

Hawaii Department of Transportation Research Project Number 67167

HAWAII DOT FLARED BURIED-IN-BACKSLOPE GUARDRAIL END TERMINAL PART 2 – REVERSE DIRECTION TESTS

Submitted and Approved by

Mojtaba Atash Bahar, M.S.C.E Graduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

Karla A. Lechtenberg, M.S.M.E. Research Engineer

Erin L. Urbank, B.A. Research Communication Specialist

Cody S. Stolle, Ph.D. Research Associate Professor

Joshua Steelman, Ph.D., P.E. Associate Professor, Civil Engineering

J.C. Holloway, M.S.C.E., Research Engineer & Assistant Director – Physical Testing Division

James B. Wills, Jr., B.S.C.E. Graduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Outdoor Test Site

4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

HAWAII DEPARTMENT OF TRANSPORTATION

Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813

MwRSF Research Report No. TRP-03-496b-25

December 16, 2025

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
TRP-03-496b-25 4. Title and Subtitle Hawaii DOT Flared Buried-in-Backslope Guardrail End Terminal Part 2 - Reverse Direction Tests		5. Report Date December 16, 2025 6. Performing Organization Code
7. Author(s) Atash Bahar, M., Stolle, C.S., Fal K.A., Holloway, J.C., Urbank. E.J	ler, R.K., Steelman, J.S., Lechtenberg, L., and Wills, Jr. J.B.	8. Performing Organization Report No. TRP-03-496b-25
9. Performing Organization Nat	me and Address	10. Work Unit No.
Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln	(MwRSF)	
Main Office: Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524		11. Contract Research Project 67167
12. Sponsoring Agency Name and Address Hawaii Department of Transportation		13. Type of Report and Period Covered Final Report: 2024-2025
Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813		14. Sponsoring Agency Code

15. Supplementary Notes

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

The Hawaii Department of Transportation's (HDOT's) Buried-in-Backslope system was evaluated to Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) impact conditions in the reverse direction. The system consisted of Midwest Guardrail System (MGS) W-beam railing supported by W6x8.5 steel posts and 8-in. deep recycled plastic blockouts, with a lower W-beam rubrail attached to the post. The terminal had a 13:1 flare (4.4 degrees) from a tangent roadside system between post nos. 29 and 10, and a second 7.4:1 flare (6.8 degrees) between post no. 10 and the upstream anchor block. The system passed through a V-ditch with a 120-in. wide, 6H:1V foreslope and a 2:1 backslope.

The dual-flare system was evaluated in the reverse-direction configuration in test nos. HBIB-6 through HBIB-8 and HBIB-10. During test no. HBIB-6, conducted according to MASH test designation 3-37a, a 2270P pickup truck impacted the system 197.6 in. upstream from the centerline splice between post nos. 29 and 30, and the barrier system effectively contained and redirected the vehicle. In test no. HBIB-7, conducted according to MASH test designation 3-37b, an 1100C passenger car impacted the system 82½ in. upstream from the centerline splice between post nos. 29 and 30, and the barrier system effectively contained and redirected the vehicle. During test no. HBIB-8, conducted according to MASH test designation 3-37a, a 2270P pickup truck impacted the barrier 67.0 in. upstream from the upstream end of the concrete anchor block, and the barrier system effectively contained and redirected the vehicle and test no. HBIB-8. During test no. HBIB-10, conducted according to MASH test designation 3-37b, a 1100C passenger car impacted the barrier 41.5 in. upstream from the upstream end of the anchor block, and the barrier system effectively contained and redirected the 1100C vehicle. Test nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 were deemed acceptable according to the MASH safety performance criteria for test designation nos. 3-37a and 3-37b, therefore, the HDOT Buried-in-Backslope system was deemed acceptable according to MASH evaluation criteria.

HDOT desired to have an option for both dual-flare and single-flare embodiments of the HBIB design. Single-flare systems may be used in locations where the backslope is located close to the roadway or in some reverse-direction applications. The single-flare configuration was evaluated in the reverse-direction configuration in test no. HBIB-9, conducted according to MASH test designation 3-37a, in which a 2270P pickup truck impacted the barrier 68.5 in. upstream from the upstream end of the concrete anchor. After exiting the system, the vehicle rolled over, coming to rest on its roof, and occupant compartment deformation values exceeded MASH limits at the A-pillar, B-pillar, and roof. Therefore, test no. HBIB-9 was determined to be unsuccessful according to MASH safety performance criteria for test designation no. 3-37a.

In conclusion, only the dual-flare HBIB system was determined to be crashworthy according to MASH TL-3 impact conditions.

17. Key Words		18. Availability Statement	
Highway Safety, Crash Test, Roa	dside Appurtenances,	No restrictions. Document available from: National	
Compliance Test, MASH, Buried	in Backslope, Guardrail, End	Technical Information Services, Springfield, Virginia	
Terminal, Flare	-	22161	
19. Security Classification (of 20. Security Classification		21. No. of Pages	22. Price
this report)	(of this page)	_	
Unclassified	Unclassified	387	

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Hawaii Department of Transportation under Research Project 67167. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, Hawaii Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the States of Nebraska and Hawaii do not endorse products or manufacturers

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

A2LA ACCREDITATION

The tests reported herein are within the scope of MwRSF's A2LA Accreditation. MwRSF's accreditation documentation can be found in Appendix A.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Mr. Brandon Perry, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Hawaii Department of Transportation and (2) MwRSF personnel for constructing the barriers and conducting the crash tests. Acknowledgement is also given to the following individuals who contributed to the completion of this research project

Midwest Roadside Safety Facility

- R.W. Bielenberg, M.S.M.E., Research Engineer
- S.K. Rosenbaugh, M.S.C.E., Research Engineer
- M. Asadollahi Pajouh, Ph.D., P.E., former Research Assistant Professor
- B.J. Perry, M.E.M.E., Research Engineer
- A.E. Loken, Ph.D., Research Assistant Professor
- T.Y. Yosef, Ph.D., Research Assistant Professor
- Q.A. Alomari, Ph.D., Research Assistant Professor
- A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
- E.W. Krier, B.S., Former Engineering Testing Technician II
- D.S. Charroin, Engineering Testing Technician II
- R.M. Novak, Engineering Testing Technician II
- T.C. Donahoo, Engineering Testing Technician I
- J.T. Jones, Engineering Testing Technician II
- E.L. Urbank, Research Communication Specialist
- Z.Z. Jabr, Engineering Technician
- J.J. Oliver, Solidworks Drafting Coordinator

Undergraduate and Graduate Research Assistants

Hawaii Department of Transportation

Brent Ching, Structural Engineer Keith Kalani, Structural Engineer Kimberly Okamura, Engineer

		METRIC) CONVERS		
		MATE CONVERSIONS T		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	Inches	25.4	millimeters	mm
ft	Feet	0.305	meters	m
yd mi	yards miles	0.914 1.61	meters kilometers	m km
mi	iiiies	AREA	KHOMEters	KIII
in ²	square inches	645.2	squara millimators	mm^2
ft ²	square freet	0.093	square millimeters square meters	m ²
yd ²	square yard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
	1	VOLUME	1	
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m^3
yd ³	cubic yards	0.765	cubic meters	m^3
	NOTE: v	olumes greater than 1,000 L shall be s	shown in m ³	
		MASS		
oz	Ounces	28.35	grams	g
lb	Pounds	0.454	kilograms	kg
T	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
	T	EMPERATURE (exact degr	ees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
Г	ramemen	or (F-32)/1.8	Ceisius	C
		ILLUMINATION		
fc	foot-candles	10.76	lux	1x
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
	FC	RCE & PRESSURE or STR	RESS	
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIM	ATE CONVERSIONS FR	ROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
<u></u>	.,	LENGTH		<u> </u>
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	Kilometers	0.621	miles	mi
		AREA		
mm^2	square millimeters	0.0016	square inches	in^2
m ²	square meters	10.764	square feet	ft ²
m^2	square meters	1.195	square yard	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
		VOLUME		
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m^3	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd³
		MASS		
g	grams	0.035	ounces	oz
kg	Kilograms	2.202	pounds	lb
	megagrams (or "metric ton")	1.103	short ton (2,000 lb)	T
Mg (or "t")	TI.	EMPERATURE (exact degr	ees)	
Mg (or "t")	1			°F
	Celsius	1.8C+32	Fahrenheit	Г
		1.8C+32	ranrenneit	Г
Mg (or "t") °C			foot-candles	fc
°C	Celsius	1.8C+32 ILLUMINATION		-
°C	Celsius Lux candela per square meter	1.8C+32 ILLUMINATION 0.0929 0.2919	foot-candles foot-Lamberts	fc
°C	Celsius Lux candela per square meter	1.8C+32 ILLUMINATION 0.0929	foot-candles foot-Lamberts	fc

^{*}SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
A2LA ACCREDITATION	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
SI* (MODERN METRIC) CONVERSION FACTORS	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	xvii
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA	
2.1 Test Requirements	
2.2 Evaluation Criteria	
2.3 Soil Strength Requirements	8
3 CRITICAL IMPACT POINT	9
3.1 Impact Conditions	
3.2 Critical Impact Point Location	
3.3 CIP Selection for HBIB System	14
4 TEST CONDITIONS	17
4.1 Test Facility	
4.2 Vehicle Tow and Guidance System	
4.3 Test Vehicles	
4.4 Surrogate Occupant	
4.5 Data Acquisition	
4.5.1 Accelerometers	39
4.5.2 Rate Transducers	
4.5.3 Retroreflective Optic Speed Trap	
4.5.4 Digital Photography	40
5 DESIGN DETAILS: TWO-FLARE DESIGN	46

5.1 HDOT Design Modifications and Revisions	46
5.2 Upper and Lower Rails	46
5.3 Posts and Blockouts	47
5.4 Anchor Block	48
6 FULL-SCALE CRASH TEST NO. HBIB-6	90
6.1 Static Soil Test	90
6.2 Weather Conditions	90
6.3 Test Description	90
6.4 Barrier Damage	98
6.5 Vehicle Damage	
6.6 Occupant Risk	
6.7 Discussion	110
7 FULL-SCALE CRASH TEST NO. HBIB-7	112
7.1 Static Soil Test	112
7.2 Weather Conditions	
7.3 Test Description	112
7.4 Barrier Damage	119
7.5 Vehicle Damage	
7.6 Occupant Risk	127
7.7 Discussion	128
8 FULL-SCALE CRASH TEST NO. HBIB-8	130
8.1 Static Soil Test	
8.2 Weather Conditions	
8.3 Test Description	130
8.4 Barrier Damage	
8.5 Vehicle Damage	140
8.6 Occupant Risk	146
8.7 Discussion	
9 FULL-SCALE CRASH TEST NO. HBIB-10	149
9.1 Static Soil Test	149
9.2 Weather Conditions	149
9.3 Test Description	149
9.4 Barrier Damage	158
9.5 Vehicle Damage	161
9.6 Occupant Risk	166
9.7 Discussion	167
10 DESIGN DETAILS: SINGLE-FLARE DESIGN	169
11 FULL-SCALE CRASH TEST NO. HBIB-9	208
11.1 Static Soil Test	208
11.2 Weather Conditions	208
11.3 Test Description	
11 4 Barrier Damage	

11.5 Vehicle Da	amage	221
	Risk	
	1	
12 SUMMARY AND	CONCLUSIONS	229
13 MASH IMPLEMEN	NTATION	233
14 REFERENCES		234
ADDENIDICEC		226
	A2LA Accreditation Documents	
Appendix B.	Critical Impact Point Determination	240
Appendix C.	Vehicle Center of Gravity Determination	244
	Material Specifications	
Appendix E.	Static Soil Tests	299
Appendix F.	Vehicle Deformation Records	306
Appendix G.	Accelerometer and Rate Transducer Data Plots, Test No. HBIB-6	342
Appendix H.	Accelerometer and Rate Transducer Data Plots, Test No. HBIB-7	351
Appendix I. A	Accelerometer and Rate Transducer Data Plots, Test No. HBIB-8	360
Appendix J. A	Accelerometer and Rate Transducer Data Plots, Test No. HBIB-10	369
Appendix K	Accelerometer and Rate Transducer Data Plots, Test No. HBIB-9	378

LIST OF FIGURES

Figure 1. HDOT Standard Plans - HBIB Modified Type A-1 Flare, Sheet 1	3
Figure 2. HDOT Standard Plans - HBIB Modified Type A-1 Flare, Sheet 2	4
Figure 3. HDOT Standard Plans - HBIB Modified Type A-1 Flare, Sheet 3	5
Figure 4. CIP Distance and Test Conditions, Test Level 3, Test Designation Nos. 3-37	11
Figure 5. Critical Impact Point Selection for MASH Test Designation 3-37 low MP [2]	12
Figure 6. Critical Impact Point Selection for MASH Test Designation 3-37 high M _P [2]	12
Figure 7. Critical Impact Point Selection for MASH Test Designation 3-37 low M _P [2]	13
Figure 8. Critical Impact Point Selection for MASH Test Designation 3-37 high M _P [2]	13
Figure 9. System Sections Based on System Stiffness and Post Spacing	16
Figure 10. Test Vehicle Photographs, Test No. HBIB-6	18
Figure 11. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-6	
Figure 12. Vehicle Dimensions, Test No. HBIB-6	
Figure 13. Test Vehicle Photographs, Test No. HBIB-7	21
Figure 14. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-7	22
Figure 15. Vehicle Dimensions, Test No. HBIB-7	
Figure 16. Test Vehicle Photographs, Test No. HBIB-8	
Figure 17. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-8	
Figure 18. Vehicle Dimensions, Test No. HBIB-8	
Figure 19. Test Vehicle Photographs, Test No. HBIB-10	27
Figure 20. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-10	28
Figure 21. Vehicle Dimensions, Test No. HBIB-10	
Figure 22. Test Vehicle Photographs, Test No. HBIB-9	30
Figure 23. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-9	31
Figure 24. Vehicle Dimensions, Test No. HBIB-9	
Figure 25. Target Geometry, Test No. HBIB-6	
Figure 26. Target Geometry, Test No. HBIB-7	
Figure 27. Target Geometry, Test No. HBIB-8	
Figure 28. Target Geometry, Test No. HBIB-10	
Figure 29. Target Geometry, Test No. HBIB-9	
Figure 30. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-6	
Figure 31. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-7	
Figure 32. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-8	
Figure 33. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-10	
Figure 34. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-9	45
Figure 35. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact	
Location, Test No. HBIB-6	49
Figure 36. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact	
Location, Test No. HBIB-7	50
Figure 37. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact	
Location, Test No. HBIB-8	51
Figure 38. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact	
Location, Test No. HBIB-10	52
Figure 39. Rubrail Termination Details, First Deviation Point, Test Nos. HBIB-6, HBIB-7,	<i></i> 2
HBIB-8, and HBIB-10Figure 40. Ground Cross Sections. Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	
rigure 40. Ground Cross Sections, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	54

Figure	41.	Post Nos. 1 through 38 Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-1055	5
Figure	42.	Post Location Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-1056	5
Figure	43.	Flare Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-1057	7
Figure	44.	Flare to Anchor Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 58	3
Figure	45.	Anchor Block Section View, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 59)
Figure	46.	End Section Installation Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	
_)
Figure	47.	Concrete Anchor Block Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	
			1
Figure	48.	Anchor Block Assembly, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 62	2
Figure	49.	Optional End Section Installation Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and	
	HB	8IB-10	3
Figure	50.	Optional Concrete Anchor Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-	
Ü			
Figure	51.	Optional Concrete Anchor Block Hardware, Test Nos. HBIB-6, HBIB-7, HBIB-8, and	d
		8IB-10	
Figure	52.	Splice Detail, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	5
Figure	53.	Post Components, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	7
Figure	54.	Tapered Blockout Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 68	3
Figure	55.	Concrete Anchor Block Insert Assembly, Test Nos. HBIB-6, HBIB-7, HBIB-8, and	
_		8IB-1069)
Figure	56.	Insert Component Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 70)
Figure	57.	Anchor Block Rebar Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 71	1
Figure	58.	Fascia Installation, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	2
Figure	59.	End Section Detail, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	3
Figure	60.	BCT Anchor Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-1074	1
Figure	61.	BCT Timber Post and Foundation Tube Details, Test Nos. HBIB-6, HBIB-7, HBIB-8,	,
	anc	f HBIB-1075	5
Figure	62.	Ground Strut Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	5
Figure	63.	BCT Anchor Cable, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	7
Figure	64.	Guardrail Section Details, Page 1, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10)
			3
Figure		Guardrail Section Details, Page 2, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	
Figure	66.	Guardrail Section Details, Page 3, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10)
	••••		
		Terminal Connector Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 81	
_		Hardware Details, Page 1, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 82	
_		Hardware Details, Page 2, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 83	
_		Bill of Materials, Page 1, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 84	
		Bill of Materials, Page 2, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 85	
		Bill of Materials, Page 3, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	
		Test Installation Photographs, Test No. HBIB-6	
		Test Installation Photographs, Test No. HBIB-6	
		Test Installation Photographs, System Anchorage, Test No. HBIB-6	
_		Target Impact Location, Test No. HBIB-6	
Figure	77	Sequential Photographs, Test No. HBIB-6	1

Figure 7	8. Sequential Photographs, Test No. HBIB-6	. 95
Figure 7	9. Documentary Photographs, Test No. HBIB-6	. 96
Figure 8	0. Vehicle Final Position and Trajectory Marks, Test No. HBIB-6	. 97
	1. System Damage, Test No. HBIB-6	
	2. System Damage, Test No. HBIB-6	
	3. Upper Rail and Rubrail Damage Test No. HBIB-6	
_	4. Post Damage Test No. HBIB-6	
	5. Post Damage, Post Nos. 26 (top left), 27 (bottom left), 28 (top right), and 29 (botto	
	ight), Test No. HBIB-6	
Figure 8	6. Post Damage, Post Nos. 30 through 33, Test No. HBIB-6	104
	7. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-6	
	8. Vehicle Damage, Test No. HBIB-6	
	9. Vehicle Damage, Test No. HBIB-6	
	0. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-6	
	1. Summary of Test Results and Sequential Photographs, Test No. HBIB-6	
	2. Target Impact Location, Test No. HBIB-7	
Figure 9	3. Sequential Photographs, Test No. HBIB-7	115
Figure 9	4. Sequential Photographs, Test No. HBIB-7	116
	5. Documentary Photographs, Test No. HBIB-7	
Figure 9	6. Vehicle Final Position and Trajectory Marks, Test No. HBIB-7	118
	7. Overall System Damage Test No. HBIB-7	
	8. System Damage Test No. HBIB-7	
	9. Upper Rail and Rubrail Damage Test No. HBIB-7	
Figure 1	00. Post Damage, Post Nos. 27 through 30, Test No. HBIB-7	123
Figure 1	01. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-7	124
Figure 1	02. Vehicle Damage, Test No. HBIB-7	125
Figure 1	03. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-7	
-	04. Summary of Test Results and Sequential Photographs, Test No. HBIB-7	
_	05. Target Impact Location, Test No. HBIB-8	
_	06. Sequential Photographs, Test No. HBIB-8	
_	07. Sequential Photographs, Test No. HBIB-8	
	08. Documentary Photographs, Test No. HBIB-8	
	09. Vehicle Final Position and Trajectory Marks, Test No. HBIB-8	
	10. System Damage, Test No. HBIB-8	
	11. Upper Rail and Rub rail Damage, Test No. HBIB-8	
Figure 1	12. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-8	140
	13. Vehicle Damage, Test No. HBIB-8	
-	14. Vehicle Damage, Test No. HBIB-8	
_	15. Vehicle Damage, Test No. HBIB-8	
Figure 1	16. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-8	
F. 1		
_	17. Summary of Test Results and Sequential Photographs, Test No. HBIB-8	
-	18. Target Impact Location, Test No. HBIB-10	
	19. Sequential Photographs, Test No. HBIB-10.	
	20. Sequential Photographs, Test No. HBIB-10	
Figure 1	21. Documentary Photographs, Test No. HBIB-10	1.54

Figure 122.	Documentary Photographs, Test No. HBIB-10	155
Figure 123.	Documentary Photographs, Test No. HBIB-10	156
Figure 124.	Vehicle Final Position and Trajectory Marks, Test No. HBIB-10	157
Figure 125.	System Damage, Test No. HBIB-10	159
Figure 126.	Upper Rail and Rub Rail Damage, Test No. HBIB-10	160
Figure 127.	Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-10	161
	Vehicle Damage, Test No. HBIB-10.	
	Vehicle Damage, Test No. HBIB-10.	
Figure 130.	Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-1	0
_	Summary of Test Results and Sequential Photographs, Test No. HBIB-10	
_	System Overview and Impact Location, Test No. HBIB-9	
_	Rubrail Termination Details, Deviation Point, Test No. HBIB-9	
-	Ground Cross Sections, Test No. HBIB-9	
	Post Nos. 1 through 38 Details, Test No. HBIB-9	
_	Post Location Layout, Test No. HBIB-9	
	Flare Details, Test No. HBIB-9	
	Flare to Anchor Details, Test No. HBIB-9	
	Anchor Block Section View, Test No. HBIB-9	
	End Section Installation Details, Test No. HBIB-9	
	Concrete Anchor Block Details, Test No. HBIB-9	
_	Anchor Block Assembly, Test No. HBIB-9	
	Anchor Block Details, Test No. HBIB-9	
Figure 144.	Anchor Cap with Rebar Details, Test No. HBIB-9	182
	Anchor Cap and Rebar Details, Test No. HBIB-9	
	Splice Detail, Test No. HBIB-9	
Figure 14/.	Post Components, Test No. HBIB-9	183 104
	Tapered Blockout Details, Test No. HBIB-9	
	Concrete Anchor Block Insert Assembly, Test No. HBIB-9 Insert Component Details, Test No. HBIB-9	
	Anchor Block Rebar Details, Test No. HBIB-9	
	Fascia Installation, Test No. HBIB-9	
	End Section Detail, Test No. HBIB-9	
_	BCT Anchor Details, Test No. HBIB-9	
	BCT Timber Post and Foundation Tube Details, Test No. HBIB-9	
	Ground Strut Details, Test No. HBIB-9	
_	BCT Anchor Cable, Test No. HBIB-9	
	Guardrail Section Details, Test No. HBIB-9	
	Guardrail Section Details, Cont., Test No. HBIB-9	
_	Guardrail Section Details, Cont., Test No. HBIB-9	
	Terminal Connector Details, Test No. HBIB-9	
	Hardware Details, Test No. HBIB-9	
	Hardware Details, Cont., Test No. HBIB-9	
	Bill of Materials, Test No. HBIB-9	
_	Bill of Materials, Cont., Test No. HBIB-9	
	Bill of Materials, Cont., Test No. HBIB-9	
		205

Figure 168.	Test Installation Photographs, Test No. HBIB-9	206
Figure 169.	Test Installation Photographs, Rubrail Termination and System Anchorage, Test 1	No.
		207
	Target Impact Location, Test No. HBIB-9	209
	Sequential Photographs, Test No. HBIB-9	
_	Sequential Photographs, Test No. HBIB-9	
_	Documentary Photographs, Test No. HBIB-9	
	Documentary Photographs, Test No. HBIB-9	
	Documentary Photographs, Test No. HBIB-9	
_	Vehicle Final Position and Trajectory Marks, Test No. HBIB-9	
	System Damage, Test No. HBIB-9	
	Upper Rail and Rub Rail Damage, Test No. HBIB-9	
	Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-9	
	Vehicle Damage, Test No. HBIB-9	
_		224
_	Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-9	
riguic 162.	Test venicle's interior roofboards and Onderearriage Damage, Test No. HBIB-2	
Figure 183		228
_	• • • • • • • • • • • • • • • • • • • •	238
	Midwest Roadside Safety Facility Scope of Accreditation to ISO/IEC 17025	
	Vehicle Mass Distribution, Test No. HBIB-6	
_	Vehicle Mass Distribution, Test No. HBIB-7	
_	Vehicle Mass Distribution, Test No. HBIB-8	
	Vehicle Mass Distribution, Test No. HBIB-10	
	Vehicle Mass Distribution, Test No. HBIB-9	
-	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-9 (Item Nos. a1, a4	
		r, 257
,	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item Nos. a1, a	
	7)	
	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item Nos. a1, a	
		, 258
	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a2)	
	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a2)	
	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a2)	
_	12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a7)	
_	W-Beam Terminal Connector, Test Nos. HBIB-6 through HBIB-10 (Item No. a8)	
riguic D-6.	-) 261
Figure D ₋ 0	12-gauge Bent W-Beam, Test Nos. HBIB-6 through HBIB-10 (Item No. a9)	
_	0. 12-gauge Bent W-Beam, Test Nos. HBIB-6 through HBIB-10 (Item No. a9)	
_	. Concrete Anchor Block, Test Nos. HBIB-6 through HBIB-10 (Item No. b1, k2)	
_	BCT Timber Post, Test Nos. HBIB-6 through HBIB-10 (Item No. c1)	
_	5. 72-in. Long Foundation Tube, Test Nos. HBIB-6 through HBIB-10 (Item No. c.)	
Tiguic D-13		
Figure D-14	72-in. Long Foundation Tube, Test Nos. HBIB-6 through HBIB-10 (Item No. c.	
•	· · · · · · · · · · · · · · · · · · ·	2) 266
	Ground Strut Assembly Test Nos HRIR-6 through HRIR-10 (Item No. c3)	

Figure		BCT Anchor Cable Assembly/IWRC Wire Rope, Test Nos. HBIB-6 through
		3-10 (Item No. c4)
	c5)	Ground Anchor Bracket Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No
Figure		Ground Anchor Bracket Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No. 268
Figure	D-19.	Ground Anchor Bracket Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No. 269
Figure		Anchor Bearing Plate, Test Nos. HBIB-6 through HBIB-10 (Item No. c6) 270
_		6-in. Long BCT Post Sleeve, Test Nos. HBIB-6 through HBIB-10 (Item No. c7)
Figure	D-22.	84-in. Long Steel Post, Test Nos. HBIB-6 through HBIB-10 (Item No. d1) 272
_		84-in. Long Steel Post, Test Nos. HBIB-6 through HBIB-10 (Item No. d1) 272
Figure	D-24.	72-in. Long Steel Post, Test Nos. HBIB-6 through HBIB-10 (Item No. d2) 273
Figure	D-25.	Composite Recycled Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d4)
Figure	D-26.	Composite Recycled Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d4)
Figure	D-27.	Composite Recycled Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d4)
Figure	D-28.	Steel Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d5)
Figure	D-29.	16D Double Head Nail, Test Nos. HBIB-6 through HBIB-10 (Item No. d6) 277
Figure	D-30.	Rebar, Test Nos. HBIB-6 through HBIB-10 (Item No. e1, e2, e3, e4, e5, e6, e7, e8)
Figure	D-31.	Rebar, Test Nos. HBIB-6 through HBIB-10 (Item No. e1, e2, e3, e4, e5, e6, e7, e8)
Figure	D-32.	10-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f1). 280
Figure	D-33.	10-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f1). 281
Figure	D-34.	5-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f2) 282
Figure	D-35.	5-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f2) 282
Figure	D-36.	2-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-8 (Item No. f3) 283
Figure	D-37.	2-in. Long Guardrail Bolt, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10
		No. f3)
Figure	D-38.	11/4-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f4) 285
Figure	D-39.	8-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f5) 286
Figure		2-in. Long Hex Head Bolt, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10
		No. f6)
_		10-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f7) 288
Figure	D-42.	1½-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f8) 289
Figure		³ / ₄ -in. Diameter, Unthreaded Spacer Sleeve, Test Nos. HBIB-6 through HBIB-10
		No. f9)
Figure		³ / ₄ -in. Diameter, Unthreaded Spacer Sleeve, Test Nos. HBIB-6 through HBIB-10 No. f9)
Figure		7/8-in. Dia. Plain Round Washer, Test Nos. HBIB-6 through HBIB-10 (Item No. g1)
Figure		5/8-in. Dia. Plain Round Washer, Test Nos. HBIB-6 through HBIB-10 (Item No. g2)

Figure D-47. 1-in. Dia. Plain Round Washer, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIE	3-10
	294
Figure D-48. %-in. Dia. UNC Heavy Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No	
h1)	
Figure D-49. 5%-in. Dia. Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h2)	296
Figure D-50. %-in. Dia. UNC Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h4)	297
Figure D-51. 78-in. Dia. UNC Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h4)	298
Figure E-1. Soil Strength, Initial Calibration Tests, Test Nos. HBIB-6 through HBIB-10	300
Figure E-2. Static Soil Test, Test No. HBIB-6	301
Figure E-3. Static Soil Test, Test No. HBIB-7	
Figure E-4. Static Soil Test, Test No. HBIB-8	303
Figure E-5. Static Soil Test, Test No. HBIB-9	305
Figure E-6. Static Soil Test, Test No. HBIB-10	304
Figure F-1. Floor Pan Deformation Data – Set 1, Test No. HBIB-6	307
Figure F-2. Floor Pan Deformation Data – Set 2, Test No. HBIB-6	308
Figure F-3. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-6	309
Figure F-4. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-6	310
Figure F-5. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-6.	311
Figure F-6. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-6	312
Figure F-7. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-6	313
Figure F-8. Floor Pan Deformation Data – Set 1, Test No. HBIB-7	
Figure F-9. Floor Pan Deformation Data – Set 2, Test No. HBIB-7	
Figure F-10. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-7	
Figure F-11. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-7	
Figure F-12. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-7	
Figure F-13. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-7	
Figure F-14. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-7	
Figure F-15. Floor Pan Deformation Data – Set 1, Test No. HBIB-8	
Figure F-16. Floor Pan Deformation Data – Set 2, Test No. HBIB-8	
Figure F-17. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-8	
Figure F-18. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-8	
Figure F-19. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-8	
Figure F-20. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-8	326
Figure F-21. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-8	
Figure F-22. Floor Pan Deformation Data – Set 1, Test No. HBIB-10	
Figure F-23. Floor Pan Deformation Data – Set 2, Test No. HBIB-10	
Figure F-24. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-10	
Figure F-25. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-10	
Figure F-26. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-1	
E' F 27 F . ' M 1' 1 C 1 AMAGO) F E . N. MDD 10	
Figure F-27. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-10	
Figure F-28. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-10	
Figure F-29. Floor Pan Deformation Data – Set 1, Test No. HBIB-9	
Figure F-30. Floor Pan Deformation Data – Set 2, Test No. HBIB-9	
Figure F-31. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-9	
Figure F-32. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-9	
-riguie r-55. Maximum Occupani Companineni Deformations DV Location. Test No. HBIB-9	ハハラソ

Figure F-34. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-9	340
Figure F-35. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-9	341
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-6	343
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-6	
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-6	344
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-6	
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-6	
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-6	
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-6	
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-6	
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-6	
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-6	
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-6	
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-6	
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-6	
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-6	
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-6	
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-6	
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-7	
Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-7	
Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-7	
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-7	
Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-7	
Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-7	
Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-7	
Figure H-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-7	
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-7	356
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-7	356
Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-7	357
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-7	357
Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-7	358
Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-7	358
Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-7	
Figure H-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-7	359
Figure I-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-8	361
Figure I-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-8	361
Figure I-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-8	362
Figure I-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-8	362
Figure I-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-8	363
Figure I-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-8	363
Figure I-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-8	364
Figure I-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-8	364
Figure I-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-8	
Figure I-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-8	
Figure I-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-8	
Figure I-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-8	
Figure I-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-8	

Figure I-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-8	. 367
Figure I-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-8	. 368
Figure I-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-8	. 368
Figure J-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-10	. 370
Figure J-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-10	. 370
Figure J-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-10	. 371
Figure J-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-10	. 371
Figure J-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-10	
Figure J-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-10	. 372
Figure J-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-10	. 373
Figure J-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-10	
Figure J-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-10	. 374
Figure J-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-10	. 374
Figure J-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-10	
Figure J-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-10	
Figure J-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-10	
Figure J-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-10	
Figure J-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-10	
Figure J-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-10	
Figure K-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-9	
Figure K-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-9	
Figure K-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-9	
Figure K-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-9	
Figure K-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-9	
Figure K-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-9	
Figure K-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-9	
Figure K-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-9	
Figure K-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-9	
Figure K-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-9	
Figure K-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-9	
Figure K-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-9	. 384
Figure K-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-9	
Figure K-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-9	
Figure K-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-9	
Figure K-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-9	. 386

LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions for Non-Gating End Terminals	6
Table 2. MASH Evaluation Criteria for Non-Gating End Terminals	7
Table 3. CIP Calculation and Locations for Different System Sections	14
Table 4. Surrogate Occupant Weight, Test Nos. HBIB-6 through HBIB-10	39
Table 5. Digital Video Camera Usage for Test Nos. HBIB-6 through HBIB-10	40
Table 6. Weather Conditions, Test No. HBIB-6	
Table 7. Sequential Description of Impact Events, Test No. HBIB-6	92
Table 8. Sequential Description of Impact Events, Test No. HBIB-6, Cont	93
Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-6	
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-6	110
Table 11. Weather Conditions, Test No. HBIB-7	
Table 12. Sequential Description of Impact Events, Test No. HBIB-7	114
Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-7	127
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-7	128
Table 15. Weather Conditions, Test No. HBIB-8	
Table 16. Sequential Description of Impact Events, Test No. HBIB-8	132
Table 17. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-8	146
Table 18. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-8	147
Table 19. Weather Conditions, Test No. HBIB-10	
Table 20. Sequential Description of Impact Events, Test No. HBIB-10	
Table 21. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-10	
Table 22. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-10	
Table 23. Weather Conditions, Test No. HBIB-9	
Table 24. Sequential Description of Impact Events, Test No. HBIB-9	
Table 25. Sequential Description of Impact Events, Test No. HBIB-9, Cont	
Table 26. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-9	
Table 27. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-9	
Table 28. Summary of Safety Performance Evaluation, Test Nos. HBIB-6, HBIB-7, HBIB-	-8, and
HBIB-10	
Table 29. Summary of Safety Performance Evaluation, Test No. HBIB-9	
Table D-1. Bill of Materials, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10	
Table D-2. Bill of Materials, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, Cont	
Table D-3. Bill of Materials, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, Cont	
Table D-4. Bill of Materials, Test No. HBIB-9	
Table D-5. Bill of Materials, Test No. HBIB-9, Cont.	
Table D-6. Bill of Materials, Test No. HBIB-9, Cont.	256

1 INTRODUCTION

1.1 Background

The Hawaii Department of Transportation (HDOT) utilizes a buried-in-backslope (BIB) guardrail end terminal referred to as the Modified Type A-1 flared BIB guardrail end terminal. The Hawaii buried-in-backslope (HBIB) system consists of a guardrail end terminal anchored into a reinforced concrete block that is inset into a roadside cut slope, continues with a flared, strongpost, W-beam guardrail system with a rubrail through a section of sloped roadside terrain, and then continues with a strong-post, W-beam guardrail system along the roadway shoulder. However, the crashworthiness of this system under current impact safety standards has not been fully demonstrated. A previous report examining the crashworthiness of the system found the initial system design insufficient, and modifications were made, which were sufficient for MASH TL-3 impact standards upon further testing [1]. In this report, the modified system from the prior report was further investigated under MASH TL-3 impact conditions. This report documents the full-scale crash testing conducted to evaluate the safety performance of the modified Type A-1 flare system with the American Association of State Highway and Transportation (AASHTO) *Manual for Assessing Safety Hardware* (MASH) [2].

Initially, HDOT provided four system configurations that varied the location of the end anchorage block. The four configurations were built-up options. Option 1 consisted of the least offset from the roadway and utilized a single flare rate, terminating in an anchor block. The flare rate of Option 1 was dependent on the design speed of the roadway. Option 2 utilized the same flared configuration as Option 1, but added an additional 7.4:1 flare rate before terminating the system. Options 3 and 4 added additional, steepening flare rates to the upstream end of the previous options. Of the four options, HDOT indicated that Option 1 was the most common (estimated 75%) and Option 2 was the second most common (20-25%). Few, if any, actual installations used Options 3 and 4. Thus, while Options 3 and 4 may be more severe, they may not be used in practice. Thus, the most severe configuration that is used in practice was Option 2. The system plans provided by HDOT are shown in Figures 1 through 3.

Although the Option 1 configuration was more common and was likely less severe for impacting vehicles in standard travel directions, the single-flare configuration was likely more severe for reverse-direction configurations. Dual-flare systems utilize a larger secondary flare, and the effective impact angle when departing the roadway decreases as the secondary flare rate increases. The single-flare configuration had a larger effective impact angle. Reverse-direction impacts may occur if the HBIB system is used in a trailing-end configuration or when the upstream end of the guardrail may be exposed to impacts from vehicles traveling in the opposite travel direction.

This system was crash-tested in test no. HBIB-1, which resulted in the system failing to meet Test Level 3 (TL-3) impact standards. The system failed the crash test due to excessive Occupant Ridedown Accelerations (ORA) and excessive deformation of vehicle components. The high ORA values were likely the result of snagging/pocketing from when the vehicle underrode the rubrail and snagged on the post flanges. The excessive deformation of the vehicle's A-pillar resulted from contact with the guardrail. Both issues could be resolved by lowering the height of the guardrail.

1.2 Objective

The objective of this research was to conduct full-scale crash testing of the HDOT buried-in-backslope system in the reverse direction according to TL-3 of MASH impact safety standards.

1.3 Scope

The research objective was performed through the completion of several tasks. An earlier report [1] discussed initial tasks, which involved a comprehensive literature review of the existing BIB roadside safety features, a crash test which did not meet MASH TL-3 requirements, design revisions to improve constructability and standardization, and four subsequently successful crash tests. System plans were developed using CAD, and a ditch with a 6:1 foreslope and 2:1 backslope was constructed to model a HDOT roadside ditch. The system was constructed and subjected to three full-scale crash tests in accordance with MASH test designation no. 3-37 with the small car and pickup truck in the reverse direction. The full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the HBIB guardrail, rubrail, and end anchorage.

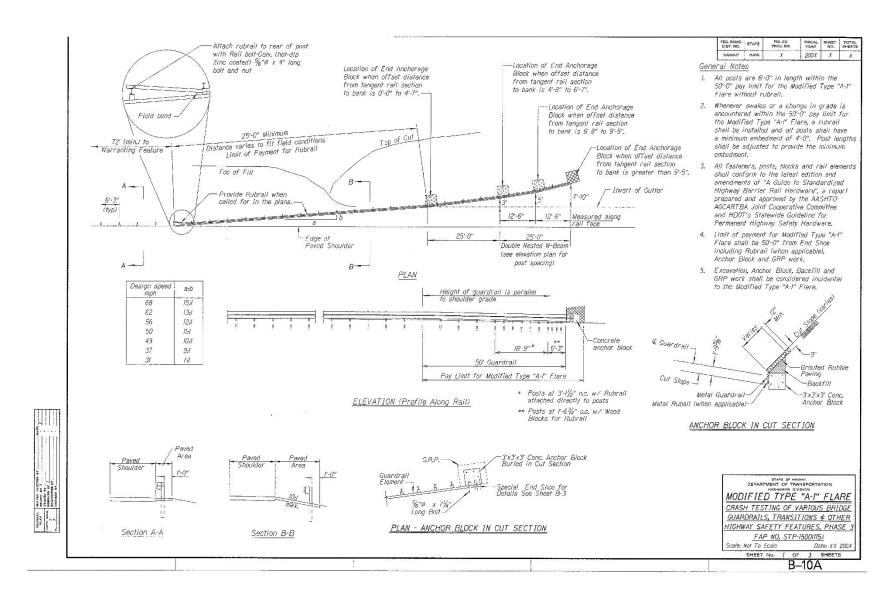


Figure 1. HDOT Standard Plans - HBIB Modified Type A-1 Flare, Sheet 1

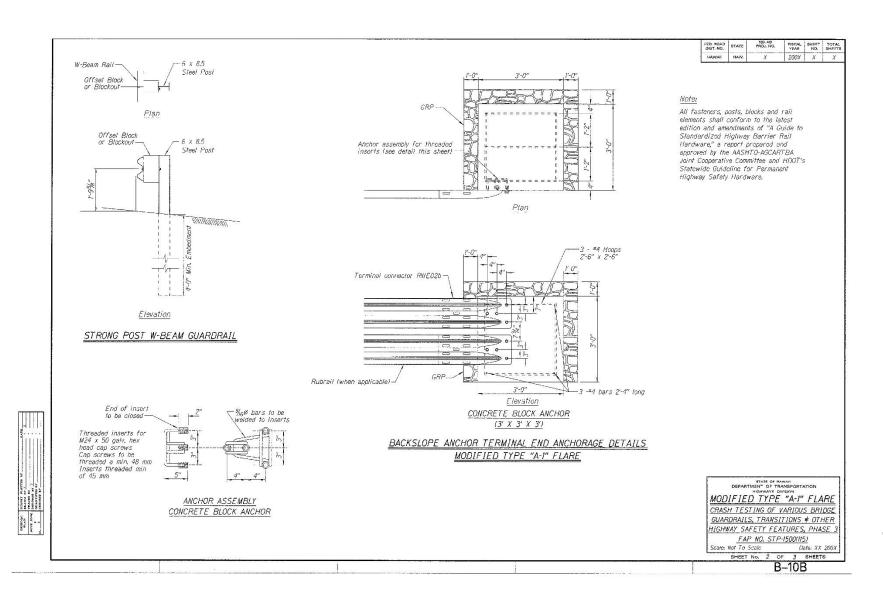


Figure 2. HDOT Standard Plans - HBIB Modified Type A-1 Flare, Sheet 2

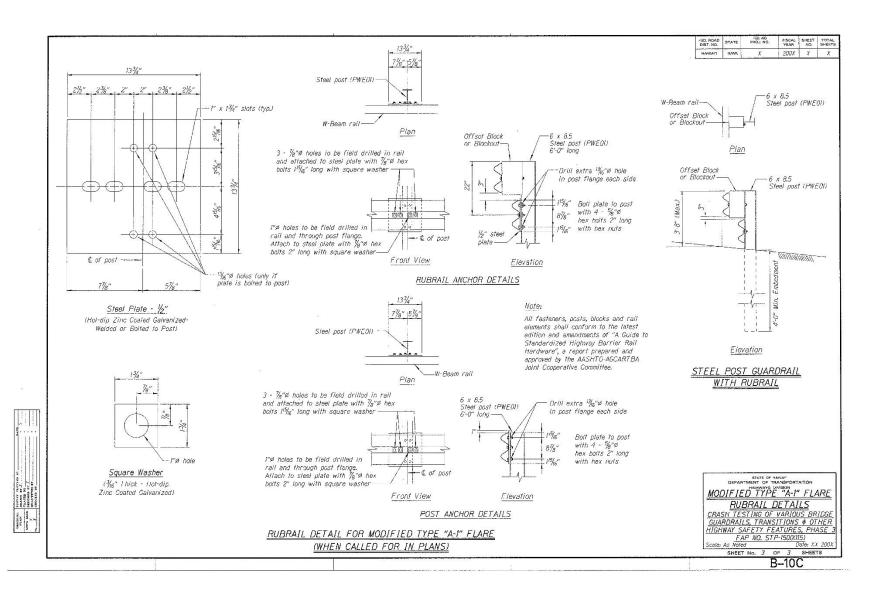


Figure 3. HDOT Standard Plans - HBIB Modified Type A-1 Flare, Sheet 3

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

End terminals, such as the HDOT BIB system, must satisfy impact safety standards to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System. For new hardware, these safety standards are the guidelines and procedures published in MASH. According to TL-3 of MASH, end terminals systems must be subjected to ten full-scale vehicle crash tests, as summarized in Table 1.

Table 1. MASH TL-3 Crash Test Conditions for Non-Gating End Terminals

Test Article	Test Designation No.	Test Vehicle	Vehicle Weight lb	Impact Conditions		Evaluation
				Speed mph	Angle deg.	Criteria ¹
	3-30	1100C	2,420	62	0	A,D,F,H,I
	3-31	2270P	5,000	62	0	A,D,F,H,I
	3-32	1100C	2,420	62	5-15	A,D,F,H,I
	3-33	2270P	5,000	62	5-15	A,D,F,H,I
Non- Gating	3-34	1100C	2,420	62	15	A,D,F,H,I
End Terminal	3-35	2270P	5,000	62	25	A,D,F,H,I
Terrimar	3-36	2270P	5,000	62	25	A,D,F,H,I
	3-37a	2270P	5,000	62	25	A,D,F,H,I
	3-37b	1100C	2,420	62	25	A,D,F,H,I
	3-38	1500A	3,300	62	0	A,D,F,H,I

¹ Evaluation criteria explained in Table 2

Ten full-scale crash tests are required to evaluate the HDOT BIB system, consisting of test designation nos. 3-32, 3-33, 3-34, 3-35, 3-37a and 3-37b in the standard direction of travel and test designation nos. 3-37a and 3-37b run in the reverse travel direction. Since the 0-degree impact angle was not practical for this installation, test designation nos. 3-30, 3-31, and 3-38 were not considered. Additionally, test designation nos. 3-36 is recommended for terminals directly attached to the stiff barrier, which was not applicable for this system. It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the guardrail transition system. However, these opinions may change in the future due to the development of new knowledge (crash testing, real-world performance, etc.) or changes to the evaluation criteria. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the longitudinal barrier to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH. The full-scale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH.

Table 2. MASH Evaluation Criteria for Non-Gating End Terminals

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	D.	Detached elements, fragments or other debris from the test article hould not penetrate or show potential for penetrating the occupant ompartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 deg.				
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 o MASH for calculation procedure) should satisfy the following limits				
Risk		Occupant In	npact Velocity Limit	ts		
		Component Preferred Maximum				
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
	Preferred	Maximum				
	Longitudinal and Lateral 15.0 g's 20.4					

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH.

2.3 Soil Strength Requirements

In accordance with MASH, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region using the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. If dynamic testing near the system is not desired, MASH permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH.

3 CRITICAL IMPACT POINT

3.1 Impact Conditions

Based on the most reliable data obtained from the reconstruction of passenger vehicle crashes on high-speed roadways [3-4], it was determined that an impact speed of 62 mph and an impact angle of 25 degrees closely represent the 85th percentile of real-world impact conditions for passenger vehicles. Additionally, recognizing that larger trucks have reduced cornering characteristics, the impact angle was 25 degrees. As a result, a comprehensive series of full-scale crash tests, encompassing scenarios with a 62-mph impact speed and impact angles of both 25 and 15 degrees, have been identified as essential to evaluate the crashworthiness of HDOT's BIB system.

The process of choosing the impact location in most full-scale crash tests is a key point to replicating critical conditions that are most likely to result in test failure. For end terminals and longitudinal barriers, the CIPs are selected to maximize the loading at specific areas such as rail splices, transition regions, and posts. These selections take into account the potential for wheel snag, vehicle pocketing, and rail rupture, which are significant factors of system failure.

The choice of CIPs may also be influenced by the system's height, which can affect the potential for vehicle override. It is essential to highlight that, in the case of post-and-beam type end terminals, the CIPs are specifically chosen to represent the point at which the system is expected to transition from gating to re-directive behavior. This transition point is a crucial aspect of assessing the performance of these safety systems.

The severity of an impact is normally measured in terms of impact severity factor (ISF) for tests involving vehicle redirection. The other factor is kinetic energy (KE) for crash tests involving end-on impact or breakaway devices. Basically, ISF is a suitable indicator of the magnitude of loading on the barrier systems, which is defined as:

$$ISF = \frac{1}{2} M(V sin(\theta))^2$$
 (3-1)

where, *ISF* is the impact severity (kJ). M, V, and θ are vehicle mass (kg), impact speed (m/s), and impact angle (degrees), respectively. The KE parameter is defined as:

$$KE = \frac{1}{2} MV^2 \tag{3-2}$$

where, *KE* is the kinetic energy (kJ or kips-ft). Note that for the head-on or end-on crash tests such as end terminals, the *KE* can be a better indicator of the impact severity. For full-scale crash tests, ISF values for tests involving vehicular redirection and KE values for high-speed crash tests, including end-on impacts, should be no more than 8 percent below the target values. Note that the ISF and KE values are calculated based upon the vehicle's inertia mass, excluding the mass of the surrogate occupant.

MASH Section 5.3 provides guidance for addressing geometric features. As the system tested in current research efforts included a ditch in front of the guardrail system for all of the evaluated impacts, criteria provided in MASH are outlined below and were addressed accordingly:

- (a) The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- (b) Compute average accelerations in the longitudinal and lateral directions for each consecutive 50-ms period for the duration of the event.
- (c) If the average longitudinal or lateral acceleration computed in Step b exceeds 2 g's during any 50-ms period, calculate the OIV and RA values at the beginning of the period over which the average acceleration was computed, and evaluate the results according to Criteria H and I of Table 5-1 B.

3.2 Critical Impact Point Location

Critical impact points (CIPs) are locations on the system where an impacting vehicle may experience localized critical behaviors. CIP examples include transitions of barrier stiffness, shape, or height, or where changes in the stiffness of the system could contribute to pocketing in the rail, high lateral or longitudinal accelerations, and snag on system components. Changes in the stiffness of a system may lead to localized pocketing or potential for a stiff component or a wheel of an impacting vehicle to snag and experience large forces. As a result, CIPs represent the locations on a barrier system that could maximize the risk of test failure.

MASH allows the selection of CIPs to be estimated analytically or determined using computer simulation programs such as BARRIER VII and LS-DYNA. The analytical procedure described in MASH estimates CIPs based on barrier stiffness parameters associated with posts, rail, and foundations. Parameters include post dynamic yield force per unit length of barrier, F_p , and the effective plastic moment of all barrier rail elements, M_p .

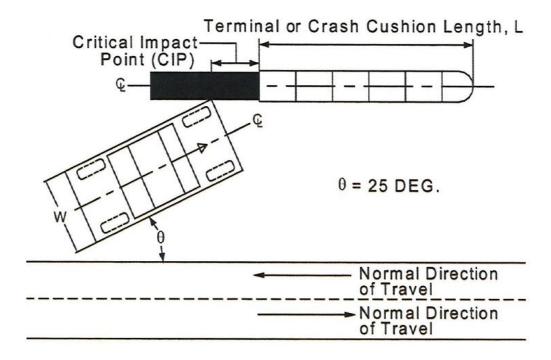
The post strength is calculated by the weaker of the two parameters: soil resistive forces and the plastic bending strength of the guardrail posts. The post strength per unit length of system, F_p , is determined by:

$$F_p = \frac{F_y}{S} \tag{3-3}$$

In which S is the post spacing on the system and F_y represents the dynamic yield force of a single post. The value for F_y is given by weaker of two calculations: the post plastic bending strength and the total soil force acting on the post at the height of the rail F_s . The soil contribution to posts depends on post size and embedment depth. Many scenarios involve posts with varying embedment depths, such as posts installed in ditches or on slopes. For these scenarios, the estimated contribution of soil force is provided in MASH using a baseline scenario of a W6x9 steel post embedded 40 in. in MASH strong soil:

$$F_s' = F_s \left(\frac{D_e'}{D_e}\right)^2 \tag{3-4}$$

in which F_s' and F_s denote soil dynamic yield force at the alternative embedment depth and soil dynamic yield force extracted from MASH table A-3, respectively. Likewise, the embedment depths of D_e' and D_e correspond to the embedment depth of the post contribution being estimated


and the nominal embedment depth of 40 in., using data provided in MASH table A-3. It should be noted that the values of F_s' can be determined by the bogie testing, which is usually conducted before a full-scale crash test.

The effective plastic moment of a multiple rail system is the sum of the plastic moment of the highest beam and the plastic moments of lower beams reduced by a ratio of the heights of the highest and lowest rail elements:

$$M_p = M_h + \sum M_i \frac{H_i}{H_h} \tag{3-5}$$

Where M_h and M_i are, respectively, the plastic moment of highest rail element above ground or deck, and the plastic moment of a lower barrier rail element. H_i and H_h represent height of a lower rail element and height of the highest rail element, respectively. It is worth mentioning that for the systems in which rails are constructed by nested W- or thrie-beam, the M_p of system components should be multiplied by appropriate scale factors (e.g., 2.0) to represent the total effective plastic moment capacity.

After calculating the values for F_p and M_p , the location of the CIP can be defined using the figures provided in MASH. The location of the CIP is defined by the distance x from the length-of-need portion of post-and-beam type barrier system. The x distance is shown in Figures 4 and a summary of recommended CIP offsets from critical barrier features provided in MASH is shown in Figures 5 through 8.

TEST 37 (FOR ROADSIDE DEVICE)

Figure 4. CIP Distance and Test Conditions, Test Level 3, Test Designation Nos. 3-37

Critical Impact Point for Test 10, Test Levels 3, 4, 5, 6

Figure 5. Critical Impact Point Selection for MASH Test Designation 3-37 low MP [2]

Critical Impact Point for Test 10, Test Levels 3, 4, 5, 6

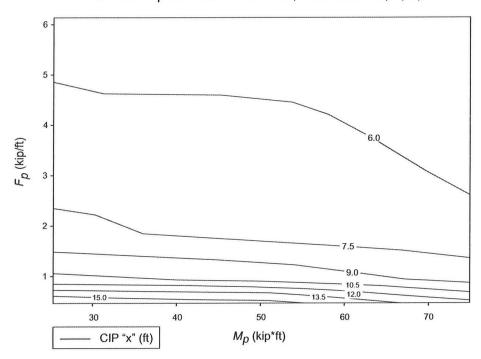


Figure 6. Critical Impact Point Selection for MASH Test Designation 3-37 high M_P [2]

Critical Impact Point for Test 11, Test Levels 3, 4, 5, 6

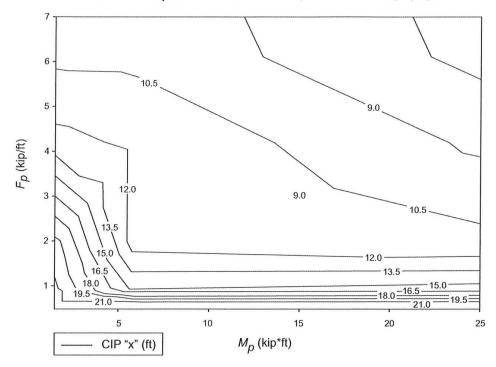


Figure 7. Critical Impact Point Selection for MASH Test Designation 3-37 low M_P [2]

Critical Impact Point for Test 11, Test Levels 3, 4, 5, 6

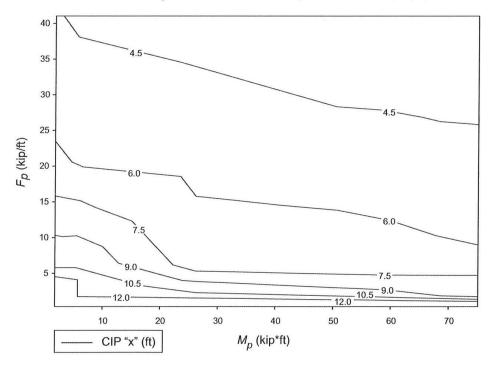


Figure 8. Critical Impact Point Selection for MASH Test Designation 3-37 high M_P [2]

3.3 CIP Selection for HBIB System

A detailed calculation of different CIPs identified for the HBIB system are reported in Appendix B. A total of four CIPs were prioritized for the standard traffic direction, and four CIPs were identified for the reverse-direction impacts. The CIPs are summarized in Table 3 and denoted by "X." The final locations of the impact points are shown in Figures 35 through 38 (Chapter 5).

Posts used in the HBIB system were common W6x8.5 steel posts. The average force per unit length at different locations in the HBIB system was calculated using post spacings that varied from 6 ft -3 in. (full post spacing) to $18\frac{3}{4}$ in. (quarter post spacing), with a post plastic section modulus of 6.3 in.³ and an estimated yield stress of 36 ksi. A dynamic magnification factor of 1.5 was used to estimate dynamic rate effects on post stiffness. The stiffness of a single W-beam rail for standard MGS was 8 kip-ft. Splice locations, the point at which two W-beams are lapped together, were treated as double the stiffness of the standard W-beam rail (e.g., 16 kip-ft). Likewise, nested W-beam was also treated as two W-beam rails, and the nested splice of the W-beam was treated as four separate W-beam rails with a net stiffness of 32 kip-ft. The upstream anchor block was assumed to be rigid (i.e., have infinite stiffness).

Table 3. CIP Calculation and Locations for Different System Sections

	Section 1*	Section 2	Section 3	Section 4	Section 5	Section 6
Fp (kips)	9.34	3.99	3.99	2.00	1.98	1.98
Fs' (kips)	14.88	12.48	12.48	12.48	12.40	12.40
Mp (kip.ft)	25.30	26.40	13.20	13.20	12.10	8.00
X (ft) 3-10	4.20	6.64	8.29	8.29	8.27	8.18
X (ft) 3-11	7.00	8.91	10.69	11.81	11.89	11.89

^{*}All the sections are shown in Figure 9. See the following description for each section:

Section 1: post nos. 1 through 4 - system has nested rails and rubrails and quarter post spacing (18.8 in.)

Section 2: post nos. 4 through 6 - system has nested rails and rubrails and half post spacing (37½ in.)

Section 3: from post nos. 6 through 10 - system has both upper rail and rubrail at half post spacing (37 ½ in.)

Section 4: from post nos. 10 through 23 - system has upper rail and rubrail using full post spacing at Highest Height over Ditch (75 in.)

Section 5: from post nos. 23 through 29 - system has upper rail and rubrail using full post spacing (75 in.)

Section 6: from post nos. 29 through 40 - system is consistent with standard, tangent MGS with full post spacing (75 in.)

The following concerns and parameters were considered during the detection of the CIPs to evaluate downstream performance of the system using MASH Figures 2-8 and 2-11:

- Maximum clearance between the lower corrugation of the rubrail and the terrain (maximum risk of underride) near the center of the V-ditch;
- Maximized potential for the small car to underride the system using results of 15and 25-degree trajectories into V-ditches described by Mongiardini [5];
- Maximized potential for the pickup truck to override the system using results of 25degree trajectories into V-ditches described by Mongiardini; and
- The system transition from the first flare (13:1) into second flare (7.4:1), which occurred at post no. 10.

This report addresses the reverse-direction testing of the HBIB system. Using the guidelines provided above, two primary reference points were selected for reverse-direction impact. The first was the downstream end of the rubrail which was attached to the back side of post no. 29. The reverse-direction impacts toward the rubrail used a modified, reduced-strength CIP estimate for standard MGS spacing to accommodate the bend in the W-beam and loss of moment capacity across the "knee".

The second reverse-direction impact reference point was selected as the reinforced concrete anchor block in the system. During evaluation of the standard-direction impacts, the anchor block was weakly reinforced with respect to the ditch soil using W-section steel posts on the upstream and back faces. Despite these post reinforcements, the anchor block experienced significant longitudinal movement during test nos. HBIB-3 and HBIB-5. For reverse-direction tests, a more robust ground anchorage system was developed by placing a reinforced concrete shaft below the anchor block to a depth of 10 ft. This condition was believed to simulate a completely rigid anchor and would be the most severe for reverse-direction impacts.

Nonetheless, the anchor block was installed on a flare. To account for the reduced impact angle, the research team used a ratio of the effective impact angle in the reverse direction divided by the nominal MASH impact angle of 25 degrees, and multiplied that factor by the calculated value for "X" for both the 2270P and 1100C using Table 3 and MASH Figures 2-8 and 2-11.

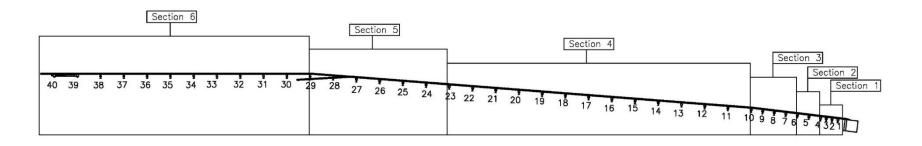


Figure 9. System Sections Based on System Stiffness and Post Spacing

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [6] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The 3/8-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. HBIB-6, a 2018 Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,304 lb, 5,061 lb, and 5,222 lb, respectively. The test vehicle is shown in Figures 10 and 11, and vehicle dimensions are shown in Figure 12. Note, the impact side of the vehicle, or the passenger's side, is referred to as the vehicle's right side throughout this report. The non-impact side, or driver's side, is referred to as the vehicle's left side.

For test no. HBIB-7, a 2018 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,467 lb, 2,419 lb, and 2,577 lb, respectively. The test vehicle is shown in Figures 13 and 14, and vehicle dimensions are shown in Figure 15.

For test no. HBIB-8, a 2018 Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,126 lb, 5,000 lb, and 5,162 lb, respectively. The test vehicle is shown in Figures 16 and 17, and vehicle dimensions are shown in Figure 18.

For test no. HBIB-10, a 2019 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,517 lb, 2,421 lb, and 2,585 lb, respectively. The test vehicle is shown in Figures 19 and 20, and vehicle dimensions are shown in Figure 21.

For test no. HBIB-9, a 2018 Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,983 lb, 5,000 lb, and 4,997 lb, respectively. The test vehicle is shown in Figures 22 and 23, and vehicle dimensions are shown in Figure 24.

Figure 10. Test Vehicle Photographs, Test No. HBIB-6

Figure 11. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-6

			Test Na	me: HB	IB-6	VIN No:	3C6RR6K	Γ6JG186123
Model Year:	2018		M	ake: R/	AM	Model:	1	500
Tire Size:	265/70/R	217	Tire Inflation Press	ure: 40	psi	Odometer:	Unk	nown
						Vehicle Geometry Target Ranges listed belo		
A H	M	•		N N	Ţ	A: 78 5/16 1989 78±2 (1950±50) C: 229 3/8 5826 237±13 (6020±32) E: 140 5/8 3571 148±12 (3760±30) G: 28 7/16 722 min: 28 (7/10)	1/8 D: 4 5) 7/8 F: 4	2 3/4 1085 17/20 39±3 (1000±75) 6 1168 2/5
	1 - 1		Test Inertial CG			- (- ,	1/5 J: 2	
P	-Q				В 	K: 20 3/4 527	1/20 L: 2	9 7/16 747 57/80
		•			_ †	M: 67 1/4 1708 67±1.5 (1700±38	,	, ,
			G S		ĸ l	O: 44 1/4 1123 43±4 (1100±75)	<u>19/20</u> P: <u>4</u>	1 1/4 107 19/20
-	_ D	-H	E	F		Q: 30 7/8 784	9/40 R: 1	8 3/8 466 29/40
-			- C	-		S: 14 7/8 377	33/40 T: <u>7</u>	9 3/16 2011 29/80
Mass Distribu	ıtion - Ih (ka)					U (imp	act width): 3	6 1/4 920 3/4
Gross Static	, 0,	(664) RF (507) RR	1532 (695) 1109 (503)			He W He	theel Center ight (Front): 1 theel Center eight (Rear): 1 Wheel Well	5 3/8 390 21/40
Weights lb (kg)	Cui	rb	Test Inertial	Gross	Static	Clear	nce (Front): 3 Wheel Well ance (Rear): 3	
W-front	2950	(1338)	2898 (1315)	2995	(1359)	He	ttom Frame ight (Front): <u>1</u>	8 1/4 463 11/20
W-rear	2354	(1068)	2163 (981)	2227	(1010)		ttom Frame eight (Rear): 2	5 7/8 657 9/40
W-total	5304	(2406)	5061 (2296) 5000±110 (2270±50)	5222	(2369) (2343±50)	En	gine Type:	Gasoline
			JUUUI 110 (22/UIJU)	3103±110	(2040100)	Er	gine Size:	5.7L V8
GVWR Rating	ıs - Ib		Surrogate Occupan	t Data		Transmis	sion Type:	Automatic
Front	3700		Туре:	Hybric	<u> </u>	С	rive Type:	RWD
Rear	3900		Mass:				Cab Style:	
Total	6800	tail	•	prevelent on h	ood and ro	oof of vehicle. Numero		• • •
Note an	tailgate near handle. Dent along upper part of bed on passenger side, along with deep scratch above Note any damage prior to test: rear passenger side wheel-well. Dent above rear passenger side door handle.							

Figure 12. Vehicle Dimensions, Test No. HBIB-6

Figure 13. Test Vehicle Photographs, Test No. HBIB-7 21

Figure 14. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-7

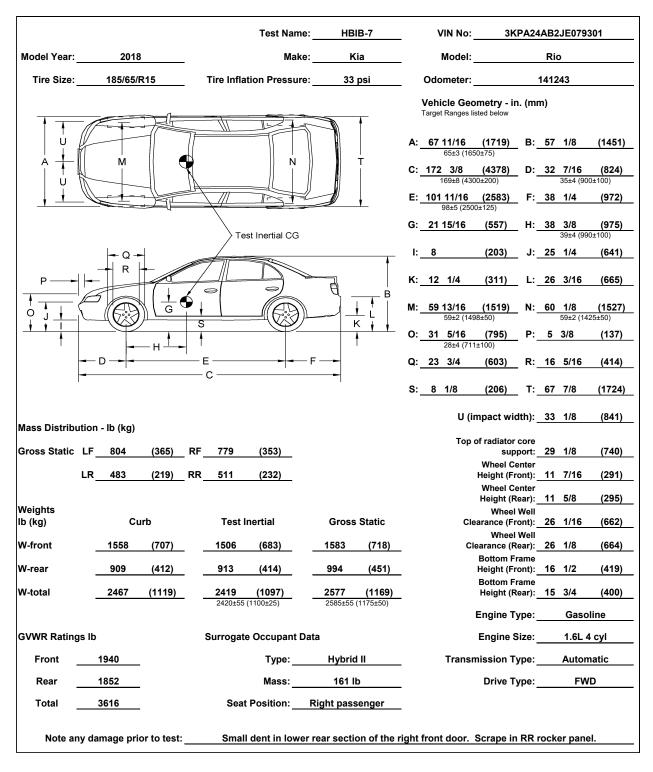


Figure 15. Vehicle Dimensions, Test No. HBIB-7

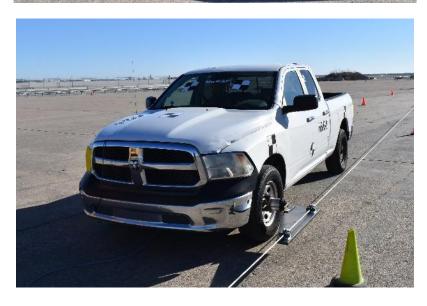


Figure 16. Test Vehicle Photographs, Test No. HBIB-8

Figure 17. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-8

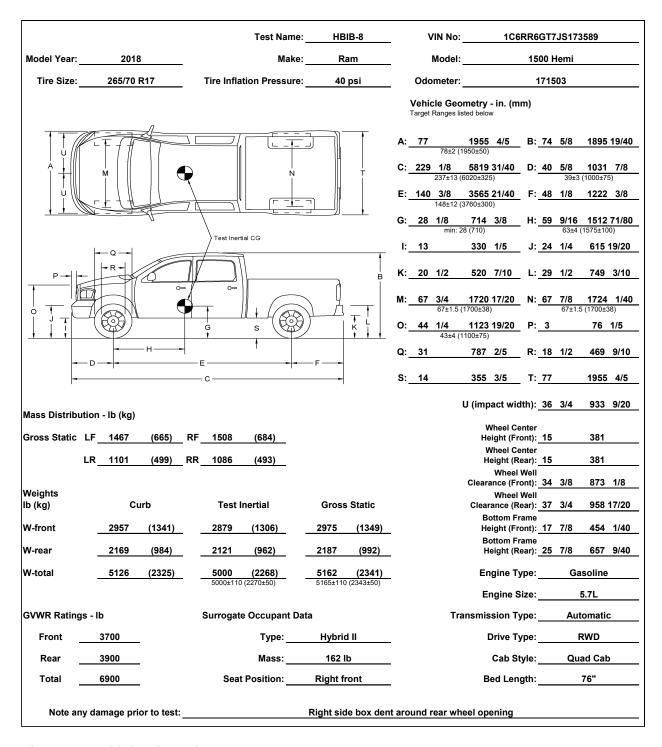


Figure 18. Vehicle Dimensions, Test No. HBIB-8

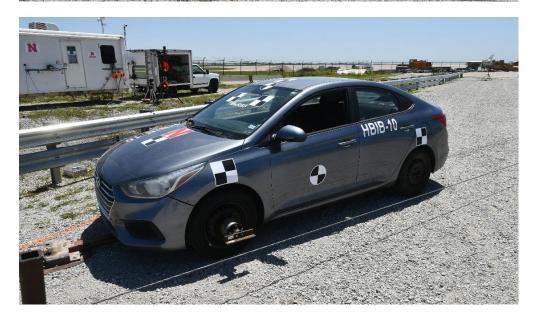


Figure 19. Test Vehicle Photographs, Test No. HBIB-10

Figure 20. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-10

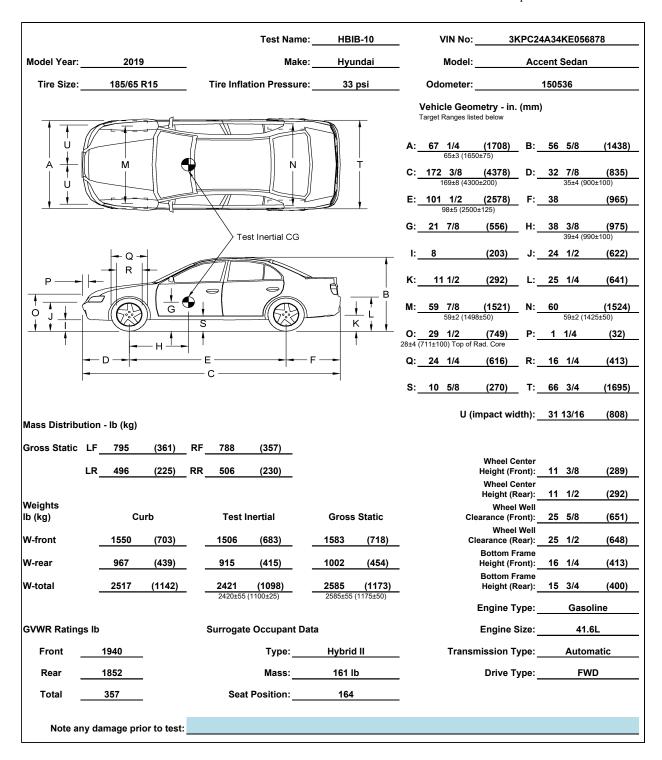


Figure 21. Vehicle Dimensions, Test No. HBIB-10

Figure 22. Test Vehicle Photographs, Test No. HBIB-9

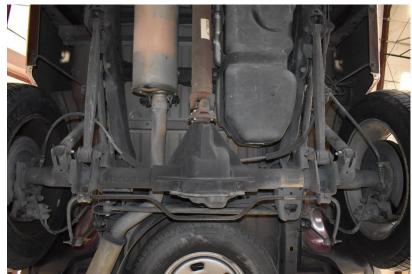


Figure 23. Test Vehicle Interior Floorboards and Undercarriage, Test No. HBIB-9

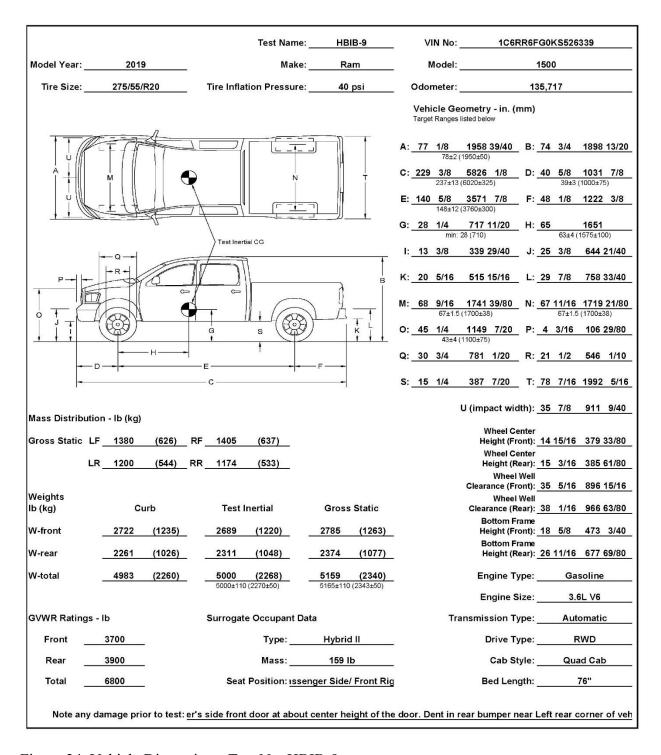


Figure 24. Vehicle Dimensions, Test No. HBIB-9

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [7] was used to determine the vertical component of the c.g. for the 2270P vehicles. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicles were suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicles was determined utilizing a procedure published by SAE [8]. The location of the final c.g. for the test vehicles for test nos. HBIB-6 through HBIB-10 are shown in Figures 25 through 29. Data used to calculate the locations of the vehicles' c.g. and ballast information for the vehicles are shown in Appendix C.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 25 through 29. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under each vehicle's windshield wiper. The flash bulb was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicles so the vehicle could be brought safely to a stop after the test.

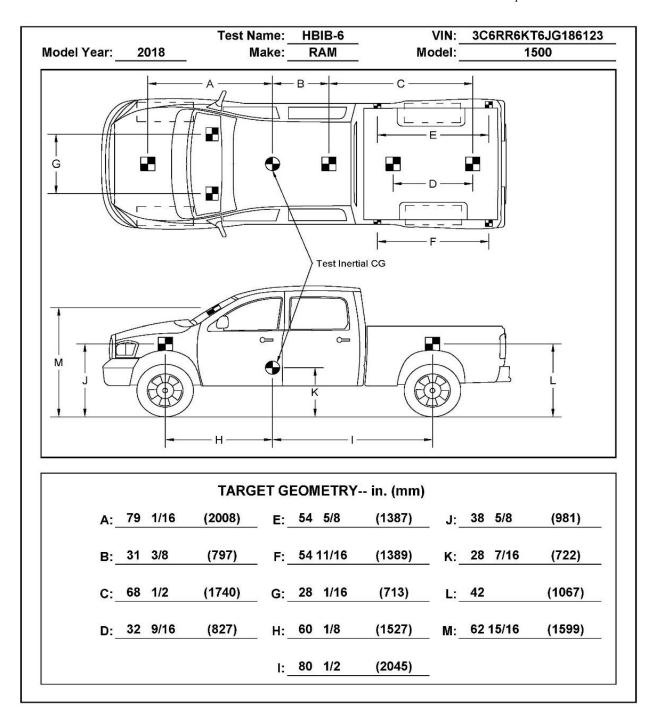


Figure 25. Target Geometry, Test No. HBIB-6

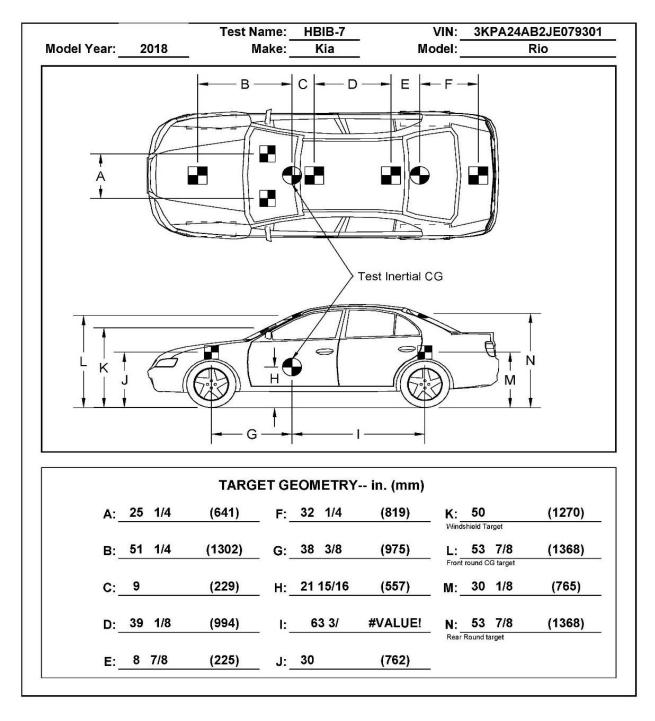


Figure 26. Target Geometry, Test No. HBIB-7

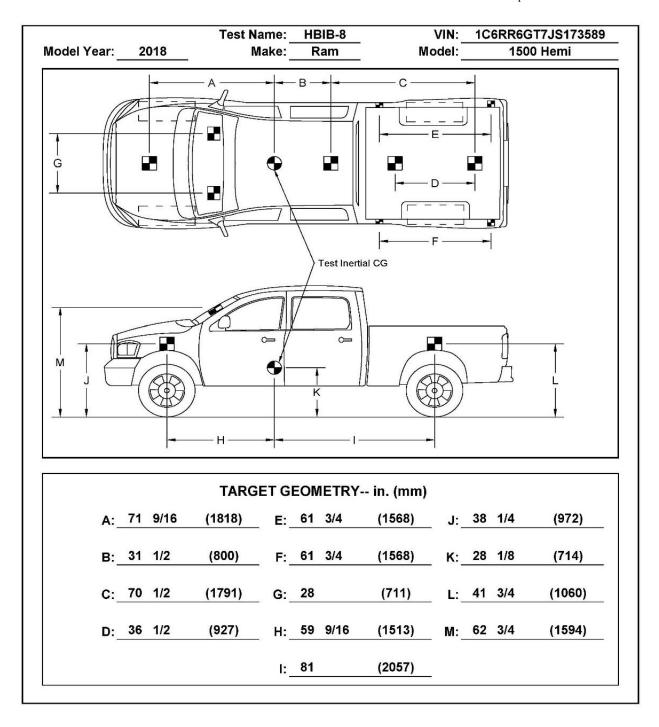


Figure 27. Target Geometry, Test No. HBIB-8

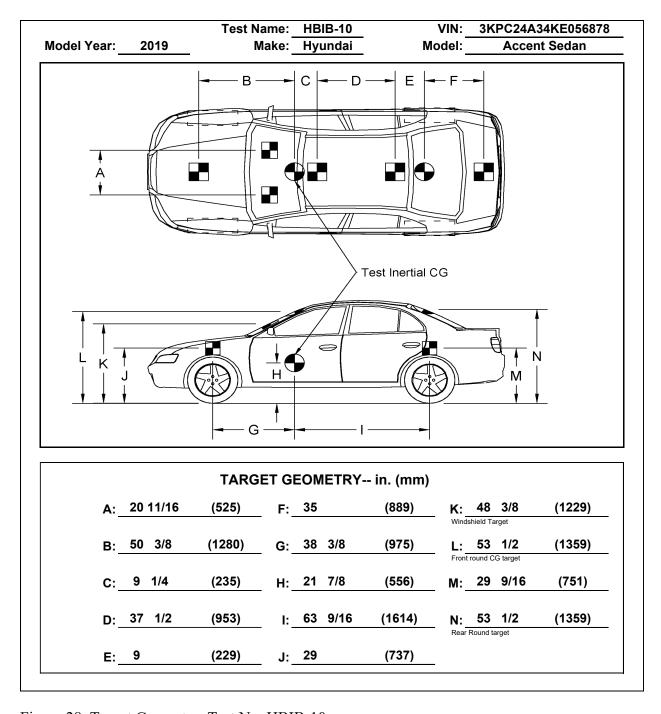


Figure 28. Target Geometry, Test No. HBIB-10

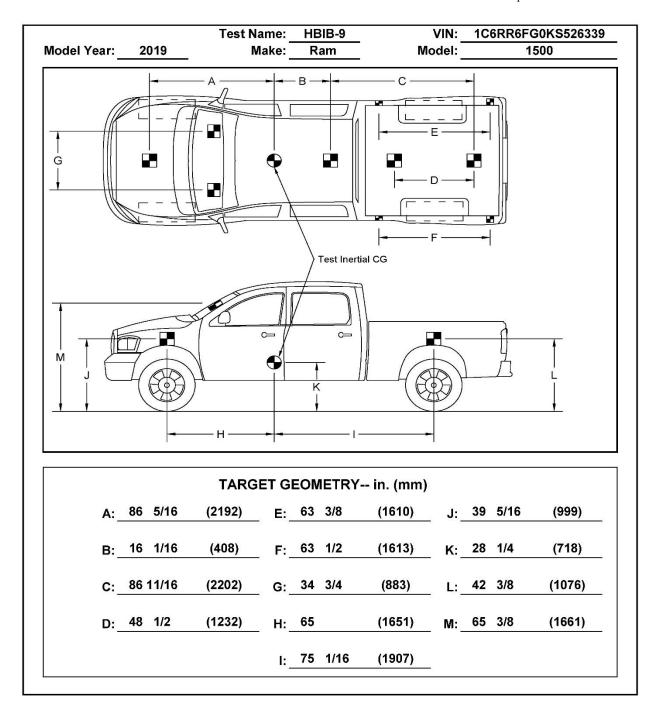


Figure 29. Target Geometry, Test No. HBIB-9

4.4 Surrogate Occupant

For test nos. HBIB-6 through HBIB-10, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front seat of the test vehicles with the seat belt fastened. The surrogate occupants' final weights for each test are detailed in Table 4. As recommended by MASH, the surrogate occupant was not included in calculating the c.g. location for any of the tests.

Test No.	Weight lb
HBIB-6	160
HBIB-7	161
HBIB-8	162
HBIB-10	161
HRIR-9	159

Table 4. Surrogate Occupant Weight, Test Nos. HBIB-6 through HBIB-10

4.5 Data Acquisition

4.5.1 Accelerometers

The accelerometer and rate transducer systems used in the full-scale crash testing were the SLICE-1 and SLICE-2, units described below. Units were positioned near the c.g. of the test vehicle and the SLICE-1 unit was designated as primary for test nos. HBIB-7 and HBIB-10. The SLICE-2 unit was designated as primary for test nos. HBIB-8, and HBIB-9. Data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAEJ211/1 specifications [9].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. Triaxial acceleration and angular rate sensor modules were mounted inside the bodies of custom-built SLICE 6DX event data recorders equipped with 7GB of non-volatile flash memory and recorded data at 10,000 Hz to the onboard microprocessor. The accelerometers had a range of ±500g's in each of three directions (longitudinal, lateral, and vertical) and a 1,650 Hz (CFC 1000) anti-aliasing filter. The SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of three directions (roll, pitch, and yaw). The raw angular rate measurements were downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot both the accelerometer and angular rate sensor data.

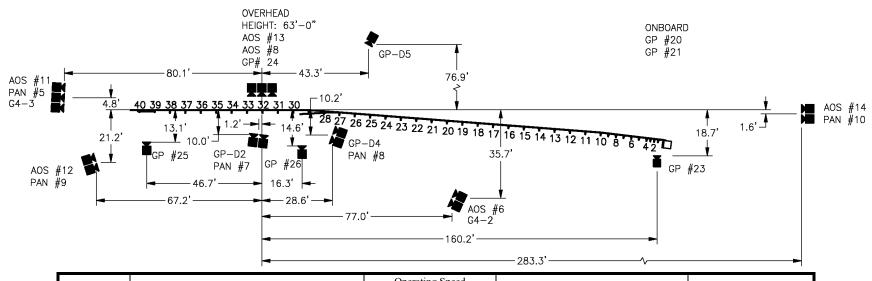
4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. Each

SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

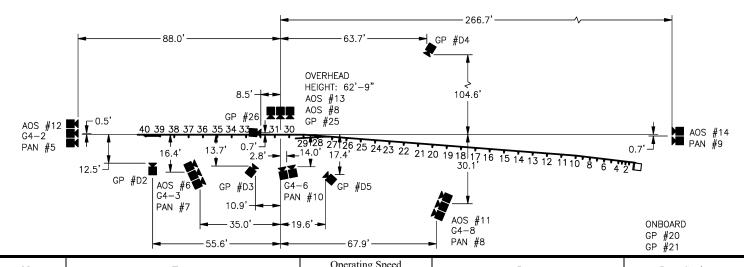
A retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the sides of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from electronic data.


4.5.4 Digital Photography

AOS high-speed digital video cameras, GoPro digital video cameras, Panasonic digital video cameras, and Ubiquiti digital video cameras were used to film test nos. HBIB-6 through HBIB-10, as summarized in Table 5. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 30 through 34.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and post-test conditions for the tests.

Table 5. Digital	Video Camera U	sage for Test N	os. HBIB-6 through H	BIB-10


Test No.	Detailed Information	Number of Cameras				
		AOS	GoPro	Panasonic	Ubiquiti	
HBIB-6	Figure 30	6	9	4	2	
HBIB-7	Figure 31	6	8	5	4	
HBIB-8	Figure 32	5	8	3	4	
HBIB-10	Figure 33	6	7	4	1	
HBIB-9	Figure 34	5	7	5	2	

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-6	AOS J-PRI	500	Kowa 25 mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Kowa 12 mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 24-135	35
AOS-12	AOS J-PRI	500	Sigma 17-50	21
AOS-13	AOS J-PRI	500	Canon EF 14 mm Fixed	-
AOS-14	AOS J-PRI	500	Canon 24-70	70
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
GP-23*	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
GP-25	GoPro Hero 10	240		
GP-26	GoPro Hero 10	240		
GP-D2	GoPro Hero 10	240		
GP-D4	GoPro Hero 10	240		
GP-D5	GoPro Hero 10	240		
PAN-7*	Panasonic HC-VX981	120		
PAN-8	Panasonic HC-VX981	120		
PAN-9	Panasonic HC-VX981	120		
PAN-10	Panasonic HC-VX981	120		
G4-2	Ubiquiti G4 Plus	24		
G4-3	Ubiquiti G4 Plus	24		

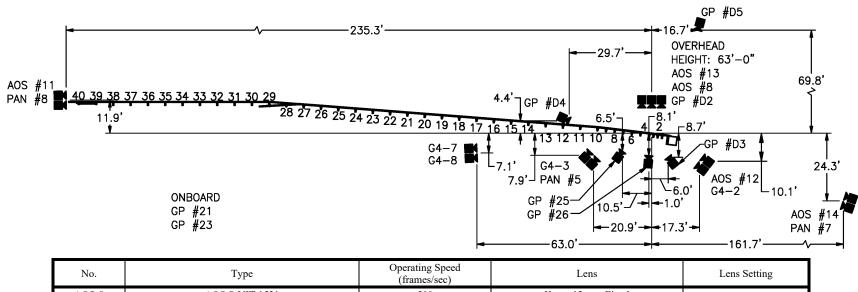

^{*}Camera did not record impact event due to technical difficulties.

Figure 30. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-6

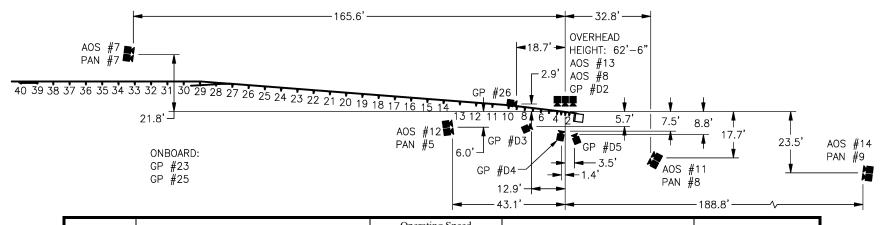

No.	Туре	(frames/sec)	Lens	Lens Setting
AOS-6	AOS J-PRI	500	Fujinon 35 mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Kowa 12 mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 24-135	50
AOS-12	AOS J-PRI	500	Sigma 17-50	35
AOS-13	AOS J-PRI	500	Canon EF 14 mm Fixed	-
AOS-14	AOS J-PRI	500	Canon 24-70	70
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
GP-25	GoPro Hero 10	240		
GP-26	GoPro Hero 10	240		
GP-D2	GoPro Hero 10	240		
GP-D3	GoPro Hero 10	240		
GP-D4	GoPro Hero 10	240		
GP-D5	GoPro Hero 10	240		
PAN-5	Panasonic HC-VX981	120		
PAN-7	Panasonic HC-VX981	120		
PAN-8	Panasonic HC-VX981	120		
PAN-9	Panasonic HC-VX981	120		
PAN-10	Panasonic HC-VX981	120		
G4-2	Ubiquiti G4 Plus	24		
G4-3	Ubiquiti G4 Plus	24		
G4-7	Ubiquiti G4 Plus	24		
G4-8	Ubiquiti G4 Plus	24		

Figure 31. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-7

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-8	AOS S-VIT 1531	500	Kowa 12 mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 24-135	35
AOS-12	AOS J-PRI	500	Sigma 17-50	17
AOS-13	AOS J-PRI	500	Canon EF 14 mm Fixed	-
AOS-14	AOS J-PRI	500	Canon 24-70	70
GP-21	GoPro Hero 6	240		
GP-23	GoPro Hero 7	240		
GP-25	GoPro Hero 10	240		
GP-26	GoPro Hero 10	240		
GP-D2	GoPro Hero 10	240		
GP-D3	GoPro Hero 7	240		
GP-D4	GoPro Hero 7	240		
GP-D5	GoPro Hero 7	240		
PAN-5	Panasonic HC-VX981	120		
PAN-7	Panasonic HC-VX981	120		
PAN-8	Panasonic HC-VX981	120		
G4-2	Ubiquiti G4 Plus	24		
G4-3	Ubiquiti G4 Plus	24		
G4-7	Ubiquiti G4 Plus	24		
G4-8	Ubiquiti G4 Plus	24		

Figure 32. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-8

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-7	AOS X-PRI	500	Sigma 28-70	70
AOS-8	AOS S-VIT 1531	500	Kowa 12 mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 24-135	24
AOS-12	AOS J-PRI	500	Sigma 17-50	50
AOS-13	AOS J-PRI	500	Canon EF 14 mm Fixed	-
AOS-14	AOS J-PRI	500	Canon EF 24-70	70
GP-23	GoPro Hero 7	240		
GP-25*	GoPro Hero 10	60		
GP-26	GoPro Hero 10	240		
GP-D2	GoPro Hero 10	240		
GP- D3	GoPro Hero 10	240		
GP- D4	GoPro Hero 10	240		
GP- D5	GoPro Hero 10	240		
PAN-5	Panasonic HC-VX981	120		
PAN-7	Panasonic HC-VX981	120		
PAN-8	Panasonic HC-VX981	120		
PAN-9	Panasonic HC-VX981	120		
PAN-10	Panasonic HC-VX981	120		

^{*}Camera did not record impact event due to technical difficulties.

Figure 33. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-10

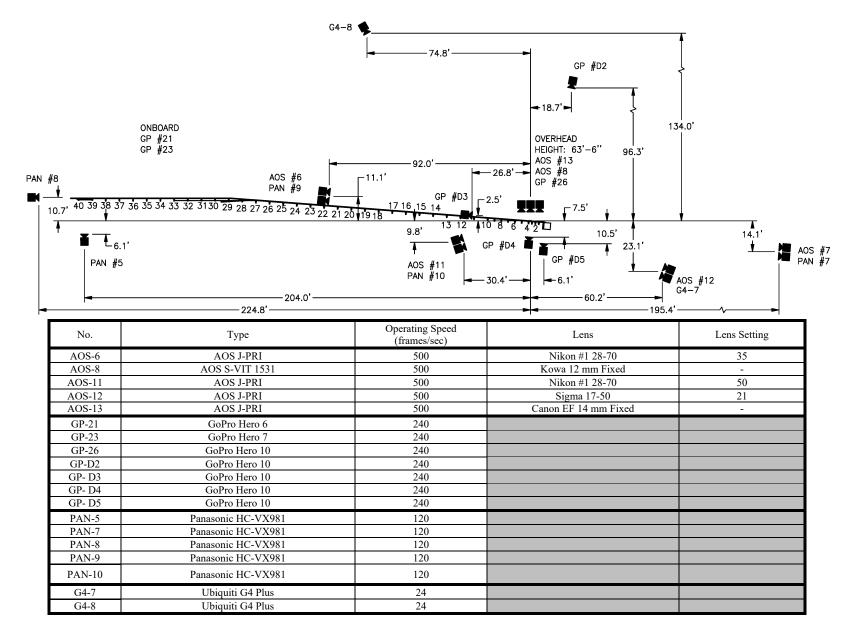


Figure 34. Camera Locations, Speeds, and Lens Settings, Test No. HBIB-9

5 DESIGN DETAILS: TWO-FLARE DESIGN

5.1 HDOT Design Modifications and Revisions

The HDOT BIB system was very similar to the as-tested configuration from full-scale testing in the literature conducted in the previous report [1]. Systems tested under criteria established in NCHRP Report No. 350 had a top rail height of 27¾ in.; however, the top rail height of the MGS installation was 31 in. The original modification to the HDOT system for MGS involved increasing the post length from 6 ft to 7 ft throughout the ditch region where the post embedment of a 6-ft long post would be less than 30 in. This design was insufficient for TL-3 impact conditions with a small car and required further modification. An excessively tall system with respect to the impacting small car was identified as the primary issue, and so the height of the top of the rail was maintained at a constant height above the ditch, such that the top of the back side of the post along the centerline was approximately 43¾ in. between post nos. 8 and 17. Lastly, the rail was horizontal and at a constant height of 1 ft – 11¾ in. from post nos. 1 to 6. The modified system was evaluated according to MASH TL-3 safety criteria test designation no. 3-37 in full-scale crash test nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10.

Additionally, the anchor block was placed into the backslope, which consisted of native soil fill. Typically, above-grade anchors are used when it is not practical to bury an anchor, such as in soil with significant rock or igneous lava flow. These soil conditions may be significantly stiffer than native soil or MASH strong soil conditions. Thus, additional soil reinforcement was added to the anchor block to simulate conditions in use. The additional reinforcement consisted of a vertical concrete shaft with a 3-ft diameter extending 10 ft deep. Vertical rebar and hoops were used to reinforce the concrete shaft. The additional size and strength of the soil foundation were used to evaluate a practical worst-case anchor block rigidity for testing. The increased reinforcement and foundation strength are not required for typical construction cases.

5.2 Upper and Lower Rails

The total length of the system installation was 219 ft – 4 in. A 12-ft 6-in. W-beam MGS section was used for the anchorage from post nos. 40 to 39. A 6-ft 3-in. W-beam MGS section was used from post nos. 38 to 37, followed by a 50-ft section of 12-ft 6-in. MGS 12-gauge W-beam. The first deviation point occurred at post no. 29, with a 12-ft 6-in. W-beam section bent at 4.4 degrees. For post nos. 29 through 1, a lower rubrail was added to the system, which was attached at the back side of post no. 29, the front side (with no blockout) at post no. 28, and was blocked away from the face of post nos. 27 through 1. The following section, from post nos. 27 through 10, included eight 12-ft 6-in. 12-gauge W-beam sections for a total of 100 ft in both the upper and lower rails. The second deviation point occurred at post no. 10, where a 12-ft 6-in. 12-gauge W-beam section was bent by 2.4 degrees to increase the total deviation to 6.8 degrees. A W-beam section followed from post nos. 9 through 6, with a 9-ft 4½-in. 12-gauge W-beam segment, and then a nested 12-ft 6-in. 12-gauge W-beam segment extended from post no. 6 to the concrete anchor block. The guardrail was connected to an anchor block with two W-beam terminal connectors.

The upstream and downstream ends of the guardrail installation were configured with a trailing-end anchorage system. The guardrail anchorage system was utilized to simulate the

strength of other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which closely resembled the hardware used in the Modified Breakaway Cable Terminal (BCT) system and is now part of a crashworthy, downstream trailing end terminal [10-14].

The details of the installation system for test nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 are identical; Figures 35 through 75 show the system installation. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix D.

5.3 Posts and Blockouts

For test nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, post nos. 1 through 27 were 84-in. long W6x8.5 steel posts and post nos. 28 through 38 were 72-in. long W6x8.5 steel posts. At the end of the installation where the system was anchored to the terrain, two MGS-height BCT timber posts were used. Post embedment varied throughout the system.

The post spacing was different for each section of the system. Measuring from the upstream end of the installation, the post spacing was as follows:

- **Section 1:** post nos. 1 through 4 nested rails and rubrails and quarter post spacing (18.8 in.)
- Section 2: post nos. 4 through 6 nested rails and rubrails and half post spacing (37 ½ in.)
- Section 3: from post nos. 6 through 10 upper rail and rubrail at half post spacing (37 ½ in.)
- Section 4: from post nos. 10 through 23 upper rail and rubrail using full post spacing at highest height over ditch (75 in.)
- Section 5: from post nos. 23 through 29 upper rail and rubrail using full post spacing (75 in.)
- **Section 6:** from post nos. 29 through 40 system is consistent with standard, tangent MGS with full post spacing (75 in.)

More detailed information about the post layouts is shown in Figure 42. Due to Hawaii's environmental conditions and HDOT's preference, tapered Hollow Structural Section (HSS) steel and recycled plastic blockouts were used in the BIB system. Posts nos. 1 through 38 used 14½-in. tall x 8-in. deep x 5½-in. wide composite recycled blockouts. For the rubrail, post nos. 1 through 27 used 13½-in. tall and 8-in. deep x 6-in. wide x ½-in. thick tapered HSS steel blockouts. More details about the recycled blockouts and the tapered HSS blockouts are provided in Figures 41 and 54.

Posts were embedded in a compacted, coarse, crushed limestone material, alternatively classified as well-graded gravel by the Unified Soil Classification System, that met American

Association of State Highway and Transportation Officials (AASHTO) standard soil designation M147 Grade B.

5.4 Anchor Block

HDOT typically utilizes an aesthetic stone-faced exterior for the anchor block. To represent this aesthetic exterior, a 6-in. fascia added to the upstream, top, and downstream faces of the concrete anchor block. Typically, anchor blocks are installed in a cut backslope and a stone fascia is added to the top and downstream sides to match the slope of the surrounding backslope and environment. The stone fascia consists of aesthetic stone pieces grouted to the concrete using low-strength concrete, low-aggregate sandy concrete, or a grout mixture. For test nos. HBIB-6 through HBIB-8 and HBIB-10, the fascia was simulated using a small-aggregate concrete mix with a nominal compressive strength of 4,000 psi. More information on the installation of the fascia can be found in Figure 58.

The anchor block originally designed for use with the buried-in-backslope system was designed for a guardrail with less than 31-in. top mounting height. To support connection to the MGS, which had a top rail height of 31 in., and a constant rail height through the ditch, the height of the anchor block above the ditch bottom was increased to 3 ft. Since the 2H:1V backslope did not provide significant soil anchorage in the system which may be consistent with significant igneous rock backfill, a 3-ft diameter drilled shaft going 10 ft into the ground was cast with the anchor block. The bottom of the anchor block also extended an extra 1½ ft below ground for a total height of 4½ ft to connect to the drilled shaft. The drilled shaft was reinforced with #4 spirals and #8 longitudinal rebar, and the longitudinal rebar continued into the anchor block for at least 20 in. to provide a secure connection. Information on the anchor block and drilled shaft can be found in Figures 45 through 48. More information on the reinforcement can be found in Figure 57.

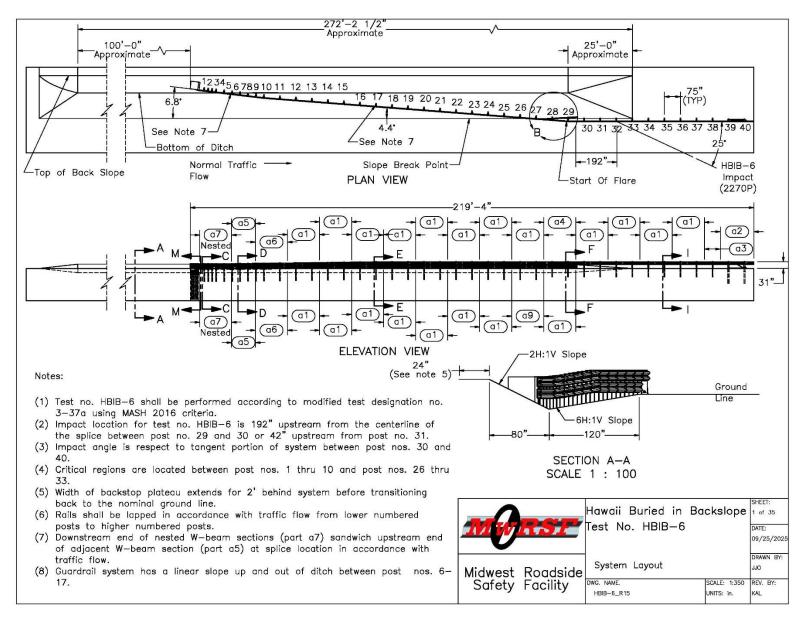


Figure 35. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact Location, Test No. HBIB-6

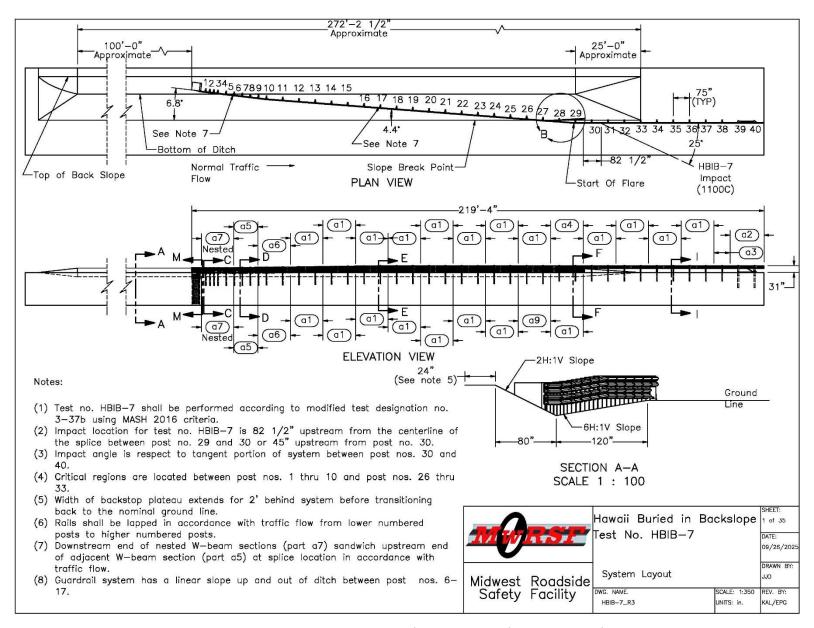


Figure 36. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact Location, Test No. HBIB-7

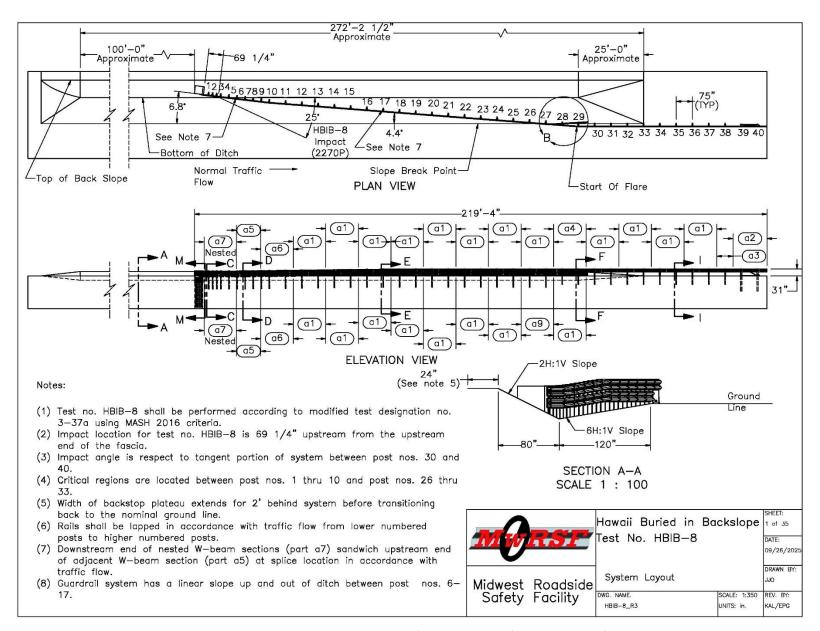


Figure 37. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact Location, Test No. HBIB-8

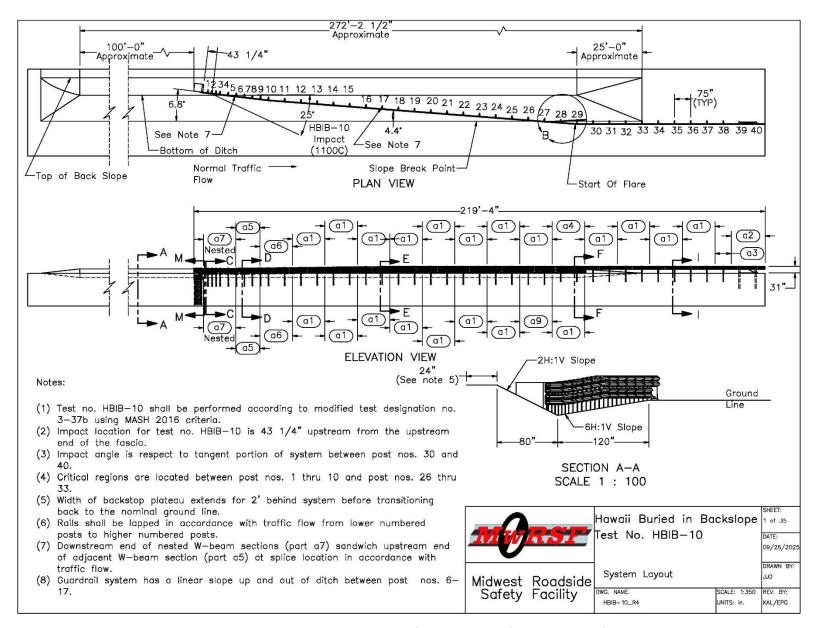


Figure 38. System Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, and Impact Location, Test No. HBIB-10

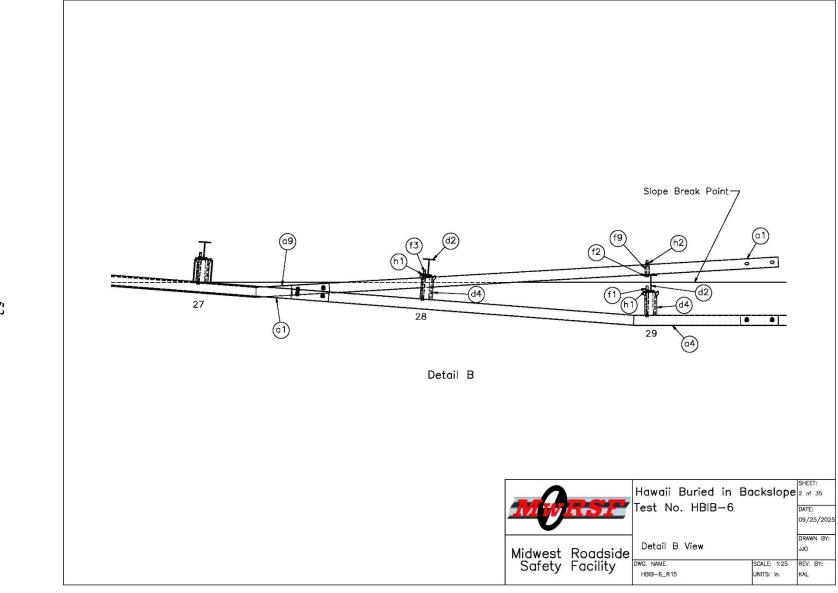


Figure 39. Rubrail Termination Details, First Deviation Point, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

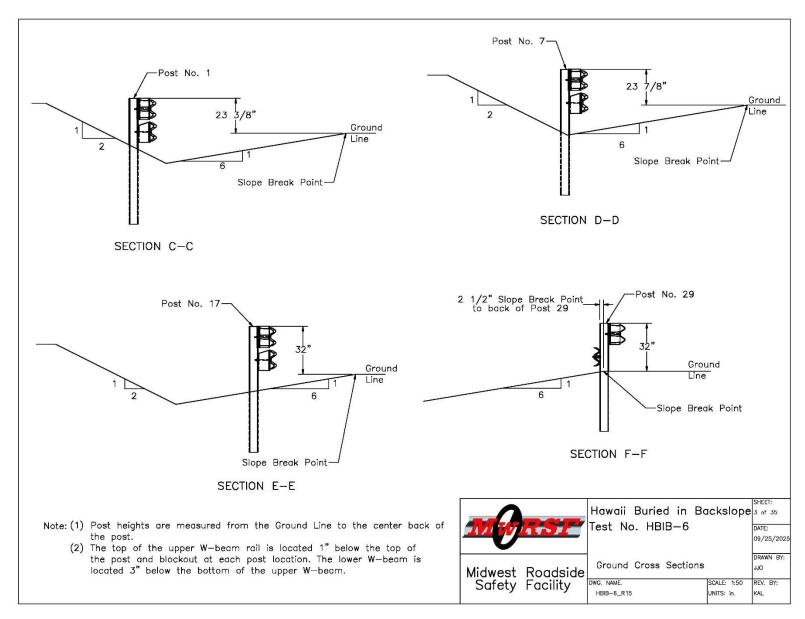


Figure 40. Ground Cross Sections, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

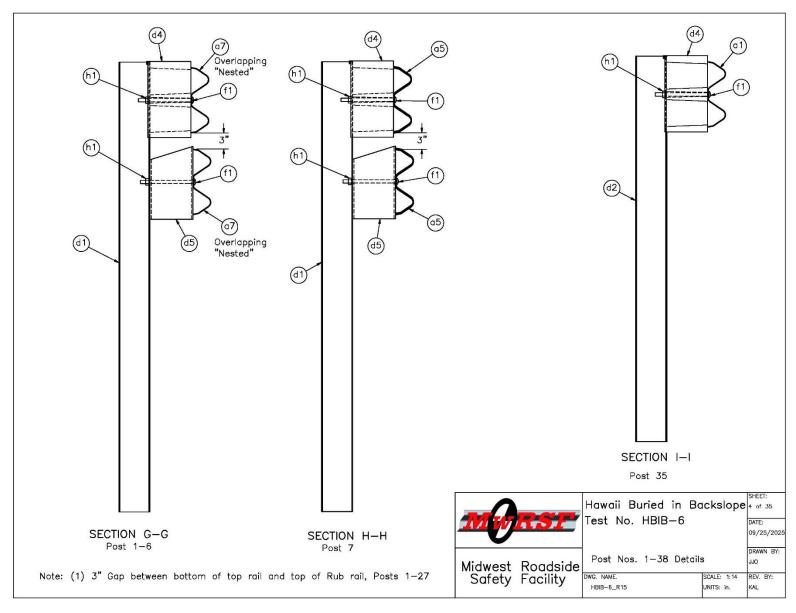


Figure 41. Post Nos. 1 through 38 Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

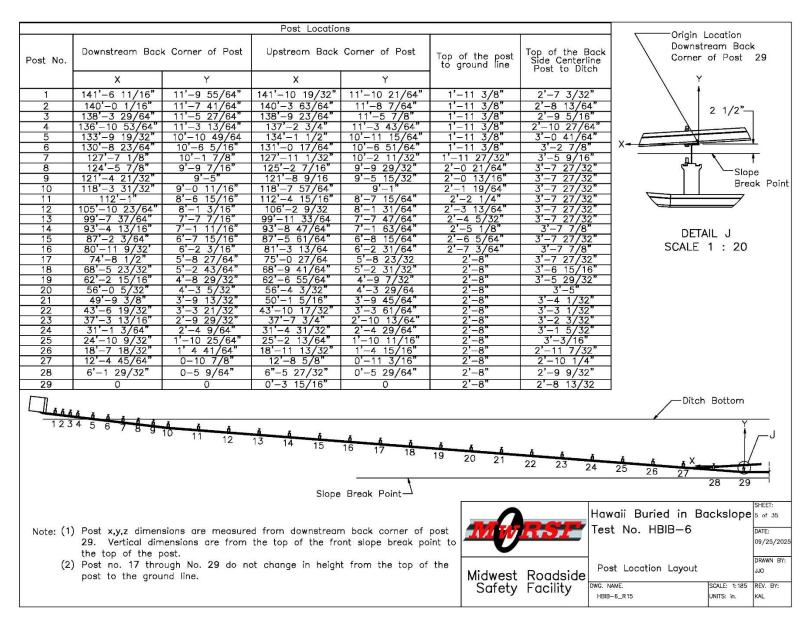


Figure 42. Post Location Layout, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

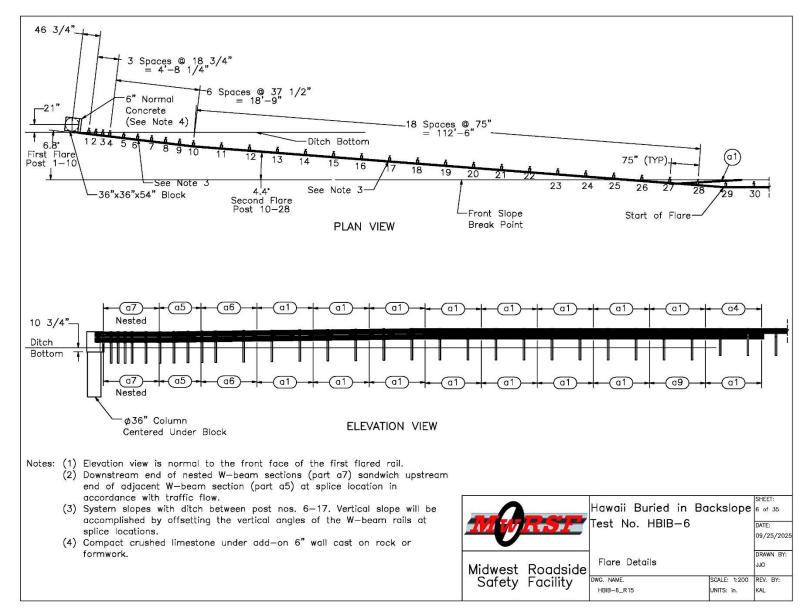


Figure 43. Flare Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

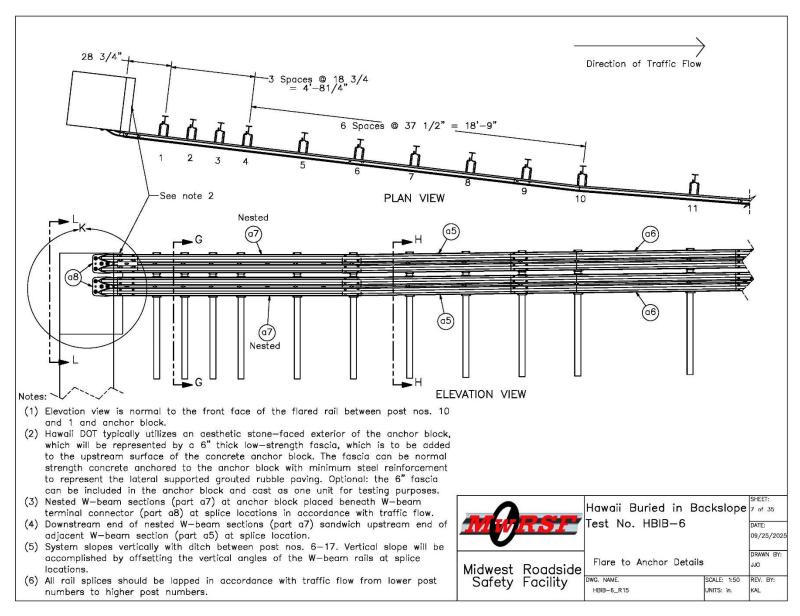


Figure 44. Flare to Anchor Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

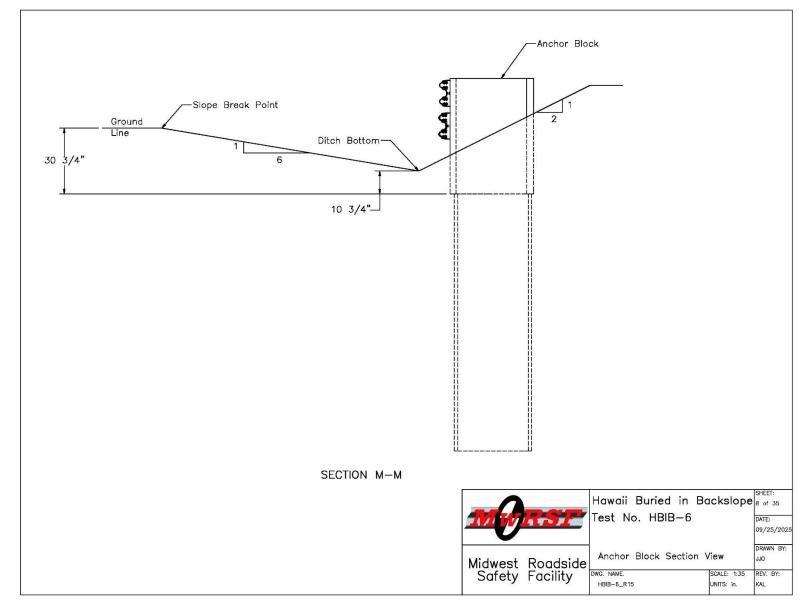


Figure 45. Anchor Block Section View, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

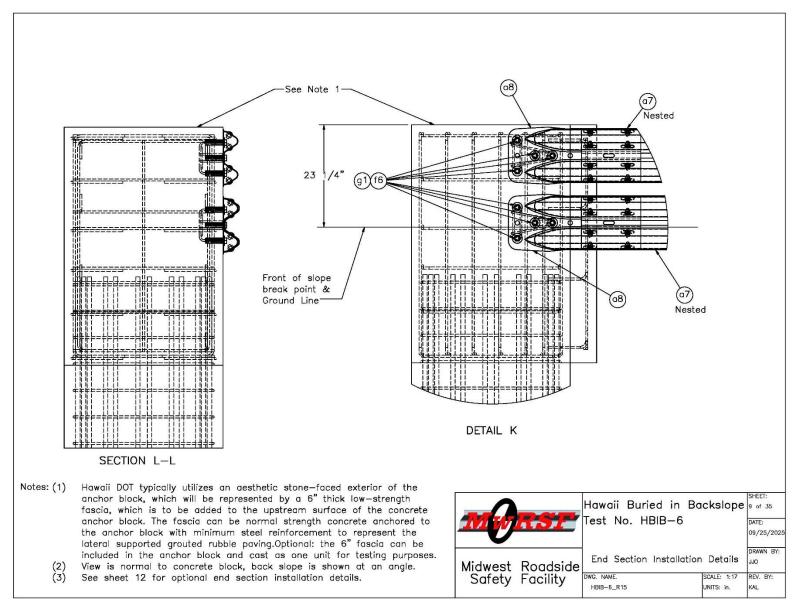


Figure 46. End Section Installation Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

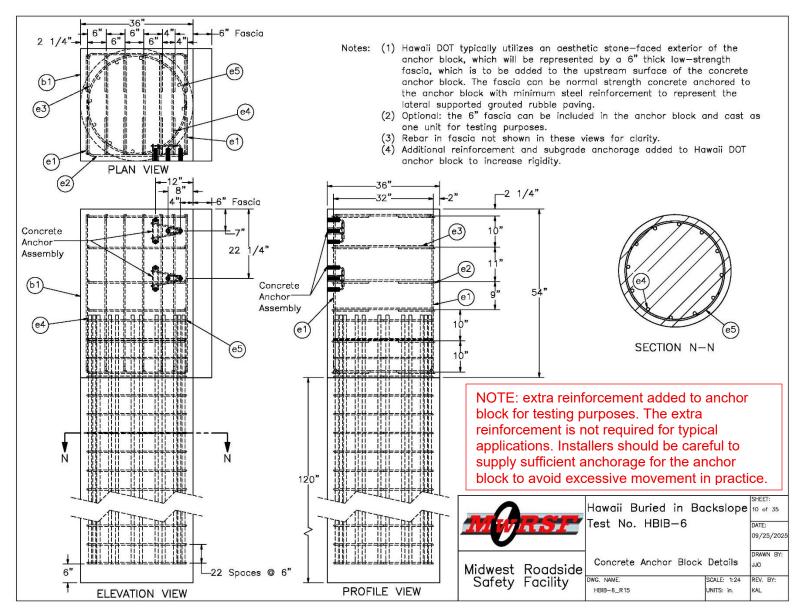


Figure 47. Concrete Anchor Block Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

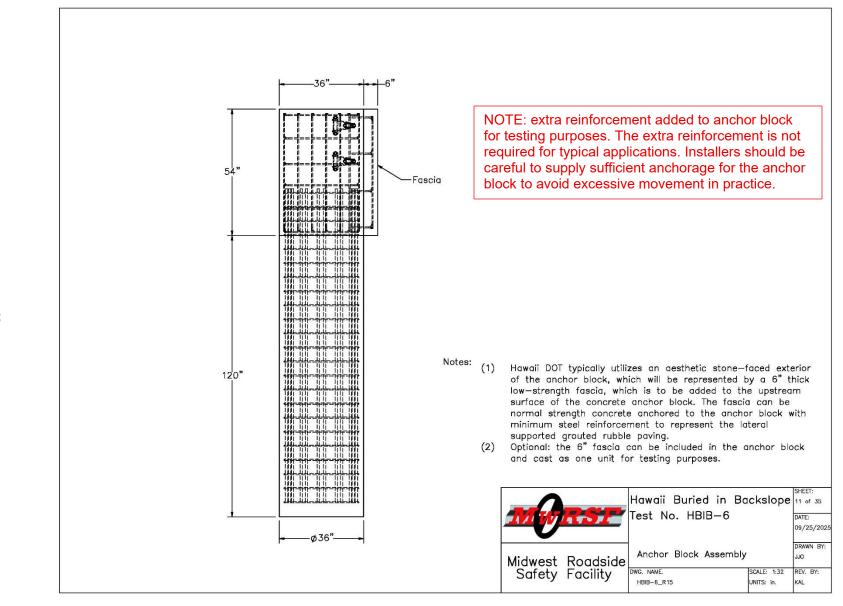


Figure 48. Anchor Block Assembly, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

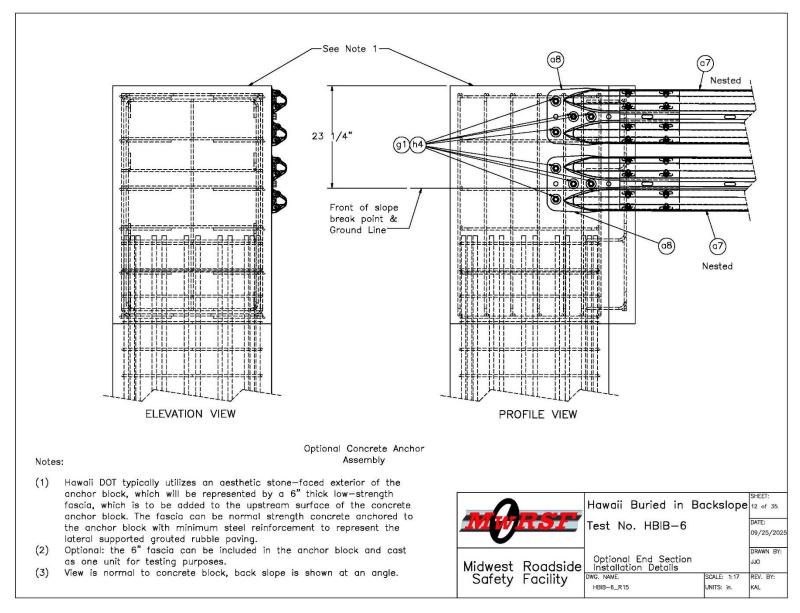


Figure 49. Optional End Section Installation Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

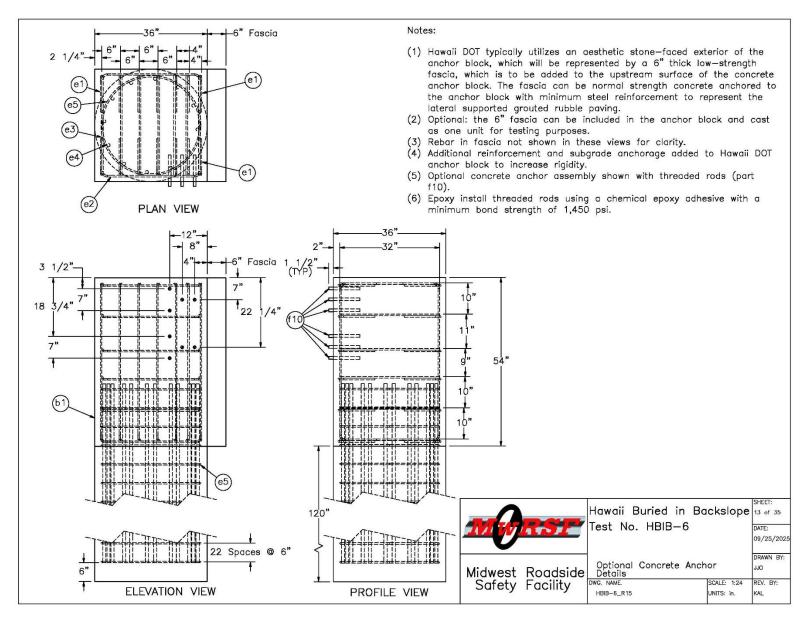


Figure 50. Optional Concrete Anchor Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

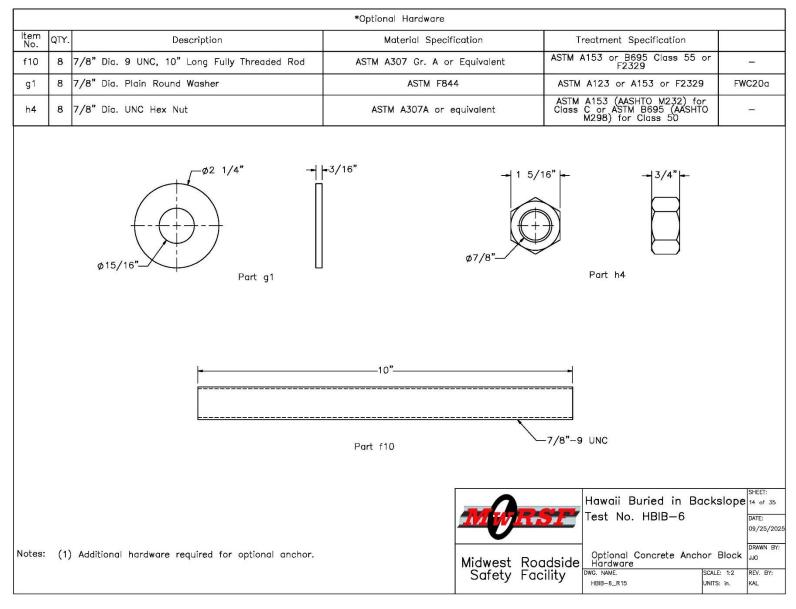


Figure 51. Optional Concrete Anchor Block Hardware, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

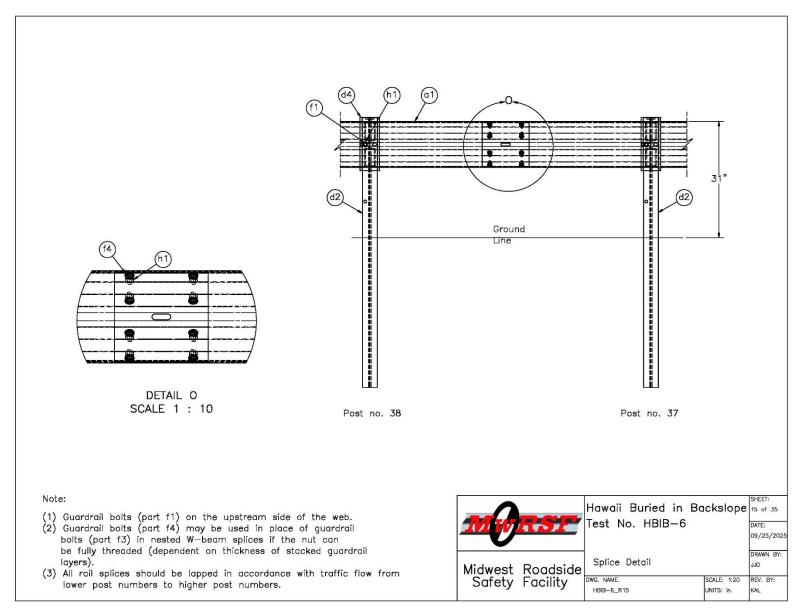


Figure 52. Splice Detail, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

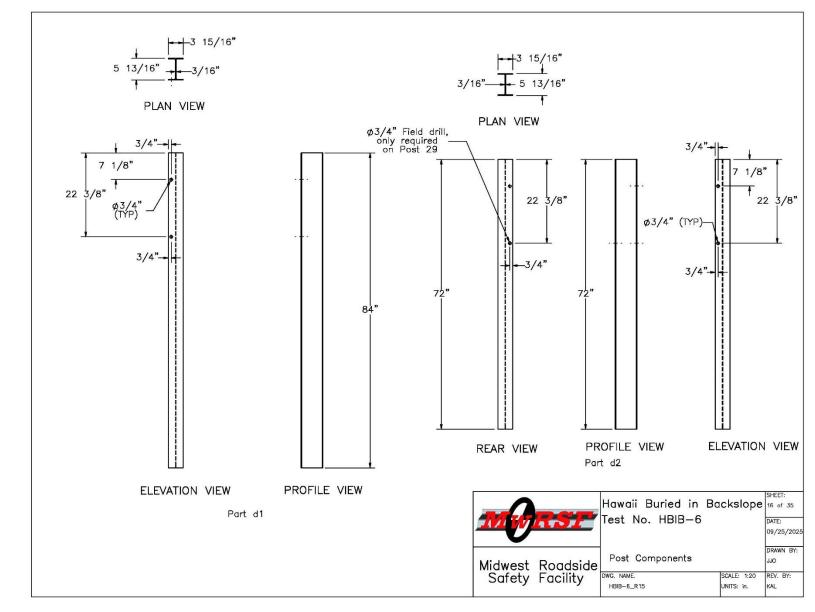


Figure 53. Post Components, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

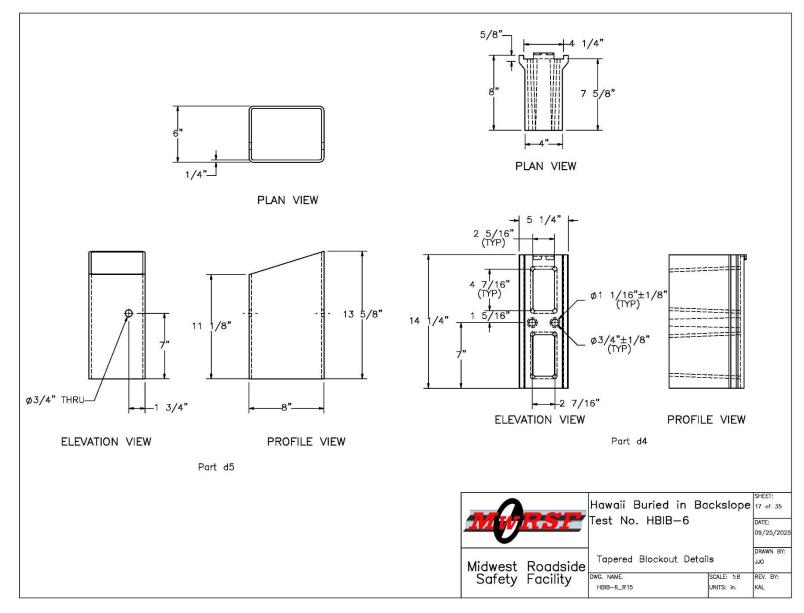


Figure 54. Tapered Blockout Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

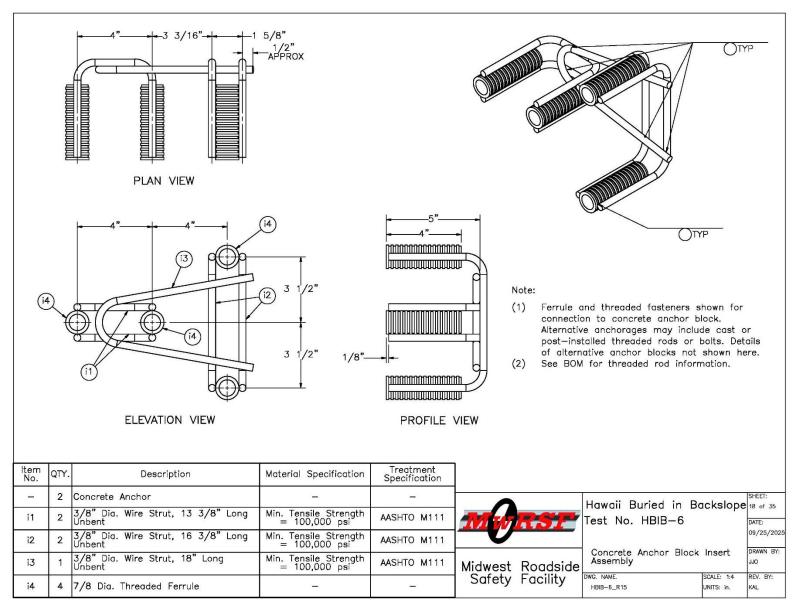


Figure 55. Concrete Anchor Block Insert Assembly, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

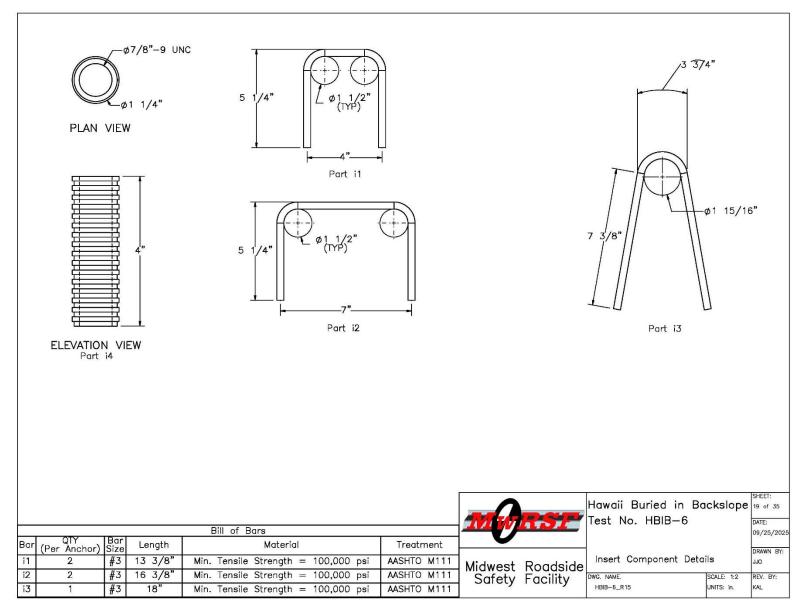


Figure 56. Insert Component Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

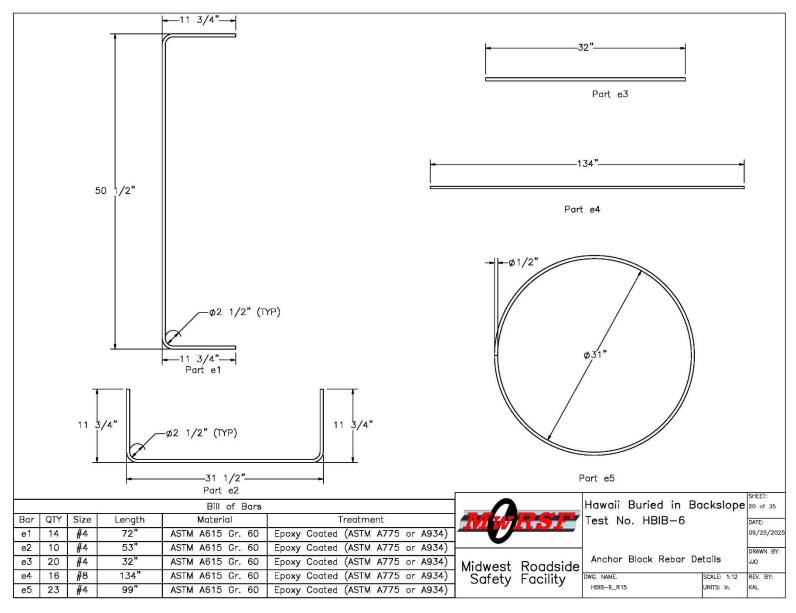


Figure 57. Anchor Block Rebar Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

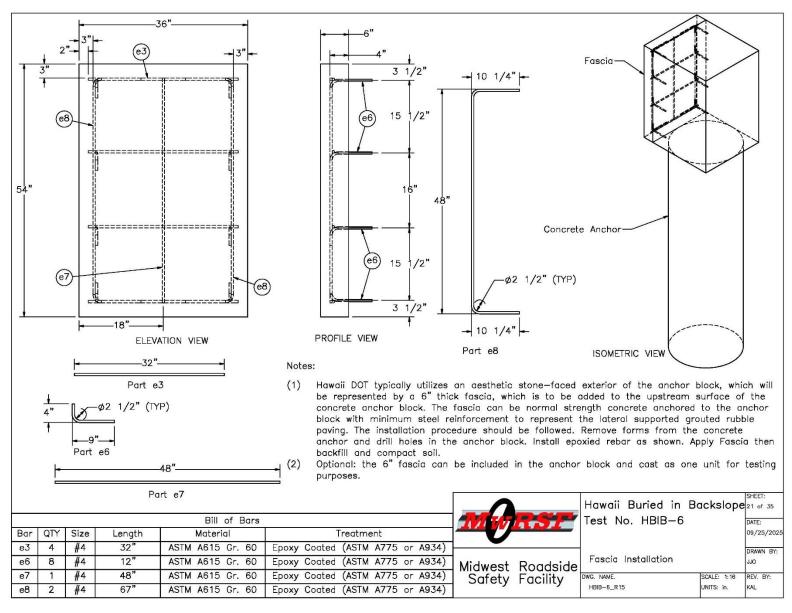


Figure 58. Fascia Installation, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

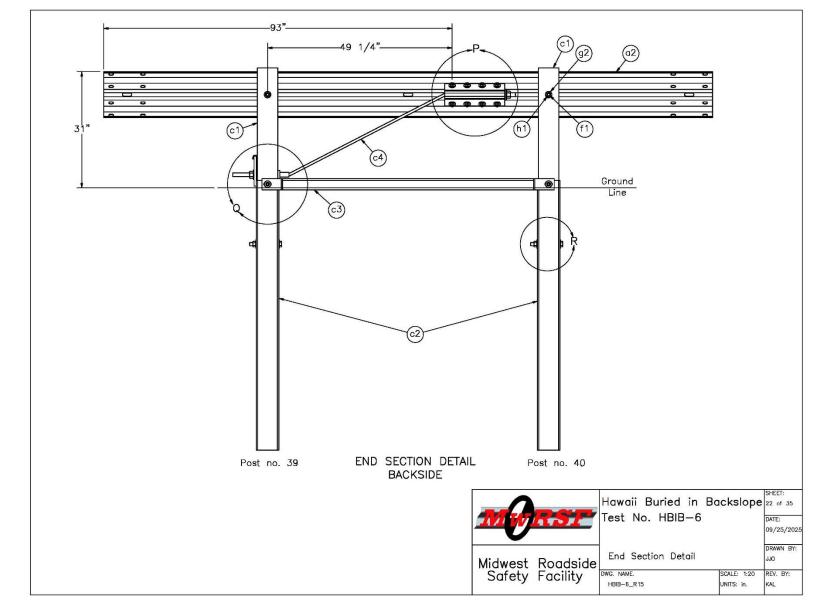


Figure 59. End Section Detail, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

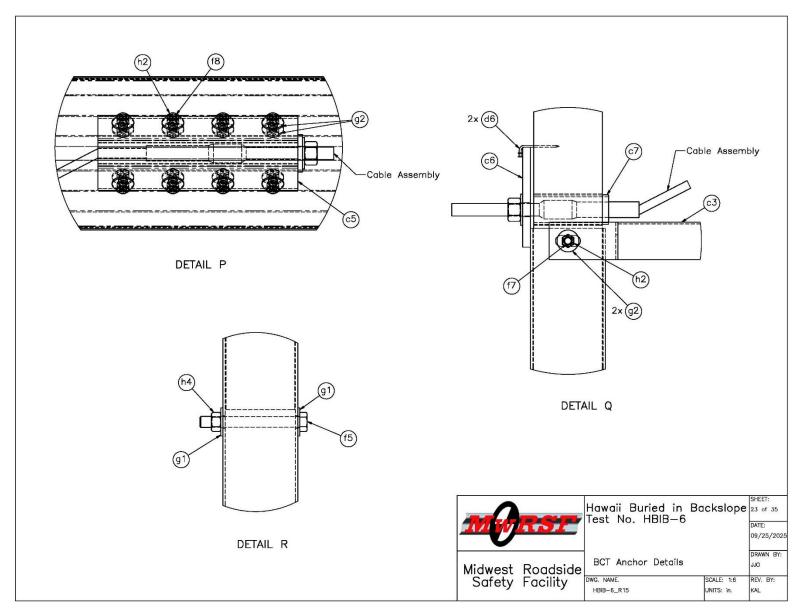


Figure 60. BCT Anchor Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

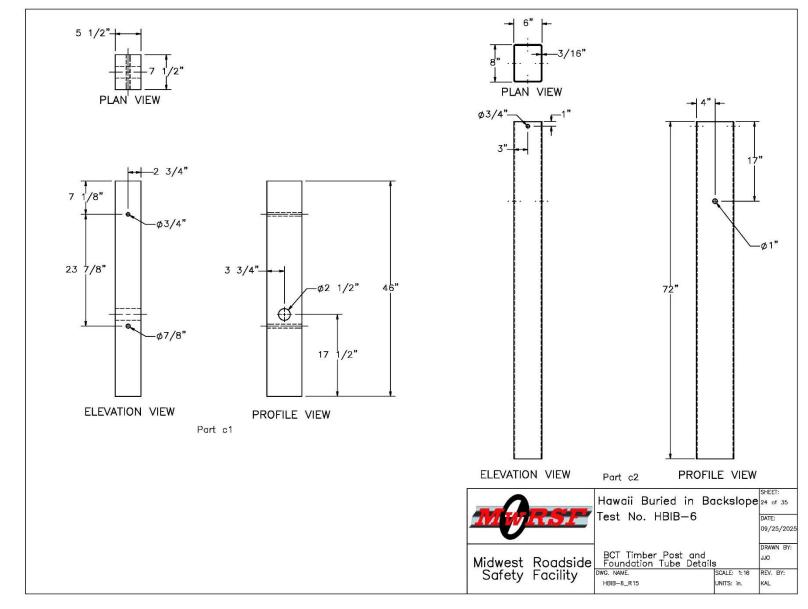


Figure 61. BCT Timber Post and Foundation Tube Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

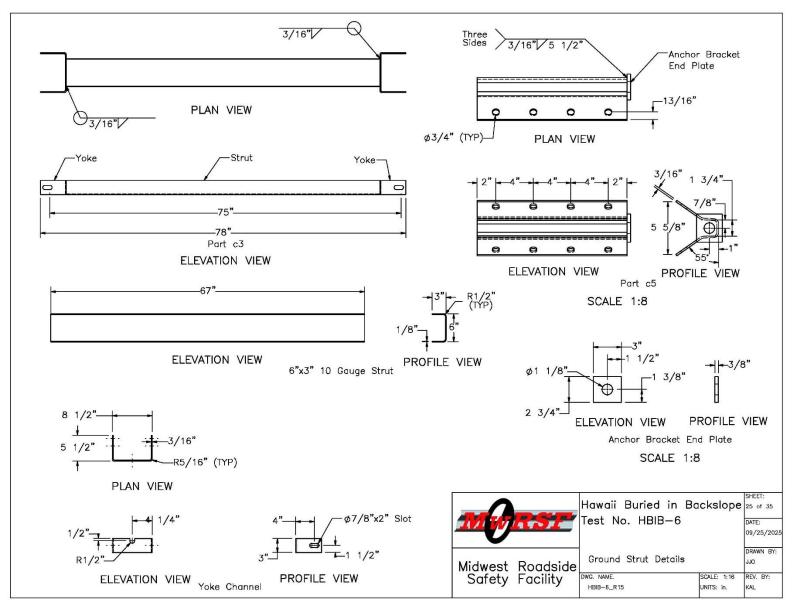


Figure 62. Ground Strut Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

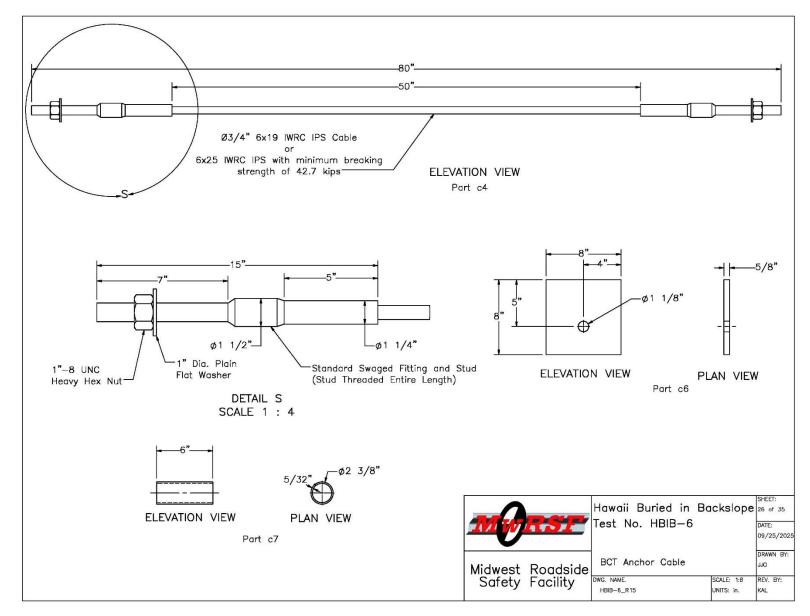


Figure 63. BCT Anchor Cable, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

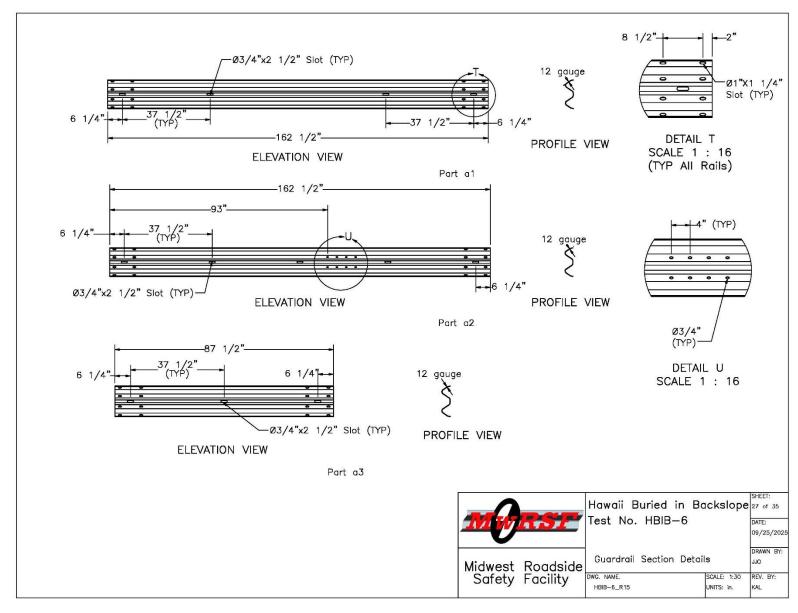


Figure 64. Guardrail Section Details, Page 1, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

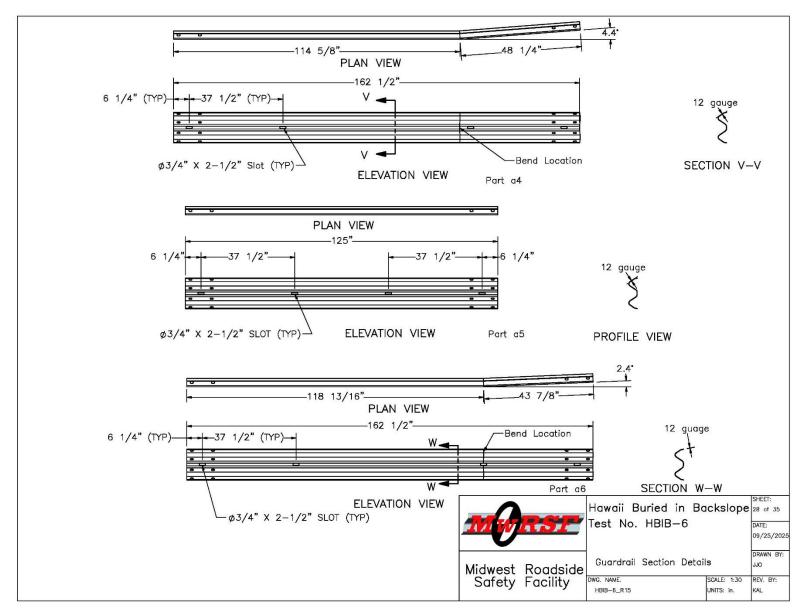


Figure 65. Guardrail Section Details, Page 2, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10



Figure 66. Guardrail Section Details, Page 3, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

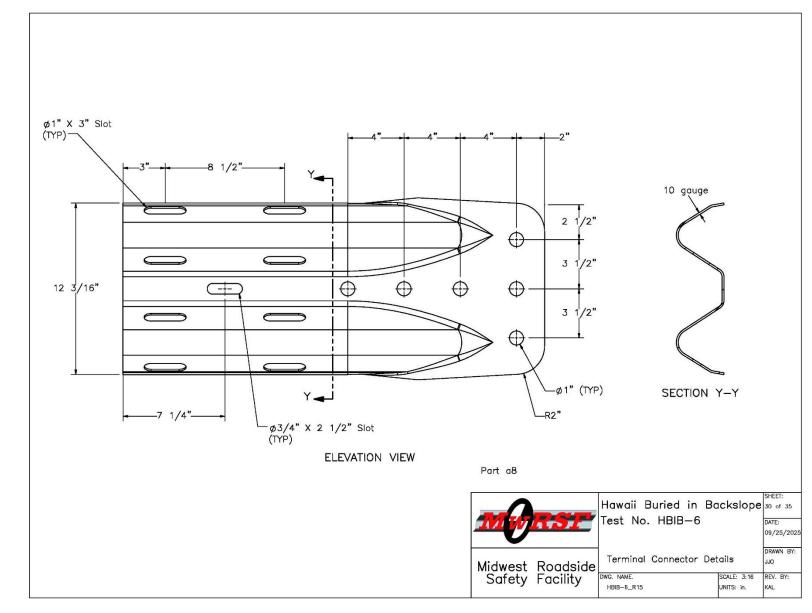


Figure 67. Terminal Connector Details, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

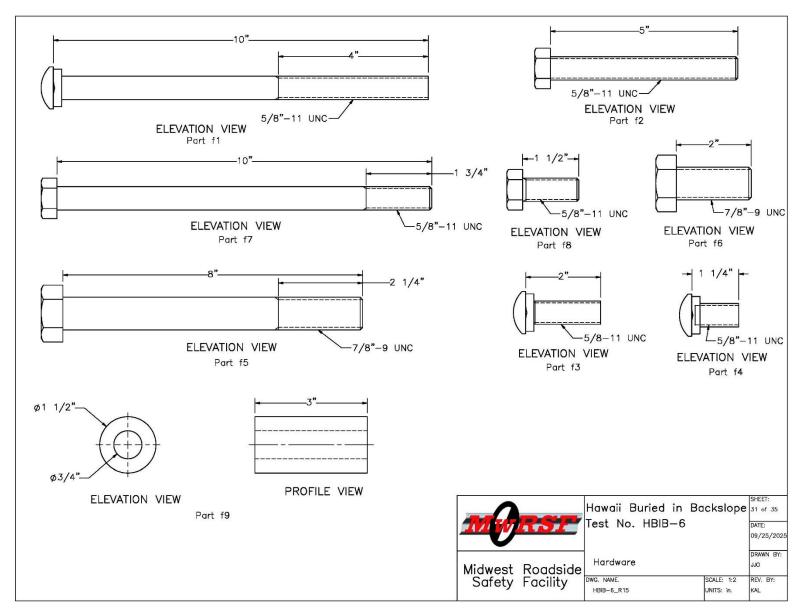


Figure 68. Hardware Details, Page 1, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

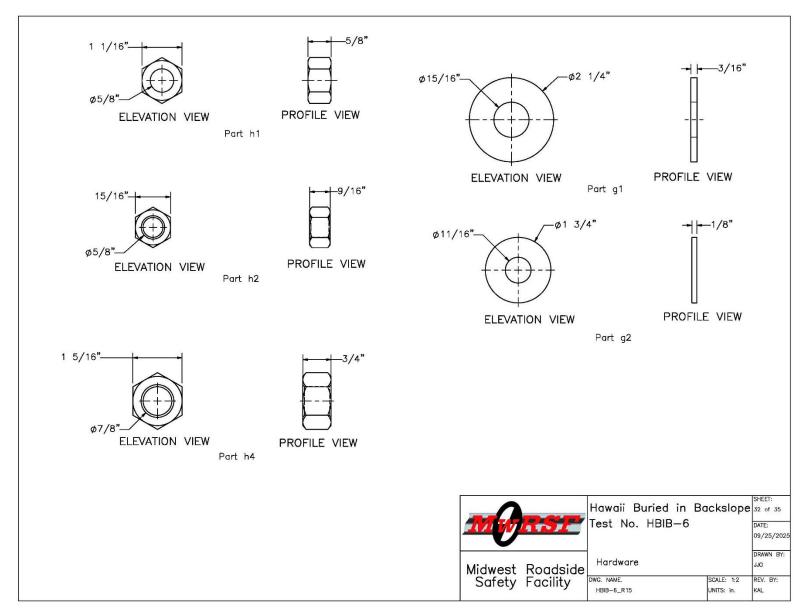


Figure 69. Hardware Details, Page 2, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

		Description	Material Specification	Treatment Specification	Hardware Guide
a2	20	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
	1	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'-3" 12-gauge W-Beam Section	AASHTO M180	ASTM A123 or A653	RWM01b
a4	1	12'-6" 12-gauge Bent W-Beam [4.4 deg]	AASHTO M180	ASTM A123 or A653	-
a5 :	2	9'-4 1/2" 12-gauge W-Beam	AASHTO M180	ASTM A123 or A653	-
a6 .	2	12'-6" 12-gauge Bent W-Beam [2.4 deg]	AASHTO M180	ASTM A123 or A653	-
a7	4	12'-6" 12-gauge W-Beam Section - 1/4 Post Spacing	AASHTO M180	ASTM A123 or A653	RWM04a
a8 :	2	W-Beam Terminal Connector	AASHTO M180	ASTM A123 or A653	RWE02b
a9	1	12'-6" 12-gauge Bent W-Beam [7.7 deg]	AASHTO M180	ASTM A123 or A653	-
ь1	1	3'x3' Concrete Anchor Block	Min. f'c = 4,000 psi	-	-
c1 :	2	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	=	PDF01
c2	2	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
с3	1	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
c4	2	BCT Anchor Cable Assembly with Heavy Hex Nuts and Washers	Fitting—ASTM A576 Gr. 1035 Stud—ASTM F568 Class C	Fitting—ASTM A153 Cable,Nut,Wahser & Stud—ASTM A153 or B695	FCA01
c5	1	Ground Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c6	1	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
c7	1	2 3/8" O.D. 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
d1 2	27	W6x8.5 or W6x9, 84" Long Steel Post	ASTM A992 Gr. 50	ASTM A123	PWE06
d2 1	11	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	ASTM A123	PWE06
d4 3	38	Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	=	-
d5 2	27	13 5/8" Long, 8"x6"x1/4" Steel Blockout	ASTM A500 Gr. B	*ASTM A123	10-11
d6 :	2	16D Double Head Nail	-		-

Figure 70. Bill of Materials, Page 1, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

or or or or or or or or
or or or
or or or
or
or _
or _
200
or _
or FBB03
or FBX16a
or FBB01
or FBB01
or FBX22a
or FBX22a
or FBX16a
or FBX16a
FMM03-0
55

Figure 71. Bill of Materials, Page 2, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
g1	12	7/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
g2	22	5/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
g3	2	1" Dia. Plain Round Washer	ASTM F844	ASTM A153 (AASHTO M232) for Class D or ASTM B695 (AASHTO M298) for Class 50	FWC24a
h1	308	5/8" Dia. UNC Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX16b
h2	11	5/8" Dia. Hex Nut	ASTM A563A	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX16a
h4	2	7/8" Dia. UNC Hex Nut	ASTM A307A or equivalent	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	-
* i1	4	3/8" Dia. Wire Strut, 13 3/8" Long Unbent	Min. Tensile Strength = 100,000 psi	AASHTO M111	
* i2	4	3/8" Dia. Wire Strut, 16 3/8" Long Unbent	Min. Tensile Strength = 100,000 psi	AASHTO M111	-
* i3	2	3/8" Dia. Wire Strut, 18" Long Unbent	Min. Tensile Strength = 100,000 psi	AASHTO M111	-
* i4	8	7/8 Dia. Threaded Ferrule	-	_	_
k1	_	Soil	-	-	-
k2	1	Fascia	Min. f'c = 4,000 psi	_	-

* Components not required if optional anchor is used.

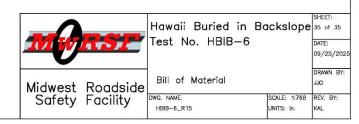


Figure 72. Bill of Materials, Page 3, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

Figure 73. Test Installation Photographs, Test No. HBIB-6

Figure 74. Test Installation Photographs, Test No. HBIB-6

Figure 75. Test Installation Photographs, System Anchorage, Test No. HBIB-6

6 FULL-SCALE CRASH TEST NO. HBIB-6

6.1 Static Soil Test

Before full-scale crash test no. HBIB-6 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. HBIB-6 was conducted on August 27, 2024, at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 6.

Table 6. Wea	ather Con	iditions. T	est No.	HBIB-6
--------------	-----------	-------------	---------	--------

Temperature	93°F
Humidity	46%
Wind Speed	7 mph
Wind Direction	350° from True North
Sky Conditions	Partly Cloudy
Visibility	8 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.09 in.

6.3 Test Description

Initial vehicle impact was to occur 192 in. upstream from the centerline splice between post nos. 29 and 30 (42 in. upstream from post no. 31), as shown in Figure 76. The CIP for test no. HBIB-6 was selected using the recommended TL-3 test matrix Table 2-3 of MASH in the reverse-direction to maximize the risk of snagging on the W-beam rubrail termination. The 5,061-lb crew cab pickup truck impacted the HBIB system in the reverse direction at a speed of 62.7 mph and at an angle of 24.9 degrees. The actual point of impact was 197.6 in. upstream from the centerline splice between post nos. 29 and 30. During the impact event, the vehicle's right-front wheel snagged between the upper and lower rails at post no. 26 and detached. At 0.990 sec the vehicle exited the system at a speed of 22.3 mph and an angle of 17.4 degrees. The vehicle re-entered the system at 2.984 sec and came to rest 98.1 ft downstream from impact and 0.1 ft laterally in front of the slope break point.

A detailed description of the sequential impact events is reported in Tables 7 and 8. Sequential photographs are shown in Figures 77 and 78. Documentary photographs of the crash test are shown in Figure 79. The vehicle trajectory and final position are shown in Figure 80.

Figure 76. Target Impact Location, Test No. HBIB-6

Table 7. Sequential Description of Impact Events, Test No. HBIB-6

Time sec	Event		
0.000	Vehicle's right-front bumper contacted barrier 5.6 in. upstream from targeted impact point and crushed. Vehicle's right-front fender contacted barrier and deformed.		
0.018	Post nos. 31 and 32 rotated backward.		
0.028	Post no. 32 twisted clockwise. Vehicle's hood became ajar.		
0.050	Post no. 33 twisted clockwise.		
0.060	Post no. 31 bent downstream and twisted counterclockwise. Post no. 30 rotated backward.		
0.078	Vehicle yawed away from barrier.		
0.100	Post no. 30 bent downstream and twisted counterclockwise.		
0.128	Post no. 29 rotated backward.		
0.133	Occupant's head contacted right-front side window and vehicle's right-front side door became ajar at top.		
0.138	Vehicle's right-front door contacted barrier and encountered dents and tears.		
0.162	Vehicle rolled toward barrier.		
0.194	Post no. 29 bent downstream and twisted counterclockwise.		
0.218	Post no. 28 rotated backward.		
0.246	Vehicle's right-rear bumper contacted rail and deformed outward.		
0.264	Post no. 28 bent downstream and twisted counterclockwise.		
0.288	Vehicle's right-rear door was scraped from contact barrier.		
0.318	Post no. 27 rotated backward.		
0.326	Vehicle's right headlight contacted post no. 28 and detached. Vehicle became parallel to system at a speed of 40.3 mph.		
0.346	Vehicle's left-rear tire became airborne.		
0.406	Post no. 27 bent downstream and twisted counterclockwise.		
0.440	Vehicle's left-front tire became airborne.		
0.556	Vehicle rolled away from barrier.		
0.613	Vehicle's left-rear tire became airborne.		
0.630	Vehicle's right-front tire snagged on post no. 26 and detached.		
0.672	Post no. 26 rotated backward, bent downstream, and twisted counterclockwise.		
0.846	Vehicle's left-rear tire contacted ground.		
0.858	Vehicle's left-front tire contacted ground.		
0.904	Vehicle yawed toward barrier.		
0.992	Vehicle exited the system at a speed of 22.3 mph and an angle of 17.4 degrees.		
1.062	Vehicle rolled toward barrier.		

Table 8. Sequential Description of Impact Events, Test No. HBIB-6, Cont.

Time (sec)	Event
1.125	Vehicle's grill detached.
1.312	Vehicle's left-rear tire contacted ground.
1.338	Vehicle's left-front tire became airborne.
1.396	Vehicle's left-front tire contacted ground.
2.984	Vehicle's right-front bumper contacted barrier again.
3.033	Post no. 18 rotated backward and twisted counterclockwise.
3.467	Vehicle's right side mirror contacted barrier and bent backward.
4.238	Vehicle and system both came to rest.

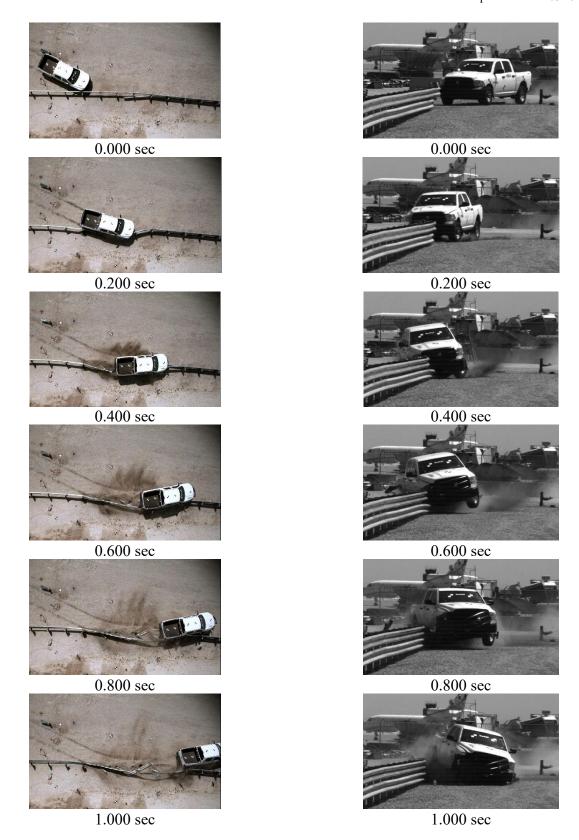
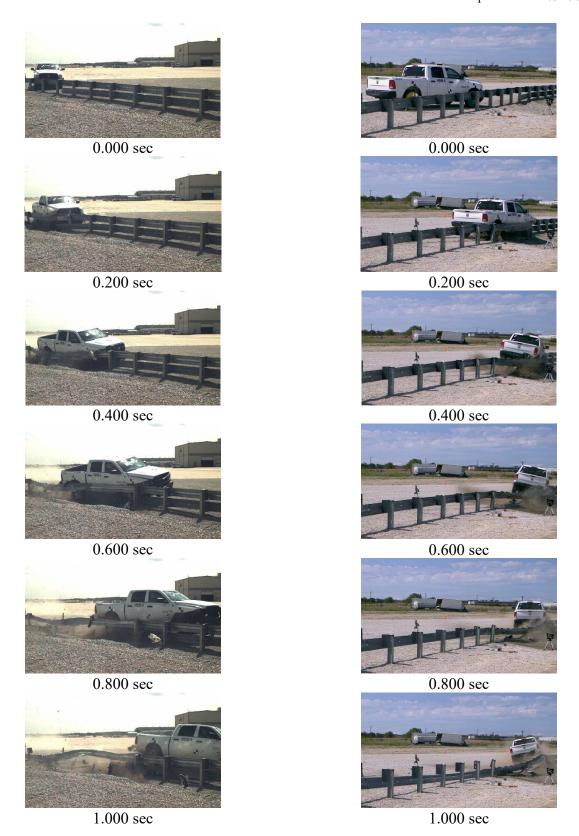



Figure 77. Sequential Photographs, Test No. HBIB-6

Figure~78.~Sequential~Photographs,~Test~No.~HBIB-6

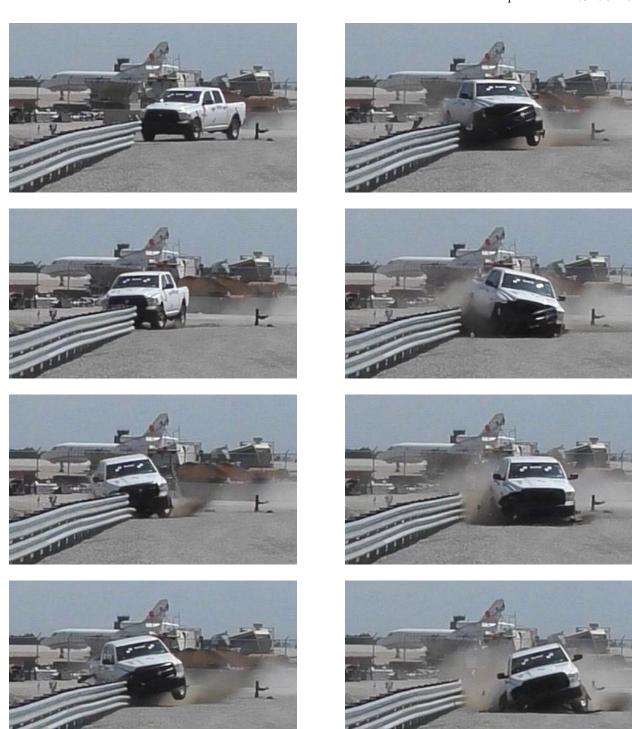


Figure 79. Documentary Photographs, Test No. HBIB-6

Figure 80. Vehicle Final Position and Trajectory Marks, Test No. HBIB-6

6.4 Barrier Damage

Damage to the barrier was severe, as shown in Figures 81 through 86. Barrier damage consisted of kinks, rail flattening, bending, gouging, and bolt hole tearing. The length of vehicle contact along the barrier was approximately 31 ft which spanned from the centerline of post no. 32 to the vehicle's final position near post no. 27. Secondary contact occurred 23 in. upstream from the centerline of post no. 17 and extended 65 in. downstream.

Damage to the rail was primarily located along both the top and bottom rails. The top rail showed significant contact marks, with the primary mark located at the centerline of post no. 32, extending 31 in. downstream along the top rail. Another contact mark appeared 23 in. upstream from the centerline of post no. 17 and extended 65 in. downstream. On the bottom rail, a contact mark began at the downstream centerline of post no. 28 and extended for 104 in. with a consistent width of 3 in. Flattening of the top rail was observed 51 in. downstream from post no. 32, continuing 22 in. along the entire vertical face of the rail. Additional damage included a bend in the rail beginning at the centerline of post no. 32 measuring 30 in. long, 16 in. wide, and 4½ in. deep. Kinks were noted along the top rail, specifically at the centerline of post no. 32, extending 15 in. Bolt hole pullouts occurred along the top rail between post nos. 27 and 38. The bottom rail also exhibited bolt hole pullouts between post nos. 27 and 29. Additional damage to the top rail included tearing near bolt holes at post nos. 26, 27, 24, and 31. Tears were observed on the top rail 5 in. downstream from post no. 30 and 10 in. downstream from post no. 28, both measuring 5 in. wide.

Several posts showed substantial deformation. Post no. 26 exhibited a kink on the front flange starting 22½ in. from the ground and measuring 1½ in. in both length and width. This post also experienced lower rail pullout, and the blockout disengaged. The front flange of post no. 27 was bent beginning 37 in. from the ground and extending 10 in. Both upper and lower rail pullouts were observed here, with the top blockout disengaged. Additionally, a 4-in. long by 1-in. wide kink was found on the upstream side of the flange of post no. 27 beginning 20 in. from the ground. Post no. 28 had a 4-in. long by 1-in. wide kink on the downstream side of the front flange. Both the upper and lower rails pulled out, and the blockout disengaged. Further deformation was recorded on post no. 29, including flange flattening, upper and lower rail pullouts, bolt hole tearout, and blockout disengagement. The lower bolt of post no. 29 remained intact, but the post was visibly bent. At post no. 30, a kink was observed on the downstream side of the front flange, starting 7½ in. from the ground and extending 8 in. with a width of 1½ in. This post also had upper rail pullout and bottom rail bolt hole tearout, with the top blockout disengaged. Post no. 31 experienced bending in both the front and rear flanges as well as the web, with the blockout disengaged. Post nos. 27 and 28 deflected 15 degrees backward and rotated 30 degrees counterclockwise, while post no. 29 deflected 20 degrees backward with a slight counterclockwise rotation.

The impact resulted in bolt deformation across various posts. At post no. 27, the upper and lower bolts exhibited bending, with the top bolt showing a pronounced bend while the bottom bolt had only minor bending. At post no. 28, the lower bolt fractured, and the upper bolt bent. Additionally, bending of the upper bolts was observed on post nos. 29 through 33. Blockouts at post nos. 32 and 33 rotated downstream, which caused the bolts at these posts to bend in the same direction. Between post nos. 34 and 38, the guardrail elongated and disengaged from the bolts, resulting in rail disengagement.

Figure 81. System Damage, Test No. HBIB-6

Figure 82. System Damage, Test No. HBIB-6

Figure 83. Upper Rail and Rubrail Damage Test No. HBIB-6

Figure 85. Post Damage, Post Nos. 26 (top left), 27 (bottom left), 28 (top right), and 29 (bottom right), Test No. HBIB-6

Figure 86. Post Damage, Post Nos. 30 through 33, Test No. HBIB-6

The maximum lateral permanent set of the barrier system was 46.4 in. at the rail near post no. 29, as measured in the field. The maximum lateral dynamic deflection of the rail was 54.4 in. at the rail at post no. 29. The maximum lateral dynamic deflection of the post was 29.7 in. at post no. 31, as determined from high-speed digital video analysis. The working width of the system was found to be 70.1 in., including vehicle overhang at the vehicle's rear bumper, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 87.

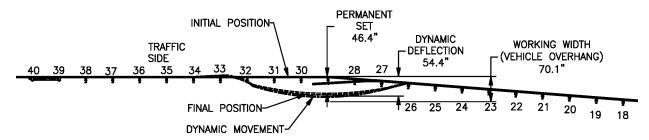


Figure 87. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-6

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 88 through 90. Note, the impact side of the vehicle, or the passenger's side, is referred to as the vehicle's right side throughout this report. The non-impact side, or driver's side, is referred to as the vehicle's left side.

Majority of the damage was concentrated on the right-front corner and right side of the vehicle, where the impact occurred. The front end of the vehicle showed considerable deformation. The front bumper was crushed inward and twisted along the right side, with buckling in the center. The right-front fender was also damaged and it was pushed rearward and inward along its length. The grille and right headlight were detached, with the headlight itself broken. The hood was crushed inward and deformed along its right edge and the windshield displayed a crack on the right side. The damage continued along the right side of the vehicle. The right-front door had multiple dents, especially along the leading edge, with a tear measuring approximately 4 in. by 1½ in. The right rear door showed light scraping but no structural damage. The right side of the truck bed exhibited large dents from the wheel well to the rear bumper, causing the bed to fold inward. Although still attached, the right taillight was crushed. At the rear, the right side of the bumper buckled outward. The side windows remained intact.

The undercarriage and suspension components were also affected. The right-front suspension had damage, with the lower control arm and spring detached and the tie rod bent. The frame horn on the right side was bent inward, and the right front body mount was twisted.

The maximum occupant compartment intrusions are listed in Table 9, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment, vehicle intrusions, and the corresponding locations of the deformations are provided in Appendix F. MASH defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria.

Figure 88. Vehicle Damage, Test No. HBIB-6

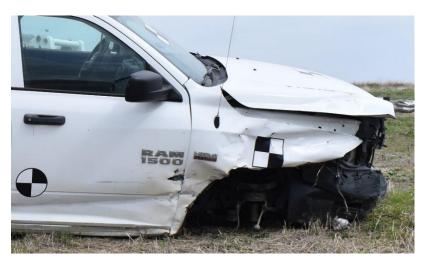


Figure 89. Vehicle Damage, Test No. HBIB-6

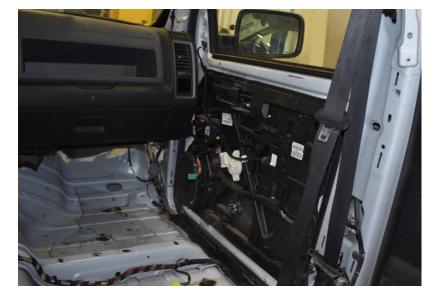


Figure 90. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-6

Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-6

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	0.1	≤ 9
Floor Pan & Transmission Tunnel	0.0*	≤ 12
A-Pillar	0.2	≤ 5
A-Pillar (Lateral)	0.0*	≤ 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.0*	≤ 3
Side Front Panel (in Front of A-Pillar)	0.2	≤ 12
Side Door (Above Seat)	0.1	≤ 9
Side Door (Below Seat)	0.2	≤ 12
Roof	0.1	≤ 4
Windshield	0.0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.2	N/A

N/A – No MASH criteria exist for this location.

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined by accelerometer data, are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

^{*}Negative value reported as 0.0. See Appendix F for further information.

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-6

		Tran	sducer	MACH
Evaluation (Criteria	SLICE-1 (backup)	SLICE-2 (primary)	MASH Limits
OIV	Longitudinal	-18.08	-17.63	±40
ft/s	Lateral	-12.11	-13.37	±40
ORA	Longitudinal	-13.40	-13.93	±20.49
g's	Lateral	-5.78	-5.92	±20.49
Maximum	Roll	14.6	-14.8	±75
Angular Displacement	Pitch	-3.7	-3.7	±75
deg.	Yaw	-37.7	-38.3	not required
THIV – ft/s		21.12	21.53	not required
PHD – g's		14.26	14.61	not required
ASI		0.55	0.59	not required

6.7 Discussion

The analysis of the test results for test no. HBIB-6 showed that the barrier system effectively contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown Figure 91. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, nor did they present an undue hazard to other traffic, pedestrians, or work-zone personnel. There were no deformations or intrusions into the occupant compartment that could have caused serious injury to an occupant. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 17.4 degrees with respect to the slope break point, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HBIB-6 was deemed acceptable according to the MASH safety performance criteria for test designation 3-37a.

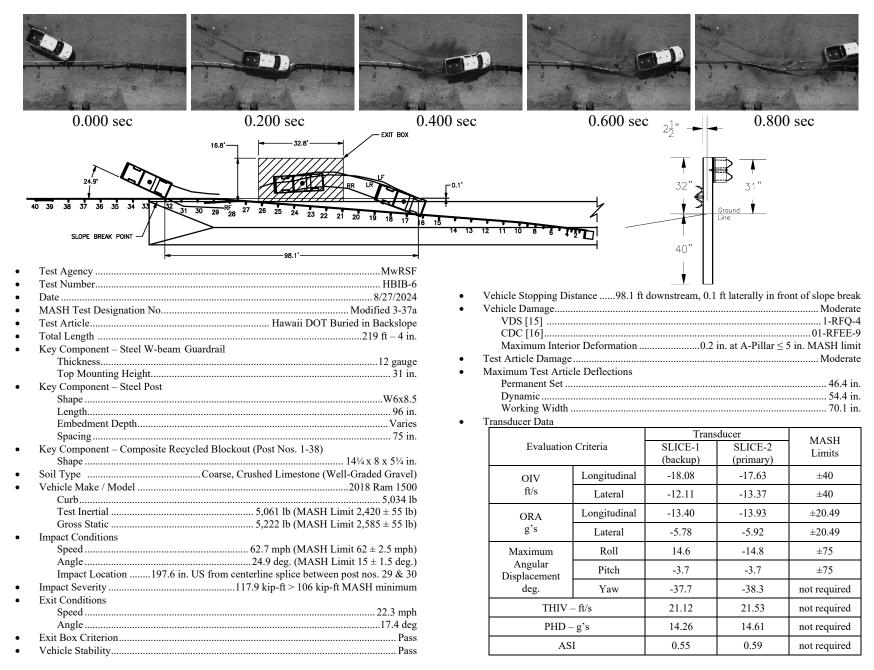


Figure 91. Summary of Test Results and Sequential Photographs, Test No. HBIB-6

7 FULL-SCALE CRASH TEST NO. HBIB-7

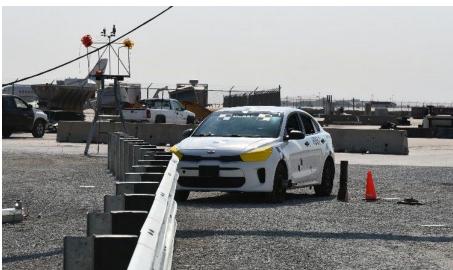
7.1 Static Soil Test

Before full-scale crash test no. HBIB-7 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Weather Conditions

Test no. HBIB-7 was conducted on October 8, 2024, at approximately 1:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 11.

Table 11. Weather Conditi	ions, Test No. HBIB-7
---------------------------	-----------------------


Temperature	81°F
Humidity	20%
Wind Speed	9 mph
Wind Direction	210° from True North
Sky Conditions	Clear, Sunny
Visibility	7 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

7.3 Test Description

Initial vehicle impact was to occur 82½ in. upstream from centerline splice between post nos. 29 and 30 (45 in. upstream from post no. 30) as shown in Figure 92. The CIP for test no. HBIB-7 was selected using the recommended TL-3 test matrix Table 2-3 of MASH. The CIP plots found in MASH Section 2.3 were implemented to maximize the probability of pocketing and vehicle snagging on the W-beam rubrail termination. The 2,419-lb small car impacted the HBIB system in the reverse direction at a speed of 63.8 mph and at an angle of 25.0 degrees between post nos. 29 and 30. The actual point of impact was 82.8 in. upstream from the centerline splice between post nos. 29 and 30. The vehicle came to rest 46.4 ft downstream from impact and 5.0 ft laterally in front of the system with no brakes applied.

A detailed description of the sequential impact events is reported in Table 12. Sequential photographs are shown in Figures 93 and 94. Documentary photographs of the crash test are shown in Figure 95. The vehicle trajectory and final position are shown in Figure 96.

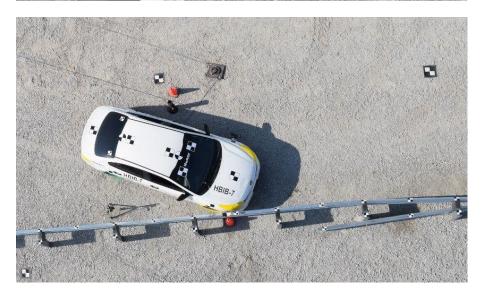


Figure 92. Target Impact Location, Test No. HBIB-7

Table 12. Sequential Description of Impact Events, Test No. HBIB-7.

e's front bumper contacted rail 82.8 in. upstream from centerline splice between os. 29 and 30 and disengaged.
e's right headlight contacted barrier and disengaged.
os. 30 and 31 rotated backward.
e yawed away from barrier.
e's right-front fender contacted barrier and was dented, crushed and scraped. e's right-front wheel contacted post no. 30 and was dented and scraped, tire aged from wheel.
o. 29 rotated backward. Post no. 30 bent downstream, twisted clockwise, and its ut fractured and disengaged.
e rolled away from barrier.
e's hood contacted barrier and was bent inward and upward.
e's right-front door contacted barrier and was torn, dented and scraped.
o. 29 bent downstream and twisted clockwise and its blockout fractured and aged.
o. 28 rotated backward.
o. 27 rotated backward. Occupant head contacted right-front window.
o. 28 bent downstream and twisted clockwise, and its blockout disengaged.
o. 27 bent downstream and twisted clockwise. and both blockouts disengaged ail.
e yawed toward barrier.
e's right-rear tire became airborne.
e's left-rear tire became airborne.
rail post bolt pulled through the rail at post no. 26.
e's grille detached from vehicle.
e's left-rear tire contacted ground.
e rolled toward barrier.
e's right-rear tire contacted ground.
e exited system at a speed of 10.9 mph and an angle of 0.4 degrees.
n came to rest.
e came to rest.

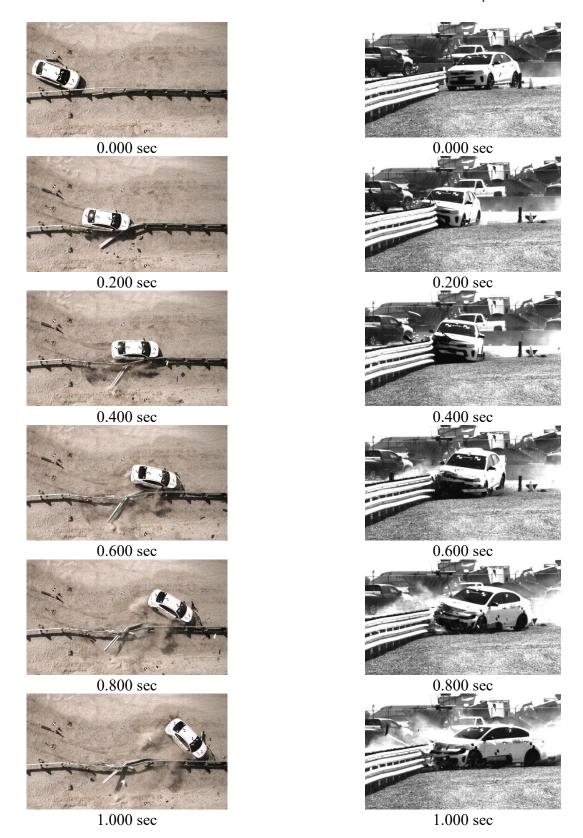


Figure 93. Sequential Photographs, Test No. HBIB-7

Figure 94. Sequential Photographs, Test No. HBIB-7

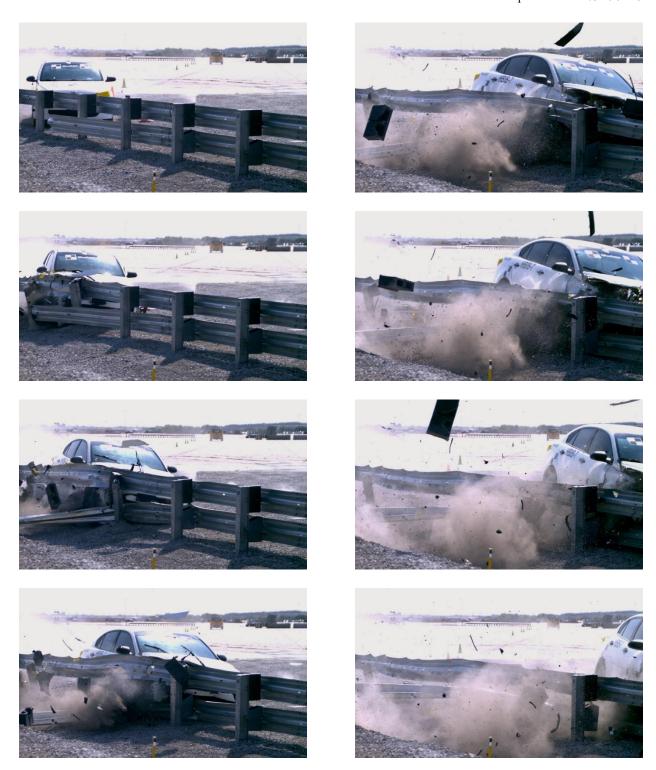


Figure 95. Documentary Photographs, Test No. HBIB-7

Figure 96. Vehicle Final Position and Trajectory Marks, Test No. HBIB-7

7.4 Barrier Damage

The damage to the barrier was moderate, as shown in Figures 97 through 100. Barrier damage consisted of kinks, rail flattening, bending, gouging, and bolt hole tearing. The length of vehicle contact along the barrier was approximately 24 ft - 11 in., which spanned 21 in. downstream from the centerline of post no. 31 to 20.4 in. downstream from post no. 27. Secondary contact occurred 196 in. upstream from the centerline of post no. 29 and ended between posts no. 26 and 27.

Damage to the rail was primarily located along both the top and bottom rails. The top rail showed significant contact marks, with the primary mark beginning at the centerline of post no. 31 and extending 21 in., with a consistent width of 15 in. downstream along the top rail. Additional damage included bends on the bottom rail located at the centerline of post no. 27, measuring 9 in. long by 3 in. wide by 5 in. deep at a height of 11 in. above ground, and at the centerline of post no. 28, measuring 5 in. long by 5 in. wide by 7 in. deep. Kinks were noted along the top rail from posts nos. 27 through 31, specifically 78 in. downstream from the centerline of post no. 31, and at the bottom rail 33 in. upstream from post no. 26. Additional damage included flattening 42½ in. upstream from the centerline of post no. 29 measuring 151 in. long and 8 in. wide. Furthermore, a bolt hole tear occurred at the top rail at post no. 30 and at the bottom rail at post no. 28. The top rail bolt hole elongated between posts nos. 26 through 29 and at the bottom rail at posts nos. 26 and 27.

Post no. 27 exhibited a kink on the front flange starting 14½ in. from the ground, measuring 6 in. long and 1 in. wide. This post also experienced a bent flange in the front flange, measuring 21 in. long and ½ in. wide. At post no. 28, a kink on the front flange began 17 in. from the ground, measuring 2 in. long and ½ in. wide. The front flange of post no. 28 had a bend that measured 16 in. long and 1½ in. wide, and the blockout at this post disengaged. Post no. 29 had a 20-in. long and 2-in. wide bend on the front flange, a kink on the front flange starting 10 in. from the ground and measuring 2 in. long by ½ in. wide, a kink on the back flange starting 20 in. from the ground and measuring 5 in. long and ½ in. wide, and a disengaged blockout. The bottom downstream bolt hole on the front flange of post no. 30 was torn. Post no. 30 also exhibited two kinks on the front flange, one starting 20 in. from the ground and measuring 2 in. long and ½ in. wide and another starting 6 in. from the ground and measuring 3 in. long and ½ in. wide, and the blockout was disengaged. The bottom rail pulled out from the bolts on posts no. 25 through 29. The top rail pulled out from the bolts on posts no. 27 through 30, and the bolts on posts no. 27 through 30 were bent.

Several posts showed substantial deformation. The top of post no. 27 deflected 9 in. backward and 28 in. downstream, and the post rotated 40 degrees clockwise. Post no. 28 deflected 17 in. backward and 35 in. downstream with a 70-degree clockwise rotation. Post no. 29 deflected 6 in. backward and 39 in. downstream with an 80-degree clockwise rotation and bent 39 in. from the top of the post. Post no. 30 deflected 5 in. backward and 13 in. downstream and rotated 30 degrees clockwise.

Figure 97. Overall System Damage Test No. HBIB-7

Figure 99. Upper Rail and Rubrail Damage Test No. HBIB-7

Figure 100. Post Damage, Post Nos. 27 through 30, Test No. HBIB-7

123

The maximum lateral permanent set of the barrier system was 88.9 in. at the rail in post no. 29, as measured in the field. The maximum lateral dynamic deflection of the upper rail was 30.0 in. at post no. 29. The maximum lateral dynamic deflection of the lower rail was 108.5 in. at post no. 29. The maximum lateral dynamic deflection of the post was 21.3 in. at post no. 28. All dynamic deflections were determined from high-speed digital video analysis. The working width of the system was found to be 130.0 in. at the free end of the rub rail, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 101.

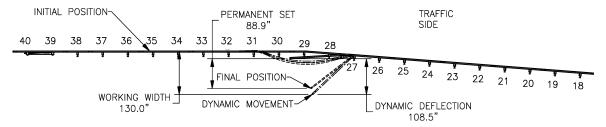
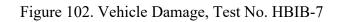


Figure 101. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-7

7.5 Vehicle Damage


The damage to the vehicle was moderate, as shown in Figures 102 and 103. The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The front bumper cover was disengaged from the vehicle. The bumper bar was dented and crushed slightly rearward. The right headlight disengaged. The hood was bent in and upward at the right leading end. The fender was crushed, dented, and scraped throughout, with the majority of the damage located just above the wheel opening and behind the headlight area. Damage from the fender extended to the door panel, which had a 5-in. high and 5-in. long tear with some of the sheet metal folded back. The door panel was dented and had a 13-in. long scrape just behind the tear. The right-front wheel was dented and scraped in several places around the outer perimeter with the tire detached but still present. The tire was pinched between the wheel and the firewall. The side windows and windshield remained undamaged.

The undercarriage and suspension components were also affected. The right front strut was bent at both the lower mount and at the upper spring location. The front sway bar shifted toward the right side of the vehicle, with the right end of the sway bar—near its connection to the tie-rod end link—bent inward toward the motor. The right-front lower control arm was bent downward in the center and bent upward from its attachment point on the front subframe, forming a peak at the midpoint. The arm was torn from the front pivot. The left-front side lower control arm was tilted upward slightly from its attachment points on the front subframe. The right inner tie rod was bent slightly.

The maximum occupant compartment intrusions are listed in Table 13, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. MASH defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria.

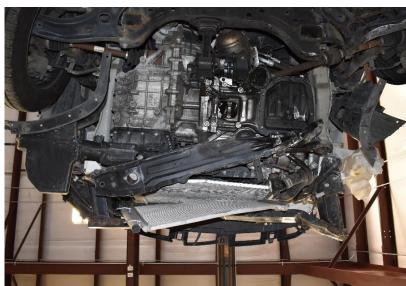


Figure 103. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-7

Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-7

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	0.2	≤ 9
Floor Pan & Transmission Tunnel	0.2	≤ 12
A-Pillar	0.0	≤ 5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.0	≤ 3
Side Front Panel (in Front of A-Pillar)	0.1	≤ 12
Side Door (Above Seat)	0.0*	≤ 9
Side Door (Below Seat)	0.0*	≤ 12
Roof	0.0	≤ 4
Windshield	0.0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.2	N/A

N/A – No MASH criteria exist for this location.

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined by accelerometer data, are shown in Table 14. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 14. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix H.

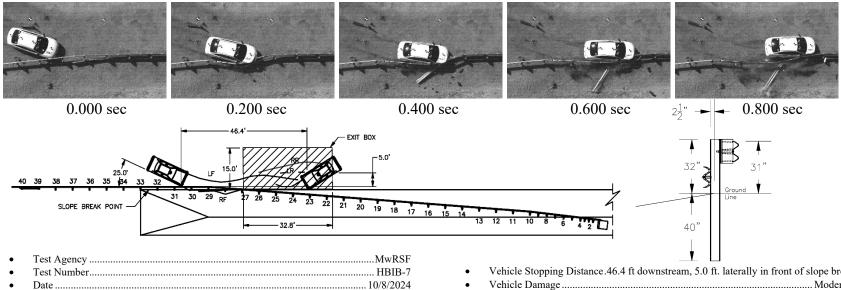

^{*}Negative value reported as 0.0. See Appendix F for further information.

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-7

Evaluation Criteria		Transducer		MASH
		SLICE-1 (primary)	SLICE-2 (backup)	Limits
OIV	Longitudinal	-22.06	-22.18	±40
ft/s	Lateral	-15.50	-15.50	±40
ORA	Longitudinal	-12.45	-12.20	±20.49
g's	Lateral	-8.54	-9.25	±20.49
Maximum	Roll	-10.2	-9.2	±75
Angular Displacement	Pitch	-5.2	-4.4	±75
deg.	Yaw	-31.4	-30.1	not required
THIV – ft/s		27.33	27.08	not required
PHD – g's		13.61	13.39	not required
ASI		0.90	0.90	not required

7.7 Discussion

The analysis of the test results for test no. HBIB-7 showed that the barrier system effectively contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 104. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, nor did they present an undue hazard to other traffic, pedestrians, or work-zone personnel. There were no deformations or intrusions into the occupant compartment that could have caused serious injury to an occupant. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 20.3 degrees with respect to the slope break point, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HBIB-7 was deemed acceptable according to the MASH safety performance criteria for test designation 3-37b.

Toot Number	
C .	219 ft – 4 in
Key Component – Steel W-beam	
	12 gauge
1 0 0	
Key Component – Steel Post	
1	W6x8.5
Length	96 in
1	Varies
1 0	
	cycled Blockout (Post Nos. 1-38)
Shape	
Soil Type	Coarse, Crushed Limestone (Well-Graded Gravel)
Vehicle Make / Model	2018 Kia Ric
Curb	2,467 lb
Gross Static	
Impact Conditions	
Speed	
Angle	25.0 deg. (MASH Limit 15 ± 1.5 deg.)
Impact Location82.8 in	n. US from centerline splice between post nos. 29 & 30
Impact Severity	58.8 kip-ft ≥ 51 kip-ft MASH minimum
Exit Conditions	
Speed	
C	Pass

		. 📙
•	Vehicle Stopping Distance.46.4 ft downstream,	5.0 ft. laterally in front of slope break
•	Vehicle Damage	Moderate
	VDS [15]	1-RFQ-5
	CDC [16]	01-RFEE-9
•	Maximum Interior Deformation 0.2 in. at whee	el well & toe pan ≤ 9-in. MASH limit
•	Test Article Damage	Moderate
•	Maximum Test Article Deflections	
	Permanent Set	
	Dynamic	108.5 in
	Working Width	

Transducer Data				
		Transducer		MASH
Evaluation	Evaluation Criteria		SLICE-2 (backup)	Limits
OIV	Longitudinal	-22.06	-22.18	±40
ft/s	Lateral	-15.50	-15.50	±40
ORA	Longitudinal	-12.45	-12.20	±20.49
g's	Lateral	-8.54	-9.25	±20.49
Maximum	Roll	-10.2	-9.2	±75
Angular Displacement	Pitch	-5.2	-4.4	±75
deg.	Yaw	-31.4	-30.1	not required
THIV -	– ft/s	27.33	27.08	not required
PHD -	- g's	13.61	13.39	not required
AS	I	0.90	0.90	not required

Figure 104. Summary of Test Results and Sequential Photographs, Test No. HBIB-7

8 FULL-SCALE CRASH TEST NO. HBIB-8

8.1 Static Soil Test

Before full-scale crash test no. HBIB-8 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

8.2 Weather Conditions

Test no. HBIB-8 was conducted on December 6, 2024, at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 15.

Table 15	Weather	Conditions.	Test No.	HRIR-8
Table 13.	. W Callici	Conditions.	I CSL INO.	HDID-0

Temperature	52°F
Humidity	30%
Wind Speed	9 mph
Wind Direction	230° from True North
Sky Conditions	Clear, Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.97 in.
Previous 7-Day Precipitation	0.97 in.

8.3 Test Description

The targeted vehicle impact was to occur $69\frac{1}{4}$ in. upstream from the upstream end of the concrete anchor block as shown in Figure 105. The CIP for test no. HBIB-8 was selected using the recommended TL-3 test matrix Table 2-3 of MASH. The CIP plots found in MASH Section 2.3 were implemented to maximize the probability of pocketing and vehicle snagging on the concrete parapet, but the calculated value for "X" was multiplied by the ratio of the effective nominal impact angle affected by the flare divided by the MASH test designation impact angle. The first flare rate was used for the calculation, which had an effective flare angle of 4.4 degrees. Thus, "X" was multiplied by 20.6/25 = 0.824. The 5,000-lb quad cab pickup truck impacted the slope break point of the system in the reverse direction at a speed of 61.5 mph and at an angle of 24.9 degrees and impacted the barrier at a speed of 61.5 mph and at an angle of 27.5 degrees. The actual point of impact was 67.0 in. upstream from the upstream end of the concrete anchor block. The vehicle came to rest 147.2 ft downstream and 34.0 ft laterally behind the slope break point without brakes applied.

A detailed description of the sequential impact events is reported in Table 16. Sequential photographs are shown in Figures 106 and Figure 107. Documentary photographs of the crash test are shown in Figure 108. The vehicle trajectory and final position are shown in Figure 109.

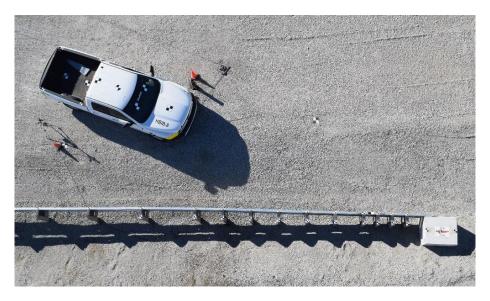


Figure 105. Target Impact Location, Test No. HBIB-8

Table 16. Sequential Description of Impact Events, Test No. HBIB-8

Time sec	Event
-0.236	Vehicle rolled toward barrier and traversed slope break point.
-0.158	Vehicle's right-front tire became airborne.
-0.088	Vehicle's right-rear tire became airborne.
-0.036	Vehicle's left-front tire became airborne.
0.000	Vehicle's front bumper contacted rail 67.0 in. upstream from upstream end of concrete anchor and was dented and crushed inward. Vehicle's right headlight contacted rail and shattered. Vehicle's right fender contacted rail and was crushed and torn.
0.012	Post nos. 1 through 4 rotated backward. Vehicle's right-front tire contacted ground.
0.018	Post no. 5 rotated backward. Vehicle's left headlight disengaged.
0.028	Vehicle yawed away from the barrier. Vehicle's right-front door contacted rail and was buckled and torn.
0.050	Vehicle's left-rear tire became airborne. Vehicle's roof deformed.
0.068	Vehicle rolled away from the barrier.
0.076	Vehicle's right-rear tire contacted ground.
0.086	Vehicle's grille contacted rail and was disengaged.
0.096	Vehicle's right-front window shattered.
0.104	Occupant's head contacted B-pillar.
0.130	Vehicle's right-rear door contacted rail and was buckled and torn.
0.160	Vehicle's C-pillar contacted rail and was torn.
0.172	Vehicle's right quarter panel contacted rail and was dented inward, scraped, and torn.
0.188	Vehicle's right taillight contacted rail and cracked.
0.196	Vehicle's rear bumper contacted rail and was dented and bent backward.
0.232	Vehicle yawed toward the barrier.
0.267	System came to a rest.
0.296	Vehicle's left-rear tire contacted ground.
0.306	Vehicle exited system at a speed of 48.0 mph speed and an angle of -8.3 degrees with respect to the barrier.
0.434	Vehicle's left-front tire contacted ground.
3.808	Vehicle came to rest.

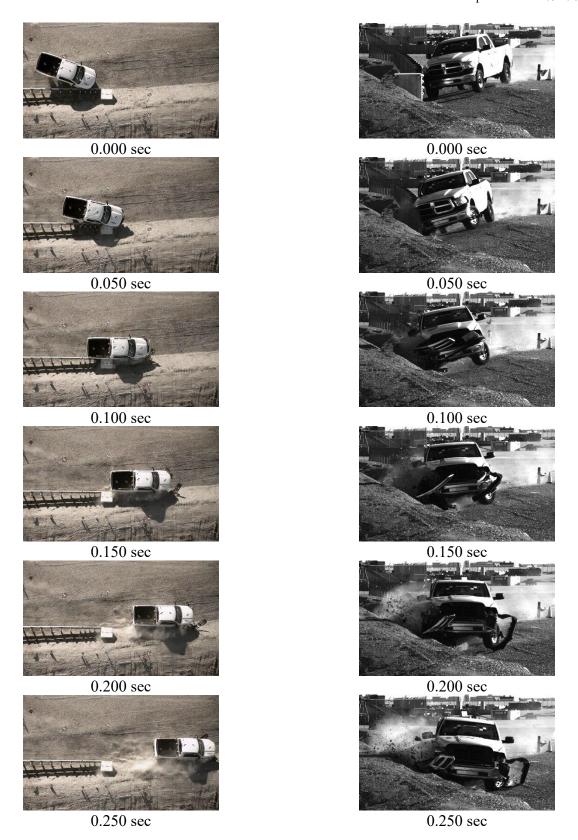


Figure 106. Sequential Photographs, Test No. HBIB-8

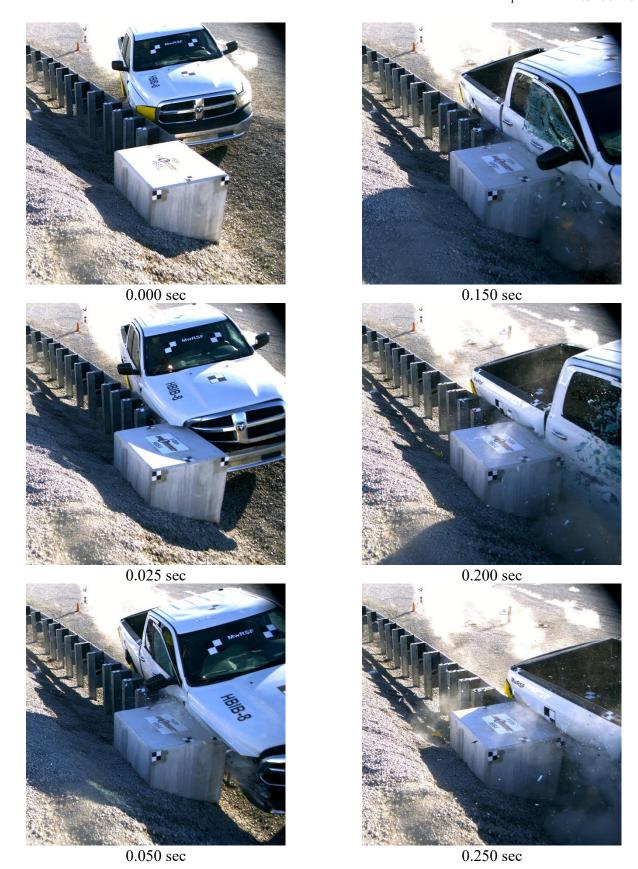


Figure 107. Sequential Photographs, Test No. HBIB-8

Figure 108. Documentary Photographs, Test No. HBIB-8

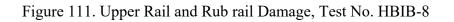
Figure 109. Vehicle Final Position and Trajectory Marks, Test No. HBIB-8

8.4 Barrier Damage

The damage to the barrier was minimal, as shown in Figures 110 and 111. Barrier damage consisted of kinks and rail flattening. The length of vehicle contact along the barrier was approximately $108\frac{1}{2}$ in. which spanned from $6\frac{1}{4}$ in. upstream from the centerline of post no. 3 through to the end of the concrete anchor. The primary contact mark spanned the bottom corrugation of the top rail and both corrugations of the bottom rail, beginning at the centerline of post no. 3 and extending downstream to the end of the concrete anchor.

A series of kinks on the top rail was observed 25 in. downstream from post no. 1 measuring 19½ in. long, 2 in. wide, ½ in. deep, and 24 in. downstream from post no. 1 measuring 17 in. long, 2 in. wide, ½ in. deep. The bottom flange of the top rail and the top flange of the bottom rail had a series of kinks 24 in. downstream from post no. 1 measuring 17 in. long, 2 in. wide, ½ in. deep. The bottom rail had a series of kinks 24 in. downstream from post no. 1 measuring 20 in. long, 2 in. wide, ½ in. deep.

Additional damage included flattening of the bottom rail 5 in. upstream from the centerline of post no. 1 measuring 17 in. long, 2 in. wide, and 1 in. deep. A kink was found on the top flange of the top rail 6 in. downstream from the centerline of post no. 3 measuring 18 in. long and 2 in. wide. The blockout at post no. 1 had two tears: a 5-in. long vertical tear at the top on the upstream side, and a 6-in. long vertical tear at the bottom on the downstream side.



The maximum lateral permanent set of the barrier system was 0.7 in. at post no. 2, as measured in the field. The maximum lateral dynamic deflection of the rail was 2.9 in. at the rail at post no. 2. The maximum lateral dynamic deflection of the post was 3.1 in. at post no. 2. The maximum lateral dynamic deflection of the anchorage was 2.8 in. at the upstream concrete anchor, as determined from high-speed digital video analysis. The working width of the system was found to be 20.3 in. at post no. 2, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 112.

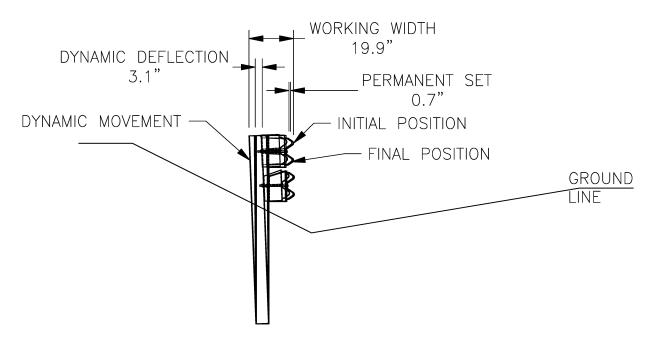


Figure 112. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-8

8.5 Vehicle Damage

The damage to the vehicle was severe, as shown in the Figures 113 through 116. The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. A large dent was found on the right-front corner of the front bumper. Both headlights and the grille were disengaged from the vehicle. The right one-third of the rear bumper was bent backward at roughly a 45-degree angle, leading to protrusion of the bumper's corner and an inward buckle at the point of bending. Denting and buckling were found along the entire length of the right side of the truck bed with a width of approximately 10 to 16 in. midway up the bed and along the top of the wheel opening. A gouge approximately 3 in. in length was found on the leading edge of the box.

The middle section of the right-rear door was dented and buckled. A 2-in. gouge was found on the trailing edge of the right-rear door, and a 10-in. gouge was found on the door's leading edge. The right-front door panel buckled along the middle of the door. There was a gap at the top of the right-front door where it no longer sat flush with the vehicle's frame. The leading edge of the door panel was buckled and torn approximately 4 in. rearward. Severe crushing and denting were located at the top of the wheel opening with scrapes and gouges throughout the right-front side of the vehicle.

The undercarriage and suspension components were also affected, as shown in the Figure 116. The right-front shock and spring were bent rearward and inward toward the vehicle. The left shock remained intact. The end link was disengaged from the sway bar and the vehicle on the right side. The right steering knuckle was also disengaged from the vehicle. The left-side steering knuckle sustained two minor scrapes where it contacted the lower control arm. The front right lower control arm was detached from the vehicle, and the front right upper control arm was slightly twisted at the point where the rubber bushing met the frame. No damage was observed on the front left upper control arm, though small scrapes were present on the leading and trailing edges of the front left lower control arm.

Additionally, the front right steering arm was detached from both the steering gearbox and the vehicle. The front left steering arm was bent in a manner that caused the entire steering assembly, comprising the steering gearbox and left steering arm, to deform at an angle of approximately 120 degrees. The outer encasement of the steering box was sheared and split into three nearly equal parts. The section located at the left-front side of the vehicle included bent steering shaft linkages. The left-front tie rod remained undamaged, while the right-front tie rod was disengaged from the vehicle.

The maximum occupant compartment intrusions are listed in Table 17, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment, vehicle intrusions, and the corresponding locations of the deformations are provided in Appendix F. MASH defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria.

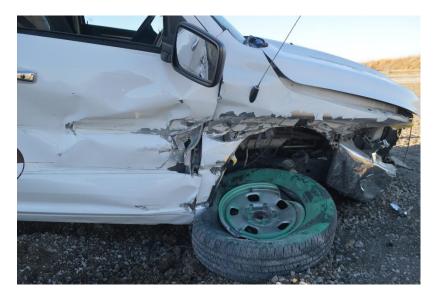


Figure 114. Vehicle Damage, Test No. HBIB-8

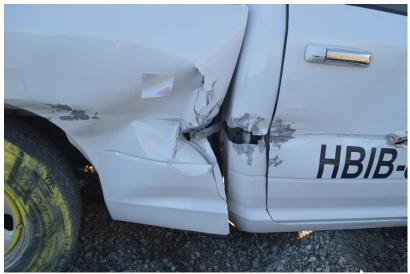


Figure 115. Vehicle Damage, Test No. HBIB-8

Figure 116. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-8

Table 17. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-8

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	0.3	≤ 9
Floor Pan & Transmission Tunnel	0.1	≤ 12
A-Pillar	0.2	≤ 5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.0	≤3
Side Front Panel (in Front of A-Pillar)	2.8	≤ 12
Side Door (Above Seat)	1.1	≤ 9
Side Door (Below Seat)	0.9	≤ 12
Roof	0.0*	≤ 4
Windshield	0.0	≤3
Side Window	Shattered due to contact with surrogate occupant's head	No shattering resulting from contact with structural member of test article
Dash	0.6	N/A

N/A – No MASH criteria exist for this location.

8.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined by accelerometer data, are shown in Table 18. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 18. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix I.

^{*}Negative value reported as 0.0. See Appendix F for further information.

Table 18. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-8

Evaluation Criteria		Transducer		MASH
		SLICE-1 (backup)	SLICE-2 (primary)	Limits
OIV	Longitudinal	-13.90	-14.91	±40
ft/s	Lateral	-18.12	-22.01	±40
ORA	Longitudinal	-4.45	-4.94	±20.49
g's	Lateral	-12.12	-9.63	±20.49
Maximum	Roll	13.3	12.1	±75
Angular Displacement	Pitch	3.2	2.8	±75
deg.	Yaw	-19.5	-19.8	not required
THIV – ft/s		22.32	24.77	not required
PHD – g's		12.13	9.63	not required
ASI		1.36	1.45	not required

8.7 Discussion

The analysis of the test results for test no. HBIB-8 showed that the barrier system effectively contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 117. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, nor did they present an undue hazard to other traffic, pedestrians, or work-zone personnel. There were no deformations or intrusions into the occupant compartment that could have caused serious injury to an occupant. The test vehicle did not penetrate or ride over the barrier and remained upright throughout the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix I, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the system at an angle of -8.3 degrees with respect to the barrier, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HBIB-8 was deemed acceptable according to the MASH safety performance criteria for test designation 3-37a.

MASH

Limits

 ± 40

 ± 40

 ± 20.49

 ± 20.49

±75

 ± 75

not required

not required

not required

not required

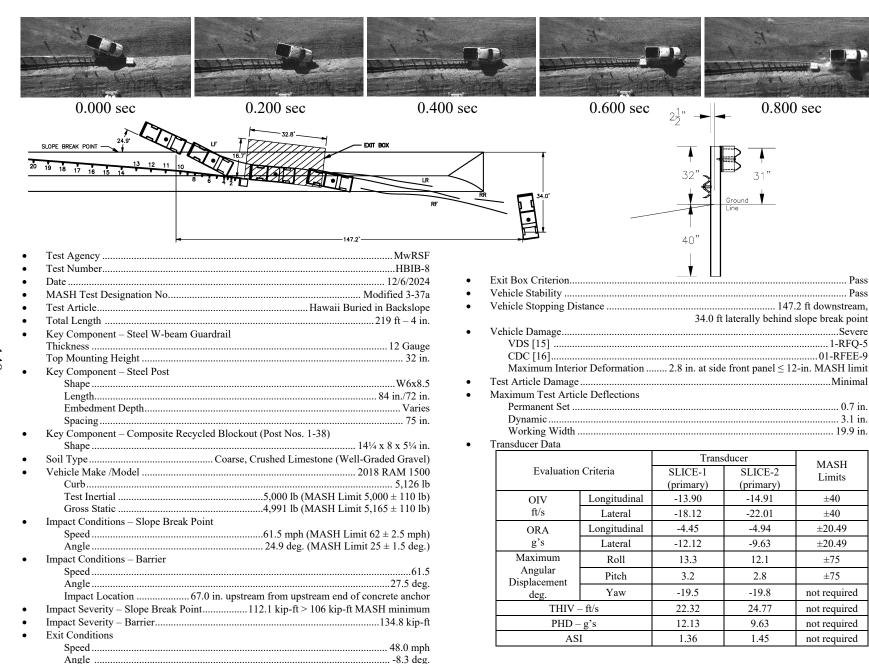


Figure 117. Summary of Test Results and Sequential Photographs, Test No. HBIB-8

9 FULL-SCALE CRASH TEST NO. HBIB-10

9.1 Static Soil Test

Before full-scale crash test no. HBIB-10 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

9.2 Weather Conditions

Test no. HBIB-10 was conducted on June 20, 2025, at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 19.

Table 19. Weather Conditions, Test No. HBIB-10

Temperature	101°F
Humidity	30%
Wind Speed	25 mph
Wind Direction	200° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.25 in.
Previous 7-Day Precipitation	0.58 in.

9.3 Test Description

Initial vehicle impact was to occur 43½ in. upstream from the upstream end of the concrete anchor block, as shown in Figure 118, which was selected using the CIP plots found in Section 2.3 of MASH to maximize pocketing and the probability of wheel snag and pocketing adjacent to the rigid concrete parapet. The same multiplication factor was applied to the calculated value for "X" for the small car of 0.824. The 2,421-lb small car impacted the slope break point of the system in the reverse direction at a speed of 62.7 mph and an angle of 25.1 degrees and impacted the barrier at a speed of 62.4 mph and at an angle of 29.4 degrees. The actual point of impact was 41.5 in. upstream from the upstream end of the concrete anchor block, or 1.7 in. downstream from the target impact point. After brakes were applied, the vehicle came to rest 165.4 ft downstream from impact and 1.7 ft laterally behind the slope break point.

A detailed description of the sequential impact events is contained in Table 20. Sequential photographs are shown in Figures 119 and 120. Documentary photographs of the crash test are shown in Figures 121 through 123. The vehicle trajectory and final position are shown in Figure 124.

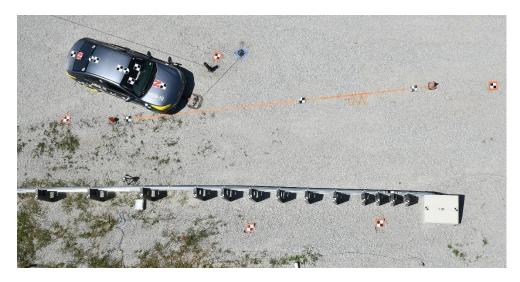


Figure 118. Target Impact Location, Test No. HBIB-10

Table 20. Sequential Description of Impact Events, Test No. HBIB-10

Time (sec)	Event
-0.246	Vehicle rolled toward the system and traversed slope break point.
-0.210	Vehicle's right-front tire became airborne.
-0.064	Vehicle's left-front tire became airborne.
-0.056	Vehicle's right-rear tire became airborne.
-0.032	Vehicle's left-rear tire became airborne.
-0.004	Vehicle's right-rear tire contacted ground.
0.000	Vehicle's front bumper contacted rail 41.5 in. upstream from the upstream end of concrete anchor, crushed inward, and tore. Vehicle's right headlight contacted rail and was shattered.
0.006	Vehicle's right-front tire contacted ground. Vehicle's right fender contacted rail, crushed inward, was scraped, and tore.
0.012	Vehicle's hood contacted rail and crushed inward. Post nos. 1 through 4 rotated backward. Vehicle's right-front tire contacted rail.
0.020	Vehicle's right mirror contacted rail and disengaged. Vehicle yawed away from system. Vehicle's right A-pillar contacted barrier and bent inward.
0.032	Vehicle rolled away from the system.
0.038	Vehicle's roof was dented and buckled. Vehicle's windshield encountered significant cracking.
0.042	Vehicle's right-front door contacted rail, crushed inward, was scraped, and tore.
0.072	Vehicle's right-front window shattered.
0.094	Vehicle's right-front tire contacted concrete anchor and deflated.
0.133	Vehicle's left-rear tire contacted ground.
0.152	Vehicle exited system at a speed of 44.5 mph and an angle of -1.5 degrees.
0.166	Vehicle's left-front tire contacted ground. System came to rest.
0.233	Vehicle's right-rear tire became airborne.
0.282	Vehicle's left-front tire became airborne.
0.558	Vehicle rolled toward the system.
0.668	Vehicle's right-rear tire contacted ground.
0.692	Vehicle was parallel to system at a speed of 40.2 mph.
0.708	Vehicle's left-front tire contacted ground.
0.780	Vehicle rolled away from the system.
0.968	Vehicle rolled toward the system.
1.317	Vehicle's left-rear tire became airborne.
1.842	Vehicle's left-rear tire contacted ground.
3.883	Vehicle came to rest.

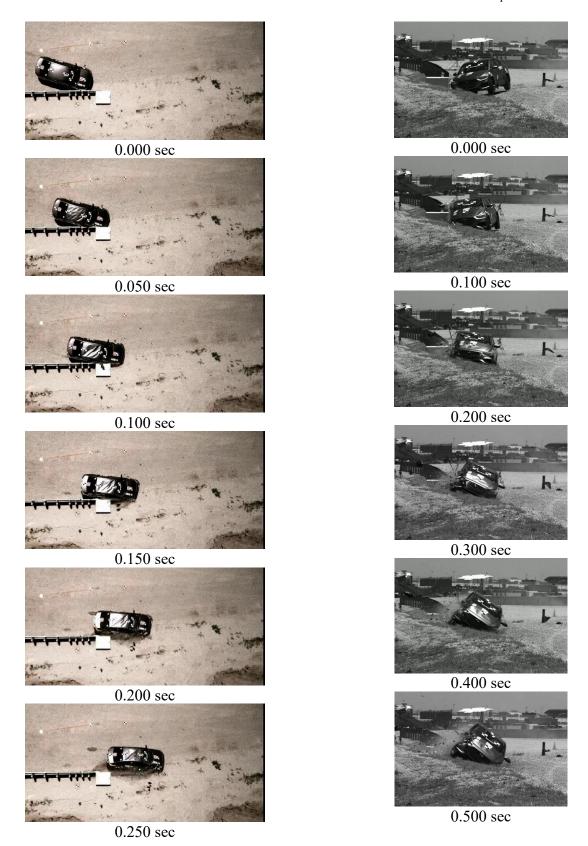


Figure 119. Sequential Photographs, Test No. HBIB-10

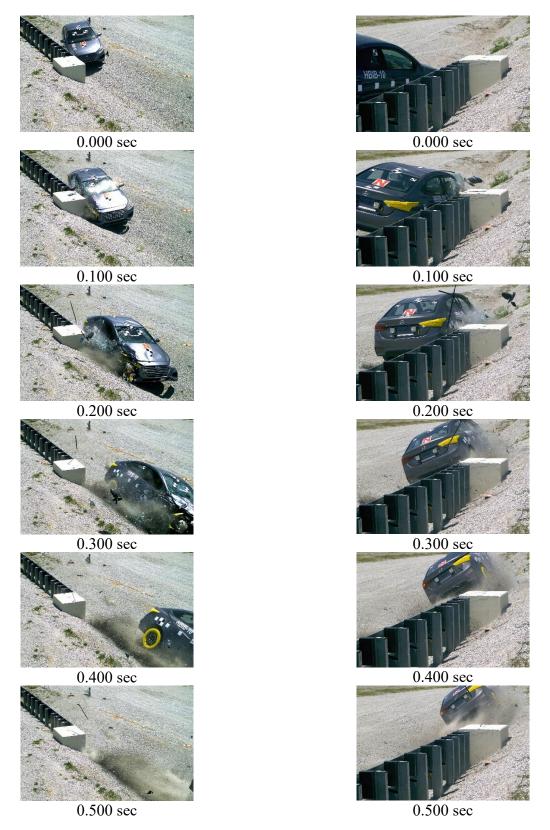


Figure 120. Sequential Photographs, Test No. HBIB-10

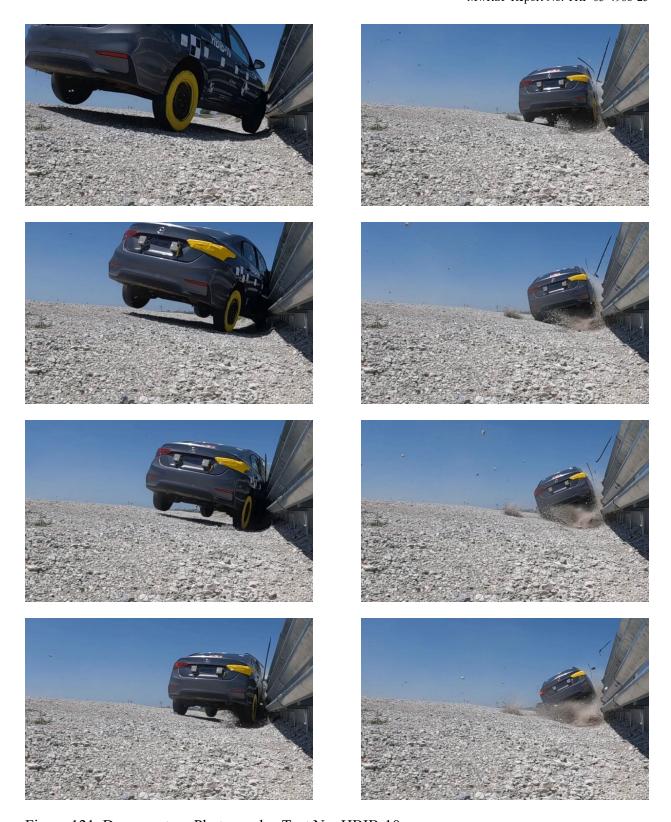


Figure 121. Documentary Photographs, Test No. HBIB-10

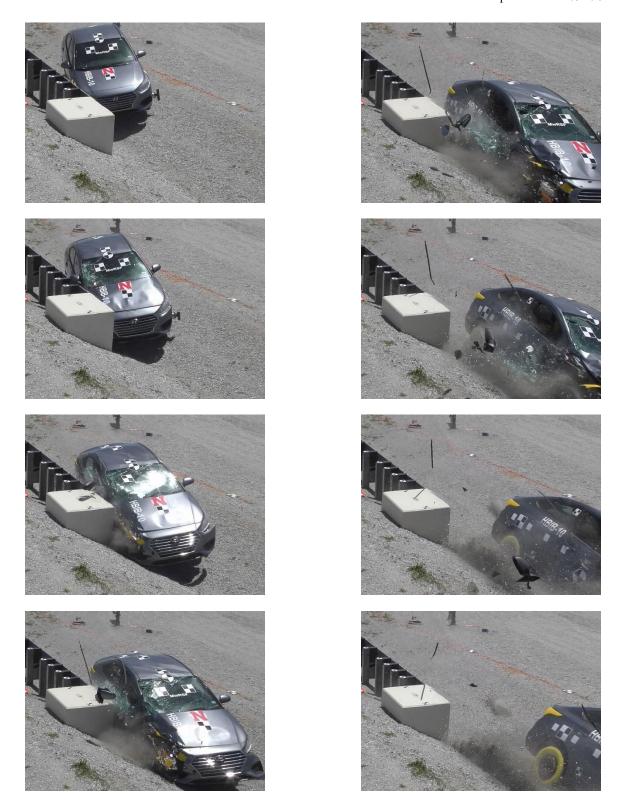


Figure 122. Documentary Photographs, Test No. HBIB-10

Figure 123. Documentary Photographs, Test No. HBIB-10

Figure 124. Vehicle Final Position and Trajectory Marks, Test No. HBIB-10

9.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 125 and 126. Barrier damage consisted of contact marks, tears, flattening, kinks, translation of the rails at splices, post deformation, and concrete cracking. The length of vehicle contact along the barrier was approximately 7 ft - 4 in. which spanned from 8 in. downstream from post no. 3 to the downstream end of the concrete fascia.

Rail damage consisted of contact marks, tears, flattening, kinks, and splice slipping. There was a total of four major contact marks. The first contact mark was located on the top rail on the top flange, beginning 8 in. downstream from post no. 3 and was 66 in. in length and 5 in. in width. The second contact mark was located on the top rail on the top flange, ½ in. upstream from post no. 3, and was 5 in. long and ¼ in. wide. The third contact mark, located on the top rail on the bottom flange 9½ in. downstream from post no. 3, was 65 in. long and 5 in. wide. The fourth contact mark, located on the bottom rail and continuing onto the concrete, began 18 in. downstream from post no. 3 and was 81 in. long and 12 in. wide.

A 25-in. long and 1½-in. wide tear was found on the rail 11½ in. downstream from post no. 1 and 37½ in. from the ground. The bottom rail was flattened on its bottom flange 14 in. downstream from post no. 2 and 14 in. from the ground, measured 4 in. long and 2 in. wide. A series of kinks was observed on the top flange of the top rail located 22 in. downstream from post no. 1, measuring 15 in. long and ½ in. wide. A 17-in. long and ½-in. deep series of kinks was also present on the top flange of the bottom rail located 22 in. downstream from post no. 1. A 20-in. in long and ½-in. deep kink was found on the bottom flange of the top rail located 22 in. downstream from post no. 1. Finally, a series of kinks was found on the bottom flange of the bottom rail located 19 in. downstream from post no. 1 and measured 20 in. in length and ½ in. in depth.

An ½-in. splice slip occurred at the splice located downstream from post no. 1 and between post nos. 13 and 14. A ¼ in. splice slip occurred at the splice located between post nos. 17 and 18. Two posts had slight deformation after the crash. Post nos. 2 and 3 both deflected backward ¼ in.

Several cracks were observed on the concrete anchor. The first crack was found on the upstream front corner of the concrete block measuring 11 in. long, along with spalling that measured 11 in. long and $3\frac{1}{2}$ in. wide. A 6-in. long crack was located 10 in. upstream from the front downstream corner of the concrete block. A crack was located 14 in. upstream from the front, downstream corner of the concrete that measured 4 in. long. Finally, a 4-in. long crack was located 11 in. upstream from the front, downstream corner of the concrete block.

Figure 126. Upper Rail and Rub Rail Damage, Test No. HBIB-10

The maximum lateral permanent set of the barrier system was 0.7 in. at post no. 11, as measured in the field. The maximum lateral dynamic deflection of the rail was 2.6 in. at post no. 1, as determined from high-speed digital video analysis. The maximum lateral dynamic deflection of the post was 2.8 in. at post no. 2, as determined from high-speed digital video analysis. The working width of the system was found to be 19.7 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 127.

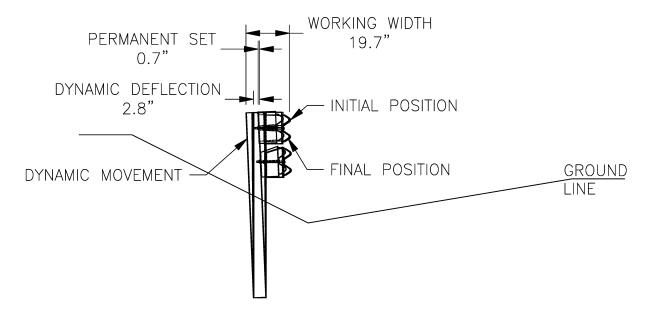


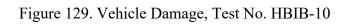
Figure 127. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-10

9.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 128 through 130. The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The right side of the front bumper was detached and the right headlight was damaged, but remained attached. The right-front fender panel was crashed rearward and inward throughout its length, and the leading edge of the panel was detached and bent rearward. The right side of the hood was dented and scraped and the hood panel buckled and deformed, causing the center of the hood to heave upward. The right-front door panel was dented, deformed, with scrapes extending from the fender panel. The leading edge of the right-front door panel was torn rearward at the area just under the side mirror. The upper tear was 8 in. long and 6 in. high, while the lower tear was 12 in. long. The tears in the right-side doors did not penetrate into the interior of the occupant compartment. The window on the passenger door was shattered. The right side of the front windshield was crushed inward and the glass liner was torn due to deformation of the right-side door frame and the roof panel. The roof panel was deformed across the entire panel but showed no evidence of damage from direct contact.

Damage to the vehicle's undercarriage was minimal. The right-front shock, end of the sway bar, and right-side outer tie rod were bent. The right-side lower control arm was bent downward and inward.

The maximum occupant compartment intrusions are listed in Table 21, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. MASH defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered crush toward the occupant, and are not evaluated by MASH criteria. The windshield was torn at the top edge and along the right-side edge, but the tearing was associated with deformation to the right-side door frame and roof and did not result from direct contact with the test article or a component of the vehicle. Thus, while total windshield deflection resulting from the tear exceeded MASH limits, the deformation values were not applicable.


Figure 128. Vehicle Damage, Test No. HBIB-10

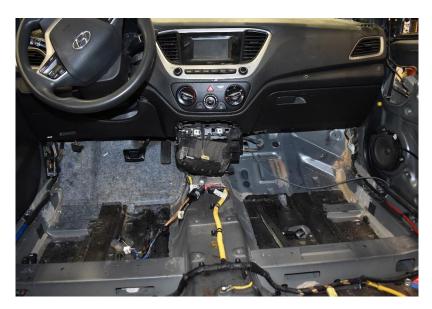


Figure 130. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-10

Table 21. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-10

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.	
Wheel Well & Toe Pan	2.8	≤ 9	
Floor Pan & Transmission Tunnel	2.6	≤ 12	
A-Pillar	1.6	≤ 5	
A-Pillar (Lateral)	1.1	≤ 3	
B-Pillar	1.3	≤ 5	
B-Pillar (Lateral)	0.0*	≤ 3	
Side Front Panel (in Front of A-Pillar)	0.4	≤ 12	
Side Door (Above Seat)	0.4	≤ 9	
Side Door (Below Seat)	0.0*	≤ 12	
Roof	1.2	≤ 4	
Windshield	**	≤3	
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article	
Dash	2.7	N/A	

N/A – No MASH criteria exist for this location.

9.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 22. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 22. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix J.

^{*}Negative value reported as 0.0. See Appendix F for further information.

^{**}The windshield damage occurred due to translation of the base of the vehicle's A-pillar. The windshield experienced lateral flexure, which resulted in shattering, but this deformation was unrelated to windshield impact with the test article and does not violate MASH evaluation criteria.

Table 22. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-10

Evaluation Criteria		Transducer		MASH
		SLICE-1 (primary)	SLICE-2 (backup)	Limits
OIV ft/s	Longitudinal	-21.14	-21.19	±40
	Lateral	-23.43	-22.34	±40
ORA g's	Longitudinal	-4.08	-4.30	±20.49
	Lateral	-4.14	-3.90	±20.49
Maximum Angular Displacement deg.	Roll	-36.8	-38.0	±75
	Pitch	-3.7	-3.3	±75
	Yaw	-32.8	-33.5	not required
THIV – ft/s		29.23	28.54	not required
PHD – g's		5.75	5.67	not required
ASI		1.85	1.80	not required

9.7 Discussion

The analysis of the test results for test no. HBIB-10 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 131. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. Note that the windshield damage occurred due to translation of the base of the vehicle's A-pillar. The windshield experienced lateral flexure, which resulted in shattering, but this deformation was unrelated to windshield impact with the test article and does not violate MASH evaluation criteria. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix J, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of -1.5 degrees with respect to the barrier, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HBIB-10 was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-37b.

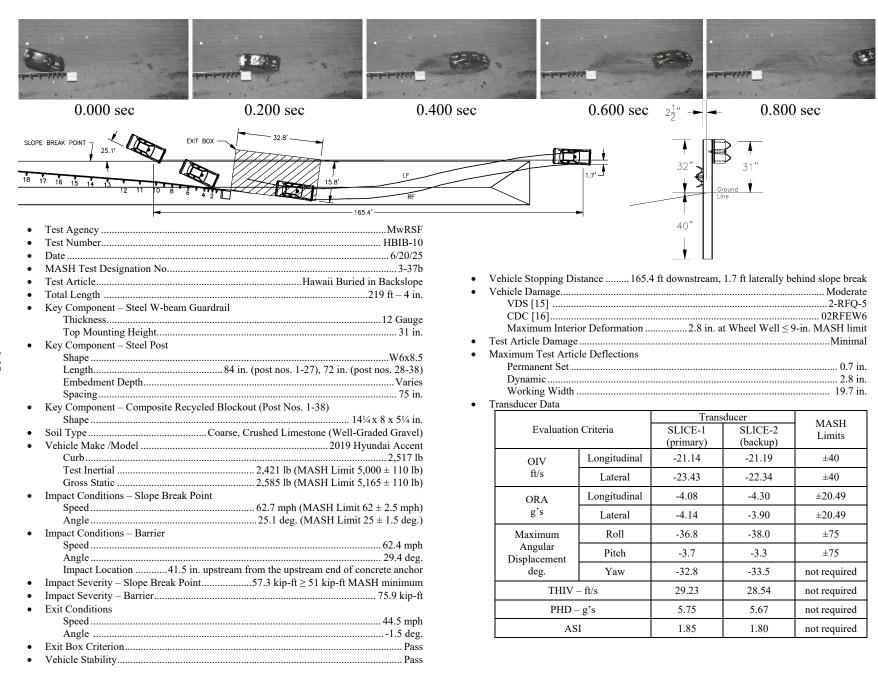


Figure 131. Summary of Test Results and Sequential Photographs, Test No. HBIB-10

10 DESIGN DETAILS: SINGLE-FLARE DESIGN

Hawaii DOT typically uses two configurations of a flared buried-in-backslope system design. The first configuration consists of a single flare extending from the tangent guardrail system, terminating at a rigid anchor block. The second configuration utilizes a secondary flare at adjacent to the end anchorage. The primary flare of the rail has flare rates selected based on the design speed of the barrier system and roadway, whereas the secondary flare is fixed at 7.4:1 with respect to the tangent roadway.

A full evaluation was performed with MASH test designation nos. 3-32, 3-33, 3-34, 3-35, and 3-37a and 3-37b on the HBIB system with dual-flare configuration. The dual flare was most severe for standard traffic direction crashes, but would be less severe when used in trailing-end or reverse-direction crashes. This was because the secondary flare of the dual-flare system had a larger flare rate away from the roadway. For standard-direction impacts, the secondary flare rate contributes to a higher effective impact angle; for reverse-direction impacts, the secondary flare decreases the effective impact angle. Thus, the single-flare configuration was believed to be more severe in reverse-direction configurations.

The system was modified to represent the single-flare configuration. This was accomplished by extending the transition post nos. 1 through 8 with the single-flare configuration (4.4-degrees or 13:1), and placing the anchor block adjacent to the bottom toe of the V-ditch. The resulting system had a 13:1 flare rate between the anchor block and post no. 29.

The same reinforced concrete block was used for the single-flare configuration as was used for the dual-flare configuration. To accommodate the difference in anchor positions, a built-up "cap" was added to the front face of the concrete anchor block so that the rail would be terminated at the block and in line with the single flare. The cap consisted of a trapezoidal shape, as shown in Figure 145 measuring 12¾ in. on the downstream side and 14½ in. thick on the upstream side. Note that for purposes of this discussion, downstream refers to nominal travel direction, not the direction of reverse-direction impact. The trapezoidal cap was doweled into the face of the existing concrete anchor block with bent no. 4 bars and epoxied to a depth of at least 6 in. Additionally, researchers selected post-installed attachments to secure the W-beam end shoe to the reinforced cap instead of cast-in ferrule assemblies.

All other system details were the same for the single-flare configuration evaluated during test no. HBIB-9. The system installation for test no. HBIB-9 is shown in Figures 132 through 169, and material specifications, mill certifications, and certificates of conformity for the system materials are provided in Appendix D.

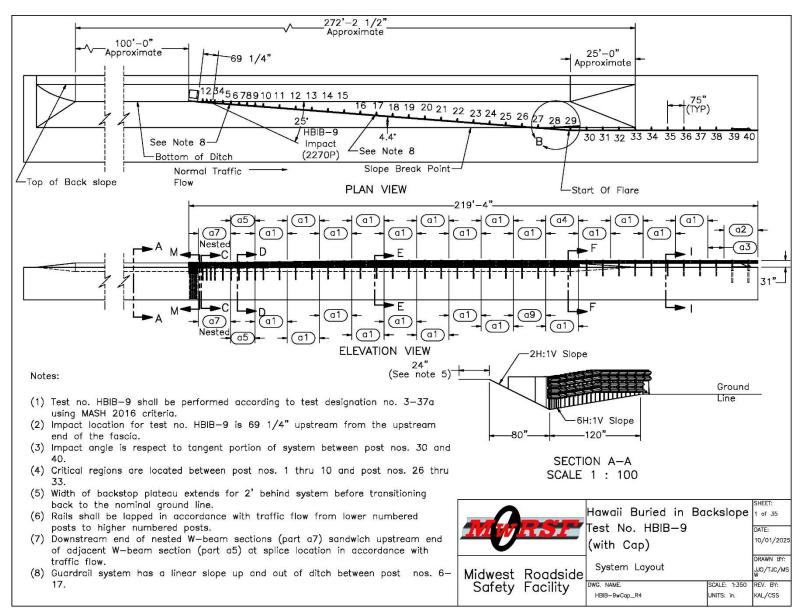


Figure 132. System Overview and Impact Location, Test No. HBIB-9

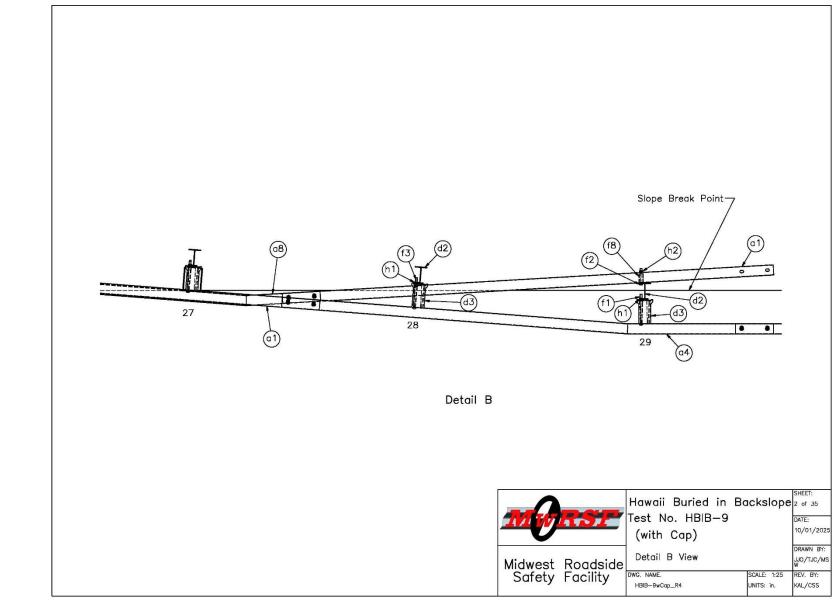


Figure 133. Rubrail Termination Details, Deviation Point, Test No. HBIB-9

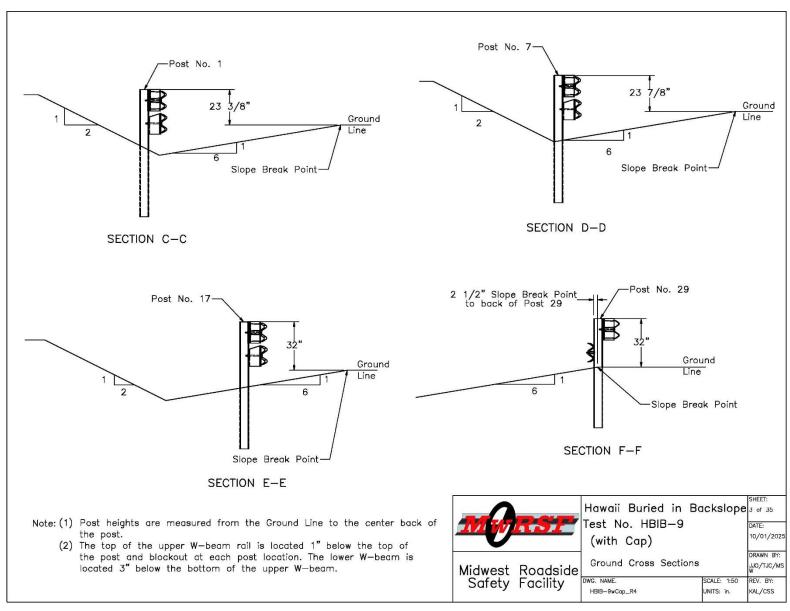


Figure 134. Ground Cross Sections, Test No. HBIB-9

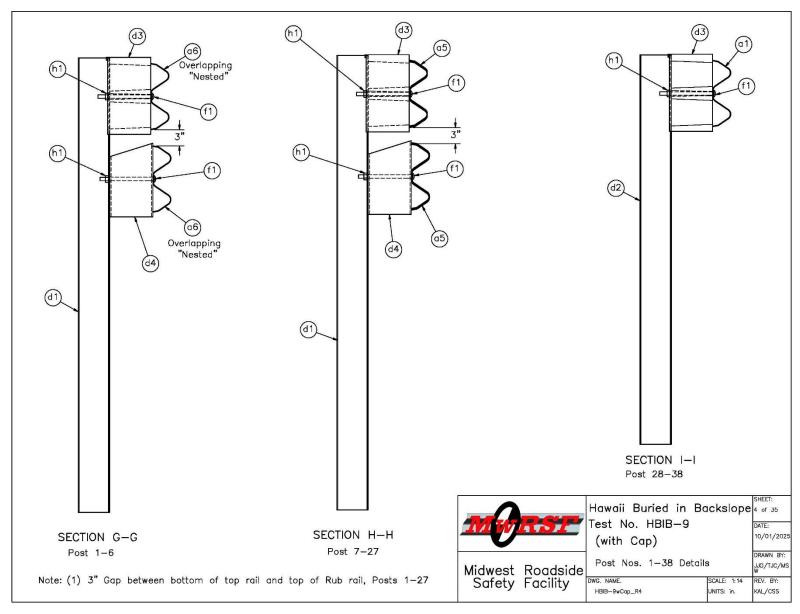


Figure 135. Post Nos. 1 through 38 Details, Test No. HBIB-9

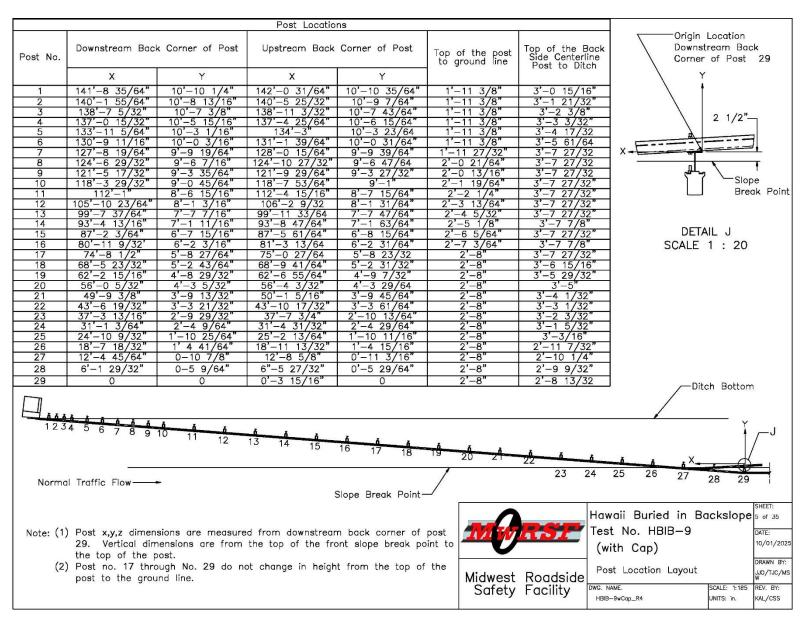


Figure 136. Post Location Layout, Test No. HBIB-9

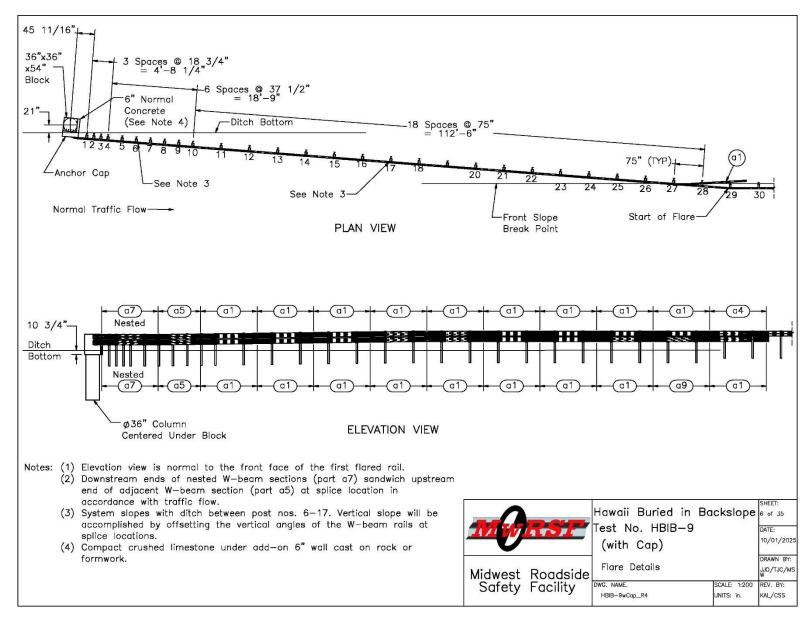


Figure 137. Flare Details, Test No. HBIB-9

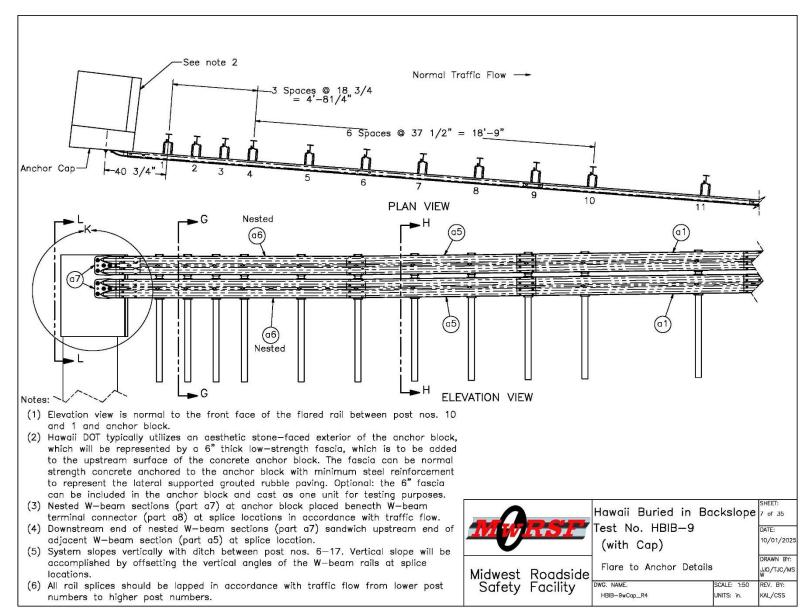


Figure 138. Flare to Anchor Details, Test No. HBIB-9

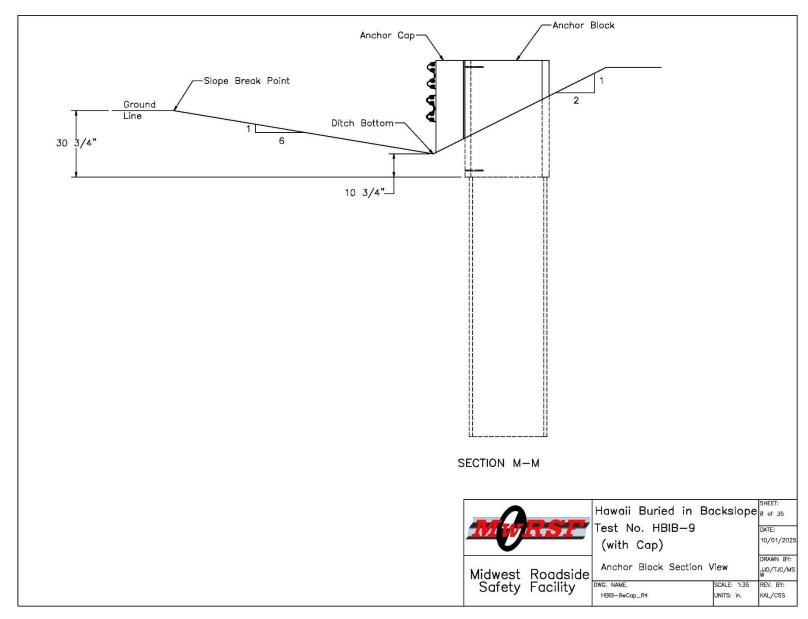


Figure 139. Anchor Block Section View, Test No. HBIB-9

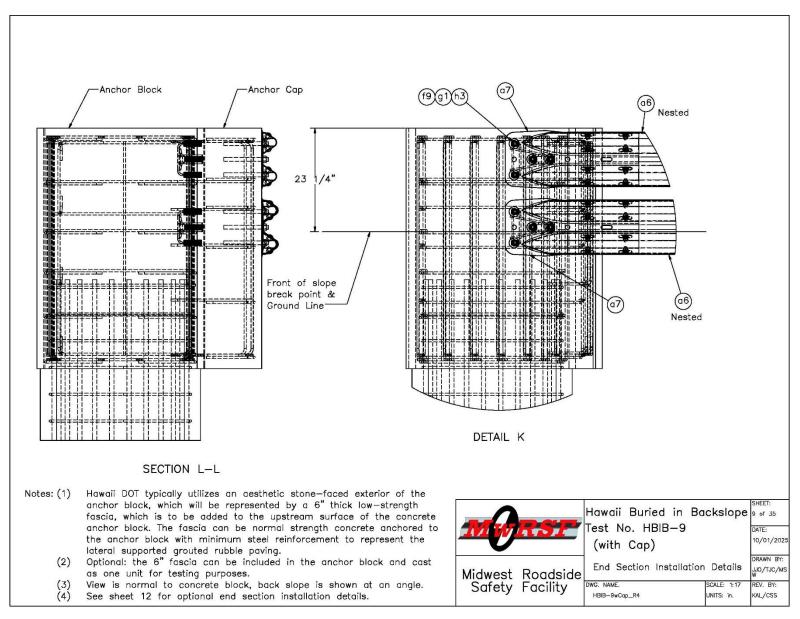


Figure 140. End Section Installation Details, Test No. HBIB-9



Figure 141. Concrete Anchor Block Details, Test No. HBIB-9

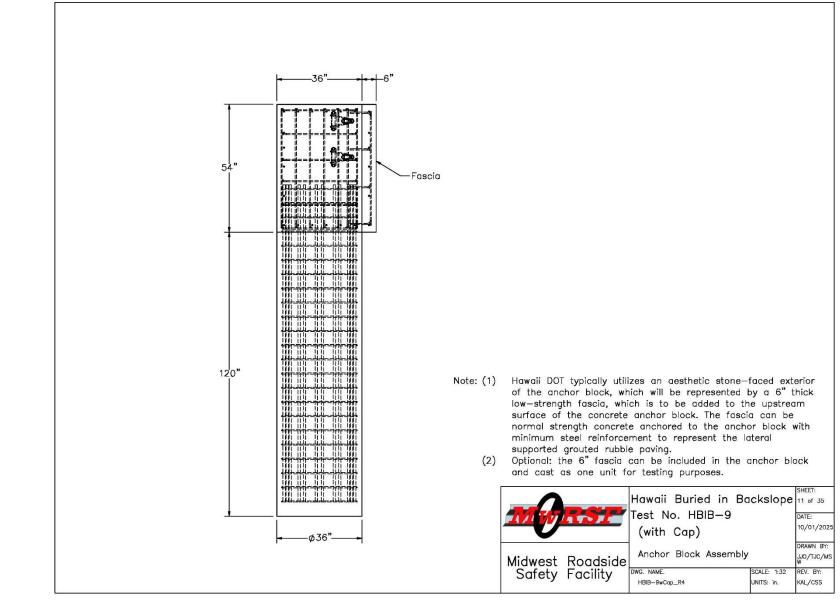


Figure 142. Anchor Block Assembly, Test No. HBIB-9

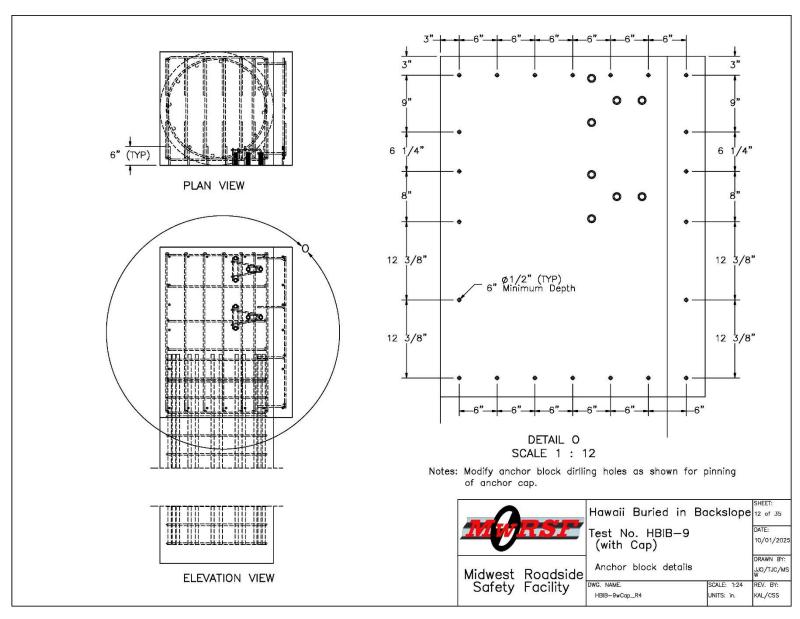


Figure 143. Anchor Block Details, Test No. HBIB-9

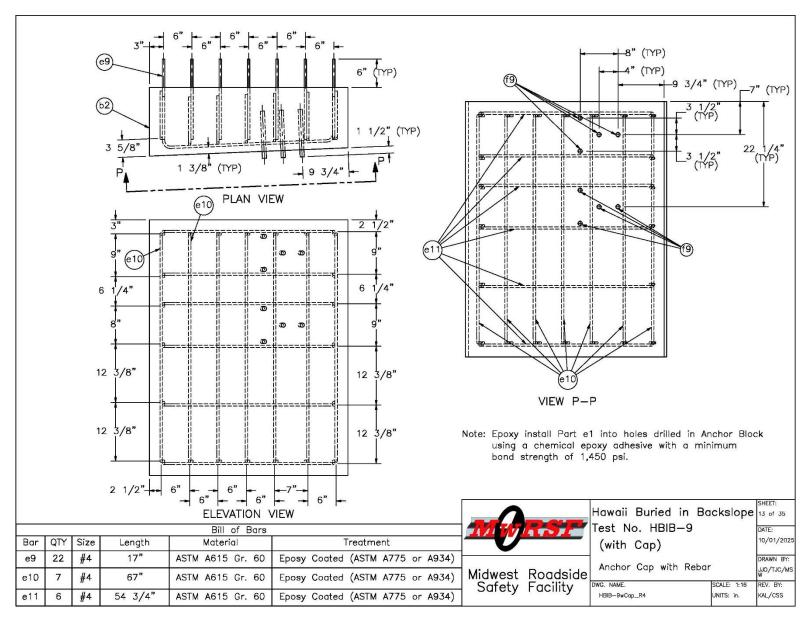


Figure 144. Anchor Cap with Rebar Details, Test No. HBIB-9

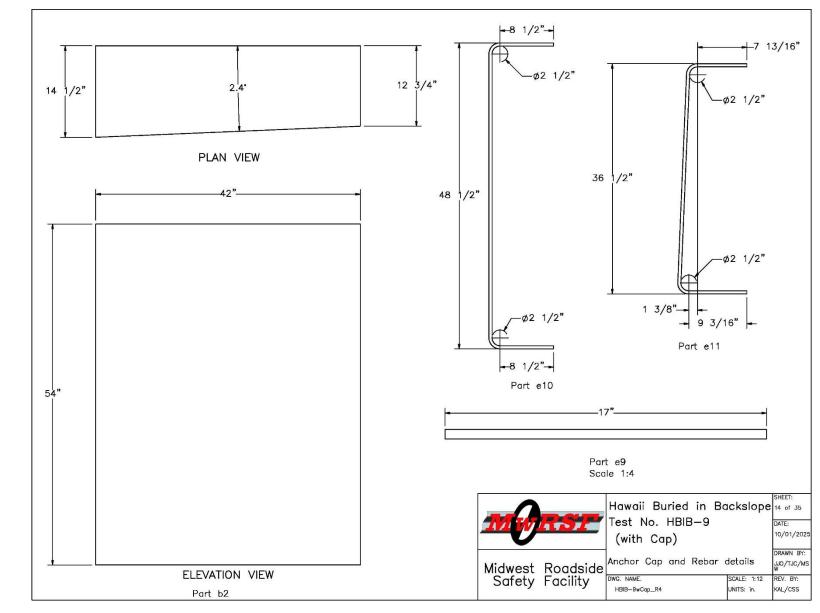


Figure 145. Anchor Cap and Rebar Details, Test No. HBIB-9

Figure 146. Splice Detail, Test No. HBIB-9

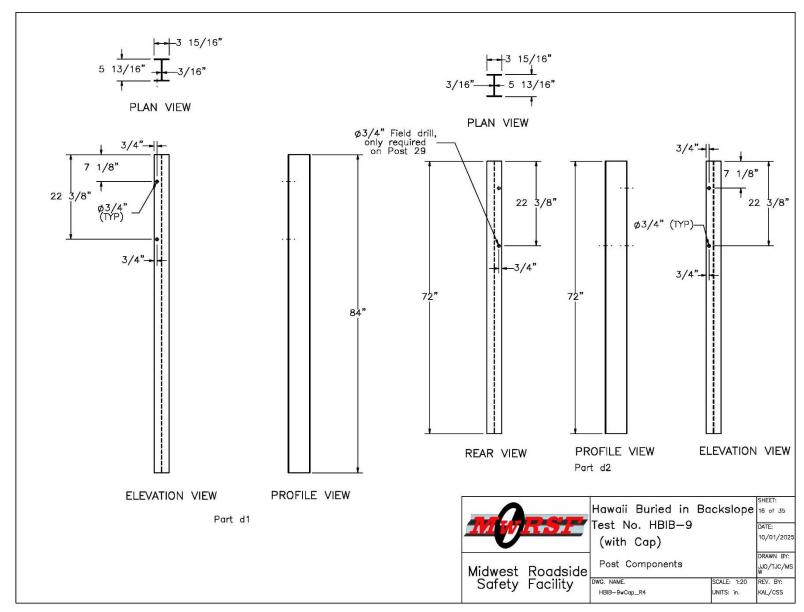


Figure 147. Post Components, Test No. HBIB-9



Figure 148. Tapered Blockout Details, Test No. HBIB-9

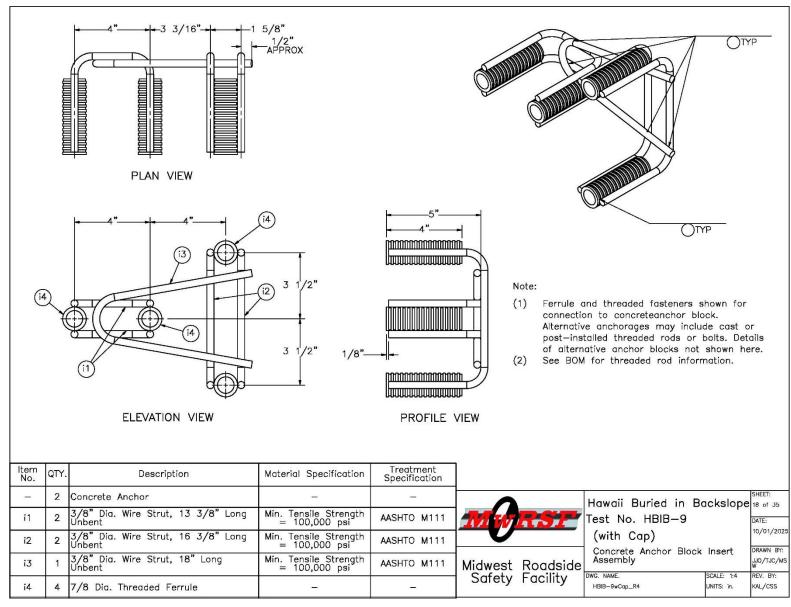


Figure 149. Concrete Anchor Block Insert Assembly, Test No. HBIB-9

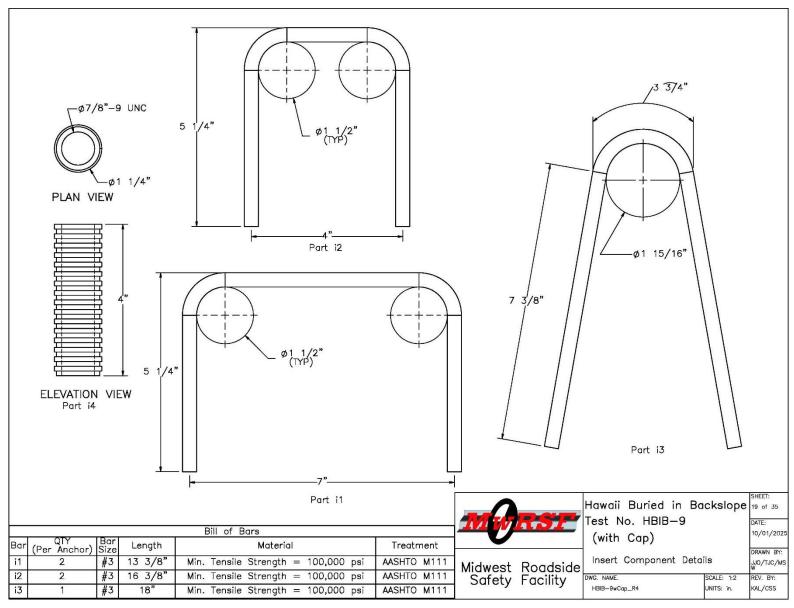


Figure 150. Insert Component Details, Test No. HBIB-9

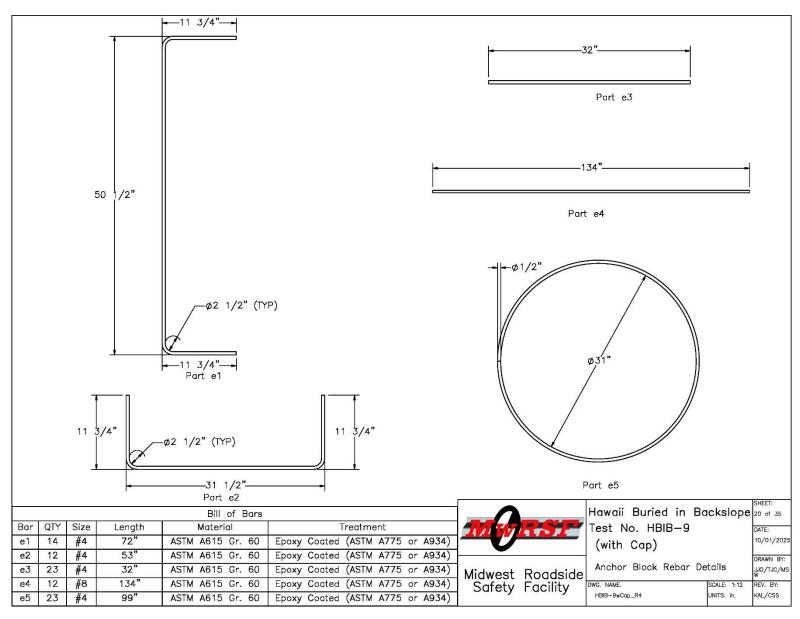


Figure 151. Anchor Block Rebar Details, Test No. HBIB-9

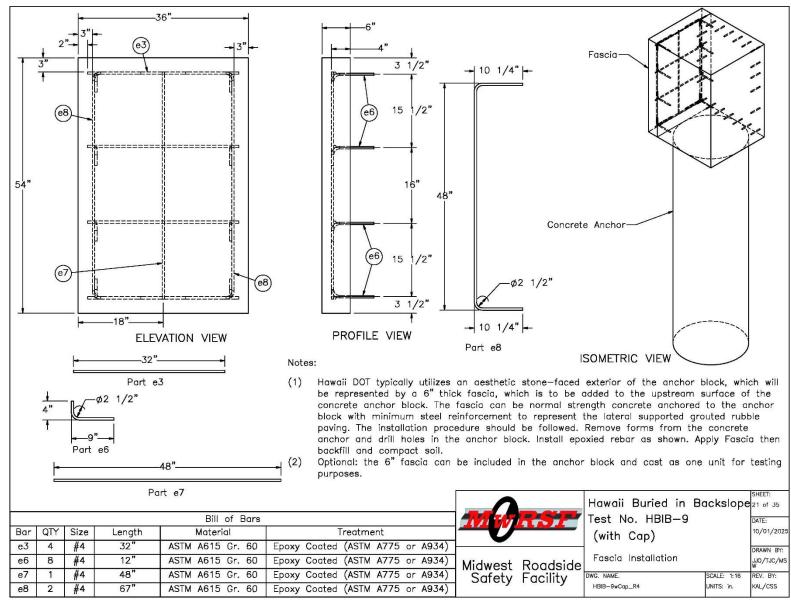


Figure 152. Fascia Installation, Test No. HBIB-9

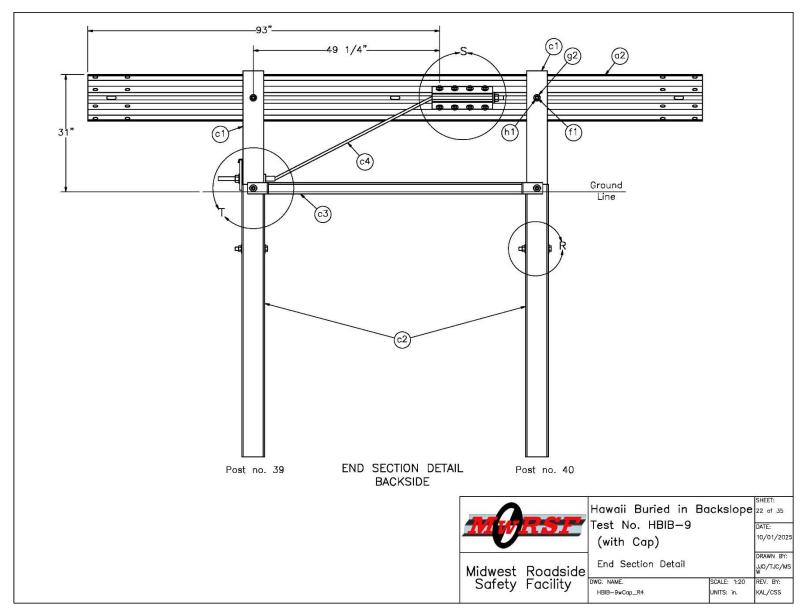


Figure 153. End Section Detail, Test No. HBIB-9

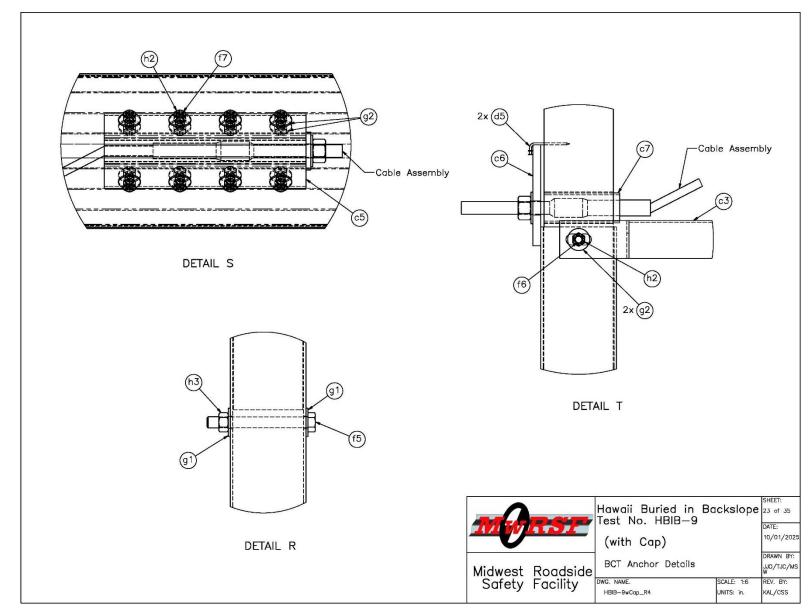


Figure 154. BCT Anchor Details, Test No. HBIB-9

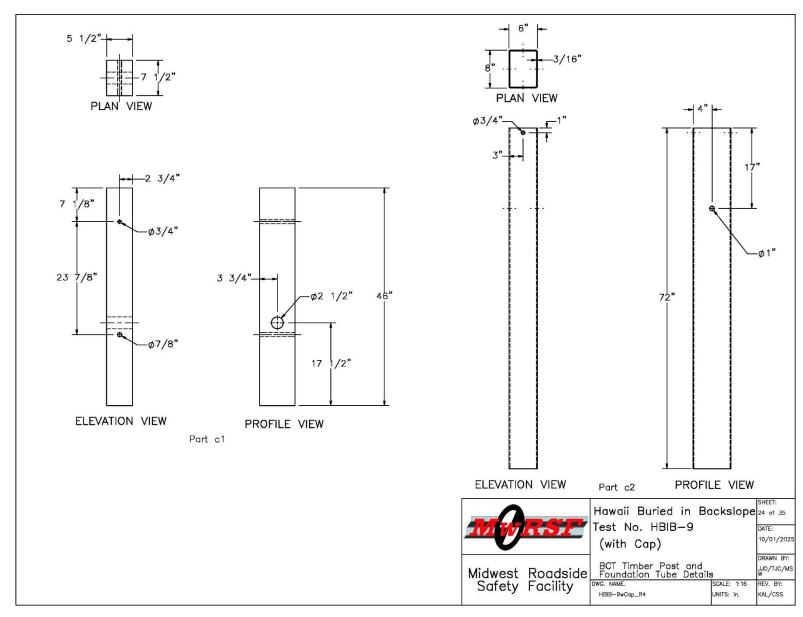


Figure 155. BCT Timber Post and Foundation Tube Details, Test No. HBIB-9

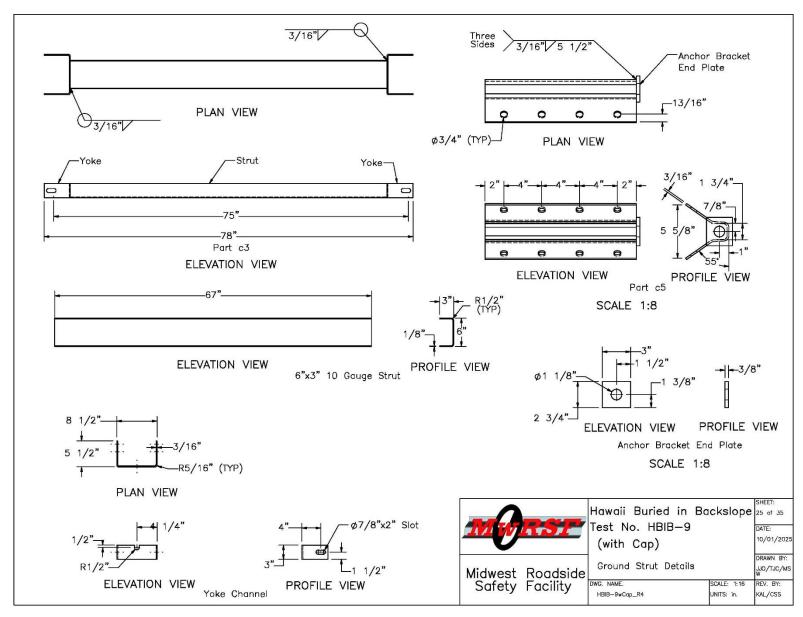


Figure 156. Ground Strut Details, Test No. HBIB-9

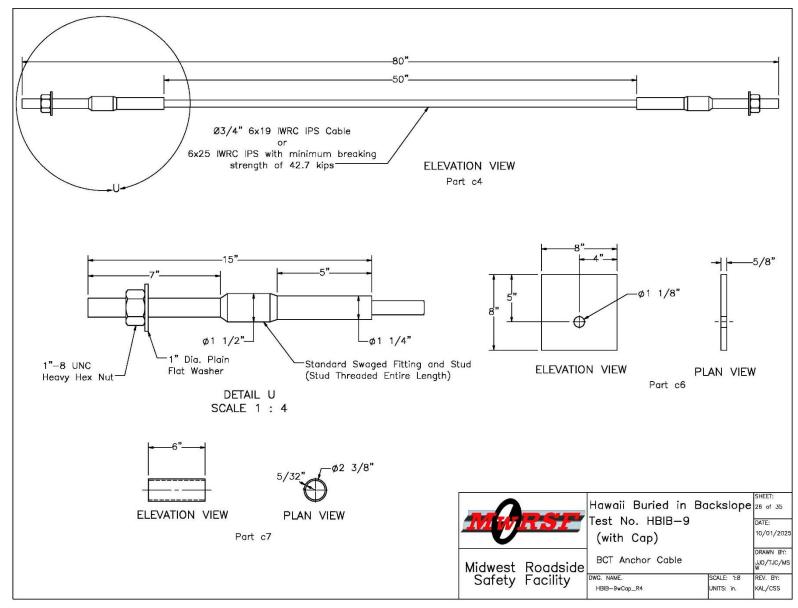


Figure 157. BCT Anchor Cable, Test No. HBIB-9

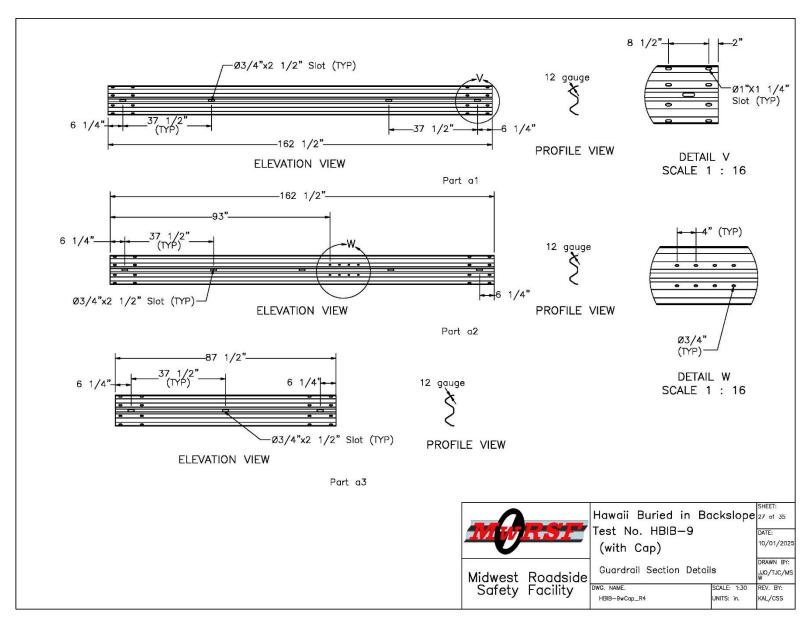


Figure 158. Guardrail Section Details, Test No. HBIB-9

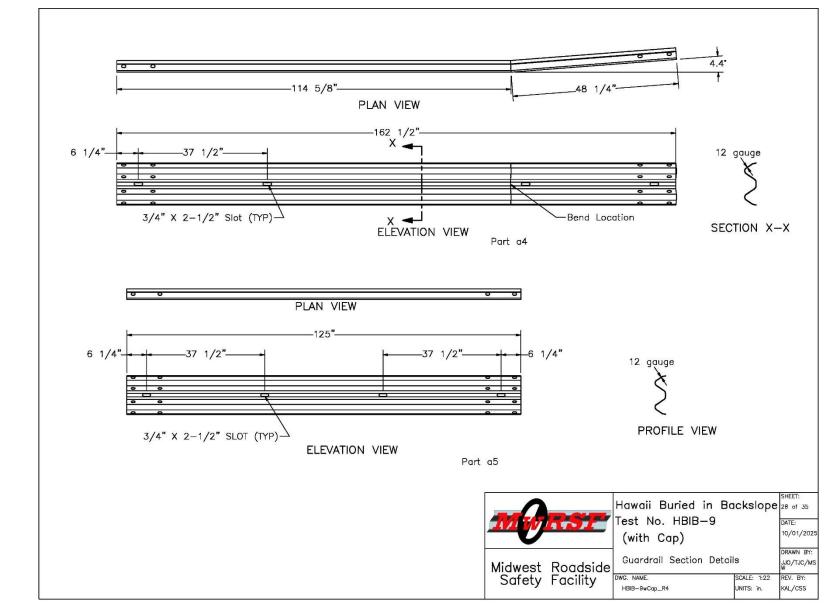


Figure 159. Guardrail Section Details, Cont., Test No. HBIB-9

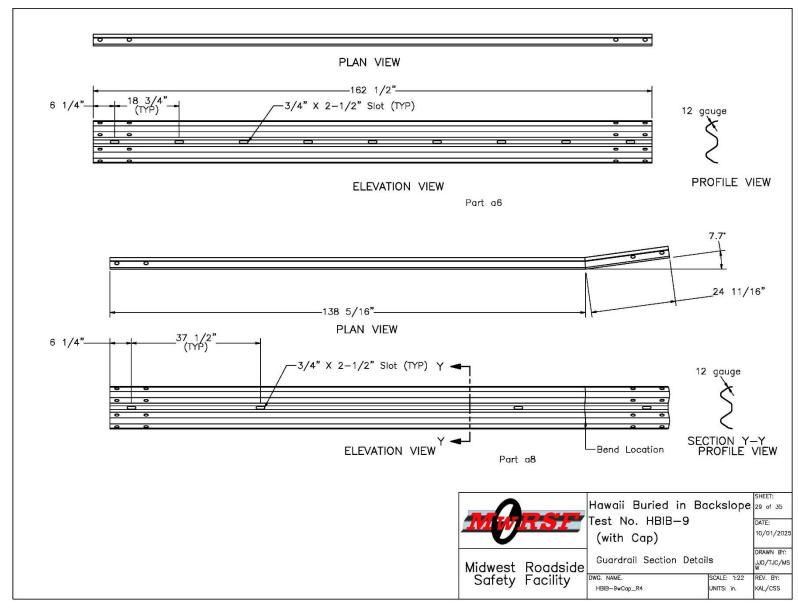


Figure 160. Guardrail Section Details, Cont., Test No. HBIB-9

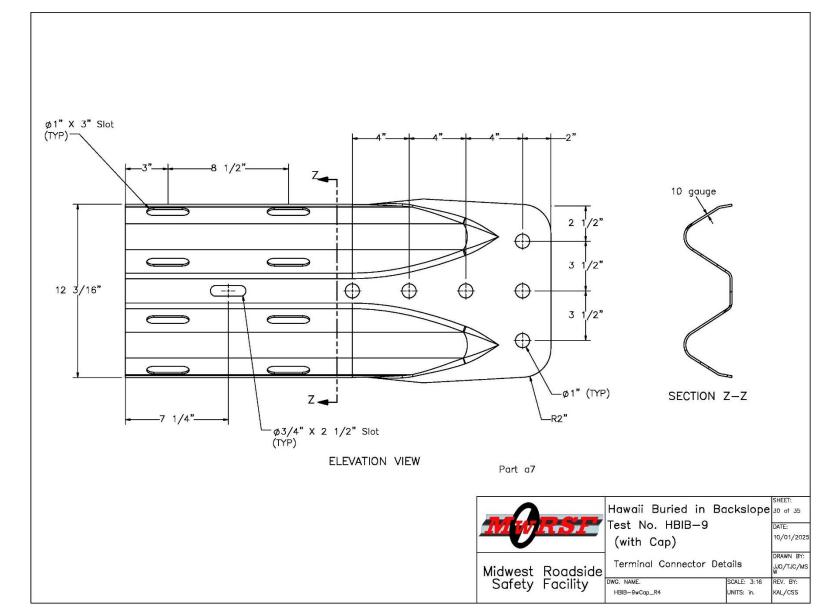


Figure 161. Terminal Connector Details, Test No. HBIB-9

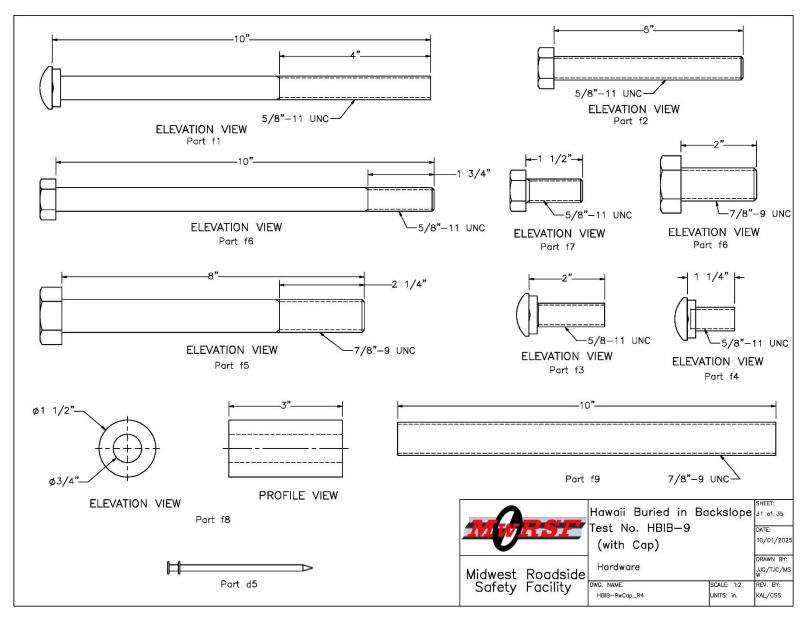


Figure 162. Hardware Details, Test No. HBIB-9

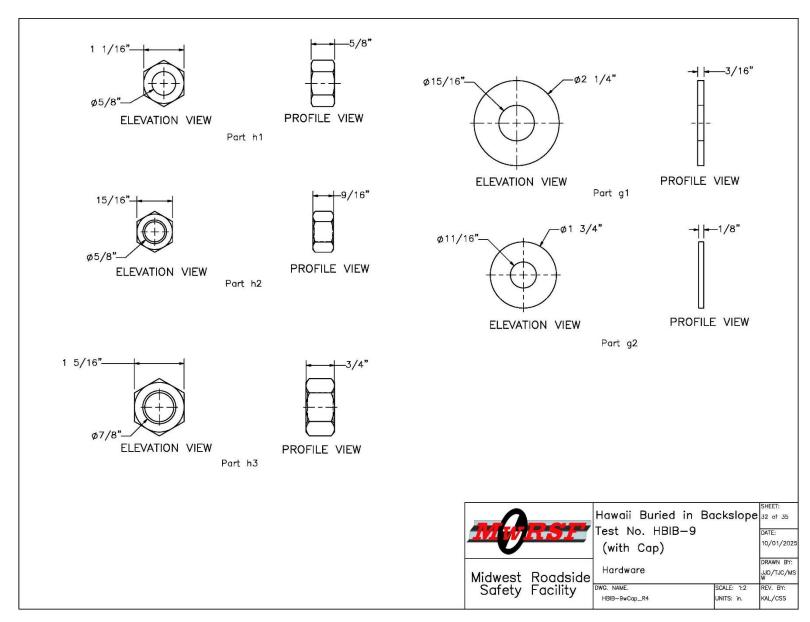


Figure 163. Hardware Details, Cont., Test No. HBIB-9

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	22	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	1	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a 3	1	6'-3" 12-gauge W-Beam Section	AASHTO M180	ASTM A123 or A653	RWM01b
a4	1	12'-6" 12-gauge Bent W-Beam [4.4 deg]	AASHTO M180	ASTM A123 or A653	-
a 5	2	9'-4 1/2" 12-gauge W-Beam	AASHTO M180	ASTM A123 or A653	-
a6	4	12'-6" 12-gauge W-Beam Section - 1/4 Post Spacing	AASHTO M180	ASTM A123 or A653	RWM04a
a7	2	W—Beam Terminal Connector	AASHTO M180	ASTM A123 or A653	RWE02b
a8	1	12'-6" 12-gauge Bent W-Beam [7.7 deg]	AASHTO M180	ASTM A123 or A653	-
Ь1	1	3'x3' Concrete Anchor Block	Min. f'c = 4,000 psi	_	-
b2	1	Anchor Cap	Min. f'c = 4,000 psi	-	-
c1	2	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	-	PDF01
c2	2	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
сЗ	1	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
c4	2	BCT Anchor Cable Assembly with Heavy Hex Nuts and Washers	Fitting—ASTM A576 Gr. 1035 Stud—ASTM F568 Class C	Fitting—ASTM A153 Cable,Nut,Wahser & Stud—ASTM A153 or B695	FCA01
с5	1	Ground Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
с6	1	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
с7	1	2 3/8" O.D. 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
d1	27	W6x8.5 or W6x9, 84" Long Steel Post	ASTM A992 Gr. 50	ASTM A123	PWE06
d2	11	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	ASTM A123	PWE06
d3	38	Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	-	-
d4	27	13 5/8" Long, 8"x6"x1/4" Steel Blockout	ASTM A500 Gr. B	*ASTM A123	-
d5	2	16D Double Head Nail	-	=	-
			Midwest Roc Safety Fac		DATE: 10/01/20 DRAWN B' JJO/TJC/ W

Figure 164. Bill of Materials, Test No. HBIB-9

No.	QTY.	Description	Material Specification	Treatment Specification	Guide
e1	14	72" Unbent Length #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e2	12	53" Unbent Length #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e3	27	32" Long #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e4	12	134" Long #8 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e5	23	99" Unbent Length #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e6	8	12" Long Unbent #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e7	1	48" Long #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	_
e8	2	67" Unbent Length #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e9	22	17" Long #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	_
e10	7	67" Unbent Length #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
e11	6	54 3/4" Unbent Length #4 Rebar	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	_
f1	67	5/8" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB03
f2	1	5/8 Dia, UNC, 5" Long Hex Head Bolt	ASTM A459 Gr. 5 or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f3	1	5/8" Dia. UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
f4	240	5/8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
f5	2	7/8" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX22a
f6	2	5/8" Dia. UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f7	8	5/8" Dia. UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f8	1	3/4 Dia, Unthreaded Spacer Sleeve	ASTM A53 Gr. B	ASTM A123	FMM03-04
f9	8	7/8" Dia. 9 UNC, 10" Long Fully Threaded Rod	ASTM A307 Gr. A or Equivalent	ASTM A153 or B695 Class 55 or F2329	_
			Midwest Roc Safety Fac		DATE: 10/01/202 DRAWN BY: JJO/TJC/M: W E: None REV. BY:

Figure 165. Bill of Materials, Cont., Test No. HBIB-9

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
g1	12	7/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
g2	22	5/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
h1	308	5/8" Dia. UNC Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX16b
h2	11	5/8" Dia. Hex Nut	ASTM A563A	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	FNX16a
h3	10	7/8" Dia. UNC Hex Nut	ASTM A307A or equivalent	ASTM A153 (AASHTO M232) for Class C or ASTM B695 (AASHTO M298) for Class 50	I
* i1	4	3/8" Dia. Wire Strut, 13 3/8" Long Unbent	Min. Tensile Strength = 100,000 psi	AASHTO M111	
* i2	4	3/8" Dia. Wire Strut, 16 3/8" Long Unbent	Min. Tensile Strength = 100,000 psi	AASHTO M111	Н
* i3	2	3/8" Dia. Wire Strut, 18" Long Unbent	Min. Tensile Strength = 100,000 psi	AASHTO M111	-
* i4	8	7/8 Dia. Threaded Ferrule	-	-	-
k2	1	Fascia	Min. f'c = 4,000 psi	-	3—3
_	-	Soil	-	=	-

* Components not required if optional anchor is used.

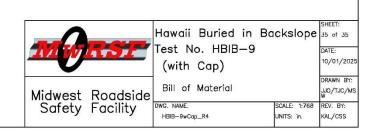


Figure 166. Bill of Materials, Cont., Test No. HBIB-9

Figure 167. Test Installation Photographs, Test No. HBIB-9

Figure 168. Test Installation Photographs, Test No. HBIB-9

Figure 169. Test Installation Photographs, Rubrail Termination and System Anchorage, Test No. HBIB-9

11 FULL-SCALE CRASH TEST NO. HBIB-9

11.1 Static Soil Test

Before full-scale crash test no. HBIB-9 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

11.2 Weather Conditions

Test no. HBIB-9 was conducted on March 27, 2025, at approximately 2:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 23.

Table 23. Weather Conditions, Test	t No	. HBIB-9
------------------------------------	------	----------

Temperature	80°F
Humidity	44%
Wind Speed	9 mph
Wind Direction	130° from True North
Sky Conditions	Clear, Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

11.3 Test Description

The targeted vehicle impact was to occur 69¼ in. upstream from the upstream end of the concrete anchor block, as shown in Figure 170. The CIP for test no. HBIB-9 was selected using the recommended TL-3 test matrix Table 2-3 of MASH. The CIP plots found in MASH Section 2.3 were implemented to maximize the probability of pocketing and vehicle snagging on the concrete parapet. The 5,000-lb quad cab pickup truck impacted the slope break point of the system in the reverse direction at a speed of 62.0 mph and at an angle of 25.4 degrees and impacted the barrier at a speed of 62.1 mph and at an angle of 28.8 degrees. The actual point of impact was 68.5 in. upstream from the upstream end of the concrete anchor. At 0.330 sec, the vehicle exited the system and at 0.508 sec the vehicle began to roll away from the system, subsequently rolling over. At 6.838 sec, the vehicle came to rest on its roof.

A detailed description of the sequential impact events is reported in Table 24. Sequential photographs are shown in Figures 171 and 172. Documentary photographs of the crash test are shown in Figures 173 through 175. The vehicle trajectory and final position are shown in Figure 176.

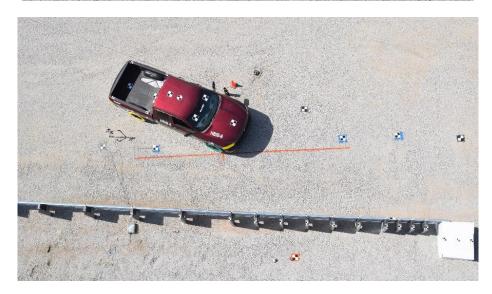


Figure 170. Target Impact Location, Test No. HBIB-9

Table 24. Sequential Description of Impact Events, Test No. HBIB-9

Time sec	Event
-0.163	Vehicle's right-front tire became airborne as vehicle traversed slope.
-0.142	Vehicle rolled toward the system.
0.000	Vehicle's front bumper contacted rail 68.5 in. upstream from the upstream end of the concrete anchor and crushed rearward. Post nos. 1, 3, and 4 rotated backward.
0.012	Vehicle's right headlight contacted rail and shattered. Vehicle's left-front tire became airborne. Vehicle's right-front tire contacted rail.
0.018	Post nos. 2 and 5 rotated backward. Vehicle's right fender contacted rail and crushed inward.
0.028	Vehicle's grille contacted rail and disengaged.
0.052	Vehicle's right-front tire deflated.
0.076	Vehicle's right-front door contacted rail, crushed inward, was scraped, and tore.
0.104	Vehicle's right-front window shattered and front windshield cracked. Vehicle's left-rear tire became airborne.
0.117	Occupant's head extended out vehicle's right-front window.
0.142	Vehicle's right-rear door contacted rail, crushed inward, was scraped, and tore.
0.178	Vehicle's right quarter panel contacted rail, crushed and dented inward, and was scraped. Vehicle's right taillight contacted rail and shattered. Vehicle pitched downward.
0.190	Vehicle was parallel to system at a speed of 48.4 mph.
0.225	Vehicle's right-front wheel disengaged.
0.276	Vehicle yawed toward the system.
0.330	Vehicle exited system at a speed of 46.3 mph and an angle of -3.7 degrees.
0.508	Vehicle rolled away from the system.
0.571	Vehicle occupant's head extended out the vehicle's right-front window.
0.640	Vehicle's left-front tire contacted ground.
0.658	Vehicle's right-rear tire became airborne.
0.825	Vehicle pitched upward. Vehicle's left-rear tire contacted ground.
1.442	Vehicle pitched downward.
1.750	Vehicle pitched upward.
1.908	Vehicle's roof contacted ground for the first time and crushed inward.
1.963	Vehicle occupant's head extended out of vehicle's right-front window.
2.021	Vehicle's right C-Pillar bent. Vehicle's right A-Pillar and B-Pillar crushed inward.
2.058	Vehicle's right-rear window shattered. Vehicle's roof deformed onto occupant's head.
2.392	Vehicle's right-rear tire contacted ground.
2.690	Vehicle's right-rear tire became airborne.

Table 25. Sequential Description of Impact Events, Test No. HBIB-9, Cont.

Time	Event	
sec		
2.733	Vehicle's left-rear tire contacted ground.	
2.767	Vehicle's left-front tire contacted ground.	
3.583	Vehicle's left-front tire became airborne.	
3.750	Vehicle's roof contacted ground.	
3.796	Vehicle's left-rear tire became airborne.	
6.838	Vehicle came to rest on its roof.	

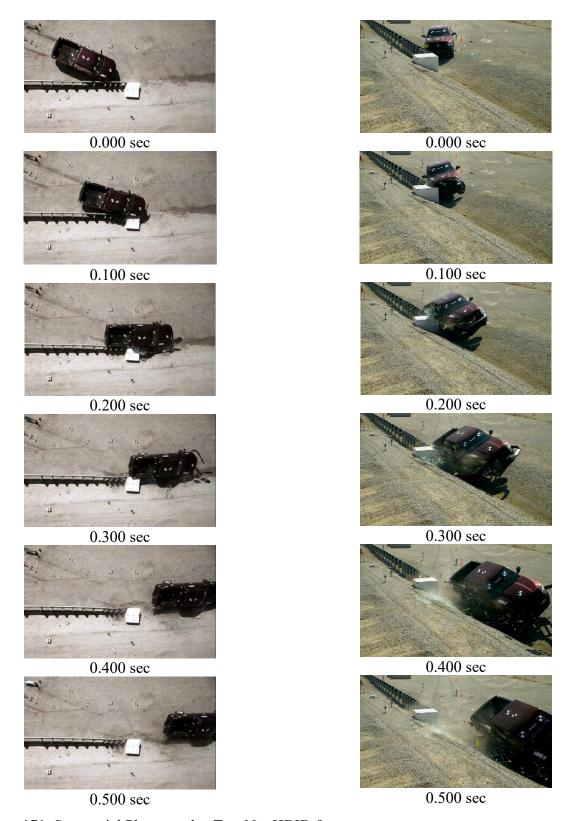


Figure 171. Sequential Photographs, Test No. HBIB-9



Figure 172. Sequential Photographs, Test No. HBIB-9

Figure 173. Documentary Photographs, Test No. HBIB-9

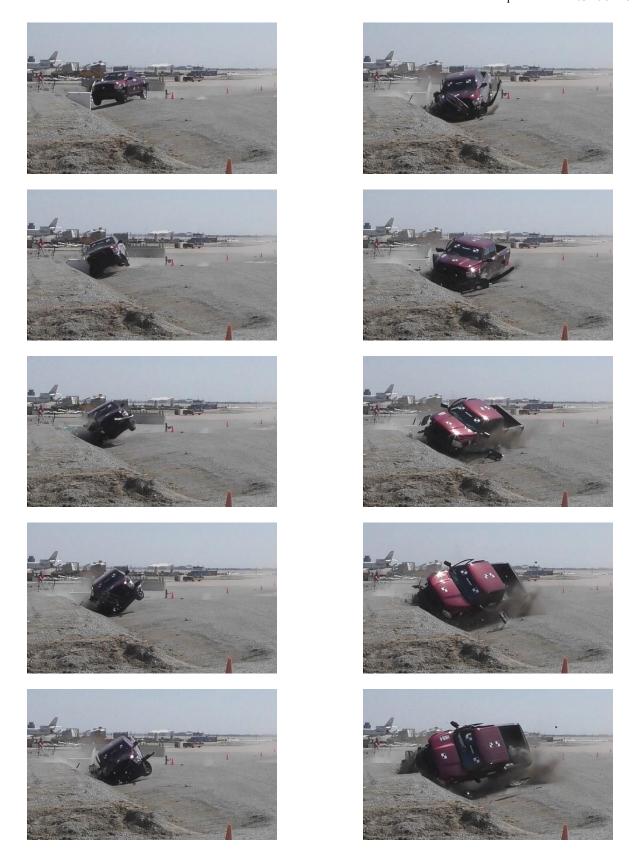


Figure 174. Documentary Photographs, Test No. HBIB-9

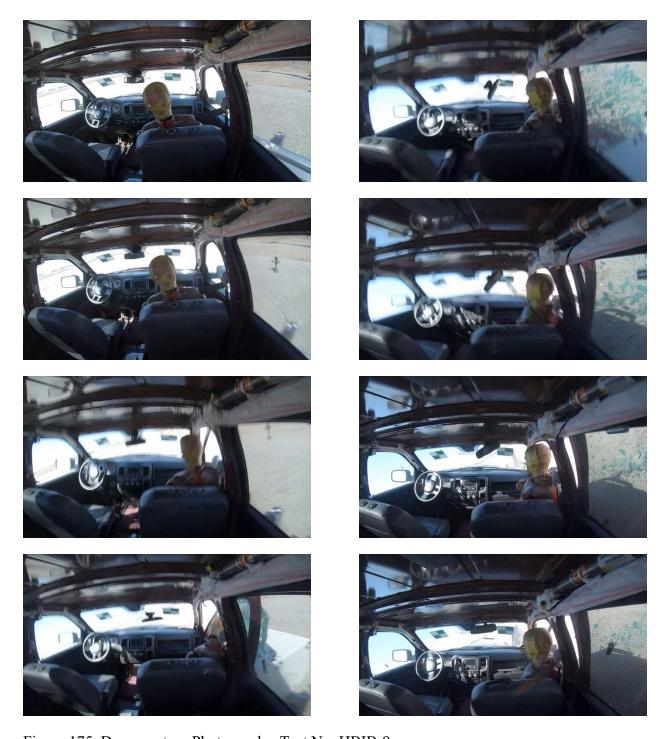
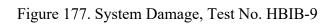


Figure 175. Documentary Photographs, Test No. HBIB-9

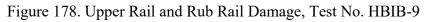
Figure 176. Vehicle Final Position and Trajectory Marks, Test No. HBIB-9

11.4 Barrier Damage


The damage to the barrier was minimal, as shown in Figures 177 and 178. Barrier damage consisted of contact marks, rail bending and flattening, and chipping of the concrete anchor. The length of vehicle contact along the barrier was approximately 136 in., which spanned from 12 in. upstream from the centerline of post no. 4 to the end of the concrete anchor. Additional contact marks spanned the bottom corrugation of the top rail and both corrugations of the bottom rail, beginning in the top rail 12 in. upstream from the centerline of post no. 4 and in the bottom rail 4 in. upstream from the centerline of post no. 4, with both marks extending downstream to the end of the concrete anchor.

A bend was observed in the top rail near the upstream edge of the concrete anchor that spanned 29½ in. downstream. A bend measuring 10½ in. long and 13 in. wide was found 9½ in. downstream from the upstream edge of the concrete anchor. Bending was also observed 5 in. upstream from post no. 2. Additional damage included flattening of the top rail 1 in. downstream from the centerline of post no. 4 measuring 46 in. long and 4 in. wide, as well as 3 in. downstream from the centerline of post no. 2 measuring 10 in. long and 4 in. wide. Flattening was observed at the bottom rail 7 in. upstream from the centerline of post no. 2 that measured 21 in. long and 5 in. wide.

The concrete anchor was chipped in several places: 5 in. from the top of the anchor measuring 3 in. long and 1½ in. wide; 13 in. from the top of the anchor measuring 2 in. long and 1 in. wide; and 28 in. from the top of the anchor measuring 2 in. long and 1 in. wide.



December 16, 2025 MwRSF Report No. TRP-03-496b-25

The maximum lateral permanent set of the barrier system was 3.2 at post no. 2, as measured in the field. The maximum lateral dynamic deflection of the rail was 5.5 in. at the rail at post no. 3, as determined from high-speed digital video analysis. The maximum lateral dynamic deflection of the post was 4.5 in. at post no. 2, as determined from high-speed digital video analysis. The working width of the system was found to be 22.3 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 179.

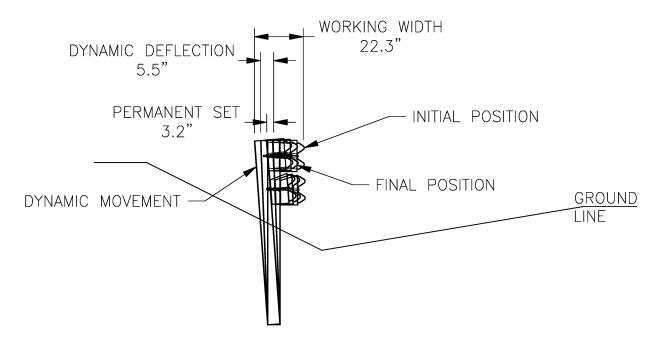
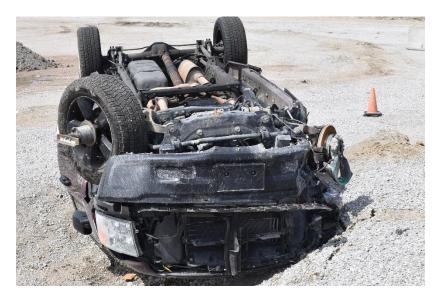


Figure 179. Permanent Set, Dynamic Deflection, and Working Width, Test No. HBIB-9

11.5 Vehicle Damage


The damage to the vehicle was severe, as shown in Figures 180 through 182. Majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The grille and right headlight were disengaged from the vehicle. The bumper was crushed rearward at its rightmost end. The hood was dented and scraped along both the right and left leading edges of the panel, and two dents appeared just behind the scraped areas. The right fender was severely crushed inward immediately above and behind the wheel opening. This damage extended into the right-front door panel, which was crushed inward and scraped at its vertical center, and the deformation continued onto the rear door. The upper portion of the door's window frame was bent and buckled and the side window shattered; the upper half of the panel protruded noticeably from the vehicle and a 2-in. tear appeared at the rear of the crushed section.

The right-rear door panel was similarly crushed inward and scraped at its vertical center, extending into the box side; a 6-in. tear formed at its leading edge. The upper half of that panel, including its window frame, was bent inward, and the roof above collapsed. The right side of the truck bed was severely crushed, scraped, and dented along its vertical center from the rear door to the tail of the bed, with significant tearing and gouging at the leading edge just behind the cab. At the rear, the extreme right end of the bumper was dented and scraped.

On the left side, the box was dented and scraped along its entire length, and the fuel door folded forward from its rear to its front edge. The left-rear door was dented and scraped along its trailing edge and around the window opening, while the left-front door bore a slight dent at its upper center. The left front fender was dented inward and downward at the leading edge just behind the headlight. The roof was dented and scraped downward at the rear of its panel, with additional damage at the roof-to-door transition. Finally, the windshield cracked throughout, with the most extensive fracture concentrated in the upper right section of the pane.

The undercarriage and suspension components were also affected. The end link on the right side detached at its lower mounting. The right lower control arm separated from the cross members, and the upper control arm was bent rearward. The inner tie rod was bent, and the steering rack and gearbox were split in half. The middle cross member exhibited a slight twist, and the right frame horn buckled slightly. The right-front tire disengaged, and the right-front brake line was severed at the steering knuckle.

The maximum occupant compartment intrusions are listed in Table 26, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment, vehicle intrusions, and the corresponding locations of the deformations are provided in Appendix F. MASH defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria.

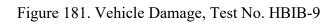


Figure 182. Test Vehicle's Interior Floorboards and Undercarriage Damage, Test No. HBIB-9

Table 26. Maximum Occupant Compartment Intrusion by Location, Test No. HBIB-9

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	1.8	≤ 9
Floor Pan & Transmission Tunnel	0.0*	≤ 12
A-Pillar	6.4	≤ 5
A-Pillar (Lateral)	6.2	≤ 3
B-Pillar	17.5	≤ 5
B-Pillar (Lateral)	0.0*	≤ 3
Side Front Panel (in Front of A-Pillar)	1.9	≤ 12
Side Door (Above Seat)	0.0*	≤ 9
Side Door (Below Seat)	0.0*	≤ 12
Roof	7.6	≤ 4
Windshield	0.0	≤ 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	0.2	N/A

N/A – No MASH criteria exist for this location.

11.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined by accelerometer data, are shown in Table 27. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 27. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix K.

^{*}Negative value reported as 0.0. See Appendix F for further information.

Table 27. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HBIB-9

		Trans	MASH	
Evaluation (Criteria	SLICE-1 (backup)	SLICE-2 (primary)	Limits
OIV	Longitudinal	-17.46	-17.51	±40
ft/s	Lateral	-23.80	-24.83	±40
ORA	Longitudinal	-6.28	-6.55	±20.49
g's	Lateral	-7.99	-7.37	±20.49
Maximum	Roll	-540.8	-543.9	±75
Angular Displacement	Pitch	-12.5	-13.2	±75
deg.	Yaw	121.9	120.2	not required
THIV –	THIV – ft/s		29.99	not required
PHD – g	g's	8.45	7.77	not required
ASI		1.40	1.47	not required

11.7 Discussion

Analysis of the test results for test no. HBIB-9 showed that the 2270P vehicle impact with the system resulted in test failure. A summary of the test results and sequential photographs are shown in Figure 183. The barrier system effectively contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. However, due to the severity of the impact to the top rail, the deformation of the vehicle's A-pillar measured 6.4 in., exceeding the MASH safety limits of 5 in.; the deformation of the B-pillar measured 17.5 in., exceeding the MASH safety limits of 5 in.; and the lateral deformation of the A-pillar measured 6.2 in., exceeding the MASH safety limits of 3 in. The test vehicle did not penetrate or override the barrier. Pitch and yaw angular displacements, shown in Appendix K, were deemed acceptable, however, the vehicle's maximum roll of -543.9 degrees exceeded the MASH safety limit of 75 degrees and the vehicle rolled over. Deformation of the roof measured 7.6 in., exceeding the MASH safety limit of 4 in. After impact, the vehicle exited the barrier at an angle of -3.7 degrees with respect to the barrier, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HBIB-9 was determined to be unsuccessful according to MASH safety performance criteria for test designation no. 3-37a.

MASH

Limits

 ± 40

 ± 40

 ± 20.49

 ± 20.49

±75

±75

not required

not required

not required

not required

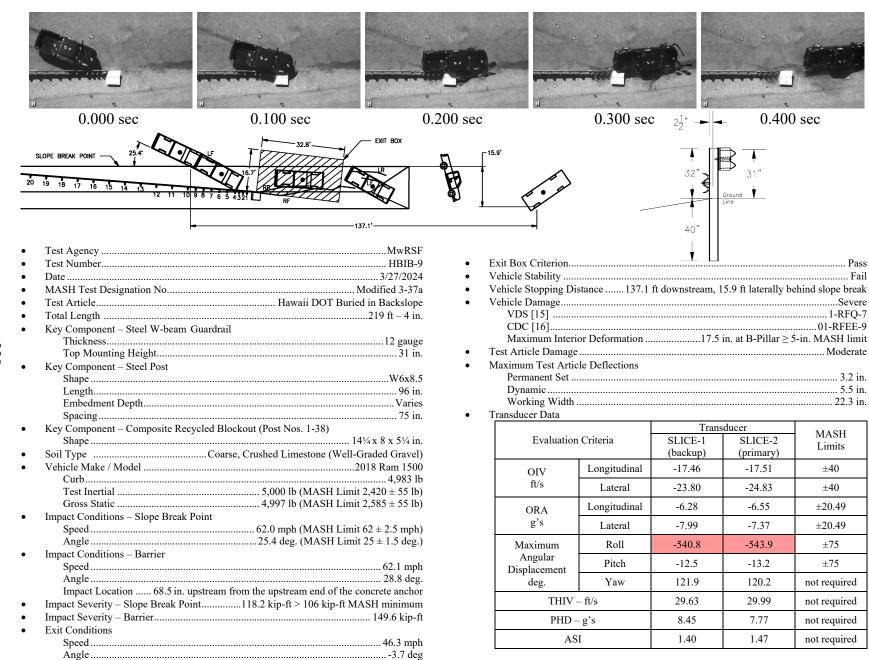


Figure 183. Summary of Test Results and Sequential Photographs, Test No. HBIB-9

12 SUMMARY AND CONCLUSIONS

The Hawaii DOT Buried-in-Backslope (HBIB), reverse direction system terminal was successfully evaluated with MASH test designations 3-37a and 3-37b. A summary the test evaluations for test nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 is shown in Table 28, and a summary of the test evaluation for test no. HBIB-9 is shown in Table 29.

For test nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, the system was constructed similarly to a system previously tested according to criteria presented in NCHRP Report No. 350 [4]. The system consisted of a roadside tangent MGS connected to a flared guardrail system with an upper W-beam and lower W-beam rubrail. Both rails were anchored to a 3-ft x 3-ft x 3-ft concrete anchor block at the upstream end using two W-beam terminal connectors. Downstream from the anchor block was a stiffness transition using quarter- and half-post spacing, with nested upper W-beam and nested lower rubrail. Downstream from the stiffness transition, posts flared forward from the anchor block at a 13:1 rate until the system connected to the downstream tangent MGS. The W-beam rubrail was attached to the front face of the flanges of the posts through the ditch, and was terminated by bending the W-beam backward and behind the back flange of post no. 29 and fastened to the post with a bolt and pipe collar. The elevation of the rail was maintained at a constant height extending from the anchor block to the tangent MGS, and was nominally 31 in. above the roadway surface.

In test no. HBIB-6, the 5,061-lb quad cab pickup truck impacted the HBIB system at a speed of 62.7 mph and at an angle of 24.9 degrees, and at a location 197.6 in. upstream from the centerline splice between post nos. 29 and 30, thus resulting in an actual impact severity of 117.9 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 22.3 mph and an angle of 17.4 degrees with respect to the slope break point. The vehicle was successfully contained and smoothly redirected with moderate damage to both vehicle and barrier system. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH. Therefore, test no. HBIB-6 was successful according to the safety criteria of MASH test designation no. 3-37a.

In test no. HBIB-7, the 2,419-lb passenger car impacted the HBIB system at a speed of 63.8 mph and at an angle of 25.0 degrees, and at a location 82.8 in. upstream from the centerline splice between post nos. 29 and 30, thus resulting in an actual impact severity of 58.8 kip-ft. After impacting the barrier, the vehicle exited the system at a speed of 10.9 mph and an angle of 0.4 degrees with respect to the slope break point. The vehicle was successfully contained and smoothly redirected with moderate damage to both vehicle and barrier system. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH. Therefore, test no. HBIB-7 was successful according to the safety criteria of MASH test designation no. 3-37b.

In test no. HBIB-8, the 5,000-lb quad cab pickup truck impacted the HBIB system at a speed of 61.5 mph and at an angle of 24.9 degrees with respect to the slope break point of the system and at a speed of 61.5 mph and at an angle of 27.5 degrees with respect to the barrier. The actual point of impact was 67.0 in. upstream from the upstream end of the concrete fascia, thus resulting in an actual impact severity of 112.1 kip-ft with respect to the slope break point and 134.8 kip-ft with respect to the barrier. After impacting the barrier system, the vehicle exited the system at a speed of 48.0 mph and an angle of -8.3 degrees with respect to the slope break point. The vehicle was successfully contained and smoothly redirected with moderate damage to both vehicle

and barrier system. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH. Therefore, test no. HBIB-8 was successful according to the safety criteria of MASH test designation no. 3-37a.

In test no. HBIB-10, the 2,421-lb passenger car impacted the HBIB system at a speed of 62.7 mph and at an angle of 25.1 degrees. The actual point of impact was 41.5 in. upstream from the upstream end of the concrete anchor, thus resulting in an actual impact severity of 57.3 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 44.5 mph and an angle of -1.5 degrees with respect to the slope break point. The vehicle was successfully contained and smoothly redirected with moderate damage to both vehicle and barrier system. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH. Therefore, test no. HBIB-10 was successful according to the safety criteria of MASH test designation no. 3-37b.

HDOT desired to have an option for both dual-flare and single-flare embodiments of the HBIB design. Single-flare systems may be used in locations where the backslope is located close to the roadway or in some reverse-direction applications. A single flare system was evaluated in test no. HBIB-9, where the 5,000-lb quad cab pickup truck impacted the single-flare HBIB system in the reverse direction at a speed of 62.0 mph and at an angle of 25.4 degrees. The actual point of impact was 68.5 in. upstream from the upstream end of the concrete anchor, thus resulting in an actual impact severity of 118.2 kip-ft. At 0.330 sec, the vehicle exited the system and at 0.508 sec the vehicle began to roll away from the system, subsequently rolling over. At 6.838 sec, the vehicle came to rest on its roof.

Due to the severity of the impact to the top rail, the deformation of the vehicle's A-pillar measured 6.4 in., exceeding the MASH safety limits of 5 in.; the deformation of the B-pillar measured 17.5 in., exceeding the MASH safety limits of 5 in.; and the lateral deformation of the A-pillar measured 6.2 in., exceeding the MASH safety limits of 3 in. While the pitch and yaw angular displacements were deemed acceptable, the vehicle's maximum roll of -543.9 degrees exceeded the MASH safety limit of 75 degrees and the vehicle rolled over. Deformation of the roof measured 7.6 in., exceeding the MASH safety limit of 4 in. Therefore, test no. HBIB-9 was determined to be unsuccessful according to the safety criteria of MASH test designation no. 3-37a.

wRSF Report No. TRP-03-496b-25

Table 28. Summary of Safety Performance Evaluation, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

Evaluation Factors		Evaluation C		Test No. HBIB-6	Test No. HBIB-7	Test No. HBIB-8	Test No. HBIB-10	
Structural Adequacy	A.	Test article should contain and redire controlled stop; the vehicle should no installation although controlled latera acceptable.	S	S	S	S		
	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.			S	S	S	S
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.				S	S	S
	F.	The vehicle should remain upright du maximum roll and pitch angles are no	S	S	S	S		
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH for calculation procedure) should satisfy the following limits:						
Occupant Risk		Occupant Impa	ant Impact Velocity Limits		S	S	S	S
		Component	Preferred	Maximum	_			
		Longitudinal and Lateral	30 ft/s	40 ft/s				
	I.	The Occupant Ridedown Acceleration A5.2.2 of MASH for calculation proclimits:						
		Occupant Ridedow	n Acceleration Lin	nits	S	S	S	S
		Component	Preferred	Maximum]			
		Longitudinal and Lateral	15.0 g's	20.49 g's				
	MASH Test Designation No.						3-37a	3-37b
	Final Evaluation (Pass or Fail)						Pass	Pass

U – Unsatisfactory

Table 29. Summary of Safety Performance Evaluation, Test No. HBIB-9

Evaluation Factors		Evaluation Criteria				
Structural Adequacy	······································					
	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a				
		work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.				
	F.	The vehicle should remain upright du maximum roll and pitch angles are no			U	
	H.	Occupant Impact Velocity (OIV) (see MASH for calculation procedure) sho				
Occupant Risk		Occupant Impac	t Velocity Limits		S	
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Acceleration A5.2.2 of MASH for calculation proclimits:				
		Occupant Ridedown	Acceleration Lin	nits	S	
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH Test Designation No.						
Final Evaluation (Pass or Fail)						

S-Satisfactory

U-Unsatisfactory

13 MASH IMPLEMENTATION

Full-scale crash testing was performed on the Hawaii Buried-in-Backslope (HBIB) terminal system according to MASH Test Level 3 impact conditions. Test results were provided in two test reports: (1) a previously published report that details the standard-direction testing according to MASH test designations 3-32, 3-33, 3-34, and 3-35, evaluated in test nos. HBIB-1 through 5 [17], and (2) this report, which details reverse-direction testing according to MASH test designations 3-37a and 3-37b, evaluated in test nos. HBIB-6 through 10.

It was determined that the dual-flare HBIB configuration was satisfactory to MASH evaluation criteria based on the results of test nos. HBIB-1 through 8 and 10. The system would be eligible for installation on ditches with approach slopes as steep as 4H:1V and with back slopes as steep as 2H:1V. Additionally, the system was eligible for use in approach and trailing end conditions, and when exposed to reverse-direction traffic conditions. It was noted that because the concrete anchor block was not considered within the clear zone for the purposes of this evaluation, it was not treated; thus care must be taken to ensure the anchor block does not itself become a potential hazard to adjacent drivers.

Based on results of test no. HBIB-9, it was determined that the single-flare configuration of the HBIB system would likely be acceptable to MASH for standard-direction impacts, but was not acceptable according to MASH evaluation criteria for reverse-direction impacts. During test no. HBIB-9, the test vehicle yawed after impacting the system, and a combination of the front bumper of the pickup truck and the rear wheel dug into the approach slope and back slopes of the V-ditch, tripping the vehicle and resulting in rollover. Thus, the single-flare configuration of the HBIB could be used on the upstream end of a guardrail system when the upstream end is not exposed to reverse-direction travel or is out of the clear zone for opposite-direction impacts. However, the system would not be recommended for use in trailing end configurations or when reverse-direction impacts could occur at the end anchorage.

14 REFERENCES

- 1. Changizian, S., Stolle, C.S., Faller, R.K., Lechtenberg, K.A., and Steelman, J.S., *Hawaii DOT Flared Buried-in-Backslope Guardrail End Terminal Part 1 Standard Direction Tests*, MwRSF Research Report No. TPR-03-496a-25, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 2025.
- 2. Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016
- 3. Mak, K.K., Sicking, D. L., and Ross, Jr., H. E., *Real World Impact Conditions for Run-Off-the-Road Accident*, Transportation Research Board, Washington, DC, 1986.
- 4. NCHRP. Determination of Safe/Cost Effective Roadside Slopes and Associated Clear Distance, NCHRP Project 17-11(02), Texas Transportation Institute, Texas A&M University, College Station, TX, (in progress).
- 5. Mongiardini, M., Faller, R.K., Rosenbaugh, S.K., Reid, J.D., *Test Matrices for Evaluating Cable Median Barriers Placed in V-Ditches*, Research Report No. TRP-03-265-12, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, July 2012.
- 6. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 7. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 8. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 9. Society of Automotive Engineers (SAE), Instrumentation for Impact Test Part 1 Electronic Instrumentation, SAE J211/1 MAR95, New York City, New York, July 2007.
- 10. Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- 11. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.

- 12. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 13. Arrington, D.R., Bligh, R.P, and Menges, W.L., *MASH Test 3-37 of the TxDOT 31-inch W-beam Downstream Anchor Terminal*, Test Report No. 9-1002-6, Texas Transportation Institute, December 2011.
- 14. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 15. Vehicle Damage Scale for Traffic Investigators, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 16. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 17. Changizian, S., Stolle, C.S., Faller, R.K, Lechtenberg, K.A., and Steelman, J.S., *Hawaii DOT Flared Buried-in-Backslope Guardrail End Terminal Part 1 Standard Direction Tests*, Research Report No. TRP-03-396a-25, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 2025.

APPENDICES

Appendix A. A2LA Accreditation Documents

Accredited Laboratory

A2LA has accredited

MIDWEST ROADSIDE SAFETY FACILITY (MWRSF)

Lincoln, NE

for technical competence in the field of

Mechanical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 27th day of June 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 2937.01 Valid to November 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Mechanical Scope of Accreditation.

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

MIDWEST ROADSIDE SAFETY FACILITY (MwRSF)1 University of Nebraska-Lincoln 4630 NW 36th Street Lincoln, NE 68524 Ms. Karla Lechtenberg Phone: 402 472 9070

MECHANICAL

Valid To: November 30, 2025 Certificate Number: 2937.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests:

<u>Tests</u>	Test Methods
Full-Scale Vehicle Crash Tests of Highway Safety Features	NCHRP Report 350; MASH; EN 1317
Full-Scale Vehicle Crash Tests of Perimeter Protection Systems and Access Control Devices	ASTM F2656; SD-STD-02.01 Revision A
Bogie Dynamic Tests of Highway Safety Features	Non-Standard Test Method: Dynamic Testing of Steel Post and Rigid Foundation; Non-Standard Test Method: Dynamic Testing of Post in Soil; Non-Standard Test Method: Dynamic Testing of Spacer Blocks
Crushable Nose Bogie Testing for Breakaway Supports	Non-Standard Test Method: Dynamic Testing of Breakaway Supports; AASHTO Breakaway Poles and Supports; NCHRP Report 350

On the following types of products, materials, and/or structures:

Metal, Wood, Concrete and Plastic Structures, Components of Structures, Fasteners, and Roadway Pavements.

(A2LA Cert. No. 2937.01) 06/27/2024

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Figure A-2. Midwest Roadside Safety Facility Scope of Accreditation to ISO/IEC 17025

¹ Administrative office located at: 2200 Vine Street, 130 Whittier Building, Lincoln, NE 68583-0853.

Appendix B. Critical Impact Point Determination

Section 1: Nested MGS plus Nested Rubrail at Quarter Post Spacing

$$F_{y-post} = 14.6 kips$$

 $F_{soil} = 12.4 \ kips$ at 40 in. embedment

For embedment = 48.0 in $\rightarrow F_S' = 14.88 \text{ kips}$

$$F_y = \min(F_{y-post}, F_S') = 14.6 kips$$

$$F_p = \frac{F_y}{S} = \frac{14.6}{1.5625} = 9.34 \frac{kip}{ft}$$

Where *S* is a quarter post spacing and the embedment of post no. 4 is considered.

$$M_p = M_h + \sum_i M_i \frac{H_i}{H_h} = \left[16.0 + 16.0 \left(\frac{21.00}{36.00}\right)\right] = 25.3 \text{ kip. ft}$$

In which the parameters are multiplied by a factor of two because of nested rails at this section. Also, the calculated value for F_s' shows that this value is greater than F_p , hence, F_p is used for the CIP determination.

$$M_p = 25.3$$
 and $F_p = 9.34$ $\xrightarrow{Using\ MASH\ Figure\ 2-8}$ $CIP = 4.2\ ft\ (Test\ Designation\ 10)$ $M_p = 25.3$ and $F_p = 9.34$ $\xrightarrow{Using\ MASH\ Figure\ 2-11}$ $CIP = 7.0\ ft\ (Test\ Designation\ 11)$

• Section 2: Nested MGS plus Nested Rubrail at Half Post Spacing

$$F_{y-post} = 14.6 \ kips$$
 $F_{soil} = 12.4 \ kips$, Embed=40.3 in $\rightarrow F_S' = 12.5 \ kips$
 $F_y = \min(F_{y-post}, F_S') = 12.5 \ kips$
 $F_p = \frac{F_y}{S} = \frac{12.5}{3.125} = 4.00 \frac{kip}{ft}$

Where S is the distance between post nos. 6 and 5 (half post spacing)

$$M_p = M_h + \sum_i M_i \frac{H_i}{H_h} = \left[16.0 + 16.0 \left(\frac{27.8}{42.8}\right)\right] = 26.4 \text{ kip. ft}$$

In which the parameters are multiplied by a factor of two because of nested rails at this section. Also, the calculated value for F_s' shows that this value is greater than F_p , hence, F_p is used for the CIP determination.

$$M_p=26.40$$
 and $F_p=3.99$ $\xrightarrow{Using\ MASH\ Figure\ 2-8}$ $CIP=6.64\ ft$ $M_p=26.40$ and $F_p=3.99$ $\xrightarrow{Using\ MASH\ Figure\ 2-11}$ $CIP=8.91\ ft$

• Section 3: MGS plus Rubrail at Half Post Spacing

$$F_{y-post} = 14.6 \ kips$$
 $F_{soil} = 12.4 \ kips$, Embed=40.3 in $\rightarrow F_S' = 12.5 \ kips$
 $F_y = \min(F_{y-post}, F_S') = 12.5 \ kips$
 $F_p = \frac{F_y}{S} = \frac{12.5}{3.125} = 3.99 \frac{kip}{ft}$

Where S is the distance between post nos. 6 and 5 (half post spacing).

$$M_p = M_h + \sum_i M_i \frac{H_i}{H_h} = \left[8.0 + 8.0 \left(\frac{27.8}{42.8} \right) \right] = 13.2 \text{ kip. ft}$$

The calculated value for F_s' shows that this value is greater than F_p , hence, F_p is used for the CIP determination.

$$M_p=13.20$$
 and $F_p=3.99$ $\xrightarrow{Using\ MASH\ Figure\ 2-8}$ $CIP=8.29\ ft$ $M_p=13.20$ and $F_p=3.99$ $\xrightarrow{Using\ MASH\ Figure\ 2-11}$ $CIP=10.69\ ft$

• Section 4: MGS with Rubrail at Highest Height over Ditch

$$F_{y-post} = 14.6 \ kips$$
 $F_{soil} = 12.4 \ kips$, Embed=40.3 in $\rightarrow F_S' = 12.5 \ kips$
 $F_y = \min(F_{y-post}, F_S') = 12.5 \ kips$
 $F_p = \frac{F_y}{S} = \frac{12.5}{6.25} = 2.00 \frac{kip}{ft}$

Where *S* is the distance between post nos. 11 and 10.

$$M_p = M_h + \sum_i M_i \frac{H_i}{H_h} = \left[8.0 + 8.0 \left(\frac{27.80}{42.80} \right) \right] = 13.20 \text{ kip. ft}$$

The calculated value for F_s' shows that this value is greater than F_p , hence, F_p is used for the CIP determination.

$$M_p=13.20$$
 and $F_p=2.00$ $\xrightarrow{Using\ MASH\ Figure\ 2-8}$ $CIP=8.29\ ft$ $M_p=13.20$ and $F_p=2.00$ $\xrightarrow{Using\ MASH\ Figure\ 2-11}$ $CIP=11.81\ ft$

• Section 5: MGS with Rubrail

$$F_{y-post} = 14.6 \ kips$$
 $F_{soil} = 12.4 \ kips$, Embed=40.0 in $\rightarrow F_S' = 12.4 \ kips$
 $F_y = \min(F_{y-post}, F_S') = 12.4 \ kips$

$$F_p = \frac{F_y}{S} = \frac{12.4}{6.25} = 1.98 \frac{kip}{ft}$$

Where *S* is the distance between post nos. 24 and 23.

$$M_p = M_h + \sum M_i \frac{H_i}{H_h} = \left[8.0 + 8.0 \left(\frac{16.0}{31.0} \right) \right] = 12.1 \text{ kip. ft}$$

The calculated value for F_s' shows that this value is greater than F_p , hence, F_p is used for the CIP determination.

$$M_p=12.10$$
 and $F_p=1.98$ $\xrightarrow{Using\ MASH\ Figure\ 2-8}$ $CIP=8.27\ ft$ $M_p=12.10$ and $F_p=1.98$ $\xrightarrow{Using\ MASH\ Figure\ 2-11}$ $CIP=11.89\ ft$

Section 6: Standard MGS

$$F_{y-post} = 14.6 \text{ kips}$$
 $F_{soil} = 12.4 \text{ kips}$, Embed=40.0 in $\rightarrow F_S' = 12.4 \text{ kips}$
 $F_y = \min(F_{y-post}, F_S') = 12.4 \text{ kips}$

$$F_p = \frac{F_y}{S} = \frac{12.4}{6.25} = 1.98 \frac{\text{kip}}{ft}$$

Where S is the distance between post nos. 30 and 29.

$$M_p = M_h + \sum M_i \frac{H_i}{H_h} = [8.0 + 0] = 8.0 \text{ kip. ft}$$

The calculated value for F_s' shows that this value is greater than F_p , hence, F_p is used for the CIP determination.

$$M_p=8.0$$
 and $F_p=1.98$ $\xrightarrow{Using\ MASH\ Figure\ 2-8}$ $CIP=8.18\ ft$ $M_p=8.0$ and $F_p=1.98$ $\xrightarrow{Using\ MASH\ Figure\ 2-11}$ $CIP=11.89\ ft$

Appendix C. Vehicle Center of Gravity Determination

		Test Name:	HBIB-6	_ VIN:	3Con	R6KT6JG18	0123
Model Y	ear: 2018	Make:_	RAM	Model:		1500	
Vehicle	CG Determinati	ion					
				Weight	Vertical CG		
	Equipment			(lb)	(in.)	(lb-in.)	
+		d Truck (Curb)		5304	28.297653		
+	Hub		1000	19	15.25	289.75	
+		ation cylinder &	frame	7	28.5	199.5	
+		tank (Nitrogen)		20	26.75	535	
+	Strobe/Bra			5	26.5	132.5	
+		eiver/Wires		5	52.25	261.25	
+		ncluding DAQ		50	30 5/16	1515.625	
-	Battery			0	40.5	0	
 0	Oil			-6	25	-150	
-	Interior			-142	30	-4260	
-	Fuel			-119	21.5	-2558.5	
-1	Coolant			-13	37	-481	
220	Washer flu			-4	33	-132	
+		ast (In Fuel Tank				0	
+	Onboard S	upplemental Bat	ttery			0	
=:	Spare Tire			-63	23	-1449	
					i i	0	
Note: (+) is	added equipment to	vehicle, (-) is remov Estimated Tota Vertical CG	al Weight (lb)	5063]	143993.88	
Vehicle I	Dimensions for	Estimated Tota Vertical CG I	al Weight (lb) Location (in.)	5063 28.44043		16.7	
Vehicle I		Estimated Tota Vertical CG I	al Weight (lb) Location (in.) ons Front 1	5063 28.44043 Frack Width:	67.25	16.7	
Vehicle I	Dimensions for	Estimated Tota Vertical CG I	al Weight (lb) Location (in.) ons Front 1	5063 28.44043	67.25	143993.88	
Vehicle I	Dimensions for	Estimated Tota Vertical CG I	al Weight (lb) Location (in.) ons Front 1	5063 28.44043 Frack Width:	67.25	143993.88 in.	
Vehicle I Wheel B	Dimensions for Base: 140.625	Estimated Tota Vertical CG I C.G. Calculation in.	al Weight (lb) Location (in.) ons Front 1 Rear 1	5063 28.44043 Frack Width:	67.25 67.625	143993.88 in. in.	Difference
Vehicle I Wheel B	Dimensions for Base: 140.625	Estimated Tota Vertical CG I C.G. Calculation in.	al Weight (lb) Location (in.) ons Front 1 Rear 1	5063 28.44043 Frack Width:	67.25 67.625	143993.88 in. in.	Difference 61.0
Vehicle I Wheel B	Dimensions for Base: 140.625 of Gravity tial Weight (lb)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ±	al Weight (lb) Location (in.) ons Front 1 Rear 1 H Targets	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061	143993.88 in. in.	61.0
Vehicle I Wheel B Center o Test Iner Longitudi	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ±	al Weight (lb) Location (in.) ons Front 1 Rear 1 H Targets	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141	143993.88 in. in.	61.0 -2.89886
Vehicle I Wheel B Center of Test Iner Longitudi Lateral C	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA	al Weight (lb) Location (in.) ons Front 1 Rear 1 H Targets 110 4	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186	143993.88 in. in.	61.0 -2.89886 NA
Vehicle I Wheel B Center of Test Iner Longitudi Lateral C Vertical C	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 6	Al Weight (Ib) Location (in.) Pons Front 1 Rear 1 H Targets 110 4 or greater	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141	143993.88 in. in.	61.0 -2.89886
Vehicle I Wheel B Center of Test Iner Longitudi Lateral C Vertical C Note: Long	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 com front axle of test	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44	143993.88 in. in.	61.0 -2.89886 NA
Vehicle I Wheel B Center of Test Iner Longitudi Lateral C Vertical C Note: Long	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 com front axle of test	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44	143993.88 in. in.	61.0 -2.89886 NA
Center of Test Iner Longitudi Lateral C Vertical C Note: Long	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 com front axle of test	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44	143993.88 in. in.	61.0 -2.89886 NA 0.44043
Center of Test Iner Longitudi Lateral C Vertical C Note: Long	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) CG company of the com	Estimated Total Vertical CG In Vertical CG In	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44	in. in.	61.0 -2.89886 NA 0.44043
Center of Test Iner Longitudi Lateral C Vertical C Note: Long Note: Lateral CURB W	Dimensions for Base: 140.625 of Gravity tial Weight (Ib) inal CG (in.) CG (in.) CG (in.) CG color measured from the color of the color	Estimated Total Vertical CG In Vertical CG In Section 1.	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44 side	in. in. Left	61.0 -2.89886 NA 0.44043 IT (Ib)
Center of Test Iner Longitudi Lateral C Vertical C Note: Long	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) CG company of the com	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 commercement of test immore centerline - position in the property in the commercement of the commercemen	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44	in. in.	61.0 -2.89886 NA 0.44043 IT (Ib) Right 1446
Center of Test Iner Longitudi Lateral C Vertical C Note: Long Note: Lateral CURB W	Dimensions for Base: 140.625 of Gravity tial Weight (Ib) inal CG (in.) CG (in.) CG (in.) CG color measured from the color of the color	Estimated Total Vertical CG In Vertical CG In Section 1.	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44 side	in. in. Left	61.0 -2.89886 NA 0.44043 IT (Ib)
Center of Test Iner Longitudi Lateral C Vertical C Note: Lateral CURB W	Dimensions for Base:140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) g. CG is measured fro ral CG measured fro /EIGHT (lb) Left1477	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 commercement of test immore centerline - position in the property in the commercement of the commercemen	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44 side TEST INER	in. in. in. Left 1452 1096	61.0 -2.89886 NA 0.44043 IT (Ib) Right 1446
Center of Test Iner Longitudi Lateral Control	Dimensions for Base: 140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) character of the company of the comp	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 commercement of test immore centerline - position in the property in the commercement of the commercemen	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44 side TEST INER	in. in. Left 1452 1096 2898	61.0 -2.89886 NA 0.44043 IT (Ib) Right 1446
Center of Test Iner Longitudi Lateral C Vertical C Note: Later CURB W	Dimensions for Base:140.625 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) g. CG is measured fro ral CG measured fro /EIGHT (lb) Left1477	Estimated Total Vertical CG In Vertical CG In South Estimated Total Vertical CG In South Estimates In South	Al Weight (Ib) Location (in.) ons Front 1 Rear 1 H Targets 1110 14 or greater vehicle	5063 28.44043 Frack Width:	67.25 67.625 Test Inertial 5061 60.101141 -0.233186 28.44 side TEST INER	in. in. Left 1452 1096 2898	61.0 -2.89886 NA 0.44043 IT (Ib) Right 1446 1067

Figure C-1. Vehicle Mass Distribution, Test No. HBIB-6

			HBIB-7	VIN:	3NPA.	24AB2JE0	779301
Model Year:	2018	Make:	Kia	Model:		Rio	
Vehicle CG D	eterminat	ion					
					Weight		
	Vehicle Ed	uipment			(lb)		
	+	Unballasted Car	(Curb)		2467		
8-	+	Hub			19		
	+	Brake activation	cylinder & fr	ame	7		
	+	Pneumatic tank ((Nitrogen)		20		
	+	Strobe/Brake Ba	ttery		5		
	+	Brake Receiver∧			5		
2	+	CG Plate includir	ng DAQ		21		
	(<u>*</u>	Battery			-38		
1		Oil			-10		
	-	Interior			-76		
15	-	Fuel			-20		
	-	Coolant			-7		
	.T.	Washer fluid	IV		-9		
12	+	Water Ballast (In			34		
:-	+	Onboard Supple	mental Batte	ery			
					-		
1	Note: (+) is a	dded equipment to vehic	cle, (-) is remov	_			
		Estima	ated Total V	_			
Vehicle Dimei	nsions for	Estima C.G. Calculations	ated Total V	Veight (Ib)	2418	n.	_
Vehicle Dimel Wheel Base:	nsions for 101.688	Estima C.G. Calculations in.	ated Total V	veight (lb) [2418 <u>59.813</u> i	n. n.	_
Vehicle Dimei	nsions for 101.688	Estima C.G. Calculations in.	ated Total V	Veight (Ib)	2418 <u>59.813</u> i		_
Vehicle Dime Wheel Base: Roof Height:	nsions for 101.688 57.125	Estima C.G. Calculations in. in.	ated Total V S Front Tra Rear Tra	Veight (lb) [lck Width: _ lck Width: _	2418 59.813 i 60.125 i		_
Vehicle Dimer Wheel Base: Roof Height:	nsions for 101.688 57.125 vity	Estima C.G. Calculations in. in. 1100C MASH	ated Total V Front Tra Rear Tra Targets	Veight (lb) [lck Width: _ lck Width: _	2418 59.813 i 60.125 i		
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W	nsions for 101.688 57.125 vity /eight (lb)	C.G. Calculations in. in. 1100C MASH 2420 ± 5	ated Total V Front Tra Rear Tra Targets	Veight (lb) [lck Width: _ lck Width: _	2418 59.813 i 60.125 i Fest Inertial 2419		-1.C
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C	nsions for 101.688 57.125 vity /eight (lb) G (in.)	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4	ated Total V Front Tra Rear Tra Targets	Veight (lb) [lck Width: _ lck Width: _	2418 59.813 i 60.125 i Fest Inertial 2419 38.38		-1.0 -0.62
Vehicle Dimel Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in	nsions for 101.688 57.125 vity /eight (lb) G (in.)	Estima C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA	ated Total V Front Tra Rear Tra Targets	Veight (lb) [lck Width: _ lck Width: _	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905		-1.0 -0.62 NA
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in	nsions for 101.688 57.125 vity /eight (lb) G (in.)	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA	Front Tra Rear Tra Targets	Veight (lb) [lck Width: _ lck Width: _	2418 59.813 i 60.125 i Fest Inertial 2419 38.38		-1.0 -0.62 NA
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) s measured fr	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh	Front Tra Rear Tra Targets	Veight (lb)	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961		-1.0 -0.62 NA
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) s measured fr	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA	Front Tra Rear Tra Targets	Veight (lb)	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961		-1.0 -0.62 NA
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) s measured fromeasured fromeasured from	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh	Front Tra Rear Tra Targets	veight (lb) [2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961	n.	-1.0 -0.62 NA NA
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) s measured fromeasured fromeasured from	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh	Front Tra Rear Tra Targets	veight (lb) [2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961	n.	-1.0 -0.62 NA NA
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	vity feight (lb) G (in.) n.) s measured from measured fro	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA NA om front axle of test veh m centerline - positive to	Front Tra Rear Tra Targets	veight (lb) [2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961	n.	-1.0 -0.62 NA NA HT (Ib)
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	vity feight (lb) G (in.) n.) s measured from measured from Left 801	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh m centerline - positive to	Front Tra Rear Tra Targets	veight (lb) [2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961	IAL WEIG Left 791	-1.0 -0.62 NA NA HT (Ib) Right 715
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH	vity feight (lb) G (in.) n.) s measured from measured fro	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA NA om front axle of test veh m centerline - positive to	Front Tra Rear Tra Targets	Veight (lb)	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961 ide	IAL WEIG	-1.0 -0.62 NA NA HT (Ib)
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) n.) s measured from the measured frow the measured from the measured from the measured from the meas	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh m centerline - positive to	Front Tra Rear Tra Targets	Veight (lb)	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961 ide TEST INERT	IAL WEIG Left 791 455	-1.0 -0.62 NA NA HT (Ib) Right 715 458
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear FRONT	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) h.) s measured fro IT (lb) Left 801 456 1558	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh m centerline - positive te Right 757 453	Front Tra Rear Tra Targets	Veight (lb)	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961 ide TEST INERT Front Rear FRONT	IAL WEIG Left 791 455 1506	-1.0 -0.62 NA NA HT (Ib) Right 715 458
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	nsions for 101.688 57.125 vity /eight (lb) G (in.) h.) n.) s measured from the measured frow the measured from the measured from the measured from the meas	C.G. Calculations in. in. 1100C MASH 2420 ± 5 39 ± 4 NA NA om front axle of test veh m centerline - positive to	Front Tra Rear Tra Targets	veight (lb)	2418 59.813 i 60.125 i Fest Inertial 2419 38.38 -0.905 21.961 ide TEST INERT	IAL WEIG Left 791 455	Right 715 458

Figure C-2. Vehicle Mass Distribution, Test No. HBIB-7

		Test Name:	HBIB-8	VIN:		R6GT7JS17	0000
Model Ye	ear: <u>2018</u>	_ Make:_	Ram	_ Model:		1500 Hemi	
Vehicle C	G Determinati	on					
				Weight	Vertical CG	Vertical M	
Vehicle Ed	quipment			(lb)	(in.)	(lb-in.)	
+	Unballasted	Truck (Curb)		5126	28.245976	144788.88	
+	Hub			19	15	285	
+	Brake activa	ation cylinder &	frame	7	28	196	
+	Pneumatic :	tank (Nitrogen)		20	28	560	
+	Strobe/Brak	e Battery		5	31	155	
+	Brake Rece	eiver/Wires		5	52.5	262.5	
+	CG Plate in	cluding DAQ		30	29.375	881.25	
+	Battery			-42	41	-1722	
-	Oil			-12	19.5	-234	
-	Interior			-85	35	-2975	
	Fuel			-173	17.5	-3027.5	
- - -	Coolant			-12	32	-384	
-	Washer flui	d		-3	37	-111	
+	Water Balla	st (In Fuel Tank	〈)	106	15	1590	
+	Onboard St	upplemental Ba	ttery			0	
			777.05			0	
						0	
Note: (+) is a	dded equipment to	vehicle, (-) is remov Estimated Tota Vertical CG	al Weight (lb)	4991		140265.13	
Vehicle D	imensions for	Estimated Tota Vertical CG C.G. Calculation	al Weight (lb) Location (in.)	4991 28.10361			
Vehicle D		Estimated Total Vertical CG	al Weight (lb) Location (in.) ons Front 1	4991 28.10361 Track Width:			6
Vehicle D	imensions for	Estimated Tota Vertical CG C.G. Calculation	al Weight (lb) Location (in.) ons Front 1	4991 28.10361		140265.13	8
Vehicle D	imensions for	Estimated Tota Vertical CG C.G. Calculation	al Weight (lb) Location (in.) ons Front 1	4991 28.10361 Track Width:		140265.13 in.	
Vehicle D Wheel Ba	imensions for se: 140.375	Estimated Tota Vertical CG C.G. Calculation in.	al Weight (Ib) Location (in.) ons Front 1 Rear 1	4991 28.10361 Track Width:	67.875	140265.13 in. in.	Difference
Vehicle Di Wheel Ba	imensions for see: 140.375	Estimated Tota Vertical CG C.G. Calculation in.	al Weight (Ib) Location (in.) ons Front 1 Rear 1	4991 28.10361 Track Width:	67.875 Test Inertia	140265.13 in. in.	
Vehicle D Wheel Ba Center of Test Inertia	imensions for one se: 140.375 Gravity al Weight (lb)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ±	al Weight (lb) Location (in.) ons Front 1 Rear 1 6H Targets ± 110	4991 28.10361 Track Width:	67.875 Test Inertial 5000	140265.13 in. in.	0.0
Vehicle D Wheel Ba Center of Test Inertia Longitudin	imensions for one se: 140.375 Gravity al Weight (lb) al CG (in.)	Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 ±	al Weight (lb) Location (in.) ons Front 1 Rear 1 6H Targets ± 110	4991 28.10361 Track Width:	67.875 Test Inertial 5000 59.547075	140265.13 in. in.	0.0 -3.45293
Vehicle Downward Wheel Base Center of Test Inertia Longitudin Lateral CG	imensions for one se: 140.375 Gravity al Weight (lb) al CG (in.) Gravity	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA	al Weight (lb) Location (in.) ons Front 1 Rear 1 6H Targets ± 110 ± 4	4991 28.10361 Track Width:	67.875 Test Inertial 5000 59.547075 -0.461125	140265.13 in. in.	0.0 -3.45293 NA
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC	imensions for se: 140.375 Gravity al Weight (lb) al CG (in.) G (in.)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 6	al Weight (lb) Location (in.) ons Front 1 Rear 1 6H Targets ± 110 ± 4 or greater	4991 28.10361 Track Width:	67.875 Test Inertial 5000 59.547075	140265.13 in. in.	0.0 -3.45293 NA
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long.	imensions for one se: 140.375 Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fro	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test	Front 1 Rear 1 SH Targets ± 110 ± 4 Dr greater vehicle	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10	140265.13 in. in.	0.0 -3.45293 NA
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long.	imensions for se: 140.375 Gravity al Weight (lb) al CG (in.) G (in.)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test	Front 1 Rear 1 SH Targets ± 110 ± 4 Dr greater vehicle	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10	140265.13 in. in.	0.0 -3.45293 NA
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC Note: Long. Note: Latera	imensions for one of the set of t	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test	Front 1 Rear 1 SH Targets ± 110 ± 4 Dr greater vehicle	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10	140265.13 in. in.	0.0 -3.45293 NA 0.10361
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long.	imensions for one of the set of t	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test	Front 1 Rear 1 SH Targets ± 110 ± 4 Dr greater vehicle	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10	140265.13 in. in.	Difference 0.0 -3.45293 NA 0.10361
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC Note: Long. Note: Latera	Gravity al Weight (lb) al CG (in.) G (in.) G is measured fron	Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test n centerline - position	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10	in.	0.0 -3.45293 NA 0.10361
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE	Gravity al Weight (lb) al CG (in.) G (in.) GG is measured fron I CG measured fron EIGHT (lb) Left	Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test n centerline - positive Right	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10 side TEST INER	in. in. tin. Left	0.0 -3.45293 NA 0.10361 HT (Ib)
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE	Gravity al Weight (Ib) al CG (in.) G (in.) G is measured fron I CG measured fron EIGHT (Ib) Left 1512	Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test n centerline - positive Right 1445	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10 side TEST INER	in. in. Left 1455	0.0 -3.45293 NA 0.10361 HT (Ib) Right 1424
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE	Gravity al Weight (lb) al CG (in.) G (in.) GG is measured fron I CG measured fron EIGHT (lb) Left	Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test n centerline - positive Right	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10 side TEST INER	in. in. tin. Left	0.0 -3.45293 NA 0.10361 HT (Ib)
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE Front Rear	Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fron I CG measured fron EIGHT (lb) Left 1512 1104	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test in centerline - positive Right 1445 1065	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10 side TEST INER Front Rear	in. in. in. Left 1455 1079	0.0 -3.45293 NA 0.10361 HT (Ib) Right 1424 1042
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE Front Rear FRONT	Gravity al Weight (lb) al CG (in.) G (in.) CG is measured fron I CG measured fron EIGHT (lb) Left 1512 1104	Estimated Tota Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test n centerline - positive Right 1445	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10 side TEST INER Front Rear FRONT	in. in. in. Left 1455 1079 2879	0.0 -3.45293 NA 0.10361 HT (Ib) Right 1424
Vehicle Di Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE Front Rear	Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fron I CG measured fron EIGHT (lb) Left 1512 1104	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA 28 cm front axle of test in centerline - positive Right 1445 1065	Front Rear Rear Rear Rear Rear Rear Rear Rear	4991 28.10361 Frack Width:	67.875 Test Inertial 5000 59.547075 -0.461125 28.10 side TEST INER Front Rear	in. in. in. Left 1455 1079	0.0 -3.45293 NA 0.10361 HT (Ib) Right 1424 1042

Figure C-3. Vehicle Mass Distribution, Test No. HBIB-8

		Test Name: _	HBIB-10	VIN:			056878
Model Year: _	2019	Make: _	Hyundai	Model:		Accent Sed	an
Vehicle CG De	eterminati	on					
					Weight		
·	ehicle Eq		(0.1)		(lb)	7	
+		Unballasted Ca	ar (Curb)		2517	4	
<u>+</u>		Hub			19	4	
+		Brake activation	•	rame	7	-	
+		Pneumatic tank			23 5	4	
++		Strobe/Brake B Brake Receive			5	-	
+		CG Plate include			21	=	
	· 		aling DAQ		<u>-40</u>	-	
-		Battery Oil			- 4 0 -9	-	
=		Interior			-68	-	
<u>-</u>		Fuel			-19	-	
		Coolant			-13 -7	=	
_		Washer fluid			-3		
+		Water Ballast (In Fuel Tank	\	0		
+		Onboard Suppl					
		Trunk contents		,	-33	1	
_							
- N	lote: (+) is ac	dded equipment to ve			nt from vehicle]	
	, ,	dded equipment to ve	hicle, (-) is remo		nt from vehicle]	
	, ,	dded equipment to ve	hicle, (-) is remo		nt from vehicle	in.	_
Vehicle Dimens	sions for	dded equipment to ve Estir	hicle, (-) is remo mated Total \ ns Front Tr	Weight (lb)	nt from vehicle]	_
Vehicle Dimens Wheel Base: _	sions for	Estir C.G. Calculation in.	hicle, (-) is remo mated Total \ ns Front Tr	Weight (lb)	2418 59.875] _in.	_
Vehicle Dimens Wheel Base: _ Roof Height: _	sions for 101.5 56.625	Estir C.G. Calculation in. in.	hicle, (-) is remo mated Total \ ns Front Tra Rear Tra	Weight (lb) ack Width: ack Width:	2418 59.875 60.0	_in. _in.	
Vehicle Dimens Wheel Base: Roof Height: Center of Grav	sions for 101.5 56.625	C.G. Calculation in. in. 1100C MAS	ns Front Transear Tra	Weight (lb) ack Width: ack Width:	2418 2418 59.875 60.0 Test Inertia	_in. _in.	
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We	sions for 101.5 56.625 rity	C.G. Calculation in. in. 1100C MAS 2420 ±	mated Total \ mas Front Tr. Rear Tr. H Targets	Weight (lb) ack Width: ack Width:	2418 59.875 60.0 Test Inertia 2421	_in. _in.	1.0
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG	sions for 101.5 56.625 rity eight (lb) G (in.)	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ±	mated Total \ mas Front Tr. Rear Tr. H Targets	Weight (lb) ack Width: ack Width:	2418 59.875 60.0 Test Inertia 2421 38.361	_in. _in.	1.0 -0.639
Vehicle Dimens Wheel Base: _ Roof Height: _ Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.)	sions for 101.5 56.625 rity eight (lb) G (in.)	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA	mated Total \ mas Front Tr. Rear Tr. H Targets	Weight (lb) ack Width: ack Width:	59.875 60.0 Test Inertia 2421 38.361 -0.928	_in. _in.	Difference 1.0 -0.639 NA
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.)	sions for 101.5 56.625 vity eight (lb) 6 (in.)	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA NA	ns Front Transear Tra	Weight (lb) ack Width: ack Width:	2418 59.875 60.0 Test Inertia 2421 38.361	_in. _in.	1.0 -0.639 NA
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r	sions for 101.5 56.625 rity eight (lb) G (in.)) measured from	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA	hicle, (-) is remo	Weight (lb)	2418 59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904	_in. _in.	1.0 -0.639
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r Note: Lateral CG m	sions for 101.5 56.625 ity eight (lb) G (in.)) measured fromeasured from	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA NA om front axle of test v	hicle, (-) is remo	Weight (lb)	59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904	_in. _in.	1.0 -0.639 NA NA
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r	sions for 101.5 56.625 ity eight (lb) G (in.)) measured fromeasured from	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA NA om front axle of test v	hicle, (-) is remo	Weight (lb)	59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904	_ in. _ in.	1.0 -0.639 NA NA
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r Note: Lateral CG m	sions for 101.5 56.625 ity eight (lb) G (in.)) measured fromeasured from	C.G. Calculation in. in. 1100C MASI 2420 ± 39 ± NA NA Om front axle of test with micenterline - positive Right	hicle, (-) is remo	Weight (lb)	59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904	_ in. _ in.	1.0 -0.639 NA NA
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r Note: Lateral CG m	sions for 101.5 56.625 rity sight (lb) G (in.)) measured fromeasured from (lb) Left 790	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA NA om front axle of test v. m centerline - positive Right 760	hicle, (-) is remo	Weight (lb)	59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904	in. in.	1.0 -0.639 NA NA
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r Note: Lateral CG m	sions for 101.5 56.625 rity sight (lb) G (in.)) .) measured from reasured from (Ib) Left	C.G. Calculation in. in. 1100C MASI 2420 ± 39 ± NA NA Om front axle of test with micenterline - positive Right	hicle, (-) is remo	Weight (lb)	59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904	_in. _in. al	1.0 -0.639 NA NA HT (Ib)
Wehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r Note: Lateral CG m CURB WEIGHT Front Rear	sions for 101.5 56.625 iity eight (lb) 6 (in.)) measured from reasured from Left 790 495	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA NA om front axle of test v. m centerline - positive Right 760	hicle, (-) is remo	Weight (lb)	2418 59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904 side TEST INER	in. in. al RTIAL WEIG Left 780 468	1.0 -0.639 NA NA HT (Ib) Right 726 447
Vehicle Dimens Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is r Note: Lateral CG m CURB WEIGHT	sions for 101.5 56.625 rity sight (lb) G (in.)) measured fromeasured from (lb) Left 790	C.G. Calculation in. in. 1100C MAS 2420 ± 39 ± NA NA om front axle of test vim centerline - positive Right 760 472	hicle, (-) is remo	Weight (lb)	59.875 60.0 Test Inertia 2421 38.361 -0.928 21.904 side TEST INER	in. in. al RTIAL WEIG Left 780	1.0 -0.639 NA NA HT (Ib) Right 726

Figure C-4. Vehicle Mass Distribution, Test No. HBIB-10

		Test Name: _	HBIB-9	_ VIN:		R6FG0KS52	.0000
Model Y	ear: 2019	_ Make: _	Ram	_ Model:		1500	
Vehicle (CG Determinati	on					
				Weight	Vertical CG	Vertical M	
Vehicle E	quipment			(lb)	(in.)	(lb-in.)	
+		d Truck (Curb)		4983	28.71621	143092.88	
+	Hub			19	14.9375	283.8125	
+		ation cylinder &	frame	7	27.5	192.5	
+		tank (Nitrogen)		23	26.5	609.5	
+	Strobe/Bral			5	27.5	137.5	
+	Brake Rece			5	52.25	261.25	
+		ncluding DAQ		42	30.25	1270.5	
=:	Battery			-37	43	-1591	
	Oil			-8	21.5	-172	
-	Interior			-85	38.5	-3272.5	
-	Fuel			-172	18.5	-3182	
_	Coolant			-9	34.5	-310.5	
-	Washer flui			-3	38	-114	
+		ast (In Fuel Tank		227	18	4086	
+	Onboard S	upplemental Bat	tery			0	
						0	
Note: (+) is	added equipment to	Estimated Total	al Weight (lb)	4997		0 141291.94	
	added equipment to	Estimated Total Vertical CG I	al Weight (lb) Location (in.)	4997 28.27535		3977	
	Dimensions for	Estimated Total Vertical CG I	al Weight (lb) Location (in.) ons Front 1	4997 28.27535 Frack Width:		3977	
Vehicle [Dimensions for	Estimated Tota Vertical CG I	al Weight (lb) Location (in.) ons Front 1	4997 28.27535		141291.94	
Vehicle [Dimensions for	Estimated Tota Vertical CG I	al Weight (lb) Location (in.) ons Front 1	4997 28.27535 Frack Width:		141291.94 in.	
Vehicle I Wheel B	Dimensions for ase: 140.625	Estimated Tota Vertical CG I C.G. Calculatio in.	al Weight (lb) Location (in.) ons Front 1 Rear 1	4997 28.27535 Frack Width:	67.6875	141291.94 in. in.	Difformed
Vehicle E Wheel B	Dimensions for ase: 140.625	Estimated Tota Vertical CG I C.G. Calculatio in.	al Weight (lb) Location (in.) ons Front 1 Rear 1	4997 28.27535 Frack Width:	67.6875 Test Inertial	141291.94 in. in.	
Vehicle I Wheel B	Dimensions for ase: 140.625 f Gravity tial Weight (lb)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ±	al Weight (lb) Location (in.) ns Front 1 Rear 1 H Targets ± 110	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000	141291.94 in. in.	0.0
Vehicle I Wheel B Center of Test Inert Longitudia	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.)	Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ±	al Weight (lb) Location (in.) ns Front 1 Rear 1 H Targets ± 110	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875	141291.94 in. in.	0.0 1.99688
Vehicle E Wheel B Center of Test Inert Longitudii Lateral C	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.)	Estimated Total Vertical CG I C.G. Calculation in. 2270P MAS 5000 ± 63 ± NA	Al Weight (lb) Location (in.) Pons Front 1 Rear 1 H Targets ± 110 ± 4	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075	141291.94 in. in.	Difference 0.0 1.99688 NA 0.27535
Vehicle I Wheel B Center of Test Inert Longitudii Lateral Co	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.)	Estimated Total Vertical CG Inc. 2270P MAS 5000 ± 63 ± NA 28 6	al Weight (lb) Location (in.) ns Front 1 Rear 1 H Targets ± 110 ± 4 or greater	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875	141291.94 in. in.	0.0 1.99688 NA
Vehicle I Wheel B Center of Test Inert Longitudin Lateral Covertical Cover	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.) CG (in.)	Estimated Total Vertical CG In Vertical CG In Section 1. Section 2270P MAS 5000 ± 63 ± NA 28 commerced 2270P MAS 2	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28	141291.94 in. in.	0.0 1.99688 NA
Vehicle I Wheel B Center of Test Inert Longitudin Lateral Covertical Cover	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.)	Estimated Total Vertical CG In Vertical CG In Section 1. Section 2270P MAS 5000 ± 63 ± NA 28 commerced 2270P MAS 2	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28	141291.94 in. in.	0.0 1.99688 NA
Vehicle I Wheel B Center of Test Inert Longitudin Lateral Co Vertical Co Note: Long	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.) CG (in.)	Estimated Total Vertical CG In Vertical CG In Section 1. Section 2270P MAS 5000 ± 63 ± NA 28 commerced 2270P MAS 2	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28	141291.94 in. in.	0.0 1.99688 NA 0.27535
Vehicle I Wheel B Center of Test Inert Longitudin Lateral Co Vertical Co Note: Long	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.) CG (in.) . CG is measured from the company of the	Estimated Total Vertical CG In Vertical CG In Section 1. Section 2270P MAS 5000 ± 63 ± NA 28 commerced 2270P MAS 2	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28	141291.94 in. in.	0.0 1.99688 NA 0.27535
Vehicle I Wheel B Center of Test Inert Longitudin Lateral Co Vertical Co Note: Long	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.) CG (in.) . CG is measured from the company of the	Estimated Total Vertical CG In Vertical CG In Section 1. Section 2270P MAS 5000 ± 63 ± NA 28 commerced 2270P MAS 2	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28	141291.94 in. in.	0.0 1.99688 NA 0.27535
Vehicle I Wheel B Center of Test Inert Longitudin Lateral Co Vertical Co Note: Long	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.) CG (in.) . CG is measured from the company of the	Estimated Total Vertical CG In Verti	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28	in.	0.0 1.99688 NA 0.27535
Vehicle I Wheel B Center of Test Inert Longitudir Lateral C Vertical C Note: Long Note: Later	Dimensions for ase: 140.625 f Gravity tial Weight (lb) nal CG (in.) G (in.) CG (in.) . CG is measured from the company of the	Estimated Total Vertical CG In Verti	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28 side	in. in. Left	0.0 1.99688 NA 0.27535 T (Ib)
Vehicle I Wheel B Center of Test Inert Longitudii Lateral Co Vertical Co Note: Long Note: Later CURB W Front Rear	f Gravity tial Weight (lb) nal CG (in.) CG (in.) CG is measured from the company of the company	Estimated Total Vertical CG In Vertical CG In C.G. Calculation in . 2270P MAS 5000 ± 63 ± NA 28 common front axle of test morenterline - positive centerline - positive representation in the second representation representation in the second repres	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28 Side TEST INER Front Rear	in. in. Left 1337 1177	0.0 1.99688 NA 0.27535 T (Ib) Right 1352 1134
Vehicle I Wheel B Center of Test Inert Longitudii Lateral Co Vertical Co Note: Long Note: Later CURB W Front Rear FRONT	Dimensions for ase: 140.625 If Gravity Itial Weight (lb) Inal CG (in.) Inal CG (in.) Inal CG measured from the company of th	Estimated Total Vertical CG In Vertical CG In C.G. Calculation in . 2270P MAS 5000 ± 63 ± NA 28 common front axle of test more centerline - positive representation in the common front axle of test more centerline - positive representation in the common front axle of test more centerline - positive representation in the common front axle of test more representation in the common front axle of test mo	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28 Side TEST INER* Front Rear FRONT	in. in. TIAL WEIGH Left 1337 1177 2689	0.0 1.99688 NA 0.27535 T (Ib) Right 1352 1134
Vehicle I Wheel B Center of Test Inert Longitudii Lateral Co Vertical Co Note: Long Note: Later CURB W Front Rear	f Gravity tial Weight (lb) nal CG (in.) CG (in.) CG is measured from the company of the company	Estimated Total Vertical CG In Vertical CG In C.G. Calculation in . 2270P MAS 5000 ± 63 ± NA 28 common front axle of test morenterline - positive centerline - positive representation in the second representation representation in the second repres	Front Rear 1 H Targets 110 4 or greater vehicle	4997 28.27535 Frack Width:	67.6875 Test Inertial 5000 64.996875 -0.19075 28.28 Side TEST INER Front Rear	in. in. TIAL WEIGH Left 1337 1177 2689	0.0 1.99688 NA 0.27535 T (Ib) Right 1352 1134

Figure C-5. Vehicle Mass Distribution, Test No. HBIB-9

Appendix D. Material Specifications

Table D-1. Bill of Materials, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10

Item No.	Description	Material Specification	Reference
a1	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	H#2L14222 H#2L14422
a2	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	H#C85187
a3	6'-3" 12-gauge W-Beam Section	AASHTO M180	H#4114294
a4	12'-6" 12-gauge Bent W- Beam [4.4 deg]	AASHTO M180	H#2L14222 H#2L14422
a5	9'-4 1/2" 12-gauge W-Beam	AASHTO M180	H#2L14222 H#2L14422
a6	12'-6" 12-gauge Bent W- Beam [2.4 deg]	AASHTO M180	H#2L14222 H#2L14422
a7	12'-6" 12-gauge W-Beam Section - 1/4 Post Spacing	AASHTO M180	H#AA6765
a8	W-Beam Terminal Connector	AASHTO M180	H#290820
a9	12'-6" 12-gauge Bent W- Beam [7.7 deg]	AASHTO M180	H#C85187
b1	3'x3' Concrete Anchor Block	Min. $f'c = 4,000 \text{ psi}$	Ticket#2050257
c1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	P#GS6846PST
c2	72" Long Foundation Tube	ASTM A500 Gr. B	H#821T08220
c3	Ground Strut Assembly	ASTM A36	H#C43126
c4	BCT Anchor Cable Assembly with Heavy Hex Nuts and Washers	Fitting-ASTM A576 Gr. 1035 Stud-ASTM F568 Class C	H#20744340
c4	3/4" Dia. X 54" Long IWRC Wire Rope	ASTM A741 Type II	H#20744340
c5	Ground Anchor Bracket Assembly	ASTM A36	H#JK16101488
с6	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	H#1072318
c7	2 3/8" O.D. 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#712810
c8	Yoke	ASTM A36	missing
c10	Anchor Bracket End Plate	A36 Steel	missing
d1	W6x8.5 or W6x9, 84" Long Steel Post	ASTM A992 Gr. 50	H#2909166

Table D-2. Bill of Materials, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, Cont.

T4			T
Item No.	Description	Material Specification	Reference
d2	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	H#55073781
d4	14 3/16"x8"x5 1/8" Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	PO#HWTT L#1804/1000 L#1904/1000 P# MGS14SH P#GB14SH2
d5	13 5/8" Long, 8"x6"x1/4" Steel Blockout	ASTM A500 Gr. B	H#A70164 H#B62340 H#B63642 H#B64993
d6	16D Double Head Nail	-	P#97812A109
e1	61" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e2	51" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e3	32" Long #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e4	138 1/2" Long #8 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e5	103" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e6	12" Long Unbent #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e7	48" Long #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e8	67" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
f1	5/8" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	H#1000217087
f2	5/8 Dia, UNC, 5" Long Hex Head Bolt	ASTM A459 Gr. 5 or equivalent	H#3093332
f3	5/8" Dia. UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	P#1191921 P#12411
f4	5/8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	H#20841080
f5	7/8" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	P#92005

Table D-3. Bill of Materials, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10, Cont.

Item No.	Description	Material Specification	Reference
f6	7/8" Dia. UNC, 2" Long Hex	ASTM A307 Gr. A or	
10	Head Bolt	equivalent	H#1000217614
f7	5/8" Dia. UNC, 10" Long Hex	ASTM A307 Gr. A or	
1/	Head Bolt	equivalent	H#JK18104124
f8	5/8" Dia. UNC, 1 1/2" Long	ASTM A307 Gr. A or	H#20841080 P#1015-625-
16	Hex Head Bolt	equivalent	US
f9	3/4 Dia, Unthreaded Spacer	ASTM A53 Gr. B	
19	Sleeve	ASTM A33 GL B	H#4132970
g1	7/8" Dia. Plain Round Washer	ASTM F844	P#33187
g2	5/8" Dia. Plain Round Washer	ASTM F844	P#33185 P#0838687
g3	1" Dia. Plain Round Washer	ASTM F844	H#18108472-3
	5/8" Dia. UNC Heavy Hex	ASTM A563A or	
h1	Nut	equivalent	P#1191919 P#36755
h2	5/8" Dia. Hex Nut	ASTM A563A	H#8000021095
h4	7/8" Dia. UNC Hex Nut	ASTM A307A or	
114	//8 Dia. UNC nex Nut	equivalent	P#92005 P#36717
h5	1" 9 UNC Heavy Hey Nut	ASTM A563DH or	
113	1"-8 UNC Heavy Hex Nut	equivalent	N/A
i1	3/8" Dia. Wire Strut, 13 3/8"	Min. Tensile Strength =	
11	Long Unbent	100,000 psi	
i2	3/8" Dia. Wire Strut, 16 3/8"	Min. Tensile Strength =	
12	Long Unbent	100,000 psi	
i3	3/8" Dia. Wire Strut, 18"	Min. Tensile Strength =	
13	Long Unbent	100,000 psi	
i4	7/8 Dia. Threaded Ferrule	-	
k1	Soil	-	
k2	Fascia	Min. $fc = 4,000 \text{ psi}$	Ticket#2050257

^{*}Components not required if optional anchor is used.

Table D-4. Bill of Materials, Test No. HBIB-9

Item No.	Description	Material Specification	Reference
al	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	H#2L14222 H#2L14422
a2	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	H#C85187
a3	6'-3" 12-gauge W-Beam Section	AASHTO M180	H#4114294
a4	12'-6" 12-gauge Bent W-Beam [4.4 deg]	AASHTO M180	H#2L14222 H#2L14422
a5	9'-4 1/2" 12-gauge W-Beam	AASHTO M180	H#2L14222 H#2L14422
a7	12'-6" 12-gauge W-Beam Section - 1/4 Post Spacing	AASHTO M180	H#AA6765
a8	W-Beam Terminal Connector	AASHTO M180	H#290820
a9	12'-6" 12-gauge Bent W-Beam [7.7 deg]	AASHTO M180	H#C85187
b1	3'x3' Concrete Anchor Block	Min. $f'c = 4,000 \text{ psi}$	Ticket#2050257
c1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	P#GS6846PST
c2	72" Long Foundation Tube	ASTM A500 Gr. B	H#821T08220
c3	Ground Strut Assembly	ASTM A36	H#C43126
c4	BCT Anchor Cable Assembly with Heavy Hex Nuts and Washers	Fitting-ASTM A576 Gr. 1035 Stud-ASTM F568 Class C	H#20744340
c4	3/4" Dia. x 54" Long IWRC Wire Rope	ASTM A741 Type II	H#20744340
c5	Ground Anchor Bracket Assembly	ASTM A36	Н#ЈК16101488
с6	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	H#1072318
c7	2 3/8" O.D. 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#712810
d1	W6x8.5 or W6x9, 84" Long Steel Post	ASTM A992 Gr. 50	H#2909166
d2	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	H#55073781
d4	14 3/16"x8"x5 1/8" Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	PO#HWTT L#1804/1000 L#1904/1000 P# MGS14SH P#GB14SH2
d5	13 5/8" Long, 8"x6"x1/4" Steel Blockout	ASTM A500 Gr. B	H#A70164 H#B62340 H#B63642 H#B649933
d6	16D Double Head Nail	-	P#97812A109

Table D-5. Bill of Materials, Test No. HBIB-9, Cont.

Item No.	Description	Material Specification	Reference
e1	72" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e2	53" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e3	32" Long #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e4	134" Long #8 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e5	99" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e6	12" Long Unbent #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e7	48" Long #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
e8	67" Unbent Length #4 Rebar	ASTM A615 Gr. 60	PO#161834 H#7034726 H#9700023976 H#9700027794
fl	5/8" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	H#1000217087
f2	5/8 Dia, UNC, 5" Long Hex Head Bolt	ASTM A459 Gr. 5 or equivalent	H#3093332
f3	5/8" Dia. UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	Not used in system
f4	5/8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	H#20841080
f5	7/8" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	P#92005
f6	7/8" Dia. UNC, 2" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	not used in this system, used alternate method of epoxy and threaded rod (f10) to attach W- Beam end shoes to anchor block
f7	5/8" Dia. UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	H#JK18104124
f8	5/8" Dia. UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	H#20841080 P#1015-625-US
f9	³/₄" Dia., Unthreaded Spacer Sleeve	ASTM A53 Gr. B	H#4132970
g1	7/8" Dia. Plain Round Washer	ASTM F844	P#33187
g2	5/8" Dia. Plain Round Washer	ASTM F844	P#33185 P#0838687

Table D-6. Bill of Materials, Test No. HBIB-9, Cont.

Item No.	Description	Material Specification	Reference
h1	5/8" Dia. UNC Heavy Hex Nut	ASTM A563A or equivalent	P#1191919 P#36755
h2	5/8" Dia. Hex Nut	ASTM A563A	H#8000021095
h4	7/8" Dia. UNC Hex Nut	ASTM A307A or equivalent	P#92005 P#36717
*i1	3/8" Dia. Wire Strut, 13 3/8" Long Unbent	Min. Tensile Strength = 100,000 psi	N/A
*i2	3/8" Dia. Wire Strut, 16 3/8" Long Unbent	Min. Tensile Strength = 100,000 psi	N/A
*i3	3/8" Dia. Wire Strut, 18" Long Unbent	Min. Tensile Strength = 100,000 psi	N/A
*i4	7/8 Dia. Threaded Ferrule	-	N/A
k1	Soil	-	N/A
k2	Fascia	Min. $fc = 4,000 \text{ psi}$	Ticket#2050257

^{*}Components not required if optional anchor is used.

					*								
							4100	RY HIGHWAY 13th St. SW 1, Ohio 44710					*
	MIDWEST MACI P. O. BOX 703 MILFORD, NE, 68		PPLY CO.				Test Report Ship Date: Customer P.O.: Shipped to: Project:	1/16/2023 1216221 MIDWEST MACE	HINERY & SUPPI	LY CO.	٠		
							GHP Order No:	8420AA					
HT#Code	Heat#	C.	MN.	P.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
7869	CA6178	0.21	0.49	0.01	0.001	0.05	82981	62971	17.87	10	A	1	12GA 15FT 7.5IN HS @ 3FT 1 1/2IN WB
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	20	A	1	12GA 12FT 6IN HS @ 3FT 1.5 IN WB
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	2	A	1	12GA 12FT 6IN HS @ 3FT 1.5IN WB RX=12
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	2	A	1	12GA 12FT 6IN HS @ 3FT 1.5IN WB RX=15
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	2	Α	1	12GA 12FT 6IN HS @ 3FT 1.5IN WB RX=20
7945	4133093	0.2	0.73	0.01	0.008	0.01	77029	60177	26.93	10	A	1	12GA 12FT 6IN WB FLEAT-SKT COMBO PANEL
8021	4149562	0.2	0.75	0.013	0.008	0.01	76555	56332	25.33	110	A	1	12GA 25FT WB HS @ 3FT 1.5IN
7903	AA6765	0.2	0.47	0.013	0.002	0.04	89945	70774	16.17	95	A	1	12GA 12FT 6IN HS @ 1FT 6,75IN WB
7866	EA3067	0.2	0.48	0.009	0.002	0.03	82614	60233	23.77	1	A	1	12GA 6FT 3IN HS @ 3FT 1.5IN WB RX=12
													,
	Nuts comply w All other galva All Galvanizing All steel used All Guardrail All Bolts and N All material fal	with ASTM A nized materia g has occurr in the manuf meets Title and Terminaluts are of Doricated in a modificated correction.	-563 special conformed in the Usacture is c 23CFR 63 al Sections omestic C ccordance osion resi	ifications ins with AS United State of Domest 15.410 - B is meets A Origin with Nebstant Gua	and are ga STM-123 & Ites Iic Origin, " uy America ASHTO M- raska Deci	Nanized in ASTM-65 Made and 1 -180, All st	n accordance with AS accordance with AS accordance with AS a constant of the second of the sec	FM A-153, unless olf States" ASHTO M-183 & M:	nerwise stated.		\$		EGORY HWAY

Figure D-1. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-9 (Item Nos. a1, a4, a5, a7)

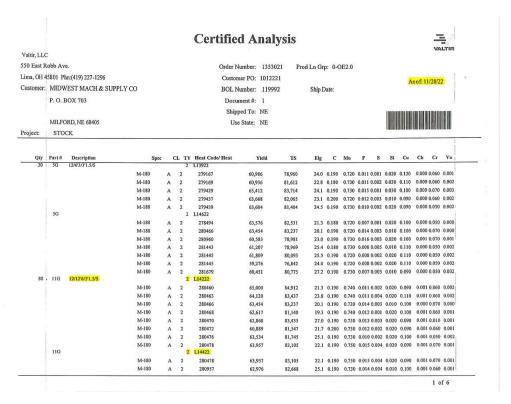


Figure D-2. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item Nos. a1, a4, a5, a7)

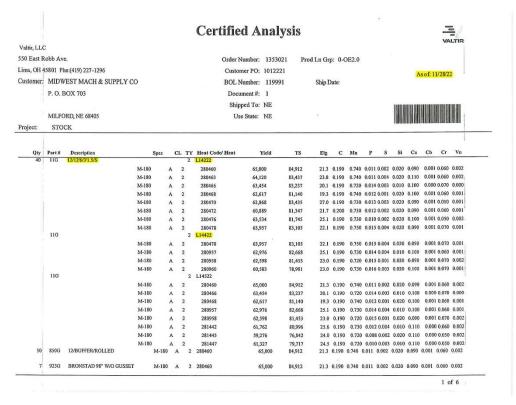


Figure D-3. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item Nos. a1, a4, a5, a7)

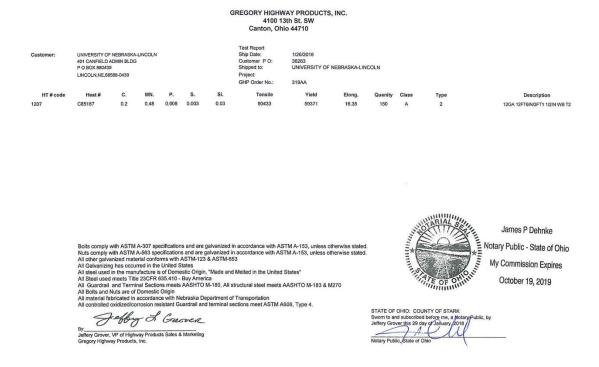


Figure D-4. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a2)

	STEEL GAL	LATIN	Phone	4831 U.S Ghent	S. High	el Gallati nway 42 We 11045-9704 3 Fax: (859	est		7	
			METAI	LLURG	ICAI	L TEST	REPORT			
Invoice To		ndustries n Street SW DH 44710		Ship To	410	egory Indus 00 13th Stre nton, OH 4	eet SW		Date: 1 omer No: 1 mer P.O.: 39	
Mill Orde	r No: 21407	8-1	Custom	ner Refere	nce N	o: 39620		Load No:	736148	
This prod	luct was m		nanufactured nents of:	tensile,	0.10%	max Si, ar el Bands	de for Guard F nd 0.06% Cr m	nax		
Coil Num	ber(s): 146	5177				Or	dered Size:		n.) X 56.88 (I nm) X 1445 (
CHEMICA	L ANALYS	IS (Weigh	it %)		W.Y.		Maria A			
Heat No	С	Mn	P	S		Si	Cu	Ni	Cr	Mo
C85187	0.20	0.48	0.008	0.003	3	0.03	0.06	0.02	0.05	0.0
	Al	Ca	Nb	٧	3	В	Ti	N	Sn	
	0.029	0.0017	0.000	0.001		0.0001	0.001	0.0080	0.003	
Tensile Si Tensile Si % Elonga N-Value N-Value R Hardness Test Secti Orientatio Test Meth	lange (HRBW) ion on od) a)	dius No. of cracks		Pass/ Fail		Ht date	2		
Mercury was size of 6 or file. This product in Above tests product in the elongatic Above test result in the elongatic Ab	not added durin ner according to is in compliance performed in acc sing at fracture on original gauge sults were performere conducted in at a 180 degree	gg production of to ASTM E112. with DFARS 25 cordance to ASTI method) or JIS 2 to length is 2 incharmed in accordance with the bend. Bend test duced, except in as been tested a	his material. The r 2.225, the Buy Am M standards E8 (y 2241, E18, E415, es for ASTM test i nce to EN 10204 * https://doi.org/10.000/ ts. ASTM t specimen is long full, without writte t a subcontractor's	material was p merican Act. ield strength of and E1019 and method and 1. 3.1 M E290, or JIS er than 6" and n approval of laboratory.	determinend are co	using a fully king of the second of the seco	, guided, two suppo	ice with a grain elongation of the company.	steve.sipple@	aboratory Laboratory

Figure D-5. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a2)

GREGORY HIGHWAY 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MACH P. O. BOX 703		PLY CO.				Test Report Ship Date: Customer P.O.: Shipped to:	8/17/2021 5058 MIDWEST MACH	HINERY & SUPP	LY CO.			
	MILFORD,NE,684	105					Project: GHP Order No:	5334AD					
HT#code	Heat#	C.	MN.	P.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
6271	AA2579	0.2	0.49	0.011	0.002	0.04	80659	56624	21.08	15	A	1	12GA 12FT 6IN WB FLEAT-SKT COMBO PANEL
6307	CA2389	0.19	0.49	0.012	0.002	. 0.03	78176	55035	18.74	1	A	1	12GA 25FT WB HS @ 3FT 1.5IN
6219	4114294	0.21	0.78	0.01	0.008	0.02	79297	57816	24.71	50	A	1	12GA 6FT 3IN HS @ 3FT 1.5IN WB

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated,
Nuts comply with ASTM A-583 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated,
All other galvanizing has occurred in the United States
All Calvanizing has occurred in the United States
All Sate used in the manufacture is of Domestic Origin, "Made and Melted in the United States"
All State used meets "Title 23CFR 635.410 - Buy America
All Suardrall and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270
All Bolts and Nuts are of Domestic Origin
All anterial fathorizated in accordance with Nebraska Department of "Transportation
All controlled oxidized/corrosion resistant Guardrall and terminal sections meet AASHTO All 606, Type 4.

Jeffy of Conoren

Figure D-6. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a3)

GREGORY HIGHWAY 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MACH P. O. BOX 703 MILFORD, NE, 684		PPLY CO.				Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	1/16/2023 1216221 MIDWEST MACH	HINERY & SUPP	LY CO.			
HT#Code	Heat#	c.	MN.	P.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
7869	CA6178	0.21	0.49	0.01	0.001	0.05	82981	62971	17.87	10	A	1	12GA 15FT 7.5IN HS @ 3FT 1 1/2IN WB
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	20	Α	1	12GA 12FT 6IN HS @ 3FT 1.5 IN WB
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	2	Α	1	12GA 12FT 6IN HS @ 3FT 1.5IN WB RX=12
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	2	A	1	12GA 12FT 6IN HS @ 3FT 1.5IN WB RX=15
7931	4133100	0.22	0.75	0.012	0.005	0.02	84092	65036	23.43	2	A	1	12GA 12FT 6IN HS @ 3FT 1.5IN WB RX=20
7945	4133093	0.2	0.73	0.01	0.008	0.01	77029	60177	26.93	10	A	1	12GA 12FT 6IN WB FLEAT-SKT COMBO PANEL
8021	4149562	0.2	0.75	0.013	0.008	0.01	76555	56332	25.33	110	A	1	12GA 25FT WB HS @ 3FT 1.5IN
7903	AA6765	0.2	0.47	0.013	0.002	0.04	89945	70774	16.17	95	Α	1	12GA 12FT 6IN HS @ 1FT 6.75IN WB
7866	EA3067	0.2	0.48	0.009	0.002	0.03	82614	60233	23.77	1	Α	1	12GA 6FT 3IN HS @ 3FT 1.5IN WB RX=12

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated,
Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated.
All other galvanized material conforms with ASTM-123 & ASTM-653
All Cadvanizing has occurred in the United States
All Sate values in the manufacture is of Domestic Origin, "Made and Melted in the United States"
All State used meets Title 23CFR 635.410 - Buy America
All Guardrail and Terminal Sections meets ASHTO M-180, All structural steel meets AASHTO M-183 & M270
All Botts and Nuts are of Domestic Origin
All material fabricated in accordance with Nebrasko Department of Transportation
All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

Felby & Gracien

Figure D-7. 12-gauge W-Beam Section, Test Nos. HBIB-6 through HBIB-10 (Item No. a7)

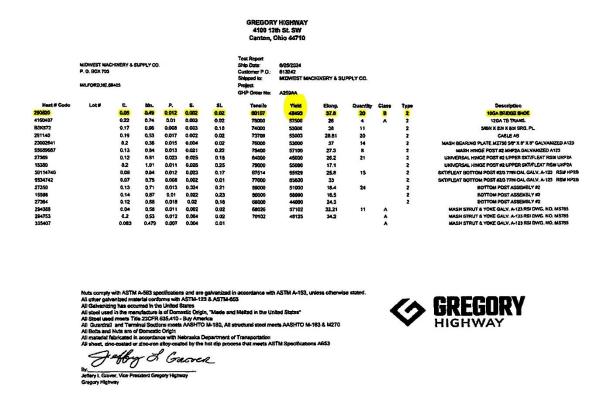


Figure D-8. W-Beam Terminal Connector, Test Nos. HBIB-6 through HBIB-10 (Item No. a8)

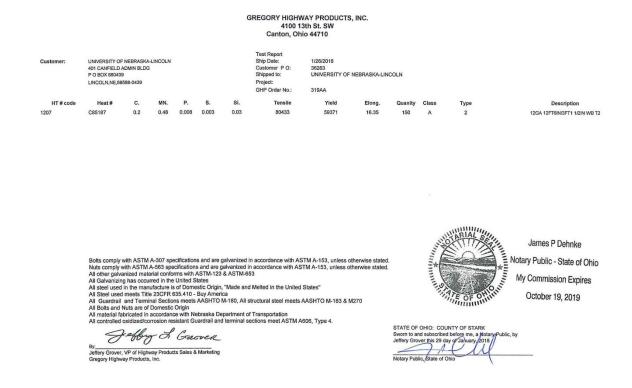


Figure D-9. 12-gauge Bent W-Beam, Test Nos. HBIB-6 through HBIB-10 (Item No. a9)

	COR'	LATIN	Phone	4831 U. Ghen	S. Hig	el Gallati hway 42 Wo 41045-9704 53 Fax: (859	est		**	
			METAI	LLURG	SICA	L TEST	REPORT			
Invoice T		ndustries n Street SW DH 44710		Ship T	41	regory Indus 00 13th Streanton, OH 4	eet SW		Date: 1. omer No: 1 mer P.O.: 39	
Mill Orde	r No: 21407	8-1	Custom	ner Refer	ence N	No: 39620		Load No:	736148	V-S
		elted and ma		tensile	, 0.109		de for Guard I nd 0.06% Cr r		min yield, 70	ksi min
Coil Num	nber(s): 146	5177				Oi	rdered Size:		n.) X 56.88 (li nm) X 1445 (i	
CHEMICA	AL ANALYS	IS (Weight	%)				Aller and			
Heat No	С	Mn	Р	S		Si	Cu	Ni	Cr	Mo
C85187	0.20	0.48	0.008	0.00	3	0.03	0.06	0.02	0.05	0.01
	Al	Ca	Nb	V		В	Ti	N	Sn	
	0.029	0.0017	0.000	0.00	1	0.0001	0.001	0.0080	0.003	
	Range s(HRBW) tion on hod	rS Diameter/radi of mandrel		Size of cracks			H+ Coa	e		
Hot rolled co	oils manufactured	through Nucor St	eel Gallatin do n	ot contain w	elds or w	reld repairs at the	e time of shipment	t (fca mill). tice with a grain		
size of 6 or f This product Above tests determined t The elongati Above test re Bend tests w bend method This report s This mecha	iner according to t is in compliance performed in acc using at fracture of ion original gauge esults were perfo were conducted in d at a 180 degree shall not be repro	ASTM E112. with DFARS 252 ordance to ASTM method) or JIS 22: e length is 2 inches med in accordance a accordance with bend. Bend test s duced, except in fi as been tested at a	standards E8 (y 241, E18, E415, s for ASTM test to EN 10204 : ISO 7438, ASTM specimen is long all, without writte a subcontractor's	nerican Act. ield strength and E1019 a method and 3.1 ME290, or Ji er than 6" ar n approval or laboratory.	determir and are c 1.97 inch S Z2248 and wider t f the und	ned using 0.2% correct as containes for JIS test nusing the press than 0.8"	offset method and ned in the records nethod. , guided, two supp tory managers.	elongation of the company. ort and a mandrel	steve.sipple@	aboratory Laboratory

Figure D-10. 12-gauge Bent W-Beam, Test Nos. HBIB-6 through HBIB-10 (Item No. a9)

HUSKER

201 S 1st Street, Lincoln, NE 68508 Phone: (402) 438-2147

Customer's Signature:

PLANT	TRUCK	DRIVE	R CUSTON	MER PROJE	CT TAX	PO NUMBER	R DA	TIME	TICKET
11	299	11024	6246	1	NTE		8/2	2/24 7:26 A	M 2050257
Customer UNL-MID\	VEST RC	DADSIDI	SAFETY	Delivery Address 4630 NW 36TI				structions * / NORTH OF TH AR HANGER	E NORTH
LOAD QUANTITY	CUMUL		ORDERED QUANTITY	PRODUCT CODE	PRODUCT	DESCRIPTION	UOM	UNIT PRICE	EXTENDED PRICE
7.00	7	.00	7.00	QL3S4504	LNK47B1S384	H000H	yd	\$184.50	\$1,291.50
7.00			0.00	FSCHG	FUEL SURCHA	ARGE	yd	\$2.70	\$18.90
	ed On Job r's Reques		SLUMP 4.00 in	Notes:			TICKET SALES T		\$1,310.40 \$0.00 \$1,310.40
		I-	,					US TOTAL TOTAL	\$1,310.40

(!)

CAUTION FRESH CONCRETE KEEP CHILDREN AWAY

Contains Portland cement. Freshly mixed cement, mortar, concrete or grout may cause skin injury. Avoid prolonged contact with skin. Always wear appropriate Personal Protective Equipment (PPE). In case of contact with eyes or skin, flush thoroughly with water. If irritation persists, seek medical attention promptly.

Terms & Conditions

This concrete is produced with the ASTM standard specifications for ready mix concrete. Strengths are based on a 3" slump. Drivers are not permitted to add water to the mix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician.

Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

ruck 39	Driver 11024	User user	Disp Tick 2050257	1457	70	Time Date 7:26 8/2/24
oad Size	Mix Code QL3S4504	Returned	Qty	Mix Age	Seq D	Load ID 147495
terial Descrip M1538 TYPE 1 7B GRAVE 'B 47-B RG WR POZZ 3 L MB-AE TER WATER	S38 611.0 I IL 1993 I OCK 867 I 22 N LOW 3.00 / 200 6.00 c	b 4277.0 lb b 14240 lb c 6125 lb C 128.31 oz oz # 42.00 oz	Batched 4260 0 lb 14220 lb 6080 lb 126 00 oz 42.00 oz 190.8 gl	% Var% Moisture Act -0.40% -0.14% 2.07% M -0.74% 0.93% A -1.80% 0.00% -0.59%	289 lb 56 lb	
ual	Num Batc	2000				Manual 7:26:37
ed 26163 lt mp: 4.00 in ual W/C Ratio: 0.48	Water in Truck:	0.0 gl Adjus	0.455 A Des st Water: 0.0 g d Cement: 4260	I / Load Trim Water:		1936.3 lb To Add: 0.0 lb CYDS

Figure D-11. Concrete Anchor Block, Test Nos. HBIB-6 through HBIB-10 (Item No. b1, k2)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: Midwest Machinery and Supply

BOL# N77508

Customer PO# 903231

Preservative: CCA - C 0.40 PCF Highway Construction Use

Part #	Physical Description	# Pieces	Charge #	Retention
GS6846PST	5.5x7.5-46" BCT	42	8872	.704
621134b	6x12-14" OCD Block	84	9554	.652
621135b	6x12-19" OCD Block	112	9554	.652
4075b	6x8-14" Block	126	8797	.682

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

7.L. D.

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Nick Sowl, General Counsel

10/20/2023 Date

Figure D-12. BCT Timber Post, Test Nos. HBIB-6 through HBIB-10 (Item No. c1)

Ref.B/L: Date: Customer: Atlas Tube Corp (Chicago) 1855 East 122nd Street Chicago, Illinois, USA 60633 MATERIAL TEST REPORT Sold to Shipped to Gregory Industries Inc. 4100 13th Street SW. CANTON OH 44710 USA Tru-Form Steel & Wire 1204 Gilkey Ave HARTFORD CITY IN 47348 USA H#821T08220 R#18-642 Black Paint 72" Long Foundation Tube Material: 8.0x6.0x188x27'0"0(2x2)SILDOMUS Material No: 80060188 Made in: USA Melted in: USA Sales order: 1105121 Purchase Order: 35569 Cust Material #: TRB3/16-8-6-27 Heat No S Al Cu Cb Ni Cr Mn Si Ti A616137 0.000 0.003 0.210 0.930 0.011 0.003 0.020 0.041 0.020 0.008 0.020 0.020 0.030 0.008 0.001 **Bundle No** Tensile Eln.2in M800650076 058210 Psi 073148 Psi 32 % ASTM A500-13 GRADE B&C Sales Or. Note: Material: 8.0x6.0x188x30'0"0(2x3)SILDOMUS Material No: 80060188 Made in: USA Melted in: USA Sales order: 1105121 Cust Material #: TRB3/16-8-6-30 Purchase Order: 35569 Heat No C Si Cb Cr 821T08220 0.810 0.006 0.041 0.002 0.005 0.020 0.002 0.000 0.007 0.013 0.006 0.160 Certification CE: 0.37 **Bundle No** PCs Yield Eln.2in Tensile ASTM A500-13 GRADE B&C M800650038 6 057275 Psi 070934 Psi 32 % Material Note: Material: 8.0x6.0x188x30'0"0(2x3)SILDOMUS Material No: 80060188 Made in: USA Melted in: USA Sales order: 1105121 Purchase Order: 35569 Cust Material #: TRB3/16-8-6-30 Heat No Si Cu Cb Mn 0.020 0.002 0.000 0.007 0.002 0.005 0.010 0.002 821T08220 0.220 0.810 0.013 0.006 0.006 0.041 0.160 CE: 0.37 **Bundle No** PCs Yield Tensile 057275 Psi 070934 Psi 32 % ASTM A500-13 GRADE B&C M800650039 Material Note: Jason Richard Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.
CE calculated using the AWS D1.1 method. **Steel Tube** Metals Service Center Institute Page: 1 Of 6

Figure D-13. 72-in. Long Foundation Tube, Test Nos. HBIB-6 through HBIB-10 (Item No. c2)

STREET OF PRODUCTS, INC. ## A CONTROL OF PRODUCTS, INC.

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated.
Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated.
All other galvanized material conforms with ASTM-123 & ASTM-653
All Galvanizing has occurred in the United States
All state used in the manufacture is of Domestic Origin, "Made and Melted in the United States"
All State used meets Title 2SCPR 535,140 - Buy America
All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270
All Bolts and Nuts are of Domestic Origin
All material fabricated in accordance with Nebraska Department of Transportation
All sheet, zinc-coated or zinc-iron alloy-coated by the hot dip process that meets ASTM Specifications A653

Jackson ASTM Specifications A653

Jackson ASTM Specifications A653

Figure D-14. 72-in. Long Foundation Tube, Test Nos. HBIB-6 through HBIB-10 (Item No. c2)

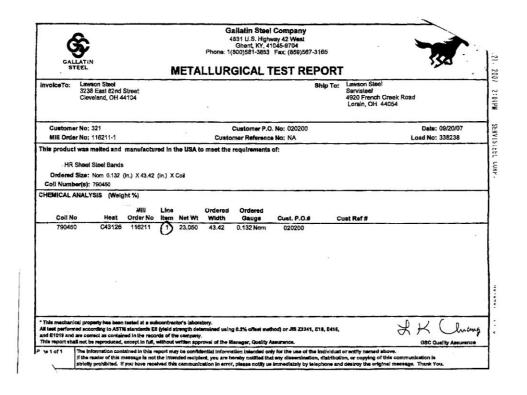


Figure D-15. Ground Strut Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No. c3)

24150 Oak Grove Lane Sedalia MO. 65302-0844 660-829-6721(P)

Date: Sold to: 10/12/22

Commercial group Lifting Prod - Detroit

12801 Universal Drive Taylor MI 48180-6844

Order:

301567

Certificate of Compliance

Report of Chemical Analysis and Physical Tests

	Control Contro	Tensile Streng	th		Torsion						
tem			Lbs. per	Wt.	Test	Heat					
No.	Description	Lbs.	sq. in.	Coat	8"	No.	С	Mn	Р	S	Si
001	.0400" Galvanized Wire			10							
	0.040	329	262,000	.477	99	20744340	.74	.70	.005	.008	.26
	0.040	336	267,000	.502	89	8000008669	.75	.66	.004	.009	.24
	0.040	347	276,000	.406	78	20752970	.72	.67	.008	.012	.22
002	.0460" Galvanized Wire 0.046	422	254,000	.407	63	20721940	.75	.64	.005	.010	.20
003	.0540" Galvanized Wire										
	0.054	631	276,000	.497	53	OT0023436	.82	.66	.011	.011	.26
	0.054	620	271,000	.405	48	20746670	.82	.51	.005	.005	.23
	0.054	668	292,000	.483	51	20734180	.81	.53	.006	800.	.23
004	.0610" Galvanized Wire										
	0.061	772	264,000	.462	42	10674470	.79	.82	.007	.010	.25
	0.061	804	275,000	.450	52	OT0024724	.81	.54	.006	.008	.23
				 Page 2 of 2							

The material covered by this certification was manufactured and tested in accordance with specifications as listed above. We certify that representative samples of the material have been tested and the results conform to the requirements outlined in these specifications.

The chemical, physical, or mechanical tests reported above are correct as contained in the records of the corporation.

Signed:

KESHA JOY LAGOY LAURENT Notary Public, Notary Seal State of Missouri Pettis County Commission # 20814032 My Commission Expires 09-01-2024

Figure D-16. BCT Anchor Cable Assembly/IWRC Wire Rope, Test Nos. HBIB-6 through HBIB-10 (Item No. c4)

						Certific	ed Anal	ysis									HIGH	ay Proc	OCS E
Trinity H	ighway P	roducts, LLC														,	1		7
550 East F	Robb Ave	3.				Order	Number: 1269	489 Pro	d I.n G	rp: 3-	Guard	rail (I	Dom)						
Lima, OH	45801 Ph	m:(419) 227-1296				Custo	mer PO: 3346									Asof:	11/7/10	5	
Customer:	MIDW	EST MACH.& SUPPLY O	CO.				Number: 9745	7	Ship	Date:									
	P. O. E	3OX 703					ument#: 1												
Project:	MILFO	RD, NE 68405					pped To: NE se State: NE												
				CL		Heat Code/ Heat	Yield	200									122		
Qty	Part # 701.A	ANCHOT BOX	Spec A-36	CL		K16101488	56,172	TS 75,460	Elg 25.0			0.017	0.028	0.200	O.280	0.001	0.140		ACW 4
	701A	,	A-36		4	35133	43,300	68,500	33.0	0.019	0.460	0,013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			149248	64,818	78,412						6,040					
																			- 20
20	738A	5TUBE SL.188X6X8 1/4 /PL	A-36		2 4	182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A		A-500		1	149248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500		- 0	A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	782G	5/8"X8"X8" BEAR PL/OF	A-36		1	X15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36		I	PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
	783A		A-36		1	DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 3/4X6'6/DBL	HW		-	19048													
7,000	3340G	5/8" OR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW		2	18971-B													
1,225	3540G	5/8"X14" GR BOLT A307	HW		2	19053-B													
																	3 .	of 5	

Figure D-17. Ground Anchor Bracket Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No. c5)



Figure D-18. Ground Anchor Bracket Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No. c5)

NUCCR NUCOR STEEL JACKSON, INC.

Mill Certification 7/27/2016

Sold To: O'NEAL STEEL INC ATTN ACCOUNTS PAYABLE PO BOX 98 BIRMINGHAM, AL 35202-0098 (205) 599-8000 Fax: (205) 599-8052

Ship To: O'NEAL STEEL INC 4530 MESSER-AIRPORT HWY BIRMINGHAM, AL 35222 (205) 599-8000 Fax: (205) 599-8052

Customer P.Q.	00771356	Sales Order	343125.6
Product Group	Merchant Bar Quality	Part Number	5350030024010W0
Grade	NUCOR MULTIGRADE	Lot#	JK1810148801
Size	1/2x3* Flat	Heat#	JK16101488
Product	1/2x3" Flat 20' NUCOR MULTIGRADE	B.L. Number	M1-429898
Description	NUÇOR MULTIGRADE	Load Number	M1-150903
Customer Spec		Customer Part#	00777557

I horeby certify that the material describes herein has been manufactured in accordance with the specifications and standards listed above and that it saliefies those requirements.

Roll Date: 4/5/2016 Melt Date: 3/30/2018 Qty Shipped LBS: 4,900 Qty Shipped Pcs: 48

Melt Date: 3/30/2016

Mn S Si Cu Ni Cr Mo Cb Sn 0.010% 0.017% 0.028% 0.20% 0.28% 0.09% 0.14% 0.020% 0:0280% 0.001% 0,16% CE4020 0.35% 0.39%

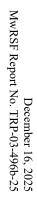
CE4020: C. E. CSA G4020, AASHTO M270 CEA529: A529 CARBON EQUIVALENT

Roll Date: 4/5/2016

Yield 1: 56,172psi Yield 2: 56,126psi

Tensile 1: 75,460psi Tensile 2: 76,500psi Elongation: 25% in 8"(% in 203.3mm) Elongation 25% in 8°(% in 203.3mm)

Specification Comments: NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTM A36/36M, ASTM A529/529M GR50 ASTM A572/572M GR50 ASTM


QA Approved SI# 777557

Christopher Smith Division Metallurgist

NBMG-10 January 1, 2012

Page 1 of 1

Figure D-19. Ground Anchor Bracket Assembly, Test Nos. HBIB-6 through HBIB-10 (Item No. c5)

CMC STEEL ALABAMA 101 S 50TH STREET **BIRMINGHAM AL 35212-3525**

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Quality Assurance Manager

1SERIES-BPS

HEAT NO.:1072318 SECTION: FLAT 5/8x8 20'0" A36/52955 GRADE: ASTM A36-19/A529-14 Gr 55 ROLL DATE: 04/13/2021

MELT DATE: 04/13/2021 Cert. No.: 83529295 / 072318B780 S Interstate Steel Corporation 0 L 3616 Howard County Airport Rd Big Spring TX

US 79720-0000 4322633725 0 4322674039

S Interstate Steel Corporation н I 3616 Howard County Airport Rd P Big Spring TX US 79720-0000 T 4322633725 4322674039

Delivery#: 83529295 BOL#: 74263959 CUST PO#: 16500 CUST P/N:

DLVRY LBS / HEAT: 9520.000 LB

DLVRY PCS / HEAT: 28 EA

Elongation test 1 Elongation Gage Lgth test 1 Yield to tensile ratio test1 Yield Strength test 2 Tensile Strength test 2 Elongation test 2 Elongation Gage Lgth test 2 Yield to tensile ratio test2	24% 8IN 0.74 56.6ksi 77.7ksi 24% 8IN 0.73	
Yield to tensile ratio test 1 Yield Strength test 2 Tensile Strength test 2 Elongation test 2 Elongation Gage Lgth test 2	0.74 56.6ksi 77.7ksi 24% 8IN	
Yield Strength test 2 Tensile Strength test 2 Elongation test 2 Elongation Gage Lgth test 2	56.6ksi 77.7ksi 24% 8IN	
Tensile Strength test 2 Elongation test 2 Elongation Gage Lgth test 2	77.7ksi 24% 8IN	
Elongation test 2 Elongation Gage Lgth test 2	24% 8IN	
Elongation Gage Lgth test 2	8IN	
Yield to tensile ratio test2	0.73	
		The Following is true of the material represented by this MTR:
		*Material is fully killed
		* 100% melted and rolled in the USA
		*EN10204:2004 3.1 compliant
		*Contains no weld repair
		*Contains no Mercury contamination
		*Manufactured in accordance with the latest version
		of the plant quality manual
		*Meets the "Buy America" requirements of 23 CFR635.410, 49 CFR 661
		*Warning: This product can expose you to chemicals which are
		known to the State of California to cause cancer, birth defects
		or other reproductive harm. For more information go

REMARKS: ALSO MEETS ASTM GRADE A36, A529-50, A529-55, A572-50, A572-55, A709-36, A709-50, AASHTO M270-36, M270-50, CSA G40.21-04 44W,50W, 55W ASME SA-36 2008A ADDEND A

Page 1 OF 1 07/14/2021 19:44:58

Figure D-20. Anchor Bearing Plate, Test Nos. HBIB-6 through HBIB-10 (Item No. c6)

Atlas Tube (Alabama), Inc. 171 Cleage Dr Birmingham; Alabama, USA 35217 Tel: Fax:

Ref.B/L: 80791452 Date: 11.10.2017 Customer: 179

MATERIAL TEST REPORT

Sold to

Steel & Pipe Supply Compan
PO Box 1688
MANHATTAN KS 66505
USA
H#712810 R#18-773 2 3/8" O.D. x 6" Long BCT Post Sleeve

Shipped to

Steel & Pipe Supply Compan 401 New Century Parkway NEW CENTURY KS 66031 USA

Material: 3.0	2.0x188	8x40'0"0(5)	κ4).		M	aterial No	o: 0300	2018840	000-B			Made in Melted i	i: USA in: USA		
Sales order:	122697	6			Pı	ırchase (Order: 4	5002966	556	Cust Ma	terial #:	663002	0018840		
Heat No	С	Mn	P	s	Si	Al	Cu	СЬ	Мо	Ni	Cr	V	Ti	В	N
B704212	0.200	0.450	0.010	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bundle No	PCs	Yield		nsile	Eln.:	2in			70.00	rtification			C	E: 0.2	3
40867002	20	064649 P	5 (5555	7652 Psi	24 %			1771		00-13 GR					
Material Note Sales Or.Note															
Material: 2.3	5×154×	42'0"0(34x	1).		М	aterial No	o: RO23	7515442	200			Made in	: USA		
Sales order:	122697	6			Pi	ırchase C	Order: 4	5002966	556	Cust Ma	terial #:				
Heat No	С	Mn	P	S	Si	ΑI	Cu	Cb	Мо	Ni	Cr	v	Ti	В	N
B712810	0.210	0.460	0.012	0.002	0.020	0.024	0.100	0.002	0.020	0.030	0.060	0.004	0.002	0.000	0.008
Bundle No	PCs	Yield	Ter	sile	Ein.	2in	Rb		Ce	rtification			С	E: 0.3	2
MC00006947	34	063688 P		3220 Psi	25 %	91			- STM A5	00-13 GR	ADE R&	c			
Material Note Sales Or.Note					20 %	Ξ.		~				*			
		42'0"0(34>	1).		M	aterial No	: R023	7515442	200		-, -,	Made in	ı: USA in: USA		
Material: 2.37	5x154x	42 U U(34x										Mairan	III. USA		
Material: 2.37		2000			Pt	rchase C	Order: 4	5002966	56	Cust Ma	terial #:	6420040	042		
Sales order:		2000	P	s	Pt Si	rchase C	Order: 4 Cu	5002966 Cb	556 Mo	Cust Ma Ni	terial #: Cr	6420040 V	042 Ti	В	N
	122697	'6 Mn	P 0.005	\$ 0.004				Cb					Ti	B	
Sales order: Heat No	122697 C	'6 Mn	0.005		Si 0.020 Eln.	AI 0.000	Cu	Cb	Mo 0.000	Ni	Cr	V	Ti 0.000		0.000

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Contract requirements.

Contract requirements.

Page : 3 Of 4

Metals Service Center Institute

Figure D-21. 6-in. Long BCT Post Sleeve, Test Nos. HBIB-6 through HBIB-10 (Item No. c7)

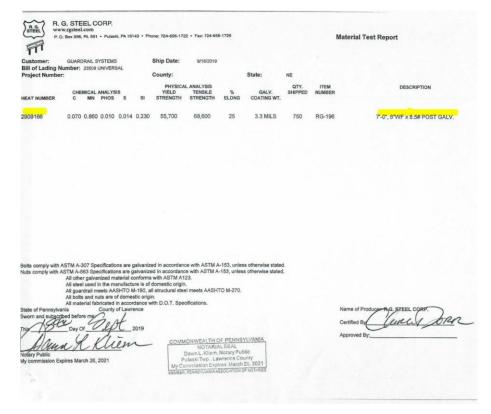


Figure D-22. 84-in. Long Steel Post, Test Nos. HBIB-6 through HBIB-10 (Item No. d1)

COR SIEEL 55 Hagan Aviger, SC 299 Lone: (843)	renue 150				CERIIFI		Structum and hot	cal section rolled to not been us	s produced a fully ki	by Nuco	r-Berkele fine gra	UFACTURED by are cast in practic	e.
Sold To:	RG SIEEL CORP PO BOX 356				Shi	P To: R.G	S. STEEL DIE 551				Customer	H.: 711 PD: 11894	
	PULASKI, PA	16143				PUL	ASKI, PA	16143					MOS: I
ASSET : SA- ASTM : ASS CSA : G40	IS: Tested in 1270-345M270-5 36 13 12-11(15:/A36- 21-44w/G40:21	0-15 19/A529-1 50WM	9-50/R5	7250181	1/87093	618/87095	018				R	6-19	6
scription rt #	Heat# Grade(s) Test/Heat JW	Yield/ Tensile Ratio	Yield (PSI) (MPa)	(PSI) (MPa)	Elong	XXXXXX CL C	Mn Mo Ti	Sn XXXXXX	S B XXXXXX	Si V N	NP Cr	XXXXXX	CE1 CE2 Pcm
X8.5 042' 00.00' 150X12.6 012.8016m	2909166 A992-11(15 ANSW	,81 ,82	55700 384 55800 385	68600 473 68400 472	25.20 29.10 84 Pa	.07 .04 =(s) 29,	.86 .01 .001 .001 988 lbs	.010 .0060 Customer	.014 .0001 PO: 11894	.23 .004 .0053	.12 .016	3.26 Inv#:	.23 .2762 .1290
X8.5 042' 00.00° 150X12.6 012.8016m	2909165 A992-11(15 ANSW	.81	55500 383 54700 377	68800 474 68200 470	28.50 30.00 42 Po	.07 .03 c(s) 14,	.84 .01 .001 994 lbs	.007 .005B	.021 .0002 PO: 11894	.22 .004 .0049	.11 .015	3.00 Inv#:	.23 .2701 .1293
2 Heat(S) for this MTH	R.											
ongation ba = 26.01Cu m = C+(Si/3	sed on 8* (20 +3.88%1+1.20c; 0)+(Mn/20)+(Ct)	32cm) ga +1.49Si+ 1/20)+(Ni	uge len 17.28P- /60)+(C	gth. 'No (7.29Cu)	Weld F	Repair' w	as pefor 33.39(Cu	med. 'All *Cu) test depa	mechanicating lab, wartments:	testing	g is per independ	formed by ent of the Cb)/5)+((N	the Quality
rrect. All	ify that the o test results a are in complis ed by the Puro	and opera	tions p	erformed al speci	by the	materia.		Metallurgi Quality Cor	04 / /				

Figure D-23. 84-in. Long Steel Post, Test Nos. HBIB-6 through HBIB-10 (Item No. d1)

P.O. BOX 358 GLASTONBURY, CT 06033

CERTIFICATE OF COMPLIANCE/ANALYSIS REPORT

SOLD TO:

MIDWEST MACHINERY & SUPPLY 974-238th Road

Milford, NE, USA

SHIP TO:

MIDWEST MACHINERY & SUPPLY 974 238TH ROAD MILFORD NE

INVOICE / S.O.: 0231526 / 0181901

CUSTOMER P.O.: 5092

REFERENCE: STOCK DATE SHIPPED: 9/28/2021

QTY:		ITEM NUMBER:	CC:	DESCR	RIPTION:						
	HEAT/LOT	TNO: YIELD:	TENSILE: %ELONG:	C:	Mn:	P:	S:	Si:	CI:	Type	ACW
200	55073776	T-POG060080606B	IB-B0600800	THRIE	POST W	06 x 008	3.5# x 06'0	6 F/RTE	WOOD 1	HRIE BLO	ЭС
250 (50) (150) (50)	55073783 55073780 55 <mark>073781</mark>	T-POG060080600G	IB-B0600800	THRIE	POST W	06 x 008	3.5# x 06'0	00 OVERL	AY NE H	DG HOLE	5@
400	58046969 D21569	PSG030050503-20	IBSB03005000 PL-B025-080240	POST	S03@05.7	′ x 05'0	3.0 3 HL 2	SD W/PL	.Т 3.5-3-3	SPGLV	
50	55069390	T-POG060080900	IB-B0600800	THRIE	POST W	06 x 008	3.5# x 09'0	0 2-SD 7	/ 7.625 Gl	_V	,
1	GALVOH	GALV CERT OH	GALV CERT OH	GALVA	ANIZING (ERTIF	ICATION (ЭН			

ALL STEEL USED IN MANUFACTURING IS MADE AND MELTED IN THE USA, INCLUDING HARDWARE FASTENERS, AND COMPLIES WITH THE BUY AMERICA ACT. ALL COATINGS PROCESSES ARE PERFORMED IN THE USA AND COMPLY WITH THE BUY AMERICA ACT. BOLTS COMPLY WITH ASTMA-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTMA-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 AND/OR F-844 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. ALL GUARDRAIL MEETS AASHTO M-180 AND ALL STRUCTURAL STEEL MEETS AASHTO M-270. ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTMA-123. ALL OTHER ITEMS COMPLY WITH AASTMA-123. ASTM A505, AND ASTMA-123, ASTMA A505, AND ASTMA-124. ASTMA-125 ASTMA-709, ASTMA-

HIGHWAY SAFETY CORPORATION

QUALITY ASSURANCE MANAGER

Figure D-24. 72-in. Long Steel Post, Test Nos. HBIB-6 through HBIB-10 (Item No. d2)

MONDO POLYMER TECHNOLOGIES INC.

Plastics From Today for Tomorrow...

P.O. BOX 250 27620 ST. RT. 7 NORTH RENO, OH 45773

Phone: 740-376-9396 Fax: 740-376-9960

SOLD TO

Midwest Roadside Safety 4630 NV 36th Street Lincoln, NE 68524

PACKING LIST

PAGE: 1

FOB RENO

TERMS NET30

SHIP METHOD FEDEXF

SHIP TO

Midwest Roadside Safety

4630 NW 36th Street Lincoln, NE 68524

ORDE	R NUMBER	ORDER DATE		CUSTOMER ID	PURCHASE ORDER	SHIP DATE
	34545	04/04/19		MIDWEST	HWTT	4/4/2019
LINE	ORDERED	SHIPPED	UOM	ITEM NUMBER	DESCRIP	TION
1 2 3	10.0000 4.0000 1.0000	10.0000 4.0000 1.0000	EACH	GB14SH2 MGS14SH FREIGHT-GUARDRAI	Composite Guardrial Block CO 1804/1000 Midwest Composite Block 1904/1000	14" for Steel Post w/hanger
THA	NK YOU FO	OR YOUR B	USINES	SS	AUTHORIZED	SIGNATURE

Figure D-25. Composite Recycled Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d4)

December 16, 2025 MwRSF Report No. TRP-03-496b-25

MONDO POLYMER TECHNOLOGIES INC.

Plastics From Today for Tomorrow...

P.O. BOX 250 27620 ST. RT. 7 NORTH RENO, OH 45773

Phone: 740-376-9396 Fax: 740-376-9960 (888) 607-4790

MATERIAL CERTIFICATE

SHIPMENT NUMBER: 34545
PURCHASE ORDER HWTT
SHIPMENT DATE: 4/4/2019

PAGE: 2

CONSIGNED TO

Midwest Roadside Safety 4630 NV 36th Street Lincoln, NE 68524 SHIP TO

Midwest Roadside Safety

4630 NW 36th Street Lincoln, NE 68524

ITEM NUMBER	DESCRIPTION	LOT#	SHIP VIA
MGS14SH	Midwest Composite Block 14" h x 12" d for Steel Post	1904/1000	FedEx Freight
ľ	National Control of Co	MGS14SH Midwest Composite Block 14" h x 12" d for	MGS14SH Midwest Composite Block 14" h x 12" d for 1904/1000

MADE IN USA

The composite guardrail blocks for the Midwest Guardrail System are manufactured by Mondo Polymer Technologies, Inc., and are of the same formulation, composition, and test properties as those which were MASH qualified and and eligible for reimbursement by the Federal Highway Administration under the Federal-aid highway program, Approval #HSST/B-39C.

All materials meet required specifications.

Approved by:	Missi Ellis	Date: _	4/4/2019
Print Name:	Maggie Ellis	Position:	General Manager

Figure D-26. Composite Recycled Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d4)

MONDO POLYMER TECHNOLOGIES INC.

Plastics From Today for Tomorrow...

P.O. BOX 250 27620 ST. RT. 7 NORTH RENO, OH 45773

Phone: 740-376-9396 Fax: 740-376-9960 (888) 607-4790

MATERIAL CERTIFICATE

SHIPMENT NUMBER: 34545
PURCHASE ORDER HWTT
SHIPMENT DATE: 4/4/2019

PAGE: 1

CONSIGNED TO

Midwest Roadside Safety 4630 NV 36th Street Lincoln, NE 68524

SHIP TO

Midwest Roadside Safety

4630 NW 36th Street Lincoln, NE 68524

CONSIGNED	ITEM NUMBER	DESCRIPTION	LOT#	SHIP VIA
10	GB14SH2	Composite Guardrial Block 14" for Steel Post w/hanger CO	1804/1000	FedEx Freight

MADE IN USA

The composite guardrail offset blocks for the Midwest Guardrail System (MGS), are manufactured by Mondo Polymer Technologies, Inc., and are of the same formulation, composition, and test properties as those which were MASH qualified and eligible for reimbursement by the Federal Highway Administration under the Federal-aid highway program, Approval No. HSST-1/B-278A.

All materials meet required specifications.

Approved by:	Magic Ellis	Date: _	4/4/2019
Print Name:	Maggie Ellis	Position:	General Manager

Figure D-27. Composite Recycled Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d4)

MATERIAL TEST REPORT

ORIGINAL

Date

M/C No. <u>MC0000075568</u> Date <u>04/04/2022</u>

BL No. Destination Supplier SH0000087697

STEEL & PIPE SUPPLY-JONESBURG
STEEL & PIPE SUPPLY CO., INC. - BILL TO

MARUICHI LEAVITT PIPE & TUBE, LLC

1717 W. 115TH ST. CHICAGO, IL. 60643

TEL:773-239-7700 FAX:773-239-1023

SPEC	No of PCS	1		Che	mical	Com	positi	on(L	adle	Analy	ysis)		Те	nsile Test		Hydrostatic Test	Bending Test	
SIZE	197000	Heat NO C Si Mh P S Cu Ni Cr Mho V Yield Tensile Blong Strength Str		Fittering	Remarks													
Customer PO No. / Customer Item No.	Wh(LBS)		100	100	100	1000	1000	1000	1000	1000	1000	1000	(PSI)	(PSI)	(%)	Result	Test	
ASTM A500/A500M-21A GRADE B ERW TUBING 6IN x 6IN x 0.313IN x 40FT HRB 4500526173/6560031340	12 11,204	A70164	20	4	68	10	2	30	10	50	7	5	60,173	77,067	27			SA0000226166 A500 Grade B/C
2 ASTM A500/A500M-21A GRADE B ERW TUBING 4IN x 4IN x 0.375IN x 40FT HRB 4500527208/ 6540037540	18 12,436	B62340	6	4	113	6	2	30	20	50	11	6	57,894	71,473	27			SA0000227459 A500 Grade B/C
3 ASTM A500/A500M-21A GRADE B ERW TUBING 4IN x 4IN x 0.375IN x 40FT HRB 4500527208/ 6540037540	9 6,218	B63642	6	25	131	12	2	20	10	70	17	4	71,480	81,129	25			SA0000227459 A500 Grade B/C
4 ASTM A500/A500M-21A GRADE B ERW TUBING 4IN x 4IN x 0.375IN x 40FT HRB 4500527208/ 6540037540	6 4,144	B63642	6	25	131	12	2	20	10	70	17	4	71,480	81,129	25			SA0000227459 A500 Grade B/C
5 ASTM A500/A500M-21A GRADE B ERW TUBING 8IN x 6IN x 0.250IN x 40FT HRB 4500527208 / 6680060025040	9 8,072	B64993	19	4	69	6	2	20	10	60	12	6	53,580	65,284	30			SA0000227459 A500 Grade B/C

Melted and Manufactured in the USA

This material has not come in direct contact with mercury during the manufacturing or testing processes. No Weld Repair. EN10204:2004 TYPE 3.1 Cert Remarks:

We hereby certify that the material described herein conforms fully to the said specification.

Maruichi Leavitt Pipe & Tube , LLC

F-824-101 - Rev. 0

Figure D-28. Steel Blockout, Test Nos. HBIB-6 through HBIB-10 (Item No. d5)

h - weekstell			_		_	
A CHILDS	-			FR		
gonim	CN	М			\blacksquare 0	
1 6						4 4

Certificate of Compliance

600 N County Line Rd Elmhurst IL 60126-2081 630-600-3600 chi.sales@mcmaster.com University of Nebraska Midwest Roadside Safety Facility M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802 Attention: Shaun M Tighe Midwest Roadside Safety Facility Purchase Order E000357170 Order Placed By Shaun M Tighe McMaster-Carr Number 2098331-01

Page 1 of 1

Line Product Ordered Shipped

97812A109 Steel Double-Headed Nail Size 16D, 3" Length, .16" Shank Diameter, 200 Pieces/Pack, Packs of 5

5 Packs

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sarah Weinberg Compliance Manager

Figure D-29. 16D Double Head Nail, Test Nos. HBIB-6 through HBIB-10 (Item No. d6)

We certify that the reinforcing steel is represented by the attached mill certification analysis of laboratory numbers listed.

SIZE	POUNDS	HEAT OR LAB
11		
10		
9		
8		
7		
6	10.832	7034726
5	25,827	9700023976
4	10,963	9700027794
3		
TOTAL	47,622	

1645 Red Rock Road, St. Paul, MN 55119 Phone: (651) 735-9660 Fax: (651) 735-9664

250 N. Greenwood St., Marion, OH 43302 Phone: (740) 382-5000 Fax: (740) 383-1167

Figure D-30. Rebar, Test Nos. HBIB-6 through HBIB-10 (Item No. e1, e2, e3, e4, e5, e6, e7, e8)

11/27/2023

SUMMARY SHEET JOB/ORDER NUMBER 53527 CONCRETE INDUSTRIES. INC. **CUSTOMER NAME** CONTRACTOR TICKET/RELEASE # (S) 19 DATE SIZE HEAT LOT 11-15-23C 230388 4 9700027794 06-19-23A 5 9700023976 230632 07-10-23C 6 7034726 230632

Figure D-31. Rebar, Test Nos. HBIB-6 through HBIB-10 (Item No. e1, e2, e3, e4, e5, e6, e7, e8)

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514

CUSTOMER NAME:

BENNETT BOLT WORKS

CUSTOMER PO:

6022816

SHIPPER #: 074952

DATE SHIPPED: 12/5/2022

LOT#:

34899

SPECIFICATION:

ASTM A307, GRADE A MILD CARBON STEEL BOLTS

TENSILE: S

60,000 psi*min

RESULTS:

71,700 71,700

HARDNESS:

100 max

66.00 66.10

*Pounds Per Square Inch.

COATING: ASTM SPECI

ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE

UNIVERSAL GALVANIZING:

34899

CHEMICAL COMPOSITION

GRADE	HEAT#	C ·	Mn	P.	S	Si
1010	1000217087	.11	.46	.007	.016	.17
	**************************************		Marie Ma			

QUANTITY AND DESCRIPTION:

4.950

PCS 5/8" X 10" GUARD RAIL BOLT

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

8th DAY OF DECEMBEL

, 20, 23

ADALLAULA SOLOWA APPROVED SIGNATORY

DATE

Official Seal Merry F Shane Notary Public State of Illinois My Commission Expires 10/3/2026

Figure D-32. 10-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f1)

Mill Certification

07/29/2022

MTR#:1080502-2 Lot #:100021708720 2911 E NUCOR ROAD PO BOX 309 NORFOLK, NE 68701 US 402 644-0200 Fax: 402 644-0329

KING STEEL CORP

5225 E COOK RD

GRAND BLANC, MI 48439 US

KING STEEL - CUSTOMER PICK UP

REFER TO DISPATCH

NORFOLK, NE 68701 US

Customer PO	041552-MS-T/25 N1	Sales Order #	10043412 - 3.1
Product Group	Wire Rod - Industrial Quality	Product #	1045333
Grade	1010M1	Lot #	100021708720
Size	0.5938"	Heat #	1000217087
BOL#	BOL-1195416	Load #	1080502
Description	Wire Rod - Industrial Quality Round 0.5938" (19/32") 1010M1 COIL 4300 lbs	Customer Part #	0.593 1010 IQ HR RD ROD
Production Date	07/07/2022	Qty Shipped LBS	29310
Product Country Of Origin	United States	Qty Shipped EA	7
Original Item Description		Original Item Number	

Welt Co	untry of Origin	1: United 8	States					*	N	felting Da	te: 06/30/2	2022	
	C (%)	Mn (%)	P (%)	S (%)	Sì (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	Ti (%)	V (%)	B (%)	
	0.11	0.46	0.007	0.016	0.17	0.09	0.12	0.04	0.24	0.000	0.002	0.0001	
	Nb (%)	Sn (%)	AI (%)	Pb (%)	Ca (%)								
	0.001	0.009	0.002	0.000	0.0010								

Reduction Ratio 158.19:1

Tensile testing

Elongation in Yield (PSI) Tensile (PSI) 23.0 (1) 42500 62200

Comments: EN 10204 3.1

All manufacturing processes of the steel materials in this product, including melting, have been performed in the United States. Finished product is not rolled in the United States.

All products produced are weld free.

Mercury, in any form, has not been used in the production or testing of this material.

Test conform to ASTM A29-20, ASTM E415 and ASTM E1019-resulphurized grades or applicable customer requirements. All material melted at Nucor Steel Nebraska is produced in an Electric Arc Furnace.

Strand Cast
Tests included in ISO 17025 scope: Chemistry, Tensile, Brineil Hardness, Rockwell Hardness, Inclusion, and Grain Size.

Exporting Country-USA Sales@nucorne.com

NBMG-10 January 1, 2012

Jim Hill, Division Metallurgist

Page 1 of 1

Figure D-33. 10-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f1)

FOR	MIDWEST ROADSIDE SAFETY FACIL
PB INVOICE	157410
CUSTOMER PO	Emailed
EST. SHIP DATE	11/4/2022

Certification Department Quality Assurance

Certificate of Conformance

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

5/8" X 5" DOM. GALV. F3125-A325 HEAVY HEX STRUCTURAL BOLT WITH 4" THD.

HEAT	3093	3332	BASE STEEL	4140AR)	DIAMETER	5/8		SOUR	CO!	MMERC	CIALM	ETALS C	0
lot#2	20511	!		200										
С		MN	P	S	SI	NI	a	t	MO		CU	PB	٧	CB N
0.4	00	0.780	0.012	0.022	0.230	0.130	0.8	30	0.19	92 (0.270	-	0.023	- -
	П	N	HR		PROOF	YIELD	SLE	NG	RA	ELONG	CH1	CH	2 CH3	CHV
	30,38	0 LBF	285 HE	BN	19,200	-		-	-	=	-	-	-	-

Coatings

• ITEMS HOT-DIP GALVANIZED PER ASTM F2329

Other

. ALL ITEMS MELTED & MANUFACTURED IN THE USA

Figure D-34. 5-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f2)

CMC STEEL TEXAS CERTIFIED MILL TEST REPORT are accurate and conform to the reported grade specification 1 STEEL MILL DRIVE For additional copies call SEGUIN TX 78155-7510 830-372-8771 Double HEAT NO.:3093332 Delivery#: 83107020 Portland Bolt & Mfg CPU Seguin SECTION: ROUND 5/8 x 20'0" 4140 BOL#: 1934806 GRADE: AISI 4140 3441 NW Guam St 1 Steel Mill Dr CUST PO#: 46177 ROLL DATE: 12/22/2019 D Portland OR Seguin TX US 78155-7510 CUST P/N: MELT DATE: 12/12/2019 US 97210-1613 DLVRY LBS / HEAT: 3671.000 LB Cert. No.: 83107020 / 093332A018 5032275488 9999999999 DLVRY PCS / HEAT: 176 EA 5032274634 Prod LBS/HEAT: 85168 LB Characteristic Characteristic Value Characteristic Value 0.40% Macro Core Rating 0.78% Reduction Ratio 127 0.012% 0.022% 0.23% 0.27% 0.83% 0.13% 0.192% Ni The Following is true of the material represented by this MTR: Mo *Material is fully killed 0.023% 0.001% *100% melted and rolled in the USA Cb Sn Al EN10204:2004 3.1 compliant 0.008% *Contains no weld repair *Contains no Mercury contamination 0.001% Ideal Diameter Manufactured in accordance with the latest version BHN @ Surface test 1 302BHN of the plant quality manual *Meets the "Buy America" requirements of 23 CFR635.410, 49 CFR 661 Grain Size Macro Etch Method ASTM E381 Warning: This product can expose you to chemicals which known to the State of California to cause concer, birth defects Macro Surface Rating or other reproductive harm. For more information go Macro Random Rating GRADE 4140 PER ASTM SPECIFICATION A29 REMARKS : ROUND STEEL BAR ALLOYED GRADE HOT ROLLED

Figure D-35. 5-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f2)

NELIN2067 Cust. No. HBiB Cust. P.O. Job No.

Sold To UNL TRANSPORTATION/Midwest Roadside Safe 1931 NORTH ANTELOPE VALLEY PKWY LINCOLN, NE 68588 402-472-7937; 402-472-8660(Fax)

Fastenal Company P.O Box 1286 WINONA, MN 55987-1286

The store serving you is 3201 N. 23rd Street STE 1

LINCOLN, NE 68521 Phone #: (402)476-7900 Fax#: 402/476-7958

Invoice

Reference

Page

NELIN435542

Discount Due Date: 25/40-1/22/2023 Final Due Date:NET30 2/11/2023

Contract No:

2018.000208 Ship To

Date

t/13/23

UNL TRANSPORTATION/Midwest Roadside Safe 3201 N. 23rd Street STE 1. LINCOLN, NE 68521 4024729841; 402-472-0071(Fax)

This Order and Document are subject to the "Terms of Purchase" posted on www.fastenal.com.

	Line No.	Quantity Ordered	Quantity Shipped	Quantity Backorder	Description.	Control No.	Part No.	Price / Hundred	Amount	
-	-1	100	100	0	5/8-11x2 A307A Galv	200233148	1191921	187.4800	187.481	E
	2	32	32	0	HCS 7/8-9 x 2 P5	210270562	12411	481.1700	153.971	E

Visa Account # XXXXXXXXXXXX6926 Exp XX/XX

Cardmember acknowledges receipt of goods or services in the amount of the total shown hereon and agrees to perform the obligations set forth by the cardmember's agreement with the issuer.

Card Member Signature

Number of Parcels: Received By

Comments
Contact; WEBORD CONTRACT:2018.000208

Tax Exemption Exempt NΕ

Subtotal Shipping & Handling State Tax County Tax City Tax

TOTAL USD

341.45 0.000.00 0.00 0.00 341.45

If you re-package or re-sell this product, you are required to maintain integrity of Country of Origin to the consumer of this product.

Reasonable collection and attorneys fees will be assessed to all accounts placed for collection No materials accepted for return without our permission

X indicates part is a hazardous material

* indicates part was sold at a promotional or special discount price

This is your invoice.

All discrepancies must be reported within 10 days.

0

Thank You!

Figure D-36. 2-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-8 (Item No. f3)

HBIB

Certificate of Compliance

Sold To: UNL TRANSPORTATION/Midwest Roadside Safe	Purchase Order: Job:	HBIB
	Invoice Date:	01/13/2023
THIS IS TO CERTIFY THAT WE HAVE SUI THESE PARTS WERE PURCHASED		
100 PCS 5/8"-11 x 2" ASTM A307 Grade A Hot Dipped Galvanized AND UNDER PART NUMBER 1191921	Hex Bolt SUPPLIED UNDE	R OUR TRACE NUMBER 200233148
32 PCS 7/8"-9 x 2" Grade 5 Plain Finish Hex Cap Screw SUPPLIED NUMBER 12411	O UNDER OUR TRACE NUM	MBER 210270562 AND UNDER PART
•		
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revision	to avoid using obsolete copies.
Kom Sohull Fastenal Account Representative Signature	This document was printed o	on 01/13/2023 and was current at that time.
Ross Schall Printed Name 1/13/2023 Date	Fastenal Store Location/Address: 3201 N. 23rd Street STE 1 LINCOLN, NE 68521 USA Phone: (402)476-7900 Fax: 402/476-7958 Email: NELIN@stores.fastenal.com	

Figure D-37. 2-in. Long Guardrail Bolt, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 (Item No. f3)

248,810

12648

4740 Manufacturing Avenue Cleveland, OH 44135 USA Tel 216.881.3913 Fax 216.881.3918 www.autoboltusa.com

Certificate of Conformance Issued to:

Customer PO#: 6022666 Report #: 211269 Date of Testing: 2/8/2023

Lot #: 48766DL-1 Bennett Bolt Works Lot Quantity: 12 Elbridge St Shipper #: PO Box 922 Jordan, NY 13080

Customer Part#: 62C125BSP3H Auto Bolt Part#: GARD7125

GARD 5/8-11x1-1/4, ASTM 307A, Hot dip galvanized, Head -ABN/307A/USA/Release ID,

Description:

Mechanical & Material

per ASTM A 307 Requirements:

Finish Specification: Hot Dip Galvanized per ASTM A 153/F2329 or ASTM A 123

1015-US 20841080 Material Grade: Heat Number: *Cert Attached

Test results using sampling plan ASME / ASTM B18.18.2M *Core Hardness: 84.5 84.6 84.0 84.1 84.5 69-100 HRB Tensile Testing Spec: Method: Axial 85,918 86,329 86,004 85,831 83,382 60,000 PSI Min Visual Inspection: 100pcs. were inspected for surface discontinuities and found within permissible limits per the above-mentioned specification. * Denotes tests sub-contracted to an outside accredited laboratory or results provided by vendor.

The Auto Bolt Company certifies the product listed above was produced in conformance with the contract requirements, drawing specifications, and any other applicable standards.

Certified by: Jacob Manning

Quality Manager: Assigned Signatory:

THE AUTO BOLT COMPANY IS AN ISO 9001:2015 & IATF 16949:2016 CERTIFIED COMPANY ISO CERT# 6122/ IATF# 0385461 THIS TEST REPORT RELATES ONLY TO SAMPLES TESTED AND IS THE CONFIDENTIAL PROPERTY OF OUR CUSTOMER. ANY REPRODUCTION OR DISTRIBUTION, IN WHOLE OR IN PART, WITHOUT OUR WRITTEN PERMISSION, IS STRICTLY PROHIBITED. TO THE BEST OF OUR KNOWLEDGE, THE PARTS SUPPLIED ARE REACH, RoHS and CONFLICT MINERAL FREE COMPLIANT

THIS PRODUCT MANUFACTURED IN THE UNITED STATES OF AMERICA.

FORM#F824-1 REV. DATE 3/18/22 REV. L

Figure D-38. 14-in. Long Guardrail Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f4)

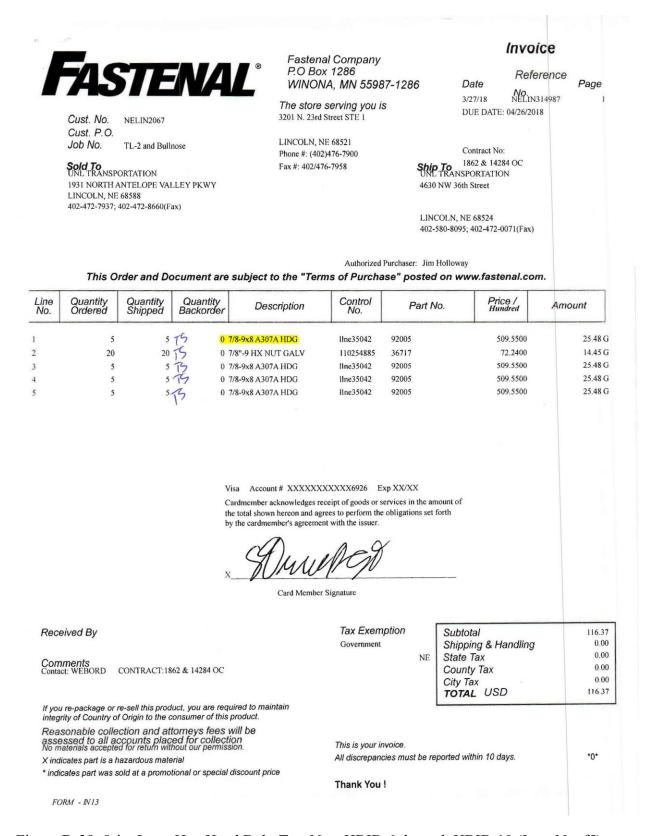


Figure D-39. 8-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f5)

NUCOR'

Mill Certification

08/08/2022

MTR#:1107231-1 Lot #:100021761420 2911 E NUCOR ROAD PO BOX 309 NORFOLK, NE 68701 US 402 644-0200 Fax: 402 644-0329

RM036299

Sold To: NUCOR FASTENER INDIANA

PO BOX 6100

SAINT JOE, IN 46785 US

Ship To: NUCOR FASTENER INDIANA

6730 CR 60

SAINT JOE, IN 46785 US

Customer PO	222720	Sales Order#	10044331 - 8.2
Product Group	Hot Roll - Engineered Bar	Product #	3099676
Grade	1037ML	Lot#	100021761420
Size	0.8906"	Heat#	1000217614
BOL#	BOL-1202266	Load #	1107231
Description	Hot Roll - Engineered Bar Round 0.8906" (57/84") 1037ML COIL 5200 lbs	Customer Part #	005014
Production Date	08/06/2022	Qty Shipped LBS	202385
Product Country Of Origin	United States	Qty Shipped EA	39
Original Item Description		Original Item Number	

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those requirements

	,											-	
Melt Cou	intry of Origin	n : United	States		Melting Date: 08/01/2022								
	C (%)	Mn (%)	P (%)	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	Ti (%)	V (%)	B (%)	
	0.38	0.78	0.012	0.014	0.24	0.08	0.33	0.04	0.10	0.001	0.003	0.0002	
	Nb (%)	Sn (%)	AI (%)	Pb (%)	Ca (%)								
	0.003	0.007	0.002	0.000	0.0000								

Cu + Ni + Mo (%): 0.23

Reduction Ratio 70.14:1

Comments:

Coarse Grain Practice Sellenium, Tellurium, Lead, Bismuth or Boron were not intentionally added to this heat.

All manufacturing processes of the steel materials in this product, including melting, have been performed in the United States. Finished product is hot rolled in the United States.

All products produced are weld free.

Mercury, in any form, has not been used in the production or testing of this material.

Test conform to ASTM A29-20, ASTM E415 and ASTM E1019-resulphurized grades or applicable customer requirements.

All material melted at Nucor Steel Nebraska is produced in an Electric Arc Furnace.

Tests included in ISO 17025 scope: Chemistry, Tensile, Brinell Hardness, Rockwell Hardness, Inclusion, and Grain Size.

Exporting Country-USA

Sales@nucome.com

Amilia0

Jim Hill, Division Metallurgist

Page 1 of 1

NBMG-10 January 1, 2012

chem check SNP 8/9/22

Figure D-40. 2-in. Long Hex Head Bolt, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 (Item No. f6)

Certificate of Compliance

Birmingham Fastener Manufacturing PO Box 10323 Birmingham, AL 35202 (205) 595-3512

Customer	Midwest M	achinery & Supply	_	Date Shipp	ed _	11/28	/2018
Customer Ord	er Number	3664		BFM Order	Number _	1553	3751
		Ite	m Descrip	otion			
Description		5/8"-11 x	10" Hex Bolt			Qty	298
Lot#	81342	Specification	on ASTM A3	07-14 Gr A	Finish _	ASTM	F2329
		Raw I	Material A	nalysis			
Heat#	JK	18104124	_				
		rt% Heat Analysis)	By Material S	Supplier			
С	Mn	P S	Si	Cu	Ni	Cr	Mo
0.18	1.19	0.012 0.034	0.20	0.29	0.13	0.11	0.04
		Mech	anical Pro	perties			
Sample # 1 2 3 4 5	Hardness 93 HRBW		Strength (lbs 22,049)	Tensile Str 99,4)
customer ord	er. The samp	the most recent ar les tested conform actured in the U.S.A	to the ASTM s			stated	
Authorized	/	12 ,					
Signature:	C	Doth.		Date:	11/29/	2018	
		ian Hughes					
	Qual	ity Assurance					

Figure D-41. 10-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f7)

LOAD

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

Trip: R4305284

Melted i	n USA N	lanufactu	red in US	A								
							35					
							Cust P.O.					66978
						Custo	mer Part #					351470
						Charter S	ales Order			- NBI		70116651
							Heat #					20841080
							Ship Lot #					2236544
						2800	Grade			1015 X	AK FG RI	IQ 5/8 RNDCOIL
		teel Co -	Romulus		-		Process					HR
	1550 N. 2	25th Ave. Park,IL-60	160							malastrone (11-)		
	Mellose	raik,iL-00	3100				Finish Size					5/8
							Ship date					21-NOV-22
I hereby ce	ertify that the	e material de	escribed her	ein has bee	n manufact	ured in acco	rdance with th	e specific	ations and st	andards list	ed below a	nd that it satisfies
these requ	irements. T	he recording	of false, fict	itious and f			entries on thi		nt may be pu	inishable as	a felony ur	nder federal statute.
Lab Code: CHEM %Wt	125544	C .15	MN .32	P .008	S .004	SI .070	NI OD	CR	MO .01	CU	SN .003	V .001
/6 44 1		AL .047	.32 N .0070	.006 B .0001	.004 TI .001	.070 CA .0008	.03 NB .001	.03	.01	.05	.003	.001
	CAT	.047 DI (in)=.20	.0070	.0001	.001	.0008	.001					
		-1 (,-120										
					Test res	ults of Rolli	ng Lot # 22365	544				
							-					
REDU	UCTION RA	TIO=160:1										
Specificati	ione:	Manufa	estured per	Charles Ct.	and Overliter	Manual Day	Date 05/12/					
ореспісац	ions.	Charte	r Steel certi	fies this pr	oduct is in	distinguish	able from bac	kground			ring proces	ss radiation
		Meets o	customer s	pecification	ns with any	applicable	adiation with Charter Stee	l exception	ns for the f	ollowing cu		
Additional	Comments	: Steel is	Vacuum De	t = MATERI gassed	IAL SPECIF	ICATION - C	HQ PRODUCT	S	Revision = 4	Dated =	06-MAR-2	0
				1								
Melt Source	De:							This MTF	R supersedes	all previous	sly dated M	TRs for this order
Charter St	eel								•	10		
	Heights, Ol	-LUSA				(m) x	<u></u>			>-6-	ii.	
Jayanoya	, loights, Oi	1, 00A						Doi	uglas Jones	Division Mg	r. of Quality	Assurance
									jone	sdo@charte	ersteel.com	

Printed Date: 11/21/2022

Figure D-42. 1½-in. Long Hex Head Bolt, Test Nos. HBIB-6 through HBIB-10 (Item No. f8)

Customer Name

Customer PO#

Shipper No

UNL-MWRSF

HBIB

2551238

4132970

Heat Number

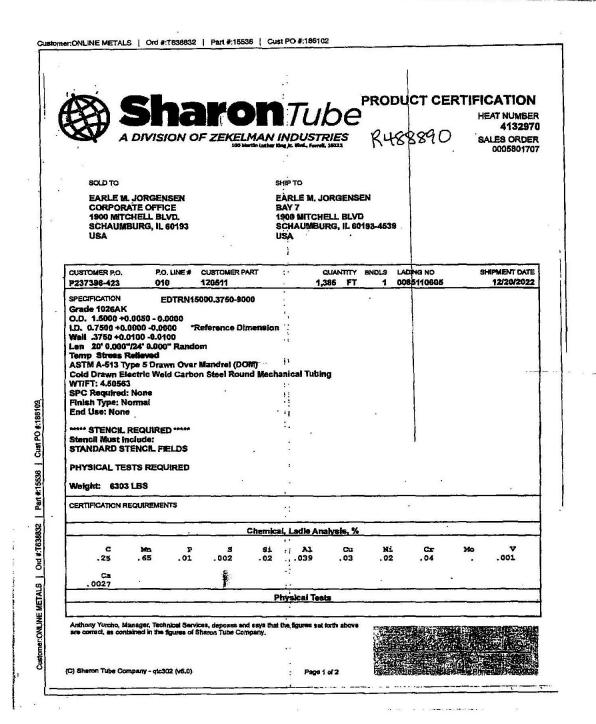


Figure D-43. ³/₄-in. Diameter, Unthreaded Spacer Sleeve, Test Nos. HBIB-6 through HBIB-10 (Item No. f9)

Customer Name

Customer PO#

Shipper No

Heat Number

UNL-MWRSF

HBIB

2551238

4132970

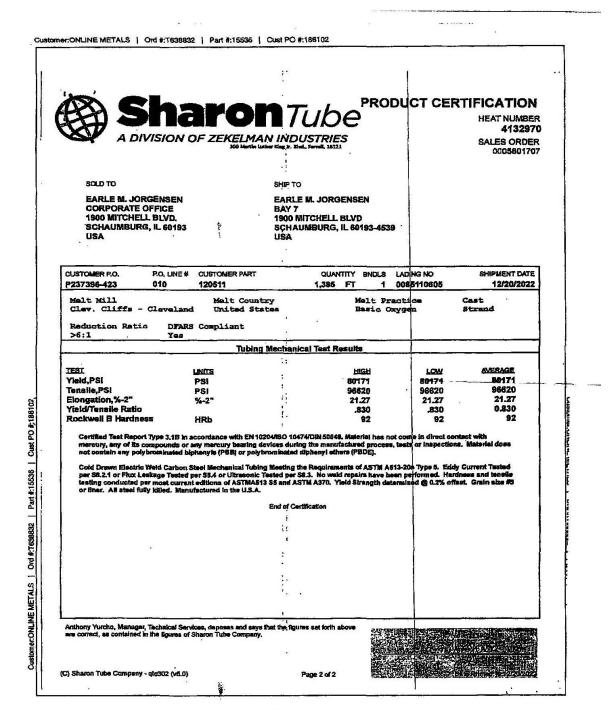


Figure D-44. ¾-in. Diameter, Unthreaded Spacer Sleeve, Test Nos. HBIB-6 through HBIB-10 (Item No. f9)

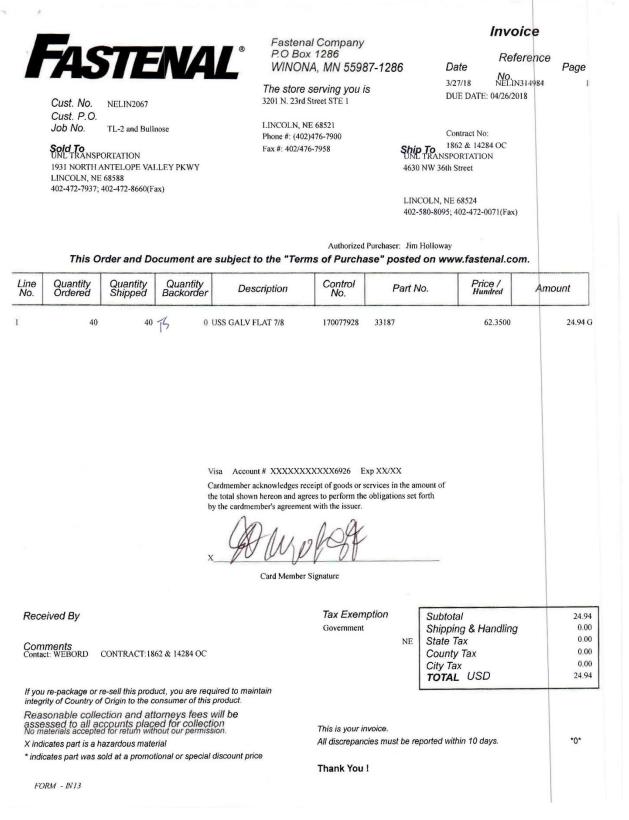


Figure D-45. 7/8-in. Dia. Plain Round Washer, Test Nos. HBIB-6 through HBIB-10 (Item No. g1)

Certificate of Compliance

Sold To: UNL TRANSPORTATION/Midwest Roadside Safe	Purchase Order: Job: Invoice Date:	70Acct. Pick up 05/24/2024	
THIS IS TO CERTIFY THAT WE HAT THESE PARTS WERE PURCH			
250 PCS 5/8" x 1.750" OD Low Carbon Hot Dipped Galvan OUR TRACE NUMBER 210307244 AND UNDER PART		urpose Flat Washer SUPPLIED U	NDER
1 PCS 3/4" Blackstone[REG] Nylon Tube Brush SUPPLIED 0838687	UNDER OUR TRACE NUMB	ER 130852 AND UNDER PART	NUMBER
			Charles and the Charles and th
		ä	
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current rev	vision to avoid using obsolete copi	es.
Fastenal Account Representative Signature	This document was prin	ted on 05/24/2024 and was curren	t at that time.
		e i i	
SAM Rice Printed Name	Fastenal Store Location/Add	dress:	
1 1	Unit 1 LINCOLN, NE 68521 USA Phone: (402)476-7900		

Page 1 of 1

Email: NELIN@stores.fastenal.com

Figure D-46. 5%-in. Dia. Plain Round Washer, Test Nos. HBIB-6 through HBIB-10 (Item No. g2)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD.

ADDRESS: NO.8 GEM-YEAR

ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER: FASTENAL COMPANY PURCHASING

PO. NUMBER: 210167591

COMMODITY: FINISHED HEX NUT GR-A

7/8-9 NC O/T 0.56MM SIZE:

LOT NO: 1N18BC001 SHIP QUANTITY: 2,250 PCS LOT QUANTITY 3,910 PCS

HEADMARKS:

MINOR DIAMETER

MANUFACTURE DATE: 2018/11/05 COUNTRY OF ORIGIN: CHINA Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567

DATE: 2019/04/23

PACKING NO: GEM181128011

INVOICE NO: GEM/FNL-181212ED-1

PART NO: 36717 SAMPLING PLAN:

ASME B18.18-2017(Category.2)/ASTM F1470-2018

HEAT NO: 18108472-3 MATERIAL: X1008A

FINISH: HOT DIP GALVANIZED PER ASTM A153-

PASSED

SAMPLED BY: GDAN ITAN

2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0300	0.0700	0.2700	0.0080	0.0050	0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

		SAMPLED BY: YUQIAN				
INSPECTIONS ITEM	SAMPLE	SPECIF	IED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	4PCS		1.4470-1.5160 inch	1.4730-1.4770 inch	4	0
FIM	15 PCS	ASME B18.2.2-2015	Max. 0.0250 inch	0.0010-0.0050 inch	15	0
THICKNESS	4PCS	(0.7240-0.7760 inch	0.7280-0.7480 inch	4	0
WIDTH ACROSS FLATS	4PCS	1	1.2690-1.3120 inch	1.2840-1.2990 inch	4	0
SURFACE DISCONTINUITIES	22PCS		ASTM F812-2012	PASSED	22	0
THREAD	15PCS	GAG	GING SYSTEM 21	PASSED	15	0

15 PCS MECHANICAL PROPERTIES: ACCORDING TO ASTM A563-2015

					ODAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REP	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2014	[[116-302 HRB	81-82 HRB	13	O
PROOF LOAD	3 PCS	ASTM F606-2014	: :	Min. 90 KSI	OK	3	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998	1	>=53	70.22-75.66	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

0.7890-0.7970 inch

Figure D-47. 1-in. Dia. Plain Round Washer, Test Nos. HBIB-6, HBIB-7, HBIB-8, and HBIB-10 (Item No. g3)

Certificate of Compliance

Sold To: UNL TRANSPORTATION/Midwest Roadside Safe	Purchase Order: Job:	нвів
	Invoice Date:	01/13/2023
THIS IS TO CERTIFY THAT WE HAVE SU THESE PARTS WERE PURCHASED		
40 PCS 5/8"-11 x 1-1/2" ASTM A307 Grade A Hot Dipped Galvar AND UNDER PART NUMBER 1191919	nized Hex Bolt SUPPLIED	UNDER OUR TRACE NUMBER 120383161
6 PCS 5/8"-11 A-563 Grade DH Hot Dip Galvanized Heavy Hex 1 UNDER PART NUMBER 36755	Nut SUPPLIED UNDER OU	JR TRACE NUMBER 210280003 AND
		1
s.		=
×		
	8	
		*
i i		
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revi	ision to avoid using obsolete copies.
Ann Shall Fastenal Account Representative Signature	This document was print	ed on 01/13/2023 and was current at that time.
Printed Name 1/13/2023	Fastenal Store Location/Add 3201 N. 23rd Street STE 1 LINCOLN, NE 68521 USA Phone: (402)476-7900 Fax: 402/476-7958 Email: NELIN@stores.fastenal	

Page 1 of 1

Figure D-48. %-in. Dia. UNC Heavy Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h1)

PRODUCT CERTIFICATION

LOT NUMBER

Nucor Fastener 6730 County Rd 60 Saint Joe, IN 46785 USA

W000037696

Customer Bennett Bolt Works Inc Nucor Sales Order 341788 Nucor Item Number 1015073 Customer Part Number
 Quality Order
 IQO000023400

 Quality Order Date
 3/9/2023

 Name of Lab Sampler
 Jeffery J Zink

 Date Shipped
 3/14/2023

CERTIFIED MATERIAL TEST REPORT

Nucor Purchase Order 6021296

 Nucor Item Number
 1015073

 Lot Number
 W000037696

 Description
 5/8-11 GR A

GUARDRAIL HEX NUT .031 OS TAP HOT DIP GALV STRUCT CAN Manufacturer Date 3/10/2023 Quantity 125000 Production Lot Size 192922

RAW MATERIAL

Material Item Number 1000666 Heat Number 8000021095 Material Grade 1045L

Supplier name Nucor Steel South Carolina - Darlington

CHEMISTRY **Chemistry Composition (WT% Heat Analysis) By Material Supplier

C Mn P S Si 0.4500 0.6700 0.0030 0.0150 0.2080

MECHANICAL

'--MECHANICAL PROPERTIES IN ACCORDANCE WITH ASTM A563/A563M-21ae1

Core HardnessHRBIN

1. 89.45 2. 89.95 3. 90.15 4. 88.45 5. 88.05 Average results from tests

89.21

Weight LoadLBS

1. 17000 2. 17000 3. 17000 4. 17000 5. 17000

Average results from tests

17000

'--MECHANICAL PROPERTIES IN ACCORDANCE WITH ASTM

A563/A563M-21ae1

SPECIAL TESTING

Proof Load Pass

'--SURFACE QUALITY WITHIN LIMITS PRESCRIBED IN ASTM F812-12

(2017)

VISUAL Visual Pass

LOT PASSED

Page 1 of 2

Figure D-49. 5/8-in. Dia. Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h2)

Apr. 12. 2018 4:32PM , Fastenal-NELI

No. 4682 P. 3

Certificate of Compliance

Sold To:	Purchase Order	:
UNL TRANSPORTATION	Job:	TL-2 and Bullnose
		56/80 - 5000640000 De 500
	Invoice Date:	03/27/2018
THIS IS TO CERTIFY THAT WE H. THESE PARTS WERE PURCE	AVE SUPPLIED YOU WITH THE HASED TO THE FOLLOWING SI	FOLLOWING PARTS. ECIFICATIONS.
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galve UNDER PART NUMBER 92005	anized Hex Bolt SUPPLIED UNDI	ER OUR TRACE NUMBER line35042 AND
20 PCS 7/8"-9 Hot Dip Galvanized Finish Grade A Finishe UNDER PART NUMBER 36717	d Hex Nut SUPPLIED UNDER O	UR TRACE NUMBER 110254885 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galve UNDER PART NUMBER 92005	anized Hex Bolt SUPPLIED UND	ER OUR TRACE NUMBER IIne35042 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galva UNDER PART NUMBER 92005	anized Hex Bolt SUPPLIED UNDI	R OUR TRACE NUMBER line35042 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galva UNDER PART NUMBER 92005	anized Hex Bolt SUPPLIED UND	ER OUR TRACE NUMBER IIne35042 AND
		F
		8
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current	revision to avoid using obsolete copies.
Sail MM	This document was p time.	rinted on 04/12/2018 and was current at that
Fasteral Account Representative Signature	Fastenal Store Loca	tion/Address
- Vierrich Montron	3201 N. 23rd Street S	TE I
0-	LINCOLN, NE 6852	
Printed Name	Phone #: (402)476-7	1 0000
11/	Fax #: 402/476-7958	8
4/12/18		
Date	Page 1 of 1	

Figure D-50. 1/8-in. Dia. UNC Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h4)

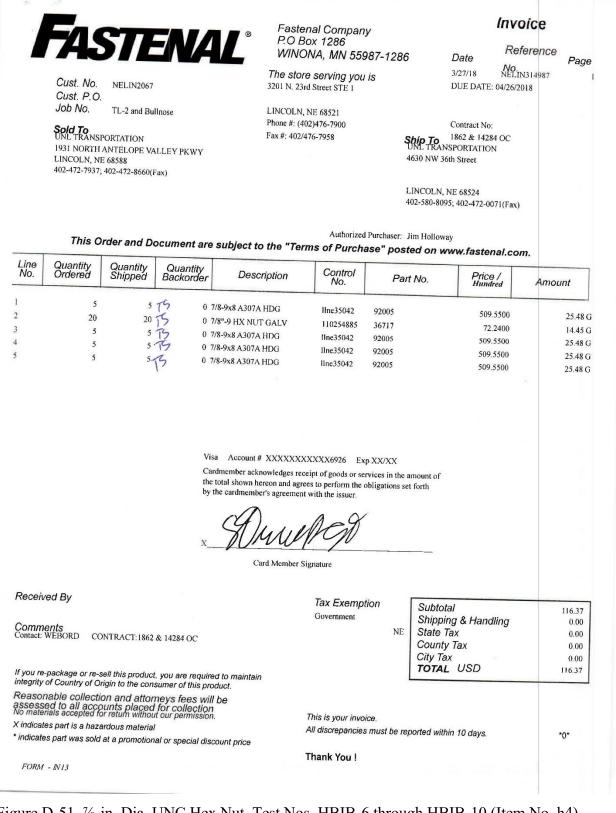


Figure D-51. 78-in. Dia. UNC Hex Nut, Test Nos. HBIB-6 through HBIB-10 (Item No. h4)

Appendix E. Static Soil Tests

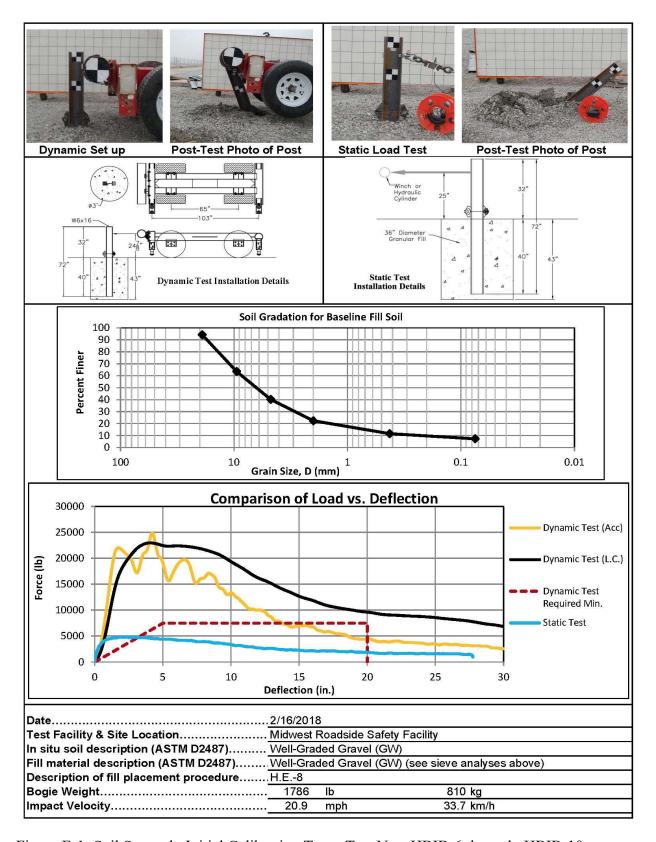


Figure E-1. Soil Strength, Initial Calibration Tests, Test Nos. HBIB-6 through HBIB-10

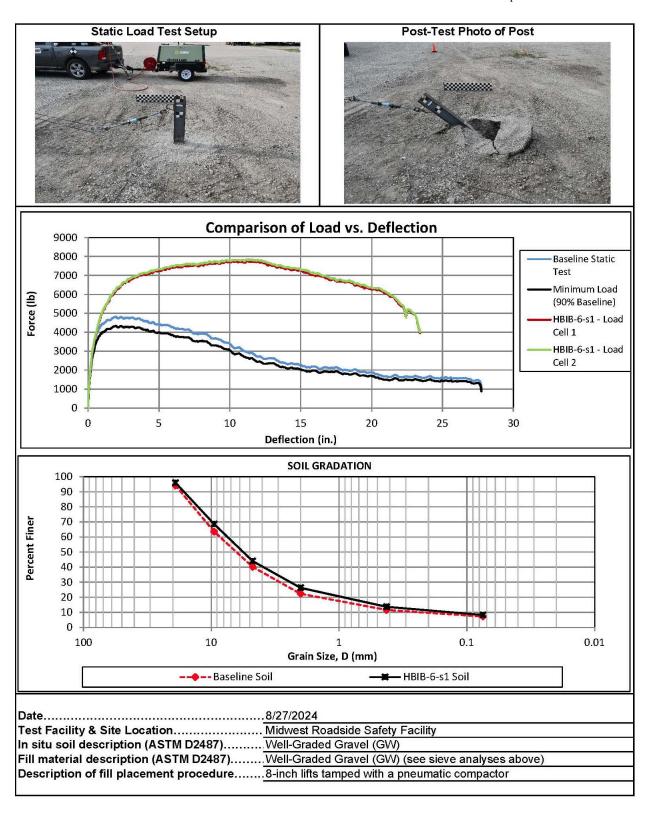


Figure E-2. Static Soil Test, Test No. HBIB-6

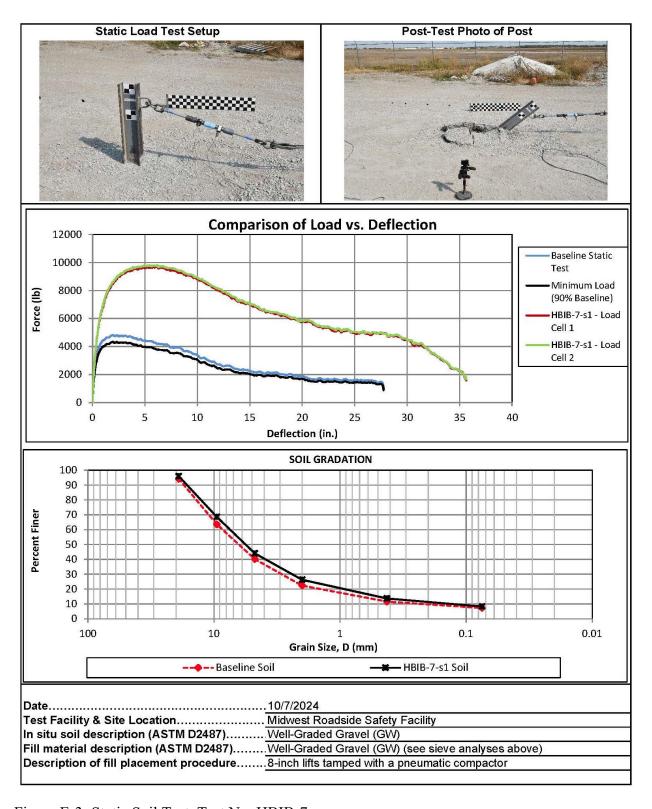


Figure E-3. Static Soil Test, Test No. HBIB-7

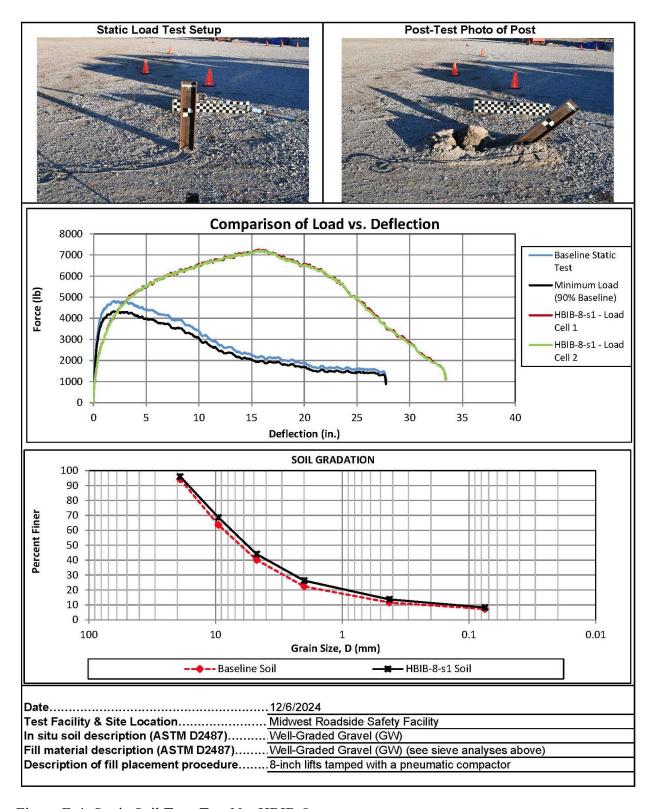


Figure E-4. Static Soil Test, Test No. HBIB-8

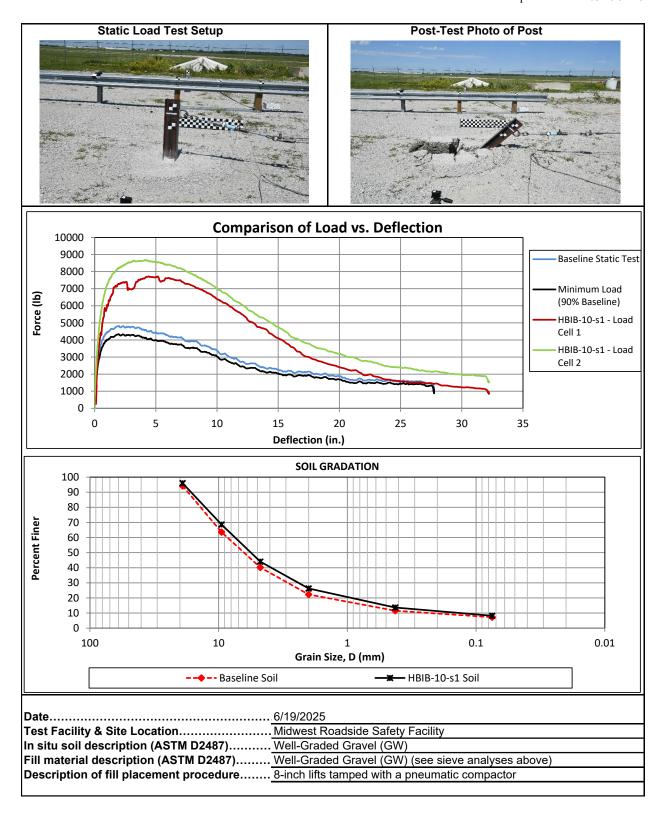


Figure E-5. Static Soil Test, Test No. HBIB-10

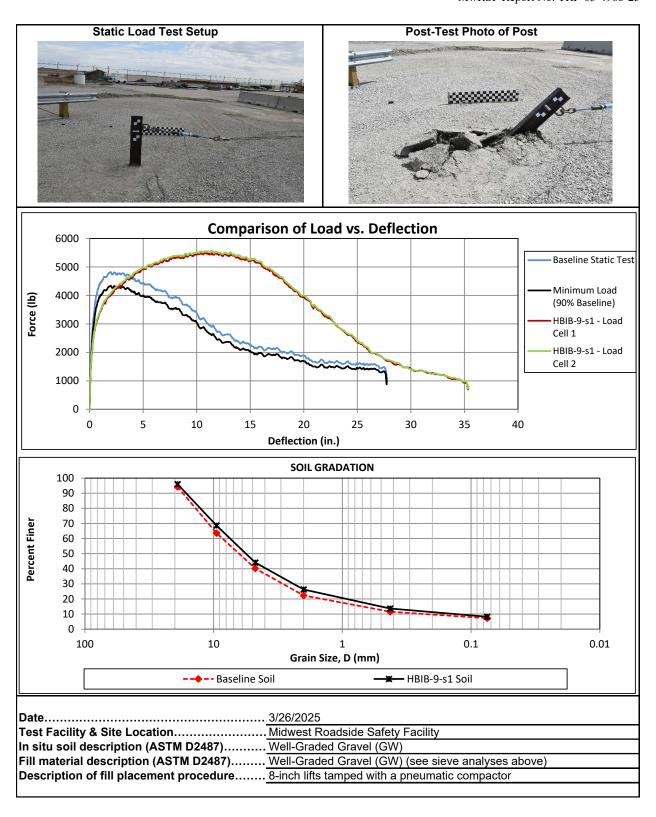


Figure E-6. Static Soil Test, Test No. HBIB-9

Appendix F. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria.

lodel Year.	20	018	ū.		Test Name: Make:		IB-6 AM			VIN: Model:	3C6R	R6KT6JG1 1500	86123
							FORMATION PA						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^A (in.)	ΔΥ ^A (in.)	ΔΖ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ⁰
	1	54.3564	13.1478	-2.3664	54.3266	13.1541	-2.2485	0.0298	-0.0063	-0.1179	0.1218	0.0298	X
	2	55.3645	17.4393	-0.0382	55.3434	17.4605	0.1309	0.0211	-0.0212	-0.1691	0.1717	0.0211	X
-4	3	56.8173	21.2250	3.3470	56.7949	21.1782	3.5086	0.0224	0.0468	-0.1616	0.1697	0.0224	X
TOE PAN - WHEEL WELL (X, Z)	4	56.8908	27.6152	3.5554	56.8667	27.4988	3.7069	0.0241	0.1164	-0.1515	0.1926	0.0241	X
TOE PAN HEEL WE (X, Z)	5	56.9703	32.2352	3.5894	56.9669	32.2054	3.7272	0.0034	0.0298	-0.1378	0.1410	0.0034	X
目出と	6	50.7212	12.7268	-0.4296	50.6802	12.7050	-0.3147	0.0410	0.0218	-0.1149	0.1239	0.0410	X
일 별	7	51.8988	16.6894	3.0131	51.8799	16.6549	3.1035	0.0189	0.0345	-0.0904	0.0986	0.0189	X
3	8	52.5602	21.5267	5.0094	52.5177	21.5087	5.1714	0.0425	0.0180	-0.1620	0.1684	0.0425	X
1	9	52.8060	27.8249	4.8404	52.7816	27.8684	5.0127	0.0244	-0.0435	-0.1723	0.1794	0.0244	Х
	10	52.6258	32.2374	4.9683	52.5550	32.2331	5.1132	0.0708	0.0043	-0.1449	0.1613	0.0708	X
	11	47.3157	12.7272	1.3266	47.2980	12.7363	1.4272	0.0177	-0.0091	-0.1006	0.1025	-0.1006	Z
	12	48,5749	16.0986	5.0106	48.5301	16.1056	5.1497	0.0448	-0.0070	-0.1391	0.1463	-0.1391	Z
	13	49.0344	21.8690	4.9307	48.9693	21.8697	5.0670	0.0651	-0.0007	-0.1363	0.1511	-0.1363	Z
11	14	49.1449	28.0144	4.8874	49.0980	28.0166	5.0220	0.0469	-0.0022	-0.1346	0.1426	-0.1346	Z
	15	49.2799	32.6231	4.9898	49.2439	32.5921	5.1067	0.0360	0.0310	-0.1169	0.1262	-0.1169	Z
	16	44.9276	12.8833	2.1216	44.8794	12.8866	2.2094	0.0482	-0.0033	-0.0878	0.1002	-0.0878	Z
1	17	45.7306	16.7527	5.0542	45.6665	16.7677	5.1756	0.0641	-0.0150	-0.1214	0.1381	-0.1214	Z
	18	45.9467	22.7311	4.8841	45.8975	22.7317	5.0138	0.0492	-0.0006	-0.1297	0.1387	-0.1297	Z
\{\bar{4}\}	19	46.4375	28.0853	4.8872	46.3548	28.1646	5.0105	0.0827	-0.0793	-0.1233	0.1683	-0.1233	Z
~ C	20	46.0481	32.7998	5.0060	46.0109	32.8027	5.1143	0.0372	-0.0029	-0:1083	0.1145	-0.1083	Z
FLOOR PAN (Z)	21	42.0809	13.1288	2.7952	42.0011	13.1365	2.8991	0.0798	-0.0077	-0.1039	0.1312	-0.1039	Z
2	22	42.6758	17.0217	4.9624	42.6715	17.1181	5.0860	0.0043	-0.0964	-0.1236	0.1568	-0.1236	Z
ш	23	43.3630	22.7039	4.9045	43.2674	22.7748	5.0189	0.0956	-0.0709	-0.1144	0.1651	-0.1144	Z
	24	43.7605	28.6060	4.9089	43.7343	28.6473	5.0268	0.0262	-0.0413	-0.1179	0.1276	-0.1179	Z
1	25	43.3115	33.0094	5.0219	43.2628	33.0185	5.1241	0.0487	-0.0091	-0.1022	0.1136	-0.1022	Z
1	26	38.4196	13.4096	3.5044	38.3753	13.4077	3.5804	0.0443	0.0019	-0.0760	0.0880	-0.0760	Z
	27	38.0944	17.1340	4.2848	38.0621	17.1541	4.3851	0.0323	-0.0201	-0.1003	0.1073	-0.1003	Z
	28	38.3275	22.8716	4.0229	38.2669	22.8151	4.1254	0.0606	0.0565	-0.1025	0.1318	-0.1025	Z
	29	38.4305	28.4357	4.2416	38.4217	28.4029	4.3467	0.0088	0.0328	-0.1051	0.1105	-0.1051	Z
1	30	38.4532	32.7814	4.0345	38.4181	32.7812	4.1348	0.0351	0.0002	-0.1003	0.1063	-0.1003	7

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

CDirection for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

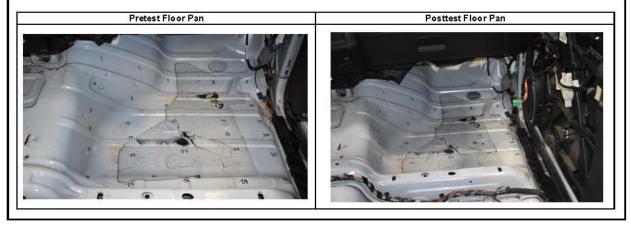


Figure F-1. Floor Pan Deformation Data – Set 1, Test No. HBIB-6

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

lodel Year.	20)18			Test Name: Make:	R/	IB-6 AM			VIN: Model:	JUBR	R6KT6JG1 1500	06123
							FORMATION PA						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^A (in.)	ΔΥ ^A (in.)	ΔΖ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^C
	1	53.4800	28.9283	-6.2709	53.4838	28.8566	-6.2544	-0.0038	0.0717	-0.0165	0.0737	0.0000	NA
1	2	54.4447	33.2285	-3.9402	54.4677	33.1717	-3.8771	-0.0230	0.0568	-0.0631	0.0880	0.0000	NA
1	.3	55.8545	37.0266	-0.5509	55.8885	36.9021	-0.5003	-0.0340	0.1245	-0.0506	0.1386	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	4	55.8751	43.4173	-0.3439	55.9179	43.2232	-0.3076	-0.0428	0.1941	-0.0363	0.2021	0.0000	NA
PAN Z)	5	55.9167	48.0378	-0.3109	55.9867	47.9304	-0.2914	-0.0700	0.1074	-0.0195	0.1297	0.0000	NA
HEEL X	6	49.8414	28.4781	-4.3469	49.8371	28.3849	-4.3265	0.0043	0.0932	-0.0204	0.0955	0.0043	Х
무불 [7	50.9745	32.4510	-0.9010	51.0045	32.3458	-0.9098	-0.0300	0.1052	0.0088	0.1097	0.0088	Z
5	8	51.5892	37.2940	1.0963	51.6063	37.2055	1.1548	-0.0171	0.0885	-0.0585	0.1075	0.0000	NA
	9	51.7842	43.5939	0.9265	51.8281	43.5668	0.9908	-0.0439	0.0271	-0.0643	0.0824	0.0000	NA
	10	51.5675	48.0049	1.0526	51.5723	47.9299	1.0869	-0.0048	0.0750	-0.0343	0.0826	0.0000	NA
1	11	46.4299	28.4511	-2.6028	46.4518	28.3952	-2.5904	-0.0219	0.0559	-0.0124	0.0613	-0.0124	Z
1	12	47.6483	31.8335	1.0847	47.6549	31.7760	1.1311	-0.0066	0.0575	-0.0464	0.0742	-0.0464	Z
1	13	48.0610	37.6074	1.0050	48.0558	37.5428	1.0439	0.0052	0.0646	-0.0389	0.0756	-0.0389	Z
	14	48.1215	43.7535	0.9604	48.1436	43.6904	0.9936	-0.0221	0.0631	-0.0332	0.0746	-0.0332	Z
	15	48.2185	48.3633	1.0621	48.2589	48.2668	1.0743	-0.0404	0.0965	-0.0122	0.1053	-0.0122	Z
- 1	16	44.0377	28.5878	-1.8164	44.0308	28.5300	-1.8126	0.0069	0.0578	-0.0038	0.0583	-0.0038	Z
1	17	44.7986	32.4644	1.1181	44.7869	32.4190	1.1514	0.0117	0.0454	-0.0333	0.0575	-0.0333	Z
-	18	44.9666	38.4443	0.9472	44.9785	38.3843	0.9846	-0.0119	0.0600	-0.0374	0.0717	-0.0374	Z
₹ [19	45.4136	43.8023	0.9506	45.3995	43.8201	0.9772	0.0141	-0.0178	-0.0266	0.0350	-0.0266	Z
FLOOR PAN (Z)	20	44.9853	48.5135	1.0667	45.0245	48.4558	1.0762	-0.0392	0.0577	-0.0095	0.0704	-0.0095	Z
g G [21	41.1868	28.8103	-1.1529	41.1498	28.7614	-1.1281	0.0370	0.0489	-0.0248	0.0661	-0.0248	Z
- F [22	41.7421	32.7084	1.0154	41.7898	32.7493	1.0563	-0.0477	-0.0409	-0.0409	0.0750	-0.0409	Z
-	23	42.3831	38.3960	0.9584	42.3481	38.4098	0.9851	0.0350	-0.0138	-0.0267	0.0461	-0.0267	Z
1	24	42.7323	44.3011	0.9626	42.7758	44.2853	0.9885	-0.0435	0.0158	-0.0259	0.0530	-0.0259	Z
	25	42.2471	48.7008	1.0729	42.2750	48.6533	1.0810	-0.0279	0.0475	-0.0081	0.0557	-0.0081	Z
	26	37.5208	29.0614	-0.4569	37.5211	29.0090	-0.4534	-0.0003	0.0524	-0.0035	0.0525	-0.0035	Z
1	27	37.1624	32,7831	0.3214	37.1815	32.7540	0.3474	-0.0191	0.0291	-0.0260	0.0434	-0.0260	Z
[28	37.3495	38.5224	0.0589	37.3490	38.4160	0.0830	0.0005	0.1064	-0.0241	0.1091	-0.0241	Z
1	29	37.4063	44.0872	0.2764	37.4662	44.0049	0.2994	-0.0599	0.0823	-0.0230	0.1044	-0.0230	Z
	30	37.3944	48.4329	0.0683	37.4337	48.3828	0.0836	-0.0393	0.0501	-0.0153	0.0655	-0.0153	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant

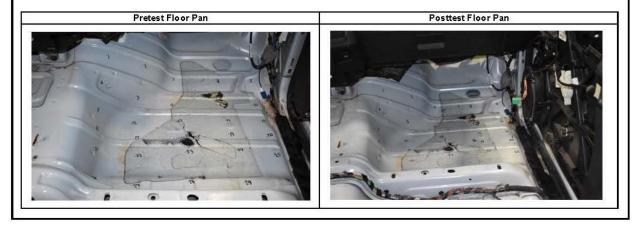


Figure F-2. Floor Pan Deformation Data – Set 2, Test No. HBIB-6

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

lodel Year:	20	118			Test Name: Make:		IB-6 AM			VIN: Model:	0001	R6KT6JG1 1500	00120
					VE	HICLE DE	FORMATI	ON					
				PA	SSENGER	R SIDE IN	TERIOR CR	USH - SE	T 1				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directio for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	31	51.5174	32.9811	-27.0716	51.6557	33.0772	-26.9291	-0.1383	-0.0961	0.1425	0.2206	0.2206	X, Y, 2
0	32	49.5206	20.5887	-26.9172	49.6375	20.7139	-26.7730	-0.1169	-0.1252	0.1442	0.2239	0.2239	X, Y, 2
SH.	33	49.7768	4.2592	-28.1419	49.8783	4.3564	-28.0030	-0.1015	-0.0972	0.1389	0.1976	0.1976	X, Y, 2
DASH (X, Y, Z)	34	46.6843	33.9117	-15.0854	46.6737	33.9875	-15.0268	0.0106	-0.0758	0.0586	0.0964	0.0964	X, Y, 2
3	35	45.3112	20.8773	-16.8431	45.3908	20.9251	-16.7203	-0.0796	-0.0478	0.1228	0.1540	0.1540	X, Y, 2
	36	43.2588	4.2700	-20.2555	43.3470	4.3879	-20.1166	-0.0882	-0.1179	0.1389	0.2024	0.2024	X, Y, 2
E EL	37	55.5768	35.7029	-2.9652	55.5231	35.4995	-2.7875	0.0537	0.2034	0.1777	0.2754	0.2034	Y
SIDE RANEL	38	57.2478	35.5872	-0.0782	57.2179	35.5069	0.0847	0.0299	0.0803	0.1629	0.1841	0.0803	Y
ν <u>σ</u>	39	54.8095	35.5956	2.5642	54.7655	35.4333	2.7604	0.0440	0.1623	0.1962	0.2584	0.1623	Y
Ш	40	23.2706	38.4277	-17.7157	23.0199	38.5504	-17.6462	0.2507	-0.1227	0.0695	0.2876	-0.1227	Y
8~	41	30.8308	38.2746	-18.1811	30.5762	38.2721	-18.0937	0.2546	0.0025	0.0874	0.2692	0.0025	Y
ACT SI DOOR	42	42.6283	38.0858	-16.1687	42.3746	38.0348	-16.0240	0.2537	0.0510	0.1447	0.2965	0.0510	Y
A D C	43	26.0286	38.6280	-2.4521	25.7724	38.5370	-2.3211	0.2562	0.0910	0.1310	0.3018	0.0910	Y
IMPACT SIDE DOOR (Y)	44	32.4133	38.4147	-1.3612	32.0949	38.2718	-1.2305	0.3184	0.1429	0.1307	0.3727	0.1429	Υ
_	45	41.2599	39.1944	-1.9073	41.0406	39.0400	-1.6746	0.2193	0.1544	0.2327	0.3551	0.1544	Y
	46	41.9443	5.2817	-43.1179	42.0661	5.4262	-43.0405	-0.1218	-0.1445	0.0774	0.2042	0.0774	Z
	47	40.8760	16.5053	-42.9348	40.9823	16.6185	-42.8527	-0.1063	-0.1132	0.0821	0.1757	0.0821	Z
	48	38.4936	26.3283	-42.4002	38.5803	26.4469	-42.3121	-0.0867	-0.1186	0.0881	0.1713	0.0881	Z
3	49	34.0915	5.2441	-46.1241	34.2028	5.3463	-46.0539	-0.1113	-0.1022	0.0702	0.1666	0.0702	Z
	50	32.1330	14.3766	-46.1795	32.1909	14.5091	-46.1079	-0.0579	-0.1325	0.0716	0.1614	0.0716	Z
Ø	51	31.0209	25.8742	-45.4437	31.0753	25.9654	-45.3713	-0.0544	-0.0912	0.0724	0.1285	0.0724	Z
ROOF - (Z)	52	17.2899	5.2512	-47.4291	17.4099	5.3350	-47.3863	-0.1200	-0.0838	0.0428	0.1525	0.0428	Z
ğ	53 54	16.6726	13.4258	-47.2613	16.7911	13.4883	-47.2101 -46.6101	-0.1185	-0.0625	0.0512	0.1434	0.0512	Z
8	55	16.0772 -4.4440	24.4396 5.2911	-46.6690 -47.5577	16.1413 -4.3569	24.4659 5.4054	-47.5577	-0.0641 -0.0871	-0.0263 -0.1143	0.0589	0.0909 0.1437	0.0589	Z
	56	-4.4440	13.2141	-47.4262	-4.4300	13.3021	-47.4157	-0.0572	-0.0880	0.0105	0.1457	0.0005	Z
1	57	-4.9375	23.2786	-46.9780	-4.8952	23.3364	-46.9554	-0.0372	-0.0578	0.0226	0.0751	0.0103	Z
1	58	-21.3234	4.7150	-46.9171	-21.1480	4.7298	-46.9546	-0.1754	-0.0378	-0.0375	0.1800	-0.0375	Z
1	59	-21.3027	12.1151	-46.8422	-21.1399	12.1452	-46.8727	-0.1628	-0.0301	-0.0305	0.1683	-0.0305	Z
1	60	-20.7428	23.8658	-46.4485	-20.6722	23.8836	-46.4669	-0.0706	-0.0178	-0.0184	0.0751	-0.0184	Z
	61	38.1325	30.8647	-40.7024	38.1503	30.9917	-40.6426	-0.0178	-0.1270	0.0598	0.1415	0.0598	Z
~=~	62	41.1960	30.6576	-37.8148	41.2410	30.7781	-37.7351	-0.0450	-0.1275	0.0797	0.1513	0.0338	Z
Z = Z	63	43.9673	32.3193	-37.4502	44.0499	32.4753	-37.4135	-0.0826	-0.1560	0.0367	0.1803	0.0367	Z
A-PILLAR Maximum (X, Y, Z)	64	46.7996	32.6483	-34.5606	46.8651	32.7697	-34.4605	-0.0655	-0.1214	0.1001	0.1704	0.1001	Z
₹ ₹ Ø	65	51.5442	33.8507	-31.4998	51.6675	33.9824	-31.3416	-0.1233	-0.1317	0.1582	0.2399	0.1582	Z
	66	54.4281	34.6808	-27.4417	54.4496	34.7414	-27.3225	-0.0215	-0.0606	0.1192	0.1354	0.1192	Z
	61	38.1325	30.8647	-40.7024	38.1503	30.9917	-40.6426	-0.0178	-0.1270	0.0598	0.1415	-0.1270	Y
22	62	41.1960	30.6576	-37.8148	41.2410	30.7781	-37.7351	-0.0450	-0.1205	0.0797	0.1513	-0.1205	Ÿ
A-PILLAR Lateral (Y)	63	43.9673	32.3193	-37.4502	44.0499	32.4753	-37.4135	-0.0826	-0.1560	0.0367	0.1803	-0.1560	Y
F F	64	46.7996	32.6483	-34.5606	46.8651	32.7697	-34.4605	-0.0655	-0.1214	0.1001	0.1704	-0.1214	Y
₽ <u>P</u>	65	51.5442	33.8507	-31.4998	51.6675	33.9824	-31.3416	-0.1233	-0.1317	0.1582	0.2399	-0.1317	Y
	66	54.4281	34.6808	-27.4417	54.4496	34.7414	-27.3225	-0.0215	-0.0606	0.1192	0.1354	-0.0606	Y
RE C	67	10.8773	30.7423	-41.6663	10.9421	30.7970	-41.6689	-0.0648	-0.0547	-0.0026	0.0848	0.0000	NA
B-PILLAR Maximum (X, Y, Z)	68	14.8121	34.5259	-30.5434	14.8820	34.5993	-30.4784	-0.0699	-0.0734	0.0650	0.1204	0.0650	Z
분홍승	69	12.0088	35.3945	-24.5054	11.9702	35.4454	-24.4518	0.0386	-0.0509	0.0536	0.0834	0.0661	X, Z
P ≅ ⊊	70	15.9384	35.5987	-20.1613	15.9109	35.6567	-20.0778	0.0275	-0.0580	0.0835	0.1053	0.0879	X, Z
ፈ <u>ይ</u>	67	10.8773	30.7423	-41.6663	10.9421	30.7970	-41.6689	-0.0648	-0.0547	-0.0026	0.0848	-0.0547	Y
₹	68	14.8121	34.5259	-30.5434	14.8820	34.5993	-30.4784	-0.0699	-0.0734	0.0650	0.1204	-0.0734	Y
B-PILLAR Lateral (Y)	69	12.0088	35.3945	-24.5054	11.9702	35.4454	-24.4518	0.0386	-0.0509	0.0536	0.0834	-0.0509	Ý
ᄚᇤ	70	15.9384	35.5987	-20.1613	15.9109	35.6567	-20.0778	0.0275	-0.0580	0.0835	0.1053	-0.0580	Y

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

Figure F-3. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-6

⁸ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

				PA			FORMATI		Т 2				
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush
	31	50.5671	48.7319	-30.9912	50.7230	48.7394	-30.9576	-0.1559	-0.0075	0.0336	0.1597	0.1597	X, Y, Z
± ₩	32	48.6710	36.3237	-30.8407	48.7870	36.3629	-30.7938	-0.1160	-0.0392	0.0469	0.1311	0.1311	X, Y, 2
DASH (X, Y, Z)	33	49.0648	19.9965	-32.0601	49.1390	20.0063	-32.0085	-0.0742	-0.0098	0.0516	0.0909	0.0909	X, Y, 2
2 ×	34	45.6840	49.6258	-19.0225	45.7144	49.6270	-19.0648	-0.0304	-0.0012	-0.0423	0.0521	0.0521	X, Y, 2
_	35	44.4236	36.5803	-20.7817	44.5216	36.5549	-20.7487	-0.0980	0.0254	0.0330	0.1065	0.1065	X, Y, 2
	36	42.5190	19.9559	-24.1970	42.5940	20.0013	-24.1335	-0.0750	-0.0454	0.0635	0.1083	0.1083	X, Y, 2
SIDE RANEL	37 38	54.5183	51.4924	-6.8712	54.5322	51.2090	-6.8116	-0.0139	0.2834	0.0596	0.2899	0.2834	Y
SAS	39	56.1799 53.7323	51.3911 51.3802	-3.9783 -1.3446	56.2220 53.7655	51.2302 51.1426	-3.9364 -1.2650	-0.0421 -0.0332	0.1609 0.2376	0.0419 0.0796	0.1715 0.2528	0.1609 0.2376	Y
IMPACT SIDE DOOR (Y)	40	22.2437	53.9499 53.8585	-21.7373 -22.1758	22.0353 29.5941	54.0297 53.8015	-21.7292 -22.1634	0.2084 0.2124	-0.0798 0.0570	0.0081 0.0124	0.2233	-0.0798	Y
20 25	41	29.8065 41.5978	53.7664	-22.1758	41.3901	53.6447	-22.1634	0.2124	0.0570	0.0124	0.2203	0.0570 0.1217	Y
385	43	24.9456	54.1763	-6.4641	24.7612	54.0484	-6.3994	0.1844	0.1217	0.0463	0.2336	0.1217	Y
₹ o	44	31.3279	54.0154	-5.3504	31.0834	53.8263	-5.2977	0.1044	0.1273	0.0527	0.2336	0.1273	Y
Σ	45	40.1697	54.8672	-5.8653	40.0245	54.6538	-5.7269	0.1452	0.2134	0.1384	0.2929	0.2134	Ÿ
+	46	41.2776	20.9515	-47.0642	41.3460	21.0106	-47.0605	-0.0684	-0.0591	0.0037	0.0905	0.0037	Z
ŀ	47	40.1171	32.1660	-46.8879	40.1873	32.1955	-46.8847	-0.0702	-0.0295	0.0032	0.0762	0.0032	Z
1	48	37.6527	41.9694	-46.3643	37.7189	42.0082	-46.3572	-0.0662	-0.0388	0.0071	0.0771	0.0071	Z
	49	33.4361	20.8490	-50.0983	33.4886	20.8755	-50.0874	-0.0525	-0.0265	0.0109	0.0598	0.0109	Z
1	50	31.4033	29.9652	-50.1630	31.4159	30.0247	-50.1532	-0.0126	-0.0595	0.0098	0.0616	0.0098	Z
	51	30.1948	41.4536	-49.4342	30.2226	41.4739	-49.4290	-0.0278	-0.0203	0.0052	0.0348	0.0052	Z
6	52	16.6398	20.7187	-51.4630	16.6985	20.7510	-51.4490	-0.0587	-0.0323	0.0140	0.0684	0.0140	Z
ROOF - (Z)	53	15.9552	28.8880	-51.2996	16.0251	28.9002	-51.2811	-0.0699	-0.0122	0.0185	0.0733	0.0185	Z
ŏ [54	15.2678	39.8967	-50.7123	15.3011	39.8738	-50.6923	-0.0333	0.0229	0.0200	0.0451	0.0200	Z
IE.	55	-5.0931	20.5810	-51.6689	-5.0679	20.6762	-51.6581	-0.0252	-0.0952	0.0108	0.0991	0.0108	Z
	56	-5.2014	28.5035	-51.5396	-5.1939	28.5724	-51.5234	-0.0075	-0.0689	0.0162	0.0712	0.0162	Z
	57	-5.7355	38.5640	-51.0958	-5.7268	38.6038	-51.0730	-0.0087	-0.0398	0.0228	0.0467	0.0228	Z
	58	-21.9694	19.8673	-51.0882	-21.8552	19.8892	-51.0834	-0.1142	-0.0219	0.0048	0.1164	0.0048	Z
1	59	-22.0095	27.2674	-51.0152		27.3045	-51.0083	-0.1129	-0.0371	0.0069	0.1190	0.0069	Z
	60	-21.5469	39.0223	-50.6226	-21.5079	39.0461	-50.6123	-0.0390	-0.0238	0.0103	0.0468	0.0103	Z
~ -	61	37.2485	46.5031	-44.6690	37.2557	46.5515	-44.6926	-0.0072	-0.0484	-0.0236	0.0543	0.0000	NA NA
A # 0	62	40.3033 43.0596	46.3217 48.0060	-41.7705 -41.3964	40.3427 43.1397	46.3612 48.0773	-41.7795 -41.4546	-0.0394 -0.0801	-0.0395 -0.0713	-0.0090 -0.0582	0.0565 0.1220	0.0000	NA NA
글통거	63 64	45.8788	48.3589	-38.4969	45.1397	48.3931	-38.4970	-0.0689	-0.0713	-0.0001	0.1220	0.0000	NA NA
A-PILLAR Maximum (X, Y, Z)	65	50.6026	49.6006	-35.4195	50.7365	49.6406	-35.3709	-0.1339	-0.0342	0.0486	0.0789	0.0486	Z
	66	53.4651	50.4552	-31.3514		50.4217	-31.3477	-0.0414	0.0335	0.0037	0.0534	0.0337	Y, Z
	61	37.2485	46.5031	-44.6690	37.2557	46.5515	-44.6926	-0.0072	-0.0484	-0.0236	0.0543	-0.0484	Y
2 S	62	40.3033	46.3217	-41.7705	40.3427	46.3612	-41.7795	-0.0394	-0.0395	-0.0090	0.0565	-0.0395	Ÿ
A-PILLAR Lateral (Y)	63	43.0596	48.0060	-41.3964	43.1397	48.0773	-41.4546	-0.0801	-0.0713	-0.0582	0.1220	-0.0713	Ŷ
E is	64	45.8788	48.3589	-38.4969	45.9477	48.3931	-38.4970	-0.0689	-0.0342	-0.0001	0.0769	-0.0342	Y
<u>a</u> <u>a</u>	65	50.6026	49.6006	-35.4195	50.7365	49.6406	-35.3709	-0.1339	-0.0400	0.0486	0.1480	-0.0400	Y
	66	53.4651	50.4552	-31.3514	53.5065	50.4217	-31.3477	-0.0414	0.0335	0.0037	0.0534	0.0335	Y
R E C	67	9.9988	46.1579	-45.7298	10.0512	46.1745	-45.7658	-0.0524	-0.0166	-0.0360	0.0657	0.0000	NA
B-PILLAR Maximum (X, Y, Z)	68	13.8630	49.9761	-34.5939	13.9463	50.0130	-34.5720	-0.0833	-0.0369	0.0219	0.0937	0.0219	Z
E XX	69	11.0312	50.8232	-28.5662	11.0184	50.8450	-28.5512	0.0128	-0.0218	0.0150	0.0294	0.0197	X, Z
	70	14.9435	51.0605	-24.2082	14.9499	51.0865	-24.1705	-0.0064	-0.0260	0.0377	0.0462	0.0377	Z
3.5	67	9.9988	46.1579	-45.7298	10.0512	46.1745	-45.7658	-0.0524	-0.0166	-0.0360	0.0657	-0.0166	Y
3-PILLAR .ateral (Y)	68	13.8630	49.9761	-34.5939	13.9463	50.0130	-34.5720	-0.0833	-0.0369	0.0219	0.0937	-0.0369	Ý
를 늘 [69	11.0312	50.8232	-28.5662	11.0184	50.8450	-28.5512	0.0128	-0.0218	0.0150	0.0294	-0.0218	Y
E &	70	14.9435	51.0605	-24.2082	14.9499	51.0865	-24.1705	-0.0064	-0.0260	0.0377	0.0462	-0.0260	Y

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure F-4. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-6

Model Year:	2018		Test Name: _ Make: _	HBIB-6 RAM	VIN: Model:	3C6RR6KT	
		F	assenger Side M	aximum Deformation			
	Reference Se	t 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	0.1	≤ 4	Z	Roof	0.0	≤ 4	Z
Windshield [□]	0.0	≤3	X, Z	Windshield [□]	NA	≤ 3	X, Z
A-Pillar Maximum	0.2	≤ 5	Z	A-Pillar Maximum	0.0	≤ 5	Z
A-Pillar Lateral	-0.2	≤3	Υ	A-Pillar Lateral	0.0	≤ 3	Y
B-Pillar Maximum	0.1	≤5	X, Z	B-Pillar Maximum	0.0	≤ 5	Z
B-Pillar Lateral	-0.1	≤ 3	Υ	B-Pillar Lateral	0.0	≤ 3	Υ
Toe Pan - Wheel Well	0.1	≤ 9	Х	Toe Pan - Wheel Well	0.0	≤ 9	Z
Side Front Panel	0.2	≤ 12	Υ	Side Front Panel	0.3	≤ 12	Υ
Side Door (above seat)	0.1	≤ 9	Υ	Side Door (above seat)	0.1	≤ 9	Υ
Side Door (below seat)	0.2	≤ 12	Υ	Side Door (below seat)	0.2	≤ 12	Y
Floor Pan	-0.1	≤ 12	Z	Floor Pan	0.0	≤ 12	Z
Dash - no MASH requirement	0.2	NA	X, Y, Z	Dash - no MASH requirement	0.2	NA	X, Y, Z
[©] For Toe Pan - Wheel Well the di directions. The direction of deforr occupant compartment. If direction	ion as inward towar rection of defromati nation for Toe Pan n of deformation is the windshield then	d the occupant comp on may include X and Wheel Well, A-Pillar "NA" then no intrusio	d Z direction. For A-F Maximum, and B-Pill n is recorded and de	lues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0. posttest with an examplar vehicle, there	the direction of defo where the deforma	ormation may include ition is positive and ir	truding into the

Figure F-5. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-6

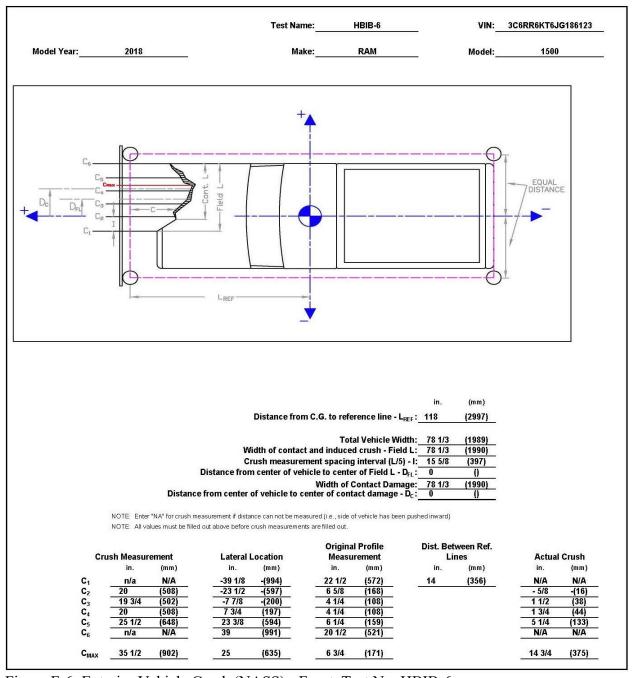


Figure F-6. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-6

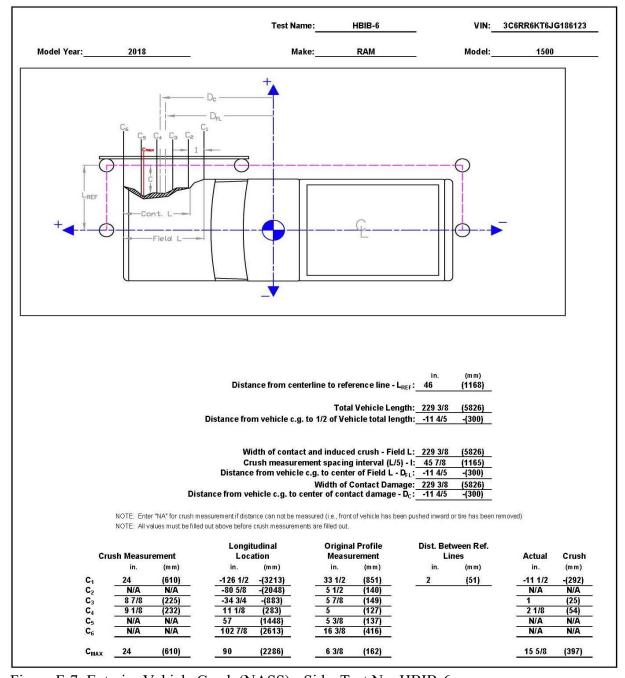


Figure F-7. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-6

odel Year.	20	018			Test Name: Make:		IB-7 (ia			VIN: Model:	JNFA	A24AB2JE0 Rio	7 3301
							FORMATION PA	75841					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ⁰
	1	85.7201	18.6459	5.6237	85.7192	18,6930	5.5603	0.0009	-0.0471	0.0634	0.0790	0.0634	X, Z
	2	87.2313	23.3515	6.1823	87.1864	23.3933	6.0488	0.0449	-0.0418	0.1335	0.1469	0.1408	X, Z
- T	3	87.8401	27.5841	5.6404	87.8836	27.7007	5.4644	-0.0435	-0.1166	0.1760	0.2156	0.1760	Z
- <u>I</u>	4	88.0764	32.1687	5.0891	88.0831	32.2205	4.9006	-0.0067	-0.0518	0.1885	0.1956	0.1885	Z
TOE PAN - WHEEL WELL (X, Z)	5	88.7675	36.9695	4.2547	88.6675	36.9994	4.1141	0.1000	-0.0299	0.1406	0.1751	0.1725	X, Z
11日文	6	82.3332	18.8404	6.8014	82.3281	18.8642	6.7080	0.0051	-0.0238	0.0934	0.0965	0.0935	X, Z
TOE HEEL	7	84.0160	23.2327	8.2073	84.0057	23.2964	8.0776	0.0103	-0.0637	0.1297	0.1449	0.1301	X, Z
3	8	84.2148	27.6896	8.2613	84.1923	27.7152	8.1129	0.0225	-0.0256	0.1484	0.1523	0.1501	X, Z
(8.0	9	84.8346	33.5912	8.0479	84.8537	33.6597	7.8639	-0.0191	-0.0685	0.1840	0.1973	0.1840	Z
	10	84.6565	38.7011	8.3123	84.6693	38.7844	8.1001	-0.0128	-0.0833	0.2122	0.2283	0.2122	Z
	11	77.7822	19.0888	7.5009	77.7806	19.1162	7.4241	0.0016	-0.0274	0.0768	0.0816	0.0768	Z
	12	78.5789	23.3046	9.9013	78.5593	23.3249	9.7953	0.0196	-0.0203	0.1060	0.1097	0.1060	Z
4	13	79.4882	28.3170	9.9837	79.5003	28.3263	9.8703	-0.0121	-0.0093	0.1134	0.1144	0.1134	Z
0	14	80.6068	34.0270	9.8698	80.5927	34.1124	9.7242	0.0141	-0.0854	0.1456	0.1694	0.1456	Z
	15	81.2408	39.2493	9.8517	81.2198	39.2841	9.6768	0.0210	-0.0348	0.1749	0.1796	0.1749	Z
	16	72.5928	19.2286	7.3526	72.5450	19.2561	7.2682	0.0478	-0.0275	0.0844	0.1008	0.0844	Z
	17	72.7325	22.8952	9.9393	72.7855	22.9349	9.8398	-0.0530	-0.0397	0.0995	0.1195	0.0995	Z
12000	18	72.7787	28.5466	10.2255	72.7429	28.6156	10.1223	0.0358	-0.0690	0.1032	0.1292	0.1032	Z
A I	19	72.9938	34.4880	10.2651	72.9379	34.5501	10.1409	0.0559	-0.0621	0.1242	0.1497	0.1242	Z
<u>-</u>	20	73.0062	39.1272	10.3123	72.9606	39.1881	10.1527	0.0456	-0.0609	0.1596	0.1768	0.1596	Z
유(건)	21	69.1521	19.3480	7.3683	69,1436	19.3882	7.3248	0.0085	-0.0402	0.0435	0.0598	0.0435	Z
FLOOR PAN (Z)	22	68.3313	23.3677	10.1541	68.3503	23.4257	10.0650	-0.0190	-0.0580	0.0891	0.1080	0.0891	Z
ш	23	69.1702	28.6294	10.3149	69.2165	28.6628	10.2169	-0.0463	-0.0334	0.0980	0.1134	0.0980	Z
	24	69.6353	34.4485	10.3869	69.5844	34.5405	10.2674	0.0509	-0.0920	0.1195	0.1592	0.1195	Z
	25	69.8524	39.6912	10.4282	69.8019	39.7409	10.2739	0.0505	-0.0497	0.1543	0.1698	0.1543	Z
	26	64.7411	19.7251	8.0676	64.7296	19.7515	7.9862	0.0115	-0.0264	0.0814	0.0863	0.0814	Z
	27	65.2706	23.3863	10.2766	65.2978	23.4533	10.1940	-0.0272	-0.0670	0.0826	0.1098	0.0826	Z
	28	66.1886	28.3352	10.5042	66.2418	28.4546	10.4115	-0.0532	-0.1194	0.0927	0.1602	0.0927	Z
1	29	66.3497	34.7946	10.5248	66.4046	34.8783	10.4051	-0.0549	-0.0837	0.1197	0.1560	0.1197	Z
0	30	66.8835	39.7399	10.5383	66.8399	39.8396	10.3782	0.0436	-0.0997	0.1601	0.1936	0.1601	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

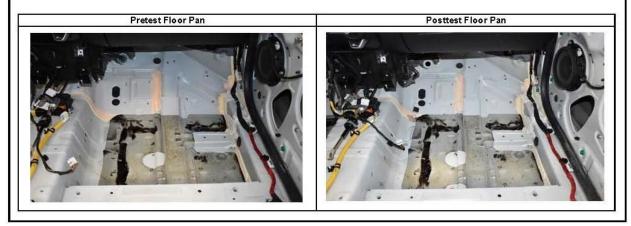


Figure F-8. Floor Pan Deformation Data – Set 1, Test No. HBIB-7

B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming Inward toward the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

odel Year.	20	18	5 2		Test Name: Make:	K	ia			VIN: Model:	JNPA	A24AB2JE0 Rio	79301
							FORMATION PA						
Ī	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^A (in.)	ΔΥ ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ⁰
	1	82.6362	-2.7535	4.9097	82.6334	-2.7767	4.8071	0.0028	-0.0232	0.1026	0.1052	0.1026	X, Z
	2	84.0198	1.9962	5.4237	83.9749	1.9647	5.2579	0.0449	0.0315	0.1658	0.1746	0.1718	X, Z
4	3	84.5102	6.2393	4.8446	84.5525	6.2854	4.6420	-0.0423	-0.0461	0.2026	0.2120	0.2026	Z
TOE PAN - WHEEL WELL (X, Z)	4	84.6186	10.8239	4.2548	84.6269	10.8051	4.0479	-0.0083	0.0188	0.2069	0.2079	0.2069	Z
AN (2)	5	85.1745	15.6347	3.3782	85.0778	15.5928	3.2274	0.0967	0.0419	0.1508	0.1840	0.1791	X, Z
目記と	6	79.2497	-2.6422	6.0994	79.2443	-2.6897	5.9702	0.0054	-0.0475	0.1292	0.1378	0.1293	X, Z
BEA F	7	80.8166	1.8061	7.4625	80.8076	1.7952	7.3027	0.0090	0.0109	0.1598	0.1604	0.1601	X, Z
3	8	80.8932	6.2672	7.4790	80.8745	6.2176	7.3083	0.0187	0.0496	0.1707	0.1787	0.1717	X, Z
1	9	81.3500	12.1816	7.2147	81.3735	12.1761	7.0173	-0.0235	0.0055	0.1974	0.1989	0.1974	Z
	10	81.0329	17.2866	7.4379	81.0515	17.2954	7.2211	-0.0186	-0.0088	0.2168	0.2178	0.2168	Z
	11	74.6963	-2.5128	6.8150	74.6950	-2.5562	6.7067	0.0013	-0.0434	0.1083	0.1167	0.1083	Z
Ì	12	75.3860	1.7431	9.1775	75.3705	1.6877	9.0466	0.0155	0.0554	0.1309	0.1430	0.1309	Z
1	13	76.1577	6.7791	9.2151	76.1760	6.7132	9.0844	-0.0183	0.0659	0.1307	0.1475	0.1307	Z
Ī	14	77,1188	12.5165	9.0498	77.1105	12.5257	8.8953	0.0083	-0.0092	0.1545	0.1550	0.1545	Z
	15	77.6092	17.7539	8.9864	77.5971	17,7120	8.8112	0.0121	0.0419	0.1752	0.1805	0.1752	Z
1	16	69.5045	-2.5164	6.6863	69.4569	-2.5589	6.5753	0.0476	-0.0425	0.1110	0.1280	0.1110	Z
1	17	69.5532	1.1740	9.2423	69.6096	1.1420	9.1217	-0.0564	0.0320	0.1206	0.1369	0.1206	Z
	18	69.4454	6.8267	9.4818	69.4145	6.8212	9.3673	0.0309	0.0055	0.1145	0.1187	0.1145	Z
FLOOR PAN (Z)	19	69.4976	12.7719	9.4719	69.4487	12.7588	9.3463	0.0489	0.0131	0.1256	0.1354	0.1256	Z
20	20	69.3828	17.4099	9.4809	69.3458	17.3957	9.3278	0.0370	0.0142	0.1531	0.1581	0.1531	Z
R G	21	66.0619	-2.4913	6.7148	66.0535	-2.5186	6.6475	0.0084	-0.0273	0.0673	0.0731	0.0673	Z
9	22	65.1416	1.5275	9.4708	65.1639	1.5141	9.3652	-0.0223	0.0134	0.1056	0.1088	0.1056	Z
ш	23	65.8364	6.8113	9.5850	65.8886	6.7736	9.4787	-0.0522	0.0377	0.1063	0.1243	0.1063	Z
1	24	66.1419	12.6413	9.6073	66.0973	12.6593	9.4892	0.0446	-0.0180	0.1181	0.1275	0.1181	Z
1	25	66.2152	17.8882	9.6048	66.1739	17.8636	9.4607	0.0413	0.0246	0.1441	0.1519	0.1441	Z
1	26	61.6448	-2.2295	7.4286	61.6343	-2.2705	7.3279	0.0105	-0.0410	0.1007	0.1092	0.1007	Z
	27	62.0820	1.4632	9.6053	62.1124	1.4599	9.5088	-0.0304	0.0033	0.0965	0.1012	0.0965	Z
1	28	62.8647	6.4371	9.7886	62.9216	6.4863	9.6892	-0.0569	-0.0492	0.0994	0.1247	0.0994	Z
Î	29	62.8486	12.8984	9.7555	62.9103	12.9118	9.6401	-0.0617	-0.0134	0.1154	0.1315	0.1154	Z
	30	63.2466	17.8564	9.7263	63.2109	17.8828	9.5788	0.0357	-0.0264	0.1475	0.1540	0.1475	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

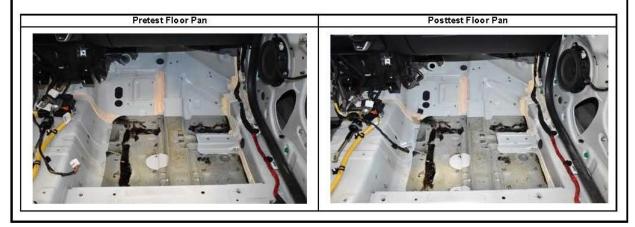


Figure F-9. Floor Pan Deformation Data – Set 2, Test No. HBIB-7

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

lodel Year:	20	18			Test Name: Make:		IB-7 Ja			VIN: Model:	3KP#	24AB2JE0 Rio	79301
													
				PA			FORMATI		T 1				
		Pretest	Pretest	Pretest		L					e veles entre	P	Direction
	122 121 121 121	Х	Y	Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	for
	POINT	(in.)	(in.)	(in.)	3, 2,		3 6		7.4		3.2		Crush
	31	76.6323	38.5464	-18.6328	76.5992	38.4919	-18.8277	0.0331	0.0545	-0.1949	0.2051	0.2051	X, Y, Z
ΙŴ	32 33	75.2513 75.1433	27.1514 17.6584	-19.4792 -19.8335	75.1925 75.2053	27.1356 17.6116	-19.6265 -19.9955	0.0588 -0.0620	0.0158 0.0468	-0.1473 -0.1620	0.1594 0.1797	0.1594 0.1797	X, Y, Z
DASH (X, Y, Z)	34	73.6088	38.0923	-12.2670	73.5590	38.0865	-12.4513	0.0498	0.0058	-0.1843	0.1797	0.1797	X, Y, Z
ص ج _ر	35	72.2394	26.9590	-11.9599	73.3330	26.9260	-12.4313	0.0492	0.0330	-0.1486	0.1600	0.1600	X, Y, Z
	36	71.2437	16.8726	-10.4150	71.1973	16.8346	-10.4985	0.0464	0.0380	-0.0835	0.1028	0.1028	X, Y, Z
	37	82.2975	41.3551	-1.0378	82.2281	41.3463	-1.2008	0.0694	0.0088	-0.1630	0.1774	0.0088	Y
SIDE PANEL	38	84.7628	41.5924	0.4317	84.7369	41.4510	0.2506	0.0259	0.1414	-0.1811	0.2312	0.1414	Y
Ω A O	39	81.5720	41.8417	2.5245	81.5523	41.8483	2.4018	0.0197	-0.0066	-0.1227	0.1244	-0.0066	Y
ш	40	48.6473	44.1130	-14.6263	48.6049	44.1665	-14.7369	0.0424	-0.0535	-0.1106	0.1300	-0.0535	Y
IMPACT SIDE DOOR (Y)	41	61.9271	43.9169	-15.2338	61.9596	43.9329	-15.3708	-0.0325	-0.0160	-0.1370	0.1417	-0.0160	Y
385	42	70.5446	44.0355	-12.6519	70.5828	44.0521	-12.7939	-0.0382	-0.0166	-0.1420	0.1480	-0.0166	Y
58c	43	51.4093	43.9557	1.1912	51.3745	43.9769	1.1270	0.0348	-0.0212	-0.0642	0.0760	-0.0212	Y
₹	44	61.7139	43.6438	4.2940	61.7528	43.7073	4.2477	-0.0389	-0.0635	-0.0463	0.0877	-0.0635	Y
-	45	76.1937	43.1509	3.1748	76.1588	43.1859	3.0262	0.0349	-0.0350	-0.1486	0.1566	-0.0350	Y
	46	64.0844	14.8442	-34.2095	64.1317	14.7922	-34.2499	-0.0473	0.0520	-0.0404	0.0811	-0.0404	Z
	47 48	64.1868	24.4358 35.3802	-33.9368 -33.0978	64.2126	24.3679	-34.0059 -33.1865	-0.0258 -0.0422	0.0679	-0.0691 -0.0887	0.1003 0.1022	-0.0691 -0.0887	Z
	48	63.2230 57.9471	14.2398	-36.4147	63.2652 57.9827	35.3519 14.1263	-36.4689	-0.0422	0.0283	-0.0542	0.1022	-0.0542	Z
	50	58.0916	24.0068	-36.4147	58.0961	23.9541	-36.2371	-0.0045	0.0527	-0.0342	0.1307	-0.0342	Z
	51	57.5536	32.8599	-35.4709	57.5969	32.8299	-35.5565	-0.0433	0.0327	-0.0856	0.1005	-0.0856	Z
ROOF - (Z)	52	40.8519	15.4509	-37.8336	40.8262	15.4737	-37.8753	0.0257	-0.0228	-0.0417	0.0540	-0.0417	Z
ம்	53	40.8733	20.9248	-37.7282	40.8786	20.9156	-37.7755	-0.0053	0.0092	-0.0473	0.0485	-0.0473	Z
8	54	42.3172	33.5615	-36.6494	42.3567	33.5223	-36.7161	-0.0395	0.0392	-0.0667	0.0869	-0.0667	Z
ř	55	25.4256	16.5004	-37.3644	25.4227	16.4500	-37.4023	0.0029	0.0504	-0.0379	0.0631	-0.0379	Z
	56	25.3196	23.6434	-37.1413	25.3451	23.6375	-37.1848	-0.0255	0.0059	-0.0435	0.0508	-0.0435	Z
	57	25.7837	32.9493	-36.3607	25.7902	32.9042	-36.4137	-0.0065	0.0451	-0.0530	0.0699	-0.0530	Z
	58	10.3770	14.3781	-35.2663	10.2451	14.2946	-35.2447	0.1319	0.0835	0.0216	0.1576	0.0216	Z
	59	11.0446	23.4487	-35.1737	10.9614	23.3294	-35.1806	0.0832	0.1193	-0.0069	0.1456	-0.0069	Z
	60	11.7855	33.6896	-34.3321	11.7040	33.6521	-34.3534	0.0815	0.0375	-0.0213	0.0922	-0.0213	Z
0-	61	63.5878	38.2855	-31.1503	63.5654	38.2877	-31.2243	0.0224	-0.0022	-0.0740	0.0773	0.0224	Х
R = (2	62	67.8530	38.7935	-29.9051	67.8143	38.7881	-29.9664	0.0387	0.0054	-0.0613	0.0727	0.0391	X, Y
그 를 누	63	71.0144	39.2071	-27.9072	71.0143	39.2067	-27.9824	0.0001	0.0004	-0.0752	0.0752	0.0004	X, Y
A-PILLAR Maximum (X, Y, Z)	64	73.9764	39.6549	-25.7249	73.9398	39.6484	-25.8686	0.0366	0.0065	-0.1437	0.1484	0.0372	X, Y
4 =	65 66	78.5338 81.8081	40.2125 40.8297	-23.8995 -19.9792	78.5227 81.7745	40.1972 40.8190	-24.0176 -20.1427	0.0111	0.0153 0.0107	-0.1181 -0.1635	0.1196 0.1673	0.0189	X, Y X, Y
	C2 000W-1								TOTAL COLUMN				
~ ~	61 62	63.5878	38.2855	-31.1503 -29.9051	63.5654	38.2877 38.7881	-31.2243 -29.9664	0.0224	-0.0022 0.0054	-0.0740 -0.0613	0.0773	-0.0022 0.0054	Y
A-PILLAR Lateral (Y)	63	67.8530 71.0144	38.7935 39.2071	-27.9072	67.8143 71.0143	39.2067	-27.9824	0.0001	0.0054	-0.0613	0.0727 0.0752	0.0004	Y
era	64	73.9764	39.6549	-25.7249	73.9398	39.6484	-25.8686	0.0366	0.0065	-0.1437	0.0732	0.0065	Y
Lat F	65	78.5338	40.2125	-23.8995	78.5227	40.1972	-24.0176	0.0111	0.0063	-0.1437	0.1196	0.0053	Ý
	66	81.8081	40.8297	-19.9792	81.7745	40.8190	-20.1427	0.0336	0.0107	-0.1635	0.1673	0.0107	Y
αε~	67	40.8902	38.5631	-30.7618	40.8598	38.5439	-30.8296	0.0304	0.0192	-0.0678	0.0767	0.0360	X, Y
A III	68	39.2633	41.8568	-22.6236	39.2478	41.8323	-22.6990	0.0155	0.0245	-0.0754	0.0808	0.0290	X, Y
PIL 3×ir	69	44.7577	42.7051	-15.1041	44.7346	42.6899	-15.2158	0.0231	0.0152	-0.1117	0.1151	0.0277	X, Y
B-PILLAR Maximum (X, Y, Z)	70	40.4338	42.8339	-9.8929	40.3645	42.8173	-9.9744	0.0693	0.0166	-0.0815	0.1083	0.0713	X, Y
	67	40.8902	38.5631	-30.7618	40.8598	38.5439	-30.8296	0.0304	0.0192	-0.0678	0.0767	0.0192	Y
3-PILLAR ateral (Y)	68	39.2633	41.8568	-22.6236	39.2478	41.8323	-22.6990	0.0155	0.0245	-0.0754	0.0808	0.0245	Y
PIL	69	44.7577	42.7051	-15.1041	44.7346	42.6899	-15.2158	0.0231	0.0152	-0.1117	0.1151	0.0152	Y
<u>a</u> <u>B</u>	70	40.4338	42.8339	-9.8929	40.3645	42.8173	-9.9744	0.0693	0.0166	-0.0815	0.1083	0.0166	Y

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

Figure F-10. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-7

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

SIDE DASH (Y, Y, Z) (Y)	POINT 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Pretest X (in.) 72.9143 71.8434 69.9285 68.8663 68.1535 68.1635 68.78.5667 81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7365 37.7090	Pretest Y (In.) 16.6880 5.2529 -4.2422 16.2042 5.0405 5.0405 19.7972 20.1141 20.2933 21.5887 21.6816 22.0578 21.5687 21.5687 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006	Pretest Z (in) -19.4727 -20.2201 -20.4960 -13.0913 -12.6875 -11.0558 -1.9242 -0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8576 -36.8058 -36.8058	Posttest X (in.) 72.8664 71.7642 72.0333 69.8682 68.8039 68.89492 81.0101 77.8259 44.7480 558.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8346 54.86827	Posttest Y (in.) 16.6056 5.2104 -4.3120 16.1606 4.9696 19.7284 19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.577 21.4312 -7.5247 2.0511 13.0107 -8.37107	Posttest Z (in.) -19.6648 -20.3828 -20.6897 -13.2712 -12.8491 -11.1685 -2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 3.41600 -34.8715 -34.6903 -33.9380	ΔX ^A (in.) 0.0479 0.0792 -0.0387 0.0603 0.0624 0.0613 0.0685 0.0199 0.0156 -0.0289 0.0313 -0.0301 0.0306 -0.0106 0.0700 -0.0106	ΔΥ ^A (in.) 0.0824 0.0425 -0.0698 0.0436 0.0709 -0.0778 0.0668 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.02699 0.0469 0.0639	ΔZ ^A (in.) -0.1921 -0.1627 -0.1937 -0.1799 -0.1616 -0.1120 -0.1794 -0.1188 -0.0750 -0.11253 -0.0309 -0.0230 -0.0379 -0.0679	Total Δ (in.) 0.2144 0.1869 0.2095 0.1947 0.1872 0.1873 0.2720 0.1327 0.1156 0.1297 0.0501 0.0501 0.1442 0.0628	Crush ^B (in.) 0.2144 0.1869 0.2095 0.1947 0.1872 0.1500 0.0688 0.2035 0.0575 -0.0290 0.0168 0.0302 -0.0058 -0.0288	X, Y, 2 X, Y, 2 X, Y, 2 X, Y, 2
IMPACT SIDE SIDE DOOR PANEL (*)	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	71.8434 71.9946 69.9285 68.8663 68.1535 78.5667 81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9365 37.7090	5.2529 -4.2422 16.2042 5.0405 -5.0562 19.7972 20.1141 20.2933 21.5187 21.6816 22.0578 21.5661 21.4600 -7.4778 2.1150 13.0364 -8.2685 1.5006 10.3410	-20.2201 -20.4960 -13.0913 -12.6875 -11.0558 -1.9242 -0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.85797 -36.8058	71.7642 72.0333 69.8682 68.8039 68.8039 68.0922 78.4982 81.0101 77.8259 44.7480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	5.2104 -4.3120 16.1606 -5.1340 19.7284 19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-20.3828 -20.6897 -13.2712 -12.8491 -11.1685 -2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0792 -0.0387 0.0603 0.0624 0.0613 0.0685 0.0199 0.0156 0.0545 -0.0208 -0.0208 -0.0313 -0.0441 0.0306 0.0307 0.0306	0.0425 -0.0698 0.0436 0.0709 -0.0778 0.0688 0.2035 -0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 0.0288	-0.1627 -0.1937 -0.1799 -0.1616 -0.1127 -0.1602 -0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0330 -0.1379 -0.0674	0.1859 0.2095 0.1947 0.1872 0.1500 0.1873 0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442	0.1859 0.2095 0.1947 0.1872 0.1500 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288	Y Y Y Y Y Y
IMPACT SIDE SIDE DOOR PANEL (*)	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	71.9946 69.9285 68.8663 68.1535 78.5667 81.0300 77.8416 44.8025 58.0803 66.7009 47.6273 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9365 37.7090	-4.2422 16.2042 5.0405 5.0405 19.7972 20.1141 20.2933 21.5187 21.6816 22.0578 21.5661 21.4600 -7.4778 2.1150 13.0354 -8.2686 1.5006 10.3410	-20.4960 -13.0913 -12.6875 -11.0558 -1.9242 -0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 -2.2979 -34.8041 -34.6105 -33.8575 -36.9058	72.0333 69.8682 68.8039 68.0922 78.4982 81.0101 77.8259 44.77480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5555 59.5553 54.8345	-4.3120 16.1606 4.9696 -5.1340 19.97284 19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-20.6897 -13.2712 -12.8491 -11.1685 -2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	-0.0387 0.0603 0.0624 0.0613 0.0685 0.0199 0.0156 0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	-0.0698 0.0436 0.0709 -0.0778 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1937 -0.1799 -0.1616 -0.1127 -0.1602 -0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.2095 0.1947 0.1872 0.1500 0.1873 0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442	0.2095 0.1947 0.1872 0.1500 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.30302 -0.0056 0.0288 -0.0674	X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y
IMPACT SIDE SIDE DOOR PANEL (*)	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	69.9285 68.8663 68.1535 78.5667 81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	16.2042 5.0405 -5.0562 19.7972 20.1141 20.2933 21.5187 21.6816 22.0578 21.5661 21.4600 13.0354 -8.2685 1.5006 10.3410	-13.0913 -12.6875 -11.0558 -1.9242 -0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.979 -36.9058	69.8682 68.8039 68.0922 78.4982 81.0101 77.8259 44.7480 56.1011 66.7298 47.5960 57.9923 72.4012 60.7951 60.7951 59.5553 54.8345	16.1606 4.9696 -5.1340 19.7284 19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-13.2712 -12.8491 -11.1685 -2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0603 0.0624 0.0613 0.0685 0.0199 0.0156 0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	0.0436 0.0709 -0.0778 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1799 -0.1616 -0.1127 -0.1602 -0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.1947 0.1872 0.1500 0.1873 0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	0.1947 0.1872 0.1500 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0308 -0.0056 0.0288 -0.0674	X, Y, 2 X, Y, 2 Y Y Y Y Y Y Y Y
IMPACT SIDE SIDE DOOR PANEL (*)	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	68.8663 68.1535 78.5667 81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9365 37.7090	5.0405 -5.0562 19.7972 20.1141 20.2933 21.5187 21.6816 22.0578 21.5661 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006 10.3410	-12.6875 -11.0558 -1.9242 -0.4665 -1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.9058	68.8039 68.0922 78.4982 81.0101 77.8259 44.7480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	4.9696 -5.1340 19.7284 19.9106 20.2358 21.5477 21.6774 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-12.8491 -11.1685 -2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0624 0.0613 0.0685 0.0199 0.0156 0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106	0.0709 -0.0778 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1616 -0.1127 -0.1602 -0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.1872 0.1500 0.1873 0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	0.1872 0.1500 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0674	X, Y, 2 X, Y, 2 Y Y Y Y Y Y Y
IMPACT SIDE DOOR (Y)	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	68.1535 78.5667 81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9365 37.7090	-5.0562 19.7972 20.1141 20.2933 21.5187 21.6816 22.0578 21.5651 21.46600 -7.4778 2.1150 13.0364 -8.2685 1.5006 10.3410	-11.0558 -1.9242 -0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.8058	68.0922 78.4982 81.0101 77.8259 44.7480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	-5.1340 19.7284 19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-11.1685 -2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0613 0.0685 0.0199 0.0156 0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	-0.0778 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1127 -0.1602 -0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.1500 0.1873 0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	0.1500 0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0674	X, Y, Z Y Y Y Y Y Y Y Y
IMPACT SIDE DOOR (Y)	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	78.5667 81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.438 60.9629 60.8031 59.5425 54.8362 54.7363 37.7090	19.7972 20.1141 20.2933 21.5187 21.68816 22.0578 21.56651 21.4660 -7.4778 2.1150 13.0354 -8.2685 1.5006	-1.9242 -0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8576 -36.9058	78.4982 81.0101 77.8259 44.7480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	19.7284 19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-2.0844 -0.6459 1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0685 0.0199 0.0156 0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106	0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1602 -0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.1873 0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	0.0688 0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0674	Y Y Y Y Y Y Y
IMPACT SIDE DOOR (Y)	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	81.0300 77.8415 44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	20.1141 20.2933 21.5187 21.6816 22.0578 21.5651 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006 10.3410	-0.4665 1.6369 -15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8576 -36.9058	81.0101 77.8259 44.7480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	19.9106 20.2358 21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	1.5181 -15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0199 0.0156 0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1794 -0.1188 -0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.2720 0.1329 0.0971 0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	0.2035 0.0575 -0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0674	Y Y Y Y Y
IMPACT SIDE DOOR (Y)	40 41 42 43 44 45 46 47 48 49 50 51 52 53	44.8025 58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	21.5187 21.6816 22.0578 21.5687 21.5651 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006	-15.4002 -16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.9797 -36.8058	44.7480 58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	21.5477 21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-15.4752 -16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0545 -0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	-0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.0750 -0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.0971 0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	-0.0290 0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0674	Y Y Y Y Y
	41 42 43 44 45 46 47 48 49 50 51 52 53	58.0803 66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	21.6816 22.0578 21.5687 21.5651 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006	-16.0591 -13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.9797 -36.8058	58.1011 66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	21.6714 22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-16.1724 -13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	-0.0208 -0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1133 -0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.1156 0.1297 0.0534 0.0501 0.1442 0.0828	0.0102 0.0168 0.0302 -0.0056 0.0288 -0.0674	Y Y Y Y
	42 43 44 45 46 47 48 49 50 51 52 53	66.7009 47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	22.0578 21.5687 21.5651 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006	-13.5128 0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.9797 -36.8058	66.7298 47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	22.0410 21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	-13.6381 0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	-0.0289 0.0313 -0.0441 0.0306 -0.0106 0.0070	0.0168 0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.1253 -0.0309 -0.0230 -0.1379 -0.0674	0.1297 0.0534 0.0501 0.1442 0.0828	0.0168 0.0302 -0.0056 0.0288 -0.0674	Y Y Y
	43 44 45 46 47 48 49 50 51 52 53	47.6273 57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	21.5687 21.5651 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006 10.3410	0.4069 3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.9797 -36.8058	47.5960 57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	21.5385 21.5707 21.4312 -7.5247 2.0511 13.0107	0.3760 3.4479 2.1600 -34.8715 -34.6903 -33.9380	0.0313 -0.0441 0.0306 -0.0106 0.0070	0.0302 -0.0056 0.0288 -0.0469 0.0639	-0.0309 -0.0230 -0.1379 -0.0674	0.0534 0.0501 0.1442 0.0828	0.0302 -0.0056 0.0288 -0.0674	Y Y Y
	44 45 46 47 48 49 50 51 52 53	57.9482 72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	21.5651 21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006 10.3410	3.4709 2.2979 -34.8041 -34.6105 -33.8575 -36.9797 -36.8058	57.9923 72.4012 60.9735 60.7961 59.5553 54.8345	21.5707 21.4312 -7.5247 2.0511 13.0107	3.4479 2.1600 -34.8715 -34.6903 -33.9380	-0.0441 0.0306 -0.0106 0.0070	-0.0056 0.0288 -0.0469 0.0639	-0.0230 -0.1379 -0.0674	0.0501 0.1442 0.0828	-0.0056 0.0288 -0.0674	Y
	45 46 47 48 49 50 51 52 53	72.4318 60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	21.4600 -7.4778 2.1150 13.0354 -8.2685 1.5006 10.3410	2.2979 -34.8041 -34.6105 -33.8575 -36.9797 -36.8058	72.4012 60.9735 60.7961 59.5553 54.8345	21.4312 -7.5247 2.0511 13.0107	2.1600 -34.8715 -34.6903 -33.9380	0.0306 -0.0106 0.0070	0.0288 -0.0469 0.0639	-0.1379 -0.0674	0.1442 0.0828	0.0288 -0.0674	Y
	46 47 48 49 50 51 52 53	60.9629 60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	-7.4778 2.1150 13.0354 -8.2685 1.5006 10.3410	-34.8041 -34.6105 -33.8575 -36.9797 -36.8058	60.9735 60.7961 59.5553 54.8345	-7.5247 2.0511 13.0107	-34.8715 -34.6903 -33.9380	-0.0106 0.0070	-0.0469 0.0639	-0.0674	0.0828	-0.0674	
ROOF - (Z)	47 48 49 50 51 52 53	60.8031 59.5425 54.8362 54.7136 53.9355 37.7090	2.1150 13.0354 -8.2685 1.5006 10.3410	-34.6105 -33.8575 -36.9797 -36.8058	60.7961 59.5553 54.8345	2.0511 13.0107	-34.6903 -33.9380	0.0070	0.0639				
ROOF - (Z)	48 49 50 51 52 53	59.5425 54.8362 54.7136 53.9355 37.7090	13.0354 -8.2685 1.5006 10.3410	-33.8575 -36.9797 -36.8058	59.5553 54.8345	13.0107	-33.9380				0.1025	-0.0798	Z
ROOF - (Z)	50 51 52 53	54.8362 54.7136 53.9355 37.7090	-8.2685 1.5006 10.3410	-36.9797 -36.8058	54.8345			-0.0120	0.0247	-0.0805	0.0852	-0.0805	Z
ROOF - (Z)	51 52 53	53.9355 37.7090	10.3410		54 6827		-37.0562	0.0017	-0.1030	-0.0765	0.1283	-0.0765	Z
R00F - (Z)	52 53	37.7090		26 1072		1.4572	-36.8891	0.0309	0.0434	-0.0833	0.0989	-0.0833	Z
ROOF - (53		-7 5382		53.9464	10.3205	-36.2639	-0.0109	0.0205	-0.0767	0.0801	-0.0767	Z
ROOF				-38.3401	37.6414	-7.4982	-38.3881	0.0676	0.0400	-0.0480	0.0921	-0.0480	Z
8 =		37.5806	-2.0651 10.6150	-38.2797	37.5469 38.6878	-2.0563	-38.3240 -37.3540	0.0337 -0.0065	0.0088 0.0225	-0.0443 -0.0436	0.0564 0.0495	-0.0443 -0.0436	Z
	54 55	38.6813 22.2615	-6.9081	-37.3104 -37.8179	22.2195	10.5925 -6.9359	-37.8467	0.0420	-0.0278	-0.0288	0.0495	-0.0436	Z
	56	21.9604	0.2310	-37.6530	21.9483	0.2481	-37.6757	0.0121	-0.0171	-0.0227	0.0309	-0.0227	Z
	57	22.1720	9.5523	-36.9507	22.1457	9.5283	-36.9671	0.0263	0.0240	-0.0164	0.0392	-0.0164	Z
	58	7.2849	-9.4245	-35.6423	7.1162	-9.4869	-35.6015	0.1687	-0.0624	0.0408	0.1844	0.0408	Z
	59	7.7037	-0.3385	-35.6268	7.5877	-0.4358	-35.5997	0.1160	-0.0973	0.0271	0.1538	0.0271	Z
	60	8.1665	9.9255	-34.8722	8.0543	9.9085	-34.8434	0.1122	0.0170	0.0288	0.1171	0.0288	Z
	61	59.8348	15.9657	-31.9354	59.7851	15.9664	-31.9964	0.0497	-0.0007	-0.0610	0.0787	0.0497	Х
₩ 6 F	62	64.0891	16.6007	-30.7115	64.0247	16.5900	-30.7624	0.0644	0.0107	-0.0509	0.0828	0.0653	X, Y
⋣ ∰ ∑ ├ ─	63 64	67.2455	17.1174 17.6644	-28.7297 -26.5630	67.2214 70.1437	17.1082 17.6430	-28.7968 -26.7001	0.0241 0.0586	0.0092	-0.0671 -0.1371	0.0719 0.1506	0.0258 0.0624	X, Y X, Y
A-PILLAR Maximum (X, Y, Z)	65	70.2023 74.7495	18.3619	-24.7604	74.7187	18.3279	-24.8749	0.0308	0.0214	-0.1371	0.1306	0.0624	X, Y
	66	78.0204	19.1011	-20.8585	77.9705	19.0632	-21.0200	0.0499	0.0379	-0.1615	0.1732	0.0627	X, Y
 	61	59.8348	15.9657	-31.9354	59.7851	15.9664	-31.9964	0.0497	-0.0007	-0.0610	0.0787	-0.0007	Y
\$8 □	62	64.0891	16.6007	-30.7115	64.0247	16.5900	-30.7624	0.0644	0.0107	-0.0509	0.0828	0.0107	Y
A-PILLAR Lateral (Y)	63	67.2455	17.1174	-28.7297	67.2214	17.1082	-28.7968	0.0241	0.0092	-0.0671	0.0719	0.0092	Y
ate L	64	70.2023	17.6644	-26.5630	70.1437	17.6430	-26.7001	0.0586	0.0214	-0.1371	0.1506	0.0214	Y
~ "	65	74.7495	18.3619	-24.7604	74.7187	18.3279	-24.8749	0.0308	0.0340	-0.1145	0.1233	0.0340	Y
	66	78.0204	19.1011	-20.8585	77.9705	19.0632	-21.0200	0.0499	0.0379	-0.1615	0.1732	0.0379	Y
B-PILLAR Maximum (X, Y, Z)	67	37.1397	15.6243	-31.4585	37.0829	15.6107	-31.4931	0.0568	0.0136	-0.0346	0.0679	0.0584	X, Y
∄ ∰ ≻ ├	68 69	35.4538 40.9512	18.9398 20.0008	-23.3412 -15.8509	35.4205 40.9170	18.9083 19.9638	-23.3764 -15.9257	0.0333 0.0342	0.0315 0.0370	-0.0352 -0.0748	0.0578 0.0902	0.0458 0.0504	X, Y X, Y
유교육	70	36.6451	20.0544	-10.6236	36.5696	20.0076	-10.6640	0.0342	0.0370	-0.0148	0.0902	0.0304	X, Y
	67	37.1397	15.6243	-31.4585	37.0829	15.6107	-31.4931	0.0568	0.0136	-0.0346	0.0679	0.0136	Y
₹ <u></u>	68	35.4538	18.9398	-23.3412	35.4205	18.9083	-23.3764	0.0333	0.0315	-0.0352	0.0578	0.0315	Y
B-PILLAR	69	40.9512	20.0008	-15.8509	40.9170	19.9638	-15.9257	0.0342	0.0370	-0.0748	0.0902	0.0370	Y
를 교	70	36.6451	20.0544	-10.6236	36.5696	20.0076	-10.6640	0.0755	0.0468	-0.0404	0.0976	0.0468	Y
Positive value	es denote	e deformation	on as inward	d toward the	occupant c	ompartmen	t, negative v	alues denot	e deformation	ons outward	away from	the occupan	nt

Figure F-11. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-7

I_{WRSF}	
Report	
No. TRI	Decem
AwRSF Report No. TRP-03-496b-25	December 10, 2023
b-25	7077

Location (in.) Deformation (in.) Deformation $^{\circ}$ Roof 0.0 ≤ 4 Z Windshield $^{\circ}$ 0.0 ≤ 3 X, Z A-Pillar Maximum 0.0 ≤ 5 X, Y B-Pillar Lateral 0.0 ≤ 3 Y B-Pillar Maximum 0.1 ≤ 5 X, Y B-Pillar Lateral 0.0 ≤ 3 Y B-Pillar Lateral 0.0 ≤ 3 Y Toe Pan - Wheel Well 0.2 ≤ 9 Z Side Front Panel 0.1 ≤ 12 Y Side Door (above seat) -0.1 ≤ 12 Y Side Door (below seat) 0.0 Side Door (below seat) 0.0	ASH Allowable eformation (in.) ≤ 4 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 9 ≤ 12	Directions o Deformation Z X, Z X, Y Y X, Y Y Z
Naximum Deformation Nash Allowable Directions of (in.) Deformation Deform	eformation (in.) ≤ 4 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 9	Deformation Z X, Z X, Y Y X, Y
Location Deformation A,B (in.) MASH Allowable Deformation (in.) Directions of Deformation Deformation $\frac{1}{2}$ Location Deformation A,B (in.) MASH Allowable Deformation $\frac{1}{2}$ Roof 0.0 ≤ 4 Z Windshield $\frac{1}{2}$ 0.0 ≤ 3 X, Z A-Pillar Maximum 0.0 ≤ 3 Y B-Pillar Maximum 0.1 ≤ 5 X, Y B-Pillar Lateral 0.0 ≤ 3 Y B-Pillar Maximum 0.1 ≤ 5 B-Pillar Lateral 0.0 ≤ 3 B-Pillar Lateral 0.0 ≤ 3 B-Pillar Lateral 0.0 ≤ 12 Side Front Panel 0.1 ≤ 12 Y Side Door (above seat) -0.1 ≤ 12 Y Side Door (below seat) 0.0 Side Door (below seat) 0.0	eformation (in.) ≤ 4 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 9	Deformation Z X, Z X, Y Y X, Y
Windshield ^D 0.0 ≤ 3 X, Z A-Pillar Maximum 0.0 ≤ 5 X, Y A-Pillar Lateral 0.0 ≤ 3 Y B-Pillar Maximum 0.1 ≤ 5 X, Y B-Pillar Lateral 0.0 ≤ 3 Y B-Pillar Lateral 0.0 ≤ 3 Y B-Pillar Maximum 0.1 B-Pillar Maximum 0.1 B-Pillar Lateral 0.0 0.0 Toe Pan - Wheel Well 0.0 Toe Pan - Wheel Well 0.2 Side Front Panel 0.2 Side Door (above seat) -0.1 ≤ 9 Y Side Door (below seat) -0.0 Side Door (below seat) 0.0	≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 9	X, Z X, Y Y X, Y
A-Pillar Maximum 0.0 ≤5 X, Y A-Pillar Lateral 0.0 ≤3 Y A-Pillar Lateral 0.0 ≤3 X, Y B-Pillar Lateral 0.0 ≤3 Y B-Pillar Maximum 0.1 B-Pillar Maximum 0.1 B-Pillar Maximum 0.1 B-Pillar Maximum 0.1 B-Pillar Lateral 0.0 Toe Pan - Wheel Well 0.2 ≤9 Z Side Front Panel 0.2 Side Front Panel 0.2 Side Door (above seat) 0.0 Side Door (below seat) 0.0	≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 9	X, Y Y X, Y
A-Pillar Lateral 0.0 ≤3 Y B-Pillar Maximum 0.1 ≤5 X, Y B-Pillar Lateral 0.0 ≤3 Y B-Pillar Lateral 0.0 ≤3 Y B-Pillar Lateral 0.0 53 Y Toe Pan - Wheel Well 0.2 ≤9 Z Side Front Panel 0.1 ≤12 Y Side Door (above seat) -0.1 ≤9 Y Side Door (below seat) -0.1 ≤12 Y Side Door (below seat) 0.0	≤ 3 ≤ 5 ≤ 3 ≤ 9	Y X, Y Y
B-Pillar Maximum	≤ 5 ≤ 3 ≤ 9	X, Y Y
B-Pillar Lateral 0.0 ≤3 Y Toe Pan - Wheel Well 0.2 ≤9 Z Side Front Panel 0.1 ≤12 Y Side Door (above seat) 0.1 ≤9 Y Side Door (below seat) 0.0 ≤3 Y Toe Pan - Wheel Well 0.2 Side Front Panel 0.2 Side Front Panel 0.2 Side Door (above seat) 0.0 Side Door (below seat)	≤3 ≤9	Υ
Toe Pan - Wheel Well 0.2 ≤ 9 Z Toe Pan - Wheel Well 0.2 Side Front Panel 0.1 ≤ 12 Y Side Front Panel 0.2 Side Door (above seat) -0.1 ≤ 9 Y Side Door (above seat) 0.0 Side Door (below seat) -0.1 ≤ 12 Y Side Door (below seat) 0.0	≤ 9	
Side Front Panel 0.1 ≤ 12 Y Side Front Panel 0.2 Side Door (above seat) -0.1 ≤ 9 Y Side Door (above seat) 0.0 Side Door (below seat) -0.1 ≤ 12 Y Side Door (below seat) 0.0	10-10-100	
Side Door (above seat) -0.1 ≤ 9 Y Side Door (above seat) 0.0 Side Door (below seat) -0.1 ≤ 12 Y Side Door (below seat) 0.0		Y
Side Door (below seat) -0.1 ≤ 12 Y Side Door (below seat) 0.0	≤ 9	Y
	≤ 12	Y
Floor Pan 0.2 ≤ 12 Z Floor Pan 0.2	≤ 12	Z
Dash - no MASH requirement 0.2 NA X, Y, Z Dash - no MASH requirement 0.2	NA	X, Y, Z
Items highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant com For Toe Pan - Wheel Well the direction of defromation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformatifications. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of referenced.	ation may include is positive and in	ntruding into the
Notes on vehicle crush:		

Figure F-12. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-7

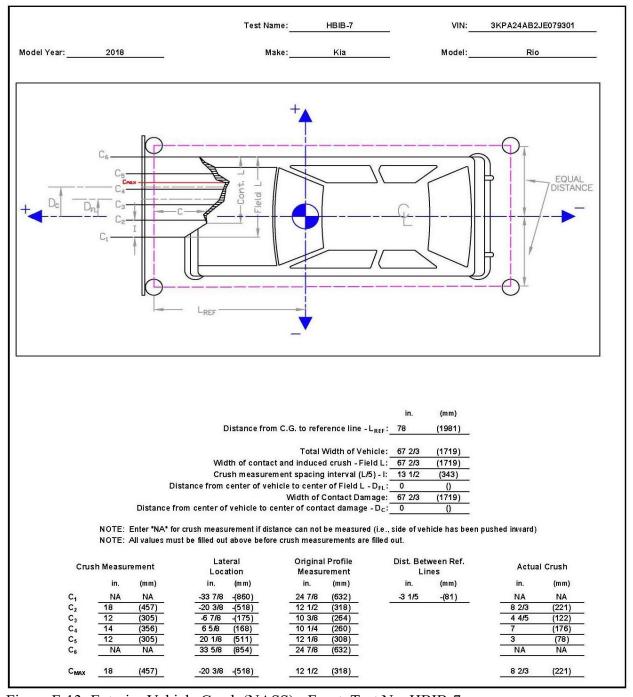


Figure F-13. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-7

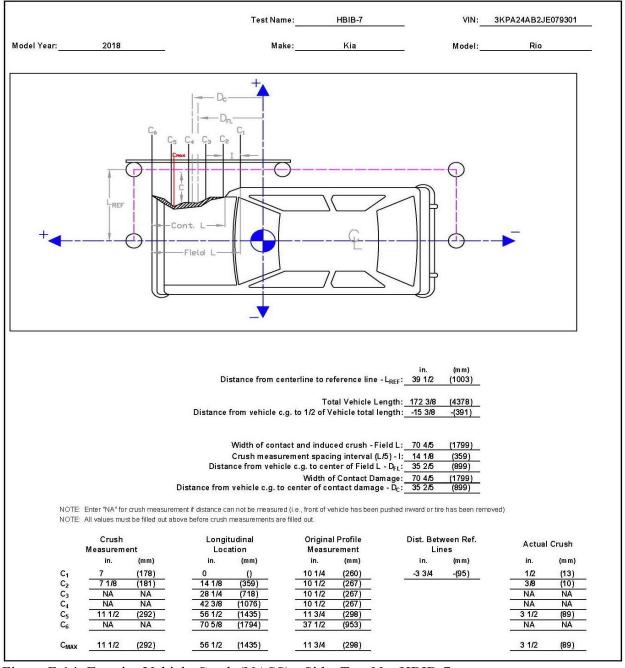


Figure F-14. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-7

Model Year.	20)18	9		Test Name; Make:		IB-8 am			VIN: Model:	1C6R	R6GT7JS1 1500 Hem	
							FORMATION PA						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^A (in.)	ΔΥ ^A (in.)	ΔΖ ^A (in.)	Total ∆ (in.)	Crush ⁸ (in.)	Direction for Crush ^c
	1	52.8436	36.3912	-8.1140	52.5945	36.4144	-7.8223	0.2491	-0.0232	-0.2917	0.3843	0.2491	X
	2	53.9022	40.5399	-6.3042	53.7555	40.4053	-5.9766	0.1467	0.1346	-0.3276	0.3834	0.1467	X
- L	3	55.2826	44.0977	-3.1928	55.2479	43.8346	-2.8554	0.0347	0.2631	-0.3374	0.4293	0.0347	X
TOE PAN WHEEL WELL (X, Z)	4	55.7477	49.4071	-2.6492	55.6691	49.1686	-2.3955	0.0786	0.2385	-0.2537	0.3570	0.0786	X
TOE PAN HEEL WE (X, Z)	5	55.9403	55.1128	-2.7295	55.6858	54.6752	-2.7023	0.2545	0.4376	-0.0272	0.5070	0.2545	X
目出め	6	49.3863	35.8829	-6.2613	49.3468	35.7259	-5.9775	0.0395	0.1570	-0.2838	0.3267	0.0395	X
일 및	7	50.3328	39.7912	-4.1401	50.3129	39.5413	-3.7593	0.0199	0.2499	-0.3808	0.4559	0.0199	X
3	8	51.5223	43.5155	-0.9464	51.4975	43.2651	-0.5783	0.0248	0.2504	-0.3681	0.4459	0.0248	X
	9	51.8358	49.2998	-0.4778	51.8142	49.1110	-0.2632	0.0216	0.1888	-0.2146	0.2866	0.0216	X
	10	51.9463	55.1504	-0.5540	51.9305	54.8405	-0.5929	0.0158	0.3099	0.0389	0.3127	0.0420	X,Z
	11	46.2840	35.6407	-4.7684	46.3249	35.3790	-4.3929	-0.0409	0.2617	-0.3755	0.4595	-0.3755	Z
	12	47.4879	39.0197	-1.4132	47.5188	38.8521	-1.0511	-0.0309	0.1676	-0.3621	0.4002	-0.3621	Z
	13	48.2593	43.0511	0.1942	48.2467	42.8937	0.5076	0.0126	0.1574	-0.3134	0.3509	-0.3134	Z
İ	14	48.8423	49.2041	0.0972	48.8214	49.0757	0.3832	0.0209	0.1284	-0.2860	0.3142	-0.2860	Z
	15	48.4887	54.8250	0.0910	48.4538	54.5710	0.2797	0.0349	0.2540	-0.1887	0.3183	-0.1887	Z
	16	43.7849	35.5506	-3.7808	43.8214	35.3930	-3.5280	-0.0365	0.1576	-0.2528	0.3001	-0.2528	Z
	17	44.7198	38.4138	0.1690	44.8801	38.7386	0.4943	-0.1603	-0.3248	-0.3253	0.4868	-0.3253	Z
_	18	45.0311	42.7557	0.2403	45.0251	42.6332	0.4984	0.0060	0.1225	-0.2581	0.2858	-0.2581	Z
FLOOR PAN (Z)	19	45.7389	49.2485	0.0884	45.4078	49.3349	0.3474	0.3311	-0.0864	-0.2590	0.4292	-0.2590	Z
40	20	45.7403	54.6785	0.0880	45.7327	54.5183	0.2471	0.0076	0.1602	-0.1591	0.2259	-0.1591	Z
ğ (3	21	39.1274	35.7318	-2.9483	39.0455	35.5871	-2.7840	0.0819	0.1447	-0.1643	0.2338	-0.1643	Z
7	22	39.6825	38.2042	0.3526	39.6452	38.0593	0.5824	0.0373	0.1449	-0.2298	0.2742	-0.2298	Z
	23	39.8767	42.9137	0.2109	39.8719	42.7810	0.3889	0.0048	0.1327	-0.1780	0.2221	-0.1780	Z
12	24	39.8927	48.6945	0.0870	39.9033	48.6118	0.2927	-0.0106	0.0827	-0.2057	0.2220	-0.2057	Z
	25	39.9010	54.5619	0.0702	40.0016	54.3621	0.2185	-0.1006	0.1998	-0.1483	0.2684	-0.1483	Z
I	26	34.8524	36.0299	-2.1249	34.8170	35.9265	-1.9746	0.0354	0.1034	-0.1503	0.1858	-0.1503	Z
	27	34.8543	38,7995	-0.3904	34.8621	38.7443	-0.2354	-0.0078	0.0552	-0.1550	0.1647	-0.1550	Z
	28	34.8383	43.4958	-0.5140	34.8740	43.4009	-0.4146	-0.0357	0.0949	-0.0994	0.1420	-0.0994	Z
	29	34.7405	48.5351	-0.6293	34.7682	48.5033	-0.6039	-0.0277	0.0318	-0.0254	0.0492	-0.0254	Z
T I	30	35.1054	54.8859	-0.7740	35.2110	54.8097	-0.8260	-0.1056	0.0762	0.0520	0.1402	0.0520	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

deforming Inward toward the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

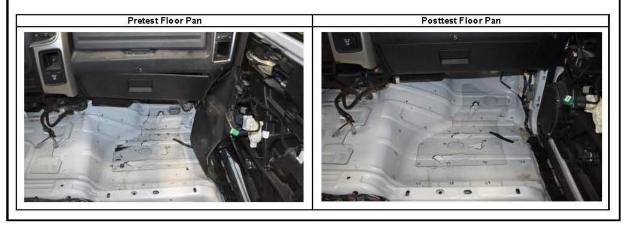


Figure F-15. Floor Pan Deformation Data – Set 1, Test No. HBIB-8

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

odel Year.	20)18			Test Name: Make:		IB-8 am			VIN: Model:			
							FORMATION PA	288					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ⁸ (in.)	Direction for Crush ⁰
	1	44.4207	11.8357	-3.4289	44.1518	11.9496	-3.2364	0.2689	-0.1139	-0.1925	0.3498	0.2689	X
	2	45.5676	15.9255	-1.5404	45.3976	15.8769	-1.3112	0.1700	0.0486	-0.2292	0.2895	0.1700	X
- L	.3	47.0191	19.3934	1.6394	46.9637	19.2098	1.8775	0.0554	0.1836	-0.2381	0.3057	0.0554	X
TOE PAN - WHEEL WELL (X, Z)	4	47.6029	24.6800	2.2816	47.4973	24.5234	2.4452	0.1056	0.1566	-0.1636	0.2499	0.1056	X
ৰু ইন	5	47.9251	30.3803	2.3067	47.6296	30.0336	2.2503	0.2955	0.3467	0.0564	0.4590	0.3008	X, Z
目記め	6	40.9472	11.3723	-1.5947	40.8914	11.2922	-1.4028	0.0558	0.0801	-0.1919	0.2153	0.0558	X
오뿔 [7	41.9759	15.2185	0.6004	41.9389	15.0405	0.8915	0.0370	0.1780	-0.2911	0.3432	0.0370	X
3	8	43.2400	18.8557	3.8651	43.2035	18.6732	4.1463	0.0365	0.1825	-0.2812	0.3372	0.0365	X
	9	43.6831	24.6218	4.4407	43.6432	24.5036	4.5798	0.0399	0.1182	-0.1391	0.1868	0.0399	X
	10	43.9265	30.4688	4.4724	43.8798	30.2348	4.3664	0.0467	0.2340	0.1060	0.2611	0.1158	X, Z
	11	37.8358	11.1733	-0.1143	37.8638	10.9768	0.1775	-0.0280	0.1965	-0.2918	0.3529	-0.2918	Z
	12	39,1061	14.4621	3.3055	39.1325	14.3553	3.5880	-0.0264	0.1068	-0.2825	0.3032	-0.2825	Z
	13	39.9640	18.4448	4.9886	39.9461	18.3482	5.2277	0.0179	0.0966	-0.2391	0.2585	-0.2391	Z
3	14	40.6866	24.5837	5.0062	40.6508	24.5180	5.2283	0.0358	0.0657	-0.2221	0.2344	-0.2221	Z
	15	40.4605	30.2103	5.1025	40.3988	30.0208	5.2368	0.0617	0.1895	-0.1343	0.2403	-0.1343	Z
	16	35.3325	11.1219	0.8650	35.3617	11.0258	1.0451	-0.0292	0.0961	-0.1801	0.2062	-0.1801	Z
	17	36.3203	13.8903	4.8691	36.4928	14.2659	5.1334	-0.1725	-0.3756	-0.2643	0.4906	-0.2643	Z
_	18	36.7298	18.2220	5.0210	36.7198	18.1557	5.2165	0.0100	0.0663	-0.1955	0.2067	-0.1955	Z
FLOOR PAN (Z)	19	37.5850	24.6987	4.9903	37.2433	24.8496	5.2013	0.3417	-0.1509	-0.2110	0.4290	-0.2110	Z
Z) (Z)	20	37.7095	30.1264	5.0898	37.6771	30.0260	5.2059	0.0324	0.1004	-0.1161	0.1569	-0.1161	Z
Ď.	21	30.6777	11.3936	1.6888	30.5913	11.3051	1.7976	0.0864	0.0885	-0.1088	0.1647	-0.1088	Z
Ä	22	31.2790	13.7919	5.0361	31.2449	13.6952	5.2130	0.0341	0.0967	-0.1769	0.2045	-0.1769	Z
	23	31.5803	18.4976	4.9814	31.5707	18.4141	5.1152	0.0096	0.0835	-0.1338	0.1580	-0.1338	Z
	24	31.7277	24.2778	4.9639	31.7248	24.2437	5.1374	0.0029	0.0341	-0.1735	0.1768	-0.1735	Z
	25	31.8691	30.1428	5.0550	31.9440	29.9910	5.1799	-0.0749	0.1518	-0.1249	0.2104	-0.1249	Z
	26	26.4082	11,7737	2.5067	26.3714	11.7168	2.6180	0.0368	0.0569	-0.1113	0.1303	-0.1113	Z
	27	26.4678	14.5103	4.2918	26.4768	14,4971	4.4140	-0.0090	0.0132	-0.1222	0.1232	-0.1222	Z
	28	26.5586	19.2072	4.2545	26.5865	19.1551	4.3295	-0.0279	0.0521	-0.0750	0.0955	-0.0750	Z
	29	26.5754	24.2487	4.2316	26.5881	24.2614	4.2439	-0.0127	-0.0127	-0.0123	0.0218	-0.0123	Z
	30	27.0847	30.5911	4.2046	27.1632	30.5603	4.1496	-0.0785	0.0308	0.0550	0.1007	0.0550	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

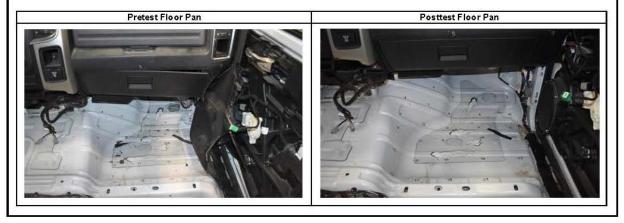


Figure F-16. Floor Pan Deformation Data – Set 2, Test No. HBIB-8

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

lodel Year:	20	118			Make:		am	2000		Model:		1500 Hem	1)
				PA	Control of the Contro		FORMATI ERIOR CR	TOTAL PROPERTY OF THE PARTY.	Т1				
	7542 5565 486 555 556	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y	Posttest Z	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directio for
	POINT	(in.)	(in.)	(in.)		3.22-02-03	32.50			(410.00)	- AND CORPORATE OF THE PARTY OF	V	Crush
3090	31 32	48.1916 46.5330	54.2202 43.5345	-32.0643 -32.0864	47.9315 46.4172	53.9252 43.3809	-32.1396 -32.2058	0.2601 0.1158	0.2950 0.1536	-0.0753 -0.1194	0.4004 0.2264	0.4004 0.2264	X, Y, 2 X, Y, 2
DASH (X, Y, Z)	33	46.5515	27.2198	-32.5009	46.4172	27.1119	-32.2058	0.1156	0.1079	-0.1194	0.2200	0.2200	X, Y, 2
AS. ≻.	34	42.4284	55.9678	-21.1121	42.0789	55.5088	-21.1137	0.3495	0.4590	-0.0016	0.5769	0.5769	X, Y, 2
_ ×	35	41.6879	43.7828	-20.9267	41.6038	43.3223	-21.1062	0.0841	0.4605	-0.1795	0.5014	0.5014	X, Y, 2
	36	39.8467	26.7698	-24.6837	39.8033	26.5755	-24.7626	0.0434	0.1943	-0.0789	0.2142	0.2142	X, Y, 2
	37	51.5566	58.5952	-9.1057	51.3594	55.8167	-9.2130	0.1972	2.7785	-0.1073	2.7876	2.7785	Y
SIDE PANEL	38	53.1402	58.6616	-4.0262	53.0276	57.1648	-4.3505	0.1126	1.4968	-0.3243	1.5357	1.4968	Y
	39	51.0200	58.6595	-2.3578	50.9813	57.2837	-2.6069	0.0387	1.3758	-0.2491	1.3987	1.3758	Y
IMPACT SIDE DOOR (Y)	40	19.6514	60.6994	-23.4906	19.0308	61.1007	-23.8357	0.6206	-0.4013	-0.3451	0.8156	-0.4013	Y
IS K	41 42	28.2320 38.8924	60.6241 60.5922	-23.2556 -20.7489	27.5700 38.1263	60.5392 59.4733	-23.5815 -21.0476	0.6620 0.7661	0.0849 1.1189	-0.3259 -0.2987	0.7427 1.3885	0.0849 1.1189	Y
385	43	21.7811	61.3254	-7.9810	21.1371	61.4553	-8.3343	0.6440	-0.1299	-0.2567	0.7459	-0.1299	Y
PA D	44	28.6477	61.1711	-6.6854	27.9067	60.5233	-6.9695	0.7410	0.6478	-0.2841	1.0244	0.6478	Y
≥	45	37.0890	62.0215	-7.3229	36.3072	61.1532	-7.7864	0.7818	0.8683	-0.4635	1.2570	0.8683	Y
	46	38.7036	26.1611	-47.3758	38.4595	26.1833	-47.5366	0.2441	-0.0222	-0.1608	0.2931	-0.1608	Z
	47	37.7694	37.5064	-47.3617	37.5714	37.5016	-47.5753	0.1980	0.0048	-0.2136	0.2913	-0.2136	Z
	48	34.0585	50.0644	-47.1839	33.9700	50.0859	-47.4330	0.0885	-0.0215	-0.2491	0.2652	-0.2491	Z
	49	31.5784	25.6611	-50.2908	31.5777	25.6689	-50.3410	0.0007	-0.0078	-0.0502	0.0508	-0.0502	Z
	50 51	30.8881 28.1254	35.5924 46.5879	-50.3847 -50.2919	30.8881 28.0472	35.5800 46.5720	-50.4929 -50.4908	0.0000	0.0124 0.0159	-0.1082 -0.1989	0.1089 0.2143	-0.1082 -0.1989	Z
ROOF - (Z)	52	17.4010	25.0188	-51.7293	17.4322	24.9822	-51.7799	-0.0312	0.0366	-0.0506	0.0698	-0.1505	Z
	53	15.8460	33.9553	-51.8718	15.9172	33.8952	-51.9636	-0.0712	0.0601	-0.0918	0.1308	-0.0918	Z
	54	13.2275	44.8057	-51.6854	13.1975	44.7505	-51.8351	0.0300	0.0552	-0.1497	0.1623	-0.1497	Z
₾	55	-1.6742	24.8556	-52.2077	-1.6521	24.7427	-52.2722	-0.0221	0.1129	-0.0645	0.1319	-0.0645	Z
	56	-2.1929	33.1332	-52.3084	-2.1804	33.0410	-52.4044	-0.0125	0.0922	-0.0960	0.1337	-0.0960	Z
	57	-2.1648	44.4503	-52.1056	-2.2050	44.4953	-52.2357	0.0402	-0.0450	-0.1301	0.1434	-0.1301	Z
	58 59	-17.7431 -17.9020	26.2317 33.9240	-51.9846 -52.1080	-17.7689 -17.8940	26.3196 33.9954	-52.1175 -52.2471	0.0258 -0.0080	-0.0879 -0.0714	-0.1329 -0.1391	0.1614 0.1566	-0.1329 -0.1391	Z
ŀ	60	-17.5962	46.8203	-51.9157		46.8328	-52.0860	-0.0200	-0.0125	-0.1703	0.1719	-0.1703	Z
	61	34.9642	52.6057	-45.1051	34.9205	52.6561	-45.3027	0.0437	-0.0504	-0.1976	0.2086	0.0437	X
⊈ E G	62	39.0889	53.8355	-43.4894	39.0325	53.8938	-43.6953	0.0564	-0.0583	-0.2059	0.2213	0.0564	Х
Y # 1.	63	42.9693	54.5067	-39.7118	42.8337	54.4999	-39.8883	0.1356	0.0068	-0.1765	0.2227	0.1358	X, Y
A-PILLAR Maximum (X, Y, Z)	64	46.3149	55.6220	-38.4086	46.2010	55.6685	-38.5957	0.1139	-0.0465	-0.1871	0.2239	0.1139	Х
4 ≥ ~	65	48.9965	56.1845	-34.7518	48.8382	56.2066	-34.9114	0.1583	-0.0221	-0.1596	0.2259	0.1583	Х
	66	52.1350	56.9498	-32.9832	51.9408	57.0307	-33.1365	0.1942	-0.0809	-0.1533	0.2603	0.1942	Х
~ C	61 62	34.9642 39.0889	52.6057 53.8355	-45.1051 -43.4894	34.9205 39.0325	52.6561 53.8938	-45.3027 -43.6953	0.0437	-0.0504 -0.0583	-0.1976 -0.2059	0.2086 0.2213	-0.0504 -0.0583	Y
A-PILLAR Lateral (Y)	63	42.9693	54.5067	-39.7118	42.8337	54.4999	-39.8883	0.0564	0.0068	-0.2059	0.2213	0.0068	Y
PIL	64	46.3149	55.6220	-38.4086	46.2010	55.6685	-38.5957	0.1139	-0.0465	-0.1871	0.2239	-0.0465	Ý
F ₽	65	48.9965	56.1845	-34.7518	48.8382	56.2066	-34.9114	0.1583	-0.0221	-0.1596	0.2259	-0.0221	Υ
	66	52.1350	56.9498	-32.9832	51.9408	57.0307	-33.1365	0.1942	-0.0809	-0.1533	0.2603	-0.0809	Υ
AR L Z	67	10.5722	52.1066	-47.0316	10.5482	52.1572	-47.2790	0.0240	-0.0506	-0.2474	0.2537	0.0240	Х
B-PILLAR Maximum (X, Y, Z)	68	7.5784	53.7271	-42.7796	7.4906	53.7600	-42.9870	0.0878	-0.0329	-0.2074	0.2276	0.0878	Х
Agx X, X	69	11.3221	56.8017	-33.6244	11.2371	56.8667	-33.9252	0.0850	-0.0650	-0.3008 -0.2399	0.3193	0.0850	X
	70 67	8.5806	57.9072	-21.2142	8.5895	57.8740	-21.4541 -47.2790	-0.0089 0.0240	0.0332 -0.0506	-0.2399	0.2423	0.0332	Y
3-PILLAR ateral (Y)	68	10.5722 7.5784	52.1066 53.7271	-47.0316 -42.7796	10.5482 7.4906	52.1572 53.7600	-47.2790 -42.9870	0.0240	-0.0506	-0.2474	0.2537 0.2276	-0.0506 -0.0329	Y
era	69	11.3221	56.8017	-33.6244	11.2371	56.8667	-33.9252	0.0850	-0.0529	-0.3008	0.3193	-0.0529	Y
E B	70	8.5806	57.9072	-21.2142	8.5895	57.8740	-21.4541	-0.0089	0.0332	-0.2399	0.2423	0.0332	Ÿ
A Positive v							, negative v						nt
compartme		_ ==:	// // //		puin c		, gain 0 V	40,101			,	30upu	100
		at use multin	le direction	al compone	nte will diere	gard compo	nents that a	re negative	and only inc	lude nositiv	a values wh	ere the com	nonont is

Figure F-17. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-8

lodel Year:	20	118			Test Name: Make:		IB-8 am			VIN: Model:	1C6F	R6GT7JS1 1500 Hemi	
				PΔ			FORMATION CR		т 2				
Î		Pretest	Pretest	Pretest	Posttest X	1		ΔX ^A	ΔΥΑ	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush
	31	40.2451	30.2016	-27.0591	39.8442	30.0453	-27.1884	0.4009	0.1563	-0.1293	0.4493	0.4493	X, Y,
- R	32	38.3447	19.5585	-27.2819	38.1083	19.5387	-27.4671	0.2364	0.0198	-0.1852	0.3010	0.3010	X, Y,
후.	33	37.9946	3.2580	-27.9962	37.7457	3.2853	-28.2063	0.2489	-0.0273	-0.2101	0.3269	0.3269	X, Y,
DASH (X, Y, Z)	34	34.4906	31.8788	-16.0914	34.0326	31.5271	-16.1267	0.4580	0.3517	-0.0353	0.5785	0.5785	X, Y,
_	35	33.4734	19.7124	-16.1319	33.3012	19.3556	-16.3662	0.1722	0.3568	-0.2343	0.4603	0.4603	X, Y,
	36	31.2582	2.8173	-20.2058	31.1466	2.7282	-20.3602	0.1116	0.0891	-0.1544	0.2103	0.2103	X, Y,
SIDE 3 SIDE	37 38	43.6403	34.0777	-4.0155	43.3244	31.3979	-4.2315	0.3159	2.6798	-0.2160	2.7070	2.6798	Y
S A S	39	45.2100 43.0853	34.0150 34.0305	1.0684 2.7311	45.0235 42.9811	32.6115 32.7379	0.6557 2.4034	0.1865 0.1042	1.4035 1.2926	-0.4127 -0.3277	1.4748	1.4035 1.2926	Y
													_
H	40	11.8338 20.4098	37.1695 36.8949	-18.4405 -18.1851	11.1057 19.6313	37.6565 36.9106	-18.7113 -18.4772	0.7281 0.7785	-0.4870 -0.0157	-0.2708 -0.2921	0.9169 0.8316	-0.4870	Y
요~	41	31.0593	36.5749	-15.6522	30.1644	35.5716	-15.9761	0.7785	1.0033	-0.2921	1.3829	-0.0157 1.0033	Y
385	43	13.9312	37.4627	-2.9166	13.2280	37.6516	-3.2080	0.7032	-0.1889	-0.3233	0.7843	-0.1889	Y
ξō.	44	20.7886	37.1287	-1.6066	19.9773	36.5499	-1.8692	0.8113	0.5788	-0.2626	1.0306	0.5788	Y
IMPACT SIDE DOOR (Y)	45	29.2489	37.7986	-2.2069	28.3886	37.0196	-2.6816	0.8603	0.7790	-0.4747	1.2539	0.7790	Y
70. 10	46	30.1688	2.6507	-42.9080	29.7817	2.8274	-43.1361	0.3871	-0.1767	-0.2281	0.4828	-0.2281	Z
ŀ	47	29.4920	14.0120	-42.6877	29.1318	14.1603	-42.9440	0.3602	-0.1483	-0.2563	0.4663	-0.2563	Z
ŀ	48	26.0663	26.6457	-42.2885	25.7961	26.8120	-42.5425	0.2702	-0.1663	-0.2540	0.4064	-0.2540	Z
6	49	23.0428	2.3662	-45.8499	22.8890	2.5149	-45.9435	0.1538	-0.1487	-0.0936	0.2335	-0.0936	Z
	50	22.5781	12.3106	-45.7629	22.4079	12.4394	-45.8933	0.1702	-0.1288	-0.1304	0.2501	-0.1304	Z
	51	20.0651	23.3625	-45.4750	19.7989	23.4863	-45.6651	0.2662	-0.1238	-0.1901	0.3498	-0.1901	Z
ROOF - (Z)	52	8.8587	2.0726	-47.3360	8.7313	2.1552	-47.3817	0.1274	-0.0826	-0.0457	0.1586	-0.0457	Z
<u> </u>	53	7.5072	11.0433	-47.3182	7.4041	11.1000	-47.3828	0.1031	-0.0567	-0.0646	0.1342	-0.0646	Z
ğ [54	5.1348	21.9452	-46.9390	4.9134	22.0051	-47.0311	0.2214	-0.0599	-0.0921	0.2472	-0.0921	Z
<u>~</u> [55	-10.2137	2.3517	-47.8659	-10.3542	2.3270	-47.8595	0.1405	0.0247	0.0064	0.1428	0.0064	Z
	56	-10.5443	10.6394	-47.8158	-10.7078	10.6355	-47.8227	0.1635	0.0039	-0.0069	0.1637	-0.0069	Z
	57	-10.2602	21.9473	-47.4049	-10.4913	22.0820	-47.4213	0.2311	-0.1347	-0.0164	0.2680	-0.0164	Z
	58	-26.2479	4.0882	-47.6585	-26.4340	4.2389	-47.6566	0.1861	-0.1507	0.0019	0.2395	0.0019	Z
	59	-26.2320	11.7831	-47.6409	-26.3977	11.9167	-47.6301	0.1657	-0.1336	0.0108	0.2131	0.0108	Z
	60	-25.6345	24.6635	-47.2107		24.7386	-47.2086	0.1753	-0.0751	0.0021	0.1907	0.0021	Z
market and a second	61	27.0232	29.1274	-40.1611	26.8017	29.3178	-40.3614	0.2215	-0.1904	-0.2003	0.3542	0.2215	Х
A # (2)	62	31.1699	30.2333	-38.5125	30.9398	30.4359	-38.7333	0.2301	-0.2026	-0.2208	0.3778	0.2301	Х
그 를 누.	63	35.0533	30.7468	-34.7133	34.7551	30.8845	-34.9186	0.2982	-0.1377	-0.2053	0.3873	0.2982	X
A-PILLAR Maximum (X, Y, Z)	64	38.4194	31.7617	-33.3813	38.1470	31.9555	-33.6059	0.2724	-0.1938	-0.2246	0.4027	0.2724	X
< =	65 66	41.1023 44.2520	32.1960 32.8573	-29.7081 -27.9177	40.7971	32.3630 33.0855	-29.9141 -28.1260	0.3052 0.3346	-0.1670 -0.2282	-0.2060 -0.2083	0.4043 0.4554	0.3052 0.3346	X
~ ~	61	27.0232	29.1274	-40.1611	26.8017	29.3178	-40.3614	0.2215	-0.1904	-0.2003	0.3542	-0.1904	Y
A-PILLAR Lateral (Y)	62 63	31.1699 35.0533	30.2333 30.7468	-38.5125 -34.7133	30.9398 34.7551	30.4359 30.8845	-38.7333 -34.9186	0.2301 0.2982	-0.2026 -0.1377	-0.2208 -0.2053	0.3778 0.3873	-0.2026 -0.1377	Y
a a	64	38.4194	31.7617	-33.3813	38.1470	31.9555	-33.6059	0.2724	-0.1377	-0.2053	0.4027	-0.1377	Y
다 #	65	41.1023	32.1960	-29.7081	40.7971	32.3630	-29.9141	0.3052	-0.1936	-0.2246	0.4043	-0.1938	Y
,]	66	44.2520	32.1560	-27.9177	43.9174	33.0855	-28.1260	0.3346	-0.1670	-0.2083	0.4554	-0.1670	Y
٧ -	67	2.6320	29.2180	-42.1585	2.4232	29.3717	-42.3228	0.2088	-0.1537	-0.1643	0.3069	0.2088	Х
B-PILLAR Maximum (X, Y, Z)	68	-0.3369	30.8279	-37.8851	-0.5976	30.9509	-37.9961	0.2607	-0.1337	-0.1643	0.3089	0.2607	X
<u> </u>	69	3.4484	33.6484	-28.6654	3.2187	33.7933	-28.8768	0.2297	-0.1230	-0.1110	0.3442	0.2297	X
유물장	70	0.6959	34.5884	-16.2441	0.6002	34.6023	-16.3852	0.0957	-0.0139	-0.1411	0.1711	0.0957	X
	67	2.6320	29.2180	-42.1585	2.4232	29.3717	-42.3228	0.2088	-0.1537	-0.1643	0.3069	-0.1537	Y
B-PILLAR -ateral (Y)	68	-0.3369	30.8279	-37.8851	-0.5976	30.9509	-37.9961	0.2607	-0.1337	-0.1643	0.3089	-0.1337	Y
글 물	69	3.4484	33.6484	-28.6654	3.2187	33.7933	-28.8768	0.2297	-0.1230	-0.2114	0.3442	-0.1449	Ý
# # # # # # # # # # # # # # # # # # #	70	0.6959	34.5884	-16.2441	0.6002	34.6023	-16.3852	0.0957	-0.0139	-0.1411	0.1711	-0.0139	- ·

Figure F-18. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-8

Positive values denote deformation as inward toward the occupant companient, regulive values denote denote determined to companient.

Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

[©] Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

MwRSF Report No. TRP-03-496b-25	December 16, 2
196b-25	16, 2025

Model Year:	2018	-11	Test Name: _ Make: _	HBIB-8 Ram	Model:	1500	Hemi				
		F	Passenger Side Ma	aximum Deformation							
	Reference Se	t 1		Reference Set 2							
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation [©]	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation				
Roof	-0.2	≤ 4	Z	Roof	0.0	≤ 4	Z				
Windshield ^D	0.0	≤3	X, Z	Windshield	NA 0.0	≤3	X, Z				
A-Pillar Maximum	0.2	≤ 5	X	A-Pillar Maximum	0.3	≤ 5	X				
A-Pillar Lateral	0.0	≤ 3	Y	A-Pillar Lateral	-0.2	≤ 3	Y				
B-Pillar Maximum	0.1	≤ 5	X	B-Pillar Maximum	0.3	≤ 5	X				
B-Pillar Lateral	0.0	≤ 3	Y	B-Pillar Lateral	-0.2	≤ 3	Υ 7				
Toe Pan - Wheel Well	0.3	≤9	X	Toe Pan - Wheel Well	0.3	≤ 9	X, Z				
Side Front Panel	2.8	≤ 12	Y	Side Front Panel	2.7	≤ 12	Y				
Side Door (above seat)	1.1	≤ 9	Y	Side Door (above seat)	1.0	≤ 9	Y				
Side Door (below seat)	0.9	≤ 12	Y	Side Door (below seat)	0.8	≤ 12	Y				
Floor Pan Dash - no MASH requirement	0.1 0.6	≤ 12 NA	<u>Z</u> X, Y, Z	Floor Pan Dash - no MASH requirement	0.1 0.6	≤ 12 NA	<u>Z</u> X, Y, Z				
Altems highlighted in red do not mellostive values denote deformat For Toe Pan - Wheel Well the didirections. The direction of deformation occupant compartment. If direction	ion as inward towar rection of defromati nation for Toe Pan on of deformation is	d the occupant comp on may include X and -Wheel Well, A-Pillar "NA" then no intrusio	artment, negative val d Z direction. For A-F Maximum, and B-Pill n is recorded and de	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components	the direction of deforma	ormation may include ttion is positive and in	X, Y, and Z truding into the				
Notes on vehicle interior cru	sh:										

Figure F-19. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-8

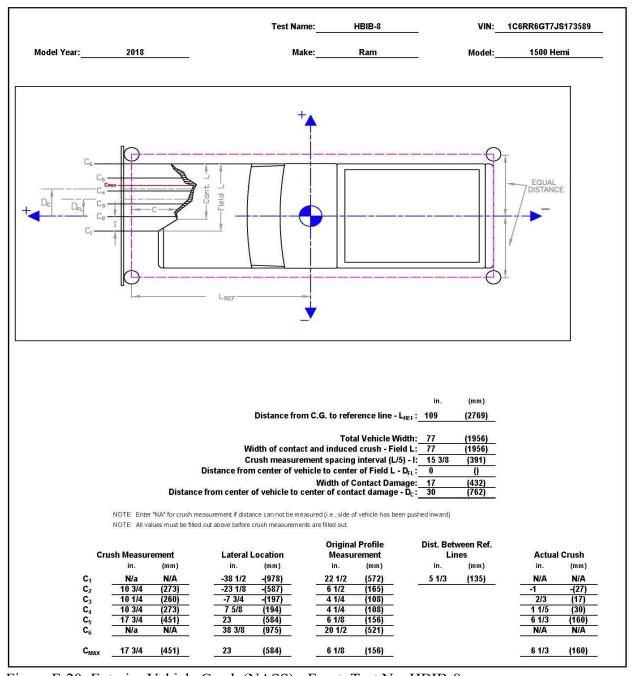


Figure F-20. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-8

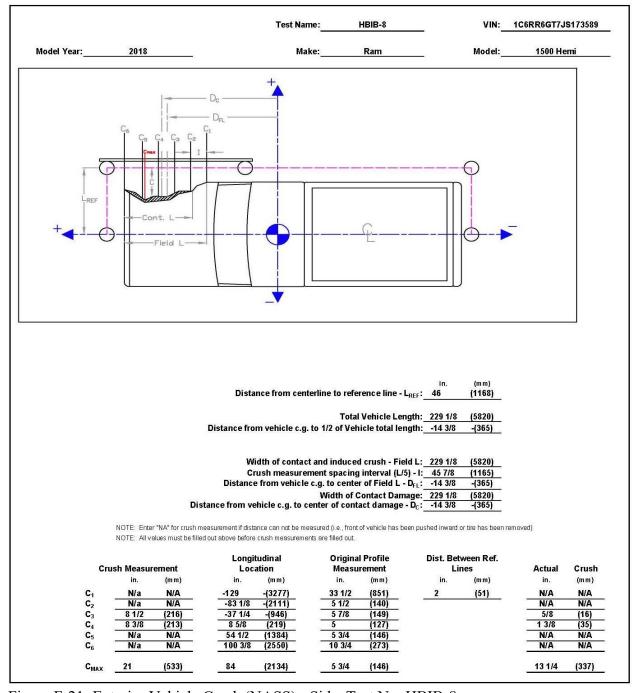


Figure F-21. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-8

		Test Name: F	BIB-10	VIN:	3KPC24A34KE056878
Model Year:	2019	Make: H	yundai	Model:	Accent Sedan

	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	87.5718	13.7789	6.1769	87.6088	13.8296	4.0682	-0.0370	-0.0507	2.1087	2.1096	2.1087	Z
	2	88.0256	17.6857	6.1560	88.0162	17.7059	3.8642	0.0094	-0.0202	2.2918	2.2919	2.2918	X, Z
	3	88.4724	22.5487	5.9233	88.4595	22.4828	3.4857	0.0129	0.0659	2.4376	2.4385	2.4376	X, Z
TOE PAN - WHEEL WELL (X, Z)	4	88.7466	27.4109	5.0038	88.6028	27.4278	2.4815	0.1438	-0.0169	2.5223	2.5265	2.5264	X, Z
<u></u> ₹ ≤ Ω	5	88.2997	31.6835	3.6195	88.0778	31.5425	0.8952	0.2219	0.1410	2.7243	2.7370	2.7333	X, Z
	6	83.3584	13.8977	8.4949	83.4494	13.9984	6.4108	-0.0910	-0.1007	2.0841	2.0885	2.0841	Z Z
2 불	7	83.5150	18.7281	8.6132	83.5449	18.8180	6.3890	-0.0299	-0.0899	2.2242	2.2262	2.2242	Z
` ≥	8	84.4209	24.0539	7.8264	84.4224	24.1635	5.4194	-0.0015	-0.1096	2.4070	2.4095	2.4070	Z
	9	85.3021	29.2086	8.2815	85.1976	29.3130	5.7814	0.1045	-0.1044	2.5001	2.5045	2.5023	X, Z
	10	85.8198	32.9187	6.6490	85.8296	32.8814	3.8763	-0.0098	0.0373	2.7727	2.7730	2.7727	Z
	11	78.5116	13.4334	8.8637	78.5530	13.5191	6.8155	-0.0414	-0.0857	2.0482	2.0504	2.0482	Z
	12	79.6640	20.3682	10.6147	79.7956	20.4961	8.4353	-0.1316	-0.1279	2.1794	2.1871	2.1794	Z
	13	80.6487	24.8401	9.5145	80.6893	24.9237	7.2028	-0.0406	-0.0836	2.3117	2.3136	2.3117	Z
	14	81.9311	30.1027	10.1525	81.9182	30.2974	7.6819	0.0129	-0.1947	2.4706	2.4783	2.4706	Z
	15	82.7109	32.7629	9.8845	82.6966	32.9386	7.3090	0.0143	-0.1757	2.5755	2.5815	2.5755	Z
	16	74.0342	13.6511	8.5340	74.0528	13.7418	6.5838	-0.0186	-0.0907	1.9502	1.9524	1.9502	Z
	17	73.0868	17.5014	10.7781	73.2598	17.5429	8.8001	-0.1730	-0.0415	1.9780	1.9860	1.9780	Z
_	18	72.7652	21.2562	10.9061	72.8597	21.4279	8.8701	-0.0945	-0.1717	2.0360	2.0454	2.0360	Z
PAN	19	73.1207	25.2210	9.9304	73.1843	25.2979	7.7998	-0.0636	-0.0769	2.1306	2.1329	2.1306	Z
~ C	20	73.0429	32.5234	10.9016	73.0111	32.6743	8.6094	0.0318	-0.1509	2.2922	2.2974	2.2922	Z
FLOOR (Z)	21	67.9789	13.9977	8.2743	68.0115	13.9991	6.2805	-0.0326	-0.0014	1.9938	1.9941	1.9938	Z
1 2	22	67.9166	16.8331	11.0544	68.0765	16.9959	9.1669	-0.1599	-0.1628	1.8875	1.9012	1.8875	Z
"	23	68.2905	21.7824	10.9673	68.4146	21.8610	9.0816	-0.1241	-0.0786	1.8857	1.8914	1.8857	Z
	24	68.4640	25.8589	10.0348	68.5107	26.0057	7.9978	-0.0467	-0.1468	2.0370	2.0428	2.0370	Z
	25	68.9153	33.5437	10.9312	68.8821	33.6907	8.7664	0.0332	-0.1470	2.1648	2.1700	2.1648	Z
	26	63.2210	14.3604	8.4603	63.2520	14.4029	6.6733	-0.0310	-0.0425	1.7870	1.7878	1.7870	Z
	27	63.6586	17.6172	10.9271	63.8101	17.6650	9.0988	-0.1515	-0.0478	1.8283	1.8352	1.8283	Z
	28	64.2866	22.0952	11.1234	64.4241	22.2165	9.2401	-0.1375	-0.1213	1.8833	1.8922	1.8833	Z
	29	64.5832	25.6400	10.1233	64.6270	25.7068	8.1899	-0.0438	-0.0668	1.9334	1.9350	1.9334	Z
	30	65.0766	33.5846	11.0130	65.0829	33.7138	8.9623	-0.0063	-0.1292	2.0507	2.0548	2.0507	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

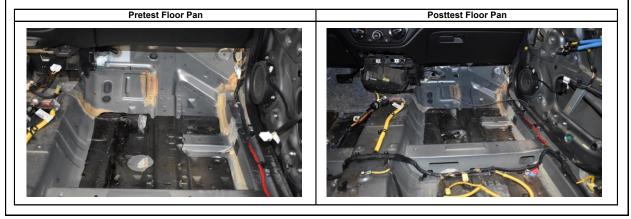


Figure F-22. Floor Pan Deformation Data – Set 1, Test No. HBIB-10

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

		Test Name:	HBIB-10	VIN:	3KPC24A34KE056878
Model Year:	2019	Make:	Hyundai	Model:	Accent Sedan

	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total Δ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	89.3286	1.6049	5.5237	89.4593	1.1729	5.8957	-0.1307	0.4320	-0.3720	0.5849	0.0000	NA
	2	89.2192	5.5357	5.4491	89.3478	5.0688	5.6879	-0.1286	0.4669	-0.2388	0.5400	0.0000	NA
	3	88.9637	10.4089	5.1510	89.1540	9.8618	5.3038	-0.1903	0.5471	-0.1528	0.5991	0.0000	NA
-	4	88.5290	15.2471	4.1689	88.6500	14.7810	4.2891	-0.1210	0.4661	-0.1202	0.4963	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	5	87.4594	19.3924	2.7392	87.6036	18.7876	2.6846	-0.1442	0.6048	0.0546	0.6241	0.0546	Z
	6	85.1700	1.1536	7.8993	85.2797	0.7852	8.1756	-0.1097	0.3684	-0.2763	0.4734	0.0000	NA
│ 은 뿔	7	84.6363	5.9581	7.9568	84.7302	5.5743	8.1428	-0.0939	0.3838	-0.1860	0.4367	0.0000	NA
` ≥	8	84.7622	11.3471	7.0926	84.8997	10.9885	7.1728	-0.1375	0.3586	-0.0802	0.3923	0.0000	NA
	9	84.9034	16.5807	7.4727	84.9738	16.1956	7.5331	-0.0704	0.3851	-0.0604	0.3961	0.0000	NA
	10	84.8656	20.3035	5.7881	85.1517	19.8154	5.6285	-0.2861	0.4881	0.1596	0.5878	0.1596	Z
	11	80.4442	0.0076	8.3420	80.4858	-0.3445	8.5084	-0.0416	0.3521	-0.1664	0.3917	-0.1664	Z
	12	80.6152	7.0598	9.9922	80.7598	6.7369	10.1288	-0.1446	0.3229	-0.1366	0.3793	-0.1366	Z
	13	80.9373	11.6106	8.8241	81.0719	11.2436	8.8983	-0.1346	0.3670	-0.0742	0.3979	-0.0742	Z
	14	81.4623	17.0107	9.3800	81.5639	16.7336	9.3819	-0.1016	0.2771	-0.0019	0.2951	-0.0019	Z
	15	81.8506	19.7509	9.0688	81.9877	19.4550	9.0139	-0.1371	0.2959	0.0549	0.3307	0.0549	Z
	16	75.9779	-0.4206	8.0727	76.0003	-0.7257	8.2091	-0.0224	-0.3051	-0.1364	0.3350	-0.1364	Z
	17	74.5176	3.2862	10.2831	74.6727	2.9364	10.4036	-0.1551	0.3498	-0.1205	0.4012	-0.1205	Z
_	18	73.6643	6.9581	10.3700	73.7558	6.7330	10.4576	-0.0915	0.2251	-0.0876	0.2583	-0.0876	Z
PAN	19	73.4377	10.9189	9.3414	73.5761	10.6111	9.3823	-0.1384	0.3078	-0.0409	0.3400	-0.0409	Z
٦ ٣ co	20	72.3292	18.1484	10.2248	72.4060	17.8985	10.1703	-0.0768	0.2499	0.0545	0.2671	0.0545	Z
FLOOR (Z)	21	69.9325	-0.9453	7.8942	69.9841	-1.2788	7.8151	-0.0516	-0.3335	0.0791	0.3466	0.0791	Z
2	22	69.4997	1.8908	10.6404	69.6042	1.7013	10.6944	-0.1045	0.1895	-0.0540	0.2230	-0.0540	Z
l "	23	69.1615	6.8411	10.4879	69.2900	6.5679	10.6017	-0.1285	0.2732	-0.1138	0.3226	-0.1138	Z
	24	68.7393	10.8872	9.5036	68.8474	10.6876	9.5088	-0.1081	0.1996	-0.0052	0.2271	-0.0052	Z
	25	68.0989	18.5695	10.3002	68.1762	18.3536	10.2632	-0.0773	0.2159	0.0370	0.2323	0.0370	Z
	26	65.1743	-1.2628	8.1428	65.2080	-1.5150	8.1358	-0.0337	-0.2522	0.0070	0.2545	0.0070	Z
	27	65.1721	2.0573	10.5635	65.2881	1.7938	10.5610	-0.1160	0.2635	0.0025	0.2879	0.0025	Z
	28	65.1561	6.5815	10.6966	65.2858	6.3866	10.6998	-0.1297	0.1949	-0.0032	0.2341	-0.0032	Z
	29	64.9310	10.1179	9.6494	65.0361	9.8721	9.6437	-0.1051	0.2458	0.0057	0.2674	0.0057	Z
	30	64.2949	18.0633	10.4356	64.4055	17.8686	10.4023	-0.1106	0.1947	0.0333	0.2264	0.0333	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

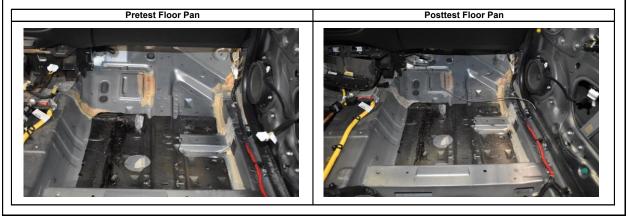


Figure F-23. Floor Pan Deformation Data – Set 2, Test No. HBIB-10

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Model Year:	20)19			Test Name: Make:			VIN: Model:		3KPC24A34KE056878 Accent Sedan			
Wodor rour.		710	-		mano.	Tiyo	iiiuui	•		Wiodol.		toocht oodt	41
					VE	HICLE DE	FORMATI	ON					
				P/	ASSENGE	R SIDE INT	ERIOR CF	USH - SE	Т 1				
		Pretest	Pretest	Pretest				Δ.	^	Δ.			Directions
		Х	Y	Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	31	72.9933	11.2643	-18.9035	72.4977	10.6510	-20.8509	0.4956	0.6133	-1.9474	2.1010	2.1010	X, Y, Z
_ 🙃	32	73.9613	21.3984	-18.7340	73.3066	20.8014	-20.8187	0.6547	0.5970	-2.0847	2.2652	2.2652	X, Y, Z
DASH (X, Y, Z)	33	76.8372	32.0253	-18.0403	75.8201	31.2588	-20.3721	1.0171	0.7665	-2.3318	2.6569	2.6569	X, Y, Z
A X	34	68.8121	10.4090	-12.1100	68.7793	9.6497	-13.8713	0.0328	0.7593	-1.7613	1.9183	1.9183	X, Y, Z
3	35	71.4771	22.4371	-11.7750	71.1369	21.6917	-13.7582	0.3402	0.7454	-1.9832	2.1458	2.1458	X, Y, Z
	36	73.8140	33.1063	-12.3933	73.0089	32.4193	-14.7028	0.8051	0.6870	-2.3095	2.5405	2.5405	X, Y, Z
E EL	37	83.6704	35.8507	1.7983	83.3815	35.6312	-0.8210	0.2889	0.2195	-2.6193	2.6443	0.2195	Υ
SIDE PANEL (Y)	38	80.9882	36.0210	3.8201	80.7301	35.8070	1.2366	0.2581	0.2140	-2.5835	2.6052	0.2140	Υ
	39	81.9255	35.6718	-0.3925	81.4648	35.2983	-2.8964	0.4607	0.3735	-2.5039	2.5732	0.3735	Y
Щ	40	47.3498	39.0889	-13.4146	46.5788	39.8696	-15.2074	0.7710	-0.7807	-1.7928	2.1019	-0.7807	Y
S ~	41	61.2528	38.8671	-12.6870	60.3657	39.2006	-14.8158	0.8871	-0.3335	-2.1288	2.3302	-0.3335	Y
3 CT (S)	42	69.7449	37.6614	-12.4920	68.7846	37.3047	-14.7636	0.9603	0.3567	-2.2716	2.4919	0.3567	Y
DA DO	43	49.6268	39.0614	-0.4661	49.3396	39.9670	-2.3654	0.2872	-0.9056	-1.8993	2.1237	-0.9056	Y
IMPACT SIDE DOOR (Y)	44	64.1524	38.7725	2.9675	63.5827	39.0963	0.7633	0.5697	-0.3238	-2.2042	2.2995	-0.3238	Y
	45	69.7268	38.6773	2.8133	69.2010	38.9809	0.3376	0.5258	-0.3036	-2.4757	2.5491	-0.3036	Υ
	46	61.8857	9.0830	-33.0468	60.8585	9.3264	-34.4165	1.0272	-0.2434	-1.3697	1.7293	-1.3697	Z
	47	62.2582	18.8553	-33.0168	61.1017	19.1280	-34.7514	1.1565	-0.2727	-1.7346	2.1025	-1.7346	Z
	48	61.7270	27.6217	-32.8849	60.5765	27.9074	-34.9653	1.1505	-0.2857	-2.0804	2.3944	-2.0804	Z
	49	50.8416	10.5797	-36.6503	49.7817	10.6871	-37.1470	1.0599	-0.1074	-0.4967	1.1754	-0.4967	Z
	50	51.2967	17.6121	-36.5741	50.0670	17.6065	-37.8223	1.2297	0.0056	-1.2482	1.7522	-1.2482	Z
(Z)	51	51.7518	26.1149	-36.1809	50.3762	26.0522	-37.8789	1.3756	0.0627	-1.6980	2.1862	-1.6980	Z
ROOF - (Z)	52	40.2599 40.6865	11.5662	-37.4227 -37.3446	39.3258	11.3775	-37.7951	0.9341	0.1887 0.0399	-0.3724 -0.7269	1.0231	-0.3724 -0.7269	Z Z
Į Ö	53		18.0988		39.3826	18.0589	-38.0715	1.3039			1.4934		
N 2	54 55	41.3146 25.1543	26.1037 13.0659	-36.9813 -37.1914	40.0237 24.6367	25.9699 13.0633	-38.2494 -35.9688	1.2909 0.5176	0.1338 0.0026	-1.2681 1.2226	1.8145 1.3277	-1.2681 1.2226	Z Z
	56	25.1343	19.0002	-37.1914	24.0307	18.9581	-36.1384	0.5777	0.0020	0.9752	1.1343	0.9752	Z
	57	26.0064	27.0533	-36.7135	25.1127	26.8972	-37.0968	0.8937	0.0421	-0.3833	0.9849	-0.3833	Z
	58	12.0635	12.0439	-35.5381	11.4037	12.1121	-35.5969	0.6598	-0.0682	-0.0588	0.6659	-0.0588	Z
	59	12.3038	18.8210	-35.4409	11.5749	18.8824	-35.5211	0.7289	-0.0614	-0.0802	0.7359	-0.0802	Z
	60	13.4057	28.5085	-35.0149	12.6726	28.3841	-35.1495	0.7331	0.1244	-0.1346	0.7557	-0.1346	Z
	61	82.9615	34.3890	-22.1040	81.7402	33.3056	-24.8707	1.2213	1.0834	-2.7667	3.2125	1.6326	X, Y
۳ - _	62	78.7868	33.9757	-24.2760	77.5394	33.3406	-26.7686	1.2474	0.6351	-2.4926	2.8587	1.3998	X, Y
A-PILLAR Maximum (X, Y, Z)	63	74.3300	33.4984	-26.5834	73.0871	33.2265	-28.9708	1.2429	0.2719	-2.3874	2.7053	1.2723	X, Y
片菜?	64	70.8079	33.1002	-28.2466	69.5062	33.1921	-30.6418	1.3017	-0.0919	-2.3952	2.7276	1.3017	X
A M €	65	66.7833	32.7162	-29.4806	65.4670	33.3893	-31.8665	1.3163	-0.6731	-2.3859	2.8068	1.3163	X
	66	63.4331	32.2190	-31.5188	62.1748	32.6472	-33.7548	1.2583	-0.4282	-2.2360	2.6012	1.2583	Х
	61	82.9615	34.3890	-22.1040	81.7402	33.3056	-24.8707	1.2213	1.0834	-2.7667	3.2125	1.0834	Y
æ ⊊	62	78.7868	33.9757	-24.2760	77.5394	33.3406	-26.7686	1.2474	0.6351	-2.4926	2.8587	0.6351	Y
A C	63	74.3300	33.4984	-26.5834	73.0871	33.2265	-28.9708	1.2429	0.2719	-2.3874	2.7053	0.2719	Y
A-PILLAR Lateral (Y)	64	70.8079	33.1002	-28.2466	69.5062	33.1921	-30.6418	1.3017	-0.0919	-2.3952	2.7276	-0.0919	Y
- P	65	66.7833	32.7162	-29.4806	65.4670	33.3893	-31.8665	1.3163	-0.6731	-2.3859	2.8068	-0.6731	Y
	66	63.4331	32.2190	-31.5188	62.1748	32.6472	-33.7548	1.2583	-0.4282	-2.2360	2.6012	-0.4282	Υ
Κ E C:	67	40.6752	33.6298	-30.6597	39.4049	33.7491	-32.0632	1.2703	-0.1193	-1.4035	1.8968	1.2703	Х
B-PILLAR Maximum (X, Y, Z)	68	38.5598	35.5975	-26.5153	37.4306	35.6485	-27.8748	1.1292	-0.0510	-1.3595	1.7680	1.1292	Х
\(\) \(\	69	42.8225	37.0902	-21.5250	42.1689	37.1923	-22.9124	0.6536	-0.1021	-1.3874	1.5370	0.6536	Х
₽ ≥ Ç	70	39.9623	38.0759	-14.4620	39.2378	38.0821	-15.8457	0.7245	-0.0062	-1.3837	1.5619	0.7245	Х
	67	40.6752	33.6298	-30.6597	39.4049	33.7491	-32.0632	1.2703	-0.1193	-1.4035	1.8968	-0.1193	Υ
B-PILLAR _ateral (Y)	68	38.5598	35.5975	-26.5153	37.4306	35.6485	-27.8748	1.1292	-0.0510	-1.3595	1.7680	-0.0510	Υ
PIL	69	42.8225	37.0902	-21.5250	42.1689	37.1923	-22.9124	0.6536	-0.1021	-1.3874	1.5370	-0.1021	Y
а <u>Б</u>	70	39.9623	38.0759	-14.4620	39.2378	38.0821	-15.8457	0.7245	-0.0062	-1.3837	1.5619	-0.0062	Y

Figure F-24. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-10

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Model Year:	20	119	Test Name: Make:							VIN: 3KPC24A34F Model: Accent S		224A34KE0	
Woder rear.		113	-		wanc.		iiiuai			Wodel.		ACCCITE OCCE	
					VE	HICLE DE	FORMATION	ON					
				P/	ASSENGE	R SIDE INT	ERIOR CR	USH - SE	Γ2				
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX^A	ΔY ^A	ΔZ^{A}	Total Δ	Crush ^B	Directions
		X	Y	Z	(in.)	(in.)	(in.)	ΔΛ (in.)	ΔΥ (in.)	ΔΖ (in.)	(in.)	(in.)	for
	POINT	(in.)	(in.)	(in.)	` '	` '	, ,	. ,	` '	` '			Crush ^C
	31	74.9537	-3.3161	-19.3163	75.2875	-4.0118	-19.2377	-0.3338	-0.6957	0.0786	0.7756	0.7756	X, Y, Z
+ Ñ	32	74.4657	6.8537	-19.2835	74.7313	6.1556	-19.2195	-0.2656	0.6981	0.0640	0.7497	0.7497	X, Y, Z
DASH (X, Y, Z)	33	75.8019	17.7909	-18.7595	75.8170	16.8555	-18.7623	-0.0151	0.9354	-0.0028	0.9355	0.9355	X, Y, Z
∆ ∆	34	71.0209	-4.6641	-12.4547	71.6312	-5.4975	-12.3118	-0.6103	-0.8334	0.1429	1.0428	1.0428	X, Y, Z
	35	71.9438	7.6248	-12.3033	72.3555	6.7517	-12.1944	-0.4117	0.8731	0.1089	0.9714	0.9714	X, Y, Z
	36	72.7244	18.5086	-13.0840	72.7904	17.6328	-13.1386	-0.0660	0.8758	-0.0546	0.8800	0.8800	X, Y, Z
ᄪᇤᆺ	37	82.2602	22.8304	0.9329	82.4292	22.2106	0.8881	-0.1690	0.6198	-0.0448	0.6440	0.6198	Y
SIDE PANEL (Y)	38	79.6061	22.6444	2.9902	79.7474	22.0313	2.9055	-0.1413	0.6131	-0.0847	0.6348	0.6131	Υ
	39	80.5321	22.3735	-1.2307	80.6059	21.6232	-1.2148	-0.0738	0.7503	0.0159	0.7541	0.7503	Υ
IMPACT SIDE DOOR (Y)	40	45.6665	20.6382	-13.8047	45.6121	21.4812	-14.0563	0.0544	-0.8430	-0.2516	0.8814	-0.8430	Y
	41	59.4664	22.4131	-13.2706	59.3571	22.6622	-13.4575	0.1093	-0.2491	-0.1869	0.3300	-0.2491	Υ
385	42	68.0453	22.4345	-13.1806	67.9522	21.9093	-13.2748	0.0931	0.5252	-0.0942	0.5416	0.5252	Y
A S S	43	48.0821	21.1176	-0.8902	48.1406	21.9540	-1.1749	-0.0585	-0.8364	-0.2847	0.8855	-0.8364	Y
_ A _	44	62.5408	22.9528	2.3415	62.3232	22.9977	2.1681	0.2176	-0.0449	-0.1734	0.2818	-0.0449	Y
=	45	68.0692	23.6520	2.1100	67.9123	23.6344	1.8265	0.1569	0.0176	-0.2835	0.3245	0.0176	Υ
	46	64.0998	-7.2586	-33.2742	64.1364	-6.8885	-32.9719	-0.0366	0.3701	0.3023	0.4793	0.3023	Z
	47	63.0725	2.4664	-33.3680	63.0719	2.8574	-33.3283	0.0006	-0.3910	0.0397	0.3930	0.0397	Z
	48	61.2958	11.0682	-33.3351	61.3808	11.4876	-33.5725	-0.0850	-0.4194	-0.2374	0.4894	-0.2374	Z
	49	52.9120	-7.4040	-36.7395	53.0197	-7.0228	-35.8708	-0.1077	0.3812	0.8687	0.9548	0.8687	Z
	50	52.3585	-0.3782	-36.7552	52.3875	-0.1278	-36.5595	-0.0290	0.2504	0.1957	0.3191	0.1957	Z
Ω	51	51.5988	8.1071	-36.4717	51.5654	8.2834	-36.6332	0.0334	-0.1763	-0.1615	0.2414	-0.1615	Z
ROOF - (Z)	52	42.2893	-7.9486	-37.3747	42.5764	-7.7373	-36.6765	-0.2871	0.2113	0.6982	0.7839	0.6982	Z
౼	53	41.7790	-1.4216	-37.3819	41.7435	-1.1085	-36.9692	0.0355	0.3131	0.4127	0.5192	0.4127	Z
Ŏ	54	41.2613	6.5953	-37.1248	41.3236	6.8171	-37.1579	-0.0623	-0.2218	-0.0331	0.2327	-0.0331	Z
<u> </u>	55	27.1284	-8.6170	-36.9488	27.7679	-8.0301	-35.0738	-0.6395	0.5869	1.8750	2.0662	1.8750	Z
	56	26.6963	-2.6831	-36.9490	27.3382	-2.1403	-35.2532	-0.6419	0.5428	1.6958	1.8927	1.6958	Z
	57	25.9789	5.3541	-36.6528	26.4068	5.7425	-36.2301	-0.4279	-0.3884	0.4227	0.7160	0.4227	Z
	58	14.3391	-11.4735	-35.0988	14.7768	-10.7424	-34.8969	-0.4377	0.7311	0.2019	0.8757	0.2019	Z
	59	13.6097	-4.7308	-35.0873	14.0400	-4.0099	-34.8359	-0.4303	0.7209	0.2514	0.8764	0.2514	Z
	60	13.3212	5.0198	-34.7946	13.8516	5.5535	-34.4724	-0.5304	-0.5337	0.3222	0.8185	0.3222	Z
	61	81.4755	20.9473	-22.9375	81.4775	19.6732	-23.1773	-0.0020	1.2741	-0.2398	1.2965	1.2741	Υ
AR E)	62	77.3765	19.9119	-25.0453	77.3389	19.1450	-25.1377	0.0376	0.7669	-0.0924	0.7734	0.7678	X, Y
J.≝.≻,	63	73.0058	18.7712	-27.2836	72.9757	18.4353	-27.4058	0.0301	0.3359	-0.1222	0.3587	0.3372	X, Y
A-PILLAR Maximum (X, Y, Z)	64	69.5567	17.8511	-28.8921	69.4573	17.9214	-29.1299	0.0994	-0.0703	-0.2378	0.2672	0.0994	Х
₹≥ -	65	65.6135	16.8794	-30.0645	65.4470	17.5759	-30.4153	0.1665	-0.6965	-0.3508	0.7974	0.1665	X
	66	62.3441	15.8807	-32.0491	62.3125	16.3993	-32.3505	0.0316	-0.5186	-0.3014	0.6007	0.0316	Х
	61	81.4755	20.9473	-22.9375	81.4775	19.6732	-23.1773	-0.0020	1.2741	-0.2398	1.2965	1.2741	Y
3 4	62	77.3765	19.9119	-25.0453	77.3389	19.1450	-25.1377	0.0376	0.7669	-0.0924	0.7734	0.7669	Y
A-PILLAR Lateral (Y)	63	73.0058	18.7712	-27.2836	72.9757	18.4353	-27.4058	0.0301	0.3359	-0.1222	0.3587	0.3359	Y
급	64	69.5567	17.8511	-28.8921	69.4573	17.9214	-29.1299	0.0994	-0.0703	-0.2378	0.2672	-0.0703	Y
ĽY	65	65.6135	16.8794	-30.0645	65.4470	17.5759	-30.4153	0.1665	-0.6965	-0.3508	0.7974	-0.6965	Y
	66	62.3441	15.8807	-32.0491	62.3125	16.3993	-32.3505	0.0316	-0.5186	-0.3014	0.6007	-0.5186	Y
B-PILLAR Maximum (X, Y, Z)	67	39.6303	14.0410	-30.8866	39.5767	14.4470	-31.0015	0.0536	-0.4060	-0.1149	0.4253	0.0536	Х
J. ii ≻,	68	37.3062	15.7446	-26.7370	37.3031	16.0676	-26.8479	0.0031	-0.3230	-0.1109	0.3415	0.0031	X
B-PILLAR Maximum (X, Y, Z)	69	41.3725	17.9002	-21.8257	41.7168	18.2339	-21.8194	-0.3443	-0.3337	0.0063	0.4795	0.0063	Z
	70	38.4873	18.5667	-14.7356	38.5865	18.7277	-14.7994	-0.0992	-0.1610	-0.0638	0.1996	0.0000	NA
3 4	67	39.6303	14.0410	-30.8866	39.5767	14.4470	-31.0015	0.0536	-0.4060	-0.1149	0.4253	-0.4060	Υ
B-PILLAR _ateral (Y)	68	37.3062	15.7446	-26.7370	37.3031	16.0676	-26.8479	0.0031	-0.3230	-0.1109	0.3415	-0.3230	Y
	69	41.3725	17.9002	-21.8257	41.7168	18.2339	-21.8194	-0.3443	-0.3337	0.0063	0.4795	-0.3337	Y
Ф 2	70	38.4873	18.5667	-14.7356	38.5865	18.7277	-14.7994	-0.0992	-0.1610	-0.0638	0.1996	-0.1610	Y

Figure F-25. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-10

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

MwRSF	
Report	
MwRSF Report No. TRP-03-496b-25	Decemb
.03-496t	December 16, 2025
-25	025

			Test Name:	HBIB-10	VIN:	3KPC24A34	4KE056878
Model Year:	:2019		Make:	Hyundai	Model:	Accent	Sedan
			0:1.14				
			assenger Side Ma	ximum Deformations			
Į į	Primary Reference	e Set		Se	condary Referer	ice Set	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	1.2	≤ 4	Z	Roof	1.9	≤ 4	Z
Windshield ^D	N/A	≤ 3	X, Z	Windshield ^D	N/A	≤ 3	X, Z
A-Pillar Maximum	1.6	≤ 5	X, Y	A-Pillar Maximum	1.3	≤ 5	Υ
A-Pillar Lateral	1.1	≤ 3	Υ	A-Pillar Lateral	1.3	≤ 3	Υ
B-Pillar Maximum	1.3	≤ 5	Х	B-Pillar Maximum	0.1	≤ 5	X
B-Pillar Lateral	-0.1	≤ 3	Υ	B-Pillar Lateral	-0.4	≤ 3	Υ
Toe Pan - Wheel Well	2.8	≤ 9	Z	Toe Pan - Wheel Well	0.2	≤ 9	Z
Side Front Panel	0.4	≤ 12	Υ	Side Front Panel	0.8	≤ 12	Υ
Side Door (above seat)	0.4	≤ 9	Υ	Side Door (above seat)	0.5	≤ 9	Υ
Side Door (below seat)	-0.9	≤ 12	Υ	Side Door (below seat)	0.0	≤ 12	Υ
Floor Pan	2.6	≤ 12	Z	Floor Pan	0.1	≤ 12	Z
Dash - no MASH requirement	2.7	NA	X, Y, Z	Dash - no MASH requirement	1.0	NA	X, Y, Z
A Items highlighted in red do not me	eet MASH allowable	deformations.	•	`			
^C For Toe Pan - Wheel Well the dir	ection of defromatio	n may include X and	Z direction. For A-Pill	es denote deformations outward away to lar Maximum and B-Pillar Maximum the	e direction of deform	nation may include X,	

Notes on vehicle crush:

Windshield shattering was due to loading on the A-pillar. See scan for deformation value.

Figure F-26. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-10

^C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.

Dif deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded.

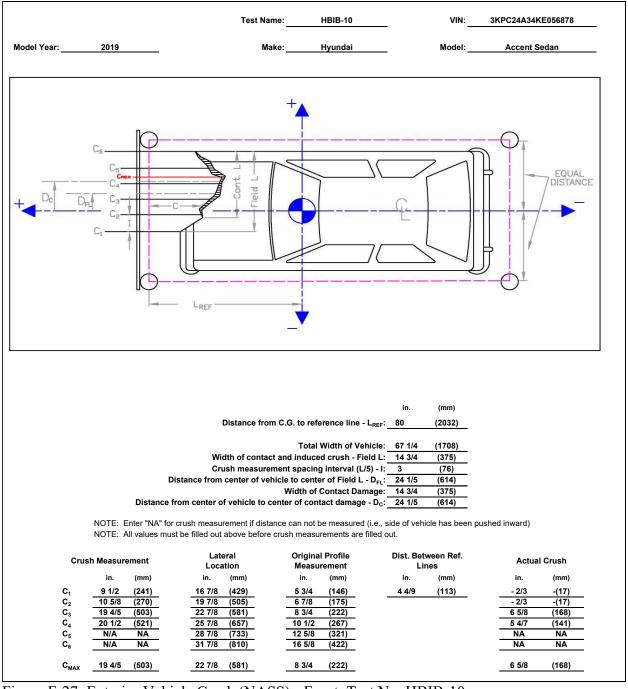
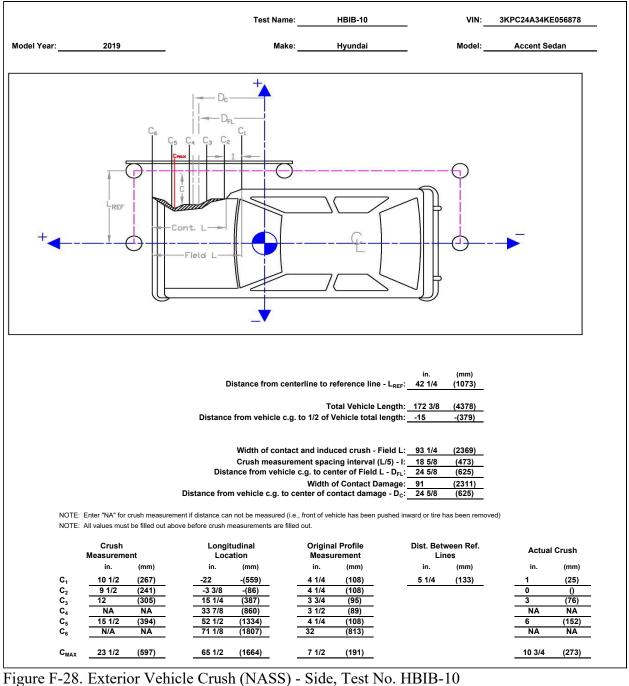



Figure F-27. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-10

	Test Name: HBIB-9	VIN: 1C6RR6FG0KS526339
Model Year: 2019	Make: Ram	Model: 1500

	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total Δ (in.)	Crush ^B (in.)	Directions for Crush ^C
	71	49.4297	17.5022	-3.3959	49.1991	17.6777	-2.5848	0.2306	-0.1755	-0.8111	0.8613	0.2306	X
	72	50.3919	21.5721	-1.3243	50.0745	21.7072	-0.4130	0.3174	-0.1351	-0.9113	0.9744	0.3174	Х
-	73	51.8486	24.9540	1.7693	51.6383	24.9671	2.7478	0.2103	-0.0131	-0.9785	1.0009	0.2103	Х
TOE PAN - WHEEL WELL (X, Z)	74	51.8746	30.2474	2.0487	51.5555	30.2393	2.9262	0.3191	0.0081	-0.8775	0.9338	0.3191	Х
K & (2	75	52.1498	36.1214	1.8939	50.3317	35.9868	2.7723	1.8181	0.1346	-0.8784	2.0237	1.8181	Х
H II X	76	46.2362	16.1232	-2.1065	46.0562	16.1634	-1.4204	0.1800	-0.0402	-0.6861	0.7105	0.1800	X
2 불	77	47.1524	21.0440	0.9365	47.0345	21.0405	1.8421	0.1179	0.0035	-0.9056	0.9132	0.1179	Х
` ≥	78	48.5259	24.3740	3.7345	48.2732	24.3305	4.7030	0.2527	0.0435	-0.9685	1.0019	0.2527	X
	79	48.5907	29.9108	4.0054	48.2737	29.8510	4.9620	0.3170	0.0598	-0.9566	1.0095	0.3170	Х
	80	48.8219	36.4048	3.8384	48.5591	36.1213	4.7758	0.2628	0.2835	-0.9374	1.0140	0.2628	X
	81	41.9599	15.3083	-1.1907	41.9410	15.2954	-0.3221	0.0189	0.0129	-0.8686	0.8689	-0.8686	Z
	82	43.7013	20.7230	4.1475	43.4731	20.6931	5.0137	0.2282	0.0299	-0.8662	0.8963	-0.8662	Z
	83	43.8314	24.6432	4.3785	43.6145	24.6289	5.2736	0.2169	0.0143	-0.8951	0.9211	-0.8951	Z
	84	43.8301	29.5876	4.3524	43.5595	29.6196	5.3685	0.2706	-0.0320	-1.0161	1.0520	-1.0161	Z
	85	43.6981	36.6202	4.6219	43.4468	36.5393	5.4984	0.2513	0.0809	-0.8765	0.9154	-0.8765	Z
	86	37.6216	15.3657	-0.0913	37.5149	15.4487	0.4902	0.1067	-0.0830	-0.5815	0.5970	-0.5815	Z
	87	39.0328	19.3082	4.7031	38.8145	19.2753	5.4656	0.2183	0.0329	-0.7625	0.7938	-0.7625	Z
_	88	39.3130	25.2260	4.6146	39.0900	25.1960	5.4774	0.2230	0.0300	-0.8628	0.8917	-0.8628	Z
PAN	89	38.8133	29.4981	4.6097	38.5178	29.4205	5.6075	0.2955	0.0776	-0.9978	1.0435	-0.9978	Z
	90	39.2664	35.9369	4.6796	38.9764	35.8811	5.6647	0.2900	0.0558	-0.9851	1.0284	-0.9851	Z
FLOOR (Z)	91	34.6062	15.4123	0.2126	34.5215	15.5481	0.8086	0.0847	-0.1358	-0.5960	0.6171	-0.5960	Z
] C	92	35.6221	20.0623	4.8032	35.4355	20.1063	5.4985	0.1866	-0.0440	-0.6953	0.7212	-0.6953	Z
"	93	35.9937	26.0037	4.7337	35.7782	25.9742	5.5511	0.2155	0.0295	-0.8174	0.8458	-0.8174	Z
	94	35.7331	30.1488	4.7091	35.4577	30.1009	5.6560	0.2754	0.0479	-0.9469	0.9873	-0.9469	Z
	95	35.5591	35.9144	4.6801	35.2787	35.8369	5.6112	0.2804	0.0775	-0.9311	0.9755	-0.9311	Z
	96	31.8017	15.5097	0.6095	31.6841	15.6132	1.1082	0.1176	-0.1035	-0.4987	0.5227	-0.4987	Z
	97	32.1533	20.2101	4.1587	31.9305	20.2221	4.7383	0.2228	-0.0120	-0.5796	0.6211	-0.5796	Z
	98	32.3184	26.1004	4.2492	32.0926	26.1537	4.8859	0.2258	-0.0533	-0.6367	0.6777	-0.6367	Z
	99	32.1201	30.4049	4.1202	31.8830	30.4205	4.7780	0.2371	-0.0156	-0.6578	0.6994	-0.6578	Z
A Desirios o	100	31.8055	35.6107	3.9120	31.5499	35.5276	4.5944	0.2556	0.0831	-0.6824	0.7334	-0.6824	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

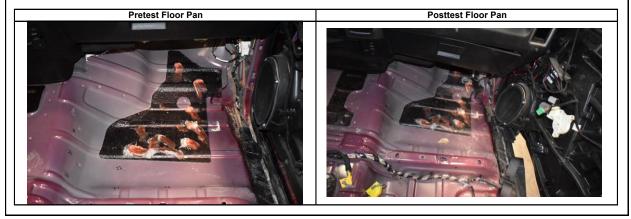


Figure F-29. Floor Pan Deformation Data – Set 1, Test No. HBIB-9

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

		Test Name:	HBIB-9	VIN:	1C6RR6FG0KS526339
Model Year:	2019	Make:	Ram	Model:	1500

	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total Δ (in.)	Crush ^B (in.)	Directions for Crush ^C
	71	50.6748	28.9666	-7.1432	50.4019	28.8346	-6.9063	0.2729	0.1320	-0.2369	0.3847	0.2729	X
	72	51.6993	33.0201	-5.0694	51.3790	32.8648	-4.7797	0.3203	0.1553	-0.2897	0.4590	0.3203	Х
I →	73	53.1968	36.3777	-1.9689	53.0250	36.1195	-1.6554	0.1718	0.2582	-0.3135	0.4410	0.1718	Х
TOE PAN - WHEEL WELL (X, Z)	74	53.3228	41.6700	-1.6960	53.0752	41.3938	-1.5362	0.2476	0.2762	-0.1598	0.4039	0.2476	Х
¥ ≥ 0	75	53.7126	47.5374	-1.8561	51.9969	47.1682	-1.7548	1.7157	0.3692	-0.1013	1.7579	1.7157	Х
	76	47.4454	27.6513	-5.8772	47.2220	27.4133	-5.7255	0.2234	0.2380	-0.1517	0.3600	0.2234	Х
2 불	77	48.4326	32.5579	-2.8334	48.3234	32.3004	-2.5177	0.1092	0.2575	-0.3157	0.4218	0.1092	X
` ≥	78	49.8483	35.8647	-0.0290	49.6451	35.5900	0.3063	0.2032	0.2747	-0.3353	0.4787	0.2032	X
	79	50.0179	41.3996	0.2353	49.7849	41.1113	0.5033	0.2330	0.2883	-0.2680	0.4574	0.2330	Х
	80	50.3756	47.8878	0.0619	50.2284	47.3699	0.2468	0.1472	0.5179	-0.1849	0.5693	0.1472	X
	81	43.1471	26.9204	-4.9938	43.0863	26.6618	-4.6181	0.0608	0.2586	-0.3757	0.4601	-0.3757	Z
	82	44.9510	32.3082	0.3509	44.7548	32.0786	0.6570	0.1962	0.2296	-0.3061	0.4300	-0.3061	Z
	83	45.1549	36.2255	0.5779	44.9955	36.0122	0.8728	0.1594	0.2133	-0.2949	0.3973	-0.2949	Z
	84	45.2494	41.1689	0.5454	45.0665	41.0035	0.9117	0.1829	0.1654	-0.3663	0.4416	-0.3663	Z
	85	45.2510	48.2031	0.8050	45.1284	47.9249	0.9639	0.1226	0.2782	-0.1589	0.3430	-0.1589	Z
	86	38.8023	27.0631	-3.9285	38.6656	26.9357	-3.8083	0.1367	0.1274	-0.1202	0.2222	-0.1202	Z
	87	40.2518	30.9845	0.8718	40.0620	30.7840	1.1241	0.1898	0.2005	-0.2523	0.3740	-0.2523	Z
_	88	40.6469	36.8957	0.7779	40.4867	36.6955	1.0695	0.1602	0.2002	-0.2916	0.3883	-0.2916	Z
PAN	89	40.2299	41.1766	0.7636	40.0214	40.9344	1.1521	0.2085	0.2422	-0.3885	0.5031	-0.3885	Z
٦ ٣ c	90	40.8066	47.6056	0.8288	40.6429	47.3816	1.1369	0.1637	0.2240	-0.3081	0.4146	-0.3081	Z
FLOOR (Z)	91	35.7860	27.1684	-3.6483	35.6757	27.1142	-3.4914	0.1103	0.0542	-0.1569	0.1993	-0.1569	Z
]]	92	36.8557	31.8045	0.9441	36.7051	31.7002	1.1472	0.1506	0.1043	-0.2031	0.2735	-0.2031	Z
"	93	37.3424	37.7375	0.8700	37.1957	37.5579	1.1340	0.1467	0.1796	-0.2640	0.3514	-0.2640	Z
	94	37.1622	41.8867	0.8380	36.9794	41.6922	1.1925	0.1828	0.1945	-0.3545	0.4438	-0.3545	Z
	95	37.0997	47.6545	0.8003	36.9452	47.4301	1.0833	0.1545	0.2244	-0.2830	0.3928	-0.2830	Z
	96	32.9809	27.3204	-3.2735	32.8409	27.2543	-3.1930	0.1400	0.0661	-0.0805	0.1745	-0.0805	Z
	97	33.3955	32.0182	0.2724	33.2040	31.8959	0.3852	0.1915	0.1223	-0.1128	0.2537	-0.1128	Z
	98	33.6736	37.9044	0.3566	33.5157	37.8229	0.4663	0.1579	0.0815	-0.1097	0.2088	-0.1097	Z
	99	33.5595	42.2117	0.2205	33.4138	42.0921	0.3104	0.1457	0.1196	-0.0899	0.2088	-0.0899	Z
	100	33.3470	47.4223	0.0032	33.2096	47.2036	0.0694	0.1374	0.2187	-0.0662	0.2666	-0.0662	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

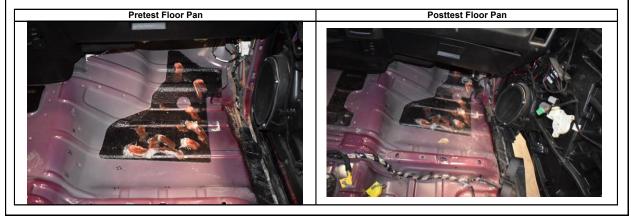


Figure F-30. Floor Pan Deformation Data – Set 2, Test No. HBIB-9

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Madal Vaan	20)19			Test Name:					VIN: Model:		R6FG0KS5	26339
Model Year:	20	119			Make:	R	IIII	•		woder:		1500	
					VE	HICLE DE	FORMATION	ON.					
				D/	ASSENGE				т 4				
				F #	ASSENGE	C SIDE IN	EKIOK CR	.U3H - 3E					
		Pretest	Pretest	Pretest									Directions
		X	Y	Z	Posttest X	Posttest Y	Posttest Z	ΔX^A	ΔY^A	ΔZ^A	Total ∆	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
 	101	43.6732	35.0576	-27.4464	42.9787	35.0739	-27.0846	0.6945	-0.0163	0.3618	0.7833	0.7833	X, Y, Z
	101	42.3687	23.3315	-27.3468	41.9225	23.3340	-26.8933	0.0943	-0.0103	0.3616	0.7833	0.7833	X, Y, Z
ΞΩ	103	42.8457	7.3090	-28.2569	42.6939	7.3104	-27.7472	0.4402	-0.0023	0.4333	0.5318	0.0302	X, 1, Z X, Y, Z
DASH (X, Y, Z)	104	38.8816	36.6128	-16.6271	38.1486	36.3953	-16.3506	0.7330	0.2175	0.2765	0.8130	0.8130	X, 1, Z
	105	38.1589	24.2944	-17.2257	37.7227	24.1497	-16.8299	0.4362	0.1447	0.3958	0.6065	0.6065	X, 1, Z
	106	36.4510	6.8752	-20.4263	36.3356	6.8519	-19.9250	0.1154	0.0233	0.5013	0.5149	0.5149	X, Y, Z
	107	48.1121	38.9586	-3.4234	47.3612	37.0350	-2.9203	0.7509	1.9236	0.5031	2.1254	1.9236	Υ, 1, 2
SIDE PANEL (Y)	108	49.8655	38.9316	0.1220	49.1861	37.6996	0.5395	0.6794	1.2320	0.4175	1.4676	1.2320	Ÿ
S PA C	109	47.6321	38.8791	2.6275	47.3261	38.1579	3.2548	0.3060	0.7212	0.6273	1.0036	0.7212	Ý
	110	16.4809	41.0155	-18.4143	15.3088	47.3808	-17.6230	1.1721	-6.3653	0.7913	6.5205	-6.3653	Y
DE	111	27.7838	40.4258	-19.5395	26.3255	45.2525	-19.1085	1.4583	-4.8267	0.4310	5.0606	-4.8267	Y
PACT SIDE DOOR (Y)	112	35.6629	41.0150	-15.8910	33.8148	42.7228	-15.7618	1.8481	-1.7078	0.1292	2.5197	-1.7078	Y
386	113	17.6033	41.2673	-1.5390	16.3357	44.8050	-0.9057	1.2676	-3.5377	0.6333	3.8109	-3.5377	Y
IMPACT DOOI (Y)	114	24.9269	41.3655	-1.8936	23.3891	42.8867	-1.5092	1.5378	-1.5212	0.3844	2.1970	-1.5212	Y
≧	115	34.0273	42.2339	-1.9738	32.5190	42.4843	-2.0213	1.5083	-0.2504	-0.0475	1.5297	-0.2504	Υ
	116	34.9355	7.3042	-43.2575	34.5155	6.8774	-42.4741	0.4200	0.4268	0.7834	0.9860	0.7834	Z
	117	33.2976	20.6758	-43.1050	32.2666	20.1377	-41.5975	1.0310	0.5381	1.5075	1.9040	1.5075	Z
	118	30.3037	30.6525	-42.6747	28.7894	29.8997	-40.5462	1.5143	0.7528	2.1285	2.7185	2.1285	Z
	119	28.2814	7.5658	-45.9669	27.6414	6.9378	-44.8084	0.6400	0.6280	1.1585	1.4650	1.1585	Z
	120	26.9996	18.8793	-45.9034	25.7349	18.0883	-43.6710	1.2647	0.7910	2.2324	2.6849	2.2324	Z
ถ	121	23.4614	28.6185	-45.7395	21.9108	27.4897	-42.8145	1.5506	1.1288	2.9250	3.4977	2.9250	Z
ROOF - (Z)	122	13.2426	6.9864	-47.3787	12.5928	5.6416	-46.2512	0.6498	1.3448	1.1275	1.8714	1.1275	Z
노	123	11.8862	16.7608	-47.2962	10.8105	15.2755	-45.0708	1.0757	1.4853	2.2254	2.8837	2.2254	Z
l ŏ	124	11.2542	28.6042	-46.5646	9.7000	26.5555	-41.5354	1.5542	2.0487	5.0292	5.6485	5.0292	Z
L L	125	-5.8750	6.9053	-47.6064	-6.3578	4.4128	-45.3927	0.4828	2.4925	2.2137	3.3684	2.2137	Z
	126	-5.6507	15.6245	-47.5666	-6.3564	12.7500	-42.7990	0.7057	2.8745	4.7676	5.6117	4.7676	Z
	127	-5.1735	27.6793	-47.0835	-6.3741	24.4404	-39.8052	1.2006	3.2389	7.2783	8.0564	7.2783	Z
	128	-20.5846	6.4619	-47.2857	-20.3243	3.4117	-41.8635	-0.2603	3.0502	5.4222	6.2267	5.4222	Z
	129	-21.1862	15.5101	-47.2724	-21.8473	12.2276	-42.5861	0.6611	3.2825	4.6863	5.7596	4.6863	Z Z
	130	-21.3612	26.7381	-46.9132	-22.4564	22.8538	-39.3355	1.0952	3.8843	7.5777	8.5854	7.5777	
~ -	131	30.7972	33.3547	-41.2525	29.2590	32.6435	-39.1458	1.5382	0.7112	2.1067	2.7037	2.7037	X, Y, Z
A # (2	132	35.6955	34.4729	-37.6315	34.5184	34.0207	-36.1270	1.1771	0.4522	1.5045	1.9631	1.9631	X, Y, Z
A-PILLAR Maximum (X, Y, Z)	133 134	41.0059 43.5555	36.0334 36.4855	-34.9967 -32.1205	40.0129 42.7507	35.8899 36.3686	-34.0522 -31.4869	0.9930 0.8048	0.1435 0.1169	0.9445 0.6336	1.3779 1.0309	1.3779 1.0309	X, Y, Z X, Y, Z
A å X	135	45.9184	37.1540	-30.8824	45.2293	37.2756	-30.3987	0.6891	-0.1216	0.0330	0.8507	0.8419	X, T, Z
1 ~ -	136	47.2019	37.6507	-27.9292	45.4002	31.4922	-37.0232	1.8017	6.1585	-9.0940	11.1299	6.4166	X, Z
	131	30.7972	33.3547	-41.2525	29.2590	32.6435	-39.1458	1.5382	0.7112	2.1067	2.7037	0.7112	Y
~ ~	132	35.6955	34.4729	-37.6315	34.5184	34.0207	-36.1270	1.1771	0.4522	1.5045	1.9631	0.4522	Y
	133	41.0059	36.0334	-34.9967	40.0129	35.8899	-34.0522	0.9930	0.1435	0.9445	1.3779	0.1435	Y
A-PILLAR Lateral (Y)	134	43.5555	36.4855	-32.1205	42.7507	36.3686	-31.4869	0.8048	0.1169	0.6336	1.0309	0.1169	Y
A-F	135	45.9184	37.1540	-30.8824	45.2293	37.2756	-30.3987	0.6891	-0.1216	0.4837	0.8507	-0.1216	Y
	136	47.2019	37.6507	-27.9292	45.4002	31.4922	-37.0232	1.8017	6.1585	-9.0940	11.1299	6.1585	Y
Δ F \sim	137	6.7214	32.9566	-41.6369	3.4855	40.9437	-24.4178	3.2359	-7.9871	17.2191	19.2552	17.5205	X, Z
B-PILLAR Maximum (X, Y, Z)	138	4.2228	37.6739	-25.1009	7.8023	40.2243	-19.8882	-3.5795	-2.5504	5.2127	6.8183	5.2127	Z
3-PILL Maxim (X, Y,	139	8.4842	38.0347	-20.5129	7.7702	40.2285	-19.8823	0.7140	-2.1938	0.6306	2.3917	0.9526	X, Z
	140	4.6087	38.1739	-14.1028	4.0296	39.6409	-13.5513	0.5791	-1.4670	0.5515	1.6708	0.7997	X, Z
α ¿	137	6.7214	32.9566	-41.6369	3.4855	40.9437	-24.4178	3.2359	-7.9871	17.2191	19.2552	-7.9871	Y
3-PILLAR ateral (Y)	138	4.2228	37.6739	-25.1009	7.8023	40.2243	-19.8882	-3.5795	-2.5504	5.2127	6.8183	-2.5504	Y
PIL	139	8.4842	38.0347	-20.5129	7.7702	40.2285	-19.8823	0.7140	-2.1938	0.6306	2.3917	-2.1938	Υ
~ <u>p</u>	140	4 6007	20 1720	14 1020	4.0206	20.6400	12 5512	0.5701	1 4670	0.5515	1 6700	1 4670	

Figure F-31. Occupant Compartment Deformation Data – Set 1, Test No. HBIB-9

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

					Test Name:					VIN:			
Model Year:	20	119	į.		Make:	Ra	am	•		Model:		1500	
							FORMATI						
				P/	ASSENGE	R SIDE INT	ERIOR CF	RUSH - SE	Т 2				
		_		_									D: (:
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX^A	ΔY^A	ΔZ^A	Total ∆	Crush ^B	Directions
	DOINT	Χ (:)	Υ (:)	Z	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	POINT	(in.)	(in.)	(in.)		10.1001	04.0007		` ′	0.0404	1.0100	. ,	
	101	45.4463	46.5954	-31.2606	44.6193	46.1061	-31.6007	0.8270	0.4893	-0.3401	1.0193	1.0193	X, Y, Z
DASH (X, Y, Z)	102	43.9149	34.8968	-31.1562	43.2672	34.3995	-31.2778	0.6477	0.4973	-0.1216	0.8256	0.8256	X, Y, Z
AS, ≺	103 104	44.0894 40.6012	18.8668 48.2583	-32.0420 -20.4811	43.6339 39.8255	18.3530 47.6694	-31.9518 -20.8830	0.4555 0.7757	0.5138 0.5889	0.0902 -0.4019	0.6925 1.0536	0.6925 1.0536	X, Y, Z
_ X, □	105	39.6455	35.9553	-21.0696	39.0906	35.4339	-21.2249	0.7737	0.5214	-0.4019	0.7771	0.7771	X, Y, Z X, Y, Z
	106	37.6267	18.5677	-24.2611	37.2671	18.1429	-24.1259	0.3549	0.3214	0.1352	0.7771	0.7771	X, 1, Z X, Y, Z
	107	49.7720	50.4444	-7.2085	49.0530	48.2271	-7.4593	0.7190	2.2173	-0.2508	2.3444	2.2173	Υ, 1, 2
SIDE PANEL (Y)	108	51.4968	50.3887	-3.6495	50.8946	48.8843	-4.0068	0.6022	1.5044	-0.2508	1.6594	1.5044	Y
SIS A	109	49.2434	50.3828	-1.1615	49.0470	49.4198	-1.2971	0.0022	0.9630	-0.1356	0.9921	0.9630	Y
	110	18.3044	53.0899	-22.4493	17.2699	59.2127	-22.2821	1.0345	-6.1228	0.1672	6.2118	-6.1228	Y
DE	111	29.6022	52.2805	-23.4852	28.2292	56.7906	-23.7419	1.3730	-4.5101	-0.2567	4.7214	-4.5101	Y
S R	112	37.4626	52.7228	-19.7758	35.6527	54.1105	-20.3659	1.8099	-1.3877	-0.5901	2.3558	-1.3877	Y
385	113	19.2997	53.3441	-5.5660	18.2337	56.7997	-5.5367	1.0660	-3.4556	0.0293	3.6164	-3.4556	Y
A O	114	26.6264	53.3005	-5.8634	25.2364	54.6973	-6.1176	1.3900	-1.3968	-0.2542	1.9869	-1.3968	Y
IMPACT SIDE DOOR (Y)	115	35.7422	53.9930	-5.8735	34.3532	54.0589	-6.6237	1.3890	-0.0659	-0.7502	1.5800	-0.0659	Y
	116	36.2980	18.9932	-47.1040	35.4453	17.9613	-46.6741	0.8527	1.0319	0.4299	1.4060	0.4299	Z
	117	34.9174	32.3941	-46.9815	33.5319	31.2831	-45.9467	1.3855	1.1110	1.0348	2.0554	1.0348	Z
	118	32.1134	42.4273	-46.5875	30.3022	41.1408	-45.0055	1.8112	1.2865	1.5820	2.7273	1.5820	Z
	119	29.6715	19.3793	-49.8657	28.5747	18.1688	-49.0100	1.0968	1.2105	0.8557	1.8440	0.8557	Z
	120	28.6079	30.7154	-49.8268	26.9502	29.3760	-47.9981	1.6577	1.3394	1.8287	2.8082	1.8287	Z
	121	25.2572	40.5213	-49.7031	23.3647	38.8799	-47.2477	1.8925	1.6414	2.4554	3.5078	2.4554	Z
ROOF - (Z)	122	14.6357	19.0881	-51.3946	13.4980	17.2367	-50.4405	1.1377	1.8514	0.9541	2.3733	0.9541	Z
Ľ.	123	13.4678	28.8870	-51.3352	11.9595	26.9251	-49.3686	1.5083	1.9619	1.9666	3.1609	1.9666	Z
8	124	13.0589	40.7415	-50.6238	11.1344	38.2685	-45.9602	1.9245	2.4730	4.6636	5.6186	4.6636	Z
₩.	125	-4.4774	19.3757	-51.7719	-5.4775	16.4961	-49.5712	1.0001	2.8796	2.2007	3.7597	2.2007	Z
	126	-4.0851	28.0890	-51.7414	-5.2654	24.8593	-47.0712	1.1803	3.2297	4.6702	5.7996	4.6702	Z
	127	-3.3791	40.1330	-51.2701	-4.9877	36.5793	-44.2088	1.6086	3.5537	7.0613	8.0671	7.0613	Z
	128	-19.1949	19.2167	-51.5658	-19.4644	15.8874	-46.0331	0.2695	3.3293	5.5327	6.4628	5.5327	Z
	129	-19.6218	28.2748	-51.5687	-20.7646	24.7303	-46.8549	1.1428	3.5445	4.7138	6.0074	4.7138	Z
	130	-19.5827	39.5046	-51.2253	-21.1049	35.4043	-43.7238	1.5222	4.1003	7.5015	8.6834	7.5015	Z
	131	32.6479	45.1215	-45.1649	30.8411	43.8875	-43.6359	1.8068	1.2340	1.5290	2.6693	2.6693	X, Y, Z
Z) # 4R	132	37.5385	46.1501	-41.5071	36.1339	45.1653	-40.6320	1.4046	0.9848	0.8751	1.9258	1.9258	X, Y, Z
	133	42.8573	47.6117	-38.8327	41.6741	46.9185	-38.5775	1.1832	0.6932	0.2552	1.3949	1.3949	X, Y, Z
A-PILLAR Maximum (X, Y, Z)	134	45.3926	48.0186	-35.9372	44.4234	47.3567	-36.0173	0.9692	0.6619	-0.0801	1.1764	1.1737	X, Y
₹ ≥	135	47.7583	48.6432	-34.6815	46.9243	48.2131	-34.9390	0.8340	0.4301	-0.2575	0.9731	0.9384	X, Y
	136	49.0280	49.1192	-31.7190	46.9611	43.3624	-41.5043	2.0669	5.7568	-9.7853	11.5397	6.1166	X, Y
	131	32.6479	45.1215	-45.1649	30.8411	43.8875	-43.6359	1.8068	1.2340	1.5290	2.6693	1.2340	Y
A-PILLAR Lateral (Y)	132	37.5385	46.1501 47.6117	-41.5071	36.1339	45.1653 46.9185	-40.6320	1.4046	0.9848	0.8751	1.9258 1.3949	0.9848	Y
ia 🗀	133 134	42.8573		-38.8327	41.6741		-38.5775	1.1832	0.6932	0.2552		0.6932	Y
ate	135	45.3926 47.7583	48.0186 48.6432	-35.9372 -34.6815	44.4234 46.9243	47.3567 48.2131	-36.0173 -34.9390	0.9692 0.8340	0.6619 0.4301	-0.0801 -0.2575	1.1764 0.9731	0.6619 0.4301	Y
٦ ٦	136	49.0280	49.1192	-31.7190	46.9611	43.3624	-41.5043	2.0669	5.7568	-9.7853	11.5397	5.7568	Y
~ -		8.5727			5.2871	53.0002	-29.0061					17.0507	X, Z
B-PILLAR Maximum (X, Y, Z)	137 138	6.0366	45.1876 49.9759	-45.7372 -29.2273	9.5849	52.2229	-24.4680	3.2856 -3.5483	-7.8126 -2.2470	16.7311 4.7593	18.7553 6.3475	4.7593	Z, Z
j j j j j	139	10.2682	50.2610	-29.2273	9.5530	52.2229	-24.4621	0.7152	-1.9670	0.1445	2.0980	0.7297	X, Z
Maxi (X, Y	140	6.3462	50.4841	-18.2272	5.7996	51.8060	-18.1255	0.7152	-1.3219	0.1445	1.4341	0.7297	X, Z
	137	8.5727	45.1876	-45.7372	5.2871	53.0002	-29.0061	3.2856	-7.8126	16.7311	18.7553	-7.8126	Y
녹스	138	6.0366	49.9759	-45.7372	9.5849	52.2229	-24.4680	-3.5483	-2.2470	4.7593	6.3475	-2.2470	Y
B-PILLAR -ateral (Y)	139	10.2682	50.2610	-24.6066	9.5530	52.2280	-24.4621	0.7152	-1.9670	0.1445	2.0980	-1.9670	Y
B-F Late	140	6.3462	50.4841	-18.2272	5.7996	51.8060	-18.1255	0.5466	-1.3219	0.1017	1.4341	-1.3219	Y

Figure F-32. Occupant Compartment Deformation Data – Set 2, Test No. HBIB-9

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

(J	د
(ر	١
(٢	5

Model Year:	2019		Test Name: _ Make:	HBIB-9 Ram	VIN: Model:	0KS526339 00			
		-	- Data and Olds Mond	Defermentian					
			Driver Side Maxi	mum Deformation					
	Reference Se	t 1			Reference Se	t 2			
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	6				Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	0.0	≤ 4	Z	Roof	0.0	≤ 4	Z		
Windshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z		
A-Pillar Maximum	0.0	≤ 5	NA	A-Pillar Maximum	0.0	≤ 5	NA		
A-Pillar Lateral	0.0	≤ 3	Υ	A-Pillar Lateral	0.0	≤ 3	Y		
B-Pillar Maximum	0.0	≤ 5	NA	B-Pillar Maximum	0.0	≤ 5	NA		
B-Pillar Lateral	0.0	≤ 3	Υ	B-Pillar Lateral	0.0	≤ 3	Y		
Toe Pan - Wheel Well	0.0	≤ 9	NA	Toe Pan - Wheel Well	0.0	≤ 9	NA		
Side Front Panel	0.0	≤ 12	Υ	Side Front Panel	0.0	≤ 12	Y		
Side Door (above seat)	0.0	≤ 9	Υ	Side Door (above seat)	0.0	≤ 9	Y		
Side Door (below seat)	0.0	≤ 12	Υ	Side Door (below seat)	0.0	≤ 12	Υ		
Floor Pan	0.0	≤ 12	Z	Floor Pan	0.0	≤ 12	Z		
Dash - no MASH requirement	0.0	NA	X, Y, Z	Dash - no MASH requirement	0.0	NA	X, Y, Z		
^C For Toe Pan - Wheel Well the dir directions. The direction of deform occupant compartment. If direction	on as inward toward rection of defromatio nation for Toe Pan -\ n of deformation is "	the occupant compar n may include X and Wheel Well, A-Pillar M NA" then no intrusion	Z direction. For A-Pill laximum, and B-Pillar is recorded and defor	es denote deformations outward away to lar Maximum and B-Pillar Maximum the Maximum only include components w rmation will be 0. sitest with an examplar vehicle, therefo	e direction of deform here the deformatio	nation may include X, n is positive and intru	ding into the		
Notes on vehicle interior cru	sh:								

Figure F-33. Maximum Occupant Compartment Deformations by Location, Test No. HBIB-9

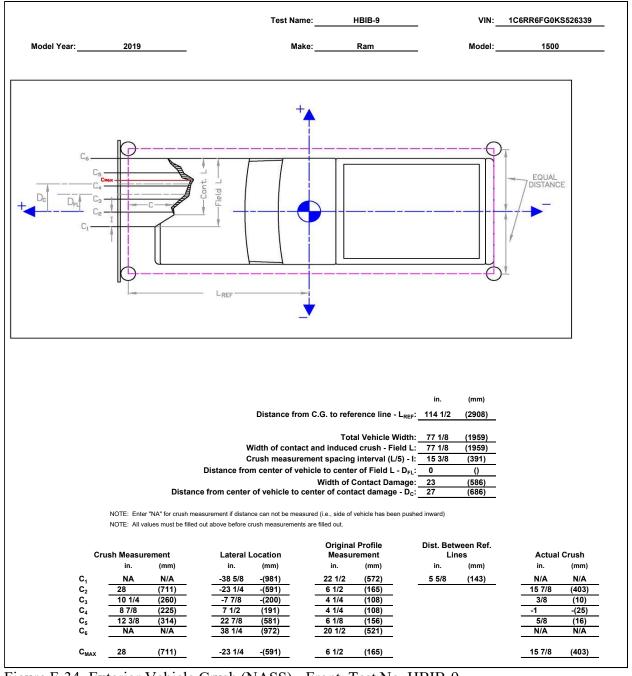


Figure F-34. Exterior Vehicle Crush (NASS) - Front, Test No. HBIB-9

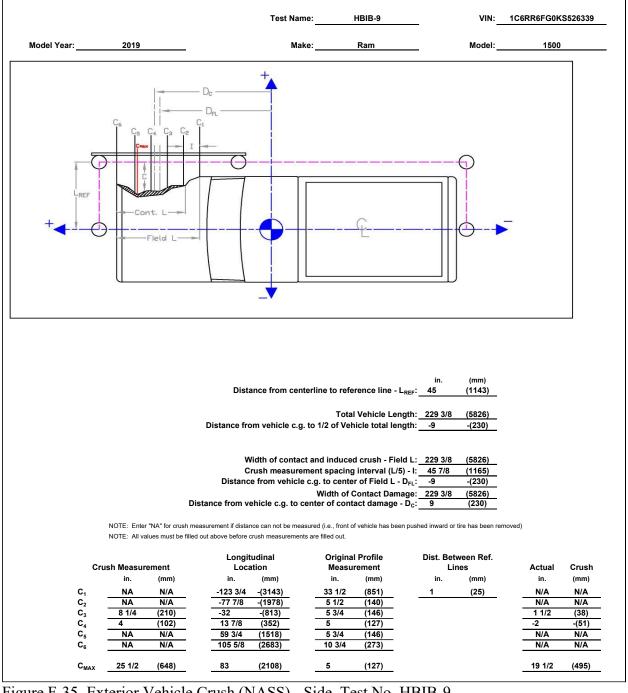


Figure F-35. Exterior Vehicle Crush (NASS) - Side, Test No. HBIB-9

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. HBIB-6

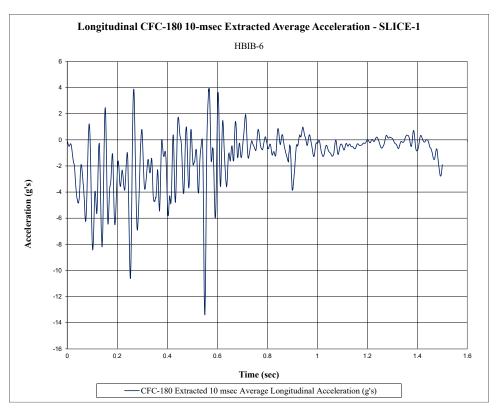


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-6

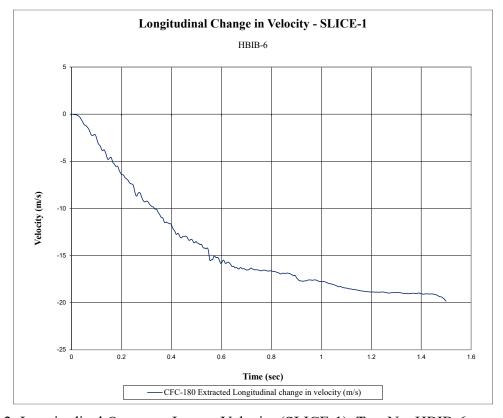


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-6

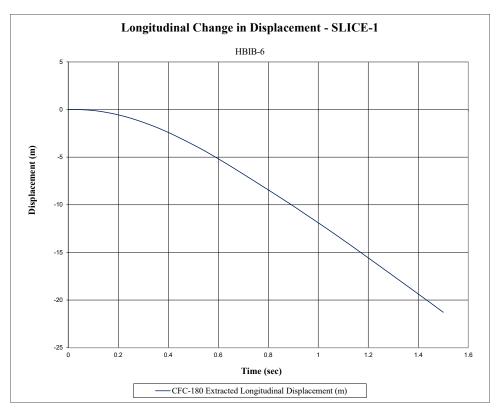


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-6

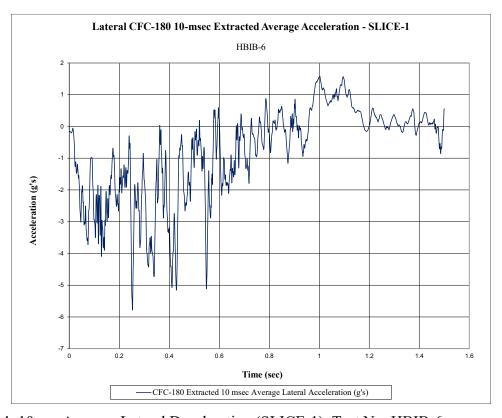


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-6

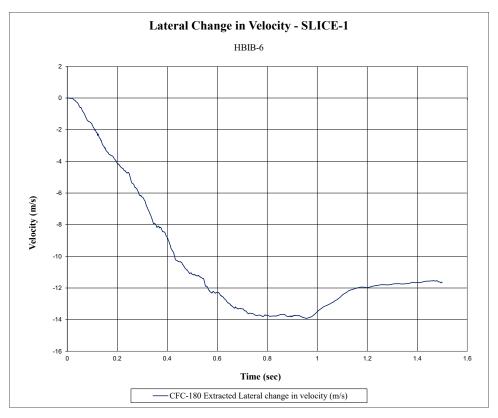


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-6

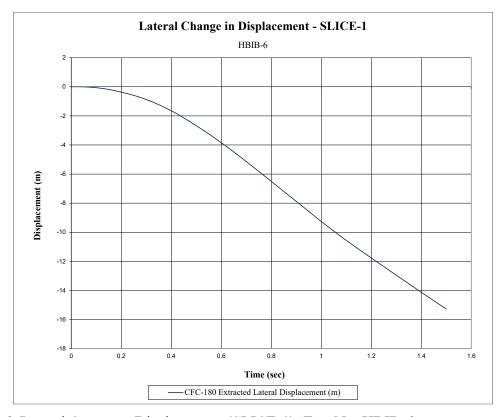


Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-6

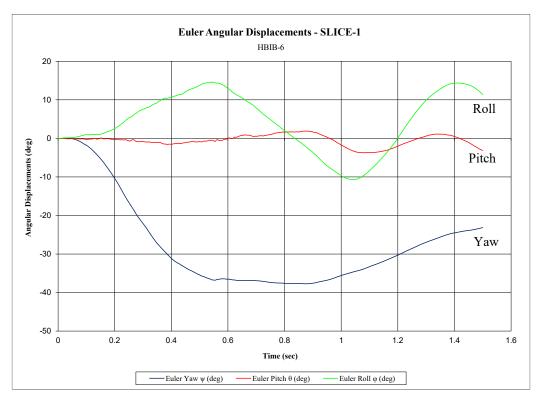


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-6

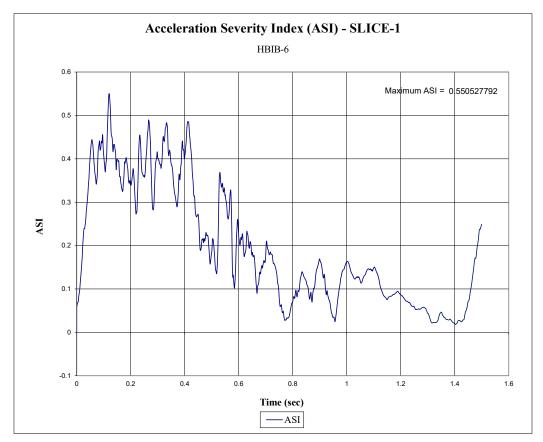


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-6

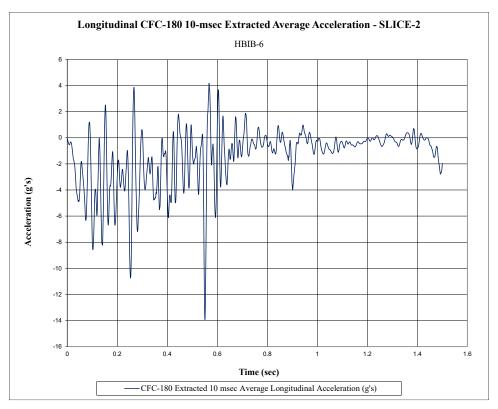


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-6

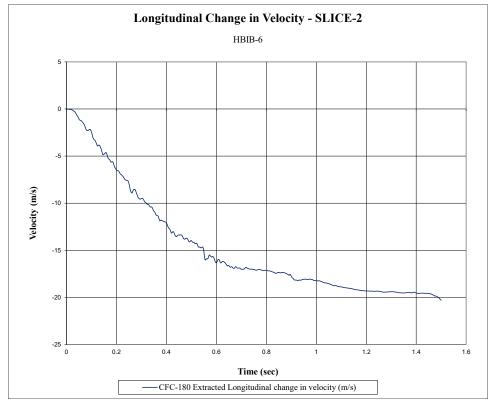


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-6

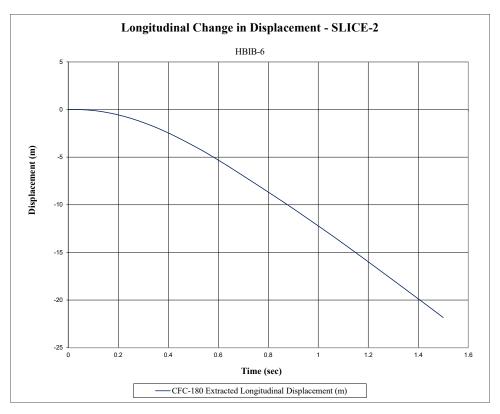


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-6

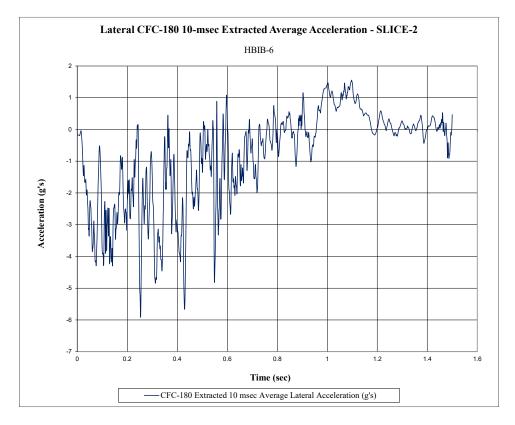


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-6

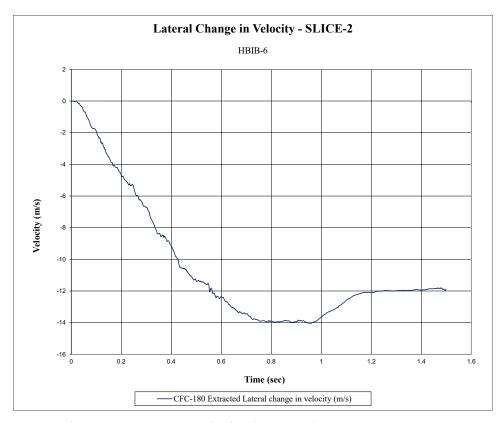


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-6

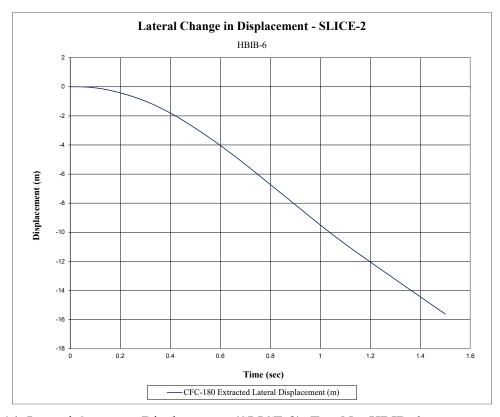


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-6

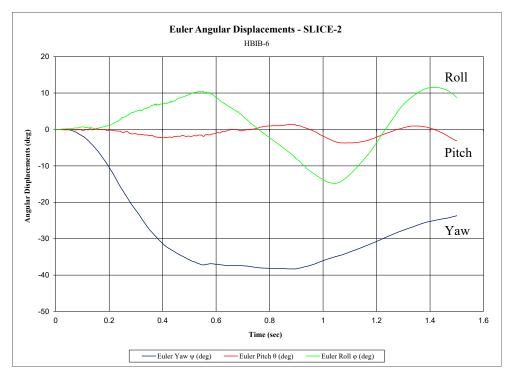


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-6

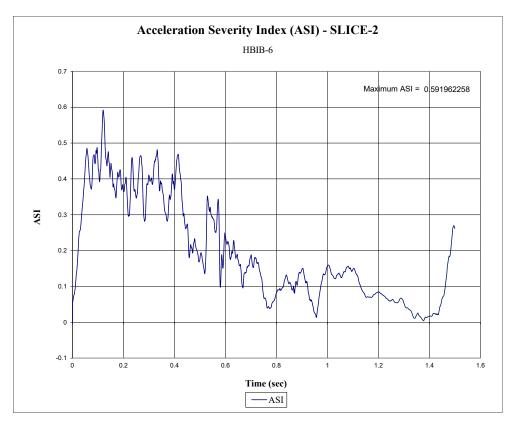


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-6

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. HBIB-7

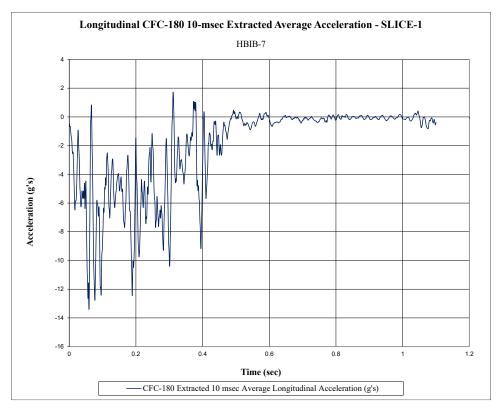


Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-7

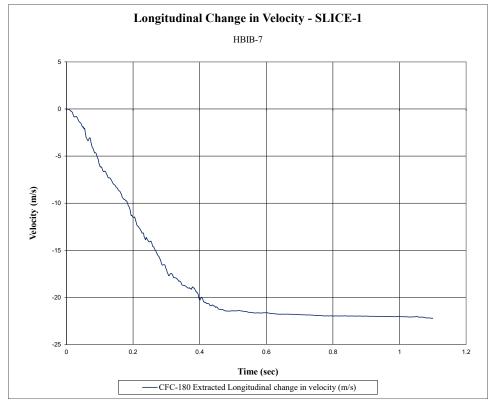


Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-7

Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-7

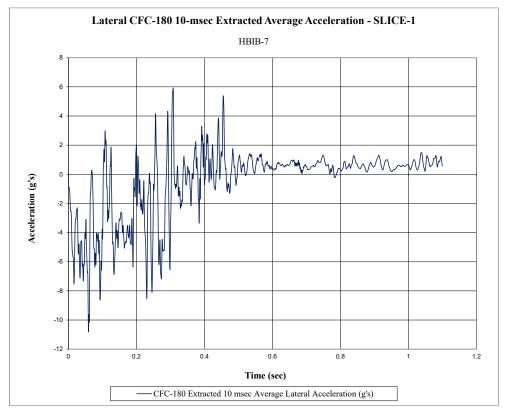


Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-7

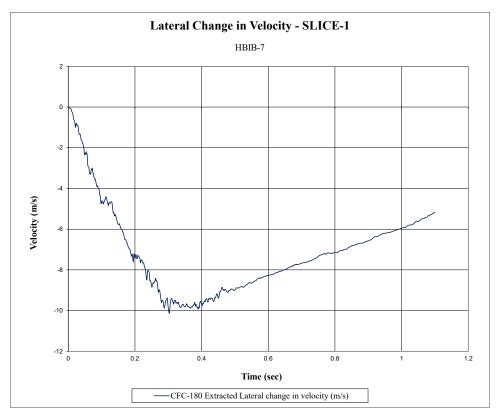


Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-7

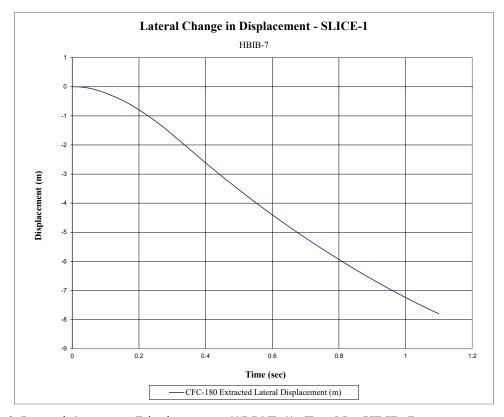


Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-7

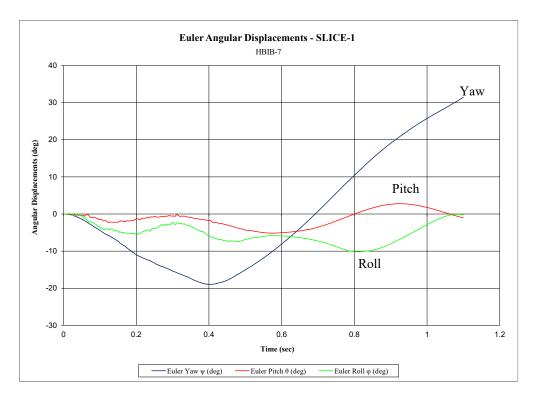


Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-7

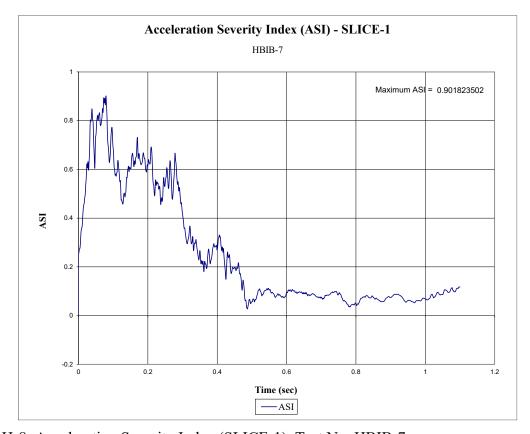


Figure H-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-7

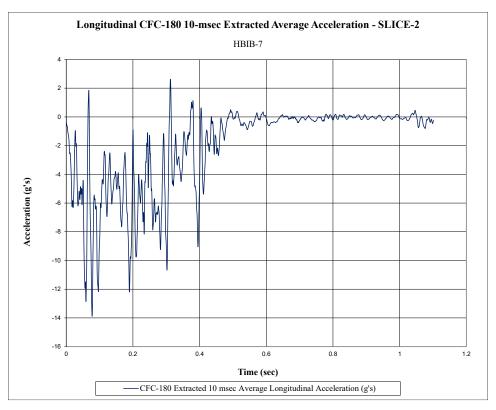


Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-7

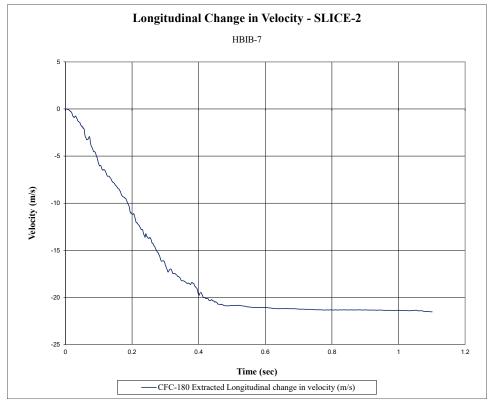


Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-7

Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-7

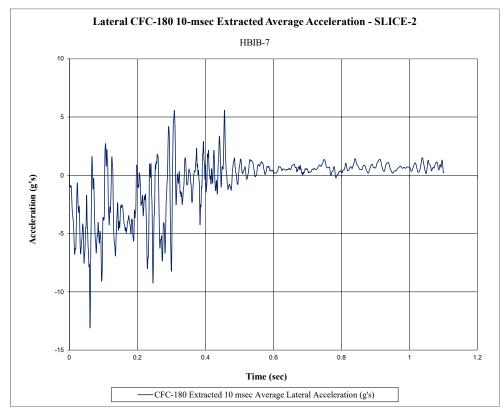


Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-7

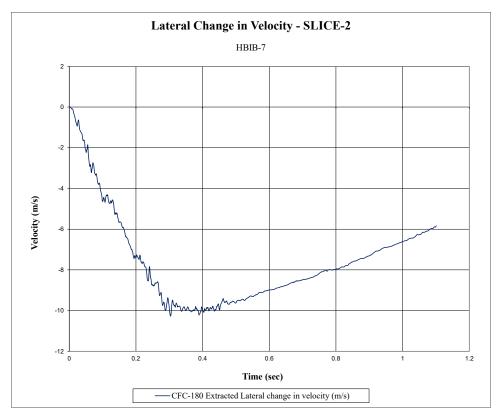


Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-7

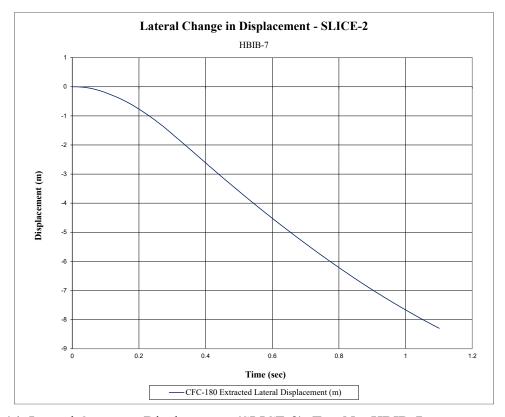


Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-7

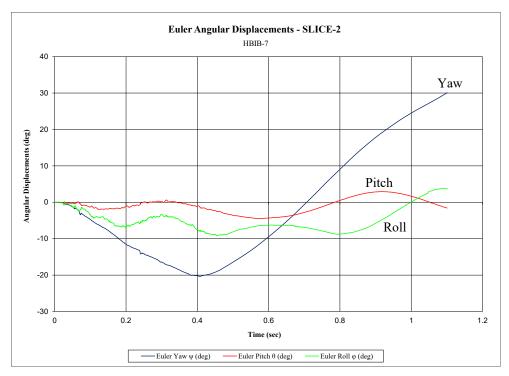


Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-7

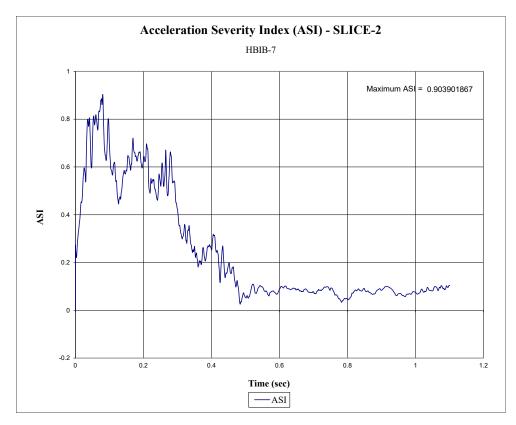


Figure H-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-7

Appendix I. Accelerometer and Rate Transducer Data Plots, Test No. HBIB-8

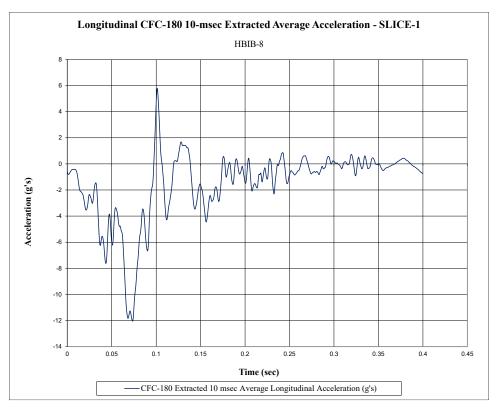


Figure I-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-8

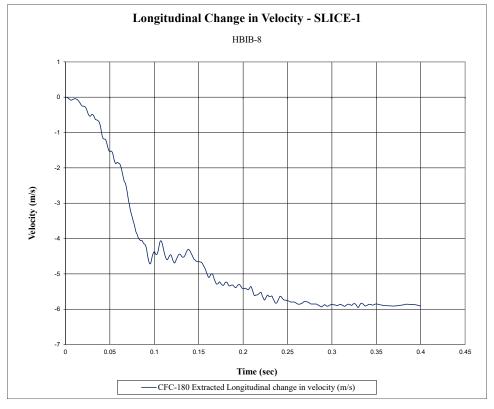


Figure I-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-8

Figure I-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-8

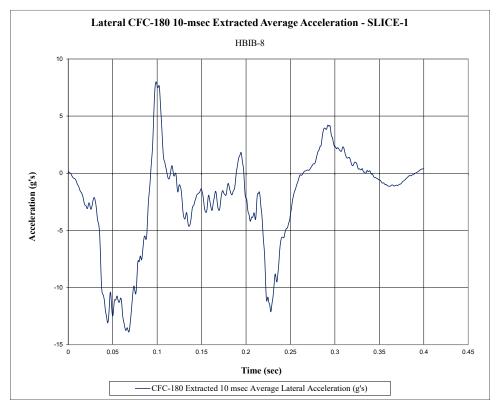


Figure I-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-8

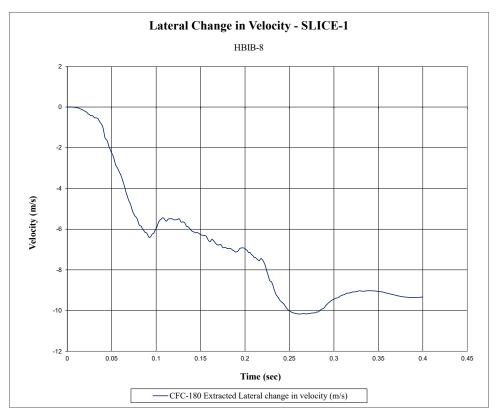


Figure I-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-8

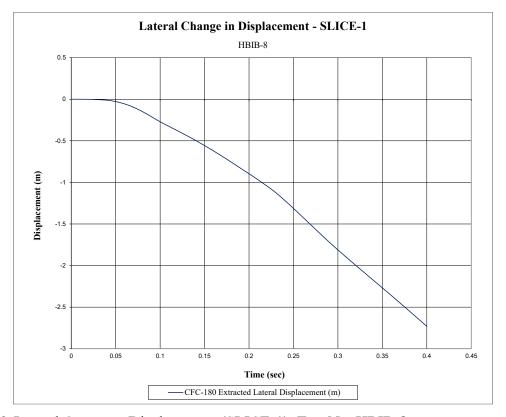


Figure I-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-8

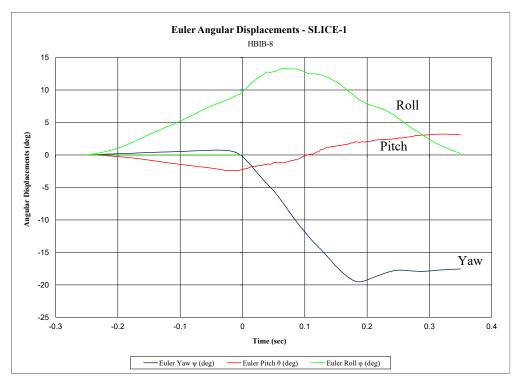


Figure I-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-8

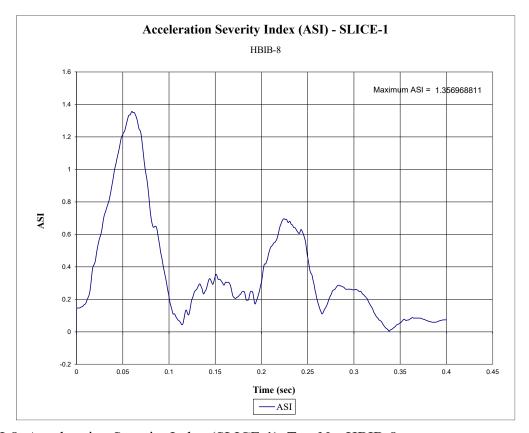


Figure I-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-8

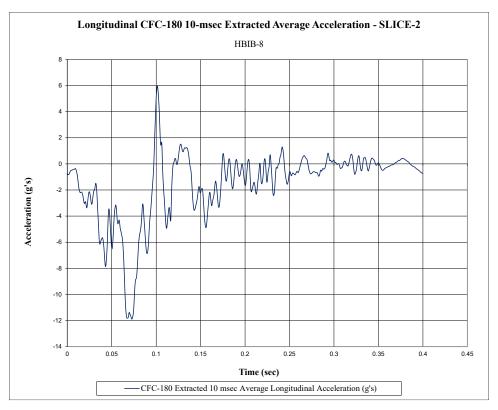


Figure I-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-8

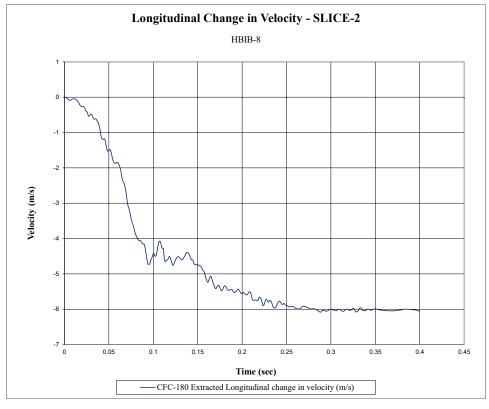


Figure I-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-8

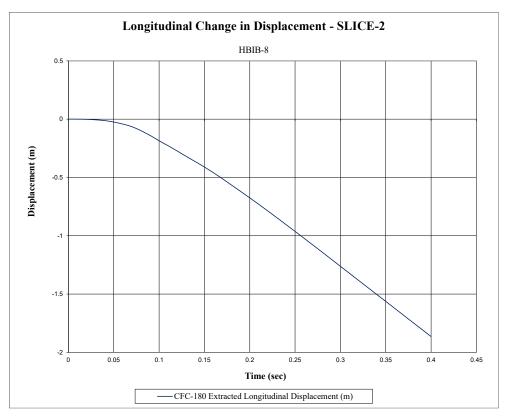


Figure I-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-8

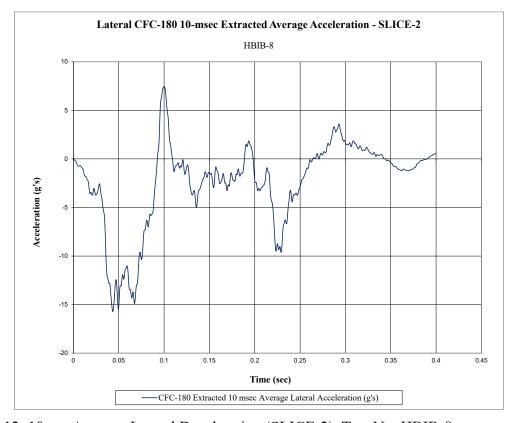


Figure I-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-8

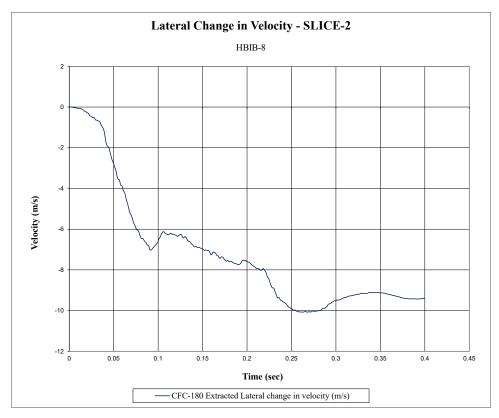


Figure I-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-8

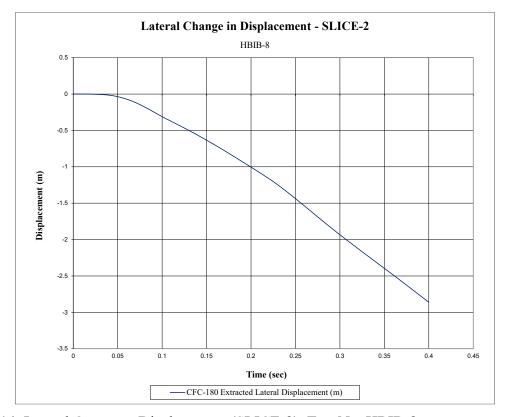


Figure I-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-8

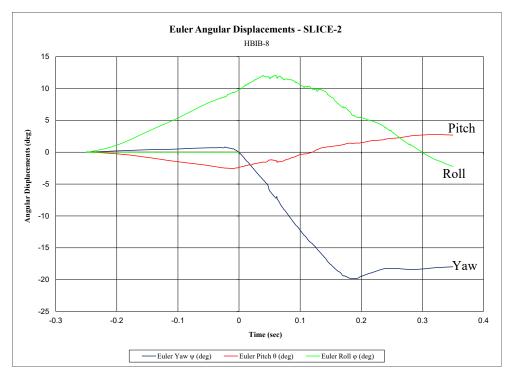


Figure I-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-8

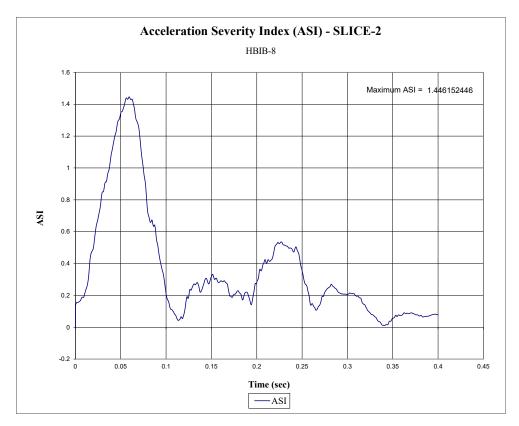


Figure I-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-8

Appendix J. Accelerometer and Rate Transducer Data Plots, Test No. HBIB-10

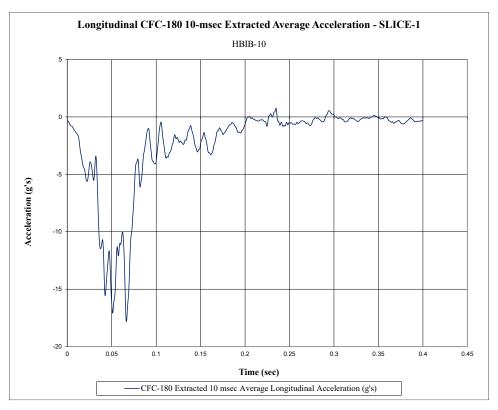


Figure J-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-10

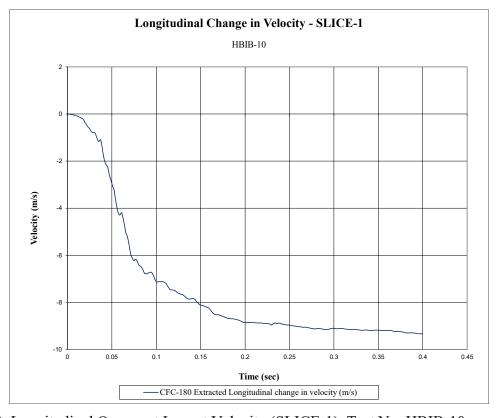


Figure J-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-10

Figure J-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-10

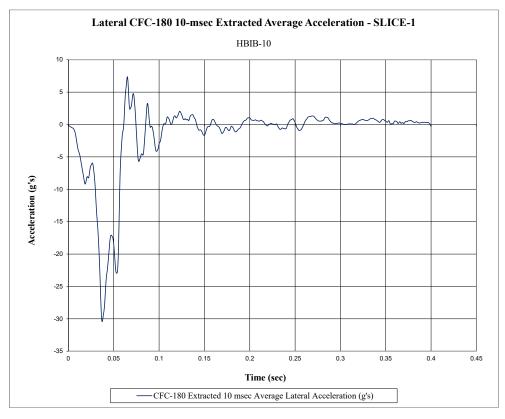


Figure J-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-10

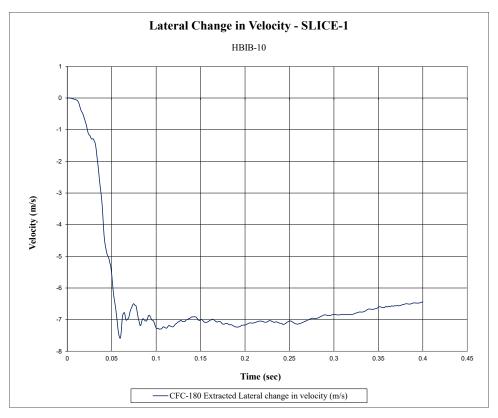


Figure J-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-10

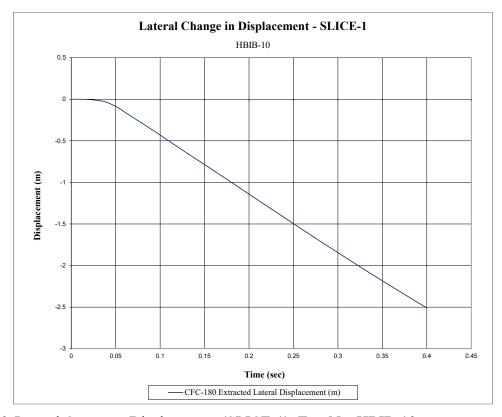


Figure J-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-10

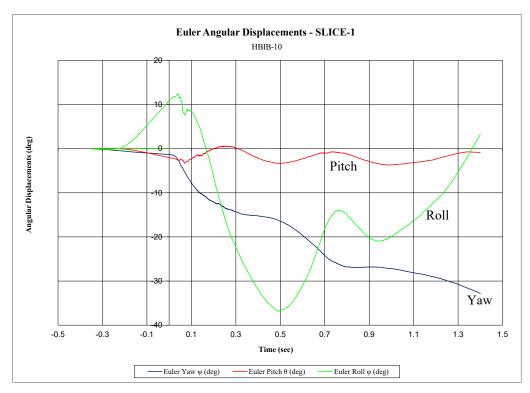


Figure J-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-10

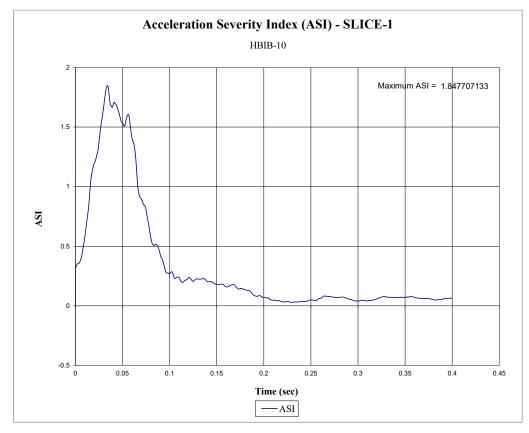


Figure J-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-10

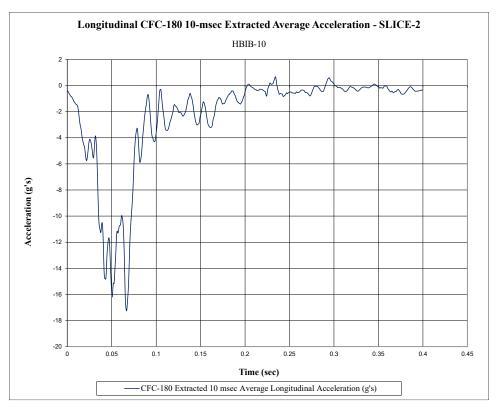


Figure J-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-10

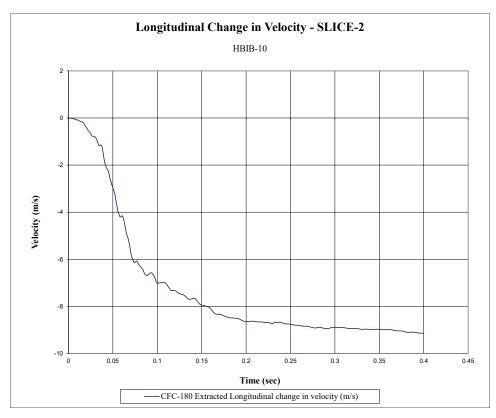


Figure J-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-10

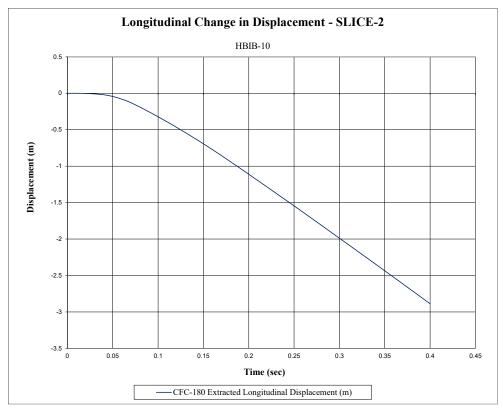


Figure J-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-10

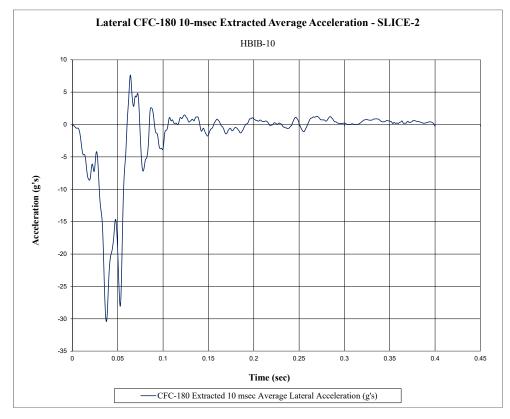


Figure J-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-10

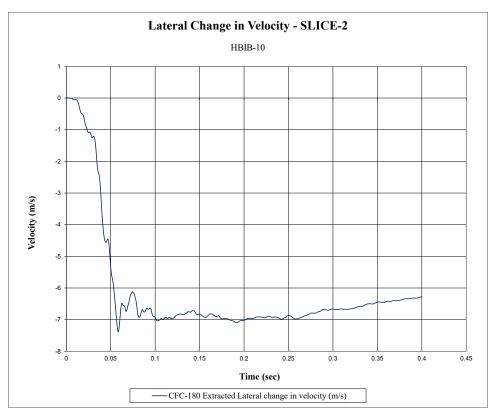


Figure J-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-10

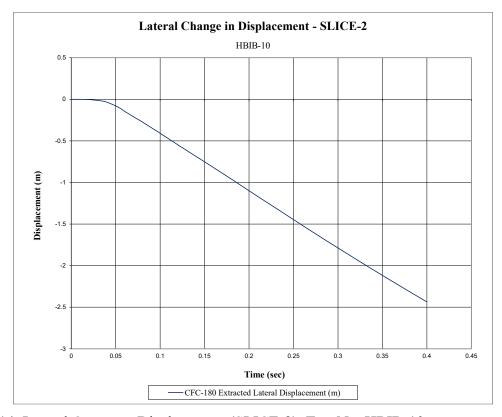


Figure J-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-10

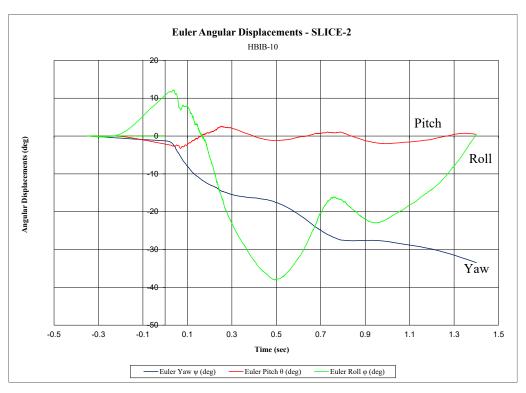


Figure J-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-10

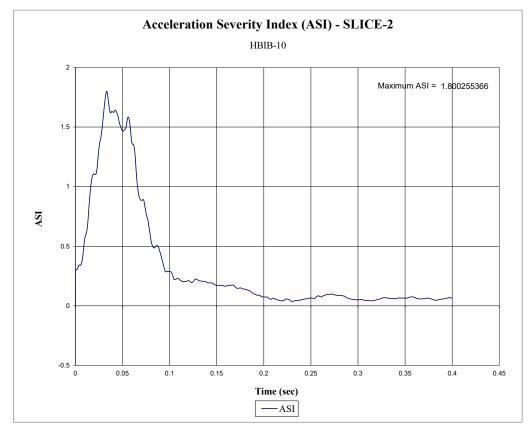


Figure J-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-10

Appendix K. Accelerometer and Rate Transducer Data Plots, Test No. HBIB-9

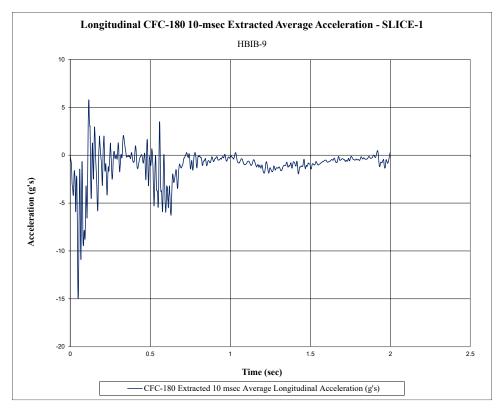


Figure K-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HBIB-9

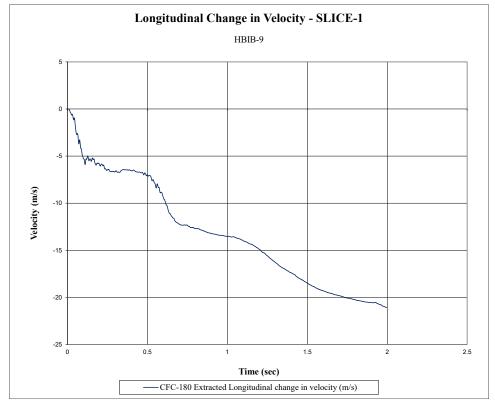


Figure K-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HBIB-9

Figure K-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HBIB-9

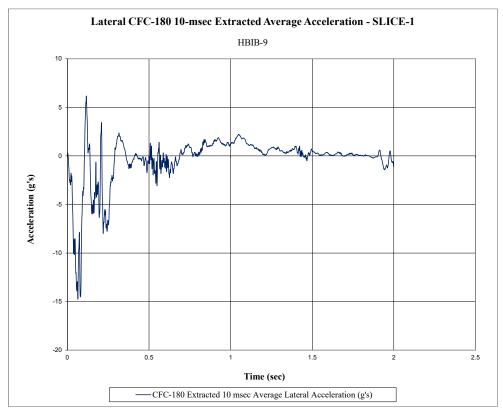


Figure K-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HBIB-9

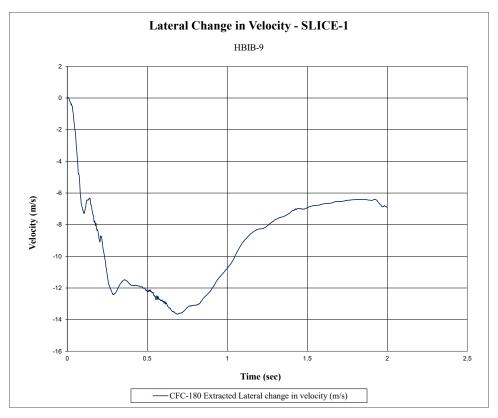


Figure K-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HBIB-9

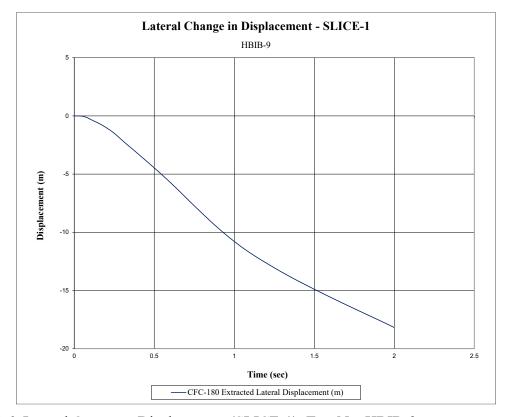


Figure K-6. Lateral Occupant Displacement (SLICE-1), Test No. HBIB-9

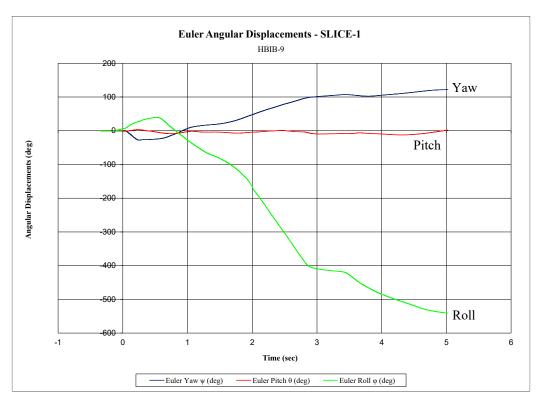


Figure K-7. Vehicle Angular Displacements (SLICE-1), Test No. HBIB-9

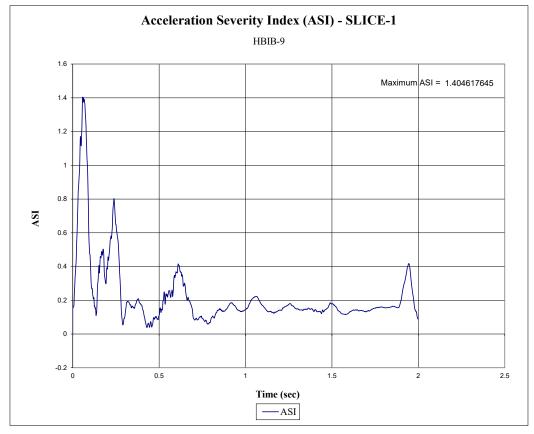


Figure K-8. Acceleration Severity Index (SLICE-1), Test No. HBIB-9

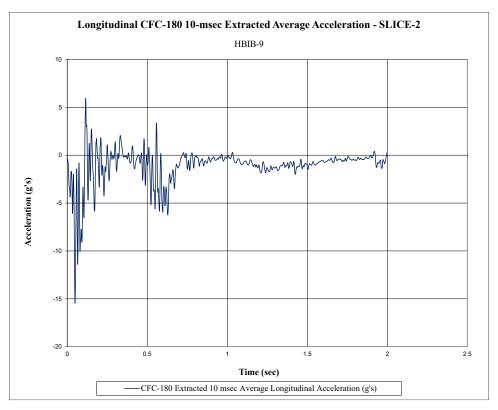


Figure K-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HBIB-9

Figure K-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HBIB-9

Figure K-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HBIB-9

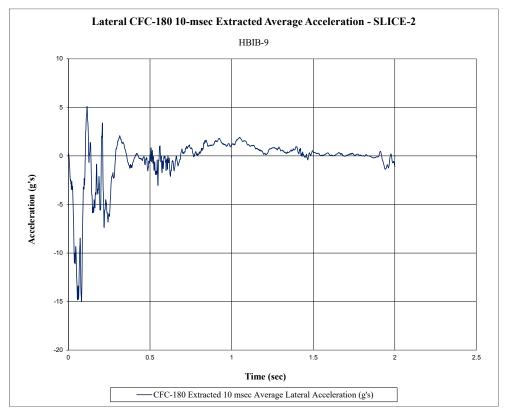


Figure K-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HBIB-9

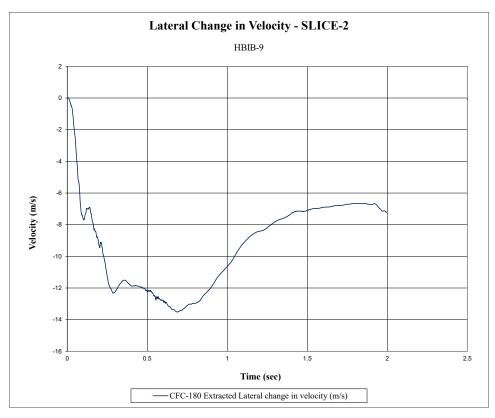


Figure K-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HBIB-9

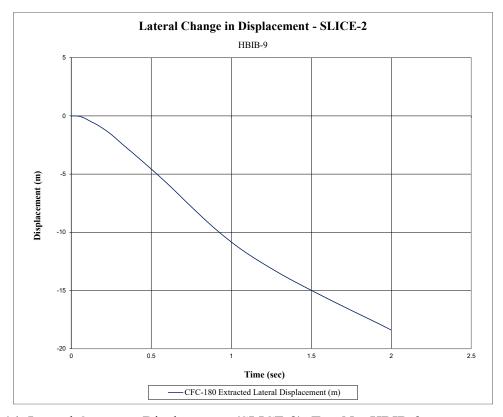


Figure K-14. Lateral Occupant Displacement (SLICE-2), Test No. HBIB-9

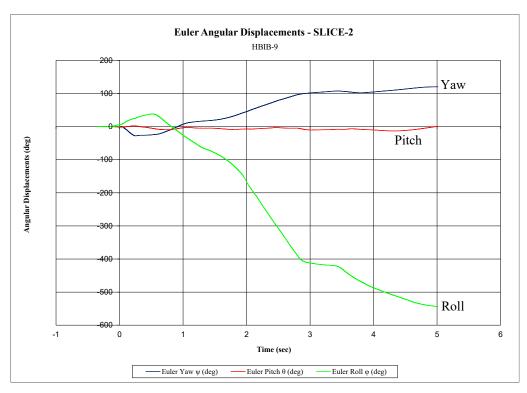


Figure K-15. Vehicle Angular Displacements (SLICE-2), Test No. HBIB-9

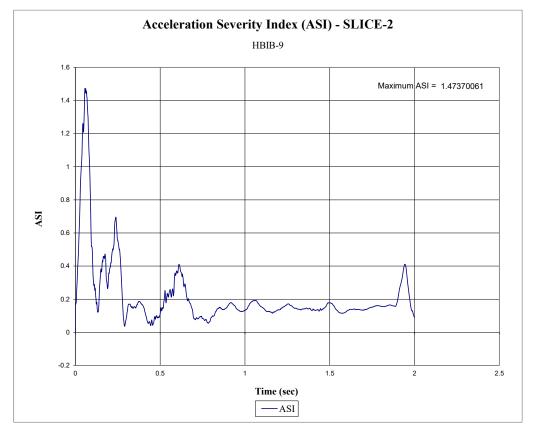


Figure K-16. Acceleration Severity Index (SLICE-2), Test No. HBIB-9

END OF DOCUMENT