was 

welded across the bottom of the socket to hold the post in place, and holes were left around the 

edge of the strap to prevent water retention. 

In the test, the bogie struck the post perpendicular to its strong axis with an initial 

velocity of 22.0 mph (35.3 km/h). As the post rotated, it bent the socket about an axis through the 

location of the threaded rods. Simultaneously, the socket was stretched away from the bridge 

deck due to movement of the post. This socket deformation caused bending in the threaded rods, 

one of which fractured approximately 0.08 seconds into the event. The second rod did not 

fracture, but initiated a shear failure in the socket, tearing out a section to the exterior of the rod. 
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Only a small amount of yielding occurred at the base of the post where it contacted the upper 

edge of the socket. Thus, most of the energy absorption was due to socket deformation. 

Accelerometer data for the event indicated the force of resistance generated was lower than 

desired. Some spalling occurred at the lower edge of the concrete test deck. Photographs of the 

system damage are shown in Figure 43. Force vs. deflection and energy vs. deflection curves for 

test no. MGSBRB-6 are shown in Figure 44. 

4.4.2 Test No. MGSBRB-7 

Following the failure of the side-anchored weak-post concept, a new side-mounted, top-

anchored apparatus was developed that anchored to the deck with a vertical, through-deck bolt. 

This concept again utilized a socket to house the post, with a bolt passed through the web of the 

post and the socket to support the post and rail. Post standoff tabs were welded to the side of the 

post to help snug the post within the socket. A steel strap was welded to the top of the socket and 

reinforced with a gusset, and a steel angle-section was bolted to the bottom of the socket. This 

angle was also gusseted, and a bolt was passed through the top strap, the deck, and the bottom 

angle. 

In this test, the bogie struck the post perpendicular to its strong axis with an initial 

velocity of 15.0 mph (24.2 km/h). Almost immediately, the concrete failed from the shear load, 

and large pieces were fractured off the edge. The longitudinal reinforcement in the deck 

prevented the bolt from pulling out completely, but it did not support the bolt under loading as 

the post had already rotated sufficiently and allowed the bogie to override the post. Photographs 

of the system damage are shown in Figure 45. Force vs. deflection and energy vs. deflection 

curves for test MGSBRB-7 are shown in Figure 46. 
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Figure 43. System Damage, Test No. MGSBRB-6 
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Figure 44. Transducer Data, Test No. MGSBRB-6 (EDR-3) 
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Figure 45. System Damage, Test No. MGSBRB-7 
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Figure 46. Transducer Data, Test No. MGSBRB-7 (EDR-3) 
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4.4.3 Discussion of Weak-Post Bogie Test Results 

Despite the failed bogie tests, it was believed that the weak-post option represented the 

best design due to its inherently lower deck loads. It was also believed that a weak-post system 

would cause fewer wheel snag problems commonly seen in strong-post systems, and BARRIER 

VII computer simulation showed that the weak-post system with half-post spacing provided 

stiffness and strength very similar to the standard MGS guardrail and should not require a 

transition at the interface between the two systems. 

Failure of the side-mounted concept was caused by insufficient moment arm of the 

anchors and flexibility of the socket. For slab-on-girder bridges, a deck thickness of 

approximately 8 in. (203 mm) is typical, and thicknesses of decks used on prestressed bridges 

can be even less. When considering concrete clear cover requirements, upper reinforcement of 

the deck, and tolerance for drilling holes to avoid damaging deck reinforcement, the maximum 

moment arm of the threaded rods about the base of the post is less than 4 in. (102 mm). This 

places the anchors under very large loads. Flexibility of the socket allowed bending to occur in 

the rods, which created high stresses that contributed to fracture. Significantly stiffening the side-

mounted socket was considered expensive and might still result in rod fracture due to the small 

moment arm. Any rod fracture would be difficult and expensive to repair. 

For these reasons, it was decided to use the side-mounted, top-anchored concept as the 

final design for the system. However, it was apparent that special reinforcement must be 

designed into the concrete bridge deck for the connection to have sufficient strength to resist 

loads from the post while not intruding significantly onto the deck. Thus, an effort to develop a 

connection that could be retrofitted to existing decks or attached to culvert headwalls was 

discontinued. 
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4.5 Static Testing 

The connection between the bridge rail and posts was required to meet the design goals 

discussed in Section 3.2. To determine the desired force level at which the connection would fail, 

the W-beam guardrail was analyzed as a simply supported beam. The force at the center span of 

a simply supported beam for a given deflection can be found with the following equation:  

ܲ ൌ
߂ܫܧ48
ଷܮ  

where P = downward force at center span  
E = beam modulus of elasticity 
Δ = deflection 
I = moment of inertia  
L = span length 

 
It was assumed that friction and interlock with the vehicle would support the rail at one 

end of the span. At the other end of the span, an undeformed guardrail post would also support 

the rail. In the center, a bending post would apply a downward load on the rail. Thus, the span of 

the beam was two post spaces, or 75 in. (1,905 mm). A sketch of the analysis layout is shown in 

Figure 47. 

 
Figure 47. Post-to-Rail Connection Analysis Layout 

To prevent the rail from being pulled under the vehicle, the downward force applied by 

the bending post must be limited. An acceptable angle of rotation of the post at which the post-
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to-rail connection would release was estimated. This angle was set to 10 degrees to ensure that 

the rail would be released before being pulled down significantly. If the post rotates perfectly 

about the base of the bridge deck, this corresponds to lateral and vertical deflections of 

approximately 4⅜ in. (111 mm) and ⅜ in. (10 mm), respectively. A sketch of the assumed 

release condition is shown in Figure 48. 

 
Figure 48. Post-to-Rail Connection Assumed Release Conditions 

For simplicity, it was assumed that the W-beam rail would not twist during post rotation. 

Thus, the rail would bend about its strong axis. The strong-axis moment of inertia for 12-gauge 

(2.66-mm thick) W-beam rail is 30.5 in.4 (1.27x107 mm4). A modulus of elasticity of steel of 

29,000 ksi (200 GPa) was used in the calculation. Finally, a downward deflection of ⅜ in. (10 

mm) and span length of 75 in. (1,905 mm) were also used, as discussed previously. With these 

values, the equation produced a downward force of 37.7 kips (167.8 kN). 

The downward force can then be resolved into an axial force parallel to the post-to-rail 

connection bolt and a shear force along the post itself using trigonometric identities. It was 

assumed that all shear force is sustained by friction between the bottom of the rail and the post. 
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The axial force component therefore provides an upper limit to post-to-rail connection failure 

force. For a post rotation angle of 10 degrees, this analysis yielded an axial force component of 

6.5 kips (28.9 kN). This load would act to pull the post bolt through the W-beam rail. Thus, this 

force represented the maximum acceptable axial failure force of the post-to-rail connection. 

Three static tests were performed on the connection between the W-beam rail and system 

posts. All three tests were performed on variations of the standard G2 connection, which utilized 

a bolt, a square washer, and a nut. Bolt diameters of 5⁄16 in. (7.9 mm) and ⅜ in. (9.5 in.) were 

tested under conditions which represented the extreme limits of system performance. Two tests 

investigated the maximum load the connection would develop, which would occur when the bolt 

and washer were positioned at the end of the guardrail slot at a splice location (i.e. 2 layers of 

guardrail). For one test, the bolt was positioned at the center of the guardrail slot of a single layer 

of guardrail to determine a lower bound for expected connection failure force. For all tests, the 

bolt was pulled at an angle normal to the W-beam, which should produce the maximum 

connection force, whereas a load applied at an angle would create bending stresses in the bolt 

and lead to fracture under a lower axial load. As such, the lower bound test would not determine 

the true minimum failure force. However, it was believed that this would provide a useful 

approximation for the minimum force. The static testing matrix and setup are shown in Figure 

49. Complete drawings for the static tests and jig are available in the project documentation but 

are not included in the report 

4.5.1 Static Testing Equipment and Instrumentation 

Equipment and instrumentation utilized to collect and record data during the static tests 

included a winch, a test jig, load cells, and digital video and still cameras. 
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Figure 49. Static Test Matrix and Setup, Test Nos. MGSBRS-1 through MGSBRS-3 
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4.5.1.1 Winch 

A winch, mounted on the rear of a pickup truck, was used to apply load to the connection. 

The winch was a Dayton 4YJ76 Electric Winch, and its cable was passed through a pulley and 

secured to the truck, creating a 2:1 pulley system for applying load to the connection. To further 

minimize the load rate, the winch was completely unwound at the start of testing to minimize the 

effective spindle size. A picture of the winch is shown in Figure 50. 

4.5.1.2 Test Jig 

For static post-to-rail connection testing, W-beam guardrail sections were bolted to a 

rigid reinforced concrete block such that the traffic side of the beam faced the block. The bolt 

that connected the post to the rail was then passed through the slot in the guardrail and secured 

with a standard 1¾-in. x 1¾-in. ⅛-in. (44-mm x 44-mm x 3.2-mm) square washer on the traffic 

side of the beam. The opposite end of the bolt was passed through a test jig that consisted of a 

base plate, two steel straps welded perpendicular to the base plate, and a bolt that passed through 

both straps. A picture of the test jig is shown in Figure 50. 

4.5.1.3 Load Cells 

Two load cells were installed in series with the cable and test jig and were used to 

measure the force sustained by the post-to-rail connection. A 50-kip (224-kN) load cell was 

placed outside the pulley system next to the test jig, while a 10-kip (44-kN) load cell was placed 

in the 2:1 pulley system, attached beneath the winch on the truck. Thus, the force measured by 

the 10-kip (44-kN) load cell was one-half of the force applied to the bolt.  

The 50-kip (224-kN) load cell had a sample rate of 1,000 Hz, a 10V input voltage, a gain 

factor of 300, and a calibration factor of 2.995 mV/V. The 10-kip (44-kN) load cell had a sample 

rate of 1,000 Hz, a 10V input voltage, a gain factor of 400, and a calibration factor of 2.1524 

mV/V. Pictures of both load cells are shown in Figure 51. 
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Figure 50. Static Testing Winch (Top) and Test Jig (Bottom) 
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Figure 51. 50-kip (Top) and 10-kip (Bottom) Load Cells 
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4.5.2 End of Test Determination 

For the static tests, an increasing force was applied to the post-to-rail connection until it 

failed and did not support any load. The test was deemed to be concluded when the bolt 

separated from the rail. 

4.5.3 Data Processing 

The electronic load cell data obtained in static testing was filtered using the SAE Class 60 

Butterworth filter conforming to the SAE J211/1 specifications. Output voltage data was 

converted to force according to the system parameters of each load cell. A customized Microsoft 

Excel worksheet was used to analyze and plot the load cell data.  

4.6 Static Post-to-Rail Test Results 

Three static tests were performed on different configurations of the post-to-rail 

connection to determine its performance limits. The results of those tests are presented in the 

following sections, and a summary is shown Table 2. 

Table 2. Static Testing Results 

 
 

4.6.1 Test No. MGSBRS-1 

The first static test featured a 5⁄16-in. (7.9-mm) diameter, ASTM A307 Grade A bolt 

which was passed through two layers of 12-gauge (2.66-mm thick) W-beam guardrail. The head 

of the bolt was secured with a standard 1¾-in. x 1¾-in. x ⅛-in. (44-mm x 44-mm x 3.2-mm) 

square washer on the front face of the W-beam and a 5⁄16-in. (7.9-mm) inner diameter round 

Test No. Date Concept Bolt Diameter Peak Force Failure Type

MGSBRS-1 8/13/2008 G2 Post-to-Rail 
Connection

5/16 in.        
(7.9 mm)

4.3 kips   
(18.7 kN) Bolt Fracture

MGSBRS-2 8/13/2008 G2 Post-to-Rail 
Connection

5/16 in.        
(7.9 mm)

2.8 kips   
(12.6 kN)

Washer Pull-Through

MGSBRS-3 8/13/2008
G2 Post-to-Rail 

Connection
3/8 in.         

(9.5 mm)
5.8 kips   

(25.7 kN) Bolt Pull-Through
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washer and nut on the side of the jig. The round washer was required as the hole in the test jig 

was sized to accommodate a ⅜-in. (9.5-mm) diameter bolt. For this test, the bolt was positioned 

at the edge of the slot to obtain the peak load that the connection could sustain by restraining the 

bending of the washer. 

During the test, the 5⁄16-in. (7.9-mm) diameter bolt fractured in tension with minimal 

deformation prior to failure. While there was some deformation in the square washer, no local 

deformation was present around the guardrail slot. The 50-kip (224-kN) load cell measured a 

maximum force of 4.2 kips (18.7 kN), while the 10-kip (44-kN) load cell measured a maximum 

force, when doubled to account for the 2:1 pulley system, of 4.3 kips (19.3 kN). A graph of force 

vs. time is shown in Figure 52, and post-test photographs of the connection components for test 

no. MGSBRS-1 are shown in Figure 53. 

The 50-kip (224-kN) load cell was damaged during test no. MGSBRS-1 and was 

removed from the test apparatus for the remaining static tests. 

4.6.2 Test No. MGSBRS-2 

The second static test was performed on a 5⁄16-in. (7.9-mm) diameter, ASTM A307 Grade A bolt 

that was passed through a single layer of 12-gauge (2.66-mm thick) W-beam. The bolt was 

positioned in the center of the guardrail slot, with the bolt head secured by a standard 1¾-in. x 

1¾-in. x ⅛-in. (44-mm x 44-mm x 3.2-mm) square washer. A 5⁄16-in. (7.9-mm) inner diameter 

round washer and nut were used to attach the bolt to the test jig. The round washer was required 

as the hole in the test jig was sized to accommodate a ⅜-in. (9.5-mm) diameter bolt. This test 

was intended to determine the minimum load that would cause the post-to-rail connection to fail. 

During the test, the square washer bent and pulled through the guardrail slot. The guardrail slot 

was deformed during the pull-through process. The measured peak force, when doubled to  
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Figure 52. Load Cell Data, Test No. MGSBRS-1 

 
 

 
Figure 53. System Damage, Test No. MGSBRS-1 
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account for the 2:1 pulley system, was 2.8 kips (12.6 kN). A graph of force vs. time is shown in 

Figure 54, and post-test photographs of the connection components for test no. MGSBRS-2 are 

shown in Figure 55. 

4.6.3 Test No. MGSBRS-3 

The final static test conducted was a repeat of the first test with a ⅜-in. (9.5-mm) 

diameter, ASTM A307 Grade A bolt. This bolt was secured to the guardrail using a standard 1¾-

in. x 1¾-in. x ⅛-in. (44-mm x 44-mm x 3.2-mm) square washer. A ⅜-in. (9.5-mm) nut was used 

to secure the bolt to the test jig. The bolt was positioned at the edge of the guardrail slot to find 

the maximum expected load with this connection configuration. 

During the test, the square washer bent significantly; however, it did not pass through the 

guardrail, and the slots in the rail did not deform. The connection failed as the bolt head pulled 

through the washer, leaving a hexagonal hole behind. This failure occurred at a measured peak 

force, when doubled to account for the 2:1 pulley system, of 5.8 kips (25.7 kN). A graph of force 

vs. time is shown in Figure 56, and post-test photographs of the connection components for test 

no. MGSBRS-3 are shown in Figure 57. 

4.6.4 Discussion of Static Testing Results 

Following the static testing, it was decided to use the tested concept with a 5⁄16-in. (7.9-

mm) diameter, ASTM A307 Grade A bolt. Worst-case loading conditions led to a maximum 

failure load of less than 4.5 kips (20.0 kN), at which point the bolt fractured. This relatively low 

failure load would ensure that the rail would be released from the post, thus preventing it from 

being pulled under the vehicle. 
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Figure 54. Load Cell Data, Test No. MGSBRS-2 

 
 

 
Figure 55. System Damage, Test No. MGSBRS-2 
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Figure 56. Load Cell Data, Test No. MGSBRS-3 

 
 

 
Figure 57. System Damage, Test No. MGSBRS-3 
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While the connection showed the ability to fail under a load of less than 3.0 kips (13.4 

kN), it was believed that this would not cause the rail to release prematurely, as was seen in 

previous weak-post W-beam guardrail testing [47]. Whereas the post spacing was 12 ft - 6 in. 

(3.81 m) in these previous guardrail tests, the new bridge rail utilized a post spacing of 3 ft - 1½ 

in. (0.95 m). Thus, the guardrail would be supported in four times as many locations, which 

decreased the likelihood that the rail would drop in front of the vehicle. 

Recall that testing of weak-post W-beam guardrail exhibited rail rupture [46-48]. The 

rupture was attributed to small cuts or nicks in the guardrail produced by post flanges at non-

splice posts. Two different options were considered to eliminate this potential problem. First, the 

splices could be moved to midspan locations between posts, and standard 12-in. (305-mm) long, 

W-beam backup plates could be placed between the bridge rail and each post. This would require 

specially punching the guardrail, with slots located every 1 ft - 6¾ in. (477 mm). Alternatively, 

the splices could be placed at the locations of the post, with a backup plate also placed behind the 

rail at every post. This would require installing a backup plate at splice locations. As the standard 

12-in. (305-mm) long, W-beam backup plate does not fit between the splice bolts, 6-in. (152-

mm) long backup plates would be used instead. 

It was decided to place splices at posts and use 6-in. (152-mm) long, W-beam backup 

plates. This option was believed to be the most economical because it did not require special 

guardrail sections. For simplicity of construction, the same 6-in. (152-mm) long backup plate 

was used at both splice and non-splice locations. For the full-scale test, backup plates were 

created by cutting 3 in. (76 mm) of material off each end of standard backup plates, whereas for 

field applications the backup plate would be ordered to the correct length. 
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5 LS-DYNA SIMULATION 

5.1 Introduction and Purpose 

A finite element model of the side-mounted tubular post tear-out concept was created to 

better understand the behavior of this energy-absorbing post concept. The model was created 

with LS-DYNA software [61]. A model of this post system was considered important for future 

development of energy-absorbing hinge systems. Additionally, a working model would be useful 

in the event that this energy-absorbing post concept was selected for the new barrier. 

5.2 Description of Physical Test 

Test no. MGSBRB-5 was performed on the side-mounted tubular post tear-out concept, 

previously discussed in Section 4.3.5. In this test, a bogie vehicle impacted a tubular post which 

was fastened to a mounting bracket with a bolt that passed through the post and both sides of the 

bracket. Upon impact, the post rotated, causing the bolt to tear through both side faces, as shown 

in Figure 41. 

5.3 Description of Simulation 

The LS-DYNA model incorporated four basic components and included the post, the 

tear-through bolt, the mounting bracket, and the bogie. The modeling approach for each of these 

components is presented in the following sections. The finite element model and a photograph of 

the physical test specimen are shown in Figure 58. 

5.3.1 Post 

The HSS6x4x⅛ (HSS152x102x3.2) post was modeled using 4-node shell elements. 

Three different parts were defined for the post that were merged using coincident nodes at the 

interfaces between parts. Separate parts were defined for regions where tearing would occur, and 

one part was defined for the remainder of the post and the post cap. Type 16 (fully-integrated)  
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Figure 58. Physical and Simulated Models, Test No. MGSBRB-5 
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shell elements were used for the tear-out regions, and Type 2 (under-integrated) shell elements 

were used for the remainder of the post. A PIECEWISE_LINEAR_PLASTICITY material 

model, calibrated to a tensile test of a metal with similar yield and ultimate stresses, was used for 

the entire post. This material model used an effective plastic strain failure criterion, and elements 

were deleted upon reaching the limiting value of 1.2. The mesh was relatively fine in the tear-out 

regions, consisting of elements with approximately 1⁄16-in. (1.6-mm) edge lengths, and relatively 

coarse elsewhere, consisting of elements with approximately ½-in. (12.7-mm) edge lengths. The 

grout used to prevent collapse of the bottom of the tube was not simulated, but its effects were 

retained through the bottom cap, which was not allowed to detach as its physical counterpart did 

during testing. 

5.3.2 Bolt 

A simulated bolt was created using rigid solid elements. Rigid material was deemed to be 

acceptable because no deformations were observed in the bolt after the test. As rigid elements do 

not add to computation cost, the bolt mesh was relatively fine. During the bogie test, the post was 

pushed away from the bridge deck, which made simulation of the ¼-in. (6.4-mm) diameter bolt, 

used for preventing motion toward the deck, unnecessary. Further, this bolt was located near the 

center of post rotation and was designed not to carry impact loads. 

5.3.3 Mounting Bracket and Installation 

A rigid wall was defined to simulate the edge of the deck and the base plate of the 

mounting bracket. The angles of the bracket were simulated using boundary conditions applied 

to the post. Displacement of the post nodes was constrained in the direction perpendicular to the 

angles (perpendicular to the path of the bogie) at three different heights of the post, which 

prevented lateral displacement of the post. 
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5.3.4 Bogie 

The bogie was simulated using a rigid cylinder modeled with solid elements. The density 

of the material was adjusted to make the mass of the cylinder match the mass of the bogie. 

5.3.5 Boundary and Initial Conditions 

In addition to the boundary conditions applied to the post, boundary conditions were 

applied to the bolt elements to constrain all displacements and rotations. An initial velocity was 

applied to the simulated bogie to match that of the physical test. 

5.3.6 Contact Definition 

Contact was defined using the AUTOMATIC_SINGLE_SURFACE command. All parts 

of the post, the bolt, and the bogie head were included in the contact definition. The soft 

constraint formulation was used in defining forces between parts in contact. This formulation set 

contact stiffness as the maximum between the default penalty method stiffness and stiffness 

calculated using nodal masses and global time step size. Thus, this formulation caused contact 

stiffness to be at least that of the default penalty method. 

5.4 Results 

The simulation was performed for a duration of 100 milliseconds. Results are presented 

in the following sections. Data used to analyze the physical test was taken from accelerometers 

mounted near the center of gravity of the bogie vehicle. These accelerometers recorded raw 

accelerations, which were filtered using an SAE Class 60 Butterworth filter conforming to the 

SAE J211/1 specifications. This processed data was then used to develop force vs. deflection and 

energy vs. deflection criteria. 

Simulated accelerations were taken from the center of gravity of the bogie impact head 

and were filtered using the same procedure as for the experimental data. Note that pitch and yaw 

angles of the bogie vehicle were both very low during physical testing. Therefore, the 
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longitudinal accelerations measured on the physical bogie were not affected significantly by 

vehicle rotations. Hence, even though the accelerations were measured at different locations on 

the physical and simulated bogies, the results could still be reasonably compared and the 

longitudinal accelerations measured on the simulated impact head should accurately replicate 

accelerations measured at the center of the bogie during the crash test. 

5.4.1 Qualitative Simulation Evaluation  

The tear-out which occurred in the sides of the post during physical testing was due to a 

combination of Mode I and Mode III fracture. Sketches of both fracture modes are shown in 

Figure 59. Initially, the bolt bearing on the face of the post produced a local buckling of the face 

adjacent to the bolt. This local buckling produced out-of-plane tearing stresses on the post face 

and initiated tearing of the post. The out-of-plane (Mode III) tearing of the post then transitions 

as a crack opens up in advance of the bolt. As the bolt is pushed between the crack walls, it 

forces the crack to open wider and converts the crack growth from Mode III to Mode I. The 

cracking mode could convert back to Mode III any time the bolt came to bear directly on the 

crack tip itself. This condition can occur when the cracked portion of the post face buckles and 

the tension on the crack tip is reduced. Modes I and III occurred simultaneously in regions where 

a slight inward curve is visible on the face of the post, while Mode I failure occurred by itself in 

regions where this curve is absent. 

 
Figure 59. Mode I and Mode III Fracture 
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Unlike the physical test, the finite element material model was ideal and uniform 

throughout the post such that once tearing began, no variations in material were encountered 

which would cause the mechanism to change. Thus, similar tear-out continued through the entire 

depth of the post. 

The out-of-plane nature of the tearing was exaggerated in the simulation when compared 

to the test. This behavior was to be expected, as the model discretized a continuous system. 

Whereas the physical model could deform at an infinite number of locations, the finite element 

model could only deform at each node. Thus, fewer opportunities for deformation existed. 

Extremely large, very localized strains caused failure in the physical test, whereas in the model 

these strains had to occur over a larger area (each element), which resulted in this behavior. 

Sequential images of the simulation are shown in Figures 60 through 63, and post-test 

photographs and simulation pictures of the post are shown in Figures 64 and 65. 

5.4.2 Quantitative Simulation Evaluation 

The finite element simulation of test no. MGSBRB-5 produced results that were 

substantially in agreement with the physical test data. The simulation produced smoother data 

without the larger variations seen in physical testing. This smoothness was due to the uniformity 

of the simulated material. 

Results for the simulation were compared to the physical test using several graphs used to 

analyze results of bogie testing. These graphs included force vs. displacement, energy vs. 

displacement, bogie velocity vs. time, and post deflection vs. time. Graphs comparing the 

simulation data to that obtained from the EDR-3 and EDR-4 accelerometers used in physical 

testing are shown in Figures 66 and 67. As can be seen in the graphs, the results of the simulation 

closely matched the data taken from the EDR-4 and were in reasonable agreement with the data 

taken from the EDR-3. 
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Figure 60. Sequential Pictures, Simulation of Test No. MGSBRB-5 
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Figure 61. Sequential Pictures, Simulation of Test No. MGSBRB-5 
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Figure 62. Sequential Pictures, Simulation of Test No. MGSBRB-5 
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Figure 63. Sequential Pictures, Simulation of Test No. MGSBRB-5 
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Figure 64. Simulation and Physical Test Results, Test No. MGSBRB-5 
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Figure 65. Simulation and Physical Test Results, Test No. MGSBRB-5 
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Figure 66. Simulation and Physical Test Results, Test No. MGSBRB-5 
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Figure 67. Simulation and Physical Test Results, Test No. MGSBRB-5 
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5.5 Testing of Other Modeling Components 

After the working model was developed for test no. MGSBRB-5, several modeling 

parameters were evaluated to investigate their effect on model predictions. These parameters 

included alternate element formulations, material models, and meshes. 

5.5.1 Alternate Element Formulations 

Several different shell element formulations were tested in the tear-out region to 

determine if they would produce desirable results. These formulations included Types 1, 2, 6, 7, 

8, 10, and 11. Comparison of the force vs. deflection and energy vs. deflection curves for the 

various element types, which are shown in Figures 68 and 69, revealed that all element 

formulations produced similar net effects on the bogie as long as they remained stable. However, 

inspection of the individual simulations shows that most of the element formulations displayed 

unrealistic behavior, primarily in the form of stable or unstable shooting nodes. 

Type 1 (Hughes-Liu) elements remained stable throughout the simulation, but caused 

several stable shooting nodes to develop as the bolt was approximately halfway through the 

plates. Type 2 (Belytschko-Tsay) elements produced similar results. Type 6 (S/R Hughes-Liu) 

elements worked well until approximately one-quarter of the way through the simulation, at 

which point an unstable shooting node developed, the time step dropped dramatically, and the 

simulation effectively stalled. Type 7 (S/R Co-rotational Hughes-Liu) elements performed very 

well, producing neither shooting nodes nor any other analysis instabilities. Type 8 (Belytschko-

Leviathan) elements did not produce shooting nodes, but did create odd variations in the tear-out 

mechanism. For example, the faces of the plate originally buckle inward, but later buckle 

outward during the simulation, and several elements detached from the post completely. Type 10 

(Belytschko-Wong-Chiang) elements produced a large number of stable shooting nodes and  
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Figure 68. Force vs. Deflection Curves for Various Element Formulations 
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Figure 69. Energy vs. Deflection Curves for Various Element Formulations 
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bizarre element behavior until becoming unstable late in the event, at which point the time step 

decreased and progress effectively stopped. Finally, Type 11 (Fast Co-rotational Hughes-Liu) 

elements produced a large number of shooting nodes and also became unstable during the 

simulation. Thus, the Type 7 and Type 16 elements were the best formulations for the tear-out 

application and produced the most accurate results. Pictures of the simulation results for the 

various element types are shown in Figure 70. 

Examination of the original simulation revealed that some hourglassing occurred in the 

post in the non-tear-out regions. The amount of hourglass energy was small when compared to 

the total energy absorbed through tear-out, but it was significant in comparison to the energy 

absorbed by the rest of the post. Thus, one additional simulation was run in which the entire post 

was composed of Type 16, fully-integrated shells. This change resulted in higher forces early in 

the event and lower forces later in the event. The total energy absorbed by the post changed 

minimally. As the hourglass energy in the original simulation was not large enough to cause 

concern and the effect of changing the element formulation was minimal, the original simulation 

was found to be acceptably accurate. 

5.5.2 Alternate Material Models 

Different material models were also substituted into the simulation to see how their use 

would affect results. A PLASTIC_KINEMATIC material model was used for the tear-out region 

of the post. Additionally, an elastic material model was used for the tear-out bolt to examine its 

effects on the tearing behavior. As the bolt did not yield during the physical test, no plastic 

material models were considered. 

Whereas the PIECEWISE_LINEAR_PLASTICITY model allows a user to completely 

define a stress-strain curve for a material, the PLASTIC_KINEMATIC model is a bilinear 

 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

127 

 
Type 1 (Hughes-Liu) 

 

 
Type 2 (Belytschko-Tsay) 

 

 
Type 6 (S/R Hughes-Liu) 

 

 
Type 7 (S/R co-rotational Hughes-Liu) 

 
Type 8 (Belytschko-Leviathan) 

 

 
Type 10 (Belytschko-Wong-Chiang) 

 

 
Type 11 (Fast (co-rotational) Hughes-Liu) 

 

 
Type 16 (fully-integrated) 

 
Figure 70. Element Formulations and Behavior 
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elastic, strain-hardening model. Isotropic or kinematic hardening can be defined for the material. 

The load on the post in the simulation was believed to not reverse, thus both types of hardening 

were expected to produce identical results. The PLASTIC_KINEMATIC material model also 

uses an effective plastic strain to define failure of the material. Note that a bilinear stress-strain 

curve can also be input into the PIECEWISE_LINEAR_PLASTICITY material model, and that 

this material model uses isotropic hardening. A sketch of isotropic and kinematic hardening 

behavior is shown in Figure 71. 

 
Figure 71. Isotropic and Kinematic Hardening  

The new material model used an elastic modulus and ultimate strain equivalent to the 

original model. The yield stress and tangent modulus were then tuned to match the strain-energy 

density of the PIECEWISE model. The new material model was stable throughout the 

simulation, but it did produce some irregular element failures along the tear-out surface. 

Additionally, though resistance forces were similar for both models early in the event, the 

PLASTIC_KINEMATIC material model absorbed less energy than the original model and the 

physical test. A final picture of the simulation using the PLASTIC_KINEMATIC material model 

is shown in Figure 72, and a force vs. displacement curve is shown in Figure 73. 
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Figure 72. PLASTIC_KINEMATIC Material Model Simulated System Damage 

 
Figure 73. PLASTIC_KINEMATIC Material Model Results 

Originally, the difference in energy absorption was attributed to the bilinear stress-strain 

curve. However, when an additional simulation was performed using a bilinear 

PIECEWISE_LINEAR_PLASTICITY material model, the simulation behaved similar to the 

original model. An additional simulation was performed using the PLASTIC_KINEMATIC 

material model with isotropic hardening. The results of this simulation matched the original 
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simulation much more closely, indicating that the hardening behavior of the models created the 

difference. 

In the simulation, the bolt causes compressive yielding in advance of the crack as the bolt 

bears against the face of the post. In the kinematic hardening model, this compressive yielding 

decreases the magnitude of the subsequent tensile yield stress of the material whereas in the 

isotropic model, this stress is increased. Thus, lower resistive forces are generated in the 

kinematic model through the tearing of the post, in which elements are loaded in tension, and 

less energy is absorbed. It is believed that the irregular element deletions along the crack of the 

kinematic model were also caused by this phenomenon. Elements near the crack surface that 

have yielded in compression subsequently yield at a lower tensile stress. Thus, more elements 

reach the effective plastic strain value required for element deletion. In isotropic hardening, these 

elements require a larger tensile stress to initiate yield. Thus, a smaller number of elements reach 

the effective plastic strain required for deletion, and the crack shape is smoother.  

Type 1, under-integrated solid elements were used in the first simulation featuring the 

ELASTIC material model for the bolt. This resulted in very large amounts of hourglassing in the 

bolt, shown in Figure 74. Thus, the simulation was performed again with Type 2, fully-integrated 

solid elements. In this simulation, small indentations developed in the bolt that oscillated 

throughout the event. Similarly, the effective force on the bogie head oscillated more than was 

seen in the simulation with a rigid bolt. The average force and total energy absorbed were also 

lower than in the original simulation. As the elastic model allowed deformation, the bolt applied 

out-of-plane forces to the tear-out surfaces upon deflection, as shown in Figure 75. Thus, the 

force required to initiate and continue tearing was lower than in the original model, leading to a 

lower total energy absorbed. 
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Figure 74. Under-Integrated, Elastic Bolt Modeling Effects 

 
Figure 75. Fully-Integrated, Elastic Bolt Modeling Effects 

While the elastic behavior was believed to be more realistic, use of fully-integrated solid 

elements greatly increased analysis time. The effect of this increase could be mitigated by not 

including the central portions of the bolt in the model, or splitting the bolt into different parts and 

using fully-integrated elements only in the contacted region. However, these options were not 

investigated. As the net effect on the model was not substantial, the original rigid bolt was found 

to be reasonably accurate. 
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5.5.3 Alternate Meshes 

Finally, different mesh densities were used in the simulation to investigate their effect on 

the tear-out behavior. Two additional meshes were substituted into the model which utilized 

elements having edge lengths twice as long and one-half as long as the original mesh. These 

meshes are shown in Figures 76 and 77. 

 
Figure 76. ⅛-in. (3.2-mm) Mesh 

 
Figure 77. 1⁄32-in. (0.8-mm) Mesh 
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The first mesh, which used ⅛-in. (3.2-mm) shell elements, proved stiffer than the original 

model. Tear-out proceeded across approximately 80 percent of the post face before stalling, at 

which point the post bent about the tear-out line and allowed the bogie to override it. The tearing 

force was increased significantly, and the total energy absorbed also increased. As the elements 

were larger, the strain required to fail an element was required to be spread over a larger area, 

resulting in greater forces. Some bizarre element behavior was observed, as several nodes began 

to shoot slightly and resulted in excessive element deformations. Final pictures of the model are 

shown in Figure 78, and a force vs. displacement curve is shown in Figure 79. 

 

 
Figure 78. ⅛-in. (3.2-mm) Mesh Simulated System Damage 
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Figure 79. ⅛-in. (3.2-mm) Mesh Results 

The second mesh, which used 1⁄32 -in. (0.8-mm) shell elements, was more flexible than 

the original mesh. This mesh did capture the early force peak required to initiate tear-out. Once 

tear-out began, the average tearing force was less than that of the original mesh, and less energy 

was absorbed. The finer mesh allowed more out-of-plane deformation in the tear-out surface and 

more out-of-plane stress was applied to the elements, which facilitated failure. As previously 

discussed, the uniformity of the model did not allow the tear-out mechanism to fluctuate. Thus, 

tearing proceeded at this lower-force mechanism without the variation between failure modes 

seen in physical testing. Note that the finer mesh required more than eight times the analysis time 

of the original mesh. Computational cost could be reduced by further restricting the finer mesh to 

only areas where tearing will occur. However, this requires full knowledge of the tear-out path 

prior to simulation. Thus, the original mesh density was found to be best suited to simulating 

tearing. Final pictures of the simulation using the finest mesh are shown in Figure 80, and a force 

vs. displacement curve is shown in Figure 81. Force vs. displacement curves for all three mesh 

densities are shown in Figure 82. 
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Figure 80. 1⁄32-in. (0.8-mm) Mesh Simulated System Damage 

 
Figure 81. 1⁄32-in. (0.8-mm) Mesh Results 
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Figure 82. Force vs. Deflection Curves for Various Mesh Densities 
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5.6 Findings 

A finite element simulation was created of test no. MGSBRB-5 which was found to be in 

good agreement with the physical test. A variety of element and material formulations were 

evaluated to identify the most accurate modeling procedure for analysis of a bolt tear-out method 

for absorbing impact energy. Three element formulations were found to provide stable solutions, 

which were Type 7 (S/R co-rotational Hughes-Liu), Type 8 (Belytschko-Leviathan), and Type 

16 (fully-integrated). The other tested formulations produced shooting nodes and other types of 

stability problems. As the Type 8 formulation produced some unrealistic behavior in the tear-out 

regions, Types 7 and 16 were the best formulations for simulating the tear-out. 

PIECEWISE_LINEAR_PLASTICITY and PLASTIC_KINEMATIC material models 

were used in the simulation for the tear-out regions. Both material models produced results in 

good agreement with those of the physical test when isotropic hardening was used. Kinematic 

hardening, which could only be used in the PLASTIC_KINEMATIC material model, resulted in 

lower energy absorption levels and irregular tearing patterns in the post. Thus, isotropic 

hardening was better suited for modeling the tear-out behavior. Additionally, RIGID and 

ELASTIC material models were used to simulate the bolt. While the elastic model was believed 

to produce more realistic results, it required use of fully-integrated solid elements to prevent 

excessive hourglassing. Thus, the RIGID material model was found to be better suited for 

applications in which computational efficiency is important. 

Finally, the original element edge length of 1⁄16 in. (1.6 mm) was varied to investigate the 

effects of alternate mesh densities. These meshes consisted of shell elements with edge lengths 

twice as long and one-half as long as the original mesh. All meshes were able to model the tear-

out mechanism; however, tear-out in the coarsest mesh stopped after proceeding through 

approximately 80 percent of the post face. The finer mesh accurately captured the original force 
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peak of the physical test, although neither alternate mesh produced results as accurate as the 

original model. Additionally, the finer mesh took more than eight times as much analysis time. 

Thus, the original mesh density was found to be the best to simulate tearing. 

However, the simulation for test no. MGSBRB-5 could be improved with the 

development of a more accurate material model for the post steel material. Several material 

models were investigated, which were calibrated to tensile tests of various specimens. As no 

models were available for the steel used in the post, a model with similar properties was used. A 

model that was developed based on the actual steel used in the post would provide superior 

results. 

Additionally, the model could be improved through inclusion of a more complete bogie 

model. Due to contact and stability issues encountered when using a full model of the bogie, the 

bogie was modeled with a simple rigid cylinder. Since physical test data was obtained from an 

accelerometer mounted near the bogie’s center of gravity, rotations would cause some 

disagreement between the physical and simulated data. While the bogie did not significantly 

rotate in the physical test, updating the model with a full bogie model would more accurately 

simulate these effects. 
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6 BARRIER VII ANALYSIS 

6.1 Scope 

BARRIER VII [62-63] simulations were used to evaluate the compatibility of the bridge 

rail with MGS to determine if an approach guardrail transition would be required between the 

two barriers. The primary safety concern associated with a connection between two barriers is 

that a vehicle striking the more flexible barrier can pocket behind the end of the stiffer 

downstream barrier. Pocketing occurs when a flexible barrier deflects sufficiently to allow the 

front of the vehicle to engage the blunt end of the stiffer barrier. The risk of a high-deceleration 

pocketing event has been correlated to the maximum angle between the deflected guardrail and 

the downstream section of rail [64]. Figure 83 illustrates how a pocketing angle is measured. 

 
Figure 83. Pocketing Angle Measurement 

BARRIER VII simulations were performed to determine if the weak-post bridge rail with 

half-post spacing would generate lateral stiffness, strength, and deflections comparable to those 

of the MGS with posts embedded in soil. This analysis was accomplished through two sets of 

simulations. First, impacts were simulated with separate systems comprised entirely of bridge 

rail or guardrail to determine if similar deflections resulted. Next, impacts in the transition region 

on both ends of a bridge were simulated to investigate deflections and to determine if vehicles 

could pocket at either the approach or departure interface. 
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Prior studies of transitions between barriers have indicated that it is desirable to limit the 

maximum guardrail pocketing angle to less than 30 degrees [64-65]. These angles were 

measured using the nodal displacements of the barrier in front of the vehicle. Linear regression 

was used to fit lines to both three and five consecutive nodes of the barrier, which corresponded 

to lengths of rail of 18¾ in. (476 mm) and 37½ in. (953 mm), respectively. 

Wheel snag was not considered in this analysis. Prior testing has shown that severe wheel 

snag sufficient to remove the vehicle’s wheel does not produce excessive deceleration nor 

vehicle instability during W-beam guardrail impacts. Further, the depth of blockouts used with 

the MGS guardrail has limited the degree of wheel snag during previous crash tests with standard 

MGS guardrail [1]. The weak, S3x5.7 (S76x8.5) post used in the bridge rail has also been widely 

used in unblocked out weak-post barrier systems, including weak-post W-beam and cable 

guardrails. Crash testing of these weak-post systems has proven that wheel snag on S3x5.7 

(S76x8.5) posts is not a safety concern. 

6.2 BARRIER VII Model 

BARRIER VII is a 2-dimensional finite element program that uses a variety of ideal 

components to model real-world behavior. The program models post and beam systems using 

rail that yields only at nodal locations and elastic, perfectly plastic posts. Component models of 

S3x5.7 (S76x8.5) posts, W6x9 (W152x13.4) posts, anchor posts, and 12-gauge (2.66-mm thick) 

W-beam guardrail were required to perform the analysis. A summary of parameters used in 

BARRIER VII simulation is shown in Table 3. 

6.2.1 S3x5.7 (S76x8.5) Post Models 

The S3x5.7 (S76x8.5) post models used in analysis were created with data obtained from 

dynamic bogie tests performed previously by MwRSF [66]. In these bogie tests, posts were 

rigidly mounted in a steel tube that was encased in concrete. Wood spacers and steel plates were 
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also inserted into the tube to orient the post at different angles to the path of the bogie. Tests 

were performed in which the bogie impacted posts at angles of 90, 75, and 60 degrees with 

respect to the strong axes of the posts at a height of 21.65 in. (550 mm) above the roadway. 

Force vs. deflection curves created from accelerometer data for these tests are shown in Figure 

84. 

Table 3. BARRIER VII Simulation Parameters 

 
 

 
Figure 84. S3x5.7 (S76x8.5) Bogie Test Results 

Input Value
Kb - Strong Axis Stiffness kip/in. 2.46
Ma - Strong Axis Yield Moment kip-in. 114.97
Kb - Strong Axis Stiffness kip/in. 2.08
Ma - Strong Axis Yield Moment kip-in. 94.27
Kb - Strong Axis Stiffness kip/in. 2.04
Ma - Strong Axis Yield Moment kip-in. 81.76
Ka - Weak Axis Stiffness kip/in. 2.53
Mb - Weak Axis Yield Moment kip-in. 25.74
δf - Failure Displacement in. 15
μk - Kinetic Friction Coefficient Vehicle to Barrier 0.35
Py - Yield Force in Tension kips 99.5
My - Yield Moment kip-in. 68.5
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BARRIER VII post models behave as elastic, perfectly plastic elements. Elements 

develop linear force vs. deflection curves through a specified yield moment and then maintain 

constant bending moment until reaching a deflection at which the element fails. Upon failure, the 

resistive force of the member is reduced to zero over several time steps. The elastic stiffness, 

yield moments, and failure deflections for post members in axes both parallel and perpendicular 

to the barrier are required as input for the program. These values were obtained through analysis 

of the previous bogie tests. 

Stiffness of the posts perpendicular to the barrier was obtained with the assumption that 

the initial peak resistive force of the post in each test marked the end of elastic behavior. This 

peak elastic force was divided by the corresponding deflection to determine stiffness. As the 

bridge rail system featured a higher guardrail mounting height than the prior tests, the stiffness 

value was reduced in proportion to this difference.  

Yield moments perpendicular to the barrier for the post models were calculated by 

integrating the area beneath the force vs. deflection curves to find the energy absorbed by the 

post in each bogie test. Integration was performed from the onset of post yield, or the initial peak 

force, to the deflection at which the posts were considered to no longer contribute significant 

resistance to guardrail deflection. This distance was estimated to be 15 in. (381 mm), as it was 

believed that at this distance the guardrail would detach from and begin to override the post. 

Average yield forces were then obtained by dividing the total energy absorbed by the total 

amount of plastic deflection, which was found by subtracting the deflection corresponding to 

post yield from 15 in. (381 mm). A reduction factor of 0.875 was applied to the total energy 

absorbed and the linear stiffness for the data obtained from the strong-axis (90-degree) post test. 

This factor was an estimated parameter used to account for twist and subsequent reduction in 

strength of a post that would occur during a bridge rail impact, as the post would not be loaded 
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perfectly along its strong axis. Note that this reduction factor was not applied to the data from the 

other two post tests. Finally, yield moments were obtained by multiplying the average yield force 

by the height of impact, 21.65 in. (550 mm). Graphical representations of the post model 

properties perpendicular to the barrier for an impact height of 24⅞ in. (632 mm) are shown in 

Figure 85. 

 
Figure 85. S3x5.7 (S76x8.5) BARRIER VII Post Models  

Even with the reduction factor applied only to this load condition, the 90-degree post 

model was the strongest and stiffest post. The 75-degree post model had an intermediate strength 

and a stiffness that was slightly greater than that of the 60-degree model, which had the lowest 

strength.  

Post properties parallel to the barrier, or perpendicular to the weak-axis of each post, 

were determined using elastic bending equations. As non-impacted posts would be loaded 

through tension in the rail, which is applied more slowly, no dynamic magnification factor was 

applied. 
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6.2.2 W6x8.5 (W152x12.6) Post Models 

The post model used for the MGS W6x8.5 (W152x12.6) posts was taken from 

previously-developed BARRIER VII simulations calibrated to full-scale crash tests [1, 67-68]. 

This model simulated a 6-ft (1.83-m) long, W6x9 (W152x13.4) post embedded in soil. 

Resistance force perpendicular to the barrier at the height of the guardrail was approximately 5.8 

kips (25.7 kN), and failure deflection was 15 in. (381 mm). 

A stronger post model was developed based on the soil strength requirements stipulated 

in Appendix B of MASH, which state that a minimum average resistance force of 7.5 kips (33.4 

kN) must be developed between deflections of 5 and 20 in. (127 and 508 mm) in strong-axis 

dynamic testing of W6x16 (W152x23.8) posts. These posts do not allow buckling that may occur 

with W6x9 (W152x13.4) guardrail posts, and as such represent an upper bound to the strength 

developed by the smaller post. A strong-axis resistive force of 8 kips (35.6 kN) was assumed for 

the stronger post model, and a reduction factor of 0.875 was applied to this value to account for 

twisting, buckling, or eccentric loading of the guardrail posts. Thus, yield force of the stronger 

posts was 7 kips (31.2 kN).  

6.2.3 Anchor Post Models 

Models for the anchor posts used in both the bridge rail and MGS guardrail simulations 

were based on modified breakaway cable terminal (BCT) post anchors that were used to replicate 

the tensile capacity of tangent guardrail installations. In full-scale testing, two of these posts are 

positioned at each end of the guardrail and housed in 6-ft (1.83-m) long foundation tubes. A 

ground line strut is positioned between the anchor posts, and a cable anchor is attached between 

the end post and the guardrail section. Previously-developed models for both the first and second 

BCT posts in the system were used for the BARRIER VII simulations [69]. 
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6.2.4 W-Beam Guardrail Model 

The W-beam guardrail model was based on the geometry and material properties of 

standard 12-gauge (2.66-mm thick) guardrail. Other required properties were determined using 

elastic bending equations. 

6.2.5 Coefficient of Friction 

Contact interfaces between the vehicle and barrier are defined within BARRIER VII with 

a coefficient of friction. Frictional force is applied along the edge of the vehicle in the simulation 

that resists vehicle redirection. Thus, it can be used to simulate the effects of wheel snag on 

posts, which create the same effect. Since no calibrated coefficient of friction was available for 

the bridge rail, a calibrated value from the MGS of 0.35 was initially used for both systems [1, 

67]. 

6.2.6 Vehicle Models 

Two different vehicle models were used in the simulations that corresponded with those 

prescribed for testing under MASH. These models were a truck with a mass of 5,000 lb (2,268 

kg) denoted as the 2270P vehicle and a car with a mass of 2,425 lb (1,100 kg) denoted as the 

1100C vehicle. These models were developed by MwRSF personnel as part of the NCHRP 22-

14(2) project. For all simulations, each vehicle impacted the guardrail at a speed of 62.1 mph 

(100.0 km/h) and at an angle of 25 degrees in accordance with TL-3 criteria of MASH. 

6.2.7 Mesh Density 

A uniform mesh density was used across the entire length of all simulated systems. For 

the 175-ft (53.34-m) system, a total of 225 nodes were used, which resulted in a node spacing of 

9⅜ in. (238 mm). In later simulations, an increased mesh density of 449 nodes was used, with a 

resulting node spacing of 411⁄16 in. (119 mm). 
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6.3 BARRIER VII Simulation Results 

As presented previously, a number of BARRIER VII input parameters had to be 

estimated. A parametric study was conducted to explore the possible effects of variations in these 

parameters.  

6.3.1 Guardrail Simulation Results 

The first systems analyzed consisted entirely of MGS guardrail and end anchor terminals 

to form a baseline for comparison. The total system length was 175 ft (53.34 m), which consisted 

of four anchor posts and twenty-five guardrail posts. Only the coarser (225-node) mesh was used 

in these simulations. Points of initial impact were selected such that the event was approximately 

centered in the system, with separate simulations performed for impact located at each node 

across one post spacing, for a total of 8 simulations. Maximum deflections and pocketing angles 

for these simulations are shown in Table 4. Note that these simulations were performed with the 

nominal test designation no. 3-11 impact severity of 115 kip-ft (156 kJ). Further note that 

maximum dynamic deflection of the MGS when tested under test designation no. 3-11 conditions 

with an impact severity of 122 k-ft (166 kJ) was 43.9 in. (1,114 mm), which compares favorably 

with the simulated values [67]. 

Table 4. Guardrail-Only and Bridge Rail-Only Results (225-Node) 

 
 

Deflection   
in. (mm)

Distance from 
Impact - ft (m)

Angle 
(deg)

Distance from 
Impact - ft (m)

Guardrail Weak 2270P 43.4 (1,102) 15.6 (4.8) 16.0 10.9 (3.3)
Bridge Rail 90-deg 2270P 40.1 (1,019) 14.1 (4.3) 21.2 19.5 (5.9)
Bridge Rail 75-deg 2270P 43.5 (1,105) 15.6 (4.8) 19.4 21.1 (6.4)
Bridge Rail 60-deg 2270P 46.3 (1,175) 16.4 (5.0) 17.7 21.9 (6.7)
Guardrail Weak 1100C 26.7 (678) 8.6 (2.6) 14.3 9.4 (2.9)
Bridge Rail 90-deg 1100C 23.7 (602) 7.8 (2.4) 15.9 10.2 (3.1)

Vehicle
Maximum Barrier Deflection Maximum 5-Node PocketingPost 

ModelSystem
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6.3.2 Bridge Rail Simulation Results 

Simulations were also performed on systems that consisted entirely of bridge rail and end 

anchor terminals using the coarser (225-node) mesh. Total system length was 175 ft (53.34 m), 

which consisted of four anchor posts and fifty-one bridge rail posts. Points of initial impact were 

selected such that the event was approximately centered in the system, with separate simulations 

performed for impact located at each node used in the guardrail simulations. All three of the 

previously-discussed models for S3x5.7 (S76x8.5) posts were used. Results of these simulations 

are also summarized in Table 4. 

6.3.2.1 90-Degree Post Models 

As the post model based on the 90-degree test was the strongest of the three, this 

simulated system displayed the lowest total deflection. Deflections of the system when impacted 

by the 1100C vehicle and 2270P vehicles were only 11 percent and 8 percent less, respectively, 

than that of the MGS. The maximum pocketing angle was the largest of all simulated systems, 

but it was still well within the recommended limit [64-65]. 

6.3.2.2 75-Degree Post Models 

The 75-degree post model represented an intermediate post model, and its simulation 

results displayed intermediate performance. Deflection characteristics matched the MGS almost 

exactly. Maximum pocketing angle was also the intermediate value of the three bridge rail 

models. 

6.3.2.3 60-Degree Post Models 

As the weakest of the three, the 60-degree post model resulted in the greatest deflection 

of the bridge rail models. Deflection of this model was 7 percent greater than that found for the 

MGS when impacted by the pickup truck. Its maximum pocketing angle was also the lowest; 

however, it was still larger than that of the MGS. 
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6.3.3 Discussion of Preliminary Results 

The results of the guardrail-only and bridge rail-only simulations indicated that the bridge 

rail would allow deflections similar to those of the MGS. Therefore, a transition should not be 

necessary between the two systems. Although pocketing angles were larger for the bridge rail 

models, they were well below recommended limits [64-65]. 

6.3.4 Bridge Rail with Approach Guardrail Results 

Further investigation into the need for a transition section between the approach MGS 

and bridge rail was undertaken with simulations of systems comprised of 75 ft (22.86 m) of 

bridge rail positioned between two 50 ft (15.24 m) lengths of guardrail. Twenty-five bridge rail 

posts, twelve guardrail posts, and four anchor posts were used in the simulated systems. 

Inclusion of the MGS tended to decrease the deflections seen in the bridge rail. This reduction 

was due to the larger weak-axis strength of the guardrail posts. Although the guardrail possessed 

half as many posts as the bridge rail, the weak-axis capacity of each guardrail post was more than 

twice that of a bridge rail post, which resulted in greater overall resistance to rail movement 

along the barrier and lower loads on the anchor posts. For example, the predicted dynamic 

anchor movement at the height of the rail was reduced from 5.2 in. (132 mm) to 4.4 in. (112 mm) 

when the guardrail was added to the bridge rail. 

Although many simulations were conducted, it was determined that four worst-case 

impact conditions defined the performance of the system. These included the largest pocketing 

angle in the approach interface (Case 1), the largest pocketing angle in the bridge rail system 

(Case 2), the largest pocketing angle in the departure interface (Case 3), and the largest 

deflection anywhere in the system (Case 4). All worst-case impact scenarios occurred in 

simulations with the 2270P vehicle. A summary of the BARRIER VII simulation results is 

shown in Table 5. 
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Table 5. Bridge Rail and Guardrail BARRIER VII Results with 2270P Vehicle 

 
 

6.3.4.1 Largest Pocketing Angle, Approach Transition (Case 1) 

The largest pocketing angles observed in the approach interface between the MGS and 

the bridge rail occurred in a model which used the weaker guardrail post and the 90-degree, or 

strongest, bridge rail post. Worst-case pocketing occurred when the simulated 2270P vehicle 

impacted the MGS just upstream of the third guardrail post before the bridge, or 19 ft - 6⅜ in. 

(5.95 m) upstream of the first bridge rail post. The largest guardrail pocketing angle measured 

across a distance of 5 nodes was 25.9 degrees. When compared with the recommended threshold 

value of 30 degrees, this pocketing angle cannot be considered to be a significant concern. 

Additionally, it was believed that the simulated angle was overestimated for two reasons. First, 

the bridge rail posts used in this simulation were the stiffest of the three post models. Worst-case 

pocketing angles across 5 nodes for the same impact using 75-degree and 60-degree post models, 

when used with the weaker guardrail post models, were 21.9 degrees and 19.8 degrees, 

respectively. Second, the guardrail post models used in this simulation represent the lower bound 

on post stiffness, as discussed previously. Although no simulations were performed with the 

stronger guardrail post models, deflections in the approach guardrail were generally larger than 

those in the bridge rail which utilized the stiffest posts. Therefore, smaller deflections in the 

approach guardrail would result in smaller pocketing angles in the bridge rail. 

in. (mm) Change 3-Node 5-Node Change
225 51.5 (1,308) - 27.4 25.9
449 49.1 (1,247) -4.7% 26.6 25.5 -6.7%
225 40.6 (1,031) 21.5 20.1
449 38.8 (986) -4.5% 20.7 19.9 -7.5%
225 45.3 (1,151) 19.7 19.5
449 42.6 (1,082) -5.9% 19.5 18.5 -6.2%
225 52.4 (1,331) - 20.6 19.7
449 49.4 (1,255) -5.7% 20.3 19.5 -5.1%

3

4 60-degWeak 19.5 ft (6.0 m) upstream 
of first BR post

Weak 0.8 ft (0.2 m) downstream 
of first BR Post

3.1 ft (1.0 m) downstream 
of last BR post

60-degStrong

Combined Systems Results

Case BR PostGR Post Impact Location # of 
Nodes

Deflections Pocketing Angles (deg)

19.5 ft (6.0 m) upstream 
of first BR post

90-degWeak1

2 90-deg
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6.3.4.2 Largest Pocketing Angle, Bridge Rail System (Case 2) 

The largest pocketing angle observed in the simulated bridge rail system was caused by 

an impact located 9⅜ in. (238 mm) downstream of the first bridge rail post. A maximum 5-node 

pocketing angle of 20.1 degrees occurred, which was well below recommended limits. 

6.3.4.3 Largest Pocketing Angle, Departure Transition (Case 3) 

Worst-case pocketing in the departure interface occurred in simulations using the 60-

degree, or weakest, bridge rail post model and the stronger guardrail post model. A maximum 

pocketing angle of 19.5 degrees occurred in a simulation in which impact was located between 

the last bridge rail post and the first guardrail post, or 3 ft - 1½ in. downstream of the last bridge 

rail post. This pocketing angle, which was within acceptable limits, was exacerbated by the small 

number of guardrail posts downstream of impact. For points of impact which were located on the 

actual bridge rail, maximum pocketing angles were typically between 17 and 19 degrees. All of 

these pocketing angle values are well below recommended limits. 

6.3.4.4 Largest Deflection of System (Case 4) 

The largest deflection of the simulated bridge rail system occurred under the same impact 

conditions that caused the maximum pocketing angle in the upstream interface. The point of 

impact was 19 ft - 6⅜ in. (5.95 m) upstream of the first bridge rail post. Maximum deflection of 

52.4 in. (1,331 mm) occurred in a simulated system featuring the weaker guardrail post and the 

weakest bridge rail post models. This relatively larger deflection was caused by the small 

number of upstream guardrail posts, which placed a larger load on the upstream anchors and 

allowed more longitudinal rail displacement. Inclusion of the 90-degree, or strongest, bridge rail 

post model reduced this deflection to 51.5 in. (1,308 mm). No simulations were performed with 

the stronger guardrail post models, but their inclusion would further decrease maximum 

deflection. 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

151 

6.3.4.5 Increased Mesh Density 

Following identification of the worst-case impact conditions, additional analyses were 

performed using a finer (449-node) mesh. These models had lower maximum deflections and 

pocketing angles than their coarser counterparts. For comparison of pocketing angles, 3-node 

angles from the coarser mesh were compared to 5-node angles of the finer mesh to result in the 

same length of rail. The decreased deflection and pocketing angles in the finer mesh were 

believed to have been caused by the additional number of bending points along the rail. The finer 

mesh had twice as many nodes, and bending at each node resulted in greater energy absorption 

through the entire system. Thus, deflection was reduced, which in turn reduced pocketing. 

However, the change in deflections between the coarser and finer meshes was very modest, 

which indicates that the simulation findings had converged. 

6.3.5 Discussion of Results 

The BARRIER VII simulations demonstrated good compatibility between the MGS and 

the bridge rail. Through varying the properties of both the guardrail and bridge rail posts, it was 

determined that pocketing angles and deflections were well below recommended limits, even 

under worst-case impact scenarios. Further, comparison between BARRIER VII results and prior 

MGS full-scale tests indicated that the BARRIER VII model produced accurate results. Thus, it 

is believed that no special transition section was required at the interface between the MGS and 

the bridge rail. 
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7 DESIGN DETAILS 

The test installation consisted of 68 ft - 9 in. (21.0 m) of bridge rail installed between two 

approach sections of MGS measuring 50 ft (15.2 m) and 56 ft - 3 in. (17.1 m) in length, for a 

total system length of 175 ft (53.3 m). Standard 12-gauge (2.66-mm thick) W-beam guardrail 

was used throughout, and no approach guardrail transition sections were used at the guardrail-to-

bridge rail interfaces. All lap-splice connections in the W-beam rail were configured to reduce 

vehicle snag at the splice during the test. Design details are shown in Figures 86 through 112, 

and photographs of the test installation are shown in Figures 113 through 118. Material 

specifications, mill certifications, and certificates of conformity for the system materials are 

shown in Appendix B. 

The MGS was constructed in two sections with a total of seventeen guardrail posts. Post 

nos. 3 through 8 and 32 through 38 were galvanized ASTM A36 steel W6x8.5 (W152x12.6) 

sections measuring 72 in. (1,829 mm) long, as shown in Figures 86 through 88. Post nos. 1, 2, 

39, and 40 were timber posts measuring 5½ in. wide x 7½ in. deep x 46 in. long (140 mm x 191 

mm x 1,168 mm) and were placed in 72-in. (1,829-mm) long steel foundation tubes, as shown in 

Figures 90 and 99. The timber posts and foundation tubes are used on many tangent guardrail 

terminals. 

Post nos. 1 through 8 and 32 through 40 were spaced 75 in. (1,905 mm) on center with a 

soil embedment depth of 40 in. (1,016 mm), as shown in Figures 86 through 88. The posts were 

placed in a compacted, coarse, crushed limestone material that met Grading B of AASHTO 

M147-65 (1990) as described in MASH. For post nos. 3 through 8 and 32 through 38, 6-in. wide 

x 12-in. deep x 14¼-in. long (152-mm x 305-mm x 362-mm) wood spacer blockouts were used 

to block the rail away from the front face of the steel posts, as shown in Figures 88 and 98. 
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Standard 12-gauge (2.66-mm thick) W-beam rails with post bolt slots at 75-in. (1,905-

mm) intervals were placed between post nos. 1 through 8 and 32 through 40, as shown in Figures 

86, 87, 89, and 102. The W-beam’s top rail height was 31 in. (787 mm), with a 24⅞-in. (632-

mm) center mounting height. Rail splices were located at the center of the guardrail span 

locations, as shown in Figures 86, 87, and 89.  

The bridge rail was constructed with twenty-three guardrail posts. Post nos. 9 through 31 

were ASTM A36 steel S3x5.7 (S76x8.5) sections measuring 44 in. (1,118 mm) long, as shown in 

Figures 86, 87, 88, and 97. Post nos. 9 through 31 were spaced 37½ in. (953 mm) on center and 

mounted in steel socket assemblies, as shown in Figures 86, 87, 88, and 92. A steel bolt was 

passed through the web of the post and both sides of the socket to support the bridge rail and 

posts. The sockets were anchored to the deck with a through-deck bolt that passed through the 

upper strap of the socket and a lower angle plate which was bolted to the socket, as shown in 

Figures 88 and 92. 

Standard 12-gauge (2.66-mm thick) W-beam rails with post bolt slots at 37½-in. (953-

mm) intervals were placed between post nos. 9 through 31, as shown in Figures 86, 87, 89, and 

102. The W-beam’s top rail height was 31 in. (787 mm), with a 24⅞-in. (632-mm) center 

mounting height. Rail splices were located at bridge rail post locations, as shown in Figures 86, 

87, and 89. No blockouts were used with the bridge rail, and 6-in. (152-mm) long, 12-gauge 

(2.66-mm thick) W-beam backup plates were positioned between the bridge rail and bridge posts 

at both splice and non-splice locations. The rail was connected to the posts with 5⁄16-in. (7.9-mm) 

diameter ASTM A307 Grade A bolts and nuts and 1¾-in. x 1¾-in. x ⅛-in. (44-mm x 44-mm x 

3.2-mm) square washers that were positioned on the traffic-side face of the bridge rail. 

A 75-ft long x 4-ft wide x 8-in. thick (22.86-m x 1.22-m x 203-mm) concrete bridge deck 

was designed and built for crash testing the bridge rail, as shown in Figures 103 through 108. 
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The thickness of the bridge deck was increased to 12 in. (305 mm) for a width of 12 in. (305 

mm) adjacent to the rigid concrete surface and was anchored to the outer vertical edge of the 

rigid pavement. This deck was intended to simulate a slab-on-girder bridge deck. Anchorage 

consisted of bent no. 5 (16-mm diameter) upper dowels spaced 9 in. (229 mm) on center that 

were embedded in epoxy, as shown in Figure 106. Additional no. 4 (13-mm diameter) lower 

dowels were spaced 18 in. (457 mm) on center. All dowels and deck reinforcement were 

comprised of ASTM A615 steel. 

The concrete deck was designed according to the Nebraska Department of Roads 

(NDOR) Bridge Operations, Policies, and Procedures Manual [70] and the empirical design 

guidelines presented in the AASHTO LRFD Bridge Design Specifications [11]. A deck thickness 

of 8 in. (203 mm) was used with concrete having a minimum specified 28-day compressive 

strength of 4,000 psi (27.6 MPa). Actual strength of the concrete is documented in Section 10.1. 

Longitudinal reinforcement consisted of upper no. 4 (13-mm diameter) bars on 12-in. (305-mm) 

centers and lower no. 5 (16-mm diameter) bars on 12-in. (305-mm) centers, with the upper 

reinforcement offset 6 in. (152 mm) from the lower reinforcement. Transverse reinforcement 

consisted of upper no. 4 (13-mm diameter) bars on 12-in. (305-mm) centers and lower no. 5 (16-

mm diameter) bars on 12-in. (305-mm) centers, with the upper and lower layers also offset 6 in. 

(152 mm). Top concrete clear cover was 2½ in. (64 mm), edge concrete clear cover was 2 in. (51 

mm), and bottom concrete clear cover was 1 in. (25 mm). 

Two transverse no. 6 (19-mm diameter) bars were placed between each upper no. 4 (13-

mm diameter) bar, which is standard practice in the cantilevered sections of the bridge deck in 

order to sustain loads from the bridge rail. At bridge rail post locations, a no. 6 (19-mm diameter) 

bar with a 5-in. (127-mm) diameter, 180-degree bend was looped around the location of the 

through-bolt to prevent the bolt from pulling out the side of the deck, as shown in Figure 104. At 
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locations where the bent no. 6 (19-mm diameter) bars interfered with the straight bars, the 

straight bars were placed beneath the bent bars. At locations where the through-deck bolt sleeve 

assembly interfered with the straight bars, the straight bars were shifted sideways. 

To aid with the installation of the bridge rail posts and minimize local deck damage, 2-in. 

x 2-in. x ¼-in. (51-mm x 51-mm x 6.4-mm) square bolt-sleeves were cast into the deck, as 

shown in Figures 104 and 110. These sleeves were 8 in. (203 mm) long, comprised of ASTM 

A500 Grade B steel, and housed the 1-in. (25.4-mm) diameter through-deck bolts which 

anchored the bridge posts. Number 3 (10-mm diameter) bars were tac-welded to the bolt sleeve 

and tied into the transverse deck reinforcement.  

To further strengthen the deck, additional reinforcement was placed around each bolt-

sleeve assembly, as is shown in Figures 104 and 105. Bent no. 4 (13-mm diameter) bars were 

placed above the upper reinforcement to the exterior of the bolt-sleeve assemblies. Longitudinal 

no. 6 (19-mm diameter) bars were placed to the interior of the bolt-sleeves, just above the lower 

transverse reinforcement, to prevent local crushing in the concrete in the lower portion of the 

deck. 
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Figure 86. Test Installation Layout, Test No. MGSBR-1 
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Figure 87. Test Installation Layout, Test No. MGSBR-2 
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Figure 88. Post Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 89. Splice Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 90. End Rail Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 91. Anchor Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 92. Mounting Bracket Assembly, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 93. Mounting Bracket – Bottom Assembly, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 94. Mounting Bracket – Bottom Assembly Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 95. Mounting Bracket – Top Assembly, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 96. Mounting Bracket – Top Assembly Details, Test Nos. MGSBR-1 & MGSBR-2 
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Figure 97. S3x5.7 (S76x8.5) Post and Standoff Details, Test Nos. MGSBR-1 & MGSBR-2 
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Figure 98. Posts 3-8 and 32-37 Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 99. BCT Timber Posts & Foundation Tube Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 100. BCT Anchor Cable, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 101. Ground Strut & Anchor Bracket Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 102. Rail Section Details, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 103. Bridge Deck Reinforcement Layout, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 104. Bridge Deck Details, Test Nos. MGSBR-1 and MGSBR-2 



 

 

A
ugust 11, 2010 

M
w

R
SF R

eport N
o. TR

P-03-226-10 

175

 
Figure 105. Bridge Deck Section, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 106. Bridge Deck Dowels, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 107. Bridge Deck Bottom Rebar and Dowels, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 108. Bridge Deck Top Rebar and Dowels, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 109. Bent Rebar, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 110. Vertical Bolt Sleeve Assembly, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 111. Bill of Materials, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 112. Bill of Materials, Test Nos. MGSBR-1 and MGSBR-2 
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Figure 113. Test Installation Photographs, Test No. MGSBR-1 
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Figure 114. Test Installation Photographs, Test No. MGSBR-1 
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Figure 115. Test Installation Photographs, Test No. MGSBR-1 
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Figure 116. Test Installation Photographs, Test No. MGSBR-1 
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Figure 117. Test Installation Photographs, Test No. MGSBR-1 
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Figure 118. Test Installation Photographs, Test No. MGSBR-1 
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8 TEST REQUIREMENTS AND EVALUATION CRITERIA 

8.1 Test Requirements 

Longitudinal barriers, such as W-beam bridge rails, must satisfy the impact safety 

standards provided in MASH in order to be accepted by the Federal Highway Administration 

(FHWA) for use on National Highway System (NHS) new construction projects or as a 

replacement for existing designs not meeting current safety standards. According to TL-3 of 

MASH, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests. The 

two full-scale crash tests are as follows: 

1. Test Designation 3-10 consisting of a 2,425-lb (1,100-kg) passenger car impacting 

the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, 

respectively. 

2. Test Designation 3-11 consisting of a 5,000-lb (2,268-kg) 4-door, half-ton pickup 

truck impacting the system at a nominal speed and angle of 62 mph (100 km/h) 

and 25 degrees, respectively. 

The test conditions of TL-3 longitudinal barriers are summarized in Table 6. 

Table 6. MASH TL-3 Crash Test Conditions 

Test 
Article 

Test 
Designation 

Test 
Vehicle 

Impact Conditions 
Evaluation 
Criteria 1 

Speed Angle 
(deg) mph km/h 

Longitudinal 
Barrier 

3-10 1100C 62 100 25 A,D,F,H,I 

3-11 2270P 62 100 25 A,D,F,H,I 

 
1 Evaluation criteria explained in Table 7. 
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8.2 Evaluation Criteria 

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: 

(1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for 

structural adequacy are intended to evaluate the ability of the barrier to contain and redirect 

impacting vehicles. Occupant risk evaluates the degree of hazard to occupants in the impacting 

vehicle. Vehicle trajectory after collision is a measure of the potential for the post-impact 

trajectory of the vehicle to cause secondary collisions with other vehicles or fixed objects. These 

evaluation criteria are summarized in Table 7 and defined in greater detail in MASH. Two full-

scale vehicle crash tests were conducted and reported in accordance with the procedures 

provided in MASH. 

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration 

(PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) 

were determined and reported on the test summary sheet.  Additional discussion on PHD, THIV 

and ASI is provided in Reference 4. 
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Table 7. MASH Evaluation Criteria for Longitudinal Barriers 

Structural 
Adequacy 

A. Test article should contain and redirect the vehicle or bring the 
vehicle to a controlled stop; the vehicle should not penetrate, 
underride, or override the installation although controlled lateral 
deflection of the test article is acceptable. 

Occupant 
Risk 

D. Detached elements, fragments or other debris from the test article 
should not penetrate or show potential for penetrating the occupant 
compartment, or present an undue hazard to other traffic, 
pedestrians, or personnel in a work zone. Deformations of, or 
intrusions into, the occupant compartment should not exceed limits 
set forth in Section 5.3 and Appendix E of MASH. 

F. The vehicle should remain upright during and after collision. The 
maximum roll and pitch angles are not to exceed 75 degrees. 

H. Occupant Impact Velocities (OIV) (see Appendix A, Section A5.3 
of MASH for calculation procedure) should satisfy the following 
limits: 

 Occupant Impact Velocity Limits 

Component Preferred Maximum 

Longitudinal and Lateral 30 ft/s 
(9.1 m/s) 

40 ft/s 
(12.2 m/s) 

I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, 
Section A5.3 of MASH for calculation procedure) should satisfy 
the following limits: 

 Occupant Ridedown Acceleration Limits 

Component Preferred Maximum 

Longitudinal and Lateral 15.0 g’s 20.49 g’s 
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9 TEST CONDITIONS 

9.1 Test Facility 

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln 

Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of 

Nebraska-Lincoln. 

9.2 Vehicle Tow and Guidance System 

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test 

vehicles. The distance traveled and the speed of the tow vehicle were one-half that of the test 

vehicles. The test vehicles were released from the tow cable before impact with the barrier 

system. A digital speedometer on the tow vehicle was used to control test vehicle speed. 

A vehicle guidance system developed by Hinch [71] was used to steer the test vehicles. A 

guide-flag, attached to the right-front wheel and the guide cable, was sheared off before impact 

with the barrier system. The ⅜-in. (9.5-mm) diameter guide cable was tensioned to 

approximately 3,500 lbf (15.6 kN) and supported both laterally and vertically every 100 ft (30.48 

m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, 

but as the vehicle was towed down the line, the guide-flag struck and knocked each stanchion to 

the ground. For test no. MGSBR-1 the vehicle guidance system was 1,093 ft (333 m) long, while 

for test no. MGSBR-2, the vehicle guidance system was 790 ft (241 m) long. 

9.3 Test Vehicles 

For test no. MGSBR-1, a 2004 Dodge Ram 1500 Quad Cab pickup truck was used as the 

test vehicle. The curb, test inertial, and gross static vehicle weights were 5,134 lb (2,329 kg), 

5,005 lb (2,270 kg), and 5,174 lb (2,347 kg), respectively. The test vehicle is shown in Figure 

119, and vehicle dimensions are shown in Figure 120. 
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Figure 119. Test Vehicle, Test No. MGSBR-1 
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Figure 120. Vehicle Dimensions, Test No. MGSBR-1 
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For test no. MGSBR-2, a 2003 Kia Rio passenger car was used as the test vehicle. The 

curb, test inertial, and gross static vehicle weights were 2,408 lb (1,092 kg), 2,416 lb (1,096 kg), 

and 2,585 lb (1,173 kg), respectively. The test vehicle is shown in Figure 121, and vehicle 

dimensions are shown in Figure 122. 

The longitudinal component of the center of gravity (c.g.) was determined using the 

measured axle weights. The Suspension Method [72] was used to determine the vertical 

component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. 

of any freely suspended body is in the vertical plane through the point of suspension. The 2270P 

vehicle was suspended successively in three positions, and the respective planes containing the 

c.g. were established. The intersection of these planes pinpointed the final c.g. location for the 

test inertial condition. The c.g. height of the 1100C vehicle was estimated based on historical c.g. 

height measurements. The locations of the final c.g. for each vehicle are shown in Figures 119 

through 124. Data used to calculate the location of the c.g. for each vehicle and ballast 

information are shown in Appendix C.  

Square black and white-checkered targets were placed on the vehicles to aid in the 

analysis of the high-speed videos, as shown in Figures 123 and 124. Round, checkered targets 

were placed at the center of gravity on the left-side door, the right-side door, and the roof of each 

vehicle. The remaining targets were located for references so that they could be viewed from the 

high-speed cameras for video analysis. 

The front wheels of the test vehicles were aligned for camber, caster, and toe-in values of 

zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was 

mounted on the left-side of each vehicle’s dash and was fired by a pressure tape switch mounted 

at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test 
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Figure 121. Test Vehicle, Test No. MGSBR-2 
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Figure 122. Vehicle Dimensions, Test No. MGSBR-2 
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Figure 123. Target Geometry, Test No. MGSBR-1 
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Figure 124. Target Geometry, Test No. MGSBR-2 

  



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

200 

article to create a visual indicator of the precise time of impact on the high-speed videos. A 

remote controlled brake system was installed in each test vehicle so the vehicles could be 

brought safely to a stop after the tests. 

9.4 Simulated Occupant 

A Hybrid II 50th Percentile Adult Male Test Dummy, equipped with clothing and 

footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The 

dummy, which had a final weight of 170 lb (77 kg), was represented by model no. 572, serial no. 

451, and was manufactured by Android Systems of Carson, California. As recommended by 

MASH, the dummy was not included in calculating the c.g. location. 

9.5 Data Acquisition Systems 

9.5.1 Accelerometers 

Three environmental shock and vibration sensor/recorder systems were used to measure 

the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers 

were mounted near the center of gravity of the test vehicles.  

One triaxial piezoresistive accelerometer system, Model EDR-4 6DOF-500/1200, was 

developed and manufactured by Instrumented Sensor Technology (IST) of Okemos, Michigan 

and includes three differential channels as well as three single-ended channels. The EDR-4 

6DOF-500/1200 was configured with 24 MB of RAM memory, a range of ±500 g’s, a sample 

rate of 10,000 Hz, and a 1,677 Hz anti-aliasing filter. The “EDR4COM” and “DynaMap Suite” 

computer software programs and a customized Microsoft Excel worksheet were used to analyze 

and plot the accelerometer data. 

The second system was a two-arm piezoresistive accelerometer system developed by 

Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of 

the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

201 

The accelerometers were configured and controlled using a system developed and manufactured 

by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data 

was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was 

configured with 16 MB SRAM memory and 8 sensor input channels with 250 kB 

SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was 

configured with isolated power/event/communications, 10BaseT Ethernet and RS232 

communication, and an internal backup battery. Both the SIM and module rack were 

crashworthy. The computer software program “DTS TDAS Control” and a customized Microsoft 

Excel worksheet were used to analyze and plot the accelerometer data. 

The third system, Model EDR-3, was a triaxial piezoresistive accelerometer system 

developed and manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 

kB of RAM memory, a range of ±200 g’s, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass 

filter. The computer software program “DynaMax 1 (DM-1)” and a customized Microsoft Excel 

worksheet were used to analyzed and plot the accelerometer data. 

9.5.2 Rate Transducers 

An Analog Systems 3-axis rate transducer with a range of 1,200 degrees/sec in each of 

the three directions (roll, pitch, and yaw) was used to measure the rates of motion of the test 

vehicles. The rate transducer was mounted inside the body of the EDR-4 6DOF-500/1200 and 

recorded data at 10,000 Hz to a second data acquisition board inside the EDR-4 6DOF-500/1200 

housing. The raw data measurements were then downloaded, converted to the appropriate Euler 

angles for analysis, and plotted. The computer software programs “EDR4Com” and “DynaMax 

Suite” and a customized Microsoft Excel spreadsheet were used to analyze and plot the rate 

transducer data. 
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An additional angle rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each 

of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test 

vehicles. The angular rate sensor was mounted on an aluminum block inside the test vehicles 

near the center of gravity and recorded data at 10,000 Hz to the SIM. The raw data 

measurements were then downloaded, converted to the proper Euler angles for analysis, and 

plotted. The computer software program “DTS TDAS Control” and a customized Microsoft 

Excel worksheet were used to analyze and plot the angular rate sensor data. 

9.5.3 Pressure Tape Switches 

For test nos. MGSBR-1 and MGSBR-2, five pressure-activated tape switches spaced at 

6.56 ft (2 m) intervals were used to determine the speed of each vehicle before impact. Each tape 

switch fired a strobe light which sent an electronic timing signal to the data acquisition system as 

the left-front tire of the test vehicle passed over it. Test vehicle speeds were determined from 

electronic timing mark data recorded using TestPoint and LabVIEW computer software 

programs. Strobe lights and high-speed video analysis are used only as a backup in the event that 

vehicle speeds cannot be determined from the electronic data. 

9.5.4 Digital Photography 

For test no. MGSBR-1, three AOS VITcam high-speed digital video cameras, three AOS 

X-PRI high-speed digital video cameras, four JVC digital video cameras, and two Canon digital 

video cameras were used to film the crash test. Camera details, camera operating speeds, lens 

information, and a schematic of the camera locations are shown in Figure 125.  

For test no. MGSBR-2, three AOS VITcam high-speed digital video cameras, three AOS 

X-PRI high-speed digital video cameras, three JVC digital video cameras, and two Canon digital 

video cameras were used to film the crash test.  Camera details, camera operating speeds, lens 

information, and a schematic of the camera locations are shown in Figure 126.  
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The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake 

MotionScope software. Actual camera speed and camera divergence factors were considered in 

the analysis of the high-speed videos. 
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Figure 125. Camera Locations, Speeds, and Lens Settings, Test No. MGSBR-1 
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Figure 126. Camera Locations, Speeds, and Lens Settings, Test No. MGSBR-2 
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10 FULL-SCALE CRASH TEST NO. MGSBR-1  

10.1 Concrete Cylinder Compression Tests 

The strength of the concrete bridge deck was evaluated using compression testing of 

concrete cylinders before full-scale testing was begun. Three 6-in. (152-mm) diameter, 12-in. 

(305-mm) long concrete cylinders were cast in accordance with ASTM C31 [73] and tested in 

accordance with ASTM C39 [74]. Two cylinders were tested 20 days after casting, and one 

cylinder was tested 28 days after casting. For all three cylinders, the strength exceeded the 

specified minimum compressive strength of 4,000 psi (27.6 MPa). Thus, the barrier system was 

approved for full-scale crash testing. Results for the concrete cylinder compressive tests are 

shown in Table 8. 

Table 8. Results from Concrete Cylinder Compression Testing  

 
 
10.2 Test No. MGSBR-1 

During test no. MGSBR-1, a 5,174-lb (2,347-kg) pickup truck, with a dummy placed in 

the left-front seat, impacted the bridge rail at a speed of 61.9 mph (99.6 km/h) and at an angle of 

24.9 degrees. A summary of the test results and sequential photographs are shown in Figure 127. 

Additional sequential photographs are shown in Figures 128 through 130. Documentary 

photographs of the crash test are shown in Figures 131 through 133. 

Test
Date 
Cast

Date 
Tested Defects

Max. 
Force 

Max. 
Stress (psi) Fracture

1 5/14/2009 6/3/2009 None 136.9 kips 
(608.9 kN)

4,842 psi 
(33.4 MPa)

Partial Cone

2 5/14/2009 6/3/2009 None 135.8 kips 
(604.2 kN)

4,804 psi 
(33.1 MPa)

Partial Cone

3 5/14/2009 6/11/2009 None
141.2 kips 
(628.0 kN)

4,993 psi 
(34.4 MPa) Cone
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10.3 Weather Conditions 

Test no. MGSBR-1 was conducted on June 18, 2009, at approximately 2:20 pm. The 

weather conditions as per the National Oceanic and Atmospheric Administration (station 

14939/LNK) were reported as shown in Table 9. 

Table 9. Weather Conditions, Test No. MGSBR-1 

Temperature 93° F 
Humidity 38% 
Wind Speed 18 mph 
Wind Direction 230° from True North 
Sky Conditions Sunny 
Visibility 10 Statute Miles 
Pavement Surface Dry  
Previous 3-Day Precipitation  0.29 in. 
Previous 7-Day Precipitation  0.70 in. 

 
10.4 Test Description 

The targeted point of impact was 16 ft (4.88 m) upstream of the centerline of the splice at 

post no. 20, as shown in Figure 134. The actual point of impact was 15 ft - 9½ in. (4.81 m) 

upstream of the centerline of the splice at post no. 20. A sequential description of the impact 

events is contained in Table 10. The vehicle came to rest 241 ft (73.5 m) downstream from 

impact and 43 ft - 7 in. (13.3 m) laterally behind the edge of the bridge deck, where it struck a 

temporary concrete barrier. The vehicle trajectory and final position are shown in Figure 135. 

Table 10. Sequential Description of Impact Events, Test No. MGSBR-1 

TIME 
(sec) EVENT 

0.000 Left-front bumper corner impacted the bridge rail upstream of post no. 15 
0.036 Left-front tire underrode the rail and the tire rotation slowed 
0.038 Rail disengaged from post no. 15 
0.040 Rail disengaged from post no. 14 
0.044 Vehicle began to redirect 
0.046 Left-front tire became airborne, and rail disengaged from post no. 16 
0.048 Rail disengaged from post no. 17 
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0.052 Left-front tire contacted post no. 16 
0.058 Left-front bumper corner contacted post no. 17 
0.072 Top of vehicle rolled toward left side, and rail disengaged from post no. 18 
0.088 Undercarriage contacted post no. 17, and rail disengaged from post no. 19 
0.092 Left-front tire contacted post no. 18 
0.094 Front bumper contacted post no. 18, and rail disengaged from post no. 20 
0.102 Left-front wheel assembly contacted post no. 17 
0.120 Undercarriage contacted the top of post no. 18 
0.124 Front bumper contacted post no. 19 
0.128 Rail disengaged from post no. 21 
0.136 Front axle contacted post no. 18, and rail disengaged from post no. 22 
0.140 Rail disengaged from post no. 23 
0.150 Rail disengaged from post no. 24 
0.160 Undercarriage contacted top of post no. 19 
0.180 Front bumper contacted post no. 20, and front axle contacted post no. 19 
0.196 Left-rear tire became airborne as it lost contact with the bridge deck 
0.200 Right-front tire became airborne 
0.210 Left-rear bumper corner struck rail between post nos. 15 and 16 
0.224 Front axle contacted post no. 20 
0.226 Front bumper contacted post no. 21 
0.266 Front axle contacted post no. 21 
0.280 Vehicle became parallel to the system at a speed of 44.9 mph (72.3 km/h) 
0.310 Right-rear tire became airborne 
0.414 Top of vehicle rolled toward the right side 

0.456 Left-front tire contacted post no. 24, left-front tire disengaged from the vehicle, and rail 
disengaged from post no. 25 

0.632 Right-rear tire contacted the ground 

0.648 Vehicle exited system at a speed of 34.5 mph (55.5 km/h) and at an angle of 20.4 
degrees as left side lost contact with the rail at post no. 25 

0.700 Right-front tire contacted the ground 
 
10.5 Barrier Damage 

Damage to the barrier was moderate, as shown in Figures 136 through 147. System 

damage consisted of bridge deck cracking and spalling, one failed post mounting bracket, 

deformed guardrail posts, disengaged post-to-rail connections, and contact marks on and 

deformation of the W-beam rail. The length of vehicle contact along the system was 

approximately 34 ft - 3⅞ in. (10.5 m), which spanned from 2 in. (51 mm) upstream of post no. 

15 to 2⅝ in. (67 mm) upstream of post no. 26. 
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Through-deck cracking was found at post nos. 14 and 16. Minor punching shear cracks 

were developed on the outside edge of the bridge deck at post no. 14. These cracks were caused 

by downward deflection of the top mounting plate as the post and mounting bracket created 

prying action about the vertical, through-deck bolt. More serious cracking occurred at post no. 

16, where several cracks extended from the through-deck bolt toward the deck edge and down 

the side of the deck. Cracks on the top surface of the deck at post no. 16 were caused by vehicle 

snag on the post near the top of the mounting bracket assembly. This applied a downstream and 

lateral pullout load to the through-deck bolt. Note that these cracks were narrow and that no 

rebar was exposed, and that the through-deck bolt and steel insert sleeve were not displaced. 

Spalling occurred on the edge of the deck at 12 posts, nos. 14 through 24 and 26. Most 

was very minor, but more significant spalling occurred at post nos. 24 and 26. Spalling at the top 

of the deck was caused by downward deflection of the top mounting plate due to the prying 

action of the post and mounting bracket assembly about the through-deck bolt. Edge of deck 

spalling was caused by vehicle snag on system posts. This snag caused the mounting brackets to 

twist downstream and impact the deck edge. 

Damage to most mounting brackets was minimal, consisting of minor bending of the 

backside retainer plates and bolts. The bracket at post no. 24 failed as the weld between the tube, 

top mounting plate, and gusset fractured. This failure was caused by wheel snag on the mounting 

bracket as the pickup was redirected back onto the deck. 

Post nos. 12 through 25 posts showed varying degrees of damage. Nine posts, nos. 16 

through 24, completely failed through bending and twisting. The flanges of post nos. 16, 17, 21, 

and 22 partially ruptured. Scrapes and/or gouges were found on the flanges of post nos. 18 

through 24. 
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Post nos. 14 through 25 were disengaged from the rail due to fracture of the post-to-rail 

connection bolts. Post nos. 32 through 38 were disengaged due to deformation of the slot in the 

W-beam rail and bolt pullout. The W-beam backup plates at post nos. 15 through 25 were also 

disengaged from the system. The splices at post nos. 12, 16, 20, and 24 showed evidence of 

slipping from ⅛ in. (3 mm) to ¼ in. (6 mm) due to membrane action of the W-beam rail. 

General deformation and flattening of the W-beam rail occurred from 4 in. (102 mm) 

upstream of post no. 15 to post no. 25, with some additional flattening at post no. 14. Contact 

marks were visible on the guardrail beginning 2 in. (51 mm) upstream of post no. 15 to 2⅝ in. 

(67 mm) upstream of post no. 26. Slight buckling occurred near post nos. 13 through 15 and 26. 

More severe buckling occurred at post no. 25. Deformations in the bottom of the W-beam rail 

due to contact with the posts occurred near post nos. 16 through 18 and 20 through 23. 

A ½-in. (13-mm) soil gap was present at the upstream edge of post no. 1, and a ⅜-in. (10-

mm) soil gap was present on the downstream edge of post no. 2. Soil gaps of ½ in. (13 mm) and 

1⅜ in. (35 mm) were present at the downstream edges of post nos. 39 and 40, respectively. 

The permanent set of the barrier system is shown in Figures 136 and 137. The maximum 

permanent set rail and post deflections were 31⅞ in. (810 mm) at post no. 20 and 24¾ in. (629 

mm) at post no. 24, respectively, as measured in the field. The maximum lateral dynamic rail and 

post deflections were 48.9 in. (1,242 mm) at post no. 19 and 28.0 in. (711 mm) at post no. 18, 

respectively, as determined from high-speed digital video analysis. The working width of the 

system was 53.2 in. (1,351 mm), also determined from high-speed digital video analysis. 

10.6 Vehicle Damage 

The damage to the vehicle was moderate, as shown in Figures 148 through 151. The 

maximum occupant compartment deformations are listed in Table 11 with the deformation limits 

established in MASH for various areas of the occupant compartment. It should be noted that 
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none of the MASH established deformation limits were violated. Complete occupant 

compartment and vehicle deformations and the corresponding locations are provided in 

Appendix D. 

Table 11. Maximum Occupant Compartment Deformations by Location 

LOCATION 
MAXIMUM 

DEFORMATION 
in. (mm) 

MASH ALLOWABLE 
DEFORMATION 

in. (mm) 
Wheel Well & Toe Pan ¾ (19) ≤ 9  (229) 

Floor Pan & Transmission Tunnel ½ (13) ≤ 12  (305) 
Side Front Panel (in Front of A-Pillar) 1¾ (44) ≤ 12  (305) 

Side Door (Above Seat) ¾ (19) ≤ 9  (229) 
Side Door (Below Seat) ½ (13) ≤ 12  (305) 

Roof ¼ (6) ≤ 4  (102) 
Windshield 0 ≤ 3  (76) 

 
The front bumper was pushed inward and had heavy scraping along its left end. The grill 

was cracked, and the hood was pushed back and upward. A small crack was found at the lower-

left corner of the windshield. The front of the left-front quarter panel was deformed inward and 

pulled out around the wheel well and its back end was deformed inward. The left-front wheel 

was disengaged from the vehicle and its brake line was severed. The left-front door was 

deformed inward and bent slightly out of the frame. Scrapes and scuffs were found along the 

entire left side of the vehicle and on the left-rear tire. A gap was found between the tailgate and 

the left-rear quarter panel.  

Inspection of the vehicle undercarriage revealed that a top frame member sustained 

significant deformation. The vehicle frame was bent near its connection to the left-front lower 

control arm. The vertical stabilizer bar was bent but still attached, and the sway bar was shifted. 
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10.7 Occupant Risk 

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant 

ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 

12. All OIVs and ORAs were within the suggested limits provided in MASH. The calculated 

THIV, PHD, and ASI values are also shown in Table 12. The results of the occupant risk 

analysis, as determined from the accelerometer data, are summarized in Figure 127. The 

recorded data from the accelerometers and the rate transducers are shown graphically in 

Appendix E. It was noted that the DTS accelerometer displayed non-realistic behavior as the 

vehicle lost contact with the barrier. However, as the occupant risk measurements occurred early 

in the event, this behavior was not believed to have influenced the data. 

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSBR-1 

Evaluation Criteria 
Transducer MASH   

Limits EDR-4 DTS EDR-3 

OIV 
ft/s (m/s) 

Longitudinal -16.94 
(-5.16) 

-16.86 
(-5.14) 

-18.84 
(-5.74) ≤ 40 (12.2) 

Lateral 13.27 
(4.04) 

14.23 
(4.34) 

14.18 
(4.32) ≤40 (12.2) 

ORA 
g’s 

Longitudinal -10.61 -10.44 -12.55 ≤ 20.49 

Lateral 5.42 6.33 5.61 ≤ 20.49 

THIV 
ft/s (m/s) 

20.66 
(6.30) 

21.03 
(6.41)  not required 

PHD 
g’s 10.64 10.50  not required 

ASI 0.53 0.57 0.64 not required 

 
10.8 Discussion 

The analysis of the test results for test no. MGSBR-1 showed that the bridge rail 

adequately contained and redirected the vehicle. There were no detached elements nor fragments 
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which showed potential for penetrating the occupant compartment nor presented undue hazard to 

other traffic. The deformation of, or intrusion into, the occupant compartment was minimal and 

did not pose a threat to cause serious injury. The test vehicle did not penetrate nor ride over the 

barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular 

displacements, as shown in Appendix E, were well below the limit of 75 degrees recommended 

by MASH. After impact, the vehicle exited the barrier at an angle of 20.4 degrees, and its 

trajectory did not violate the bounds of the exit box. Therefore, test no. MGSBR-1 was 

determined to be acceptable according to the TL-3 safety performance criteria found in MASH 

for test designation no. 3-11. 
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• Test Agency ............................................................................................ MwRSF 
• Test Number ........................................................................................ MGSBR-1 
• Date   ................................................................................................... 6/18/2009 
• MASH Test Designation ............................................................................... 3-11 
• Test Article ........................... MGS Bridge Rail with approach MGS Guardrails 
• Total Length  ................................................................................ 175 ft (53.3 m) 
• Key Component – MGS Bridge Rail 

 Post Type ....................................................................... S3x5.7 (S76x8.5) 
 Post Spacing .......................................................... 3 ft - 1½ in. (953 mm) 
 Post-to-Rail Connection .......... 5⁄16-in. (7.9-mm) dia. ASTM A307A Bolt 

• Key Component – Simulated Bridge Deck 
 Thickness (outer edge) ...................................................... 8 in. (203 mm) 
 Concrete Strength (minimum) ................................ 4,000 psi (27.6 MPa) 

• Vehicle Model ......................... 2004 Dodge Ram 1500 Quad Cab Pickup Truck 
  Curb ............................................................................ 5,134 lb (2,329 kg) 
  Test Inertial ................................................................ 5,005 lb (2,270 kg) 
  Gross Static ................................................................ 5,174 lb (2,347 kg) 

• Impact Conditions 
 Speed  ..................................................................... 61.9 mph (99.6 km/h) 
 Angle  .................................................................................... 24.9 degrees 

  Impact Location ............ 15 ft - 9½ in. (4.81 m) US of post no. 20 splice 
• Exit Conditions 

 Speed  ..................................................................... 34.5 mph (55.5 km/h) 
  Angle  .................................................................................... 20.4 degrees 
  Exit Box .............................................................................................. Pass 

• Vehicle Stability ................................................................................ Satisfactory 
• Vehicle Stopping Distance ...................................... 241 ft (73.5 m) downstream 

  43 ft - 7 in. (13.3 m) behind edge of bridge deck 
• Vehicle Damage .................................................................................... Moderate 

  VDS[75] ....................................................................................... 11-LFQ-3 
  CDC[76] ................................................................................... 11-LYEW-4 
  Maximum Interior Deformation ............. 1¾ in. (44 mm), left side panel 

• Test Article Damage ............................................................................. Moderate 

 
 
 

• Test Article Deflections 
  Permanent Set .............................................................. 31⅞ in. (810 mm) 
  Dynamic .................................................................... 48.9 in. (1,242 mm) 
  Working Width ......................................................... 53.2 in. (1,351 mm) 

• Angular Displacements (EDR-4) 
 Roll ....................................................................................... -15.3 degrees 
 Pitch ....................................................................................... -5.6 degrees 
 Yaw ....................................................................................... 37.8 degrees 

• Angular Displacements (DTS) 
 Roll ....................................................................................... -14.0 degrees 
 Pitch ....................................................................................... -5.4 degrees 
 Yaw ....................................................................................... 39.8 degrees 

• Transducer Data 

Evaluation Criteria Transducer MASH        
Limit EDR-4 DTS EDR-3 

OIV 
ft/s  

(m/s) 

Longitudinal -16.94 ft/s 
(-5.16 m/s) 

-16.86 ft/s  
(-5.14 m/s) 

-18.84 ft/s 
(-5.74 m/s) 

≤ 40 
(12.2) 

Lateral 13.27 ft/s 
(4.04 m/s) 

14.23 ft/s 
(4.34 m/s) 

14.18 ft/s 
(4.32 m/s) 

≤ 40 
(12.2) 

ORA 
g’s 

Longitudinal -10.61 -10.44 -12.55 ≤ 20.49 

Lateral 5.42 6.33 5.61 ≤ 20.49 

THIV – ft/s (m/s) 20.66 ft/s 
(6.30 m/s) 

21.03 ft/s 
(6.41 m/s)  not 

required 

PHD – g’s 10.64 10.50  not 
required

ASI 0.53 0.57 0.64 not 
required

Figure 127. Summary of Test Results and Photographs, Test No. MGSBR-1 

0.648 sec0.456 sec0.280 sec0.106 sec0.000 sec 
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0.000 sec 
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0.648 sec 
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Figure 128. Additional Sequential Photographs, Test No. MGSBR-1
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0.310 sec 

 
0.000 sec 
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0.298 sec 
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Figure 129. Additional Sequential Photographs, Test No. MGSBR-1
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1.040 sec 
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Figure 130. Additional Sequential Photographs, Test No. MGSBR-1
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Figure 131. Documentary Photographs, Test No. MGSBR-1
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Figure 132. Documentary Photographs, Test No. MGSBR-1
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Figure 133. Documentary Photographs, Test No. MGSBR-1 
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Figure 134. Impact Location, Test No. MGSBR-1 
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Figure 135. Vehicle Final Position and Trajectory Marks, Test No. MGSBR-1 
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Figure 136. System Damage, Test No. MGSBR-1 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

224 

  
 

Figure 137. Permanent Set, Test No. MGSBR-1 
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Figure 138. Typical Splice Damage, Post 20, Test No. MGSBR-1 
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Figure 139. Post Nos. 12 and 13 Damage, Test No. MGSBR-1 
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Figure 140. Post Nos. 14 and 15 Damage, Test No. MGSBR-1 
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Figure 141. Post Nos. 16 and 17 Damage, Test No. MGSBR-1 
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Figure 142. Post Nos. 18 and 19 Damage, Test No. MGSBR-1 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

230 

   
 

   
 

Figure 143. Post Nos. 20 and 21 Damage, Test No. MGSBR-1 
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Figure 144. Post Nos. 22 and 23 Damage, Test No. MGSBR-1 
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Figure 145. Post No. 24 Damage, Test No. MGSBR-1 
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Figure 146. Post Nos. 25 and 26 Damage, Test No. MGSBR-1 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

234 

 
 

 
 

 
Figure 147. Downstream Anchorage Damage, Test No. MGSBR-1 
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Figure 148. Vehicle Damage, Test No. MGSBR-1
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Figure 149. Vehicle Damage, Test No. MGSBR-1 
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Figure 150. Undercarriage Damage, Test No. MGSBR-1 
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Figure 151. Occupant Compartment Deformation, Test No. MGSBR-1 
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11 FULL-SCALE CRASH TEST NO. MGSBR-2 

11.1 Test No. MGSBR-2 

In test no. MGSBR-2, a 2,585-lb (1,173-kg) small car, with a dummy in the left-front 

seat, impacted the bridge rail at a speed of 62.3 mph (100.2 km/h) and at an angle of 24.9 

degrees. A summary of the test results and sequential photographs are shown in Figure 152. 

Additional sequential photographs are shown in Figures 153 through 155. Documentary 

photographs of the crash test are shown in Figures 156 through 158. 

11.2 Weather Conditions 

Test no. MGSBR-2 was conducted on June 26, 2009 at approximately 12:15 pm. The 

weather conditions as per the National Oceanic and Atmospheric Administration (station 

14939/LNK) were reported as shown in Table 13. 

Table 13. Weather Conditions, Test No. MGSBR-2 

Temperature 87° F 
Humidity 59% 
Wind Speed 14 mph 
Wind Direction 120° from True North 
Sky Conditions Overcast 
Visibility 10 Statute Miles 
Pavement Surface Dry 
Previous 3-Day Precipitation  0.01 in. 
Previous 7-Day Precipitation  2.48 in. 

 
11.3 Test Description 

The target impact point was 8 ft - 3 in. (2.51 m) upstream of the centerline of the splice at 

post no. 20, as shown in Figure 159. The actual point of impact was 7 ft - 9 in. (2.36 m) upstream 

of the centerline of the splice at post no. 20. A sequential description of the impact events is 

contained in Table 14. The vehicle came to rest 116 ft - 5¾ in. (35.50 m) downstream from 
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targeted impact and 4 ft - 5 in. (1.34 m) laterally behind the front face of the guardrail. Vehicle 

trajectory and final position are shown in Figure 160. 

Table 14. Sequential Description of Impact Events, Test No. MGSBR-2 

TIME 
(sec) EVENT 

0.000 Left-front bumper corner contacted the rail between post nos. 17 and 18 
0.012 Left-front bumper corner contacted post no. 18 
0.020 Left-front bumper corner underrode the rail downstream of post no. 18 
0.026 Left-front tire contacted post no. 18 
0.032 Rail disengaged from post no. 18 
0.038 Left side of front bumper contacted post no. 19 
0.042 Left-front tire became airborne 
0.044 Rail disengaged from post no. 19 
0.048 Top of vehicle rolled to the right side 

0.078 Center of front bumper contacted post no. 20, and front bumper disengaged from the 
vehicle 

0.080 Rail disengaged from post no. 20 
0.118 Center of front bumper contacted post no. 21 
0.120 Rail disengaged from post no. 21 
0.166 Left-rear tire became airborne 
0.172 Rail disengaged from post no. 22 
0.184 Rail disengaged from post no. 23 
0.218 Rail disengaged from post no. 24 
0.226 Left-front bumper corner contacted post no. 23 
0.278 Rail disengaged from post no. 25 
0.282 Rail disengaged from post no. 26 
0.298 Vehicle was parallel to the system at a speed of 31.2 mph (50.3 km/h) 
0.306 Rail disengaged from post no. 27 
0.358 Left-front tire contacted the deck edge between post nos. 24 and 25 
0.436 Left-rear tire contacted the deck edge between post nos. 23 and 24 

0.582 Vehicle exited system at a speed of 27.7 mph (44.6 km/h) and at an angle of 10.9 
degrees as left-rear quarter panel lost contact with the rail between post nos. 24 and 25 

 
11.4 Barrier Damage 

Damage to the barrier was moderate, as shown in Figures 161 through 171. Barrier 

damage consisted of bridge deck cracking and spalling, deformed guardrail posts, disengaged 

post-to-rail connections, and contact marks on and deformation of the W-beam rail. The length 
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of vehicle contact along the system was approximately 22 ft - 8 in. (6.91 m), which spanned from 

19½ in. (495 mm) downstream of post no. 17 to 8½ in. (216 mm) upstream of post no. 25. 

Through-deck cracking occurred at post nos. 18, 20 through 22, and 24. These cracks 

were minor at post nos. 20 and 24, while cracks were more significant at post nos. 18 and 22. 

Severe cracking occurred at post no. 21, where several pieces of concrete separated from the 

deck and left rebar exposed. The through-deck bolt and bolt sleeve were not displaced. Cracks in 

the deck were again caused by a combination of lateral shear due to bolt pullout loads and 

punching shear due to downward loads. The bolt pullout loads were caused by downstream and 

lateral forces on the posts and mounting brackets and resulted in cracks on the top surface of the 

deck. Punching shear cracks were formed in the vertical edge of the deck that were caused by 

downward vehicle loads and prying action of the post and mounting bracket assembly about the 

through-deck bolt. 

Spalling of the edge of the concrete deck occurred at post nos. 16 through 22, 24, and 25. 

Most of this spalling was minor, but the spalling at post no. 24 was severe. Note that significant 

spalling damage previously occurred at post nos. 24 and 26 during test no. MGSBR-1. Spalling 

was again caused by downward deflection of the top mounting bracket plate due to the prying 

action and impact of the mounting bracket against the edge of the deck as it rotated about the 

vertical through-deck bolt. 

Minor damage was sustained by the mounting brackets, consisting of slightly bent 

backside retainer plates and lower bracket connection bolts. Post nos. 17 through 26 showed 

varying degrees of damage. Eight posts, nos. 18 through 25, completely failed through bending 

and twisting. The front flanges of post nos. 18 and 19 were completely ruptured, and the front 

flanges of post nos. 20 through 24 were partially ruptured. Scrapes and/or gouges were found on 

post nos. 18 through 25.  
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Post nos. 18 through 27 were disengaged from the rail due to fracture of the post-to-rail 

connection bolts. The W-beam backup plates at post nos. 18 through 26 were also disengaged 

from the system. The splices at post nos. 12, 20, 24, and 28 showed evidence of slipping from 1⁄16 

in. (2 mm) to 3⁄16 in. (5 mm) due to membrane action of the W-beam rail.  

General deformation and flattening of the W-beam rail occurred from post no. 18 to a 

location 8 in. (203 mm) upstream of post no. 25. Contact marks were visible on the guardrail 

from 19½ in. (495 mm) downstream of post no. 17 to 8½ in. (216 mm) upstream of post no. 25, 

with additional contact marks from 8 in. (203 mm) downstream of post no. 26 to 15 in. (381 mm) 

downstream of post no. 26 and from 13 in. (330 mm) upstream of post no. 27 to 2 in. (51 mm) 

upstream of post no. 27. Slight buckling occurred near post nos. 16, 17, 25, 26, and 28. 

Deformation to the bottom of the W-beam due to contact with the post occurred near post no. 26. 

A ½-in. (13-mm) soil gap was found on the upstream edge of post no. 1 and ⅛-in. (3-

mm) and 1⁄16-in. (2-mm) soil gaps were found on the upstream and downstream edges of post no. 

2, respectively. Additionally, a ⅛-in. (3-mm) soil gap was found on the downstream side of post 

no. 38, and soil gaps of ½ in. (13 mm) were found on the downstream edges of post nos. 39 and 

40. 

The permanent set of the barrier system is shown in Figures 161 and 162. The maximum 

permanent set rail and post deflections were 20 in. (508 mm) at post no. 21 and 13½ in. (343 

mm) at post no. 20, respectively, as measured in the field. The maximum lateral dynamic rail and 

post deflections were 28.0 in. (712 mm) at post no. 21 and 18.4 in. (468 mm) at post no. 18, 

respectively, as determined from high-speed digital video analysis. The working width of the 

system was determined to be 33.8 in. (859 mm), also determined from high-speed digital video 

analysis. 
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11.5 Vehicle Damage 

The damage to the vehicle was moderate, as shown in Figures 172 and 173. The 

maximum occupant compartment deformations are listed in Table 11 with the deformation limits 

established in MASH for various areas of the occupant compartment. It should be noted that 

none of the MASH established deformation limits were violated. Complete occupant 

compartment and vehicle deformations and the corresponding locations are provided in 

Appendix D. 

Table 15. Maximum Occupant Compartment Deformations by Location 

LOCATION 
MAXIMUM 

DEFORMATION 
in. (mm) 

MASH ALLOWABLE 
DEFORMATION 

in. (mm) 
Wheel Well & Toe Pan 1¼ (32) ≤ 9  (229) 

Floor Pan & Transmission Tunnel ¼ (6) ≤ 12  (305) 
Side Front Panel (in Front of A-Pillar) ¼ (6) ≤ 12  (305) 

Side Door (Above Seat) ½ (13) ≤ 9  (229) 
Side Door (Below Seat) ¼ (6) ≤ 12  (305) 

Roof ½ (13) ≤ 4  (102) 
Windshield 0 ≤ 3  (76) 

 
The front bumper was disengaged and came to rest on the traffic-side face of the barrier. 

The hood was ajar, and the grill was crushed inward at its center. The left-front corner of the 

hood and body were deformed inward. The windshield had several cracks near its lower left-

front corner. The left-front tire was flat, and the left-front rim was deformed. The left-front brake 

fluid container was punctured. The left-front quarter panel was deformed and scraped along its 

length. This scraping continued along both left doors and part of the left-rear quarter panel of the 

vehicle. The left-front door was slightly ajar. Contact marks were found on the left-rear hubcap. 

Inspection of the vehicle undercarriage revealed that the skid plate, radiator mounting 

brackets, and the transmission oil pan were damaged. The left-front suspension links were bent, 
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and the exhaust pipe was disengaged at the rear of the catalytic converter. The unibody was 

significantly damaged at the connection to the left-front lower control arm. 

11.6 Occupant Risk 

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant 

ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 

16. It is noted that the OIVs and ORAs were well below recommended limits provided in 

MASH. The calculated THIV, PHD, and ASI values are also shown in Table 16. The results of 

the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 

152. The recorded data from the accelerometers and the rate transducers are shown graphically in 

Appendix F. It was noted that the DTS accelerometer displayed non-realistic behavior as the 

vehicle lost contact with the barrier. However, as the occupant risk measurements occurred early 

in the event, this behavior was not believed to have influenced the data. 

Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSBR-2  

Evaluation Criteria 
Transducer MASH   

Limits EDR-4 DTS EDR-3 

OIV 
ft/s (m/s) 

Longitudinal -24.40 
(-7.44) 

-22.90 
(-6.98) 

-25.29 
(-7.71) ≤ 40 (12.2) 

Lateral 16.54 
(5.04) 

16.38 
(4.99) 

17.94 
(5.47) ≤40 (12.2) 

ORA 
g’s 

Longitudinal -7.69 -7.41 -8.65 ≤ 20.49 

Lateral 6.58 7.34 7.39 ≤ 20.49 

THIV 
ft/s (m/s) 

28.50 
(8.69) 

28.04 
(8.55)  not required 

PHD 
g’s 9.93 9.90  not required 

ASI 0.79 0.78 0.88 not required 
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11.7 Discussion 

The analysis of the test results for test no. MGSBR-2 showed that the bridge rail 

adequately contained and redirected the vehicle. There were no detached elements nor fragments 

which showed potential for penetrating the occupant compartment nor presented undue hazard to 

other traffic. The deformation of, or intrusion into, the occupant compartment was minimal and 

did not pose a threat to cause serious injury. The test vehicle did not penetrate nor ride over the 

barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular 

displacements, shown in Appendix F, were well below the limit of 75 degrees recommended by 

MASH. After impact, the vehicle exited the barrier at an angle of 10.9 degrees, and its trajectory 

did not violate the bounds of the exit box. Therefore, test no. MGSBR-2 was determined to be 

acceptable according to the TL-3 safety performance criteria found in MASH for test designation 

no. 3-10. 
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• Test Agency ............................................................................................ MwRSF 
• Test Number ........................................................................................ MGSBR-2 
• Date   ................................................................................................... 6/26/2009 
• MASH Test Designation ............................................................................... 3-10 
• Test Article ........................... MGS Bridge Rail with approach MGS Guardrails 
• Total Length  ................................................................................ 175 ft (53.3 m) 
• Key Component – MGS Bridge Rail 

 Post Type ....................................................................... S3x5.7 (S76x8.5) 
 Post Spacing .......................................................... 3 ft - 1½ in. (953 mm) 
 Post-to-rail Connection ........... 5⁄16-in. (7.9-mm) dia. ASTM A307A Bolt 

• Key Component – Simulated Bridge Deck 
 Thickness (outer edge) ...................................................... 8 in. (203 mm) 
 Concrete Strength (minimum) ................................ 4,000 psi (27.6 MPa) 

• Vehicle Model ......................................................... 2003 Kia Rio Passenger Car 
  Curb ............................................................................ 2,408 lb (1,092 kg) 
  Test Inertial ................................................................ 2,416 lb (1,096 kg) 
  Gross Static ................................................................ 2,585 lb (1,173 kg) 

• Impact Conditions 
 Speed  ................................................................... 62.3 mph (100.2 km/h) 
 Angle  .................................................................................... 24.9 degrees 

  Impact Location ........ 7 ft - 9 in. (2.36 m) US of the splice at post no. 20 
• Exit Conditions 

 Speed  ..................................................................... 27.7 mph (44.6 km/h) 
  Angle  .................................................................................... 10.9 degrees 
  Exit Box .............................................................................................. Pass 

• Vehicle Stability ................................................................................ Satisfactory 
• Vehicle Stopping Distance ......................... 116 ft - 5¾ in. (35.5 m) downstream 

  4 ft - 5 in. (1.3 m) behind front face of guardrail 
• Vehicle Damage .................................................................................... Moderate 

  VDS[75] ....................................................................................... 11-LFQ-4 
  CDC[76] ................................................................................... 11-LYEW-5 
  Maximum Interior Deformation ........ 1¼ in. (32 mm), front of floor pan 

• Test Article Damage ............................................................................. Moderate 

 
 
 

• Test Article Deflections 
  Permanent Set ................................................................. 20 in. (508 mm) 
  Dynamic ....................................................................... 28.0 in. (712 mm) 

 Working Width ............................................................ 33.8 in. (859 mm) 
• Angular Displacements (EDR-4) 

 Roll ......................................................................................... -8.7 degrees 
 Pitch ....................................................................................... -8.2 degrees 
 Yaw ....................................................................................... 34.7 degrees 

• Angular Displacements (DTS) 
 Roll ....................................................................................... -12.7 degrees 
 Pitch ....................................................................................... -5.0 degrees 
 Yaw ....................................................................................... 35.1 degrees 

• Transducer Data 

Evaluation Criteria Transducer MASH        
Limit EDR-4 DTS EDR-3 

OIV 
ft/s  

(m/s) 

Longitudinal -24.40 ft/s 
(-7.44 m/s) 

-22.90 ft/s 
(-6.98 m/s) 

-25.29 ft/s 
(-7.71 m/s) 

≤ 40 
(12.2) 

Lateral 16.54 ft/s 
(5.04 m/s) 

16.38 ft/s 
(4.99 m/s) 

17.94 ft/s 
(5.47 m/s) 

≤ 40 
(12.2) 

ORA 
g’s 

Longitudinal -7.69 -7.41 -8.65 ≤ 20.49 

Lateral 6.58 7.34 7.39 ≤ 20.49 

THIV – ft/s (m/s) 28.50 ft/s 
(8.69 m/s) 

28.04 ft/s 
(8.55 m/s)  not 

required 

PHD – g’s 9.93 9.90  not 
required

ASI 0.79 0.78 0.88 not 
required

Figure 152. Summary of Test Results and Photographs, Test No. MGSBR-2 

0.582 sec0.436 sec0.298 sec0.128 sec0.000 sec 
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Figure 153. Additional Sequential Photographs, Test No. MGSBR-2 
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Figure 154. Additional Sequential Photographs, Test No. MGSBR-2 
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Figure 155. Additional Sequential Photographs, Test No. MGSBR-2 
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Figure 156. Documentary Photographs, Test No. MGSBR-2 
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Figure 157. Documentary Photographs, Test No. MGSBR-2 
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Figure 158. Documentary Photographs, Test No. MGSBR-2 
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Figure 159. Impact Location, Test No. MGSBR-2 
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Figure 160. Vehicle Final Position and Trajectory Marks, Test No. MGSBR-2 
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Figure 161. System Damage, Test No. MGSBR-2 
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Figure 162. Permanent Set, Test No. MGSBR-2 
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Figure 163. Rail Damage, Test No. MGSBR-2 
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Figure 164. Typical Splice Damage, Post 20, Test No. MGSBR-2 
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*Note that through-deck cracking occurred at post no. 16 during test no. MGSBR-1 

 

   
 

Figure 165. Post Nos. 16 and 17 Damage, Test No. MGSBR-2 
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Figure 166. Post Nos. 18 and 19 Damage, Test No. MGSBR-2 
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Figure 167. Post Nos. 20 and 21 Damage, Test No. MGSBR-2 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

262 

   
 
 

   
 

Figure 168. Post Nos. 22 and 23 Damage, Test No. MGSBR-2 
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*Note that significant spalling occurred at post no. 24 during test no. MGSBR-1. 

 

   
 

Figure 169. Post Nos. 24 and 25 Damage, Test No. MGSBR-2 
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*Note that significant spalling occurred at post no. 26 during test no. MGSBR-1 

 

   
 

Figure 170. Post Nos. 26 and 27 Damage, Test No. MGSBR-2 
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Figure 171. Upstream Anchorage Damage, Test No. MGSBR-2 
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Figure 172. Vehicle Damage, Test No. MGSBR-2 
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Figure 173. Occupant Compartment Deformation, Test No. MGSBR-2 
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12 BARRIER VII VALIDATION AND ADDITIONAL ANALYSIS 

12.1 Purpose and Scope 

Following the full-scale crash tests, additional BARRIER VII modeling was required to 

validate the results of the pre-test simulations. These analyses had been performed to 

demonstrate that a transition section would not be required between the bridge rail and approach 

MGS. 

Two sets of simulations were performed. First, the BARRIER VII models were calibrated 

to match the results of the full-scale crash tests. Calibrated BARRIER VII input files for both 

full-scale crash tests are shown in Appendix G. Additional simulations were then performed to 

more thoroughly explore the need for a transition section between the MGS and the bridge rail. 

12.2 Calibration of BARRIER VII Models 

Following full-scale test nos. MGSBR-1 and 2, it was necessary to compare the results of 

the physical tests to those predicted by the BARRIER VII models as well as to calibrate the 

models to improve model accuracy. Analyses were performed using the previously-developed 

barrier model with impact conditions matching those of the full-scale tests. Impact locations, 

speeds, angles, and vehicle weights were updated, and the barrier model was modified to include 

one additional guardrail post and two fewer bridge rail posts to match the as-built barrier 

specifications. 

Both simulations were calibrated with 225-node barrier models. Following calibration 

with the 225-node models, the same parameters were used in 449-node models to investigate the 

effects of mesh density on model predictions. 

Two parameters of the models required calibration. These parameters were the stiffness 

and strength of the bridge rail posts and the coefficient of friction between the vehicle and the 

bridge rail. Three different post models were used in the pre-test modeling, which were created 
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using data from three dynamic bogie tests. In these tests, a bogie struck three S3x5.7 (S76x8.5) 

posts at angles of 90 degrees, 75 degrees, and 60 degrees with respect to the strong axis of each 

post [66]. In development of the post models, a reduction factor of 0.875 was applied to the 90-

degree post data to account for post twisting and subsequent loss of strength that would occur in 

a rail impact. Simulations of both full-scale tests demonstrated that post models based on an 

S3x5.7 (S76x8.5) post impacted at an angle of 60 degrees to its strong axis, the weakest of the 3 

post models, provided the most accurate results. 

The coefficient of friction between the vehicle and the barrier also required calibration. 

While BARRIER VII does not include the effects of wheel snag in its analysis, the effect of this 

phenomenon on vehicle trajectory can be simulated by adjusting the coefficient of friction. When 

a vehicle’s wheel snags on a post, a force is applied near the edge of the vehicle, which creates a 

moment that resists redirection of the vehicle. This affect can be simulated in BARRIER VII by 

increasing the coefficient of friction between the vehicle and the barrier. This approach is most 

accurate when the snag occurs near the edge of a vehicle. Previously, a coefficient of friction of 

0.35 was used, which was created through calibration of an MGS model. Differences in snag 

characteristics between the guardrail and bridge rail warranted calibration of this value. As the 

pickup and small car also have different snag characteristics, separate coefficients of friction 

were required for each test. 

Three different contact interfaces were specified in the updated BARRIER VII models. 

Two contact interfaces were defined for the approach guardrails using the previous coefficient of 

friction of 0.35, and one contact interface was defined for the bridge rail. This value was 

calibrated to produce results similar to findings from each of the full-scale tests, as described in 

the following sections. 
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12.2.1 Simulation of Test No. MGSBR-1 

Test no. MGSBR-1 was simulated using coefficients of friction varying from 0.20 to 

0.35. The final coefficient of friction used in the simulation was 0.23. This value was 

considerably lower than that of the MGS, but it was thought to be sufficiently accurate due to the 

different nature of the snag. 

Many of the bridge rail posts snagged on the pickup truck near the center of its front 

bumper, whereas in guardrail snag occurs closer to the edge of a vehicle. This difference was 

caused by several factors. First, the approach guardrail uses blockouts, whereas the bridge rail 

does not. Additionally, while the center of rotation of guardrail posts is beneath the ground 

surface, the bridge rail posts bend at the top of the bridge deck. Deflections in both systems are 

similar, thus the vehicle overrides posts to a greater extent in the bridge rail. This allows for snag 

to occur near the vehicle’s center, which does not apply a moment to resist vehicle redirection, 

whereas in the guardrail, post snag does resist redirection. Thus, a lower coefficient of friction 

was used for the bridge rail. 

A comparison of simulation and physical test results for test no. MGSBR-1 is shown in 

Table 17. Note that dynamic deflection was predicted to within 10 percent of the true value, and 

predicted parallel time, length of contact, and permanent set deflections were nearly identical to 

those of the full-scale test. 

Graphical comparisons of the 225-node simulated and actual barrier deflections are 

shown in Figures 174 through 177. As shown in the figures, the model predicted a reasonably 

accurate deflected shape of the barrier. Deflections were slightly underestimated around the point 

of vehicle contact, and slightly overestimated upstream and downstream of vehicle contact. The 

largest difference in deflected shape occurred after the rear of the vehicle contacted the guardrail.  
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Figure 174. Sequential Figures from BARRIER VII Simulation of MGSBR-1 
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Figure 175. Sequential Figures from BARRIER VII Simulation of MGSBR-1 
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Figure 176. Sequential Figures from BARRIER VII Simulation of MGSBR-1 
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Figure 177. Sequential Figures from BARRIER VII Simulation of MGSBR-1 
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This generated larger deflections in the simulated rail upstream of the vehicle than occurred in 

the physical test. 

Table 17. Calibrated BARRIER VII Simulation Results, Test No. MGSBR-1 

 
 

The model showed significant error in predicting vehicle speeds due to limitations of the 

BARRIER VII analysis, which did not include energy-absorbing effects unique to this test. In the 

full-scale test, the pickup truck overrode approximately nine posts as it was overhanging the 

edge of the deck. The pickup impacted these posts at low heights, near the tops of the mounting 

brackets, which allowed the posts to absorb significant amounts of energy as they yielded despite 

their small weak-axis section modulus. As many of these posts contacted the vehicle near its 

center, the vehicle was decelerated without affecting redirection. Thus, this phenomenon could 

not be simulated using the coefficient of friction. Additionally, the left-front wheel of the vehicle 

was detached from the vehicle, and the vehicle itself had to be pulled back above the deck by the 

barrier after overhanging the edge, both of which would require significant amounts of energy. 

Thus, the ability of BARRIER VII to accurately predict velocity of the pickup truck was limited. 

This effect also produced error in the predicted exit times. 

Some error was also present in the simulated number of failed posts. BARRIER VII 

deletes post elements when the system deflects beyond a designated failure deflection. For these 

models, this deflection was set to 15 in. (381 mm). The posts and rails are attached and move as 

225-Node Error 449-Node Error
Dynamic Deflection - in. (mm) 48.9 (1,242) 44.0 (1,118) -10.0% 43.3 (1,100) -11.5%
Permanent Set Deflections - in. (mm) 31.9 (810) 32.2 (818) 0.9% 32.2 (818) 0.9%
Length of Contact - in. (mm) 411.9 (10,462) 409.3 (10,396) -0.6% 355.1 (9,020) -13.8%
Failed Posts (>15 in. rail deflection) 16-24 15-25 2 posts 15-25 2 posts
Parallel Time - msec 280 281 0.4% 276 -1.4%
Parallel Speed - mph (km/h) 44.9 (72.3) 47.7 (76.8) 6.2% 47.0 (75.6) 4.7%
Exit Time - msec 648 544 -16.0% 518 -20.1%
Exit Speed - mph (km/h) 34.5 (55.5) 44.4 (71.5) 28.7% 43.7 (70.3) 26.7%

BARRIER VII Simulation ResultsPhysical Test 
ResultsEvaluation Criteria
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one unit, whereas in the physical system, the posts detach and can move independently of the 

rail. Therefore, to determine a comparable number of failed posts from the physical test, dynamic 

rail deflections were examined at post locations.  

Any dynamic deflection greater than 15 in. (381 mm) was considered to fail the post. Rail 

deflection exceeded this value at only nine posts in the physical test, whereas BARRIER VII 

predicted eleven failed posts. However, in the physical test, post nos. 15 and 25 deflected 14.9 in. 

(378 mm) and 6.1 in. (155 mm), respectively, which demonstrates better agreement between the 

simulation and the test. Additionally, energy was absorbed as the pickup truck snagged on and 

yielded the bridge rail posts in the physical test. BARRIER VII could not account for this energy 

dissipation, as discussed previously; therefore, the kinetic energy of the simulated pickup truck 

was greater than that of the physical pickup truck throughout the impact. This allowed the 

simulated pickup truck to deflect the downstream guardrail to a greater extent than in the full-

scale test, thus predicting a greater number of failed posts. Note that for test no. MGSBR-1, the 

number of posts that failed through all mechanisms, including snag, was equivalent to the 

number that deflected greater than 15 in. (381 mm). 

Following analysis with the 225-node model, a 449-node model was used to further 

investigate mesh sensitivity of the model. While the results of the finer mesh displayed some 

differences, they were very similar to those of the coarser mesh, indicating the results had 

converged. Thus, the 225-node model was used for further analysis. 

12.2.2 Calibration of Test No. MGSBR-2 

Test no. MGSBR-2 was simulated using coefficients of friction varying from 0.35 to 

0.55. The simulation predicted the most accurate results with a coefficient of friction of 0.525. 

With this value, the model produced excellent results for all parameters except number of failed 

posts and length of contact. The coefficient of friction was much higher for the small car than for 
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the pickup due to the nature of the snag on the posts. The small car did not deflect the system as 

much as the pickup truck; thus, the snag on the posts was closer to the edge of the vehicle. This 

applied a moment to the car that delayed redirection, resulting in a higher calibrated coefficient 

of friction. The rail also deformed the left-front corner of the small car inward to a greater extent 

than that of the pickup truck. This allowed the rail itself to apply greater friction force to the 

small car due to the increased interlock between the vehicle and the rail. Thus, the calibrated 

friction force between the rail and the small car was greater than in the pickup truck test.  

A comparison of simulation and physical test results for test no. MGSBR-2 is shown in 

Table 18. Note that predicted dynamic deflection, permanent set deflection, and parallel time 

were nearly identical to the values from the full-scale test. Graphical comparisons of the 225-

node simulated and actual barrier deflections are shown in Figures 178 through 181. The 

simulation predicted excellent results for the deformed shape of the barrier, as shown in the 

figures. 

Table 18. Calibrated BARRIER VII Simulation Results, Test No. MGSBR-2 

 
 

As discussed previously, the difference in number of failed posts was due to the method 

BARRIER VII uses to fail a post. In the full-scale test, wheel snag caused many post failures,  

  

225-Node Error 449-Node Error
Dynamic Deflection - in. (mm) 28.0 (711) 27.9 (709) -0.4% 27.0 (686) -3.6%
Permanent Set Deflections - in. (mm) 20.0 (508) 21.0 (533) 5.0% 19.9 (505) -0.5%
Length of Contact - in. (mm) 272.0 (6,909) 203.4 (5,166) -25.2% 200.9 (5,103) -26.1%
Failed Posts (>15 in. rail deflection) 18-22 19-22 1 post 18-22 0 posts
Parallel Time - msec 298 298 0.0% 302 1.3%
Parallel Speed - mph (km/h) 31.2 (50.3) 31.9 ( 51.3) 2.2% 31.6 (50.9) 1.3%
Exit Time - msec 582 493 -15.3% 498 -14.4%
Exit Speed - mph (km/h) 27.7 (44.6) 30.4 (48.9) 9.7% 30.1 (48.4) 8.7%

Evaluation Criteria
Physical Test 

Results
BARRIER VII Simulation Results
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Figure 178. Sequential Figures from BARRIER VII Simulation of MGSBR-2 
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Figure 179. Sequential Figures from BARRIER VII Simulation of MGSBR-2 
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Figure 180. Sequential Figures from BARRIER VII Simulation of MGSBR-2 
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Figure 181. Sequential Figures from BARRIER VII Simulation of MGSBR-2 
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whereas BARRIER VII only considered post failure to occur when the rail deflection exceeded 

15 in. (381 mm) at a post location. Note that eight posts, nos. 18 through 25, failed during 

testing. Dynamic deflection data for the rail, obtained from high-speed video analysis, 

demonstrated that the rail deflected more than 15 in. (381 mm) at only five post locations, nos. 

18 through 22. Thus, the BARRIER VII prediction of four failed posts, nos. 19 through 22, 

matches the full-scale test results much more closely when compared with this criterion. 

While the length of contact differed between the computer simulation and the actual 

crash test, the deflected shape of the rail matched very well. Some of the contact observed in the 

physical test was due to the vehicle overhang off the bridge deck, which caused the car to roll 

toward and contact the rail even after it was redirected. This affect could not be simulated in 

BARRIER VII. 

12.2.3 Discussion of Calibration Results 

The BARRIER VII results for simulations of test nos. MGSBR-1 and MGSBR-2 were 

found to be reasonably accurate when the post stiffness of the 60-degree impact orientation was 

incorporated. While simulated vehicle speeds for test no. MGSBR-1 displayed significant error, 

BARRIER VII was incapable of simulating several energy-absorbing mechanisms observed in 

the test. However, deflected rail shapes and pocketing angles, which were the primary 

measurements of interest, were not affected by this limitation. Thus, the models should be useful 

for evaluating the need for a transition between the MGS and bridge rail.  

12.3 Bridge Rail-to-Guardrail Interface Analysis 

Transition sections are required when a more flexible barrier connects to a less flexible 

barrier and allows a vehicle to pocket behind the stiffer barrier, thus generating dangerous 

accelerations and/or vehicle instability. As the bridge rail proved to be more flexible than the 

MGS, the potential for vehicle pocketing existed for impacts originating on the bridge rail and 
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continuing into the guardrail. However, the relative flexibility of the bridge rail ensured that 

impacts which originated in the approach guardrail and continued into the bridge rail would not 

experience unacceptable pocketing angles. Thus, only the bridge rail-to-guardrail interface 

required additional investigation. 

Pocketing angles were only a concern for the pickup truck, as the small car did not 

deflect the system sufficiently to become pocketed. Thus, additional analyses were only 

performed with the pickup truck model. While the calibrated barrier model for test no. MGSBR-

1 produced good results, it underestimated deflection by approximately 10 percent. Vehicle 

deflections into the upstream barrier were considered critical to accurately evaluate pocketing in 

the downstream barrier. Underestimating deflection could lead to an underestimation of 

pocketing angles and produce unacceptable results. To avoid this problem, the BARRIER VII 

post models for the bridge rail were weakened to provide better correlation between simulated 

and measured deflection for test no. MGSBR-1. The yield moment of the bridge rail posts was 

reduced from 82 kip-in. (9.26 kN-m) to 74.5 kip-in. (8.42 kN-m). These post models were then 

used to investigate the potential for pocketing at the bridge rail-to-guardrail interface. A 

comparison of the weakened model predictions and test results is shown in Table 19. 

Table 19. Weakened Post BARRIER VII Results, Test No. MGSBR-1 

 

Dynamic Deflection - in. (mm) 48.9 (1,242) 49.0 (1,245) 0.2%
Permanent Set Deflections - in. (mm) 31.9 (810) 33.9 (861) 6.3%
Length of Contact - in. (mm) 411.9 (10,462) 455.9 (11,580) 10.7%
Failed Posts (>15 in. deflection) 16-24 14-26 4 posts
Parallel Time (msec) 280 286 2.1%
Parallel Speed - mph (km/h) 44.9 (72.3) 48.1 (77.4) 7.1%
Exit Time - msec 648 571 -11.9%
Exit Speed - mph (km/h) 34.5 (55.5) 44.4 (71.5) 28.7%

Physical Test 
Results

BARRIER VII 
Results

ErrorEvaluation Criteria
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Simulations were performed in which the 2270P pickup truck model impacted the barrier 

at 33 different points along the bridge rail-to-guardrail interface using a 225-node barrier model. 

Impacts were simulated at each node beginning six post spaces from the end of the bridge rail 

through the first guardrail post. These impacts were spaced 9⅜ in. (238 mm) along the bridge 

rail. Then, the simulation predicting the largest pocketing angle was performed using a 449-node 

model to ensure that mesh density was not adversely affecting analysis results. 

The effects of snag were not considered in the analysis for several reasons. First, the 

MGS has been previously tested with flare rates as high as 5:1 [77]. During these tests, the 

pickup truck deflected the system over 75 in. (1,905 mm). Such large deflections ensure 

interaction between the vehicle wheels and the posts. In these tests, snag was not found to be 

problematic. As the peak deflection of the bridge rail was approximately 48.9 in. (1242 mm), 

snag on MGS posts would not adversely affect performance. Additionally, the left-front wheel of 

the pickup truck was detached during test no. MGSBR-1. Similar behavior was expected for 

impacts throughout the bridge rail. Detachment of this wheel from the pickup truck would make 

wheel snag on a guardrail post impossible. 

Pocketing angles were therefore the primary measure of system performance. These 

angles were measured using the nodal displacements of the barrier in front of the vehicle. Linear 

regression was used to fit lines to both three and five consecutive nodes of the barrier, which 

corresponded to lengths of rail of 18¾ in. (476 mm) and 37½ in. (953 mm), respectively. Peak 

pocketing angles were found and compared against the maximum tolerable angle of 30 degrees. 

12.4 Results 

BARRIER VII simulations demonstrated that pocketing angles of the pickup truck in the 

bridge rail-to-guardrail interface were not sufficiently large to be problematic. The peak 

simulated pocketing angle occurred when the pickup truck impacted at the midspan between the 
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last bridge rail post and the first guardrail post. This produced maximum 3-node and 5-node 

pocketing angles of 19.6 degrees and 19.5 degrees, respectively, which were well within the 

suggested limit of 30 degrees.  

Following successful performance of the 225-node model, the worst-case impact 

condition was simulated using a 449-node model. Impact occurred at the midspan between the 

last bridge rail post and the first guardrail post. Maximum simulated 3-node and 5-node 

pocketing angles were 19.1 degrees and 18.4 degrees, respectively. These were both smaller 

values than were generated by the 225-node simulation. Additionally, as the node spacing was 

one-half that of the previous 225-node model, pocketing angles were measured across half as 

much rail length. Measuring across smaller distances necessarily increases measured angles. 

However, the finer mesh produced decreased pocketing angles. Therefore, the 225-node model 

may have estimated higher pocketing angles in all previous simulations, and therefore provided 

more conservative results.  

Note that the impact condition that produced maximum pocketing was essentially an 

impact on the guardrail itself. This BARRIER VII analysis indicates that pocketing angles for 

impacts in the downstream MGS are greater than for impacts in the transition section. All 

impacts which began before the last bridge rail posts generated maximum 3-node and 5-node 

pocketing angles of less than 18.2 degrees and 17.5 degrees, respectively. Impacts which began 

further into the bridge rail tended to generate even lower pocketing angles. Further, all predicted 

values of pocketing angles were well below recommended values. Therefore, the bridge rail was 

believed to perform adequately with a direct attachment to the MGS, and a transition section was 

not needed. 
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13 SUMMARY 

The goal of the research project was to develop a low-cost bridge railing system that 

would satisfy the TL-3 safety performance criteria outlined in MASH without requiring the use 

of an approach guardrail transition when used with the MGS. This new bridge rail, designated 

the MGS Bridge Rail, was required to exhibit lateral stiffness and strength comparable to that 

exhibited by the MGS with posts embedded in soil. It was also desired to minimize rail intrusion 

onto the bridge deck surface by attaching posts to the edge of the bridge deck or culvert headwall 

and to prevent damage to the bridge deck during most impacts.  

The research project began with an extensive literature review of existing bridge rail and 

guardrail systems. Bridge rails that were flexible or utilized post-to-deck connection hardware 

that intruded minimally onto the deck surface were reviewed. A review of weak-post W-beam 

guardrail testing and post-to-rail connections for various guardrail systems was also performed. 

Brainstorming sessions were then conducted to develop concepts for post-to-deck 

attachment hardware that would absorb impact energy through various means. Design concepts 

were also created for post-to-rail attachment hardware. Conceptual designs were evaluated 

analytically and through both static and dynamic component testing. 

The first design approach for the post-to-deck connection was to develop a strong-post 

bridge rail system that absorbed energy by tearing or rupturing steel. Five dynamic bogie tests 

were performed to evaluate two of these concepts. A finite element model of one strong-post 

concept was created and simulated in LS-DYNA and calibrated to match the results of the 

dynamic bogie test. This concept utilized a tubular post and a tear-out bolt that passed through 

both sides of the post, thus rupturing the steel upon post rotation. A working model was 

developed, and several different element formulations, material models, and meshes were used to 

investigate the effects on the performance of the model. 
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Dynamic testing demonstrated that the strong-post concepts could work as desired, 

although the costs were higher than the weak-post alternatives. These strong-post systems could 

also potentially cause vehicle snag and damage bridge to decks due to the higher forces 

generated by the strong posts. 

The strong-post concepts were therefore abandoned in favor of weak-post concepts. Two 

dynamic tests were performed on two weak-post concepts which demonstrated that post loads 

were large enough to cause catastrophic damage to the concrete deck. Thus, special 

reinforcement was designed into the concrete bridge deck to prevent damage, and attempts to 

retrofit the barrier to existing bridge decks or attach it to culvert headwalls were abandoned. 

The standard G2 guardrail post-to-rail connection was subjected to three static tests to 

determine if it would perform as desired in the bridge rail. Based on the failure loads obtained, 

the standard connection was found to be acceptable for use in the bridge rail. Backup plates were 

added at every post, including splice locations, to prevent the guardrail rupture from initiating on 

the sharp edges of post flanges. 

Finite element simulation was also performed using BARRIER VII to investigate the 

viability of a weak-post, W-beam bridge rail system. Models were developed for the new bridge 

rail system based on prior dynamic bogie testing which enveloped the potential range of 

performance of the barrier. These bridge rail models were then combined with previously-

created and calibrated models of the MGS to investigate the compatibility of the systems. The 

primary data of interest were the maximum deflections and pocketing angles created in either the 

bridge rail or the interface with the guardrail. To prevent abrupt deceleration and vehicle 

instability, it was desired that maximum pocketing angles be less than 30 degrees. Preliminary 

analysis indicated that the new bridge rail should sustain comparable deflections to standard 

MGS while generating pocketing angles within acceptable levels. 
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A final design was created for the bridge rail that was then constructed and subjected to 

two full-scale crash tests according to the TL-3 criteria presented in MASH. Test no. MGSBR-1 

featured a 5,174-lb (2,347-kg) pickup truck that impacted the barrier at a speed of 61.9 mph 

(99.6 km/h) and at an angle of 24.9 degrees. The bridge rail successfully redirected the vehicle 

while meeting all required safety criteria and sustaining a maximum deflection of 48.9 in. (1,242 

mm), compared to 43.9 in. (1,114 mm) for MGS testing under similar impact conditions [67]. 

In test no. MGSBR-2, a 2,585-lb (1,173-kg) small car impacted the barrier at a speed of 

62.3 mph (100.2 km/h) and at an angle of 24.9 degrees. The barrier again successfully redirected 

the vehicle while meeting all required safety criteria and sustaining a maximum deflection of 

28.0 in. (712 mm). This deflection was very similar to the 35.9-in. (913-mm) deflection 

measured during testing of the MGS under similar impact conditions [78]. A summary of the 

tests and performance criteria is shown in Table 20. 

BARRIER VII models of the bridge rail were then calibrated to match the results of the 

full-scale tests. With these calibrated models, further investigation was performed to determine if 

a transition was necessary between the bridge rail and approach guardrail. As the bridge rail 

proved more flexible than the MGS in the 2270P test, pocketing was a concern only for impacts 

beginning in the bridge rail and progressing to the guardrail. The results of these simulations, 

together with those of the full-scale crash tests, demonstrated that the MGS Bridge Rail should 

perform acceptably without requiring a transition section when attached directly to approach 

MGS guardrails. 

The new bridge rail should provide a low-cost alternative to traditional bridge rails. 

System cost was estimated using a price obtained from a local steel fabricator of $1.30/lb 

($2.87/kg) for mounting bracket fabrication and galvanization. It was estimated that installation 

of each bracket would require one-half hour of labor at a cost of $50/hr. Costs of additional 
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reinforcing steel in the bridge deck were estimated at $0.80/lb ($1.76/kg). Fabrication costs of 

standard barrier hardware in the bridge rail were obtained from a guardrail supplier. An 

estimated installation cost of $10.55/ft ($34.61/m) was calculated by subtracting these costs from 

the total cost of strong-post W-beam guardrail of $21/ft ($69/m), obtained from Washington and 

Illinois statewide bid averages. Finally, an estimated cost of $100/ft2 ($1,037/m2) was used for 

the required bridge deck area due to barrier encroachment. The new bridge rail would overlap 

onto the bridge 3 in. (76 mm) for bridges with a wearing surface and 7 in. (178 mm) for bridges 

without a wearing surface. This difference is due to extension of the top mounting plate beyond 

the front face of the W-beam rail, which would be covered by a wearing surface. Note that if 

there is no wearing surface, a blockout would be needed to protect the top mounting plate from 

snow plows. The estimated total costs of the bridge rail were $73/ft ($240/m) and $106/ft 

($348/m) for decks with and without wearing surfaces, respectively. 

For comparison, a total cost of the Nebraska Open Concrete Rail was also estimated. 

Total costs of $81.25/yd3 ($106.26/m3) for concrete and $1.02/lb ($2.25/kg) for reinforcing steel 

fabrication and installation for the barrier were previously obtained from contractors throughout 

the Midwest [79]. With these values, the cost of the barrier itself was estimated at $18/ft 

($59/m), which is believed to be lower than the actual cost. To find the total system cost, the cost 

of the required area of bridge deck was added to this value. Finally, the cost of fabrication and 

installation of transition sections was obtained from a guardrail supplier. The total cost of W-

beam guardrail for this same length was subtracted from the total transition cost to find the 

additional expense of using transition sections. This additional cost was divided out over an 

assumed bridge length of 75 ft (22.9 m) to determine the added cost per foot of barrier. The final 

estimated price of the system with an open concrete rail and transition was $160/ft ($525/m). 
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This analysis indicates that the cost savings of the new bridge rail should be significant 

when compared to a concrete barrier. The MGS Bridge Rail is estimated to save approximately 

$87/ft ($285/m) on decks with a wearing surface and $54/ft ($117/m) on decks without a 

wearing surface. For an assumed bridge length of 75 ft (22.9 m), total cost savings are 

approximately $13,000 and $8,000, respectively. 
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Table 20. Summary of Safety Performance Evaluation Results 

Evaluation 
Factors Evaluation Criteria Test No. 

MGSBR-1 
Test No. 

MGSBR-2 

Structural 
Adequacy 

A. Test article should contain and redirect the vehicle or bring the vehicle to a 
controlled stop; the vehicle should not penetrate, underride, or override the 
installation although controlled lateral deflection of the test article is acceptable. 

S S 

Occupant 
Risk 

D. Detached elements, fragments or other debris from the test article should not 
penetrate or show potential for penetrating the occupant compartment, or present 
an undue hazard to other traffic, pedestrians, or personnel in a work zone. 
Deformations of, or intrusions into, the occupant compartment should not exceed 
limits set forth in Section 5.3 and Appendix E of MASH. 

S S 

F. The vehicle should remain upright during and after collision. The maximum roll 
and pitch angles are not to exceed 75 degrees. S S 

H. Occupant Impact Velocities (OIV) (see Appendix A, Section A5.3 of MASH for 
calculation procedure) should satisfy the following limits: 

S S 
 Occupant Impact Velocity Limits 

Component Preferred Maximum 

Longitudinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s) 

I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of 
MASH for calculation procedure) should satisfy the following limits: 

S S  Occupant Ridedown Acceleration Limits  

Component Preferred Maximum 

Longitudinal and Lateral 15.0 g’s 20.49 g’s 

 S – Satisfactory  U – Unsatisfactory  NA - Not Applicable 
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14 RECOMMENDATIONS 

The new bridge rail successfully met all safety performance criteria recommended by 

MASH during full-scale crash testing. However, there are opportunities to improve the 

performance of the bridge rail. Although the bridge deck cracking and spalling sustained during 

testing would not affect the structural integrity of the repaired barrier, some users may wish to 

eliminate such damage. One mounting bracket was also destroyed during the full-scale testing. 

Minor changes in the socket design may prevent this damage as well. Finally, available evidence 

indicates that the W-beam backup plates used in the final design of the bridge rail may not be 

necessary. 

Through-deck cracking was observed at several system posts following full-scale testing. 

This cracking was caused by a combination of lateral shear and downward or punching shear. 

Lateral shear toward the exterior of the bridge deck occurred as the through-deck bolt was loaded 

by the top mounting plate during impact. This created cracks in the top surface of the deck, as 

shown in Figure 182. Downward or punching shear was caused by downward loading of the 

mounting bracket due to vehicle override of the posts and the prying action of the posts and 

mounting bracket about the through-deck bolt. This created cracks in the vertical face of the 

deck, as shown in Figure 183. 

 
Figure 182. Lateral Shear Cracking, Test No. MGSBR-1 
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Figure 183. Vertical Shear Cracking, Test No. MGSBR-1 

As the through-deck bolts and mounting sleeves were not permanently displaced during 

either test, yielding in deck reinforcement was minimal or non-existent. Thus, structural 

adequacy of the bridge rail and deck were maintained. Further, most of the observed cracks were 

developed only after the second test. As each test represented worst-case impacts, it is unlikely 

that field installations on low-volume roads would be subjected to very many impacts of this 

magnitude. In such cases, field repair of the damaged bridge would only be required to cover 

exposed rebar in the deck. However, if necessary, the extent of cracking can be reduced through 

several methods. First, the use of higher strength concrete and a thicker bridge deck should 

reduce the likelihood of cracking due to both vertical and lateral shear. Additional methods are 

addressed separately for lateral shear cracking and vertical or punching shear cracking. 

Lateral shear cracking can be mitigated by locating the through-deck bolt and bolt sleeve 

farther inward on the deck. Many bridge rail posts yielded during both full-scale crash tests, but 

cracks only occurred at certain post locations. This suggests that the current design is nearly 

adequate for resisting deck cracks. 

Bending of bridge rail posts creates a shear force on the deck that is transmitted by the 

through-deck bolt and bolt sleeve. A simple analysis of the deck shear capacity can be concluded 

by treating the deck as a beam under shear loading using Equation 11-3 of ACI 318 [80]: 
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ܸ ൌ 2ඥ݂Ԣܾ௪݀ 

where Vc = concrete shear capacity 
fc’ = concrete 28-day compression strength (psi) 
bw = beam width 
d = depth of reinforcement 
 

This equation is based upon the concept that the bolt rotates in the concrete due to the 

moment of the rail force about the concrete deck. As the applied shear at the top of the deck is 

greater than that at the bottom of the deck, it is assumed that the top 6 in. (152 mm) of the deck 

resists the shear load. This value is used for the width of the beam, bw. Edge distance of the bolt 

sleeve, 4 in. (102 mm), is used for beam depth, d. Note that the shear capacity of the transverse 

deck steel is omitted from the calculation as the steel to the exterior of the crack is not fully 

developed. A sketch illustrating the deck and beam analogy is shown in Figure 184. 

 
Figure 184. Beam Analysis of Deck Shear Support Capacity 

Predicted deck shear capacity is then doubled to account for two shear cracks extending 

from the through-deck bolt. Using an estimated actual concrete strength of 4,500 psi (31.0 MPa), 

the formula predicts a shear capacity of the current deck of approximately 6.5 kips (28.9 kN). 

This force can be compared to the nominal capacity of the post in bending. Perpendicular 

to its strong axis of bending, an S3x5.7 (S76x8.5) post has an elastic bending moment of 60 kip-

in. (6.8 kN-m) for a yield stress of 36 ksi (248 MPa). Assuming the post is supported at the top 

of the mounting bracket, a force of approximately 2.6 kips (11.6 kN) at the center height of the 
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rail is required to yield the post. If the post rotates about the bottom of the deck, the deck must 

develop resistive force of approximately 10.7 kips (47.7 kN) at its top surface. 

The estimated deck resistance and applied force are somewhat similar in magnitude, 

which further suggests the deck capacity is nearly adequate to resist the applied load. Thus, small 

increases in mounting-tube edge distance may mitigate deck cracking. Note that the 

reinforcement that supports the bolt sleeve was designed for significantly higher forces obtained 

through dynamic bogie testing [66]. 

Lateral shear cracking might be further reduced by designing the deck reinforcement to 

more quickly develop resistive forces. The tested design utilized a rebar loop with a 5-in. (127-

mm) inner diameter bend placed around the 2-in. (51-mm) wide bolt sleeve. As such, some 

stretching of the loop was required to develop resistive forces in the steel. Note that the 

minimum diameter bend of a no. 6 (19-mm diameter) bar is 4½ in. (114 mm), but a 5-in. (127-

mm) bend was used due to fabrication limitations of the rebar supplier. Thus, the current design 

will be slightly improved in field applications. However, performance might be further improved 

by replacing each no. 6 (19-mm diameter) rebar loop with two no. 4 (13-mm diameter) rebar 

loops. This would allow for a tighter loop with approximately a 10 percent reduction in 

reinforcing area and a slight decrease in moment arm length. This steel should develop resistance 

more quickly in response to the applied load, potentially reducing crack width. However, 

additional analysis or testing may be required to ensure adequate capacity to resist the applied 

loads. Alternatively, straight bars can be welded to the sides of the bolt sleeve. These bars would 

develop resistance in the steel even faster upon bolt sleeve loading. 

Vertical or punching shear cracks can be mitigated and resisted through several options. 

First, the top mounting plate could be widened to apply the downward load over a greater area of 

the bridge deck. A thicker plate may be required to ensure adequate stiffness to distribute the 
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load. Deck reinforcement may also be altered to improve deck resistance to punching shear. 

Larger upper and lower longitudinal bars at the exterior edge of the bridge deck would help resist 

the effects of punching shear. Use of U-shaped transverse reinforcement, such that the upper and 

lower transverse bars are one continuous piece, could provide vertical reinforcement to resist 

these cracks as well. However, the tested bridge deck utilized staggered transverse 

reinforcement, which may prevent the installation of U-shaped reinforcement. 

Spalling of the bridge deck edge was observed during testing due to two different 

mechanisms. First, the prying action of the mounting bracket caused the top mounting plate to 

deflect downward, spalling off the top edge of the deck. Second, the exterior post mounting tube 

rotated about the through-deck bolt and impacted the side of the deck, which created cracks that 

led to spalling. Both behaviors may be reduced through the elimination or reduction of the ½-in. 

(13-mm) gap between the deck edge and the mounting bracket. Eliminating the gap may cause 

the tube to bear against the lower edge of the deck instead of prying about the bolt, which should 

reduce the downward deflection of the top mounting plate. Additionally, elimination of the gap 

will prevent the mounting tube from rotating and impacting the edge of the deck. Alternatively, a 

bearing pad can be placed in the gap to distribute the impact force over a greater area of the deck 

edge. However, elimination of the gap is the more economical option. Note that elimination of 

the gap would also reduce extension of the top mounting plate past the face of the W-beam rail. 

Finally, the edges of the simulated bridge deck were not chamfered like those found in actual 

field installations. This might also reduce deck spalling due to top mounting plate deflection. 

One mounting bracket was destroyed during the first full-scale test due to fracture of the 

weld between the mounting tube and top mounting plate. This failure was caused by wheel snag 

on the mounting tube as the pickup was being redirected back onto the bridge deck. As only one 

mounting bracket was destroyed during two worst-case impacts, it is believed this damage is 
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acceptable. However, this failure may be avoided by increasing the size of the welds between the 

mounting tube and the top mounting plate and gusset. Total weld area can also be increased by 

adding a second gusset plate, thickening the top mounting plate, or extending the top mounting 

plate around both sides of the mounting tube. Alternatively, the socket could be cast into the 

deck, as discussed in Section 3.1.2.3. This modification should prevent any socket damage. 

Backup W-beam plates were included in the post-to-rail connection of the new bridge rail 

at both splice and non-splice locations. These plates were intended to prevent the rail from 

contacting the sharp edge of the S3x5.7 (S76x8.5) post flange, which has initiated rail rupture in 

prior weak-post, W-beam guardrail testing [46-48]. Results of the full-scale crash tests indicated 

that these backup plates might not be necessary in the new bridge rail. 

In test no. MGSBR-1, evidence of contact between bridge rail posts and the rail was 

found near post nos. 16 through 18 and 20 through 23. All areas of rail damage were found more 

than 3 in. (76 mm) away from the centerline of their respective posts. As the 6-in. (152-mm) long 

backup plates extended only 3 in. (76 mm) to either side of the centerline of the post, all post 

contact areas were beyond the reach of the backup plates. Thus, the backup plates could not have 

prevented this damage. Additionally, most areas of contact were found more than 6 in. (152 mm) 

away from their respective posts, indicating that 12-in. (305-mm) long backup plates would not 

prevent this damage either. A photograph of damage at the bottom of the rail due to post contact 

is shown in Figure 185. 

Review of high-speed digital video revealed that the posts were not twisted at the time of 

contact with the rail. Thus, the post flange contacted the rail with its flat edge, not the sharp 

corner of the flange. A photograph taken from high-speed digital video for test no. MGSBR-1 is 

shown in Figure 186. The backup plates were deformed, but they did not exhibit sharp nicks 
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indicative of contact with the edge of the flange that would be expected to initiate rail rupture. 

Photographs of W-beam backup plates from test no. MGSBR-1 are shown in Figure 187. 

 
Figure 185. Rail Damage from Post Contact, Test No. MGSBR-1  

 
Figure 186. Post Contact with Rail, Test No. MGSBR-1 

  
Figure 187. Typical Backup Plate Damage, Test No. MGSBR-1 
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No rail damage due to post contact was found following test no. MGSBR-2. Review of 

high-speed digital video revealed that posts remained in contact with the W-beam backup plates 

until being snagged by the vehicle. A photograph taken from high-speed digital video for test no. 

MGSBR-2 is shown in Figure 188. Additionally, twisting of the posts was minimal prior to 

vehicle snag, indicating that the sharp edge of the post flange did not contact the rail. The backup 

plates themselves were deformed, but they did not exhibit the type of sharp nicks that initiate rail 

rupture. 

 
Figure 188. Post Contact with Rail, Test No. MGSBR-2 

The reduction in twisting of the bridge rail posts when compared to weak-post, W-beam 

guardrail may be due to the difference in deflection between the systems. Maximum dynamic 

deflection under conditions corresponding to test designation no. 3-11 for the weak-post, W-

beam guardrail system was 83.5 in. (2,120 mm) [51], which was significantly greater than the 

48.9 in. (1,242 mm) sustained by the new bridge rail. The smaller deflection of the bridge rail 

reduces the tendency of the rail to pull posts upstream or downstream, which in turn reduces the 

twisting of posts. Additionally, the posts of the weak-post guardrail system are embedded in soil, 

whereas those of the bridge rail are placed in steel tubes. Thus, the bridge rail posts are better 

supported to resist twisting loads. This combination of decreased rail deflection and stronger 

mounting conditions may reduce twisting in the bridge rail posts, which prevents the edge of the 
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post flange from contacting the rail. Therefore, the W-beam backup plates appear to be 

unnecessary for the bridge rail. However, additional research may be required before this 

modification can be safely used. 

For the bridge rail to be safely used on alternate bridge decks, retrofit to existing 

structures, or attached to culvert headwalls, users must ensure that the connection hardware and 

concrete deck have adequate capacity to resist the imparted rail loads. The tested system was 

designed for a peak post force of 6.3 kips (28.0 kN) at the center height of the rail, or 24⅞ in. 

(632 mm) above the roadway. Anchorage of the mounting bracket and internal reinforcement of 

the concrete must be designed to resist such a force or an equivalent system of forces and 

moments, as shown in Figure 189. Note that the bolt sleeve was also designed to resist bending 

and prevent local damage to the top of the concrete deck. Further analysis and/or testing should 

be performed to verify that any new designs are capable of withstanding the imparted loads. 

 
Figure 189. Design Loads for Bridge Deck 

Designers should also be aware that other significant loads are imparted into the system. 

As discussed previously, significant downward loads are applied due to the prying action of the 

mounting brackets and vehicle override of bridge rail posts. Further, vehicle snag on posts may 

occur at relatively low heights above the top of the mounting bracket, which applies large lateral 

shear loads. Though these loads cannot be accurately quantified at this time, designers should be 

aware of these forces and design connecting hardware and bridge decks or culverts accordingly.  
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Full-scale testing was performed on a simulated 8-in. (203-mm) thick bridge deck 

without a wearing surface. Should the bridge rail be desired for use on decks with such a wearing 

surface poured above the top mounting plate, post length should be modified accordingly. 

Additionally, the length of the mounting tubes must be increased above the top mounting plate to 

ensure similar resistive forces are developed by the posts. 

The top mounting plate of the new bridge rail extends beyond the front face of the W-

beam rail. Thus, the top mounting plate and through-deck bolt would be susceptible to damage 

from snow-plow operations on bridge decks without a wearing surface. This problem could be 

eliminated by using a 4-in. (102-mm) deep blockout between the W-beam rail and system posts. 

However, additional analysis or testing is required before alternate rail mounting details can be 

recommended. 

Finally, users should ensure that actual installation conditions for the new bridge rail are 

reflective of the assumptions used in design. Specifically, post models used to analyze the MGS 

were based on bogie testing performed on posts installed in level, compacted soil. Thus, the 

approach guardrail posts, particularly near the ends of the bridge rail, should be installed with a 

2-ft (0.61-m) slope grading. Alternatively, users may install the MGS posts using the 2:1 slope 

installation details where slopes are present near the ends of a bridge deck. 
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15 CONCLUSIONS 

A new, weak-post bridge rail was developed that satisfies the TL-3 performance criteria 

presented in MASH. This bridge rail has a lateral stiffness and strength close to that of the MGS. 

Therefore, the bridge rail system may be directly connected to the MGS without the use of an 

approach guardrail transition section. As such, the additional post and rail elements typically 

required by transition sections are eliminated, and barrier cost and complexity are reduced. Since 

the new bridge rail utilizes posts mounted on the side of the deck and does not require blockouts, 

encroachment of the bridge rail onto the bridge deck is minimized. Repair of the new bridge rail 

is simple and should typically require replacement of only steel posts, W-beam rail, and post-to-

rail connection hardware. Damage caused to the deck during testing is believed to be acceptable 

and can be further mitigated through the implementation of recommended design revisions. The 

post-to-deck attachment can also be revised to reduce mounting bracket damage or allow the 

bridge posts to be installed in the deck itself. The new bridge rail will provide a low-cost 

alternative for use on low- and medium-volume bridges. Further, the new bridge rail will provide 

a safer alternative than many bridge rail designs now in use on local roads and streets across the 

nation. 
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Appendix A. Component Testing Results 
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Figure A-1. Test No. MGSBRB-1 Results (DTS) 
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Figure A-2. Test No. MGSBRB-1 Results (EDR-3) 
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Figure A-3. Test No. MGSBRB-2 Results (DTS) 
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Figure A-4. Test No. MGSBRB-2 Results (EDR-3) 
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Figure A-5. Test No. MGSBRB-3 Results (DTS) 
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Figure A-6. Test No. MGSBRB-3 Results (EDR-3) 
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Figure A-7. Test No. MGSBRB-4 Results (EDR-4) 
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Figure A-8. Test No. MGSBRB-4 Results (EDR-3) 
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Figure A-9. Test No. MGSBRB-5 Results (EDR-4) 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

322 

 
 

Figure A-10. Test No. MGSBRB-5 Results (EDR-3) 
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Figure A-11. Test No. MGSBRB-6 Results (EDR-4) 
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Figure A-12. Test No. MGSBRB-6 Results (EDR-3) 
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Figure A-13. Test No. MGSBRB-7 Results (EDR-4) 
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Figure A-14. Test No. MGSBRB-7 Results (EDR-3) 
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Appendix B. Material Specifications 
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Figure B-1. S3x5.7 Posts Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-2. S3x5.7 Posts Mill Certification, Test No. MGSBR-2
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Figure B-3. Post Standoff Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-4. 4x4x⅜ Mounting Tube Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-5. Top Mounting Plate, Gusset Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-6. W-Beam, Backup Plates Mill Certification, Test Nos. MGSBR-1 & MGSBR-2 
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Figure B-7. Bottom Mounting Plate Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-8. Square Washers Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-9. W-Beam Backup Plates Mill Certification, Test Nos. MGSBR-1 & MGSBR-2 
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Figure B-10. 6-ft 3-in. W-beam Rail Mill Certification, Test Nos. MGSBR-1 & MGSBR-2 
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Figure B-11. ⅝-in. Guardrail Bolts Mill Certification, Test Nos. MGSBR-1 & MGSBR-2 
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Figure B-12. W6x8.5 Posts Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-13. ⅝x14-6 in. Bolts Certificate of Compliance, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-14. No. 4 Rebar Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-15. No. 5 Rebar Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-16. No. 4 Dowels Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-17. No. 6 Rebar Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-18. Tube Housing Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-19. No. 3 Rebar Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-20. Deck Concrete Material Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-21. Foundation Tubes Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-22. BCT Posts Certificate of Compliance, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-23. BCT Posts Certificate of Compliance, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-24. Strut Assembly Certificate of Compliance, Test Nos. MGSBR-1 & MGSBR-2 



 

 

A
ugust 11, 2010 

M
w

R
SF R

eport N
o. TR

P-03-226-10

352 

 
Figure B-25. Anchor Bracket Assembly Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-26. BCT Hole Insert Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-27. Guardrail Bolts Certificate of Compliance, Test Nos. MGSBR-1 & MGSBR-2 
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Figure B-28. Terminal Certificate of Compliance, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-29. ⅝-in. Hex Head Bolts Mill Certification, Test Nos. MGSBR-1 and MGSBR-2 
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Figure B-30. Anchor Cable Certificate of Compliance, Test Nos. MGSBR-1 and MGSBR-2 
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Appendix C. Vehicle Center of Gravity Determination 
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Figure C-1. Vehicle Mass Distribution, Test No. MGSBR-1 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

360 

 
 

Figure C-2. Vehicle Mass Distribution, Test No. MGSBR-2 
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Appendix D. Vehicle Deformation Records 
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Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSBR-1 
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Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSBR-1 



August 11, 2010 
MwRSF Report No. TRP-03-226-10 

364 

 
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. MGSBR-1 
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Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MGSBR-1 
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Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSBR-1 
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Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSBR-1 
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Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSBR-2 
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Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSBR-2 
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Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. MGSBR-2 
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Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. MGSBR-2 
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Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSBR-2 
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Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSBR-2 
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Appendix E. Accelerometer and Rate Transducer Plots, Test No. MGSBR-1 
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Figure E-1. 10-ms Average Longitudinal Deceleration (EDR-4), Test No. MGSBR-1 
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Figure E-2. Longitudinal Occupant Impact Velocity (EDR-4), Test No. MGSBR-1 
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Figure E-3. Longitudinal Occupant Displacement (EDR-4), Test No. MGSBR-1 



 

 

A
ugust 11, 2010 

M
w

R
SF R

eport N
o. TR

P-03-226-10

378

 
Figure E-4. 10-ms Average Lateral Deceleration (EDR-4), Test No. MGSBR-1 
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Figure E-5. Lateral Occupant Impact Velocity (EDR-4), Test No. MGSBR-1 
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Figure E-6. Lateral Occupant Displacement (EDR-4), Test No. MGSBR-1 
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Figure E-7. Vehicle Angular Displacements (EDR-4), Test No. MGSBR-1 
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Figure E-8. 10-ms Average Longitudinal Deceleration (DTS), Test No. MGSBR-1 
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Figure E-9. Longitudinal Occupant Impact Velocity (DTS), Test No. MGSBR-1 
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Figure E-10. Longitudinal Occupant Displacement (DTS), Test No. MGSBR-1 
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Figure E-11. 10-ms Average Lateral Deceleration (DTS), Test No. MGSBR-1 
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Figure E-12. Lateral Occupant Impact Velocity (DTS), Test No. MGSBR-1 
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Figure E-13. Lateral Occupant Displacement (DTS), Test No. MGSBR-1 
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Figure E-14. Vehicle Angular Displacements (DTS), Test No. MGSBR-1 
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Figure E-15. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MGSBR-1 
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Figure E-16. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MGSBR-1 
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Figure E-17. Longitudinal Occupant Displacement (EDR-3), Test No. MGSBR-1 
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Figure E-18. 10-ms Average Lateral Deceleration (EDR-3), Test No. MGSBR-1 
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Figure E-19. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSBR-1 
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Figure E-20. Lateral Occupant Displacement (EDR-3), Test No. MGSBR-1
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Appendix F. Accelerometer and Rate Transducer Plots, Test No. MGSBR-2 
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Figure F-1. 10-ms Average Longitudinal Deceleration (EDR-4), Test No. MGSBR-2 
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Figure F-2. Longitudinal Occupant Impact Velocity (EDR-4), Test No. MGSBR-2 
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Figure F-3. Longitudinal Occupant Displacement (EDR-4), Test No. MGSBR-2 
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Figure F-4. 10-ms Average Lateral Deceleration (EDR-4), Test No. MGSBR-2 
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Figure F-5. Lateral Occupant Impact Velocity (EDR-4), Test No. MGSBR-2 
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Figure F-6. Lateral Occupant Displacement (EDR-4), Test No. MGSBR-2 
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Figure F-7. Vehicle Angular Displacements (EDR-4), Test No. MGSBR-2 
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Figure F-8. 10-ms Average Longitudinal Deceleration (DTS), Test No. MGSBR-2 
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Figure F-9. Longitudinal Occupant Impact Velocity (DTS), Test No. MGSBR-2 
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Figure F-10. Longitudinal Occupant Displacement (DTS), Test No. MGSBR-2 
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Figure F-11. 10-ms Average Lateral Deceleration (DTS), Test No. MGSBR-2 
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Figure F-12. Lateral Occupant Impact Velocity (DTS), Test No. MGSBR-2 
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Figure F-13. Lateral Occupant Displacement (DTS), Test No. MGSBR-2 
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Figure F-14. Vehicle Angular Displacements (DTS), Test No. MGSBR-2 
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Figure F-15. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MGSBR-2 
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Figure F-16. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MGSBR-2 
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Figure F-17. Longitudinal Occupant Displacement (EDR-3), Test No. MGSBR-2 
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Figure F-18. 10-ms Average Lateral Deceleration (EDR-3), Test No. MGSBR-2 



 

 

A
ugust 11, 2010 

M
w

R
SF R

eport N
o. TR

P-03-226-10 

414 

 
Figure F-19. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSBR-2 
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Figure F-20. Lateral Occupant Displacement (EDR-3), Test No. MGSBR-2
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Appendix G. Calibrated BARRIER VII Input Files 
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Calibrated MGSBR-1 Model (Pickup), 30-Deg Post Data, 0.23 COF 
  225    2    1    1  264    8    2    0 
    0.0001    0.0001     2.000 2000    0       1.0    1 
    1   10   10   10   10  500    1 
    1       0.0       0.0 
  225      2100       0.0 
    1  225  223    1     9.375 
    1  225      0.23 
  225  224  223  222  221  220  219  218  217  216   
  215  214  213  212  211  210  209  208  207  206   
  205  204  203  202  201  200  199  198  197  196   
  195  194  193  192  191  190  189  188  187  186   
  185  184  183  182  181  180  179  178  177  176   
  175  174  173  172  171  170  169  168  167  166   
  165  164  163  162  161  160  159  158  157  156   
  155  154  153  152  151  150  149  148  147  146   
  145  144  143  142  141  140  139  138  137  136   
  135  134  133  132  131  130  129  128  127  126   
  125  124  123  122  121  120  119  118  117  116   
  115  114  113  112  111  110  109  108  107  106   
  105  104  103  102  101  100   99   98   97   96   
   95   94   93   92   91   90   89   88   87   86   
   85   84   83   82   81   80   79   78   77   76   
   75   74   73   72   71   70   69   68   67   66   
   65   64   63   62   61   60   59   58   57   56   
   55   54   53   52   51   50   49   48   47   46   
   45   44   43   42   41   40   39   38   37   36   
   35   34   33   32   31   30   29   28   27   26   
   25   24   23   22   21   20   19   18   17   16   
   15   14   13   12   11   10    9    8    7    6   
    5    4    3    2    1 
  100    1 
    1      2.29      1.99     9.375   30000.0      6.92      99.5      68.5 0.05 W-
Beam 
  300    4 
    1    24.875      0.00       6.0       6.0     100.0     675.0     675.0 0.05 BCT 1  
     100.0     100.0      15.0      15.0 
    2    24.875      0.00       3.0       3.0     100.0     150.0    225.00 0.05 BCT 2 
      50.0      50.0      15.0      15.0 
    3    24.875       0.0      4.00      6.03      54.0     92.88    143.65 0.05 W6x9  
       6.0      15.0      15.0      15.0 
    4    24.875       0.0     2.527     2.041      15.2    25.738    81.755 0.05 
S3x5.7  
       6.0      15.0      15.0      15.0 
    1    1    2  224    1  101       0.0       0.0       0.0  
  225    1                 301       0.0       0.0       0.0       0.0       0.0 
  226    9                 302       0.0       0.0       0.0       0.0       0.0 
  227   17       232    8  303       0.0       0.0       0.0       0.0       0.0 
  233   65       255    4  304       0.0       0.0       0.0       0.0       0.0 
  256  161       262    8  303       0.0       0.0       0.0       0.0       0.0 
  263  217                 302       0.0       0.0       0.0       0.0       0.0 
  264  225                 301       0.0       0.0       0.0       0.0       0.0 
    5174.0   58310.0   20    6    4    0    1 
    1     0.055      0.12      6.00      17.0 
    2     0.057      0.15      7.00      18.0 
    3     0.062      0.18     10.00      12.0 
    4     0.110      0.35     12.00       6.0 
    5      0.35      0.45      6.00       5.0 
    6      1.45      1.50     15.00       1.0 
    1    102.50    15.875    1      12.0    1    1    0    0 
    2    102.50    27.875    1      12.0    1    1    0    0 
    3    102.50    39.000    2      12.0    1    1    0    0 
    4     88.75    39.000    2      12.0    1    1    0    0 
    5     76.75    39.000    2      12.0    1    1    0    0 
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    6     64.75    39.000    2      12.0    1    1    0    0 
    7     52.75    39.000    2      12.0    1    1    0    0 
    8     40.75    39.000    2      12.0    1    1    0    0 
    9     28.75    39.000    2      12.0    1    1    0    0 
   10     16.75    39.000    2      12.0    1    1    0    0 
   11    -13.25    39.000    3      12.0    1    1    0    0 
   12    -33.25    39.000    3      12.0    1    1    0    0 
   13    -53.25    39.000    3      12.0    1    1    0    0 
   14    -73.25    39.000    3      12.0    1    1    0    0 
   15    -93.25    39.000    3      12.0    1    1    0    0 
   16   -125.35    39.000    4      12.0    1    1    0    0 
   17   -125.35   -39.000    4      12.0    0    0    0    0 
   18    102.50   -39.000    1      12.0    0    0    0    0 
   19     62.40     33.90    5       1.0    1    1    0    0 
   20    -77.85     33.90    6       1.0    1    1    0    0 
    1     62.40     33.90       0.0      608. 
    2     62.40    -33.90       0.0      608. 
    3    -77.85     33.90       0.0      492. 
    4    -77.85    -33.90       0.0      492. 
    1       0.0       0.0 
    3    823.00       0.0     24.91     61.89       0.0       0.0       1.0 
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Calibrated MGSBR-2 Model (Small Car), 30-Deg Post Data, 0.525 COF 
  225    2    1    1  264    8    2    0 
    0.0001    0.0001     2.000 2000    0       1.0    1 
    1   10   10   10   10  500    1 
    1       0.0       0.0 
  225      2100       0.0 
    1  225  223    1     9.375 
    1  225     0.525 
  225  224  223  222  221  220  219  218  217  216   
  215  214  213  212  211  210  209  208  207  206   
  205  204  203  202  201  200  199  198  197  196   
  195  194  193  192  191  190  189  188  187  186   
  185  184  183  182  181  180  179  178  177  176   
  175  174  173  172  171  170  169  168  167  166   
  165  164  163  162  161  160  159  158  157  156   
  155  154  153  152  151  150  149  148  147  146   
  145  144  143  142  141  140  139  138  137  136   
  135  134  133  132  131  130  129  128  127  126   
  125  124  123  122  121  120  119  118  117  116   
  115  114  113  112  111  110  109  108  107  106   
  105  104  103  102  101  100   99   98   97   96   
   95   94   93   92   91   90   89   88   87   86   
   85   84   83   82   81   80   79   78   77   76   
   75   74   73   72   71   70   69   68   67   66   
   65   64   63   62   61   60   59   58   57   56   
   55   54   53   52   51   50   49   48   47   46   
   45   44   43   42   41   40   39   38   37   36   
   35   34   33   32   31   30   29   28   27   26   
   25   24   23   22   21   20   19   18   17   16   
   15   14   13   12   11   10    9    8    7    6   
    5    4    3    2    1 
  100    1 
    1      2.29      1.99     9.375   30000.0      6.92      99.5      68.5 0.05 W-
Beam 
  300    4 
    1    24.875      0.00       6.0       6.0     100.0     675.0     675.0 0.05 BCT 1  
     100.0     100.0      15.0      15.0 
    2    24.875      0.00       3.0       3.0     100.0     150.0    225.00 0.05 BCT 2 
      50.0      50.0      15.0      15.0 
    3    24.875       0.0      4.00      6.03      54.0     92.88    143.65 0.05 W6x9 
       6.0      15.0      15.0      15.0 
    4    24.875       0.0     2.527     2.041      15.2    25.738    81.755 0.05 
S3x5.7  
       6.0      15.0      15.0      15.0 
    1    1    2  224    1  101       0.0       0.0       0.0  
  225    1                 301       0.0       0.0       0.0       0.0       0.0 
  226    9                 302       0.0       0.0       0.0       0.0       0.0 
  227   17       232    8  303       0.0       0.0       0.0       0.0       0.0 
  233   65       255    4  304       0.0       0.0       0.0       0.0       0.0 
  256  161       262    8  303       0.0       0.0       0.0       0.0       0.0 
  263  217                 302       0.0       0.0       0.0       0.0       0.0 
  264  225                 301       0.0       0.0       0.0       0.0       0.0 
    2585.0   16264.9   20    1    4    0    1 
    1     0.033     0.150       4.5      13.0 
    1    75.750   -32.188    1    43.240    1    1    0    0 
    2    75.750   -21.458    1    10.729    1    1    0    0 
    3    75.750   -10.729    1    10.729    1    1    0    0 
    4    75.750     0.000    1    10.729    1    1    0    0 
    5    75.750    10.729    1    10.729    1    1    0    0 
    6    75.750    21.458    1    10.729    1    1    0    0 
    7    75.750    32.188    1    12.940    1    1    0    0 
    8    60.600    32.188    1    15.150    1    1    0    0 
    9    45.450    32.188    1    15.150    1    1    0    0 
   10    30.300    32.188    1    15.150    1    1    0    0 
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   11    15.150    32.188    1    15.150    1    1    0    0 
   12     0.000    32.188    1    18.888    1    1    0    0 
   13   -22.625    32.188    1    22.625    1    1    0    0 
   14   -45.250    32.188    1    22.625    1    1    0    0 
   15   -67.875    32.188    1    22.625    1    1    0    0 
   16     -90.5    32.188    1    22.625    1    1    0    0 
   17   -90.500   -32.188    1    45.250    1    1    0    0 
   18     0.000   -32.188    1    45.250    1    1    0    0 
   19      38.5    27.813    1     1.000    1    1    0    0 
   20      38.5   -27.813    1     1.000    1    1    0    0 
    1      38.5    27.813      0.00   380.250 
    2      38.5   -27.813      0.00   380.250 
    3     -57.0    27.813      0.00   264.500 
    4     -57.0   -27.813      0.00   264.500 
    1      0.00      0.00       
    7     913.5       0.0     24.88     62.27       0.0       0.0       1.0
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