

Research Project Number TPF-5(193) Supplement #128

CRASH TESTING AND EVALUATION OF THE NEW YORK STATE BOX BEAM TO WEAK-POST W-BEAM TRANSITION

Submitted by

Karla A. Lechtenberg, M.S.M.E. Research Engineer Erin Urbank, B.A. Research Communication Specialist

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

NEW YORK STATE DEPARTMENT OF TRANSPORTATION

50 Wolf Road, 6th Floor Albany, New York 12232

MwRSF Research Report No. TRP-03-414-24

February 27, 2024

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-414-24	2. Government A	Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle			5. Report Date
Crash Testing and Evaluation of the New York State Box Beam to Weak-Post		February 27, 2024	
W-Beam Transition			6. Performing Organization code
7. Author(s) Lechtenberg, K.A., Urbank, E.L., and Faller, R.K.		8. Performing Organization Report No. TRP-03-414-24	
9. Performing Organization	Name and Address		10. Work Unit No.
Midwest Roadside Safety Fac Nebraska Transportation Cen University of Nebraska-Lin	ter		
Main Office: Prem S. Paul Research Center Room 130, 2200 Vine Street Lincoln, Nebraska 68583-085		Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract
12. Sponsoring Agency Nam			13. Type of Report and Period Covered
New York State Department	of Transportation		Final Report: 2017 – 2024
50 Wolf Road, 6th Floor Albany, New York 12232		14. Sponsoring Agency Code	
110ully, 110w 10lk 12252			TPF-5(193) Supplement #128
	partment of Transportat	tion's (NYSDOT's) box be	eam to Weak-Post W-beam transition system
for Assessing Safety Hardwar National Highway System, the beam to weak-post W-beam to which decreased in height three measured 6 in. (152 mm) x 6 is post W-beam transition was er lb (2,343-kg) pickup trucks for impacted at a speed of 63.5 m damage. The system in test m direction. In test no. NYBWT	re, Second Edition (Me Midwest Roadside Stransition system. The sough a transition cover to n. (152 mm) x $^{3}/_{16}$ in. (waluated according to Mor test nos. NYBWT-2 ph (102.2 km/h) and ar o. NYBWT-3 was idee -3, the transition was in a system and vehicle data	IASH 2016) safety perform afety Facility (MwRSF) co- system consisted of 32-in. (to match the box beam heig 5 mm) thick and was 215 ¹ / ₂ IASH 2016 test designation and NYBWT-3, respective in impact angle of 25.1 degree nitical to test no. NYBWT- npacted at a speed of 62.5 m image. Both tests successfu	ransportation Officials' (AASHTO's) <i>Manual</i> mance criteria. For its continued use on the onducted two full-scale crash tests on the box (813-mm) tall, 12-gauge (2.6-mm), W-beam, th of 27 in. (686 mm). Each box beam section in. (5,474 mm) long. The box beam to weak- no. 3-21 with 5,139-lb (2,331-kg) and 5,165- ely. In test no. NYBWT-2, the transition was ees, resulting in moderate system and vehicle -2, except the impact occurred in the reverse nph (100.5 km/h) and an impact angle of 25.7 illy met all evaluation criteria in MASH 2016 nation no. 3-20.

17. Key Words		18. Availability Statement	
Highway Safety, Crash Test, Roadside Appurtenances,		No restrictions. Document available from: National	
Compliance Test, MASH 2016, Box Beam, W-Beam, Weak		Technical Information Services, Springfield, Virginia	
Post, Transition. Compliance Test		22161	
19. Security Classification (of	20. Security Classification	21. No. of Pages	22. Price
this report)	(of this page)		
Unclassified	Unclassified	244	

DISCLAIMER STATEMENT

This material is based upon work supported by the New York State Department of Transportation under TPF-5(193) Supplement #128. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, New York State Department of Transportation, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the States of Nebraska and New York do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Scott Rosenbaugh, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New York State Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests. Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., Research Engineer & Assistant
Director – Physical Testing Division
R.W. Bielenberg, M.S.M.E., Research Engineer
S.K. Rosenbaugh, M.S.C.E., Research Engineer
C.S. Stolle, Ph.D., Research Assistant Professor
J.S. Steelman, Ph.D., P.E., Associate Professor
M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant
Professor
B.J. Perry, M.E.M.E., Research Engineer
A.T. Russell, B.S.B.A., Testing and Maintenance Technician I
E.W. Krier, B.S., Former Engineering Testing Technician II
D.S. Charroin, Engineering Testing Technician II
R.M. Novak, Engineering Testing Technician II
S.M. Tighe, Engineering Testing Technician I
T.C. Donahoo, Engineering Testing Technician I

Midwest Roadside Safety Facility, Cont.

- J.T. Jones, Engineering Testing Technician I
- C. Charroin, Former Engineering Construction Testing Technician I
- T. Shapland, Former Engineering Construction Testing Technician I
- Z.Z. Jabr, Engineering Technician
- J. Oliver, Solidworks Drafting Coordinator
- Undergraduate and Graduate Research Assistants

II <u>New York State Department of Transportation</u> L. Terry Hale III, P.E., Senior Engineer

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	v
LIST OF TABLES	xi
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 DESIGN DETAILS	
3 TEST REQUIREMENTS AND EVALUATION CRITERIA 3.1 Test Requirements 3.2 Evaluation Criteria 3.3 Soil Strength Requirements	47 49
 4 TEST CONDITIONS	50 50 50 60 60 60 60 60 60
 5 FULL-SCALE CRASH TEST NO. NYBWT-2 5.1 Static Soil Test 5.2 Weather Conditions 5.3 Test Description	

5.7 Discussion	1	
6 FULL-SCALE CRA	ASH TEST NO. NYBWT-3	
6.1 Static Soil	Test	
6.2 Weather C	Conditions	
6.3 Test Descr	ription	
6.4 Barrier Da	mage	
6.5 Vehicle D	amage	
6.6 Occupant	Risk	
6.7 Discussion	1	
7 SUMMARY, CON	CLUSIONS, AND RECOMMENDATIONS	127
8 MASH IMPLMEN	TATION	
9 REFERENCES		
10 APPENDICES		
Appendix A.	NYSDOT Standard Plans	
Appendix B.	Material Specifications	
Appendix C.	Static Soil Tests	
Appendix D.	Vehicle Center of Gravity Determination	
Appendix E.	Post Movement Definitions	
Appendix F.	Vehicle Deformation Records	
Appendix G.	Accelerometer and Rate Transducer Data Plots, Test No. N	
Appendix H.	Accelerometer and Rate Transducer Data Plots, Test No. N	YBWT-3235

LIST OF FIGURES

Figure 1. System Layout, Test No. NYBWT-2	4
Figure 2. W-Beam Post Section, Test No. NYBWT-2	5
Figure 3. Box Beam Post Section, Test No. NYBWT-2	6
Figure 4. Downstream Anchorage Details, Test No. NYBWT-2	7
Figure 5. End Post Support and W-beam Splice Detail, Test No. NYBWT-2	8
Figure 6. Rail Elevation Transition Details, Test No. NYBWT-2	9
Figure 7. Transition Layout, Test No. NYBWT-2	10
Figure 8. Transition, Post Attachment, and Box Splice Details, Test No. NYBWT-2	11
Figure 9. Cable Bracket Connection Details, Test No. NYBWT-2	12
Figure 10. Upstream Anchorage Details, Test No. NYBWT-2	13
Figure 11. Upstream Anchor Mounting Details, Test No. NYBWT-2	14
Figure 12. Downstream Anchor Assembly, Test No. NYBWT-2	15
Figure 13. Transition Anchor Assembly, Test No. NYBWT-2	
Figure 14. Concrete Anchor Components, Test No. NYBWT-2	17
Figure 15. Transition Cable Bracket Assembly, Test No. NYBWT-2	18
Figure 16. Transition Cable Bracket Components, Test No. NYBWT-2	19
Figure 17. Post Assemblies, Test No. NYBWT-2	
Figure 18. Post Components, Test No. NYBWT-2	21
Figure 19. Post Components, Rail Support Bracket and Post Collar, Test No. NYBWT-2	
Figure 20. HFT Anchor Assembly, Test No. NYBWT-2	
Figure 21. HFT Anchor Assembly Components, Test No. NYBWT-2	
Figure 22. Upstream Cable Anchor Assembly Details Test No. NYBWT-2	
Figure 23. Upstream Cable Anchor Components, Test No. NYBWT-2	
Figure 24. Components Details, Test No. NYBWT-2	
Figure 25. Anchor Cable Details, Test No. NYBWT-2	
Figure 26. Cable Anchor Components, Test No. NYBWT-2	29
Figure 27. W-Beam Rail Section, Test No. NYBWT-2	30
Figure 28. Box Beam to W-Beam Transition Cover, Test No. NYBWT-2	31
Figure 29. Box Beam Rail Section, Test No. NYBWT-2	32
Figure 30. Box Beam Splice Plate Details, Test No. NYBWT-2	33
Figure 31. Hardware Details, Test No. NYBWT-2	34
Figure 32. Bill of Materials, Test No. NYBWT-2	35
Figure 33. Bill of Materials, Test No. NYBWT-2	36
Figure 34. Bill of Materials, Test No. NYBWT-2	37
Figure 35. System Layout, Test No. NYBWT-3	
Figure 36. System Installation, Test No. NYBWT-2	
Figure 37. Box Beam and W-Beam Rails, Test No. NYBWT-2	40
Figure 38. Box Beam and W-Beam Posts, Test No. NYBWT-2	41
Figure 39. Anchors, Test No. NYBWT-2	
Figure 40. Transition Cover Assembly, Test No. NYBWT-2	43
Figure 41. System Installation, Test No. NYBWT-3	
Figure 42. Anchors, Test No. NYBWT-3	
Figure 43. Transition Cover Assembly, Test No. NYBWT-3	
Figure 44. Test Vehicle, Test No. NYBWT-2	
Figure 45. Test Vehicle's Interior Floorboards and Undercarriage, Test No. NYBWT-2	53

Figure 46. Vehicle Dimensions, Test No. NYBWT-2	54
Figure 47. Test Vehicle, Test No. NYBWT-3	
Figure 48. Test Vehicle's Interior Floorboards and Undercarriage, Test No. NYBWT-3	56
Figure 49. Vehicle Dimensions, Test No. NYBWT-3	
Figure 50. Target Geometry, Test No. NYBWT-2	
Figure 51. Target Geometry, Test No. NYBWT-3	59
Figure 52. Camera Locations, Speeds, and Lens Settings, Test No. NYBWT-2	
Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. NYBWT-3	
Figure 54. Impact Location, Test No. NYBWT-2	
Figure 55. Sequential Photographs, Test No. NYBWT-2	
Figure 56. Additional Sequential Photographs, Test No. NYBWT-2	
Figure 57. Documentary Photographs, Test No. NYBWT-2	
Figure 58. Documentary Photographs, Test No. NYBWT-2	
Figure 59. Documentary Photographs, Test No. NYBWT-2.	74
Figure 60. Documentary Photographs, Test No. NYBWT-2.	
Figure 61. Documentary Photographs, Test No. NYBWT-2	
Figure 62. Documentary Photographs, Test No. NYBWT-2	
Figure 63. Documentary Photographs, Test No. NYBWT-2 Figure 64. Vehicle Trajectory Marks and Final Position, Test No. NYBWT-2	
Figure 65. Overall System Damage, Test No. NYBWT-2	
Figure 66. Overall System Damage, Test No. NYBWT-2	
Figure 60. Overall System Damage, Test No. NYBWT-2	
Figure 68. Rail and Post Damage, Post Nos. 15 through 18, Test No. NYBWT-2	
Figure 69. Rail and Post Damage, Post Nos. 19 through 22, Test No. NYBWT-2	
Figure 70. Backside Rail and Post Damage, Post Nos. 12 through 15, Test No. NYBWT-2	
Figure 71. Rail and Post Damage, Post Nos. 19 through 22, Test No. NYBWT-2	
Figure 72. Backside Rail and Post Damage, Post Nos. 16 through 19, Test No. NYBWT-2	
Figure 73. Backside Rail and Post Damage, Post Nos. 20 through 23, Test No. NYBWT-2	
Figure 74 Anchor Damage, Test No. NYBWT-2	
Figure 75. Permanent Set, Dynamic Deflection, and Working Width, Test No. NYBWT-2	
Figure 76. Vehicle Damage, Test No. NYBWT-2	
Figure 77. Vehicle Damage, Test No. NYBWT-2	93
Figure 78. Occupant Compartment Vehicle Damage, Test No. NYBWT-2	
Figure 79. Undercarriage Vehicle Damage, Test No. NYBWT-2	
Figure 80. Summary of Test Results and Sequential Photographs, Test No. NYBWT-2	
Figure 81. Impact Location, Test No. NYBWT-3	
Figure 82. Sequential Photographs, Test No.NYBWT-3	
Figure 83. Additional Sequential Photographs, Test No.NYBWT-3	
Figure 84. Documentary Photographs, Test No. NYBWT-3	
Figure 85. Documentary Photographs, Test No. NYBWT-3	
Figure 86. Documentary Photographs, Test No. NYBWT-3	
Figure 87. Documentary Photographs, Test No. NYBWT-3	
Figure 88. Vehicle Trajectory Marks and Final Position, Test No. NYBWT-3 Figure 89. Overview of Damage to System, Test No. NYBWT-3	
Figure 89. Overview of Damage to System, Test No. NTBW 1-5	
Figure 91. Damage to Post Nos. 11 through 14, Test No. NYBWT-3	
Figure 91. Damage to Post Nos. 11 through 14, Test No. NTBW 1-3	115
115010 22. Duniugo to 1 0001100. 15 unougn 10, 1000110. 11 D W 1-5	

Figure 93. Da	amage to System at Post Nos. 19 through 21	.116
Figure 94. Da	amage to System at Post Nos. 22 through 24	.117
Figure 95. A	nchor Damage, Test No. NYBWT-3	.118
Figure 96. Pe	ermanent Set, Dynamic Deflection, and Working Width, Test No. NYBWT-3	.119
Figure 97. Vo	ehicle Damage, Test No. NYBWT-3	.120
-	ehicle Damage, Test No. NYBWT-3	
Figure 99. U	ndercarriage Vehicle Damage, Test No. NYBWT-3	.122
	Occupant Compartment Damage, Test No. NYBWT-3	
Figure 101. S	Summary of Test Results and Sequential Photographs, Test No. NYBWT-3	.126
Figure A-1. N	New York Standard Sheet for Box Beam to Weak-Post W-Beam Transition,	
Test I	No. NYBWT-2 [15]	.135
Figure B-1. V	W-Beam Sections, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. a1 and a2)	.141
Figure B-2. V	W-Beam Curved Section, Test Nos. NYBWT-2 and NYBWT-3 (Item No. a3)	.142
Figure B-3. V	W-Beam Backup Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. a4)	.143
Figure B-4. E	Box Beam to W-Beam Transition Cover, Test Nos. NYBWT-2 and NYBWT-3	
	No. a5)	.144
Figure B-5. 7	CS6x6x ³ / ₁₆ Box Beams, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. b1,	
	nd b3)	
Figure B-6. S	Splice Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item No. b4)	.146
Figure B-7. S	3X5.7 65-in. (1,651-mm) Long Posts, Test Nos. NYBWT-2 and NYBWT-3	
· · · · · · · · · · · · · · · · · · ·	No. c1)	
•	Soil Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item No. c2)	.148
•	5 x 3 ¹ / ₂ x ³ / ₈ -in. (127 x 89 x 10-mm), 4 ¹ / ₂ -in. (114-mm) Long L-Brackets, Test	
	NYBWT-2 and NYBWT-3 (Item No. c3)	.149
-	4 x 3 x ¹ / ₄ -in. (102 x 76 x 6-mm), 8-in. (203-mm) Long L-Bracket, Test Nos.	
	WT-2 and NYBWT-3 (Item No. c4)	.150
-	W6X15, 72-in. (1,829-mm) Long Posts, Test Nos. NYBWT-2 and NYBWT-3	
	No. d1)	.151
-	$20 \times 14 \times \frac{3}{16}$ -in. (508 x 356 x 5-mm) Plate, Test Nos. NYBWT-2 and	
	WT-3 (Item No. d2)	
-	Steel Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. d3, d4, and d5)	.153
0	Box Beam Cable Anchor Mounting Plate and Base Plate, Test Nos. NYBWT-	
	NYBWT-3 (Item Nos. e1 and e3)	.154
-	Box Beam Cable Anchor Gusset, Test Nos. NYBWT-2 and NYBWT-3 (Item	
	2)	
-	Concrete, Test Nos. NYBWT-2 and NYBWT-3 (Item No. f1)	.156
U	No. 3 Reinforcement Bar, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos.	
	, f4, and f5)	.157
	³ / ₄ -in. (19-mm) Dia. Anchor J-Bolts, Test Nos. NYBWT-2 and NYBWT-3	
· · ·	No. f6)	.158
-	³ / ₄ -in. (19-mm) Dia. Heavy Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3	
	Nos. f6 and k12)	
-	Cable Anchor Base Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g1)	
U	Cable Anchor Gusset, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g2)	
	Cable Anchor Top Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g3)	
Figure B-23.	Brass Rod, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g4)	.163

Figure	B-24. ³ / ₄ -in. (19-mm) Dia. Threaded Rod, Test Nos. NYBWT-2 and NYBWT-3	
	(Item No. h1)	164
Figure	B-25. Cable End Fitting, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h2)	165
-	B-26. Cable Wedge, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h3)	
-	B-27. Crosby Threaded Turnbuckle, Test Nos. NYBWT-2 and NYBWT-3 (Item	
8	No. h4)	167
Figure	B-28. BCT Anchor Cable End Swaged Fitting, Test Nos. NYBWT-2 and	107
1 iguie	NYBWT-3 (Item No. h5)	168
Figure	B-29. ³ / ₄ -in. (19-mm) Dia. 3x7 Wire Rope, Test Nos. NYBWT-2 and NYBWT-3	100
riguit	(Item No. h6)	160
Figure	B-30. ³ / ₄ -in. (19-mm) Dia. 6x19 Wire Rope, Test Nos. NYBWT-2 and NYBWT-3	109
riguie		170
Elemen	(Item No. h7)	170
Figure	B-31. 7 x 4 x ¹ / ₂ -in. (178 x 102 x 13-mm), 3-in. (76-mm) Long L-Brackets, Test	171
D '	Nos. NYBWT-2 and NYBWT-3 (Item No. i1)	1/1
Figure	B-32. 1 ³ / ₄ x 1 ³ / ₄ -in. (44 x 44-mm) x 10-gauge Square Washers, Test Nos. NYBWT-2	170
	and NYBWT-3 (Item No. i2)	172
Figure	B-33. 27 x 3 x ¹ / ₄ -in. (686 x 76 x 6-mm) Washer Plates, Test Nos. NYBWT-2 and	
	NYBWT-3 (Item No. i3)	173
Figure	B-34. ⁷ / ₈ -in. (22-mm) Dia., 8 ¹ / ₂ -in. (216-mm) Long Heavy Hex Head Bolts, Test	
	Nos. NYBWT-2 and NYBWT-3 (Item No. j1)	174
Figure	B-35. 7/8-in. (22-mm) Heavy Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item	
	No. j1)	175
Figure	B-36. ¾-in. (19-mm) Dia., 2 ¹ / ₂ -in. (64-mm) Long Fully Threaded Heavy Hex Head	
	Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j2)	176
Figure	B-37. ¾-in. (19-mm) Dia. 2-in. (51-mm) Long Fully Threaded Heavy Hex Head	
	Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j3)	177
Figure	B-38. ¾-in. (19-mm) Dia. 8-in. (203-mm) Long Hex Head Bolts and Nuts, Test	
	Nos. NYBWT-2 and NYBWT-3 (Item No. j4)	178
Figure	B-39. ¾-in. (19-mm) Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j4)	179
Figure	B-40. ³ / ₄ -in. (19-mm) Dia. ⁴ / ₂ -in. (114-mm) Long Hex Head Bolts and Nuts, Test	
U	Nos. NYBWT-2 and NYBWT-3 (Item No. j5)	180
Figure	B-41. ³ / ₄ -in. (19-mm) Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j5)	
0	B-42. ¹ / ₂ -in. (13-mm) Dia. x ¹ / ₂ -in. (13-mm) Long Fully Threaded Hex Head Bolts,	
U	Test Nos. NYBWT-2 and NYBWT-3 (Item No. j6 and j7)	182
Figure	B-43. ¹ / ₂ -in. (13-mm) Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j7)	
	B-44. ³ / ₈ -in. (10-mm) Dia. 7 ¹ / ₂ -in. (191-mm) Long Hex Head Bolts and Nuts, Test	
1 19410	Nos. NYBWT-2 and NYBWT-3 (Item No. j8)	184
Figure	B-45. ³ / ₈ -in. (10-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item	101
1 iguie	No. j8)	185
Figure	B-46. ⁵ / ₁₆ -in. (8-mm) Dia. 2-in. (51-mm) Long Fully Threaded Hex Head Bolts, Test	105
riguie	Nos. NYBWT-2 and NYBWT-3 (Item No. j9)	186
Figuro	B-47. ⁵ / ₁₆ -in. (8-mm) Dia. 1 ¹ / ₄ -in. (32-mm) Long Guardrail Bolt, Test Nos.	100
Figure		107
Figure	NYBWT-2 and NYBWT-3 (Item No. j10)	10/
rigure	B-48. ⁵ / ₈ -in. (16-mm) Dia. Guardrail Nut, Test Nos. NYBWT-2 and NYBWT-3	100
D :-	(Item No. j10)	198
Figure	B-49. ⁵ / ₁₆ -in. (8-mm) Dia. Hardened Flat Washers, Test Nos. NYBWT-2 and	100
	NYBWT-3 (Item No. k1)	189

Figure B-50. ³ / ₈ -in. (10-mm) Dia. Plain Round Washers, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k2)	190
Figure B-51. ¹ / ₂ -in. (13-mm) Dia. Plain Narrow Round Washers, Test Nos. NYBWT-2 at	nd
NYBWT-3 (Item No. k3)	191
Figure B-52. ¹ / ₂ -in. (13-mm) Dia. Hardened Flat Washer, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k4)	
Figure B-53. ³ / ₄ -in. (19-mm) Dia. Hardened Flat Washers, Test Nos. NYBWT-2 and	
	193
Figure B-54. ³ / ₄ -in. (19-mm) Dia. Hardened Flat Washer, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k5)	
Figure B-55. ³ / ₄ -in. (19-mm) Dia. Plain Round Washers, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k6)	195
Figure B-56. ⁷ / ₈ -in. (22-mm) Dia. Hardened Flat Washers, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k7)	196
Figure B-57. 1-in. (25-mm) Dia. Plain Round Washers, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k8)	197
Figure B-58. 1-in. (25-mm) Dia. UNC Heavy Hex Nuts, Test Nos. NYBWT-2 and	
NYBWT-3 (Item No. k9)	198
Figure B-59. ³ / ₄ -in. (19-mm) Dia. UNC Square Nuts, Test Nos. NYBWT-2 and NYBWT	
(Item No. $k10$)	
Figure B-60. ³ / ₄ -in. (19-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item	1))
No. k11)	200
Figure B-61. ⁵ / ₁₆ -in. (8-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item	200
No. k13)	201
Figure B-62. ⁵ / ₁₆ -in. (8-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item	201
No. k13)	202
Figure B-63. ¹ / ₂ -in. (13-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item	202
No. k14)	203
Figure C-1. Soil Strength, Initial Calibration Tests, Nos. NYBWT-2 and NYBWT-3	
Figure C-2. Static Soil Test, Test No. NYBWT-2	
Figure C-3. Static Soil Test, Test No. NYBWT-3	
Figure D-1. Vehicle Mass Distribution, Test No. NYBWT-2	
Figure D-2. Vehicle Mass Distribution, Test No. NYBWT-3	
Figure F-1. Floor Pan Deformation Data – Set 1, Test No. NYBWT-2	
Figure F-2. Floor Pan Deformation Data – Set 2, Test No. NYBWT-2	
Figure F-3. Occupant Compartment Deformation Data – Set 1, Test No. NYBWT-2	
Figure F-4. Occupant Compartment Deformation Data – Set 2, Test No. NYBWT-2	
Figure F-5. Exterior Vehicle Crush (NASS) - Front, Test No. NYBWT-2	
Figure F-6. Exterior Vehicle Crush (NASS) - Side, Test No. NYBWT-2	
Figure F-7. Floor Pan Deformation Data – Set 1, Test No. NYBWT-3	
Figure F-8. Floor Pan Deformation Data – Set 2, Test No. NYBWT-3	
Figure F-9. Occupant Compartment Deformation Data – Set 1, Test No. NYBWT-3	
Figure F-10. Occupant Compartment Deformation Data – Set 2, Test No.NYBWT-3	
Figure F-11. Exterior Vehicle Crush (NASS) – Front, Test No. NYBWT-3	
Figure F-12. Exterior Vehicle Crush (NASS) – Side, Test No. NYBWT-3	
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NYBWT-2.	
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NYBWT-2	227

Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NYBWT-2	228
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NYBWT-2	
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NYBWT-2	
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. NYBWT-2	
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. NYBWT-2	230
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. NYBWT-2	230
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NYBWT-2	231
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NYBWT-2	231
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NYBWT-2	232
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NYBWT-2	232
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NYBWT-2	233
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. NYBWT-2	233
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. NYBWT-2	
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. NYBWT-2	
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NYBWT-3	
Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NYBWT-3	
Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NYBWT-3	
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NYBWT-3	
Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NYBWT-3	
Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. NYBWT-3	
Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. NYBWT-3	
Figure H-8. Acceleration Severity Index (SLICE-1), Test No. NYBWT-3	
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NYBWT-3	
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NYBWT-3	
Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NYBWT-3	241
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NYBWT-3	
Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NYBWT-3	
Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. NYBWT-3	242
Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. NYBWT-3	
Figure H-16. Acceleration Severity Index (SLICE-2), Test No. NYBWT-3	243

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers - Transitions	47
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	48
Table 3. Weather Conditions, Test No. NYBWT-2	64
Table 4. Sequential Description of Impact Events, Test No. NYBWT-2	67
Table 5. Sequential Description of Impact Events, Test No. NYBWT-2, Cont.	68
Table 6. Sequential Description of Impact Events, Test No. NYBWT-2, Cont.	69
Table 7. Maximum Occupant Compartment Intrusion by Location, Test No. NYBWT-2	96
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYBWT-2	97
Table 9. Weather Conditions, Test No. NYBWT-3	99
Table 10. Sequential Description of Impact Events, Test No. NYBWT-3	101
Table 11. Sequential Description of Impact Events, Test No. NYBWT-3, Cont	102
Table 12. Sequential Description of Impact Events, Test No. NYBWT-3, Cont	103
Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. NYBWT-3	124
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYBWT-3	125
Table 15. Summary of Safety Performance Evaluation	128
Table B-1. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3	137
Table B-2. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3, Cont	138
Table B-3. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3, Cont	139
Table B-4. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3, Cont	140
Table E-1. Post Movement Definitions	212

1 INTRODUCTION

1.1 Background

In 2009, the American Association of State Highway and Transportation Officials (AASHTO) implemented an updated standard for the evaluation of roadside hardware. The 2009 standard, entitled the *Manual for Assessing Safety Hardware* (MASH 2009) [1], improved the criteria for evaluating roadside hardware beyond the previous National Cooperative Highway Research Program (NCHRP) Report 350 [2] standard through updates to the test vehicles, test matrices, and impact conditions. To encourage state departments of transportation and hardware developers to advance their hardware designs, the Federal Highway Administration (FHWA) and AASHTO collaborated to develop a MASH implementation policy that includes sunset dates for various categories of roadside hardware. Further, the MASH 2009 safety criteria was updated in 2016, thus resulting in the MASH 2016 [3] document. The new policy requires that devices installed on federal aid roadways after the sunset dates must have been evaluated to MASH 2016. The proposed MASH 2016 implementation dates for the various hardware categories are listed below.

- December 31, 2017: W-beam barriers and cast-in-place concrete barriers
- June 30, 2018: W-beam terminals
- December 31, 2018: cable barriers, cable barrier terminals, and crash cushions
- December 31, 2019: bridge rails, transitions, all other longitudinal barriers (including portable barriers installed permanently), all other terminals, sign supports, and all other breakaway hardware
- Temporary work zone devices, including portable barriers, manufactured after December 31, 2019, must have been successfully tested to the 2016 edition of MASH. Such devices manufactured on or before this date, and successfully tested to NCHRP Report 350 or the 2009 edition of MASH, may continue to be used throughout their normal service lives.

The New York State Department of Transportation (NYSDOT) currently uses roadside hardware systems, such as cable, W-beam supported by either weak posts or heavy posts with blockouts, and box beam systems. NYSDOT desires to continue to have access to these systems following the MASH implementation date noted above. However, the increased mass of the MASH 2270P vehicle and kinetic energy of the crash test has been shown to increase impact loading and dynamic deflection of guardrail systems. Thus, a need exists to evaluate the noted systems under the MASH 2016 criteria to determine each system's dynamic deflection, working width, and crashworthiness under MASH 2016 Test Level 3 (TL-3).

1.2 Objective

The objective of this research was to evaluate NYSDOT's box beam to weak-post W-beam transition system. The system was evaluated according to the TL-3 criteria of MASH 2016 [3].

1.3 Scope

The research objective was achieved through the completion of several tasks. Two fullscale crash tests were conducted on the box beam to weak-post W-beam transition system according to MASH 2016 test designation no. 3-21. Next, the full-scale crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the box beam to weak-post W-beam transition system.

2 DESIGN DETAILS

The test installation consisted of a 224-ft 1³/₄-in. (68.3-m) long New York box beam to weak-post W-beam transition, as shown in Figures 1 through 35 for test nos. NYBWT-2 and NYBWT-3. Photographs of the NYBWT-2 and NYBWT-3 test installations are shown in Figures 36 through 40 and Figures 41 through 43, respectively. The installation for test no. NYBWT-3 was identical to the installation for test no. NYBWT-2. The only difference between the two tests was the impact point and direction of travel. The New York Standard sheet for box beam to weak-post W-beam transition is shown in Appendix A. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

Each ASTM A500 Grade B box beam section, measuring 6 in. x 6 in. x ${}^{3}/{}_{16}$ in. (152 x 152 x 5 mm) thick, was 215½ in. (5,474 mm) in length and installed at a height of 27 in. (686 mm). The box beam sections were spliced together with splice plates. For this test series, the splice plate configuration consisted of tack welded nuts as shown in Figures 8 and 30. The cable transition assembly located between post nos. 13 and 19 was attached to the transition anchor assembly 360 in. (9,144 mm) upstream from the downstream end of the box beam. The W-beam guardrail was mounted with a top-rail height of 32 in. (813 mm) from the surface of the roadway. The rails were layered such that the upstream rail section was layered in front of the downstream section.

All posts were 65-in. (1,651-mm) long, ASTM A36 S3x5.7 (S75x8.5) posts with attached soil plates. Post nos. 1 through 18 were spaced 72 in. (1,829 mm) on center and with an embedment depth of $37^{15}/_{16}$ in. (964 mm) into the soil. Post nos. 19 through 25 were spaced 50 in. (1,270 mm) on center. Post nos. 25 through 28, 32, and 33 were spaced 75 in. (1,905 mm) on center. Post no. 19 was embedded into the soil to a depth of 345% in. (879 mm). Post nos. 28 through 32 were spaced out 150 in. (3,810 mm) on center. Post nos. 20, 21, 23, 24, and 27 were not connected to the rail. Post nos. 20 through 33 were embedded into the soil to a depth of 325% in. (829 mm). The downstream anchorage assembly was attached to post no. 33 and its cable spanned $145^3/_{16}$ in. (3,688 mm). All posts in the critical impact region were placed in 24-in. (610-mm) diameter holes, which were backfilled with well-graded gravel and tamped. Soil details are shown in Appendix C.

Three separate anchor assemblies were contained in this system. The upstream end of the system was anchored using a reverse cable anchorage system to develop the longitudinal resistance in the rail for end-on impacts. The upper ends of the cables were connected to mounting plates bolted to the box beam, while the lower ends of the cables were connected to buried pile end anchors, as shown in Figures 10 and 39. The transition anchor consisted of three cables attached to a concrete block embedded in the soil upstream and behind the transition at an 11-degree offset from the box beam. The anchor cables were attached to the backside of the downstream end of the W-beam guard rail attached to a concrete block embedded in the soil behind and downstream from post no. 33 at a 14-degree offset from the front of the system. The end of the W-beam guardrail was attached to the concrete block such that the front of the rail was twisted to face upward. Details for the upstream cable anchor are shown in Figures 10 and 11.

The 12-gauge (2.7-mm) transition cover was bolted to the box beam just upstream from post no. 16. It was also attached to the W-beam, which was bolted to the box beam. The transition anchor cables were bolted through box beam and the W-beam. The downstream end of the transition cover was bent into the W-beam in order to reduce vehicle snag on the transition cover.

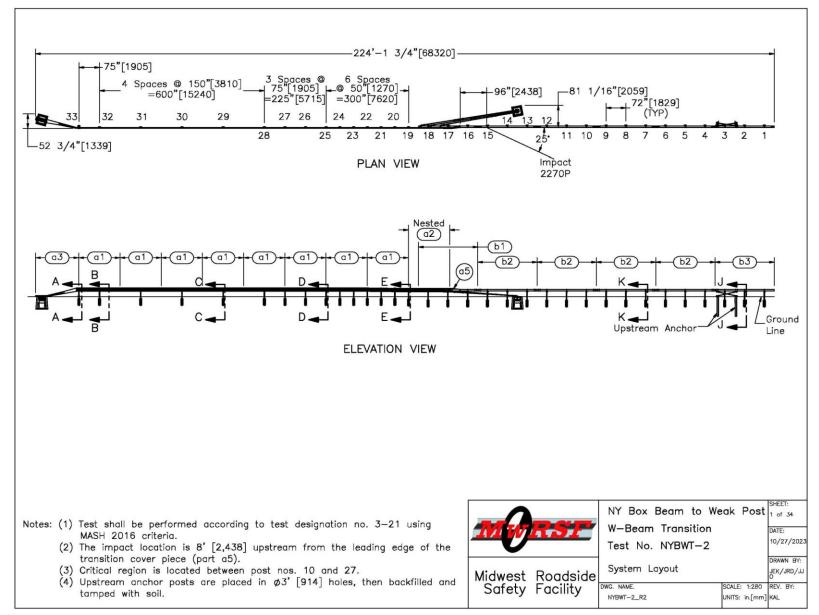


Figure 1. System Layout, Test No. NYBWT-2

4

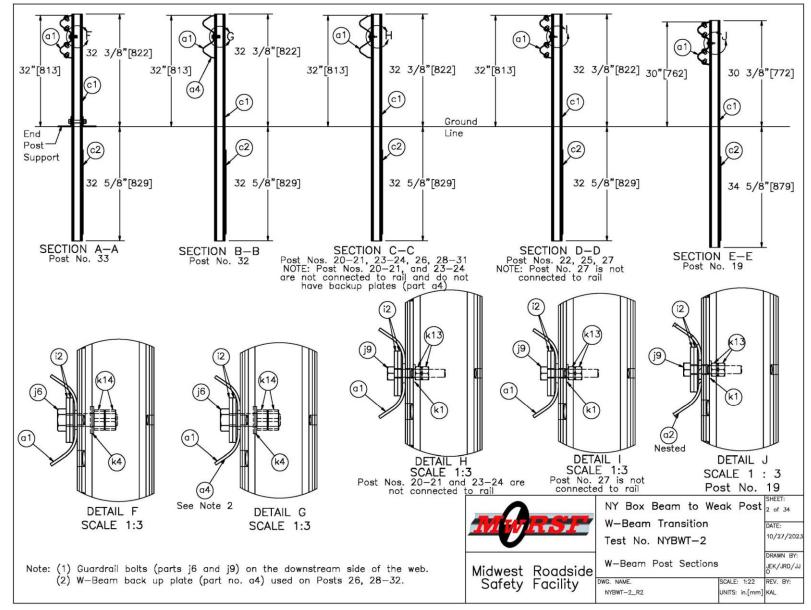


Figure 2. W-Beam Post Section, Test No. NYBWT-2

S

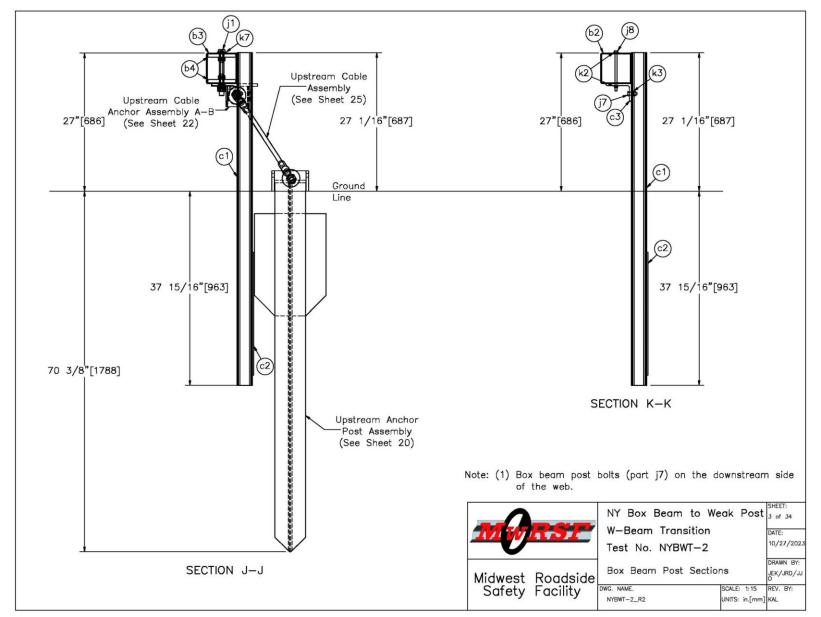


Figure 3. Box Beam Post Section, Test No. NYBWT-2

6

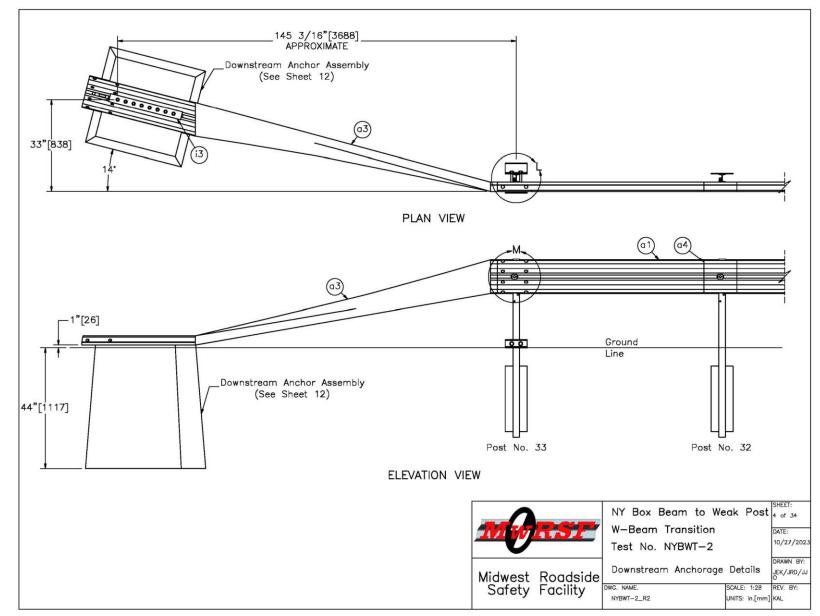


Figure 4. Downstream Anchorage Details, Test No. NYBWT-2

7

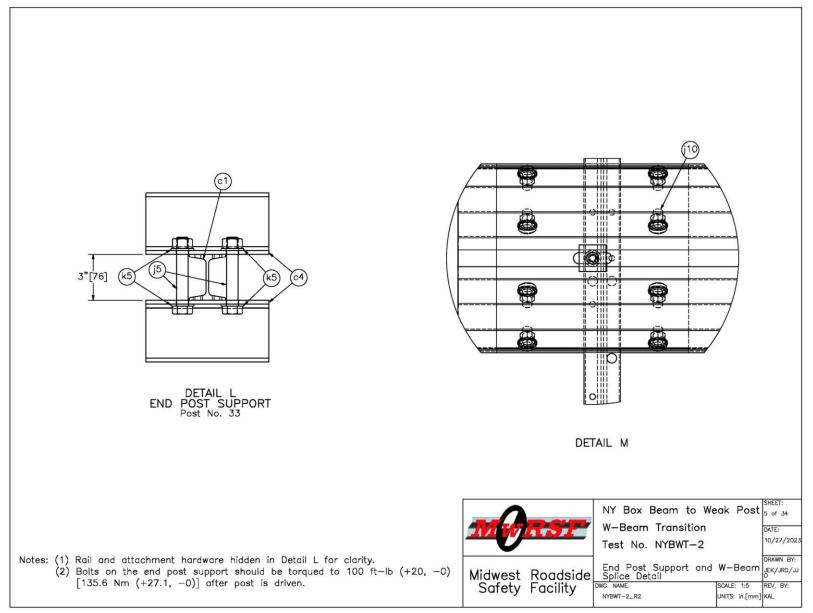


Figure 5. End Post Support and W-beam Splice Detail, Test No. NYBWT-2

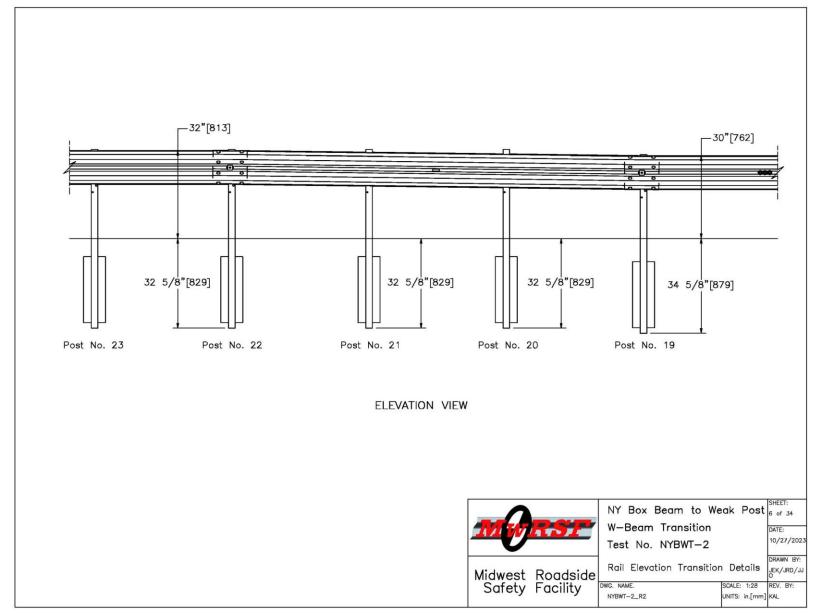


Figure 6. Rail Elevation Transition Details, Test No. NYBWT-2

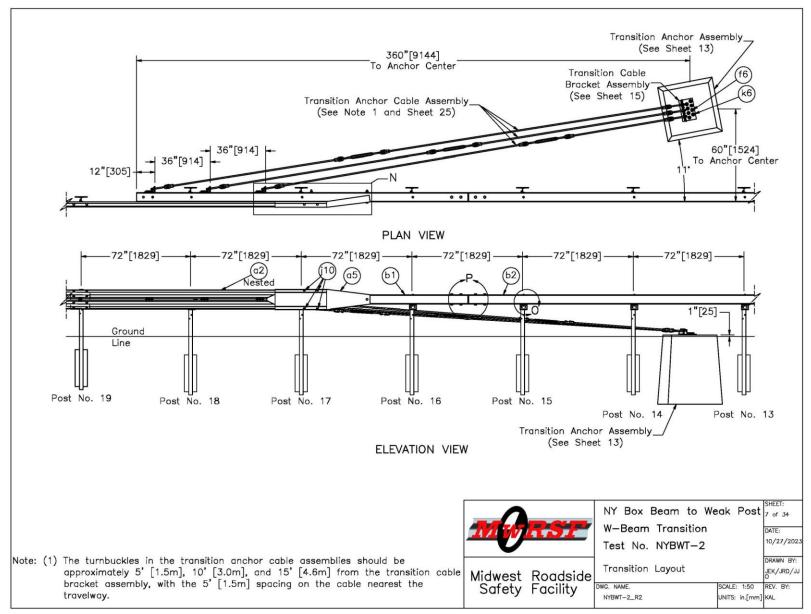


Figure 7. Transition Layout, Test No. NYBWT-2

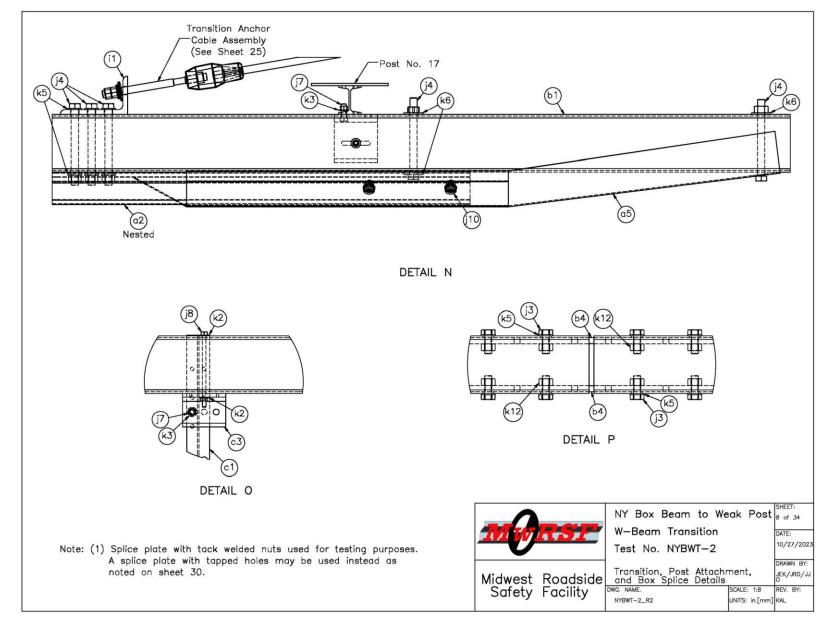


Figure 8. Transition, Post Attachment, and Box Splice Details, Test No. NYBWT-2

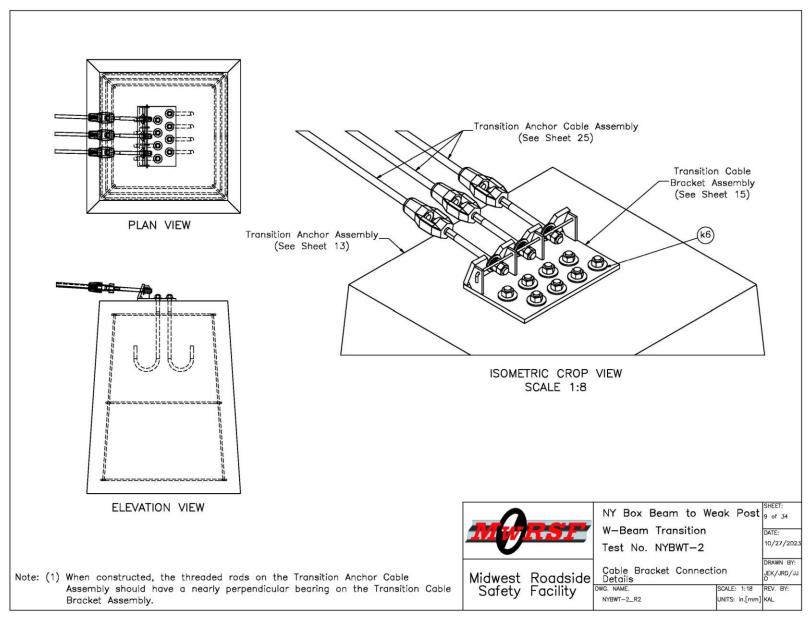


Figure 9. Cable Bracket Connection Details, Test No. NYBWT-2

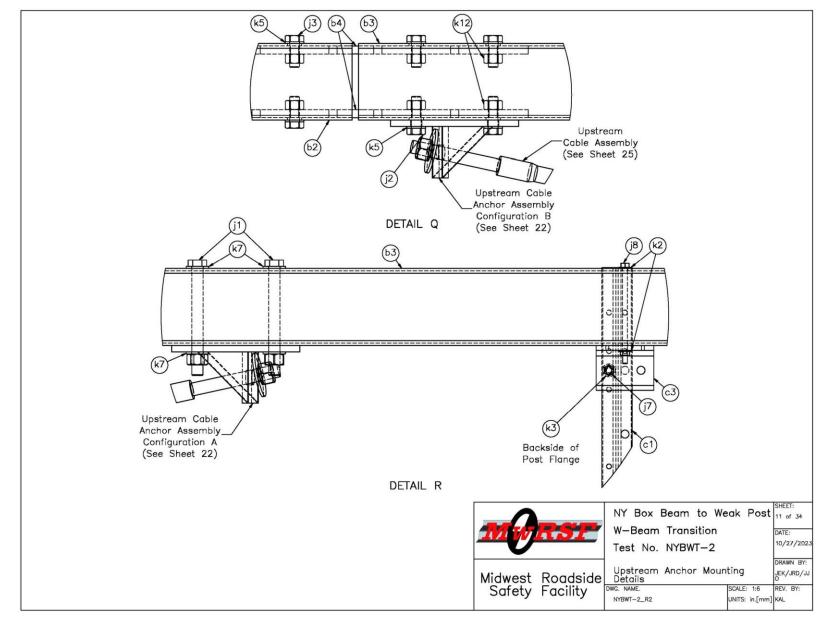


Figure 10. Upstream Anchorage Details, Test No. NYBWT-2

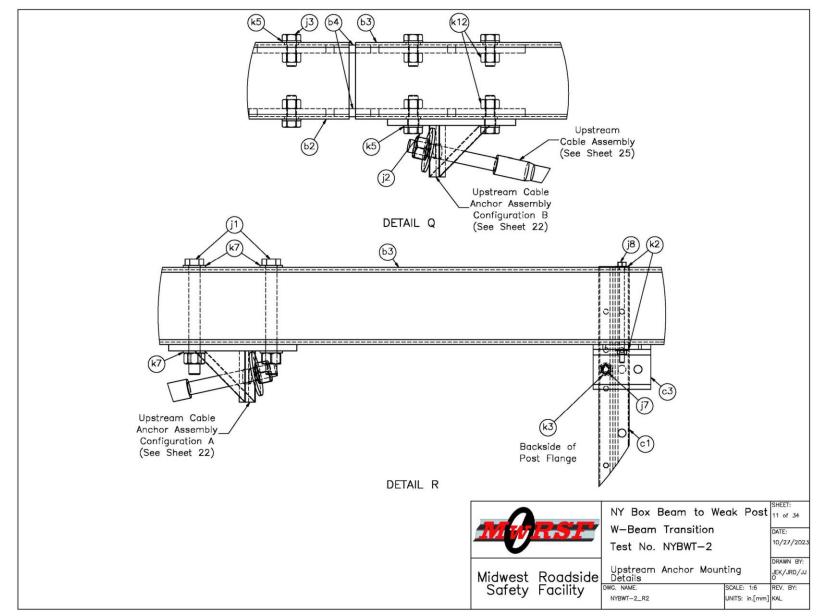


Figure 11. Upstream Anchor Mounting Details, Test No. NYBWT-2

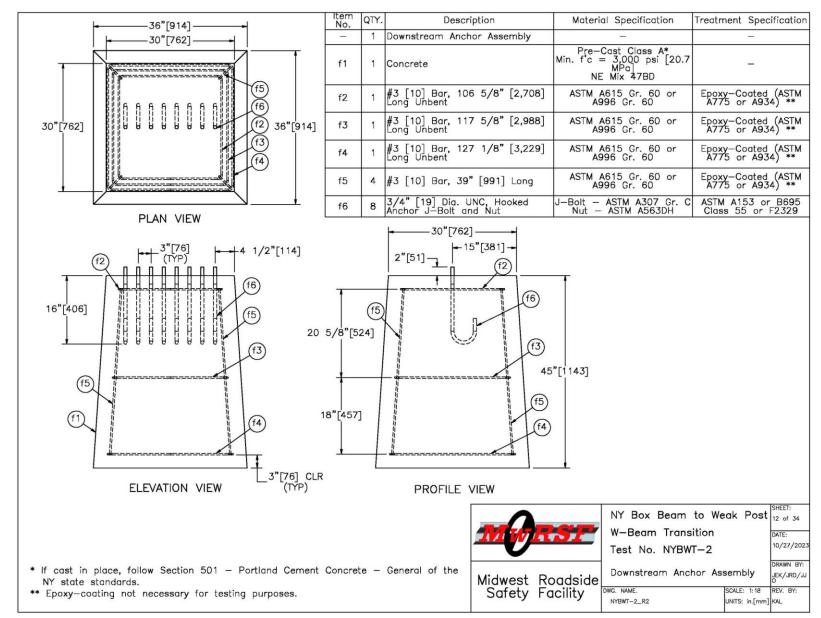


Figure 12. Downstream Anchor Assembly, Test No. NYBWT-2

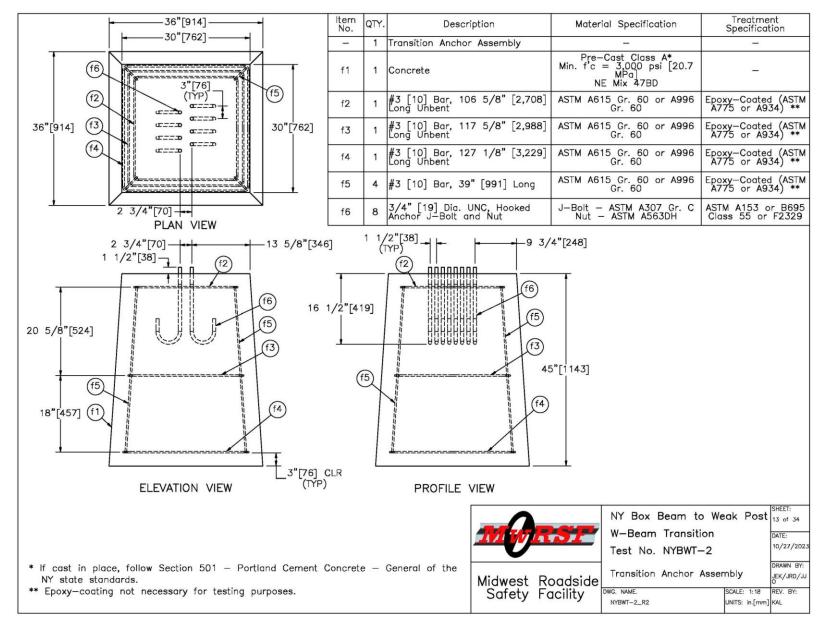


Figure 13. Transition Anchor Assembly, Test No. NYBWT-2

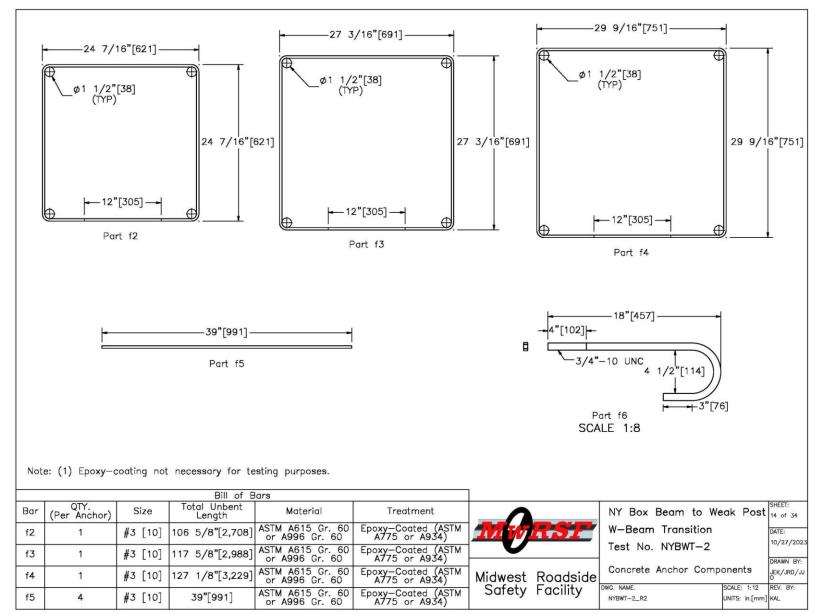


Figure 14. Concrete Anchor Components, Test No. NYBWT-2

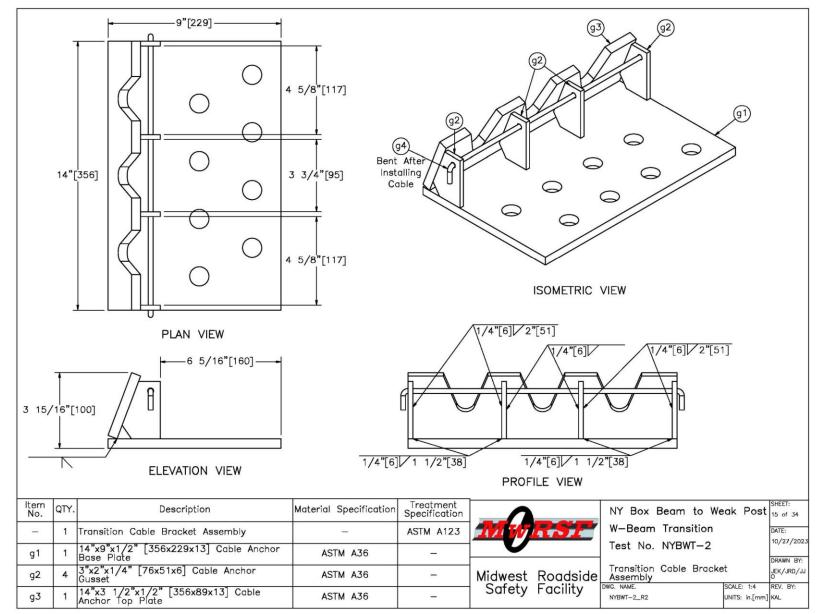


Figure 15. Transition Cable Bracket Assembly, Test No. NYBWT-2

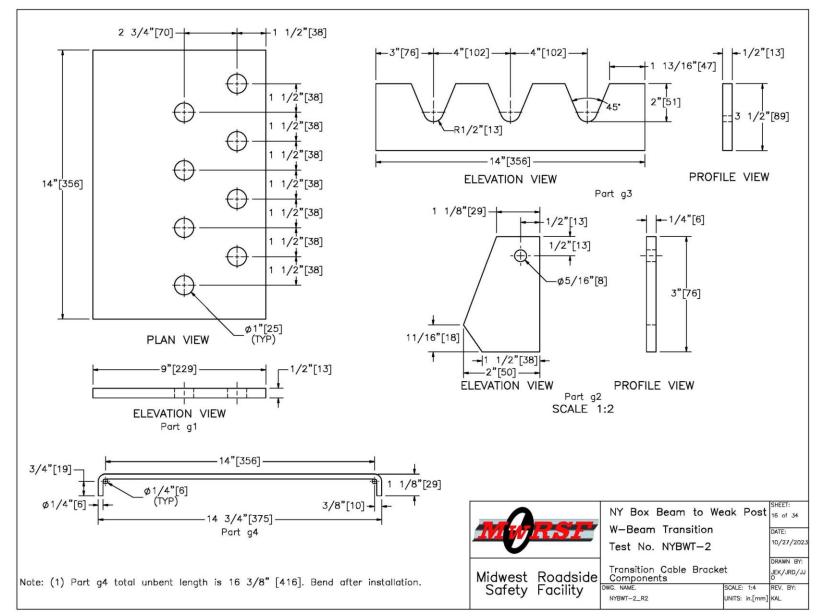


Figure 16. Transition Cable Bracket Components, Test No. NYBWT-2

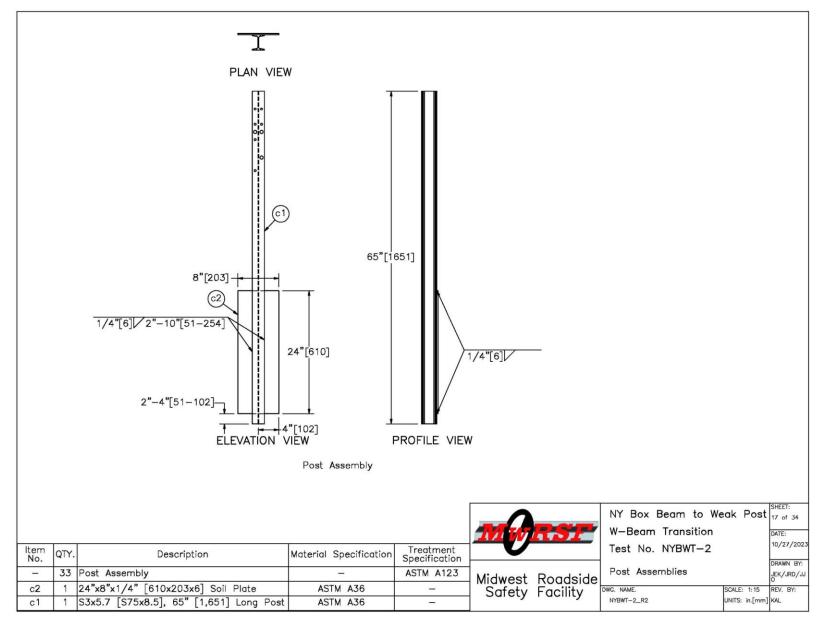


Figure 17. Post Assemblies, Test No. NYBWT-2

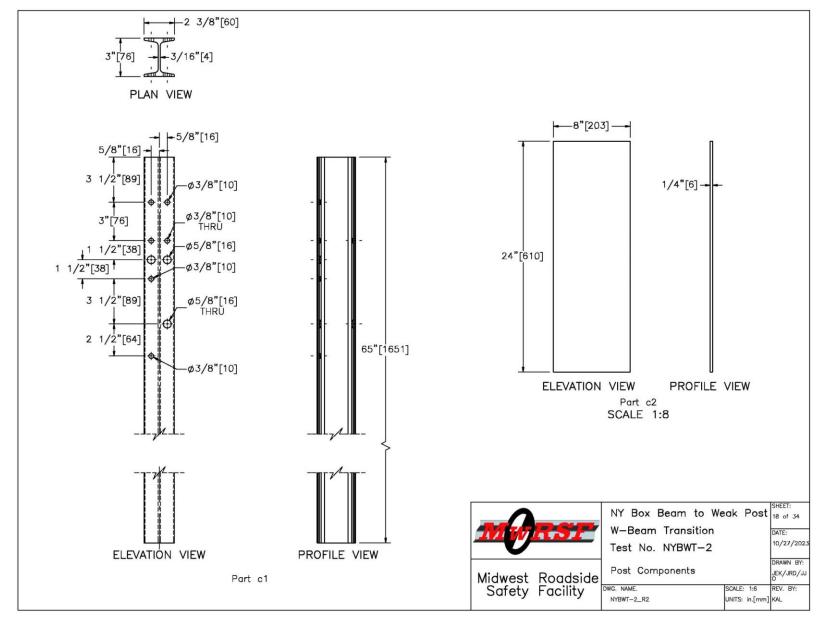


Figure 18. Post Components, Test No. NYBWT-2

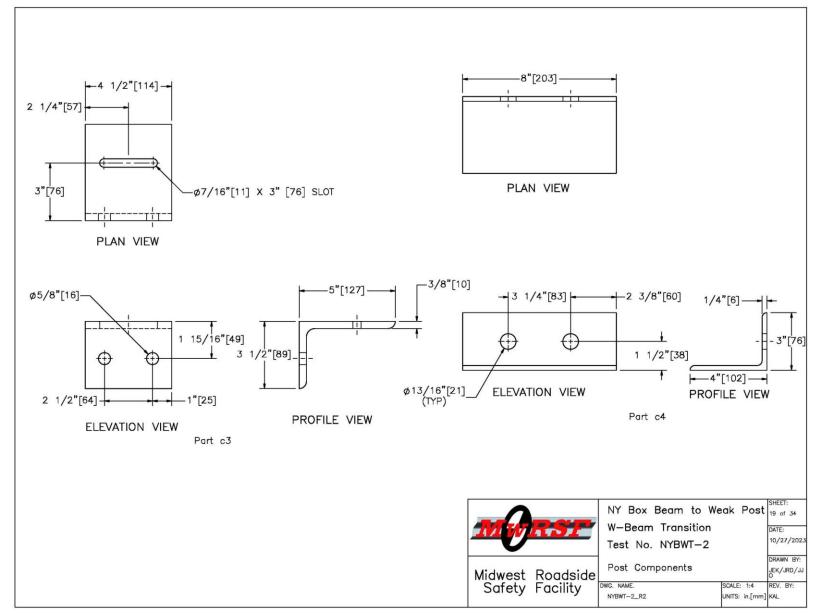


Figure 19. Post Components, Rail Support Bracket and Post Collar, Test No. NYBWT-2

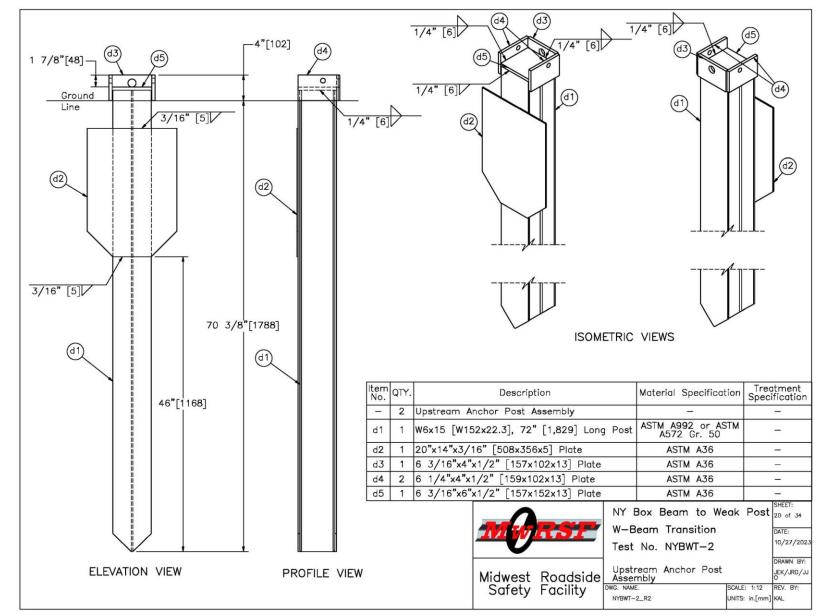


Figure 20. HFT Anchor Assembly, Test No. NYBWT-2

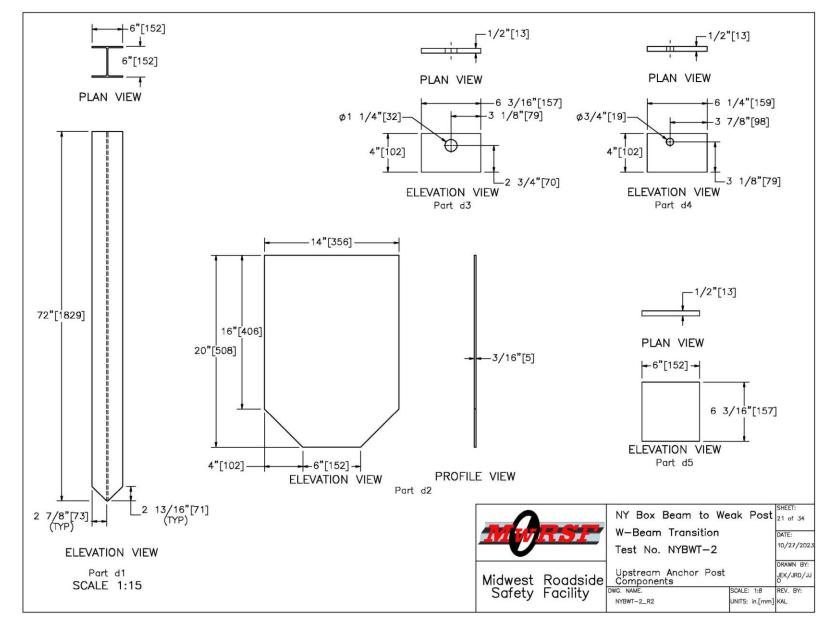


Figure 21. HFT Anchor Assembly Components, Test No. NYBWT-2

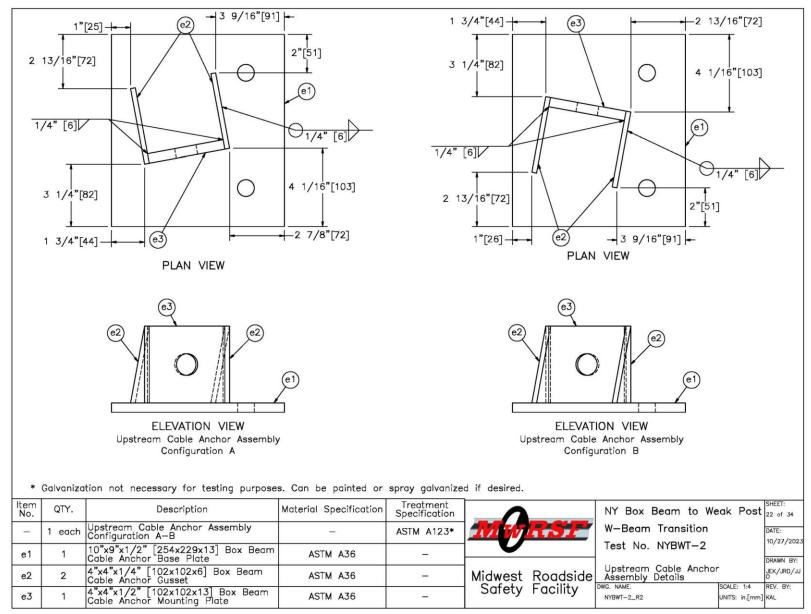


Figure 22. Upstream Cable Anchor Assembly Details Test No. NYBWT-2

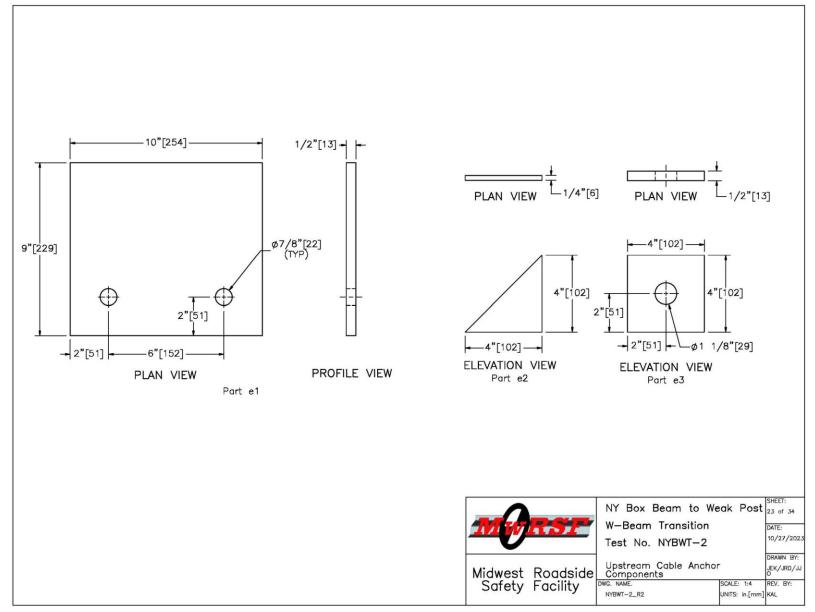


Figure 23. Upstream Cable Anchor Components, Test No. NYBWT-2

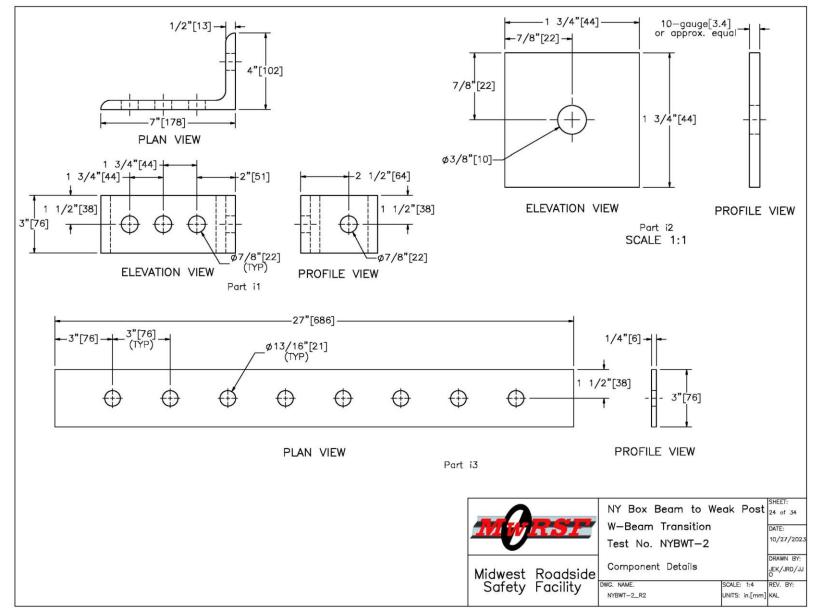


Figure 24. Components Details, Test No. NYBWT-2

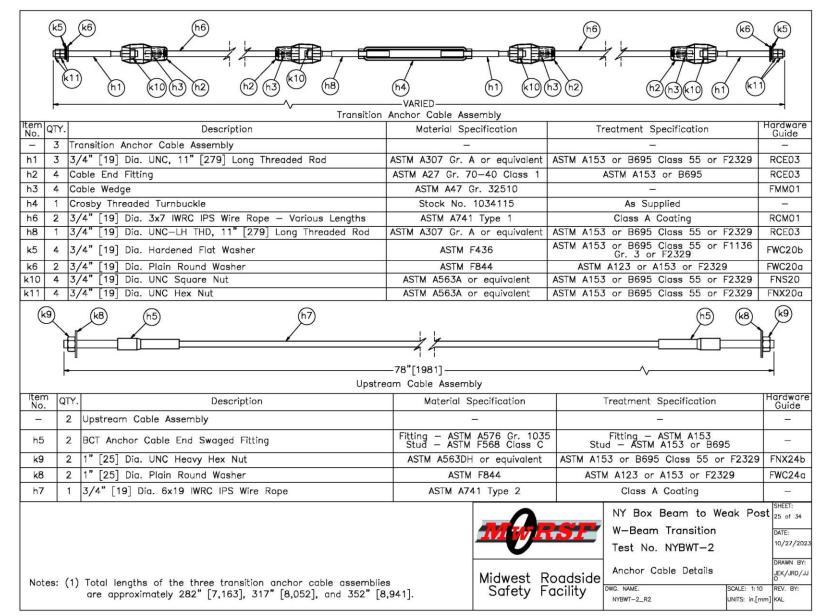


Figure 25. Anchor Cable Details, Test No. NYBWT-2

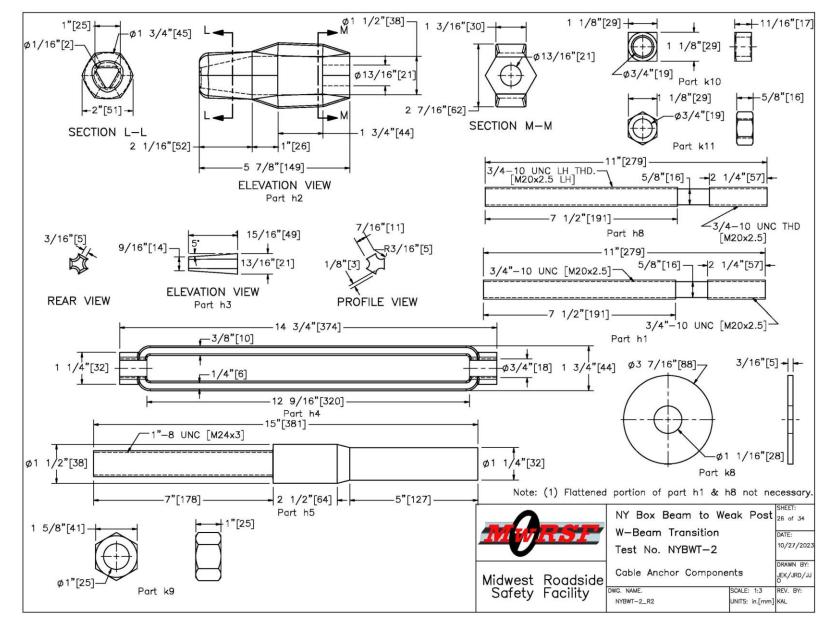


Figure 26. Cable Anchor Components, Test No. NYBWT-2

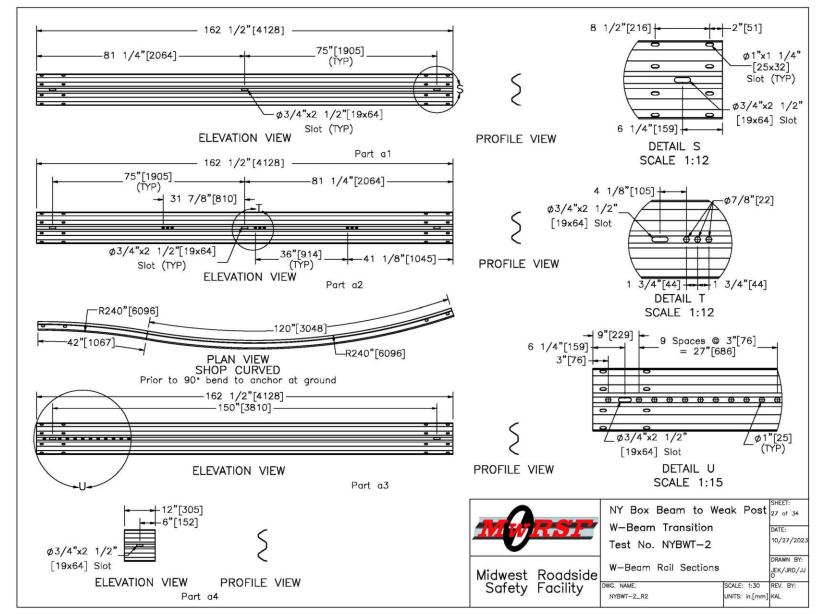


Figure 27. W-Beam Rail Section, Test No. NYBWT-2

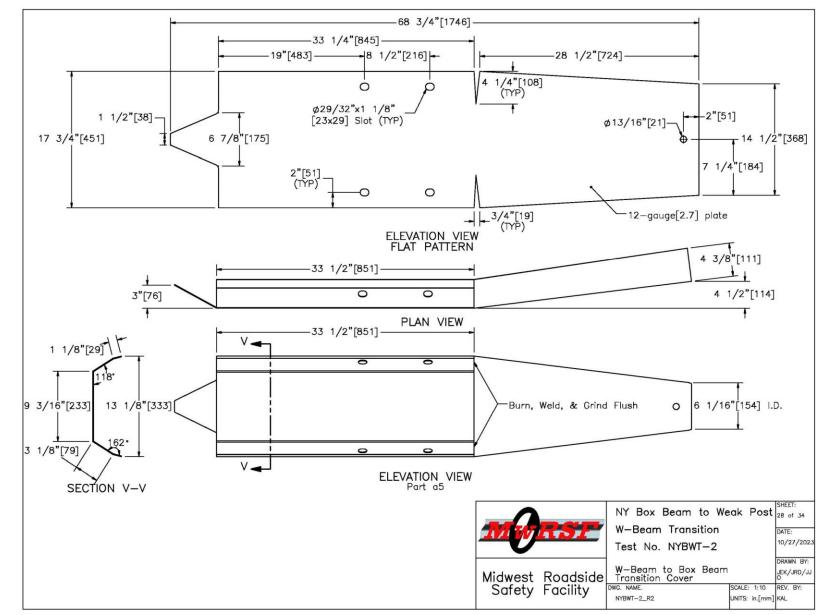


Figure 28. Box Beam to W-Beam Transition Cover, Test No. NYBWT-2

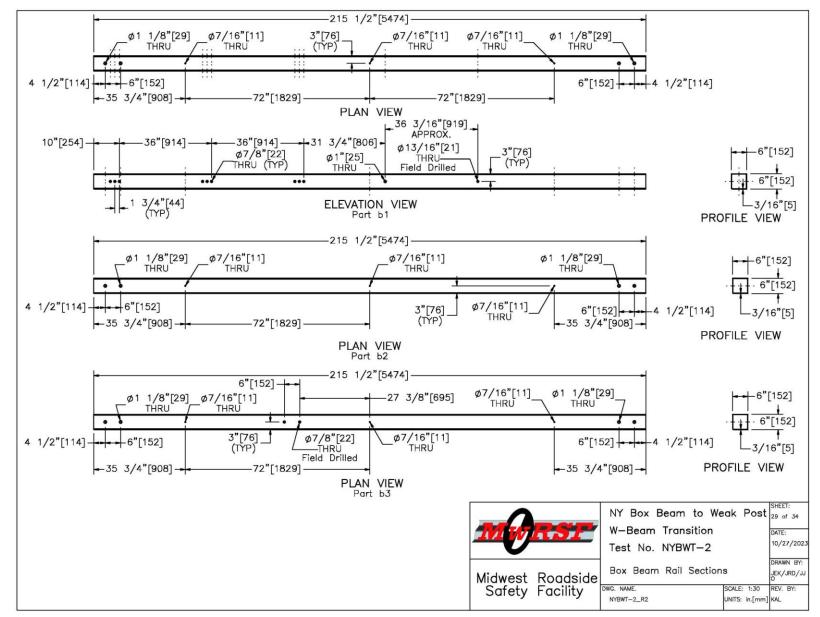


Figure 29. Box Beam Rail Section, Test No. NYBWT-2

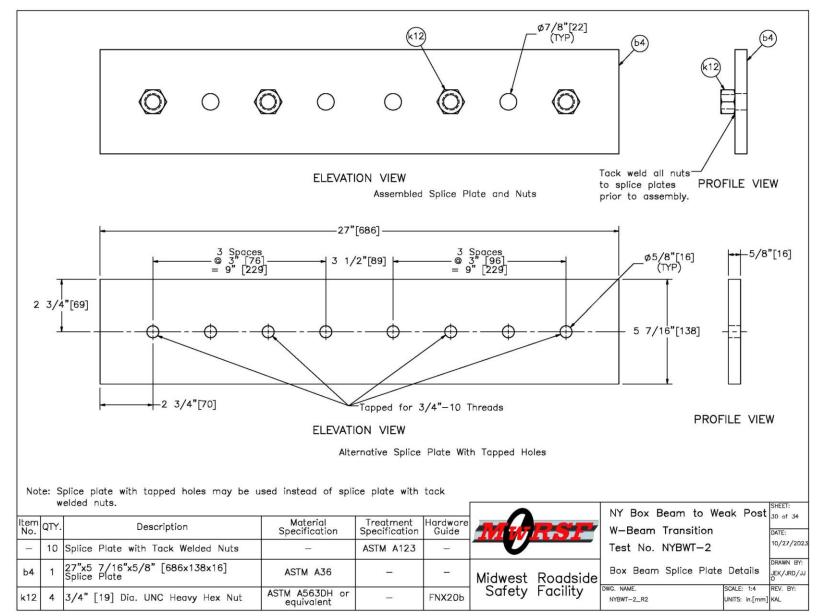


Figure 30. Box Beam Splice Plate Details, Test No. NYBWT-2

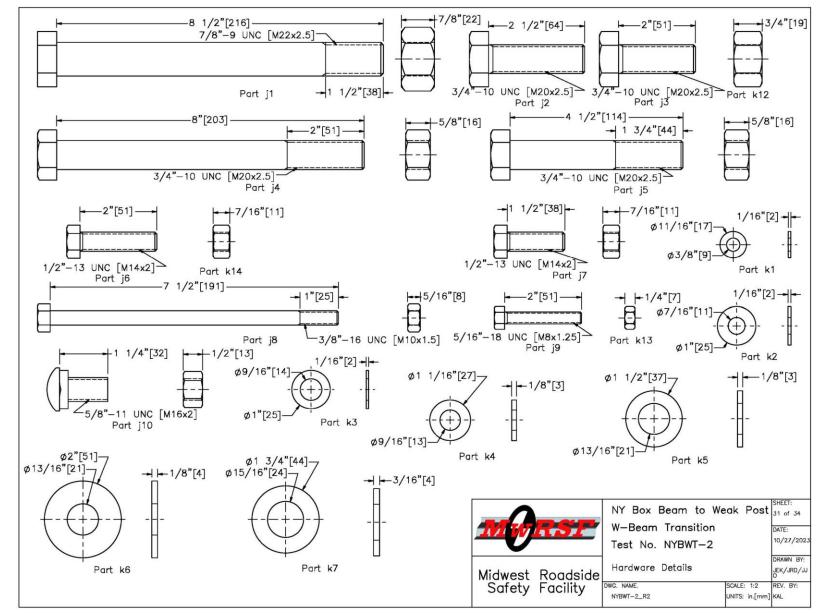


Figure 31. Hardware Details, Test No. NYBWT-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	8	12'-6" [3,810] 12-gauge [2.7] W-Beam Section	AASHTO M180	ASTM A123 or A653	RWM02c
a2	2	12'-6" [3,810] 12-gauge [2.7] W-Beam Section	AASHTO M180	ASTM A123 or A653	-
a3	1	12'-6" [3,810] 12-gauge [2.7] W-Beam Curved Section	AASHTO M180	ASTM A123 or A653	RWM11a
a4	6	12" [305] 12-gauge [2.7] W-Beam Backup Plate	AASHTO M180	ASTM A123 or A653	RWB01a
a5	1	W-Beam to Box Beam Transition Cover, 12-gauge [2.7]	ASTM A36	ASTM A123 or A653	-
Ь1	1	TS6"x6"x3/16" [152x152x5], 215 1/2" [5,474] Long Box Beam	ASTM A500 Gr. B	ASTM A123	-
ь2	4	TS6"x6"x3/16" [152x152x5], 215 1/2" [5,474] Long Box Beam	ASTM A500 Gr. B	ASTM A123	-
b3	1	TS6"x6"x3/16" [152x152x5], 215 1/2" [5,474] Long Box Beam	ASTM A500 Gr. B	ASTM A123	-
b4	10	27"x5 7/16"x5/8" [686x138x16] Splice Plate	ASTM A36	-	-
c1	33	S3x5.7 [S75x8.5], 65" [1,651] Long Post	ASTM A36	-	-
c2		24"x8"x1/4" [610x203x6] Soil Plate	ASTM A36	-	-
c3	18	5"x3 1/2"x3/8" [127x89x10], 4 1/2" [114] Long L- Bracket	ASTM A36	ASTM A123	-
c4	2	4"x3"x1/4" [102x76x6], 8" [203] Long L-Bracket	ASTM A36	ASTM A123	-
d1		W6x15 [W152x22.3], 72" [1,829] Long Post	ASTM A992 or ASTM A572 Gr. 50	-	-
d2	2	20"x14"x3/16" [508x356x5] Plate	ASTM A36	-	-
d3	2	6 3/16"x4"x1/2" [157x102x13] Plate	ASTM A36	-	-
d4	4	6 1/4"x4"x1/2" [159x102x13] Plate	ASTM A36	-	-
d5	2	6 3/16"x6"x1/2" [157x152x13] Plate	ASTM A36		
e1	2	10"x9"x1/2" [254x229x13] Box Beam Cable Anchor Base Plate	ASTM A36	-	-
e2		4"x4"x1/4" [102x102x6] Box Beam Cable Anchor Gusset	ASTM A36	-	-
e3	2	4"x4"x1/2" [102x102x13] Box Beam Cable Anchor Mounting Plate	ASTM A36	-	-
f1	2	Concrete	Pre-Cast Class A* Min. f'c = 3,000 psi [20.7 MPa] NE Mix 47BD	-	-
f2	2	#3 [10] Bar, 106 5/8" [2,708] Long Unbent	ASTM A615 Gr. 60 or A996 Gr. 60	Epoxy-Coated (ASTM A775 or A934) **	-
f3	2	#3 [10] Bar, 117 5/8" [2,988] Long Unbent	ASTM A615 Gr. 60 or A996 Gr. 60	Epoxy-Coated (ASTM A775 or A934) **	-
f4	2	#3 [10] Bar, 127 1/8" [3,229] Long Unbent	ASTM A615 Gr. 60 or A996 Gr. 60	Epoxy-Coated (ASTM A775 or A934) **	

NY state standards. ** Epoxy-coating not necessary for testing purposes.

		NY Box Beam to Weak Post	SHEET: 32 of 34
MIN	RSF	W-Beam Transition	DATE:
-0		Test No. NYBWT-2	10/27/2023
Midwest	Roadside	Bill of Materials	DRAWN BY: JEK/JRD/JJ O
Safety	Facility	DWG. NAME. SCALE: None NYBWT-2_R2 UNITS: in.[mm	REV. BY:] KAL

Figure 32. Bill of Materials, Test No. NYBWT-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
f5	8	#3 [10] Bar, 39" [991] Long	ASTM A615 Gr. 60 or A996 Gr. 60	Epoxy-Coated (ASTM A775 or A934) **	-
f6	16	3/4" [19] Dia. UNC, Hooked Anchor J-Bolt and Nut	J–Bolt – ASTM A307 Gr. C Nut – ASTM A563DH	ASTM A153 or B695 Class 55 or F2329	FRH20a
g1	1	14"x9"x1/2" [356x229x13] Cable Anchor Base Plate	ASTM A36	-	-
g2	4	3"x2"x1/4" [76x51x6] Cable Anchor Gusset	ASTM A36	-	-
g3	1	14"x3 1/2"x1/2" [356x89x13] Cable Anchor Top Plate	ASTM A36	-	-
g4	1	1/4" [6] Dia., 16 3/8" [416] Long Brass Rod	ASTM B16-00	-	-
h1	9	3/4" [19] Dia. UNC, 11" [279] Long Threaded Rod	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	RCE03
h2	12	Cable End Fitting	ASTM A27 Gr. 70-40 Class 1	ASTM A153 or B695	RCE03
h3	12	Cable Wedge	ASTM A47 Gr. 32510	-	FMM01
h4	3	Crosby Threaded Turnbuckle	Stock No. 1034115	As Supplied	-
h5		BCT Anchor Cable End Swaged Fitting	Fitting — ASTM A576 Gr. 1035 Stud — ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695	-
h6	6	3/4" [19] Dia. 3x7 IWRC IPS Wire Rope — Various Lengths	ASTM A741 Type 1	Class A Coating	RCM01
h7	2	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope — Various Lengths	ASTM A741 Type 2	Class A Coating	-
h8	3	3/4" [19] Dia. UNC-LH THD, 11" [279] Long Threaded Rod	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	RCE03
i1	3	7"x4"x1/2" [178x102x13], 3" [76] Long L-Bracket	ASTM A36	ASTM A123	-
i2	20	1 3/4"x1 3/4"x10-gauge [44x44x3.4] Square Washer	ASTM A36	ASTM A123	-
i3	1	27"x3"x1/4" [686x76x6] Washer Plate	ASTM A36	ASTM A123	-
j1 *	2	7/8"—9 UNC [M22x2.5], 8 1/2" [216] Long Heavy Hex Head Bolt and Nut	Bolt — ASTM F3125 Gr. A325 Type 1 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX22b
j2 *	2	3/4"—10 UNC [M20x2.5], 2 1/2" [64] Long Fully Threaded Heavy Hex Head Bolt	Bolt — ASTM F3125 Gr. A325 Type 1 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX20b
j3	38	3/4"—10 UNC [M20x2.5], 2" [51] Long Fully Threaded Heavy Hex Head Bolt	Bolt — ASTM F3125 Gr. A325 Type 1 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX20b
j4	11	3/4"-10 UNC [M20x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX20a
j5	2	3/4"—10 UNC [M20x2.5], 4 1/2" [114] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX20a
j6	2	1/2"—13 UNC [M14x2], 2" [51] Fully Threaded Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX14a
		 If using the alternate splice plates with tapped holes, these hex bolts can be 1/2" [13] shorter. 	Midwest Roadside Safety Facility	NY Box Beam to Weak Po W-Beam Transition Test No. NYBWT-2 Bill of Materials DWG. NAME. NYBWT-2_R2	DATE: 10/27/202 DRAWN BY: JEK/JRD/J. O Nee REV. BY:

Figure 33. Bill of Materials, Test No. NYBWT-2

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
j7	18	1/2"—13 UNC [M14x2], 1 1/2" [38] Long Fully Threaded Hex Head Bolt and Nut	Bolt — ASTM A307 Gr. A or equivalent Nut — ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX14a
j8	18	3/8"—16 UNC [M10x1.5], 7 1/2" [191] Long Hex Head Bolt and Nut	Bolt — ASTM A307 Gr. A or equivalent Nut — ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX10a
j9	8	5/16"—18 UNC [M8x1.25], 2" [51] Long Fully Threaded Hex Head Bolt	Bolt — ASTM A307 Gr. A or equivalent Nut — ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX08a
j10	76	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
k1	8	5/16" [8] Dia. Hardened Flat Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	-
k2	36	3/8" [10] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC10a
k3	18	1/2" [13] Dia. Plain Narrow Round Washer	SAE Low Carbon Gr. 2	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	-
k4	2	1/2" [13] Dia. Hardened Flat Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	FWC14b
k5	74	3/4" [19] Dia. Hardened Flat Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	FWC20b
k6	17	3/4" [19] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
k7	4	7/8" [22] Dia. Hardened Flat Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	FWC22b
k8	4	1" [25] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
k9	4	1" [25] Dia. UNC Heavy Hex Nut	ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24b
k10	12	3/4" [19] Dia. UNC Square Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNS20
k11	12	3/4" [19] Dia. UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX20a
k12*	40	3/4" [19] Dia. UNC Heavy Hex Nut	ASTM A563DH or equivalent	-	FNX20b
k13	16	5/16" [8] Dia. UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX08a
k14	4	1/2" [13] Dia. UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX14a

* If using the alternate splice plates with tapped holes, these additional hex nuts are not required.

		Inside Diameter			Outside Diameter			Thickness		
Washer	Washer Series	sher eries Basic	Tolerance		Basic	Tolerance		Basic	Max.	Min.
	Series	Basic	Plus	Minus	Basic	Plus	Minus	Basic	Mdx.	Min.
3/4"	Regular (k5)	0.812"	0.03"	0.007"	1.469"	0.03"	0.007"	0.134"	0.16"	0.108'
0, 1	Wide (k6)	0.812"	0.03"	0.007"	2"	0.03"	0.007"	0.165"	0.192"	0.136'

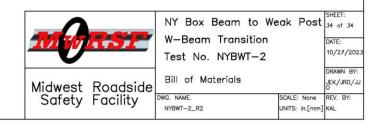


Figure 34. Bill of Materials, Test No. NYBWT-2

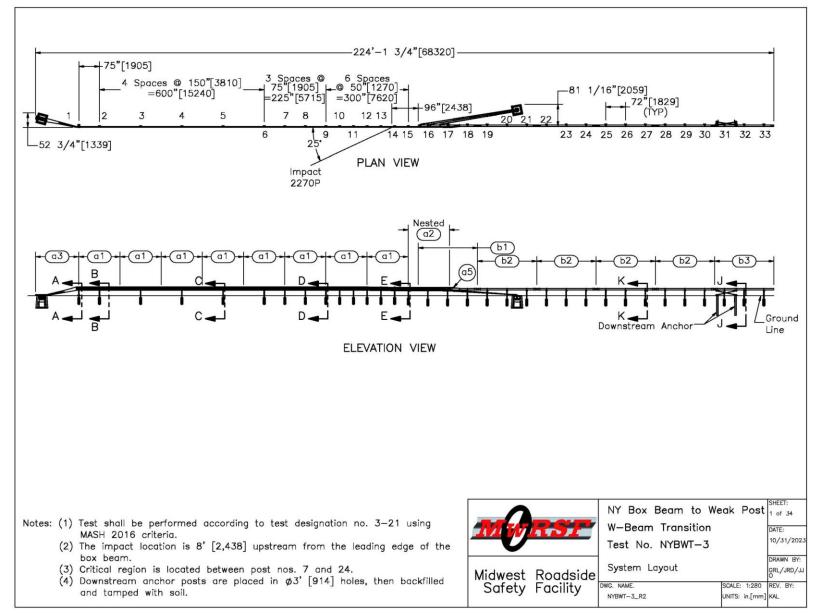


Figure 35. System Layout, Test No. NYBWT-3

Figure 36. System Installation, Test No. NYBWT-2

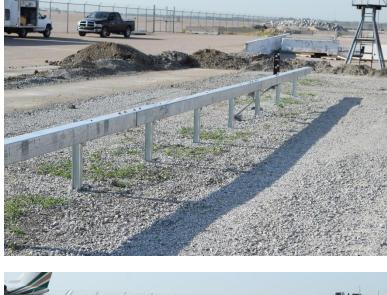
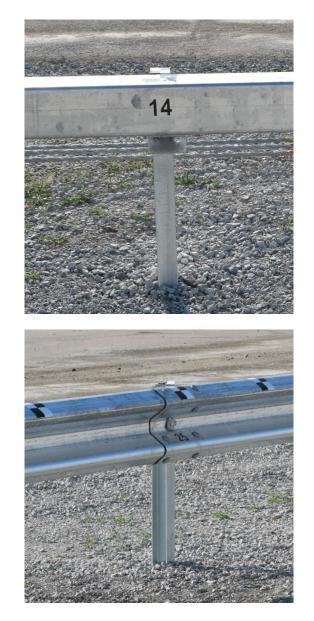



Figure 37. Box Beam and W-Beam Rails, Test No. NYBWT-2

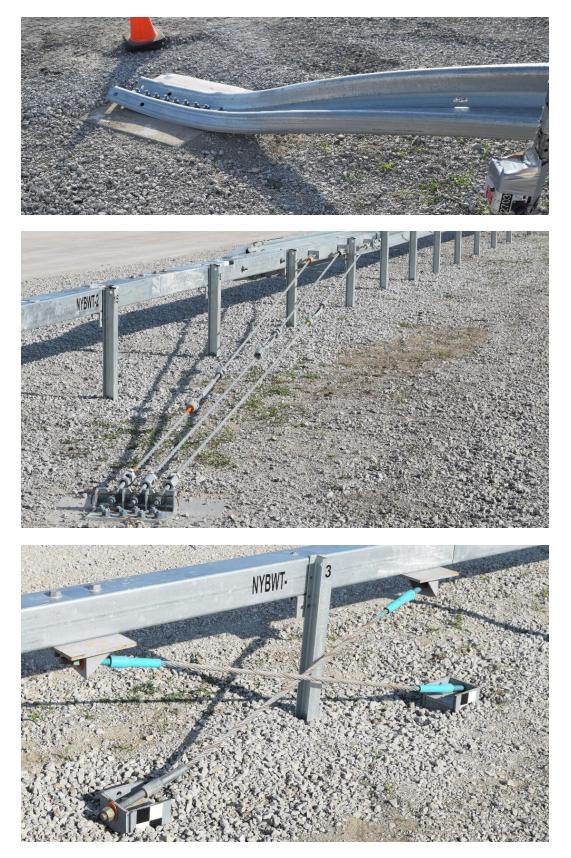


Figure 39. Anchors, Test No. NYBWT-2

Figure 40. Transition Cover Assembly, Test No. NYBWT-2

Figure 41. System Installation, Test No. NYBWT-3

Figure 42. Anchors, Test No. NYBWT-3

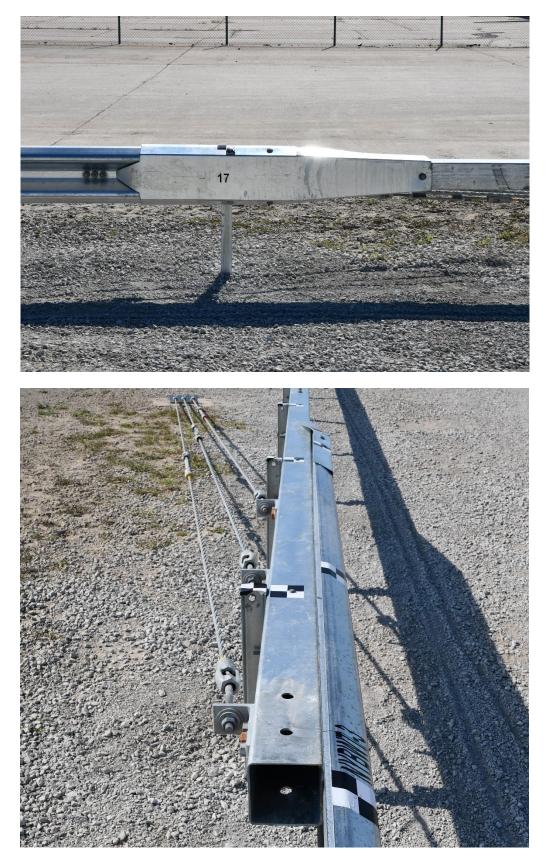


Figure 43. Transition Cover Assembly, Test No. NYBWT-3

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

Longitudinal barriers, such as transitions between box beam and W-beam guardrail systems, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System. For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. Note that there is no difference between MASH 2009 and MASH 2016 for longitudinal barriers, such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016.

According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to one full-scale vehicle crash test, as summarized in Table 1. Test designation no. 3-20 is an optional test for transitions and is only conducted if there is reasonable uncertainty regarding the impact performance of the system for impacts with small cars. Based on guidance from the sponsor, two full-scale crash tests were deemed necessary to evaluate the transition: (1) MASH 2016 test designation no. 3-21, which evaluates the transition with the 2270P pickup truck vehicle, and (2) a reverse-direction impact of test designation no. 3-21 with the 2270P vehicle. The reverse-direction impact test would be required to evaluate the transition for installations that require two-way traffic adjacent to the barrier. MASH 2016 also requires that transitions be evaluated adjacent to their connection to rigid barriers and in the stiffness transition region.

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers - Tran	isitions
U	

	Test		Vehicle	Impact C	onditions		
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹	
Longitudinal Barrier-	3-20 (optional)	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I	
Transition	3-21	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I	

¹ Evaluation criteria explained in Table 2.

Based on prior research, the small car test was deemed not critical for testing and evaluation of this system. The box beam guardrail system successfully met NCHRP Report 350 test designation no. 3-11 [4]. Similarly, the weak-post W-beam guardrail successfully met NCHRP Report 350 test designation nos. 3-10 and 3-11 [5-6]. Based on recommendations made during NCHRP Project 22-14(03), only pickup truck tests were deemed necessary for the G3 box-beam longitudinal system and the modified G2 weak-post W-beam system with a rail height at 32 in. (813 mm) [7].

Table 2. MASH 20	16 Evaluation	Criteria for I	Longitudinal Barrier
14010 20101011 20	Lo H. M. M. C.	011101101101	

Structural AdequacyA.Test article should contain and redirect the vehicle or brin to a controlled stop; the vehicle should not penetrate, u override the installation although controlled lateral deflect test article is acceptable.									
	D.	Detached elements, fragment should not penetrate or show compartment, or present an un or personnel in a work zone. I occupant compartment should 5.2.2 and Appendix E of MAS	potential for penetra due hazard to other t Deformations of, or i l not exceed limits s	ating the occupant raffic, pedestrians, intrusions into, the					
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.							
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2. MASH 2016 for calculation procedure) should satisfy the follow limits:							
Ribk		Occupant Impact Velocity Limits							
		Component	Preferred	Maximum					
		Longitudinal and Lateral	30 ft/s	40 ft/s					
			(9.1 m/s)	(12.2 m/s)					
	I.	The Occupant Ridedown Ad Section A5.2.2 of MASH 20 satisfy the following limits:							
		Occupant Rideo	down Acceleration L	imits					
		Component	Preferred	Maximum					
		Longitudinal and Lateral	15.0 g's	20.49 g's					

During NCHRP Project 22-14(03), in test no. 476460-1-6, the G3 weak-post box-beam system was tested according to MASH test designation no. 3-11 criteria and had a dynamic deflection of 4.8 ft (1.5 m). During that same research study, in test no. 476460-1-7, the modified G2 weak-post W-beam system was tested according to MASH test designation no. 3-11 criteria and had a dynamic deflection of 8.6 ft (2.6 m). In addition, in test no. 608221-1, the modified G2 weak-post W-beam guardrail system was successfully tested according to MASH test designation no. 3-10 with no tears or punctures and only small scrapes to the underside of the vehicle [8]. The modified weak-post W-beam guardrail had a dynamic deflection of 6.0 ft (1.8 m) when impacted with the MASH small car.

Weak posts (S3x5.7) rotate minimally and yield at the ground line in the strong soil required by MASH, consequently, the posts behave as if they were in rigid sockets. Using quarterpost spacing with weak-posts in rigid sockets [9] reduced system deflections by almost 60 percent when compared to the modified G2 weak-post W-beam system. Therefore, the deflections of the reduced post spacing of the modified G2 weak-post W-beam system in the transition region should behave similar to the G3 weak-post box beam system. It was believed that the pickup truck tests noted above would be sufficient to evaluate the transition between two semi-rigid barrier systems that transition to approximately the same stiffness. Therefore, the small car test was deemed not critical based on prior full-scale testing and the guidance in MASH section 2.2.1.2. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

The test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding certain barriers could result in unanticipated barrier performance. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the box beam to weak-post W-beam transition system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in detail in MASH 2016 [3]. The full-scale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016 [3], foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil-dependent system, W6x16 (W152x23.8) posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm) above the ground line. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [10] was used to steer the test vehicle. A guide flag, attached to the left-front wheel for test no. NYBWT-2 and the right-front wheel for test no. NYBWT-3, was sheared off before impact with the barrier system. The ³/₈-in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. NYBWT-2, a 2011 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,931 lb (2,237 kg), 4,969 lb (2,254 kg), and 5,139 lb (2,331 kg), respectively. The test vehicle is shown in Figures 44 and 45, and vehicle dimensions are shown in Figure 46.

For test no. NYBWT-3, a 2012 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,151 lb (2,336 kg), 5,006 lb (2,271 kg), and 5,165 lb (2,343 kg), respectively. The test vehicle is shown in Figures 47 and 48, and vehicle dimensions are shown in Figure 49.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [11] was used to determine the vertical component of the c.g. for the pickup trucks. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicles were suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. for test no. NYBWT-2 is shown in Figures 46 and 50. The location of the final c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in

Figures 50 and 51. Round, checkered targets were placed at the c.g. on the left-side door, the rightside door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's right-side windshield wiper for test no. NYBWT-2 and left-side windshield wiper for test no. NYBWT-3. The flash bulbs were fired by a pressure tape switch mounted at the impact corner of the front bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

Figure 44. Test Vehicle, Test No. NYBWT-2

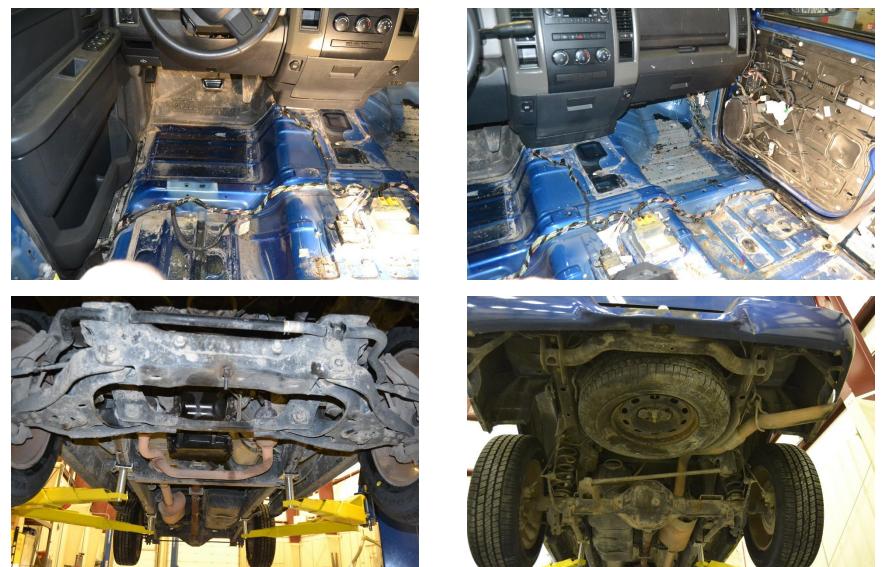


Figure 45. Test Vehicle's Interior Floorboards and Undercarriage, Test No. NYBWT-2

Date:	6/8/201	6		Test Name:	NYB	WT-2	VIN No:	1D7RB1	GK0BS51	5074
Year:	2011			Make	Do	dge	Model:	Ram 15	00 Quad (Cab
Tire Size:	275/60R	20	Tire Inflat	ion Pressure:	40	Psi	Odometer:	1	49499	
							Vehicle Ge Target Ranges	ometry - in. (I listed below	mm)	
		6	Test Inertia			T	A: 76 78±2 (198 C: 229 1/4 237±13 (60 E: 140 1/2 148±12 (37 G: 29 1/16 min: 28	(5823) D: (20±325) D: (3569) F: (60±300) F: (738) H:	40 1/2 ^{39±3 (1} 48 63 11/16	(1905) (1029) 000±75) (1219) (1618) 575±100)
				s 1		B 	I: <u>12 3/4</u> K: <u>21 1/2</u> M: <u>66</u> <u>67±1.5 (17</u> O: <u>45</u> <u>43±4 (110</u> Q: <u>33 1/2</u>	(546) L: (1676) N: (00±38) (1143) P: 00±75)	25 1/5 29 3/4 66 67±1.5 (4 3/4 21 1/2	(640) (756) (1676) (100±38) (121) (546)
-	— D — • •		— Е — — — — — — — — — — — — — — — — — —	╺╌┤╍			S: 16		75 1/2	(1918)
Mass Distrib	ution Ib (kg)						U (in	pact width):	31	(787)
Gross Static			RF <u>1382</u> RR <u>1183</u>	(627) (537)				Wheel Center Height (Front): Wheel Center Height (Rear): Wheel Well arance (Front):	hannon	(610) (610) (140)
Weights Ib (kg)	Cu	rb	Test Ir	ertial	Gross	Static		Wheel Well arance (Rear):	10	(254)
W-front	2746	(1246)	2717	(1232)	2823	(1280)		Bottom Frame Height (Front):	10 3/4	(273)
W-rear	2185	(991)	2252	(1021)	2316	(1051)		Bottom Frame Height (Rear):	23	(584)
W-total	4931	(2237)	4969	(2254)	5139	(2331)	E	Engine Type:	GAS	6cyl.
			5000±110	(2270±50)	5165±110	(2343±50)		Engine Size:	3.	6L
GVWR Rating	gs Ib		Surrogate	Occupant Da	ata		Transm	ission Type:	Αι	uto
Front	3700			Type:	Hybrid	3 11	e n	Drive Type:	RV	VD
Rear	3900			Mass:	170	b		Cab Style:	Quad	d Cab
Total	6700		Seat	Position:	Passer	iger	2	Bed Length:	6	7''
Note ar	ny damage prio	or to test: _				No	ne			

Figure 46. Vehicle Dimensions, Test No. NYBWT-2

Figure 47. Test Vehicle, Test No. NYBWT-3

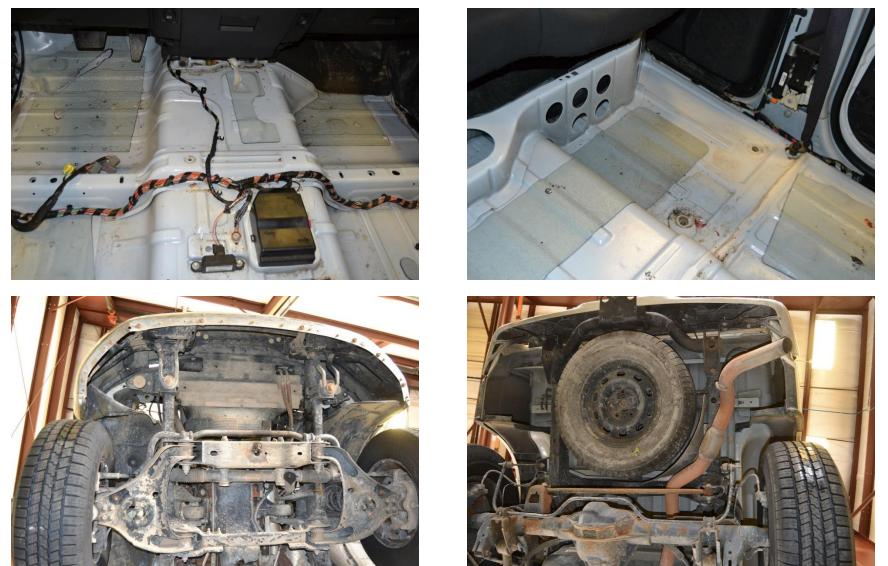


Figure 48. Test Vehicle's Interior Floorboards and Undercarriage, Test No. NYBWT-3

Date:	7/23/20	18		Test Name:	NYE	WT-3	VIN No:_	1C6I	RD6FPCS20	5397
Year:	2012			Make:	Do	dge	Model:		Ram 1500	
Tire Size:	P265/70	R17	Tire Infla	tion Pressure:	40	Psi	Odometer:		210585	
							Vehicle Ge Target Ranges		n. (mm)	
			Test Inert			T	A: 77 1/4 78±2 (19 C: 229 3/8 237±13 (60 E: 140 1/4 148±12 (3) G: 28 3/8 min: 28	(5826) 020±325) (3562) 760±300) (721)	F: <u>47 3/8</u> H: 60 3/4	(1886) (953) (1000±75) (1203) (1543) 1575±100)
P	- Q					B	l: <u>12</u> K: <u>21</u>	(305)	J: <u>25 1/8</u> L: <u>30</u>	(638)
		•	G	s			M: 67 3/8 67±1.5 (1 O: 44 1/4 43±4 (11	700±38) (1124)	N: <u>67 3/4</u> 67±1.5 P: <u>4 7/8</u>	(1721) (1700±38) (124)
-		-н	E	1	— F — —		Q: <u>30 7/8</u>	(784)	R: <u>18 1/4</u>	(464)
-	5		- c ——	1.			S: <u>15 1/8</u>	(384)	T: <u>77</u>	(1956)
	<i></i>						U (ir	npact widt	h):	(1905)
Mass Distribu Gross Static		<u>(674)</u> RF (502) RR		(655) (511)				Wheel Cer Height (Fro Wheel Cer Height (Re Wheel V arance (Fro	nt): <u>15</u> hter ar): <u>15 1/4</u> Vell nt): <u>35 1/4</u>	(381) (387) (895)
Weights Ib (kg)	Cu	ırb	Test I	nertial	Gross	s Static	Cle	Wheel V earance (Rea		(975)
W-front	2907	(1319)	2838	(1287)	2932	(1330)		Bottom Fra Height (Fro	nt): 21 3/4	(552)
W-rear	2244	(1018)	2168	(983)	2233	(1013)		Bottom Fra Height (Rea		(248)
W-total	5151	(2336)	5006	(2271)	5165	(2343)	, î	Engine Ty	pe: Ga	soline
			3000±110	(2270±50)	0100±110) (2343±50)		Engine Si	ze: 4.7	'L V8
GVWR Rating	ıs Ib		Surrogate	e Occupant Da	ta		Transn	nission Tyj	pe: Aut	omatic
Front _	3700			Type:				Drive Ty	pe: R	WD
Rear	3900			Mass:					de: Qua	
Total _	6700		Seat	Position:	Front I	_eft		Bed Leng	th:	67"
Note an	ıy damage prio	or to test: <u>imaç</u>	ge on the t	tail gate and d	river mirro	or area. Als	o, the driver m	irror cover	has been c	racked off I

Figure 49. Vehicle Dimensions, Test No. NYBWT-3

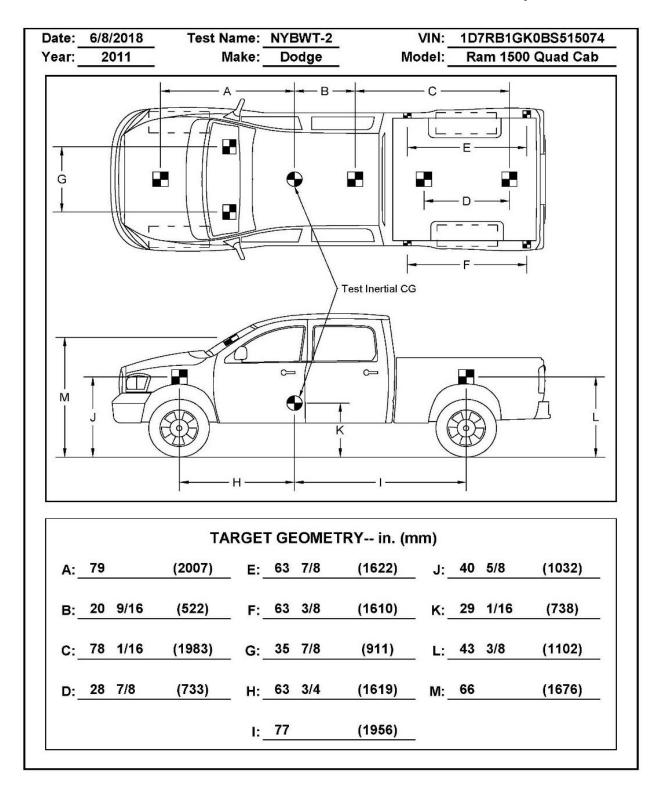


Figure 50. Target Geometry, Test No. NYBWT-2

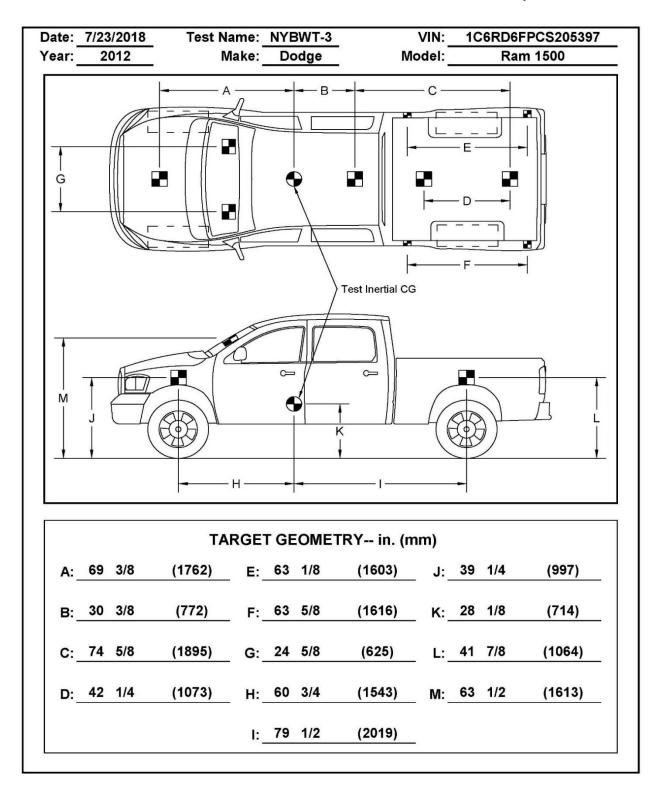


Figure 51. Target Geometry, Test No. NYBWT-3

4.4 Simulated Occupant

For test no. NYBWT-2 and NYBWT-3, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front and left-front seats of the test vehicles, respectively, with the seat belt fastened. The simulated occupant had a final weight of 170 lb (77 kg) and 159 lb (72 kg) for test nos. NYBWT-2 and NYBWT-3, respectively. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

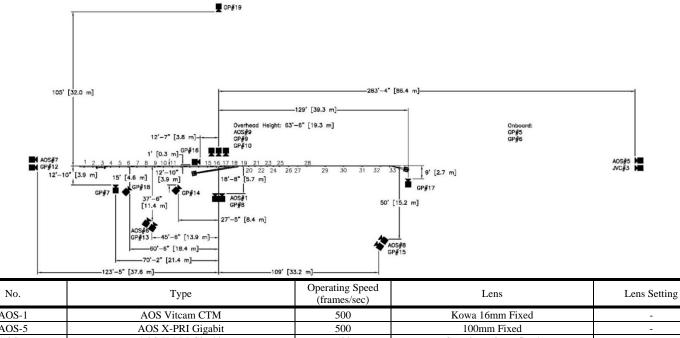
4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [12].

The two accelerometer systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system for both tests. The acceleration sensors were mounted inside the bodies of a custom-built SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

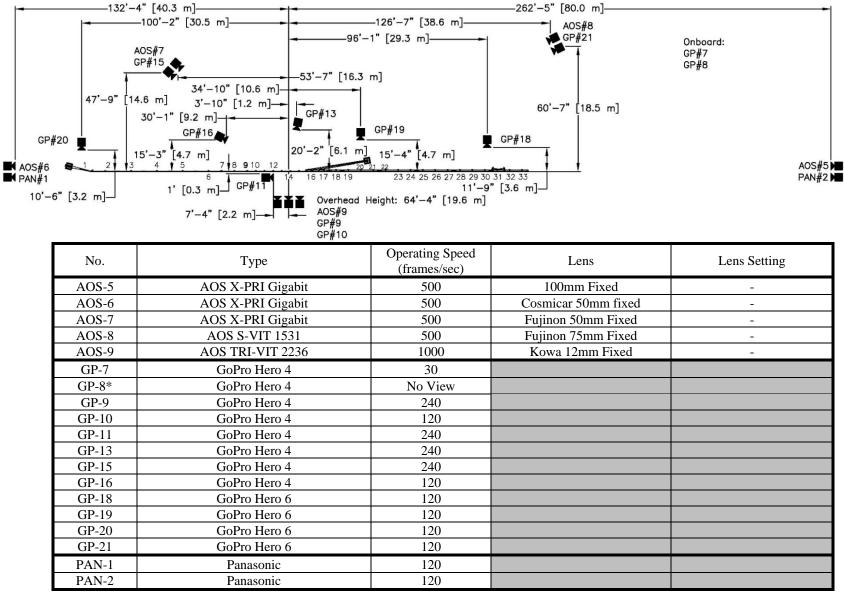

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras, fourteen GoPro digital video cameras, and one JVC digital video camera were utilized to film test no. NYBWT-2. Five AOS high-speed digital video cameras, twelve GoPro digital video cameras and two Panasonic cameras were utilized to film test no. NYBWT-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system for each test are shown in Figures 52 and 53. Note that GoPro nos. 18 and 8 did not collect data during test nos. NYBWT-2 and NYBWT-3, respectively, due to technical difficulties.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.



		(frames/sec)		
AOS-1	AOS Vitcam CTM	500	Kowa 16mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	100mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Cosmicar 50mm fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Fujinon 75mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12mm Fixed	-
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	30		
GP-8	GoPro Hero 4	240		
GP-9	GoPro Hero 4	240		
GP-10	GoPro Hero 4	120		
GP-12	GoPro Hero 4	120		
GP-13	GoPro Hero 4	240		
GP-14	GoPro Hero 4	120		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	240		
GP-18*	GoPro Hero 6	No View		
GP-19	GoPro Hero 6	120		
JVC-3	JVC – GZ-MC500 (Everio)	30		

*Camera did not record impact event due to technical difficulties.

62

Figure 52. Camera Locations, Speeds, and Lens Settings, Test No. NYBWT-2

*Camera did not record impact event due to technical difficulties.

Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. NYBWT-3

5 FULL-SCALE CRASH TEST NO. NYBWT-2

5.1 Static Soil Test

Before full-scale crash test no. NYBWT-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016 [3]. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. NYBWT-2 was conducted on June 8, 2018 at approximately 11:45 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 3.

Temperature	87° F	
Humidity	51%	
Wind Speed	9.1 mph	
Wind Direction	Variable	
Sky Conditions	Sunny	
Visibility	10 Statute Miles	
Pavement Surface	Dry	
Previous 3-Day Precipitation	0.00 in.	
Previous 7-Day Precipitation	1.25 in.	

Table 3. Weather Conditions, Test No. NYBWT-2

5.3 Test Description

Typically, impact points are selected in accordance with Figure 2-17 of MASH 2016 [3] unless computer simulation or analysis indicates that a different impact point is more critical for analyzing system performance. MASH 2016 requires that the upstream end of the stiffer system be used for selecting the impact point. The box beam stiffness was calculated to be $M_p = 35.4$ kip-ft, compared to the nested W-beam system stiffness of $M_p = 16$ kip-ft. The nested W-beam overlapped the box beam for approximately 12 ft (3.7 m). Tensile and shear connection between the W-beam and the box beam was accomplished through three sets of three bolts and nuts spaced at 36-in. (914-mm) intervals in the overlap. Therefore, the transition consisted of three consecutive stiffness regions: (1) box beam with 6-ft (1.8-m) post spacing; and (3) nested W-beam with 50-in. (1,270-mm) post spacing. Using Figure 2-17 from MASH, the CIP reference distance was approximately $11\frac{1}{2}$ ft (3.5 m) for an impact in the direction of box beam to W-beam.

The upstream end of the W-beam was shielded with a 12-gauge transition cover piece to mitigate potential snag with the nested W-beam. This transition cover piece was connected to the box beam with a single bolt, connected to the upstream end of the nested W-beam section with four bolts, and was shaped to very closely match the external surface of the box beam, as shown

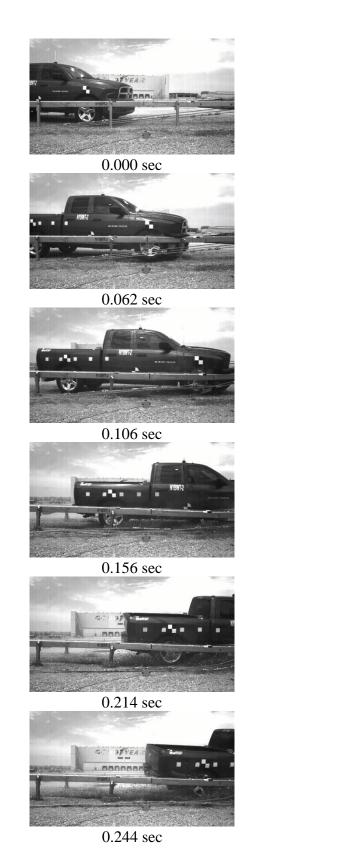
in Figure 43. The transition cover piece connection was weak and when under significant loading, could release from the box beam and expose the upstream end of the nested W-beam. Therefore, the transition cover piece was not included in the calculation of the critical stiffness point, and the upstream end of the nested W-beam was selected as the critical reference point. The critical impact point for test no. NYBWT-2 was selected to be approximately 11½ ft (3.5 m) upstream from the upstream end of the nested W-beam, which resulted in an effective impact location 8 ft (2.4 m) from the upstream end of the transition cover piece, as shown in Figure 54. This also provided a critical evaluation of the snag potential and strength of the transition cover plate. This impact point was selected in discussions with NYSDOT.

The 4,969-lb (2,254-kg) quad cab pickup truck impacted the box beam to weak-post Wbeam transition at a speed of 63.5 mph (102.2 km/h) and at an angle of 25.1 degrees. The actual point of impact was 8 ft -5 in. (2.6 m) upstream from the leading edge of the transition cover piece. The vehicle came to rest 171 ft (52.1 m) downstream from the impact point and 1 ft -6 in. (0.5 m) laterally in front of the system after brakes were applied.

A detailed description of the sequential impact events is contained in Table 4, with movement definitions provided in Appendix E. Sequential photographs are shown in Figures 55 and 56. Documentary photographs of the crash test are shown in Figures 57 through 63. The vehicle trajectory and final position are shown in Figure 64.

Figure 54. Impact Location, Test No. NYBWT-2

Time (sec)	Event		
0.000	Vehicle's front bumper contacted rail 8 ft $- 5$ in. (2.6 m) upstream from leading edge of transition cover piece (between post nos. 15 and 16).		
0.001	Vehicle's front bumper deformed.		
0.010	Post no. 16 deflected backward, and vehicle's right-front tire contacted box beam.		
0.014	Post no. 15 rotated backward.		
0.016	Vehicle's right-front wheel rim contacted box beam.		
0.022	Post nos. 14 and 16 rotated backward, and vehicle yawed away from system.		
0.030	Post no. 13 deflected backward, and post no. 17 rotated backward.		
0.036	Post no. 19 deflected forward.		
0.044	Vehicle rolled toward system.		
0.056	Post no. 18 rotated backward.		
0.058	Post no. 19 deflected backward.		
0.062	Post no. 16 rotated counterclockwise.		
0.078	Vehicle's front bumper contacted transition cover.		
0.080	Vehicle's right-front tire contacted post no. 16.		
0.082	Post no. 16 bent downstream.		
0.084	L-bracket at post no. 16 disengaged from box-beam connection bolt.		
0.086	Post no. 12 deflected backward. Post no. 15 twisted clockwise.		
0.102	Post no. 19 rotated backward.		
0.106	Post no. 17 rotated counterclockwise, and post no. 14 deflected downstream.		
0.114	L-bracket at post no. 17 disengaged from box-beam bolt connection.		
0.118	Post no. 17 deflected downstream.		
0.134	Post no. 18 rotated counterclockwise, and vehicle's front bumper contacted post no. 17.		
0.140	Post no. 20 rotated backward.		
0.150	L-bracket at post no. 18 disengaged from box-beam bolt connection.		
0.156	Post no. 15 deflected upstream, and vehicle's right-front tire contacted post no. 17.		
0.158	Post no. 17 bent downstream.		
0.162	Post nos. 21 and 22 deflected backward.		
0.178	Post no. 19 deflected downstream.		
0.180	Rail disengaged from bolt at post no. 19.		
0.194	Vehicle's left-front tire became airborne.		
0.213	Vehicle's rear bumper contacted box beam.		


Table 4. Sequential Description of Impact Events, Test No. NYBWT-2

Time (sec)	Event		
0.216	Vehicle's rear bumper deformed, and vehicle's right quarter panel contacted box beam.		
0.222	Vehicle's right quarter panel deformed.		
0.226	Post no. 18 bent downstream, and top portion of the right-front bumper tore below right-front headlight. Vehicle's right-front tire contacted post no. 18.		
0.232	L-bracket at post no. 15 disengaged from box-beam bolt connection.		
0.243	Vehicle was parallel to system at a speed of 52.0 mph (83.7 km/h).		
0.250	Vehicle pitched downward.		
0.260	Post no. 11 deflected backward.		
0.272	Post no. 21 rotated backward.		
0.294	Vehicle's left-rear tire became airborne.		
0.304	Post no. 22 rotated backward. Vehicle's right headlight deformed, and vehicle's right-front tire contacted post no. 19 and deflated.		
0.306	Post no. 20 bent backward.		
0.310	Vehicle's right-front wheel rim contacted post no. 19.		
0.312	Post no. 19 bent downstream, and vehicle's right headlight contacted rail.		
0.320	Post no. 20 twisted counterclockwise.		
0.324	Vehicle's right fender contacted rail.		
0.330	Vehicle's right fender deformed.		
0.346	Vehicle's hood deformed.		
0.364	Vehicle's right-front tire contacted post no. 20.		
0.366	Post no. 20 bent downstream.		
0.394	Vehicle's right headlight contacted post no. 21.		
0.408	Vehicle's right headlight shattered.		
0.464	Vehicle's right-rear tire became airborne.		
0.520	Vehicle's right-front door contacted rail.		
0.584	Rail disengaged from bolt at post no. 22.		
0.702	Vehicle's right-front tire became airborne.		
0.726	Vehicle exited system at a speed of 47.3 mph (76.1 km/h) and an angle of 13.6 degrees.		
0.828	Vehicle's right-front tire regained contact with ground.		
0.970	Vehicle pitched upward.		
0.994	Vehicle's right-rear tire regained contact with ground.		
1.014	Vehicle rolled away from system.		

 Table 5. Sequential Description of Impact Events, Test No. NYBWT-2, Cont.

Time (sec)	Event	
1.192	Vehicle yawed toward system.	
1.268	Vehicle's left-front tire regained contact with ground.	
1.270	Vehicle's left-rear tire regained contact with ground.	
1.304	Vehicle's right-front tire became airborne.	
1.356	Vehicle's mostly detached portion of front bumper contacted ground.	
1.418	Vehicle rolled toward system.	
1.532	Vehicle pitched downward.	
1.544	Vehicle's left-front tire became airborne.	
1.632	Vehicle's left-rear tire became airborne.	
1.646	Vehicle's right-front tire regained contact with ground.	
1.754	Vehicle's right headlight disengaged.	

 Table 6. Sequential Description of Impact Events, Test No. NYBWT-2, Cont.

0.000 sec

0.114 sec

0.226

0.408 sec

0.726 sec

1.268 sec

Figure 55. Sequential Photographs, Test No. NYBWT-2

0.520 sec

0.366 sec

Figure 56. Additional Sequential Photographs, Test No. NYBWT-2

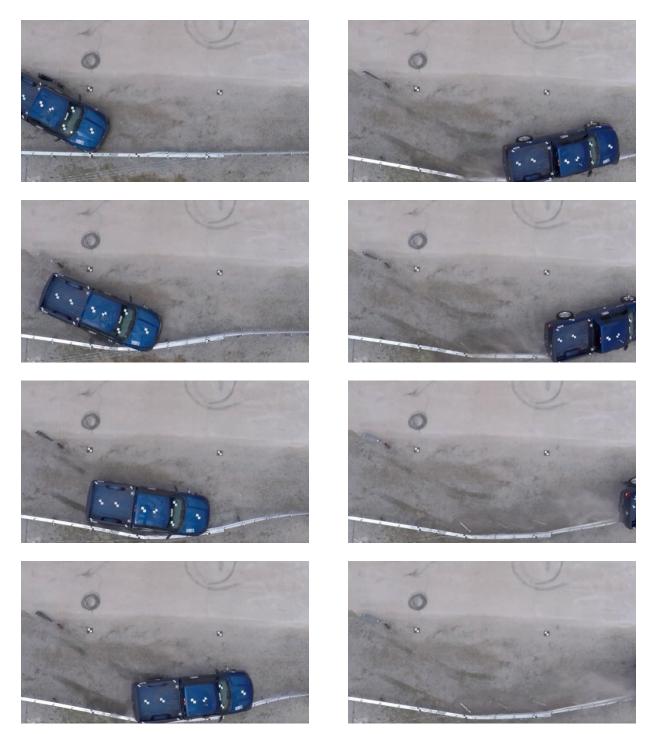


Figure 57. Documentary Photographs, Test No. NYBWT-2

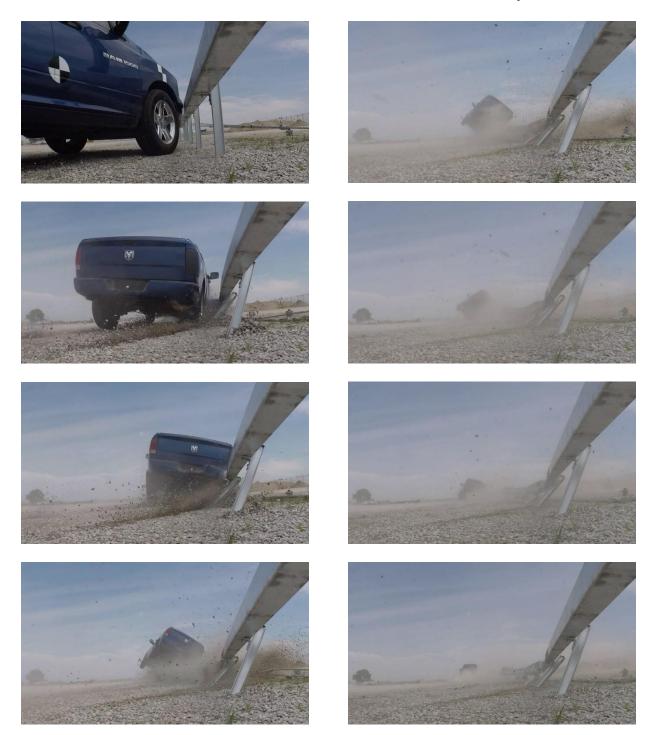


Figure 58. Documentary Photographs, Test No. NYBWT-2

February 27, 2024 MwRSF Report No. TRP-03-414-24

Figure 59. Documentary Photographs, Test No. NYBWT-2

Figure 60. Documentary Photographs, Test No. NYBWT-2

February 27, 2024 MwRSF Report No. TRP-03-414-24

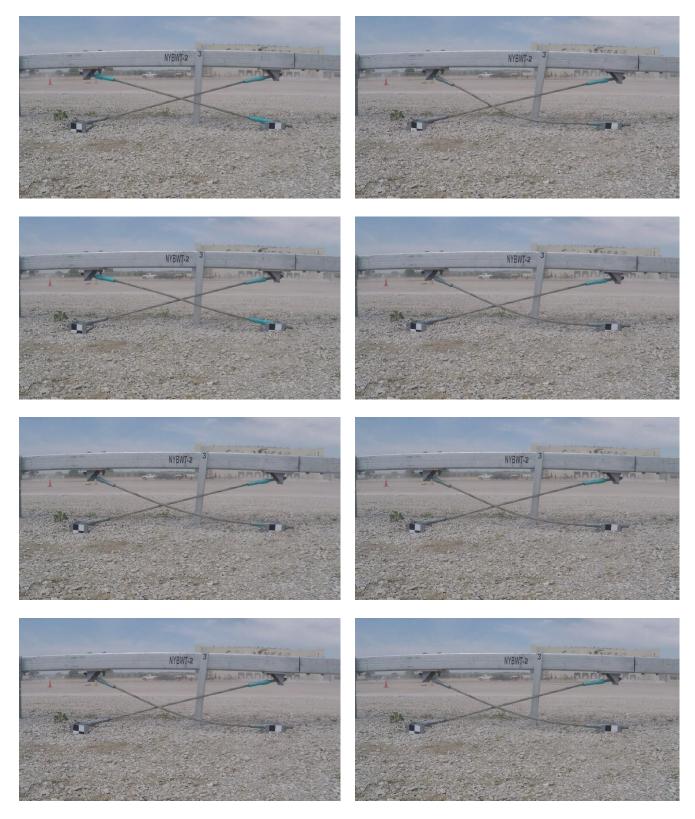


Figure 61. Documentary Photographs, Test No. NYBWT-2

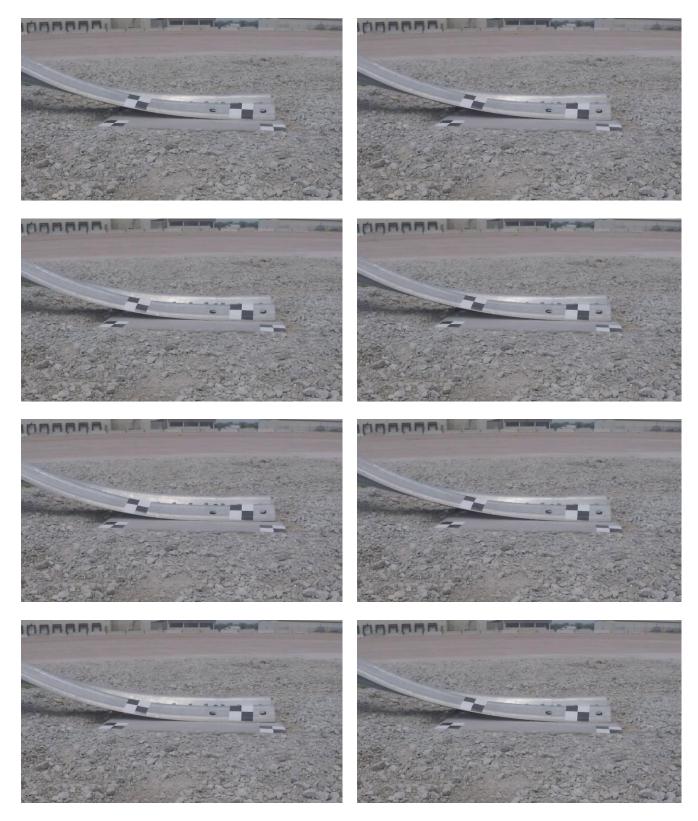


Figure 62. Documentary Photographs, Test No. NYBWT-2

Figure 63. Documentary Photographs, Test No. NYBWT-2

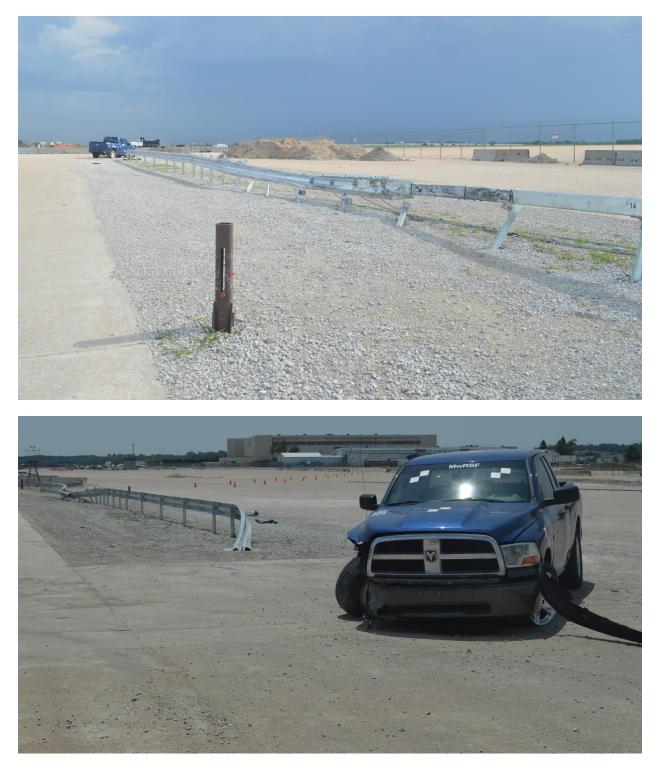


Figure 64. Vehicle Trajectory Marks and Final Position, Test No. NYBWT-2

5.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 65 through 74. Barrier damage consisted of rail deformation, deformed posts, and contact marks on the front faces of the box beam and W-beam rail.

Contact marks were found along the barrier beginning 7 in. (178 mm) upstream from the targeted impact point and ending $6\frac{1}{2}$ in. (165 mm) downstream from the centerline of post no. 22. An outward bend 10 in. (254 mm) long by 4 in. (102 mm) high by 1 in. (25 mm) deep was located 24 in. (610 mm) upstream from post no. 17 on the bottom of the transition plate. A bend 12 in. (305 mm) long by 2 in. (51 mm) deep was found 16 in. upstream from post no. 17 on the bottom of the transition plate. Two smaller bends were found on the bottom and top edges of the rail. One smaller bend was found at the transition plate bolt hole near post no. 17. A $3\frac{1}{2}$ -in. (89-mm) long by $\frac{1}{2}$ -in. (13-mm) deep kink was found 18 in. (457 mm) upstream from post no. 17 on the top of the transition plate. A 4-in. (102-mm) long by $1\frac{1}{2}$ -in. (38-mm) high kink was found 2 in. (51 mm) downstream from post no. 21 on the top edge of the rail. Four other smaller kinks were found on the top and bottom edges of the rail. A 12-in. (305-mm) long tear was found starting 34 in. (864 mm) upstream from post no. 17 on the bottom edge of the transition plate. A 3-in. (76-mm) by $\frac{1}{2}$ -in. (13-mm) wide by $\frac{1}{2}$ -in. (13-mm) deep tear was found 14 in. (356 mm) upstream from post no. 17 on the top of the transition plate. A 12-in. (305-mm) long tear was found starting 34 in. (864 mm) upstream from post no. 17 on the bottom edge of the transition plate. A 3-in. (76-mm) by $\frac{1}{2}$ -in. (13-mm) wide by $\frac{1}{2}$ -in. (13-mm) deep tear was found 14 in. (356 mm) upstream from post no. 17 on the front face of the transition plate. Flattening measuring 16 in. (406 mm) long by 6 in. (152 mm) high was found 10 in. (254 mm) upstream from post no. 22 on the top part of the rail.

Post nos. 3, 4, 12, and 13 rotated downstream. Post nos. 12 and 13 also rotated backward. Post nos. 1, 2 and 5 through 15 twisted clockwise. Post nos. 17, 18, 21, 22 twisted counterclockwise. Post nos. 14 through 22 were bent backward. Post nos. 16 through 20 were bent downstream. Post no. 33 bent upstream. The rail-to-bracket bolt pulled out from post nos. 15 through 18. The post-to-rail bolt pulled out from post nos. 19 and 22.

Small soil gaps were found at post nos. 11 through 15, 21, and 22. A 21-in. (533-mm) diameter by 1-in. (25-mm) high soil heave was found at post no. 14. A 19-in. (483-mm) diameter by 1-in. (25-mm) high soil heave was found at post no. 15. A 27-in. (686-mm) diameter by ³/₄-in. (19-mm) deep soil crater was found at post no. 16. Soil craters 18 in. (457 mm) diameter by 2 in. (51 mm) deep were found at post nos. 17 and 18. A 14-in. (356-mm) diameter by 1¹/₂-in. (38-mm) deep soil crater was found at post no. 19. A 16-in. (406-mm) diameter by 1-in. (25-mm) deep soil crater was found at post no. 20.

Figure 65. Overall System Damage, Test No. NYBWT-2

Figure 66. Overall System Damage, Test No. NYBWT-2

Figure 67. System Damage, Test No. NYBWT-2

February 27, 2024 MwRSF Report No. TRP-03-414-24

Figure 68. Rail and Post Damage, Post Nos. 15 through 18, Test No. NYBWT-2

Figure 69. Rail and Post Damage, Post Nos. 19 through 22, Test No. NYBWT-2

Figure 70. Backside Rail and Post Damage, Post Nos. 12 through 15, Test No. NYBWT-2

98

Figure 71. Rail and Post Damage, Post Nos. 19 through 22, Test No. NYBWT-2

Figure 72. Backside Rail and Post Damage, Post Nos. 16 through 19, Test No. NYBWT-2

Figure 73. Backside Rail and Post Damage, Post Nos. 20 through 23, Test No. NYBWT-2

The maximum lateral rail and post permanent set was $36\frac{1}{2}$ in. (927 mm) at the rail at post no. 17 and $22\frac{7}{8}$ in. (581 mm) at the centerline of post no. 15, as measured in the field, respectively. The maximum lateral dynamic rail and post deflections were 51.6 in. (1,311 mm) at the rail at post no. 17 and 29.0 in. (737 mm) at the centerline post no. 18, respectively. The maximum lateral dynamic deflection values were determined from high-speed digital video analysis. The working width of the system was found to be 63.3 in. (1,608 mm) due to vehicle protrusion over the top of the system, also determined from high-speed video analysis. A schematic of the permanent set, dynamic deflection, and working width is shown in Figure 75.

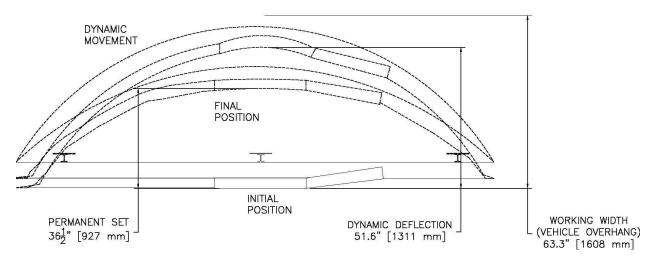


Figure 75. Permanent Set, Dynamic Deflection, and Working Width, Test No. NYBWT-2

5.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 76 through 79. The maximum occupant compartment intrusion values are listed in Table 7 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Majority of the damage was concentrated on the right-front corner and right side where the impact occurred. The right-side front bumper was bent inward and backward. The right-front quarter panel was bent up to the hood in front of the tire. Behind the tire, the right-front quarter panel was pushed backward and outward and contacted the tire. Scrapes were found along both the right-side doors and the right-rear quarter panel. A 1½-in. (38-mm) long puncture was found 1 in. (25 mm) from the front of the right-rear door. The right-rear quarter panel was peeled backward toward the bumper. The right-rear bumper was deformed outward and buckled upward due to contact with the right-rear quarter panel. The right-rear caliper and right-side headlight were disengaged. The right-side lower control arm bushings and the right-side tie rods were bent. The roof, windows, and left side remained undamaged.

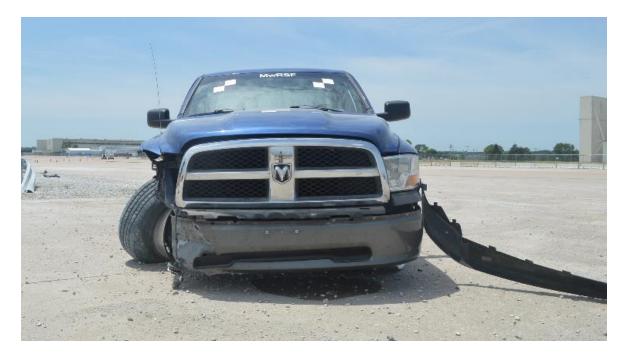


Figure 76. Vehicle Damage, Test No. NYBWT-2

Figure 77. Vehicle Damage, Test No. NYBWT-2

Figure 78. Occupant Compartment Vehicle Damage, Test No. NYBWT-2

Figure 79. Undercarriage Vehicle Damage, Test No. NYBWT-2

Location	Maximum Intrusion in. (mm)	MASH 2016 Allowable Intrusion in. (mm)
Wheel Well & Toe Pan	0.5 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.1 (3)	≤ 12 (305)
A-Pillar	0.3 (8)	≤ 5 (127)
A-Pillar (Lateral)	0 (0)*	≤ 3 (76)
B-Pillar	0.2 (5)	≤ 5 (127)
B-Pillar (Lateral)	0 (0)*	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	0.3 (8)	≤ 12 (305)
Side Door (Above Seat)	0.1 (3)	≤ 9 (229)
Side Door (Below Seat)	0.1 (3)	≤ 12 (305)
Roof	0.1 (3)	≤4 (102)
Windshield	0.0 (0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.4 (10)	N/A

Table 7. Maximum Occupant Compartment Intrusion by Location, Test No. NYBWT-2

N/A – Not applicable

*Negative value reported as 0. See Appendix F for further information.

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ride down accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 8. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits	
OIV	Longitudinal	-13.59 (-4.14)	-12.67 (-3.86)	±40 (12.2)	
ft/s (m/s)	Lateral	-15.00 (-4.57)	-14.74 (-4.49)	±40 (12.2)	
ORA	Longitudinal	-6.36	-7.37	±20.49	
g's	Lateral	-8.57	-6.93	±20.49	
Maximum	Roll	48.4	44.0	±75	
Angular Displacement deg.	Pitch	8.0	6.8	±75	
	Yaw	-46.5	-46.1	not required	
THIV ft/s (m/s)		18.22 (5.55)	18.29 (5.57)	not required	
PHD g's		9.79	9.34	not required	
ASI		0.64	0.57	not required	

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYBWT-2

5.7 Discussion

The analysis of the test results for test no. NYBWT-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 80. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate or ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 13.6 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NYBWT-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-21.

						•	- COLDA	
0.000 sec	0.030 sec	0.078 sec	0.260 s		sec 0.520		20 sec	
25.0' 25.0'	[5.1 m]	LR RF I 1'-6" [0.5 m] MwRSF	Ground Ground I Ground					
Test Number Date MASH 2016 Test Designation No		NYBWT-2 06/08/18 				47		
Total Length Key Component – W-Beam Rail Thickness	. NYSDOT Box Beam to Weak-Post W 224 ft	- 1¾ in. (68.3 m) 2 gauge (2.6 mm)	Exit Box Criterio Vehicle Stability Vehicle Stopping	on 7 g Distance 171	ft (52.1 m) downst	ream, 18 in. (457 m	Pa Satisfacto m) laterally in fro	
Key Component – Box Beam Size Mounting Height Mounting Height Key Component – S3x5.7 (S75x8.5) Steel Posts (nos. 1-33)			VDS [13]					
Embedment Depth (Post nos. Embedment Depth (Post nos. Embedment Depth (Post nos.		7 ¹⁵ / ₁₆ in. (963 mm) 34 ⁵ / ₈ in. (879 mm) 32 ⁵ / ₈ in. (829 mm)	Dynamic	Set			51.6 in. (1311 mr	
Spacing (Post nos. 19-25)		50 in. (1,270 mm)			Transducer		MASH 2016	
Spacing (Post nos. 28-32)		50 in. (3,810 mm)	Evaluatio	n Criteria	SLICE-1	SLICE-2 (primary)	Limit	
Key Component – Anchors Embedment Depth (Downstre	am and Transition Anchors)	44 in. (1,118 mm)	OIV ft/s (m/s)	Longitudinal Lateral	-13.59 (-4.14) -15.00 (-4.57)	-12.67 (-3.86) -14.74 (-4.49)	±40 (12.2) ±40 (12.2)	
Material (Downstream and Tr	Anchor)70 ansition Anchors)	Concrete	ORA	Longitudinal	-6.36	-7.37	±20.49	
	ASTM A992 or As Coarse, Crushed Limestone (We		g's	Lateral	-8.57	-6.93	±20.49	
Vehicle Make /Model		Cab Pickup Truck	Maximum	Roll	48.4	44.0	±75	
			Angular Displacement	Pitch	8.0	6.8	±75	
	5	,139 lb (2,331 kg)	deg.	Yaw	-46.5	-46.1	Not required	
Impact Conditions Speed		mph (102.2 km/h)	THIV – f	ft/s (m/s)	18.22 (5.55)	18.29 (5.57)	Not required	
Angle			PHD	– g's	9.79	9.34	Not required	
Impact Location8 ft – 5 in. (2.6 m) US from leading edge of transition cover piece Impact Severity		ASI		0.64	0.57	Not required		

Figure 80. Summary of Test Results and Sequential Photographs, Test No. NYBWT-2

6 FULL-SCALE CRASH TEST NO. NYBWT-3

6.1 Static Soil Test

Before full-scale crash test no. NYBWT-3 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. NYBWT-3 was conducted on July 24, 2018 at approximately 1:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/KLNK) were reported and are shown in Table 9.

Temperature	89° F
Humidity	55%
Wind Speed	11 mph
Wind Direction	180° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.57 in.

Table 9. Weather Conditions, Test No. NYBWT-3

6.3 Test Description

Typically, impact points are selected using the CIP plots found in Section 2.3, specifically Figure 2-17, of MASH 2016 [3]. Snag potential exists when the S3x5.7 post spacing transitions from reduced post spacing to standard post spacing. The critical impact point for test no. NYBWT-3 was selected to be approximately 11½ ft (3.5 m) upstream from the centerline of post no. 16, which is the first S3x5.7 post located at standard post spacing within the nested W-beam overlapped with box beam region. This results in an effective impact location of 8 ft (2.4 m) upstream from the leading edge of the box beam, as shown in Figure 81. This impact location maximizes the potential for vehicle snag on the leading edge of the box beam and evaluates the reduced post spacing to standard post spacing transition that occurs at post no. 16. This impact point was selected in discussions with NYSDOT.

The 5,006-lb (2,271-kg) pickup truck impacted the box beam to weak-post W-beam transition at a speed of 62.5 mph (100.5 km/h) and at an angle of 25.7 degrees. The actual point of impact was 8 ft – 2 in. (2.5 m) upstream from the leading edge of the box beam. The vehicle came to rest 95 ft – 11 in. (29.2 m) downstream from and in contact with the system near post no. 30 after the brakes were applied.

A detailed description of the sequential impact events is contained in Table 10, with movement definitions provided in Appendix E. Sequential photographs are shown in Figures 82 and 83. Documentary photographs of the crash test are shown in Figures 84 through 87. The vehicle trajectory and final position are shown in Figure 88.

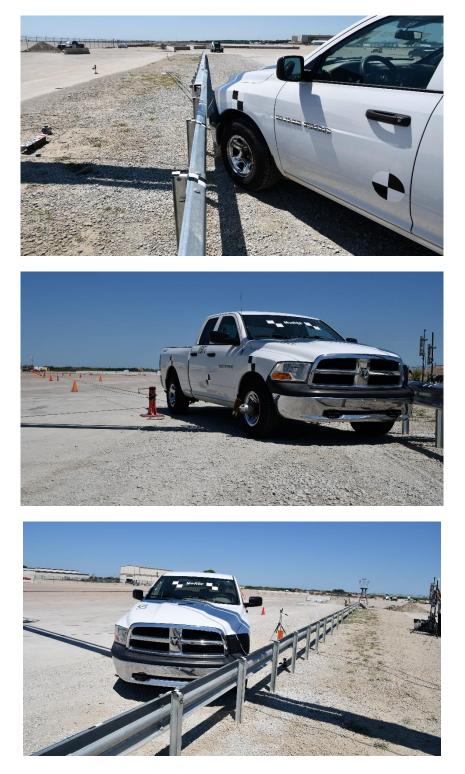


Figure 81. Impact Location, Test No. NYBWT-3

Time (sec)	Event
0.000	Vehicle's front bumper contacted rail 8 ft $- 2$ in. (2.5 m) upstream from the leading edge of the box beam (between post nos. 13 and 14).
0.004	Vehicle's front bumper deformed and vehicle's left headlight contacted rail.
0.006	Post no. 14 rotated backward, post no. 15 deflected backward, and vehicle's left fender contacted rail.
0.008	Post no. 13 deflected backward.
0.014	Vehicle's left headlight deformed.
0.020	Post no. 15 rotated backward, and vehicle's left fender deformed.
0.022	Vehicle's grille contacted rail.
0.028	Post no. 13 rotated backward.
0.030	Post no. 16 rotated backward.
0.032	Post no. 12 deflected backward.
0.034	Soil heave formed on non-traffic flange of post no. 13.
0.036	Soil heave formed on non-traffic flange of post no. 15.
0.038	Post no. 13 deflected downstream.
0.044	Vehicle yawed away from system.
0.046	Vehicle's front bumper contacted post no. 15.
0.048	Post no. 12 rotated backward, and rail disengaged from bolt at post no. 15.
0.050	Post no. 15 twisted counterclockwise, post no. 17 rotated backward, post no. 15 rotated downstream, and vehicle's grille deformed.
0.053	Post no. 12 deflected downstream.
0.059	Post no. 14 deflected downstream.
0.062	Post no. 18 rotated backward.
0.064	Rail disengaged from bolt at post no. 16.
0.066	Vehicle's left-front tire contacted post no. 15.
0.076	Post no. 16 rotated clockwise, post no. 14 bent backward, and post no. 18 deflected backward.
0.090	Post no. 13 bent backward.
0.094	Rail disengaged from bolt at post no. 17.
0.098	Post no. 20 rotated backward.
0.104	Post no. 19 rotated backward.
0.108	Post no. 16 rotated downstream.
0.114	Post no. 21 and 11 deflected backward.
0.118	Vehicle's left-front tire contacted rail, and vehicle's front bumper contacted post no. 16.
0.122	Vehicle's left-front tire contacted post no. 16.
0.134	Post no. 12 bent backward.

Table 10. Sequential Description of Impact Events, Test No. NYBWT-3

Time	
(sec)	Event
0.138	Post no. 14 rotated counterclockwise.
0.144	Rail disengaged from bolt at post no. 18.
0.155	Vehicle's front bumper contacted transition cover.
0.160	Vehicle rolled away from system.
0.166	Post no. 17 rotated downstream, and vehicle's front bumper contacted post no. 17.
0.180	Rail disengaged from bolt at post no. 19.
0.204	Rail disengaged from bolt at post no. 12.
0.210	Post no. 22 deflected backward.
0.212	Post no. 21 rotated backward.
0.214	Rail disengaged from bolt at post no. 20.
0.218	Post no. 20 twisted clockwise.
0.223	Vehicle's left-front door contacted box beam.
0.224	Vehicle's left-front tire deflated.
0.234	Vehicle's front bumper contacted box beam.
0.240	Post no. 22 rotated backward, and post no. 23 deflected backward.
0.244	Vehicle's left-front door deformed.
0.248	Rail disengaged from bolt at post no. 21.
0.256	Vehicle's left-rear door deformed.
0.258	Post no. 21 rotated clockwise.
0.264	Post no. 23 rotated backward.
0.272	Vehicle's front bumper contacted post no. 18.
0.274	Post no. 18 rotated downstream.
0.316	Vehicle's left quarter panel contacted rail.
0.318	Vehicle's left headlight became disengaged, and post no. 18 bolt disengaged from L-bracket.
0.328	Vehicle's rear bumper contacted rail.
0.335	Vehicle was parallel to system at a speed of 44.6 mph (71.8 km/h).
0.354	Post no. 19 rotated downstream, and vehicle's front bumper contacted post no. 19.
0.358	Vehicle's left quarter-panel deformed.
0.360	Vehicle rolled toward system.
0.403	Vehicle yawed toward system.
0.426	Vehicle pitched downward.
0.428	Post no. 19 bolt disengaged from L-bracket.
0.444	Vehicle's front bumper contacted post no. 20.
0.446	Post no. 20 rotated downstream.
0.460	Post no. 20 bolt disengaged from L-bracket.
0.464	Post no. 21 deflected downstream.

Table 11. Sequential Description of Impact Events, Test No. NYBWT-3, Cont.

Time (sec)	Event
0.502	Vehicle rolled away from system while in contact with system.
0.554	Vehicle's front bumper contacted post no. 21.
0.556	Post no. 21 rotated downstream.
0.576	Rail disengaged from bolt at post no. 22.
0.582	Post no. 21 bolt disengaged from L-bracket.
0.670	Vehicle pitched upward while in contact with system.
0.748	Post no. 22 rotated downstream, and vehicle's left-front tire contacted post no. 22.
0.782	Post no. 22 bolt disengaged from L-bracket.
0.842	Vehicle pitched downward while in contact with system.
0.888	Vehicle's left-front tire became disengaged.
0.910	Post no. 23 rotated downstream, and vehicle's left-front tire contacted post no. 23.
0.914	Post no. 23 bolt disengaged from L-bracket.
0.936	Vehicle rolled toward system while in contact with system.
1.042	Vehicle pitched upward while in contact with system.
1.230	Vehicle rolled away from system while in contact with system.
1.520	Vehicle rolled toward system while in contact with system.
1.750	Vehicle rolled away from system while in contact with system.
3.125	Vehicle stopped in contact with system.

Table 12. Sequential Description of Impact Events, Test No. NYBWT-3, Cont.

0.000 sec

0.100 sec

0.250 sec

0.400 sec

0.550 sec

0.800 sec

0.000 sec

0.150 sec

0.250 sec

0.350 sec

0.550 sec

0.700 sec

Figure 82. Sequential Photographs, Test No.NYBWT-3

Figure 83. Additional Sequential Photographs, Test No.NYBWT-3

Figure 84. Documentary Photographs, Test No. NYBWT-3

Figure 85. Documentary Photographs, Test No. NYBWT-3

Figure 86. Documentary Photographs, Test No. NYBWT-3

Figure 87. Documentary Photographs, Test No. NYBWT-3

Figure 88. Vehicle Trajectory Marks and Final Position, Test No. NYBWT-3

6.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 89 through 95. Barrier damage consisted of rail deformation, deformed posts, and contact marks on rail sections. The length of contact along the barrier was approximately 95 ft - 11 in. (29.2 m) which spanned from post no. 14 to post no. 30.

Contact marks were found covering large portions of the barrier. A total of 14 kinks were found along the rail. These included an 18-in. (457-mm) long by 1½-in. (38-mm) high kink was found 1 in. (25 mm) downstream from post no. 13 on the bottom of the rail. An 8-in. (203-mm) long by 1¼-in. (32-mm) high kink was found 1 in. (25 mm) downstream from the centerline of post no. 13 on the top of the rail. A 7-in. (178-mm) long by ½-in. (13-mm) deep kink was found 30 in. (762 mm) downstream from the centerline of post no. 14 on the bottom of the rail. A 12-in. (305-mm) long by ¼-in. (6-mm) high kink was found 43½ in. (1,105 mm) downstream of the centerline of post no. 15 on the top of the rail. Another kink measuring 8 in. (203 mm) long and ¼ in. (6 mm) high was found 29½ in. (749 mm) upstream from post no. 12 on the top of the rail. A 12-in. (64-mm) long by ¼-in. (6-mm) high kink was found 35 in. (889 mm) downstream from post no. 14 at the top of the rail. Another kink was found 35 in. (889 mm) downstream from post no. 14 at the bottom of the rail. A kink was found 9 in. (229 mm) upstream from post no. 16 at the top of the rail. A kink was found 9 in. (229 mm) upstream from post no. 16 at the top of the rail measuring 11 in. (279 mm) long by ¼ in. (6 mm) high.

Rail flattening was found 10 in. (254 mm) upstream from post no. 14 extending 52 in. (1,321 mm) downstream. Rail flattening measuring 20 in. (508 mm) long by 3 in. (76 mm) high was found 33 in. (838 mm) downstream from post no. 15. Bending measuring 12 in. (305 mm) long by $\frac{1}{2}$ in. (13 mm) deep was found 32 in. (813 mm) downstream from post no. 14. A $\frac{1}{4}$ -in. (6-mm) long by $\frac{1}{8}$ -in. (3mm) wide gouge was found $1\frac{1}{8}$ in. (29 mm) from the top of the transition at the start of the upstream edge. The rail was deformed starting 42 in. (1,067 mm) downstream from post no. 15 extending downstream for $162\frac{1}{2}$ in. (4,128 mm).

Post nos. 1 through 3, 5, 6, and 25 through 29 rotated clockwise. Post nos. 1, 10, 11, and 24 rotated backward. Post no. 1 deflected downstream and rotated backward and clockwise. Post nos. 30 and 31 rotated upstream. Post nos. 12 through 23 bent backward. Post nos. 13 through 23 bent downstream. Post nos. 13, 14, and 23 twisted counterclockwise. Post nos. 16 through 21 twisted clockwise. Post-to-rail bolts pulled out of post nos. 12 and 15 through 23. Soil gaps were found at post nos. 10 through 13, 29, 31, and 32. Soil heaves were found at post nos. 11 through 21 and 23. Soil craters were found at post nos. 13 and 15 through 23.

The maximum lateral rail and post permanent set were 42³/₄ in. (1,086 mm) at post no.16, and 19¹/₂ in. (495 mm) at post no. 13, as measured in the field. The maximum lateral dynamic rail and post deflections were 63.7 in. (1,618 mm) at post no. 16 and 23.3 in. (592 mm) at post no. 14, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 78.5 in. (1,994 mm), also determined from high-speed digital video analysis. A schematic of the permanent set, dynamic deflection, and working width is shown in Figure 96.

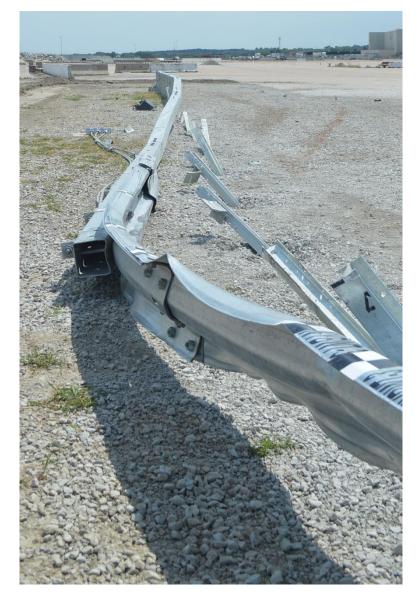


Figure 89. Overview of Damage to System, Test No. NYBWT-3

Figure 90. System Damage, Test No. NYBWT-3 113

Figure 91. Damage to Post Nos. 11 through 14, Test No. NYBWT-3

Figure 92. Damage to Post Nos. 15 through 18, Test No. NYBWT-3

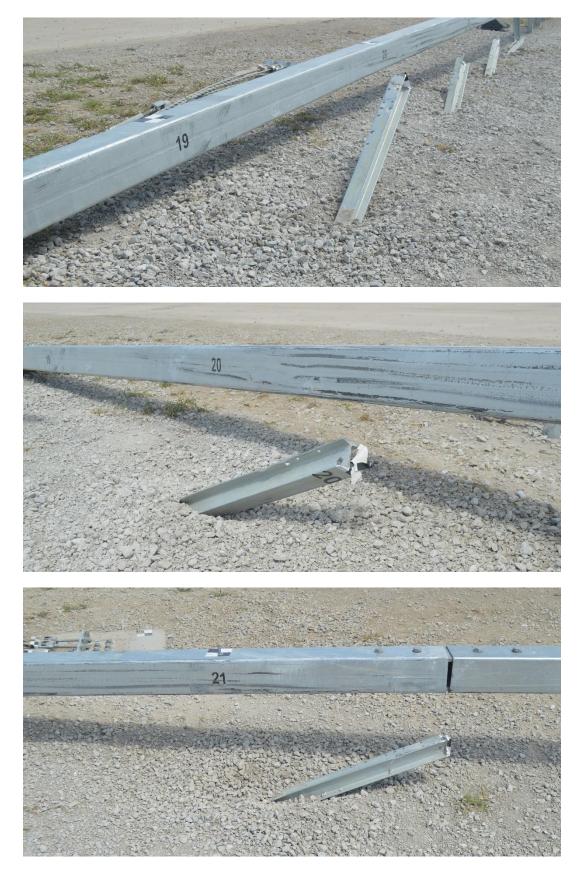


Figure 93. Damage to System at Post Nos. 19 through 21 116

Figure 94. Damage to System at Post Nos. 22 through 24 117

Figure 95. Anchor Damage, Test No. NYBWT-3

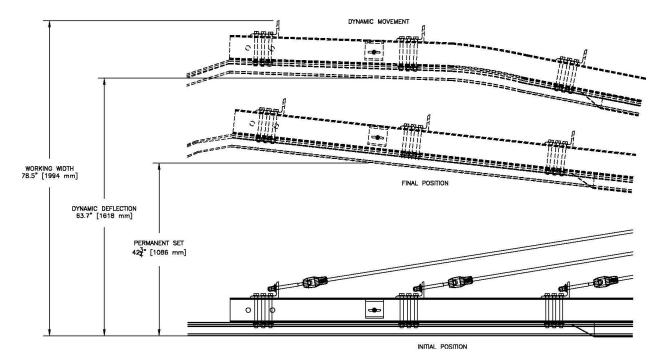


Figure 96. Permanent Set, Dynamic Deflection, and Working Width, Test No. NYBWT-3

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 97 through 100. The maximum occupant compartment intrusion values are listed in Table 13 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Figure 97. Vehicle Damage, Test No. NYBWT-3

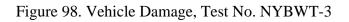


Figure 99. Undercarriage Vehicle Damage, Test No. NYBWT-3



Figure 100. Occupant Compartment Damage, Test No. NYBWT-3

Location	Maximum Intrusion in. (mm)	MASH 2016 Allowable Intrusion in. (mm)
Wheel Well & Toe Pan	0.4 (10)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.4 (10)	≤ 12 (305)
A-Pillar	1.4 (36)	≤ 5 (127)
A-Pillar (Lateral)	0 (0)*	≤ 3 (76)
B-Pillar	1.4 (36)	≤ 5 (127)
B-Pillar (Lateral)	0 (0)*	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	0 (0)*	≤ 12 (305)
Side Door (Above Seat)	0 (0)*	≤ 9 (229)
Side Door (Below Seat)	0.1 (3)	≤ 12 (305)
Roof	0.2 (5)	≤ 4 (102)
Windshield	0.0 (0.0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	1.4 (36)	N/A

Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. NYBWT-3

N/A - Not applicable

*Negative value reported as 0. See Appendix F for further information.

Majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The left-front quarter panel was deformed inward by the by the door. The left-front door was also dented inward along the bottom of the door. A gouge was found on the bottom-front corner of the door. The front bumper was dented just to the left of center and was deformed into the engine compartment on the left-side, thus bending the body frame. The bottomleft side of the grill was deformed and was partially disengaged. Scrapes and dents were found along the bottom of the left-rear door. The scrapes become tears on the bottom rear corner of the door frame. A dent was found on the left-rear quarter panel in front of the wheel well. A tear was found beginning at the back of the wheel well and extending to the back of the left-rear quarter panel just above the rear bumper. The rear bumper was also dented on the left side.

There was a slight twist on the sway bar link on the left-front side. The lower control arm on the left-front side deformed into the vehicle and knocked off the bushing. The tie rod on the left-front side was deformed inward. The oil pan was scraped on the right side. The engine cross member was dented approximately at the center. The frame horn was deformed inward toward the center. The exhaust located underneath the oil pan had multiple scrapes and dents.

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ride down accelerations (ORAs) in both the longitudinal and lateral directions, as

determined from the accelerometer data, are shown in Table 14. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 14. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits	
OIV	Longitudinal	-17.79 (-5.42)	-15.65 (-4.77)	±40 (12.2)	
ft/s (m/s)	Lateral	12.75 (3.89)	13.26 (4.04)	±40 (12.2)	
ORA	Longitudinal	-6.64	-6.75	±20.49	
g's	Lateral	5.91	5.35	±20.49	
Maximum	Roll	-6.7	6.1	±75	
Angular Displacement deg.	Pitch	2.4	3.2	±75	
	Yaw	30.4	29.8	not required	
THIV ft/s (m/s)		19.85 (6.05)	19.69 (6.00)	not required	
PHD g's		8.62	8.39	not required	
ASI		0.51	0.48	not required	

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYBWT-3

6.7 Discussion

The analysis of the test results for test no. NYBWT-3 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 101. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle did not exit the system, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NYBWT-3 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-21.

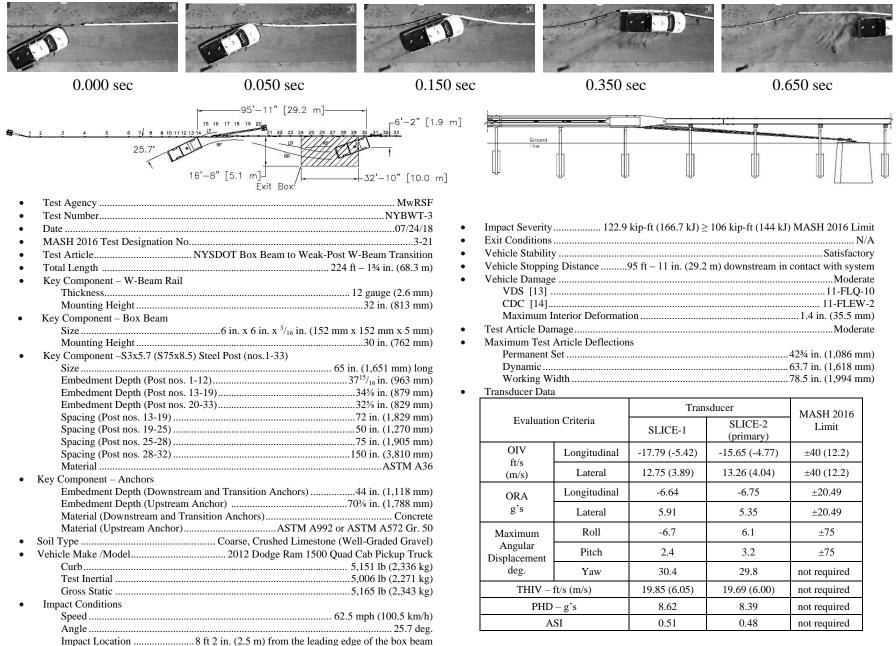


Figure 101. Summary of Test Results and Sequential Photographs, Test No. NYBWT-3

126

7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Test nos. NYBWT-2 and NYBWT-3 were conducted on a New York State box beam to weak-post W-beam transition longitudinal barrier system according to MASH 2016 test designation no. 3-21. Both tests were conducted on identical systems; however, test no. NYBWT-3 utilized a reverse-direction impact. The 1100C vehicle test was deemed unnecessary due to previous testing, as discussed in Section 3.1. The system consisted of standard New York boxbeam connected to a W-Beam rail with a transition.

Post nos. 1 through 19 were spaced 72 in. (1,829 mm) on center and with an embedment depth of $37^{15}/_{16}$ in. (964 mm) into the soil. Post nos. 19 through 25 were spaced 50 in. (1,270 mm) apart and post nos. 25 through 28 were spaced 75 in. (1,905 mm) apart, all of which were embedded into the soil to a depth of $32^{5}/_{8}$ in. (1,905 mm) except for post no. 19, which was embedded into the soil to a depth of $34^{5}/_{8}$ in. (879 mm). The top rail height was 32 in. (813 mm) for the W-beam and 27 in. (687 mm) for the box beam. A summary of the test evaluation is shown in Table 15

In test no. NYBWT-2, the 4,969-lb (2,254-kg) Dodge Ram 1500 Quad Cab pickup truck impacted the box beam to weak-post W-beam transition system at a speed of 63.5 mph (102.2 km/h) and at an angle of 25.1 degrees, resulting in an impact severity of 119.7 kip-ft (162.3 kJ). The critical impact point for test no. NYBWT-2 was selected to be approximately $11\frac{1}{2}$ ft (3.5 m) upstream from the upstream end of the nested W-beam, which resulted in an effective impact location of 8 ft (2.4 m) from the upstream end of the transition cover piece. The actual impact point was at 8 ft – 5 in. (2.6 m) upstream from the leading edge of the transition cover piece. After impacting the barrier system, the vehicle was redirected and exited the system. The vehicle was successfully contained with moderate damage to the vehicle and to the barrier. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. NYBWT-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-21.

In test no. NYBWT-3, the 5,165-lb (2,343-kg) Dodge Ram 1500 Quad cab pickup truck impacted the box beam to weak-post W-beam transition system at a speed of 62.5 mph (100.5 km/h) and at an angle of 25.7 degrees, resulting in an impact severity of 122.9 kip-ft (166.6 kJ). The critical impact point for test no. NYBWT-3 was selected to be approximately $11\frac{1}{2}$ ft (3.5 m) upstream from the centerline of post no. 16, which is the first S3x5.7 post located at standard post spacing within the nested W-beam overlapped with box beam region. This results in an effective impact location of 8 ft (2.4 m) upstream from the leading edge of the box beam, maximizes the potential for vehicle snag on the leading edge of the box beam, and evaluates the reduced post spacing to standard post spacing transition that occurs at post no. 16. The actual impact point was 8 ft – 2 in. (2.5 m) upstream from the leading edge of the box beam. After impacting the barrier system, the vehicle was redirected but did not exit the system. The vehicle was successfully contained with moderate damage to the vehicle and to the barrier. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. NYBWT-3 was successful according to the safety criteria of MASH 2016 test designation no. 3-21.

Evaluation Factors		Evaluatio	Test No. NYBWT-2	Test No. NYBWT-3		
Structural Adequacy	А.	Test article should contain and redicontrolled stop; the vehicle should installation although controlled lateration	S	S		
	D.	1. Detached elements, fragments or of penetrate or show potential for per present an undue hazard to other tr zone.	S	S		
		2. Deformations of, or intrusions in exceed limits set forth in Section 5.2	S	S		
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S	S
Occupant	H.	Occupant Impact Velocity (OIV) (so 2016 for calculation procedure) show				
Risk		Occupant I	S	S		
		Component	Preferred	Maximum	2	2
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Ride	Occupant Ridedown Acceleration Limits			S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH 2016 Test Designation No.				3-21	3-21	

 \overline{S} – Satisfactory U – Unsatisfactory NA - Not Applicable

128

8 MASH IMPLMENTATION

The objective of this research was to evaluate the safety performance of NYSDOT's box beam to weak-post W-beam transition system. The system consisted of standard box beam that transitions into a weak-post W-beam. A transition cover plate was located in the region where the two different systems met to mitigate snag potential. A cable anchorage system was also attached in the transition region and terminated at a large concrete anchor block located behind the box beam system. The standard weak-post W-beam system was anchored with a bent turned-down section of W-beam and attached to another concrete anchor block. The W-beam rail height was 32 in. (813 mm) and transitioned gradually to match the box beam height of 27 in. (686 mm).

According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to one full-scale vehicle crash test: test designation no. 3-21, which is run with a 2270 pickup truck vehicle. Test designation no. 3-20 is an optional test for transitions and only conducted if there is reasonable uncertainty regarding the impact performance of the system with small cars. Based on guidance from the sponsor, two full-scale crash tests were deemed necessary to evaluate the transition: (1) MASH 2016 test designation no. 3-21, which evaluates the transition with the 2270P pickup truck, and (2) a reverse-direction impact of test designation no. 3-21 with the 2270P vehicle. The reverse-direction impact test would be required to evaluate the transition for installations that require two-way traffic adjacent to the barrier. MASH 2016 also requires that transitions be evaluated adjacent to their connection to rigid barriers and in the stiffness transition region.

Based on prior research, the small car test was deemed not critical for evaluation of this system. The box beam guardrail system successfully met NCHRP Report 350 test designation no. 3-11 [4]. Similarly, the weak-post W-beam guardrail successfully met NCHRP Report 350 test designation nos. 3-10 and 3-11 [5-6]. Based on recommendations made during NCHRP Project 22-14(03), only pickup truck tests were deemed necessary for the G3 box-beam longitudinal system and the modified G2 weak-post W-beam system with a rail height at 32 in. (813 mm) [7].

During NCHRP Project 22-14(03), in test no. 476460-1-6, the G3 weak-post box-beam system was tested according to MASH test designation no. 3-11 criteria and had a dynamic deflection of 4.8 ft (1.5 m). During that same research study, in test no. 476460-1-7, the modified G2 weak-post W-beam system was tested according to MASH test designation no. 3-11 criteria and had a dynamic deflection of 8.6 ft (2.6 m). In test no. 608221-1, the modified G2 weak-post W-beam guardrail system was successfully tested according to MASH test designation no. 3-10 with no tears or punctures and only small scrapes to the vehicle's underside [8]. The modified weak-post W-beam guardrail had a dynamic deflection of 6.0 ft (1.8 m) when impacted with the 1100C vehicle.

Weak posts (S3x5.7) rotate minimally and yield at the ground line in the strong soil required by MASH, consequently, the posts behave as if they were in rigid sockets. Using quarter-post spacing with weak-posts in rigid sockets [9] reduced system deflections by almost 60 percent when compared to the modified G2 weak-post W-beam system. Therefore, the deflections of the reduced post spacing of the modified G2 weak-post W-beam system in the transition region should behave similar to the G3 weak-post box beam system.

It was believed that the pickup truck tests noted above would be sufficient to evaluate the transition between two semi-rigid barrier systems that transition to approximately the same

stiffness. Therefore, the small car test was deemed not critical based on prior full-scale testing and the guidance in MASH section 2.2.1.2. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NYBWT-2, a 4,969-lb (2,254-kg) pickup truck with a simulated occupant seated in the right-front seat impacted the box beam to weak-post W-beam transition at a speed of 63.5 mph (102.2 km/h) and at an angle of 25.1 degrees, resulting in an impact severity of 119.7 kip-ft (162.3 kJ). The point of impact occurred 8 ft – 5 in. (2.6 m) upstream from the leading edge of the transition cover piece. At 0.243 sec after impact, the vehicle became parallel to the system with a speed of 52.0 mph (83.7 km/h). At 0.726 sec, the vehicle was airborne as it exited the system at a speed of 47.3 mph (76.1 km/h) and at an angle of 13.6 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were minimal with a maximum of 0.5 in. (13 mm), which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the W-beam and box beam segments, rail deformation, and deformed posts. The maximum dynamic barrier deflection was 51.6 in. (1,311 mm). The working width of the transition system was 63.3 in. (1,643 mm) due to vehicle protrusion over the top of the system. All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, NYSDOT's box beam to weak-post W-beam transition system successfully met all the safety performance criteria of MASH 2016 test designation no. 3-21.

During test no. NYBWT-3, a 5,006-lb (2,271-kg) pickup truck with a simulated occupant seated in the right-front seat impacted the box beam to weak-post W-beam transition at a speed of 62.5 mph (100.5 km/h) and at an angle of 25.7 degrees, resulting in an impact severity of 122.9 kip-ft (166.7 kJ). The point of impact occurred 8 ft – 2 in. (2.5 m) upstream from the leading edge of the box beam. At 0.335 sec after impact, the vehicle became parallel to the system with a speed of 44.6 mph (71.8 km/h). The vehicle was redirected but did not exit the system before it came to rest. The vehicle was successfully contained.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were minimal with a maximum of 1.4 in. (36 mm), which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the W-beam and box beam segments, rail deformation, and deformed posts. The maximum dynamic barrier deflection was 63.7 in. (1,618 mm). The working width of the transition system was 78.5 in. (1,994 mm). All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, NYSDOT's box beam to weak-post W-beam transition system successfully met all the safety performance criteria of MASH 2016 test designation no. 3-21 in the reverse direction.

The NYSDOT box beam to weak-post W-beam transition system was successfully crash tested and evaluated according to the AASHTO MASH 2016 TL-3 criteria. This barrier successfully met all the requirements of MASH 2016 test designation no. 3-21 as well as the reverse direction test designation no. 3-21. In addition, the researchers consider the system MASH 2016 compliant based on the successful test designation no. 3-21 tests and the previous justification for test designation no. 3-20 being deemed not critical.

9 REFERENCES

- 1. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 3. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 4. Mak, K.K., Bligh, R.P., and Menges, W.L., *Volume I: Technical Report, Testing of State Roadside Safety Systems*, Research Report 471470, Texas Transportation Institute, College Station, Texas, September 1996.
- 5. Buth, C.E., Menges, W.L., Williams, W.F., and Shoeneman, S.K., *NCHRP Report 350 Test 3-10 on the Modified PennDOT Type 2 Guide Rail Test 4*, Research Report 473750-4, Texas Transportation Institute, College Station, Texas, July 2000.
- 6. Buth, C.E., Menges, W.L., Williams, W.F., and Shoeneman, S.K., *NCHRP Report 350 Test* 3-11 on the Modified PennDOT Type 2 Guide Rail Test 3, Research Report 473750-3, Texas Transportation Institute, College Station, Texas, June 2000.
- National Academies of Sciences, Engineering, and Medicine 2010, Volume I: Evaluation of Existing Roadside Safety Hardware Using Updated Criteria Technical Report, Washington, D.C: The National Academies Press. <u>https://doi.org/10.17226/22938</u>.
- 8. Bullard, D.L., Menges, W.L., and Kuhn, D.L., *MASH Test 3-10 of PennDOT G2 Weak Post W-beam Guardrail*, Research Report 608221-1, Texas Transportation Institute, College Station, Texas, September 2017.
- Sweigard, M.E., Lechtenberg, K.A., Faller, R.K., Reid, J.D., and Urbank, E.L., MASH 2016 Test No. 3-10 of MGS Installed in an Asphalt Mow Strip with Nearby Curb (Test No. GAA-1), Final Report to the Georgia Institute of Technology, Report No. TRP 03-377-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 14, 2017.
- 10. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 11. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 12. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.

- 13. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985
- 15. *Transition: Box W-Beam (Mod.)*, New York State Standard Sheets, Book 2 of 4: Sheets 606-01 Thru 607-06, New York State Department of Transportation, Albany, NY, September 1, 2017.

10 APPENDICES

Appendix A. NYSDOT Standard Plans

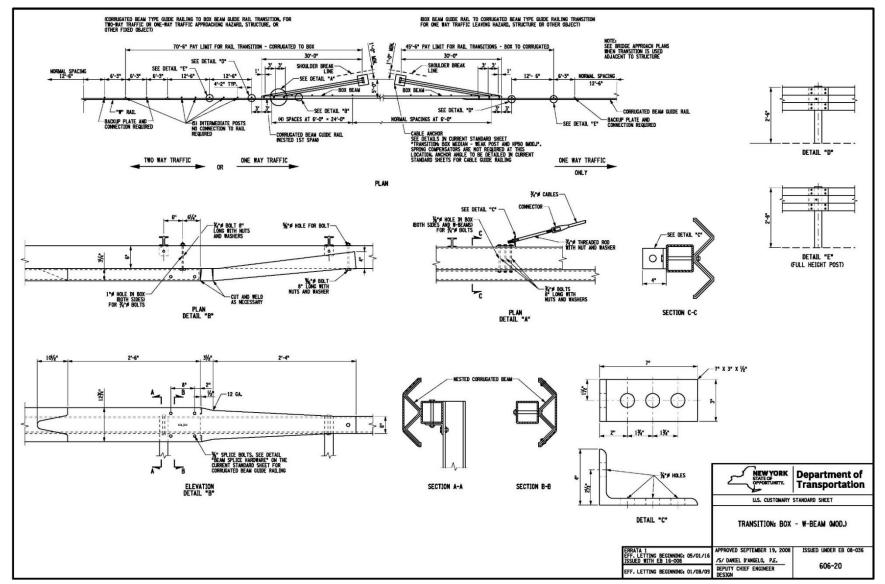


Figure A-1. New York Standard Sheet for Box Beam to Weak-Post W-Beam Transition, Test No. NYBWT-2 [15]

135

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference
a1	12'-6" [3,810] 12-gauge [2.7] W- Beam Section	AASHTO M180	H#USL18L67180
a2	12'-6" [3,810] 12-gauge [2.7] W- Beam Section	AASHTO M180	H#USL18L67180
a3	12'-6" [3,810] 12-gauge [2.7] W- Beam Curved Section	AASHTO M180	H#4120072
a4	12" [305] 12-gauge [2.7] W-Beam Backup Plate	AASHTO M180	H#174700
a5	Box Beam to W-Beam Transition Cover, 12-gauge [2.7]	ASTM A36	H#842W32370
b1	TS6"x6"x ³ / ₁₆ " [152x152x5], 215 ¹ ⁄2" [5,474] Long Box Beam	ASTM A500 Gr. B	H#U2133, #U2139, and #U2141
b2	TS6"x6"x ³ / ₁₆ " [152x152x5], 215 ¹ ⁄ ₂ " [5,474] Long Box Beam	ASTM A500 Gr. B	H#U2133, #U2139, and #U2141
b3	TS6"x6"x ³ / ₁₆ " [152x152x5], 215 ¹ ⁄ ₂ " [5,474] Long Box Beam	ASTM A500 Gr. B	H#U2133 H#U2139 H#U2141
b4	27"x5 ⁷ / ₁₆ "x ⁵ / ₈ " [686x138x16] Splice Plate	ASTM A36	H#W19665
c1	\$3x5.7 [\$75x8.5], 65" [1,651] Long Post	ASTM A36	H#12715
c2	24"x8"x¼" [610x203x6] Soil Plate	ASTM A36	H#A87153
c3	5"x3½"x¾" [127x89x10], 4½" [114] Long L-Bracket	ASTM A36	H#DL16100682
c4	4"x3"x¼" [102x76x6], 8" [203] Long L-Bracket	ASTM A36	H#63173583/04
d1	W6x15 [W152x22.3], 72" [1,829] Long Post	ASTM A992 or ASTM A572 Gr. 50	H#59072980
d2	$20"x14"x^{3/16}"$ [508x356x5] Plate	ASTM A36	H#B610331
d3	$6^{3}/_{16}$ "x4"x ¹ / ₂ " [157x102x13] Plate	ASTM A36	H#A615621
d4	6¼"x4"x½" [159x102x13] Plate	ASTM A36	H#A615621
d5	$6^{3}/_{16}$ "x6"x $^{1}/_{2}$ " [157x152x13] Plate	ASTM A36	H#A615621
e1	10"x9"x ¹ / ₂ " [254x229x13] Box Beam Cable Anchor Base Plate	ASTM A36	H#17011041
e2	4"x4"x ¹ / ₄ " [102x102x6] Box Beam Cable Anchor Gusset	ASTM A36	H#17014221
e3	4"x4"x ¹ / ₂ " [102x102x13] Box Beam Cable Anchor Mounting Plate	ASTM A36	H#17011041

Table B-1. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3

Item No.	Description	Material Specification	Reference
f1	Concrete	Pre-Cast Class A* Min. f'c = 3,000 psi [20.7 MPa] NE Mix 47BD	Ticket# 4203244
f2	#3 [10] Bar, 106 ⁵ /8" [2,708] Long Unbent	ASTM A615 Gr. 60 or A996 Gr. 60	H#592415
f3	#3 [10] Bar, 1175/8" [2,988] Long Unbent	ASTM A615 Gr. 60 or A996 Gr. 60	H#592415
f4	#3 [10] Bar, 127 ¹ / ₈ " [3,229] Long Unbent	ASTM A615 Gr. 60 or A996 Gr. 60	H#592415
f5	#3 [10] Bar, 39" [991] Long	ASTM A615 Gr. 60 or A996 Gr. 60	H#592415
f6	³ /4" [19] Dia. UNC, Hooked Anchor J-Bolt and Nut	J-Bolt - ASTM A307 Gr. C Nut - ASTM A563DH	J-Bolts H#357216 Nut H#DL17102699
g1	14"x9"x ¹ / ₂ " [356x229x13] Cable Anchor Base Plate	ASTM A36	H#812Z45010
g2	3"x2"x¼" [76x51x6] Cable Anchor Gusset	ASTM A36	H#1713253
g3	14"x3½"x½" [356x89x13] Cable Anchor Top Plate	ASTM A36	H#216935
g4	¹ ⁄4" [6] Dia., 16 ³ ⁄8" [416] Long Brass Rod	ASTM B16-00	Fastenal COC
h1	³ / ₄ " [19] Dia. UNC, 11" [279] Long Threaded Rod	ASTM A307 Gr. A or equivalent	H#AU0810817802
h2	Cable End Fitting	ASTM A153 or ASTM B695	H#BU1
h3	Cable Wedge	ASTM A47 Gr. 32510	H#BR1
h4	Crosby Threaded Turnbuckle	Stock No. 1032714	Edward W Daniels LLC COC
h5	BCT Anchor Cable End Swaged Fitting	Fitting - ASTM A576 Gr. 1035 Stud - ASTM F568 Class C	Assembly Specialty Products INC. COC
h6	³ / ₄ " [19] Dia. 3x7 IWRC IPS Wire Rope - Various Lengths	ASTM A741 Type 1	H#139015 H#139021
h7	³ / ₄ " [19] Dia. 6x19 IWRC IPS Wire Rope – Various Lengths	ASTM A741 Type 2	WireCo WorldGroup COC
i1	7"x4"x ¹ / ₂ " [178x102x13], 3" [76] Long L-Bracket	ASTM A36	H#1049189
i2	1¾"x1¾"x10-gauge [44x44x3.4] Square Washer	ASTM A36	H#A705763
i3	27"x3"x¼" [686x76x6] Washer Plate	ASTM A36	H#17126641

Table B-2. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3, Cont.

Item No.	Description	Material Specification	Reference
j1	%"-9 UNC [M22x2.5], 8½" [216] Long Heavy Hex Head Bolt and Nut	Bolt - ASTM F3125 Gr. A325 Type 1 or equivalent Nut - ASTM A563DH or equivalent	Bolts: H#NF16102579 Nuts: Lot#23468- 75062745
j2	³ /4"-10 UNC [M20x2.5], 2 ¹ /2" [64] Long Fully Threaded Heavy Hex Head Bolt	Bolt - ASTM F3125 Gr. A325 Type 1 or equivalent Nut - ASTM A563DH or equivalent	H# RR135745
j3	³ ⁄ ₄ "-10 UNC [M20x2.5], 2" [51] Long Fully Threaded Heavy Hex Head Bolt	Bolt - ASTM F3125 Gr. A325 Type 1 or equivalent Nut - ASTM A563DH or equivalent	Fastenal COC
j4	³ / ₄ "-10 UNC [M20x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: COC 210158499 Nuts: H#18100738-8
j5	³ ⁄4"-10 UNC [M20x2.5], 4 ¹ ⁄2" [114] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: H#06307630-4 Nuts: H#16203941-3
j6	¹ ⁄2"-13 UNC [M14x2], 2" [51] Fully Threaded Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	H#182390
j7	¹ ⁄2"-13 UNC [M14x2], 1 ¹ ⁄2" [38] Long Fully Threaded Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#182390; Nut: H#331703751
j8	³ / ₈ "-16 UNC [M10x1.5], 7 ¹ / ₂ " [191] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: H#817060395 Nuts: H#16211453-3
j9	⁵ / ₁₆ "-18 UNC [M8x1.25], 2" [51] Long Fully Threaded Hex Head Bolt	Bolt - ASTM A307 Gr. A or equivalent	Bolt: H#817060395
j10	⁵ / ₈ "-11 UNC [M16x2], 1 ¹ / ₄ " [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#10435580 Nuts: H#10508780
k1	⁵ / ₁₆ " [8] Dia. Hardened Flat Washer	ASTM F436	H#14MD2281
k2	³⁄₀" [10] Dia. Plain Round Washer	ASTM F844	L#M-SWE0412035-6

Item No.	Description	Material Specification	Reference
k3	¹ ⁄2" [13] Dia. Plain Narrow Round Washer	SAE Low Carbon Gr. 2	L#16H-168236-10
k4	¹ ⁄2" [13] Dia. Hardened Flat Washer	ASTM F43k6	H#281051
k5	¾" [19] Dia. Hardened Flat Washer	ASTM F436	H#3XV37 H#176413
k6	³ ⁄4" [19] Dia. Plain Round Washer	ASTM F844	H#N10746
k7	⅛" [22] Dia. Hardened Flat Washer	ASTM F436	L#16H-168092-9
k8	1" [25] Dia. Plain Round Washer	ASTM F844	L#16H-168236-30
k9	1" [25] Dia. UNC Heavy Hex Nut	ASTM A563DH or equivalent	H#DL15105591
k10	³ ⁄4" [19] Dia. UNC Square Nut	ASTM A563A or equivalent	H#16302167-4
k11	³ / ₄ " [19] Dia. UNC Hex Nut	ASTM A563A or equivalent	H#121455
k12	³ ⁄4" [19] Dia. UNC Heavy Hex Nut	ASTM A563DH or equivalent	H#DL17102699
k13	⁵ / ₁₆ " [8] Dia. UNC Hex Nut	ASTM A563A or equivalent	H#1705030200; Fastenal COC p1222717
k14	¹ /2" [13] Dia. UNC Hex Nut	ASTM A563A or equivalent	H#331703751

Table B-4. Bill of Materials, Test Nos. NYBWT-2 and NYBWT-3, Cont.

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	MIDWEST MACHI P. O. BOX 703	NERY & SUF	PPLY CO.				Test Report Ship Date: Customer PO: Shipped to:	4/11/2018 3581 MIDWEST MACH	INERY & SUPP	LY CO.			
	MILFORD, NE, 6840	05					Project:	INVENTORY					
							GHP Order No.:	682AA					
HT # code	Heat #	G.	MN.	Ρ.	s.	SI.	Tensile	Yleid	Elong.	Quantity	Class	Туре	Description
1483	USL17V55679	0,21	0.81	0.01	0.007	0.017	82026	65956	24,89	20	A	1	12GA 15FT7.5IN WB T13FT1.5IN
1465	USL18L67180	0.21	0.8	0.01	0.014	0.018	76636	64565	25.32	15	А	- 1	12GA 12FT6IN 6FT3IN WB T1-
- 1609	4120144	0,21	0.75	0.021	0.007	0.01	79900	58000	28	23	А	1	12GA 12FT6IN/3FT1 1/2IN WB T1 7
1493	USL17V67176	0.21	0.79	0.007	0.011	0.019	79316	65999	25.95	8	A	1	12GA 12FT 6IN / 3FT 1 1/2IN WB T1 RC=140
1431	4159417	0.21	0.76	0.013	0.00B	0,01	79500	58100	29	11	А	1	12 GA 12FT6IN WB T1 FLEAT-SKT COMBO PAN
1465	USL18L67180	0.21	0,8	0,01	0.014	0.018	78636	64565	26.32	10	А	1	12 GA 12FT6IN WB T1 FLEAT-SKT COMBO PAN
1465	USL18167180	0.21	0,8	0.01	0.014	0.018	76636	64565	26.32	11	А	1	12GA 9FT4 1/2IN 3FT1 1/2IN WB T1

141

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-853 All Galvanizing has occurred in the United States

All steel used in the manufacture is of Domestic Origin, "Made and Melted In the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets ASAFTO M-180, All structural steel meets AASHTO M-183 & M270

All Bolts and Nuts are of Domestic Origin

All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrall and terminal sections meet ASTM A606, Type 4.

Gnover yog 0 0

By: Jeffery Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

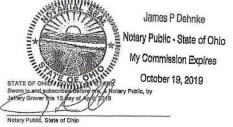
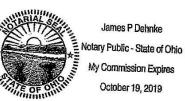


Figure B-1. W-Beam Sections, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. a1 and a2)

						c		VAY PRODUCTS, I 3th St. SW iio 44710	NC.			PURC	Elderlee, mg. RT Received: <u>3/5/17</u> Hase order # <u>P6079</u> Es order # <u>352/40</u>
Customer:	ELDERLEE, INC P.O. BOX 10						Test Report Ship Date: Customer P O: Shipped to:	3/2/2018 6079 ELDERLEE, INC.				Sł	HIPPED FROM: Gregary BOL 114257
	OAKS CORNER	LNY.14518					Project: GHP Order No.:	352AO					
HT # code	Heat#	c.	MN.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
1347	4120072	0.21	0.6	0.016	0.005	0.01	78454	55254	27.48	200	А	2	12GA 12FTGIN WE TO 10 H DRWY AP 17.1395
0396	A84716	0.02	0.48	0.014	0.003	0.02	77803	58077	18.72	25	в	2	10GA 12FTEINGFT1 1/2IN TB T2
0682	A85937	0.21	0.47	0.01	0.002	0.02	80861	57027	21.26	75	в	2	10GA 12FT6IN/3FT1 1/2IN TB 72 66 39.13
0685	9415312	0.2	0.73	0,008	0.007	0.02	76960	54807	25.14	440	А	2	12GA SINGLE BUFFER 5143. 85

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated, Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States 1111


All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635,410 - Buy America

All Grandral and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Golds and Nuls are of Domestic Origin All material fabricated in accordance with New York Department of Transportation

All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

& Gracoek 0 800

By: Jeffery Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworm to and subscribed before to y Public, by

February 27, 2024 MwRSF Report No. TRP-03-414-24

Figure B-2. W-Beam Curved Section, Test Nos. NYBWT-2 and NYBWT-3 (Item No. a3)

		4				Certifi	ed Analy	ysis		inter.	Highway Produc	N.F.
Trinity Hi	ghway Pi	roducts, LLC					•			The second secon		
50 East R	-					Order	Number: 121519	03 Dro	d Ln Grp: 3-Guardrail (Dom)			
								95 F10	d Li Oip. 5-Odardran (Dom)			
Lima, OH 4						Cust	omer PO: 2884			As of: 4/1		
Customer:	MIDW.	EST MACH.& SUPPLY	CO.			BOL	Number: 80816	12"	Ship Date: Guardrail Backu	ID Dlate	20	
	P. O. B	OX 703				Do	cument #: 1	12	Guardiaii Backi	ip Place	25	
						Sh	ipped To: NE	R# 1	5-0161 Septembe	er 2014	SMT	
	MILFO	RD, NE 68405				τ	Jse State: KS		ker-labeled Hea			
Project:	STOCK							SUIC	ker-lapeled Hea	ac numbe	er	
1.101000	DIOCF	×										
Qty	Part #	Description	Spec	CL		Heat Code/ Heat	Yield	TS		Si Cu Cb	Cr Vn A	
20	3G	12/12"/BACKUP	M-180	A	2	174700	57,680	74,850	30.7 0.190 0.730 0.013 0.004 0.0	20 0.140 0.000 0	.060 0.000	4
8	957G	T12/BUFFER/ROLLED	A-36			4145361	56,100	71,000	32.0 0,210 0,400 0,007 0,003 0,0	20 0.030 0.000 0	.030 0.000	4
75	980G	T10/END SHOE/SLANT	M-180	В	2	L52907	38,900	53,400	39.2 0.070 0.190 0.008 0.009 0.0	06 0.000 0.000 0	.000 0.000	4
5,000	3340G	5/8" GR HEX NUT	HW			DECKER1402N2						
-,- 50												
4,000	3360G	5/8"X1.25" GR BOLT	HW			140221B2						
5	10967G	12/9'4.5/3'1.5/S			2	L11114						
5	109070	1010 t.JIJ 1.JID	M-180	A		174702	56,310	74,260	28.2 0.180 0.720 0.009 0.004 0.	010 0 140 0 000	0.060 0.001	4
			M-180	A		174702	58,510	75,580	25.2 0.190 0.720 0.011 0.001 0.			
					2	174704						4
			M-180	A	2	174705	55,420	72,350	31.5 0.190 0.730 0.009 0.004 0.	020 0.130 0.000	0.050 0.001	4
			M-180	A		174706	56,890	74,350	27.6 0.190 0.730 0.011 0.004 0,	020 0.140 0.000	0.060 0.000	4
			M-180	A		174707	57,190	73,530	25.9 0.190 0.720 0.010 0.002 0.		0.060 0.001	
			M-180	A		175518	57,060	74,520	29.1 0.180 0.720 0.011 0.003 0.			
Ĩ			M-180 M-180	A A		175519 175520	55,030 56,500	73,480	29.7 0.190 0.720 0.012 0.005 0. 30.6 0.190 0.730 0.011 0.004 0.		0.050 0.001	
	10967G		141-100	A	2	L14413	30,300	74,400	50.0 0.190 0.750 0.011 0.004 0.	.010 0.110 0.000	0.050 0.000	4
			M-180	A		172216	56,650	73,720	29.2 0.200 0.730 0.010 0.003 0.	.020 0.130 0.000	0.050 0.000	4
			M-180	A	2	172217	56,120	72,880	30.5 0.190 0.710 0.011 0.004 0.	.010 0.130 0.000	0.070 0.000	4
			M-180	A	2	172218	57,090	73,430	30.5 0.190 0.720 0.009 0.003 0.	.020 0.130 0.000	0.050 0.000	4
							65.000	86,900	22.9 0.220 0.870 0.009 0.004 0.	020 0140 0.002		
			M-180 M-180	A A		A68719 A68721	65,900 65,700	85,100			0.070 0.002 0.070 0.001	

Figure B-3. W-Beam Backup Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. a4)

.

Customer Name						
of any a	Custon	ner PO#	Shipper No	Heat Number		
Elderlee Inc	PO0593	30	820439	842W32370	、 <i>」</i>	
				12Ga i 20270	Sheet	· -
			15	20270	A1011	1
	c	ERTIFIED TEST REPO	DRT		·	
*CENTER STEEL S 6645 ROOSEVELT ALLEN PARK, MI	AVENUE 48101		DATE:	9/19/17	*	
SOLD TO: KLEIN 105 VA ROCHES	STEEL SERVICE I NGUARD PKWY TER, NY 14606	NC. SHIP TO	ROCHESTER,	L SERVICE IN RD PKWY NY 14606 -328-4000 EX		8
Cust P/O# AC7. SalesOrdr# 90 VSIZE: .104 NOM	389 0598 01 X 7	Part# (HT# 2.00 X 120.			-	
1		S/B MILL EDGE SHE				
DATE SHPPD: 9/3		-, Ditt				1
Wt.Shipped	5260					
	C	HEMICAL ANALYSIS				:
Heat Number 8421	132370			2201		1
Heat Number 8420 C : .03 Si: .007 Cu: .015	Mn: 7 Ti: 5 Al:	.19 P : .002 Cr: .051 Cb:	.008 .020 .002	S : .007 Mo: .002 V : .001		
B : .004		Ni:		N : .002	е. 	1
	Pł	HYSICAL PROPERTIES				
						1
		3				
Misc Info MELTED & MFG IN EN10204 3.1 BOL# 17145	THE USA					
MELTED & MFG IN EN10204 3.1	THE USA					
MELTED & MFG IN EN10204 3.1	THE USA					,
MELTED & MFG IN EN10204 3.1 BOL# 17145	•					ž
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	URES ARE ACCURATEI RACEABLE IN OUR RE	Y STATED, ME CORDS BACK T	ET YOUR . O THE		×
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF	Y THE ABOVE FIG MENTS AND ARE T	RACEABLE IN OUR RE	Y STATED, ME	ET YOUR . D THE		
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	RACEABLE IN OUR RE	CORDS BACK T	ET YOUR . O THE		×
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CORDS BACK T	ET YOUR . O THE	 • • •	
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CONDS BACK T	ELGERIEC,	INC.	
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CONDS BACK T	ELDERLÉS, received:	9/21/17	
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CONDS BACK T	ELDERLES, TRECEIVED: ASE ORDER #	9/21/17 P5930	5
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CERT MANAGER CERT PURCH SALF	ELDERLEE, FRECEIVED: ASE ORDER # S ORDER #	9/21/17 P5930 720439	2
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CERT MANAGER CERT PURCH SALF	ELDERLES, TRECEIVED: ASE ORDER #	9/21/17 P5930 720439	2
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CERT MANAGER CERT PURCH SALF	ELDERLEE, FRECEIVED: ASE ORDER # S ORDER #	9/21/17 P5930 720439	2
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CERT MANAGER CERT PURCH SALF	ELDERLEE, FRECEIVED: ASE ORDER # S ORDER #	9/21/17 P5930 720439	2
MELTED & MFG IN EN10204 3.1 BOL# 17145 WE HEREBY CERTIF MATERIAL REQUIRE	Y THE ABOVE FIG MENTS AND ARE T	EST LABORATORY	CERT MANAGER CERT PURCH SALF	ELDERLEE, FRECEIVED: ASE ORDER # S ORDER #	9/21/17 P5930 720439	2

Figure B-4. Box Beam to W-Beam Transition Cover, Test Nos. NYBWT-2 and NYBWT-3 (Item No. a5)

												2					14.44
E.S.		ВU	ILL	M	00			CEF	RTIFIC	OOSE T ATION ()04 TYI	OF TES	STS	RT FACIL	ITY	11/ Page 1 d	/01/16 of 1	
) Clarks			,	I UI		R#1′	7-313	NYI	TOC							
	sterfield 537-260	, Missou)0	ri 63017				6x63	x3/16	Gua	ardra	i l						
DI	LL TO	Di Hiah	wav Sior	n & Struc	lure		01101	10/10	Gui		SHIP TO	Dil	Highway				
		P.O. Bo New Yo	ox 123 ork Mills	n & Struc NY 1341	7-0123					c		40	Greenmar w York Mil			NY	13417
B/	L Numi	ber 3	95443						Ship	o Via				1	4_02		
														6.0	23		808 <u>0</u>
	6" S	Q X 0.1	87 HR 🕽	K 17' 11	.5''								Order #	ŧ	5239	88	
	152.4	4 mm				Ladle	, Physi	cals, D	NTT				Purcha	se Ord	ler #	33610	
	NY C	Suard R	lail 710	-21 Rail									Item #		1107	07 3840	
										Cu	stomer	' Item	#				
	Raw	Materia	al is of	Domest	ic Oriç	jin - Me	lted ar	nd Manu	factur	ed in th	e USA						
						He	eat # =	U2133							D	NDT	
С	MN	Р	S	AL	SI	CB	CU	CR	NĮ	V	МО	В	TI .	N CE	YLD psi	TSN psi	ELN %
.050	.650	.012	.006	.028	.020	1.023	.150	.070	.070	.002	.020	0.000	.002 .00	8 .195	70240	71530	31
	6" S(Q X 0.1	87 HR)	(17' 11.	5"								Order #	i.	5239	88	
	152.4	4 mm				Ladle	, Physi	cals, DV	VTT				Purcha	se Ord	er#	33610	
	NY G	uard R	ail 710-	21 Rail									ltem #		11070	07 3840	
									ъ	Cu	stomer	item	#				
	Raw	Materia	al is of l	Domest	ic Orig	jin - Me	Ited an	id Manu	factur	ed in th	e USA						
						He	eat # =	U2139	l.						D	NDT	
С	MN	P	S	AL	SI	CB	CU	CR	NI	V	MO	В	TI I	V CE	YLD psi	TSN psi	ELN %
.050	.660	.012	.003	.034	.020	:022	.130	.070	.070	.002	.020	0.000	.001 .00	9 .195	60900	70320	29
	6" SC	Q X 0.18	37 HR X	(17' 11.	5''								Order #		5239	88	
	152.4	mm				Ladle.	, Physi	cals, DV	VTT				Purchas	se Ord	er #	33610	
	NY G	uard R	ail 710-	21 Rail									Item #		11070	3840	5 1 0
										Cu	stomer	Item	#				
	Raw	Materia	I is of I	Domest	ic Orig			-	facture	ed in th	e USA						
						He	at # =	U2141							D	NDT	
C	MN	Р	S	AL	SI	CB	CU	CR	NI	V	МО	В			YLD psi	TSN psi	ELN %
.050	.620	.013	.005	.032	.020	·.022	.130	.060	.060	1.002	.020	0.000	.001 .00	7 ,186	62160	69380	33
			37 HR X	17' 11.	5''			÷					Order #		5239		
	152.4					Ladle,	Physic	cals, DV	VTT				Purchas	se Orde		33610	
	NY G	uard R	ail 710-	21 Rail									Item #		11070	7 3840	
	-		i a si s		<u>.</u>		la se se l'essana				stomer	Item	#				
	Raw	wateria	I IS OF L	Domesti	c Orig				acture	ea in th	e USA					NDT	
~	1.44	-	0		~			U2405		17		~				NDT	EI N 07
C	MN	P	S	AL	SI	CB	CU	CR	NI	V	MO	B			YLD psi	TSN psi	ELN %
.050	.670	.012	.003	.037	.020	:020	.160	,080	.070	.002	.020	0.000	.001 .00	.201	67050	70750	36
	ty Mar			Cyde			OTU							10.4			
AND CHE ANY	HAS MISTE PHYS	BEEN RIES A SICAL A	PRODI RE RE AND M	JCED I PORTE	N ACC D FR	ORDA OM DO TESTI	ANCE DOUME	WITH T ENTS P SULTS	HE ST ROVI SHO	TATED DED B' WN ON	SPEC Y THE	IFICA SUPF	F AMER TION. L PLYING TIFICAT	ADLE			

Figure B-5. TS6x6x³/₁₆ Box Beams, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. b1, b2, and b3)

3

Contucky	/ Lincirio	Stoel			Januar	y 28, 20	16	www.kentuckyelectricsteel.com Phone: (606) 929-1200 Toll Free: (800) 333-3012 Fax: (606) 929-1219									
Shin	To: DI	Holmen	Ston P. C	tenature				Page	:4								
	40 (Greeman	Avenue lills NY					METALLURGICAL TEST REPORT We herby certify that these Chemical and/or Test results are correct as contained in the records of Kentucky Bicotrio Steel									
Sold	P.O,	VPORAT BOX 12 VYORK	'10N 23	& STRU NY 1341				By: Morei materi	William William	storiels have	Congist n Q.C. Manu a not been ut onned.		notretion o	-+ f thìs			
P.O. No	0005409		Ord Iten	de:A36 (ler:KO00 n: 10270 3",20' 3"	006368-1 6		st Item:			Siz- Ler	e:0.625 X e(MM):1: ngth:243.0 ngth(MM)	5,88 X 1 0000		FL			
W19665	e <u>at</u> i chemistry	<u>Furna</u> BAF y Analys	US,	olted Son A	r <u>ce</u> Bil	<u>Cast</u>	<u>CE</u> i		bī		0.0000						
<u>C</u> . 0.15	Mn 0.60	<u>P</u> 0.010	<u>ş</u> 0.016	<u>Si</u> 0,27	<u>Cù</u> 0.19	Ni 0.09	<u>Cr</u> 0,13	<u>Mo</u> 0,03	<u>Sn</u> 0,008	<u>Al</u> 0.005	0.000	<u>Nb</u> 0.002		<u>Ti</u> 0.0004			
<u>N</u> 0.008	<u>Pb</u> 0.0004	<u>Q</u>	Ca	<u>Bi</u>	Se	Te	As	Sb	Zu	Zr	<u>Ж</u>	<u>H2</u>	<u>CO</u>	-			
*****		1226)	0.0005				0.005	0.001					0.0070				
Jomluy (JI J2	ASTM / J3 J4	JS J6 - clustons	J7 J8	45)		J13 J14	1 J15 J16	J18 J2(J32			0.0070 n Size				
Jomluy (JI J2	' <u>ASTM /</u> J3 J4	JS J6 - clustons	J7 J8	45)	J11 J12 ethod C. S		1 J15 J16	J18 J2(0 J24 J28 Inspection Sover1		ASTME R C	381		Nallo			
<u>Jomluy (</u> Jl J2 Non-Me	ASTM / J3 J4 tallic Inc Meth	J5 J6 clustons	J7 J8 (ASTMLE	45) .M Q	ethod C.		4 J15 J16 Magnelie	J18 J20	Inspection Soveri	LX.	RC	381 S	n Siz o Reduction	Nailo			
Jomluy (JI J2 Non-Me	ASTM / J3 J4 tallic Inc Meth	J5 J6 clustons ioitA C	J7 J8 (ASTMLE	45) 	ethod C.		4 J15 J16 Magnetle ecitioney	J18 J20	Inspection Soveri	LX.	RC	381 S	n Siz o Reduction	Rafo			
Jomfuy (J1 J2 Non-Me A <u>Fensile 1</u> Fensile 1	ASTM / J3 J4 tallic Inc . Meth B	J5 J6 clustons wd.A. <u>C</u> es Ytetd	J7 J8 (ASTME D Yield	45) 	ethod C. S Elong % 8 ¹¹	Fr	4 J15 J16 Magnetle ecitioney	J18 J20 Particle & MAI	Inspection <u>Soveri</u> VUFACTU <u>Type</u> Surface Mid	Lx RED IN RC ·	R <u>C</u> The USA	381 S	n Siz o Reduction	Railo ILV			
Iominy (J1 J2 <u>Non-Me</u> <u>A</u> <u>Fensile 1</u> <u>Fensile 6</u> 69200	ASTM / J3 J4 tallic Inc Meth B / / Propertic Yield 0,2%	J5 J6 clustons wd.A. <u>C</u> es Ytetd	J7 J8 (ASTME D Yield	45) 	ethod C. S Elong <u>% 8 "</u>	Er , ROA	4 J15 J16 Magnetic estimoney MELTED	J18 J20 Particle & MAI	Inspection Soveri NUFACTU Surface Mid Core Surface Mid Nid	Lx RED IN <u>RC</u>	B G THE USA Hard	381 S Incess	n Sizo Reduction 10.4 : f				
Iominy (J1 J2 Non-Me A Fensile 1 Fensile 1 69200 68100	ASTM / J3 J4 tallie Inc Meth B / / / Propertia Yield 0,2% 46600	J5 J6 clustons wd.A. <u>C</u> es Ytetd	J7 J8 (ASTME D Yield	45) 	ethod C. S Elong <u>% 8 "</u>	Er , ROA	4 J15 J16 Magnetic estimoney MELTED	J18 J20 Particle & MAI	Inspection Soveri VUFACTU Type Surface Mid Core Surface	Lx RED IN <u>RC</u>	B G THE USA Hard	381 S Incess	n Sizo Reduction 10.4 : f				
Iominy (J1 J2 <u>Non-Me</u> <u>A</u> <u>Fensile 1</u> <u>Fensile 6</u> 69200	ASTM / J3 J4 tallie Inc Meth B / / / Propertia Vield 0,2% 46600	J5 J6 clustons wd.A. C es Yleid 0.01%	J7 J8 (ASTNIE D Yield Q.02%	45) 	ethod C. S Elong % 8 "	Er , ROA	4 J15 J16 Magnetile estimoney MELTED Deca	J18 J20 Particle & MAI	Inspection Soveri YUFACTU Type Surface Mid Core Surface Mid Core	Lx RED IN <u>RC</u>	B G THE USA Hard	381 S Incess	n Sizo Reduction 10.4 : f				

.

Figure B-6. Splice Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item No. b4)

CUSTOMER	ORDER NO.	DATED	OUR	ORDER NO.	FREIC	HT PMT	CUSTON	ER NO.	CHANG	JE DATE				D	ATE SHIP	PED	LOAI	D NUMBE
P005996	1	11/14/17	76	791-3	XXX 6	INCL	31850	000	E 12/	29/17				ı	22	18		1-49
.B HO	TINGTON				F	OUTE REQUESTED			TERMS		ROUTING VIA	PL			12		B.O.L	# 26
.5 100	11110100					TRUCK		NET	30 DAYS		This is to certify the			cification	ie e ten	e and com		_
729 C	LEE INC ROSS RD CORNER NY	14518			ⁿ 7 7:	DERLEE INC 29 CROSS RD AKS CORNER	NY 14	1518			report as contained	in the rec	ords of t		any.	-		XXX
PROD	1			LENGT		QUANTITY	EST	MATED	·				QUAN	TTY THIS S	HIPMEN	r		-
CODE	1000	ESCRIPTION		ORDERI		ORDERED		IGHT		BUNDLES	SHIPPED	PIECE	S	LIN, FEI	ET	POUNDS		
2658		.7# I BEAM																
	NO_HOL	ES, BARE			+								-+		-+			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ASTM = AS	TM A36-0	8														
1	2 TL F	ER DAY - D	O NOT SE	IP UNTIL	2018!	* **** ****			0						-			
	101 CH 000 CH 000 CH	TS 315-789																
		42':0300.0	2 승규가 있으니?		소리 강남 영화							1						
	265843	#315-789-6	670; PAY	43' 4"	N PLT	180 PCS	<u> </u>	4,460#				ļ	-+	0. · · · · ·		~		
1	265843	S 155	/15/18	43' 4"		360 PCS	1 -	4,400# 8,920#			5 of 36		180	43' 4"		44,46	0	
1	265843		/15/18	43' 4"		360 PCS		8,920#				TARP 1						
1	265843	4 01	/15/18	43' 4"		360 PCS	8	8,920#	1					FID	FR	FF. 16	-	
1	265843	4 01	/15/18	43' 4"		360 PCS	8	8,920#	· · · · ·	·····			ACC	RECE			11	23
	265843	4 01	/15/18	43' 4"		360 PCS	8	8,920#				Malara -					25/13	
1														ASE C			3 29	36
															and the second se	70		
							1						SHI	PED	FROM	W: 54	1× 2	
	AL	melting a	and manu	acturing	proces	ses for the	se mat	erials	ccurred	in the	U.S.A.		-					
				-	-		0.0000000000000000000000000000000000000		:			1					Î.	
	S	rength (P.	s.I)	Elong	ation						HEAT NO.	с	MN	P	S	SI	v	1
HEA	TNO Yi	ld Te	nsile	*	Lth	Cu	Cr	Ni	Mo	Nb							<u> </u>	SN
127		000 é	57000	22.8	8	.26	1	.08	.02	.001	12715	.12	.58	.014	.023	.22	.004	.012
+	49		1000	24.0	•	.20	.16	.08	+ -04	.001	14/15		.58	1.014	.023		.004	1.012
	-								1		1					1		{
						All and a second second	1		1		1			1	1			-

Figure B-7. S3X5.7 65-in. (1,651-mm) Long Posts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. c1)

					ə4″Sp.	de A36
CI	ERTIFI	CATE O	F CONF	ORMANC	Ę	
	MI 9	TT CON STE 950 RITTMA	EL INC. N ROAD			2/14/18
	W	Adsworth, 30-334-329	DH 44282		Pagel	1
TÓ:	E, INC.		SHIP		LEE, INC.	
729 CRC	SS ROAD			STEEL	YARD	
OAKS CC	RNERS, NEW	V YORK 145	18		COSS ROAD	1,4518
SIZE: .250	×	8.00	X 2	4.00		LEE, INC.
GRADE: SHEETS HO	T ROLLED				CERT RECEIVE URCHASE ORD	
A36 🗸					SALES ORDER	
Bill/Ladng# 002163	B/L Da	te 2/14/18	Sales Ordr		SHIPPED FRC	M: Met Co
Gust. P/O#: P006010		Part No.s	0333.70001			Stee
Tag# 50253801 01	JHEAT# AS	7153	MasterTagt	MC1633218	01 si: .02	
C : .20 Tii .001	Mn: ,46	P: 009	5 ; ,002 Cuz .11	AL: .032	Cri05	
121 1001	Sn: .006	Ca: .0016	N : .0094	B 1 .000	1 NA 1 .04	
		Tens: 60	MagterTag# S : .002 Cu: .14 N : .0094 1500	¥1d: 46250	Elng; 3	1
Tag# 50253802 01	Heat# A8	7153	MasterTag# 5 : .002 Cu: .11 N : .0094	WC163321B	01 Si: .02	
C 1 .20 Ti: .001	Mn1 .46	P 1 .009	S : .002 Cui .11	V : .001	Gr: .05	
14. 1991	Sn: .006	Ca: .0016	N : .0094 1500	B 1 .000	1 N1: .04 Bing: 31	14
Tag# 50253803 01 C t 20	Heat# A8	7153	MasterTag# S : .002 Cu: .11 N : .0094	AL: .032	Sil .02	
T11 .001		Mo: .02	Cu: .11	Y : .001	Crs - 05	
	Sn: .006	Ca: .0016	N 1 .0094	B : .000	1 Ni: .04 Eing: 33	35
			500		And the second second	
Pag# 50253804 01. C : .20	Heat# A8	7153	MasterTag#	MC163321B	01 Si: .02	
0 1 .20 Ti; .001	Mn; ,46	Mos .02	Cu: .11	V ; .001	Cr: 05	전 소 없는 것은
	Sn: .006	Ca: ,0016	5 : .002 Cu: .11 N : .0094	B 1 .000	1 Ni: .04 Elng: 3	2.8
		an a	a la santa da sa			
Tage 50253805 01 C : .20	Heat# A8 Mn: .46	/153	NasterTagf S : .002	Al: .032	51: .02	
T1: .001	MILE L'EU	Mos ,02	Cu: .11 N t .0094	V r .001	Cr; .05	
	Shi .006	Ca: ,0016 Tens: 60	N 1 .0094	B : .000 Yld; 46250	1 Nit (04 Elng: 3	23
	mand an	2122	Mastarfisal	MC1633218	01	
C : .20	Mnr .46	P 4 .009	S : .002	A1: .032	51: .02	Artes Contractor
T1: .001		Mo1 .02	Cu: .11	V : .001	Or: .05	
Tag# 50253806 01 C : .20 T1: .001	Bn: .006	Ca: .0016 Tens: 60	N : .0094	B : .000 Yld: 46250	1 N1: .04 Elng: 3	2%
Continued						
				성격 문제한		이다. 이번 동안은

	~	EDUTT	ICATE C		\\ \\ \	אמר	NOR		
	<u>с</u> .	ur tr		and start		JENIA	NCE		2/14/
			MET CON STE 9950 RITIMA WADSWORTH, 330-334-329	N ROAD OH 4428				Page#	
TO:				4	HIP	fo:			
ELDI 729 ØAKS	CRG CRG CCG	SE, INC. DSS ROAD DRNERS, 1	NEW YORK 145	8		ST) 72	EEL YA	, INC. RD S ROAD NERS, NY	14518
SIZE: .250 GRADE: SHEETS A36	HC) T RÖLLEI	(8.00	x	2/	1.00			
Bill/Ladng# 0021# Cust. P/O∦: P0060	53 010	B/L	Date 2/14/18 Part No.:	Sales 0333.700	Ordr: 01	801753	0 1		
Tage 50253807	01	Heats	A87153	Master	rag# M	21633218	01		
C i .20		Mn: ,46	P : .009	S ;	002	A1:	.032	Si: ,02	
Tag# 50253807 C 4 .20 Ti: .001		Sn: .006	Ca: .0016	N :	0094	B :	.0001	Ni: ,04 Elng: 3	
			Tens: 60	500		1703 498	9Ų	ernd: 3	28
Tage 50253808	01	Heatf	A87153	Master	Cag# MC	2163321B	01	er. 65	
C 1.20 T1:.001		MD1 46	Mo: .02	Cui.	11	V :	.001	Or: .05	
Tag¥ 50253808 G 1 .20 T1: .001		Sn: -00.6	Ca: .0016 Tens: 60	N : .	0094	B : (1d: 462	0001 50	Ni: .04 Elng: 3	28
		Barr Mill	202162	Machart	The Mo	arecear	.01		
C ± .20	01	Mn: .46	P 1 .009	S :	002	Al	032	Si: .02	
Ti: ,001			Mö: .02	Cut	11	y .	001	Cr: .05	
Tag# 50253809 C ± .20 Ti: .001		Sn: 006	Ca: .0016 Tens: 60	N : . 500	0094	B : 1d: 462	.0001 50	Ni: .04 Eing: 3	2%
	1.1		A87153 P:.009 Moj:.02 Cai.0016 Tens:60						
Tag# 50253810	01	Mn: .46	P : .009	S	002 ML	AL:	032	Si: .02	
Ti: ,001			No: .02	cui .	11	V i	001	Cc: .05	
	12	Snt .006	Ca: .0016	N. 4 .	0094	В:	0001	N1: 04 Elng: 3	
	485		Tens: 60	500	Y	1a; 462;	su	Eing: 3	28
Tag# 50253811 C 1 .20 T1: .001	01	Heatt	A87153	Masterl	age MC	163321B	01		
C 1 .20		Mn: .46	P 1 .009	\$ t ,	002	Al:	032	51: .02	
T1: ,001	1.10	Sat 006	Mo: .02	Cu:	0094	R .	0001	Nit 04	
									28
Tag# 50253812 G ; .20 Tir .001	01	Reat#	A87153	MasterT	agi MC	1633218	01		
G ; .20		Mn: .46	P ; .009	S : .	002	Al:	032	51: .02	
100, 111		Sn: .006	Mo: .02 Ca: .0016	Cu:	0094	B 3	0001	Cr: .05 NL: .04	
	22	THE PARA	Tiony 60	00	1 V	141. 4625	0	Elng: 3	2%

Figure B-8. Soil Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item No. c2)

NUCOR CON	TPORATION EL SOUTH CAROLINA	Mill Certification 3/15/2016	ŝ	MTR #: C1-3664 300 Steel Mill Rc DARLINGTON, SC 295 (843) 393-55 Fax: (843) 395-87
Sold To: DI HI	SHWAY SIGN & STRUCTURE	Ship To: DI Hi 40 G PO B	IGHWAY SIGN & STRUCT REENMAN AVE NOX 123	is which involve every set
(315) Fax: (OX 123 YORK MILLS, NY 13417-0123 736-8312 315) 736-7172	(315) Fax:	IGHWAY SIGN & STRUCT REENMAN AVE IOX 123 -YORK-MILLS, NY-13417-0 736-8312 (315) 736-7172	
Customer P.O.	33537		Sales Order	242841.3
Product Group	Merchant Bar Quality		Parl Number	2160353748010W0
Grade	NUCOR MULTIGRADE	· · ·	Lot #	DL1610068201
Size	5x3-1/2x3/8 Angle		Heat#	DL16100682
Product	5x3-1/2x3/8 Angle 40' NUCOR	MULTIGRADE	B.L, Number	C1-686804
Description	NUCOR MULTIGRADE		Load Number	C1-366424
Customer Spec			Customer Part #	
rereby certify that the m	alerial described herein has been manufacti	ured in accordance with the specifications and standard	ds listed above and that it satisfies th	iose requirements.
oll Date: 2/6/2016	Melt Date: 2/1/2016 Qty S	hipped LBS: 9,984 Qty Shipped Pos	: 24	
C M 0.16% 0.66 Ti CE44 0.001% 0.34 54020; C. E. CSA	% 0.009% 0.030% 520	SI Cu Ni 0.20% 0.31% 0.10%	Cr Mo 0.16% 0.030% (V Cb Sn 0.0390% 0.002% 0.015%
Il Date: 2/6/2016				
and an		Tensile 1: 72,000psi		ation: 27% in 8*(% in 203,3mm)
eld 2: 55,000psi		Tensile 2: 72,000psl	Elonga	ation 26% in 8"(% in 203.3mm)
			Elong: 336/A36M-08, A529/529M- -04 GR44W(300W) & GR56 ODUCED TO A FULLY KIL	atlon 26% In 8"(% In 203,3mm) 05(2009) 0W(350W) LED, FINE
eld 2: 55,000psi ecification Comme 350(345), A572/57 SHTO M270/M274 XAIN PRACTICE WELDING OR WE MELDING OR WE MELDING OR WE		Tensile 2: 72,000psl ETS THE REQUIREMENTS OF: ASTM / 0 GR36(250) & GR50(345), CSA G40.21 ASME SA36/SA36M-07, QQ-S-741D PR RMED ON THIS MATERIAL RIALS IN ANY FORM HAVE NOT BEEN	Elong: A36/A36M-08, A529/529M- 04 GR44W(300W) & GR6 ODUCED TO A FULLY KIN NUSED IN THE PRODUCT	atlon 26% In 8"(% In 203,3mm) 05(2009) 0W(350W) LED, FINE
ecification Comme (50(345), A5/2/57 SHTO M270/M277 AIN PRACTICE VELDING OR WE AELTED AND ME AELTED AND ME		Tensile 2: 72,000psl ETS THE REQUIREMENTS OF: ASTM / 0 GR36(250) & GR50(345), CSA G40.21 ASME SA36/SA36M-07, QQ-S-741D PR	Elong: A36/A36M-08, A529/529M- 04 GR44W(300W) & GR6 ODUCED TO A FULLY KIN NUSED IN THE PRODUCT	atlon 26% In 8"(% In 203.3mm) 05(2009) 0W(350W) LED, FINE
ecification Comme t50(345), A572/57 SHTO M270/M274 XAIN PRACTICE WELDING OR WE MELTED AND MAI MERCURY, RADIL		Tensile 2: 72,000psl ETS THE REQUIREMENTS OF: ASTM / 0 GR36(250) & GR50(345), CSA G40.21 ASME SA36/SA36M-07, QQ-S-741D PR RMED ON THIS MATERIAL RIALS IN ANY FORM HAVE NOT BEEN	Elong: A36/A36M-08, A529/529M- 04 GR44W(300W) & GR6 ODUCED TO A FULLY KIN NUSED IN THE PRODUCT	atlon 26% In 8"(% In 203.3mm) 05(2009) 0W(350W) LED, FINE

Figure B-9. 5 x $3\frac{1}{2}$ x $\frac{3}{8}$ -in. (127 x 89 x 10-mm), $4\frac{1}{2}$ -in. (114-mm) Long L-Brackets, Test Nos. NYBWT-2 and NYBWT-3 (Item No. c3)

GÐ	GER	DAU	CUSTOMER S STEEL & PIF	HIP TO E SUPPLY CO NTURY PKWY	CUS	IED MATERIAL TOMER BILL TO EEL & PIPE SUPP		GRADE			E / SIZE / 4X3X1/4	Page 1/1 DOCUMENT II 0000118460
S-ML-JACKS			10000000	JRY,KS 66031-1		NHATTAN,KS 66 A	505-1688	LENGT 20'00"	гн		WEIGHT 9,744 LB	HEAT / BATCH 63173583/04
CKSON, TN SA		NOAD	SALES ORD 5812049/000			CUSTOMER MAT 000000050400300		ASTM /	FICATION / DAT A529-14, A572-15 A6-14, A36-14, ASM			
USTOMER PU 3450024691	RCHASE ORDE	R NUMBER		BILL OF LA 1333-000009		DATE 11/09/20	017		4709-15, AASHTO 10.20-13/G40.21-13	M270-12		
HEMICAL COM	POSITION Mn % 0.68	0.012	\$ 0.036	Si 0.19	Cu % 0.31	Ni % 0.09	Çr 0.13	Мо % 0.024	¥ 0.022	NЬ % 0.001	A1 % 0,000	Sn 0.012
IECHANICAL PI Elgi 29.0 29.0	98. 00	8.	6/L hch 000 000	26	G/L nm 90.0 00.0	U1 P5 740 741	S 10 40	510 511)	P 558 557	S SI 310 760	
IECHANICAL P MF 38 38	5 5					4						
EOMETRIC CH/ R:R 17.88	ARACTERISTICS			A		المعتدي	galant 1 m					
STM Grades: A36 SA Grades: 44W;	c requirements for th ; A529-50; A572-51 50W 4270-36; M270-50											
						-						
	The above specified	e figures are cer requirements. T	tified chemical : his material, inc	nd physical test luding the billets	records as contai , was melted and	ined in the perman I manufactured in t	ent records of con he USA. CMTR	mpany. We certify complies with EN	N 10204 3.1.			th
	K	hask	2mg	ASKAR YALAMAN ALITY DIRECTOR	СНІЦІ				Δ.	an talk BENI QUAL	OVELL ITY ASSURANCE MO	ĴŔ.

Figure B-10. 4 x 3 x ¹/₄-in. (102 x 76 x 6-mm), 8-in. (203-mm) Long L-Bracket, Test Nos. NYBWT-2 and NYBWT-3 (Item No. c4)

GÐ GERDA	CUSTOMER SH STEEL & PIPI 1003 FORT GI CATOOSA,OF	E SUPPLY CO INC IBSON RD	CUSTOMER BILL TO STEEL & PIPE SUPPLY CO INC MANHATTAN,KS 66505-1688	GRADE A992/A572-50 LENGTH	SHAPE / SIZE Wide Flange Beam / 6 X X 22.5 WEIGHT	15# / 150 DOCUMENT II 0000077096
IS-ML-MIDLOTHIAN 00 WARD ROAD	USA		USA	40'00"	36,000 LB	59072980/02
MDLOTHIAN, TX 76065 ISA	SALES ORDE 4619506/0000		CUSTOMER MATERIAL Nº 000000000376150040	SPECIFICATION / DATE or ASTM A6-14 ASTM A709-15	REVISION	
CUSTOMER PURCHASE ORDER NUMI G450022037	BER	BILL OF LADING 1327-0000220679	DATE 01/06/2017	ASTM A992-11 (2015), A572-15 CSA G40.21-13 345WM		
CHEMICAL COMPOSITION C Mn P 0.08 0.84 0.01	5 7 0.029	\$j Cu 0.21 0.31	Ni Çr 0.12 0.23 (Mo Su 1.032 0.006 0	V Nb .002 0.012	Al 0.003
CHEMICAL COMPOSITION CEgyA6 0.30						
MECHANICAL PROPERTIES YS 0.2% PSI 57531 58040	UTS PSI 75190 74834	YS MPa 397 400	UTS MPa 519 516	Y/L rati 0.765 0.776	G/L Inch 8.000 8.000	
IECHANICAL PROPERTIES G/L mm 200.0 200.0	Elong. 25.20 25.00					
OMMENTS / NOTES						
The above forume	ents. This material, inclu	Id physical test records as c Iding the billets, was melte SKAR YALAMANCHILI	ontained in the permanent records of company d and manufactured in the USA. CMTR compl	ies with EN 10204 3.1.	TECT and in compliance with	
specified requirement	A au			(Jour Lidamy	OUALITY ASSURANCE MGR.	
specified requirement	VEDU	LITY DIRECTOR		Phone: 972-779-1872 Finail	Tommy.Harrington@gerdau.com	

Figure B-11. W6X15, 72-in. (1,829-mm) Long Posts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. d1)

SPS Coil Processing Tulsa 275 Bird Creek Ave. Port of Catoosa, OK 74015		METALLURGICAL TEST REPORT	PAGE 1 of 1 DATE 09/02/2016 TIME 10:02:08 USER WILLIAMR 7
66031-1127		S 13716 H Kansas City Warehouse P 401 New Century Parkway NEW CENTURY KS	
Order Material No. 0269622-0030 70672120TM	Description 3/16 72 X 120 A36 TE	Quantity Weight Customer Part MPERPASS STPMLPL 21 9,651.600	Customer PO Ship Date 09/02/201
		Chemical Analysis	1
Heat No. B610331 Vendor Produced from Coil	STEEL DYNAMICS COLUMBUS	DOMESTIC Mill STEEL DYNAMICS COLUMBUS	Melted and Manufactured in the USA
Carbon Manganese Phosphorus 0.0700 0.8400 0.0110	SulphurSiliconNickel0.00200.02000.0300		nadium Columbium Nitrogen Tir 0.0030 0.0010 0.0094 0.0040
		Mechanical / Physical Properties	
Tensile Yield 62600.000 45800.000 63200.000 47300.000	Elong Rckwl 32.50 34.50	Grain Charpy Charpy Dr Charpy O NA O NA	Sz Temperature Olser
Batch 0004452372 21 EA Batch 0004452390 21 EA		Batch 0004452373 21 EA 9,651.600 LB Batch 00044	452389 21 EA 9,651.600 LB
		Y >	
	A second s	ED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE REC	

Figure B-12. 20 x 14 x ³/₁₆-in. (508 x 356 x 5-mm) Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. d2)

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015			LLURGICAL REPORT	D/ TII	AGE 1 of 1 3 ATE 12/06/2016 ME 10:57:45 SER WILLIAMR
S O D D 66031-1127	*	5 	Kansas City Warehou 401 New Century Pa NEW CENTURY KS		
Order Material No. 40275640-0020 701672120TM	Description 1/2 72 X 120 A36 TE	Quant EMPERPASS STPMLPL	ity Weight Custome 8 9,801.600	er Part (Customer PO Ship Dat 12/06/24
-	-	Chemical Anal	ysis		
Heat No. A615621 Vendor Produced from Coil	STEEL DYNAMICS COLUMBUS	DOMESTIC	MIII STEEL DYNAMICS C	COLUMBUS N	Nelted and Manufactured in the U
Carbon Manganese Phosphorus	Sulphur Silicon Nicke	Chromium Molybdenum	Boron Copper Aluminum	Titanium Vanadium	Columbium Nitrogen
0.0600 0.8300 0.0090	0.0050 0.0100 0.0300	z parti anito pagos necoses	Boron Copper Aluminum 0.0001 0.1200 0.0280	0.0010 0.0030	and the second s
	982 - 112 - 112	0.0600 0.0100 0	0.0001 0.1200 0.0280		and another the state of the st
	982 - 112 - 112	z parti anito pagos necoses	0.0001 0.1200 0.0280		and the second s
0.0600 0.8300 0.0090 Viil Coil No. 16B689796 Tensile Yield	0.0050 0.0100 0.0300 Elong Rckwi	0.0600 0.0100 0 Mechanical / Physical	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr		0.0010 0.0072 0.00
0.0600 0.8300 0.0090 Mill Coil No. 168689796	0.0050 0.0100 0.0300	0.0600 0.0100 0 Mechanical / Physical	0.0001 0.1200 0.0280 Properties	0.0010 0.0030	0.0010 0.0072 0.00
0.0600 0.8300 0.0090 Vill Coil No. 16B689796 Tensile Yield 60200.000 42800.000	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0.0600 0.0100 0 Mechanical / Physical	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00
0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0 0.0600 0.0100 0 Mechanical / Physical I Grain 0 Batch 0004564454 8 EA	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00 Temperature Ol
0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0 0.0600 0.0100 0 Mechanical / Physical I Grain 0 Batch 0004564454 8 EA	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00 Temperature Ol
0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0 0.0600 0.0100 0 Mechanical / Physical I Grain 0 Batch 0004564454 8 EA	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00 Temperature Ol
0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0 0.0600 0.0100 0 Mechanical / Physical I Grain 0 Batch 0004564454 8 EA	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00 Temperature Ol
0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0 0.0600 0.0100 0 Mechanical / Physical I Grain 0 Batch 0004564454 8 EA	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00 Temperature Ol
0.0600 0.8300 0.0090 Mill Coil No. 16B689796 Tensile Yield 60200.000 42800.000 58600.000 41500.000 Batch 0004564416 8 EA 9	0.0050 0.0100 0.0300 Elong Rckwi 39.50 41.50 ,801.600 LB	0 0.0600 0.0100 0 Mechanical / Physical I Grain 0 Batch 0004564454 8 EA	0.0001 0.1200 0.0280 Properties Charpy Charpy Dr 0 NA 0 NA 9,801.600 LB	0.0010 0.0030 Charpy Sz	0.0010 0.0072 0.00 Temperature Ol

Figure B-13. Steel Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. d3, d4, and d5)

STEEL A PIPE SU PS Coil Processing 275 Bird Creek Av Port of Catoosa, Ok	Tulsa e.					MET. TEST	ALL RE	URGI(PORT	CAL		D. TI	AGE ATE IME SER	1 of 04/14/ 11:14: WILLIA	29	۰ ۰
		New Y	ork Bo	x Bear	n		_								
s o b 66031-1127		-	ag Bra 670 Ma		replace SMT	ement	H I K P 4	3716 ansas City 01 New Co EW CENTU	entury Par						
Order Mater 40283051-0020 7016	ial No. 72120TM	Descript		A36 TEN	MPERPASS S		antity 8	Weight 9,801.600		r Part		Custom	er PO		hip Date 4/14/2017
						Chemical A	alveic				1.11		1963 6 565		
Heat No. 17011041		Vendor Bl	G RIVER ST	TEEL LLC		DOMESTIC	1019313	Mill	BIG RIVER S	TEEL LLC		Melted a	and Manu	actured in	the USA
Produced from Coil		0 Jahr	Cillage	Nickel	Chromium	Molybdenum	Boron	n Copper	Aluminum	Titanium	Vanadium	Col	umbium	Nitrogen	Tin
Carbon Manganese 0.1800 0.8300	Phosphorus 0.0100	Sulphur 0.0040	Silicon 0.0200	0.0300	0.0500	0.0100	0.0001		0.0330	0.0000	0.0030		0.0000	0.0076	0.0060
					Mecha	anical / Physi	cal Prop	perties							
Mill Coil No. 1701104	1-02			D.											
Tensile	Yield		Elong	Rckwl		Grain	Charpy		Charpy Dr	C	harpy Sz	1.1	Temperat	ure	Olsen
76200.000	51600.000		30.30				C		NA						
74500.000	49400.000		31.10						NA						
74800.000	50300.000		30.60				0		NA						
77100.000	52800.000		30.00				· ·	,	100						
Batch 0004716	625 8 EA	9,801.600 1	LB		*										
8															
THE CHEMICAL											•				····

Figure B-14. Box Beam Cable Anchor Mounting Plate and Base Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. e1 and e3)

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 04/19/2017 TIME 17:37:34 USER J.DUBOIS

S O L D T O								H I W P 10	and the second sec	0020 Gibson Rd OK 7401	5-3033				
Order 4028439		Material No. 70872120TM	Descrip		0 A36 TEN	MPERPASS S		uantity 13	Weigh 7,963.800		r Part	c	ustomer PO		hip Date 4/19/2017
-							Chemical A	nalysis					Carl V To be		
Heat No.	170142 from Coil		Vendor B	IG RIVER S	TEEL LLC		DOMESTIC		Mill	BIG RIVER S	STEEL LLC	M	elted and Man	ufactured in	the USA
	Manganes		Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.1700	0.800		0.0020	0.0200	0.0400	0.0300	0.0100	0.0001	0.1100	0.0260	0.0000	0.0010	0.0000	0.0090	0.0060
						Mecha	nical / Physi	cal Prope	erties						
Mill Coil	No. 1701	4221-04													
т	ensile	Yield		Elong	Rckwl		Grain	Charpy		Charpy Dr	Cł	arpy Sz	Tempera	iture	Olsen
7590	0.000	52700.000		28.30				0		NA					
7040	0.000	49000.000		32.00				0		NA					
7410	0.000	52500.000		32.20				0		NA					
6830	0.000	48300.000		33.60				0		NA					
Ba	atch 0004	735517 13 EA	7,963.800	LB		Batch 000	4735520 13 6	A 7,963.	800 LB						

February 27, 2024 MwRSF Report No. TRP-03-414-24

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure B-15. Box Beam Cable Anchor Gusset, Test Nos. NYBWT-2 and NYBWT-3 (Item No. e2)

PLANT 4	TRUCK	DRIVER	CUSTON		T TAX	PONUMB	the second s	ATE	TIME	TICKET
4 Customer	0131	8890	3	3 Delivery Address	3	????	3/2 Special In	1/18 struction	9:24 AM	4203244
	WEST RO	ADSIDE		4630 NW 36TH	STREET		AIRPARK GOODYE		H OF THE GER	
		The second se		PRODUCT	PRODUCT	DESCRIPTION	UOM		PRICE	EXTENDED
3.00	3.0		3.00	470031PF	47BD (1PF)	WO/R	yd		\$118.91	\$356.7
					MINIMUM HAU	L				\$40.0
Water Add	led On Job A	t s	SLUMP	Notes:			TICKET	SUBTO	TAL	\$396.7
Custome	r's Request:	3.	00 in				SALES TICKET	S Martin Street and		\$0.0 \$396.7
							PREVIO		And The Art	\$396.7
\wedge	CAUTION	FRESH	CONCRE			produced with the		ard specif	ications for I	
contains Po oncrete or ontact with quipment (noroughly w	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir	HILDRE t. Freshly r use skin inj wear appro	nixed ceme ury. Avoid p ppriate Pers t with eyes o	nt, mortar, prolonged onal Protective or skin, flush	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser ² within 3 days fro to investigate ai	produced with th that are based on ad this slump, exc iny decrease in cc r tests must be ha ised testing lab au oncrete Company y told to do so by berty damage that exceptions and d	e ASTM stand a 3" slump. D ept under the ompressive str andled accordi will not delive customer and may occur as claims shall be y. In such a ca eller's liability s	ard specifi rivers are authorizati ength and ng to ACI/ echnician r any prod customer a result o deemed se, seller hall in no	ications for in not permitte ion of the cu any risk of I (ASTM spec uct beyond assumes al of any such of waived unles shall be give event excee	ed to add water to istomer and their istomer and their istomer and their istomer and any curb lines il liability for any tirective. so made in writing en full opportunity
Contains Po concrete or po concact with Equipment (horoughly w attention pro	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir mptly.	CHILDRE t. Freshly r use skin inj wear appro of contact ritation per	in AWAY nixed ceme ury. Avoid p opriate Pers roists, seek	nt, mortar, rolonged onal Protective or skin, flush medical	concrete. Streng the mix to exceu- acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proy The purchaser's within 3 days fr to investigate a price of the mat	produced with th gths are based on ad this slump, exc iny decrease in cc r tests must be ha- ised testing lab al oncrete Company y told to do so by perty damage that a exceptions and c om time of deliver on such claim. Se erials against whi	e ASTM stand a 3" slump. D ept under the mpressive str maldet accordi maldet accordi will not delive customer and may occur as claims shall be aller's liability s ch any claims	ard specifivers are authorizat ength and ng to ACI/ icchnician r any prod customer a result o deemed v se, seller hall in no are made.	ications for find not permitte ion of the cu any risk of I ASTM spec uct beyond assumes al of any such of waived unles shall be give event excee	ed to add water to stomer and their loss as a result iffications and any curb lines l liability for any tirective. as made in writing an full opportunity d the purchase
Contains Po concrete or provided to the contract with Equipment (horoughly wittention pro-	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir	CHILDRE t. Freshly r use skin inj wear appro- of contact ritation per ON E	nixed ceme ury. Avoid p ppriate Pers t with eyes o	nt, mortar, rolonged onal Protective or skin, flush medical	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchasers within 3 days fr to investigate al price of the mat	produced with th types are based on ad this slump, exc iny decrease in cc r tests must be ha- issed testing lab al parcrete Company total to do so by perty damage that a exceptions and c m time of deliver my such claim. Se erials against whi D % VAR	e ASTM stand a 3" slump. D ept under the ompressive str andled accordi will not delive customer and may occur as claims shall be y. In such a ca eller's liability s	ard specific rivers are authorization and ng to ACU echnician any prod customer a result o deemed se, seller hall in no are made.	ications for find not permitte ion of the cu any risk of I ASTM spec uct beyond assumes al of any such of waived unles shall be give event excee	ed to add water to istomer and their loss as a result iffications and any curb lines l liability for any tirective. as made in writing an full opportunity d the purchase
Contains Po concrete or sontact with Equipment (horoughly w tittention pro	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir mptly. DESCRIPTI 47B GRAVE 47B ROCK	CHILDRE t. Freshly r use skin inj wear appro- of contact ritation per ON E L	EN AWAY nixed cemer ury. Avoid p oppriate Pers rsists, seek sists, seek DESIGN QT 1975.0 lb 840.0 lb	Y REQUIRE 6025.5 lb 2551.5 lb	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fr to investigate a price of the mat	produced with th types are based on ad this slump, exc iny decrease in cc r tests must be ha- name testing lab all procrete Company total to do so by perty damage that a exceptions and c om time of deliver ny such claim. Se erials against whith D % VAR 0 -0.09% 0 0.10%	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi d/or certified will not delive customer and may occur as claims shall be y. In such a ca aller's liability s ch any claims	ard specificities are authorizate angth and ing to ACU ang to ACU action of the action of the area of	ications for in not permitte ion of the cu any risk of i ASTM spec uct beyond assumes al of any such of waived unles shall be give event excee	ed to add water to istomer and their loss as a result iffications and any curb lines l liability for any tirective. as made in writing an full opportunity d the purchase
Contains Po concrete or r contact with Equipment (horoughly w attention pro	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir mptly. DESCRIPTI 47B GRAVE 47B ROCK 1PF CEMEN	CHILDRE t. Freshly r use skin inj wear appro- of contact ritation per ON E L	EN AWAY nixed cemer ury. Avoid p opriate Pers twith eyes of rsists, seek DESIGN QT 1975.0 lb 840.0 lb 658.0 lb	Y REQUIRE 6025.5 lb 2551.5 lb 1974.0 lb	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fro to investigate a price of the mat	produced with th th that are based on ad this slump, exc iny decrease in cc r tests must be ha- ised testing lab al parcrete Company y told to do so by perty damage that a exceptions and c om time of delivern ny such claim. Se erials against whith D % VAR 0 -0.09% 0 0.10% 0 -0.20%	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi md/or certified will not delive customer and may occur as claims shall be aller's liability s ch any claims % MOISTUR 1.70%	ard specificities are authorizate angth and ing to ACU ang to ACU action of the action of the area of	ications for in not permitte ion of the cu any risk of I (ASTM spect uct beyond assumes all of any such co waived unles shall be give event excee	ed to add water to istomer and their loss as a result iffications and any curb lines l liability for any tirective. as made in writing an full opportunity d the purchase
ATERIAL G47B L47B CEM1PF WATER	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir mptly. DESCRIPTI 47B GRAVE 47B ROCK	CHILDRE t. Freshly r use skin inj wear appro- of contaci- ritation per- ON E L IT	EN AWAY nixed cemer ury. Avoid p oppriate Pers rsists, seek sists, seek DESIGN QT 1975.0 lb 840.0 lb	Y REQUIRE 6025.5 lb 2551.5 lb	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fro to investigate a price of the mat D BATCHE 0 6020.0 II 0 2560.0 II 0 1970.0 II	produced with th gths are based on ad this slump, exc rests must be ha- nsed testing lab ai security admage that is exceptions and do m time of deliver ny such claim. Se erials against whith D % VAR 0 -0.09% 0 0.10% 0 0.13%	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi md/or certified will not delive customer and may occur as claims shall be aller's liability s ch any claims % MOISTUR 1.70%	ard specificities are authorizate angth and ing to ACU ang to ACU action of the action of the area of	ications for in not permitte ion of the cu any risk of I (ASTM spec uct beyond assumes al of any such of waived unles shall be give event excee UAL WATT 12.0 gl	ed to add water to stomer and their loss as a result lifications and any curb lines lilability for any tirective. as made in writing en full opportunity d the purchase
Contains Po concrete or sontact with Equipment (horoughly w tittention pro	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir mptly. DESCRIPTI 47B GRAVE 47B ROCK 1PF CEMEN WATER	CHILDRE t. Freshly r use skin inj wear appro- of contacl ritation per ON E L UN E LOV	ESIGN QT 1975.0 lb 840.0 lb 658.0 lb 31.6 gl	Y REQUIRE 6025.5 lb 2551.5 lb 1974.0 lb 79.0 g	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fra to investigate a price of the mat B D BATCHE 0 6020 0 II 0 2560.0 II 0 1970.0 II 1 79.1 0 z 59.0 0	produced with th gths are based on ad this slump, exc iny decrease in cor- rests must be ha- issed testing lab ai- secure company y told to do so by perty damage that a exceptions and co- om time of deliver ny such claim. Se erials against while D % VAR 0 -0.09% 0 -0.09% 0 -0.20% 1 0.13% 1 -1.67%	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi md/or certified will not delive customer and may occur as claims shall be aller's liability s ch any claims % MOISTUR 1.70%	ard specificities are authorizate angth and ing to ACU ang to ACU action of the action of the area of	ications for in not permitte ion of the cu any risk of I (ASTM spect uct beyond assumes all of any such co waived unles shall be give event excee	ed to add water to stomer and their loss as a result lifications and any curb lines lilability for any tirective. as made in writing en full opportunity d the purchase
ATERIAL G47B L47B CEM1PF WATER LRWR AIR	KEEP C rtland cement grout may cau skin. Always PPE). In case vith water. If ir mptly. DESCRIPTI 47B GRAVE 47B ROCK 1PF CEMEN WATER POZZ 322N MB AE 200 a	CHILDRE t. Freshly r use skin inj wear appro- of contaci ritation per ON E L UN LOV air e	DESIGN QT 1975.0 lb 840.0 lb 658.0 lb 31.6 gl 20.0 oz 5.9 oz	Y REQUIRE 6025.5 lb 2551.5 lb 1974.0 lb 79.0 g 60.0 o	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fra to investigate a price of the mat B D BATCHE 0 6020 0 II 0 2560.0 II 0 1970.0 II 1 79.1 0 z 59.0 0	produced with th gths are based on ad this slump, exc iny decrease in cor- rests must be ha- issed testing lab ai- secure company y told to do so by perty damage that a exceptions and co- om time of deliver ny such claim. Se erials against while D % VAR 0 -0.09% 0 -0.09% 0 -0.20% 1 0.13% 1 -1.67%	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi dor certified will not delive customer and may occur as claims shall be aller's liability s ch any claims % MOISTUF 1.70% 1.25%	ard specificities are authorizate angth and ing to ACU ang to ACU action of the action of the area of	ications for in not permitte ion of the cu any risk of I (ASTM spect uct beyond assumes all of any such co waived unles shall be give event excee	ed to add water to stomer and their loss as a result lifications and any curb lines lilability for any tirective. as made in writing en full opportunity d the purchase
Contains Po concrete or r contact with Equipment (horoughly w attention pro MATERIAL G47B L47B CEM1PF WATER LRWR	KEEP C rtland cement grout may cau skin. Always T PPE). In case vith water. If in mptly. DESCRIPTI 47B GRAVE 47B ROCK 1PF CEMEN WATER POZZ 322N MB AE 200 a	CHILDRE t. Freshly r use skin inj wear appro- of contaci ritation per ON E L UN LOV air el Num Batches:	DESIGN QT 1975.0 lb 840.0 lb 658.0 lb 31.6 gl 20.0 oz 5.9 oz	Y REQUIRE 6025.5 lb 2551.5 lb 1974.0 lb 79.0 g 60.0 o 17.7 o	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fra to investigate a price of the mat B D BATCHE 0 6020 0 II 0 2560.0 II 0 1970.0 II 1 79.1 0 z 59.0 0	produced with th types are based on ad this slump, exc iny decrease in cc r tests must be ha- ised testing lab all oncrete Company berty damage that is exceptions and c om time of deliver my such claim. Se erials against whi D % VAR 0 -0.09% 0 -0.20% 1 0.13% 1.67% 2 -3.95%	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi md/or certified will not delive customer and may occur as claims shall be aller's liability s ch any claims % MOISTUR 1.70%	ard specifi rivers are authorizat ength and ng to ACL/ vechnician r any prod customer a result o deemed 4 se, seller hall in no are made.	ications for inot permitte ion of the cu any risk of 1 ASTM specture uct beyond assumes al of any such of waived units shall be give event exceet UAL WATI 12.0 gl 3.8 gl 79.1 gl	ed to add water to stomer and their loss as a result iffications and any curb lines l liability for any tirective. as made in writing an full opportunity d the purchase
Contains Po concrete or point active with autention pro- national contact with autention pro- nation contact with autention pro- nation contact with horoughly watention pro- nation contact with horoughly watention contact with horoughly watention contact contact with horoughly watention contact co	KEEP C rtland cement grout may cau skin. Always i PPE). In case ith water. If ir mptly. DESCRIPTI 47B GRAVE 47B ROCK 1PF CEMEN WATER POZZ 322N MB AE 200 a Ib Desig	CHILDRE t. Freshly r use skin inj wear appro- of contaci ritation per ON E L UN LOV air e	DESIGN QT 1975.0 lb 840.0 lb 658.0 lb 31.6 gl 20.0 oz 5.9 oz	Y REQUIRE 6025.5 lb 2551.5 lb 1974.0 lb 77.7 o	concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed C unless expressi personal or proj The purchaser's within 3 days fro to investigate a price of the mat	produced with th gths are based on ad this slump, exc rests must be ha- issed testing lab ai exceptions and co- m time of deliver ny such claim. Se erials against while D % VAR 0 -0.09% 0 -0.09% 0 -0.20% 1 0.13% 1 -1.67% 1 -3.95% teter: 94.8 gl	e ASTM stand a 3" slump. D ept under the mpressive str andled accordi dor certified will not delive customer and may occur as claims shall be aller's liability s ch any claims % MOISTUF 1.70% 1.25%	ard specificities are authorizate angth and ing to ACU ang to ACU action of the action of the area of	ications for in not permitte ion of the cu any risk of I (ASTM spect uct beyond assumes all of any such co waived unles shall be give event excee	ed to add water to stomer and their loss as a result iffications and any curb lines lilability for any tirective. as made in writing an full opportunity d the purchase

Figure B-16. Concrete, Test Nos. NYBWT-2 and NYBWT-3 (Item No. f1)

2100 S. Freeway Pueblo, CO 81004 USA

MATERIAL TEST REPORT

Date Printed: 20-OCT-17

FWIP: 52815347 Customer: ERMS Cust. PO: P.O. BOX 316 PUEBLO, CO 81002	Date Sh	ipped: 20-OCT-17		AND ADDRESS AND ADDRESS	t: DEF #3 (3/8")			Sp	ecification:	ASIMA	706/A615 G			
PUEBLO, CO 81002			FWIP: 5	52815347		Customer: ERMS						Cust. PO:		
CHEMICAL ANALYCIE (In Weicht 9/ ungesteinte of moorgangement 0.0059/)						P.O. BOX 316								
eat CHEMICAL ANALYSIS (In Weight %, uncertainty of measurement 0.005%) (Llear cast 04/24/17)						PUEBLO, CO 810	02							
at CHEMICAL ANALYSIS (In Weight %, uncertainty of measurement 0.005%) (Ilear cast 04/24/17)														
eat CHEMICAL ANALYSIS (In Weight %, uncertainty of measurement 0.005%) (Ileat cast 04/24/17)														
eat CHEMICAL ANALYSIS (In Weight %, uncertainty of measurement 0.005%) (Ilear cast 04/24/17)														
eat CHEMICAL ANALYSIS (In Weight %, uncertainty of measurement 0.005%) (Ileat cast 04/24/17)														
eat CHEMICAL MULLISIS (In Weight 10, and chemical chemical content of the second														
umber C. Ma P. S. Si Cu Ni Cr Mo Al V. B. Ch. Sa N	a w	CHEMIC		SIS (In Weight %	uncertainty of	measure	ment 0	005%)		(11	ear cast 04/2-	4/17)	

592415 0.26 1.26 0.009 0.024 0.27 0.27 0.08 0.12 0.018 0.003 0.039 0.0005 0.000 0.010 0.0083 0.001 Carbon Equivalent = 0.488

		MEC	HANICAL	PROPERTIES	(Ten	siles test date 04/28	8/17)	
lleat Number	Sample No.		Yield (Psi)	Ultimate (Psi)	Elongation (%)	Reduction (%)	Bend	Wi/ft
592415	01	(MPa)	66902 461.3	101000 696.4	15.6		ОK	0.377
592415	02	(MPa)	67349 464,4	100310 691.6	15.8		ОК	0.377

All melting and manufacturing processes of the material subject to this test certificate occurred in the United States of America. ERMS also certifies this material to be free from Mercury contamination.

This material has been produced, tested and conforms to the

requirements of the applicable specifications. We hereby certify that the above test results represent those contained in the records of the Company.

Methods used: ASTM A370, A510, A615, A706.

Material test report shall not be reproduced except in full, without approval of the company.

Bree huly

Bryce Lakamp **Process Control Engineer**

Figure B-17. No. 3 Reinforcement Bar, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. f2, f3, f4, and f5)

CUSTOMER	3441 1	AND BOL WW GUAM K 2866		CO.			\odot	Rolling Mil	Sinc.		RTIFIED MILL TEST REPORT (CMTR) 3200 NORTH HIGHWAY 99W MeMINNVILLE, OREGON 97128			 DATE 11-06-17 BILL OF LADING 12577390		
		AND, OR	97208			1	Schnitz	zer (S) Com	pany	(503)	472-4181	FAX (503) 43	34-5739			OF 3
	DESCR	IPTION				N- DA				TEST	NAME / U	NIT OF MEAS	URE			
	T NO. / PRO	DUCT / GF	RADE		IELD KSI	TENSI KSI		ELONG. 8 INCHES	NOM. WT		CTION %	Melted Rolled	Shipped Lbs/Ton			
	TO M3140	R55,F19	554GR55		59.0	8	3.0	25	99.4		56	09/12/16 09/17/16	3,846			
Meet	s Supple	ementary	/ S1		60.0	8	3.0	28								
	12, SA3	5, 40-23			48.5	7	4.0	25	99	9	46	10/24/16 11/23/16	7,932			
Meet	s ASTM I	F1554 G	rade 36		49.5	7	4.0	24								
277717 .794 36/4 A36-	12, SA3	6, 40.2	1 44W		49.2	7	1.0	25	10	1	48	07/26/17 08/08/17				
Meet	s ASTM 1	F1554 G	rade 36	11	49.6	7	1.5	23								
277517 .794 36/4 A36-	12, SA3	6, 40.2	1 44W		49.5	7	2.0	26	10:	1	41	07/26/17 08/08/17	2,020			
Meet	s ASTM :	F1554 G	rade 36		50.5	7	2.0	24								
277817 7/8 36/44 A36-	12, SA3	6, 40.2	1 44W		44.5	6	4.5	28	10	1	53	07/26/17 08/07/17	3,924			
Meet	s ASTM	F1554 G	rade 36		44.9	6	4.5	28								
	11			and the second sec	5			CHEMIC	CAL ANALY	sis			- Constant	-		
HEAT NO.	C ele	Mn %	P %	S %	Si %	Cu %	Ni 9	& Cr %	V %	Mo %	Sn %	Cb %	CE %			
309516	.17	. 82	- 022	.017	.23	.25	.08		.091	.01	.02		.32			
357216 277717	.18	.70	.015	.015	.24	.33	.0.		.005	.017				 		
277517	.17	.66	.020	.024	.21	.25	. 0 9	9 .18	.000	. 025			-			
277817	.14	.66	.016	.021	.22	.22	. 01	7 .16	.000	.021	.01	6 .000				
PO NUME			4 3294					-								

 \star ALL MELTING AND MANUFACTURING PROCESSES FOR THE MATERIALS OCCURRED IN THE UNITED STATES. CONTINUED ON NEXT PAGE...

Jeff Kramer Quality Assurance Manager

F016-1.02

Figure B-18. ¾-in. (19-mm) Dia. Anchor J-Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. f6)

ſ			R			T NO. 4399A						S	ost Office Box 6100 aint Joe, Indiana 46	785
F	ASTE	NER L	DIVIS	ION								le	ephone 260/337-	1600
	ER NO/NA		Ke		NULCOR	ORDER	а	15700						
	FASTENA EPORT SE	L COMPANY-	KS FB53986	7		PART #		45399 38208						
			9/01/1											
	HIPPED		1/16/1). #	210152338			DH	11		
	F LAB SA	MPLER: ***CERTIFI			TECHNIC			*****		1	1	16		
	PART NO	QUANT		OT NO.	DESCRI					1	H.	11 12		
175657	Concentration of the	9	000	394399A	3/4-10					10		1		
MANUFA	CTURE DA	TE 7/10/1	7		HEX NU	T HDG/G	GREEN	LUBE			2nd	2		
CHEM	ISTRY			MATERIA	L GRADE	-10451								
MATERI		AT	**CHE				K HEAT	ANALYSIS)	BY MA	TERIAL	SUPPLIER	ર		
NUMBER		MBER	С	MN		S	SI				NUCOR ST	TEEL -	- SOUTH CAROL	
RM0315	72 DL	17102699	.45	. 68	.006	.018	.22							
MECH	ANICAL P	ROPERTIES	IN ACCO	RDANCE W	ITH ASTM	A563-1	15							
SURFAC				OF LOAD		TE		STRENGTH						
HARDNE (R30		(RC)	5010	O LBS		(LBS)	DEG	-WEDGE STRESS (PSTI					
N/A		30.0		PASS	N/A			N/A	1317					
N/A		29.8		PASS	N/A			N/A						
N/A		30.3		PASS	N/A			N/A						
N/A		30.1 30.7		PASS	N/A			N/A N/A						
N/A AVERAG	E VALUES	FROM TEST	S	FM33	N/ A	5		8/6						
		30.2	-											
PRODUC	TION LOT	SIZE	196000	PCS										
VISU	AL INSPE	CTION IN A	CCORDAN	CE WITH	ASTM A56	3-07a				160 PC	S. SAMPI	LED	LOT PASSED	
		T DTR CALL		MT2A OT	E2329-13	- CAL		NG PERFORM		THE 11 4				
	.00289	2. 0.00					00513	5. 0.00			.00326	7.	0.00313	
	.00227	9. 0.00					00232	12. 0.00		13. 0	.00410		0.00495	
	.00325		-		••									
		NESS FROM				EMPERE		800 DEG F	:)					
	incarine in	ROOTEN		012 4021	toneb u t	Ern Ene.								
DIME	INSIONS F	PER ASME BI	8.2.6-2	2010										
	HARACTER			ES TESTEI	D MIN	IIMUM		IMUH						
	hickness	oss Cornei	- 5	8 32		1.40		1.408						
							-							
													ABLE SAE AND AST ND WERE MANUFACT	
FREE	OF MERCI	JRY CONTAM	INATION	. NO INT	TENTIONAL	ADDIT	IONS C	OF BISMUTH,	SELEN	IUM, T	ELLURIUM	, OR	LEAD WERE USED	IN THE
THE S	TEEL WAS	D PRODUCE	ND MANU	FACTURED	IN THE U	J.S.A.	AND TH		WAS MA	NUFACT	URED AND	TEST	ED IN THE U.S.A.	
PRODU	UCT COMPL	LIES WITH	DFARS 2	52.225-7	014. WE	CERTIF	Y THAT	THIS DATA	IS A	TRUE R	EPRESENT	ATION	OF INFORMATION EPORT RELATES OF	JI V
TO TH	HE ITEMS	LISTED ON	THIS D	DCUMENT	AND MAY N	NOT BE	REPROI	DUCED EXCEP	PT IN F	ULL.	ICRIAL I	ESIK	EFORI RELATES OF	
	5													
						NUCOR	FASTE	NER	1					
						A DIVI	ISION	OF NUCOR CO	PORA	TION	/	2		
	ACCRE	DITED				T	> -	11			11	·		
						FS	1	11			Y			
MECH	ANICAL FA	ASTENER			5		6	ag	per					
EXPI	RATION D	NO. A2LA 0 ATE 12/31/	139.01			BOB HA			ERVISO	R				
								()	100000000000000000000000000000000000000					
						Page 1	l of 1							

Figure B-19. ³/₄-in. (19-mm) Dia. Heavy Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item Nos. f6 and k12)

Custome <u>r Name</u>	Custome	r PO#	Shipper No	Heat Number	
			387715	veneral and a second second	
iderlee, inc.	P006098		367715	812Z45010	
	Arcolor	Wittel Pure Verbor Dis	140		
	Aiceloi	Mittal Burns Harbor Pla And Control And Analysis And Control And Analysis And Control And Analysis And Control And Analysis And Control And Analysis Analysis Control And Analysis Control And Analysis Analysis Analysis Control Analysis Analysis Analysis Control Analysis A	10		
SHITMENT HO 804-11862 METAL TRADER	02-	04-18	S METALS INTE	OU 11423) PAGE	3
DBA TRIAD ME	TALS INTERNATION	AL N WASSEL	LAND	KINAT TONAL	
1 VILLAGE RD HORSHAM PA		THEIR 3507 GI	SIDING RAND AVE		
N I I	<u> </u>		JRGH PA 15	225-1508 VIELD TENSILE	
O SERIAL PAT HEAT T NUMBER NO NUMBE	R PCS INCHE	WIDTH OR DIA LENGTH		POINT STRENGTH ELONG.	RED 88
	MELTED & MANUFAC	TURED IN THE U.S.		5 F31 F31 IM	6.6
MN.80,	O M-270-15 GR 36 /1.20 NO IMPACTS	REQUIRED KLD		ELCEPLEE, I	NC.
	GRAIN PRAC CE=.4 LA, ASTM A709-13		С	ERT RECEIVED:	
	4, ASME SA36 201	5 EDITION RFORMED ON BELOW PL	01 10	CHASE ORDER #	
MFST - MFST H	PPI 0073567- 000	01 LIFT MAX 15 TON-	GAUGES (1)	UES ORDER # .38	
MUST.		E-BRG PCS-SEPARATOR		HIPPED FROM:	
	FORM HAS NOT BEI			*.er	-
1	ON OF THIS ORDER	र	~	×.	-
✓ 81224	15010 15 .5	96 240	49005	43900 68400 B 46400 69300 8	29 29
(M55)MFST REF#:7	3567				
✓ 822Z4	5010 21 .5	96 240	68607		29
(M55)MFST REF#:7	3567	8		46400 69300 8	29
					÷
	79.99.00 million and an	an an an an an an air an	territoria		
		T-TEMPER TEMPERATURE	N-NORMA	LIZE TEMPERATURE	
Q-QUENCI TEMPERATURE					
GOUENCH TEMPERATURE	анан каларын тайла и килук				1
Q-QUENCI I TEMPERATURE	andre i na Bonar anna gu ag stàite na anna a	*			i.
SERIAL PAT HEAT		RE Louis FOR Jon HEAT ENER	PRIMA BELL THAY	MPAUY SHEAR(%) LAT EXP	MTLS
	HARD BEND THICKNE BENN BEND INCH		CHART	MPACY SHEAR(%) 2 3 1 2	MILS
SERIAL PAT HEAT	DUAL DENU INICKNE	ISS IVPE EXX OIN TEAD ENER	REY FT LIHS	SHEAR(%) LAT EXP	
SERIAL PAT HEAT	DUAL DENU INICKNE	ISS IVPE EIZE OM TEMP ENER	REY FT LIHS	SHEAR(%) LAT EXP	
SERIAL PAT HEAT	DUAL DENU INICKNE	ISS IVPE SIZE $\lim_{T \in M^{+}P} \frac{1}{1}$	REY FT LIHS	SHEAR(%) LAT EXP	
SERIAL PAT HEAT NUMBER ND. NUMBER		CHEMICAL ANALYSIS	SEF FT J,HS	8HEAR(%) LAT BXP	3
SERIAL PAT HEAT NUMBER NO. NUMBER HEAT NUMBER C MA	BLAN DEAU INCH	CHEMICAL ANALYSIS Cu Ni Cr Mo V	Ti A	BHEAR(%) LAT BXP 2 3 1 2 B Cb N Sn	St MOUAID GRAN RIZE
SERIAL PAT HEAT NUMBER NO. NUMBER HEAT NUMBER C MA 812Z45010 .13 1.1	PERU INCH P S Si Si 11 ,013 ,004 .23)	CHEMICAL ANALYSIS	n n	B Cb N Sn .0002.002,004.6	ar Gran Rizz D04
SERIAL PAT HEAT NUMBER NG NUMBER HEAT NUMBER C MA 812Z45010 .13 1.1	PERU INCH P S Si Si 11 ,013 ,004 .23)	DHEMICAL AHALYSIS CU NI CO Me V 6.018 .01 .03.008.	n n	B Cb N Sn .0002.002,004.6	ar Gran Rizz D04
SERIAL PAT HEAT NUMBER NO. NUMBER HEAT NUMBER C MA 812Z45010 .13 1.1	PERU INCH P S Si Si 11 ,013 ,004 .23)	DHEMICAL AHALYSIS CU NI CO Me V 6.018 .01 .03.008.	n n	B Cb N Sn .0002.002,004.6	ar Gran Rizz D04
SERIAL PAT HEAT NUMBER NO. NUMBER HEAT NUMBER C MA 812Z45010 .13 1.1 822Z45010 .13 1.1	P S SI 1 ,013 ,004 ,23	DHEMICAL ANALYSIS Cu Ni Cr Me v 6,018 .01 .03.008.0 5.018 .01 .03.008.0	n A n A 001.002.029 001.002.029	B Cb N Sn .0002.002.004.0	ar Gran Rizz D04
SERIAL PAT HEAT NUMBER NO: NUMBER HEAT NUMBER C MA 812Z45010 .13 1.1 822Z45010 .13 1.1	P S SI p s si 1 ,013 ,004 .23 11 ,013 ,004 .23 11 ,013 ,004 .23	DHEMICAL AHALYSIS CU NI CO Me V 6.018 .01 .03.008.	n A n A 001.002.029 001.002.029 001.002.029 001.002.029 001.002.029	BHEAR(%) LAT BXP 2 3 1 2 B Cb N Sn .0002 .002.004 .0 .0002 .002 .004 .0	MOUND GRAW DO4 DO4
SERIAL PAT HEAT NUMBER NO: NUMBER HEAT NUMBER C MA 812Z45010 .13 1.1 822Z45010 .13 1.1	P S SI p s si 1 ,013 ,004 .23 11 ,013 ,004 .23 11 ,013 ,004 .23	DHEIMICAL AHALYSIS Cv Ni Cr Me V 5.018 .01 .03 .008 . 6.018 .01 .03 .008 . 6.018 .01 .03 .008 .	n A n A 001.002.029 001.002.029 001.002.029 001.002.029 001.002.029	BHEAR(%) LAT BXP 2 3 1 2 B Cb N Sn .0002 .002.004 .0 .0002 .002 .004 .0	MOUND GRAW DO4 DO4

Figure B-20. Cable Anchor Base Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g1)

DELIVER TO: Alex Kanoff Camden Yards Berkeley Division of NUCOR Corp ISO/TS 16949 Registered METALLURGICAL TEST REPORT P.O. Box 2259 Nucor Steel - Berkeley Phone: 843-336-6000 Mt. Pleasant, SC 29465 a division of NUCOR corporation Sales Fax: 843-336-6150 Issuance Date 9/20/17 MTR# 1457821 MTR BER INQUIRIES ONUCOR.COM Sold M AND A HOLDINGS CO LLC Ship CAMDEN YARDS STEEL CO. Ship Date 9/20/17 To: DBA CAMDEN YARDS STEEL CO To: 2500 BROADWAY DRAWER 14 Bill of Lading # 1292673 2500 BROADWAY DRAWER 14 Vehicle # CSXT486000 CAMDEN, NJ 08104 CAMDEN, NJ 08104 P/O # 007534 Mill Order # 422920-10 Gauge x Width .2390 MIN X 60.0000 MIN HR HOT ROLL COIL CONVERSION TO / ASTM A36 / REV: 2014 Part # NJ .239X60 A36 Total Wgt 180900.00 LB SUITABLE FOR CONVERSION TO ASME SA-36 <u>Mn P S Si Cu Ni Cr Mo Sn Al V Nb N Ti B Ca</u> .47 .005 .003 .03 .07 .03 .04 .01 .003 .027 .002 .000 .007 .001 .000 .002 Heat C 1713253 .19 TENSILE STRENGTH ELONGATION VIELD STRENGTH HARDNESS N Value (ksi) (ksi) (% IN 2") Heat/Coil# long. long. trans. trans. long. trans. (Rockwell B) long. trans. 1713253-3 52.0 72.3 28 76 .15 1713253-4 47.8 70.5 28 74 .16

Coil (tag) 1713253-4 1713253-5 (46920.00 LB) (47740.00 LB)

Mill Test Reports according to EN10204 3.1

All material is sold subject to the description, specifications and terms and conditions set forth on the face and reverse side of Nucor Steel - Berkeley's sales order acknowledgment.

Tensile Testing, when applicable, is performed in accordance with ASTM A-370 specifications. Specimen is machined to standard rectangular test configuration (Figure 3 of ASTM A-370) with a 2" gage length. Yield Strength is determined at 0.2% offset.

This material has been produced in compliance with the chemistry and established rolling practices of the ordered specification. If material is ordered to a chemical composition only and if physical testing is not a requirement of the customer's order, testing is not performed by the producer.

We hereby certify the above information is correct as contained in the records of the corporation. Kevin Skero Robert Moses ** 100% MELTED AND MANUFACTURED IN THE USA ** Hot Mill Metallurgist Chief Metallurgist

Figure B-21. Cable Anchor Gusset, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g2)

A	Customer PO#	Shinner Ma		
Elderlee Inc	PO05901	Shipper No	Heat Number	
		813973	216935	1 032
	,		1/2"Plat	e 136
, * [*]	CERTIFIED TEST	f report		R
*CENTER STEEL SALES, I 6645 ROOSEVELT AVENUE ALLEN PARK, MI 48101	NC.	DATE: 8	3/14/17	
SOLD TO: KLEIN STEEL S 105 VANGUARD ROCHESTER, NY	PKWY	105 VANGUAF ROCHESTER,	RD PKWY	
Cust P/O# AC7198 SalesOrdr# 899910 SIZE: .500 NOM	Part# (W 01 X 60.00 X	10 # 120.00		
GRADE: HOT ROLLED ASTM	A36/ASME SA36 MILL E	DGE PLATE		· !
DATE SHPPD: 8/14/17				Į.
Wt.Shipped 45945	ATTIS	27.0		l l
	CHEMICAL ANALY			
Heat Number 216935				
C:.20	Min: .53	P : .012 Cr: .080	S:.003	1
S1: .020 Cu: .110 Pb: .002	Ti: .001 Al: .020	Cl: .000 Ca: .001	Mo: .020 V : .001 N : .006	
1		N1: .070		
	PHYSICAL PROPE			
Chemistry A-36				
Tensile 73990	Vield F2100	Elongat	ion 28 9	
	11eta 55120	ETOUGAC	1011 20.9	
Migg Tole				
Misc Info MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704	94 3.1			
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020	4 3.1			
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020				2
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020	4 3.1			ž.,
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN 5	URATELY STATED, MEI DUR RECORDS BACK TO	et your D The	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN (EDITED TEST LABORATOR	e l	et your d the	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN (EDITED TEST LABORATOR	RY.	et your d the	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN (EDITED TEST LABORATOR	e l	et your D The	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR	BOVE FIGURES ARE ACCU ND ARE TRACEABLE IN C EDITED TEST LABORATON QUALITY CON	e l	et your d the	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR	BOVE FIGURES ARE ACCU ND ARE TRACEABLE IN C EDITED TEST LABORATO QUALITY CON	e l	et your D THE	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERLE CERT RECEIVED;	BOVE FIGURES ARE ACCU ND ARE TRACEABLE IN C EDITED TEST LABORATON QUALITY CON	e l	et your D The	2 <u>.</u> , , , , , , , , , , , , , , , , , ,
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERLE CERT RECEIVED: PURCHASE ORDER	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN C EDITED TEST LABORATO QUALITY CON 5. INC. 5. JOC	e l	ET YOUR D THE	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERILE CERT RECEIVED; PURCHASE ORDER SALES ORDER #	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN.C EDITED TEST LABORATO QUALITY CON 5, INC, 8/00/77 # 15-70/ 523 87 7	e l	ET YOUR D THE	- - - -
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERILE CERT RECEIVED; PURCHASE ORDER SALES ORDER #	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN C EDITED TEST LABORATO QUALITY CON 5. INC. 5. JOC	e l	et your D THE	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERILE CERT RECEIVED; PURCHASE ORDER SALES ORDER #	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN.C EDITED TEST LABORATO QUALITY CON 5, INC, 8/00/77 # 15-70/ 523 87 7	e l	et your D The	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERILE CERT RECEIVED; PURCHASE ORDER SALES ORDER #	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN.C EDITED TEST LABORATO QUALITY CON 5, INC, 8/00/77 # 15-70/ 523 87 7	e l	ET YOUR D THE	
MELTED & MFG IN USA ELONG 28.9% @ 2" EN1020 BOL# 16704 WE HEREBY CERTIFY THE A MATERIAL REQUIREMENTS A PRODUCER AND/OR AN ACCR ELDERILE CERT RECEIVED; PURCHASE ORDER SALES ORDER #	BOVE FIGURES ARE ACCI ND ARE TRACEABLE IN.C EDITED TEST LABORATO QUALITY CON 5, INC, 8/00/77 # 15-70/ 523 87 7	e l	et your d'The	-

Figure B-22. Cable Anchor Top Plate, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g3)

; .

Certificate of Compliance

Sold To:	Purchase Order:	NYBWT
UNL TRANSPORTATION	Job:	
	Invoice Date:	05/07/2018
THIS IS TO CERTIFY THAT WE HAV THESE PARTS WERE PURCHA	VE SUPPLIED YOU WITH THE FOL ASED TO THE FOLLOWING SPECII	
1 PCS 1/4" x 3' ASTM B16 1/2 Hard 360 Brass Round Stock UNDER PART NUMBER 47743	SUPPLIED UNDER OUR TRACE N	UMBER meneil AND
This is to certify that the above document is true	Please check current revis	ion to avoid using obsolete copies.
and accurate to the best of my knowledge.		
and accurate to the best of my knowledge.	This document was printe time.	d on 05/07/2018 and was current at that
and accurate to the best of my knowledge.		
and accurate to the best of my knowledge.	time. Fastenal Store Location/	Address
and accurate to the best of my knowledge.	time. Fastenal Store Location/ 3201 N. 23rd Street STE 1	Address
and accurate to the best of my knowledge.	time. Fastenal Store Location/ 3201 N. 23rd Street STE 1 LINCOLN, NE 68521	Address
and accurate to the best of my knowledge.	time. Fastenal Store Location/ 3201 N. 23rd Street STE 1	

Figure B-23. Brass Rod, Test Nos. NYBWT-2 and NYBWT-3 (Item No. g4)

	DGE ST			N INC	1	CERTIFIE	D MILL	TEST R	EPORT		Page:	1	
O: JORDAN,	NY 13080-0000	NUCUR BIEEL	AUDUKI	, 110,		Ship from:							
CUSTOME	BOLT WORKS INC ER PICK-UP NY 13080-0000		a.			Nucor Ste 25 Quarry Auburn, N 315-253-4	Road Y 13021	'n			Date: : Number: : Number:		10
aterial Safety Data	a Sheets are available at www.nucorba	ar.com or by contacti				·						G-08 March 24, 1	2009
HEAT NUM. *	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8	TS BEND	WT%	C Ni	Mn Cr	PMo	S V	STS Si Ch	Cu Sn	C.E
AU0810817802 AU08108178A	75989 Nucor Steel - Auburn Inc 3/4 Rd 20 A576 GR 1045 ASTM A576-90b(2006) GR 1045						.49 .09	.77 .10	.009 .025 0	.031 .00	.22 .001	.35	
Î.													
								e.					
۱ 													
HEREBY CERTIFY THA	IT THE ABOVE FIGURES ARE CORRECT AS CON	TAINED IN THE RECORDS	OF THE CORP	ORATION.					- ,		1 11	bit	
LL MANUFACTURING F	PROCESSES OF THE STEEL MATERIALS IN THIS RED WITHIN THE UNITED STATES. ALL PRODU M, HAS NOT BEEN USED IN THE PRODUCTION (PRODUCT, INCLUDING	LD FREE.			QUALIT ASSUR		Jim Bie	rnat	/	pr 4. 1.	hand	·

Figure B-24. ¾-in. (19-mm) Dia. Threaded Rod, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h1)

LG197N-4

BUCK COMPANY, INC.

897 Lancaster Pike, Quarryville, PA 17566-9738 Phone (717) 284-4114 Fax (717) 284-4321 www.buckcompany.com greatcastings@buckcompany.com

MATERIAL CERTIFICATION

Date 12/26/12	Form# CERT-7A Rev C 4-21-06
CUSTOMER Bennett Bott	
ORDER NUMBER 6010442	
PATTERN NUMBERBBWT	

This is to certify that the castings listed conform to the following specifications and comply in all respects with the drawing or ordered requirements. All Quality Assurance provisions and / or Quality Assurance requirements and / or supplementary Quality Assurance provisions have been completed and accepted. SPC data is on file and available upon request.

Type Material:	Malleable Iron
Specifications:	ASTM-A220
Grade or Class:	50:05
Heat Number:	BUI
MECHANICAL PROPERTIES Tensile Str. PSI 72,152 Yield Str. PSI 56,962 Elongation 11 PHYSICAL PROPERTIES Brinell Hardness 79	Silicon 1.48 Manganese 1.08 Sulfur .098
PCS SHIPPED 530	DATE SHIPPED 12/26/12- DUITA COPS Quality Assurance Representative

Quality Castings	
ISO 9001: 2008 CERTIFIED	
Ferritic and Pearlitic Mallcable Iron, Gray and Ductile Iron, B	Irass, Aluminum

Figure B-25. Cable End Fitting, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h2)

February 27, 2024 MwRSF Report No. TRP-03-414-24

BUCK COMPANY, INC.

897 Lancaster Pike, Quarryville, PA 17566-9738

Phone (717) 284-4114 Fax (717) 284-4321 www.buckcompany.com greatcastings@buckcompany.com

MATERIAL CERTIFICATION

Date 12/4/12	Form# CERT-7A Rev C 4-21-06
CUSTOMER Bennett Bolt	
ORDER NUMBER 6010328	
PATTERN NUMBER Wa Wedge	REV OF A

This is to certify that the castings listed conform to the following specifications and comply in all respects with the drawing or ordered requirements, All Quality Assurance provisions and / or Quality Assurance requirements and / or supplementary Quality Assurance provisions have been completed and accepted. SPC data is on file and available upon request.

Type Material:	Malleable Iron
Specifications:	ASTM- AAT
Grade or Class:	32.510
Heat Number:	BRI
MECHANICAL PROPERTIES Tensile Str. PSI 51,300	CHEMICAL ANALYSIS Total Carbon 2.62
Yield Str. PSI 35, 200	Silicon 1.69
Elongation 1	
PHYSICAL PROPERTIES	Chrome 038 Magnesium 001
Brinell Hardness 126	Copper . 433
PCS SHIPPED <u>5, \23</u>	DATE SHIPPED 12/3/1-
of	Quality Assurance Representative

Quality Castings ISO 9001: 2008 CERTIFIED Ferritic and Pearlitic Malleable Iron, Gray and Ductile Iron, Brass, Aluminum

Figure B-26. Cable Wedge, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h3)

EDWARD W. DANIEL LLC

Certificate Of Origin

Date: 12-23-10

To: Bennett Bolt Works 12 Elbridge Street Jordan, N.Y. 13080

Purchase Order Number: 6006496 Part No.: D9T-10648-BBW Description: 3/4 Turnbuckle Bodies Quantity: 3,000 Pcs.

This is to certify that the parts in this shipment have been melted and manufactured in the U.S.A. in conformance with all applicable specifications and instructions and are mercury free.

FF-T-791b ASTM F1145

40

Bill Washington Quality Manager

> 11700 Harvard Avenue - Cleveland, Ohio 44105 (216) 295-2750 - (216) 295-2758 Quality First, Service Always

Figure B-27. Crosby Threaded Turnbuckle, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h4)

14700 Brookpark Rd Cleveland, OH 44135-5166

ISO 9001:2008

customerservice@assemblyspecialty.com

Certificate of Conformance

Date: October 10, 2017

www.assemblyspecialty.com

PH 216.676.5600

FX 216.676.6761

To: Gregory Industries, Inc. Gregory Galv. & Metal Processing 4100 13th St. SW Canton, OH 44710

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications and drawings.

PURCHASE ORDER #: 38684 DATE SHIPPED: 10/09/17 ASPI SALES ORDER #: 119183

MANUFACTURER: ASSEMBLY SPECIALTY PRODUCTS, INC.

QTY	CUST P/N	ASPI P/N	ASPI LOT#	DESCRIPTION
250	3012G	C-2028	80626	6' 6" BCT Cable Assembly
250	3012G	C-2028	80627	6' 6" BCT Cable Assembly
250	3012G	C-2028	80828	6' 6" BCT Cable Assembly
250	3012G	C-2028	80829	6' 6" BCT Cable Assembly
250	3012G	C-2028	80830	6' 6" BCT Cable Assembly
250	3012G	C-2028	80956	6' 6" BCT Cable Assembly
250	3012G	C-2028	80957	6' 6" BCT Cable Assembly
250	3012G	C-2028	80958	6' 6" BCT Cable Assembly
250	3012G	C-2028	81129	6' 6" BCT Cable Assembly
	3012G	C-2028	81130	6' 6" BCT Cable Assembly
250	00120	0 2020		

continued on page 2

REMARKS: NOMINAL BREAKING STRENGTH: 46,000 lbs

WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M30-02 and ASTM A741 TYPE 2, CLASS A FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A-153 CLASS C.

STEEL USED TO MANUFACTURE THESE ITEMS WAS MELTED AND MANUFACTURED IN THE U.S.A ALL MANUFACTURING PROCESSES SUPPLIED OR PERFORMED BY ASSEMBLY SPECIALTY PRODUCTS, INC. TOOK PLACE IN THE U.S.A.

Signature:

Certification and Compliance Manager

Figure B-28. BCT Anchor Cable End Swaged Fitting, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h5)

 Certificate of Quality
 Date:03/28/2016

 BEKAERT CORPORATION Van Buren
 Arkansas
 Date:03/28/2016

 Customer
 : Colorguard Rail Products
 Our Order No
 : 4209973815 / 000010

 Final Customer
 : MIdwest Machinery & Supply Company Product No
 : AST3043SE10S02000 3/4 GUIDERAIL 3X7 200

Tag#	Heat#	Lay Length	Breaking Strength	Adherence Appearance of wires	Steel Ductility		
		н	lbf				
		3.00	25000				
		7.50					
43383706	139012 139024	6,12	43896	Pass	Pass		
43383832	139012 139024	6.12	43896	Pass	Pass		
43383972	139012 139024	6.31	43896	Pass	Pass		
43383983	139012 139024	6.31	43896	Pass	Pass		
43384097	139012 139024	6.31	43896	Pass	Pass		
43384719	139015 139021	6.11	44100	Pass	Pass		
43384721	139015 139021	6.11	44100	Pass	Pass		
43384723	139015 139021	6.11	44100	Pass	Pass		
43384728	139015 139021	6.20	44100	Pass	Pass		-
43384729	139015 139021	6.20	44100	Pass	Pass		
43384730	139015 139021	6.20	44100	Pass	Pass		
43384858	139016	6.14	44100	Pass	Pass		
43384869	139016	6.14	44100	Pass	Pass		
43385035	139016	6.14	44100	Pass	Pass		
43385106	139012 139015	6.21	44100	Pass	Pass		
43385126	139012 139015	6.21	44100	Pass	Pass		
43385846	139012 139015	6.21	44100	Pass	Pass		

Made & Melted in USA.

The undersigned certifies that the results are actual results and conform to the standards as contained in the records of this Corporation.

5

David Berta **Quality Engineer**

Notary Public

2 of 2

Figure B-29. ³/₄-in. (19-mm) Dia. 3x7 Wire Rope, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h6)

24150 Oak Grove Lane Sedalia MO. 65302-0844 660-829-6721(P) 660-829-6780(F)

Date: Sold to: Order:

1/8/18 The Commercial Group 12801 Universal Drive Taylor, MI 48180 214425

Certificate of Compliance

Report of Chemical Analysis and Physical Tests

ltem No. 001	Description .0395" Galvanized Wire .0395 `		Lbs. per sq. in.	Wt.	Test	1					
001				Coat	8"	Heat No.	c	Mn	P	s	Si
	.0395 *	[]			1		-		i	-	
		341	278,000	.385	65	17R590203	.81	.54	.011	.009	.20
	.0395	330	269,000	.372	71	17R594359	.50	.58	.015	.010	.24
						17R591720	.82	.53	.008	.009	.18
J02	.0460" Galvanized Wire										
	.0460	415	250,000	.417	71	17R591720	.82	.53	.008	.009	.18
003	.0540" Galvanized Wire										
.05	.054	580	253,000	.410	55	17R590203	.81	.54	.011	.009	.20
						17R591077	.B1	.53	.006	.008	.21
						17R593340	.82	.54	.009	.015	.21
					1	17R591720	.82	.53	.008	.009	.18
	A					17R594796	.83	.49	.005	.005	.18
04											
04	.0610" Galvanized Wire							1			
	0.061	751	257,000	,489	45	16R585888	.80	.72	.007	.017	.23
						17R591077	.81	.53	.006	800.	21
						16KY73253	.84	.61	.006	.013	.24

The material covered by this certification was manufactured and tested in accordance with specifications as listed above. We certify that representative samples of the material have been tested and the results conform to the requirements outlined in these specifications.

SHEILA DOWDY Notar y Public - Notary Seal State of Missouri, Pettis County Commission Number 00464267 My Commission Expires Jun 6. 2020 Shula Dowong Ganuary 8, 2018

Signed:

Page 2 of 2

reported above are correct as contained in the records of the corporation.

a.le

The chemical, physical, or mechanical tests

Figure B-30. ¾-in. (19-mm) Dia. 6x19 Wire Rope, Test Nos. NYBWT-2 and NYBWT-3 (Item No. h7)

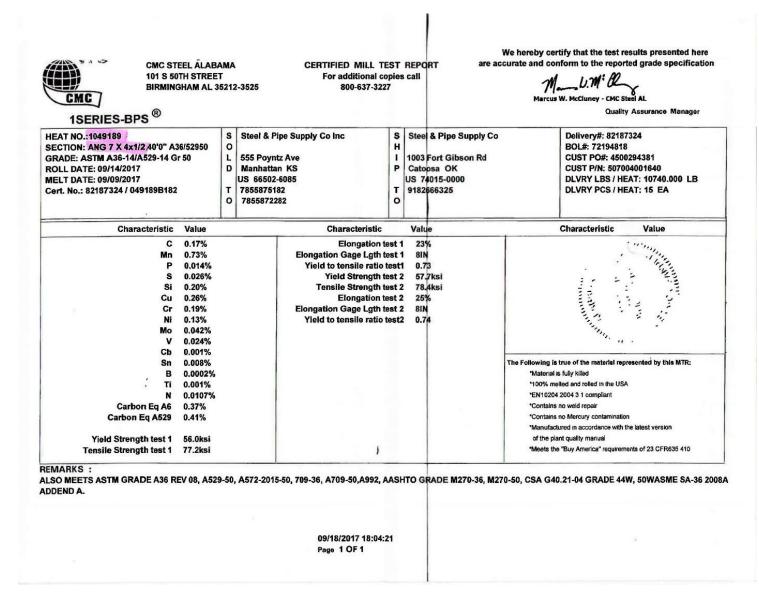


Figure B-31. 7 x 4 x ¹/₂-in. (178 x 102 x 13-mm), 3-in. (76-mm) Long L-Brackets, Test Nos. NYBWT-2 and NYBWT-3 (Item No. i1)

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015				USER J.DUBOIS
	×		\$ 13713 H Warehouse 0020 P 1050 Fort Gibson Rd T CATOOSA OK 74015-303 0	33
Order Material No. 10285440-0010 801072120TM	Description 10GA 72 X 120 A1		luentity Weight Customer Part 22 7,425	Customer PO Ship Da 05/12/2
		Chemical A	Analysis	
Heat No. A705763 Vendor Carbon Manganese Phosphorus 0.0500 0.3300 0.0130	STEEL DYNAMICS COLUMB Sulphur Silicon Nic 0.0010 0.0200 0.03	US DOMESTIC kel Chromium Malybdenum	Mill STEEL DYNAMICS COLUME Boron Copper Aluminum Titan	ium Vanadium Columbium Nitrogen
Aill Coil No. 178750261		Mechanical / Phys	sical Properties	
Tensile Yield	Elong Rol		Charpy Charpy Dr	Charpy Sz Temperature O
Batch 0004768928 22 EA	7.425 LB	Batch 0004768944 16	EA 5,400 LB	

Figure B-32. 1³/₄ x 1³/₄-in. (44 x 44-mm) x 10-gauge Square Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. i2)

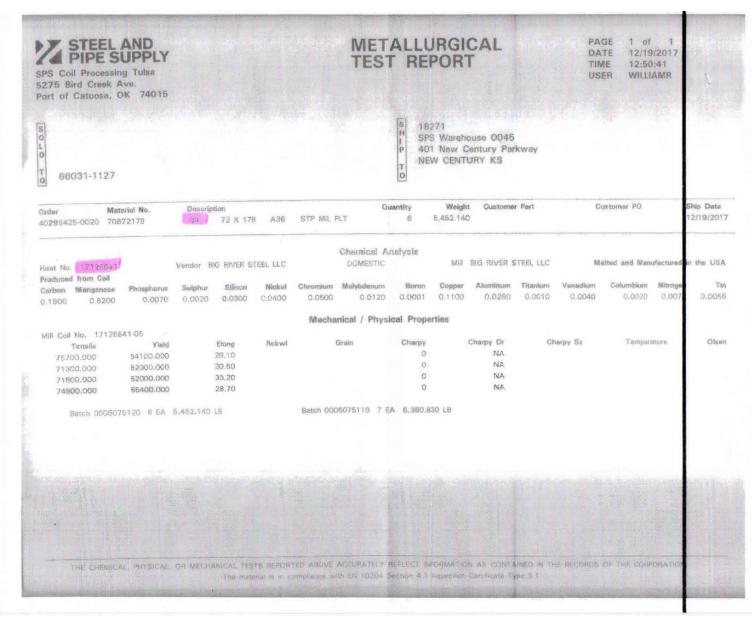


Figure B-33. 27 x 3 x ¼-in. (686 x 76 x 6-mm) Washer Plates, Test Nos. NYBWT-2 and NYBWT-3 (Item No. i3)

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

| CERTIFICATE OF CONFORMANCE |

For: CASH SALE PB Invoice#: 96359 Cust PO#: MIDWEST ROADSIDE Date: 2/08/2017 Shipped: 2/10/2017

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Description:	7/8	X 8-1/2	GALV AS	STM F3125	GRADE A325	HEAVY HEX	BOLT	
Heat#: NF16		315	Base S	t eel: 414	0	Diam: 7/8		
Source: KREH			LLC		Proof Load	: 39,250 1	LBF	
C : .420	Mn:	.930	P :	.013	Hardness:	269 HBN		
S : .025	Si:	.250	Ni:	.080	Tensile:	57,700 LBF	RA: .	00%
Cr: .910	Mo:	.180	Cu:	.190	Yield:	0	Elon: .	00%
Pb: .000	v :	.009	Cb:	.000	Sample Leng	gth: 0		
N: .000			CE:	.6702	Charpy:		CVN Temp:	

LOT#18344

Nuts:

ASTM A563DH HVY HX

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Other:

ALL ITEMS MELTED & MANUFACTURED IN THE USA

By:
Certification Department Quality Assurance Dane McKinnon

R#17-414 NY DOT BOX BEAM 7/8" BOLTS AND NUTS

Figure B-34. ⁷/₈-in. (22-mm) Dia., 8¹/₂-in. (216-mm) Long Heavy Hex Head Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j1)

	Job	No: 23468			Job Info	ormation		Certified	Date: 6/1	5/16	
	Custo	mer:								Ship To:	
Custo	omer PO	No:							Ship	ped Qty:	
I	Lot Num	ber: 23468-	75062745								
				(march)	Part Inf	ormation		1.12.2			A
	Dort	No: 4562.7	0 0 10 000	םם חע							CO
	Pan	NO: A003 //	0-9 +0.022	י חח	N HDG BLUE						Con
		ASTM		Grade I	OH, Hot Dippe	d Caby Blu	0				0
[Descript	tion: ASTIN	4003 HHIN,	Grader	л, пог орре	u Galv, blu	e				
Manufacture	ed Quan	tity: 79,432									
					Applicable \$	Specificati	ons				
	Spe	cification		T	Amend		Spec	cification		1	Amend
ASME B1.1				200		ASME E				2015	
ASME B18.2.				201					2015 2014		
ASTM F2329 ASTM F812/F				201		ASTIMI	000/00000			2014	
est Results	C ILIN			1.0	- The second s	-			1.5		
est No: 11698	Test: A56	3 DH Mechanie	cal Propertie	S							
Description	Hardn (HRC		ering Temp egree F Min		Proof Load (P (ASTM M		Shape & Dir ASME B1		Thread Pr ASME B		Visual ASTM F812
Sample	28.0		1.220	/	69,300		Pass		Pas		Pass
Inspection	20.0	·	1,220		Certified Che				1 40		1 dou
Heat No	Grade	Manufacturer	Origin	C	Mn	P	8	Si	Cr	Ni	Cu
75062745	1045	Gerdau Special Steel North America	USA	0.4400	0.7300	0.012	0.0028	0.2500	0.1600	0.1100	0.1800
					No	otes	111		1		**

Figure B-35. $\frac{7}{8}$ -in. (22-mm) Heavy Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j1)

LOT NO. Post Office Box 6100 NUCOR 160974A Saint Joe. Indiana 46785 FASTENER DIVISION Telephone 260/337-1600 CUSTOMER NO/NAME 465235 NUCOR ORDER # A325 MATERIAL GRADE -1039M ~~CHEMISTRY MATERIAL NUMBER THE FRIAL GRADE - JOSH **CHEMISTRY COMPOSITION (WT% HEAT ANALYSIS) BY MATERIAL SUPPLIER C MN P S SI GERDAU-AM .42 .94 .008 .013 .23 (formlyC HEAT SUPPLIER GERDAU-AMERISTEEL (formly CO-STEEL) P. O. BOX 313328 TAMPA, FL 33631-3328 A2LA NO: 492.01 EXF C .42 NUMBER RR 135745 RM020039 5 .42 MIN .30 MAX .52 .60 .10 .040 .050 .30 EXP: 2004-02-28 FOR CHEMICAL TESTING --MECHANICAL PROPERTIES IN ACCORDANCE WITH ASTM A325-02 SURFACE PROOF LOAD 28400 LBS CORE HARDNESS TENSILE STRENGTH 0 DEG-WEDGE (LBS) STRESS (PSI) (R30N) (RC) 28.2 N/A PASS 145045 48445 N/A N/A 29.8 PASS 48823 PASS 48473 145129 N/A 27.8 AVERAGE VALUES FROM TESTS 28.7 48580 145450 PRODUCTION LOT SIZE 5700 PCS LOT PASSED --VISUAL INSPECTION IN ACCORDANCE WITH ASTM A325 32 PCS. SAMPLED --COATING - HOT DIP GALVANIZED --COATING - HOT DIP GALVANIZED 1. 0.00352 2. 0.00385 3. 0.00384 8. 0.00451 9. 0.00409 10. 0.00486 15. 0.00240 16. 0.00821 17. 0.00362 AVERAGE THICKNESS FRDM 20 TESTS .00369 4. 0.00346 5. 0.00511 11. 0.00255 12. 0.00333 18. 0.00292 19. 0.00233 0.00237 0.00267 13. 0.00354 20. 0.00256 14. 0.00453 -- HEAT TREATMENT - AUSTENITIZED, OIL QUENCHED & TEMPERED (MIN 800 DEG F) --DIMENSIONS PER ASHE B18.2.6-1996 CHARACTERISTIC #SAMPLES TESTED Width Across Corners 8 Head Height 8 MAXIMUN MINIMUM 1,4030 1.4100 8 8 8 PASS PASS Threads ALL TESTS ARE IN ACCORDANCE WITH TWE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAINNATION. NO HEATS TO WHICH BISMUTH, SELENIUM, TELLURIUM, OR LEAD WAS INTENTIONALLY ADDED HAVE BEEN USED TO PRODUCE THE BOLTS. THE STEEL WAS MELTED AND HANDFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252,225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DCCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL.

ACCREDITED

.

MECHANICAL FASTENER CERTIFICATE NO. A2LA 139-01 EXPIRATION DATE 12/31/03

NUCOR FASTENER A DIVISION OF NUCOR CORPORATION 1 10 amer 1 40 RAMER () IV ASSURANCE SUPERVISOR DIAL TTY

Page 1 of 1

Figure B-36. ³/₄-in. (19-mm) Dia., 2¹/₂-in. (64-mm) Long Fully Threaded Heavy Hex Head Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j2)

Certifica	ite of Compliance	
old To:	Purchase Order:	
JNL TRANSPORTATION	Job:	NYBWT-1,2
	Invoice Date:	05/31/2018
THIS IS TO CERTIFY THAT WE HAV THESE PARTS WERE PURCHA	YE SUPPLIED YOU WITH THE FO SED TO THE FOLLOWING SPEC	
0 PCS 3/4"-10 x 2" Grade 5 Hot Dipped Galvanized Hex Ca JNDER PART NUMBER 0189823	ap Screw SUPPLIED UNDER OUR	TRACE NUMBER 120328441 AND
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current rev	vision to avoid using obsolete copies.
	This document was prin time.	ted on 05/31/2018 and was current at the
Fastenal Account Representative Signature	Fastenal Store Location	on/Address
	3201 N. 23rd Street STI	5 1
	LINCOLN, NE 68521	
Printed Name	Phone #: (402)476-790 Fax #: 402/476-7958	0

Figure B-37. ³/₄-in. (19-mm) Dia. 2-in. (51-mm) Long Fully Threaded Heavy Hex Head Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j3)

Certificate of Compliance

Sold To:	Purchase Order:	NYBWT-1,2						
UNL TRANSPORTATION	Job:	NYBWT-1,2						
	Invoice Date:	05/24/2018						
THIS IS TO CERTIFY THAT WE HAVE SUP THESE PARTS WERE PURCHASED T	PLIED YOU WITH THE FOLLO O THE FOLLOWING SPECIFIC	WING PARTS. ATIONS,						
24 PCS 3/8"-16 x 7-1/2" ASTM A307 Grade A Hot Dipped Galvanized Hex 120302589 AND UNDER PART NUMBER 91873	Bolt SUPPLIED UNDER OUR	TRACE NUMBER						
84 PCS 3/4"-10 x 2" ASTM F3125 Grade A325 Hot Dipped Galvanized Steel Structural Bolt OnlyUSA SUPPLIED UNDER OUR TRACE NUMBER 488266 AND UNDER PART NUMBER 19690								
48 PCS 1/2"-13 x 2" ASTM A307 Grade A Hot Dipped Galvanized Tap Bolt SUPPLIED UNDER OUR TRACE NUMBER 120295018 AND UNDER PART NUMBER 0189472								
50 PCS 1/2"-13 Hot Dip Galvanized Finish Grade A Finished Hex Nut SUPPLIED UNDER OUR TRACE NUMBER 180143778 AND UNDER PART NUMBER 1136709								
24 PCS 5/16" x 0.688" OD Thru-Hardened ECOGUARD[REG] Finish Steel SAE General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 120109164 AND UNDER PART NUMBER 11137083								
48 PCS 5/16"-18 Hot Dip Galvanized Finish Grade A Finished Hex Nut SUPPLIED UNDER OUR TRACE NUMBER p1222717 AND UNDER PART NUMBER 36703								
24 PCS 3/4"-10 x 8" ASTM A307 Grade A Hot Dipped Galvanized Hex Bolt AND UNDER PART NUMBER 91972	SUPPLIED UNDER OUR TRAC	E NUMBER 210158499						
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revision t	o avoid using obsolete copies.						
	This document was printed on time.	05/24/2018 and was current at that						
Fastenal Account Representative Signature	Fastenal Store Location/Add	ess						
ASNLY Stanczyk Printed Name	3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900							
5/24/18	Fax #: 402/476-7958							
Date Page	1 of 2							

Figure B-38. ³/₄-in. (19-mm) Dia. 8-in. (203-mm) Long Hex Head Bolts and Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j4)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210149326 COMMODITY : FINISHED HEX NUT GR-A SIZE : 3/4-10 NC O/T 0.51MM LOT NO : 1N17C0249 SHIP QUANTITY : 6,000 PCS LOT QUANTITY 159,369 PCS HEADMARKS :

MANUFACTURE DATE : 2018/03/02

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184088 84184587 DATE: 2018/05/25 PACKING NO: GEM180403016 INVOICE NO: GEM/FNL-180415ED-1 PART NO: 1136715 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: 18100738-3 MATERIAL: X1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F13329-2013

PERCENTA	GE COM	POSITION	OF CHEM	MISTRY:A	CCORDIN	G TO AST	TM A563-2015
Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN.			[[[
MAX.		0.5800		0.1300	0.2300		
Test Value	0.0400	0.0900	0.3600	0.0100	0.0060	0.0300	

DIMENSIONAL INSPECTIONS (ACCORDING TO ASME B18.2.2-2015)

		SAMPLED	BY: WANGYAN		
INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6PCS	1.2400-1.2990 inch	1.2730-1.2860 inch	6	0
FIM	15PCS	ASME B18.2.2-2015 Max. 0.0230 inch	0.0110-0.0140 inch	15	0
THICKNESS	6PCS	0.6170-0.6650 inch	0.6390-0.6440 inch	6	0
WIDTH ACROSS FLATS	6PCS	1.0880-1.1250 inch	1.1070-1.1090 inch	6	0
SURFACE DISCONTINUITIES	29 PCS	ASTM F812-2012	PASSED	29	0
THREAD	15PCS	GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

				SAMPLE	D BY : GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REP	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	80-82 HRB	15	0
PROOF LOAD	4 PCS	ASTM F606-2014	1	Min. 90 KSI	OK	4	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998	<u>i i</u>	>=53	67.72-88.37	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

grin

page 1 of 1

Figure B-39. ¾-in. (19-mm) Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j4)

1001T040040-3003	EAR TESTING LAE RTIFICATE OF INSPE		ACCREDITED NO:1292-01 VALIDITY:MAY,31,2007
MANUFACTURER : GEM-YEAR INDUSTRIAL (ADDRESS : NO 8, GEM-YEAR ROAD E.D.Z. JIASHAN. ZHEJIANG. P.R.C	CO., LTD.	TEL : (86-573)4185001~418 FAX : (86-573)4184576 418 DATE : 2006/11/22	
PURCHASER: FASTENAL COMPANY PURCH PO. NUMBER: PB069306B COMMODITY: HEX MACHINE BOLT GR-A SIZE: 3/4-10X4-1/2 NC LOT NO: B06090726 SHIP QUANTITY: 2, 880 PCS HEADMARKS: CYI & 307A	IASING	PACKING NO: GEMODI INVOICE NO: GEM/FNI PART NO: 91965 SAMPLING PLAN: ANSI, HEAT NO: 06307630- MATERIAL: X1010A FINISH: HOT DIP GAL	L-061124 IN /ASME B18.18.2M 4
PERCENTAGE COMPOSITION OF CHEM Chemistry Al% C% Mn% Spec. : MIN. 0. 0200 0. 0800 0. 3000 MAX. 0. 1300 0. 6000 Test Value 0. 0540 0. 0900 0. 4000	ISTRY : P% S% Si% 0.0300 0.0350 0.100 0.0080 0.0100 0.030	1	
MECHANICAL PROPERTIES : ACCORDIN TEST DATE : 2006/11/02 INSPECTIONS ITEM SAMPLE SIZE CORE HARDNESS 8 A	SAMPLED BY : FENG LEE TEST METHOD SF	ECIFIED ACTUAL	DATE: 2006/10/30 RESULT ACC. REJ. HRB 8 0

TENSILE STRENGTH 1 ASTM F606/F606M Min. 60 KSI 75 KSI 1 0

ASTM E18

ALL TESTS ARE IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM/SAE/ASME/MIL-STD-120 SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

in SIGNATURE :

Figure B-40. ³/₄-in. (19-mm) Dia. 4¹/₂-in. (114-mm) Long Hex Head Bolts and Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j5)

NINGBO DONGXIN HIGH-STRENGTH NUT CO.,LTD TEST CERTIFICATE (EN 10204.3.1)

Customer:	Production Lot No.:	1702DX100-705-1	Issue Date:	2017/5/17
FASTENAL COMPANY PURCHASING	Add.of Customer:	4730 SERVICE DRIVEWINONA MN 55897	Inv. No.:	17247DX100-556
FURCHASING	Descriptions	ANSI B18.2.2 GR.A HEX NUT	Manu. Date:	2017/2/16
	Description:	HDG WITHOUT HT	Manu. Qty:	9270
	PO No.:	210126809	Shipped Qty:	9000
	Manufacturer:	Ningbo Dongxin High-strength Nut	Marking:	NO MARKS
	Address:	Xijingtang,Luotuo,Ningbo,China	LOT No.:	-DX100-705-1
	Tel./Fax:	0574-86533751/86531751	Sample Plan:	ASME B18.18- 2011(Category.2)/AST M F1470-2012
	Size:	3/4"-10	Part No.:	1136715
		Chemical Composition		

Material type: 16203941-3 35K Φ28 Heat No.: С Mn s Si Cr Ni Мо Others Chemical Analysis % P (items) Min0.58 1 1 1 Max0.13 1 1 1 1 Result 0.37 0.68 0.015 0.003 0.18 0.035 0.011 1 1 Cert #: 5920160509036 HUNAN VALIN XIANGTAN Material supplier:

Dimensions

DIM.SPEC: ASME B18.2.2-2010		INSP	ECTOR & SAMPER:	Ms.Li	DATE:	2017/5/17
ltem	Specified	Result	Sampling	Rej.	Remark	Specification
Widthacrossflats(inch)	1.088 - 1.125	1.099 - 1.106	4	0	ОК	
Widthacrossangle(inch)	1.24 - 1.299	1.256 - 1.263	4	0	ОК	
Height(inch)	0.617 - 0.644	0.623 - 0.629	4	0	ОК	
Minor diameter(inch)	0.662 - 0.683	0.666 - 0.674	15	0	ОК	
Thread-2B	Thread GO gauge	ОК	15	0	ОК	ASME B1.1-02
Illieau-2b	Thread NO GO gauge	ОК	15	0	ОК	ASIVIE BI.1-02
Appearance	ОК	ОК	22	0	ОК	ASTM F812-07
FIM	MAX 0.023	0.009 - 0.014	4	0	ОК	ASME B18.2.2-2015

Mechanical Properties

MEC,SPEC:ASTM A563-07	'a II	NSPECTOR & SAMPLER: M	DATE:	2017/5/17	
ITEM	Test Method	SPECIFIED	Sampling	Result	JUG
CoreHardness HRC	ASTM F606-2014a	- 32	4	16 - 20	ОК
Proof loading KSI	ASTM F606-2014a	68	3	69	ОК

			Plating						
Plating Sp	Plating Spec: ASTM F2329-05 Inspector & Sampler : Ms Li Date:								
ITEM	Test Method	SPECIFIED	Sampling	Result	JUG				
HDG	ASTM B487	50.8 um Average	15	63 - 99 um	ОК				

MACROETCH Division Surface Condition Random Condition Center Segregation Test method Spec. S2 R2 C3 ASTM E381-2001 Results S2 R2 C3 ASTM E381-2001

Figure B-41. ³/₄-in. (19-mm) Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j5)

CERTIFIED MATERIAL TEST REPORT ASTM A307, GRADE A FULLY THREADED HEX BOLTS FOR

FACTORY: IFI & MORGAN LTD.

ADDRESS: No.583-28, Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

REPORT DATE:2017/11/13

MANUFACTURE DATE:2017/9/20

MFG LOT NUMBER:M-2017HT519-2 CUSTOMER: FASTENAL SHIPPED QTY:12250PCS MANU QTY: 12300PCS SAMPE SIZE: ACC.TO Dimension: ASME B18.18-11; Mechanical Properties: ASTM F1470-12 SIZE: 1/2-13X2 HDG HEADMARKS: 307A PLUS NY

PO NUMBER:120295018 PART NO:0189472

STEEL PROPERTIES:

MATERIAL TYPE:Q195

HEAT NUMBER:182390

CHEMISTRY SPEC:	C %*100	Mn%*100	P %*1000	S %*1000
Grade A ASTM A307-12	0.29max	1.20 max	0.04max	0.15max
TEST:	0.06	0.32	0.016	0.025

DIMENSIONAL INSPECT	TONS Unit:	inch	SPECIFICATION: ASM	IE B18.2.1 -	2012
CHARACTERISTICS	SPEC	LIFIED	ACTUAL RESULT	ACC.	REJ.
****	*****	*****	*****	******	
VISUAL	ASTM F78	PASSED	29	0	
THREAD	ASME B1.	1-2003,3A GO,2A NOGO	PASSED	15	0
WIDTH FLATS	0.72	5-0.750	0.732-0.742	4	0
WIDTH A/C	0.82	6-0.866	0.834-0.860	4	0
HEAD HEIGHT	0.30	2-0.364	0.312-0.358	4	0
THREAD LENGTH	1.95	0-2.040	1.968-2.012	15	0
LENGTH	1.95	0-2.040	1.968-2.012	15	0
MECHANICAL PROPERT	TES:	SPECIFICA	TION: ASTM A307-2012	2 GR-A	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
*****	*****	*****	*****	*****	******
CORE HARDNESS :	ASTM F606-2014	69-100 HRB	75-78	15	0
WEDGE TENSILE:	ASTM F606-2014	Min 60 KSI	66-70	4	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
COATINGS OF ZINC:		SPECIFIATION: ASTM F	72329-2013		
HOT DIP GALVANIZED	ASTM B568-98(2104)	Min 0.0017"	0.0017" -0.0018"	4	0
ALL TESTS IN ACCO	RDANCE WITH THE	METHODS PRESCRIBE	D IN THE APPLICAB	LE	
ASTM SPECIFICATION.	WE CERTIFY THAT	THIS DATA IS A TRU	E REPRESENTATION	OF	
INFORMATION PROVID	ED BY THE MATERIA	SUPPLIER AND OUR	TESTING LABORATO	RY.	
Maker's ISO 9001:2015 SG	S Certificate # HK04/0105	NORGA	N.		
		A. C.			
		~ 检验专用	章		
		(SIGNATURE OF Q.A.	LAB MGR.)		

Figure B-42. ¹/₂-in. (13-mm) Dia. x ¹/₂-in. (13-mm) Long Fully Threaded Hex Head Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j6 and j7)

(SIGNAT (NAM

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 180143778 COMMODITY : FINISHED HEX NUT GR-A SIZE : 1/2-13 NC O/T 0.46MM LOT NO : 1N1780824 SHIP QUANTITY : 18,750 PCS LOT QUANTITY : 170,225 PCS HEADMARKS :

MANUFACTURE DATE : 2017/11/02 COUNTRY OF ORIGIN : CHINA Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/05/28. PACKING NO: GEM171130002 INVOICE NO: GEM/FNL-171220DE-1 PART NO: 1136709 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: 331703751 MATERIAL: ML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

,3%

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0330	0.0600	0.4300	0.0180	0.0070	0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

			SAMPLE	DBY: WDANDAN		
INSPECTIONS ITEM	SAMPLE	SPEC	IFIED	ACTUAL RESULT	ACC.	RE
WIDTH ACROSS CORNERS	6 PCS;		0.8400-0.8660 inch	0.8540-0.8560 inch	6	0
FIM	15 PCS	ASME B18.2.2-2015	Max. 0.0110 inch	0.0100-0.0110 inch	15	0
THICKNESS	6 PCS		0.4270-0.4480 inch	0.4430-0.4440 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.7360-0.7500 inch	0.7470-0.7480 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS	G	AGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

				SAMPLED	BY: TANGHAO	
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC. RE.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	86-90 HRB	15
PROOF LOAD	6 PCS	ASTM F606-2014	1	Min.9,649 LBF	OK	6
PLATING THICKNESS(µm)) 6 PCS (.	ASTM B568-1998	1 1	⊴u >=53	59.22-80.98	6 ;

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

Figure B-43. ¹/₂-in. (13-mm) Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j7)

CERTIFIED MATERIAL TEST REPORT ASTM A307, GRADE A - MACHINE BOLTS FOR

IFI & MORGAN LTD. FACTORY: ADDRESS:

REPORT DATE:2018/1/10

No.583-28, Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

MANUFACTURE DATE: 2017/12/28

MFG LOT NUMBER:M-2017HT956-13 CUSTOMER: FASTENAL SAMPE SIZE: ACC. TO ASME B18.18 CATEGORY 2-2011; ASTM F1470-12 TABLE 3 MANU QTY: 3450PCS SHIPPED QTY:3400PCS SIZE: 3/8-16X7 1/2 HDG PO NUMBER:120302589 HEADMARKS: 307A PLUS NY PART NO: 91873

STEEL PROPERTIES: MATERIAL TYPE:Q195

HEAT NUMBER:817060395

CHEMISTRY SPEC:	C %*100		P %*1000	S %*1000
Grade A ASTM A307-12	0.29max		0.04max	0.15max
TEST:	0.07	0. 26	0.008	0.006

DIMENSIONAL INSPECTIO	ONS Unit:incl	1	SPECIFICATION: ASM	E B18.2.1 - 2	2012
CHARACTERISTICS	SPECIFI	ED	ACTUAL RESULT	ACC.	REJ.
*****	*****	************		*****	*****
VISUAL	ASTM F788-2	013	PASSED	22	0
THREAD	ASME B1.1-2	003,3A GO,2A NOGO	PASSED	15	0
WIDTH A/F	0.544	-0.562	0.549-0.558	4	0
WIDTH A/C	0.620	-0.650	0.631-0.641	4	0
HEAD HEIGHT	0.226	-0.268	0.234-0.258	4	0
BODY DIA.	0.360	-0.388	0.369-0.371	4	0
THREAD LENGTH	1.25	Min	1.262-1.275	15	0
LENGTH	7.320	-7.600	7.339-7.581	15	0
MECHANICAL PROPERTIE	ES:	SPECIFICA	TION: ASTM A307 - 14e1	GR.A	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
*****	*****	*****	*****	*****	******
CORE HARDNESS :	ASTM F606/F606M-2016	69-100 HRB	76-80 HRB	4	0
WEDGE TENSILE:	ASTM F606/F606M-2016	Min 60 KSI	65-70 KSI	4	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
COATINGS OF ZINC:		SPECIFIAT	ION: ASTM F2329/F2329	M-2015	
HOT DIP GALVANIZED	ASTM B568-98(2014)	Min 0.0017"	0.0018-0.0019"	4	0

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. Maker's ISO 9001:2015 SGS Certificate # HK04/0105

> 喻专用童 ANAB' MOR (SIGNATURE OF (NAME OF MANUFACTURER,

Figure B-44. ³/₈-in. (10-mm) Dia. 7¹/₂-in. (191-mm) Long Hex Head Bolts and Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j8)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING

PO. NUMBER : 180132801 COMMODITY : FINISHED HEX NUT GR-A SIZE : 3/8-16 NC 0/T 0. 43MM LOT NO : 1N1710389 SHIP QUANTITY : 45, 000 PCS LOT QUANTITY 317, 729 PCS HEADMARKS :

MANUFACTURE DATE : 2017/02/18 COUNTRY OF ORIGIN : CHINA Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/11/09 PACKING NO: GEM170331005 INVOICE NO: GEM/FNL-170419DE PART NO: 1136705 SAMPLING PLAN: ASME B18. 18-2011(Category. 2)/ASTM F1470-2012 HEAT NO: 16211453-3 MATERIAL: X1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN.							
MAX.		0.5800		0.1300	0.2300		
Test Value	0.0220	0.0700	0.3000	0,0200	0.0090	0, 0300	

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

		SAMPLED BY : WDANDAN								
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ				
WIDTH ACROSS CORNERS	6 PCS		0.6280-0.6500 inch	0.6380-0.6390 inch	6	0				
FIM	15 PCS	ASME B18. 2. 2-2015	Max. 0.0170 inch	0.0150-0.0160 inch	15	0				
THICKNESS	6 PCS		0.3200-0.3370 inch	0.3310-0.3320 inch	6	0				
WIDTH ACROSS FLATS	6 PCS		0.5510-0.5630 inch	0.5570-0.5590 inch	6	0				
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0				
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0				

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

			SAMPLED BY: GDAN LIAN									
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.					
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	78-82 HRB	15	0					
PROOF LOAD	5 PCS	ASTM F606-2014		Min. 90 KSI	OK	5	0					
PLATING THICKNESS (µm)	5 PCS	ASTM B568-1998		>=53	81. 75-84. 54	5	0					

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

grin

OAMDIED DV

Figure B-45. ³/₈-in. (10-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j8)

	GEDWIE							
FOR AST	CERTIF. A A307, GI	IED MAT RADE A I				BOLTS		
	MORGAN LTD.		T. U		REPORT D	ATE:2017/10)/18	
	3-28, Chang'an No ng, China	rth Road, Wuyi	ian Town, Ha	uyan,	MANUFAC	TURE DATI	E:2017/9/5	
CUSTOMER: FAST MANU QTY:72050PC AMPE SIZE: ACC.	CS FO ASME B18.18	CATEGORY 2	-2011; ASTN	1 F1470-12 T/	SHIPPED Q	NUMBER:M TY:72000PC	-2017HT690 CS	-2
NZE: 5/16-1 NEADMARKS: 307/					PO NUMBI PART NO:1	ER:22002550 .0827	3	
TEEL PROPERTIES MATERIAL TYPE:Q				17.101		1BER:81706	0394	
CHEMISTRY SPEC: Grade A ASTM A307 'EST:	-12	C %*100 0.29max 0.07	Mn%*100 1.20 max 0. 27	P %*1000 0.04max 0.011	S %*1000 0.15max 0.003			
DIMENSIONAL INS	PECTIONS	Unit:i	nch		SPECIFICA	TION: ASM	E B18.2.1 - 2	2012
CHARACTERISTICS		SPECI		****		RESULT	ACC. *******	REJ. ******
/ISUAL THREAD		ASTM F788 ASME B1.1	3-2013 -2003,3A GC),2A NOGO	PASS PASS		29 15	0 0
WIDTH A/F		0.484	4-0.500			-0.496	5	0
VIDTH A/C IEAD HEIGHT			2-0.577 5-0.235		0.564-0.571 5 0 0.203-0.229 5 0			
HREAD LENGTH)-2.020		0.203-0.229 5 0 1.978-2.001 15 0			
LENGTH)-2.020		1.978-2.001 15 0			
MECHANICAL PRO	PERTIES:	1.900	72.020	SPECIFICA	TION: ASTM			
CHARACTERISTICS		ETHOD	SPEC	CIFIED	ACTUAL		ACC.	REJ.
*****				****	*****	****	******	******
CORE HARDNESS :	ASTM F606	5/F606M-2016	69-100) HRB	75	-79	15	0
WEDGE TENSILE:	ASTM F600	5/F606M-2016	Min 6	50 KSI	65	-70	5	0
CHARACTERISTICS		ETHOD		IFIED	ACTUAL		ACC.	REJ.
COATINGS OF ZINC					1941/F1941M			
Coating thickness	ASTM B56			$3 \mu m$		μm	5	0
SALT SPRAY TEST	ASTM B11 NG WITH TRIVAL			te rust,12 Hr n COMPLIANCI		Passed REOUTREM	5 ENTS.	0
ALL TESTS IN A ASTM SPECIFICAT NFORMATION PRO Maker's ISO 9001:201	CCORDANCE V ION. WE CERT IVIDED BY THI	VITH THE M FIFY THAT T E MATERIAL	METHODS F THIS DATA SUPPLIER /	RESCRIBED IS A TRUE AND OUR T	IN THE A REPRESEN ESTING LA RGA 专用章 上AB MU	PPLICABLE))F	

Figure B-46. ⁵/₁₆-in. (8-mm) Dia. 2-in. (51-mm) Long Fully Threaded Hex Head Bolts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j9)

3360(,

											336
C. Barrison						Ch C					
	CH/	ARTER				FILE				10	58 Cold Springs Road
CHARTER	STE										wile, Wisconsin \$3080
STEEL	316										262 268-2400
	A Davision a										1-800-437 8789
CONSTRAINTS OF	Charler Ma	nulaciumg company i	knie								Far 17621 268 2570
Melterl in US	A Maou	ufactured in U	CA	CHA	RTER S	TEEL TE	ST RE	PORT			
manual in Ga		diactured in U.	SA								
						Cust P O	1				100051
					Cust	Iomer Part #	1				106854 T10167
					Charter	Sales Order	1				50039092
						Heat #			-		10435580
Elgin	Fasten	er Group LLC	- Berea	Plant		Ship Lot # Grade				1010 - 0	4412207
		gley Road				Process	-			1018 A S	K FG RHO 41/64 HRSA
	,OH-44					Finish Size	-				41/64
Kind	Attn :Je	off Leisinger				Ship date	1				29-JUN-16
I hereby certify th	at the mat	lenal described her	ein has bei	eo maoutao	tured in acco	orda ca with th					
hese requiremen	ts The re	cording of faise, fic	blious and	navquient	statements o	r entres on in	15 docume	int may be p	unishable a	s a felony ur	nd lhat it salisfies Ider federal statute
Lab Code: 7388				Testr	Paults of Hea	at Lot # 10435	580				
CHEM %W(C.16	MN .68	.007	S .013	SI	NI 04	CR	MO	CU	SN	v
	AL	N	8	TI	-220 NB	.04	.07	.01	.07	005	002
	023	.0050	0001	.001	.601						
A	ACTYP=	R									
A	MACRO ET	CH SURFACE=1		MACRO	ETCH RAND	IOM=1		ACRO ETCH	CENTER:	1	
				Test re	evite of Rolli	Ing Lot # 1184	510				
REDUCTION	RATIO=9	4:1									
			Te			Lot #4405557					
FENSILE (KSI)		# of Tests 2.0		Min Valu 60.3	94	Max Valu 60.4		Mean 60.3	Value	TEN	SILE LAB = 0368-02
EDUCTION OF A	REA (%)	2		72		73		73			LAB = 0368-02
NUM DECA					RITE DECAR	RB (Inch)=.000		FREE F	ERR & PAR	TIAL DECAR	R8 (Inch)=.005
Decifications			C L					GF JF r	LINU & LA	0-0330-02	
specifications	2	Nanufactured per l Charter Steel certif	Charter St lies this pr	eal Quality oduct is in	Manual Ren distinguish	Date 12/12/1	13 skorouod	radiation la	wals by he		a castlation
	u	etectors in place	to measur	e for the p	resence of a	adiation with	in our pro	COAL & DIO	ducts.		
		leats customer sp Customer Documen	ecificatio	2282-03 (R	y applicable	Charter Stee	evision =		ollowing c		cuments:
Additional Comme		ELTED AND MAN					erision -	Dated *	01-A0G-15		
Aett Source					r	1	This MTH	R supersede	s all previou	sly dated M	TRs for this order
Charter Steel						200			pereto	rand	
aukville. WI. USA	A				CAR.	and a			÷.		
					ACCRED	TED		Mana	Jaruce Ba ger of Qual	amard ily Aasuranc	8
Rem Load1.Fax0	Mail0				Testing Lat	boratory			-	6/29/2016	
					Page 1	of 2					

Figure B-47. ⁵/₁₆-in. (8-mm) Dia. 1¹/₄-in. (32-mm) Long Guardrail Bolt, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j10)

CHARTER STEEL	STEI	ARTER EL facturing Company	, Inc.	СНА	ARTER S	EMAIL	ST RE	PORT			658 Cold Springs (oville, Wisconsin S2 (262) 266-2 1-800-437-6 Fax (262) 268-2	1080 1400 1789
Decker 703 N.		acturing Co t.				Cust P.O. comer Part # Sales Order Heat # Ship Lot # Grade Process Finish Size				1010 A /	50366-1 1.125 10 301375 105087 44881 AK FG RHQ 1- HR 1-	010 047 780 179 1/8
I hereby cedify that	the mater	ial described be	rein has be	ອກ ກາສການໂລດ	tured in seco	Ship date		antions and .			27-AUG	
these requirements	. The reco	rding of false, fi	ctitious and	macoulant	statements of	r entries on thi t Lot # 105087	s docume	at may be p	unishable	as a felony u	nd that it satisfie: nder federal statu	i ite.
Lab Code: 7388 CHEM %Wi	C ,09 AL .022	MN .47 N .6070	9 ,006 B .0001	5 .008 Ti .001	SI .080 NB .001	NI ,04	CR .08	МО .01	CU .08	SN _006	V .001	
Rockwell B (Hrb Rod Size (Inch) Rod Out of Rouni Reduction R	D (Inch)	# of Tests 3 16 8		Test res Min Value 59 1.122 .003	sults of Rollin	ng Lot # 12212 Max Value 61 1.131 .008	51	Mean 50 1.127 .905	Value	RB	.AB == 0358+02	_
Specifications:	Cha dete Mee Cus	tufactured per uter Steel oerti actors in place is customer tomer Documer	fies this pr to measure pecification	educt is in a for the pr is with any	distinguisha resence of ra rapplicable f	ble from bac	kground o our pro exceptio	cess & prop ns for the fi				
elt Source: hartar Steel aukrillg, WI, USA						T		e Barnard D	Janua Ban	r. of Quality A	Rs for this order	

Figure B-48. ⁵/₈-in. (16-mm) Dia. Guardrail Nut, Test Nos. NYBWT-2 and NYBWT-3 (Item No. j10)

FURAS	IW F436	HRU HAR	DENED FL	AT WASH	IER, EXTRA THICK P		
FACTORY: IFI & MORG				74		<u>≘</u> : 2017-06-2	25
ADDRESS: Chang'an Ni Tel:00852-2542 3366	orth Road	, Wuyuan To	own, Haiyan	, ∠hejiang,	, China		
CUSTOMER:					PO NUMBER	R: 22002467	7
Product Description: AS				sher,Extra): 0161176	
SAMPLING PLAN PER / Size: 5/16 ZY Headmarks: F436 + 1		QNTY:	21,000	PCS	MFG LOT NUMBER MFG DATI	R: M-SWEO	411973-1
STEEL PROPERTIES: STEEL GRADE: 1050				HEA	T NUMBER: 14MD22	81	
CHEMISTRY SPEC:	C %*100	Mn%*100	P %*1000	Service and the service of			
TEST:	0.55Max 0.520	min 0.63	0.040max 0.015	0.050max 0.002			
		0.63	0.015				
DIMENSIONAL INSPEC CHARACTERISTICS	********	SPEC	IFIED	SPE	CIFICATION: FNL.FW. ACTUAL RESULT	F436.TH.TH ACC.	K.YZ REJ.
OUTSIDE DIA			-0.720		0.690-0.691	8	0
NSIDE DIA THICKNESS		0.344-0.376 0.090-0.110			0.350-0.352 0.098-0.101	8 8	0
MECHANICAL PROPER	RTIES:			SPEC	CIFICATION: ASTM F4	436-11	
CHARACTERISTICS		METHOD	SPE	CIFIED	ACTUAL RESULT	ACC.	REJ.
HARDNESS:	ASTM	F606-14a	38-45	HRC	40.2-43.7 HRC	8	0
CHARACTERISTICS	TEST	METHOD	SPE	CIFIED	ACTUAL RESULT	ACC.	REJ
ZINC YELLOW		B568-98	Min 0.	0002"	0.0002-0.0003"	8	0
SALT SPRAY TEST	ASTM	B117-11	48h no w 72h no i		Pass	8	0
Baked after plating,at 375 o to provide hydrogen embritt		190 degrees			within 4 hours of electropla	ating	
ALL TESTS IN ACCOF ASTM SPECIFICATION. INFORMATION PROVIDE MFG ISO 9001:2015 SGS	WE CER ED BY TH	RTIFY THAT E MATERIA	THIS DAI	A IS A TRA AND OUP	UE REPRESENTATION	I OF DRY. 3 MGR.)	_

Figure B-49. $^{5}/_{16}$ -in. (8-mm) Dia. Hardened Flat Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k1)

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:			DATE: 2017-10-22	2	
PO NUMBER: 480006185		MFG LOT	NUMBER: M-SWE04	12035-6	
SIZE: 3/8			PART NO: 1133182		
HEADMARKS:			QNTY:	420,000	PCS
DIMENSIONAL INSPECTION	S	SPECIF	ICATION: ASME B18	8.21.1(2009)
CHARACTERISTICS	SPECIFI	ED	ACTUAL RESULT	ACC.	REJ.
****	******	*****	*****	******	******
APPEARANCE	ASTM F78	38-07	PASSED	100	0
OUTSIDE DIA	0.993-1.	030	1.001-1.003	8	0
INSIDE DIA	0.433-0.	453	0.442-0.446	8	0
THICKNESS	0.064-0.	104	0.066-0.075	8	0
HOT DIP GALVANIZED	ΓΜ A153 class C. RoHS Compliant	Min 0.0017"	Min 0.0018 In	8	0
ALL TESTS IN ACCORDANCE V WE CERTIFY THAT THIS DAIA SUPPLIER AND OUR TESTING MFG ISO 9001:2015 SGS Certific	IS A TRUE REPRESE LABORATORY.	ENTATION OF INFO		MGR.)	

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure B-50. ³/₈-in. (10-mm) Dia. Plain Round Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k2)

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: TIANJIN JIGE HARDWARD MANUFACTURE CO.LTD. FACTORY ADDRESS: 1146 KAIXUAN STREET DAGANG TIANJIN, CHINA

DESCRIPTION: 1/2 INVOICE NBR: TD16680155 PART NBR.: 1133184 LOT NO.: 16H-168236-10 DATE: 2016-10-10 ORDER NBR. 210114135 QUANTITY:11250PCS

DIMENSIONS

(UNIT:INCH)

			RESULT							
	STANDARD	1	2	3	4	5				
INSIDE DIA	0.557-0.577	0.563	0.562	0.561	0.560	0.562				
OUTSIDE DIA	1.368-1.405	1.395	1.397	1.396	1.399	1.398				
THICKNESS	0.086-0.132	0.095	0.106	0.101	0.094	0.100				

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT.

CHARACTERISTICS	SPECIFIED	ACTUAL RESULT		ACC.	REJ.
HOT DIP GALVANIZED	ASTM F2329				
	Min 43 um	52-78um	8	0	

<u>NOTE</u>

1. QUANTITY OF SAMPLES: 5.PCS
年間 港
1 the market
2. JUDGEMENT: GOOD
HA ANT
3. CHIEF INSPECTOR
1 K Y
and the second s
and the second se

Figure B-51. ¹/₂-in. (13-mm) Dia. Plain Narrow Round Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k3)

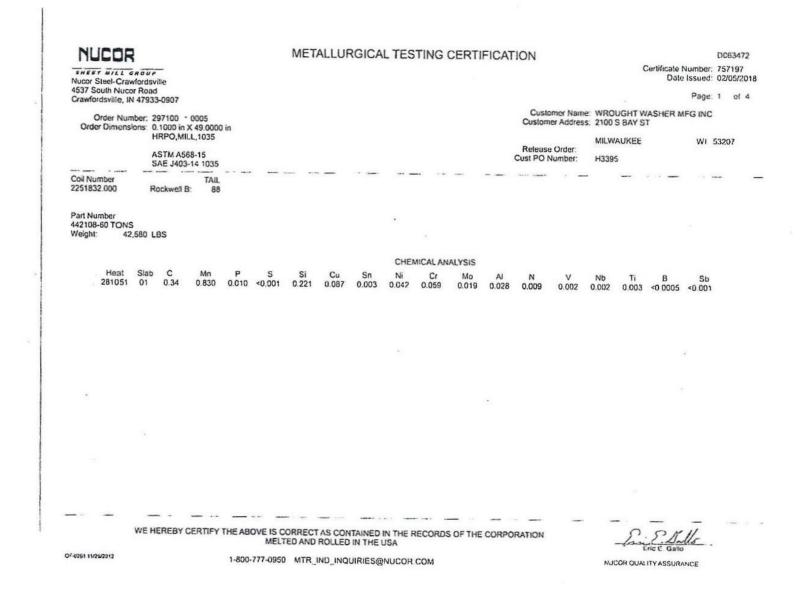


Figure B-52. ¹/₂-in. (13-mm) Dia. Hardened Flat Washer, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k4)

192

HEXICO ENTERPRISE CO., LTD.

NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL: 886-6-2390616 FAX: 886-6-2308947

INSPECTION CERTIFICATE

CUSTOMER	FASTENAL COMP	ANY		2			
PART NAME	FLAT WASHER						
SIZE	3/4 "		DATE	January 20, 2017			
PART NO.	W2A6C6000S6JZ5	- 22	REPORT NO.	1060120-21			
CUST. PART NO.	33174		ORDER NO.	110218950			
MATERIAL / DIA.	10B20 / 23 mm		DOCUMENT NO.	10502010			
HEAT(COIL) NO.	3XV37	_	LOT NO.	5A2C6FNB1			
LOT QTY	144,000 PCS	_	MAF. QTY	144,000 PCS			
THE PRODUCTS S	SUPPLIED ARE IN COM	MPLIANCE WITH F	REQUIREMENT OF	THE ORDER.			
SAMPLING PLAN	STANDARD	ASME B18.18-2011					
DIMENSION STAN	NDARD	ASTM F436-2011					
COATING STAND	ARD	ASTM B695-R2009					
HARDNESS TEST	METHOD	ASTM F606-2014					
COATING TEST M	IETHOD	ASTM E376-2011					
SALT PRAY TEST	METHOD						
STANDARD OF IN	ISPECTION REPORT	EN 10204 3.1		ionana internationalitico a n			

	DIMENSIONS IN inch										
1	INSPECTION ITEM	SPECIFICATION			TEST	INSPECTIO	N RESULTS	INSPECTION			
1	INSPECTION ITEM	STECIFICATION		QTY	MIN.	MAX.	EQUIPMENT				
1	OUTSIDE DIAMETER	1.4360		1.5000	8	1.4563	1.4764	Caliper			
2	INSIDE DIAMETER	0.8130	-	0.8450	8	0.8339	0.8374	Caliper			
3	THICKNESS	0.1220	-	0.1770	8	0.1335	0.1394	Caliper			
4	HARDNESS	HRC	38	- 45	5	39.1	41.1	Rockwell			
5	COATING	MECH.	GALV.	0.0021 in	ı. 5	0.0022	0.0032	Magnetic			
6	APPEARANCE		VISUA	L		C	Ж				

INSPECTOR Yu Tain Lin

QC CHIEF Jing Yeh Tsao

Figure B-53. ¾-in. (19-mm) Dia. Hardened Flat Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k5)

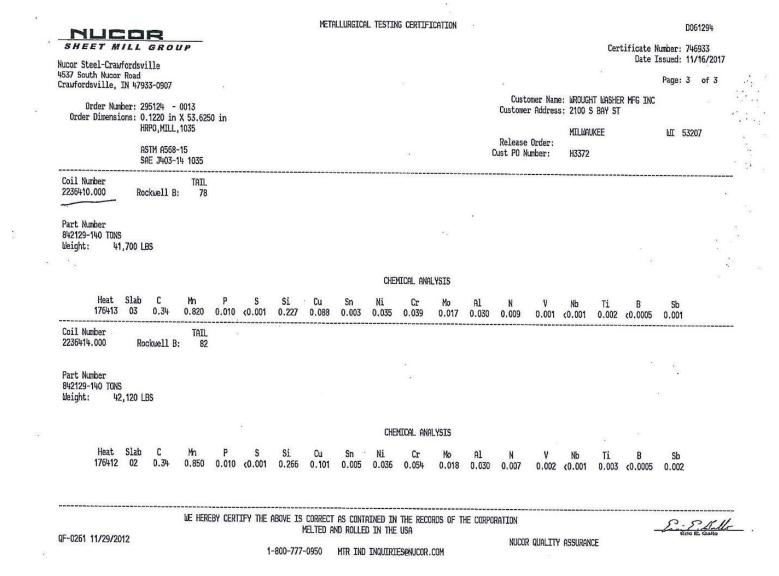


Figure B-54. ¾-in. (19-mm) Dia. Hardened Flat Washer, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k5)

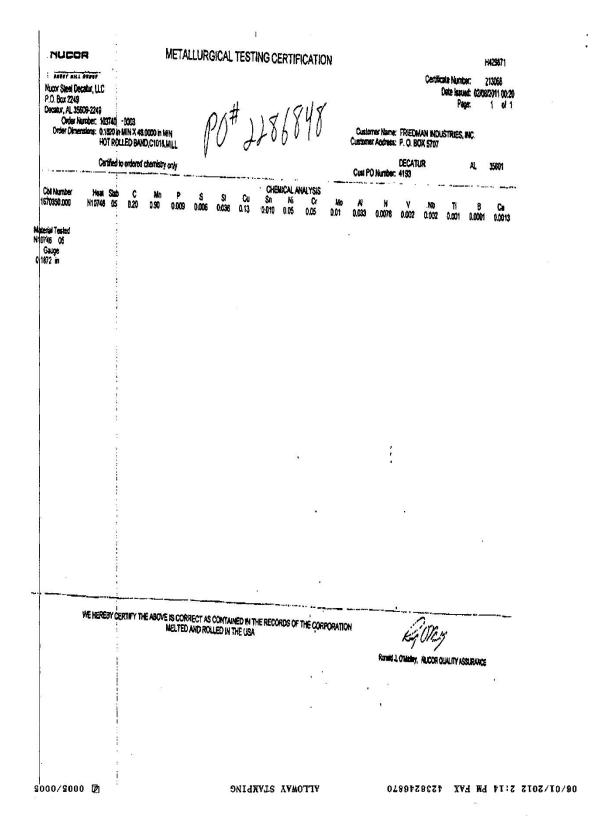


Figure B-55. ³/₄-in. (19-mm) Dia. Plain Round Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k6)

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER ZP

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: TIANJIN JIGE HARDWARD MANUFACTURE CO.LTD. FACTORY ADDRESS: 1146 KAIXUAN STREET DAGANG TIANJIN, CHINA

DESCRIPTION: 7/8 INVOICE NBR: TD16680100 PART NBR.: 33020 LOT NO.: 16H-168092-9 DATE: 2016-06-12 ORDER NBR. 210107422 QUANTITY:16800PCS

DIMENSIONS

(UNIT:INCH)

8

0

			RESULT							
	STANDARD	1	2	3	4	5				
INSIDE DIA	0.936-0.968	0.942	0.951	0.946	0.948	0.945				
OUTSIDE DIA	2.243-2.280	2.251	2.249	2.255	2.258	2.253				
THICKNESS	0.136-0.192	0.145	00.148	0.144	0.149	0.143				

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT. CHARACTERISTICS SPECIFIED ACTUAL RESULT ACC. REJ.

Min 3 um

INC PLA	TED AS	TM 1941	I FE/ZN	3A
---------	--------	---------	---------	----

T 4.0-5.4um

NOTE

1. QUANTITY OF SAMPLES: 5 PCS

2. JUDGEMENT: GOOD **3. CHIEF INSPECTOR**

Figure B-56. ⁷/₈-in. (22-mm) Dia. Hardened Flat Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k7)

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: IFI & MORGAN LTD. FACTORY ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

 DESCRIPTION:
 1
 DATE: 2016-10-08

 INVOICE NBR:
 TD16680155
 ORDER NBR. 210114135

 PART NBR.:
 33188
 QUANTITY:3240PCS

 LOT NO.:
 16H-168236-30

DIMENSIONS (UNIT:INCH										
		RESULT								
	STANDARD	1	2	3	4	5 -				
INSIDE DIA	1.055-1.092	1.068	1.068	1.067	1.069	1.068				
OUTSIDE DIA	2.493-2.530	2.514	2.513	2.514	2.514	2.511				
THICKNESS	0.136-0.192	0.146	0.149	0.152	0.152	0.147				

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT.

CHARACTERISTICS	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
HOT DIP GALVANIZED	ASTM F2329			
-	Min 43 um	48-64um	8 0	

NOTE

 1. QUANTITY OF SAMPLES: 5 PCS

 2. JUDGEMENT: GOOD

 3. CHIEF INSPECTOR:

 QUANLITY CONTROL

由 扫描全能王 扫描创建

Figure B-57. 1-in. (25-mm) Dia. Plain Round Washers, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k8)

LOT NO. NUCOR Post Office Box 6100 371123B Saint Joe, Indiana 46785 Telephone 260/337-1600 FASTENER DIVISION CUSTOMER NO/NAME 8001 FASTENAL COMPANY-KS NUCOR ORDER # 978943 TEST REPORT SERIAL# FB488556 TEST REPORT ISSUE DATE 3/04/16 CUST PART # 38210 DATE SHIPPED 8/17/16 CUSTOMER P.O. # 210117217 Dł NAME OF LAB SAMPLER: SANDRA NEUMANN-PLUMMER, LAB TECHNICIAN NAME OF LAB SAMPLER: NUCOR PART NO QUANTITY LOT NO. DESCRIPTION GR DH HV H D G 175647 3600 371123B 1-8 MANUFACTURE DATE 1/07/16 HEX NUT H.D.G./GREEN LUBE --CHEMISTRY MATERIAL GRADE -1045L **CHEMISTRY COMPOSITION (WT% HEAT ANALYSIS) BY MATERIAL SUPPLIER MATERIAL HEAT NUCOR STEEL - SOUTH CAROL NUMBER P NUMBER С MN S SI DL15105591 RM030412 .44 . 64 .005 .020 .20 --MECHANICAL PROPERTIES IN ACCORDANCE WITH ASTM A563-07a SURFACE CORE PROOF LOAD TENSILE STRENGTH HARDNESS HARDNESS 90900 LBS DEG-WEDGE (R30N) (RC) (LBS) STRESS (PSI) PASS N/A 26.6 N/A N/A N/A 27.0 PASS N/A N/A N/A 27.6 PASS N/A N/A N/A 28.9 PASS N/A N/A N/A 26.7 PASS N/A N/A AVERAGE VALUES FROM TESTS 27.4 PRODUCTION LOT SIZE 90800 PCS --VISUAL INSPECTION IN ACCORDANCE WITH ASTM A563-07a 80 PCS. SAMPLED LOT PASSED --COATING - HOT DIP GALVANIZED TO ASTM F2329-13 - GALVANIZING PERFORMED IN THE U.S.A.
 3.
 0.00346
 4.
 0.00235
 5.
 0.00218

 10.
 0.00269
 11.
 0.00275
 12.
 0.00315
 1. 0.00294 0.00311 6. 0.00270 7. 0.00353 2. 0.00322 9. 0.00406 13. 0.00487 14. 0.00253 15. 0.00416 AVERAGE THICKNESS FROM 15 TESTS .00318 HEAT TREATMENT - AUSTENITIZED, OIL QUENCHED & TEMPERED (MIN 800 DEG F) --DIMENSIONS PER ASME B18.2.6-2010 #SAMPLES TESTED MINIMUM CHARACTERISTIC MAXIMUM 1.824 Width Across Corners 1.844 8 Thickness 32 0.980 1.001 ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DEARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL. THE NUCOR FASTENER A DIVISION OF NUCOR CORPORATION ACCREDITED lyusen Nin MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/17 JOHN W. FERGUSON QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

Figure B-58. 1-in. (25-mm) Dia. UNC Heavy Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k9)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 120268938 COMMODITY : REGULAR SQUARE NUTS GR-A SIZE : 3/4-10 OVER TAP 0.51MM LOT NO : 1N1670160 SHIP QUANTITY : 10,800 PCS LOT QUANTITY : 13,198 PCS HEADMARKS :

MANUFACTURE DATE : 2016/07/15

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE : 2018/03/29 PACKING NO : GEM160825011 INVOICE NO : GEM/FNL-160913IN-1 PART NO : 0189532 SAMPLING PLAN : ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO : 16302167-4 MATERIAL : X1008A FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F3329-2013

PERCENT/	AGE COM	POSITION	OF CHEM	MISTRY:A	CORDIN	G TO AST	M A563-2015
Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN.							
MAX.		0.5800		0.1300	0.2300		
Test Value	0.0230	0.0700	0.2900	0.0140	0.0060	0.0300	

DIMENSIONAL INSPECTIONS (ACCORDING TO ASME B18.2.2-2015

		SAMPLED BY : DWTING						
INSPECTIONS ITEM	SAMPLE	SPECIFIED	AC	CTUAL RESULT	ACC.	REJ.		
WIDTH ACROSS CORNERS	4PCS	1.3820-1.4430 inch		1.4770-1.5510 inch	4	0		
FIM	15PCS	ASME B18.2.2-2015 Max. 0.0290 inch		0.0250-0.0280 inch	15	0		
THICKNESS	4PCS	0.7100-0.7850 inch		0.6370-0.6760 inch	4	0		
WIDTH ACROSS FLATS	4PCS	1.2120-1.2500 inch		1.0930-1.1190 inch	4	0		
SURFACE DISCONTINUITIES	29 PCS	ASTM F812-2012		PASSED	29	0		
THREAD	15PCS	GAGING SYSTEM 21	-	PASSED	15	0		

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

				SAMPLE	D BY : GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68 -107HRB	80-82 HRB	15	0
PROOF LOAD	4 PCS	ASTM F606-2014	1	Min.90 KSI	OK	4	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	57.12-72.93	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure B-59. ³/₄-in. (19-mm) Dia. UNC Square Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k10)

CERTIFIED MILL TEST REPORT

Alton Steel Test Lab #5 Cut Street Alton, IL. 62002-9011 (618) 463-4490 EXT 2486 (618) 463-4491 (Fax)

BILL TO	On		ite Drive One Unytite Drive														
		ru, IL 6				0405	1.2			IL 61354							
Date C ASI Ord No. ASI Ord Line I)3/22/20 510 tem	111	ustomei ustomei		04051-2 Specifications B1045SC1.1250 SAE 1045												
Item Description Steel Bar, Hot Ro		50, 25' (<u></u>				tiese.		<u></u>			Stra	and Cast,	RR = 4	9.29:1
Heat Number							IS TEST		ield PSI ODS AS			PSI % E-1019					l Test
Heat Number	с	Mn	Р	S	Si	Cu	Ni	Cr	Мо	Sn	Al	Nb/Cb	v	В	Ti	N	Ca
121455	0.46	0.74	0.007	0.028	0.23	0.18	0.064	0.105	0.016	0.009	0.001	0.026	0.004	0.0003	0.0007	0.0094	0.0004
121476	0.46	0.75	0.004	0.025	0.23	0.16	0.061	0.067	0.014	0.009	0.001	0.026	0.004	0.0003	0.0006	0.0103	0.0006
		JOL	H YNIN	ARDEN	ABILI	TY USI	NG AST	M A-2	55 CAL	CULAT	ED FRO	M CHE	MICAL	DI	4	•	
<u>121476</u>	7 1		TM E-45 (Method A:		si	ASTM E-	TEST R	·	S AE J422	ASTM	E-381	Mil 12	286 Fe	erritic GS	Hardin	ess
Heat Number	ΤΑ Τ	в тс	TD	HA H	IB HC	HD	s	0		5 0	s	R C	A	в		RC RB	BHN
121455								D	ecarb: 2	0.005	2	2 1					
								D	ecarb:	.005							
						A	DDITIO	NAL CO	MMENTS	5					-		
RMS 021	5																
No mercury, lead, radium, of alpha containing material or equipment is used or deliberately added in the production of this steel. No weld or weld repairs were performed on this material. This Steel is 100% Electric Arc Furnace Melted and Rolled in the U.S.A. Material qualifies as NAFTA origination.						Alteration or reproduction of this report, except in full, is not allowed without written approval by a representative of Alton Steei Incorporated. I hereby certify that the above tests are correct as contained in the records of ALTON STEEL INCORPORATED											
Subscribed and so the county of Mac				ary Public	c, in and	for		 Qu	ality Lea	ader:	Ruber	t Cauley					
this	Da	ay of							0	~							
My commission e	xpires								K	Cau	iley	~		15 40			
(Notary Public)											/						

Figure B-60. ³/₄-in. (19-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k11)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 220025463 COMMODITY : FINISHED HEX NUT GR-A SIZE : 5/16-18 NC 0/T 0. 43MM LOT NO : 1N1760557 SHIP QUANTITY : 139, 500 PCS LOT QUANTITY :162, 517 PCS HEADMARKS :

MANUFACTURE DATE : 2017/07/31

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/03/29 PACKING NO: GEM170914005 INVOICE NO: GEM/FNL-170928IN-3 PART NO: 36703 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: 1705030200 MATERIAL: 1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

.

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	C%	MN%	P%	S%
Spec. : MIN.				
MAX.	0. 5800		0.1300	0.2300
Test Value	0.0700	0.2600	0.0160	0.0050

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

	SAMPLED BY : LXQING									
INSPECTIONS ITEM	SAMPLE	SP	ACTUAL RESULT	ACC.	REJ.					
WIDTH ACROSS CORNERS	6 PCS		0.5570-0.5770 inch	0.5630-0.5640 inch	6	0				
FIM	15 PCS	ASME B18. 2. 2-2015	Max. 0.0160 inch	0.0090-0.0130 inch	15	0				
THICKNESS	6 PCS		0.2580-0.2730 inch	0.2720-0.2720 inch	6	0				
WIDTH ACROSS FLATS	6 PCS		0.4890-0.5000 inch	0.4940-0.4970 inch	6	0				
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0				
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0				

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

	SAMPLED BY: GDAN LIAN									
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.			
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	85–87 HRB	15	0			
PROOF LOAD	5 PCS	ASTM F606-2014		Min. 90 KSI	ОК	5	0			
PLATING THICKNESS (µm)	29 PCS	ASTM B568-1998		>=53	67.44-71.94	20				

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

grin

Figure B-61. $^{5}/_{16}$ -in. (8-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k13)

Certificate of Compliance

Sold To:	Purchase Order:	NYBWT-1,2								
UNL TRANSPORTATION	Job:	NYBWT-1,2								
	Invoice Date:	05/24/2018								
THIS IS TO CERTIFY THAT WE HAVE SUP THESE PARTS WERE PURCHASED T										
24 PCS 3/8"-16 x 7-1/2" ASTM A307 Grade A Hot Dipped Galvanized Hex 120302589 AND UNDER PART NUMBER 91873	Bolt SUPPLIED UNDER OUR T	RACE NUMBER								
84 PCS 3/4"-10 x 2" ASTM F3125 Grade A325 Hot Dipped Galvanized Steel Structural Bolt OnlyUSA SUPPLIED UNDER OUR TRACE NUMBER 488266 AND UNDER PART NUMBER 19690										
48 PCS 1/2"-13 x 2" ASTM A307 Grade A Hot Dipped Galvanized Tap Bol AND UNDER PART NUMBER 0189472	t SUPPLIED UNDER OUR TRAG	CE NUMBER 120295018								
50 PCS 1/2"-13 Hot Dip Galvanized Finish Grade A Finished Hex Nut SUPPLIED UNDER OUR TRACE NUMBER 180143778 AND UNDER PART NUMBER 1136709										
24 PCS 5/16" x 0.688" OD Thru-Hardened ECOGUARD[REG] Finish Stee OUR TRACE NUMBER 120109164 AND UNDER PART NUMBER 1113		r SUPPLIED UNDER								
48 PCS 5/16"-18 Hot Dip Galvanized Finish Grade A Finished Hex Nut SUI UNDER PART NUMBER 36703	PPLIED UNDER OUR TRACE N	UMBER p1222717 AND								
24 PCS 3/4"-10 x 8" ASTM A307 Grade A Hot Dipped Galvanized Hex Bol AND UNDER PART NUMBER 91972	t SUPPLIED UNDER OUR TRAG	CE NUMBER 210158499								
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revision	to avoid using obsolete copies.								
	This document was printed or time.	n 05/24/2018 and was current at that								
Fastenal Account Representative Signature	Fastenal Store Location/Add	ress								
Ashly Stansik	3201 N. 23rd Street STE 1									
DINCONCAL	LINCOLN, NE 68521									
Printed Name	Phone #: (402)476-7900									
5/24/18	Fax #: 402/476-7958									
Date Pag	ge 1 of 2									

Figure B-62. ⁵/₁₆-in. (8-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k13)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 180143778 COMMODITY : FINISHED HEX NUT GR-A SIZE : 1/2-13 NC O/T 0.46MM LOT NO : 1N1780824 SHIP QUANTITY : 18,750 PCS LOT QUANTITY : 170,225 PCS

HEADMARKS :

MANUFACTURE DATE : 2017/11/02

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)8418488 84184567 DATE: 2018/05/28 PACKING NO: GEM171130002 INVOICE NO: GEM/FNL-171220DE-1 PART NO: 1136709 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: 331703751 MATERIAL: ML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

. 2%

CAMPLED DV . MID MUD IN

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	Chemistry AL%		C% MN%		S%	SI%	
Spec. : MIN.							
MAX.		0.5800		0.1300	0.2300	commences of the total of	
Test Value	0.0330	0.0600	0.4300	0.0180	0.0070	0.0300	

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

	SAMPLED BY : WDANDAN						
INSPECTIONS ITEM	SAMPLE	SPEC	SIFIED	ACTUAL RESULT	ACC.	REJ.	
WIDTH ACROSS CORNERS	6 PCS		0.8400-0.8660 inch	; 0.8540-0.8560 inch	6	0	
FIM	15 PCS	ASME B18.2.2-2015	Max. 0.0110 inch	0.0100-0.0110 inch	15	0	
THICKNESS	6 PCS		0.4270-0.4480 inch	0.4430-0.4440 inch	6	0	
WIDTH ACROSS FLATS	6 PCS		0.7360-0.7500 inch	0.7470-0.7480 inch	6	0	
SURFACE DISCONTINUITIES	S 29 PCS		ASTM F812-2012	PASSED	29	0	
THREAD	15 PCS	G	AGING SYSTEM 21	PASSED	15	0	

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

			SAMPLED BY: TANGHAO					
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.	
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	86-90 HRB	15	0	
PROOF LOAD	6 PCS	ASTM F606-2014		Min.9,649 LBF	OK	6 }	0	
PLATING THICKNESS(µm)	; 6 PCS ;	ASTM B568-1998	а а 1 1	>=53 ¦	59.22-80.98	6 ;	0	

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

griv

Figure B-63. ¹/₂-in. (13-mm) Dia. Hex Nuts, Test Nos. NYBWT-2 and NYBWT-3 (Item No. k14)

Appendix C. Static Soil Tests

Figure C-1. Soil Strength, Initial Calibration Tests, Nos. NYBWT-2 and NYBWT-3

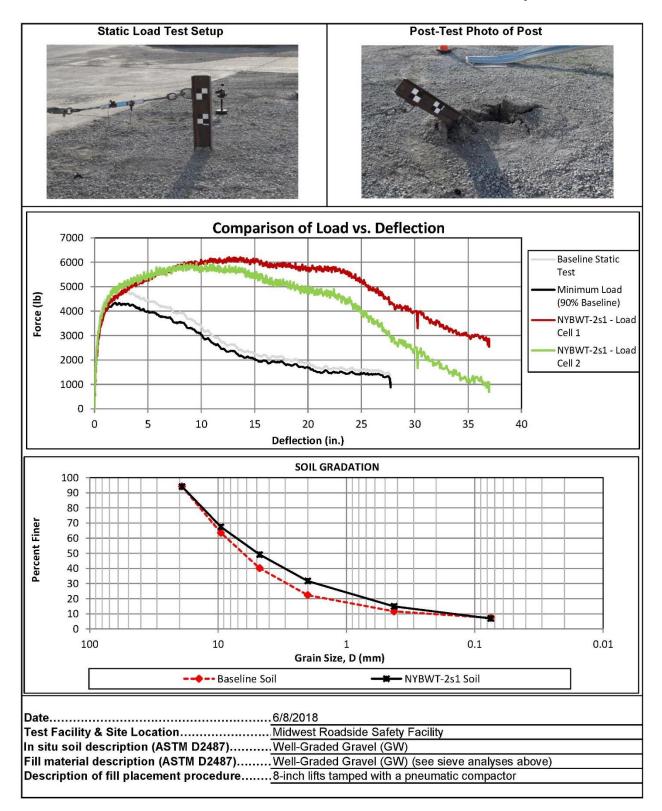


Figure C-2. Static Soil Test, Test No. NYBWT-2

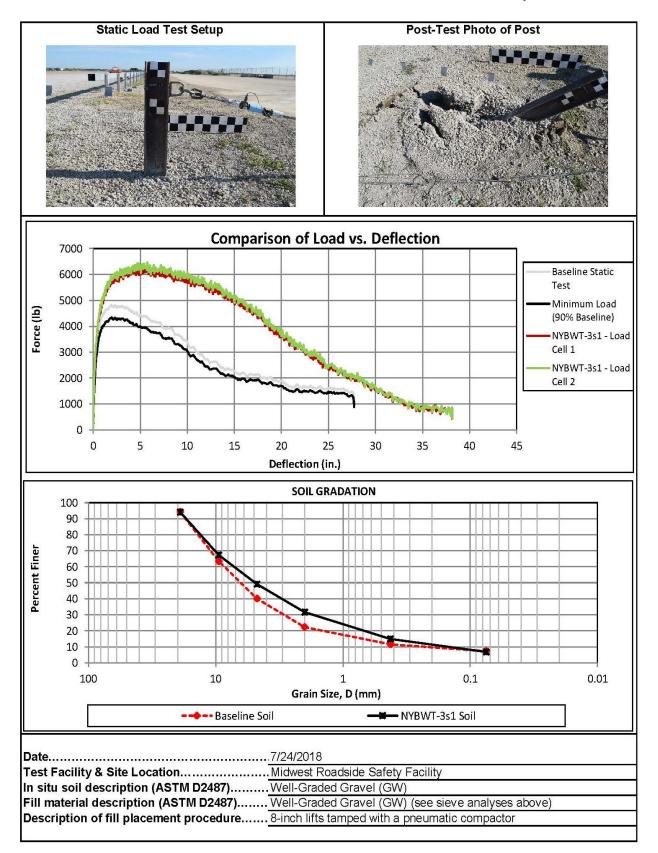


Figure C-3. Static Soil Test, Test No. NYBWT-3

Appendix D. Vehicle Center of Gravity Determination

Da	-	_ Test Name:	NYBWT-2	VIN:		B1GK0BS5	
Ye	ear: 2011	Make:	Dodge	Model:	Ram	1500 Quad	Cab
Vehicle C	G Determinati	on					
				Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(lb)	(in.)	(lb-in.)	
+		d Truck (Curb)		4931	29.322488	144589.19	
+	Hub			19	24	456	
+		ation cylinder 8		7	29	203	
+		tank (Nitrogen)		27	28	756	
+	Strobe/Bral			5	26 1/4	131.25	
+	Brake Rece			5	54	270	
+		Including DAS		42	32 3/8	1359.75	
-	Battery			-47	41	-1927	
-	Oil			-8	15 1/2	-124	
-	Interior			-93	27	-2511	
-	Fuel			-136	20	-2720	
-	Coolant			-7	33	-231	
-	Washer flui			-5	-7	35	
+		ast (In Fuel Tan		207	16 1/2	3415.5	
+		upplemental Ba	attery	13	26 1/4	341.25	
	Smart Barri	ier Provisions		7	24 1/2	171.5	
Note: (+) is a	dded equipment to	Estimated Tot		4967		0 144215.44	
onanonan i Praia co		Estimated To Vertical CG	tal Weight (lb) Location (in.)	4967		27	
Vehicle D	imensions for	Estimated To Vertical CG C.G. Calculati	tal Weight (lb) Location (in.) ons	4967 29.0347	66	144215.44	
onanonan i Praia co	imensions for	Estimated To Vertical CG	tal Weight (lb) Location (in.) ons Front Tr	4967 29.0347 ack Width:	<u> </u>	144215.44 in.	
Vehicle D	imensions for	Estimated To Vertical CG C.G. Calculati	tal Weight (lb) Location (in.) ons Front Tr	4967 29.0347	1000 C	144215.44	
Vehicle D	imensions for	Estimated To Vertical CG <u>C.G. Calculati</u> _in.	tal Weight (lb) Location (in.) ons Front Tr Rear Tr	4967 29.0347 ack Width: ack Width:	66	144215.44 in. in.	
Vehicle D Wheel Ba	imensions for ase: 140.5 Gravity	Estimated To Vertical CG C.G. Calculati _in. 2270P MA	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets	4967 29.0347 ack Width: ack Width:	66 Test Inertia	144215.44 in. in.	
Vehicle D Wheel Ba Center of Test Inertia	imensions for ase: 140.5 Gravity al Weight (lb)	Estimated To Vertical CG C.G. Calculati in. 2270P MA: 5000	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969	144215.44 in. in.	-31.0
Vehicle D Wheel Ba Center of Test Inertia Longitudin	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.)	Estimated To Vertical CG C.G. Calculati in. 2270P MA: 5000 63	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991	144215.44 in. in.	Differenc -31.0 0.67599
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.) G (in.)	Estimated To Vertical CG C.G. Calculati _in. 2270P MA 5000 63 NA	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865	144215.44 in. in.	-31.0 0.67599 NA
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC	imensions for ise: 140.5 Gravity al Weight (lb) ial CG (in.) G (in.) G (in.)	Estimated To Vertical CG C.G. Calculati _in. 2270P MAS 5000 63 NA 28	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991	144215.44 in. in.	-31.0
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC Note: Long.	imensions for Ise: 140.5 Gravity al Weight (lb) Ial CG (in.) G (in.) G (in.) CG is measured fro	Estimated To Vertical CG C.G. Calculati _in. 2270P MA3 5000 63 NA 28 m front axle of test	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03	144215.44 in. in.	-31.0 0.67599 N/
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC Note: Long.	imensions for ise: 140.5 Gravity al Weight (lb) ial CG (in.) G (in.) G (in.)	Estimated To Vertical CG C.G. Calculati _in. 2270P MA3 5000 63 NA 28 m front axle of test	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03	144215.44 in. in.	-31.0 0.67599 NA
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long. Note: Latera	imensions for Ise: 140.5 Gravity al Weight (lb) Ial CG (in.) G (in.) G (in.) CG is measured from	Estimated To Vertical CG C.G. Calculati _in. 2270P MA3 5000 63 NA 28 m front axle of test	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03 side	144215.44 in. in.	-31.0 0.67599 N/ 1.03472
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long. Note: Latera	imensions for Ise: 140.5 Gravity al Weight (lb) Ial CG (in.) G (in.) G (in.) CG is measured fro	Estimated To Vertical CG C.G. Calculati _in. 2270P MA3 5000 63 NA 28 m front axle of test	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03 side	144215.44 in. in.	-31.0 0.67599 N/ 1.03472
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long. Note: Latera	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.) G (in.) CG is measured fro al CG measured from EIGHT (lb)	Estimated Tot Vertical CG C.G. Calculati _in. 2270P MA 5000 63 NA 28 m front axle of test n centerline - positi	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03 side	144215.44 in. in.	-31.0 0.67599 N/ 1.03472
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long. Note: Latera	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fror EIGHT (lb) Left	Estimated Tot Vertical CG C.G. Calculati in. 2270P MA: 5000 63 NA 28 m front axle of test n centerline - positi	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertial 4969 63.675991 -0.816865 29.03 side TEST INER	144215.44 in. in. TIAL WEIGH	-31.0 0.67599 N/ 1.03472
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE Front	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fror I CG measured fror EIGHT (lb) Left 1412	Estimated To Vertical CG C.G. Calculati _in. 2270P MA 5000 63 NA 28 m front axle of test n centerline - positi Right 1334	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03 side TEST INER Front	144215.44 in. in. TIAL WEIGH Left 1433	-31.0 0.67599 N/ 1.03472 IT (Ib) Right 1284
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE Front	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fror EIGHT (lb) Left	Estimated Tot Vertical CG C.G. Calculati in. 2270P MA: 5000 63 NA 28 m front axle of test n centerline - positi	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertial 4969 63.675991 -0.816865 29.03 side TEST INER	144215.44 in. in. TIAL WEIGH	-31.0 0.67599 N/ 1.03472
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC Note: Long. Note: Latera CURB WE Front Rear	imensions for ise: 140.5 Gravity al Weight (lb) ial CG (in.) G (in.) G (in.) CG is measured from CG measured	Estimated Tot Vertical CG C.G. Calculati _in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi Right 1334 1112	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03 side TEST INER Front Rear	144215.44 in. in. TIAL WEIGH Left 1433 1113	-31.0 0.67599 N/ 1.03472 IT (Ib) Right 1284 1139
Vehicle D Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera CURB WE Front	imensions for ase: 140.5 Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured fror I CG measured fror EIGHT (lb) Left 1412	Estimated Tot Vertical CG C.G. Calculati _in. 2270P MA 5000 63 NA 28 m front axle of test n centerline - positi Right 1334	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	4967 29.0347 ack Width: ack Width:	66 Test Inertia 4969 63.675991 -0.816865 29.03 side TEST INER Front	144215.44 in. in. TIAL WEIGH Left 1433	-31.0 0.67599 N/ 1.03472 IT (Ib) Right 1284

Figure D-1. Vehicle Mass Distribution, Test No. NYBWT-2

14		BWT-3 VIN		RD6FPCS205	397
Yea	r: 2012 Make: D	odge Model	·	Ram 1500	
Vehicle CG	Determination	Moight	Vertical CG	Vertical M	
	Fauliancent	U U			
	Equipment	(lb)	(in.)	(lb-in.)	
+	Unballasted Truck (Curb)	5151	28.43346	146460.75	
+	Hub	19	15	285	
+	Brake activation cylinder & fram		28 3/4	201.25	
+	Pneumatic tank (Nitrogen)	31 5	28 26 1/2	868	
	Strobe/Brake Battery			132.5	
+	Brake Receiver/Wires	6	51 3/4	310.5	
+	CG Plate including DAS	42	31 1/2	1323	
-	Battery	-44	38 3/4	-1705	
-	Oil	-6	22 5/8	-135.75	
-	Interior	-79	41 1/2	-3278.5	
-	Fuel	-195	17 1/4	-3363.75	
-	Coolant	-9	35 1/8	-316.125	
-	Washer fluid	0		0	
÷	Water Ballast (In Fuel Tank)	59	15	885	
+	Onboard Supplemental Battery			0	
	Smart Barrier Provisions	6	24 1/2	147 0	
	Estimated Total W Vertical CG Loca		-	141813.88	
Vehicle Din	Vertical CG Loca]		
	Vertical CG Loca	eight (Ib) 4993 ation (in.) 28.4025	-		
	Vertical CG Loca	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width	: 67.375	in.	
	Vertical CG Loca	eight (Ib) 4993 ation (in.) 28.4025	: 67.375		
Wheel Base	Vertical CG Loca mensions for C.G. Calculations e: <u>140.25</u> in. in. iravity 2270P MASH T a	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width	: 67.375 : 67.75 Test Inertia	in. in.	872 %
Wheel Base Center of G Test Inertial	Vertical CG Loca mensions for C.G. Calculations e: <u>140.25</u> in. ravity <u>2270P MASH Ta</u> Weight (lb) 5000 ± 110	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width	: <u>67.375</u> : <u>67.75</u> Test Inertia 5006	in. in.	6.0
Wheel Base Center of G Test Inertial Longitudinal	Vertical CG Loca nensions for C.G. Calculations e: 140.25 in. ravity 2270P MASH Ta Weight (Ib) 5000 ± 110 CG (in.) 63 ± 4	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width	: 67.375 : 67.75 Test Inertia 5006 60.739513	in. in.	6.0 -2.26049
Wheel Base Center of G Test Inertial Longitudinal Lateral CG	Vertical CG Loca nensions for C.G. Calculations a: 140.25 in. a: 140.25 in. a: 2270P MASH Ta Weight (Ib) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337	in. in.	6.0 -2.26049 NA
Wheel Base	Vertical CG Loca nensions for C.G. Calculations e: 140.25 in. iravity 2270P MASH Ta Weight (Ib) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets	: 67.375 : 67.75 Test Inertia 5006 60.739513	in. in.	6.0 -2.26049 NA
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG	Vertical CG Loca nensions for C.G. Calculations a: 140.25 in. a: 140.25 in. a: 2270P MASH Ta Weight (Ib) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets 0	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337	in. in.	6.0 -2.26049 NA
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CG	Vertical CG Loca nensions for C.G. Calculations e: 140.25 in. travity 2270P MASH Ta Weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or gr	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337 28.40	in. in.	Difference 6.0 -2.26049 NA 0.40254
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral (Vertical CG Loca mensions for C.G. Calculations e: 140.25 in. ravity 2270P MASH Ta Weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) 28 or gr G is measured from front axle of test vehic CG measured from centerline - positive to	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337 28.40 er) side	in. in.	6.0 -2.26049 NA 0.40254
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral (Vertical CG Loca mensions for C.G. Calculations a: 140.25 in. ravity 2270P MASH Ta Veight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) 100 CG (in.) 28 or gr G is measured from front axle of test vehicle CG measured from centerline - positive to CG measured from centerline - positive to CHT (lb)	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337 28.40 er) side	in. in.	6.(-2.26049 NA 0.40254
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	Vertical CG Loca mensions for C.G. Calculations e: 140.25 in. ravity 2270P MASH Ta Weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or gr G is measured from front axle of test vehic CG measured from centerline - positive to CG THT (lb) Left Right	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertial 5006 60.739513 0.6073337 28.40 er) side TEST INER	in. in. TIAL WEIGH	6.(-2.26049 NA 0.40254 T (Ib) Right
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC Front	Vertical CG Loca mensions for C.G. Calculations e: 140.25 in. ravity 2270P MASH Ta Weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or gr G measured from front axle of test vehic CG measured from centerline - positive to GHT (lb) Left Right 1478 1429	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337 28.40 er) side	in. in. TIAL WEIGH [•] Left 1393	6.(-2.26049 0.40254 T (Ib) Right 1445
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	Vertical CG Loca mensions for C.G. Calculations e: 140.25 in. ravity 2270P MASH Ta Weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or gr G is measured from front axle of test vehic CG measured from centerline - positive to CG THT (lb) Left Right	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertial 5006 60.739513 0.6073337 28.40 er) side TEST INER	in. in. TIAL WEIGH	6.(-2.26049 NA 0.40254 T (Ib) Right
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C(Note: Lateral (CURB WEIC Front Rear	Vertical CG Loca nensions for C.G. Calculations e: 140.25 in. Travity 2270P MASH Ta weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) 28 or gr G is measured from front axle of test vehic CG measured from centerline - positive to SHT (lb) Left Right 1478 1429 1119 1125	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337 28.40 er) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1393 1065	6.(-2.26049 NA 0.40254 T (Ib) Right 1445 1103
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral (CURB WEIC Front Rear FRONT	Vertical CG Loca nensions for C.G. Calculations e: 140.25 in. Travity 2270P MASH Ta Travity 2270P MASH Ta Weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or gr G is measured from front axle of test vehic CG measured from centerline - positive to GHT (lb) Left Right 1478 1429 1119 1125 2907 lb	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertial 5006 60.739513 0.6073337 28.40 er) side TEST INER Front Rear FRONT	in. in. TIAL WEIGH Left 1393 1065	6.(-2.26049 N/ 0.40254 T (Ib) Right 1445 1103 b
Wheel Base Center of G Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral (CURB WEIC Front Rear	Vertical CG Loca nensions for C.G. Calculations e: 140.25 in. Travity 2270P MASH Ta weight (lb) 5000 ± 110 CG (in.) 63 ± 4 (in.) 28 or gr G is measured from front axle of test vehic CG measured from centerline - positive to SHT (lb) Left Right 1478 1429 1119 1125	eight (Ib) 4993 ation (in.) 28.4025 Front Track Width Rear Track Width argets D eater	: 67.375 : 67.75 Test Inertia 5006 60.739513 0.6073337 28.40 er) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1393 1065 2838 2168	6.(-2.26049 NA 0.40254 T (Ib) Right 1445 1103

Figure D-2. Vehicle Mass Distribution, Test No. NYBWT-3

Appendix E. Post Movement Definitions

Movement	Definition
Deflection	Deflection refers to component translational movement, i.e., lateral or longitudinal displacements. This is linear movement without deformation and without displacing the soil. The deflection direction can be described as upstream, downstream, front, or back.
	Deflection can also be used as a vague term when it is unclear if a post was bending or rotating during impact.
Bending	Bending refers to plastic deformation of a component due to an applied moment load. The direction of bending can be described as upstream, downstream, front, or back.
Rotation	Rotation refers to a complete component movement with little to no deformation. Soil may be displaced. The direction of rotation can be described as upstream, downstream, front, or back, as well as clockwise or counterclockwise.
Twisting	Twisting refers to rotational displacement along the long axis of a component, e.g., the vertical axis of a post or the longitudinal axis of a rail segment. Twisting does encompass plastic deformations to the component and should be described to explain which direction the front of the component now faces (upstream, downstream, down, up, etc.) or the direction of movement (clockwise or counterclockwise).

Table E-1.	Post Movement Definitions
------------	---------------------------

Appendix F. Vehicle Deformation Records

Date: Year:		2016	•2		Test Name: Make:		WT-2 dge			VIN: Model:		B1GK0BS	
					VE		FORMATIC	N					
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	53.9487	17.7646	-3.3680	53.9307	17.7368	-3.2053	0.0180	0.0278	0.1627	0.1660	0.1637	X, Z
	2	54.7070	20.2759	-1.4738	54.6545	20.1996	-1.3385	0.0525	0.0763	0.1353	0.1640	0.1451	X, Z
. =	3	55.8209	23.1045	1.0540	55.8225	23.0454	1.2972	-0.0016	0.0591	0.2432	0.2503	0.2432	Z
Z)	4	56.1154 56.4173	27.7009 31.4047	0.9003	56.0423 56.2566	27.6152 31.3753	1.2473 -0.9245	0.0731 0.1607	0.0857	0.3470	0.3648	0.3546	X, Z X, Z
TOE PAN - WHEEL WELL (X, Z)	6	48.0944	16.1886	-0.4601	48.0346	16.1561	-0.2544	0.0598	0.0325	0.2057	0.2167	0.2142	X, Z
HE D	7	48.7306	18.8903	1.4020	48.6637	18.8366	1.6303	0.0669	0.0537	0.2283	0.2439	0.2379	X, Z
3	8	49.9582	22.2485	4.2921	49.9370	22.1104	4.5130	0.0212	0.1381	0.2209	0.2614	0.2219	X, Z
	9	50.0170	26.3433	4.3438	49.9737	26.2149	4.5724	0.0433	0.1284	0.2286	0.2657	0.2327	X,Z
	10 11	49.9023	32.0081	4.4668	49.8912	31.9858	4.6702	0.0111	0.0223	0.2034	0.2049	0.2037	X, Z
	11 12	43.0803 44.2847	14.2678 17.3954	1.5607 4.6520	43.0272 44.2397	14.2233 17.3673	1.7114 4.8513	0.0531 0.0450	0.0445	0.1507	0.1659 0.2062	0.1507	Z
	13	44.5841	22.6173	5.0134	44.5723	22.5527	5.2029	0.0430	0.0646	0.1895	0.2002	0.1895	Z
	14	44.6530	27.5582	5.0053	44.5889	27.5621	5.1965	0.0641	-0.0039	0.1912	0.2017	0.1912	Z
	15	44.7953	32.6089	5.0299	44.7482	32.4774	5.2207	0.0471	0.1315	0.1908	0.2365	0.1908	Z
	16	37.8151	13.9742	2.9336	37.7546	13.9607	3.0758	0.0605	0.0135	0.1422	0.1551	0.1422	Z
	17 18	38.5947 38.6925	17.3343 22.2971	5.0490 5.0354	38.5570 38.6806	17.3741 22.2527	5.2003 5.1954	0.0377	-0.0398	0.1513	0.1609	0.1513	Z
AN	19	38.7192	26.4289	5.0390	38.7136	26.3784	5.2067	0.0056	0.0505	0.1677	0.1752	0.1677	Z
4 G	20	38.7780	30.9416	5.0512	38.7097	30.8980	5.2244	0.0683	0.0436	0.1732	0.1912	0.1732	Z
00	21	35.1265	14.6689	4.6546	35.1043	14.6609	4.8048	0.0222	0.0080	0.1502	0.1520	0.1502	Z
FLOOR PAN (Z)	22	34.7309	18.5904	5.2872	34.6727	18.5558	5.4343	0.0582	0.0346	0.1471	0.1619	0.1471	Z
	23 24	34.6166 34.7557	23.6774 27.5554	5.2745 5.2787	34.5967 34.7391	23.6608 27.5770	5.4326 5.4444	0.0199 0.0166	0.0166	0.1581 0.1657	0.1602 0.1679	0.1581 0.1657	Z
	25	35.1403	31.9909	5.3069	35.0974	31.9283	5.4706	0.0429	0.0626	0.1637	0.1804	0.1637	Z
	26	32.2242	15.5008	4.5406	32.2484	15.5107	4.6631	-0.0242	-0.0099	0.1225	0.1253	0.1225	Z
	27	32.0863	20.4242	4.5175	32.0628	20.4074	4.6524	0.0235	0.0168	0.1349	0.1380	0.1349	Z
	28	32.2060	24.5343	4.5028	32.1941	24.5483	4.6476	0.0119	-0.0140	0.1448	0.1460	0.1448	Z
	29 30	32.1513 32.2305	28.3520 32.1976	4.2503 4.5162	32.1570 32.1912	28.2676 32.2023	4.4260 4.6678	-0.0057 0.0393	0.0844	0.1757 0.1516	0.1950 0.1567	0.1757 0.1516	Z
eforming i	culations that nward towa	rd the occup	ant compart	ment.			nents that ar culations. If						ponent is
		Pre	test Floor	Pan					Post	ttest Floor	Pan		
													A LE MERCH

Figure F-1. Floor Pan Deformation Data – Set 1, Test No. NYBWT-2

Date:	6/8/2016
Year:	2011

NYBWT-2 Test Name: Make: Dodge

1D7RB1GK0BS515074 VIN: Model:

Ram 1500 Quad Cab

							FORMATIC AN - SET 2						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directio for Crush
	1	54.5485	38.0915	-6.9457	54.2079	38.1333	-7.1100	0.3406	-0.0418	-0.1643	0.3805	0.3406	X
	2	55.2453	40.6107	-5.1133	54.8861	40.6123	-5.2474	0.3592	-0.0016	-0.1341	0.3834	0.3592	X
1	3	56.2739	43.4644	-2.5414	55.9989	43.4831	-2.6150	0.2750	-0.0187	-0.0736	0.2853	0.2750	X
TOE PAN - WHEEL WELL (X, Z)	4	56.5447	48.0652	-2.7371	56.1523	48.0554	-2.6783	0.3924	0.0098	0.0588	0.3969	0.3968	X,Z
AN A	5	56.7782	51.7830	-4.6532	56.3229	51.8114	-4.8611	0.4553	-0.0284	-0.2079	0.5013	0.4553	X
шЩ×.	6	48.6491	36.4696	-4.0826	48.3204	36.4760	-4.1841	0.3287	-0.0064	-0.1015	0.3441	0.3287	X
ēΨ)	7	49.2144	39.1350	-2.2691	48.9007	39.1713	-2.3049	0.3137	-0.0363	-0.0358	0.3178	0.3137	X
۲Ż	8	50.3801	42.5343	0.6357	50.1112	42.4724	0.5738	0.2689	0.0619	-0.0619	0.2828	0.2689	X
	9	50.4046	46.6430	0.6574	50.0878	46.5771	0.6203	0.3168	0.0659	-0.0371	0.3257	0.3168	X
	10	50.2048	52.2428	0.7474	49.9206	52.3465	0.6991	0.2842	-0.1037	-0.0483	0.3064	0.2842	X
	11	43.6548	34.4681	-2.1560	43.3316	34,4765	-2.2377	0.3232	-0.0084	-0.0817	0.3335	-0.0817	Z
	12	44.7883	37.7184	0.9842	44.4820	37.6477	0.8983	0.3063	0.0707	-0.0859	0.3259	-0.0859	Z
	13	45.0106	42.8690	1.2917	44.7372	42.8384	1.2349	0.2734	0.0306	-0.0568	0.2809	-0.0568	Z
	14	44.9681	47.8509	1.2561	44.6807	47.8475	1.2126	0.2874	0.0034	-0.0435	0.2907	-0.0435	Z
	15	45.0181	52.8247	1.2516	44.7683	52.7646	1.2218	0.2498	0.0601	-0.0298	0.2587	-0.0298	Z
	16	38.2940	34.1442	-0.7788	38.0565	34.1413	-0.8993	0.2375	0.0029	-0.1205	0.2663	-0.1205	Z
	17	39.0748	37.5911	1.2901	38.7981	37.5726	1.2183	0.2767	0.0185	-0.0718	0.2865	-0.0718	Z
-	18	39.0786	42.5433	1.2456	38.8506	42.4524	1.1984	0.2280	0.0909	-0.0472	0.2499	-0.0472	Z
FLOOR PAN (Z)	19	39.0687	46.6330	1.2251	38.8234	46.5782	1.1966	0.2453	0.0548	-0.0285	0.2530	-0.0285	Z
(Z)	20	39.0342	51.1359	1.2127	38.7535	51.0973	1.1998	0.2807	0.0386	-0.0129	0.2836	-0.0129	Z
Q D	21	35.7029	34.8088	0.8869	35.3874	34.8081	0.8138	0.3155	0.0007	-0.0731	0.3239	-0.0731	Z
LC LC	22	35.2038	38.7268	1.4842	34.8958	38.6983	1.4286	0.3080	0.0285	-0.0556	0.3143	-0.0556	Z
LL.	23	34.9888	43.8256	1.4364	34.7454	43.8016	1.4103	0.2434	0.0240	-0.0261	0.2460	-0.0261	Z
	24	35.0197	47.6976	1.4208	34.8307	47.7195	1.4102	0.1890	-0.0219	-0.0106	0.1906	-0.0106	Z
	25	35.3634	52.1039	1.4250	35.1253	52.0755	1.4243	0.2381	0.0284	-0.0007	0.2398	-0.0007	Z
	26	32.7672	35.6345	0.7211	32.5202	35.6157	0.6549	0.2470	0.0188	-0.0662	0.2564	-0.0662	Z
	27	32.5588	40.5073	0.6691	32.2632	40.5091	0.6276	0.2956	-0.0018	-0.0415	0.2985	-0.0415	Z
	28	32.6159	44.6447	0.6319	32.3342	44.6514	0.6101	0.2817	-0.0067	-0.0218	0.2826	-0.0218	Z
	29	32.5237	48.4357	0.3881	32.2441	48.3691	0.3765	0.2796	0.0666	-0.0116	0.2877	-0.0116	Z
	30	32.4950	52.2393	0.6019	32.2197	52.3046	0.6058	0.2753	-0.0653	0.0039	0.2830	0.0039	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is

deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

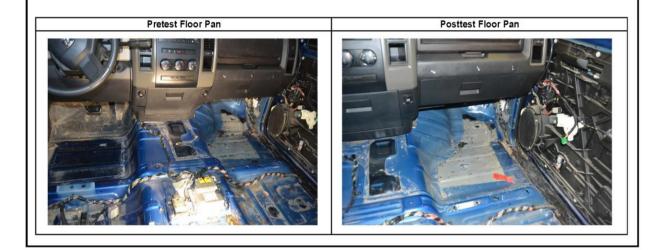


Figure F-2. Floor Pan Deformation Data – Set 2, Test No. NYBWT-2

1D7RB1GK0BS515074

Ram 1500 Quad Cab

VIN:

Model:

2	POINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^Α (in.)	ΔΥ ^Α (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^C
		(in.)	(in.)	(in.)	40 7000	00.0500	04 2004	1.52, -52,	12. 30	- 38-39 	0.0054	3-36	
	1 2	42.5204 41.9291	28.4543 21.5136	-24.5726 -24.7883	42.7896 42.2199	28.6596 21.6663	-24.3891 -24.7209	-0.2692 -0.2908	-0.2053 -0.1527	0.1835	0.3851	0.3851	X, Y, Z X, Y, Z
ч	3	41.9291	14.4735	-24.7003	42.2199	14.7486	-24.7209	-0.2908	-0.1527	0.0674	0.3353	0.3355	X, Y, Z
DASH (X, Y, Z)	4	38.6304	14.9686	-16.2262	38.8266	15.1609	-16.1332	-0.1962	-0.1923	0.2000	0.4300	0.4300	X, Y, Z
ΩX	5	39.0474	22.3195	-16.4867	39.2593	22.5116	-16.4229	-0.2119	-0.1923	0.0638	0.2900	0.2900	X, Y, Z
1.0000	6	39.5358	28.8498	-16.4654	39.7504	29.0840	-16.3893	-0.2113	-0.2342	0.0000	0.3266	0.3266	X, Y, Z
Lesson I	7	52.9318	35.5034	-1.5829	53.1729	35.5146	-1.2913	-0.2411	-0.0112	0.2916	0.3785	-0.0112	Y
SIDE PANEL	8	48.7148	35.9079	-4.5681	48.9226	35.7104	-4.4518	-0.2078	0.1975	0.2918	0.3094	0.1975	Y
SIC	9	49.0875	35.8841	0.0468	49.1817	35.8217	0.2240	-0.2078	0.0624	0.1103	0.3094	0.0624	Y
ш													
Ы	10	37.6063	38.3442	-15.1216	37.6432	38.2928	-15.0081	-0.0369	0.0514	0.1135	0.1299	0.0514	Y
IMPACT SIDE DOOR (Y)	11	30.3789	39.2071	-14.6484	30.4352	39.3530	-14.5319	-0.0563	-0.1459	0.1165	0.1950	-0.1459	Y
DOOR	12	18.8944	38.8051	-14.6576	18.8530	39.1663	-14.7053	0.0414	-0.3612	-0.0477	0.3667	-0.3612	Y
ĂQ _	13	35.0402	39.0473	-0.8931	35.0190	39.0345	-0.6899	0.0212	0.0128	0.2032	0.2047	0.0128	Y
W	14	27.9640	39.1859	-1.0591	27.9714	39.2626	-0.9563	-0.0074	-0.0767	0.1028	0.1285	-0.0767	Y Y
	15	19.7867	38.4247	-0.7403	19.7855	38.6567	-0.6172	0.0012	-0.2320	0.1231	0.2626	-0.2320	
	16	33.9082	10.0701	-42.7069	34,1531	10.2495	-42.5974	-0.2449	-0.1794	0.1095	0.3227	0.1095	Z
	17	33.4878	15.0978	-42.6084	33.6677	15.3192	-42.5229	-0.1799	-0.2214	0.0855	0.2978	0.0855	Z
	18	32.5626	20.0931	-42.7649	32.8323	20.2520	-42.6870	-0.2697	-0.1589	0.0779	0.3226	0.0779	Z
	19	31.3866	24.0326	-42.8121	31.6063	24.2988	-42.7272	-0.2197	-0.2662	0.0849	0.3554	0.0849	Z
	20	29.5530	27.0984	-42.3030	29.8354	27.2938	-42.2098	-0.2824	-0.1954	0.0932	0.3558	0.0932	Z
Ñ	21	31.1005	6.6701	-43.5227	31.3246	6.8498	-43.4286	-0.2241	-0.1797	0.0941	0.3023	0.0941	Z
-	22	30.8437	12.8065	-43.3801	31.1229	13.0440	-43.2798	-0.2792	-0.2375	0.1003	0.3800	0.1003	Z
Ь	23	30.1162	17.8394	-43.2627	30.3779	18.0064	-43.1824	-0.2617	-0.1670	0.0803	0.3207	0.0803	Z
ROOF - (Z)	24	29.0725	22.6818	-43.0298	29.4124	22.8144	-42.9429	-0.3399	-0.1326	0.0869	0.3751	0.0869	Z
LL.	25	27.7927	26.4621	-42.8378	28.0493	26.6627	-42.7646	-0.2566	-0.2006	0.0732	0.3338	0.0732	Z
	26	25.6732	5.7729	-46.0516	25.8356	5.9599	-45.9863	-0.1624	-0.1870	0.0653	0.2561	0.0653	Z
5	27	25.1408	11.3217	-46.0369	25.2864	11.5948	-45.9561	-0.1456	-0.2731	0.0808	0.3199	0.0808	Z
	28	25.2022	16.1591	-45.8334	25.4625	16.2975	-45.7505	-0.2603	-0.1384	0.0829	0.3062	0.0829	Z
	29	24.8244	20.7060	-45.6008	25.0312	20.9857	-45.5205	-0.2068	-0.2797	0.0803	0.3570	0.0803	Z
	30	23.8761	25.0450	-45.3638	24.1624	25.2549	-45.2814	-0.2863	-0.2099	0.0824	0.3644	0.0824	Z
	31	33.0717	31.5001	-39.4690	33.3299	31.6881	-39.3308	-0.2582	-0.1880	0.1382	0.3480	0.1382	Z
H H N	32	36.4084	32.0701	-37.4418	36.6329	32.2176	-37.2735	-0.2245	-0.1475	0.1683	0.3170	0.1683	Z
∃ Ĕ ≻	33	39.7657	32.8762	-35.4572	40.0317	33.0380	-35.3176	-0.2660	-0.1618	0.1396	0.3412	0.1396	Z
A-PILLAR Maximum (X, Y, Z)	34	42.1772	33.3953	-33.8951	42.4171	33.5337	-33.7235	-0.2399	-0.1384	0.1716	0.3258	0.1716	Z
₹≥⊂	35	43.9274	33.6595	-32.5357	44.1371	33.7786	-32.3578	-0.2097	-0.1191	0.1779	0.2997	0.1779	Z
	36	46.5900	34.2956	-30.5943	46.8128	34.4065	-30.3863	-0.2228	-0.1109	0.2080	0.3243	0.2080	Z
	31	33.0717	31.5001	-39.4690	33.3299	31.6881	-39.3308	-0.2582	-0.1880	0.1382	0.3480	-0.1880	Y
A-PILLAR Lateral (Υ)	32	36.4084	32.0701	-37.4418	36.6329	32.2176	-37.2735	-0.2245	-0.1475	0.1683	0.3170	-0.1475	Y
al	33	39.7657	32.8762	-35.4572	40.0317	33.0380	-35.3176	-0.2660	-0.1618	0.1396	0.3412	-0.1618	Y
If and	34	42.1772	33.3953	-33.8951	42.4171	33.5337	-33.7235	-0.2399	-0.1384	0.1716	0.3258	-0.1384	Y
Ϋ́Ρ	35	43.9274	33.6595	-32.5357	44.1371	33.7786	-32.3578	-0.2097	-0.1191	0.1779	0.2997	-0.1191	Y
	36	46.5900	34.2956	-30.5943	46.8128	34.4065	-30.3863	-0.2228	-0.1109	0.2080	0.3243	-0.1109	Y
B-PILLAR Maximum (X, Y, Z)	37	7.3939	31.3419	-41.1360	7.6677	31.5683	-41.1258	-0.2738	-0.2264	0.0102	0.3554	0.0102	Z
1 EC	38	7.6625	33.5823	-35.0074	7.8778	33.8104	-34.9532	-0.2153	-0.2281	0.0542	0.3183	0.0542	Z
i axi	39	8.2192	35.2153	-29.8757	8.4258	35.4267	-29.8484	-0.2066	-0.2114	0.0273	0.2968	0.0273	Z
d ≅ ⊂	40	8.4534	35.7628	-26.3837	8.6803	35.9790	-26.2830	-0.2269	-0.2162	0.1007	0.3292	0.1007	Z
	37	7.3939	31.3419	-41.1360	7.6677	31.5683	-41.1258	-0.2738	-0.2264	0.0102	0.3554	-0.2264	Y
B-PILLAR Lateral (Υ)	38	7.6625	33.5823	-35.0074	7.8778	33.8104	-34.9532	-0.2153	-0.2281	0.0542	0.3183	-0.2281	Y
PIL	39	8.2192	35.2153	-29.8757	8.4258	35.4267	-29.8484	-0.2066	-0.2114	0.0273	0.2968	-0.2114	Y
Lat B-P	40	8.4534	35.7628	-26.3837	8.6803	35.9790	-26.2830	-0.2269	-0.2162	0.1007	0.3292	-0.2162	Ý

Test Name: NYbyy - _ _ _ _ Dodge

NYBWT-2

6/8/2016

2011

Date:

Year:

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Figure F-3. Occupant Compartment Deformation Data - Set 1, Test No. NYBWT-2

Year:	20	2016)11			Test Name: Make:		WT-2 dge			VIN: Model:		B1GK0BS5 1500 Quad	
											ş		
							FORMATIC						
,													
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX^A	ΔΥΑ	ΔZ ^A	Total ∆	Crush ^B	Directio
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush
		43.0300	48.7732	-28.1916	43.0036	48.8489	-28.3714	0.0264	-0.0757	-0.1798	0.1969	0.1969	X, Y, J
	2	42.5681	41.7902	-28.4251	43.5404	41.8470	-28.6861	0.0204	-0.0568	-0.2610	0.2685	0.2685	X, Y,
DASH (X, Y, Z)	3	42.2535	34.7493	-28.5334	42.1200	34.9224	-28.6046	0.1335	-0.1731	-0.0712	0.2299	0.2299	X, Y,
SAS 1	4	39.3016	35.1861	-19.9284	39.2004	35.3155	-20.0974	0.1012	-0.1294	-0.1690	0.2357	0.2357	XY
- C	5	39.5946	42.5185	-20.2310	39.5245	42.6710	-20.4060	0.0701	-0.1525	-0.1750	0.2425	0.2425	X, Y,
	6	39.9749	49.1128	-20.1597	39.9169	49.2501	-20.3887	0.0580	-0.1373	-0.2290	0.2732	0.2732	X, Y,
	7	53.1855	55.9786	-5.0957	53.1633	55.9232	-5.2403	0.0222	0.0554	-0.1446	0.1564	0.0554	Y
BANEL	8	48.9523	56.3423	-8.2274	48.9270	56.0465	-8.4233	0.0253	0.2958	-0.1959	0.3557	0.2958	Y
o d	9	49.2132	56.3396	-3.5964	49.1601	56.1747	-3.7466	0.0531	0.1649	-0.1502	0.2293	0.1649	Y
ш	10	37.9128	58.5660	-18.8921	37.6651	58.4301	-19.0448	0.2477	0.1359	-0.1527	0.3212	0.1359	Y
	11	30.6829	59.3129	-18.4718	30.4396	59.3835	-18.6087	0.2433	-0.0706	-0.1369	0.2880	-0.0706	Y
DOOR (V)	12	19.1405	58.7163	-18.6705	18.8626	59.0229	-18.8411	0.2779	-0.3066	-0.1706	0.4476	-0.3066	Y
A D	13	35.1220	59.2740	-4.6848	34.9559	59.1724	-4.7424	0.1661	0.1016	-0.0576	0.2031	0.1016	Y
Σ	14	28.1429	59.2887	-4.9686	27.9071	59.2942	-5.0457	0.2358	-0.0055	-0.0771	0.2481	-0.0055	Y
	15	19.9119	58.3923	-4.6801	19.7295	58.5667	-4.7470	0.1824	-0.1744	-0.0669	0.2611	-0.1744	Y
1	16 17	35.0343	30.0954 35.1876	-46.3980 -46.3309	34.7382 34.1765	30.2607 35.3227	-46.5710 -46.5136	0.2961 0.3015	-0.1653	-0.1730 -0.1827	0.3807	-0.1730	Z
	18	34.4780 33.4967	40.1562	-46.5164	33.2683	40.2419	-46.6961	0.3013	-0.1351 -0.0857	-0.1797	0.3775	-0.1827 -0.1797	Z
-	10	32.2166	44.0435	-46.5984	31.9821	44.2699	-46.7542	0.2204	-0.2264	-0.1558	0.3613	-0.1558	Z
	20	30.3861	47.1087	-46.0997	30.1638	47.2394	-46.2545	0.2223	-0.1307	-0.1548	0.3008	-0.1548	Z
~	21	32.2503	26.6452	-47.2472	31.9652	26.8167	-47.4070	0.2851	-0.1715	-0.1598	0.3691	-0.1598	Z
2	22	31.8731	32.8004	-47.1361	31.6700	33.0076	-47.2770	0.2031	-0.2072	-0.1409	0.3225	-0.1409	Z
ROOF - (Z)	23	31.0951	37.7801	-47.0416	30.8504	37.9585	-47.1977	0.2447	-0.1784	-0.1561	0.3407	-0.1561	Z
8 I	24	29.9993	42.6479	-46.8246	29.8117	42.7521	-46.9769	0.1876	-0.1042	-0.1523	0.2631	-0.1523	Z
Ľ.	25	28.5621	46.4087	-46.6878	28.3903	46.5800	-46.8167	0.1718	-0.1713	-0.1289	0.2747	-0.1289	Z
	26	26.8347	25.7074	-49.8582	26.5034	25.8375	-49.9903	0.3313	-0.1301	-0.1321	0.3797	-0.1321	Z
	27	26.2315	31.2962	-49.8455	25.8698	31.4636	-49.9791	0.3617	-0.1674	-0.1336	0.4204	-0.1336	Z
	28	26.1857	36.0513	-49.6657	25.9744	36.1689	-49.7861	0.2113	-0.1176	-0.1204	0.2701	-0.1204	Z
	29 30	25.7050 24.7937	40.6244 44.9195	-49.4549 -49.2307	25.4719 24.5381	40.8508 45.1072	-49.5718 -49.3494	0.2331 0.2556	-0.2264 -0.1877	-0.1169 -0.1187	0.3453	-0.1169 -0.1187	Z
	31	33.7675	51.5750	-43.2696	33.5772	51.6936	-49.3494	0.2338		-0.1007	0.3360	0.1903	X
~	32	37.0538	52.1918	-43.2090	36.8612	52.2782	-43.3703	0.1903	-0.1186 -0.0864	-0.1257	0.2458	0.1903	X
A-PILLAR Maximum (X, Y, Z)	33	40.3693	53.0579	-39.1131	40.2372	53.1550	-39.3266	0.1320	-0.0971	-0.2135	0.2437	0.1320	x
A-PILLAR Maximum (X, Y, Z)	34	42.7205	53.6115	-37.5488	42.6066	53.6908	-37.7216	0.1139	-0.0793	-0.1728	0.2002	0.1139	X
₩¢	35	44.5011	53.9326	-36.1744	44.3156	53.9653	-36.3478	0.1855	-0.0327	-0.1734	0.2560	0.1855	X
	36	47.2320	54.6487	-34.1587	46.9714	54.6387	-34.3644	0.2606	0.0100	-0.2057	0.3322	0.2608	Χ, Υ
	31	33.7675	51.5750	-43.2696	33.5772	51.6936	-43.3703	0.1903	-0.1186	-0.1007	0.2458	-0.1186	Y
A-PILLAR Lateral (Y)	32	37.0538	52.1918	-41.1718	36.8612	52.2782	-41.2975	0.1926	-0.0864	-0.1257	0.2457	-0.0864	Y
al (33	40.3693	53.0579	-39.1131	40.2372	53.1550	-39.3266	0.1321	-0.0971	-0.2135	0.2692	-0.0971	Y
ater	34	42.7205	53.6115	-37.5488	42.6066	53.6908	-37.7216	0.1139	-0.0793	-0.1728	0.2216	-0.0793	Y
۲š	35	44.5011	53.9326	-36.1744	44.3156	53.9653	-36.3478	0.1855	-0.0327	-0.1734	0.2560	-0.0327	Y
	36	47.2320	54.6487	-34.1587	46.9714	54.6387	-34.3644	0.2606	0.0100	-0.2057	0.3322	0.0100	Y
B-PILLAK Maximum (X, Y, Z)	37	8.1013	50.9699	-45.1976	7.9293	51.1843	-45.2968	0.1720	-0.2144	-0.0992	0.2922	0.1720	X
∃.Ę,≻, I	38	8.2753	53.2193	-39.1184	8.0738	53.4466	-39.1297	0.2015	-0.2273	-0.0113	0.3040	0.2015	X
B-PILLAR Maximum (X, Y, Z)	39 40	8.7092	54.8838	-33.9797	8.5711	55.0851	-34.0268	0.1381	-0.2013	-0.0471	0.2486	0.1381	X
		8.9436	55.4539	-30.4383	8.7988	55.6512	-30.4617	0.1448	-0.1973	-0.0234	0.2458	0.1448	X
4Z	37 38	8.1013 8.2753	50.9699 53.2193	-45.1976 -39.1184	7.9293 8.0738	51.1843 53.4466	-45.2968 -39.1297	0.1720	-0.2144 -0.2273	-0.0992 -0.0113	0.2922	-0.2144 -0.2273	Y Y
-PILLAR ateral (Υ)	39	8.7092	54.8838	-39.1184	8.5711	55.0851	-39.1297	0.2015	-0.2273	-0.0113	0.3040	-0.2273	Y
Late	40	8.9436	55.4539	-30.4383	8.7988	55.6512	-30.4617	0.1381	-0.2013	-0.0234	0.2466	-0.2013	Y

⁸ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Figure F-4. Occupant Compartment Deformation Data - Set 2, Test No. NYBWT-2

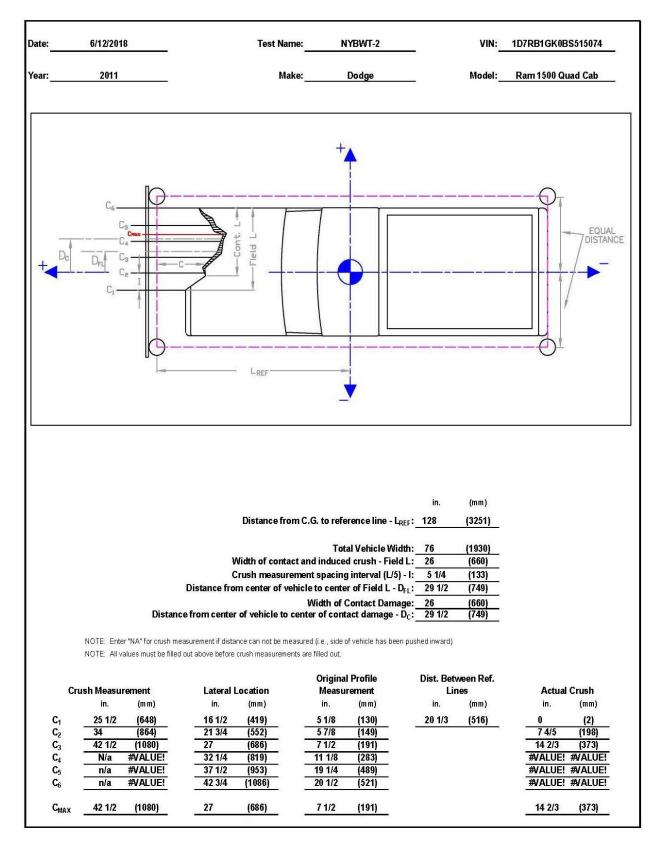


Figure F-5. Exterior Vehicle Crush (NASS) - Front, Test No. NYBWT-2

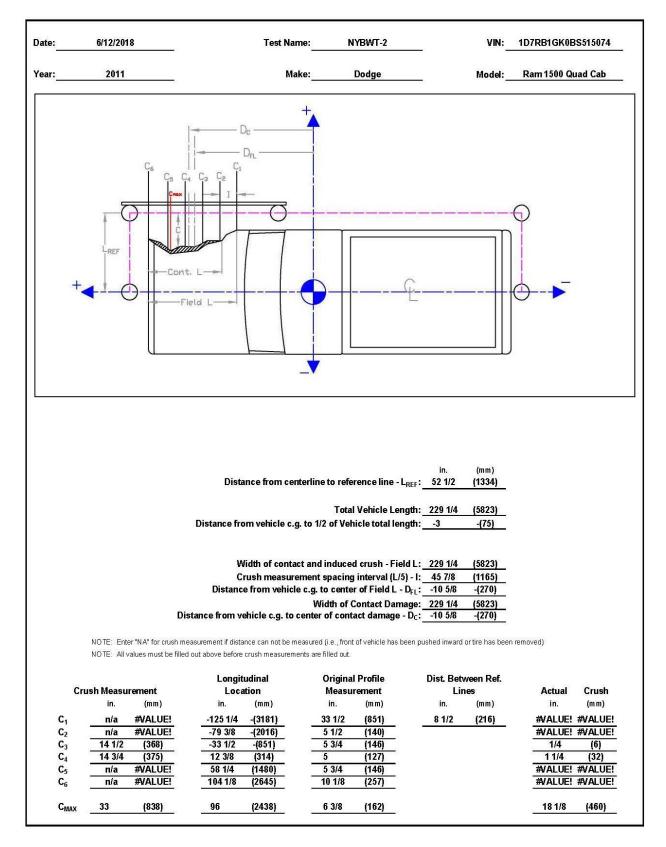


Figure F-6. Exterior Vehicle Crush (NASS) - Side, Test No. NYBWT-2

Date: _ Year: _		/2018 012			Test Name: Make:		WT-3 dge			VIN: Model:	1C6	RD6FPCS2 Ram 1500	
					VE		FORMATIC	DN					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^Α (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ⁰
	1	55.6607	-9.6399	-1.8966	55.6122	-9.9121	-1.7030	0.0485	-0.2722	-0.1936	0.3375	0.0485	X
1	2	57.8038	-13.1780	-0.9486	57.6401	-13.4648	-0.6328	0.1637	-0.2868	-0.3158	0.4569	0.1637	X
	3	57.5048	-16.9169	-0.8049	57.4700	-17.2139	-0.5761	0.0348	-0.2970	-0.2288	0.3765	0.0348	X
TOE PAN - WHEEL WELL (X, Z)	4	57.1956	-20.3885	-1.0063	57.1551	-20.6544	-0.7639	0.0405	-0.2659	-0.2424	0.3621	0.0405	X
N N N	5	56.1456	-23.0788	-2.0993	56.1185	-23.2978	-1.8082	0.0271	-0.2190	-0.2911	0.3653	0.0271	X
Ш Х III и	6	52.0784	-8.6758	2.2912	52.0414	-8.9767	2.4752	0.0370	-0.3009	-0.1840	0.3546	0.0370	X
2월 [7	52.0256	-11.8408	2.2584	51.9612	-12.0168	2.4848	0.0644	-0.1760	-0.2264	0.2939	0.0644	X
5	8	52.2147	-15.6862	2.0294	52.1393	-15.8243	2.2646	0.0754	-0.1381	-0.2352	0.2830	0.0754	X
	9	52.2872	-19.0593	1.8188	52.2294	-19.2714	2.0511	0.0578	-0.2121	-0.2323	0.3198	0.0578	X
	10	52.4937	-22.6321	1.5761	52.5077	-22.8137	1.7840	-0.0140	-0.1816	-0.2079	0.2764	0.0000	NA
	11	45.3813	-7.8236	4.8200	45.3547	-8.0336	4.9636	0.0266	-0.2100	-0.1436	0.2558	-0.1436	Z
	12	45.2373	-12.2521	4.9980	45.1606	-12.4395	5.1535	0.0767	-0.1874	-0.1555	0.2553	-0.1555	Z
	13	45.0428	-15.7344	4.9859	45.0199	-15.9065	5.1557	0.0229	-0.1721	-0.1698	0.2428	-0.1698	Z
	14	44.7816	-19.1578	4.9948	44.6725	-19.3362	5.1891	0.1091	-0.1784	-0.1943	0.2855	-0.1943	Z
	15	44.7182	-23.9794	4.9843	44.6564	-24.1385	5.1989	0.0618	-0.1591	-0.2146	0.2742	-0.2146	Z
	16	40.3947	-7.8381	4.8973	40.3790	-8.0340	5.0286	0.0157	-0.1959	-0.1313	0.2364	-0.1313	Z
	17	40.2905	-11.1546	5.0460	40.3011	-11.3193	5.1912	-0.0106	-0.1647	-0.1452	0.2198	-0.1452	Z
z	18	39.9425	-16.5078	5.0237	39.9474	-16.6025	5.1993	-0.0049	-0.0947	-0.1756	0.1996	-0.1756	Z
FLOOR PAN (Z)	19	39.4357	-21.3419	5.0228	39.3626	-21.5433	5.2232	0.0731	-0.2014	-0.2004	0.2934	-0.2004	Z
R (Z)	20	39.4348	-25.1438	5.0871	39.3948	-25.3412	5.2944	0.0400	-0.1974	-0.2073	0.2890	-0.2073	Z
8	21	35.5964	-7.7257	4.8863	35.5120	-7.9300	5.0084	0.0844	-0.2043	-0.1221	0.2525	-0.1221	Z
	22	35.3846	-11.7079	5.0730	35.3185	-11.9473	5.2144	0.0661	-0.2394	-0.1414	0.2858	-0.1414	Z
-	23	35.4553	-16.0390	5.0520	35.4374	-16.2120	5.2149	0.0179	-0.1730	-0.1629	0.2383	-0.1629	Z
	24	35.3952	-20.0998	5.0438	35.3598	-20.3042	5.2227	0.0354	-0.2044	-0.1789	0.2739	-0.1789	Z
0	25	35.4579	-23.7553	5.0520	35.3741	-23.9372	5.2327	0.0838	-0.1819	-0.1807	0.2697	-0.1807	Z
-	26	32.7012	-7.7459	4.8458	32.6302	-8.0106	4.9717	0.0710	-0.2647	-0.1259	0.3016	-0.1259	Z
	27	32.7180	-10.7798	5.1112	32.6588	-10.9946	5.2288	0.0592	-0.2148	-0.1176	0.2519	-0.1176	Z
-	28 29	32.7350 32.8214	-15.2442 -19.9348	5.1246 5.1379	32.6654 32.7982	-15.4460 -20.2069	5.2652 5.3050	0.0696	-0.2018 -0.2721	-0.1406 -0.1671	0.2556	-0.1406 -0.1671	Z
	30	32.7446	-13.9348	5.1333	32.7242	-24.0192	5.3175	0.0232	-0.1416	-0.1842	0.2332	-0.1842	Z
ompartmen Crush calc eforming in	it. ulations tha ward towa	at use multip rd the occup	le directiona ant compart	l compone ment.	nts will disre	gard compo	, negative va nents that ar culations. If	e negative a	and only inc	lude positive	values whe	ere the com	
		Pre	test Floor	Pan					Post	ttest Floor	Pan		
1												-iri	

Figure F-7. Floor Pan Deformation Data – Set 1, Test No. NYBWT-3

Date: Year:		/2018)12			Test Name: Make:		WT-3 dge			VIN: Model:		RD6FPCS2 Ram 1500	
							FORMATIC						
		Pretest	Pretest Y	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔΥ	ΔZ ^A	Total ∆	Crush ^B	Directions
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
Č	1	59.3764	-28.4915	-4.8707	59.4346	-28.8725	-5.3148	-0.0582	-0.3810	0.4441	0.5880	0.4441	Z
	2	61.5478	-31.9973	-3.8689	61.4920	-32.4013	-4.2220	0.0558	-0.3010	0.3531	0.5395	0.3575	XZ
	3	61.2959	-35.7393	-3.7172	61.3639	-36.1520	-4.1644	-0.0680	-0.4127	0.4472	0.6123	0.4472	Z
ż Ę	4	61.0369	-39.2155	-3.9116	61.0900	-39.5960	-4.3529	-0.0531	-0.3805	0.4413	0.5851	0.4413	Z
PA Z Z	5	60.0440	-41.9232	-5.0145	60.0940	-42.2516	-5.4056	-0.0500	-0.3284	0.3911	0.5131	0.3911	Z
ы Ш Х	6	55.7019	-27.5610	-0.7559	55.8120	-27.9754	-1.1728	-0.1101	-0.4144	0.4169	0.5980	0.4169	Z
TOE PAN - WHEEL WELL (X, Z)	7	55.6918	-30.7266	-0.7779	55.7663	-31.0161	-1.1620	-0.0745	-0.2895	0.3841	0.4867	0.3841	Z
>	8	55.9365	-34.5698	-0.9891	55.9898	-34.8215	-1.3777	-0.0533	-0.2517	0.3886	0.4661	0.3886	Z
	9	56.0580	-37.9423	-1.1859	56.1212	-38.2675	-1.5879	-0.0632	-0.3252	0.4020	0.5209	0.4020	Z
	10	56.3165	-41.5129	-1.4114	56.4424	-41.8065	-1.8497	-0.1259	-0.2936	0.4383	0.5424	0.4383	
	11 12	48.9468 48.8583	-26.7898 -31.2192	1.6413 1.8327	49.0907 48.9448	-27.1068 -31.5146	1.2485 1.4395	-0.1439 -0.0865	-0.3170 -0.2954	0.3928	0.5249	0.3928	Z
	12	48.7105	-31.2192	1.8298	48.8435	-31.5146	1.4395	-0.0865	-0.2954	0.3932	0.4993	0.3932	Z
	13	48.4948	-34.7038	1.8463	48.5348	-34.9829	1.4427	-0.0400	-0.2791	0.3712	0.4934	0.3712	Z
	15	48.4958	-42.9524	1.8524	48.5732	-43.2185	1.4881	-0.0774	-0.2661	0.3643	0.4702	0.3643	Z
	16	43.9602	-26.8708	1.6231	44.1149	-27.1638	1.2641	-0.1547	-0.2930	0.3590	0.4885	0.3590	Z
	17	43.8973	-30.1878	1.7821	44.0727	-30.4497	1.4283	-0.1754	-0.2619	0.3538	0.4738	0.3538	Z
_	18	43.6212	-35.5452	1.7728	43.7791	-35.7365	1.4365	-0.1579	-0.1913	0.3363	0.4179	0.3363	Z
FLOOR PAN (Z)	19	43.1788	-40.3857	1.7800	43.2503	-40.6837	1.4581	-0.0715	-0.2980	0.3219	0.4445	0.3219	Z
ZR P	20	43.2273	-44.1870	1.8583	43.3249	-44.4809	1.5323	-0.0976	-0.2939	0.3260	0.4496	0.3260	Z
50	21	39.1619	-26.8226	1.5200	39.2475	-27.1152	1.1955	-0.0856	-0.2926	0.3245	0.4452	0.3245	Z
	22	38.9996	-30.8067	1.7172	39.0976	-31.1343	1.4025	-0.0980	-0.3276	0.3147	0.4647	0.3147	Z
	23	39.1284	-35.1364	1.7135	39.2649	-35.3974	1.4071	-0.1365	-0.2610	0.3064	0.4250	0.3064	Z
	24	39.1225	-39.1977	1.7191	39.2338	-39.4902	1.4170	-0.1113	-0.2925	0.3021	0.4350	0.3021	Z
	25	39.2337	-42.8520	1.7421	39.2893	-43.1228	1.4297	-0.0556	-0.2708	0.3124	0.4172	0.3124	Z
	26	36.2687	-26.8817	1.4241	36.3672	-27.2286	1.1304	-0.0985	-0.3469	0.2937	0.4651	0.2937	Z
	27	36.3207	-29.9142	1.7010	36.4273	-30.2119	1.3898	-0.1066	-0.2977	0.3112	0.4437	0.3112	Z
	28 29	36.3969 36.5455	-34.3778 -39.0668	1.7312	36.4841 36.6705	-34.6629 -39.4220	1.4294 1.4738	-0.0872 -0.1250	-0.2851 -0.3552	0.3018	0.4242	0.3018	Z
	30	36.5212	-43.0102	1.7719	36.6398	-39.4220	1.4730	-0.1230	-0.3352	0.2896	0.4750	0.2836	Z
eforming in	ulations that	rd the occup olumn denote	ant compart es which dire	ment. ections are			nents that an		o intrusion i	s recorded,	and Crush v		ponent is
	200	Pre	test Floor	Pan	-	_			Post	test Floor	Pan	-	-

Figure F-8. Floor Pan Deformation Data – Set 2, Test No. NYBWT-3

Date: Year:		2018 112			Test Name: Make:		WT-3 dge			VIN: Model:	1C6F	RD6FPCS2 Ram 1500	CONTRACTOR AND
						-							
							FORMATI RUSH - SE						
Ĩ		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^c
	1	41.6013	-19.7724	-29.2934	40.4238	-20.5676	-29.1142	1.1775	-0.7952	0.1792	1.4321	1.4321	X, Y, Z
0	2	42.0951	-8.9015	-29.0497	41.1663	-9.8280	-29.0048	0.9288	-0.9265	0.0449	1.3127	1.3127	X, Y, Z
SH	3	42.8850	4.1804	-28.0226	42.4780	3.2925	-28.0460	0.4070	0.8879	-0.0234	0.9770	0.9770	X, Y, Z
DASH (X, Y, Z)	4	40.0484	-21.9273	-13.5306	38.8325	-22.6308	-13.3138	1.2159	-0.7035	0.2168	1.4214	1.4214	X, Y, Z
<u> </u>	5	39.0039	-8.9605	-13.8577	38.1566	-9.5394	-13.7611	0.8473	-0.5789	0.0966	1.0307	1.0307	X, Y, Z
	6	36.3310	3.8700	-15.3034	35.8534	3.2723	-15.2699	0.4776	0.5977	0.0335	0.7658	0.7658	X, Y, Z
SAR	7	51.5836	-28.4043 -28.4096	-3.0306	50.1775	-29.2532	-2.7959	1.4061	-0.8489	0.2347	1.6592	-0.8489	Y Y
SIDE PANEL (Y)	9	48.3876 48.3981	-28.4096	-2.1475 -4.9155	46.9586 46.9391	-28.8752 -28.8963	-1.9519 -4.6869	1.4290	-0.4656	0.1956	1.5156	-0.4656 -0.4772	Y
	10	38.6592	-30.7241	-16.7638	36.8370	-31.3964	-16.7798	1.8222	-0.6723	-0.0160	1.9423	-0.6723	Y
IMPACT SIDE DOOR (Y)	10	27.6410	-31.5229	-16.4186	25.8473	-32.2225	-16.3489	1.7937	-0.6996	0.0697	1.9266	-0.6996	Y
DOOR ()	12	16.1873	-31.0216	-17.3413	14.4334	-31.7444	-17.2512	1.7539	-0.7228	0.0901	1.8991	-0.7228	Ý
305	13	37.3058	-29.3376	-5.1944	35.4582	-29.4135	-5.1645	1.8476	-0.0759	0.0299	1.8494	-0.0759	Y
AP 1	14	28.0098	-31.6167	-3.5925	26.2849	-31.7428	-3.5006	1.7249	-0.1261	0.0919	1.7319	-0.1261	Y
10	15	17.7778	-30.7759	-2.8599	16.0189	-30.9515	-2.7907	1.7589	-0.1756	0.0692	1.7690	-0.1756	Y
	16	27.8170	-17.9355	-42.9891	26.7868	-18.5807	-42.8407	1.0302	-0.6452	0.1484	1.2246	0.1484	Z
	17	28.7739	-12.5735	-43.3642	27.8154	-13.2664	-43.2540	0.9585	-0.6929	0.1102	1.1878	0.1102	Z
	18	29.8702	-6.4740	-43.5546	29.2229	-7.1414	-43.4286	0.6473	-0.6674	0.1260	0.9382	0.1260	Z
	19	30.6997	-0.1950	-43.6012	30.1401	-0.8864	-43.5146 -43.5492	0.5596	-0.6914	0.0866	0.8937	0.0866	Z
	20 21	30.6805 19.8974	4.9794	-43.6449 -45.9316	30.3256 18.8758	4.3271	-45.7524	0.3549	0.6523	0.0957	0.7487	0.0957	ZZ
ROOF - (Z)	22	20.0283	-10.1639	-46.3583	19.1127	-10.5694	-46.2189	0.9156	-0.4055	0.1394	1.0110	0.1394	Z
Ľ.	23	20.3589	-3.6610	-46.5857	19.6696	-4.1813	-46.4566	0.6893	-0.5203	0.1291	0.8732	0.1291	Z
8	24	20.6797	0.4445	-46.6409	20.1111	-0.0260	-46.5287	0.5686	0.4705	0.1122	0.7465	0.1122	Z
Ř	25	21.6052	4.5860	-46.5816	20.9756	4.0501	-46.5003	0.6296	0.5359	0.0813	0.8308	0.0813	Z
	26	9.1492	-16.1202	-46.4990	8.0492	-16.2813	-46.3275	1.1000	-0.1611	0.1715	1.1249	0.1715	Z
	27	8.8413	-10.4067	-46.8286	7.8867	-10.5960	-46.6911	0.9546	-0.1893	0.1375	0.9829	0.1375	Z
	28	9.0648	-3.8871	-47.0576	8.3775	-4.0065	-46.9512	0.6873	-0.1194	0.1064	0.7057	0.1064	Z
	29	9.6149	0.8926	-47.1259	8.9909	0.7040	-47.0341	0.6240	0.1886	0.0918	0.6583	0.0918	Z
	30	9.7018	5.6111	-47.1304	9.2172	5.3249	-47.0530	0.4846	0.2862	0.0774	0.5681	0.0774	Z
a. c	31 32	47.7088 45.0217	-27.0122 -26.4613	-28.8978 -31.1185	46.3623 43.6345	-28.1191 -27.4831	-28.7078 -30.8851	1.3465	-1.1069	0.1900	1.7534	1.3598	X, Z X, Z
AFIL (2	33	40.0217	-26.4613	-31.1185	43.0345	-26.7656	-30.8651	1.3872	-0.9754	0.2334	1.6593	1.3423	X, Z
A-PILLAR Maximum (X, Y, Z)	34	40.0391	-25.2339	-34.5171	38.6447	-26.1344	-34.3337	1.3944	-0.9005	0.1834	1.6700	1.4064	X, Z
A-PILLAR Maximum (X, Y, Z)	35	37.0351	-24.3264	-36.6352	35.6889	-25.1865	-36.4750	1.3462	-0.8601	0.1602	1.6055	1.3557	X, Z
	36	34.9292	-24.3508	-38.7017	33.6771	-25.1760	-38.4458	1.2521	-0.8252	0.2559	1.5212	1.2780	X, Z
	31	47.7088	-27.0122	-28.8978	46.3623	-28.1191	-28.7078	1.3465	-1.1069	0.1900	1.7534	-1.1069	Y
A-PILLAR Lateral (Y)	32	45.0217	-26.4613	-31.1185	43.6345	-27.4831	-30.8851	1.3872	-1.0218	0.2334	1.7386	-1.0218	Y
al (33	42.5467	-25.7902	-32.8080	41.2366	-26.7656	-32.5156	1.3101	-0.9754	0.2924	1.6593	-0.9754	Y
ater	34	40.0391	-25.2339	-34.5171	38.6447	-26.1344	-34.3337	1.3944	-0.9005	0.1834	1.6700	-0.9005	Y
Ρ	35	37.0351	-24.3264	-36.6352	35.6889	-25.1865	-36.4750	1.3462	-0.8601	0.1602	1.6055	-0.8601	Y
	36	34.9292	-24.3508	-38.7017	33.6771	-25.1760	-38.4458	1.2521	-0.8252	0.2559	1.5212	-0.8252	Y
B-PILLAR Maximum (X, Y, Z)	37	3.8709	-23.8402	-39.2369	2.6244	-23.7524	-39.1110	1.2465	0.0878	0.1259	1.2559	1.2559	X, Y, Z
Ľ, Ř	38	6.8271	-24.7104	-36.9010	5.5079	-24.6848	-36.7777	1.3192	0.0256	0.1233	1.3252	1.3252	X, Y, Z
A Mai	39 40	4.4268 7.7909	-26.9733	-30.5086	3.0211 6.4334	-26.8260 -27.2526	-30.3047 -28.6050	1.4057	0.1473	0.2039	1.4280	1.4280	X, Y, Z X, Y, Z
20	37	3.8709	-27.3103 -23.8402	-28.7775 -39.2369	2.6244	-23.7524	-28.6050	1.2465	0.0377	0.1725	1.2559	0.0878	Y Y
J-AF	38	6.8271	-23.6402	-39.2369	5.5079	-23.7524	-39.1110	1.3192	0.0256	0.1259	1.3252	0.0256	Y
B-PILLAR Lateral (Y)	39	4.4268	-26.9733	-30.5086	3.0211	-24.0040	-30.3047	1.4057	0.0258	0.2039	1.4280	0.0256	Y
at p	40	7.7909	-27.3103		6.4334	-27.2526	-28.6050	1.3575	0.0577	0.1725	1.3696	0.0577	Y

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Figure F-9. Occupant Compartment Deformation Data - Set 1, Test No. NYBWT-3

Date: Year:		2018 12	Test Name: <u>NYBWT-3</u> Make: <u>Dodge</u>						VIN: Model:	1C6RD6FPCS205397 Ram 1500			
							FORMATIO						
[n	Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
DASH (X, Y, Z)	1	44.7914	-39.5520	-32.5131	44.6750	-39.7351	-32.8271	0.1164	-0.1831	-0.3140	0.3817	0.3817	X, Y, 2
	2	45.4318	-28.6881	-32.3011	45.2589	-28.9635	-32.7195	0.1729	-0.2754	-0.4184	0.5299	0.5299	X, Y, Z
	3	46.3844	-15.6143	-31.3087	46.4283	-15.8088	-31.7198	-0.0439	-0.1945	-0.4111	0.4569	0.4569	X, Y, Z
	4	42.9168	-41.6218	-16.7739	42.9696	-41.8344	-16.9919	-0.0528	-0.2126	-0.2180	0.3090	0.3090	X, Y, Z
	5	42.0590	-28.6432	-17.1691	42.1232	-28.7378	-17.4902	-0.0642	-0.0946	-0.3211	0.3408	0.3408	X, Y, Z
	6	39.5922	-15.7829	-18.7125	39.6916	-15.9456	-19.0754	-0.0994	-0.1627	-0.3629	0.4099	0.4099	X, Y, Z
PANEL (Y)	7	54.1641 50.9525	-48.2156	-6.0370 -5.2134	54.1811	-48.2728	-6.4281	-0.0170	-0.0572	-0.3911	0.3956	-0.0572	Y
	8	51.0142	-48.1732 -48.1940	-7.9807	50.9771 50.9618	-47.9345 -47.9536	-5.6013 -8.3014	-0.0246 0.0524	0.2387	-0.3879 -0.3207	0.4561	0.2387	Y
	10	41.4654	-50.4115	-19.9993	40.9930	-50.8811	-20.6126	0.4724	-0.4696	-0.6133	0.9054	-0.4696	Y
IMPACT SIDE DOOR (Y)	10	30.4327	-51.0563	-19.8559	30.1387	-52.1172	-20.2590	0.2940	-1.0609	-0.4031	1.1724	-1.0609	Y
	12	19.0062	-50.4003	-20.9933	18.6183	-52.1044	-21.4869	0.3879	-1.7041	-0.4936	1.8161	-1.7041	Y
	13	39.9173	-48.9599	-8.4624	39.4316	-48.9011	-9.0764	0.4857	0.0588	-0.6140	0.7851	0.0588	Y
	14	30.5623	-51.1037	-7.0249	30.3254	-51.5819	-7.4803	0.2369	-0.4782	-0.4554	0.7016	-0.4782	Y
	15	20.3312	-50.1184	-6.4858	20.0661	-51.1517	-6.9735	0.2651	-1.0333	-0.4877	1.1730	-1.0333	Y
ROOF - (Z)	16	31.2902	-37.5795	-46.4695	31.1902	-37.9551	-46.6941	0.1000	-0.3756	-0.2246	0.4489	-0.2246	Z
	17	32.3284	-32.2328	-46.8469	32.2546	-32.6178	-47.0592	0.0738	-0.3850	-0.2123	0.4458	-0.2123	Z
	18	33.5129	-26.1499	-47.0398	33.4524	-26.3527	-47.2827	0.0605	-0.2028	-0.2429	0.3222	-0.2429	Z
	19 20	34.4303 34.4840	-19.8832 -14.7093	-47.0946	34.3200 34.4212	-20.1269 -14.9553	-47.3452 -47.3946	0.1103	-0.2437	-0.2506	0.3665	-0.2506	Z
	20	23.4448	-14.7093	-47.1581 -49.5634	23.2389	-36.6056	-49.6935	0.0628	-0.2460 -0.3817	-0.2365 -0.1301	0.3470	-0.2365	Z
	22	23.6742	-29.7145	-50.0121	23.4594	-29.9877	-50.1656	0.2000	-0.2732	-0.1535	0.3799	-0.1535	Z
	23	24.0994	-23.2177	-50.2578	23.9726	-23.5398	-50.4156	0.1268	-0.3221	-0.1578	0.3804	-0.1578	Z
	24	24.4783	-19.1173	-50.3225	24.3529	-19.4334	-50.4838	0.1254	-0.3161	-0.1613	0.3764	-0.1613	Z
	25	25.4601	-14.9888	-50.2615	25.2923	-15.2633	-50.4305	0.1678	-0.2745	-0.1690	0.3634	-0.1690	Z
	26	12.7178	-35.5201	-50.3326	12.5313	-35.8091	-50.4161	0.1865	-0.2890	-0.0835	0.3539	-0.0835	Z
	27	12.4956	-29.8043	-50.6894	12.3449	-30.1420	-50.7814	0.1507	-0.3377	-0.0920	0.3811	-0.0920	Z
	28	12.8140	-23.2893	-50.9387	12.6109	-23.4928	-51.0409	0.2031	-0.2035	-0.1022	0.3051	-0.1022	Z
	29 30	13.4317 13.5843	-18.5181 -13.8013	-51.0148	13.1698	-18.7444	-51.1212 -51.1214	0.2619	-0.2263 -0.3038	-0.1064 -0.0860	0.3621	-0.1064	Z
	31	50.7892	-46.8739	-51.0354	13.5191 50.6505	-14.1051	-32.3290	0.1387	-0.2999	-0.3522	0.3224	0.1387	X
A-PILLAR Maximum (X, Y, Z)	32	48.1517	-46.2949	-31.9768	48.0182	-46.6055	-32.3290	0.1387	-0.2999	-0.3522	0.4829	0.1387	- Â
	33	45.7180	-45.5964	-35.9868	45.6084	-45.9054	-36.2039	0.1096	-0.3090	-0.2171	0.3932	0.1096	X
	34	43.2504	-45.0123	-37.7444	43.0392	-45.2995	-38.0082	0.2112	-0.2872	-0.2638	0.4435	0.2112	X
	35	40.2991	-44.0718	-39.9213	40.0852	-44.3396	-40.1624	0.2139	-0.2678	-0.2411	0.4190	0.2139	X
	36	38.2318	-44.0754	-42.0265	38.0307	-44.3884	-42.2424	0.2011	-0.3130	-0.2159	0.4301	0.2011	X
A-PILLAR Lateral (Y)	31	50.7892	-46.8739	-31.9768	50.6505	-47.1738	-32.3290	0.1387	-0.2999	-0.3522	0.4829	-0.2999	Y
	32	48.1517	-46.2949	-34.2491	48.0182	-46.6055	-34.5278	0.1335	-0.3106	-0.2787	0.4381	-0.3106	Y
	33	45.7180	-45.5964	-35.9868	45.6084	-45.9054	-36.2039	0.1096	-0.3090	-0.2171	0.3932	-0.3090	Y
	34	43.2504	-45.0123	-37.7444	43.0392	-45.2995	-38.0082	0.2112	-0.2872	-0.2638	0.4435	-0.2872	Y
	35 36	40.2991 38.2318	-44.0718 -44.0754	-39.9213 -42.0265	40.0852 38.0307	-44.3396 -44.3884	-40.1624 -42.2424	0.2139 0.2011	-0.2678 -0.3130	-0.2411 -0.2159	0.4190 0.4301	-0.2678 -0.3130	Y
B-PILLAR Maximum (X, Y, Z)	30	7.1988	-44.0754			-44.3664				-0.2159	0.4301		X
	37	10.0988	-43.1371 -44.0387	-43.1409	7.0000	-43.3057	-43.2688 -40.8754	0.1988	-0.1686 -0.1857	-0.1279	0.2904	0.1988	X
	39	7.5492	-46.2425	-34.3921	7.3720	-46.4003	-40.8754	0.1419	-0.1578	0.0061	0.2000	0.1419	X, Z
	40	10.8757	-46.6190	-32.5974		-46.7819	-32.6756	0.1172	-0.1629	-0.0782	0.2130	0.1127	X
B-PILLAR Lateral (Υ)	37	7.1988	-43.1371	-43.1409	7.0000	-43.3057	-43.2688	0.1988	-0.1686	-0.1279	0.2904	-0.1686	Y
	38	10.0988	-44.0387	-40.7472	9.9569	-44.2244	-40.8754	0.1419	-0.1857	-0.1282	0.2666	-0.1857	Y
	39	7.5492	-46.2425	-34.3921	7.3720	-46.4003	-34.3860	0.1772	-0.1578	0.0061	0.2374	-0.1578	Y
	40	10.8757	-46.6190	-32.5974		-46.7819	-32.6756	0.1127	-0.1629	-0.0782	0.2130	-0.1629	Y

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Figure F-10. Occupant Compartment Deformation Data – Set 2, Test No.NYBWT-3

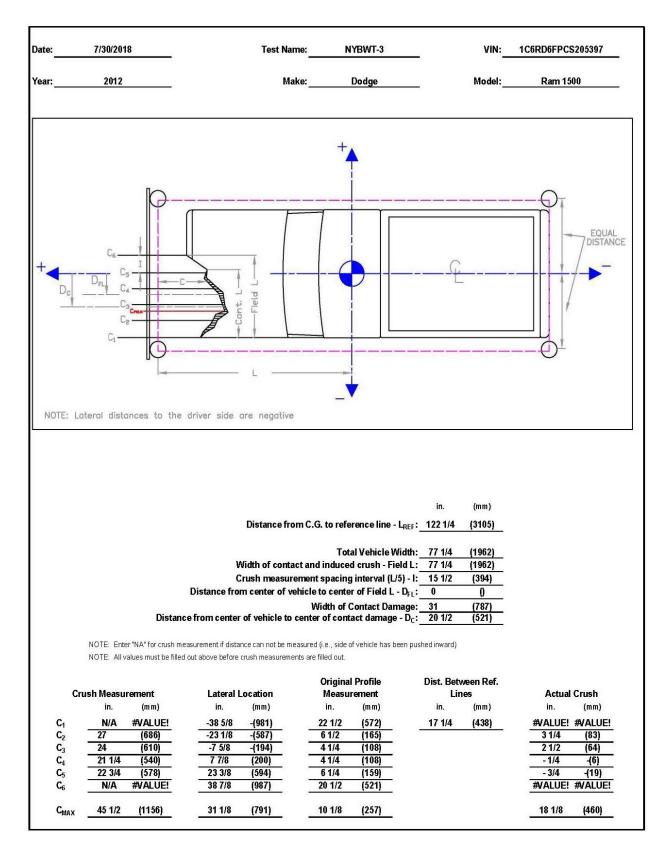


Figure F-11. Exterior Vehicle Crush (NASS) - Front, Test No. NYBWT-3

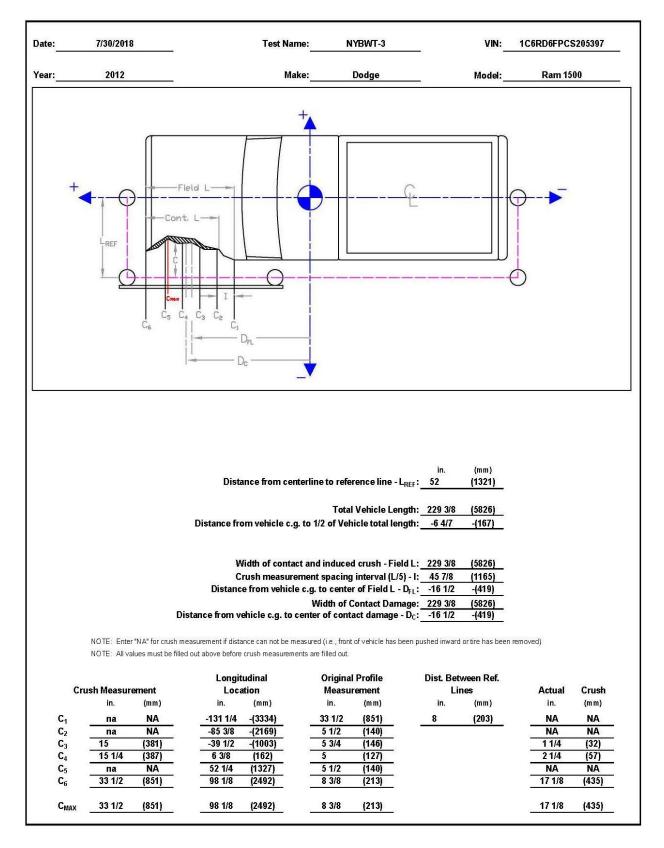


Figure F-12. Exterior Vehicle Crush (NASS) - Side, Test No. NYBWT-3

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. NYBWT-2

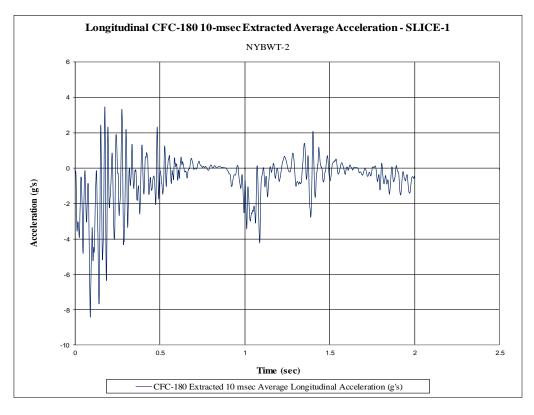


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NYBWT-2

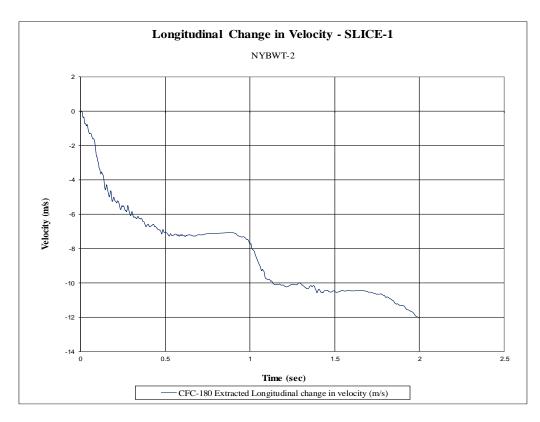


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NYBWT-2

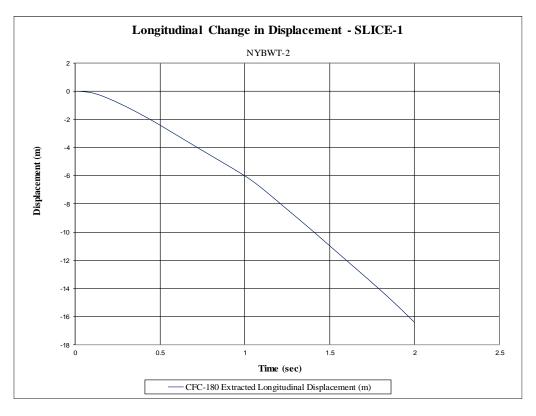


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NYBWT-2

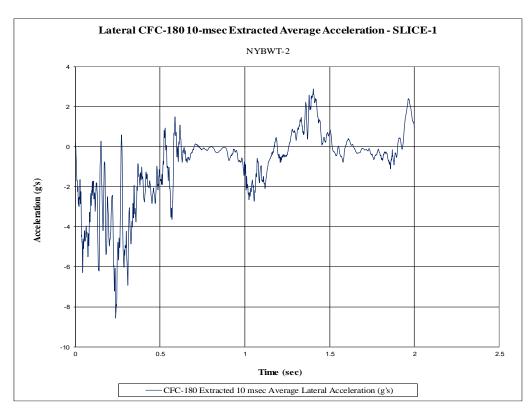


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NYBWT-2

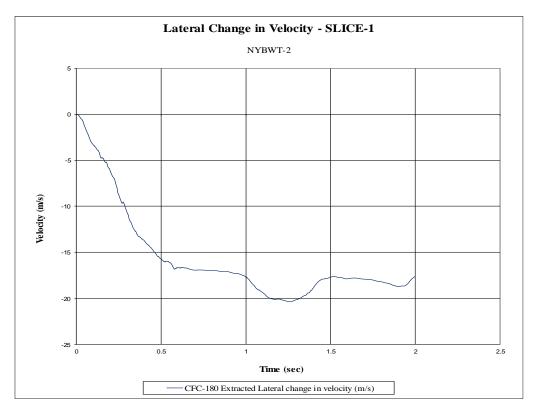


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NYBWT-2

Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. NYBWT-2

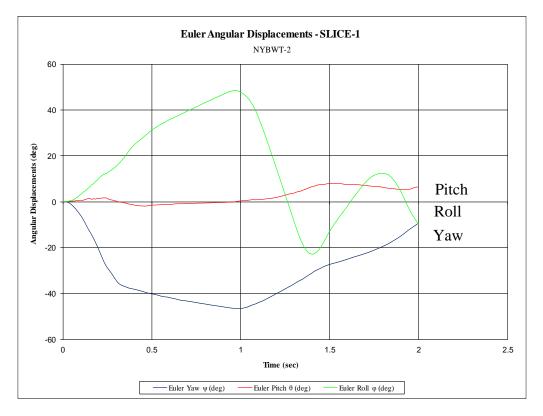


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. NYBWT-2

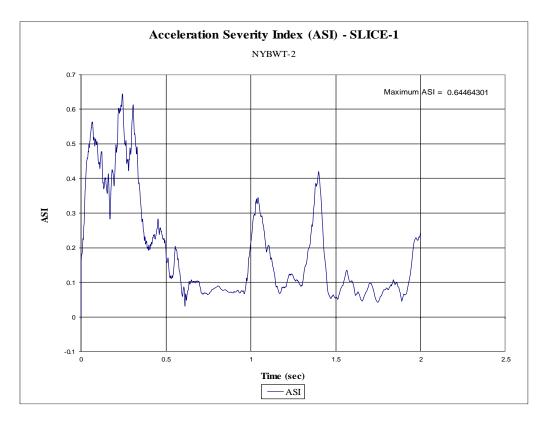


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. NYBWT-2

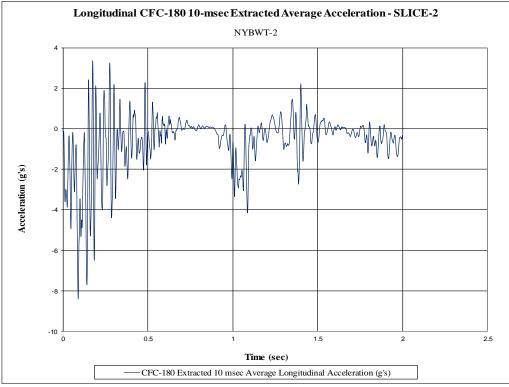


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NYBWT-2

Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NYBWT-2

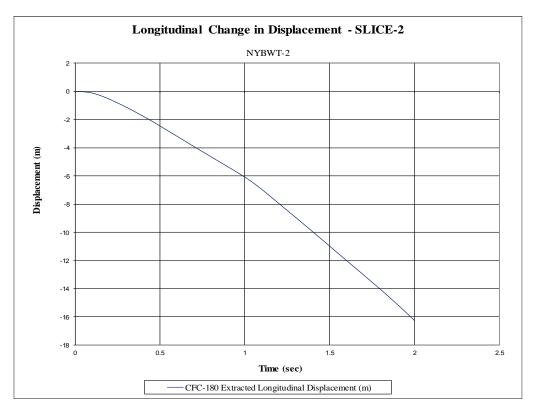


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NYBWT-2

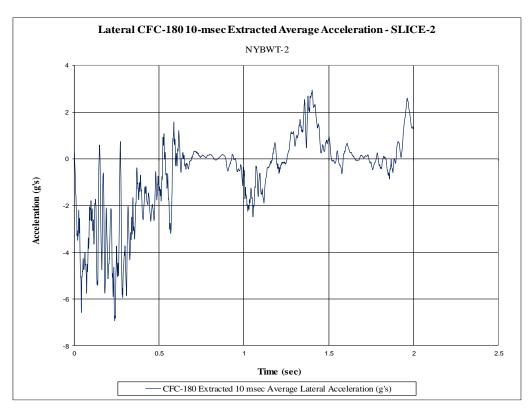


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NYBWT-2

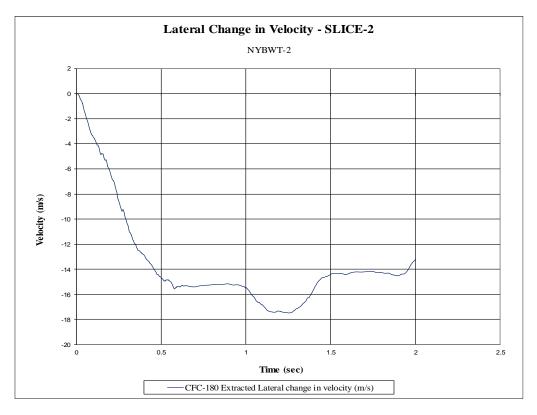


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NYBWT-2



Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. NYBWT-2

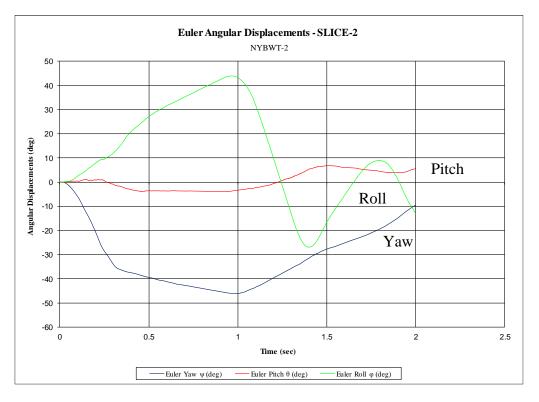


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. NYBWT-2

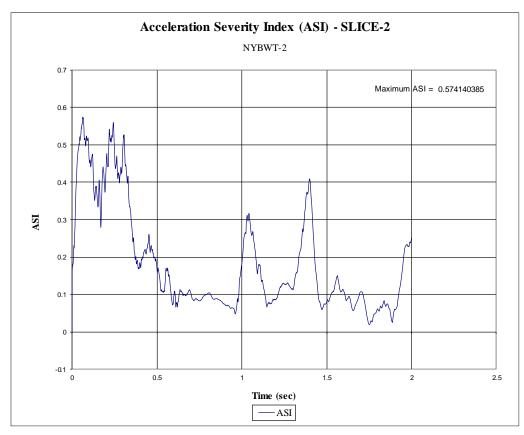


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. NYBWT-2

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. NYBWT-3

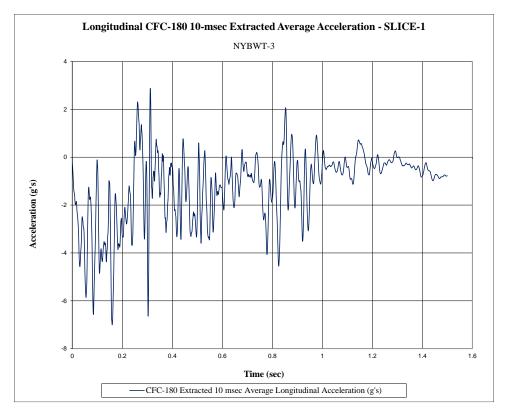


Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NYBWT-3

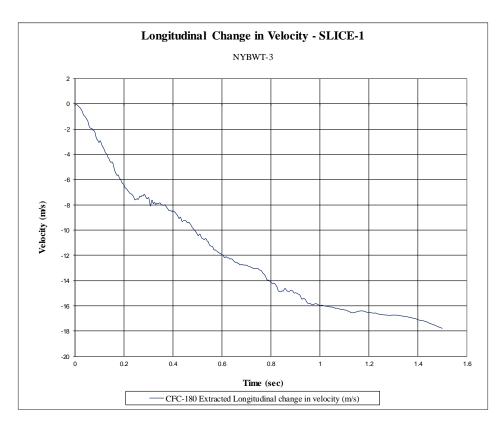


Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NYBWT-3

Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NYBWT-3

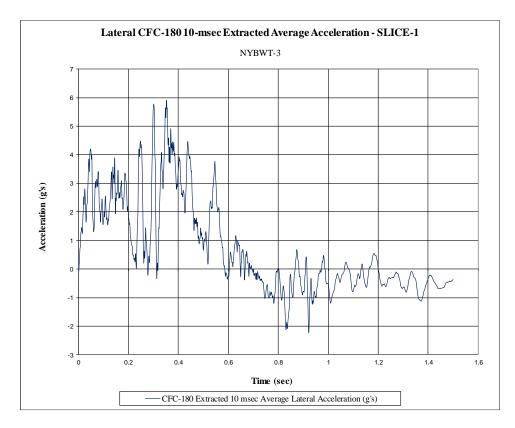


Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NYBWT-3

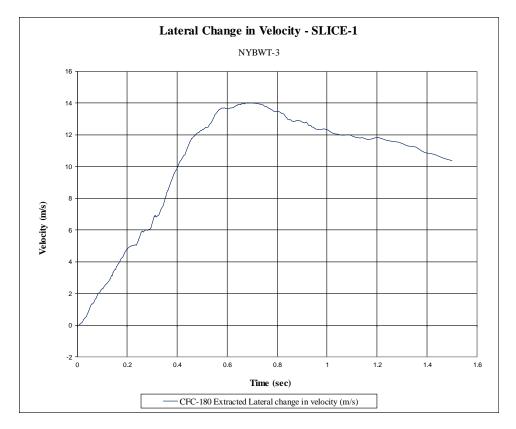


Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NYBWT-3

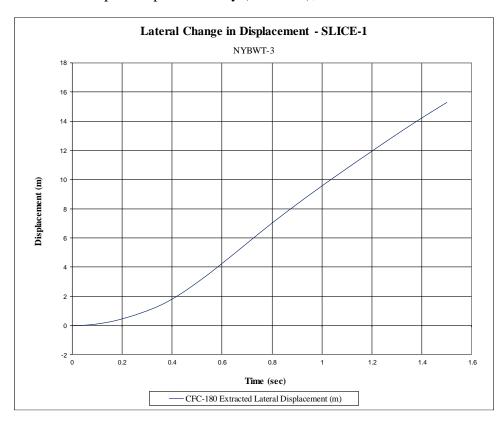


Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. NYBWT-3

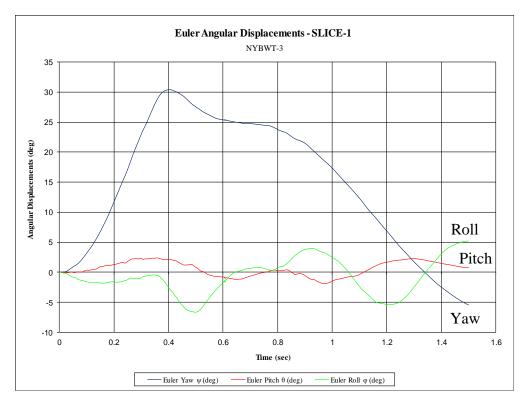


Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. NYBWT-3

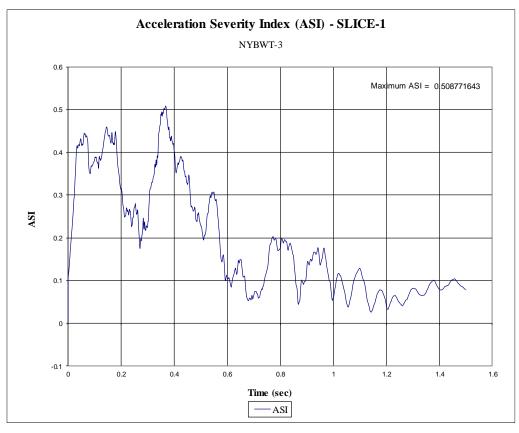


Figure H-8. Acceleration Severity Index (SLICE-1), Test No. NYBWT-3

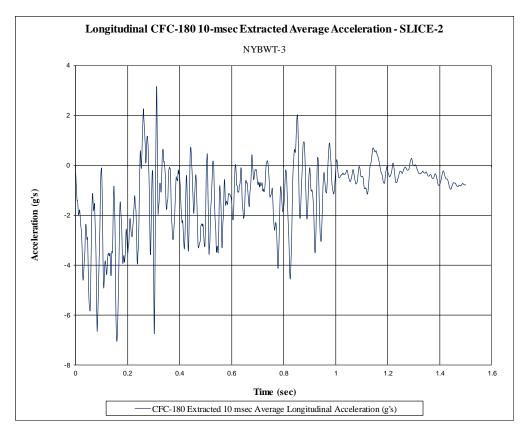


Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NYBWT-3

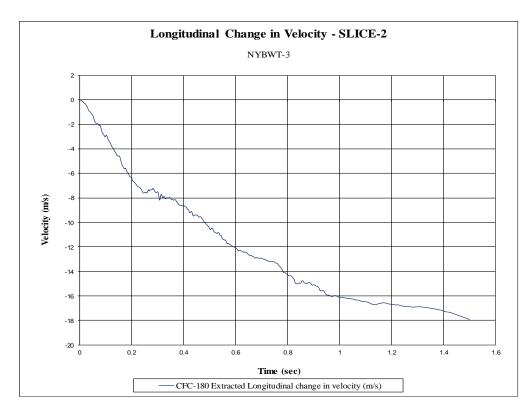


Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NYBWT-3

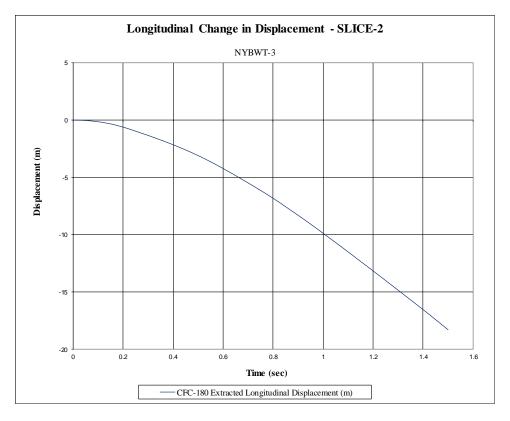


Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NYBWT-3

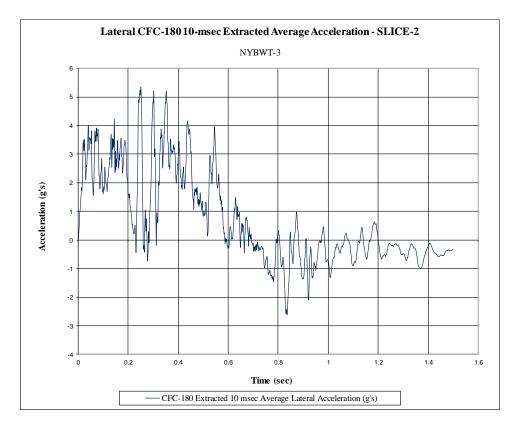


Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NYBWT-3

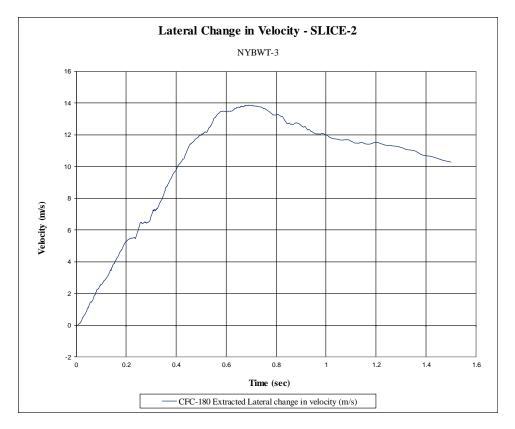


Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NYBWT-3

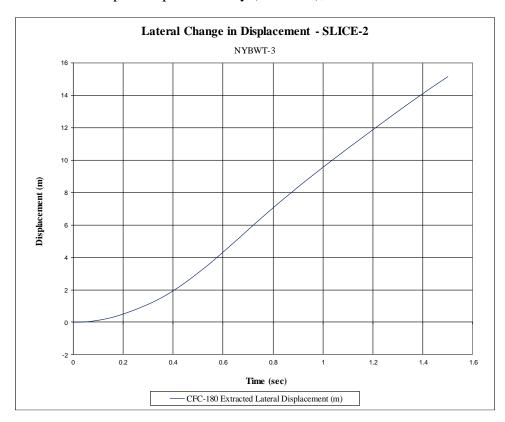


Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. NYBWT-3

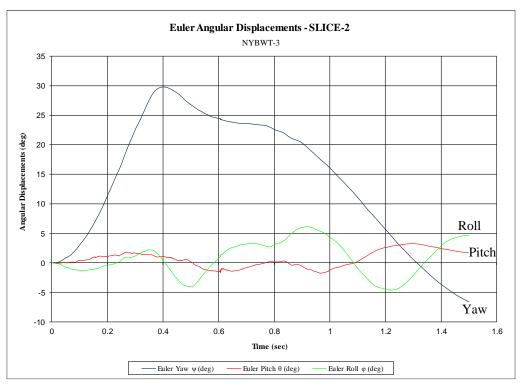


Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. NYBWT-3

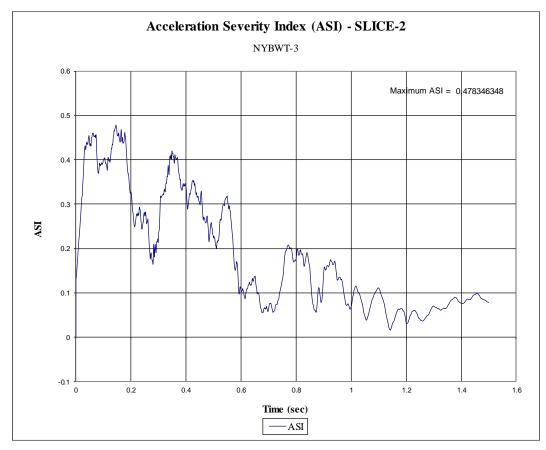


Figure H-16. Acceleration Severity Index (SLICE-2), Test No. NYBWT-3

END OF DOCUMENT