

Research Project Number TPF-5(430) – Supplement #10

EVALUATION OF THE MGS WITH HALF POST SPACING AND 7-FT POSTS ADJACENT TO SLOPE

Submitted by

Robert W. Bielenberg, M.S.M.E. Research Engineer Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

James C. Holloway, M.S.C.E. Research Engineer & Assistant Director – Physical Testing Division Thomas B. Redinger Former Undergraduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402)472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

WISCONSIN DEPARTMENT OF TRANSPORTATION

4802 Sheboygan Avenue Madison, Wisconsin 53707

MwRSF Research Report No. TRP-03-452-24

August 22, 2024

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
TRP-03-452-24		
4. Title and Subtitle		5. Report Date
Evaluation of the MGS with Half Post Spaci	ng and 7-ft Posts Adjacent to Slope	August 22, 2024
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Bielenberg, R.W., Faller, R.K., Holloway, J.	C., and Redinger, T.B.	TRP-03-452-24
9. Performing Organization Name and Ad	ldress	10. Work Unit No.
Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln		
Prem S. Paul Research Center at	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5(430) – Supplement #10
12. Sponsoring Agency Name and Address	s	13. Type of Report and Period Covered
Wisconsin Department of Transportation		Final Report: 2021-2024
4802 Sheboygan Avenue		14. Sponsoring Agency Code
Madison, Wisconsin 53707		RPFP-FY20-WISC-1-MGS
15. Supplementary Notes		
Prepared in cooperation with U.S. Departme	nt of Transportation, Federal Highwa	ay Administration
16 Abstract		

16. Abstract

This report documents two full-scale crash tests conducted in support of a study to investigate the safety performance of Wisconsin Department of Transportation's (WisDOT's) Midwest Guardrail System (MGS) with half-post spacing adjacent to a 2H:1V slope. The test installation consisted of 175-ft long MGS with 75-ft long section of the barrier installed with ½ post spacing with 7-ft long W6x9 posts adjacent to a 2H:1V slope. The full-scale crash tests were conducted according to Manual for Assessing Safety Hardware 2016 (MASH 2016) criteria using Test-Level 3 (TL-3) test designation nos. 3-10 and 3-11, respectively.

In test no. MGS7S-1, an 1100C small car impacted the barrier at a speed of 62.8 mph and an angle of 25.2 degrees. In the test no. MGS7S-2, a 2270P quad cab pickup truck impacted the barrier at a speed of 62.6 mph and an angle of 25.4 degrees. In both tests, the guardrail successfully contained and redirected the vehicle, and it did not penetrate or show potential for debris to penetrate the occupant compartment. All occupant risk measurements were below the maximum thresholds. Thus, test nos. MGS7S-1 and MGS7S-2 successfully met the TL-3 safety performance criteria defined in MASH 2016.

17. Key Words		18. Distribution Statement		
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Longitudinal Barrier, TL-3, Midwest Guardrail System		No restrictions. This document is available through the National Technical Information Service. 5285 Port Royal Road Springfield, VA 22161		
19. Security Classification (of this report)20. Security Classification (of this page)		21. No. of Pages	22. Price	
Unclassified	Unclassified	173		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Wisconsin Department of Transportation under TPF-5(430) – Supplement #10. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln nor the Wisconsin Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Wisconsin do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Brandon Perry, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that contributed to this project: (1) the Wisconsin Department of Transportation (WisDOT) for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

- K.A. Lechtenberg, M.S.M.E., Research Engineer
- S.K. Rosenbaugh, M.S.C.E., Research Engineer
- C.S. Stolle, Ph.D., Research Associate Professor
- J.S. Steelman, Ph.D., P.E., Associate Professor
- M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor
- B.J. Perry, M.E.M.E., Research Engineer
- A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
- E.W. Krier, B.S., Former Engineering Testing Technician II
- D.S. Charroin, Engineering Testing Technician II
- R.M. Novak, Engineering Testing Technician II
- J.T. Jones, Engineering Testing Technician II
- S.M. Tighe, Former Engineering Testing Technician I
- T.C. Donahoo, Engineering Testing Technician I
- C. Charroin, Former Engineering Construction Testing Technician I

Midwest Roadside Safety Facility, Cont.

- T. Shapland, Former Engineering Construction Testing Technician I
- E.L. Urbank, B.A., Research Communication Specialist
- Z.Z. Jabr, Engineering Technician
- J.J. Oliver, Solidworks Drafting Coordinator
- Undergraduate and Graduate Research Assistants

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	v
LIST OF TABLES	ix
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 LITERATURE REVIEW	4
3 TEST REQUIREMENTS AND EVALUATION CRITERIA 3.1 Test Requirements 3.2 Evaluation Criteria 3.3 Soil Strength Requirements	6 8
4 DESIGN DETAILS	
 5 TEST CONDITIONS	27 27 27 27 36 37 37 37
 5.5.3 Digital Photography 6 FULL-SCALE CRASH TEST NO. MGS7S-1 6.1 Static Soil Test 6.2 Weather Conditions 6.3 Test Description 6.4 Barrier Damage 6.5 Vehicle Damage 6.6 Occupant Risk 6.7 Discussion 	40 40 40 40 40 40 57 57 61
7 FULL-SCALE CRASH TEST NO. MGS7S-2 7.1 Static Soil Test	

7.2 Weather Conditions	64
7.3 Test Description	64
7.4 Barrier Damage	
7.5 Vehicle Damage	79
7.6 Occupant Risk	
7.7 Discussion	84
8 STIFFNESS TRANSITION GUIDANCE	86
9 SUMMARY AND CONCLUSIONS	88
10 MASH EVALUATION	91
10.1 Test Matrix	
10.2 Full-Scale Crash Test Results	91
10.3 MASH 2016 Evaluation	94
11 REFERENCES	95
12 APPENDICES	97
Appendix A. Material Specifications	98
Appendix B. Vehicle Center of Gravity Determination	133
Appendix C. Static Soil Tests	136
Appendix D. Vehicle Deformation Records, Test No. MGS7S-1	140
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGS7S-1	155
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MGS7S-2	164

LIST OF FIGURES

Figure 1. W-beam Guardrail Adjacent to a 2:1 Foreslope, Test No. MOSW-1 [2]	2
Figure 2. Test Installation Layout, Test Nos. MGS7S-1 and MGS7S-2	11
Figure 3. Post Details, Test Nos. MGS7S-1 and MGS7S-2	
Figure 4 End Section and Splice Detail, Test Nos. MGS7S-1 and MGS7S-2	13
Figure 5. BCT Anchor Details, Test No. MGS7S-1 and MGS7S-2	14
Figure 6. Post Components, Test No. MGS7S-1 and MGS7S-2	15
Figure 7. BCT Timber Post, Foundation Tube and Slope Post Details, Test Nos. MGS7S-1	
and MGS7S-2	16
Figure 8. BCT Post Components, Test Nos. MGS7S-1 and MGS7S-2	17
Figure 9. Ground Strut Details, Test Nos. MGS7S-1 and MGS7S-2	18
Figure 10. BCT Anchor Cable, Test Nos. MGS7S-1 and MGS7S-2	19
Figure 11. Rail Section Details, Test Nos. MGS7S-1 and MGS7S-2	
Figure 12. Fasteners, Test Nos. MGS7S-1 and MGS7S-2	21
Figure 13. Bill of Materials, Test Nos. MGS7S-1 and MGS7S-2	22
Figure 14. Bill of Materials, Test No. MGS7S-1 and MGS7S-2	23
Figure 15. Test Installation Photographs, Test Nos. MGS7S-1 and MGS7S-2	
Figure 16. Test Installation Photographs, Test Nos. MGS7S-1 and MGS7S-2	25
Figure 17. Test Installation Photographs, Test Nos. MGS7S-1 and MGS7S-2	
Figure 18. Test Vehicle, Test No. MGS7S-1	29
Figure 19. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MGS7S-1	30
Figure 20. Vehicle Dimensions, Test No. MGS7S-1	
Figure 21 Test Vehicle, Test No. MGS7S-2	32
Figure 22. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MGS7S-2	33
Figure 23. Vehicle Dimensions, Test No. MGS7S-2	34
Figure 24. Target Geometry, Test No. MGS7S-1	35
Figure 25. Target Geometry, Test No. MGS7S-2	36
Figure 26. Camera Locations, Speeds, and Lens Settings, Test No. MGS7S-1	38
Figure 27. Camera Locations, Speeds, and Lens Settings, Test No. MGS7S-2	39
Figure 28. Impact Location, Test No. MGS7S-1	41
Figure 29. Sequential Photographs, Test No. MGS7S-1	43
Figure 30. Sequential Photographs, Test No. MGS7S-1	44
Figure 31. Sequential Photographs, Test No. MGS7S-1	45
Figure 32. Documentary Photographs, Test No. MGS7S-1	46
Figure 33. Documentary Photographs, Test No. MGS7S-1	
Figure 34. Vehicle Final Position and Trajectory Marks, Test No. MGS7S-1	48
Figure 35. System Damage, Test No. MGS7S-1	50
Figure 36. System Damage, Test No. MGS7S-1	51
Figure 37. Damage to Post Nos. 19 and 20, Test No. MGS7S-1	52
Figure 38. Damage to Post Nos. 21 and 22, Test No. MGS7S-1	53
Figure 39. Post and Flange Damage, Test No. MGS7S-1	54
Figure 40. Bolt Hole and Bolt Damage, Post No. 20, Test No, MGS7S-1	55
Figure 41. Bolt Hole and Bolt Damage, Test No. MGS7S-1	
Figure 42. Permanent Set, Dynamic Deflection, and Working Width, Test No. MGS7S-1	57
Figure 43. Vehicle Damage. Test No. MGS7S-1	

Figure 44. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MGS7S-	
1	
Figure 45. Summary of Test Results and Sequential Photographs, Test No. MGS7S-1	
Figure 46. Impact Location, Test No. MGS7S-2	
Figure 47. Sequential Photographs, Test No. MGS7S-2	
Figure 48. Sequential Photographs, Test No. MGS7S-2	
Figure 49. Documentary Photographs, Test No. MGS7S-2	
Figure 50. Documentary Photographs, Test No. MGS7S-2	
Figure 51. Vehicle Final Position and Trajectory Marks, Test No. MGS7S-2	
Figure 52. System Damage, Test No. MGS7S-2	73
Figure 53. Damage to Post Nos. 17 and 18, Test No. MGS7S-2	74
Figure 54. Damage to Post Nos. 19 and 20, Test No. MGS7S-2	
Figure 55. Damage to Post Nos. 21 and 22, Test No. MGS7S-2 Description	76
Figure 56. Bolt Damage. Test No. MGS7S-2	
Figure 57. Blockout Damage and Post Buckling, Test No. MGS7S-2	78
Figure 58. Permanent Set, Dynamic Deflection, and Working Width, Test No. MGS7S-2	79
Figure 59. Vehicle Damage, Test No. MGS7S-2	81
Figure 60. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MGS7S-	
2	82
Figure 61. Summary of Test Results and Sequential Photographs, Test No. MGS7S-2	85
Figure 62. MASH TL-3 MGS with Half-Post Spacing Adjacent to a Steep Slope	93
Figure A-1. 12-ft 6-in. 12-gauge W-Beam MGS Section, Test Nos. MGS7S-1 and MGS7S-	
2 (Item No. a1)	100
Figure A-2. 12-ft 6-in. 12-gauge W-Beam MGS Section, Test Nos. MGS7S-1 and MGS7S-	
2 (Item No. a1)	101
Figure A-3. 12-ft 6-in. 12-gauge W-Beam MGS End Section, Test Nos. MGS7S-1 and	
MGS7S-2 (Item No. a2)	102
Figure A-4. 12-ft 6-in. 12-gauge W-Beam MGS End Section, Test Nos. MGS7S-1 and	
MGS7S-2 (Item No. a2)	103
Figure A-5. 6-ft 3-in. 12-gauge W-Beam MGS Section, Test Nos. MGS7S-1 and MGS7S-2	
(Item No. a3)	104
Figure A-6. W6x8.5, 72-in. Long Steel Post, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
a4)	105
Figure A-7. W6x8.5, 84-in. Long Steel Post, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
a5)	106
Figure A-8. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
a6)	107
Figure A-9. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
a6)	108
Figure A-10. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item	
No. a6)	109
Figure A-11. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item	
No. a6)	110
Figure A-12. 16D Double Head Nail, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a7)	
Figure A-13. BCT Timber Post – MGS Height, Test Nos. MGS7S-1 and MGS7S-2 (Item	
No. b1)	112

Figure A-14. BCT Timber Post – MGS Height, Test Nos. MGS7S-1 and MGS7S-2 (Item	
No. b1)	.113
Figure A-15. 72-in. Long Foundation Tube, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
b2)	.114
Figure A-16. 72-in. Long Foundation Tube, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
b2)	
Figure A-17. Strut and Yoke Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b3)	.116
Figure A-18. BCT Cable Anchor Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
b4)	.117
Figure A-19. Anchor Bracket Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b5)	
Figure A-20. Anchor Bracket Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b5)	.119
Figure A-21. 8-in. x 8-in. x ⁵ / ₈ -in. Anchor Bearing Plate, Test Nos. MGS7S-1 and MGS7S-	
2 (Item No. b6)	.120
Figure A-22. 2 ³ / ₈ -in. O.D. x 6-in. Long BCT Post Sleeve, Test Nos. MGS7S-1 and MGS7S-	101
2 (Item No. b7)	.121
Figure A-23. ⁵ / ₈ -in. Dia. UNC, 14-in. Long Guardrail Bolt, Test Nos. MGS7S-1 and	100
MGS7S-2 (Item No. c1)	.122
Figure A-24. ⁵ / ₈ -in. Dia. UNC 1 ¹ / ₄ -in. Long Guardrail Bolt, Test Nos. MGS7S-1 and	100
MGS7S-2 (Item No. c2)	.123
Figure A-25. ⁵ / ₈ -in. Dia. UNC, 1 ¹ / ₄ -in. Long Guardrail Bolt, Test Nos. MGS7S-1 and	104
MGS7S-2 (Item No. c2)	.124
Figure A-26. ⁵ / ₈ -in. Dia. UNC, 10-in. Long Guardrail Bolt, Test Nos. MGS7S-1 and	105
MGS7S-2 (Item No. c3)	.123
Figure A-27. ⁵ / ₈ -in. Dia. UNC, 1 ¹ / ₂ -in. Long Hex Head Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c4)	126
Figure A-28. ⁵ / ₈ -in. Dia. UNC, 10-in. Long Hex Head Bolt, Test Nos. MGS7S-1 and	.120
MGS7S-2 (Item No. c5)	127
Figure A-29. ⁷ / ₈ -in. Dia. UNC, 8-in. Long Hex Head Bolt, Test Nos. MGS7S-1 and	.127
MGS7S-2 (Item No. c6)	128
Figure A-30. ⁵ / ₈ -in. Dia. Hex Nut, Test Nos. MGS7S-1 and MGS7S-2 (Item No. d1)	
Figure A-31. ⁵ / ₈ -in. Dia. Heavy Hex Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. d3)	
Figure A-32. ⁵ / ₈ -in. Dia. Plain USS Washer, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
	.131
Figure A-33. ⁷ / ₈ -in. Dia. Plain USS Washer, Test Nos. MGS7S-1 and MGS7S-2 (Item No.	
e2)	.132
Figure B-1. Vehicle Mass Distribution, Test No. MGS7S-1	
Figure B-2. Vehicle Mass Distribution, Test No. MGS7S-2	
Figure C-1. Soil Strength, Initial Calibration Test, Test Nos. MGS7S-1 and MGS7S-2	
Figure C-2. Static Soil Test, Test No. MGS7S-1	
Figure C-3. Static Soil Test, Test No. MGS7S-2	
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGS7S-1	.141
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGS7S-1	.142
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. MGS7S-1	.143
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MGS7S-1	.144
Figure D-5. Maximum Occupant Compartment Deformation by Location, Test No.	
MGS7S-1	
Figure D-6. Exterior Vehicle Crush (NASS) – Front, Test No. MGS7S-1	.146

Figure D-7. Exterior Vehicle Crush (NASS) – Side, Test No. MGS7S-1	147
Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGS7S-2	
Figure D-9. Floor Pan Deformation Data – Set 2, Test No. MGS7S-2	
Figure D-10. Occupant Compartment Deformation Data - Set 1, Test No. MGS7S-2	
Figure D-11. Occupant Compartment Deformation Data – Set 2, Test No. MGS7S-2	
Figure D-12. Maximum Occupant Compartment Deformation by Location, Test No.	
MGS7S-2	152
Figure D-13. Exterior Vehicle Crush (NASS) – Front, Test No. MGS7S-2	
Figure D-14. Exterior Vehicle Crush (NASS) – Side, Test No. MGS7S-2	
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGS7S-1	156
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGS7S-1	156
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGS7S-1	157
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGS7S-1	157
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGS7S-1	158
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGS7S-1	158
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGS7S-1	159
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGS7S-1	159
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGS7S-1	160
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGS7S-1	160
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGS7S-1	161
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGS7S-1	
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGS7S-1	
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGS7S-1	
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGS7S-1	
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGS7S-1	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGS7S-2	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGS7S-2	
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGS7S-2	
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGS7S-2	
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGS7S-2	
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. MGS7S-2	
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. MGS7S-2	
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. MGS7S-2	
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGS7S-2	
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGS7S-2	
Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGS7S-2	
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGS7S-2	
Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGS7S-2	
Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. MGS7S-2	
Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. MGS7S-2	
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. MGS7S-2	1/2

LIST OF TABLES

Table 1. MASH TL-3 Details for 31-in. W-Beam Guardrail on Slopes [4]	5
Table 2. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	6
Table 3. MASH 2016 TL-3 Dynamic Deflection and Working Width Comparison for	
Strong Post, Culvert Mounted MGS and Modified MGS Adjacent to 2H:1V Slope	7
Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier	8
Table 5. Weather Conditions, Test No. MGS7S-1	40
Table 6. Sequential Description of Impact Events, Test No. MGS7S-1	42
Table 7. Maximum Occupant Compartment Intrusion by Location, Test No. MGS7S-1	61
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGS7S-1	62
Table 9. Weather Conditions, Test No. MGS7S-2	64
Table 10. Sequential Description of Impact Events, Test No. MGS7S-2	66
Table 11. Maximum Occupant Compartment Intrusion by Location, Test No. MGS7S-2	83
Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGS7S-2	84
Table 13. Summary of Safety Performance Evaluation	90
Table 14. MASH TL-3 Crash Test Conditions for Longitudinal Barriers	91
Table 15. MASH TL-4 Crash Test Summary for Open Concrete Bridge Rail	92
Table A-1. Bill of Materials, Test Nos. MGS7S-1 and MGS7S-2	99

1 INTRODUCTION

1.1 Background

W-beam guardrail is often used to protect motorists from steep roadside slopes adjacent to high-speed roadways. A roadside slope placed immediately behind a guardrail system significantly reduces the soil resistance associated with lateral deflection of the barrier. This reduction in the post-soil forces reduces the barrier system's energy-absorption capability, increases dynamic rail deflections, and can potentially produce issues with vehicle capture or vehicle override. Further, when the guardrail extends over the embankment, the gap between the bottom of the rail and the ground will be magnified and thereby increase the risk of severe wheel snag.

Guardrail placed adjacent to slopes has been a common concern for state departments of transportation (DOTs). In the past, several states have requested guidance regarding safe guardrail offsets or modification to guardrail post spacing and/or embedment when placed directly adjacent to steep fill slopes. Under National Cooperative Highway Research Program (NCHRP) Report 350 [1], Midwest Roadside Safety Facility (MwRSF) developed and evaluated a variation of the G4(1S) guardrail system for use adjacent to slopes as steep a 2H:1V. The test installation consisted of W-beam guardrail supported by 7-ft long, W6x9 steel guardrail posts spaced 37½ in. on center and installed with the center of the posts at the slope break point (SBP), as shown in Figure 1. The rail height of the system was 27¾ in. to the top of the rail. For the full-scale test, test no. MOSW-1, a 4,462-lb, ¾-ton pickup truck impacted the system 9⅓ in. downstream from the centerline of post no. 17, located within the half-post spacing region, at a speed of 62.6 mph and at an angle of 28.5 degrees. The vehicle was safely redirected, and the test was determined to be acceptable according to the TL-3 safety performance criteria presented in NCHRP Report 350.

Since the development of that system, the Midwest Guardrail System (MGS) has replaced the G4(1S) guardrail system as the standard guardrail design used by highway transportation agencies [2], and the evaluation of roadside hardware is currently governed by the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3]. The Wisconsin Department of Transportation (WisDOT) has previously used the G4(1S) W-beam barrier configuration with halfpost spacing with 7-ft long W6x9 posts adjacent to slopes and desired that this configuration be adopted to the MGS system and evaluated under MASH 2016 Test Level 3 (TL-3).

Figure 1. W-beam Guardrail Adjacent to a 2:1 Foreslope, Test No. MOSW-1 [2]

1.2 Objective

The objective of this research effort is to evaluate a MASH TL-3 compliant variation of the MGS adjacent to slopes as steep as 2H:1V through full-scale crash testing. The modified MGS system utilized half-post spacing with 7-ft long W6x9 posts installed at the SBP of a 2H:1V slope. The system was evaluated according to the TL-3 criteria of MASH 2016 [3].

1.3 Scope

The research objective was achieved through the completion of several tasks. First, the researchers developed CAD details for the modified MGS system adjacent to steep slopes. These CAD drawings were then utilized to construct the full-scale test installation, which consisted of a modified MGS system adjacent to steep slopes utilizing half-post spacing with 7-ft long W6x9 posts installed at the SBP of a 2H:1V slope. Two full-scale crash tests were conducted on the MGS with half-post spacing adjacent to steep slopes according to MASH 2016 test designation nos. 3-10 and 3-11. The full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the MGS with half-post spacing adjacent to steep slopes.

2 LITERATURE REVIEW

The strength and stiffness of W-beam guardrail is heavily dependent on post-soil resistance forces. Placing the system on or adjacent to a slope reduces the amount of soil behind the post, lowers the post-soil resistance, and can negatively affect the performance of the system. Thus, it is recommended for guardrail posts to be installed with at least 2 ft of level terrain behind the system to ensure the system performs as initially developed and evaluated. However, there are instances where placing guardrail adjacent to slopes is necessary due to limited roadside widths.

To date, there have been four different W-beam guardrail configurations adjacent to slopes successfully developed and crash tested according to MASH TL-3 evaluation criteria [4]. Although all four systems utilized 31-in. tall W-beam rail, they had varying post lengths, blockouts, allowable slopes, and placements relative to the SBP, as detailed in Table 1. None of the MASH-evaluated MGS guardrail systems adjacent to slope utilized reduced post spacing.

Based on the existing MASH TL-3 full-scale crash tests adjacent to slope, MwRSF also developed generalized guidance for placement of the MGS adjacent to steep slopes [4]. That research noted that end users may desire to further reduce the dynamic deflection and working width of installations adjacent to slopes through increased post length and/or reduced post spacing. However, recent full-scale crash testing of stiffened or reduced deflection MGS resulted in rail ruptures. Texas A&M Transportation Institute (TTI) recently conducted testing on the MGS with reduced post spacing and transitions from standard post spacing to reduced post spacing. TTI researchers first evaluated a quarter-post spacing system (183/4 in.) with MASH test designation nos. 3-11 and 3-10. The quarter-post spacing system successfully passed both MASH tests. TTI researchers also tested a transition between quarter- (1834 in.) and full- (75 in.) post spacing according to MASH test designation no. 3-21 impact conditions. This transition used single Wbeam rail elements and did not incorporate any nested rail sections. In this test, the pickup truck ruptured the rail and penetrated beyond the barrier. TTI researchers attributed the failure to rail pocketing caused by the short transition in lateral barrier stiffness. Finally, TTI researchers tested a half-post spacing $(37\frac{1}{2} \text{ in.})$ variation of the MGS under this project in which the pickup truck ruptured the rail and penetrated beyond the barrier. The recent test failures involving 2270P impacts into the MGS with reduced post spacing suggested that there was potential for rail failure during impacts into stiffened MGS applications and/or applications where increased localized rail deflection and pocketing may occur. The use of increased post length and embedment and/or reduced post spacing MGS configurations at the SBP outside of those that have been full-scale crash tested may result in similar W-beam rail loading and the potential for rail rupture. As such, the application of reduced post spacing and/or increased post length and embedment depth for the MGS installed at the SBP was not recommended without further research and crash testing.

Finally, a comment should be made regarding stiffness transitions between the proposed MGS with 7-ft long posts at half post spacing adjacent to slope and the standard MGS on level terrain. Typically, the use of reduced post spacing and increased embedment depth results in increased barrier stiffness. The increased stiffness of the barrier can result in the need for a stiffness transition to prevent degradation of the barrier performance at the junction between the barrier configurations. Conversely, the use of posts installed at the SBP of a steep slope can reduce postsoil resistive forces and lower the stiffness and increase the deflection of a barrier system, creating a transition in stiffness when it is attached to standard guardrail. The modified MGS adjacent to

slope evaluated herein would have both a stiffness reduction due to its placement adjacent to slope and a stiffness increase due to the post spacing and embedment when compared with the standard MGS on level terrain. It was not known what the net effect of these factors on the overall barrier stiffness and deflection would be nor whether a stiffness transition would be required between standard MGS and the modified MGS adjacent to slope proposed herein. Additionally, an ongoing research effort at TTI is investigating the use of reduced post spacing with W-beam guardrail and the need for stiffness transitions between standard guardrail and reduced post spacing. Thus, it was recommended that the results of that study, full-scale crash testing of other stiffened W-beam guardrail systems, and the full-scale crash tests on the system proposed herein be reviewed to determine if further transition research and design is needed following the full-scale crash testing.

System	A (9-ft MGS)	B (TTI)	C (Gabion Wall)	D (6-ft MGS)	
Layout		B-ft Long V6x8.5 Post	31' G-ft Long V6x8.5 Post Une 40' Hesh NSE Rocto NSE Rocto	40'	
Performance Level	MASH TL-3	MASH TL-3	MASH TL-3	MASH TL-3	
Full-Scale Tests	MASH 3-11	MASH 3-10 MASH 3-11	MASH 3-10 MASH 3-11	MASH 3-11	
Post	9-ft W6x8.5	8-ft W6x8.5	6-ft W6x8.5	6-ft W6x8.5	
Post Spacing	75 in.	75 in.	75 in.	75 in.	
Blockout	12-in. Blockout	8-in. Blockout	Non-Blocked	12-in. Blockout	
Slope	2:1	2:1	3:1	2:1	
Post Locations	Centered on SBP	Centered 15 in. Down Slope	Centered on SBP	Centered on SBP	
Working Width	62.4 in.	55.2 in.	45.2 in. 77.4 in.		
Alternative Posts	8-ft W6x8.5 or 7.5-ft 6"x8" Timber*	-	-	6-ft 6"x8" Timber*	
Alternative Blockouts	Non-Blocked or 8" Blockout	12-in. Blockout	-	Non-Blocked or 8" Blockout	
Allowable Slopes	2:1 or Flatter	2:1 or Flatter	-	2:1 or Flatter	

Table 1. MASH TL-3 Details for 31-in. W-Beam Guardrail on Slopes [4]

* Timber Posts should have strength equal to or greater than SYP grade 1

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

Longitudinal barriers, such as W-beam guardrails like the MGS, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System. For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. Note that there is no difference between MASH 2009 and MASH 2016 for longitudinal barriers such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 2.

Test	Test	Test	est hicle Vehicle Weight lb	Impact Conditions		Evoluction
Test Article	Designation No.	Vehicle		Speed mph	Angle deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 2. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 4.

MwRSF proposed that both test designation nos. 3-10 and 3-11 be conducted to evaluate the modified MGS system adjacent to steep slopes. Test designation no. 3-10 has not always been conducted for evaluation of guardrail adjacent to slope due to the reduced impact loading of the small car vehicle. However, recent MASH TL-3 crash testing of 1100C vehicles on guardrails with reduced post spacing or increased stiffness due to the presence of curbs have indicated the potential for combined loading of the guardrail splice by the small car vehicle that can lead to partial rail tears and even complete rail rupture. As such, test designation no. 3-10 was recommended for the evaluation of the barrier system. Test designation no. 3-11 with the 2270P vehicle represents the highest impact barrier loading during 2270P impacts, evaluates potential vehicle extension over the slope and the potential for vehicle instability, and determines dynamic deflection and working width. Thus, test designation no. 3-11 was also recommended for the evaluation of the barrier system.

The critical impact point for both tests were selected to maximize vehicle snag on the system posts and splice loading based on the guidance provide in Section 2.3 of MASH 2016. For test designation no. 3-10, initial vehicle impact was to occur 8 ft upstream from a post with a splice, which was selected using the critical impact point plots found in Section 2.3 of MASH 2016. Similarly, initial vehicle impact for test designation no. 3-11 was to occur 11 ft – 6 in. upstream from a post with a splice, which was selected using the critical impact point plots found in Section 2.3 of MASH 2016. Similarly, initial vehicle impact for test designation no. 3-11 was to occur 11 ft – 6 in. upstream from a post with a splice, which was selected using the critical impact point plots found in Section 2.3 of MASH 2016. These impact points were denoted on the test plans for the full-scale crash testing. During installation of the barrier system, the barrier orientation was flipped from the original test plan to better accommodate the site conditions and vehicle tow and guidance. When this change was made, the impact points for test designation nos. 3-10 and 3-11 were not properly

adjusted to maintain their location relative to a guardrail splice. Thus, the full-scale crash tests were conducted at a critical location relative to vehicle snag on the system posts, but a guardrail splice was not located at the critical post location as intended.

In order to evaluate whether or not this error had an effect on the evaluation of the barrier system, MwRSF researchers compared the results of test designation nos. 3-10 and 3-11 on modified MGS adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂-post spacing with previous testing of the strong post MGS with 1/2-post spacing mounted to a low-fill culvert that was evaluated to MASH TL-3 [5]. The strong post MGS with 1/2-post spacing mounted to a low-fill culvert utilized posts that were mounted directly to the top of the culvert slab at a depth of 9 in. below grade. The culvert mounted posts would be expected to provide similar or greater barrier stiffness as compared to the modified MGS adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂post spacing. This expectation seems consistent with comparison of dynamic deflection values for test designation nos. 3-10 and 3-11 conducted on both of these barrier systems, as shown in Table 3. The culvert-mounted MGS system produced lower dynamic rail deflections for test designation nos. 3-10 and 3-11 as compared to the modified MGS adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂-post spacing. Dynamic post deflections for the culvert mounted MGS system were also similar or less than the modified MGS adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂-post spacing. The potential for rail splice rupture tends to increase with increased barrier stiffness. Thus, the successful containment and redirection observed in the full-scale testing of the strong post, culvert-mounted MGS system would suggest that splice loading for the modified MGS adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂-post spacing should pose a performance concern.

Additionally, it was noted previously that 1100C rail rupture has been associated with combined loading of the rail splice due to rail tension, lateral deflection and bending, and vertical bending of the rail due to the vehicle wedging underneath the guardrail element. Wedging of the 1100C vehicle underneath the rail element should be less pronounced for a barrier system installed adjacent to a 2H:1V slope as the ground should be falling away from the vehicle as the barrier deflects. Thus, concerns for rail splice failure should be further mitigated. Based on this analysis, it was believed that the error in the critical impact point relative to the splice location did not adversely affect full-scale testing and evaluation of the barrier system detailed herein.

Test	Test	Impact Conditions		Dynamic Rail	Dynamic Post
Article	Designation No.	Speed (mph)	Angle (deg.)	Deflection (in.)	Deflection (in.)
Strong Post, Culvert Mounted	3-10	61.3	25.1	11.7	12.0
MGS	3-11	62.8	25.7	22.4	29.6
Modified MGS	3-10	62.8	25.2	21.8	30.4
Adjacent to 2H:1V Slope	3-11	62.6	25.4	27.2	26.5

Table 3. MASH 2016 TL-3 Dynamic Deflection and Working Width Comparison for Strong
Post, Culvert Mounted MGS and Modified MGS Adjacent to 2H:1V Slope

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three factors: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the MGS to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral				
		deflection of the test article is acceptable.				
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
Risk		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
	20.49 g's					

Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier

3.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

4 DESIGN DETAILS

The test installation for the modified MGS adjacent to a 2H:1V slope consisted of a 175-ft long modified MGS that utilized 12-gauge W-beam guardrail supported by 40 posts. System design details for test nos. MGS7S-1 and MGS7S-2 are shown in Figures 2 through 14. Photographs of the test installation are shown in Figures 15 through 17. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The modified MGS was installed on level terrain for 50 ft on each end of the system, while the middle of the barrier was installed adjacent to a 5-ft deep by 75-ft long 2H:1V slope. The slope started at the centerline of the post and extended 10 ft behind the post. Post nos. 3 through 8 and 32 through 38 were ASTM A992 W6x8.5 steel posts that measured 72-in. long and were spaced 75 in. apart with an embedment depth of 40 in. Post nos. 9 through 31 were ASTM A992 W6x8.5 steel posts that measured 84 in. long, were spaced $37\frac{1}{2}$ in. apart with W14x22 blockouts, and had an embedment depth of 52 in. The posts were placed in a compacted, coarse, crushed limestone material with a strength that satisfied MASH 2016 criteria. Post nos. 3 through 38 used 6-in. x 12in. x 14¹/4-in. wood blockouts to offset the rail away from the front face of the steel posts.

The upstream and downstream ends of the guardrail installation were configured with a trailing-end anchorage system. The guardrail anchorage system was utilized to simulate the strength of other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which closely resembled the hardware used in the Modified Breakaway Cable Terminal (BCT) system and is now part of a crashworthy, downstream trailing end terminal [6-8].

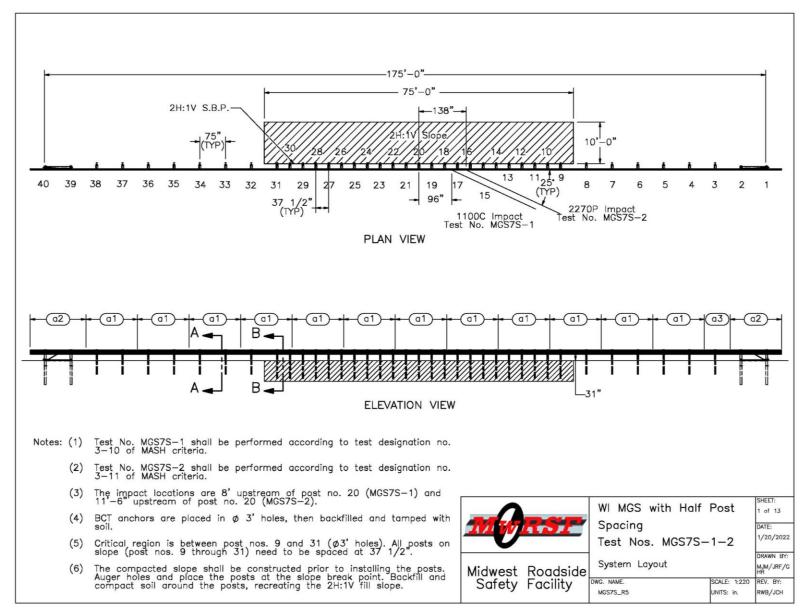


Figure 2. Test Installation Layout, Test Nos. MGS7S-1 and MGS7S-2

11

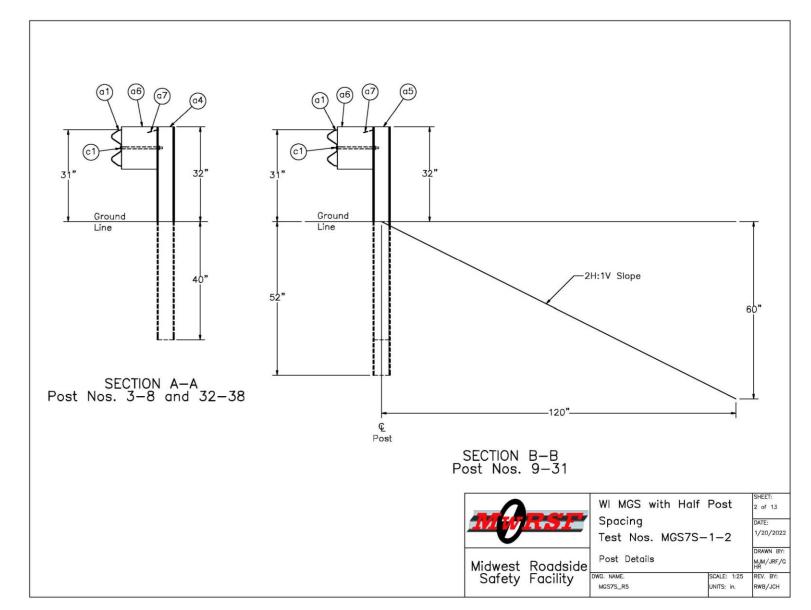


Figure 3. Post Details, Test Nos. MGS7S-1 and MGS7S-2

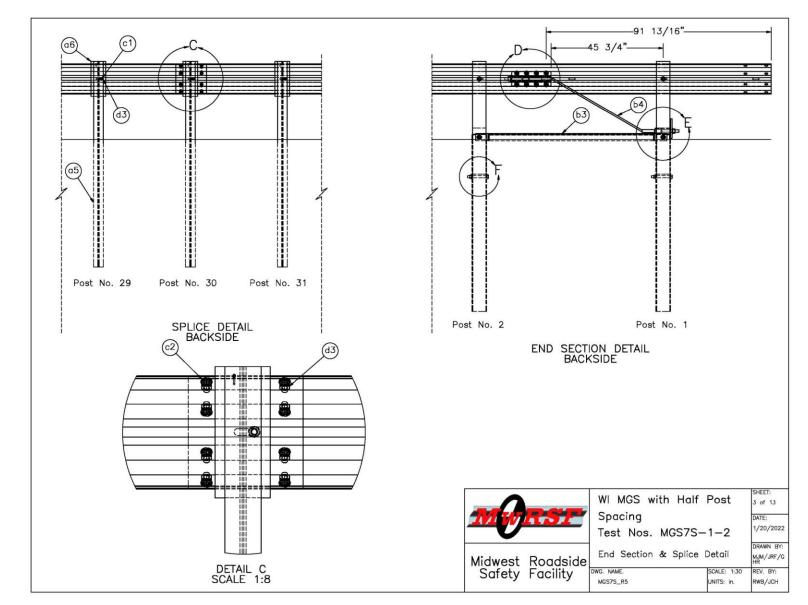


Figure 4 End Section and Splice Detail, Test Nos. MGS7S-1 and MGS7S-2

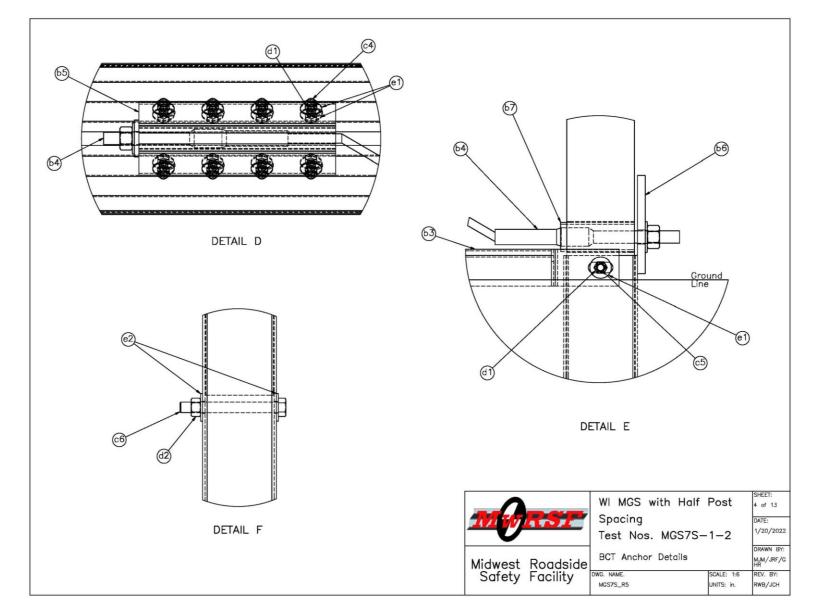


Figure 5. BCT Anchor Details, Test No. MGS7S-1 and MGS7S-2

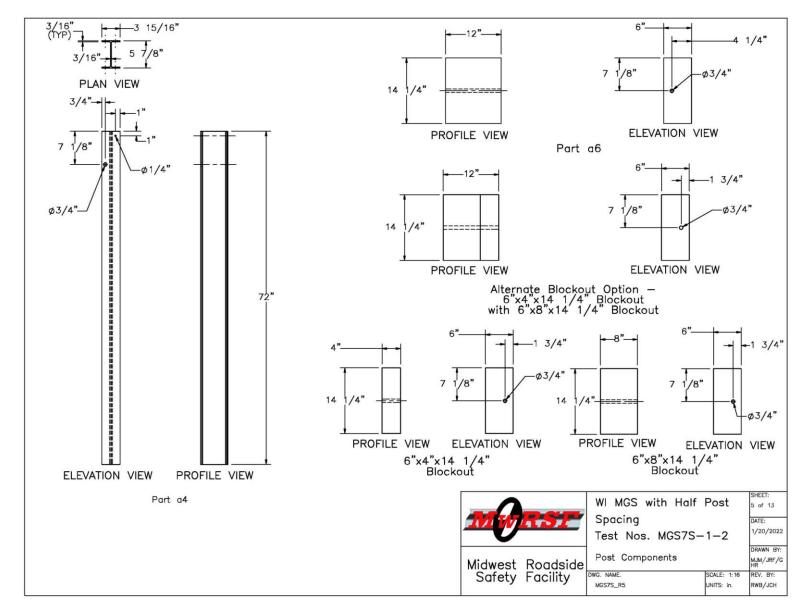


Figure 6. Post Components, Test No. MGS7S-1 and MGS7S-2

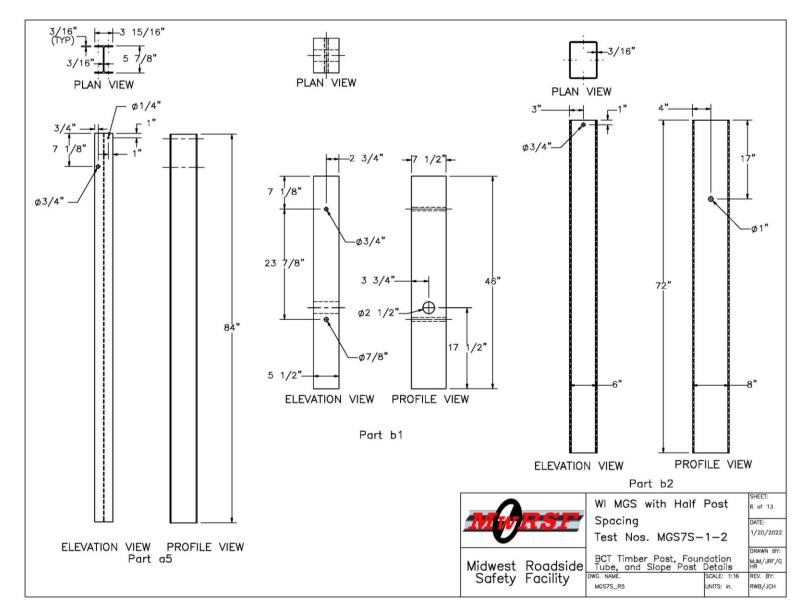


Figure 7. BCT Timber Post, Foundation Tube and Slope Post Details, Test Nos. MGS7S-1 and MGS7S-2

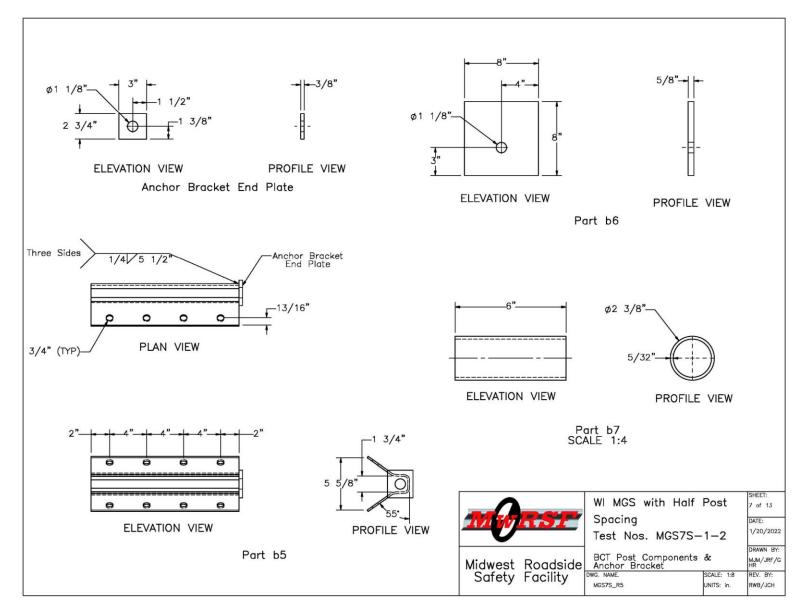


Figure 8. BCT Post Components, Test Nos. MGS7S-1 and MGS7S-2

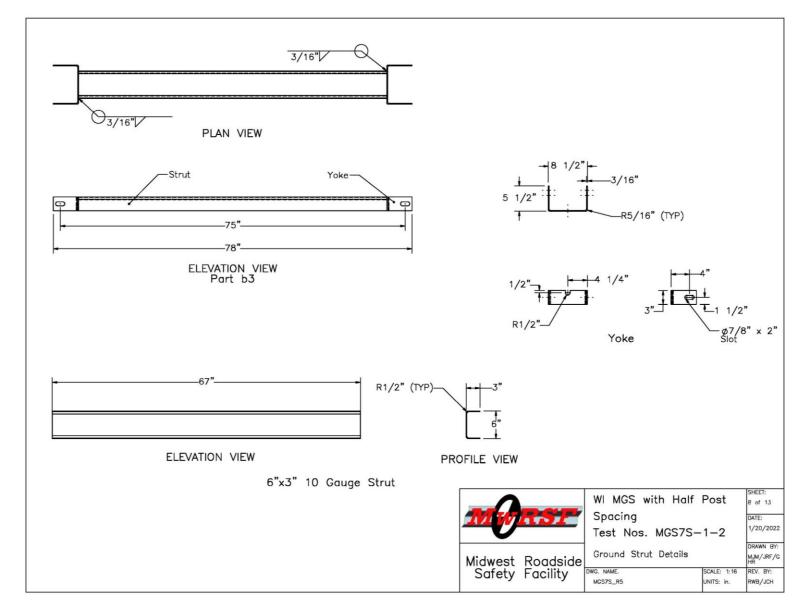


Figure 9. Ground Strut Details, Test Nos. MGS7S-1 and MGS7S-2

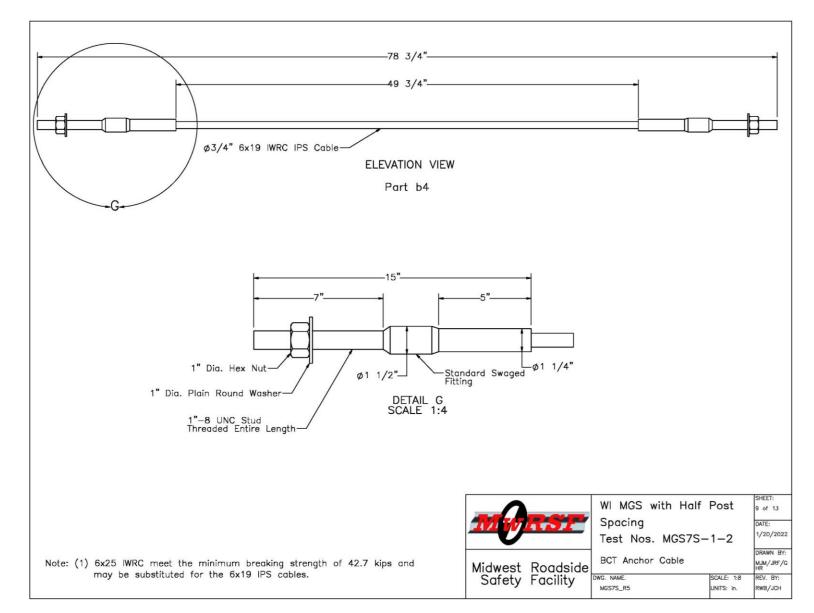


Figure 10. BCT Anchor Cable, Test Nos. MGS7S-1 and MGS7S-2

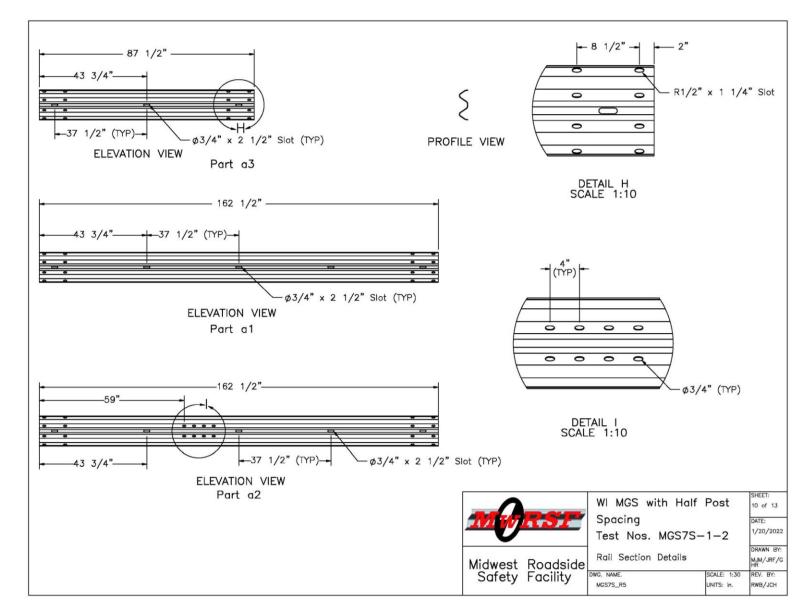


Figure 11. Rail Section Details, Test Nos. MGS7S-1 and MGS7S-2

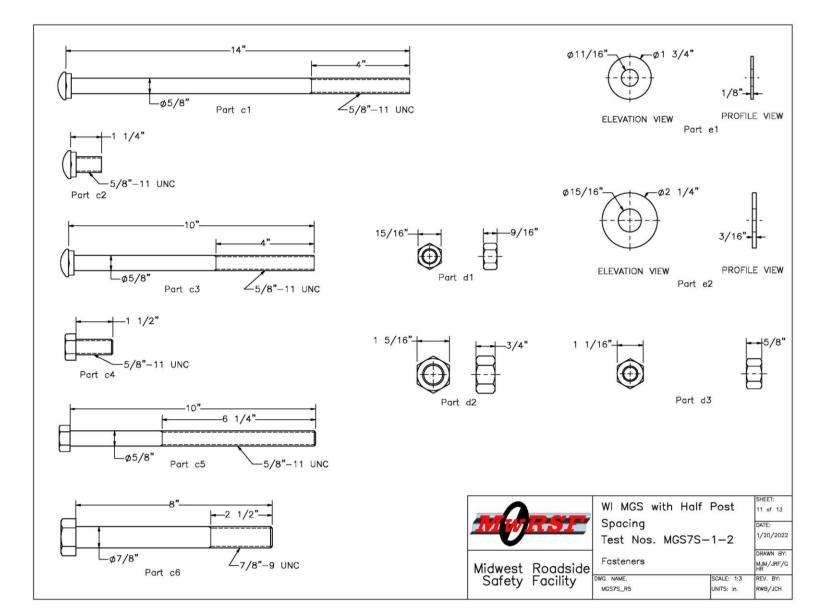


Figure 12. Fasteners, Test Nos. MGS7S-1 and MGS7S-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	12	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'-3" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	13	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992 Min. 50 ksi or ASTM A36 Min. 36 ksi	ASTM A123	PWE06
۵5	23	W6x9 or W6x8.5, 84" Long Steel Post	ASTM A992 Min. 50 ksi or ASTM A36 Min. 36 ksi	ASTM A123	PWE07
a6	36	6x12x14 1/4" Timber Blockout for Steel Posts	AASHTO M168 or SYP Grade No.1 or better	AASHTO M133	PDB10a
۵7	36	16D Double Head Nail	-	-	-
ь1	4	BCT Timber Post – MGS Height	AASHTO M168 or SYP Grade No. 1 or better	AASHTO M133	PDF01
b2	4	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
ь3	2	Strut and Yoke Assembly	ASTM A36	ASTM A123	PFP02
b4	2	BCT Cable Anchor Assembly		-	FCA01
b5	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
b6	2	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b7	2	2 3/8" O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B	ASTM A123	FMM02
c1	36	5/8" Dia. UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB06
c2	112	5/8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB01
c3	4	5/8" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB03
c4	16	5/8" Dia. UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX16a
c5	4	5/8" Dia. UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX16a
c6	4	7/8" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	
			-	Midwest Roadside Safety Facility WI MGS with Half Pos Spacing Test Nos. MGS7S-1-2 Bill of Materials	2 DATE: 1/20/202 DRAWN BY MJM/JRF/4 HR None REV. BY:

Figure 13. Bill of Materials, Test Nos. MGS7S-1 and MGS7S-2

No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
d1	24	5/8" Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F1941 or F2329	FNX16a
d2	4	7/8" Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F1941 or F2329	-
d3	148	5/8" Dia. Heavy Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F1941 or F2329	FNX16b
e1	44	5/8" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a

	RSF	WI MGS with Half Spacing Test Nos. MGS7S		SHEET: 13 of 13 DATE: 1/20/2022
Midwest	Roadside	Bill of Materials		DRAWN BY: MJM/JRF/G HR
		DWG. NAME. MGS7S_R5	SCALE: None UNITS: in.	REV. BY: RWB/JCH

Figure 14. Bill of Materials, Test No. MGS7S-1 and MGS7S-2

Figure 15. Test Installation Photographs, Test Nos. MGS7S-1 and MGS7S-2

Figure 16. Test Installation Photographs, Test Nos. MGS7S-1 and MGS7S-2

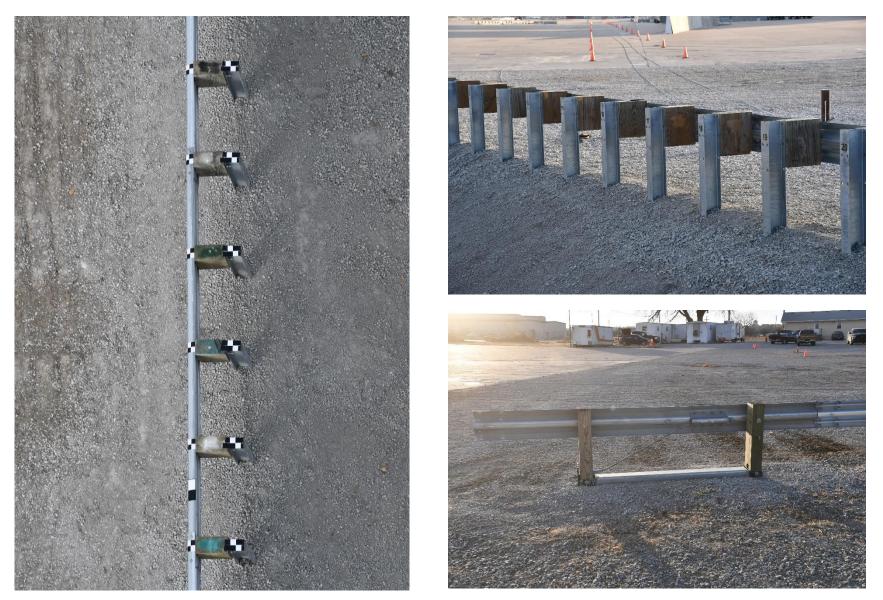


Figure 17. Test Installation Photographs, Test Nos. MGS7S-1 and MGS7S-2

5 TEST CONDITIONS

5.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

5.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [9] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100-ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

5.3 Test Vehicles

For test no. MGS7S-1, a 2016 Hyundai Accent Sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,484 lb, 2,431 lb, and 2,592 lb, respectively. The test vehicle is shown in Figures 18 and 19, and vehicle dimensions are shown in Figure 20.

For test no. MGS7S-2, a 2016 Ram 1500 Quad Cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,958 lb, 5,022 lb, and 5,185 lb, respectively. The test vehicle is shown in Figures 21 and 22, and vehicle dimensions are shown in Figure 23.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. For test no. MGS7S-1, the vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [10]. Test No. MGS7S-2 utilized the Suspension Method [11]. This method was used to determine the vertical component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The final c.g. location of MGS7S-1 is shown in Figure 24. The final c.g. location of MGS7S-2 is shown in Figure 25. Ballast information and data used to calculate the location of the c.g. for the tests are shown in Appendix B.

Square, black-and-white checkered targets were placed on the vehicle for reference, as shown in Figure 24, to serve as a reference in the high-speed digital video and aid in the video

analysis. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. For both tests a 5B flash bulb was mounted under the vehicles' right-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

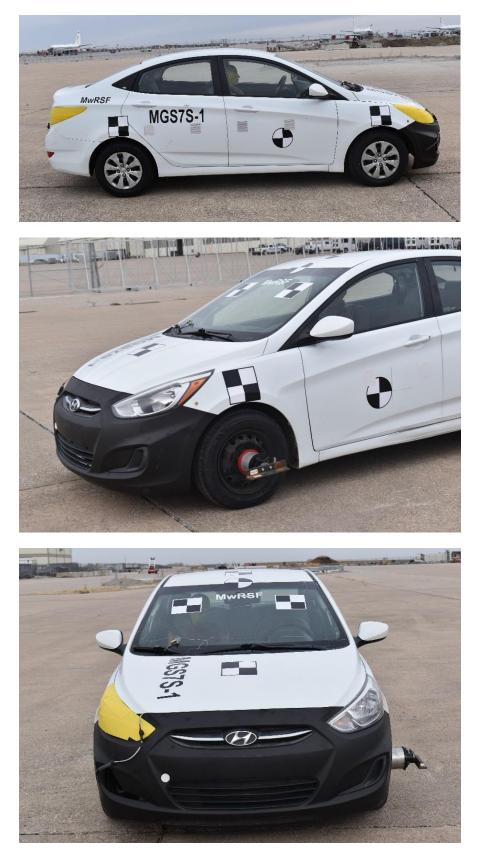


Figure 18. Test Vehicle, Test No. MGS7S-1

Figure 19. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MGS7S-1

30

		Test Name:	MGS7S-1	VIN No: KMHTC4AE	XGU059917	
Model Year:	2016	Make:	Hyundai	Model: Accent	t Sedan	
Tire Size:	175/70R15		32 psi	Odometer:118	3712	
	M		T	Vehicle Geometry - in. (mm) Target Ranges listed below A: <u>66</u> 3/8 (1686) 65±3 (1650±75) B: <u>56</u> 65±3 (1650±75) C: <u>171</u> 1/2 (4356) 169±8 (4300±200) D: <u>32</u>		
ļ				E: 101 1/4 (2572) F: 37		
		Test Inertial CG		98±5 (2500±125) G: <u>21 7/8 (556)</u> H: <u>38</u>		
P				l: <u>6 1/4 (159)</u> J: <u>2</u> 3 K: <u>11 (279)</u> L: <u>2</u> 6		
		6 C		M: <u>59 3/8 (1508)</u> N: <u>58</u> 59±2 (1498±50)	9 1/2 (1511) 59±2 (1425±50)	
1	— н [‡]	-	1	O: <u>29 5/8 (752)</u> P: <u>6</u> 28±4 (711±100)	(152)	
	- D	EFF -		Q: <u>23 1/4 (591)</u> R: <u>15</u>	5 1/4 (387)	
		<u> </u>		S: <u>11 (279)</u> T: <u>66</u>	6 1/2 (1689)	
Mass Distrib	ution - Ib (kg)			U (impact width): <u>30</u>	0 1/2 (775)	
		RF 766 (347)		Top of radiator core support: 28	8 3/16 (716)	
	LR 476 (216)			Wheel Center Height (Front): 11		
Weights				Wheel Center Height (Rear): <u>1</u> 1	1 1/2 (292)	
lb (kg)	Curb	Test Inertial	Gross Static	Wheel Well Clearance (Front): <u>24</u>	4 3/4 (629)	
W-front	1564 (709)		1598 (725)	-	5 3/16 (640)	
W-rear	920 (417)	918 (416)	994 (451)	Bottom Frame Height (Front):	5 (381)	
W-total	2484 (1127)	2431 (1103) 2420±55 (1100±25)	2592 (1176) 2585±55 (1175±50)	Bottom Frame Height (Rear):15	5 3/4 (400)	
		Litzboo (, itobaco)	2000200 (1110200)	Engine Type:	4cyl. Gas	
GVWR Rating	gs Ib	Surrogate Occupant Data	1	Engine Size:	1.6L	
Front	1874	Туре:	Hybrid II	Transmission Type:	Automatic	
Rear	1852	Mass:		_ Drive Type:	FWD	
Total	3527	Seat Position: <u>Ri</u>	ght/passenger	-		
Note any damage prior to test:Minor hail damage to roof/hood/trunk. Driver side rocker panel is scraped. Windshield cracks						

Figure 20. Vehicle Dimensions, Test No. MGS7S-1

Figure 21 Test Vehicle, Test No. MGS7S-2

Figure 22. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MGS7S-2

		Test Nan	me: MGS	7S-2	VIN No:	1C6RR6FG)	KGS128241	
Model Year:	2016	Ma	ike: Ra	m	Model:	150	00	
Tire Size:	P265/70R17	Tire Inflation Pressu	ıre: 40	psi	Odometer:	269	493	
	0				Vehicle Geo Target Ranges li	ometry - in. (mm) isted below		
				Ţ	A: 78 1/8 78±2 (19	4000 SH 000 HS # 5		<u> </u>
	M			ť	C: <u>229 1/2</u> 237±13 (6		1 3/8 (1051 39±3 (1000±75) 7 5/8 (1210	<u> </u>
, <u> </u>	N + + +				E: <u>140 1/2</u> 148±12 (3	(3569) F. 4 760±300)	7 5/8 (1210	2
	U	Test Inertial CG			G: 28 1/8 min: 28	3 (710)	5 3/4 (1670 63±4 (1575±100)	
	- Q				l: <u>13</u>	<u>(330)</u> J: <u>2</u>	5 1/8 (638)	
P	R-			 B 	K: <u>19 1/2</u>	(495)L:	8 (711)	
				_	M: 68 1/4 67±1.5 (1	(1734) N: 6	7 7/8 (1724 67±1.5 (1700±38))
		G S	2		O: 45	(1143) P: _4	4 1/2 (114)	
-	-D	F			Q: <u>30 1/2</u>	and the second s	8 1/2 (470)	
-		c			S: <u>14 3/4</u>	(375) T: <u>7</u>	6 3/4 (1949)
Mass Distribu	ution - lb (ka)				U	(impact width): <u>3</u>	6 1/2 (927))
Gross Static		646) RF 1345 (610)				Wheel Center Height (Front): 1	4 3/4 (375)	Ň
Gioss Giano						Wheel Center		
	LR <u>1183 (5</u>	537) RR 1232 (559)				Height (Rear): <u>1</u> Wheel Well		
Weights		~		100000 TEL		learance (Front): 3 Wheel Well		
lb (kg)	Curb	Test Inertial	Gross	Static		Clearance (Rear): <u>3</u> Bottom Frame	7 (940)	<u> </u>
W-front	2713 (1)	231) 2671 (1212)	2770	(1256)		Height (Front): <u>1</u>	8 3/8 (467)	
W-rear	2245 (10	018) 2351 (1066)	2415	(1095)		Bottom Frame Height (Rear): <u>2</u>	5 (635))
W-total	4958 (2)	5022 (2278) 5000±110 (2270±50)	5185 5165±110	(2352) (2343+50)		Engine Type:	Gasoline	
				(20102-1)		Engine Size:	3.6L V6	
GVWR Rating	js - Ib	Surrogate Occupant	t Data		Trans	smission Type:	Automatic	_
Front	3700	Туре: _	Hybrid	11		Drive Type:	RWD	
Rear	3900	Mass:	161 lk)		Cab Style:	Quad Cab	
Total _	6800	Seat Position: _	Right	í		Bed Length:	76''	
Note an	Note any damage prior to test: None							

Figure 23. Vehicle Dimensions, Test No. MGS7S-2

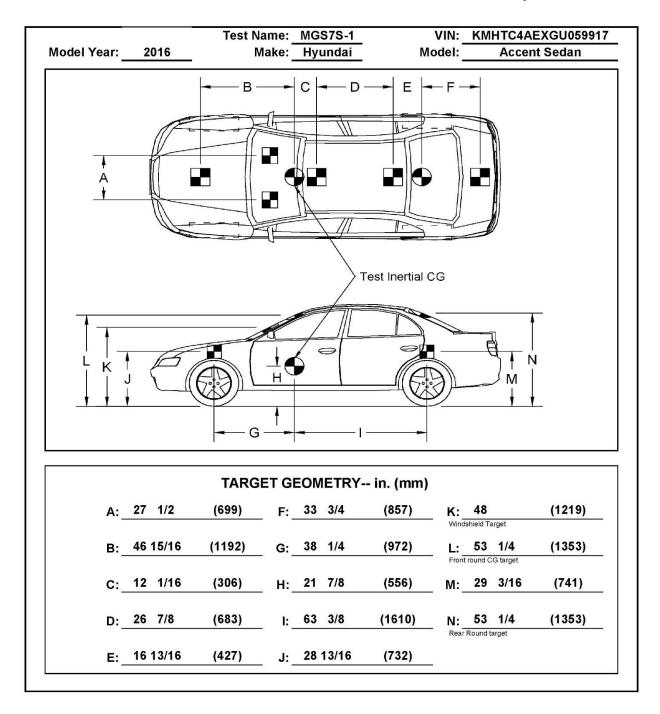


Figure 24. Target Geometry, Test No. MGS7S-1

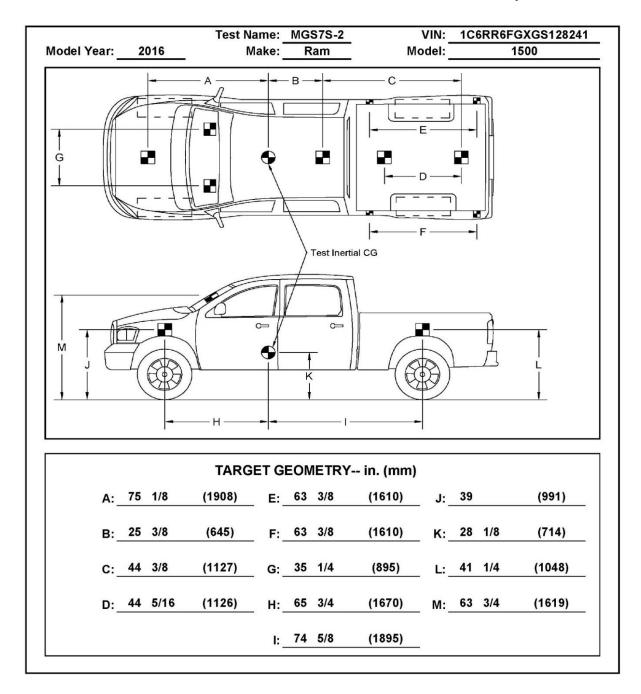


Figure 25. Target Geometry, Test No. MGS7S-2

5.4 Simulated Occupant

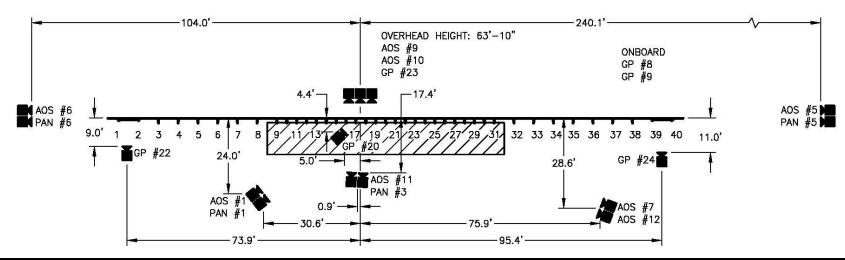
For test nos. MGS7S-1 and MGS7S-2, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 161 lb for both tests. As recommended by MASH 2016, the simulated occupant weights were not included in calculating the c.g. location.

5.5 Data Acquisition Systems

5.5.1 Accelerometers and Rate Transducers

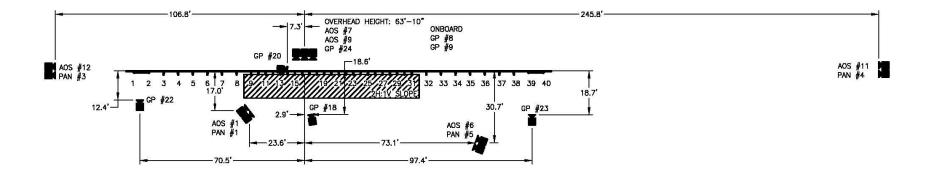
The accelerometer and rate transducer systems used in the full-scale crash testing were the SLICE-1 and SLICE-2 units described below. Units were positioned near the c.g. of the test vehicle and the SLICE-1 unit was designated as primary for test no. MGS7S-1. The SLICE-2 unit was designated as primary for MGS7S-2. Data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAEJ211/1 specifications [12].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. Triaxial acceleration and angular rate sensor modules were mounted inside the bodies of custom-built SLICE 6DX event data recorders equipped with 7GB of non-volatile flash memory and recorded data at 10,000 Hz to the onboard microprocessor. The accelerometers had a range of ± 500 g's in each of three directions (longitudinal, lateral, and vertical) and a 1,650 Hz (CFC 1000) anti-aliasing filter. The SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of three directions (roll, pitch, and yaw). The raw angular rate measurements were downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot both the accelerometer and angular rate sensor data.


5.5.2 Retroreflective Optic Speed Trap

A retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the electronic data.

5.5.3 Digital Photography


Eight AOS high-speed digital video cameras, six GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. MGS7S-1. Six AOS high-speed digital video cameras, seven GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. MGS7S-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 26 and 27, respectively.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pretest and posttest conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	KOWA 25mm Fixed	
AOS-5	AOS X-PRI Gigabit	500	100mm Fixed	
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	
AOS-7	AOS X-PRI Gigabit	500	Fujinon 35mm Fixed	
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm Fixed	
AOS-10	AOS TRI-VIT 2236	500	KOWA 16mm Fixed	
AOS-11	AOS J-PRI	500	Nikon 20mm Fixed	
AOS-12	AOS J-PRI	500	Signia 24-135	100
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-20	GoPro Hero 6	120		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	60		
PAN-1	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC- VX981	120		

Figure 26. Camera Locations, Speeds, and Lens Settings, Test No. MGS7S-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	KOWA 25mm Fixed	
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	
AOS-7	AOS X-PRI Gigabit	500	KOWA 16mm Fixed	
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm Fixed	
AOS-11	AOS J-PRI	500	Sigma 24-135	135
AOS-12	AOS J-PRI	500	Sigma 2-70	42 1/2
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-18	GoPro Hero 6	240		
GP-20	GoPro Hero 6	120		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		

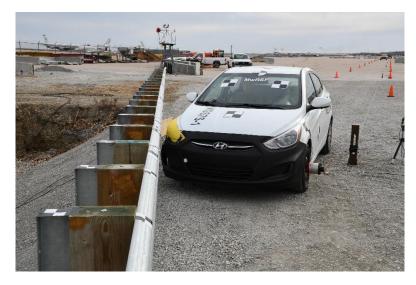
Figure 27. Camera Locations, Speeds, and Lens Settings, Test No. MGS7S-2

6 FULL-SCALE CRASH TEST NO. MGS7S-1

6.1 Static Soil Test

Before full-scale crash test no. MGS7S-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the longitudinal barrier system.

6.2 Weather Conditions


Test no. MGS7S-1 was conducted on November 24th, 2021 at approximately 2:30 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 5.

Temperature	45°F
Humidity	48%
Wind Speed	21 mph
Wind Direction	360° from True North
Sky Conditions	Overcast
Visibility	10.00 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.0 in.
Previous 7-Day Precipitation	0.0 in.

Table 5. Weather Conditions, Test No. MGS7S-1

6.3 Test Description

Test no. MGS7S-1 was conducted according to MASH 2016 criteria for test designation no. 3-10 and consisted of an 1100C vehicle impacting the MGS installed adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂-post spacing with a target speed of 62 mph and a target angle of 25 degrees. Initial vehicle impact was to occur 8 ft upstream from post no. 20, as shown in Figure 28, which was selected using the CIP plots found in Section 2.3 of MASH 2016. The 2,431-lb small car impacted the longitudinal barrier at a speed of 62.8 mph and at an angle of 25.2 degrees. The actual point of impact was 1.9 in. upstream from the targeted point of impact, or 8 ft - 1.9 in. upstream from post no. 20. After initial impact, the 1100C vehicle began to be redirected. During redirection, the right front wheel of the vehicle extended beneath the rail and impacted and snagged post nos. 20 and 21. The wheel snag did not adversely affect vehicle stability or lead to occupant risk concerns. The closely spaced, 7-ft long posts also generated a significant amount of soil displacement as the guardrail deflected. The vehicle exited the barrier and continued downstream until brakes were applied, and the vehicle came to rest 80.5 ft downstream and 13 ft in front of the system from the impact point as measured to the right front wheel of the vehicle. A detailed description of the sequential impact events is contained in Table 6. Sequential photographs are shown in Figures 29 through 31. Documentary photographs of the crash test are shown in Figures 32 and 33. The vehicle trajectory and final position are shown in Figure 34.

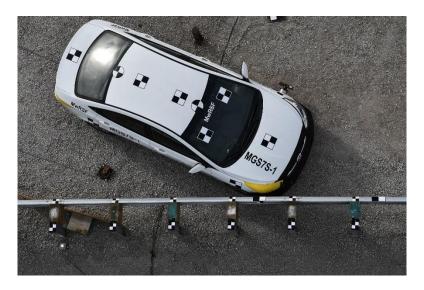


Figure 28. Impact Location, Test No. MGS7S-1

Time (sec)	Event
0.000	Vehicle's front bumper contacted rail 1.9 in. upstream from targeted impact location and deformed.
0.006	Vehicle's right headlight contacted rail and shattered. Vehicle's right fender contacted rail and was crushed inward.
0.014	Post nos. 18 and 19 rotated backward. Vehicle's hood contacted rail and right side severely crushed inward to a downward "U" shape.
0.028	Post nos. 17 and 20 rotated backward.
0.038	Vehicle's right-front door contacted rail and deformed. Vehicle rolled and yawed away from barrier.
0.048	Vehicle's front bumper cover detached on right end. Post nos. 16 and 21 rotated backward. Post no. 19 rotated downstream.
0.064	Vehicle's right-front tire contacted rail and blockout at post no. 19 fractured.
0.078	Post nos. 14 and 15 rotated downstream. Vehicle's right-front tire deflated.
0.086	Post no. 20 rotated downstream and disengaged from rail. Post no. 22 rotated backward.
0.096	Vehicle's right-front wheel contacted and snagged post no. 20.
0.101	Bottom of right vehicle's A-pillar and vehicle's right mirror contacted rail and deformed. Post nos. 23 and 24 rotated backward.
0.117	Surrogate occupant's head contacted right-front door window glass. Post no. 21 rotated downstream.
0.122	Vehicle's right-front wheel contacted and snagged post no. 21.
0.130	Post no. 21 disengaged from rail. Vehicle rolled toward barrier.
0.154	Vehicle's right-side mirror detached.
0.168	Post no. 25 rotated backward. Vehicle's left-front tire deflated.
0.194	Post 22 rotated downstream. Post no. 22 disengaged from rail.
0.292	Vehicle became parallel to system at a speed of 27.8 mph.
0.370	Vehicle's right-rear door contacted rail and deformed.
0.414	Vehicle's right quarter panel contacted rail and deformed.
0.441	Vehicle's rear bumper contacted rail and deformed.
0.526	Vehicle exited system at a speed of 28.6 mph and an angle of 15.1 degrees.
0.538	System came to rest.
3.158	Vehicle came to rest

Table 6. Sequential Description of Impact Events, Test No. MGS7S-1

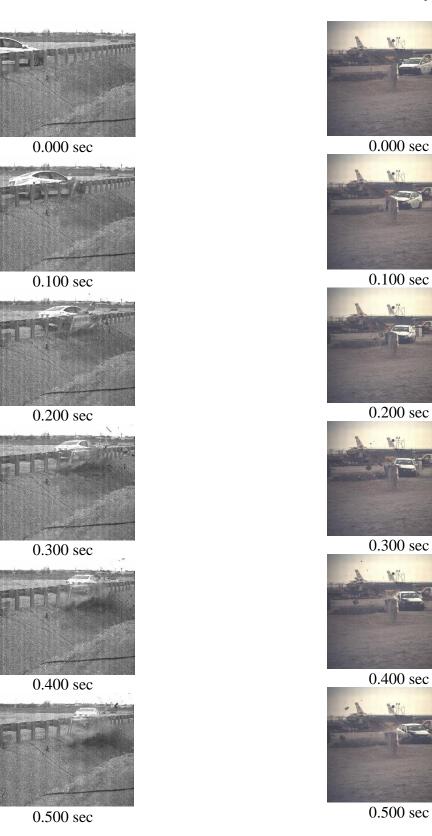


Figure 29. Sequential Photographs, Test No. MGS7S-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

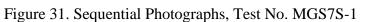
0.500 sec

Figure 30. Sequential Photographs, Test No. MGS7S-1

0.000 sec

0.050 sec

0.100 sec


0.150 sec

0.200 sec

0.250 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

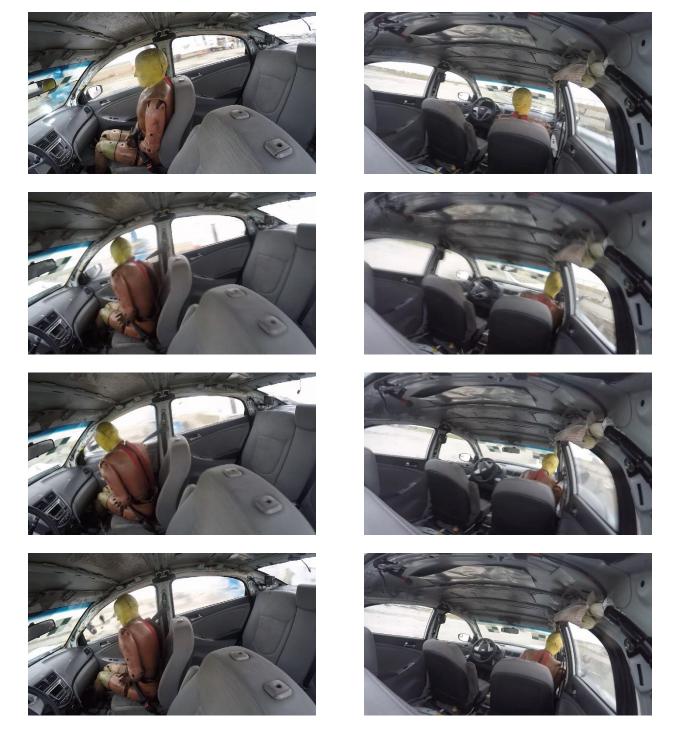


Figure 32. Documentary Photographs, Test No. MGS7S-1

Figure 33. Documentary Photographs, Test No. MGS7S-1

Figure 34. Vehicle Final Position and Trajectory Marks, Test No. MGS7S-1

6.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 35 through 41. Barrier damage consisted of contact marks on the guardrail sections and posts, guardrail and post deformations, and post damage. The primary length of vehicle contact along the barrier was approximately 19 ft -1 in. which spanned 14¹/₄ in. downstream from post no. 17 to approximately 18¹/₄ in. downstream from post no. 23. Contact marks were located on post nos. 17 through 23, spanning different lengths.

The W-beam guardrail configuration experienced rail kinking between post nos. 16 and 26. Minor rail flattening also occurred at post no. 18. Intermittent soil heaving was observed spanning from post nos. 19 through 23 which led to displacement of a portion of the 2H:1V slope behind the system.

The most significant post deformation occurred at posts nos. 19 to 22. Posts nos. 20 and 21 bent downstream while deflecting downstream. Post nos. 19 and 22 deflected downstream. Posts nos. 19 and 20 were twisted due to the counter-clockwise rotation caused by impact and snagging of the vehicle's right-front wheel. Posts nos. 19 through 21 were also rotated counter-clockwise. Both post nos. 19 through 22 deflected backwards. In addition, minor to moderate damage was experienced by post nos. 15 to 18 and 23 to 24, in which no permanent deformation occurred. Post nos. 15 to 18, 23, and 24 deflected backward at different angles; the angles were larger closer impact. Posts nos. 23 and 24 also experienced slight clockwise rotation.

The guardrail was detached from the post at post nos. 20 through 22. Post no. 19 experienced blockout fracture on the downstream half of the blockout and buckling occurred on the back side of the flange. Post no. 20 experienced blockout fracture on the downstream half of the blockout, and a bent bolt at the post flange. The post was no longer in contact with the rail due to the post bolt releasing from the guardrail. Post no. 21 was also disengaged from the rail resulting from bolt shear at the nut on the backside of the flange. At post nos. 20 through 22, the upstream front flange was bent twice, on the top half of the post. The block at post no. 21 was detached from the post and the block at post no. 22 was dented, both following impact with the vehicle. The bolt bent at mid length on post no. 21, while the bolt on post no. 22 was bent at the flange hole. As result of the damage experienced by post nos. 20 through 22, the bolt holes became warped. Post no. 21's flange curled backward at the upper downstream corner. The back flange was then bent forward at the upstream edge. The web of the post was bent on the front half. The front flange tore on the lower bolt hole of the downstream side.

Figure 35. System Damage, Test No. MGS7S-1

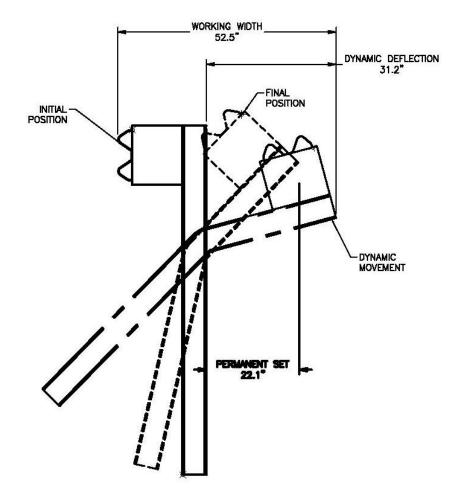
Figure 36. System Damage, Test No. MGS7S-1

Figure 37. Damage to Post Nos. 19 and 20, Test No. MGS7S-1

Figure 38. Damage to Post Nos. 21 and 22, Test No. MGS7S-1

August 22, 2024 MwRSF Report No. TRP-03-452-24

Figure 39. Post and Flange Damage, Test No. MGS7S-1



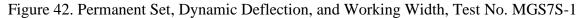

Figure 40. Bolt Hole and Bolt Damage, Post No. 20, Test No, MGS7S-1

Figure 41. Bolt Hole and Bolt Damage, Test No. MGS7S-1

The maximum lateral permanent set of the barrier system, including post and rail deflection, was 22.1 in. at post no. 20, as measured in the field. The maximum lateral dynamic barrier deflection, was 31.2 in. located at post no. 20, as determined from high-speed digital video analysis. The working width of the system was found to be 52.5 in. also located at post no. 20, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 42.

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 43 and 44. The maximum occupant compartment intrusions are listed in Table 7, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Majority of the vehicle damage was concentrated on the right front corner and the right side of the vehicle where impact had occurred. One quarter of the front bumper cover, on the right side, was detached. The furthest right frame horn was crushed inwards. The hood was crushed inwards near the right side. This resulted in the hood bending into a downward "U" shape. The right fender was crushed inwards upon impact, damage was concentrated upon the front end. Significant scraping occurred throughout the crushed area. Inward crushing occurred at the leading edge of the front-right door. Scraping spanned the entire width of both right-side doors. The right quarter panel underwent rearward scrapes spanning its length. The left-side front bumper cover was deformed. Scraping was also found along the leading edge of the right-side rear bumper cover.

Similar to the vehicle body damage, the vehicle's undercarriage was concentrated upon the right-side. The right-side control arm detached at the front most cross member of the vehicle; the strut remained attached with minor deformation. The right side of the steering rack detached at the steering rack. The right shock/spring bent outwards with a damaged steering knuckle. The right side of the front sway bar bent upwards with damaged steering knuckle. The right steering knuckle assemblies were pushed outwards with the wheel it was attached to, but all components remained intact. The right tie rod remained connected to the steering knuckle. The left-side tie rod was slightly bent at the steering knuckle connection.

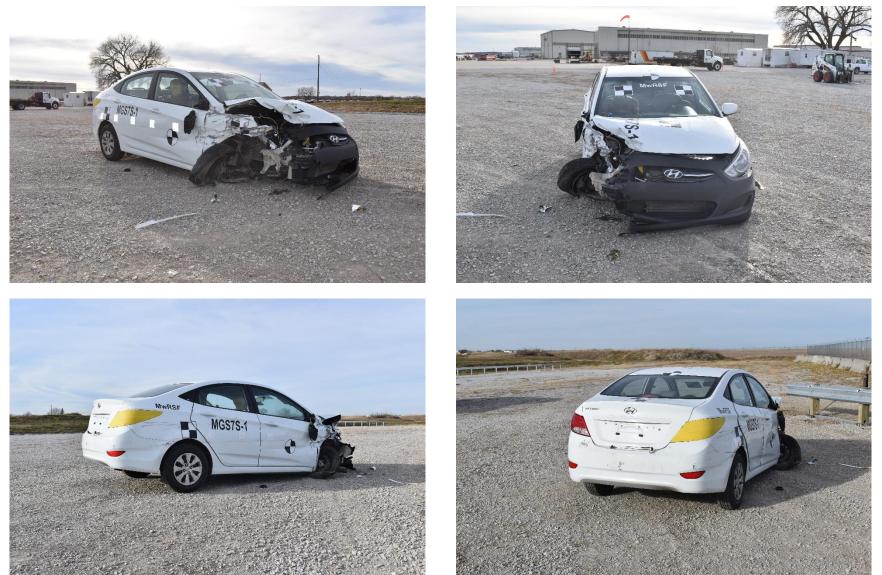


Figure 43. Vehicle Damage. Test No. MGS7S-1

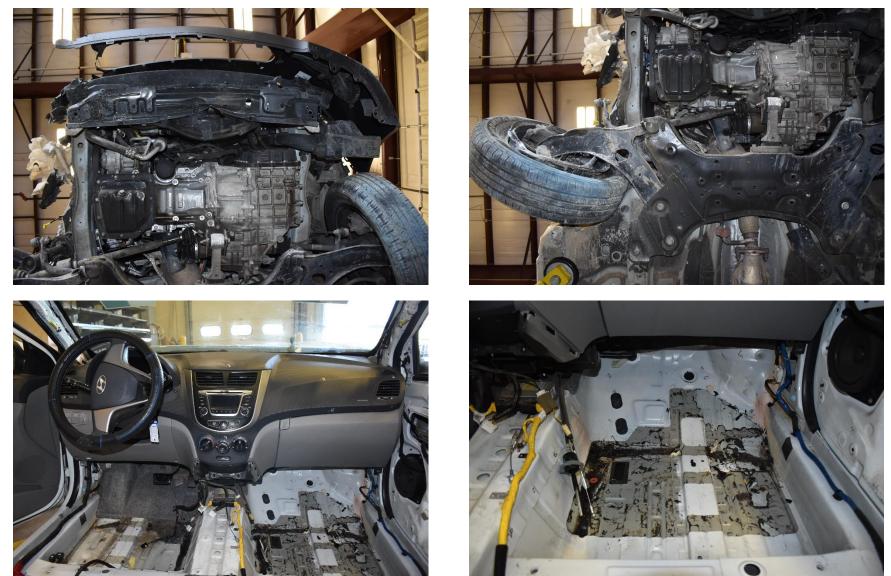


Figure 44. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MGS7S-1

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	0.3	≤ 9
Floor Pan & Transmission Tunnel	0.1	≤ 12
A-Pillar	0.1	≤ 5
A-Pillar (Lateral)	0.1	≤ 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.1	≤ 3
Side Front Panel (in Front of A-Pillar)	0.1	≤ 12
Side Door (Above Seat)	0.1	≤ 9
Side Door (Below Seat)	0.0*	≤ 12
Roof	0.0	<i>≤</i> 4
Windshield	0.0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.2	N/A

Table 7. Maximum Occupant Compartment Intrusion by Location, Test No. MGS7S-1

N/A – No MASH 2016 criteria exist for this location.

*Negative value reported as 0.0. See Appendix D for further information.

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 8. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix E.

Evaluation Criteria		Transducer		MASH
		SLICE-1 (primary)	SLICE-2 (backup)	2016 Limits
OIV	Longitudinal	-20.81	-22.08	±40
ft/s	Lateral	-19.59	-18.00	±40
ORA	Longitudinal	-14.56	-14.11	±20.49
g's	Lateral	-10.17	-12.43	±20.49
Maximum	Roll	-5.9	-6.9	±75
Angular Displacement	Pitch	-2.6	-2.8	±75
deg.	Yaw	-43.3	-43.9	not required
THIV – ft/s		26.96	29.79	not required
PHD – g's		15.11	16.17	not required
ASI		1.03	0.99	not required

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGS7S-1

6.7 Discussion

The analysis of the test results for test no. MGS7S-1 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 45. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 15.1 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGS7S-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

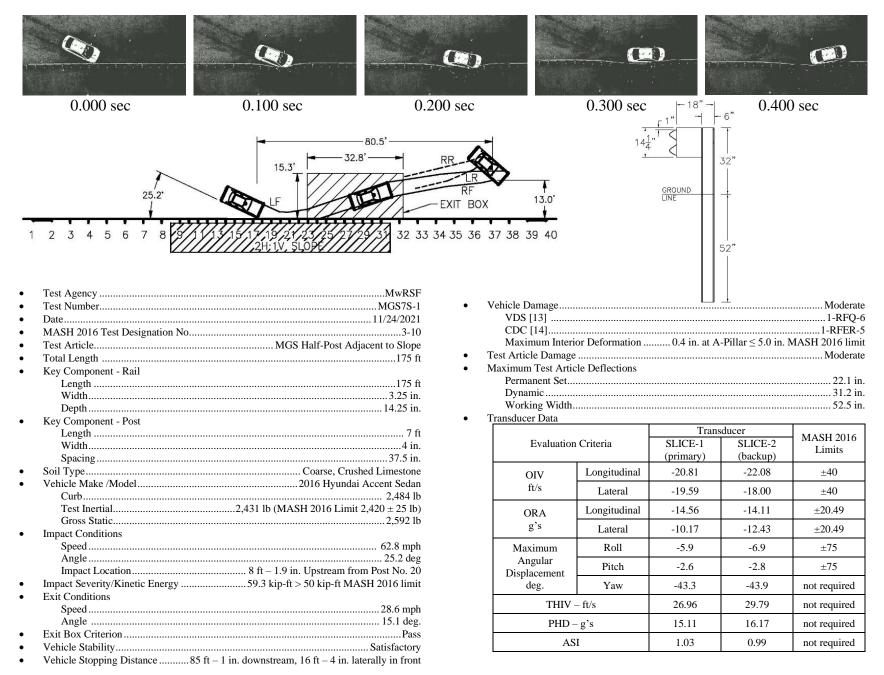


Figure 45. Summary of Test Results and Sequential Photographs, Test No. MGS7S-1

63

August 22, 2024 MwRSF Report No. TRP-03-452-24

7 FULL-SCALE CRASH TEST NO. MGS7S-2

7.1 Static Soil Test

Before full-scale crash test no. MGS7S-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the longitudinal barrier system.

7.2 Weather Conditions

Test no. MGS7S-2 was conducted on December 21, 2021 at approximately 1:30 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 9.

Temperature	49°F
Humidity	32%
Wind Speed	11 mph
Wind Direction	330° from True North
Sky Conditions	Sunny
Visibility	10.00 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.0 in.
Previous 7-Day Precipitation	0.2 in.

Table 9. Weather Conditions, Test No. MGS7S-2

7.3 Test Description

Test no. MGS7S-2 was conducted according to MASH 2016 criteria for test designation no. 3-11 and consisted of a 2270P vehicle impacting the MGS installed adjacent to a 2H:1V slope with 7-ft long posts at ¹/₂-post spacing at a target speed of 62 mph and target angle of 25 degrees. Initial vehicle impact was to occur 138 in. upstream from post no. 20, as shown in Figure 46, which was selected using the CIP plots found in Section 2.3 of MASH 2016. The 5,022-lb quad cab pickup truck impacted the guardrail system at a speed of 62.6 mph and at an angle of 25.4 degrees. The actual point of impact was at the targeted impact location. After initial impact, the 2270P vehicle began to be redirected. During redirection, the right front wheel of the vehicle extended beneath the rail and impacted and snagged on post nos. 18 through 21. The wheel snag did not adversely affect vehicle stability or lead to occupant risk concerns. The closely spaced, 7-ft long posts also generated a significant amount of soil displacement as the guardrail deflected. The vehicle exited the barrier and continued downstream in a stable manner until brakes were applied and the vehicle came to rest. The vehicle came to rest 117.3 ft downstream and 7.1 ft laterally in front of the system with respect to the impact point as measured to the right front wheel of the vehicle. A detailed description of the sequential impact events is contained in Table 10. Sequential photographs are shown in Figures 47 through 48. Documentary photographs of the crash test are shown in Figures 49 and 50. The vehicle trajectory and final position are shown in Figure 51.

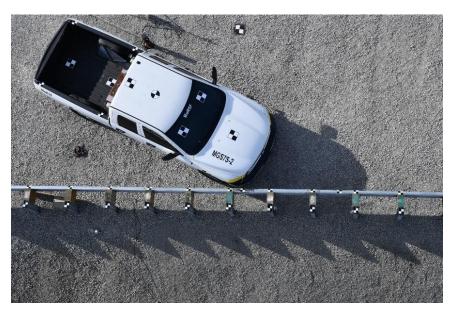


Figure 46. Impact Location, Test No. MGS7S-2

Time (sec)	Event
0.000	Vehicle's front bumper contacted rail 138 in. upstream from post no. 20 and deformed.
0.008	Vehicle's right-front tire, right headlight, and right fender. Vehicle's right headlight shattered and right fender deformed.
0.018	Vehicle's grille contacted rail and deformed. Post nos. 16 and 17 rotated backward.
0.024	Post no. 18 rotated backward and flange bent.
0.038	Post no. 19 rotated backward. Vehicle yawed away from barrier. Vehicle's hood deformed. Vehicle's right-front door contacted rail and deformed.
0.052	Vehicle's left headlight disengaged. Post no. 20 rotated downstream.
0.064	Post no. 21 rotated downstream.
0.084	Post no. 19 bent downstream.
0.086	Vehicle's right-front wheel snagged post no. 18.
0.098	Post no. 18 blockout fractured and disengaged from rail. Post no. 19 disengaged from rail. Surrogate occupant's head contacted right-front door's window glass.
0.106	Vehicle's right-front tire deflated. Post no. 22 rotated downstream.
0.132	Vehicle's right-front wheel snagged post 19.
0.134	Vehicle's grille disengaged. Post no. 20 disengaged from rail.
0.148	Post no. 23 rotated downstream.
0.156	Vehicle's right-rear door contacted rail causing minor crushing. Vehicle's right quarter panel contacted rail causing crush along entire length.
0.172	Vehicle's roof deformed. Post no. 21 blockout disengaged from rail.
0.188	Vehicle's rear bumper contacted rail and crushed inward.
0.194	Vehicle's right taillight contacted rail and fractured.
0.258	Vehicle became parallel to system at a speed of 41.1 mph.
0.270	Vehicle's right-front wheel snagged post no. 20.
0.330	Vehicle's right-front wheel snagged post no. 21.
0.612	Vehicle exited system at a speed of 38.8 mph and an angle of 27.5 degrees.
0.776	System came to rest.
3.576	Vehicle came to rest.

Table 10. Sequential Description of Impact Events, Test No. MGS7S-2

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 47. Sequential Photographs, Test No. MGS7S-2

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.500 sec Figure 48. Sequential Photographs, Test No. MGS7S-2

Figure 49. Documentary Photographs, Test No. MGS7S-2

August 22, 2024 MwRSF Report No. TRP-03-452-24

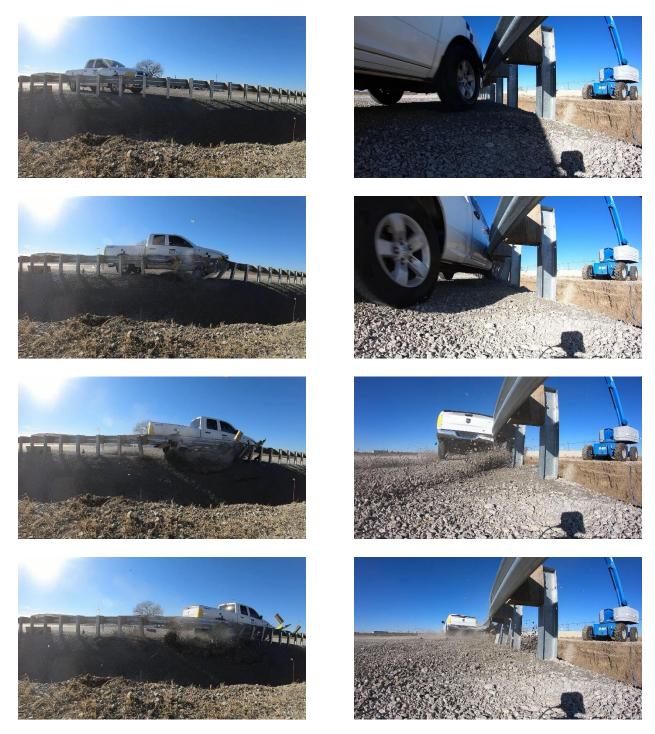


Figure 50. Documentary Photographs, Test No. MGS7S-2

Figure 51. Vehicle Final Position and Trajectory Marks, Test No. MGS7S-2

7.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 52 through 57. Barrier damage consisted of contact marks on the guardrail sections and posts, guardrail and post deformation, and post damage. The length of vehicle contact along the barrier was approximately 25 ft – 8 in. which spanned from $10\frac{1}{2}$ in. upstream from the center of post no. 16 to approximately $2\frac{1}{2}$ in. upstream of post no. 24. Additional contact marks were located on post nos. 18 through 23 and the blockouts of post nos. 17, 19, 22, and 23.

The W-beam guardrail configuration experienced rail kinking on the top corrugation ranging from upstream of post nos. 15 to 18. Kinking on the top and bottom corrugation occurred from upstream of post no. 23 to downstream of post no. 24. Intermittent kinks were located on the rail from post nos. 18 through 22. Two indentations were located upstream and downstream of post no. 16, respectively. The upstream dent occurred on the top corrugation while the downstream dent occurred on the bottom corrugation. Rail flattening occurred on the guardrail, starting 11 in. upstream of post no. 17 spanning approximately 17 ft downstream.

The majority of post deformation was concentrated on post nos. 17 through 22. The posts deflected backward upon impact. Post nos. 18 to 22 also experienced deflection in the downstream direction. Post nos. 18 to 21 were bent due to the deflection. In addition, post nos. 17 through 19 rotated clockwise while post nos. 20 through 22 rotated counter-clockwise. Torsional deformation occurred at these posts due to the specified rotation. Less critical damage was observed at post nos. 13 through 16, 23, and 24. Post nos. 15, 16, 23, and 24 deflected laterally backwards at lower levels. Post nos. 13 through 16 underwent clockwise rotation while post no. 24 experienced counter-clockwise rotation. Post nos. 18 and 19 displayed contact marks and flange deformation indicative of tire and wheel snag on the upstream flange of the posts.

The bolt hole was deformed on post nos. 17 through 24. The blockout at post no. 18 was fractured and disengaged. Post nos. 18 through 21 were no longer connected to the rail due to the post bolt releasing through the guardrail slot. Soil fissures occurred from post no. 18 to post no. 22. Large segments of soil were pushed backwards behind the posts in the impact region which disengaged sections of the 2H:1V slope behind the system and formed a line of soil disengagement in front of post nos. 16 through 23.

Figure 52. System Damage, Test No. MGS7S-2

Figure 53. Damage to Post Nos. 17 and 18, Test No. MGS7S-2

Figure 54. Damage to Post Nos. 19 and 20, Test No. MGS7S-2

Figure 55. Damage to Post Nos. 21 and 22, Test No. MGS7S-2 Description

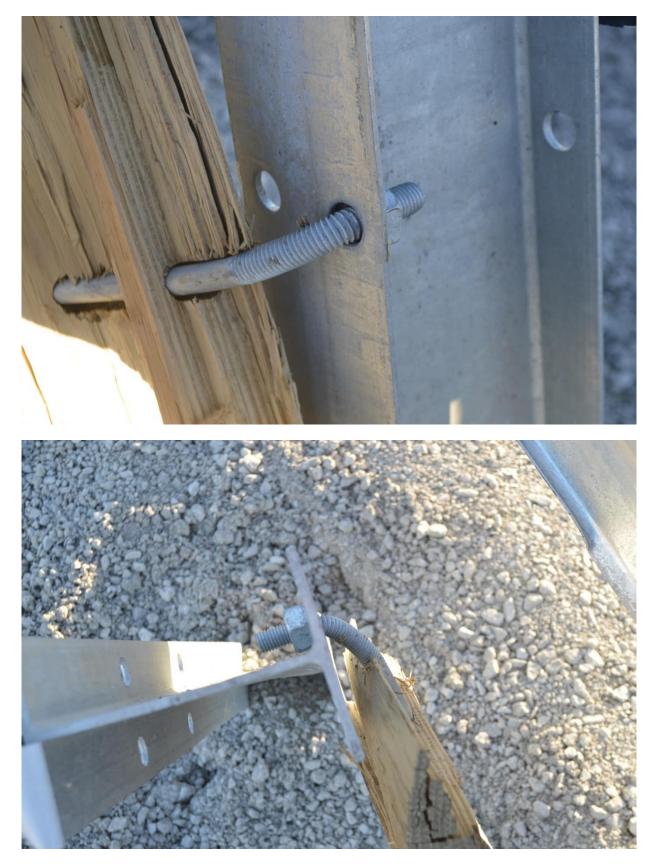


Figure 56. Bolt Damage. Test No. MGS7S-2

Figure 57. Blockout Damage and Post Buckling, Test No. MGS7S-2

The maximum lateral permanent set of the barrier system was 25.8 in. at post no. 19 as measured in the field. The maximum lateral dynamic barrier deflection was found to be 27.2 on the guardrail at post no. 21 as determined from high-speed digital video analysis. The working width of the system was found to be 47.7 in. at post 20, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 58.

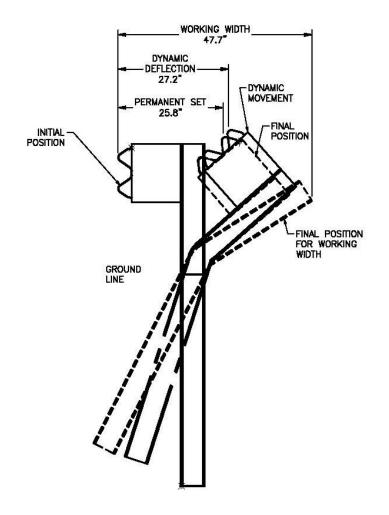


Figure 58. Permanent Set, Dynamic Deflection, and Working Width, Test No. MGS7S-2

7.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 59 and 60. The maximum occupant compartment intrusions are listed in Table 11, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Table 11. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Table 11, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

The majority of vehicle damage was concentrated on the right-front corner and right side of the vehicle. Both headlights and the grille were disengaged from the vehicle. The bumper was bent inward and slightly crushed on the right side of the bumper. The right-front fender was dented and scraped along the entire length. The right-front door was scraped and dented along the entire length. Damage to the door was concentrated upon the leading edge and lower half of the panel. The right rear door was slightly dented and scraped located around the vertical center of the panel. The right side of the truck box was dented and scraped along the entire length with the majority of the damage at the back end near the taillight. Damage was also located around the vertical center of the panel. The right end of the rear bumper was dented and scraped.

Vehicle undercarriage damage was also concentrated on the right side. The right lower control arm inner joints failed and detached at the control arm. The right-side inner tie rod also detached from the steering rack. The right-side frame horn was bent inward 3 in. The right-side frame rail was slightly bent inward around the second engine cross member. The right-front sway bar end link was bent at the upper mount. The right-front shock dust cover was slightly bent.

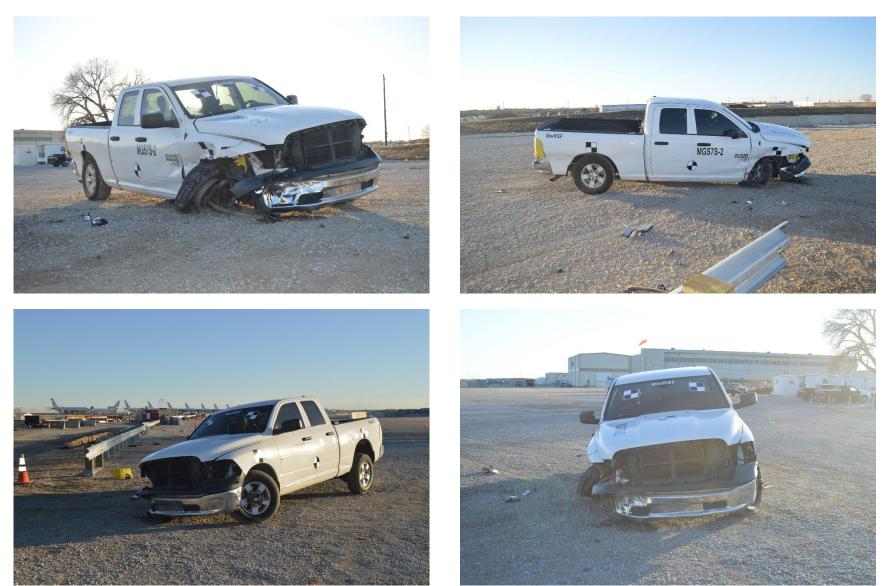


Figure 59. Vehicle Damage, Test No. MGS7S-2

Figure 60. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MGS7S-2

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	0.6	≤ 9
Floor Pan & Transmission Tunnel	0.5	≤ 12
A-Pillar	0.6	≤ 5
A-Pillar (Lateral)	0.0*	≤ 3
B-Pillar	0.5	≤ 5
B-Pillar (Lateral)	0.0*	≤ 3
Side Front Panel (in Front of A-Pillar)	0.4	≤ 12
Side Door (Above Seat)	0.3	≤ 9
Side Door (Below Seat)	0.3	≤ 12
Roof	0.2	≤4
Windshield	0.0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.6	N/A

Table 11. Maximum Occupant Compartment Intrusion by Location, Test No. MGS7S-2

N/A – No MASH 2016 criteria exist for this location.

*Negative value reported as 0.0. See Appendix D for further information.

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 12. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 12. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix F.

Evaluation Criteria		Trans	MASH	
		SLICE-1 (backup)	SLICE-2 (primary)	2016 Limits
OIV	Longitudinal	-18.02	-18.48	±40
ft/s	Lateral	-15.76	-17.29	±40
ORA	Longitudinal	-9.80	-10.24	±20.49
g's	Lateral	-11.31	-9.55	±20.49
Maximum	Roll	10.5	5.7	±75
Angular Displacement	Pitch	-2.5	-3.8	±75
deg.	Yaw	-42.1	-41.8	not required
THIV – ft/s		23.80	23.08	not required
PHD – g	g's	13.43	13.50	not required
ASI		0.85	0.81	not required

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGS7S-2

7.7 Discussion

The analysis of the test results for test no. MGS7S-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 61. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 27.5 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGS7S-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

		AND MALE AND	VELL ALLE		No. Contraction		EL-
	1 100 Martin and	anna		and the second s		1. Barren	
		a same			the second second		a start of
2.000		0.000	All Ares	0.000	1. 1. 2. 1		
0.000 sec	0.100 sec	0.200 sec		0.300 sec	, 18" +	0.40	0 sec
						1	
ł	117.3'		-	1	$4\frac{1}{4}$ 2		
	32.8' EXIT BOX				<u> </u>	32"	
25.4	16.9'	RF			CROUND LINE	+	
			7.1'				
2 3 4 5 6 7 8 9 11 13 15		6 37 38 39 40	A I				
	2H: 1V SLOPE	0 57 58 59 40				52"	
						Ĩ	
	MGS7		Vehicle Damage				
•							
Test Article			Movimum Intori	or Deformation	2 6 in ot the	a roof < 10 in N	1151 2016
	MGS Half-Post Adjacent to S		Maximum Interi			—	
Total Length		75 ft	Fest Article Damage			—	
Total Length Key Component - Rail	1	75 ft •]	Fest Article Damage Maximum Test Artic	cle Deflections		_	Moo
Total Length Key Component - Rail Length	1'	75 ft • 1 75 ft	Fest Article Damage Maximum Test Artic Permanent Set	cle Deflections		_	Moo
Total Length Key Component - Rail Length Width		75 ft • 1 75 ft 5 in.	Fest Article Damage Maximum Test Artic Permanent Set Dynamic	cle Deflections		_	Moo
Total Length Key Component - Rail Length Width Depth	1'	75 ft • 1 75 ft 5 in. 5 in.	Fest Article Damage Maximum Test Artic Permanent Set Dynamic	cle Deflections		_	Moo
Total Length Key Component - Rail Length Width Depth Key Component - Post		75 ft 15 ft 5 in. 5 in.	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width.	cle Deflections		_	
Total Length Key Component - Rail Length Width Depth Key Component - Post Length		75 ft 15 ft 5 in. 5 in. 7 ft	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width.	cle Deflections			
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width		75 ft 75 ft 5 in. 5 in. . 7 ft 4 in.	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data	cle Deflections	Trans	sducer	
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing	1' 	75 ft 175 ft 5 in. 5 in. 7 ft 4 in. 5 in.	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation	cle Deflections	Trans SLICE-1	sducer SLICE-2	
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type		75 ft 175 ft 5 in. 5 in. 7 ft 4 in. 5 in. tone	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data	n Criteria	Trans SLICE-1 (backup) -18.02	sducer SLICE-2 (primary) -18.48	Mo 22 22 4 MASH 2 Limit ±40
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb		75 ft 5 in. 5 in. 5 in. 7 ft 4 in. 5 in. tone ruck i8 lb	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV	cle Deflections	Trans SLICE-1 (backup) -18.02 -15.76	sducer SLICE-2 (primary) -18.48 -17.29	Mose and a second secon
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial		75 ft 5 in. 5 in. 5 in. 7 ft 4 in. 5 in. tone ruck i8 lb 0 lb)	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV	n Criteria	Trans SLICE-1 (backup) -18.02	sducer SLICE-2 (primary) -18.48	Mos 22 27 47 MASH 2 Limits ±40
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static		75 ft 5 in. 5 in. 5 in. 7 ft 4 in. 5 in. tone ruck i8 lb 0 lb)	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s	cle Deflections	Trans SLICE-1 (backup) -18.02 -15.76	sducer SLICE-2 (primary) -18.48 -17.29	Mo 2: 2' 4' MASH 2 Limit ±40 ±40 ±20.4
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions		75 ft 5 in. 5 in. 5 in. 7 ft 4 in. 5 in. 7 ft 4 in. 5 in. 8 lb 0 lb) 85 lb	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's	Criteria Longitudinal Lateral Longitudinal Lateral Lateral	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55	MASH 2 Limits ±40 ±20.49 MASH 2 Limits ±40 ±20.49
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed	11 	75 ft 9] 75 ft 5 in. 5 in. 7 ft 4 in. 5 in. tone ruck 8 lb 0 lb) 35 lb mph	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum	Criteria Longitudinal Longitudinal	Trans SLICE-1 (backup) -18.02 -15.76 -9.80	sducer SLICE-2 (primary) -18.48 -17.29 -10.24	Mosel 2: 2'
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle		75 ft 5 in. 5 in. 5 in. 7 ft 4 in. 5 in. tone ruck 88 lb 0 lb) 35 lb mph deg.	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum Angular	Criteria Longitudinal Lateral Longitudinal Lateral Lateral	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55	MASH 2 Limits ±40 ±20.49 MASH 2 Limits ±40 ±20.49
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location		75 ft 9] 75 ft 5 in. 5 in. 7 ft 4 in. 5 in. 7 ft 4 in. 5 in. 1 7 8 lb 0 lb) 55 lb mph deg. 0. 20	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum Angular Displacement	Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31 10.48 -2.45	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55 5.67 -3.80	Mosel 2: 22 47 MASH 2 Limit ±40 ±20.49 ±20.49 ±20.49 ±20.49 ±20.49 ±20.49
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location		75 ft 9] 75 ft 5 in. 5 in. 7 ft 4 in. 5 in. 7 ft 4 in. 5 in. 1 7 8 lb 0 lb) 55 lb mph deg. 0. 20	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum Angular Displacement deg.	Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31 10.48 -2.45 -42.	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55 5.67 -3.80 -41.80	MASH 2 MASH 2 Limits ±40 ±20.49 ±20.49 ±20.49 ±20.49 ±75 ±75 ±75
Total Length		75 ft 75 ft 5 in. 5 in. 7 ft 4 in. 5 in. 7 ft 4 in. 5 in. 1 ft 4 in. 5 in. 7 ft 4 in. 5 in. 9 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum Angular Displacement	Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31 10.48 -2.45	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55 5.67 -3.80	MASH 2 MASH 2 Limits ±40 ±20.49 ±20.49 ±20.49 ±20.49 ±75 ±75 ±75
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static. Impact Conditions Speed Angle Impact Location Impact Severity/Kinetic Energy Exit Conditions Speed	11 12 14.22 15.00 2uad Cab Pickup Th 5.18 62.61 25.4 110 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.3 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft MASH 2016 Limit Store Post No 120.23 kip-ft > 106 kip-ft No 120.25 kip-ft > 106 kip-ft > 10	75 ft 75 ft 5 in. 5 in. 7 ft 4 in. 5 in. 7 ft 4 in. 5 in. 1 ft 4 in. 5 in. 7 ft 4 in. 5 in. 9 J 1 J 1 J 1 J 1 J 1 J 1 J 1 J 1	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum Angular Displacement deg. THIV	cle Deflections	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31 10.48 -2.45 -42.	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55 5.67 -3.80 -41.80 23.08	Mod 2: 27 27 27 27 27 27 27 27 27 27 27 27 27
Total Length Key Component - Rail Length Width Depth Key Component - Post Length Width Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Severity/Kinetic Energy Exit Conditions Speed Angle Exit Conditions	11 	75 ft 75 ft 5 in. 5 in. 7 ft 4 in. 5 in. 7 ft 6 ft 7 ft 6 ft 7 ft 7 ft 6 ft 7 ft	Fest Article Damage Maximum Test Artic Permanent Set Dynamic Working Width. Fransducer Data Evaluation OIV ft/s ORA g's Maximum Angular Displacement deg.	Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw - ft/s - g's	Trans SLICE-1 (backup) -18.02 -15.76 -9.80 -11.31 10.48 -2.45 -42. 23.80	sducer SLICE-2 (primary) -18.48 -17.29 -10.24 -9.55 5.67 -3.80 -41.80	MASH 2 MASH 2 Limits ±40 ±20.49 ±20.49 ±20.49 ±20.49 ±75 ±75 ±75

58

Figure 61. Summary of Test Results and Sequential Photographs, Test No. MGS7S-2

8 STIFFNESS TRANSITION GUIDANCE

Following two successful full-scale crash tests on the modified MGS system utilizing halfpost spacing with 7-ft long W6x9 posts installed at the slope break point of a 2H:1V slope, it was desired to evaluate the performance of the transition between the standard MGS and the modified MGS.

The standard MGS consists of steel W6x8.5 guardrail posts measuring 6 ft long and Wbeam guardrail with a top mounting height of 31 in. The posts are spaced at 75 in. on center with a soil embedment depth of 40 in. Each post within the MGS utilizes 6-in. wide x 12-in. deep x 14¹/4-in. long timber spacer blockouts to offset the rail away from the front face of the steel posts. The standard MGS has been previously successfully crash tested to MASH TL-3 criteria [15-17]. In these previous MASH TL-3 tests, the MGS displayed dynamic barrier deflections during test designation no. 3-11 with the 2270P vehicle ranging between 44.1 in for test no. ILT-1 and 48.6 in. for test no. 2214MG-2. Full-scale crash testing of the modified MGS in this research yielded a dynamic barrier deflection of 27.2 in. The reduced deflection of the modified MGS utilizing half-post spacing with 7-ft long W6x9 posts installed at the slope break point of a 2H:1V slope.

Two related efforts were reviewed to gain insight on an appropriate stiffness transition between the standard and modified MGS. The first research effort dealt with a similar half-post spacing MGS installed on low-fill culverts [18]. In this research, the safety performance of the MGS installed on a culvert with a strong-post attachment using W6x9 steel posts welded to anchored baseplates at half-post spacing and offset 12 in. from the back of the post to the culvert headwall was evaluated through full-scale crash testing. The system consisted of strong post MGS mounted on a simulated four-cell concrete box culvert system. Anchorage systems were utilized at both the upstream and downstream ends of the guardrail system. Steel post nos. 3 through 12 and 27 through 39 were embedded in soil at a depth of 40 in. Post nos. 13 through 26 were embedded at a depth of 9 in. and anchored to the top of the concrete culvert using welded steel baseplates. Post nos. 13 through 15, 17 through 22, and 24 through 26 were anchored to the top concrete slab using four through-bolts, and post nos. 16 and 26 were anchored using 10-in. long epoxied threaded rods with an 8-in. embedded length due to the presence of the culvert's interior wall support. This system was evaluated with MASH test designation nos. 3-10 and 3-11. In the test designation no. 3-11 evaluation of the system, test no. MGS7S-2, a 5,013-lb pickup truck impacted the system at a speed of 62.8 mph and at an angle of 25.7 degrees. The vehicle was successfully contained and smoothly redirected. The maximum dynamic barrier deflection was 29.6 in.

The half-post spacing MGS system installed on low-fill culverts had very similar dynamic deflection to the half-post spacing MGS installed adjacent to slope evaluated in this research. Thus, it was believed that these two systems were reasonable equivalents based on their similar barrier configuration with respect to the guardrail layout and post spacing MGS system installed on low-fill culverts, MwRSF researchers evaluated the need for a stiffness transition from standard MGS to the culvert mounted system [18]. For the transition from standard MGS to half-posts spacing MGS, LS-DYNA analysis and comparison with previous approach guardrail transition testing was used to determine the transition design. Based on this analysis, it was recommended that a transition

region of a minimum of five posts at half-post spacing in soil (five 37¹/₂-in. post spacings) prior to the culvert mounted posts was needed between the standard MGS and the half-post spacing MGS.

Parallel research related to this issue was also performed at TTI, where researchers investigated and full-scale crash tested the MGS with both half- and quarter-post spacing under MASH TL-3 impact conditions [19]. During that research, TTI full-scale crash tested the MGS with quarter-post spacing under MASH TL-3 impact conditions for test designation nos. 3-10 and 3-11. Both tests met all relevant MASH requirements, and the maximum lateral dynamic deflection of the system during test designation no. 3-11 was 19.5 in. As part of that research effort, TTI developed and full-scale crash tested a transition from the standard, full-post spacing MGS to the MGS with quarter-post spacing. Initial design of the transition section utilized three posts at halfpost spacing in the approach to the quarter-post spacing MGS. Full-scale crash testing of the threepost transition section under MASH test designation no. 3-21 impact conditions led to pocketing of the guardrail and eventual rail rupture and penetration of the barrier system. TTI researchers reviewed the failed test and used computer simulation modeling to determine an improved transition design. The revised transition design consisted of four posts at half-post spacing (four 37¹/₂-in. post spacings) prior to the quarter-post spacing MGS. The four-post transition design was also full-scale crash tested to MASH TL-3 under MASH test designation no. 3-21 impact conditions. The test of the four-post transition design successfully met all TL-3 MASH requirements. Full-scale testing of the transition with the 1100C vehicle was deemed unnecessary based on 1100C full-scale crash testing of the MGS at quarter-post spacing during the research effort and previous 1100C full-scale crash testing of the non-blocked MGS performed by MwRSF.

The results of the previous evaluation of a transition from the standard, full-post spacing MGS to the MGS with quarter-post spacing would suggest that a similar transition design could be utilized for the MGS with half-post spacing adjacent to steep slope. Because the lateral dynamic deflection of the MGS with half-post spacing adjacent to steep slope was 39.5 percent greater than that of the MGS with quarter-post spacing, the transition in stiffness would be less severe between standard MGS and the MGS with half-post spacing adjacent to steep slope as compared to a transition to the MGS with quarter-post spacing. As the stiffness transition to the MGS with half-post spacing adjacent to steep slope as compared to a transition to the MGS with quarter-post spacing, it was believed that a transition of four posts at half-post spacing (four 37¹/₂-in. post spacings) prior to the MGS with half-post spacing adjacent to steep slope would perform as well or better than the transition tested at TTI. Thus, the researchers recommend a transition of four posts at half-post spacing (four 37¹/₂-in. post spacings) when transitioning from standard MGS to the MGS with half-post spacing spacing spacing spacing adjacent to steep slope.

9 SUMMARY AND CONCLUSIONS

The objective of this research was to evaluate the safety performance of the MGS with half-post spacing installed adjacent to a steep slope and determine a stiffness transition design for transitioning from standard MGS to the modified system adjacent to slope if one was needed. The MGS with half-post spacing installed adjacent to a steep slope evaluated herein consisted of the MGS with 6-ft long W6x8.5 posts installed at 37½-in. spacing at the break point of a 2H:1V slope. Test nos. MGS7S-1 and MGS7S-2 were conducted on this modified MGS according to MASH 2016 test designation nos. 3-10 and 3-11, respectively. A summary of the test evaluation is shown in Table 13.

In test no. MGS7S-1, a 2,484-lb small car impacted the MGS long-span system at a speed of 62.8 mph, an angle of 25.2 degrees, and at a location 8 ft – 1.9 in. upstream from post no. 20, thus resulting in an impact severity of 59.3 kip-ft. After impacting the barrier, the vehicle exited the system at a speed of 28.6 mph and an angle of 15.1 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier system and the vehicle. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. MGS7S-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

In test no. MGS7S-2 the 5,022-lb quad-cab pickup truck impacted the MGS long-span system at a speed of 62.6 mph, an angle of 25.4 degrees, and at a location 11 ft – 6 in. upstream from post no. 20, thus resulting in an impact severity of 120.3 kip-ft. After impacting the barrier, the vehicle exited the system at a speed of 27.5 mph and an angle of 38.8 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier system and the vehicle. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. MGS7S-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Following the successful full-scale crash testing of the MGS with half-post spacing installed adjacent to a steep slope, the researchers compared the performance of the modified MGS with standard MGS guardrail. The modified MGS had significantly lower dynamic deflection than the standard MGS, and it was believed that a stiffness transition would be required to connect standard MGS approach guardrail to the MGS with half-post spacing installed adjacent to a steep slope. Previous relevant research was reviewed for the transition design including MASH full-scale crash testing of the MGS mounted to culverts with half-post spacing, the MGS with half-post and quarter-post spacing, and stiffness transition recommendations for those respective systems. Based on that analysis, a stiffness transition of four posts at half-post spacing (four 37½-in. post spacings) was recommended when transitioning from standard MGS to the MGS with half-post spacing adjacent to steep slope.

Finally, installations of the MGS with half-post spacing adjacent to steep slope should be implemented with the guardrail terminals (or end anchorages) located a sufficient distance from the sloped region to prevent the slope from interfering with the proper performance of one another. As such, the following implementation guidelines should be considered in addition to guardrail length of need requirements:

- 1. A recommended minimum length of 12 ft 6 in. of standard MGS between the first post at half-post spacing and the interior end of an acceptable TL-3 guardrail end terminal. The interior end of a TL-3 guardrail terminal is defined as the greater of the pay length of the terminal or the maximum stroke of the terminal observed in MASH test no. 3-31. This provides for a minimum of one section of standard MGS guardrail between any end terminal and the reduced post spacing.
- 2. A recommended minimum barrier length of 50 ft before the first post at half-post spacing, which includes standard MGS and a crashworthy guardrail end terminal. This guidance applies to the downstream end as well. This provides for a minimum overall distance from any end anchorage of the terminal.
- 3. For flared guardrail applications, a minimum length of 25 ft is recommended between the first post at half-post spacing and the start of the flared section (i.e., bend between flared and tangent sections).

Evaluation Factors	Evaluation Criteria	Test No. MGS7S-1	Test No. MGS7S-2
Structural Adequacy	 A Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. 	S	S
	 D 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 		S
	2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.	S	S
	F The vehicle should remain upright during and after collisionThe maximum roll and pitch angles are not to exceed 75 degrees.	S	S
Occupant Risk	 H Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: 		
	Occupant Impact Velocity Limits	S	S
	Component Preferred Maximum		
	Longitudinal and Lateral 30 ft/s 40 ft/s		
	ζ)		
	S	S	
	Component Preferred Maximum		
	Longitudinal and Lateral 15.0 g's 20.49 g's		
	MASH 2016 Test Designation No.	3-10	3-11
	Final Evaluation (Pass or Fail)	Pass	Pass

Table 13. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory

N/A – Not Applicable

10 MASH EVALUATION

A modified guardrail system consisting of the Midwest Guardrail System (MGS) with halfpost spacing adjacent to a steep slope was evaluated according to MASH TL-3 performance criteria. The system consisted of standard MGS installed on level terrain for 50 ft on each end of the system, while the middle of the barrier was installed adjacent to a 5-ft deep by 75-ft long, 2H:1V slope. The slope started at the centerline of the post and extended 10 ft behind the post. Post nos. 3 through 8 and 32 through 38 were ASTM A992 W6x8.5 steel posts that measured 72in. long and were spaced 75 in. apart and had an embedment depth of 40 in. Post nos. 9 through 31 were ASTM A992 W6x8.5 steel posts that measured 84-in. long and were spaced 37½ in. apart with W14x22 blockouts and had an embedment depth of 52 in. The posts were placed in a compacted, coarse, crushed limestone material with a strength that satisfied MASH 2016 criteria. Post nos. 3 through 38 used 6-in. x 12-in. x 14¼-in. wood blockouts to offset the rail away from the front face of the steel posts. Additionally, each end of the system was anchored by a trailing end anchorage system, to simulate the strength of other crashworthy end terminals.

10.1 Test Matrix

The modified MGS was classified as a longitudinal barrier for the purposes of evaluation. According to TL-3 of MASH, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 14.

Test	Test	Test	Vehicle	Impact C	onditions	Evaluation
Article	Designation No.	Vehicle	Weight lb	Speed mph	Angle deg.	Criteria ¹
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 14. MASH TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 4.

Both test designation nos. 3-10 and 3-11 were conducted to evaluate the modified MGS adjacent to steep slopes. Test designation no. 3-10 has not always been conducted for evaluation of guardrail adjacent to slope due to the reduced impact loading of the small car vehicle. However, recent MASH TL-3 crash testing of 1100C vehicles on guardrail with reduced post spacing or increased stiffness due to the presence of curbs have indicated the potential for combined loading of the guardrail splice by the small car vehicle that can lead to partial rail tears and even complete rail rupture. As such, test designation no. 3-10 was recommended for the evaluation of the barrier system. Test designation no. 3-11 with the 2270P vehicle represents the highest impact barrier loading during 2270P impacts, evaluates potential vehicle extension over the slope and the potential for vehicle instability, and determines dynamic deflection and working width. Thus, test designation no. 3-11 was also recommended for the evaluation of the barrier system.

10.2 Full-Scale Crash Test Results

The results of the MASH TL-3 full-scale crash testing of the MGS with half-post spacing adjacent to a steep slope are summarized below. A summary of the full-scale crash testing is

provided in Table 15. A plan and elevation view of the final system and a system photo are shown in Figure 62.

- 1. Test no. MGS7S-1 was conducted according to MASH 2016 criteria for test designation no. 3-10 and consisted of an 1100C vehicle impacting the MGS installed adjacent to a 2H:1V slope with 7-ft long posts at $\frac{1}{2}$ post spacing at a target speed of 62 mph and a target angle of 25 degrees. Initial vehicle impact was to occur 96 in. upstream from post no. 20, which was selected using the CIP plots found in Section 2.3 of MASH 2016. The 2,431-lb small car impacted the longitudinal barrier at a speed of 62.8 mph and at an angle of 25.2 degrees. The actual point of impact was 1.9 in. upstream from the targeted point of impact, or 8 ft – 1.9 in. upstream from post no. 20. After the initial impact, the 1100C vehicle began to be redirected. During redirection, the right front wheel of the vehicle extended beneath the rail and impacted and snagged post nos. 20 and 21 of the system. The wheel snag did not adversely affect vehicle stability or lead to occupant risk concerns. The closely spaced, 7-ft long posts also generated a significant amount of soil displacement as the guardrail deflected. The vehicle exited the barrier and continued downstream in a stable manner until brakes were applied and the vehicle came to rest 80.5 ft downstream and 13 ft in front of the system from impact.
- 2. Test no. MGS7S-2 was conducted according to MASH 2016 criteria for test designation no. 3-11 and consisted of a 2270P vehicle impacting the MGS installed adjacent to a 2H:1V slope with 7-ft long posts at ½ post spacing at a target speed of 62 mph and a target angle of 25 degrees. Initial vehicle impact was to occur 138 in. upstream from post no. 20, which was selected using the CIP plots found in Section 2.3 of MASH 2016. The 5,022-lb quad cab pickup truck impacted the guiderail system at a speed of 62.6 mph and at an angle of 25.4 degrees. The actual point of impact was at the targeted impact location. After initial impact, the 2270P vehicle began to be redirected. During redirection, the right front wheel of the vehicle extended beneath the rail and impacted and snagged post nos. 18 through 21 of the system. The wheel snag did not adversely affect vehicle stability or lead to occupant risk concerns. The closely spaced, 7-ft long posts also generated a significant amount of soil displacement as the guardrail deflected. The vehicle exited the barrier and continued downstream in a stable manner until brakes were applied and the vehicle came to rest. The vehicle came to rest 117.3 ft downstream and 7.1 ft laterally in front of the system.

MwRSF Test No.	MASH Test Designation No.	MwRSF Report No.	Test Date	Pass/Fail	System Version
OCBR-1	3-10	TRP-03-452-23	11/24/21	Pass	Modified MGS Adjacent to 2H:1V Slope
OCBR-2	3-11	TRP-03-452-23	12/21/21	Pass	Modified MGS Adjacent to 2H:1V Slope

	Table 15. MASH TL-4 Crash	Test Summary for Ope	en Concrete Bridge Rail
--	---------------------------	----------------------	-------------------------

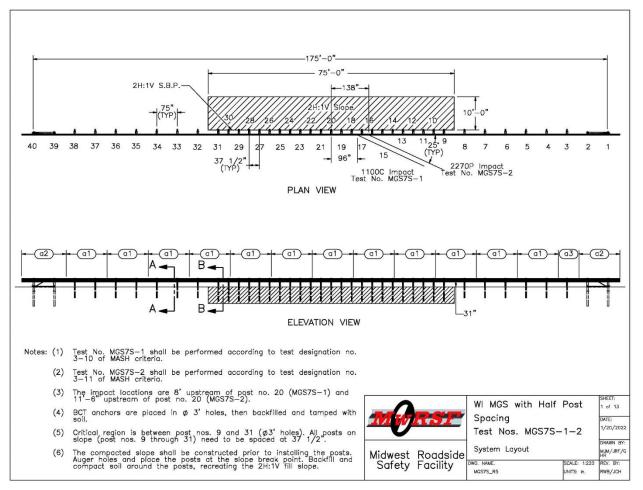


Figure 62. MASH TL-3 MGS with Half-Post Spacing Adjacent to a Steep Slope

10.3 MASH 2016 Evaluation

Based on the results of the two successful full-scale crash tests conducted in this research effort, the MGS with half-post spacing adjacent to a steep slope meets all the safety requirements for MASH TL-3.

11 REFERENCES

- 1. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Holloway, J.C., and Keller, E.A., Development of a W-Beam Guardrail System for Use on a 2:1 Slope, Final Report to the Midwest State's Regional Pooled Fund Program, Transportation Research Report No. TRP-03-99-00, Project No. SPR-3(017)-Years 9 & 10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 16, 2000.
- 3. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. Bielenberg, R.W., Kohtz, J.E., Rosenbaugh, S.K., and Faller, R.K., *Guidance for Installation of Midwest Guardrail System Adjacent to Slopes*, Final Report to the Midwest Pooled Fund Program, Transportation Research Report No. TRP-03-376-20, Project No.: TPF-5(193) Supplement #91, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 29, 2020.
- 5. Wiebelhaus, M.J., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., Reid, J.D., Rohde, J.R., and Dey, Gopi, *Development and Evaluation of the Midwest Guardrail System (MGS) Placed Adjacent to a 2:1 Fill Slope*, Final Report to the Midwest State's Regional Pooled Fund Program, Transportation Research Report No. TRP-03-185-10, Project No.: SPR-3(017), Project Code: RPFP-05-09 Year 15, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, February 24, 2010.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- 7. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- 8. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 9. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.

- 10. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 11. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 12. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July 2007.
- 13. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 14. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Polivka, K.A., Faller, R.K., Sicking, D. L., Rohde, J.R., Bielenberg, R.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System – Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214MG-2)*, National Cooperative Highway Research Program, Research Report No. TRP-03-171-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 2006.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System – Update to NCHRP 350 Test No. 3-10 (2214MG-3)*, National Cooperative Highway Research Program, Research Report No. TRP-03-172-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 2006.
- Asadollahi Pajouh, M., Bielenberg, R.W., Schmidt, J.D., Lingenfelter, J.L., Faller, R.K., and Reid, J.D., *Placement of Breakaway Light Poles Located Directly Behind Midwest Guardrail System (MGS)*, Research Report No. TRP-03-361-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, June 29, 2017.
- Asadollahi Pajouh, M., Bielenberg, R.W., Rasmussen, J.D., Bai, F., Faller, R.K., and Holloway, J.C., *Dynamic Testing and Evaluation of Culvert-Mounted, Strong-Post MGS to TL-3 Guidelines of MASH 2016*, Final Report to the Wisconsin Department of Transportation, Transportation Research Report no. TRP-03-383-20, Project No.: TPF-5(193) Supplement #113, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Nebraska, November 2, 2020.
- Kover, J.C., Bligh, R.P., Menges, W.L., Schroeder, G.E., Schroeder, W., Wegenast, S.A., Griffith, B.L., and Kuhn, D.L., *MASH Crash Testing of the MGS Guardrail System with Reduced Post Spacing*, Test Report No. 610211-01. Texas A&M Transportation Institute (TTI), Texas A&M University, College Station, Texas, April 2022.

12 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference
a1	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	H#C85187
a2	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	H#9411949
a3	6'-3" 12-gauge W-Beam MGS Section	AASHTO M180	H#4143340
a4	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992 Min. 50 ksi or ASTM A36 Min. 36 ksi	H#55064803
a5	W6x9 or W6x8.5, 84" Long Steel Post	ASTM A992 Min. 50 ksi or ASTM A36 Min. 36 ksi	H#2909166
аб	6x12x14¼" Timber Blockout for Steel Posts	AASHTO M168 or SYP Grade No.1 or better	Ch#23422, Ch#18379, Ch#23888, Ch#21327
a7	16D Double Head Nail	-	PO E000548963
b1	BCT Timber Post - MGS Height	AASHTO M168 or SYP Grade No. 1 or better	Ch#1488 Ch#652
b2	72" Long Foundation Tube	ASTM A500 Gr. B	H#821T08220
b3	Strut and Yoke Assembly	ASTM A36	H#195070
b4	BCT Cable Anchor Assembly	-	R#22-107
b5	Anchor Bracket Assembly	ASTM A36	H#JK16101488
b6	8"x8"x ⁵ / ₈ " Anchor Bearing Plate	ASTM A36	H#4181496
b7	2 ³ / ₈ " O.D. x 6" Long BCT Post Sleeve	ASTM A500-13 Gr. B&C	H#B712810
c1	⁵⁄s" Dia. UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	H#DL17100590
c2	⁵ ∕8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	H#10684020
c3	%" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	H#1721198
c4	⁵ / ₈ " Dia. UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A	H#1731059-3
c5	⁵ / ₈ " Dia. UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A	H#JK17100352
c6	⅔" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A	P#92005
d1	5⁄8" Dia. Hex Nut	ASTM A563A	H#331608011
d2	⅔" Dia. Hex Nut	ASTM A563A	P#33187 L#1844804
d3	5/8" Dia. Heavy Hex Bolt	ASTM A563A	H#10553090
e1	⁵ / ₈ " Dia. Plain USS Washer	ASTM F844	L#20200831 P#1133185
e2	⁷ / ₈ " Dia. Plain USS Washer	ASTM F844	P#33187 C#170077928

Table A-1. Bill of Materials, Test Nos. MGS7S-1 and MGS7S-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	UNIVERSITY OF 401 CANFIELD P O BOX 880439 LINCOLN.NE.68	ADMIN BLDG 9					Test Report Ship Date: Customer P O: Shipped to: Project:	1/26/2018 36263 UNIVERSITY OF	NEBRASKA-LIN	COLN			
	2						GHP Order No.:	319AA					
HT # code	Heat #	C.	MN.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quanity	Class	Туре	Description
1207	C85187	0.2	0.48	0.008	0.003	0.03	80433	59371	16.35	150	А	2	12GA 12FT6IN/3FT1 1/2IN WB T2

Munumunun 22216868602 × Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated, Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America 0 All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 ////////// All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4. STATE OF OHIO: COUNTY OF STARK

Gracover

By: Jeffery Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

Sworn to and subscribed before me, a Notary Public, by Jeffery Grover this 29 day of January, 2018 Notary Public, State of Ohio

James P Dehnke Notary Public - State of Ohio My Commission Expires October 19, 2019

Figure A-1. 12-ft 6-in. 12-gauge W-Beam MGS Section, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a1)

HUD	COR'				4831	U.S. Hig	el Gallati hway 42 W 41045-9704	est		-	-
NUCOR	STEEL GAD	LLATIN	i	Phone				9)567-3165		5	55
		1.25	I	METAI	LLUR	GICA	L TEST	REPORT			
nvoice T	o: Gregory 4100 13t	h Stree	tSW		Ship	To: G	egory Indua 00 13th Str	stries reet SW		Date:	1/21/2018
	Canton,	OH 44	710				anton, OH		Cust	omer No:	10019
									Custo	mer P.O.:	39620
Aill Orde	r No: 21407	78-1	1.8.9.7	Custom	ner Refe	erence l	No: 39620		Load No:	736148	
	duct was m SA to meet				tensi	le, 0.109	% max Si, a eel Bands	ide for Guard ind 0.06% Cr r	nax		
Coil Num	nber(s): 146	65177					0	rdered Size:	Min 0.095 (lı Min 2.413 (n		
HEMIC	AL ANALYS	sis (l	Neight %)	L.S.	N			14.10		a lain	
leat No	C	M	n	Ρ		S	Si	Cu	Ni	Cr	Мо
C85187	0.20	0.4		0.008		003	0.03	0.06	0.02	0.05	0.01
_	Al	C		Nb	-	/	B	Ti	N	Sn	
	0.029	0.0		0.000	0.0	001	0.0001	0.001	0.0080	0.003	-
MECHAN	ICAL PROP	ERTIES		-	-	Sec. 1	1				
the second s	ength(ksi)					2					
	ength(mpa)										
	trength(ks				2.	14-22					18. 14. 1.
ensile S 6 Elonga	trength(mp	ba)									
-Value	uon			-		145				-	
I-Value	Range					7-11	11119				
	(HRBW)						10.125		5 N N N N		1.1.1
est Sectorientation	and the second se	-									
est Met											
	ST RESUL	TS								19.00	190 300
oil ID #	Drientation	Diamet	er/radius andrel	No. of cracks	Size o	f Pass s Fail	7	Ht cloan 1207	e		
	1.1.2.2.2							1207			
								10001			
			-	-							
			-								
								- Charles	20-3		
fercury was	ils manufacture not added duri iner according to	ng produc	tion of this ma	allatin do n terial. The r	ot contain material wa	welds or w as produce	veld repairs at th d using a fully k	he time of shipmen filled fine grain prac	t (fca mill). ctice with a grain		
	is in compliance			the Buy Am	nerican Act	t.				0	00
bove tests	performed in ac using at fracture	cordance method)	to ASTM stan or JIS Z2241,	dards E8 (y E18, E415,	ield streng and E101	th determin 9 and are o	ned using 0.2% correct as conta	offset method and ined in the records	elongation of the company.	Stephen	X. Xipp
he elongati	on original gaug esults were perf	e length i ormed in a	s 2 inches for accordance to	ASTM test r EN 10204 3	method an 3.1	d 1.97 inch	nes for JIS test i	method.			S. Sipple
end method	d at a 180 degre	e bend. B	end test speci	men is long	er than 6"	and wider	than 0.8"	s, guided, two supp	oort and a mandrel		al Laboratory @nucor.com
This mecha	nall not be repro anical property h	has been t	ested at a sub	contractor's	approval	y.	ersigned labora	atory managers.	1235660	S. S. T	Stor 2
bove. If the	e reader of th	is messa ication is	age is not the s strictly pro	e intended hibited. If	l recipien f vou hav	t, you are	hereby notif	y for the use of t ied that any diss inication in error	semination, dist	ribution, or	Page 1 of

Figure A-2. 12-ft 6-in. 12-gauge W-Beam MGS Section, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a1)

Gregory Industries

HEAT MASTER LISTING

Heat No. Mill# Name YR Primary Grade Secondary Grade CODE Original Heat Number ---------------------------9411949 ARC03 ARCELOR MITTAL USA, LLC 15 1021 8534 ******* Chemistry ****** Si P Ti Cr . C Mn S Cu Ni MO Sn Al v Cb N 0.0400 0.0100 0.0100 0.2100 0.7500 0.0060 0.0200 0.0100 0.0100 0.0020 0.0580 0.0020 0.0020 0.0042 0.0020 Ca 0.0003 ****** Mechanical Test ****** YIELD TENSILE ELONGATION ROCKWELL 78 27.15 56527 75774 Guardrail W-Beam 20ct/25' 100ct/12' 10ct/25ft w/MGS Anchor Panel July 2015 SMT

Figure A-3. 12-ft 6-in. 12-gauge W-Beam MGS End Section, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a2)

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	UNIVERSITY OF 401 CANFIELD A P O BOX 880439	ADMIN BLDG					Test Report Ship Date: Customer P.O.: Shipped to:	7/9/2015 4500274709/ 07/0 UNIVERSITY OF		COLN			
	LINCOLN, NE, 68	588-0439					Project: GHP Order No.:	TESTING COIL 183306					
HT # code	Heat #	c.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	10	А	2	12GA 25FT WB T2 MGS ANCHOR PANEL
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	100	A	2	12GA 12FT6IN/3FT1 1/2IN WB T2
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	20	А	2	12GA 25FT0IN 3FT1 1/2IN WB T2

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

-Eller

By: Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

NOTARY PUBLIC STATE OF OHIO omm. Expires arch 03, 2018 Portage County

Figure A-4. 12-ft 6-in. 12-gauge W-Beam MGS End Section, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a2)

GREGORY HIGHWAY 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MACHI P. O. BOX 703 MILFORD,NE,6844		PLY CO.				Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	MIDWEST MACH	INERY & SUPPL	Y CO.			
HT # code	Heat #	C.	MN.	Ρ.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
5818	4143340	0.2	0.76	0.013	0.007	0.02	79874	62737	22.77	1	А	2	12GA 6FT 3IN WB

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

All material fabricated in accordance with Nebraska Department of Transportation

All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

Genover

By:______ Jeffery Grover, Vice President Gregory Highway Gregory Highway

Figure A-5. 6-ft 3-in. 12-gauge W-Beam MGS Section, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a3)

IS-ML-CARTE 84 OLD GRAS ARTERSVILL	SDALE ROAL		COSTOMER S HIGHWAY S 473 W FAIRO MARION, OH USA SALES ORD 8525742/000	AFETY CORP IROUND ST 43302-1701 ER	CUS HIG GLA USA	TOMER BIL HWAY SA ASTONBUI	IRIAL, TEST REPOR L TO FETY CORP CY,CT 06033-0358 R MATERIAL N ^e		ASTM A	709-36 H ICATION / DA 6-17	Wi 13,6 63) WEIGHT 22,491 LE		DOCUMENT I 0000307083 AT / BATCH 064803/02
ISA CUSTOMER PU 1832	RCHASE ORDE	R NUMBER		BILL OF LA 1323-00001:			DATE 3/02/2020			709-17 992-11 (2015) ,21-13 345WM			IB-600	800
CHEMICAL COM	гозпон Мл 0.81	P. 0.012	5. 0.029	\$i 0.21	C/1 0.31	Ni 0.09	\$% 0.09	N 0.0	le 125	ន្តរា 0.008	× 0.002	N) 0.00	99	
MECHANICAL PI YS 0 125 583 559	2% 1 00	76-	TS 91 400 900	4	YS MPa 102 185		UTS MPa 527 510		Y/[ra 0.760 0.760)		Elong. 27.50 24.80		
OMMENTS / NO														

The above figures are certified chemical and physical test records as contained in the permanent records of specified requirements. Weld repair has not been performed on this material. This material, including the t 10204 3.1.	company. We certify that these data are correct and in compliance with illets, was melted and manufactured in the USA. CMTR complies with EN
Phone: (409) 267-1071 Equil: Bhaskar, Yalawanchill@gordau.com	YAN WANG Quality Assurance Mor Phone: (770) 187 5718 Emsil: yan.wang@perdsu.com

Figure A-6. W6x8.5, 72-in. Long Steel Post, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a4)

. .

Beat# Yield/ Yiel/d/ Yiel/d/ Yiel/d			by Nuco lled and	100% Ex 5 produced a fully kil ed in the c	al section rolled to	and hot		CERTIFI				450	55 Hagan Av ger, SC 294 one: (843)
PULRSKI, PA 16143 PULRSKI, PA 16143 CCIFICATIONS; Tested in accordance with ASTN specification A6/A6M_17a and A370. Quality Manual Rev #10 (3-14-19). RSTN: $x = 25$ 13 RSTN: $x = 25$ 14 RSTN: $x = 25$ 15 RSTN: $x = 25$ 14 RSTN: $x = 25$ 15 RSTN: $x = 25$ 14 RSTN: $x = 25$ 15 RSTN: $x = 25$ 15 RSTN: $x = 25$ 14 RSTN: $x = 25$ 15 RSTN: $x = 25$ 12 RSTN: $x = 25$ 11 RSTN: $x = 25$ 12 RSTN: $x = 25$ 12 <th>PD: 11894</th> <th>Customer</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Shi</th> <th></th> <th></th> <th></th> <th></th> <th>Sold Io:</th>	PD: 11894	Customer						Shi					Sold Io:
RABGED 1 m270-345N270-50-15 RSME 1 SA-36 13 RSTM 1 R992-11 [51/R36-19/R529-19-50/R5725018T1/R7093618/R7095018 RGG - IG RSTM 1 R992-11 [51/R36-19/R529-19-50/R5725018T1/R7093618/R7095018 RGG - IG CSR 1 G40.21-44w/G40.2150wM Heat# Yield/ Yield Tensile (PSI) (PSI) (PSI) Elong Cr Mo Sn B V W No KANANA VII XANANA VII VIXANANA	MOS				16143	ULASKI, PA	P				16143	PULASKI, PA	
Heat# cription tf # Yield/ Test/Beat JW (%) Yield/ Test/Beat JW Ratio Yield/ (%) Yield/ (%) <t< th=""><th>3-196</th><th>RE</th><th></th><th></th><th></th><th>95018</th><th>618/A70</th><th>1/87093</th><th>57250181</th><th>9-50/A</th><th>0-15 19/A529-1 50WM</th><th>n270-345N270-5 -36 13 92-11(15:/R36- .21-44w/G40.21</th><th>ASSETO I M ASME I SA- ASTM I A99 CSA I G40.</th></t<>	3-196	RE				95018	618/A70	1/87093	57250181	9-50/A	0-15 19/A529-1 50WM	n270-345N270-5 -36 13 92-11(15:/R36- .21-44w/G40.21	ASSETO I M ASME I SA- ASTM I A99 CSA I G40.
18.5 2909166 .81 55700 68600 25.20 .07 .86 .010 .014 .23 .12 .04 142 ' 00.00* R992-11(15 .82 55800 68400 29.10 .001 .0060 .0001 .004 .016 .004 .016 .004 .016 .004 .016 .0050 .0001 .004 .016 .0053 .26 .26 .12 .001 .004 .016 .0053 .016 .0053 .3.26 .26 .12 .001 .0053 .0053 .3.26 .26 .107 .84 .001 .0050 .0053 .016 .0053 .016 .0053 .016 .0053 .016 .0053 .0053 .016 .0058 .0053 .016 .0058 .0058 .004 .015 .04 .016 .04 .016 .006 .006 <th>NI CE1 XXXXXX CE2</th> <th>Cu Bb</th> <th>Si V</th> <th>S B</th> <th>p Sn</th> <th>Mn Mo</th> <th>C Cr</th> <th>Elong</th> <th>Iensile (PSI)</th> <th>Yield (PSI)</th> <th>Yield/ Tensile</th> <th>Heat# Grade(s)</th> <th>cription t H</th>	NI CE1 XXXXXX CE2	Cu Bb	Si V	S B	p Sn	Mn Mo	C Cr	Elong	Iensile (PSI)	Yield (PSI)	Yield/ Tensile	Heat# Grade(s)	cription t H
S0X12.6 .82 S5800 68400 29.10 .001 .001 .0053 3.26 12.8016n RWSW 385 472 84 Pc(s) 29,988 1bs Customer PD: 11894 Inv#i 8.5 2909165 .81 55500 68800 28.50 .07 .84 .007 .021 .22 .11 .04 42' 00.00 .8992-11(15 383 474 .03 .01 .0058 .0002 .004 .015 3.00 50X12.6 .80 54700 68200 30.00 .001 .001 .004 .015 3.00	.04 .23							25.20			.81		8.5
127 00.004 8992-11(15 383 474 .03 .01 .0058 .0002 .004 .015 50%12.6 .80 54700 68200 30.00 .001 .001 .0049 3.00					1	.001			68400	55800	.82	Contraction and Prove	50X12.6
	,2701		.004			.01		11 251 12 28 28 28 28 28 28 28 28 28 28 28 28 28	474	383			42' 00.00*
		1 1	.0049	90: 11894	Customer		(s) 1				.80	RISW	
												+	
2 Heat(s) for this MIR.											R,	s) for this MIN	2 Heat(3
<pre>angation based on 8' (20.32cm) gauge length. 'No Weld Repair' was peformed. 'All mechanical testing is performed by = 26.01cu+3.88Bi+1.20cr+1.49Si+17.28P-(7.29CuKBi)-(9.10BiKP)-33.39(CuKCu) testing lab, which is independent of the = C+(S1/30)+(Mn/20)+(Cu/20)+(Bi/60)+(Cr/20)+(Mo/15)+(V/10)+SB = C+(Mn/5)+((Cr+Mo+V)/5)+((Ni+Cu)/15) CE2 = C+((Mn+Si)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/15) CE2 = C+((Mn+Si)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/16) CE2 = C+((Mn+Si)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/16) CE2 = C+((Mi+Si)/6)+((Cr+Mo+V+Cb)/6) CE2 = C+((Mi+Si)/6)+((Mi+Cu)/16) CE2 CE2 CH2(UAU) CE2 CE2 CH2(UAU) CE2 CE2 CH2(UAU) CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2</pre>	rmed by the Qua t of the produc	ng is perf independe	al testin which is	l mechanica ting lab, w artments*	ied. 'All (Cu) test depa	was peform -33.39(Cu)	Repair'	Weld F	gth, 'N	uge ler 17.28P- /60)+(0	.32cm) ga c+1.495i+ 1/20)+(Ni	used on 8* (20. 1+3.88Ni+1.20Cs 10)+(Mn/20)+(Cu	= 26.01Cu = C+(Si/3
areby certify that the contents of this report are accurate and ract. All test results and operations performed by the material wetallurgist in designated by the Purchaser, meet applicable specifications.				0011	Matralling	-1	a mater	i by the	al spec.	tions p materi	and opera	test results a	rect. All ufacturer

Figure A-7. W6x8.5, 84-in. Long Steel Post, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a5)

P. O. Box 630 • Sutton, NE 68979 Pone 402-773-4319 FAX 402-773-4513

CWNP Invoice <u>10048570</u> Shipped To <u>MIJwest-Milfel</u> Customer PO <u>2872</u>

Central Nebraska Wood Preservers, Inc. Certification of Inspection

Date:

CCA - C 0.60 pcf

Specifications: _____Highway Construction Use

Preservative:

Charge #	Date Treated	Grade	Material Length & I		# Pieces	White Moisture Readings	# of E	etration Sorings & nforming	Actual Retentio % Conform	ns ning
18379	4/16/14	*1	6412-14"	Blags	756	19	160		-651 pe	
18379	4/16/14	akt	678-22"	Blocks	84	19	40	95%	.651 p	đ

Number of pieces rejected and reason for rejection:

Statement: The above reference material was treated and inspected in accordance with the above referenced specifications.

Kurt Andres, General Manager

MGS Wood Blockouts 6x12x14" R#14-0554 GREEN TAGS don't mistaken these for the 2part blockouts because they are also GREEN. July 2014 SMT

Figure A-8. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a6)

P. O. Box 630 • Sutton, NE 68979 Pone 402-773-4319 FAX 402-773-4513

R#16-692 6x12x14 Timber Blockouts COC June2016 SMT Black Paint Tags

Date: 10/29/15

CERTIFICATE OF COMPLIANCE

Shipped TO: MIDwest Machiway. 3161

Customer PO#

BOL# 10052937 Preservative: CCA - C 0.60 pcf AWPA UC4B

Part #	Physical Descrip	tion # of Pie	ces	Charge #	Tested F	letentio
4	6×12-14"00	D Block 84	6	1327	.658	pit
	1. J. C. 1. 1.					

I certify the above referenced material has been produced, treated and tested in accordance with AWPA standards and conforms to AASHTO M133 & M168.

Nick Sowl, General Counsel

products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Figure A-9. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a6)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>10057873</u> Customer PO# <u>3475</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GR61219 BLK	6x12-19″ TRANS Hole BLK	56	24245	.616
GR6819 BLK	6x8-19" OCD BLOCK	168	24253	.611
GR61214 BLK	6x12-14" Thrie Hole BLK OCD	84	23422	.660
			-	
				÷ .
produced, trea	ove referenced material has been ted and tested in accordance with to AASHTO M133 & M168	VA: Iowa Wood Preser listed above have been Section 236 of the VDO applicable minimum p	treated in accordance v T Road & Bridge Speci	with AWPA standards, fications and meets the
Nicholas	Sowl, General Counsel		<u>9/1/2</u> Dat	

Figure A-10. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a6)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>100588715</u> Customer PO# <u>3528</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
4075b	6x8-14" Block	126	24683	.665
6120b	6x12-14" Block	84	(23888)	.678
GS6806.5 PST	5.5x7.5-6.5' Rub Post	84	24604	.652
GS6806.5 PST	5.5x7.5-6.5' Rub Post	42	24603	.643
GS6814 BLK	5.5x7.5-14' Block	126	24194	.633

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nick Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

> <u>1/11/2018</u> Date

Figure A-11. Timber Blockout for Steel Posts, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a6)

Certificate of Compliance

630-600-36	L 60126-2081	University of Nebraska Midwest Roadside Safety Facility M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802 Attention: Shaun M Tighe Midwest Roadside Safety Facility	Purchase Order E000548963 Order Placed By Shaun M Tighe McMaster-Carr Number 7204107-01		Page 1 of 1 08/02/2018
Line	Product		Ordered Ship	ped	
1 97812	A109 Raised-Head Rem	ovable Nails, 16D Penny Size, 3" Long, Packs of 5	5 Packs	5	

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Wei-c

Sarah Weinberg Compliance Manager

Figure A-12. 16D Double Head Nail, Test Nos. MGS7S-1 and MGS7S-2 (Item No. a7)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>N24824</u> Customer PO# <u>3901</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# Pieces	Charge #	Retention
6115b	5.5x7.5.46" BCT	42	1488	.607
GS6843.5 PST	5.5x7.5-43.5" BCT	42	1488	.607

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards. VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and relention requirements.

Nick Sowl, General Counsel

<u>3/6/20</u> Date

Figure A-13. BCT Timber Post – MGS Height, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b1)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>N18798</u>

Customer PO# 3801

Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# Pieces	Charge #	Retention
GR6806	6x8-6' Post	35	694	.763
PST		35	695	.707
GS6846 PST	5.5x7.5-46" BCT	42	652	.608
GR61222 BLK	6x12-22" OCD BLock	56	612	.619

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Nick Sowl, General Counsel

8/20/19 Date

GENERAL NOTARY - State of Nebraska LINDA L. SCHROETLIN My Comm. Exp. May 20, 2020

Figure A-14. BCT Timber Post – MGS Height, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b1)

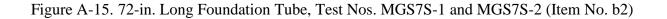
E Atlas Tube Čorp (Chicago) 1855 East 122nd Street Chicago, Illinois, USA 60633 Tel: 773-646-4500 Fax: 773-646-6128

304(0HDG

Ref.B/L.: 80728203 Date: 08.17.2016 Customer: 2908

Tru-Form Steel & Wire 1204 Gilkey Ave HARTFORD CITY IN 47348 USA

Shipped to


MATERIAL TEST REPORT

Sold to

Gregory Industries Inc. 4100 13th Street SW. CANTON OH 44710 USA

Material: 8.0>	6.0x188x	27'0"0(2x2)S	ILDOM	JS	Ma	aterial No	: 800601	88				Made in Melted i			
Sales order:	1105121				Pu	rchase C	order: 35	569		Cust Mat	erial #: 7	RB3/16-8	-6-27		
Heat No	С	Mn	Р	S	Si	AI	Cu	Cb	Мо	Ni	Cr	v	Ti	в	N
616137	0.210	0.930	0.011	0.003	0.020	0.041	0.020	0.008	0.020	0.020	0.030	0.008	0.001	0.000	0.003
Bundle No	PCs	Yield	Ter	sile	Eln.2in			C	ertificatio	n		(CE: 0.38		
M800650076	4	058210 Psi	073	148 Psi	32 %			A	STM A50	0-13 GRAI	DE B&C				
Material Note Sales Or.Note								,							
Material: 8.0>	6.0x188x	30'0"0(2x3)S	ILDOMU	JS	Ma	terial No	: 800601	88				Made in Melted i			
Sales order:	1105121				Pu	rchase C	order: 35	569		Cust Mat	erial #: 1	RB3/16-8	-6-30		
Heat No	С	Mn	Ρ	S	Si	AI	Cu	Cb	Mo	Ni	Cr	v	Ti	в	N
821T08220	0.220	0.810	0.013	0.006	0.006	0.041	0.160	0.002	0.005	0.010	0.020	0.002	0.002	0.000	0.007
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			C	ertificatio	on		(CE: 0.37		
M800650038	6	057275 Psi	070	934 Psi	32 %			A	STM A50	0-13 GRAI	DE B&C				
Material Note Sales Or.Not															
Material: 8.0>	6.0x188x	:30'0"0(2x3)S	ILDOMU	JS	Ma	aterial No	: 800601	88				Made in Melted i			
Sales order:	1105121				Pu	rchase C	order: 35	569		Cust Mat	erial #: 1	RB3/16-8	-6-30		
Heat No	С	Mn	Р	S	Si	Al	Cu	Cb	Мо	Ni	Cr	v	Ti	в	Ν
821T08220	0.220	0.810	0.013	0.006	0.006	0.041	0.160	0.002	0.005	0.010	0.020	0.002	0.002	0.000	0.007
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			C	ertificatio	n		(CE: 0.37		
M800650039	6	057275 Psi	070	934 Psi	32 %			Ā	STM A50	0-13 GRAI	DE B&C				
Material Note Sales Or.Not															

Joan-Diddow Jason Richard Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. CE calculated using the AWS D1.1 method. Steel Tube Page : 1 Of 6 Page : 1 Of 6

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MA		UPPLY CO				Test Report Ship Date: Customer P.O.: Shipped to: PROJECT: GHP Order No:	10/26/2017 3501 MIDWEST MA STOCK 7044AA	CHINERY & SL	IPPLY CO.			
HT CODE	Lot #	C.	Mn.	Р.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
616137		0.21	0.93	0.011	0.003	0.02	73148	58210	32	15		2	3/16 X 6IN X 8IN X 5FT0IN TUBE SLEEVE
821T08220		0.22	0.81	0.013	0.006	0.006	70934	57275	32	10		2	3/16IN X 6IN X 8IN X 6FT0IN TUBE SLEEVE
214482		0.04	0.83	0.014	0.005	0.02	75275	68023	28.6	25	в		10GA MGS TB TRAN APPROACH END-RIGHT
214143		0.04	0.81	0.015	0.006	0.02	75565	69618	29.7	18	в		10GA MGS TB TRAN DEPARTURE END-LEFT

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653

All Galvanizing has occurred in the United States

All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"

All Steel used meets Title 23CFR 635.410 - Buy America

All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

All material fabricated in accordance with Nebraska Department of Transportation

All sheet, zinc-coated or zinc-iron alloy-coated by the hot dip process that meets ASTM Specifications A653

Facren By:_

Jeffery L Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

Figure A-16. 72-in. Long Foundation Tube, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b2)

			1.00			Cerune	a <i>Analy</i>	SIS								tint	Sim		F
rinity Hig	ghway Pi	roducts, LLC														1			
50 East Ro	obb Ave	.				Order N	Number: 127501	7 Pro	d Ln Grj	p: 3-G	uardra	il (De	om)						
ima, OH 4:	5801 Ph	n:(419) 227-1296				Custor	mer PO: 3400								٨	a a fe ?	/22/17		
ustomer:	MIDW	EST MACH.& SUPPLY	CO.			BOLI	Number: 99202		Ship D)ate:					A	501. 5	122111		
	P. O. B	OX 703	•			Docu	ament #: 1												
						Ship	ped To: NE												
	MILFO	RD, NE 68405					se State: NE												
roject:	RESAL	E																	
	Part # 3380G	Description 5/8"X1.5" HEX BOLT A307	Spec HW	CL	TY	Heat Code/ Heat 0052429-113200	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn .	ACV
			1000																
600	3400G	5/8"X2" GR BOLT	HW			29221													
500	3480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550-В													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190 (0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36			A82292	54,000	73,300	31.0	0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
1	9852A		HW			15056184													
20 1	12173G	T12/6'3/4@1'6.75"/S			2	L35216										177549127324	1		
			M-180	A	2	209331	62,090	81,500		0.190					0.110			0.002	
			M-180	A	2	209332	61,400	81,290		0.190					0.120			0.001	
			M-180	A	2	209333	61,200	80,050	25.8	0.200	0.740	0.010	0.005	0.010	0.140	0.00	0.070	0.002	

Figure A-17. Strut and Yoke Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b3)

Wirerope Works, Inc. 100 Maynard St Williamsport, PA 17701 Manufacturer of Bethlehem Wire Rope [®] "Our Quality Management Systems are registered to ISO 9001: 2015 and API-Q1"

CERTIFICATE OF COMPLIANCE

CUSTOMER: MAZZELLA LIFTING TECHNOLOGIES ORD# 267872 CUST. PO P202954

WW FILE NAME 267872ORD

REEL# 0243493

DESCRIPTION: 3/4" 0619 W GA IPS RR SAC GALVANIZED WIRE ROPE IN ACCORDANCE WITH AASHTO DESIGNATION M30-02

ACTUAL TEST RESULTS ACTUAL BREAKING STRENGTH: 63,400 LBS REQUIRED BREAKING STRENGTH: 42,800 LBS

MINIMUM MASS OF COATING:

WIRE DIAMETER MAINWIRES

.054" MINIMUM CLASS A COATING .40- ACTUAL RANGE .55/.66 oz/fl2 .040" MINIMUM CLASS A COATING .40- ACTUAL RANGE .52/.53 oz/fl2

STEEL CERTIFICATES FOR ROD MANUFACTURER ARE ATTACHED The following are heat numbers and wire diameters as shown on the Steel Certificates

.054" HEAT # OT0016343 20676920 .040" HEAT # 614442 OT0013913 .061" HEAT # 20676920 20643620 OT0009792 .046" HEAT # 531380084/02

ALL MATERIALS "MELTED AND MANUFACTURED IN THE USA"

<u>Tatti Walkus</u> DATE: <u>09/08/2020</u> CERTIFICATE# <u>AA30816</u> PATTI WATKINS, Inv. Control/QA Customer Coordinator Per the authority of, ROGER GILLILAND, DIRECTOR OF ENGINEERING

Figure A-18. BCT Cable Anchor Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b4)

Certified Analysis

550 East Robb Ave.	Order Number: 1269489	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3346		As of: 11/7/16
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 97457	Ship Date:	1301.11/110
P. O. BOX 703	Document #: 1		
	Shipped To: NE		
MILFORD, NE 68405	Use State: NE	V	

Project: RESALE

Trinity Highway Products, LLC

H#JK16101488 R#17-282 Anchor Bracket Assembly

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACW
	701A	ANCHOF Box	A-36		4	JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	4
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 3/4X6'6/DBL	HW			119048													
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW			28971-В													
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													

Figure A-19. Anchor Bracket Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b5)

NUCOR

NUCOR STEEL JACKSON, INC.

Mill Certification 7/27/2016 MTR #: M1-150903 NUCOR STEEL JACKSON, INC. 3630 Fourth Street Flowpord, MS 39332 (601) 939-1623 Fax: (601) 936-6202

Sold To: O'NEAL STEEL INC ATTN ACCOUNTS PAYABLE PO BOX 98 BIRMINGHAM, AL 35202-0098 (205) 599-8000 Fax: (205) 599-8052 Ship To: O'NEAL STEEL INC 4530 MESSER-AIRPORT HWY BIRMINCHAM, AL 35222 (205) 599-8000 Fax: (205) 599-8052

Customer P.O.	00771356	Sales Order	343125.5
Product Group	Merchant Bar Quality	Part Number	5350030024010W0
Grade	NUCOR MULTIGRADE	Lot#	JK1610148801
Size	1/2x3" Fist	Heat#	JK16101488
Product	1/2x3" Flat 20' NUCOR MULTIGRADE	B.L. Number	M1-429898
Description	NUCOR MULTIGRADE	Load Number	M1-150903
Customer Spec		Customer Part #	00777557

Roll Date: 4/5/2016 Melt Date: 3/30/2016 Oty Shipped LBS: 4,900 Oty Shipped Pcs: 48

.

Melt Date: 3/30/2016

C	Mn	P	S	SI	Cu	Ni	Cr	Mo	V.	Cb	Sn	
0,16% CE4020 0,35%	0.78% CEA529 0.39%	0.017%	0.028%	0.20%	0.28%	0.09%	0.14%	0.020%	0.0280%	0.001%	0.010%	

CE4020: C. E. CSA G4020, AASHTO M270 CEA529: A529 CARBON EQUIVALENT

Roll Date: 4/5/2016

Yield 1: 56,172psi	Tensile 1: 75,460psi	Elongation: 25% in 8"(% in 203.3mm)
Yield 2: 56,126psi	Tensile 2: 76,500psi	Elongation 25% In 8*(% in 203.3mm)

Specification Comments: NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTM A36/36M, ASTM A529/529M GR50 ASTM A572/572M GR50 ASTM/709/709M GR36/GR50 CSA G40.21 GR44W(300W)/GR50W(350W) AASHTO M270/M270M GR36/GR50 ASME SA36/SA36M MEETS EN10204 SEC 3.1 REPORTING REQUIREMENTS

ALL MANUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, INCLUDING MELTING, HAVE OCCURRED WITHIN THE UNITED STATES, ALL PRODUCTS PRODUCED ARE WELD FREE, MERCURY, IN ANY FORM, HAS NOT BEEN USED IN THE PRODUCTION OR TESTING OF THIS MATERIAL.

QA Approved SI# 777557

Christigh - Chur Christopher Smith Division Metallurgist Page 1 of 1 NBMG-10 January 1, 2012

Figure A-20. Anchor Bracket Assembly, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b5)

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MA		SUPPLY CO	l.			Test Report Ship Date: Customer P.O.: Shipped to: Project:	11/17/2017 3515 MIDWEST MAG	CHINERY & SU	JPPLY CO.			
							GHP Order No:	128AA					
HT # code	LOT#	c.	Mn.	Р.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	А	2	12GA TB TRANS
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2	5/8IN X 8IN X 8IN BRG. PL.
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2	350 STRUT & YOKE
196828BM		0.04	0.84	0.014	0.003		76000	74000	25			2	350 STRUT & YOKE
E22985		0.17	0.51	0.013	0.008	0,008	72510	64310	29.5	4		2	2IN X 5 1/2IN PIPE SLEEVE
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	8		2	3/16IN X 6IN X 8IN X 6FTOIN TUBE SLEEVE

120

James All Galvanizing has occurred in the United States Notary Public, State of Ohio All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" Commission Expires 10-19-2019 All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4. STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed before me, a Notary Public, t the late Andrew Artar this 21 day of November, 2017

Notary Public, State of Ohio

Figure A-21. 8-in. x 8-in. x 5%-in. Anchor Bearing Plate, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b6)

Atlas Tube (Alabama), Inc. 171 Cleage Dr Birmingham; Alabama, USA 35217 Tel: Fax:

DOD A DIVISION OF ZEKELMAN INDUSTRIES

Ref.B/L: 80791452 Date: 11.10.2017 Customer: 179

MATERIAL TEST REPORT

Sold to Steel & Pipe Supply Compan PO Box 1688 MANHATTAN KS 66505 USA

Shipped to Steel & Pipe Supply Compan 401 New Century Parkway NEW CENTURY KS 66031 USA

H#712810 R#18-773 2 3/8" O.D. x 6" Long BCT Post Sleeve

Material: 3.0	x2.0x18	8x40'0"0(5x4).		N	laterial N	lo: 0300	2018840	000-B			Made in Melted i			
Sales order:	122697	76			P	urchase	Order: 4	5002966	656	Cust Ma	terial #:	663002	0018840)	
Heat No	С	Mn	P	s	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	В	N
B704212	0.200	0.450	0.010	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bundle No	PCs	Yield		nsile	Etn.	2in			Ce	rtification			c	E: 0.2	8
40867002	20	064649		7652 Psi				A	STM A5	00-13 GF					
Material Note Sales Or.Note															
Material: 2.3	75x154>	< <mark>42'0"0(</mark> 34	lx1).		N	laterial N	lo: R023	3751544:	200			Made in	i: USA		
Sales order:	122697	76			Р	urchase	Order: 4	5002966	656	Cust Ma	terial #:	642004			
Heat No	С	Mn	Р	S	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ті	в	N
B712810	0.210	0.460	0.012	0.002	0.020	0.024	0.100	0.002	0.020	0.030	0.060	0.004	0.002	0.000	0.008
Bundle No	PCs	Yield	Te	nsile	Eln.	2in	Rb		Ce	rtification			C	E: 0.3	2
MC0000694	7 34	063688	Psi 08	3220 Psi	25 %	91		A	STM A5	00-13 GF	ADE B&	с			
Material Note Sales Or.Note															
Material: 2.3	75x154>	(42'0"0(34	lx1).		N	aterial N	lo: R023	3751544:	200			Made in			
Sales order:	122697	76			P	urchasa	Order: 4	5002066	356	Cust Ma	torial #•	Melted 642004		•	
Heat No	C	Mn	Р	s	Si	AI	Cuar: 4	Cb	Mo	Ni	Cr	0420040 V	542 Ti	в	N
17037261	0.210	0.810	0.005	0.004		0.000	0.000		0.000	0.000	0.000	0.000		0.000	
							0.000	0.000			0.000	0.000			
Bundle No	PCs	Yield		nsile				-		rtification			L.	CE: 0.3	5
41532001	34	066144	rsi 08	2159 Psi	27 %	,		A	SIM A5	00-13 GF	ADE 86	C C			
Material Note Sales Or.Note															

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Institute

Page: 3 Of 4

Metals Service Center Institute

Figure A-22. 2³/₈-in. O.D. x 6-in. Long BCT Post Sleeve, Test Nos. MGS7S-1 and MGS7S-2 (Item No. b7)

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 187087

SHIPPER #: 061972 DATE SHIPPED: 11/06/2017

LOT#: 30361-P

SPECIFICAT	ION:	ASTM A307, GRADE	E A MILD CARBON ST	FEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	66,566
				66,832
HARDNESS:		100 max		82.60
				82.70

Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 30361-P

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Р	S	Si
NUCOR	1010	DL17100590	.10	.41	.005	.005	.05

QUANTITY AND DESCRIPTION:

4,825 PCS 5/8" X 14" GUARD RAIL BOLT P/N 3540G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS ember 20/7

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

clowas OVED SIGNATORY

Figure A-23. ⁵/₈-in. Dia. UNC, 14-in. Long Guardrail Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c1)

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514

CUSTOMER NAME:	GREGORY INDUSTRIE	S	
CUSTOMER PO:	49996		SHIPPER #: 071888 DATE SHIPPED: 07/29/2021
LOT#: 33278-P	а		
SPECIFICATION:	ASTM A307, GRADE A I	MILD CARBON STEE	LBOLTS
TENSILE: SPEC:	60,000 psi*min	RESULTS:	70,400 71,400
HARDNESS:	100 max	f car a f	71.80 72.30
*Pounds Per Square Inch.			

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE AZZ GALVANIZING: 33278-P

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Р	S	Si
CHARTER STEEL	1010	10684020	.11	.43	.006	.010	.09

QUANTITY AND DESCRIPTION:

6,000 PCS 5/8" X 1.25" GUARD RAIL BOLT P/N 1001G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS 20 21

Official Seal Merry F Shane Notary Public State of Illinois My Commission Expires 10/03/2022

APPRO NATORY

DATE

Figure A-24. ⁵/₈-in. Dia. UNC 1¹/₄-in. Long Guardrail Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c2)

CHARTER STEEL A Division of Charter Manufacturing Company, Inc. LOAD

1658 Cold Springs Road Saukville, Wisconsin 53080

(262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

			<u>, .</u>		ustomer.	t P.O.		· · · · · · · · · · · · · · · · · · ·	<u>.</u>		<u></u>			239618-
a a faith diadhach	14 A A A A A A A A A A A A A A A A A A A				er Sales		2 1	و بر سرانیسو معنا				10 No.	7	009870
			1. 1. 1. 1	Unalt		leat #	<u>.</u>							068402
			. a			Lot #				· .	ier.	1.1.1		466421
Rockford Bolt	& Steel			1000 C		Grade			1	010 A	AK F	G RHQ	19/32 F	
126 Mill St.		10 Jac	1. S. S.	12 1	the second second	ocess		···· · ·	1.1			. × .,		HRS
Rockford, IL-61	101		n far st	1.		h Size		1997 - 1997 -				1		19/3
Kind Attn :Lind					Shi	p date				. A			. 02	DEC-2
hereby certify that the mater tese requirements. The reco ab Code: 7388 HEM C	rding of false, fict MN	itious and	fraudulent	statemen	Heat Lot	es on this	docun	nent may M	be pun	Ishable CU	as a f	elony ur SN	nder feder	ral statul
6Wt .11	.43	.006	.010	:09	o .	04	.07	.,0		.07		.005	,002	
AL	.0080	.0001	TI .001	NB .00		- 194 ⁻	. •		÷	100			· · · · .	
.038	10080	.0001	.001	.00	·					•				•
			10 A						8.8				• i .	
	a ²				1990 B				· .					. 2
		· .				a in the			1.1					
			Test	results of	Rolling Lo	t # 13065	46	1 10 A		,, <u>.</u>				
	÷		. Toat						• .				·	1.1
					1									
REDUCTION RATIO=10	9:1		15 ac						1 P	2 . ¹⁹¹			18 12 18 14	
									÷	-	in the second	<u></u>		
Ci de M Ci	anufactured per harter Steel certi tectors in place eets customer s ustomer Docume	to measu pecificati	product is ure for the ons with a	presence any applic	uishable	from bac tion with rter Stee	ln our	process	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
Ci de M Ci	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	ln our	process ptions fo	r the fo	IICIS.				
CI de M	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	bs(grou) In our I éxcep Ied = ↓	process pilons fo 01-JUL-2	« proo	llowin	g cust	omer d	ocument	51
Ci de M Additional Comments:	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	bs(grou) In our I éxcep Ied = ↓	process pilons fo 01-JUL-2	α proo	s all pre	g cust	omer di		51
Ci de M Additional Comments: Melt Source: Charter Steel	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	bs(grou) In our I éxcep Ied = ↓	MTR sup	α proo	s all pre	g cust	omer de	ocument MTRs for	s: r this ord
Ci de M Additional Comments:	harter Steel certi tectors in place eets customer s	to measu pecificati	product is ure for the ons with a	presence any applic	uishable e of radiat cable Cha	from bac tion with rter Stee	bs(grou) In our I éxcep Ied = ↓	MTR sup	« proo	s all pro	g cust aviousla aviousla n Mgr.	omer de	ocument MTRs for	s: r this ord

Figure A-25. ⁵/₈-in. Dia. UNC, 1¹/₄-in. Long Guardrail Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c2)

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO, 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: GREGORY INDUSTRIES

CUSTOMER PO: 39864

SHIPPER #: 063466 DATE SHIPPED: 05/24/2018

LOT#: 30920-B

SPECIFICAT	ION:	ASTM A307, GRAD	DE A MILD CARBOI	N STEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	79,300
				76,800
HARDNESS:	1	100 max		90.00

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE AZZ GALVANIZING: 30920-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	C	Min	P	S	Si
MID AMERICAN STEEL & WIRE	1012	1721198	.13	.51	.016	.027	.19

20,700 PCS 5/8" X 10" GUARD RAIL BOLT P/N 1010G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

5/31/18 clomas

90.80

Figure A-26. ⁵/₈-in. Dia. UNC, 10-in. Long Guardrail Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c3)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL PO. NUMBER : 220027055 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 5/8-11X1-1/2 NC LOT NO : 1B17C3611 SHIP QUANTITY : 4,800 PCS LOT QUANTITY 410 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2018/04/13

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2020/06/05 PACKING NO: GEM180426006 INVOICE NO: GEM/FNL-1805101N-2 PART NO: 1191919 SAMPLING PLAN: ASME B18. 18-2017 (Category. 2) /ASTM F1470-2018 HEAT NO: 17310569-3 MATERIAL: X1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTA	GE COM	POSITION	OF CHEMI	STRY:AC	CORDIN	G TO AST	A307-14E1
Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN.							
MAX.		0.3300	1.2500	0.0410			

Test Value	0.0300	0.0600	0.2700	0.0160	0.0090	0.0300
h						

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 1-2012

		SAMPLE	DBY: FCHUN		
INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ
MAJOR DIAMETER	9 PCS	0.6110-0.6230 inch	0.6130-0.6220 inch	9	0
WIDTH ACROSS CORNERS	3 PCS	1.0330-1.0830 inch	1.0700-1.0700 inch	3	0
HEIGHT	3 PCS	0.3780-0.4440 inch	0.4270-0.4390 inch	3	0
NOMINAL LENGTH	9 PCS	1.4200-1.5600 inch	1.4350-1.5210 inch	9	0
WIDTH ACROSS FLATS	3 PCS	0.9060-0.9380 inch	0.9110-0.9370 inch	3	0
SURFACE DISCONTINUITIES	11 PCS	ASTM F788-2013	PASSED	11	0
AND IS MATCHED WITH THE REAMING NUT AFTER PLATING	11 PCS	nut	PASSED	11	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A307-14E1

				SAMPLE	DBY : GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2016		69-100 HRB	82-84 HRB	15	0
TENSILE STRENGTH	4 PCS	ASTM F606-2016		Min. 60 KSI	76-78 KSI	4	0
PLATING THICKNESS (µ m)	5 PCS	ASTM B568-1998		>=53	80.07-81.18	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

griv

Figure A-27. ⁵/₈-in. Dia. UNC, 1¹/₂-in. Long Hex Head Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c4)

Certificate of Compliance

Birmingham Fastener Manufacturing PO Box 10323 Birmingham, AL 35202 (205) 595-3512

Customer Midwest Machinery & Supply			oply	Date Shipped			06/26/2017	
Customer Order Number 3443			1	BFM Order	Number	1425884		
			ltem L	Descrip	tion			
Description		5/8"-11	x 10" H	EX BOLT			Qty	157
Lot #	213833	Specific	cation_	ASTM A30	7-14 Gr A	Finish	ASTM	F2329
		Ra	w Mat	erial A	nalysis			
Heat#	JK	17100352						
Chemical Co C 0.16	mposition (w Mn 1.14	the second second	sis) By I S 040	Material S Si 0.26	upplier Cu 0.30	Ni 0.13	Cr 0.25	Mo 0.031
		Ме	chani	cal Pro	perties			
Sample # 1 2 3 4 5	Hardness 89 HRBW	Ten	sile Stre 21,50	ngth (Ibs))0		Tensile Str 96,)
customer ord	er. The samp	the most recer les tested confo actured in the U	orm to the				stated	
Authorized Signature: _.		ian Hughes ity Assurance			Date:	71712	2017	

Figure A-28. ⁵/₈-in. Dia. UNC, 10-in. Long Hex Head Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c5)

Cust. No. NELIN2067 Cust. P.O. Job No. TL-2 and Bullnose

Sold To UNL TRANSPORTATION 1931 NORTH ANTELOPE VALLEY PKWY LINCOLN, NE 68588 402-472-7937; 402-472-8660(Fax)

Fastenal Company P.O Box 1286 WINONA, MN 55987-1286

The store serving you is 3201 N. 23rd Street STE 1

LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Invoice

Reference Date Page NO. NELIN314987 3/27/18 DUE DATE: 04/26/2018

Contract No: 1862 & 14284 OC Ship To 1802 & 1920. UNI. TRANSPORTATION 4630 NW 36th Street

LINCOLN, NE 68524 402-580-8095; 402-472-0071(Fax)

Authorized Purchaser: Jim Holloway

This Order and Document are subject to the "Terms of Purchase" posted on www.fastenal.com.

Line No.	Quantity Ordered	Quantity Shipped	Quantity Backorder	Description	Control No.	Part No.	Price / Hundred	Amount
1	5	5	15 0	7/8-9x8 A307A HDG				
2	20	20			Ilne35042	92005	509.5500	25.48 (
2	20	20	0 71	7/8"-9 HX NUT GALV	110254885	36717	72.2400	14.45 0
,	5	5	15 0	7/8-9x8 A307A HDG	Ilne35042	92005	0.000	
4	5	5	TS 0	7/8-9x8 A307A HDG	llne35042		509.5500	25.48 0
5	5	5	1	Second		92005	509.5500	25.48 0
			12 0	7/8-9x8 A307A HDG	IIne35042	92005	509.5500	25.48 G

Visa Account # XXXXXXXXXX6926 Exp XX/XX

Cardmember acknowledges receipt of goods or services in the amount of the total shown hereon and agrees to perform the obligations set forth by the cardmember's agreement with the issuer.

Tax Exemption

Government

Card Member Signature

Received By

Contact: WEBORD CONTRACT:1862 & 14284 OC

If you re-package or re-sell this product, you are required to maintain integrity of Country of Origin to the consumer of this product.

Reasonable collection and attorneys fees will be assessed to all accounts placed for collection No materials accepted for return without our permission.

X indicates part is a hazardous material

* indicates part was sold at a promotional or special discount price

	TOTAL USD	
This is your invoice.		
An discrepancies mus	st be reported within 10 days.	
Thank You !		

Subtotal

State Tax

City Tax

County Tax

NE

Shipping & Handling

116.37

0.00

0.00

0.00

0.00

116.37

0

Figure A-29. 7/8-in. Dia. UNC, 8-in. Long Hex Head Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. c6)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110216407 COMMODITY : FINISHED HEX NUT GR-A SIZE : 5/8-11 NC 0/T 0.51MM LOT NO : 1N1680027 SHIP QUANTITY : 23, 400 PCS LOT QUANTITY 170, 278 PCS HEADMARKS : Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/03/23 PACKING NO: GEM160919007 INVOICE NO: GEM/FNL-160929WI PART NO: **36713** SAMPLING PLAN: ASME B18. 18-2011 (Category. 2)/ASTM F1470-2012 HEAT NO: **331608011** MATERIAL: ML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

MANUFACTURE DATE : 2016/08/26 COUNTRY OF ORIGIN : CHINA R#17-507 H#331608011 BCT Cable Bracket Nuts

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2007

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0. 5800		0.1300	0. 2300	
Test Value	0.0350	0.0700	0.4100	0.0160	0.0060	0.0500

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18. 2. 2-2010

		SAMPLED BY: DWTING									
INSPECTIONS ITEM	SAMPLE	SP	ACTUAL RESULT	ACC.	REJ.						
WIDTH ACROSS CORNERS	6 PCS		1.0510-1.0830 inch	1.0560-1.0690 inch	6	0					
FIM	15 PCS	ASME B18. 2. 2-2010	Max. 0.0210 inch	0.0020-0.0040 inch	15	0					
THICKNESS	6 PCS		0.5350-0.5590 inch	0.5390-0.5570 inch	6	0					
WIDTH ACROSS FLATS	6 PCS		0.9220-0.9380 inch	0.9240-0.9340 inch	6	0					
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0					
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0					

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

	SAMPLED BY: GDAN LIAN								
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.		
CORE HARDNESS	15 PCS	ASTM F606-2014		68–107 HRB	79–81 HRE	15	0		
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	OK	4	0		
PLATING THICKNESS (µ m)	5 PCS	ASTM B568-1998		>=53	70. 02-75. 81	5	0		

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

griv

Figure A-30. ⁵/₈-in. Dia. Hex Nut, Test Nos. MGS7S-1 and MGS7S-2 (Item No. d1)

	CERTI	FICATE OF	COMPL	IANCE				
	R	KFORD BOL 126 MILL ST OCKFORD, II 88-0514 FA	REET _ 61101					
CUSTOMER NAME:	GREGORY	INDUSTRIES	5					
CUSTOMER PO:	40787			÷				
					DA		PER #: 0 IPPED: 0	63741 6/29/2018
LOT#: 30934-B								
SPECIFICATION:	ASTM A307	, GRADE A N	ILD CARB	ON STEE	LBOLTS			
TENSILE: SPEC:	60,000 psi*	min	RESULTS	:	66,100			
					65,400			
HARDNESS:	100 max				65.60			
*Pounds Per Square Inch.					65.20			
COATING: ASTM S AZZ GALVANIZING:	PECIFICATIO 30934-B	N F-2329 HO	t dip gal	VANIZE	÷			
	Cł	EMICAL CO	NPOSITIO	N				
MILL	GRADE	HEAT#	С	Mn	P	S	Si	
CHARTER STEEL	1010	10553090	.08	.38	.005	.011	.090	

QUANTITY AND DESCRIPTION:

7,000 PCS 5/8" X 1.25" GUARD RAIL BOLT P/N 1001G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

Comas VED SIGNATORY

DATE

Figure A-31. 5%-in. Dia. Heavy Hex Bolt, Test Nos. MGS7S-1 and MGS7S-2 (Item No. d3)

L#20200831 P#1133185 C#120403777 Inv#384753 R#21-153

SSF INDUSTRIAL CO., LIMITED MILL TEST CERTIFICATION

			Certification Conforms to EN1024 3.1B								
Supplier:					Certificate No.:	000826					
Buyer:	FASTENAL COMPANY PURCHASING			3	Invoice No.:	FASTCO2020083101					
Product De	scription:	5/8 US	S FAV GALV								
Product Siz	e:	5/8			Shipped Q'ty:	6 MPCS					
Quality Acc	uality Acceptance: ISO 3269			Lot No.:	20200831						
RAW MATE	RIAL	scrap						12			
Element	С	Si	Mn	S	Р	Ni	Cr	Cu			

Test Item			Spec.		Standa	rd	Remark
Appearance	Flawless			1		ок	
DIMENSION MEASURE	MENT(UNI			According to :	USS		
Test Item		Standard (mm)		Sampling	Remark	Test Result	
	F	Min	Max	Sampling	Remark	Test Re	sul

restitem	Min	Max	Sampling	Remark	Test Result
INNER DIAMETER (d1)	17.3	18.23	80	ок	
OUTTER DIAMETER (d2)	44.28	45.21	80	ок	
THICKNESS (h)	2.75	4.06	80	ок	

MACHANICAL PROPERTIES		According to :	ISO 6507	
Test Item	Spec.	Sampling	Remark	Test Result
HARDNESS (HRC/HV)	HV10 140 ~ HV10 250	10	ок	HV10 145 ~ HV10 150

COATING		According to :	ISO 4042	
Test Item	Spec.	Sampling	Remark	Test Result
Plating thickness	min.3 µm	5	ок	4.573 μm - 5.328 μm
SST	2 hours no white corrosion and 12 hours no red rust	5	ок	ок

We hereby certify that all the above material were manufactured, sampled, tested, and inspected in accordance with the relevant specification and any supplementary requirements or other requirements designated in the purchase order and was found to meet those requirements.

Inspector: QC Chen

Inspc. Date: 2020.11.16

For and on behalf of SSF INDUSTRIAL	CO.,	LIMITED
22	R's	志
Auto	rized S	ignature()

Figure A-32. 5/8-in. Dia. Plain USS Washer, Test Nos. MGS7S-1 and MGS7S-2 (Item No. e1)

CERTIFIE	DI	MAT	ERI	[AL	TEST	REPORT
FOR	US	SFL	AT	WA	SHERS	HDG

FACTORY: IFI & Morgan Ltd ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan,Zhe	REPORT DATE: jiang, China	23/4/2019	
	MFG LOT NUMBER:	1844804	
SAMPLING PLAN PER ASME B18.18-11	PO NUMBER:	170089822	
SIZE: USS 7/8 HDG QNTY(Lot size): 7200PC HEADMARKS: NO MARK	PART NO:	33187	
DIMENSIONAL INSPECTIONS SPECI	ICATION: ASTM B18.21	1-2011	
CHARACTERISTICS SPECIFIED	ACTUAL RESULT	ACC	REJ.
***************************************			*****
APPEARANCE ASTM F844	PASSED	100	0
OUTSIDE DIA 2.243-2.280	2.246-2.254	10	0
INSIDE DIA 0.931-0.968	0.956-0.965	10	0
THICKNESS 0.136-0.192	0.136-0.157	10	0
CHARACTERISTICS TEST METHOD SPECIFIED	ACTUAL RESULT	ACC.	REJ.
	*** ********************		******
HOT DIP GALVANIZED ASTM F2329-13 Min 0.0017"	0.0017-0.0020 in	8 DI ICIA DI E	0
		PLICABLE	
ASTM SPECIFICATION. WE CERTIFY THAT THIS DAI		ESENTAT	
INFORMATION PROVIDED BY THE MATERIAL SUPPLIE	ANR GAST TESTIN	G LABOR	CATORY.
ISO 9001:2015 SGS Certificate # HK04/0105			
n k	验专用章		
(SICK)	NLITY CONTROL ATURE OF OA. LAB	MGR.)	

Figure A-33. 7/8-in. Dia. Plain USS Washer, Test Nos. MGS7S-1 and MGS7S-2 (Item No. e2)

Appendix B. Vehicle Center of Gravity Determination

Model Year: 2016	Test Name: <u>MGS7S-1</u> Make: Hyundai	_ VIN: _ Model:		EXGU059917 nt Sedan
		- Woder	AUUCI	It Seuan
Vehicle CG Determinat	tion			
Venicle og Determinat	.1011		Weight	
Vehicle Ec	auipment		(lb)	
+	Unballasted Car (Curb)		2484	
+	Hub		19	
+	Brake activation cylinder &	frame	7	
+	Pneumatic tank (Nitrogen)	3	22	
+	Strobe/Brake Battery		5	
+	Brake Receiver/Wires		5	
+	CG Plate including DAQ		20	
-	Battery		-37	
<u></u>	Oil		-12	
-	Interior		-72	
-	Fuel		-5 -6	
	Coolant Washer fluid		-6 -3	
	Wasner fluid Water Ballast (In Fuel Tank	4	-3	
+ +	Onboard Supplemental Bat			
	Onboard Supplemental Bat	llery		
Note: (+) is a	dded equipment to vehicle, (-) is rem Estimated Total \	_		
Vehicle Dimensions for	Estimated Total \	Weight (Ib)[2427	
Vehicle Dimensions for Wheel Base: 101.25	Estimated Total \ r C.G. Calculations in. Front Tra	Weight (Ib)[ack Width:	2427 59.375 in.	
Vehicle Dimensions for	Estimated Total \ r C.G. Calculations in. Front Tra	Weight (Ib)[2427 59.375 in.	
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625	Estimated Total V r C.G. Calculations in. Front Tra in. Rear Tra	Weight (Ib)[ack Width: ack Width:	2427 59.375 in. 59.5 in.	
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity	Estimated Total V r C.G. Calculations in. Front Tra in. Rear Tra 1100C MASH Targets	Weight (Ib)[ack Width: ack Width:	2427 59.375 in. 59.5 in. Test Inertial	Differenc
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib)	Estimated Total V r C.G. Calculations in. Front Tra in. Rear Tra 1100C MASH Targets 2420 ± 55	Weight (Ib)[ack Width: ack Width:	2427 59.375 in. 59.5 in. Test Inertial 2431	11.
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.)	Estimated Total V r C.G. Calculations in. Front Tra in. Rear Tra 1100C MASH Targets 2420 ± 55 39 ± 4	Weight (Ib)[ack Width: ack Width:	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234	11. -0.76
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.)	Estimated Total V r C.G. Calculations in. Front Train. Rear Train. Rear Tra 1100C MASH Targets 2420 ± 55 39 ± 4 NA	Weight (Ib)[ack Width: ack Width:	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161	11. -0.76 N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Vertical CG (in.)	Estimated Total N r C.G. Calculations in. Front Tra in. Rear Tra 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA NA	Weight (Ib)[ack Width: ack Width:	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234	11. -0.76 N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured fr	Estimated Total N r C.G. Calculations in. Front Tra in. Rear Tra 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA NA	Weight (Ib) [ack Width: _ ack Width: _ 1	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879	11. -0.76 N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from	Estimated Total V r C.G. Calculations in. Front Train. Rear Tra in. Rear Tra in. 39 ± 4 inA NA NA rom front axle of test vehicle	Weight (Ib) [ack Width: _ ack Width: _ 1 nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879 side	11. -0.76 N/ N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured fr	Estimated Total V r C.G. Calculations in. Front Train. Rear Tra in. Rear Tra in. 39 ± 4 inA NA NA rom front axle of test vehicle	Weight (Ib) [ack Width: _ ack Width: _ 1 nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879	11. -0.76 N/ N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long.CG is measured from Note: Lateral CG measured from CURB WEIGHT (Ib)	Estimated Total N r C.G. Calculations in. Front Tra- in. Rear Tra- 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA NA rom front axle of test vehicle om centerline - positive to vehicle righ	Weight (Ib) [ack Width: _ ack Width: _ 1 nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879 side TEST INERTIAL	11. -0.76 N/ N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured fro Note: Lateral CG measured fro CURB WEIGHT (Ib) Left	Estimated Total V r C.G. Calculations in. Front Tra- in. Rear Tra- 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA rom front axle of test vehicle om centerline - positive to vehicle right Right	Weight (Ib) [ack Width: ack Width: 1	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879 side TEST INERTIAL	11. -0.76 N/ N/ WEIGHT (Ib) Left Right
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured fro Note: Lateral CG measured fro CURB WEIGHT (Ib) Left	Estimated Total N r C.G. Calculations in. Front Tra- in. Rear Tra- 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA NA rom front axle of test vehicle om centerline - positive to vehicle righ	Weight (Ib) [ack Width: _ ack Width: _ 1 nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879 side TEST INERTIAL Front	11. -0.76 N/ N/
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from CURB WEIGHT (Ib) Front 820 Rear 449	Estimated Total N r C.G. Calculations in. Front Tra- in. Rear Tra- 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA rom front axle of test vehicle om centerline - positive to vehicle right Right 744 471	Weight (Ib) [ack Width: _ ack Width: _ nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 38.234 -1.161 21.879 side TEST INERTIAL Front Rear	11. -0.76 N/ N/ . WEIGHT (Ib) Left Right 812 701
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured from CURB WEIGHT (Ib) Front 820 Rear 449 FRONT 1564	Estimated Total V r C.G. Calculations in. Front Tra- in. Rear Tra- 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA rom front axle of test vehicle om centerline - positive to vehicle right Right 744 471 Ib	Weight (Ib) [ack Width: _ ack Width: _ nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 2431 38.234 -1.161 21.879 side TEST INERTIAL Front	11.1 -0.76 N/ N/ N/ MEIGHT (Ib) Left Right 812 701 451 467
Vehicle Dimensions for Wheel Base: 101.25 Roof Height: 56.625 Center of Gravity Test Inertial Weight (Ib) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from CURB WEIGHT (Ib) Front 820 Rear 449	Estimated Total N r C.G. Calculations in. Front Tra- in. Rear Tra- 1100C MASH Targets 2420 ± 55 39 ± 4 NA NA rom front axle of test vehicle om centerline - positive to vehicle right Right 744 471	Weight (Ib) [ack Width: ack Width: 1 nt (passenger) s	2427 59.375 in. 59.5 in. Test Inertial 2431 2431 38.234 -1.161 21.879 side TEST INERTIAL Front Rear FRONT 1 REAR 1	11.1 -0.760 N/ N/ E WEIGHT (Ib) Left Right 812 701 451 467

Figure B-1. Vehicle Mass Distribution, Test No. MGS7S-1

Model Year:	Test Name: MGS7S-2	VIN:	1001	R6FGXGS12	8241
	2016 Make: Ram	Model:		1500	
Vehicle CG De	termination				
Venicle OO De		Weight	Vertical CG	Vertical M	
Vehicle Equipm	ent	(lb)	(in.)	(lb-in.)	
	Inballasted Truck (Curb)	4958	28.347078		
	lub	19	14.75	280.25	
	arake activation cylinder & frame	7	27 1/4	190.75	
	neumatic tank (Nitrogen)	22	27	594	
	trobe/Brake Battery	10	26	260	
+ B	rake Receiver/Wires	5	52	260	
+ C	G Plate including DAQ	42	29 7/8	1254.75	
- B	attery	-52	42	-2184	
- C	Dil	-10	15	-150	
- Ir	nterior	-112	35	-3920	
- F	uel	-173	17	-2941	
- C	coolant	-9	34 1/2	-310.5	
	Vasher fluid	-7	33	-231	
	Vater Ballast (In Fuel Tank)	202	16	3232	
	Inboard Supplemental Battery			0	
+ S	teel Plate Ballast	100	36 5/8	3662.5	
	quipment to vehicle, (-) is removed equipment			0 140542.56	
	Terded Co Looddorr (m) 28.09727			
Vehicle Dimen) 20.09727	J		
	sions for C.G. Calculations		68.25	in.	
Vehicle Dimens Wheel Base:	sions for C.G. Calculations	Track Width: Track Width:		in. in.	
	sions for C.G. Calculations	Track Width:			
Wheel Base:	sions for C.G. Calculations 140.5 in. Front Rear	Track Width:	67.875	in.	
Wheel Base:	sions for C.G. Calculations <u>140.5</u> in. Front Rear ity 2270P MASH Targets	Track Width:	67.875 Test Inertia	in.	
Wheel Base:	ty 2270P MASH Targets ight (lb) 5000 ± 110	Track Width:	67.875 Test Inertia 5022	in.	22.
Wheel Base:	sions for C.G. Calculations 140.5 in. Front Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (in.) 63 ± 4	Track Width:	67.875 Test Inertia 5022 65.773696	in.	22. 2.7737
Wheel Base:	sions for C.G. Calculations 140.5 in. Front Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 63 ± 4 NA NA	Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278	in.	22.0 2.77370 N/
Wheel Base:	sions for C.G. Calculations 140.5 in. Front ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 63 ± 4 NA) 28 or greater	Track Width:	67.875 Test Inertia 5022 65.773696	in.	22.0 2.77370 N/
Wheel Base:	sions for C.G. Calculations 140.5 in. Front 140.5 in. Front rear Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ig (in.) 63 ± 4 NA) 28 or greater measured from front axle of test vehicle	Track Width: Track Width:	67.875 Test Inertia 5022 65.773696 -0.840278 28.10	in.	22.0 2.77370 N/
Wheel Base:	sions for C.G. Calculations 140.5 in. Front ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 63 ± 4 NA) 28 or greater	Track Width: Track Width:	67.875 Test Inertia 5022 65.773696 -0.840278 28.10	in.	22.0 2.77370 N/
Wheel Base:	sions for C.G. Calculations 140.5 in. Front Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle teasured from centerline - positive to vehicle right	Track Width: Track Width:	67.875 Test Inertia 5022 65.773696 -0.840278 28.10 side	in.	22.0 2.77370 N/ 0.0972
Wheel Base:	sions for C.G. Calculations 140.5 in. Front Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle teasured from centerline - positive to vehicle right	Track Width: Track Width:	67.875 Test Inertia 5022 65.773696 -0.840278 28.10 side	in.	22.0 2.77370 N/ 0.0972
Wheel Base:	sions for C.G. Calculations <u>140.5</u> in. Front Rear ity <u>2270P MASH Targets</u> ight (lb) 5000 ± 110 (in.) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig	Track Width: Track Width:	67.875 Test Inertia 5022 65.773696 -0.840278 28.10 side	in. TIAL WEIGH	22.0 2.77370 N/ 0.0972 T (Ib)
Wheel Base:	sions for C.G. Calculations <u>140.5</u> in. Front Rear ity <u>2270P MASH Targets</u> ight (lb) 5000 ± 110 is (in.) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig	Track Width: Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278 28.10 side TEST INER	in. TIAL WEIGH	22.0 2.77370 N/ 0.0972 T (Ib) Right
Wheel Base: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is in Note: Lateral CG m CURB WEIGHT	sions for C.G. Calculations <u>140.5</u> in. Front Rear ity <u>2270P MASH Targets</u> ight (lb) 5000 ± 110 (in.) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig (lb) Left Right 140.0 1303	Track Width: Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278 28.10 side TEST INER Front	in. TIAL WEIGH Left 1412	22.0 2.77370 N/ 0.0972 T (Ib) Right 1259
Wheel Base:	sions for C.G. Calculations <u>140.5</u> in. Front Rear ity <u>2270P MASH Targets</u> ight (lb) 5000 ± 110 is (in.) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig	Track Width: Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278 28.10 side TEST INER	in. TIAL WEIGH	22.0 2.77370 N/ 0.0972 T (Ib) Right
Wheel Base: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is in Note: Lateral CG m CURB WEIGHT Front Rear	sions for C.G. Calculations 140.5 in. Front Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 5000 ± 110 i(in.) 63 ± 4 NA) 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig (Ib) Left Right 1410 1303 1102 1143	Track Width: Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278 28.10 side TEST INER Front Rear	in. TIAL WEIGH Left 1412 1161	22.0 2.77370 0.0972 T (Ib) Right 1259 1190
Wheel Base: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is in Note: Lateral CG m CURB WEIGHT	sions for C.G. Calculations <u>140.5</u> in. Front Rear ity <u>2270P MASH Targets</u> ight (lb) 5000 ± 110 (in.) 63 ± 4 NA NA 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig (lb) Left Right 140.0 1303	Track Width: Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278 28.10 side TEST INER Front	in. TIAL WEIGH Left 1412 1161 2671	Right 1259
Wheel Base: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is in Note: Lateral CG m CURB WEIGHT Front Rear FRONT	sions for C.G. Calculations 140.5 in. Front Rear ity 2270P MASH Targets ight (lb) 5000 ± 110 ight (lb) 5000 ± 110 i(in.) 63 ± 4 NA) 28 or greater measured from front axle of test vehicle neasured from centerline - positive to vehicle rig (Ib) Left Right 1410 1303 1102 1143 2713 Ib	Track Width: Track Width:	67.875 Test Inertial 5022 65.773696 -0.840278 28.10 side TEST INER Front Rear FRONT	in. TIAL WEIGH Left 1412 1161 2671 2351	22.0 2.77370 0.0972 T (Ib) Right 1259 1190

Figure B-2. Vehicle Mass Distribution, Test No. MGS7S-2

Appendix C. Static Soil Tests

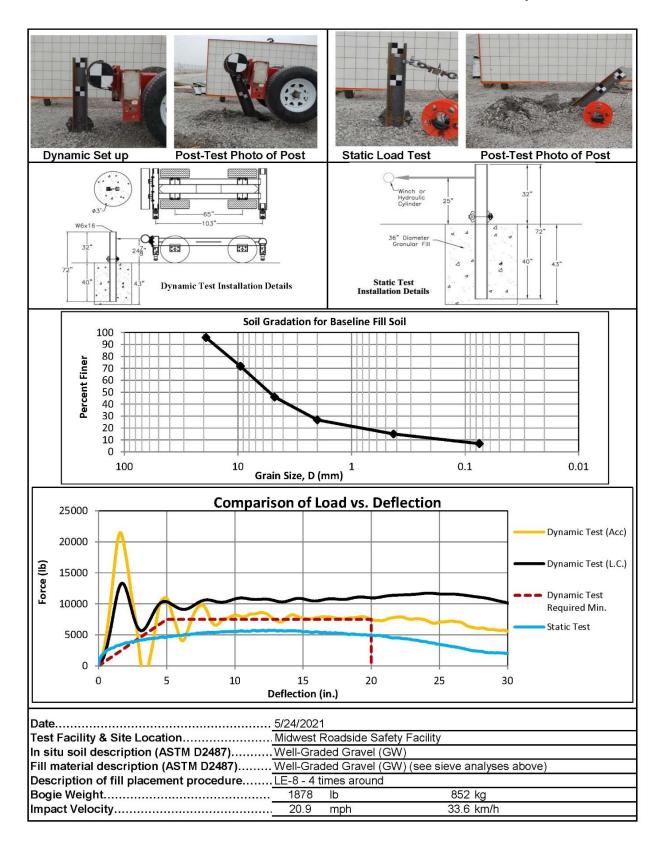


Figure C-1. Soil Strength, Initial Calibration Test, Test Nos. MGS7S-1 and MGS7S-2

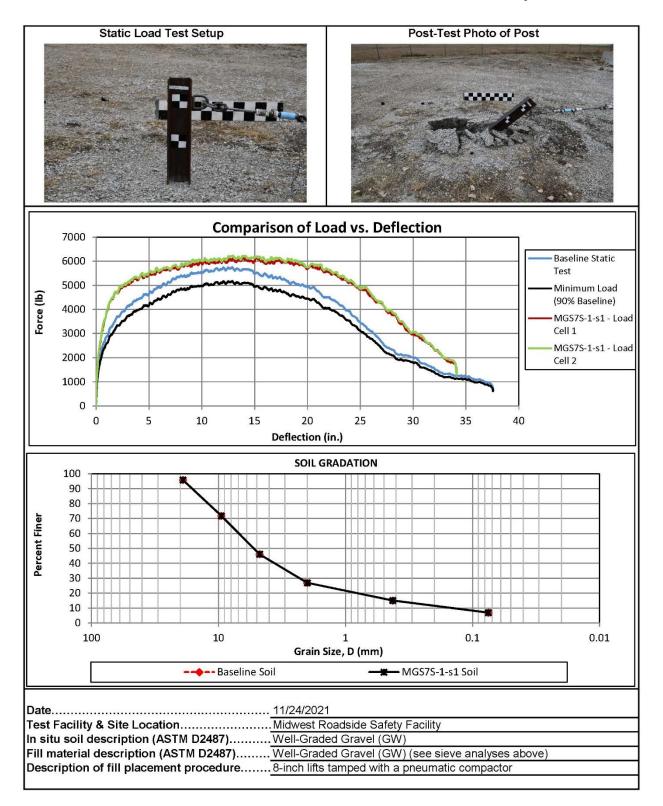


Figure C-2. Static Soil Test, Test No. MGS7S-1

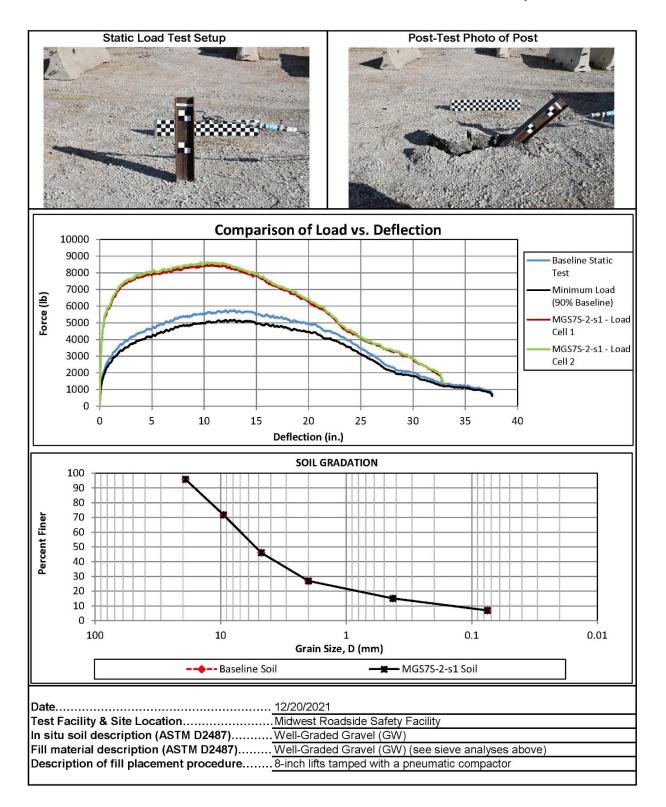


Figure C-3. Static Soil Test, Test No. MGS7S-2

Appendix D. Vehicle Deformation Records, Test No. MGS7S-1

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

odel Year:	20	16			Test Name: Make:	MGS Hyu	97S-1 ndai			VIN: Model:		C4AEXGU Accent Seda	
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	(in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^e (in.)	Direction for Crush ^c
	1	74.5709	8.7363	0.7329	74.5867	8.6610	0.6643	-0.0158	0.0753	0.0686	0.1031	0.0686	Z
	2	75.3590	10.8486	2.0838	75.3345	10.8198	2.0340	0.0245	0.0288	0.0498	0.0625	0.0555	X, Z
TOE PAN - WHEEL WELL (X, Z)	3	76.0956	17.4835	1.7695	76.0748	17.4512	1.6779	0.0208	0.0323	0.0916	0.0993	0.0939	X, Z
ż.	4	76.3815	22.8590	0.9932	76.3199	22.7929	0.9162	0.0616	0.0661	0.0770	0.1187	0.0986	X, Z
A>N	5	73.8528	26.9330	-1.5215	73.6081	26.7663	-1.6807	0.2447	0.1667	0.1592	0.3362	0.2919	X, Z
ШЩ.Х.	6	67.5811	8.6776	3.3659	67.5919	8.5805	3.3124	-0.0108	0.0971	0.0535	0.1114	0.0535	Z
2월	7	67.6062	12.1267	6.5967	67.6336	12.1226	6.5275	-0.0274	0.0041	0.0692	0.0745	0.0692	Z
5	8	67.4940	17.0726	6.3863	67.4892	17.0384	6.3329	0.0048	0.0342	0.0534	0.0636	0.0536	X, Z
	9	67.9566	24.6147	5.8391	67.9822	24.5660	5.8164	-0.0256	0.0487	0.0227	0.0595	0.0227	Z
	10	68.1434	28.6809	5.6003	68.1253	28.5955	5.6128	0.0181	0.0854	-0.0125	0.0882	0.0181	X
	11	64.5478	8.4514	3.2850	64.5695	8.3821	3.3050	-0.0217	0.0693	-0.0200	0.0753	-0.0200	Z
	12	64.3496	11.9425	7.1622	64.3484	11.9680	7.1099	0.0012	-0.0255	0.0523	0.0582	0.0523	Z
	13	64.1539	17.0746	7.0613	64.2006	17.0379	7.0277	-0.0467	0.0367	0.0336	0.0682	0.0336	Z
	14	64.0060	25.3137	6.8143	64.0011	25.2911	6.8014	0.0049	0.0226	0.0129	0.0265	0.0129	Z
	15	64.6623	29.1179	6.4396	64.6706	29.0536	6.4273	-0.0083	0.0643	0.0123	0.0660	0.0123	Z
	16	59.3088	8.2518	3.2772	59.2871	8.1935	3.2495	0.0217	0.0583	0.0277	0.0681	0.0277	Z
	17	58.9718	12.5196	7.1605	58.9638	12.4765	7.1039	0.0080	0.0431	0.0566	0.0716	0.0566	Z
z	18	58.4857	17.0913	7.0463	58.5053	17.0295	7.0308	-0.0196	0.0618	0.0155	0.0667	0.0155	Z
PAN	19	59.4758	25.0806	6.5483	59.4438	25.0282	6.5471	0.0320	0.0524	0.0012	0.0614	0.0012	Z
ΥN ΥΝ	20	59.5214	28.2328	6.4509	59.5366	28.1792	6.4399	-0.0152	0.0536	0.0110	0.0568	0.0110	Z
FLOOR (Z)	21	54.4306	7.9965	3.2240	54.3910	7.9494	3.1884	0.0396	0.0471	0.0356	0.0711	0.0356	Z
	22	54.2937	12.7813	7.4390	54.2619	12.7548	7.3882	0.0318	0.0265	0.0508	0.0655	0.0508	Z
_	23	54.3710	18.1114	7.1390	54.3497	18.0287	7.1476	0.0213	0.0827	-0.0086	0.0858	-0.0086	Z
	24	54.0504	24.6967	6.6811	54.0440	24.6131	6.6778	0.0064	0.0836	0.0033	0.0839	0.0033	Z
	25	54.0145	28.0447	6.6059	54.0347	27.9703	6.6143	-0.0202	0.0744	-0.0084	0.0775	-0.0084	Z
	26	49.9786	7.7213	3.2767	50.0253	7.6858	3.2041	-0.0467	0.0355	0.0726	0.0933	0.0726	Z
	27	50.3678	12.6822	7.4194	50.3821	12.6234	7.3670	-0.0143	0.0588	0.0524	0.0800	0.0524	Z
	28	50.3300	18.1933	7.2727	50.4170	18.1661	7.2652	-0.0870	0.0272	0.0075	0.0915	0.0075	Z
	29	50.2772	24.6030	7.0577	50.3440	24.6270	7.0439	-0.0668	-0.0240	0.0138	0.0723	0.0138	Z
	30	50.3848	28.3688	6.9817	50.4154	28.3863	6.9647	-0.0306	-0.0175	0.0170	0.0391	0.0170	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is defamilier invest toward toward to accurate the component and the component is defamilier invest toward toward

deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

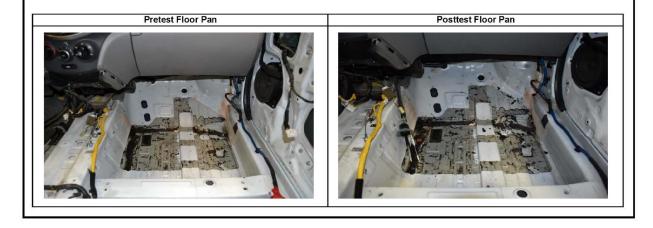
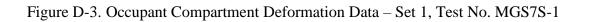



Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGS7S-1

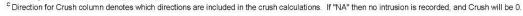

odel Year:	20	016		1	Test Name: Make:		57S-1 Indai	r.:		VIN: Model:		C4AEXGU	
							FORMATIC FLOOR PA						
	POINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for
	1	(in.) 53.2208	(in.) 7.0264	(in.) -6.6158	53.2486	7.0019	-6.4453	-0.0278	0.0245	-0.1705	0.1745	0.0000	Crush ^c NA
	2	54.0524	9.1130	-5.2513	54.0377	9.1206	-5.0365	0.0270	-0.0076	-0.2148	0.2154	0.0000	X
_	3	54.8215	15.7478	-5.4809	54.8130	15.7544	-5.2387	0.0085	-0.0066	-0.2422	0.2424	0.0085	X
TOE PAN - WHEEL WELL (X, Z)	4	55.1219	21.1329	-6.1811	55.0769	21.1123	-5.8690	0.0450	0.0206	-0.3121	0.3160	0.0450	Х
A V V	5	52.5607	25.2596	-8.5742	52.3388	25.1667	-8.3084	0.2219	0.0929	-0.2658	0.3585	0.2219	X
Ш×	6	46.2930 46.4131	6.9666 10.3652	-3.8236 -0.5419	46.3082 46.4373	6.8948 10.3533	-3.6587 -0.3559	-0.0152 -0.0242	0.0718	-0.1649 -0.1860	0.1805	0.0000	NA NA
⊢₹	8	46.3258	15.3143	-0.6739	46.3204	15.2732	-0.4224	0.0054	0.0411	-0.2515	0.1879	0.0054	X
	9	46.8212	22.8612	-1.1161	46.8511	22.8085	-0.7571	-0.0299	0.0527	-0.3590	0.3641	0.0000	NA
	10	47.0269	26.9295	-1.2968	47.0158	26.8409	-0.8610	0.0111	0.0886	-0.4358	0.4449	0.0111	Х
	11	43.2574	6.7589	-3.8381	43.2851	6.7145	-3.6098	-0.0277	0.0444	-0.2283	0.2342	-0.2283	Z
	12	43.1692	10.1907	0.0957	43.1635	10.2031	0.2889	0.0057	-0.0124	-0.1932	0.1937	-0.1932	Z
	13	43.0022	15.3249	0.0778	43.0466	15.2742	0.3387	-0.0444	0.0507	-0.2609	0.2695	-0.2609	Z
	14	42.8982	23.5674	-0.0395	42.8953	23.5316	0.3266	0.0029	0.0358	-0.3661	0.3679	-0.3661	Z
	15 16	43.5687 38.0185	27.3732 6.5891	-0.3710 -3.7283	43.5812 38.0015	27.2985 6.5585	0.0349	-0.0125 0.0170	0.0747	-0.4059 -0.1655	0.4129	-0.4059 -0.1655	Z
	17	37.7964	10.7983	0.2266	37.7833	10.7433	0.4051	0.0131	0.0550	-0.1785	0.1032	-0.1785	Z
7	18	37.3353	15.3739	0.1937	37.3526	15.2993	0.4572	-0.0173	0.0746	-0.2635	0.2744	-0.2635	Z
AA	19	38.3618	23.3642	-0.2045	38.3322	23.3021	0.1582	0.0296	0.0621	-0.3627	0.3692	-0.3627	Z
FLOOR PAN (Z)	20	38.4241	26.5172	-0.2548	38.4430	26.4542	0.1294	-0.0189	0.0630	-0.3842	0.3898	-0.3842	Z
8	21	33.1389	6.3623	-3.6729	33.1037	6.3448	-3.5308	0.0352	0.0175	-0.1421	0.1474	-0.1421	Z
Ē	22 23	33.1276 33.2300	11.0821 16.4157	0.6169	33.0900 33.2066	11.0419 16.3196	0.7918	0.0376	0.0402	-0.1749 -0.2868	0.1834	-0.1749	Z
	23	32.9387	23.0090	0.0473	32.9336	22.9155	0.3879	0.00234	0.0935	-0.2808	0.3532	-0.3406	Z
	25	32.9212	26.3579	0.0243	32.9445	26.2732	0.4100	-0.0233	0.0847	-0.3857	0.3956	-0.3857	Z
	26	28.6877	6.1115	-3.5219	28.7377	6.1065	-3.4332	-0.0500	0.0050	-0.0887	0.1019	-0.0887	Z
	27	29.2018	11.0056	0.6862	29.2097	10.9338	0.8460	-0.0079	0.0718	-0.1598	0.1754	-0.1598	Z
	28	29.1938	16.5184	0.6249	29.2780	16.4771	0.8846	-0.0842	0.0413	-0.2597	0.2761	-0.2597	Z
	29 30	29.1746 29.3031	22.9308 26.6967	0.5093 0.4885	29.2419 29.3358	22.9418 26.7015	0.8292	-0.0673 -0.0327	-0.0110 -0.0048	-0.3199 -0.3558	0.3271	-0.3199 -0.3558	Z
eforming	culations the	rd the occup	oant compar	tment.			onents that a						mponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		
			İ			000							11/20 m

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGS7S-1

				PA			FORMATIC ERIOR CR		т 1				
[POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^c
	1	61.6074	4.4837	-21.9299	61.5071	4.4335	-22.0587	0.1003	0.0502	-0.1288	0.1708	0.1708	X, Y, Z
_ <u>Ω</u>	2	62.3371	18.1980	-20.3875	62.1805	18.0906	-20.4804	0.1566	0.1074	-0.0929	0.2114	0.2114	X, Y, Z
DASH (X, Y, Z)	3	62.1199	28.3890	-21.2090	62.0141	28.3220	-21.3374	0.1058	0.0670	-0.1284	0.1794	0.1794	X, Y, Z
DX I	4	56.3050	4.4153	-12.6943	56.2557	4.3251	-12.8337	0.0493	0.0902	-0.1394	0.1732	0.1732	X, Y, Z
-	5	59.4551 59.0129	19.2078 27.4118	-16.1929 -17.0698	59.3841 58.9749	19.1400 27.3543	-16.3491 -17.1892	0.0710	0.0678	-0.1562 -0.1194	0.1845	0.1845	X, Y, Z X, Y, Z
	7	66.2935	31.0101	-17.0696	66.3172	30.9237	-17.1692	-0.0237	0.0864	-0.1194	0.1379	0.0864	<u>, , , </u>
HH S	8	65.7260	31.0565	-0.6095	65.7440	30.9237	-0.7684	-0.0237	0.0738	-0.1589	0.1761	0.0738	Y
SIDE PANEL (')	9	68.9737	31.1697	0.8267	69.0516	31.0945	0.6364	-0.0779	0.0752	-0.1903	0.2189	0.0752	Ý
	10	53.3022	31.4356	-16.3088	53.2893	31.3855	-16.3934	0.0129	0.0501	-0.0846	0.0992	0.0501	Y
IMPACT SIDE DOOR (Y)	11	44.3082	32.0148	-17.6741	44.2301	31.9849	-17.7854	0.0781	0.0299	-0.1113	0.1392	0.0299	Y
E G C	12	33.2214	31.5459	-18.7437	33.2008	31.6311	-18.7742	0.0206	-0.0852	-0.0305	0.0928	-0.0852	Y
AD A	13	57.2659	32.3914	-0.4646	57.2175	32.4873	-0.5786	0.0484	-0.0959	-0.1140	0.1566	-0.0959	Y
₽ I	14 15	49.3136 36.4554	32.8036 31.9055	-0.7357 -2.7031	49.1903 36.4431	32.9474 31.9986	-0.8206 -2.8181	0.1233	-0.1438 -0.0931	-0.0849 -0.1150	0.2076	-0.1438 -0.0931	Y Y
	15	47.6835	22.5533	-36.7122	47.6388	22.4309	-36.8572	0.0123	0.1224	-0.1150	0.1485	-0.0931	Z
	17	49.4824	12.9444	-36.7447	49.4615	12.9102	-36.8638	0.0209	0.0342	-0.1191	0.1257	-0.1430	Z
	18	50.2392	3.0250	-36.5194	50.1028	2.9914	-36.6678	0.1364	0.0336	-0.1484	0.2043	-0.1484	Z
	19	36.8809	20.3691	-39.7543	36.7882	20.2761	-39.8580	0.0927	0.0930	-0.1037	0.1673	-0.1037	Z
[20	36.9996	11.1348	-40.0503	36.9037	11.0894	-40.1416	0.0959	0.0454	-0.0913	0.1400	-0.0913	Z
Ñ	21	37.3909	0.5770	-39.8726	37.3353	0.5075	-39.9488	0.0556	0.0695	-0.0762	0.1172	-0.0762	Z
ROOF - (Z)	22	26.9568	19.4900	-40.4437	26.8555	19.3995	-40.5355	0.1013	0.0905	-0.0918	0.1639	-0.0918	Z
Ö -	23 24	27.0429 27.5877	10.2862 -0.8019	-40.7130 -40.5028	27.0264 27.5271	10.1992 -0.8610	-40.7838 -40.5624	0.0165	0.0870	-0.0708 -0.0596	0.1134	-0.0708 -0.0596	Z
R I	25	10.6053	19.0957	-39.9096	10.5375	19.0527	-39.9473	0.0678	0.0430	-0.03377	0.0887	-0.0337	Z
ł	26	10.7518	8.8784	-40.1909	10.7074	8.8580	-40.2220	0.0444	0.0204	-0.0311	0.0579	-0.0311	Z
	27	10.9599	0.2032	-40.0467	10.9821	0.1552	-40.0729	-0.0222	0.0480	-0.0262	0.0590	-0.0262	Z
[28	-2.5171	18.0886	-37.9215	-2.5587	18.0409	-37.9296	0.0416	0.0477	-0.0081	0.0638	-0.0081	Z
	29	-3.1665	9.2691	-38.0736	-3.2020	9.2495	-38.0710	0.0355	0.0196	0.0026	0.0406	0.0026	Z
	30	-2.8953	1.8686	-38.0271	-2.9830	1.8332	-38.0088	0.0877	0.0354	0.0183	0.0963	0.0183	Z
w c -	31 32	70.3241 64.2042	30.1578 28.9009	-24.1218 -27.0294	70.3732 64.2897	30.0403 28.7749	-24.2792 -27.1745	-0.0491 -0.0855	0.1175	-0.1574 -0.1451	0.2025	0.1175	Y Y
A TUN	33	60.3540	27.8983	-29.7248	60.3639	27.7711	-29.8671	-0.0099	0.1200	-0.1423	0.1911	0.1200	Y
	34	55.0837	26.6455	-32.8420	55.1710	26.5461	-32.9922	-0.0873	0.0994	-0.1502	0.2002	0.0994	Ý
A-PILLAR Maximum (X, Y, Z)	35	51.3194	25.7118	-34.3862	51.3139	25.5977	-34.5738	0.0055	0.1141	-0.1876	0.2196	0.1142	X, Y
	36	48.4171	25.1809	-35.9507	48.4589	25.0765	-36.0840	-0.0418	0.1044	-0.1333	0.1744	0.1044	Y
	31	70.3241	30.1578	-24.1218	70.3732	30.0403	-24.2792	-0.0491	0.1175	-0.1574	0.2025	0.1175	Y
A-PILLAR Lateral (Y)	32	64.2042	28.9009	-27.0294	64.2897	28.7749	-27.1745	-0.0855	0.1260	-0.1451	0.2103	0.1260	Y
al ILL	33 34	60.3540 55.0837	27.8983 26.6455	-29.7248 -32.8420	60.3639 55.1710	27.7711 26.5461	-29.8671 -32.9922	-0.0099	0.1272	-0.1423 -0.1502	0.1911 0.2002	0.1272	Y Y
A-P .ate	34	51.3194	25.7118	-32.8420	51.3139	25.5977	-32.9922	0.0055	0.0994	-0.1502	0.2002	0.0994	Y
~ _	36	48.4171	25.1809	-35.9507	48.4589	25.0765	-36.0840	-0.0418	0.1044	-0.1333	0.1744	0.1044	Y
<u>μ</u> εο	37	26.2661	25.4581	-33.2348	26.2375	25.3867	-33.3550	0.0286	0.0714	-0.1202	0.1427	0.0769	Х, Ү
B-PILLAR Maximum (X, Y, Z)	38	23.6038	25.9183	-32.0138	23.6243	25.8926	-32.0464	-0.0205	0.0257	-0.0326	0.0463	0.0257	Y
axii	39	26.7236	26.9654	-29.8876	26.6902	26.9039	-29.9909	0.0334	0.0615	-0.1033	0.1248	0.0700	X, Y
	40	24.0050	28.2169	-26.2626	23.9851	28.1677	-26.3509	0.0199	0.0492	-0.0883	0.1030	0.0531	X, Y
-PILLAR Lateral (Y)	37	26.2661	25.4581	-33.2348	26.2375	25.3867	-33.3550	0.0286	0.0714	-0.1202	0.1427	0.0714	Y
Lateral (Y)	38	23.6038	25.9183	-32.0138	23.6243	25.8926	-32.0464	-0.0205	0.0257	-0.0326	0.0463	0.0257	Y
La P	39 40	26.7236 24.0050	26.9654 28.2169	-29.8876 -26.2626	26.6902 23.9851	26.9039 28.1677	-29.9909 -26.3509	0.0334	0.0615	-0.1033 -0.0883	0.1248	0.0615	Y Y
	alues denot						negative va						

A-PILLAR A-BILLAR A-BILLAR Maximum Maximum Maximum Maximum Maximum Maximum 12 10 11 12 13 14 15 16 17 17 18 19 20 20 21 21 22 23 24 26 26 27 23 24 26 26 27 23 26 27 23 33 33 33 33 33 34 35 55 56 56 56 56 56 56 56 56 56 56 56 56	X (in.) 39.668 40.507 40.323 34.594 37.734 37.314 44.962 44.448 47.731 31.645 22.623	X (in.) (i 39.6687 3.2 40.5077 16.3 40.3235 27. 34.5946 3.0 37.7349 17.4	6.9227 7.1260	Pretest Z (in.) -29.1072		R SIDE INT	EFORMATIC		T 2				
A-PILLAR A-PILLAR A-PILLAR A-PILLAR A-PILLAR A-PILLAR A-PILLAR Maximum	X (in.) 39.668 40.507 40.323 34.594 37.734 37.314 44.962 44.448 47.731 31.645 22.623	X (in.) (i 39.6687 3.2 40.5077 16.3 40.3235 27. 34.5946 3.0 37.7349 17.4	Y (in.) 2375 3.9227 7.1260	Pretest Z (in.) -29.1072	Posttest X			RUSH - SE	T 2				
A-PILLAR Maximum Maximum Maximum Maximum Maximum Maximum MPACT SIDE AA-DILLAR Maximum MPACT SIDE AA-DILLAR Maximum MPACT SIDE AA-DILLAR Maximum MPACT SIDE AA-DILLAR MAA Maximum MPACT SIDE AA-DILLAR MAA MAA MAA MAA MAA MAA MAA MAA MAA M	X (in.) 39.668 40.507 40.323 34.594 37.734 37.314 44.962 44.448 47.731 31.645 22.623	X (in.) (i 39.6687 3.2 40.5077 16.3 40.3235 27. 34.5946 3.0 37.7349 17.4	Y (in.) 2375 3.9227 7.1260	Z (in.) -29.1072		Posttest Y							
A-PILLAR Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum MPACT SIDE BASH Lateral (Y) (Y, Y, Z) (Y, Z) (39.666 40.507 40.323 34.594 37.734 37.314 44.962 44.446 47.731 31.645 22.623	39.6687 3.2 40.5077 16.9 40.3235 27.1 34.5946 3.0 37.7349 17.4	.2375 3.9227 7.1260	-29.1072	V	(in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
A-PILLAR A-PILLAR A-BILLAR A-BILLAR Maximum Ma	40.507 40.323 34.594 37.734 37.314 44.962 44.448 47.731 31.645 22.623	40.5077 16.9 40.3235 27. 34.5946 3.0 37.7349 17.8	6.9227 7.1260			1400.00	12.0005				1000000		Crush
A-PILLAR A-PILLAR Maximum Maxi	40.323 34.594 37.734 37.314 44.962 44.448 47.731 31.645 22.623	40.3235 27. 34.5946 3.0 37.7349 17.8	7.1260	-27.3735	39.6882 40.4829	3.4326	-29.0008 -27.0862	-0.0195 0.0248	-0.1951 -0.1174	0.1064 0.2873	0.2231 0.3114	0.2231 0.3114	X, Y, Z X, Y, Z
A-PILLAR A-PILLAR Maximum Maxi	34.594 37.734 37.314 44.962 44.448 47.731 31.645 22.623	34.5946 3.0 37.7349 17.8		-27.3735	40.4829	27.2910	-27.0862	-0.0248	-0.1174	0.2873	0.3114	0.3114	X, Y, Z X, Y, Z
A-PILLAR A-PILL	37.734 37.314 44.962 44.448 47.731 31.645 22.623	37.7349 17.8	.0522	-19.7457	34.6231	3.1177	-19.6769	-0.04285	-0.0655	0.0688	0.0992	0.0992	X, Y, Z
A-PILLAR Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum MPACT SIDE SIDE A-DILLAR Maximum Maxi	37.314 44.962 44.448 47.731 31.645 22.623		7.8815	-23.0942	37.7772	17.9993	-22.8733	-0.0423	-0.1178	0.2209	0.2539	0.2539	X, Y, Z
A-PILLAR A-PILLAR Maximum Maximum Maximum Maximum (C) 13 14 12 13 14 12 13 14 15 16 11 12 13 13 14 15 16 17 20 21 25 26 20 21 25 26 20 21 27 28 20 21 27 28 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 23 33 33 33 33 33 33 33 33 33	44.448 47.731 31.645 22.623		5.1001	-23.8342	37.4050	26.2349	-23.4936	-0.0909	-0.1348	0.3406	0.3774	0.3774	X, Y, Z
A-PILLAR A-PILLAR Maximum Maximum Maximum Maximum A-BILLAR A-BILLAR A-BILLAR Maximum A-BILLAR	47.731 31.645 22.623		9.4422	-9.6730	45.0575	29.3891	-9.2435	-0.0950	0.0531	0.4295	0.4431	0.0531	Y
A-PILLAR A-BILLAR Maximum Maximum A-BILLAR A-BILLAR Maximum Maximum A-BILLAR Maximum A-BILLAR	31.645 22.623		9.4578	-7.4905	44.5273	29.3971	-7.1258	-0.0786	0.0607	0.3647	0.3780	0.0607	Y
A-PILLAR Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum Maximum MPACT SID 14 12 12 13 13 14 15 16 16 17 17 20 20 21 22 23 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	22.623		9.5332	-6.1333	47.8633	29.4526	-5.7862	-0.1320	0.0806	0.3471	0.3800	0.0806	Y
A-PIILLAR A-PILLAR A-SPILLAR A-PI				-22.8712	31.7632	30.2784	-22.4791	-0.1182	-0.1391	0.3921	0.4325	-0.1391	Y
A-PIILLAR A-PILLAR A-SPILLAR A-PI	The second se			-24.0052	22.6820	30.9683	-23.6709	-0.0588	-0.1853	0.3343	0.3867	-0.1853	Y
A-PIILLAR A-PILLAR A-SPILLAR A-PI				-24.8082	11.6328 36.0165	30.7068 30.9478	-24.4443 -6.7243	-0.1216 -0.0148	-0.3224 -0.1165	0.3639 0.3924	0.5012	-0.3224 -0.1165	Y
A-PIILLAR A-PILLAR A-SPILLAR A-PI			1.2862	-7.1167	27.9892	30.9478	-6.7243	0.0583	-0.1165	0.3924	0.4355	-0.1165	Y
A-PIILLAR A-PILLAR A-SPILLAR A-PI			0.4808	-8.8486	15.1983	30.6425	-8.5531	-0.0580	-0.1617	0.2955	0.3418	-0.1617	Y
A-PILLAR A-PILLAR A-20 50 50 50 50 50 50 50 50 50 50 50 50 50				-43.2633	25.6428	21.8896	-43.0473	-0.1626	-0.2894	0.2160	0.3960	0.2160	Z
A-PILLAR A-P		27.2276 11.9	1.9843	-43.4873	27.4025	12.3613	-43.3355	-0.1749	-0.3770	0.1518	0.4425	0.1518	Z
A-PILLAR A-PILLAR A-22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.937	27.9379 2.0	.0591	-43.4326	27.9826	2.4371	-43.4075	-0.0447	-0.3780	0.0251	0.3815	0.0251	Z
A-PILLAR A-PILLAR A-PILLAR Maximum Max	14.594	14.5949 19.5	9.5155	-46.0712	14.7201	19.8785	-45.8814	-0.1252	-0.3630	0.1898	0.4283	0.1898	Z
A-PILLAR A-PILLAR A-BILLAR A-BILLAR Maximum Ma				-46.5115	14.7696	10.7017	-46.4033	-0.1116	-0.4153	0.1082	0.4434	0.1082	Z
A-PILLAR A-PILLAR Maximum Maximum Maximum Maximum 30 33 33 34 32 33 33 34 32 33 32 33 33 33 34 32 33 33 33 34 32 33 33 34 32 33 34 32 33 34 32 33 34 35				-46.5051	15.1355	0.1159	-46.4912	-0.1370	0.3906	0.0139	0.4142	0.0139	Z
A-PILLAR A-PILLAR Maximum Maximum Maximum Maximum 30 33 33 34 32 33 33 34 32 33 32 33 33 33 34 32 33 33 33 34 32 33 33 34 32 33 34 32 33 34 32 33 34 35				-46.5292	4.7702	19.0797	-46.3793	-0.1179	-0.3845	0.1499	0.4292	0.1499	Z
A-PILLAR A-PILLAR Maximum Maximum Maximum Maximum 30 33 33 34 32 33 33 34 32 33 32 33 33 33 34 32 33 33 33 34 32 33 33 34 32 33 34 32 33 34 32 33 34 35				-46.9414	4.8757	9.8880	-46.8673	-0.1919	-0.3916	0.0741	0.4423	0.0741	Z
A-PILLAR A-PILLAR Maximum Maximum Maximum A-BILLAR A-DILLAR Maximum Ma				-46.9144 -45.5982	5.3082 -11.5345	-1.1770 18.8164	-46.9404 -45.4688	-0.1325 -0.1484	0.4192	-0.0260 0.1294	0.4404 0.4862	-0.0260 0.1294	Z
A-PILLAR A-PILLAR Maximum Maximum 33 33 34 32 32 33 32 33 32 33 33 32 33 32 33 32 33 33				-45.5962	-11.4371	8.6314	-45.4668	-0.1484	-0.4445	0.0306	0.4862	0.0306	Z
A-PILLAR A-PILLAR Maximum Maximum A-BILLAR Maximum 33 33 34 35 33 33 34 35 33 33 33 33 33 33 33 33 33 33 33 33				-46.0332	-11.2166	-0.0739	-46.0890	-0.2138	0.4438	-0.0558	0.4958	-0.0558	Z
A-PIILLAR A-BILLAR Maximum Xax				-43.3028	-24.5938	17.8319	-43.2121	-0.1637	-0.4341	0.0907	0.4727	0.0907	Z
A-PILLAR A-PILLAR A-A-A-PILLAR A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A	-25.456	25.4565 8.5	.5849	-43.5738	-25.2975	9.0512	-43.5664	-0.1590	-0.4663	0.0074	0.4927	0.0074	Z
A-PILLAR A-PILLAR Maximum Maximum X. Y. Z 32 32 32 32 32 32 32 32 32 32 32 32 32	-25.222	25.2229 1.1	.1833	-43.6474	-25.1259	1.6345	-43.6992	-0.0970	-0.4512	-0.0518	0.4644	-0.0518	
36 31 32 33 33 34 34 35				-31.1201	48.6756	29.0342	-30.7423	-0.2128	-0.1344	0.3778	0.4540	0.3778	Z
36 31 32 33 33 34 34 35				-33.8947	42.5267	27.8807	-33.5449	-0.2599	-0.1631	0.3498	0.4653	0.3498	Z
36 31 32 33 33 34 34 35				-36.5095	38.5410	26.9705	-36.1822	-0.1947	-0.1951	0.3273	0.4279	0.3273	Z
36 31 32 33 33 34 34 35				-39.5146	33.2782	25.8580	-39.2316	-0.2837	-0.2617	0.2830	0.4786	0.2830	Z
A-PILLAR 33 33 34 34 35				-40.9796 -42.4800	29.3839 26.4957	24.9741 24.5093	-40.7584	-0.1953 -0.2497	-0.2693 -0.2971	0.2212 0.2568	0.3995	0.2212 0.2568	Z
A-PILLAR Lateral (Y) 33 34 32 32 32				-42.4800	48.6756	29.0342	-42.2232	-0.2497	-0.2971	0.2568	0.4540	-0.1344	Y
A-PILLAF				-33.8947	48.6756	29.0342	-33.5449	-0.2599	-0.1631	0.3778	0.4653	-0.1631	Y
A-PILL Later2				-36.5095	38.5410	26.9705	-36.1822	-0.1947	-0.1951	0.3273	0.4000	-0.1951	Ý
35 Lat				-39.5146	33.2782	25.8580	-39.2316	-0.2837	-0.2617	0.2830	0.4786	-0.2617	Ý
	29.188	29.1886 24.	4.7048	-40.9796	29.3839	24.9741	-40.7584	-0.1953	-0.2693	0.2212	0.3995	-0.2693	Y
36	26.246	26.2460 24.1	4.2122	-42.4800	26.4957	24.5093	-42.2232	-0.2497	-0.2971	0.2568	0.4654	-0.2971	Y
				-39.2149	4.3363	24.8831	-39.0362	-0.1661	-0.3284	0.1787	0.4091	0.1787	Z
B-PILLAR Maximum (X, Y, Z) 38 30 40				-37.9218	1.7534	25.3708	-37.6622	-0.2123	-0.3620	0.2596	0.4935	0.2596	Z
39 40				-35.8574	4.8667	26.3101	-35.6442	-0.1490	-0.3022	0.2132	0.3987	0.2132	Z
± 2° 40				-32.1477	2.2438	27.4958	-31.9186	-0.1483	-0.2794	0.2291	0.3906	0.2291	Z
-PILLAR Lateral (Y) (Y) (Y)				-39.2149	4.3363	24.8831	-39.0362	-0.1661	-0.3284	0.1787	0.4091	-0.3284	Y
PILLAR 38 38 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	1.041			-37.9218 -35.8574	1.7534 4.8667	25.3708 26.3101	-37.6622 -35.6442	-0.2123 -0.1490	-0.3620 -0.3022	0.2596	0.4935	-0.3620 -0.3022	Y
a 39 40				-35.8574	4.8667	26.3101 27.4958	-35.6442	-0.1490 -0.1483	-0.3022	0.2132	0.3987	-0.3022 -0.2794	Y
Positive values denote	4.717												

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MGS7S-1

			Test Name:	MGS7S-1	VIN:	KMHTC4AE	XGU059917
Model Year:	2016	-	Make:	Hyundai	Model:	Accent	Sedan
		Р	assenger Side Max	ximum Deformations			
	Reference Se	t 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	0.0	≤ 4	Z	Roof	0.2	≤ 4	Z
Windshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
A-Pillar Maximum	0.1	≤ 5	Y	A-Pillar Maximum	0.4	≤ 5	Z
A-Pillar Lateral	0.1	≤ 3	Y	A-Pillar Lateral	-0.3	≤ 3	Y
3-Pillar Maximum	0.1	≤ 5	X, Y	B-Pillar Maximum	0.3	≤ 5	Z
3-Pillar Lateral	0.1	≤ 3	Y	B-Pillar Lateral	-0.4	≤ 3	Y
Γoe Pan - Wheel Well	0.3	≤ 9	X, Z	Toe Pan - Wheel Well	0.2	≤ 9	Х
Side Front Panel	0.1	≤ 12	Y	Side Front Panel	0.1	≤ 12	Y
Side Door (above seat)	0.1	≤ 9	Y	Side Door (above seat)	-0.3	≤ 9	Y
Side Door (below seat)	-0.1	≤ 12	Y	Side Door (below seat)	-0.2	≤ 12	Y
Floor Pan	0.1	≤ 12	Z	Floor Pan	-0.4	≤ 12	Z
Dash - no MASH requirement	0.2	NA	X, Y, Z	Dash - no MASH requirement	0.4	NA	X, Y, Z
² For Toe Pan - Wheel Well the d directions. The direction of deforr occupant compartment. If direction	irection of defromat nation for Toe Pan on of deformation is	ion may include X an -Wheel Well, A-Pillar "NA" then no intrusio	d Z direction. For A-f Maximum, and B-Pill on is recorded and de	lues denote deformations outward av Pillar Maximum and B-Pillar Maximun lar Maximum only include component formation will be 0. posttest with an examplar vehicle, the	n the direction of de s where the deform	formation may includ nation is positive and	intruding into the
Notes on vehicle crush:							

Figure D-5. Maximum Occupant Compartment Deformation by Location, Test No. MGS7S-1

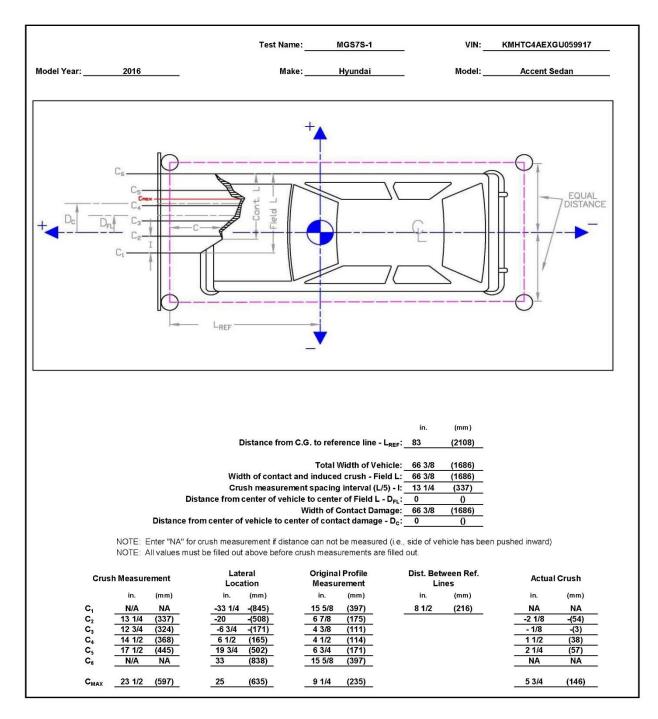


Figure D-6. Exterior Vehicle Crush (NASS) - Front, Test No. MGS7S-1

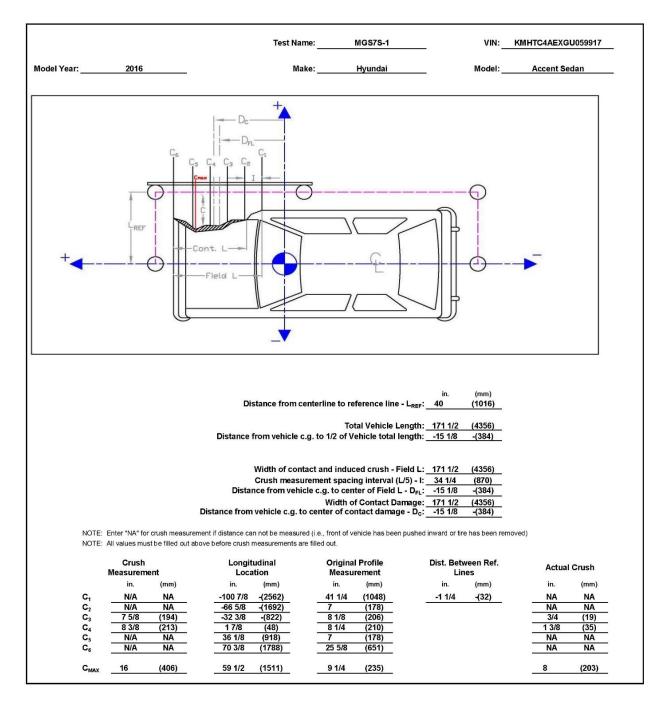


Figure D-7. Exterior Vehicle Crush (NASS) – Side, Test No. MGS7S-1

odel Year:	20	16			Test Name: Make:		878-2 am			VIN: Model:		R6FGXGS1 1500	20241
							FORMATIC FLOOR PA						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ⁶
	1	57.2047	32.0386	-7.3886	57.0039	32.1307	-7.9444	0.2008	-0.0921	0.5558	0.5981	0.5910	X, Z
	2	59.4792	35.4428	-4.8308	59.3779	35.4461	-5.4589	0.1013	-0.0033	0.6281	0.6362	0.6362	X, Z
	3	60.7558	39.2457	-3.8178	60.6859	39.2703	-4.4407	0.0699	-0.0246	0.6229	0.6273	0.6268	X, Z
TOE PAN - WHEEL WELL (X, Z)	4	60.7914	43.3386	-4.8691	60.7173	43.3053	-5.4733	0.0741	0.0333	0.6042	0.6096	0.6087	X, Z
₹×Ñ	5	60.4376	46.9125	-7.7733	59.9950	45.5674	-7.9741	0.4426	1.3451	0.2008	1.4302	0.4860	X, Z
ШЩ.Х.	6	50.3155	28.4959	-5.2753	50.2359	28.5149	-5.7952	0.0796	-0.0190	0.5199	0.5263	0.5260	X, Z
2 분	7	51.9349	34.6680	-1.0418	51.8622	34.6433	-1.5615	0.0727	0.0247	0.5197	0.5253	0.5248	X, Z
5	8	52.9824	39.8504	0.4419	52.9629	39.8495	-0.0753	0.0195	0.0009	0.5172	0.5176	0.5176	X, Z
	9	53.0929	45.2192	0.1507	53.0455	45.2385	-0.3674	0.0474	-0.0193	0.5181	0.5206	0.5203	X, Z
	10	53.6806	48.7645	0.1000	53.6478	48.7622	-0.4233	0.0328	0.0023	0.5233	0.5243	0.5243	X, Z
	11	46.7123	27.5349	-3.8963	46.6806	27.5156	-4.3688	0.0317	0.0193	0.4725	0.4740	0.4725	Z
	12	48.4946	32.9066	0.8506	48.5060	32.9272	0.3678	-0.0114	-0.0206	0.4828	0.4834	0.4828	Z
	13	48.9181	40.1331	1.3899	48.9142	40.2004	0.9251	0.0039	-0.0673	0.4648	0.4697	0.4648	Z
	14	49.3357	45.8191	1.3837	49.3220	45.8297	0.9167	0.0137	-0.0106	0.4670	0.4673	0.4670	Z
	15	49.4173	48.7650	1.8514	49.4496	48.8165	1.4114	-0.0323	-0.0515	0.4400	0.4442	0.4400	Z
	16	43.3765	27.1847	-3.3468	43.3464	27.1973	-3.7871	0.0301	-0.0126	0.4403	0.4415	0.4403	Z
	17	43.6731	32.7554	1.3691	43.6231	32.7208	0.9382	0.0500	0.0346	0.4309	0.4352	0.4309	Z
7	18	43.8745	40.6058	1.3466	43.8379	40.6146	0.9432	0.0366	-0.0088	0.4034	0.4052	0.4034	Z
PAN	19	44.4416	45.8977	1.3596	44.4315	45.8703	0.9548	0.0101	0.0274	0.4048	0.4059	0.4048	Z
H N	20	44.3972	48.5936	1.4453	44.4108	48.5281	1.0182	-0.0136	0.0655	0.4271	0.4323	0.4271	Z
FLOOR (Z)	21	38.4923	27.2195	-3.3134	40.4053	29.6559	-3.1092	-1.9130	-2.4364	-0.2042	3.1044	-0.2042	Z
Ľ	22	39.7125	32.2217	1.3433	39.7149	32.2470	0.9522	-0.0024	-0.0253	0.3911	0.3919	0.3911	Z
-	23	39.6427	39.4902	1.3126	39.6416	39.4825	0.9544	0.0011	0.0077	0.3582	0.3583	0.3582	Z
	24	39.9064	45.6779	1.3236	39.9332	45.6532	0.9639	-0.0268	0.0247	0.3597	0.3615	0.3597	Z
	25	40.0327	48.6997	1.3806	40.0745	48.7519	1.0408	-0.0418	-0.0522	0.3398	0.3463	0.3398	Z
	26	34.7108	27.3197	-3.1574	34.6816	27.3289	-3.5307	0.0292	-0.0092	0.3733	0.3746	0.3733	Z
	27	34.8172	32.0731	0.5266	34.8261	32.0494	0.1847	-0.0089	0.0237	0.3419	0.3428	0.3419	Z
	28	34.8170	39.3412	0.4957	34.8608	39.3410	0.1784	-0.0438	0.0002	0.3173	0.3203	0.3173	Z
	29	34.8553	45.1565	0.4993	34.8299	45.1719	0.1963	0.0254	-0.0154	0.3030	0.3045	0.3030	Z
	30	34.9308	48.3357	0.4313	34.8985	48.2662	0.0984	0.0323	0.0695	0.3329	0.3416	0.3329	Z

" Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

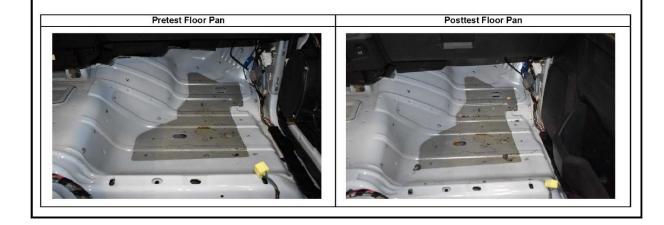


Figure D-8. Floor Pan Deformation Data – Set 1, Test No. MGS7S-2

Model Year:	2016	

Test Name: MGS7S-2 Make: Ram

1C6RR6FGXGS128241 1500 VIN

Model:

	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direct for
2		54.0949	17.0986	-3.5145	54.2595	17.3380	-3.4954	-0.1646	-0.2394	-0.0191	0.2912	0.0000	Crus NA
	2	56.3395	20.5232	-0.9576	56.4784	20.7104	-0.9578	-0.1389	-0.2394	0.0002	0.2331	0.0000	Z
	3	57.5754	20.3232	0.0595	57.8459	24.5487	0.0601	-0.1389	-0.2102	-0.0002	0.3426	0.0002	NA NA
TOE PAN - WHEEL WELL (X, Z)	4	57.5585	28.4341	-0.9820	57.8352	28.6103	-1.0061	-0.2763	-0.2102	0.0241	0.3420	0.0000	Z
AND	5	57.1509	32.0104	-3.8760	57.3711	32.1599	-3.8413	-0.2202	-0.1702	-0.0347	0.3289	0.0241	NA
	6	47.2566	13.4699	-1.3820	47.4667	13.6981	-1.3313	-0.2202	-0.1495	-0.0547	0.2004	0.0000	NA
ВЩС	7	48.8203	19.6506	2.8599	49.0251	19.8493	2.8727	-0.2048	-0.1987	-0.0128	0.2856	0.0000	NA
⊢₹	8	49.8127	24.8414	4.3519	50.0061	25.0785	4.3989	-0.1934	-0.2371	-0.0120	0.3096	0.0000	NA
-	9	49.8589	30.2118	4.0734	50.0571	30.4798	4.0857	-0.1982	-0.2680	-0.0470	0.3336	0.0000	NA
	10	50.4045	33.7639	4.0288	50.6420	33.9764	4.0191	-0.1302	-0.2000	0.0097	0.338	0.0007	Z
	11	43.6705	12.4633	0.0092	43.9421	12.6522	0.0422	-0.2716	-0.1889	-0.0330	0.3325	-0.0330	Z
	12	45.4087	17.8443	4.7619	45.6505	18.0785	4.7950	-0.2418	-0.2342	-0.0331	0.3382	-0.0331	Z
	13	45,7493	25.0740	5.3170	45.9528	25.3556	5.3471	-0.2035	-0.2816	-0.0301	0.3487	-0.0301	Z
	14	46.0999	30.7645	5.3230	46.3145	31.0011	5.3372	-0.2146	-0.2366	-0.0142	0.3197	-0.0142	Z
	15	46.1487	33,7100	5.7974	46,4060	34.0083	5.8318	-0.2573	-0.2983	-0.0344	0.3954	-0.0344	Z
	16	40.3413	12.0725	0.5713	40.5532	12.3061	0.6200	-0.2119	-0.2336	-0.0487	0.3191	-0.0487	Z
	17	40.5915	17.6351	5.2995	40.7560	17.8629	5.3295	-0.1645	-0.2278	-0.0300	0.2826	-0.0300	Z
_	18	40.7004	25.4873	5.2952	40.9036	25.7303	5.3253	-0.2032	-0.2430	-0.0301	0.3182	-0.0301	Z
PAN	19	41.2051	30.7854	5.3188	41.4262	30.9654	5.3347	-0.2211	-0.1800	-0.0159	0.2855	-0.0159	Z
4	20	41.1294	33.4805	5.4111	41.3793	33.7309	5.4256	-0.2499	-0.2504	-0.0145	0.3541	-0.0145	Z
FLOOR I (Z)	21	35.4573	12.0496	0.6245	35.6872	12.3164	0.7074	-0.2299	-0.2668	-0.0829	0.3618	-0.0829	Z
2	22	36.6374	17.0548	5.2883	36.8356	17.3450	5.3087	-0.1982	-0.2902	-0.0204	0.3520	-0.0204	Z
ш	23	36.4818	24.3220	5.2756	36.7457	24.5709	5.2970	-0.2639	-0.2489	-0.0214	0.3634	-0.0214	Z
	24	36.6727	30.5124	5.3005	36.9022	30.7458	5.3081	-0.2295	-0.2334	-0.0076	0.3274	-0.0076	Z
	25	36.7637	33.5353	5.3644	37.0143	33.8070	5.3770	-0.2506	-0.2717	-0.0126	0.3698	-0.0126	Z
	26	31.6755	12.1049	0.7960	31.9081	12.3468	0.8195	-0.2326	-0.2419	-0.0235	0.3364	-0.0235	Z
	27	31.7409	16.8504	4.4911	31.9460	17.0346	4.5051	-0.2051	-0.1842	-0.0140	0.2760	-0.0140	Z
	28	31.6550	24.1181	4.4778	31.9394	24.3471	4.4894	-0.2844	-0.2290	-0.0116	0.3653	-0.0116	Z
	29	31.6249	29.9334	4.4954	31.8153	30.1893	4.4976	-0.1904	-0.2559	-0.0022	0.3190	-0.0022	Z
	30	31.6626	33.1135	4.4347	31.8919	33.3235	4.4251	-0.2293	-0.2100	0.0096	0.3111	0.0096	Z

deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

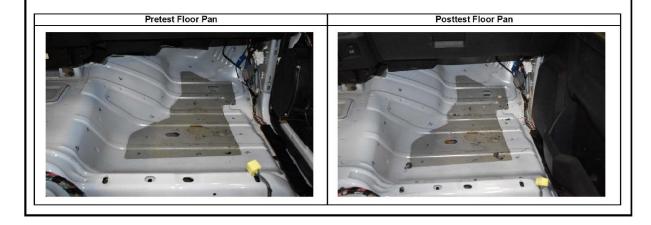
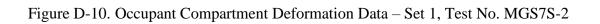
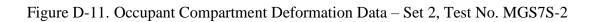




Figure D-9. Floor Pan Deformation Data – Set 2, Test No. MGS7S-2

				PA			FORMATIC		T 1				
[DONT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	POINT 1	(in.) 42.7699	(in.) 18.4036	(in.) -30.6977	42.4673	18.4719	-31.2043	0.3026	-0.0683	-0.5066	0.5940	0.5940	Crush ^c X, Y, Z
	2	46.3906	36.5811	-30.4818	46.0996	36.6475	-31.0592	0.3026	-0.0663	-0.5066	0.6500	0.5940	X, Y, Z
SH SH	3	46.0695	48.6788	-29.3398	45.8246	48.7669	-29.8889	0.2449	-0.0881	-0.5491	0.6077	0.6077	X. Y. Z
DASH (X, Y, Z)	4	39.8121	18.1485	-20.0854	39.6229	18.2471	-20.5275	0.1892	-0.0986	-0.4421	0.4909	0.4909	X, Y, Z
-	5	42.1235	36.7313	-20.3720	41.9653	36.7509	-20.8345	0.1582	-0.0196	-0.4625	0.4892	0.4892	X, Y, Z
1	6	43.2027	48.7566	-19.8635	43.0005	48.8070	-20.3395	0.2022	-0.0504	-0.4760	0.5196	0.5196	X, Y, Z
SIDE PANEL (Y)	7 8	51.8664 51.6951	50.4953 50.3902	-7.2611 -2.0237	51.7710 51.6516	50.0498 50.2253	-7.7577 -2.5446	0.0954	0.4455	-0.4966 -0.5209	0.6739	0.4455	Y
PAI	9	53.8661	50.3886	-3.1167	53.7799	50.2692	-3.6416	0.0455	0.1194	-0.5209	0.5452	0.1194	Y
	10	40.3447	52.8759	-19.2213	39.8525	52.5540	-19.6343	0.4922	0.3219	-0.4130	0.7186	0.3219	Y
	11	30.4406	53.1446	-18.7989	29.9576	53.0382	-19.1474	0.4830	0.1064	-0.3485	0.6050	0.1064	Y
E S S	12	20.2543	53.5601	-19.8762	19.7900	53.5874	-20.0432	0.4643	-0.0273	-0.1670	0.4942	-0.0273	Y
IMPACT SIDE DOOR (Y)	13	38.6655	53.3686	-3.2752	38.4142	53.0863	-3.6762	0.2513	0.2823	-0.4010	0.5510	0.2823	Y
M	14 15	30.3438 22.0162	53.3512 52.9271	-3.0655 -4.5852	30.0466	53.1582 52.8406	-3.4520 -4.7881	0.2972 0.3472	0.1930	-0.3865 -0.2029	0.5244	0.1930	Y
	15	38.7702	18.0575	-46.8448	38.2247	18.1398	-47.2718	0.5455	-0.0823	-0.4270	0.6976	-0.4270	Z
	17	37.6229	33.2270	-46.4420	37.0588	33.2999	-46.8693	0.5641	-0.0729	-0.4273	0.7114	-0.4273	Z
T	18	34.9779	42.8339	-45.9417	34.4406	42.8671	-46.3409	0.5373	-0.0332	-0.3992	0.6702	-0.3992	Z
	19	31.2195	16.4274	-49.7727	30.6653	16.4835	-50.1144	0.5542	-0.0561	-0.3417	0.6535	-0.3417	Z
-	20	29.0049	31.0362	-49.8563	28.4417	31.0840	-50.1734	0.5632	-0.0478	-0.3171	0.6481	-0.3171	Z
<u>N</u>	21	27.7754	41.2027	-49.2145	27.9681	41.0000	-49.0000	-0.1927	0.2027	0.2145	0.3525	0.2145	Z
i.	22 23	12.7303 12.9243	17.1507 30.0195	-51.3571 -51.1418	12.1473 12.3148	17.2551 30.0768	-51.4968 -51.2707	0.5830	-0.1044 -0.0573	-0.1397 -0.1289	0.6085	-0.1397 -0.1289	Z
ROOF - (Z)	23	12.9243	39.6617	-50.6047	11.9681	39.7085	-50.7248	0.5406	-0.0373	-0.1209	0.5558	-0.1209	Z
м [25	-1.4031	18.0644	-51.5761	-2.0384	18.1727	-51.5538	0.6353	-0.1083	0.0223	0.6449	0.0223	Z
	26	-2.4288	29.8917	-51.4587	-3.0044	29.9707	-51.4052	0.5756	-0.0790	0.0535	0.5835	0.0535	Z
ŀ	27	-1.7020	40.1342	-50.9218	-2.2656	40.2418	-50.8689	0.5636	-0.1076	0.0529	0.5762	0.0529	Z
ŀ	28 29	-17.6010	18.6616	-51.2952	-18.2026	18.7556	-51.0932	0.6016	-0.0940	0.2020	0.6415	0.2020	Z
ŀ	29 30	-17.3295 -16.5847	29.2165 39.8922	-51.2502 -50.8935	-17.9432 -17.1758	29.3340 39.9869	-51.0168 -50.6624	0.6137 0.5911	-0.1175 -0.0947	0.2334	0.6670	0.2334	Z
	31	54.2349	49.8352	-30.9453	53.8273	49.8667	-31.4810	0.4076	-0.0347	-0.5357	0.6739	0.4076	X
MER I	32	48.8402	48.6093	-34.9150	48.4200	48.6256	-35.4087	0.4070	-0.0313	-0.4937	0.6485	0.4070	X
A-PILLAR Maximum (X, Y, Z)	33	43.1057	47.4230	-39.3773	42.5557	47.4586	-39.8637	0.5500	-0.0356	-0.4864	0.7351	0.5500	Х
PIL X,	34	38.6223	46.5423	-42.8003	38.0296	46.5987	-43.2268	0.5927	-0.0564	-0.4265	0.7324	0.5927	Х
₹≥°	35	36.1001	45.8655	-44.0334	35.5280	45.9378	-44.4570	0.5721	-0.0723	-0.4236	0.7155	0.5721	X
	36 31	34.3110 54.2349	45.1999 49.8352	-44.8102 -30.9453	33.7125 53.8273	45.2593 49.8667	-45.2983	0.5985	-0.0594	-0.4881 -0.5357	0.7746	0.5985	Y
2 C	32	48.8402	49.6352	-30.9455	48.4200	49.6067	-31.4010	0.4078	-0.0315	-0.3357	0.6485	-0.0315	Y
A-PILLAR Lateral (Y)	33	43.1057	47.4230	-39.3773	42.5557	47.4586	-39.8637	0.5500	-0.0356	-0.4864	0.7351	-0.0356	Ý
PIL	34	38.6223	46.5423	-42.8003	38.0296	46.5987	-43.2268	0.5927	-0.0564	-0.4265	0.7324	-0.0564	Y
- La	35	36.1001	45.8655	-44.0334	35.5280	45.9378	-44.4570	0.5721	-0.0723	-0.4236	0.7155	-0.0723	Y
	36	34.3110	45.1999	-44.8102	33.7125	45.2593	-45.2983	0.5985	-0.0594	-0.4881	0.7746	-0.0594	Y
B-PILLAR Maximum (X, Y, Z)	37 38	10.9808 8.3252	46.9421 48.8627	-41.8116 -36.8958	10.4593 7.9523	47.0208 48.9166	-41.8591 -36.9581	0.5215	-0.0787 -0.0539	-0.0475 -0.0623	0.5295	0.5215	X
,≺ xir	39	11.8075	49.5715	-30.0950	11.4447	49.6229	-34.2605	0.3628	-0.0539	-0.0833	0.3758	0.3628	X
A B B	40	8.7416	49.8949	-32.7600	8.3436	49.9408	-32.8316	0.3980	-0.0459	-0.0716	0.4070	0.3980	X
	37	10.9808	46.9421	-41.8116	10.4593	47.0208	-41.8591	0.5215	-0.0787	-0.0475	0.5295	-0.0787	Y
Y)	38	8.3252	48.8627	-36.8958	7.9523	48.9166	-36.9581	0.3729	-0.0539	-0.0623	0.3819	-0.0539	Y
B-PILLAR Lateral (Y)	39	11.8075	49.5715	-34.1772	11.4447	49.6229	-34.2605	0.3628	-0.0514	-0.0833	0.3758	-0.0514	Y
ά	40	8.7416	49.8949	-32.7600	8.3436	49.9408	-32.8316 , negative val	0.3980	-0.0459	-0.0716	0.4070	-0.0459	Y

				P#	SSENGER	R SIDE INT	ERIOR CF	USH - SE	Т 2				
	POINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	1	(in.) 39.7279	(in.) 3.3391	(in.) -26.8043	40.0179	3.6056	-26.7296	-0.2900	-0.2665	0.0747	0.4009	0.4009	Crush ^c X, Y, Z
- 0	2	43.1365	21.5572	-26.5633	43.4580	21.8140	-26.5532	-0.3215	-0.2568	0.0101	0.4116	0.4116	X, Y, Z
DASH (X. Y. Z)	3	42.6785	33.6478	-25.3936	43.0430	33.9386	-25.4078	-0.3645	-0.2908	-0.0142	0.4665	0.4665	X, Y, Z
2×	4 5	36.8165 38.9091	3.0267 21.6359	-16.1807 -16.4361	37.1270 39.2469	3.3457 21.8781	-16.1186 -16.4158	-0.3105 -0.3378	-0.3190 -0.2422	0.0621	0.4495	0.4495	X, Y, Z
	6	39.8496	33.6719	-15.9057	40.1318	33.9096	-15.9171	-0.2822	-0.2377	-0.0114	0.3691	0.3691	X, Y, Z X, Y, Z
шЩ	7	48.5435	35.4850	-3.3346	48.8068	35.2823	-3.2430	-0.2633	0.2027	0.0916	0.3447	0.2027	Y
SIDE PANEL (Y)	8	48.3947	35.3667	1.9032	48.5991	35.4517	1.9895	-0.2044	-0.0850	0.0863	0.2376	-0.0850	Y
	9	50.5612	35.3929	0.8014	50.7201	35.5176	0.8141	-0.1589	-0.1247	0.0127	0.2024	-0.1247	Y
H	10 11	36.9462 27.0414	37.7560 37.9078	-15.2429 -14.7799	36.9205 27.0563	37.6470 38.0043	-15.2176 -14.9020	0.0257	0.1090	0.0253	0.1148	0.1090	Y Y
IMPACT SIDE DOOR (Y)	12	16.8466	38.2062	-15.8151	16.8631	38.4331	-14.9020	-0.0149	-0.2269	0.0220	0.2286	-0.2269	Y
SOA	13	35.3262	38.1950	0.7109	35.3401	38.1554	0.7243	-0.0139	0.0396	0.0134	0.0441	0.0396	Y
MP	14	27.0062	38.0796	0.9541	26.9810	38.1252	0.9449	0.0252	-0.0456	-0.0092	0.0529	-0.0456	Y
-	15 16	18.6780 35.6668	37.5612 2.9807	-0.5328 -42.9358	18.5952 35.9345	37.7062 3.2258	-0.5169 -42.8782	0.0828	-0.1450 -0.2451	0.0159	0.1677	-0.1450 0.0576	Y Z
	17	34.3438	18.1348	-42.9358	34.6627	18.3582	-42.6762	-0.3189	-0.2234	0.0378	0.3920	0.0378	Z
	18	31.5885	27.7089	-41.9632	31.8290	27.8935	-41.9886	-0.2405	-0.1846	-0.0254	0.3042	-0.0254	Z
	19	28.1239	1.2685	-45.8367	28.4232	1.4958	-45.7771	-0.2993	-0.2273	0.0596	0.3805	0.0596	Z
	20 21	25.7382 24.3924	15.8505 26.0004	-45.8795 -45.2105	26.0352 24.6435	16.0489 26.1840	-45.8459 -45.2044	-0.2970 -0.2511	-0.1984 -0.1836	0.0336	0.3587	0.0336	Z
ROOF - (Z)	22	9.6212	1.7785	-47.3447	9.9499	2.0215	-45.2044	-0.3287	-0.2430	0.0001	0.4097	0.0001	Z
Ŀ,	23	9.6655	14.6482	-47.1021	9.9455	14.8505	-47.0954	-0.2800	-0.2023	0.0067	0.3455	0.0067	Z
8 I	24	9.1393	24.2838	-46.5423	9.5129	24.4517	-46.5477	-0.3736	-0.1679	-0.0054	0.4096	-0.0054	Z
°₽	25 26	-4.5227 -5.6862	2.5271 14.3413	-47.5046 -47.3572	-4.2374 -5.0070	2.7485	-47.5147 -43.8041	-0.2853 -0.6792	-0.2214 -3.2718	-0.0101 3.5531	0.3613 4.8776	-0.0101 3.5531	Z Z
	20	-5.0772	24.5904	-46.8009	-4.7565	24.7987	-46.8316	-0.3207	-0.2083	-0.0307	0.3836	-0.0307	Z
1	28	-20.7251	2.9339	-47.1568	-20.4368	3.1279	-47.1808	-0.2883	-0.1940	-0.0240	0.3483	-0.0240	Z
	29	-20.5770	13.4912	-47.0899	-20.2901	13.7245	-47.1053	-0.2869	-0.2333	-0.0154	0.3701	-0.0154	Z
	30	-19.9558	24.1741	-46.7129	-19.6825 51.0591	24.3859	-46.7418	-0.2733	-0.2118	-0.0289	0.3470	-0.0289	Z
αrc o	31 32	50.8232 45.4271	34.9033 33.6227	-27.0296 -30.9801	45.6889	35.1228 33.8206	-26.8799 -30.9107	-0.2359 -0.2618	-0.2195 -0.1979	0.1497	0.3553	0.1497	Z
A-PILLAR Maximum (X, Y, Z)	33	39.6887	32.3789	-35.4218	39.9003	32.5806	-35.3882	-0.2116	-0.2017	0.0336	0.2943	0.0336	Z
X.	34	35.2021	31.4530	-38.8286	35.3733	31.6575	-38.8158	-0.1712	-0.2045	0.0128	0.2670	0.0128	Z
< ≥ -	35 36	32.6830 30.8986	30.7494 30.0645	-40.0530 -40.8239	32.8879 31.1033	30.9695 30.2707	-40.0723 -40.9180	-0.2049	-0.2201 -0.2062	-0.0193	0.3013	0.0000	NA NA
	30	50.8232	34.9033	-27.0296	51.0591	35.1228	-26.8799	-0.2359	-0.2082	0.1497	0.3553	-0.2195	Y
45	32	45.4271	33.6227	-30.9801	45.6889	33.8206	-30.9107	-0.2618	-0.1979	0.0694	0.3354	-0.1979	Y
A-PILLAR Lateral (Y)	33	39.6887	32.3789	-35.4218	39.9003	32.5806	-35.3882	-0.2116	-0.2017	0.0336	0.2943	-0.2017	Y
ater	34	35.2021	31.4530	-38.8286	35.3733	31.6575	-38.8158	-0.1712	-0.2045	0.0128	0.2670	-0.2045	Y
C ک	35 36	32.6830 30.8986	30.7494 30.0645	-40.0530 -40.8239	32.8879 31.1033	30.9695 30.2707	-40.0723 -40.9180	-0.2049 -0.2047	-0.2201 -0.2062	-0.0193	0.3013	-0.2201 -0.2062	Y
ΨF~	37	7.5620	31.5269	-37.7272	01.1000	00.2707	40.0100	0.2011	0.2002	0.0041	0.0004	0.2002	X, Y, Z
All Nul	38	4.9042	33.4058	-32.7965									X, Y, Z
B-PILLAR Maximum (X, Y, Z)	39	8.3890	34.1496	-30.0905									X, Y, Z
	40 37	5.3253	34.4339	-28.6602									X, Y, Z Y
B-PILLAR Lateral (Y)	37	7.5620 4.9042	31.5269 33.4058	-37.7272 -32.7965							7		Y
Lateral (Y)	39	8.3890	34.1496	-30.0905				-					Ý
	40	5.3253 te deformatio	34.4339	-28.6602									Y

Model Year:	2016		Test Name: Make:		VIN: Model:		
,		<u>12</u>					
	10.014 Mak	at startin	assenger Side Ma	ximum Deformation	5000	2 mail	
	Reference Se	t 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	0.2	≤ 4	Z	Roof	3.6	≤ 4	Z
Windshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
∖-Pillar Maximum	0.6	≤ 5	Х	A-Pillar Maximum	0.1	≤ 5	Z
A-Pillar Lateral	-0.1	≤ 3	Y	A-Pillar Lateral	-0.2	≤ 3	Y
3-Pillar Maximum	0.5	≤ 5	Х	B-Pillar Maximum	0.0	≤ 5	NA
3-Pillar Lateral	-0.1	≤ 3	Y	B-Pillar Lateral	0.0	≤ 3	Y
oe Pan - Wheel Well	0.6	≤ 9	X, Z	Toe Pan - Wheel Well	0.0	≤ 9	Z
Side Front Panel	0.4	≤ 12	Y	Side Front Panel	0.2	≤ 12	Y
Side Door (above seat)	0.3	≤ 9	Y	Side Door (above seat)	0.1	≤ 9	Y
Side Door (below seat)	0.3	≤ 12	Y	Side Door (below seat)	0.0	≤ 12	Y
Floor Pan	0.5	≤ 12	Z	Floor Pan	0.0	≤ 12	Z
Dash - no MASH requirement	0.6	NA	X, Y, Z	Dash - no MASH requirement	0.5	NA	X, Y, Z
² For Toe Pan - Wheel Well the di directions. The direction of deforr occupant compartment. If direction	irection of defromat nation for Toe Pan on of deformation is	ion may include X an -Wheel Well, A-Pillar "NA" then no intrusio	d Z direction. For A-F Maximum, and B-Pill on is recorded and de	lues denote deformations outward av Pillar Maximum and B-Pillar Maximum ar Maximum only include component formation will be 0. posttest with an examplar vehicle, the	n the direction of de s where the deform	formation may includ ation is positive and	intruding into the
Notes on vehicle interior cru nterior crush set 2 (secondary		ng the B-pillar infor	mation due to bad d	lata transfer.			

Figure D-12. Maximum Occupant Compartment Deformation by Location, Test No. MGS7S-2

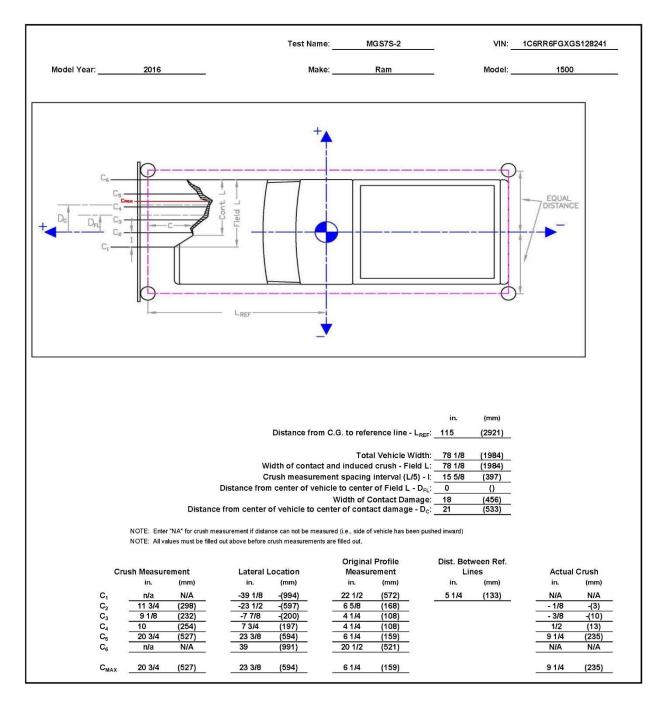


Figure D-13. Exterior Vehicle Crush (NASS) – Front, Test No. MGS7S-2

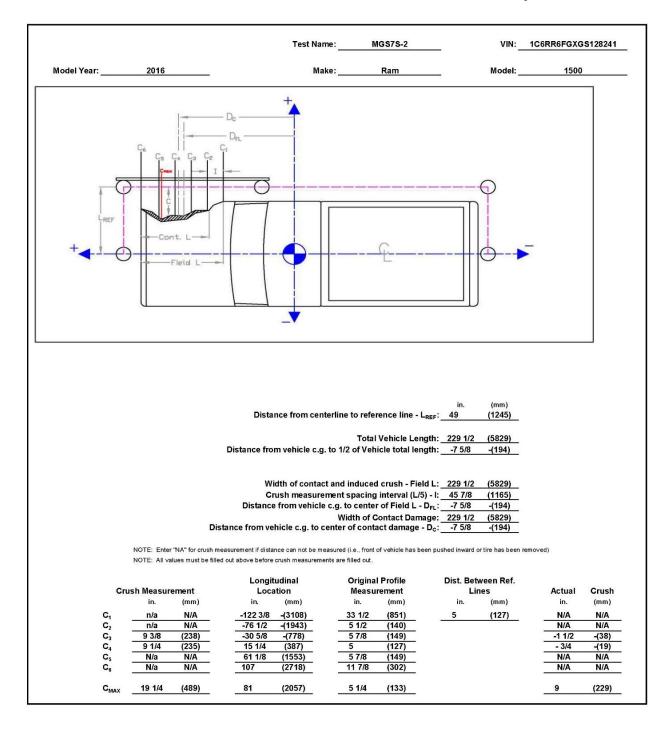


Figure D-14. Exterior Vehicle Crush (NASS) - Side, Test No. MGS7S-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGS7S-1

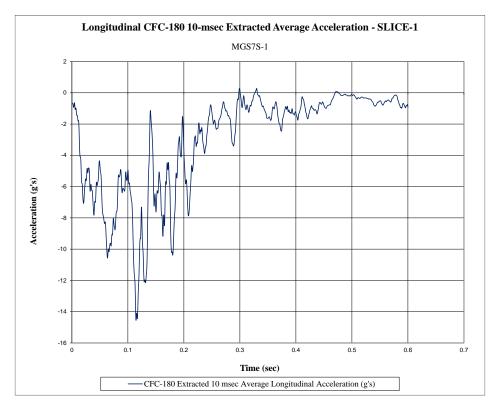


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGS7S-1

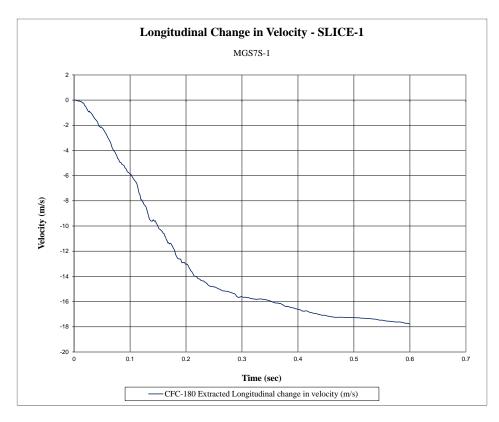


Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGS7S-1

Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGS7S-1

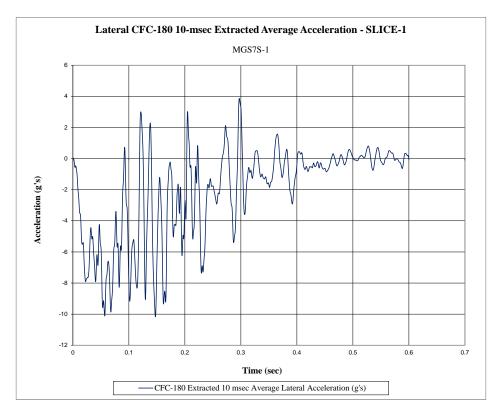


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGS7S-1

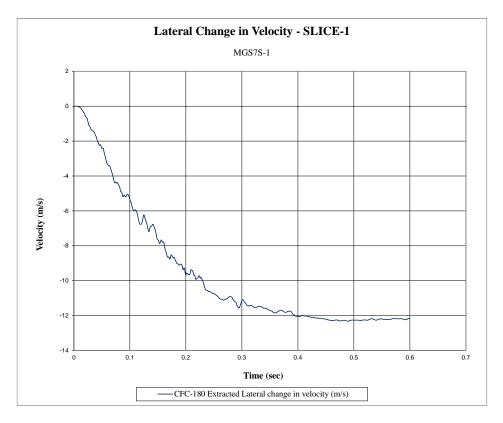


Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGS7S-1



Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGS7S-1

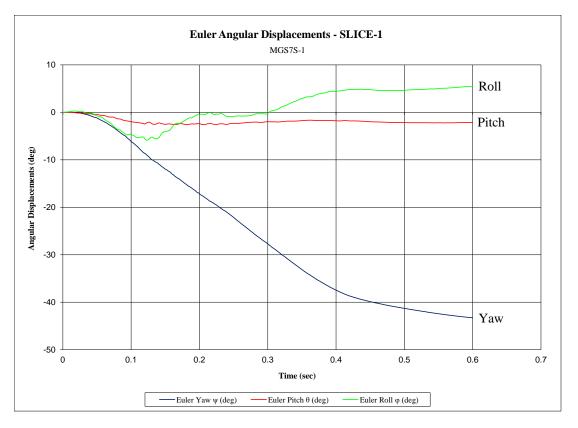


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGS7S-1

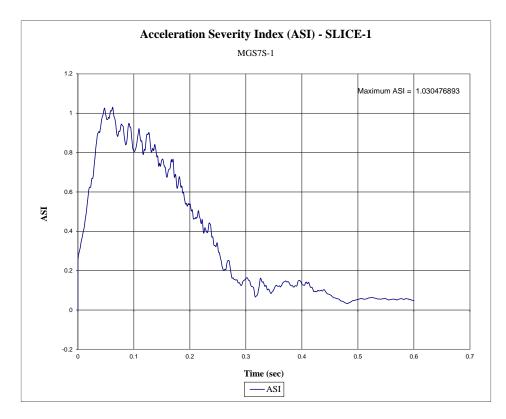


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGS7S-1

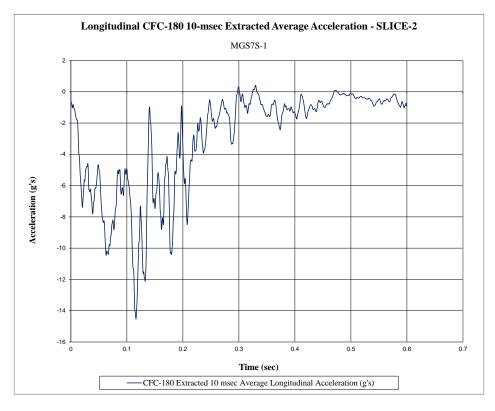


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGS7S-1

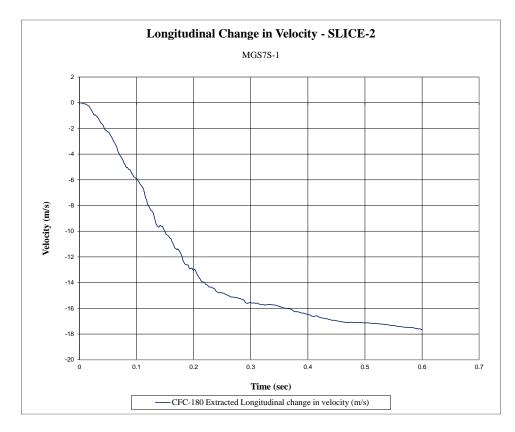


Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGS7S-1



Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGS7S-1

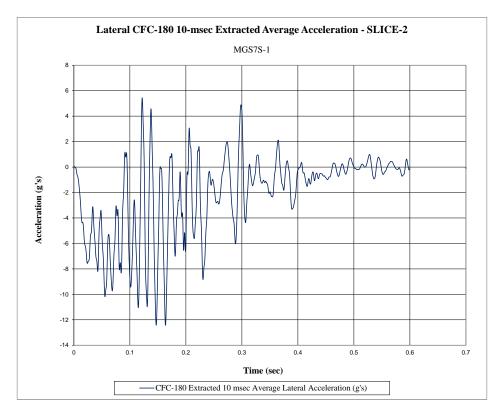


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGS7S-1

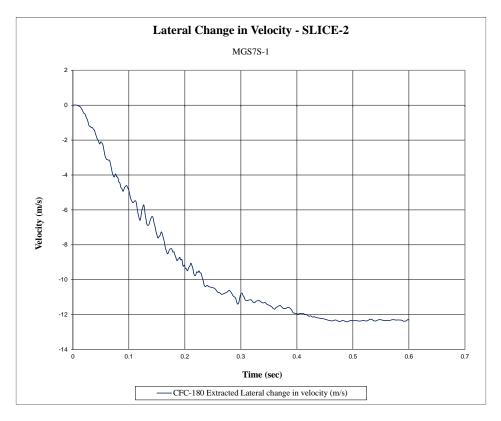


Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGS7S-1

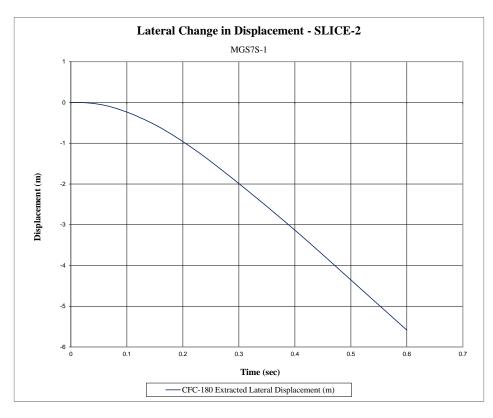


Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGS7S-1

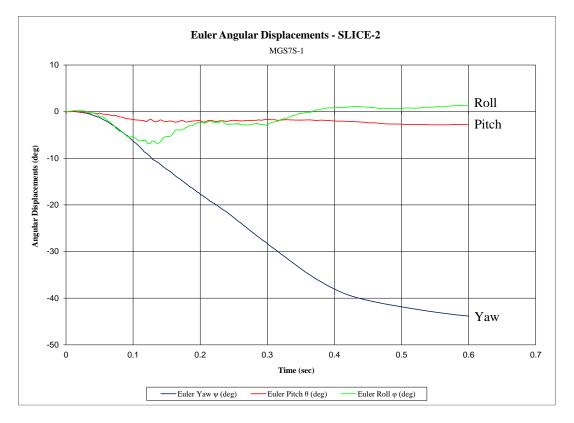


Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGS7S-1

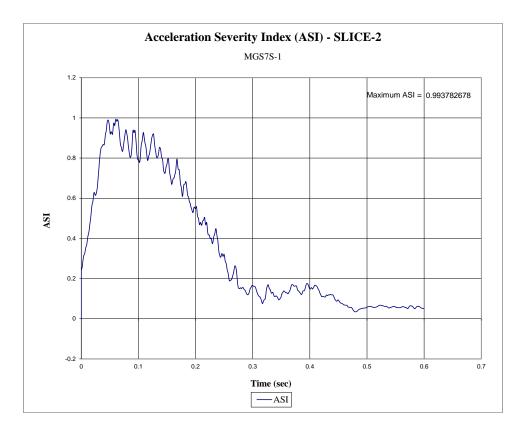


Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGS7S-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MGS7S-2

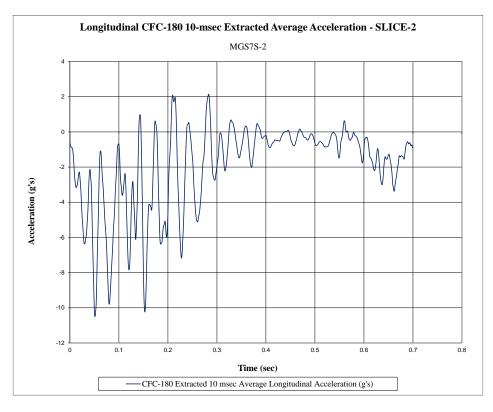


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGS7S-2

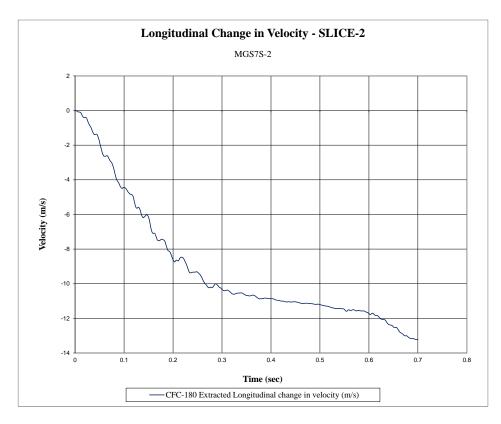


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGS7S-2

Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGS7S-2

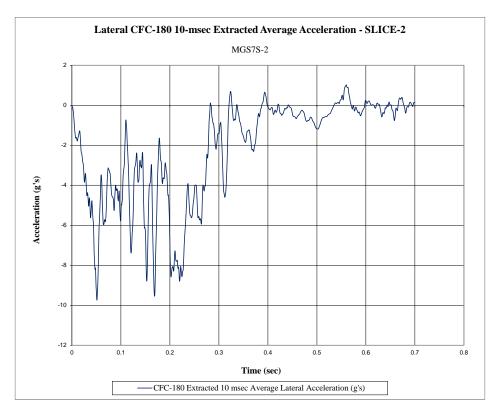


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGS7S-2

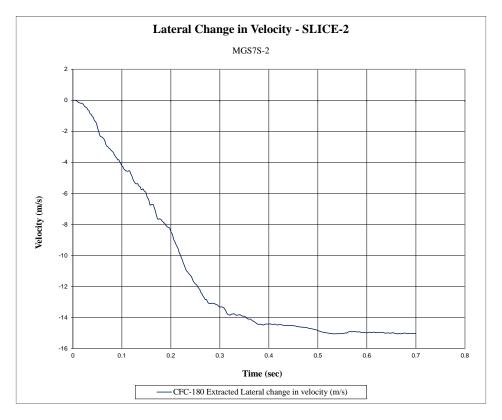


Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGS7S-2

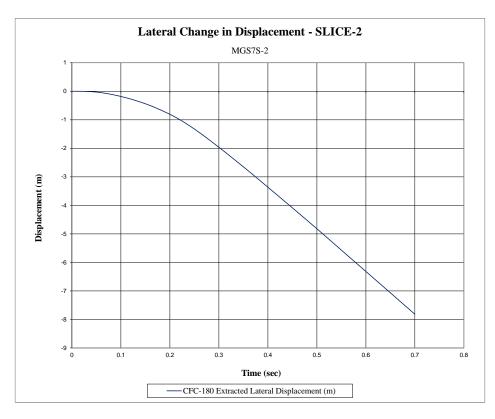


Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. MGS7S-2

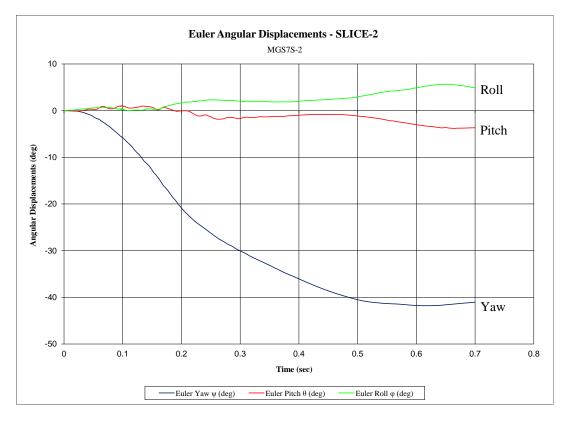


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. MGS7S-2

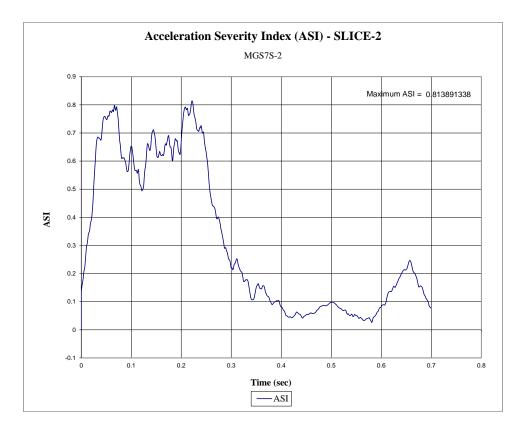


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. MGS7S-2

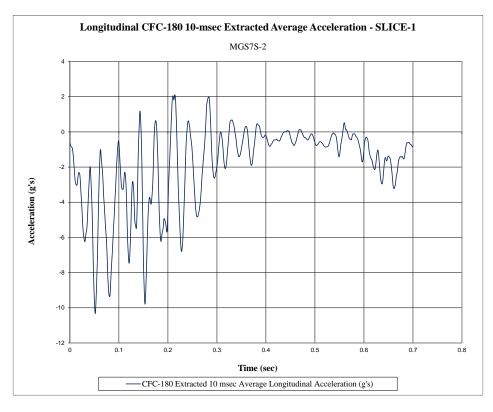


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGS7S-2

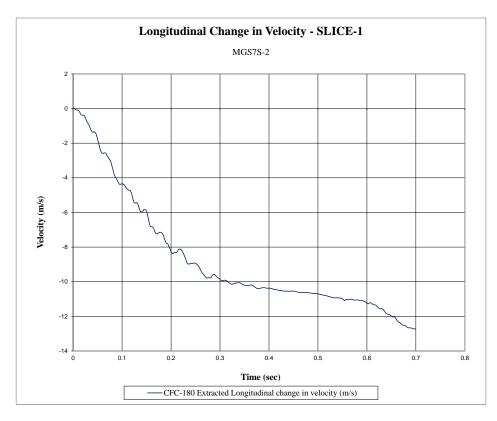


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGS7S-2

Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGS7S-2

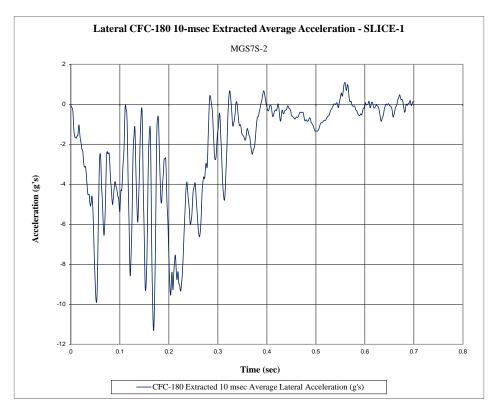


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGS7S-2

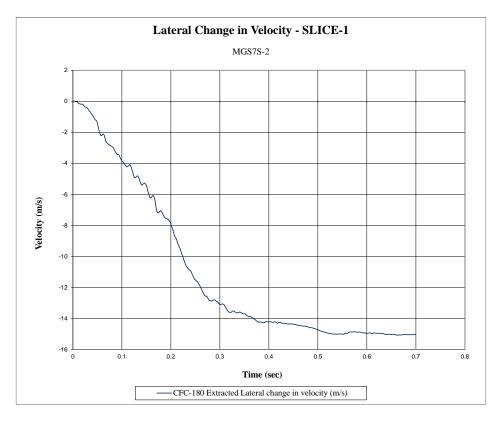


Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGS7S-2

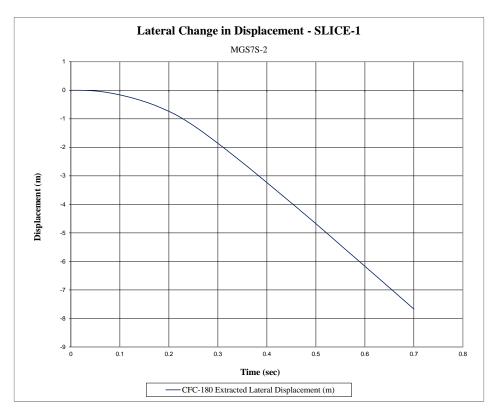


Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. MGS7S-2

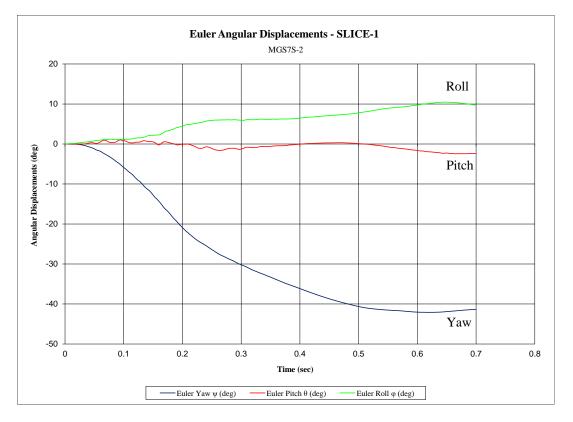


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. MGS7S-2

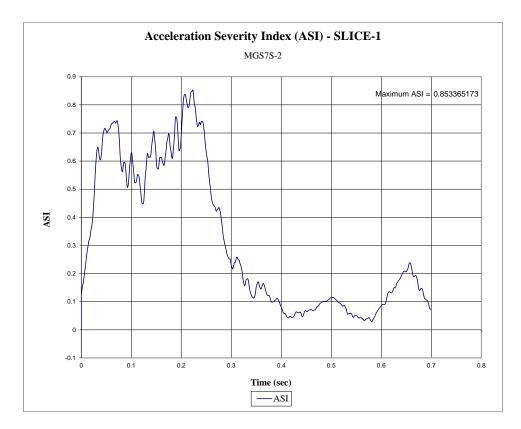


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. MGS7S-2

END OF DOCUMENT