

Midwest Pooled Fund Research Program Fiscal Years 2018-2023 (Years FY2019 – FY2022) TPF-5(193) Supplement #151

CRASH TESTING AND EVALUATION OF AN OPEN

CONCRETE BRIDGE RAILING

Submitted by

Robert W. Bielenberg, M.S.M.E. Research Engineer Scott K. Rosenbaugh, M.S.C.E. Research Engineer

Ronald K. Faller, Ph. D., P.E. Research Professor and MwRSF Director Jennifer D. Rasmussen, Ph.D., P.E. Senior Research Engineer Safe Roads Engineering

Jacob A. DeLone, M.S.C.E. Former Graduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402)472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Parkway Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-406b-24

February 29, 2024

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
TRP-03-406b-24		
4. Title and Subtitle	•	5. Report Date
Crash Testing and Evaluation of an Open Br	ridge Concrete Railing	February 29, 2024
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Bielenberg, R.W., Rosenbaugh, S.K., Faller, R.K., Rasmussen, J.D., and DeLone, J.A.		TRP-03-406b-24
9. Performing Organization Name and Ad	ldress	10. Work Unit No.
Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln)	
Main Office: Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5(193) Supplement #151
12. Sponsoring Agency Name and Addres	is	13. Type of Report and Period Covered
Midwest Pooled Fund Program Nebraska Department of Transportation		Final Report: 2018-2024
1500 Nebraska Parkway Lincoln, Nebraska 68502		14. Sponsoring Agency Code
15. Supplementary Notes		
Prepared in cooperation with U.S. Departme	ent of Transportation, Federal Highw	vay Administration
16 Abstract		

16. Abstract

This report documents three full-scale vehicle crash tests that were conducted to investigate the safety performance of an open concrete bridge rail according to American Association of State Highway and Transportation Officials' *Manual for Assessing Safety Hardware 2016* (MASH 2016) Test Level 4 (TL-4) evaluation criteria. The barrier system test installation consisted of a 39-in. tall by 132-ft long open concrete bridge rail supported by 15 concrete posts. The interior posts were 36 in. long by 10 in. wide and 72-in. long by 10-in. wide posts were utilized at the upstream end section. All posts were 12 in. tall and were spaced at 108 in. on center. Test nos. OCBR-1, OCBR-2, and OCBR-3 were conducted according to test designation nos. 4-10, 4-11, and 4-12, respectively.

In test no. OCBR-1, an 1100C small car impacted the barrier at speed of 64.2 mph and an angle of 25.2 degrees. In test no OCBR-2, a 2270P pickup truck impacted the barrier at a speed of 61.8 mph and an angle of 24.7 degrees. In test no. OCBR-3, a 10000S single-unit truck impacted the barrier at a speed of 56.6 mph and an angle of 15.2 degrees. In all tests, the bridge rail successfully contained and redirected the vehicles. Tests nos. OCBR-1, OCBR-2, and OCBR-3 successfully met the TL-4 safety performance criteria defined in MASH 2016.

17. Key Words		18. Distribution Statement	
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Test Level 4, Bridge Rail, Open Concrete Rail		No restrictions. This document is available through the National Technical Information Service. 5285 Port Royal Road Springfield, VA 22161	
19. Security Classification (of	20. Security Classification (of	21. No. of Pages	22. Price
this report)	this page)	233	
Unclassified	Unclassified		
E DOT E 1500 5 (9 53)	D 1		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program under TPF-5(193) Supplement 151, specifically the state departments of transportation of Kansas, Iowa, Nebraska, South Dakota, and Virginia. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, state highway departments participating in the Midwest Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the States of Kansas, Iowa, Nebraska, South Dakota, and Virginia do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Brandon Perry, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that contributed to this project: (1) the Iowa Department of Transportation, Kansas Department of Transportation, Nebraska Department of Transportation, South Dakota Department of Transportation, and Virginia Department of Transportation, for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., Research Engineer & Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., Research Engineer C.S. Stolle, Ph.D., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor B.J. Perry, M.E.M.E., Research Engineer A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Former Engineering Testing Technician II D.S. Charroin, Engineering Testing Technician II R.M. Novak, Engineering Testing Technician II S.M. Tighe, Engineering Testing Technician I T.C. Donahoo, Engineering Testing Technician I J.T. Jones, Engineering Testing Technician I C. Charroin, Former Engineering Construction Testing Technician I T. Shapland, Former Engineering Construction Testing Technician I E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants **Iowa Department of Transportation** Chris Poole, P.E., Roadside Safety Engineer

Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer
Jim Knott, P.E., Construction Engineer
Mick Syslo, P.E., State Roadway Design Engineer
Brandon Varilek, P.E., Materials and Research Engineer & Division Head
Mark Fischer, P.E., PMP, Research Program Manager
Angela Andersen, Research Coordinator
David T. Hansen, Internal Research Coordinator
Lieska Halsey, Former Research Project Manager
Jodi Gibson, Former Research Coordinator

South Dakota Department of Transportation

Thad Bauer, Research Program Manager Randy Brown, P.E., Standards Engineer Steve Johnson, P.E., Chief Bridge Engineer

Virginia Department of Transportation

- Charles Patterson, P.E., Standards/Special Design Section Manager
- Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

	SI* (MODER	N METRIC) CONVE	RSION FACTORS	
	APPROX	IMATE CONVERSION	S TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		2
in ²	square inches	645.2	square millimeters	2 mm ²
Π^2 ud^2	square teet	0.093	square meters	m ²
yu ac	acres	0.850	bectares	iii ha
mi ²	square miles	2.59	square kilometers	km ²
	Square miles	VOLUME	square moments	
floz	fluid ounces	29 57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE	: volumes greater than 1,000 L shall	be shown in m ³	
		MASS		
OZ	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
		TEMPERATURE (exact de	egrees)	
°E	Fahranhait	5(F-32)/9	Calsing	°C
1	Tantemen	or (F-32)/1.8	Celsius	C
		ILLUMINATION		
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
	I	FORCE & PRESSURE or S	TRESS	
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXI	MATE CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in.
m	meters	3.28	teet	ft
m	meters bilometers	1.09	yards	yd mi
KIII	knometers		miles	1111
2			in -h	:2
mm^2	square minimeters	0.0016	square inches	111- ft ²
m^2	square meters	1 195	square vard	rd^2
ha	hectares	2 47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
	1	VOLUME	1	
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	OZ
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short ton (2,000 lb)	Т
		TEMPERATURE (exact de	egrees)	
°C	Celsius	1.8C+32	Fahrenheit	°F
		ILLUMINATION		
lx	lux	0.0929	foot-candles	fc
			foot Lomborto	fl
cd/m ²	candela per square meter	0.2919		11
cd/m ²	candela per square meter	0.2919 FORCE & PRESSURE or S	TRESS	11
cd/m ²	candela per square meter	0.2919 FORCE & PRESSURE or S 0.225	STRESS poundforce	lbf

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	. iii
SI* (MODERN METRIC) CONVERSION FACTORS	. iv
LIST OF FIGURES	vii
LIST OF TABLES	kiii
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	1 1 2 2
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	9 9 10
3 CRITICAL IMPACT POINT SELECTION	11
4 DESIGN DETAILS	13
5 TEST CONDITIONS 5.1 Test Facility 5.2 Vehicle Tow and Guidance System 5.3 Test Vehicles 5.4 Simulated Occupant 5.5 Data Acquisition Systems 5.5.1 Accelerometers and Rate Transducers 5.5.2 Retroreflective Optic Speed Trap 5.5.3 String Potentiometers 5.5.4 Digital Photography	38 38 38 52 52 52 52 53 53 55
 6 FULL-SCALE CRASH TEST NO. OCBR-1	59 59 59 66 71 76 77

7.1 Weather Conditions	79
7.2 Test Description	79
7.3 Barrier Damage	87
7.4 Vehicle Damage	90
7.5 Occupant Risk	94
7.6 Discussion	95
9 EUL COLLE CDACH TEST NO. OCDD 2	07
8 FULL-SCALE CRASH TEST NO. UCBR-3	97
8.1 Weather Conditions	97
8.2 Test Description	97
8.5 Damer Damage	104
8.4 Venicle Danage	110
8.5 Occupant Risk	122
8.0 Barrier Loads	125
8.7 Discussion	123
9 END BUTTRESS OPTIONS FOR AGT ATTACHMENT	127
9.1 Overview	127
9.2 Thrie Beam Approach Guardrail Transitions	127
9.3 Design Loads	130
9.4 End Buttress Foundation	130
9.5 Open Concrete Bridge Rail End Buttress Shape Transition	130
9.6 End Buttress Option 1	131
9.7 End Buttress Option 2	131
9.8 End Buttress Option 3	138
9.9 Summary	138
10 SUMMARY AND CONCLUSIONS	151
11 MASH EVALUATION	154
11.1 Test Matrix	154
11.2 Full-Scale Crash Test Results	155
11.3 MASH 2016 Evaluation	157
12 REFERENCES	158
13 APPENDICES	161
Appendix A Material Specifications	162
Appendix B. Vehicle Center of Gravity Determination	184
Appendix C. Vehicle Deformation Records	188
Appendix D. Accelerometer and Rate Transducer Data Plots. Test No. OCBR-1	202
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. OCBR-2	211
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. OCBR-3	220

LIST OF FIGURES

Figure 1. KDOT Open Concrete Corral Rail Details [8]	3
Figure 2. KDOT Open Concrete Corral Rail Details [8]	4
Figure 3. KDOT Open Concrete Corral Rail Details [8]	5
Figure 4. KDOT Open Concrete Corral Rail Details [8]	6
Figure 5. KDOT Open Concrete Corral Rail Details [8]	7
Figure 6. TTI TL-5 Open Concrete Bridge Rail [5]	8
Figure 7. Test Installation Layout, Test Nos. OCBR-1, OCBR-2, and OCBR-3	15
Figure 8. System Profile View, Test Nos. OCBR-1, OCBR-2, and OCBR-3	16
Figure 9. Concrete Rail, Deck, and Box Beam Assembly, Interior Section, Test Nos.	
OCBR-1, OCBR-2, and OCBR-3	17
Figure 10. Modified Bridge Rail Assembly, Post Nos. 1 and 2, Test Nos. OCBR-1, OCBR-	
2, and OCBR-3	18
Figure 11. Typical Interior Post Details, Test Nos. OCBR-1, OCBR-2, and OCBR-3	19
Figure 12. Interior Post and Downstream End Section Assembly, Test Nos. OCBR-1,	
OCBR-2, and OCBR-3	20
Figure 13. Downstream Barrier Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3	21
Figure 14. Bridge Rail Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-3	22
Figure 15. Bridge Deck Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-3	23
Figure 16. Bridge Deck Assembly: Upstream End Section and First Interior Post Section,	
Test Nos. OCBR-1, OCBR-2, and OCBR-3	24
Figure 17. Bridge Deck Assembly Details, Test Nos. OCBR-1, OCBR-2, and OCBR-3	25
Figure 18. Bridge Deck Assembly: Downstream Section, Typical Interior Post Section on	26
Deck, Test Nos. OCBR-1, OCBR-2, and OCBR-3	26
Figure 19. Bridge Deck Assembly Details, Test Nos. OCBR-1, OCBR-2, and OCBR-3	27
Figure 20. Bridge Deck Detail, Test Nos. OCBR-1, OCBR-2, and OCBR-3	28
Figure 21. Bridge Deck Detail, Test Nos. OCBR-1, OCBR-2, and OCBR-3	29
Figure 22. Concrete Grade Beam Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-5	30
Figure 24. System Babar Test Nos. OCDR-1, OCDR-2, and OCDR-3.	22
Figure 25 System Paber Test Nos. OCDR-1, OCDR-2, and OCDR-3	32
Figure 26. Bill of Materials Test Nos. OCBP 1 OCBP 2 and OCBP 3	33 34
Figure 27 Test Installation Photos Test Nos. OCBR-1, OCBR-2, and OCBR-3	
Figure 28 Typical Post Installation Test Nos OCBR-1, OCBR-2, and OCBR-3	35
Figure 29 Bridge Deck Installation, Test Nos. OCBR-1, OCBR-2, and OCBR-3	
Figure 30 Test Vehicle Test No. OCBR-1	
Figure 31 Test Vehicle's Interior Floorboards and Undercarriage Test No. OCBR-1	- 0 <i>A</i> 1
Figure 32 Vehicle Dimensions Test No OCBR-1	42
Figure 33 Test Vehicle Test No OCBR-2	43
Figure 34 Test Vehicle's Interior Floorboards and Undercarriage Test No. OCBR-2	44
Figure 35 Vehicle Dimensions Test No OCBR-2	
Figure 36 Test Vehicle Test No. OCBR-3	46
Figure 37. Test Vehicle's Interior Floorboards and Undercarriage. Test No. OCBR-3	47
Figure 38. Vehicle Dimensions, Test No. OCBR-3	48
Figure 39. Target Geometry, Test No. OCBR-1	49
Figure 40. Target Geometry, Test No. OCBR-2	50

Figure 41.	Target Geometry, Test No. OCBR-3	51
Figure 42.	Location of String Potentiometers, Test No. OCBR-3	54
Figure 43.	Camera Locations, Speeds, and Lens Settings, Test No. OCBR-1	56
Figure 44.	Camera Locations, Speeds, and Lens Settings, Test No. OCBR-2	57
Figure 45.	Camera Locations, Speeds, and Lens Settings, Test No. OCBR-3	58
Figure 46.	Target Impact Location, Test No. OCBR-1	60
Figure 47.	. Sequential Photographs, Test No. OCBR-1	62
Figure 48.	. Sequential Photographs, Test No. OCBR-1	63
Figure 49.	Documentary Photographs, Test No. OCBR-1	64
Figure 50.	. Vehicle Final Position and Trajectory Marks, Test No. OCBR-1	65
Figure 51.	Overall System Damage, Test No. OCBR-1	67
Figure 52.	. Concrete Beam Damage, Impact, Test No. OCBR-1	68
Figure 53.	Concrete Beam Damage near Post No. 11, Test No. OCBR-1	69
Figure 54.	Concrete Post Damage, Post Nos. 11 and 12, Test No. OCBR-1	70
Figure 55.	Permanent Set, Dynamic Deflection, and Working Width, Test No. OCBR-1	71
Figure 56.	Vehicle Damage, Test No. OCBR-1	73
Figure 57.	Vehicle Damage, Test No. OCBR-1	74
Figure 58.	Interior and Undercarriage Damage, Test No. OCBR-1	75
Figure 59.	Summary of Test Results and Sequential Photographs, Test No. OCBR-1	78
Figure 60.	. Target Impact Location, Test No. OCBR-2	80
Figure 61.	. Sequential Photographs, Test No. OCBR-2	82
Figure 62.	. Sequential Photographs, Test No. OCBR-2	83
Figure 63.	Documentary Photographs, Test No. OCBR-2	84
Figure 64.	Documentary Photographs, Test No. OCBR-2	85
Figure 65.	Vehicle Final Position and Trajectory Marks, Test No. OCBR-2	86
Figure 66.	Overall System and Post No. 6 Damage, Test No. OCBR-2	88
Figure 67.	Post Nos. 7 and 8 Damage, Test No. OCBR-2	89
Figure 68.	Permanent Set, Dynamic Deflection, and Working Width, Test No. OCBR-2	90
Figure 69.	Vehicle Damage, Test No. OCBR-2	92
Figure 70.	Interior and Undercarriage Damage, Test No. OCBR-2	93
Figure 71.	Summary of Test Results and Sequential Photographs, Test No. OCBR-2	96
Figure 72.	Target Impact Location, Test No. OCBR-3	98
Figure 73.	Sequential Photographs, Test No. OCBR-3	100
Figure 74.	Sequential Photographs, Test No. OCBR-3	101
Figure 75.	Documentary Photographs, Test No. OCBR-3	102
Figure 76.	Vehicle Final Position and Trajectory Marks, Test No. OCBR-3	103
Figure 77.	Overall System Damage, Test No. OCBR-3	105
Figure 78.	Concrete Beam and Deck Damage, Test No. OCBR-3	106
Figure 79.	Concrete Beam and Post Damage, Post Nos. 3 and 4, Test No. OCBR-3	107
Figure 80.	Concrete Beam Damage from Post Nos. 4 through 6, Test No. OCBR-3	108
Figure 81.	Schematic of Bridge Rail Cracks, Test No. OCBR-3	109
Figure 82.	Permanent Set, Dynamic Deflection, and Working Width, Test No. OCBR-3	110
Figure 83.	Vehicle Damage, Test No. OCBR-3	113
Figure 84.	Vehicle Damage, Test No. OCBR-3	114
Figure 85.	Vehicle Damage, Occupant Compartment Deformation Test No. OCBR-3	115
Figure 86.	Vehicle Floor Pan Separation, MASH TL-4 Flared Concrete Barrier, Test No.	
61	1901-05-1 [18]	116

Figure 87. Vehicle Floor Pan Separation, C1W Bridge Rail, Test No. 469469-1 [19]	.117
Figure 88. Vehicle Floor Pan Separation, TL-4 Barrier on Rubber Posts, Test No. 468958-3	
[20]	.118
Figure 89. Vehicle Floor Pan Separation, 42-in. Tall Single Slope Barrier, Test No.	
469467-1 [21]	.119
Figure 90. Vehicle Floor Pan Separation, Minnesota Combination Bridge Rail, Test No.	
MNCBR-1 [22]	120
Figure 91 Vehicle Floor Pan Separation Optimized TI -4 Concrete Bridge Rail Test No	
4CBR-1 [23]	121
Figure 92 Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1)	.121
Located at Vahiele e.g. Test No. OCBP 3	124
Evented at Vehicle c.g., Test NO. OCDR-5	.124
L control et Boar Ayle, Test No. OCBD 2	105
Eleven 04 Symmetry of Test Decults and Sequential Distography. Test No. OCDD 2	123
Figure 94. Summary of Test Results and Sequential Photographs, Test NO. OCDR-5	120
Figure 95. Standardized Buttress AG1 System Layout, 31-in. Tall AG1	.128
Figure 96. General Shape and Dimensions for (a) the Standardized Transition Buttress and	1.00
(b) the Modified Buttress for Use with the 34-in. Tall AGT	.129
Figure 97. End Buttress Shape Transition, Option 1	.132
Figure 98. End Buttress Shape Transition, Option 1	.133
Figure 99. End Buttress Shape Transition, Option 1	.134
Figure 100. End Buttress Shape Transition, Option 1	.135
Figure 101. End Buttress Shape Transition, Option 1	.136
Figure 102. End Buttress Shape Transition, Option 1	.137
Figure 103. End Buttress Shape Transition, Option 2	.139
Figure 104. End Buttress Shape Transition, Option 2	
Figure 105. End Buttress Shape Transition, Option 2	.141
Figure 106. End Buttress Shape Transition, Option 2	.142
Figure 107. End Buttress Shape Transition. Option 2	.143
Figure 108. End Buttress Shape Transition. Option 2	.144
Figure 109 End Buttress Shape Transition Option 3	145
Figure 110 End Buttress Shape Transition, Option 3	146
Figure 111 End Buttress Shape Transition, Option 3	147
Figure 112 End Buttress Shape Transition, Option 3	1/18
Figure 112. End Buttress Shape Transition, Option 3	1/0
Figure 114 End Duttress Shape Transition, Option 3	150
Figure 115 MASHTL 4 Open Concrete Dridge Deil	156
Figure 115. MASH 1L-4 Open Concrete Druge Kan	.130
Figure A-1. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	1 < 1
	.164
Figure A-2. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	
al)	.165
Figure A-3. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	
a1)	.166
Figure A-4. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	
a1)	.167
Figure A-5. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	
a2)	.168

Figure A-6. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	
a2)	169
Figure A-7. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	
a2)	170
Figure A-8. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	171
a_{2}	1/1
Figure A-9. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No.	170
id2) Eigure A 10 Pridge Poil Congrete Test Nos OCPD 1 OCPD 2 and OCPD 2 (Item No	1/2
rigure A-10. Druge Kan Concrete, Test Nos. OCDK-1, OCDK-2, and OCDK-5 (Item No.	173
Figure A-11 Grade Beam Concrete Test Nos OCBR-1 OCBR-2 and OCBR-3 (Item No	175
a3)	174
Figure A-12. Grade Beam Concrete. Test Nos. OCBR-1. OCBR-2. and OCBR-3 (Item No.	
a3)	175
Figure A-13. #4 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b1)	176
Figure A-14. #4 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b1)	177
Figure A-15. #5 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item Nos. b2 through	
b4, b6, and b12)	178
Figure A-16. #4 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b5)	179
Figure A-17. #4 Bent Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item Nos. b7, b8,	
b10, b15 through b17)	180
Figure A-18. #6 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item Nos. b9 and b13).	181
Figure A-19. #4 Bent Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b11)	182
Figure A-20. #5 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b14)	183
Figure B-1. Vehicle Mass Distribution, Test No. OCBR-1	185
Figure B-2. Vehicle Mass Distribution, Test No. OCBR-2	.186
Figure B-3. Vehicle Mass Distribution, Test No. OCBR-3	180
Figure C-1. Floor Pan Deformation Data – Set 1, 1est No. OCBR-1	100
Figure C-2. Occupant Compartment Deformation Data – Set 1, Test No. OCBK-1	190
OCBP 1	101
Figure C-4 Exterior Vehicle Crush (NASS) – Front Test No. OCBR-1	192
Figure C-5 Exterior Vehicle Crush (NASS) – Side, Test No. OCBR-1	.193
Figure C-6. Floor Pan Deformation Data – Set 1. Test No. OCBR-2	194
Figure C-7. Floor Pan Deformation Data – Set 2, Test No. OCBR-2	195
Figure C-8. Occupant Compartment Deformation Data – Set 1, Test No. OCBR-2	196
Figure C-9. Occupant Compartment Deformation Data – Set 2, Test No. OCBR-2	197
Figure C-10. Maximum Occupant Compartment Deformation by Location, Test No.	
OCBR-2	198
Figure C-11. Exterior Vehicle Crush (NASS) – Front, Test No. OCBR-2	199
Figure C-12. Exterior Vehicle Crush (NASS) – Side, Test No. OCBR-2	200
Figure C-13. Comparative Occupant Compartment Crush Measurement, Test No. OCBR-3	201
Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OCBR-1	203
Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OCBR-1	203
Figure D-3. Longitudinal Occupant Displacement (SLICE-1), Test No. OCBR-1	204
Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OCBR-1	204
Figure D-5. Lateral Occupant impact velocity (SLICE-1), Test No. OCBR-1	205

Figure D-6. Lateral Occupant Displacement (SLICE-1), Test No. OCBR-1	205
Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. OCBR-1	206
Figure D-8. Acceleration Severity Index (SLICE-1), Test No. OCBR-1	206
Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. OCBR-1	207
Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. OCBR-1	207
Figure D-11. Longitudinal Occupant Displacement (SLICE-2), Test No. OCBR-1	208
Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. OCBR-1	208
Figure D-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. OCBR-1	209
Figure D-14. Lateral Occupant Displacement (SLICE-2), Test No. OCBR-1	209
Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. OCBR-1	210
Figure D-16. Acceleration Severity Index (SLICE-2), Test No. OCBR-1	210
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OCBR-2	212
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OCBR-2	212
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No.OCBR-2	213
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OCBR-2	213
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. OCBR-2	214
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. OCBR-2	214
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. OCBR-2	215
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. OCBR-2	215
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. OCBR-2	216
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. OCBR-2	216
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. OCBR-2	217
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. OCBR-2	217
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. OCBR-2	218
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. OCBR-2	218
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. OCBR-2	219
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. OCBR-2	219
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OCBR-3	221
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OCBR-3	221
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. OCBR-3	222
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OCBR-3	222
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. OCBR-3	223
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. OCBR-3	223
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. OCBR-3	224
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. OCBR-3	224
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. OCBR-3	225
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. OCBR-3	225
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. OCBR-3	226
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. OCBR-3	226
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. OCBR-3	227
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. OCBR-3	227
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. OCBR-3	228
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. OCBR-3	228
Figure F-17. 10-ms Average Longitudinal Deceleration (DTS), Test No. OCBR-3	229
Figure F-18. Longitudinal Occupant Impact Velocity (DTS), Test No. OCBR-3	229
Figure F-19. Longitudinal Occupant Displacement (DTS), Test No. OCBR-3	230
Figure F-20. 10-ms Average Lateral Deceleration (DTS), Test No. OCBR-3	230

Figure F-21. Lateral Occupant Impact Velocity (DTS), Test No. OCBR-3	231
Figure F-22. Lateral Occupant Displacement (DTS), Test No. OCBR-3	231
Figure F-23. Vehicle Angular Displacements (DTS), Test No. OCBR-3	232
Figure F-24. Acceleration Severity Index (DTS), Test No. OCBR-3	232

LIST OF TABLES

Table 1. MASH TL-4 Crash Test Conditions for Longitudinal Barriers	9
Table 2. MASH Evaluation Criteria for Longitudinal Barrier	10
Table 3. Weather Conditions, Test No. OCBR-1	59
Table 4. Sequential Description of Impact Events, Test No. OCBR-1	61
Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. OCBR-1	76
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OCBR-1	77
Table 7. Weather Conditions, Test No. OCBR-2	79
Table 8. Sequential Description of Impact Events, Test No. OCBR-2	81
Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. OCBR-2	94
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OCBR-2	95
Table 11. Weather Conditions, Test No. OCBR-3	97
Table 12. Sequential Description of Impact Events, Test No. OCBR-3	99
Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. OCBR-3	122
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OCBR-3	123
Table 15. Summary of Safety Performance Evaluation	153
Table 16. MASH TL-4 Crash Test Conditions for Longitudinal Barriers	154
Table 17. MASH TL-4 Crash Test Summary for Open Concrete Bridge Rail	155
Table A-1. Bill of Materials, Test Nos. OCBR-1, OCBR-2, and OCBR-3	163

1 INTRODUCTION

1.1 Background

To prevent errant motorists traversing bridge structures from leaving the roadway, bridge rails are installed along the edges of the bridge deck. One type of bridge rail is a concrete beamand-post system, also known as an open concrete bridge rail. Open concrete bridge rails typically consist of rectangular or tapered trapezoidal posts with vertical-faced rails on top. Many transportation agencies prefer open concrete bridge rails for their aesthetics and drainage capabilities. When impacting open concrete bridge rails, vehicle components such as bumpers and wheels (including tires and rims) have the potential to extend beneath the rail and contact a post, potentially resulting in vehicle snag, which can result in excessive occupant compartment deformation or occupant deceleration. Open concrete bridge rails can also be designed with a lower curb which may mitigate the potential for vehicle components to extend under the rail and snag on the posts. However, systems without curbs allow for improved aesthetics and easier snow removal and water drainage directly away from the bridge edge.

The Kansas Department of Transportation (KDOT) currently utilizes a National Cooperative Highway Research Program (NCHRP) Report 350 [1] Test Level 4 (TL-4) compliant 32-in. tall open concrete corral rail on many of its bridges [2], as shown in Figures 1 through 5. The KDOT corral rail, or a similar variation, is also used to some extent across over 22 states, including Nebraska, Illinois, Virginia, Indiana, Iowa, Ohio, Minnesota, Missouri, Texas, and Wisconsin. However, there are concerns as to whether KDOT's corral rail meets the current roadside hardware criteria in the American Association of State Highway and Transportation Officials' (AASHTO's) Manual for Assessing Safety Hardware (MASH) [3] due to modifications of the test vehicles and impact conditions in MASH relative to NCHRP Report 350. First, MASH test designation no. 4-10 with the 1100C small car requires an impact at 62 mph and an angle of 25 degrees, while the previous NCHRP Report 350 small car test required an impact angle of only 20 degrees. The increase in the small car impact angle may potentially increase vehicle snag, vehicle instability, and occupant risk, especially with respect to open concrete rail post geometry. Second, similar wheel snag and instability concerns exist with respect to open concrete rails during impacts with the 2270P pickup truck vehicle. Third, the mass of the 2270P pickup truck and 10000S single-unit truck (SUT) vehicles were increased in MASH to 5,000 lb and 22,000 lb, respectively, and the impact speed for test designation no. 4-12 with the SUT was increased from 49.7 mph to 56 mph. These changes in vehicle mass and impact conditions have increased the impact loads imparted to roadside bridge rails. Analysis of NCHRP Report 350 and MASH tests of rigid barrier systems have shown increases in impact loading between 14 to 50 percent for the pickup truck and 11 to 54 percent for the SUT. Finally, the increased speed and mass of the 10000S vehicle test in MASH has indicated a need for increased rail height as compared to TL-4 bridge rails evaluated under NCHRP Report 350 due to the SUT's propensity to roll over the bridge rail. Currently, the minimum height of a rigid, concrete barrier evaluated to MASH TL-4 with the 10000S vehicle has been identified as 36 in. in multiple successful crash tests [4].

At the time of this research, only one open concrete bridge rail had been evaluated under MASH criteria. Texas A&M Transportation Institute (TTI) recently completed MASH testing of a 42-in. tall open concrete bridge rail system, shown in Figure 6 [5]. This system was successfully evaluated to MASH TL-5, and was successfully tested with both the 2270P pickup truck and

1100C small car. While this open concrete bridge rail has some similar features to the KDOT design, the TTI bridge rail differs significantly in that it incorporated a 9-in. tall curb at the base, was 10 in. taller, and had different post and joint details. The inclusion of the curb at the base of the rail may mitigate some of the wheel snag and vehicle stability concerns posed by an open concrete bridge rail without a curb.

Five state DOTs, which included Kansas, Iowa, Nebraska, South Dakota, and Virginia, desired the development of a modified version of the KDOT open concrete bridge rail system that was MASH TL-4 compliant. In addition to potential modifications to the bridge rail in order to meet MASH TL-4 standards, the states desired that the bridge rail design consider 3-in. asphalt overlays while maintaining safety performance. Finally, the Midwest Pooled Fund has developed a MASH TL-3 standardized concrete end buttress for the attachment of thrie beam approach guardrail transitions. The objective of this buttress design was to allow the attachment of any MASH TL-3 compliant thrie beam approach guardrail transition to a standard parapet design that could accommodate approach guardrail transitions with or without curbs and at various post spacings and post configurations. This standardized concrete end buttress recently completed MASH TL-3 evaluation for both a standard 31-in. tall thrie beam approach guardrail transition that allows for pavement overlays. It was desired that the MASH TL-4 corral rail design be developed with appropriate transitions to interface with the standardized concrete end buttress.

Previous research on the development of the MASH TL-4 open concrete bridge rail system was detailed in a Phase I design report [6-7]. The proposed design for the new open concrete bridge rail was a 27-in. tall by 14-in. wide concrete rail supported by 36-in. long by 10-in. wide concrete posts. This report documents three full-scale crash tests conducted to evaluate the new MASH TL-4 open concrete bridge rail system.

1.2 Objective

The objective of this research effort was to develop a MASH-compliant TL-4 open concrete corral railing based on the existing KDOT NCHRP Report 350 TL-4 corral rail. The railing was designed for strength, vehicle stability, and to accommodate pavement overlays. Efforts were also made to optimize load transfer into the deck, thereby minimizing the risk of damage to the bridge deck. Details were developed for both interior and end regions/discontinuities of the bridge rail. Geometric and structural transitions between the bridge rail design and the standardized end buttress were provided for the simple and consistent attachment of approach guardrail transitions. The system was evaluated according to MASH TL-4 criteria through full-scale crash testing.

1.3 Scope

The research objective was achieved through the completion of several tasks detailed in this report. Three full-scale crash tests were conducted on the open concrete bridge rail according to MASH test designation nos. 4-10, 4-11, and 4-12. Then the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the open concrete bridge rail. Guidance was also provided relative to geometric and structural transitions between the bridge rail design and the standardized end buttress for attachment of approach guardrail transitions.

Figure 1. KDOT Open Concrete Corral Rail Details [8]

Figure 2. KDOT Open Concrete Corral Rail Details [8]

4

Figure 3. KDOT Open Concrete Corral Rail Details [8]

S

Figure 4. KDOT Open Concrete Corral Rail Details [8]

Figure 5. KDOT Open Concrete Corral Rail Details [8]

 \neg

Figure 6. TTI TL-5 Open Concrete Bridge Rail [5]

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as open concrete bridge rails, must satisfy impact safety standards to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System. For new hardware, these safety standards consist of the guidelines and procedures published in MASH. According to TL-4 of MASH, longitudinal barrier systems must be subjected to three full-scale vehicle crash tests, as summarized in Table 1.

Test Article	Test Designation No.	Test Vehicle	Vehicle Weight lb	Impact Conditions		Evaluation
				Speed mph	Angle degrees	Criteria ¹
Longitudinal Barrier	4-10	1100C	2,420	62	25	A,D,F,H,I
	4-11	2270P	5,000	62	25	A,D,F,H,I
	4-12	10000S	22,000	56	15	A,D,G

Table 1. MASH TL-4 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

Test designation no. 4-10 with the 1100C vehicle was required to evaluate occupant risk measures and the potential for vehicle snag on the upstream end of the posts. Test designation no. 4-11 with the 2270P vehicle was required to evaluate concerns for increased bridge rail loading, potential vehicle snag at joints and posts, and vehicle instability. Test designation no. 4-12 with the 10000S vehicle was required to evaluate the overall structural capacity of the bridge rail and its ability to contain and redirect SUTs. Full evaluation of the open concrete bridge rail design would likely require multiple tests of each test designation to evaluate design differences between the end and interior sections of the bridge rail. However, it was believed that selection of a critical configuration for each test could be combined with conservative bridge rail design to limit the number of required tests.

Note that the test matrix detailed herein represents the researchers' best engineering judgement of which tests were necessary to assess system crashworthiness according to MASH safety requirements. However, any tests deemed non-critical in this research effort might require future evaluation due to revisions to the MASH criteria or additional knowledge gained over time.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.						
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.						
	G.	It is preferable, although not essential, that the vehicle remain upright during and after collision.						
Occupant Risk	Н.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5. of MASH for calculation procedure) should satisfy the followin limits:						
		Occupant Impact Velocity Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s	40 ft/s				
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH for calculation procedure) should satisfy the following limits:						
		Occupant Ridedown Acceleration Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				

Table 2. MASH Evaluation Criteria for Longitudinal Barrier

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three factors: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bridge railing to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH.

3 CRITICAL IMPACT POINT SELECTION

Evaluation of the critical impact points (CIPs) for the TL-4 open concrete bridge rail required consideration of several factors, including occupant risk, vehicle capture, and critical structural loading of the barrier at interior and end sections. First, test designation nos. 4-10 and 4-11 with passenger vehicles were designed primarily to evaluate occupant risk during impact with the bridge rail. As such, CIPs for test designation nos. 4-10 and 4-11 corresponded to the location on a bridge rail where vehicle snagging was maximized. MASH states that CIPs for the 1100C and 2270P vehicles for longitudinal barriers should be 3.6 ft and 4.3 ft upstream from a reference post, respectively. Thus, the CIPs for test nos. OCBR-1 and OCBR-2 were selected as $43^{3}/_{16}$ in. upstream from the upstream edge of post no. 11 and $51^{5}/_{8}$ in. upstream from the upstream edge of post no. 7, respectively. Because the TL-4 open concrete bridge rail was designed with an increased rail height to accommodate 3-in. tall paving overlays, the critical height of the rail also had to be specified for the passenger vehicle tests. The researchers determined that evaluation of the TL-4 open concrete bridge rail at its maximum rail height would provide the largest opening between the rail element and the road surface, and the corresponding greatest potential for the vehicle wheels to extend under the rail and snag on the system posts.

Test designation no. 4-12 with the 10000S SUT was intended to evaluate the structural capacity of the barrier and the containment of the heavy truck. MASH states that the CIP for test designation no. 4-12 with the 10000S vehicle should be selected to generate the maximum lateral loading of the bridge rail components and connections. To evaluate the CIP for the TL-4 open concrete bridge rail, the researchers selected an impact point that would maximize the loading at the midspan of the rail as this would generate the highest beam moments as well as impart critical loading to the posts and deck components. The design of the open concrete bridge rail had previously identified a midspan impact as the critical location for loading of the bridge rail based on inelastic beam and post analysis with a three-span failure mode [6-7]. Research conducted during NCHRP Project 22-20(2) [9] had previously shown that the maximum loading from SUT impacts occurs as a result of the rear tandem impacting the bridge rail as the vehicle is redirected.

To select the CIP for the SUT used in the open concrete bridge rail crash test, it was necessary to investigate previous SUT full-scale crash tests and determine approximately where the rear tandem impacted the system in relation to the initial impact point. Through examination of videos and photographs of full-scale crash tests, it was determined that the rear tandem of the SUT consistently impacted the barrier downstream from the initial impact point. Additionally, it was observed that as the wheelbase of the SUT increased, the impact point of the rear tandem moved farther upstream, closer to the initial impact point. Based on the previously observed impact locations, SUTs with wheelbases consistent with that used in test no. OCBR-3 corresponded to a rear tandem impact located approximately 16 to 19 in. downstream from the initial impact location. Thus, the CIP for test no. OCBR-3 was selected 18 in. upstream from the midspan between post nos. 3 and 4, as this impact location would result in the rear tandem impacting at approximately the mid-span of the rail. It should also be noted that the researchers considered both interior and end section impact locations of the bridge rail and deck were designed with greater capacity than the interior sections. As such, the impact was conducted on an interior region of the bridge rail.

Finally, because the TL-4 open concrete bridge rail system had two potential top rail heights dependent on whether the system was installed with an overlay 36 in. and 39 in., the researchers had to select the critical height of the bridge rail for test designation no. 4-12. Typically, MASH TL-4 full-scale crash tests have been conducted at the lower height to ensure adequate capture and containment of the 10000S vehicle, and previous MASH TL-4 crash testing has established the lower height for containment of the 10000S vehicle as 36 in. [9]. Because the lower rail height of the TL-4 open concrete bridge rail with the overlay was planned to be 36 in., which coincided with the rail height of multiple previous full-scale crash tests, it was not believed that the lower bound rail height was critical for evaluation of the system. The highest rail height of the bridge rail without the overlay in place, 39 in., was selected for test designation no. 4-12 because this height increased the effective load height of the vehicle on the bridge rail and would produce more critical loads and moments in the posts and deck.

4 DESIGN DETAILS

The TL-4 open concrete bridge rail system test installation consisted of a 39-in. tall by 132-ft long open concrete bridge rail supported by 15 concrete posts, as shown in Figures 7 through 26. Photographs of the test installation are shown in Figures 27 through 29. Material specifications, mill certifications, and certificates of conformity for the system materials are in Appendix A.

The open concrete bridge rail was supported by 14 36-in. long by 10-in. wide rectangular posts in the interior section, and a 72-in. long by 10-in. wide rectangular end post at the upstream end of the system. All posts were 12 in. tall and spaced at 108 in. center to center. The backs of the posts were offset 2 in. from the deck edge. Vertical reinforcement in the interior section posts consisted of 12 No. 5 rebars, 6 on each face of the post, spaced at 6 in. The vertical reinforcement at the end section post consisted of 28 No. 5 rebars, 14 on each face of the post, longitudinally spaced at 5 in. Post shear reinforcement in each of the concrete posts consisted of 3 No. 4 rebar stirrups vertically spaced at 4 in. The reinforcement for the interior posts and end section post is shown in Figures 11 through 13.

A 27-in. tall by 14-in. wide concrete rail was supported by posts, as shown in Figure 27. The rail was installed with a 4-in. post setback measured from the traffic-side face of the rail to the traffic-side face of the posts. The longitudinal rail reinforcement in the interior section of rail consisted of 8 No. 6 rebars, 4 on each face of the rail, vertically spaced at 6½ in. on center, as shown in Figure 9. The longitudinal rail reinforcement in the end section of rail consisted of 14 No. 6 rebars, 7 on each face of the rail, vertically spaced at 3¼ in. on center, as shown in Figures 12 and 13.

The upstream 70 ft of the test installation was installed on an 8-in. thick simulated bridge deck, which extended 60 in. laterally past the reinforced concrete grade beam, as shown in Figure 17. The remaining downstream portion of the open concrete bridge rail was anchored to the existing concrete tarmac. The bridge rail, bridge deck, and grade beam were all constructed utilizing 4,000-psi concrete.

Reinforcement for the bridge deck consisted of no. 4 transverse U-bars, no. 4 longitudinal bars, and no. 5 lateral U-bars that wrapped around the vertical post reinforcement of both the interior and end section posts to satisfy the area of steel requirement in this section. Lateral U-bars were included to provide additional flexural reinforcement as well as tension reinforcement. Clear cover from the top of the bridge deck to the top layer of reinforcement was 21/2 in., and clear cover from the bottom of the bridge deck to the bottom layer of reinforcement was 11/2 in. Lateral and longitudinal clear cover from the edge of the bridge deck to the end of the lateral and longitudinal deck reinforcement was 2 in. In interior sections of the deck at posts, no. 4 transverse U-bars were spaced at 3 in., as this spacing aligned with the vertical post reinforcement. At interior deck sections between posts, the no. 4 transverse U-bars were spaced at 12 in. In the region of the deck at the end post, no. 4 transverse U-bars were laterally spaced at 21/2 in. Lateral no. 5 U-bars spaced at 10 in. were wrapped around two vertical post bars in the end post region. The no. 4 transverse U-bars in the transition region between the end post and the interior post were laterally spaced at 9 in. Longitudinal bridge deck reinforcement was placed adjacent to vertical post bars to reduce the possibility of reinforcement pulling out of the concrete, and the remaining bars were spaced at 12 in. in the top and bottom reinforcement layers.

It should be noted that three deck reinforcement options were provided during the design phase of this project [6-7]. The deck reinforcement selected for full-scale crash testing was chosen as it would be the easiest to construct. However, the other options listed in the design report would be expected to perform similarly.

Figure 7. Test Installation Layout, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 8. System Profile View, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 9. Concrete Rail, Deck, and Box Beam Assembly, Interior Section, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 10. Modified Bridge Rail Assembly, Post Nos. 1 and 2, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 11. Typical Interior Post Details, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 12. Interior Post and Downstream End Section Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 13. Downstream Barrier Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 14. Bridge Rail Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 15. Bridge Deck Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 16. Bridge Deck Assembly: Upstream End Section and First Interior Post Section, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 17. Bridge Deck Assembly Details, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 18. Bridge Deck Assembly: Downstream Section, Typical Interior Post Section on Deck, Test Nos. OCBR-1, OCBR-2, and OCBR-3

26

Figure 19. Bridge Deck Assembly Details, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 20. Bridge Deck Detail, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 21. Bridge Deck Detail, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 22. Concrete Grade Beam Assembly, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 23. System Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 24. System Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 25. System Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3

ltem No.	QTY.	Description	Material Specification	Treatment Specification	
a1	1	Bridge Deck Concrete [*]	Min. f'c = 4,000 psi	_	
a2	1	Bridge Rail Concrete*	Min. f'c = 4,000 psi	_	
a3	1	Grade Beam Concrete*	Min. f'c = 4,000 psi		
ь1	189	#4 Rebar, 147 1/2" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b2	112	#5 Rebar, 53 7/16" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b3	7	#5 Rebar, 154 3/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b4	70	#5 Rebar, 30" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b5	27	#4 Rebar, 836" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b6	140	#5 Rebar, 37 1/2" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b7	133	#4 Bent Rebar, 73 7/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b 8	70	#4 Bent Rebar, 87" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b9	8	#6 Rebar, 1580" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
ь10	42	#4 Bent Rebar, 82 3/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b11	3	#4 Bent Rebar, 154 3/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b12	21	#5 Rebar, 155 5/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b13	6	#6 Rebar, 176 1/4" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b14	84	#5 Rebar, 45" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b15	140	#4 Rebar, 46" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b16	70	#4 Bent Rebar, 35" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	
b17	70	#4 Bent Rebar, 38 1/2" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	

* NE Mix 47B1S/1PF4000HW was used for testing purposes.

MURSE	Open Concrete Bridge Rail Test Nos. OCBR-1-3	SHEET: 20 of 20 DATE: 8/20/2021
Midwest Roadside	Bill of Materials	DRAWN BY: MJM/LJP/S BW/GHR
Safety Facility	DWG. NAME. SCALE: No OCBR-1-3_R18 UNITS: in.	ne REV. BY; JD/JEK/SK R/JDR/KAL /JCH/RWB

Figure 26. Bill of Materials, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 27. Test Installation Photos, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 28. Typical Post Installation, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Figure 29. Bridge Deck Installation, Test Nos. OCBR-1, OCBR-2, and OCBR-3

5 TEST CONDITIONS

5.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

5.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [10] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

5.3 Test Vehicles

For test no. OCBR-1, a 2015 Hyundai Accent small car was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,460 lb, 2,431 lb, and 2,590 lb, respectively. The test vehicle is shown in Figures 30 and 31, and vehicle dimensions are shown in Figure 32.

For test no. OCBR-2, a 2015 Dodge Ram 1500 pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,921 lb, 5,002 lb, and 5,116 lb, respectively. The test vehicle is shown in Figures 33 and 34, and vehicle dimensions are shown in Figure 35. Note that the vehicle width, measurement A in Figure 35, has a value of 75⁵/₈ in. (1,920 mm), which is outside of the MASH recommended limits for 2270P overall vehicle width of 78 \pm 2 in. $(1,950 \pm 50 \text{ mm})$. This value was deemed acceptable for four reasons: first, the value is outside of recommended limits when comparing standard units, however it falls within MASH recommendations when comparing metric units. The authors acknowledge that there are flaws in the MASH limits when comparing standard and metric recommendations. For example, 78 in. is 1,981 mm, and not 1,950 mm, a difference of nearly 11/4 in. Second, the rear vehicle width, measurement T in Figure 35, has a value of 761/4 in., which is within the MASH recommended limits for 2270P overall vehicle width of 78 ± 2 in. Note that MASH does not specify the location in which overall vehicle width should be measured. Third, Dodge Ram 1500 pickup trucks have been the primary 2270P make and model for full-scale crash test vehicles for several years. As such this vehicle was deemed acceptable for consistency. Lastly, MASH states that vehicles should conform to vehicle properties when practical.

For test no. OCBR-3, an International Durastar 4300 SBA 4X2 Single-Unit Truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 16,784 lb; 21,906

lb; and 22,052 lb; respectively. The test vehicle is shown in Figures 36 and 37, and vehicle dimensions are shown in Figure 38. Note that the total curb weight was 16,784 lb, outside of the MASH recommended limit of $13,200 \pm 1,400$ lb. This vehicle was deemed acceptable as the test inertial weight was within MASH recommended limits, there was insufficient time to locate a vehicle with a lower curb weight prior to the test, and MASH states that vehicles should conform to vehicle properties when practical.

The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [13]. The final c.g. location is shown in Figure 32. The Suspension Method [12] was used to determine the vertical component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The final c.g. location is shown in Figure 35. The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights for all three vehicle types. The Elevated Axle Method was used to determine the vertical component of the c.g. for the 10000S vehicle [11]. This method converted measured wheel weights at different elevations to the location of the vertical component of the c.g. The final c.g. location is shown in Figure 38. Ballast information and data used to calculate the location of the vehicles' c.g. are shown in Appendix B.

Square, black-and-white checkered targets were placed on the vehicles, as shown in Figures 39 through 41, to serve as a reference in the high-speed digital video and aid in the video analysis. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper for test no. OCBR-1, right-side windshield wiper for test nos. OCBR-2 and OCBR-3, and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicles so they could be brought safely to a stop after the test.

Figure 30. Test Vehicle, Test No. OCBR-1

Figure 31. Test Vehicle's Interior Floorboards and Undercarriage, Test No. OCBR-1

		Test Name:	OCBR-1	VIN No:	KMHCT4AF	-5FU879644
Model Year:	2015	Make:	Hyundai	Model:	Acc	cent
Tire Size:	175/70R14		33 psi	Odometer:	129	357
	M		T	Vehicle Geometry Target Ranges listed belo A: 66 (167) 65±3 (1650±75) 0: 107 - 214 (200)	- in. (mm) 3) B: <u>56</u>	<u>3 1/4 (1429)</u>
		A		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1) D: 31 5) F: 35	3/4 (806) 35±4 (900±100) 35±4 (900±100) 5 (889)
		Test Inertial CG		G: <u>21 3/4 (552</u>	<u>)</u> H: 38	3 3/4 (984) 39±4 (990±100)
	- Q		ŧ	l: <u>8</u> (203) J: 22	2 (559)
P		1-1-3		K: <u>11 (279</u>) L: <u>25</u>	5 1/8 (638)
		• []		M: 59 1/4 (150)	5) N: 59	3/8 (1508) 59±2 (1425±50)
				O: 29 (737 28±4 (711±100)	<u>)</u> P: <u>1</u>	(25)
	- D	EF	:	Q: 23 (584) R: <u>15</u>	5 1/4 (387)
		-		S: 10 1/2 (267) T: <u>67</u>	7 (1702)
Mass Distrib	ution - Ib (kg)			U (impact	width): 30) 1/2 (775)
Gross Static	LF <u>810 (367)</u>			Top of radia	tor core support: 27	7 1/2 (699)
	LR <u>487 (221)</u>	_ RR (237)		Whee Height	I Center (Front): 11	1 (279)
Mainhte				Whee Heigh	I Center t (Rear): <u>11</u>	1 (279)
lb (kg)	Curb	Test Inertial	Gross Static	Wh Clearance	eel Well (Front): 24	4 3/4 (629)
W-front	1550 (703)	1498 (679)	1580 (717)	_ Clearance	eel Well e (Rear): 25	5 (635)
W-rear	910 (413)	933 (423)	1010 (458)	Bottor Height	n Frame (Front): 5	1/4 (133)
W-total	2460 (1116)	2431 (1103)	2590 (1175)	Bottor	n Frame t (Rear): <u>16</u>	3 (406)
		2420100 (1100120)	2000±00 (11/0±00)	Engine	е Туре:	Gasoline
GVWR Rating	gs Ib	Surrogate Occupant Dat	ta	Engir	e Size:	1.6L 4 cyl
Front	1874	Туре:	Hybrid II	Transmission	ו Type:	Automatic
Rear	1852	Mass:	161 lb	_ Drive	е Туре:	FWD
Total	3527	Seat Position: R	ight/Passenger			
Note ar	y damage prior to test	t:	N	None		

Figure 32. Vehicle Dimensions, Test No. OCBR-1

Figure 33. Test Vehicle, Test No. OCBR-2

Figure 34. Test Vehicle's Interior Floorboards and Undercarriage, Test No. OCBR-2

			Test Name:	OCBR-2		I No:1C6	RR6FG6FS720783
Model Year:	2015		Make:	Dodge	Mo	odel:	Ram 1500
Tire Size:	p265/70/	R17	Tire Inflation Pressure:	40 psi	Odom	eter:	203907
					Vehic Target F	le Geometry - in. (Ranges listed below	(mm)
					A: <u>75 </u> C: <u>229</u> 2: E: <u>140</u> G: <u>28</u> 3	5/8 1920 7/8 78±2 (1950±50) 1/1 5822 19/20 37±13 (6020±325) 1/1 3562 7/20 1/4 3562 7/20 48±12 (3760±300) 3/4 730 1/4 min: 28 (710) 1/4	B: 74 3/8 1889 1/8 D: 42 1066 4/5 39±3 (1000±75) F: 47 1193 4/5 H: 66 1/8 1679 23/40 63±4 (1575±100) 63±4 (1575±100) 63±4 (1575±100) 63±4 (1575±100)
P-+ -	- Q - R				I: <u>12</u>	3/4 323 17/20 508	J: <u>26 660 2/5</u> L: <u>28 3/4 730 1/4</u>
					M: <u>67</u>	7/8 1724 1/40 37±1.5 (1700±38) 1143	N: <u>67 3/4 1720 17/20</u> 67±1.5 (1700±38) P: <u>4 3/4 120 13/20</u>
-		-H		-F	Q: <u>30</u>	43±4 (1100±/5) 1/2 774 7/10	R: 18 1/2 469 9/10
-	22		- C		S: <u>13</u>	330 1/5	T: <u>76 1/4 1936 3/4</u>
Mass Distrib	ution - Ib (ka)					U (impact wic	ith): <u>36 914 2/5</u>
Gross Static	LF <u>1403</u> LR <u>1189</u>	<u>(636)</u> RF (539) RR	1339 (607) 1235 (560)			Wheel Ce Height (Fr Wheel Ce Height (Re Wheel	enter ont): <u>14 3/4 374 13/20</u> enter ear): <u>15 381</u> Well well
Weights Ib (kg)	Cu	rb	Test Inertial	Gross Static		Clearance (Pro Wheel Clearance (Re	Well ear): 37 1/4 946 3/20
W-front	2694	(1222)	2643 (1199)	2742 (1244	L)	Bottom Fr Height (Fre	rame ont): 18 457 1/5
W-rear	2227	(1010)	2359 (1070)	2424 (110))	Bottom Fr Height (Re	rame ear): 24 5/8 625 19/40
W-total	4921	(2232)	5002 (2269)	5166 (2343	3)	Engine Ty	ype: Gasoline
			5000±110 (2270±50)	5165±110 (2343±90	")	Engine S	ize:3.6L V6
GVWR Rating	gs - Ib		Surrogate Occupant Da	ta		Transmission Ty	ype: Automatic
Front	3700		Type:	Hybrid II		Drive Ty	ype: RWD
Rear	3900		Mass:	164 lb		Cab St	yle: Quad Cab
Total	6800		Seat Position:	Passenger		Bed Len	gth:76"
Note any damage prior to test: Roof dents/scrape, right side front door dent by door handle.							

Figure 35. Vehicle Dimensions, Test No. OCBR-2

Figure 36. Test Vehicle, Test No. OCBR-3

Figure 37. Test Vehicle's Interior Floorboards and Undercarriage, Test No. OCBR-3

	Test Name:	OCBR-3	VIN No: 11	ITMMAAPXDH412511
Model Year: 2013	Make:	International	Model:	4300 SBA 4X2
Tire Size: 265/75R22.5G Tire	e Inflation Pressure:	110 psi	Odometer:	350002
	V		Vehicle Geometry - in. (n Target Ranges listed below	ım)
	F = ,= 1		A: 92 2336 4/5	B: 98 2489 1/5
		Ţ	C: 391 5/8 9947 11/40 Max: 394 (10000)	D: 39 3/8 1000 1/8
	{]]		E: 236 3/8 6003 37/40 Max: 240 (6100)	F: <u>115 7/8 2943 9/40</u>
	Fest Inertial CG		G: 48 1219 1/5	H: 147 13/16 3754 7/16
			l: 21 533 2/5	J:35889
			K: 24 20/93 615 5/82	L: 48 1219 1/5 49±2 (1245±50)
		×	M: 80 1/4 2038 7/20	N: 73 1854 1/5
			O: 59 1498 3/5	P: 4 1/2 114 3/10
			Q: 40 1016	R: 23 1/2 596 9/10
	- F		S: 37 939 4/5	T: 102 2590 4/5
Ballast			U: 107 2717 4/5	V: 270 1/2 6870 7/10
Weight			MI- 2 1/2 99 0/10	X: 147 1/4 2740 2/20
CG height			W. <u>3 1/2</u> 00 3/10	<u> </u>
in. (mm): <u>62 1/2 (1588)</u> 63±2 (1600±50)			Y: <u>31 787 2/5</u>	_ Z: <u>46 3/4 1187 9/20</u>
Mass Distribution - Ib (kg)		IW (Impact Wid	th): 45 1/2 1155 7/10	AA: <u>70 1/2 1790 7/10</u>
Gross Static LF 4226 (1917) RF 40	096 (1858)			
LR 6830 (3098) RR 69	900 (3130)		Wheel (Height (I	Center Front): 18 3/4 476 1/4
			Wheel Height (Center Rear): 20 508
Weights Ib (kg) Curb	Test Inertial	Gross Static	When Clearance (I	el Well Front): 45 3/4 1162 1/20
W-front 8284 (3758) 82	206 (3722)	8322 (3775)	Whee Clearance (el Well Rear): 43 3/4 1111 1/4
W-rear 8500 (3856) 13	700 (6214)	13730 (6228)	Bottom Height (Frame Front): 25 635
W-total 16784 (7613) 21	906 (9936)	22052 (10003)	Bottom Height (Frame Rear): 27 7/8 708 1/40
13200±2200 (6000±1000)	22046±660 (10000±300)			
GVWR Ratings - Ib Surr	rogate Occupant Data		Engine	Type: Diesel
Front 4535	Туре:	Hybrid II	Engine	Size: 7.6L V6
Rear 8618	Mass:	146 lb	Transmission	Type: Manual
Total 13164	Seat Position: Ri	ght/Passenger	Drive	Type: RWD
Note any damage prior to test:			None	

Figure 38. Vehicle Dimensions, Test No. OCBR-3

Figure 39. Target Geometry, Test No. OCBR-1

Figure 40. Target Geometry, Test No. OCBR-2

Figure 41. Target Geometry, Test No. OCBR-3

5.4 Simulated Occupant

For test nos. OCBR-1, OCBR-2, and OCBR-3, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 161 lb, 164 lb and 146 lb for test nos. OCBR-1, OCBR-2, and OCBR-3, respectively. As recommended by MASH, the simulated occupant weight was not included in calculating the c.g. location.

5.5 Data Acquisition Systems

5.5.1 Accelerometers and Rate Transducers

The accelerometer and rate transducer units used in the full-scale crash testing were the SLICE-1, SLICE-2, and TDAS units described below. SLICE-1 and SLICE-2 units were used in test nos. OCBR-1 and OCBR-2 while all three units were used in test no. OCBR-3. For test nos. OCBR-1 and OCBR-2, SLICE-1 and SLICE-2 units were mounted near the c.g. of the test vehicles. SLICE-1 was the primary unit for test no. OCBR-1 and SLICE-2 was the primary unit for test no. OCBR-1 and SLICE-2 was the primary unit for test no. OCBR-1 and SLICE-2 was the primary unit for test no. OCBR-2. For test no. OCBR-3, the SLICE-1 unit was mounted near the c.g., the TDAS unit was mounted in the cab, and the SLICE-2 unit was mounted on the rear axle of the SUT. Data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAEJ211/1 specifications [14].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. Triaxial acceleration and angular rate sensor modules were mounted inside the bodies of custom-built SLICE 6DX event data recorders equipped with 7GB of non-volatile flash memory and recorded data at 10,000 Hz to the onboard microprocessor. The accelerometers had a range of \pm 500g's in each of three directions (longitudinal, lateral, and vertical) and a 1,650 Hz (CFC 1000) anti-aliasing filter. The SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of three directions (roll, pitch, and yaw). The raw angular rate measurements were downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" software program and a customized Microsoft Excel worksheet were used to analyze and plot both the accelerometer and angular rate sensor data.

The TDAS unit was a data acquisition system developed and manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. Sensor data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M mounted on the TDAS3-R4 module rack. The SIM was configured with 16 MB SRAM and eight sensor input channels with 250kB SRAM/channel. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The unit was configured to record one set of triaxial acceleration data and one set of triaxial angular rate data. The two-arm piezo resistive accelerometer module manufactured by Endevco of San Juan Capistrano, California had a range of ± 500 g's and measured longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The ARS-1500 angular rate sensors with a range of 1,500 degrees/sec measured the rates of rotation of the test vehicle in three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the DTS SIM. The raw data measurements were downloaded, converted to the proper Euler angles for analysis

and plotted. The "DTS TDAS Control" computer software program and a custom Microsoft Excel worksheet were used to analyze and plot both the accelerometer and angular rate sensor data.

5.5.2 Retroreflective Optic Speed Trap

A retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the electronic data.

5.5.3 String Potentiometers

String potentiometers were attached to the system at post nos. 3, 4 and the mid-span between posts nos. 3 and 4 for test no. OCBR-3. The string potentiometers used were Unimeasure model nos. PA-50-70124 and PA-80 with a displacement range up to 50 and 80 in., respectively. Two PA-50-70124 units and one PA-80 unit were used. During testing, output voltage signals were sent from the transducers to a National Instruments PCI-6071E data acquisition board, acquired with LabView software, and stored on a personal computer at a sample rate of 10,000 Hz. The positioning and setup of the transducers are shown in Figure 42.

Figure 42. Location of String Potentiometers, Test No. OCBR-3

5.5.4 Digital Photography

Five AOS high-speed digital video cameras, five GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. OCBR-1. Six AOS high-speed digital video cameras, five GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. OCBR-2. Due to technical difficulties, cameras GP-24 and PAN-5 did not record the impact event for test no. OCBR-2. Seven AOS high-speed digital video cameras, eight GoPro digital video cameras, and six Panasonic digital video cameras were utilized to film test no. OCBR-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 43 through 45.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 75 mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 35 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	500	Kowa 12 mm Fixed	-
AOS-10	AOS TRI-VIT 2236	500	Kowa 16 mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

Figure 43. Camera Locations, Speeds, and Lens Settings, Test No. OCBR-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50 mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Kowa 16 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	500	Kowa 12 mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 24 – 135	24
AOS-12	AOS J-PRI	500	Sigma 28 – 70	28
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24*	GoPro Hero 7	240		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5*	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

*Camera did not record impact event due to technical difficulties.

57

Figure 44. Camera Locations, Speeds, and Lens Settings, Test No. OCBR-2

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Fujinon 50 mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Sigma 24 – 135	-
AOS-7	AOS X-PRI Gigabit	500	Kowa 16 mm	-
AOS-9	AOS TRI-VIT 2236	500	Kowa 12 mm	-
AOS-11	AOS J-PRI	500	Sigma 17 – 50	17
AOS-12	AOS J-PRI	500	Nikon 50 mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

*Camera did not record impact event due to technical difficulties.

Figure 45. Camera Locations, Speeds, and Lens Settings, Test No. OCBR-3
6 FULL-SCALE CRASH TEST NO. OCBR-1

6.1 Weather Conditions

Test no. OCBR-1 was conducted on October 6, 2021 at approximately 2:00 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 3.

Temperature	76°F
Humidity	48%
Wind Speed	7 mph
Wind Direction	Variable
Sky Conditions	Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.01 in.

Table 3. Weather Conditions, Test No. OCBR-1

6.2 Test Description

Initial vehicle impact was to occur $43^{3}/_{16}$ in. upstream from the upstream edge of post no. 11, as shown in Figure 46, which was selected using Table 2.7 of MASH 2016. The 2,431-lb small car impacted the open concrete bridge rail at a speed of 64.2 mph and at an angle of 25.2 degrees. The actual point of impact was 45.3 in. upstream from the upstream edge of post no. 11, which was 2.1 in. upstream from the targeted impact location. The right-front wheel of the vehicle extended beneath the rail and impacted post no. 11 of the system. Wheel and tire overlap at post no. 11 was approximately 5¼ in. from the face of the post. As the vehicle was redirected, loading of the right-front fender, right-front door, and the bottom of the A-pillar caused fracture of the driver-side window and deformation and cracking of the windshield. This damage to the vehicle glass was not due to the windshield or side window contacting the barrier but was attributed to the loading and deformation of the vehicle body. It was also noted that the simulated occupant's head extended out of the window, but did not contact the test article. The vehicle exited the barrier and continued downstream in a stable manner until brakes were applied. After brakes were applied, the vehicle came to rest 186.2 ft downstream of the impact target and 16.5 ft laterally in front of the system, facing downstream and toward the non-traffic side of the barrier.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 47 and 48. Documentary photographs of the crash test are shown in Figure 49. The vehicle trajectory and final position are shown in Figure 50.

Figure 46. Target Impact Location, Test No. OCBR-1

Time	Event	
(sec)		
0.000	Vehicle's front bumper and right headlight contacted system 2.1 in. upstream from targeted impact location between post nos. 10 and 11 and deformed.	
0.010	Vehicle's right fender contacted barrier and deformed. Vehicle's right-front tire contacted barrier. Vehicle's right headlight shattered.	
0.022	Vehicle's left fender deformed. Vehicle's hood contacted barrier and deformed. Vehicle yawed away from barrier.	
0.034	Vehicle's right mirror and right-front door contacted barrier and deformed. Vehicle's roof deformed. Vehicle pitched downward.	
0.044	Vehicle's front bumper and right mirror detached. Vehicle's right A-pillar and right-front door frame deformed. Vehicle's windshield cracked.	
0.060	Vehicle rolled toward barrier. Vehicle's right-front window shattered and right-front tire deflated.	
0.200	Vehicle was parallel to system at a speed of 42.1 mph.	
0.222	Vehicle's right-rear door, rear bumper, and right quarter panel contacted barrier and deformed.	
0.238	Vehicle pitched upward.	
0.258	Vehicle exited system at a speed of 40.8 mph and an angle of 2.4 degrees.	
0.548	Vehicle's left headlight disengaged.	
4.908	Vehicle came to rest.	

Table 4. Sequential Description of Impact Events, Test No. OCBR-1

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 47. Sequential Photographs, Test No. OCBR-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 48. Sequential Photographs, Test No. OCBR-1

Figure 49. Documentary Photographs, Test No. OCBR-1

Figure 50. Vehicle Final Position and Trajectory Marks, Test No. OCBR-1

6.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 51 through 54. Barrier damage consisted of contact marks on the front face of the concrete segments and spalling and gouging of the concrete. Vehicle contact along the barrier began 10 in. upstream from the impact point and spanned 13 ft - 11 in. downstream.

The longest contact mark started 10 in. upstream from the impact point and spanned 160 in. downstream. Contact marks were found on the bottom-front face of the concrete barrier between 21 in. and 143 in. from the impact point with lengths between $3\frac{1}{2}$ in. and $38\frac{1}{2}$ in. Contact marks were found on the front face of post nos. 11 and 12. Tire contact marks on the upstream face of post no. 11 indicated $5\frac{1}{4}$ in. of overlap of the wheel and tire on the face of the post. A tire contact mark started 24 in. upstream from the impact point and extended $133\frac{1}{2}$ in. downstream.

Minor spalling with lengths between 2 in. and $3\frac{1}{4}$ in. were present between $1\frac{1}{2}$ in. and $19\frac{1}{4}$ in. from the impact point. Minor gouging was present between $33\frac{1}{4}$ in. and $44\frac{1}{2}$ in. from the impact point. Gouges of lengths between $20\frac{1}{4}$ in. and 34 in. were present between the centerline of the impact point and $57\frac{3}{4}$ in. from the impact point. Major gouges of over 100 ft in length were present between $22\frac{1}{2}$ ft downstream and $55\frac{1}{2}$ ft downstream from the impact point. Post nos. 11 and 12 had gouges on their upstream faces. No cracking or structural damage to the bridge rail beam or posts was noted.

Figure 51. Overall System Damage, Test No. OCBR-1

Figure 52. Concrete Beam Damage, Impact, Test No. OCBR-1

Figure 53. Concrete Beam Damage near Post No. 11, Test No. OCBR-1

Figure 54. Concrete Post Damage, Post Nos. 11 and 12, Test No. OCBR-1

The maximum lateral permanent set of the barrier system was 0.3 in., as measured in the field. The maximum lateral dynamic barrier deflection was 0.3 in., as determined from high-speed digital video analysis. The working width of the system was found to be 14.3 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 55.

6.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 56 through 58. The maximum occupant compartment intrusions are listed in Table 5, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant, and are not evaluated by MASH criteria.

Majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The bumper cover detached from the impact side of the vehicle. The bumper was crushed inward on the right side of the vehicle. The left side of the radiator detached from the frame. As for the hood, the right side was crushed inward due to impact and significant dents were found across the right half of the hood and the rooftop. The left fender was bent inward toward the left side of the vehicle. Deformation of the fender, bumper, A-pillar, and door areas was observed. Additionally, the loading of the body structure caused deformation of the windshield and tearing of the windshield liner. The windshield deformation and windshield tearing were not an issue with respect to the MASH occupant criteria as the deformation and tearing was not caused by direct loading of the glass by the test article.

The entire right quarter panel had scrapes and was crushed toward the middle, and the right-rear door had scrapes at the rear of the door. The right-front door had scrapes throughout and was crushed at the front which caused the door to bend outward from its frame. The entire right fender experienced major scrapes and was crushed inward at the front of the fender.

Damage to the undercarriage was concentrated on the right-front area. The right side of the frame horn experienced a significant inward crush. The vehicle's right-side sprocket was slightly twisted. The right-side upper control arm sheared off from the steering knuckle. The right steering knuckle was crushed inward while the left side was undamaged. The lower control arm was still connected but bent severely. The right side of the sway bar was bent forward, bending the connecting rod. The right-side tie rod was bent at the connection with the wheel, and the front-end engine mounts were pushed slightly inward.

Figure 56. Vehicle Damage, Test No. OCBR-1

Figure 57. Vehicle Damage, Test No. OCBR-1

Figure 58. Interior and Undercarriage Damage, Test No. OCBR-1

75

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	0.6	≤ 9
Floor Pan & Transmission Tunnel	0.0*	≤ 12
A-Pillar	2.3	<i>≤</i> 5
A-Pillar (Lateral)	1.9	<i>≤</i> 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.0*	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	2.8	≤ 12
Side Door (Above Seat)	0.0*	≤ 9
Side Door (Below Seat)	0.0*	≤ 12
Roof	1.3	≤ 4
Windshield	1.4†	<i>≤</i> 3
Side Window	Shattered due to induced damage**	No shattering resulting from contact with structural member of test article
Dash	2.1	N/A

Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. OCBR-1

N/A – No MASH criteria exist for this location.

*Negative value reported as 0.0. See Appendix C for further information.

**See Section 6.4 for further explanation.

*Right side A-pillar was too deformed to provide accurate windshield measurements. Deformation measurement was determined based on laser scan and comparison with exemplar vehicle.

6.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. Although the SLICE-2 unit provided a lateral ORA that exceeded MASH limits, the SLICE-1 unit was the primary transducer and located closer to the vehicle c.g., therefore the lateral ORA was deemed acceptable. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix D.

Evaluation Criteria		Transducer		MACII
		SLICE-1 (primary)	SLICE-2	Limits
OIV	Longitudinal	-29.18	-29.50	±40
ft/s	Lateral	-32.52	-32.77	±40
ORA	Longitudinal	-7.18	6.95	±20.49
g's	Lateral	-12.72	22.08	±20.49
Maximum Angular Displacement deg.	Roll	6.3	-4.9	±75
	Pitch	-6.4	-6.6	±75
	Yaw	-30.8	-31.2	not required
THIV – :	ft/s	41.71	41.76	not required
PHD – §	g's	14.28	21.57	not required
ASI		2.57	2.55	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OCBR-1

6.6 Discussion

The analysis of the test results for test no. OCBR-1 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 59. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover.

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. Although the SLICE-2 unit provided a lateral ORA that exceeded MASH 2016 limits, the SLICE-1 unit was the primary transducer and located closer to the vehicle c.g.; therefore, the lateral ORA was deemed acceptable. After impact, the vehicle exited the barrier at an angle of 2.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. OCBR-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 4-10.

Figure 59. Summary of Test Results and Sequential Photographs, Test No. OCBR-1

82

7 FULL-SCALE CRASH TEST NO. OCBR-2

7.1 Weather Conditions

Test no. OCBR-2 was conducted on December 16, 2021 at approximately 1:45 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 7.

Temperature	45°F
Humidity	42%
Wind Speed	13 mph
Wind Direction	240° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.20 in.
Previous 7-Day Precipitation	0.25 in.

Table 7. Weather Conditions, Test No. OCBR-2

7.2 Test Description

Initial vehicle impact was to occur 51⁵/₈ in. upstream from the upstream edge of post no. 7, as shown in Figure 60, which was selected using Table 2.7 of MASH 2016. The 5,002-lb quad cab pickup truck impacted the open concrete bridge rail at a speed of 61.8 mph and at an angle of 24.7 degrees. The actual point of impact was 53.2 in. upstream from the upstream edge of post no. 7. Wheel snag on the bridge rail posts was not observed. As the vehicle was redirected, loading of the right-front fender, right-front door, and the bottom of the A-pillar caused fracture of the right-side window and minor deformation and cracking of the windshield. It was also noted that the simulated occupant's head extended out of the window, but did not contact the test article. The vehicle exited the barrier and continued downstream in a stable manner until brakes were applied. After brakes were applied, the vehicle came to rest 204.5 ft downstream and 35.2 ft laterally behind the system with the vehicle facing downstream and away from the system.

A detailed description of the sequential impact events is contained in Table 8. Sequential photographs are shown in Figures 61 and 62. Documentary photographs of the crash test are shown in Figure 63 and 64. The vehicle trajectory and final position are shown in Figure 65.

Figure 60. Target Impact Location, Test No. OCBR-2

Time	Event
0.000	Vehicle's front bumper contacted barrier 53.2 in. upstream from upstream edge of post no. 7 and deformed. Vehicle's right headlight contacted barrier and shattered.
0.008	Vehicle's right fender contacted barrier and crushed inward.
0.020	Vehicle's grille and right edge of vehicle's hood deformed. Vehicle yawed away from barrier.
0.032	Vehicle's left fender deformed. Vehicle's right-front door contacted barrier and deformed. Vehicle rolled toward barrier.
0.042	Vehicle's roof deformed. Vehicle's grille disengaged. Top of vehicle's right-front door became ajar.
0.064	Vehicle's left headlight disengaged.
0.092	Simulated occupant's head contacted right-front window and window shattered. Vehicle's front radiator support disengaged. Vehicle's left-front tire became airborne.
0.133	Vehicle's left-rear tire became airborne.
0.148	Vehicle's right-rear door contacted barrier.
0.172	Vehicle's right quarter panel contacted barrier. Vehicle's right taillight contacted barrier and shattered. Vehicle's rear bumper contacted barrier and crushed inward.
0.173	Vehicle was parallel to system at a speed of 47.9 mph.
0.326	Vehicle exited system at a speed of 45.9 mph and an angle of 5.9 degrees. Vehicle rolled away from barrier.
0.394	Vehicle's left-front tire contacted ground.
0.448	Vehicle's left-rear tire contacted ground.
4.908	Vehicle came to rest.

Table 8. Sequential Description of Impact Events, Test No. OCBR-2

0.100 sec

0.200 sec

0.350 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 61. Sequential Photographs, Test No. OCBR-2

February 29, 2024 MwRSF Report No. TRP-03-406b-24

0.250 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 62. Sequential Photographs, Test No. OCBR-2

Figure 63. Documentary Photographs, Test No. OCBR-2

Figure 64. Documentary Photographs, Test No. OCBR-2

Figure 65. Vehicle Final Position and Trajectory Marks, Test No. OCBR-2

7.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 66 and 67. Barrier damage consisted of contact marks on the front face of the concrete segments and cracking. The length of vehicle contact along the barrier was approximately 12 ft - 3 in. which started $14^{3}/4$ in. downstream from the centerline of post no. 6.

A contact mark was found on the top face of the barrier beginning 28½ in. downstream from the centerline of post no. 6 and extending 120 in. Various gouges were observed along the bottom edge of the beam between post nos. 6 and 7 where vehicle impact occurred, the most severe beginning 49 in. downstream of the centerline of post no. 6 and extending 34 in. downstream at a maximum depth of 2 in. Cracking of the bridge rail beam was observed 6 in. upstream from the centerline of post no. 6 and 49 in. upstream from post no. 8, with the cracks measuring 7 in. and 13 in. in length, respectively. The top of the bridge deck cracked at the upstream corner of post no. 7 and the downstream corner of post no. 6, but the cracks did not extend through to the bottom face of the deck. Cracks were also found at the post-to-deck interface areas at the edge of post nos. 6 and 7. Finally, post no. 6 was cracked at its base by the downstream corner and post no. 7 was cracked at its base by the upstream corner.

Figure 66. Overall System and Post No. 6 Damage, Test No. OCBR-2

Figure 67. Post Nos. 7 and 8 Damage, Test No. OCBR-2

February 29, 2024 MwRSF Report No. TRP-03-406b-24

68

The maximum lateral permanent set of the barrier system was 0.3 in. at the rail at post no. 7, as measured in the field. The maximum lateral dynamic barrier deflection was 1.3 in. at the rail at post no. 7, as determined from high-speed digital video analysis. The working width of the system was found to be 15.3 in. at the rail at post no. 7, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 68.

Figure 68. Permanent Set, Dynamic Deflection, and Working Width, Test No. OCBR-2

7.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 69 and 70. The maximum occupant compartment intrusions are listed in Table 9, along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant, and are not evaluated by MASH criteria.

Majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The right corner of the hood had a slight dent and the grille disengaged from the vehicle. The right side of the front bumper was scraped and bent rearward, while the whole bumper moved laterally to the left. The right fender experienced major crushing and scraping along the entire length of the panel. The leading and rear edges of the right-front door panel were crushed inward while the center of the door panel bowed outward. Scraping occurred along all areas of contact. Minor crushing occurred around the midpoint of the right-rear door panel. Crush occurred on the entire length of the right box side. The right taillight disengaged. The right end of the rear bumper was scraped and crushed inward. The left fender was bent toward the

left slightly. The lower-right corner of the windshield slightly cracked, and the front-right window shattered due to contact with the simulated occupant's head. The remaining window glass remained undamaged.

On the undercarriage, the right-side shock was bent to the right and rear slightly. The bump stop on the right showed evidence of contact with the spring. The right-front end link was detached from the lower control arm and bent rearward. The right-side lower control arm was detached from the inner mounts. The right-side upper control arm was bent severely rearward. The right-side inner tie rod and the second engine cross were bent slightly. The right-side horn was bent inward 4 in. inward at the leading edge. The second mounts from the front of the vehicle were bent slightly. The front strap was detached and the gas tank was hanging low at the front edge.

Figure 69. Vehicle Damage, Test No. OCBR-2

Figure 70. Interior and Undercarriage Damage, Test No. OCBR-2

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	1.4	≤ 9
Floor Pan & Transmission Tunnel	0.2	≤ 12
A-Pillar	0.3	≤ 5
A-Pillar (Lateral)	0.1	<i>≤</i> 3
B-Pillar	0.1	<i>≤</i> 5
B-Pillar (Lateral)	0.1	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	2.1	≤ 12
Side Door (Above Seat)	0.1	≤ 9
Side Door (Below Seat)	0.0*	≤ 12
Roof	0.0*	≤ 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	0.5	N/A

Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. OCBR-2

N/A – No MASH criteria exist for this location.

*Negative value reported as 0.0. See Appendix C for further information.

7.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix E.
Evaluation Criteria		Trans	MACII	
		SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-18.34	-18.77	±40
ft/s	Lateral	-28.24	-25.17	±40
ORA g's	Longitudinal	-4.72	-4.81	±20.49
	Lateral	-10.87	-12.15	±20.49
Maximum Angular Displacement deg.	Roll	9.44	11.75	±75
	Pitch	-2.34	-2.06	±75
	Yaw	-30.10	-30.92	not required
THIV – ft/s		34.06	32.41	not required
PHD-g's		11.11	12.38	not required
ASI		1.91	1.79	not required

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OCBR-2

7.6 Discussion

The analysis of the test results for test no. OCBR-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 71. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 5.9 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. OCBR-2 was determined to be acceptable according to the MASH safety performance criteria for test designation no. 4-11.

0.000	0.100	0.200	and the second	0.200	Part -		
0.000 sec	0.100 sec	0.200 sec		0.300 se	C .	0.4	00 sec
BRIDGE DECK	-EXIT BOX	LR 35.2'					
001-001		RESTOR				27.0"	
-	204.5'					700'	,
Test Agency	N	IwRSF				39.0	
Test Number	0	CBR-2					
Date		6/2021					
MASH Test Designation No.		4-11				10"	
Test Article	TL-4 Open Concrete Brid	ge Rail				4.0	
Total Length		. 132 ft • Te	est Article Damage			I_	Minimal
Key Component - Beam		• M	aximum Test Article	Deflections			iviiiiiiiai
Length	1,	584 in.	Permanent Set	Deneedons			
Width		14 in.	Dvnamic				
Deptn		2/ in.	Working Width				
Key Component - Post		26 in Ti	ansducer Data				
Width					Trans	sducer	
width		10 III. 108 in	Evaluation	Criteria	GLICE 1	SLICE-2	MASH Limits
Vehicle Make /Model	2015 Dodge Bat	n 1500			SLICE-I	(primary)	
Curb	4	921 lb	0.771	Longitudinal	-18 34	-18 77	+40
Test Inertial	5.002 lb (MASH Limit 5.000 ±	110 lb)	OIV	Boligitudinai	10.01	10.77	_ 10
Gross Static		,166 lb	TU/S	Lateral	-28.24	-25.17	±40
Impact Conditions				Longitudine ¹	4 72	4.91	120.40
Speed		5 mph)	ORA	Longitudinal	-4.72	-4.81	±20.49
Angle		5 deg.)	g's	Lateral	-10.87	-12.15	±20.49
Impact Location		st no. 7					
Impact Severity	115.5 kip-ft > 106 kip-ft MASH 201	6 limit	Maximum	Roll	9.44	11.75	±75
Exit Conditions	15	0	Angular	Pitch	-2.34	-2.06	+75
Apgle		.9 mpn	Displacement				
Fyit Box Criterion		Pace	deg.	Yaw	-30.10	-30.92	not required
Vehicle Stability	Satic	factory	THIN	_ ft/s	34.06	32.41	not required
Vehicle Stopping Distance	204.5 ft downstream 35.2 ft laterally	behind	1111 V	10.5	54.00	32.41	not required
Vehicle Damage		oderate	PHD -	- g's	11.11	12.38	not required
VDS [16]		RFQ-4		T	1.01	1.70	n ot no quino d
CDC [17]		FAW3	AS	1	1.71	1.79	not required
Maximum Interior Deformation		6 limit					

Figure 71. Summary of Test Results and Sequential Photographs, Test No. OCBR-2

8 FULL-SCALE CRASH TEST NO. OCBR-3

8.1 Weather Conditions

Test no. OCBR-3 was conducted on March 4th, 2022 at approximately 3:00 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 11.

Temperature	70°F
Humidity	32%
Wind Speed	23 mph
Wind Direction	170° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.5 in.
Previous 7-Day Precipitation	0.5 in.

Table 11. Weather Conditions, Test No. OCBR-3

8.2 Test Description

Initial vehicle impact was to occur 18 in. upstream from the midspan between post nos. 3 and 4, as shown in Figure 72, which was selected using Table 2.7 of MASH 2016. The 22,052-lb single-unit truck impacted the open concrete bridge rail at a speed of 56.6 mph and at an angle of 15.2 degrees. The actual point of impact was 11 in. upstream from the midspan between post nos. 3 and 4. Wheel snag on the bridge rail posts was not observed, but there was engagement of the wheel lugs with the face of the rail beam and gouging of the lugs in the concrete. The right-front wheel turned into/toward the barrier after impact and displaced rearward. As the vehicle was redirected, the box of the vehicle extended over the top of the 39-in. tall bridge rail and the box rode along the top of the rail throughout the redirection. The rear tandem axle and the box lift on the rear of the box impacted the rail at 282 msec after initial impact. The impact of the rear of the vehicle produced the highest of the barrier loading and corresponded with the peak barrier loading, peak dynamic deflections, and majority of the damage observed to the barrier and deck. The vehicle became parallel with the barrier at 300 msec after initial impact. Vehicle stability and roll were good throughout the impact. The vehicle exited the barrier and continued downstream in a stable manner until the right-front corner of the vehicle impacted a downstream concrete parapet that was part of a separate barrier installation. This secondary impact was at a relatively high impact angle (estimated at 40 degrees or more) and resulted in a more severe impact for the 10000S than the original impact with the bridge rail. As such, a significant amount of the front-end damage to the vehicle was likely incurred during the secondary impact. After brakes were applied, the vehicle came to rest 254.9 ft downstream and 32.3 ft laterally behind the system.

A detailed description of the sequential impact events is contained in Table 12. Sequential photographs are shown in Figures 73 and 74. Documentary photographs of the crash test are shown in Figure 75. The vehicle trajectory and final position are shown in Figure 76.

Figure 72. Target Impact Location, Test No. OCBR-3

Time (sec)	Event				
0.000	Vehicle's front bumper contacted barrier 11 in. upstream from the midspan				
0.000	between post nos. 3 and 4 and deformed.				
0.006	Vehicle's right fender contacted barrier and deformed.				
0.012	Vehicle's right-front tire and right headlight contacted barrier.				
0.024	Vehicle's right headlight shattered.				
0.030	Vehicle's right-front tire and right fender pushed back into vehicle's right fuel tank.				
0.036	Vehicle's right fuel tank deformed.				
0.080	Vehicle's right door deformed. Vehicle rolled toward barrier.				
0.142	Vehicle yawed away from barrier.				
0.152	Vehicle's left-front tire became airborne. Occupant's head contacted left-side window.				
0.164	Vehicle box's bottom right-front corner contacted top of barrier.				
0.222	Vehicle's left-rear tires became airborne.				
0.282	Vehicle's rear bumper/lift mechanism contacted barrier near post no. 3. Barrier between post nos. 2 and 3 deflected backward. Vehicle's box door opened and deformed.				
0.300	Vehicle's box deformed. Vehicle was parallel to barrier at a speed of 49.1 mph.				
0.326	Vehicle pitched downward.				
0.486	Vehicle yawed toward barrier.				
0.610	Vehicle's hood opened.				
0.694	Vehicle rolled away from barrier.				
0.864	Vehicle's left-rear tires and left-front tire contacted ground.				
0.871	Vehicle's box door and frame disengaged.				
1.030	Vehicle rolled toward barrier. Vehicle's right-front wheel scraped barrier from post nos. 11 through 15.				
1.458	Vehicle rolled away from barrier.				
1.810	Vehicle exited system at an approximate speed of 40.2 mph.				
1.860	Vehicle rolled toward barrier.				
6.379	Vehicle came to a rest against secondary barrier system.				

Table 12. Sequential Description of Impact Events, Test No. OCBR-3

0.000 sec

0.200 sec

0.400 sec

0.600 sec

0.800 sec

1.000 sec

0.000 sec

0.200 sec

0.400 sec

0.600 sec

0.800 sec

1.000 sec

Figure 73. Sequential Photographs, Test No. OCBR-3

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 74. Sequential Photographs, Test No. OCBR-3

Figure 75. Documentary Photographs, Test No. OCBR-3

Figure 76. Vehicle Final Position and Trajectory Marks, Test No. OCBR-3

8.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 77 through 80. Barrier damage consisted of contact marks, spalling, cracking, and gouging of the bridge rail beam and concrete cracking on deck. The length of vehicle contact along the barrier was approximately 64 ft – $10\frac{1}{2}$ in., starting 3 ft – $10\frac{1}{2}$ in. downstream from post no. 2.

Multiple contact marks of various heights and lengths were present on the front and top face of the bridge rail beam. Two contact marks measuring over 300 in. in length were present on the front face of the bridge rail beam starting 2 in. downstream from post nos. 3 and 18 in. downstream from post no. 11. Another contact mark was found on the top face of the bridge rail beam with a length of 62 ft starting 27 in. upstream from post no. 3. Additional contact marks were present between post no. 3 and the downstream end of the bridge rail beam.

Spalling and gouging were noted on the face of the bridge rail beam due to interaction of the wheel lugs with the face of the beam. A total of seven gouges on the top face and front edge of the bridge rail beam with lengths between 4 and 111 in. were found between post nos. 2 through 5. Another set of gouges with lengths between $9\frac{1}{2}$ in. and $70\frac{1}{2}$ in. spanned from post no. 11 to the downstream end of the bridge rail beam. Spalling was observed $38\frac{1}{2}$ in. upstream from post no. 14 spanning 20 in. downstream.

Hairline cracks with lengths between 9 in. and 36 in. were observed on the front face of the concrete beam spanning 31 in. downstream from post no. 1 to 36 in. upstream from post no. 3. Minor cracks on the front face of the concrete beam ranging from 1 in. to 59 in. long were present starting 40 in. downstream from post no. 2 and ending 63 in. upstream from post no. 6. Another set of cracks were present on the backside of the concrete beam with lengths between 1 in. and 31 in. spanning between post no. 2 and 82 in. upstream from post no. 5. Cracks were also present on the back side of concrete post no. 3 and 4 with lengths between 6½ in. and 17 in. As for the concrete deck, cracks were found on the front, top, and bottom surfaces of the deck at the downstream and upstream edge of concrete posts no. 1 through 5; these cracks measured between 1 in. and 36 in. long. The deck surface at post nos. 2 through 4 all had deck-post interface cracks. The upstream edge of the deck overhang had a 3-in. tall vertical crack. Another overhang crack and tarmac joint crack spanned across the entire deck with a length of 70 ft. A schematic of the cracking observed in the beam and posts is shown in Figure 81.

Figure 77. Overall System Damage, Test No. OCBR-3

Figure 78. Concrete Beam and Deck Damage, Test No. OCBR-3

Figure 79. Concrete Beam and Post Damage, Post Nos. 3 and 4, Test No. OCBR-3

Figure 80. Concrete Beam Damage from Post Nos. 4 through 6, Test No. OCBR-3

— Traffic Side Cracks

Figure 81. Schematic of Bridge Rail Cracks, Test No. OCBR-3

109

⁻⁻⁻⁻ Non-Traffic Side Cracks

The maximum lateral permanent set of the barrier system, including barrier and deck panel shift, was 0.9 in., as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 1.5 in., as determined from high-speed digital video analysis. The working width of the system was found to be 50.8 in., which included the vehicle box trailer's protrusion behind the barrier, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 82.

Figure 82. Permanent Set, Dynamic Deflection, and Working Width, Test No. OCBR-3

8.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 83 and 84. The maximum occupant compartment intrusions are listed in Table 13 along with the intrusion limits established in MASH for various areas of the occupant compartment. Note that the reference sets for occupant compartment intrusion were compromised so the standard occupant compartment measurements were not taken. However, comparisons were made to an exemplar vehicle with the same cab and interior configuration. Measurements were taken at the maximum area of deformation of the interior occupant compartment. The occupant compartment deformation was within MASH limits.

Majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The front bumper was dented and crushed on the right side of the vehicle. A tear was observed on the right side of the bumper where the tow hook was located. The entire front end of the vehicle was crushed rearward and inward on the right side. The hood was disengaged from the vehicle. The right-front door was wrinkled and scraped, and the steps were crushed backward due to the tire shifting the entire fuel tank rearward.

A small dent and scrape were found at the leading edge of the right side of the box. Smaller wrinkles were observed throughout the side of the box. The vehicle's rear bumper detached and the rolling door was disengaged. The left side of the cab had a small wrinkle at the back side of the door, and the back side of the cab was crushed from the impact of the box sliding forward.

It should be noted that there was a secondary impact event during the crash test due to a high angle impact of the right-front corner of the 10000S vehicle into a downstream concrete parapet after exiting the bridge rail. Review of the acceleration data from the vehicle found that this event produced very large lateral and longitudinal accelerations and a correspondingly high change in velocity that brought the vehicle to a stop. This impact likely accounted for a significant amount of damage to the right-front corner of the vehicle and the front wheels and suspension.

Further, review of the damage to the vehicle occupant compartment found right-side floor pan deformation due to the right-front wheel being pushed into the vehicle floorboard and opening a seam in the vehicle floor, as shown in Figure 85. This resulted in a maximum floor pan deformation of 4.5 in., which was within the MASH limits. Several observations were made regarding this floor pan damage.

- 1. As noted previously, there was a significant secondary event during the crash test due to a high angle impact with the right-front corner of the vehicle on a downstream concrete parapet. This impact generated large lateral and longitudinal accelerations and a correspondingly high change in velocity.
- 2. Review of the wheel motion during the initial impact with the bridge rail showed that the right-front wheel experienced only minor climb on the face of the bridge rail. The wheel also turned into or toward the bridge rail during the impact and was pushed back longitudinally. While the push back of the wheel was consistent with the floor pan deformation observed, the turn in or rotation of the front wheel was not. The floor pan deformation and wheel position were more consistent with the final position of the wheel when it impacted the downstream parapet during the secondary impact.
- 3. These two factors would suggest that it is most likely that the floor pan deformation observed was due to the secondary impact event. However, some degree of floor pan deformation due to the initial impact cannot be ruled out.
- 4. Review of previous MASH TL-4 bridge rail testing identified very similar levels of deformation and side seam deformations in existing full-scale crash tests. These tests were all deemed acceptable under MASH. Examples of these deformations and the relevant full-scale crash testing are provided in Figures 86 through 91.

In terms of evaluation of the crash test, the researchers reviewed MASH guidance regarding occupant compartment deformation. The floor pan deformation was within MASH deformation limits. Thus, the only remaining issue was the opening of the seam on the side of the floor pan. As noted previously, the researcher believed that floor pan deformation was most likely due to the secondary impact with a concrete barrier system downstream of the tested bridge rail, MASH provides the follow relevant guidance related to the opening of seams in the floor.

"Note that some vehicles now incorporate glued seams on the floor board as well as other areas. In the presence of significant deformation, these bonded seams can separate and create an opening into the occupant compartment. There is no available data to relate occupant injury severity to the opening of seams in the floor pan area. However, it is generally believed that an opening in the occupant compartment by and of itself does not necessarily result in injury to the occupants unless it is accompanied by an object moving toward the occupant. Therefore, a seam separation by itself is not considered a test failure unless (1) a component of the safety device protrudes through the opening or (2) the deformation limits of 12 in. (305 mm) is exceeded."

In test no. OCBR-3, the wheel loaded the floor pan and separated the seam the at the edge of the vehicle floor pan. However, the wheel/tire did not protrude through the seam opening and the deformation was lower than the MASH limits. Thus, the floor pan deformation and opening observed in the test would not be grounds for failure of test no. OCBR-3. The researchers plan to discuss this issue with other accredited test labs as this behavior appears to be somewhat common, and it is desirable to ensure that test labs are documenting and evaluating this behavior consistently.

Figure 83. Vehicle Damage, Test No. OCBR-3

Figure 84. Vehicle Damage, Test No. OCBR-3

Figure 85. Vehicle Damage, Occupant Compartment Deformation Test No. OCBR-3

Figure 86. Vehicle Floor Pan Separation, MASH TL-4 Flared Concrete Barrier, Test No. 611901-05-1 [18]

Figure 87. Vehicle Floor Pan Separation, C1W Bridge Rail, Test No. 469469-1 [19]

Figure 88. Vehicle Floor Pan Separation, TL-4 Barrier on Rubber Posts, Test No. 468958-3 [20]

Figure 89. Vehicle Floor Pan Separation, 42-in. Tall Single Slope Barrier, Test No. 469467-1 [21]

Figure 90. Vehicle Floor Pan Separation, Minnesota Combination Bridge Rail, Test No. MNCBR-1 [22]

Figure 91. Vehicle Floor Pan Separation, Optimized TL-4 Concrete Bridge Rail, Test No. 4CBR-1 [23]

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.
Wheel Well & Toe Pan	4.5	≤ 9
Floor Pan & Transmission Tunnel	*	≤ 12
A-Pillar	*	≤ 5
A-Pillar (Lateral)	*	<i>≤</i> 3
B-Pillar	*	<i>≤</i> 5
B-Pillar (Lateral)	*	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	*	≤ 12
Side Door (Above Seat)	*	≤ 9
Side Door (Below Seat)	*	≤ 12
Roof	*	<i>≤</i> 4
Windshield	*	<i>≤</i> 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	*	N/A

Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. OCBR-3

N/A – No MASH criteria exist for this location.

*No measurements taken due to compromised reference points.

8.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 14. Note that while OIV and ORA values are not required for test designation no. 4-12, the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 14. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix F.

Evaluation Criteria					
		SLICE-1 (C.G.)	SLICE-2 (Rear-Axle)	TDAS (Cab)	MASH Limits
OIV	Longitudinal	N/A	N/A	-5.40	not required
ft/s	Lateral	N/A	N/A	-16.17	not required
ORA g's	Longitudinal	N/A	N/A	-3.78	not required
	Lateral	N/A	N/A	-5.71	not required
Maximum Angular Displacement deg.	Roll	15.3	16.52	23.0	<¼ roll
	Pitch	-1.9	2.15	8.7	not required
	Yaw	-15.7	-16.69	17.0	not required
THIV – ft/s		N/A	N/A	13.77	not required
PHD-g's		N/A	N/A	3.23	not required
ASI		0.58	1.72	0.79	not required

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OCBR-3

N/A – OIV, ORA, PHD, and THIV values were only calculated for the vehicle cab accelerometer.

8.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g. and at the rear axle, were processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figures 92 and 93. The maximum perpendicular (i.e., lateral) loads imparted to the barrier were 102.1 kips and 203.9 kips, as determined by the SLICE-1 (primary) unit and SLICE-2, respectively. It should be noted that the impact loading indicated by the SLICE-2 transducer was significantly higher than those calculated from previous MASH TL-4 SUT truck impacts. This increase in load may be partially due to the presence of a mechanical lift installed on the rear of the SUT in test no. OCBR-3 that may have increased the accelerations imparted to the SLICE-2 unit which was mounted at the rear tandem axle.

Figure 92. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1) Located at Vehicle c.g., Test No. OCBR-3

Figure 93. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2) Located at Rear Axle, Test No. OCBR-3

8.7 Discussion

The analysis of the test results for test no. OCBR-3 showed that the system adequately contained and redirected the 10000S vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 94. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier and its trajectory did not violate the bounds of the exit box. Therefore, test no. OCBR-3 was determined to be acceptable according to the MASH safety performance criteria for test designation no. 4-12.

Figure 94. Summary of Test Results and Sequential Photographs, Test No. OCBR-3

9 END BUTTRESS OPTIONS FOR AGT ATTACHMENT

9.1 Overview

Approach guardrail transitions (AGTs) are typically required to connect guardrail to the ends of bridge rails like the TL-4 open concrete bridge rail detailed herein. MwRSF has previously designed 31-in. and 34-in. tall thrie beam AGTs connected to a standardized end buttress [24-25]. It was desired that end buttress options be developed with shape transitions between the open concrete bridge rail and the standardized end buttress in order to facilitate attachment of both 31-in. and 34-in. tall thrie beam AGTs. End buttress options were designed to connect a 31-in. tall thrie beam approach guardrail transition to the 36-in. tall bridge rail configurations. Additionally, it was desired that the 39-in. tall bridge configuration have end buttress options to connect to a 34-in. tall AGT. A geometrical transition was required between the concrete bridge rail and the buttress to limit vehicle snag and maintain vehicle stability. Various options for the end buttress were considered, including a stand-alone concrete buttress and incorporating the prior crashworthy buttress geometry directly into the end post of the bridge rail. These options are presented in the subsequent sections.

9.2 Thrie Beam Approach Guardrail Transitions

Multiple AGT designs have been developed and tested to MASH TL-3 over the years with varying configurations to attach approach guardrail to rigid bridge rail designs. In recent years, the Midwest Pooled Fund Program and MwRSF developed a standardized end buttress design for concrete bridge rails that facilitates safe attachment of a wide variety of AGTs to existing bridge rails [15, 24]. The standardized buttress was designed with a dual taper on its front upstream edge. A longer lower taper was designed to mitigate tire snag below the rail, while a shorter upper taper was designed to prevent vehicle snag and limit the unsupported span length of the rail, as shown in Figure 95. This buttress design was evaluated in combination with a critically weak AGT without a curb, which represented the worst-case scenario. Since the buttress proved crashworthy in this critical configuration, the standardized buttress should remain crashworthy when utilized with other AGTs as the stiffer systems would only reduce vehicle snag. Therefore, the standardized buttress can be used in combination with any thrie beam AGT system that has previously been successfully tested to either NCHRP Report 350 or MASH criteria. These AGTs may be either ¹/₄post or ¹/₂-post spacings (i.e., 18³/₄-in. and 37¹/₂-in. post spacings, respectively). Further, since the standardized buttress was tested without a curb, and curbs tend to reduce tire snag, the standardized buttress can be utilized with these AGTs in either a curbed or non-curbed installation. Finally, a variation of the standardized end buttress has been developed for use with a 34-in. tall AGT to facilitate future overlays. This version of the standardized buttress is identical to the 31-in. tall AGT version other than an increase in the height of the lower taper and the overall buttress, as shown in Figure 96.

For illustrative purposes, the shape transitions between the open concrete bridge rail and the standardized end buttress are presented herein with the two AGT designs previously tested to MASH TL-3 with the standardized buttress. The first thrie beam AGT was a 31-in. tall thrie beam AGT with W6x9 posts at ¹/₄ post spacing connected to a 36-in. tall, standardized buttress configuration, which was successfully crash tested according to MASH TL-3 test designation no. 3-21 [15]. The first post upstream from the end buttress (W6x9) was spaced 8 in. from the edge of

the buttress and incorporated an 11-in. tall vertical opening between the thrie beam rail and the ground. The second thrie-beam AGT was the 34-in. tall thrie-beam AGT with W6x15 posts at $\frac{1}{2}$ post spacing connected to a 39-in. tall buttress, which was successfully tested according to MASH TL-3 test designation no. 3-21 [24]. The first post (W6x15) was spaced 25 in. upstream from the upstream edge of the end buttress. The MGS-to-thrie beam transition incorporated a symmetrical W-beam-to-thrie beam transition, and the vertical opening between the rail and ground was 14 in. tall. The 34-in. tall AGT allowed end users to maintain a 31-in. tall AGT when a 3-in. tall wearing surface was implemented.

Figure 95. Standardized Buttress AGT System Layout, 31-in. Tall AGT

(a) Standardized Transition Buttress

(b) Modified Transition Buttress for use with the 34-in. Tall AGT

9.3 Design Loads

Although the end section of the bridge rail was designed to withstand MASH TL-4 design loads, the AGT was designed to withstand MASH TL-3 design loads. It was desired that the AGT attachment be able to withstand at least MASH TL-3 impact loads. Previous research efforts have recommended a MASH TL-3 design load of 70 kips, applied at an effective height of 24 in. [29].

The capacities of the new end buttress configurations were determined by calculating the overturning moment and shear load required to cause failure of the end buttress. A 70-kip design load applied at a height of 24 in. was utilized, resulting in a minimum required moment capacity of 140 kip-ft and shear capacity of 70 kips. The minimum area of steel required to resist moment loads was 6 in.², and the minimum area of steel required to resist shear loads was only 0.3 in.², as the large length of the concrete end buttress allowed the concrete to resist majority of the shear load. For end buttress configurations that were designed to be integrated with the end post of the open concrete bridge rail, vertical and longitudinal reinforcement was left the same, but spacings were adjusted as necessary to not interfere with bolt holes of the thrie beam attachment. As the length of the end buttress increases, it is possible that the end buttress will behave similar to a closed concrete parapet and exhibit a yield line failure mechanism. None of the variants designed were of sufficient length to cause this failure, and thus were only designed to resist overturning moment and shear loads.

9.4 End Buttress Foundation

The stand-alone end buttress configurations will each require sufficient anchorage to transfer the impact loads and to prevent overturning of the buttress. The foundation can be provided through an independent concrete foundation or by attaching it to the bridge deck. The transitions with the geometrical transitions incorporated into the bridge rail end post will be anchored directly to the bridge deck ore reinforced concrete approach slab.

9.5 Open Concrete Bridge Rail End Buttress Shape Transition

The end buttress options for the TL-4 open concrete bridge rail applied the same geometry for the upstream end of the buttress as the previously developed standardized end buttress in order to ensure similar performance when the AGT was impacted upstream of the buttress. Thus, the upstream end was configured with a similar 6:1 vertical taper to bring the height of the end buttress down to 1 in. above the thrie beam rail height on the upstream end. The horizontal tapers on the upstream end of the buttress utilized a 4:1 taper on the lower section of the buttress to mitigate wheel snag and a 3-in. deep by 4-in. long chamfer on the upper section of the buttress to mitigate vehicle structure snag and bending of the thrie beam rail element about a sharp corner.

On the downstream end of the open concrete bridge rail end buttress, the buttress geometry was modified to match up with the end post of the concrete bridge rail and mitigate snag and maintain vehicle stability for both oncoming and reverse direction traffic. The vertical height of the downstream end of the end buttress was selected to match the height of the bridge rail beam. The upper face of the end buttress was set in the same plane as the front of the bridge rail beam. The lower section of the downstream end of the buttress was tapered horizontally to match the 4-in. deep post offset from the face of the rail used for the bridge rail post.
To achieve this geometry, horizontal and vertical tapers were applied to the end buttress. A vertical taper of 6:1 was used to transition the buttress height from the AGT attachment end up to the height of the open concrete bridge rail in order to be consistent with the original, crash tested, standardized end buttress geometry. The Roadside Design Guide [26] recommends utilizing lateral flare rates flatter than 20:1 for rigid barrier systems. However, these barrier system flare rates were thought to be extremely conservative when applied to barrier shape changes as many transition buttresses have successfully utilized much steeper lateral tapers. A recent computer simulation study on concrete barrier transitions indicated that lateral slopes up to 6:1 may be crashworthy according to MASH. However, the simulations indicated that both OIV values and occupant compartment deformations to passenger vehicles were approaching the MASH limits. Thus, the study recommended utilizing lateral slopes of 10:1 for rigid barrier shape changes [27]. Based on that research, lateral tapers applied to the end buttress options were limited to 10:1. Finally, it should be noted that the end buttress options were intended for use with a maximum longitudinal gap from the bridge rail of 4 in.

9.6 End Buttress Option 1

End buttress option 1 consisted of an 84-in. long by 12-in. wide standalone end buttress. The upstream end of the buttress matched the standardized end buttress, while the downstream end of the buttress incorporated a 10:1 lateral taper on the lower section of the buttress to match the 4-in. deep offset of the open concrete bridge rail posts. Two versions of the option 1 end buttress were developed to accommodate both the 31-in. tall and 34-in. tall AGT systems discussed previously. The only difference between these two variations was the overall buttress height and the height of the lower tapered sections on the upstream and downstream ends of the buttress. Schematics of end buttress option 1 are shown in Figure 97 through Figure 102.

9.7 End Buttress Option 2

End buttress option 2 consisted of an 88-in. long by 14-in. wide standalone end buttress. This buttress was different from option 1 in that it carried the 4-in. post offset from the bridge rail all the way across the front of the buttress. This eliminated the need for a flare on the downstream end of the buttress adjacent to the bridge rail. Additionally, only a limited portion of the lower portion of the upstream end of buttress had to be flared at a 4:1 slope to match the standardized end buttress geometry. Note that the narrowing of the base of the buttress for option 2 required increasing the width and length of the buttress to meet the design loads. However, the details provided herein are intended as examples, and end users may develop sections with a different length and width that would have the required strength. The critical characteristic is providing the appropriate geometry for the traffic-side face of the buttress that matches the standardized end buttress for AGTs and the open concrete bridge rail. Two versions of the option 2 end buttress were developed to accommodate both the 31-in. tall and 34-in. tall AGT systems discussed previously. The only difference between these two variations was the overall buttress height and the height of the lower offset section of the buttress. Schematics of end buttress option 2 are shown in Figures 103 through 109.

Figure 97. End Buttress Shape Transition, Option 1

Figure 98. End Buttress Shape Transition, Option 1

Figure 99. End Buttress Shape Transition, Option 1

Figure 100. End Buttress Shape Transition, Option 1

Figure 101. End Buttress Shape Transition, Option 1

136

Figure 102. End Buttress Shape Transition, Option 1

9.8 End Buttress Option 3

End buttress option 3 consisted of integrating the standardized end buttress geometry into the end post of the open concrete bridge rail by modification of the upstream end of the of the bridge rail end post to match the standardized end buttress geometry. This required placement of a vertical taper on the upper portion of the upstream end of the bridge rail end post to bring the height of the end post down to match the AGT and reduce the potential for vehicle snag. The length of the post remained 72 in., and the post setback was 4 in. A 4:1 taper section was incorporated above the post setback to match the geometry of the standardized end buttress. Two versions of the option 3 end buttress were developed to accommodate both the 31-in. tall and 34-in. tall AGT systems discussed previously. The only difference between these two variations was the overall buttress height and the height of the lower tapered section on the upstream end of the buttress. Schematics of end buttress option 3 are shown in Figures 110 through Figure 114.

9.9 Summary

Three end buttress options were developed that could be utilized with the new open concrete bridge rail, and each configuration provides examples of the basic geometry and reinforcement configurations that end users could potentially utilize. Lengths and widths of the end buttresses, as well as reinforcement sizes and spacings can be varied, provided the geometric requirements and strength requirements are satisfied. A foundation for the end buttress must be designed or considered into the bridge deck design.

Figure 103. End Buttress Shape Transition, Option 2

Figure 104. End Buttress Shape Transition, Option 2

Figure 105. End Buttress Shape Transition, Option 2

Figure 106. End Buttress Shape Transition, Option 2

Figure 107. End Buttress Shape Transition, Option 2

Figure 108. End Buttress Shape Transition, Option 2

Figure 109. End Buttress Shape Transition, Option 3

145

February 29, 2024 MwRSF Report No. TRP-03-406b-24

Figure 110. End Buttress Shape Transition, Option 3

Figure 111. End Buttress Shape Transition, Option 3

Figure 112. End Buttress Shape Transition, Option 3

Figure 113. End Buttress Shape Transition, Option 3

Figure 114. End Buttress Shape Transition, Option 3

10 SUMMARY AND CONCLUSIONS

The focus of this research effort was the MASH TL-4 evaluation of a new open concrete bridge rail design. The proposed design for the new open concrete bridge rail was a 39-in. tall bridge rail system comprised of a 27-in. tall by 14-in. wide concrete rail supported by 36-in. long by 10-in. wide by 12-in. tall concrete posts. The 39-in. rail height was selected to allow for future 3-in. paving overlays while still maintaining MASH TL-4 compliance. The barrier system was designed for a minimum bridge deck thickness of 8 in. and a maximum 5-ft long cantilevered overhang. Design details were developed for the interior and end section reinforcement for both the bridge rail and the deck. Three full-scale crash tests were conducted on the open concrete bridge rail according to MASH test designation nos. 4-10, 4-11, and 4-12.

Test no. OCBR-1 was conducted according to MASH test designation no. 4-10. In test no. OCBR-1, an 1100C vehicle impacted the open concrete bridge rail system at a speed of 64.2 mph, an angle of 25.2 degrees, and at a location 45.3 in. upstream from post no. 11. The vehicle was successfully contained and redirected with moderate damage to the vehicle and minimal damage to the barrier. All occupant risk measures fell within the recommended safety limits established in MASH. Therefore, test no. OCBR-1 was successful according to the safety criteria of MASH test designation no. 4-10.

Test no. OCBR-2 was conducted according to MASH test designation no. 4-11. In test no. OCBR-2, a 2270P vehicle impacted the open concrete bridge rail system at a speed of 61.8 mph, an angle of 24.7 degrees, and at a location 53.2 in. upstream from the upstream edge of post no. 7. The vehicle was successfully contained and redirected with moderate damage to the vehicle and minimal damage to the barrier. All occupant risk measures fell within the recommended safety limits established in MASH. Therefore, test no. OCBR-2 was successful according to the safety criteria of MASH test designation no. 4-11.

Test no. OCBR-3 was conducted according to MASH test designation no. 4-12. In test no. OCBR-3, a 10000S vehicle impacted the open concrete bridge rail system at a speed of 56.6 mph, an angle of 15.2 degrees, and at a location 11 in. upstream from the midspan of posts 3 and 4. The vehicle was successfully contained and redirected with moderate damage to the vehicle and the barrier. All occupant risk measures fell within the recommended safety limits established in MASH. Therefore, test no. OCBR-3 was successful according to the safety criteria of MASH test designation no. 4-12.

Although the full-scale crash test was conducted on the bridge railing interior section, the end section of the open concrete bridge rail was designed with an increased post length and increased reinforcement of the bridge rail and corresponding bridge deck. The strength of this end section design was shown to be greater than that of the tested interior section using AASHTO recommended evaluation methods [7, 28]. As such, the open concrete bridge rail end sections should also be considered MASH TL-4 crashworthy. Note that end section geometry and reinforcement should be used adjacent to any railing discontinuity or expansion/contraction gap.

Finally, the new bridge railing was developed with a nominal height of 39 in. to account for future roadway overlays up to 3 in. thick and still satisfy the 36-in. minimum height requirement for MASH TL-4 barriers. The bridge rail was tested and evaluated in a critical configuration without a 3-in. overlay placed on the deck in order to maximize loading and moment

demands on the system and increase the potential for passenger vehicle snag on the bridge rail posts. Based on the successful full-scale crash tests of the open concrete bridge rail at the upper range of the rail height, it is believed that the railing should be considered crashworthy at heights between 36 and 39 in. Therefore, the new concrete bridge rail was determined to be crashworthy to MASH TL-4 standards at its nominal height of 39 in. and after roadway overlays up to 3 in. thick. The researchers provided options for end buttresses at the end of the bridge rail for the attachment of AGTs for both bridge rail height options.

Evaluation Factors		Eva		Test No. OCBR-1	Test No. OCBR-2	Test No. OCBR-3		
Structural Adequacy	А.	Test article should contain and re controlled stop; the vehicle shou installation although controlled l	the vehicle to a or override the article is acceptable.	S	S	S		
	D.	1. Detached elements, fragments penetrate or show potential for p an undue hazard to other traffic,	s or other debris from the te penetrating the occupant co pedestrians, or personnel i	est article should not mpartment, or present n a work zone.	S	S	S	
		2. Deformations of, or intrusions exceed limits set forth in Section	Deformations of, or intrusions into, the occupant compartment should not ceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.					
	F.	The vehicle should remain uprig and pitch angles are not to excee	S	S	S			
	H.	Occupant Impact Velocity (OIV for calculation procedure) should						
Risk		Occupa	S	S	S			
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s	40 ft/s				
	I.	The Occupant Ridedown Accele MASH 2016 for calculation proc						
		Occupant F	nits	S	S	S		
		Component	Preferred	Maximum				
		Longitudinal and Lateral						
		MASH 2016 Test l	4-10	4-11	4-12			
		Final Evaluation		Pass	Pass	Pass		
S – S	Satisfac	ctory U – Unsati	sfactory N/A	A – Not Applicable				

Table 15. Summary of Safety Performance Evaluation.

153

February 29, 2024 MwRSF Report No. TRP-03-406b-24

11 MASH EVALUATION

A new open concrete bridge rail was evaluated according to MASH TL-4 performance criteria. The open concrete bridge rail system was a 39-in. tall bridge rail system comprised of a 27-in. tall by 14-in. wide concrete rail supported by 36-in. long by 10-in. wide by 12-in. tall concrete posts. The 39-in. rail height was selected to allow for future 3-in. paving overlays while still maintaining a 36-in. nominal height for MASH TL-4 compliance. The barrier system was designed for a minimum bridge deck thickness of 8 in. and a maximum 5-ft long cantilevered overhang. Design details were developed for the interior and end section reinforcement for both the bridge rail and the deck.

11.1 Test Matrix

The open concrete bridge rail system is classified as a longitudinal barrier for the purposes of evaluation. According to TL-4 of MASH, longitudinal barrier systems must be subjected to three full-scale vehicle crash tests, as summarized in Table 16.

Test	Test	Teat	Vehicle	Impact C	onditions	Evaluation Criteria ¹	
Article	Designation No.	Vehicle	Weight lb	Speed mph	Angle deg.		
Longitudinal	4-10	1100C	2,420	62	25	A,D,F,H,I	
Barrier	4-11	2270P	5,000	62	25	A,D,F,H,I	
	4-12	10000S	22,000	56	15	A,D,G	

Table 16. MASH TL-4 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

Test designation no. 4-10 with the 1100C vehicle was conducted to evaluate occupant risk measures and the potential for vehicle snag on the upstream end of posts. Test designation no. 4-11 with the 2270P vehicle was conducted to evaluate concerns for increased bridge rail loading, potential vehicle snag at joints and posts, and vehicle instability. Test designation no. 4-12 with the 10000S vehicle was conducted to evaluate the overall structural capacity of the bridge rail and its ability to contain and redirect the single-unit truck. Due to the variable height of the bridge rail between 36 in. and 39 in., the bridge rail configuration utilized for testing was selected to be critical for each test. Thus, the 39-in. rail height without a 3-in. overlay was selected for all crash tests to maximize loading and moment demands on the system during the single-unit truck test and to increase the potential for passenger vehicle snag on the bridge rail posts. It should also be noted that the researchers considered both interior and end section impact locations as part of the critical impact point selection. During the design of the open concrete rail, the end sections of the bridge rail and deck were designed with greater capacity than the interior sections. As such, the critical impact was conducted on an interior region of the bridge rail. Finally, critical impact points for the two passenger vehicle tests were selected to maximize the potential for vehicle snag on the exposed bridge rail posts, while the critical impact point for the single-unit truck test was selected to maximize the loading of the bridge rail.

11.2 Full-Scale Crash Test Results

The results of the MASH TL-3 full-scale crash testing of the open concrete bridge rail system are summarized below. A summary of the full-scale crash testing is provided in Table 17. A plan and elevation view of the final system and a system photo are shown in Figure 115.

- Test no. OCBR-1 Test no. OCBR-1 was conducted according to MASH test designation no. 4-10. In test no. OCBR-1, an 1100C vehicle impacted the open concrete bridge rail system at a speed of 64.2 mph and an angle of 25.2 degrees, and at a location 45.3 in. upstream from post no. 11. The vehicle was successfully contained and redirected with moderate damage to the vehicle and minimal damage to the barrier. All occupant risk measures fell within the recommended safety limits established in MASH. Therefore, test no. OCBR-1 was successful according to the safety criteria of MASH test designation no. 4-10.
- 2. Test on. OCBR-2 Test no. OCBR-2 was conducted according to MASH test designation no. 4-11. In test no. OCBR-2, a 2270P vehicle impacted the open concrete bridge rail system at a speed of 61.8 mph and an angle of 24.7 degrees, and at a location 53.2 in. upstream from the upstream edge of post no. 7. The vehicle was successfully contained and redirected with moderate damage to the vehicle and minimal damage to the barrier. All occupant risk measures fell within the recommended safety limits established in MASH. Therefore, test no. OCBR-2 was successful according to the safety criteria of MASH test designation no. 4-11.
- 3. Test no. OCBR-3 Test no. OCBR-3 was conducted according to MASH test designation no. 4-12. In test no. OCBR-3, a 10000S vehicle impacted the open concrete bridge rail system at a speed of 56.6 mph and an angle of 15.2 degrees, and at a location 11 in. upstream from the midspan of posts 3 and 4. The vehicle was successfully contained and redirected with moderate damage to the vehicle and the barrier. All occupant risk measures fell within the recommended safety limits established in MASH. Therefore, test no. OCBR-3 was successful according to the safety criteria of MASH test designation no. 4-12.

MwRSF Test No.	MASH Test Designation No.	MwRSF Report No.	Date of Test	Pass/Fail	System Version
OCBR-1	4-10	TRP-03-389-20	10/06/21	Pass	39-in. Tall Bridge Rail
OCBR-2	4-11	TRP-03-389-20	12/16/21	Pass	39-in. Tall Bridge Rail
OCBR-3	4-12	TRP-03-389-20	03/04/22	Pass	39-in. Tall Bridge Rail

Table 17. MASH TL-4 Crash Test Summary for Open Concrete Bridge Rail

Figure 115. MASH TL-4 Open Concrete Bridge Rail

11.3 MASH 2016 Evaluation

Based on the results of the three successful full-scale crash tests conducted in this research effort, the open concrete bridge rail system meets all the safety requirements for MASH TL-4.

12 REFERENCES

- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 2. Holloway, J.C., Pfeifer B.G., Faller, R.K., and Post, E.R., *Full-Scale 18,000 lb Vehicle Crash Test on the Kansas 32 in. Corral Rail*, Report No. TRP-03-26-91, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 1991.
- 3. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. Stolle, C.S., Rasmussen, J.D., Rodriguez, L., Bielenberg, R.W., Faller, R.K., and Dowler, N., Zone of Intrusion Envelopes Under MASH Impact Conditions for Rigid Barrier Attachments, NCHRP Report 1018, National Academy of Sciences, Washington, DC, 2023.
- 5. Williams, W.F., Bligh, R.P., Menges, W.L., and Kuhn, D.L., *Crash Test and Evaluation of the TxDOT T224 Bridge Rail*, Test Report 9-1002-15-5, Texas A&M Transportation Institute, August 2015.
- 6. DeLone, J, *Development of a MASH Test Level 4 Open Concrete Bridge Rail*, Thesis in pursuit of a Masters of Science in Civil Engineering , University of Nebraska-Lincoln, July 2020.
- DeLone, J.A., Faller, R.K., Rasmussen, J.D., Rosenbaugh, S.K., and Bielenberg, R.W., Development of a MASH Test Level 4 Open Concrete Bridge Rail, Draft Report No. TRP-03-406a-23, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska,.
- 8. LaRoche, M., Email to R.W. Bielenberg, *Corral Rail Details*, February 21, 2019.
- Bligh, R.P, Briaud, J.L., Kim, K.M., Oden, A.A., *Design of Roadside Barrier Systems Placed* on MSE Retaining Walls, National Cooperative Highway Research Program (NCHRP) Report 663, Project 22-20, National Academies Press, Washington, DC., 2010, https://doi.org/10.17226/22924
- 10. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 11. Taborck, J.J., Mechanics of Vehicle 7, Machine Design Journal, May 30, 1957
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 13. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.

- 14. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July 2007.
- 15. Rosenbaugh, S.K., Asselin, N., Faller, R.K., and Hartwell, J.A., *Development of a Standardized End Buttress for Approach Guardrail Transitions*, Report No. TRP-03-369-18, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Nebraska, May 3, 2018.
- 16. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 18. Dobrovolny, C.S., Kiani, M., Menges, W.L., Schroeder, W., Griffith, B.L., and Kuhn, D.L., *MASH TL-4 Evaluation of the Flared Cast-In-Place Concrete Barrier*, Test Report No. 611901-06, Texas A&M Transportation Institute, College Station, Texas, August 2021.
- 19. Bligh, R.P., Menges, W.L., Schroeder, G., Griffith, B.L., and Kuhn, D.L., *MASH Evaluation* of *TXDOT Roadside Safety Features Phase III*, Test Report No. 0-6946-R3, Texas A&M Transportation Institute, College Station, Texas, May 2020.
- Abu-Odeh, A.Y., Brackin, M.S., Schulz, N.D., Kovar, J.C., Ferron, R.D., Ahsan, S., Run, M., Menges, W.L., and Kuhn, D.L., *Development and MASH TL-4 Evaluation of TxDOT Rubber Mounted Single Slope Barrier*, Test Report No. 0-6895-R1, Texas A&M Transportation Institute, College Station, Texas, April 2019.
- 21. Bligh, R.P., Menges, W.L., and Kuhn, D.L., *MASH Evaluation of TXDOT Roadside Safety Features – Phase I*, Test Report No. 0-6946-R1, Texas A&M Transportation Institute, College Station, Texas, January 2018.
- 22. Hinojosa, M., Faller, R.K., Rosenbaugh, S.K., Stolle, C.S., Bielenberg, R.W., Rasmussen, J.D., Steelman, J.S., and Holloway, J.C., MASH 2016 Evaluation of MNDOT Concrete Parapet with Brush Curb and Upper Beam and Post Rail with New Tapered End Section, Final Report to the Minnesota Department of Transportation, Transportation Research Report No. TRP-03-403-21, Project No.: TPF-5(193) Supplement #153, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 26, 2021.
- 23. Rosenbaugh, S.K., Faller, R.K., Dixon, J., Loken, A., Rasmussen, J.D., and Flores, J.R., *Development and Testing of an Optimized MASH TL-4 Concrete Bridge Rail*, Final Report to the Midwest Pooled Fund Program, Transportation Research Report No. TRP-03-415-21, Project No.: TPF-5(193) Supplement #104, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 26, 2021.
- 24. Rosenbaugh, S.K., Fallet, W.G., Faller, R.K., and Bielenberg, R.W., *34-in. Tall Thrie Beam Transition to Concrete End Buttress*, Report No. TRP-03-367-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Nebraska, March 8, 2019.

- Wiebelhaus, M.J., Terpsma, R.J., Lechtenberg, K.A., Reid, J.D., Faller, R.K., Bielenberg, R.W., Rhode, J.R., and Sicking, D.L., *Development of a Temporary Concrete Barrier to Permanent Concrete Median Barrier Approach Transition*, Research Report No. TRP-03-208-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 15, 2010.
- 26. *Roadside Design Guide*, 4th Edition 2011, American Association of State and Highway Transportation Officials (AASHTO), Washington D.C., 2011.
- 27. Schmidt, T.L., *Development of a Transition Between an Energy-Absorbing Concrete Barrier and a Rigid Concrete Buttress*, Thesis Prepared in Fulfilment Requirements for the Degree of Master of Science, University of Nebraska-Lincoln, Lincoln, Nebraska, July, 2016.
- 28. AASHTO, AASHTO LRFD Bridge Design Specifications, 8th Edition, Washington, D.C., 2017.
- 29. Bligh, R.P., Briaud, J-L., Abu-Odeh, A., Saez B., D.O., Maddah, L.S., and Kim, M.K., Design Guidelines for Test Level 3 (TL-3) Through Test Level 5 (TL-5) Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Wall, Report No. Research Foundation Project 478130, Texas A&M Transportation Institute, College Station, Texas, June, 2017.

13 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference		
a1	Bridge Deck Concrete	Min. f'c = 4,000 psi NE Mix 47B1S/1PF4000HW	Ticket No. #1267134, #1267135, #1267132		
a2	Bridge Rail Concrete	Min. f'c = 4,000 psi NE Mix 47B1S/1PF4000HW	Ticket No #1270201, #1270204, #1270203		
a3	Grade Beam Concrete	Min. f'c = 4,000 psi NE Mix 47B1S/1PF4000HW	Inv #HI-600351		
b1	#4 Rebar, 147½" Total Unbent Length	ASTM A615 Gr. 60	H#3600014739		
b2	#5 Rebar, 53 ⁷ / ₁₆ " Total Unbent Length	ASTM A615 Gr. 60	H#62150922		
b3	#5 Rebar, 154¾" Total Unbent Length	ASTM A615 Gr. 60	H#62150922		
b4	#5 Rebar, 30" Total Length	ASTM A615 Gr. 60	H#62150922		
b5	#4 Bent Rebar, 836" Total Unbent Length	ASTM A615 Gr. 60	H#6015833		
b6	#6 Rebar, 37 ¹ / ₂ " Total Length	ASTM A615 Gr. 60	H#62150922		
b7	#4 Bent Rebar, 73 ⁷ %" Total Unbent Length	ASTM A615 Gr. 60	H#7006848		
b8	#4 Bent Rebar, 87" Total Unbent Length	ASTM A615 Gr. 60	H#3600012482		
b9	#6 Rebar, 1580" Total Length	ASTM A615 Gr. 60	H#3600013486		
b10	#4 Bent Rebar, 82¾" Total Unbent Length	ASTM A615 Gr. 60	H#7006848		
b11	#4 Bent Rebar, 154¾" Total Unbent Length	ASTM A615 Gr. 60	H#3600014740		
b12	#5 Rebar, 155 ⁵ ⁄8" Total Unbent Length	ASTM A615 Gr. 60	H#62150922		
b13	#6 Rebar, 176¼" Total Length	ASTM A615 Gr. 60	H#3600013486		
b14	#5 Rebar, 45" Total Length	ASTM A615 Gr. 60	H#9700006936		
b15	#4 Rebar, 46" Total Length	ASTM A615 Gr. 60	H#7006848		
b16	#4 Bent Rebar, 35" Total Unbent Length	ASTM A615 Gr. 60	H#7006848		
b17	#4 Bent Rebar, 38½" Total Unbent Length	ASTM A615 Gr. 60	H#7006848		

Table A-1. Bill of Materials, Test Nos. OCBR-1, OCBR-2, and OCBR-3

Ready Mixed Concrete Company

6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	C DRIVER CUSTOMER PROJECT TAX PO NUM		PO NUMBER	R D/	ATE TIME	TICKET			
1	240	9419	6246	11		NTE	OCBR	7/1	2/21 9 40 AI	M 1267132
Customer UNL-MIDV	WEST RC	ADSID	SAFETY	Delivery 4630 N	Address W 36TH S	ST.		Special In AIRPARK GOODYE	structions (/ NORTH OF OLI ARHANGERS	þ
LOAD	QUANT		ORDERED	PROE	DE	PRODUCT	DESCRIPTION	UOM	UNIT PRICE	EXTENDED
9.00	9	.00	27.00	QL	324504	LNK47B1P	F4000HW	yd	\$132.50	\$1,192.50
Water Add	led On Job	At	SLUMP	Notes:				TICKET	SUBTOTAL	S1.192.50
Custome	r's Reques	t;	4.00 in					SALES	TAX	\$0.00
¥				<u>k</u>				PREVIO	US TOTAL	\$1,192.50
Contains Po	CAUTION KEEP	CHILDF	H CONCRI REN AWA	ETE y	ar.	This concrete i concrete. Stren the mix to exce acceptance of	Tern s produced with the igths are based on a ed this slump, exce any decrease in cor	ASTM stand a 3" slump. E pt under the mpressive str	ard specifications fo privers are not permit authorization of the o ength and any risk o	r ready mix ted to add water to customer and their f loss as a result

concrete or grout may cause skin injury. Avoid prolonged contact with skin. Always wear appropriate Personal Protective Equipment (PPE). In case of contact with eyes or skin, flush thoroughly with water. If irritation persists, seek medical attention promptly.

acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician. Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all hability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deerned waived unless made in writing within 3 days from time of delivery. In such a case seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

Figure A-1. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a1)

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529

Phone: (402) 434-1844 Fax: (402) 434-1877

Contains Portland cement. Freshly mixed cement, mortar, concrete or grout may cause skin injury. Avoid prolonged

Equipment (PPE). In case of contact with eyes or skin, flush thoroughly with water. If irritation persists, seek medical

attention promptly.

Customer's Signature:

PLANT	TRUCK	TRUCK DRIVER CUSTOMER PROJECT TAX PONUM		PO NUMBE	RD	ATE TIME	TICKET				
1	251	9827	6246	51	NTE	OCBR	7/12/21 9.55 AM 12671				
Customer UNL-MID∀	NEST RO	DADSIE	DE SAFETY	Delivery Addre 4630 NW 361	ess TH ST		Special Ir AIRPARI GOODYE	INSTRUCTIONS (7 NORTH OF OL EARHANGERS	a		
LOAD	QUAN		ORDERED	PRODUCT	PRODUCT	DESCRIPTION	UOM	UNIT PRICE	EXTENDED PRICE		
9.00	18	3.00	27.00	QL32450	14 LNK47B1F	PF4000HW	yd	\$132.50	\$1.192.50		
Water Add	led On Job	At	SLUMP	Notes:			TICKET	SUBTOTAL	S1 192 5(
Custome	r's Reques	st:	4.00 in	1			SALES TICKET	TAX TOTAL	SD DC \$1,192.50		
							PREVIC	US TOTAL	\$1 192 50 \$2 385.00		
	CAUTIO	N FRES			This concrete	Terr s produced with the	ASTM stand	nditions dard specifications for	r ready mix		

the mix to exceed this slump, except under the authorization of the customer and their

the mix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician. Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made. contact with skin. Always wear appropriate Personal Protective

Figure A-2. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a1)

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529

Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVE	R CUSTO	MER	PROJECT	TAX	PO NUMBE	R D	ATÉ	TIME	TICKET
1	284	8520) 624	51		NTE	OCBR	7/1	2/21	10.00 AI	W 1267135
Customer UNL-MIDV	VEST RC	ADSIE	DE SAFETY	Deliv 4630	ery Address) NW 36TH S	ŞT.		Special In AIRPARK GOODYF	structio / NOR ARHAN	ns TH OF OLE NGERS	1
LOAD			ORDERED	PF		PRODUCT	DESCRIPTION	UOM	UNIT	PRICE	EXTENDED
9.00	27	.00	27.00		QL324504	LNK47B1F	PF4000HW	γtl		\$132.50	\$1 192.5
Water Add	led On Job	At	SLUMP	Note	s:			TICKET	SUBTI	OTAL	\$1.192.5
Custome	r's Reques	:t:	4.00 in					SALES T	TAX TOTAI	Ĺ	\$0.0 \$1.192.5
				н				PREVIO GRAND	US TO TOTA	ITAL	\$2,385 0 \$3,577.5

Terms & Conditions

Contains Portland cement. Freshly mixed cement, mortar, concrete or grout may cause skin injury. Avoid prolonged

This concrete is produced with the ASTM standard specifications for ready mix concrete. Strengths are based on a 3" slump. Drivers are not permitted to add water to the nix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed lestion tab and/or restlined technician.

drawn by a licensed testing lab and/or certified technician Ready Mixed Concrete Company will not deliver any product beyond any puth lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

Contains Portland coment. Freshly mixed coment, mortar, concrete or grout may cause skin injury. Avoid prolonged contact with skin. Always wear appropriate Personal Protective Equipment (PPE). In case of contact with eyes or skin, flush thoroughly with water. If irritation persists, seek medical attention promptly.

Figure A-3. Bridge Deck Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a1)

Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD

ocation:	MNPD						
Sample:	024						
Description:	OCBR (Deck)						
Field Data war							
	M C172, C143, C	1/3/C231, C138, C	1064)	Deamore	t .	T4 P	a a ult
Supplier:				Proper	(in):	iest H	tesult
viix ivame:	-			Siump	(III).		
				All Col	(%):		
Load volume (yu*):	07/12/2021			Air len	пр (г).		
Moldod Bu	0//12/2021			Min To	mp (°E):		
violaea By:				MaxT-	пр (Г).		
nitial Cure Method:				Maxle	mp (`F):		
aboratory Te	st Data wer	((30)					
Sample Number	024	024					
Sat Number	Truck #2	Truck #3	-				
Section Number	1	1					
	21	21					
nye.	12	12					
Diamotor (in):	6	5.99					
	28.27	28.18					
Area (III ⁻).	08/02/2021	08/02/2021					
Prest Date:	6	6	-				
Dreak Type:	134 654	111 790					
Strength (pci):	4 760	3.970					
Suengui (psi).	-,700	5,570					
Spec Strength (psi).			-	1			
Exci in Avg Strength:							
Remarks:					Date received: 08	/02/2021	
Average 21-day Com	pressive Strenath	n (psi):	4.360		Curing: KStanda	ard DEield	
, een	,	u - 7.			ASTM C51		
					Submitted by:		
					Submitted by:	MA VI	D. l.
						11ml	oun
					b:		
				201			
				1	Distribution:		
XXII	S IN		/				
Type 1 Type 2	Type 3	Type 4 Type 4	5 Tvn	e 6	Report Date: 8/2/	21	

Alfred Benesch & Company

167

Page 1 of 1

Concrete Sample Test Report Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	027
Description:	OCBR

Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:			Property		Test Result	
Mix Name:			Slump (ir	ı):		
Ticket Number:			Air Conter	nt (%):		
Truck Number:			Unit Weigl	ht (lb/ft³):		
Load Volume (yd3):			Air Temp	(°F):		
Mold Date:	09/16/2021		Mix Temp	(°F):		
Molded By:			Min Temp	(°F):		
Initial Cure Method:			MaxTemp	(°F):		
Sample Number:	027	027				
Laboratory Tes	st Data (AST	M C39)				
Set Number:	OCBR-1	OCBR-2				
Specimen Number:	1	1				
Age:	14	14				
Length (in):	12	12				
Diameter (in):	5.96	5.95				
Area (in ²):	27.90	27.81				
Test Date:	09/30/2021	09/30/2021				
Test Date.	CONCOLLOLI					
Break Type:	6	6				
Break Type: Max Load (lbf):	6 96,378	6 108,018				
Break Type: Max Load (lbf): Strength (psi):	6 96,378 3,450	6 108,018 3,880				
Break Type: Max Load (lbf): Strength (psi): Spec Strength (psi):	6 96,378 3,450	6 108,018 3,880				

Sample Number:	027	027				
Set Number:	OCBR-1	OCBR-2				
Specimen Number:	1	1				
Age:	14	14				
Length (in):	12	12				
Diameter (in):	5.96	5.95				
Area (in ²):	27.90	27.81				
Test Date:	09/30/2021	09/30/2021				
Break Type:	6	6				
Max Load (lbf):	96,378	108,018				
Strength (psi):	3,450	3,880				
Spec Strength (psi):						
Excl in Avg Strength:						
Remarks: Average 14-day Com	pressive Strengt	th (psi):	3,670	Date received: 09/ Curing: XStanda ASTM C51 Submitted by:	30/2021 rd	kocule

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested.

Type 5

Type 4

825 M Street Suite 100 Lincoln, NE 68508

Type 1

Type 3

Type 2

Alfred Benesch & Company

Type 6

Report Date: 9/30/21

Figure A-5. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a2)

CONTRACTOR OF THE OWNER.	TRUCK DRIV	ER CUSTO	MER PROJEC	T TAX	PO NUMBER	DA	TE TIME	TICKET
1	147 110	14 6246	1 Delivery Address	N01	OCBR-H34S	9/1 Special In	6/21 10:30 A	M 1270201
INL-MIDV	VEST ROADSI	DE SAFETY	4630 NW 36TH	ST		NORTH C	FOLD GOODYE	AR HANGARS
LOAD		QUANTITY	PRODUCT	PRODUCT DE	SCRIPTION	NON	UNIT PRICE	EXTENDED
8.00	8 00 «	24.00	QL324504	LNK47B1PF4	000HW	уd	\$132.50	\$1 060.00
Water Add Customer	ed On Job At 's Request:	SLUMP 4.00 in	Notes:			TICKET : SALES T	SUBTOTAL AX	\$1.060.00 \$0.00
	l					TICKET	TOTAL	\$1,060.00
	1						JS TOTAL	\$1,060.00
A .		ON CONCOL			Term	s & Con	ditions	
$\langle \cdot \rangle$	KEEP CHILI tland cement. Fres rout may cause sk skin. Always wear a	NEN AWAY hly mixed ceme in injury. Avoid appropriate Pers ntact with eyes n persists, seek	int, mortar, prolonged sonal Protective or skin, flush medical	concrete. Strength the mix to exceed acceptance of any thereof. Cylinder to drawn by a license Ready Mixed Cont unless expressly to personal or proper The purchaser's e- within 3 days from	s are based on a this slump, excep decrease in comp sts must be hand d testing lab and/ rete Company wi lid to do so by cus by damage that m cceptions and clai	3" slump. Dr t under the a pressive stre lled accordin or cartified tu II not deliver stomer and ay occur as ms shall be n such a car	ivers are not permit uthorization of the or ngth and any risk o g to ACI/ASTM spe echnician. any product beyond sustomer assumes a result of any such deemed waived uni- se, seller shall be gr	ted to add water to pustomer and their f loss as a result corrections and d any curb lines all liability for any directive. ess made in writing ven full opportunity ted the purchase
ontains Por ncrete or g ntact with s uipment (F rroughly wi ention pror	PE). In case of co th water. If irritation nptly.			to investigate any price of the materi	such claim. Selle als against which	any claims a	iali in no event exce ire made	
ntains Pon ncrete or g nlact with s uipment (P roughly wi ention pror	PE). In case of co th water, If irritation nptly.			to investigate any price of the materi	such claim. Selle als against which	r s liability si any claims a	iali în no event exce re made	-
ntains Pon ncrete or g ntact with s uipment (P proughly wi ention pror	PE). In case of co th water, If irritation nptly.			to investigate any price of the materi	such claim. Selle als against which	r s liability si any claims a	iai in no event exce ire made	11-2
ntains Pon norete or g ntact with s uipment (F roughly wi ention pror	PE). In case of co th water, If irritation nptly.			to investigate any price of the materi	anne oi denversy. Serie als against which	r s ilability si any claims a	iaii in no event exce re made	- /
ntains Pon hocrete or g ntact with s uipment (F roughly wi ention pror	PE). In case of co th water, If irritation nptly.			to investigate any price of the materi	anie o devlevy such claim. Selle als against which	r și liadiniry și any claimș a	iai in no event exce	

Figure A-6. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a2)

Data tormer Delivery Address Special instructions Instructions UNL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST Special instructions NORTH OF OLD GOODYEAR HANGA UNL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST NORTH OF OLD GOODYEAR HANGA UNL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST NORTH OF OLD GOODYEAR HANGA UNL-MIDWEST ROADSIDE SAFETY ORDERED PRODUCT PRODUCT DESCRIPTION UOM UNIT PRICE EXTEND QUANTITY QUANTITY QUANTITY CODE PRODUCT PRODUCT DESCRIPTION UOM UNIT PRICE EXTEND 8.00 24.00 QL324504 LINK47B1PF4000HW yd S132.50 S1 Water Addeed On Job At SLUMP Notes: TICKET SUBTOTAL S1.1 Customer's Request: 4.00 in Notes: TICKET TOTAL S1.4 VILLOW REVIOUS TOTAL S2.3 S3.5 S3.5 Customer's Request: 4.00 in To correle is produced with the Aston atoms are condication for ready mix correle or produced with the Aston atoms are condication for ready mix correle or grout may cause skin injury. Avoid prolonged condiced on significations are condication for ready mix correle or grout may cause skin injury. Avoid prolonged condiced	- in the second	133 71	ER CUSTON	MER PROJECT	TAX NO1	PO NUMBER	D/ 9/1	ATE TIME 6/21 10:48 A	TICKET
INL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST NORTH OF OLD GOODYEAR HANGA INL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST NORTH OF OLD GOODYEAR HANGA INL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST NORTH OF OLD GOODYEAR HANGA INL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST NORTH OF OLD GOODYEAR HANGA INL-MIDWEST ROADSIDE SAFETY QUANTITY CODE PRODUCT DESCRIPTION UOM UNIT PRICE EXTEND INL-MIDWEST ROADSIDE SAFETY QUANTITY CODE PRODUCT DESCRIPTION UOM UNIT PRICE EXTEND INL-MIDWEST ROADSIDE SAFETY QUANTITY CODE PRODUCT DESCRIPTION UOM UNIT PRICE EXTEND Water Added On Job At SLUMP ALSO INK47E1PF4000HW yd \$132.50 \$1. Water Added On Job At SLUMP Notes: TICKET SUBTOTAL \$1.0 Customer's Request: 4.00 in State Stat	ustomer	- 100 1 11	12 0240	Delivery Address	1.01	0001(11040	Special In	structions	1270204
LOAD UANTITY CUMULATIVE QUANTITY ORDERED QUANTITY PRODUCT CODE PRODUCT DESCRIPTION UOM UNIT PRICE EXTEND PRICE 8.00 24:00 24:00 QL324504 LNK47B1PF4000HW yd \$132:50 \$1. Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1.0 Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1.0 Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1.0 Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1.0 Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1.0 Water Added On Job At Customer and provide the state of th	NL-MIDV	EST ROADSI	DE SAFETY	4630 NW 361H 3	51		NORTH	F OLD GOODYE	AR HANGARS
8.00 24.00 24.00 QL324504 LNK47B1PF4000HW yd \$132.50 \$1. Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1. Water Added On Job At Customer's Request: 4.00 in PREVIOUS TOTAL SALES TAX TICKET TOTAL \$1. Water Added On Job At Customer's Request: 4.00 in PREVIOUS TOTAL SALES TAX TICKET TOTAL \$1. Water Added On Job At Customer's Request: 4.00 in PREVIOUS TOTAL SALES TAX TICKET TOTAL \$1. Water Added On Job At Customer's Request: 4.00 in PREVIOUS TOTAL SALES TAX TICKET TOTAL \$1. Mater Added On Job At Customer at the added on a 3's lump Drivers are not permitted to add w the mix to exceed this sump, except under the authoraction of the customer and concrete Strengths are based on a 3' slump. Drivers are not permitted to add w the mix to exceed this sump, except under the authoraction of the customer and concrete or grout may cause skin injury. Avoid prolonged intact with skin?PE. In case of contract heyes or sin flucture proceed any decrease in compressive stength and any risk of loss as a re thereof. Cylinder tests must be handled according to ACUASTM specifications and caupt yel contract and/or certified technican. Read Mixed Concrete sin shall be decenting in a dub of the chains and term by allower being and/or certified technican. With 3 dags from time of deliver, in such a case weller shalb be	LOAD		ORDERED	PRODUCT	PRODUCT DE	SCRIPTION	UOM	UNIT PRICE	EXTENDED
Water Added On Job At Customer's Request: SLUMP Notes: TICKET SUBTOTAL SALES TAX TICKET TOTAL \$1,0 Multiple Comparison of the second strength 4.00 in In SLES TAX TICKET TOTAL \$1,0 Multiple Comparison of the second strength 4.00 in In <td>8.00</td> <td>24.00</td> <td>24.00</td> <td>QL324504</td> <td>LNK47B1PF4</td> <td>000HW</td> <td>yd</td> <td>\$132.50</td> <td>\$1.060.0</td>	8.00	24.00	24.00	QL324504	LNK47B1PF4	000HW	yd	\$132.50	\$1.060.0
Previous Total Section Sectio	Vater Adde Customer	ed On Job At s Request:	SLUMP 4.00 in	Notes:			TICKET SALES 1 TICKET	SUBTOTAL AX TOTAL	\$1,060.0 \$0.0 \$1,060.0
CAUTION FRESH CONCRETE KEEP CHILDREN AWAY That is Portland cement. Freshly mixed cement, mortar, increte or grout may cause skin injury. Avoid prolonged intact with skin. Always wear appropriate Personal Protective putpernet (PPE). In case of contact with eyes or skin, flush oroughly with water. If invitation persists, seek medical tention promptly. Contract with skin always wear appropriate Personal Protective tention promptly. Contract with skin always wear appropriate Personal Protective Contract with skin always wear appropriate Personal Protective Contract With water. If invitation persists, seek medical tention promptly. Contract With water and appropriate Personal Protective Contract With water. If invitation persists, seek medical tention promptly. Contract With water and appropriate Personal Protective Contract Company will not deliver any product beyond any curb limit unless expressive fold to do so by customer and customer assumes all liability for the purchaser's exceptions and claims shall be deemed waived unless made in within 3 days from time of delivery. In such a case selfs shall be given full oppoind to investigate any such claim. Seller's liability shall in no event exceed the purch price of the material's against which any claims are made.	. 1						PREVIO	US TOTAL TOTAL	\$2,120.0 \$3, 180.0
	ontains Port portains Port portact with s quipment (P oroughly with tention pron	AUTION FRE KEEP CHILI land cement. Fre- out may cause sk kin. Always wear PE). In case of co b water. If irritation hptly.	SH CONCRE DREN AWAY shly mixed ceme (in injury. Avoid j appropriate Pero ontact with eyes in persists, seek	ent, mortar, prolonged sonal Protective or skin, flush medical	This concrete is pri- concrete. Strengthis the mix to exceed t acceptance of any thereof. Cylinder te drawn by a license: Ready Mixed Conc unless expressly to personal or propert The purchaser's ex within 3 days from to investigate any s price of the materia	bduced with the A s are based on a his slump, except decrease in comy sts must be hand d testing lab and/ rete Company wi Id to de so by cur y damage that m ceptions and clai time of delivery. 1 uch claim Selle its against which	ASTM stand: 3" slump. D t under the a pressive stre fled accordin or certified 1 In ot deliver stomer and ay occur as ims shall be in such a ca r's liability sl any claims a	and specifications for myers are not permit authorization of the or- ength and any risk of the ACI/ASTM spe- echnician. any product beyond customer assumes: a result of any such deemed waived uni- se seller shall be gi- hall in no event exce are made.	r ready mix ted to add water to customer and their f loss as a result scifications and d any cuib lines all liability for any directive ess made in writing ven full opportunity wed the purchase
					-10 -				
r ^a									
	r								
	ŗ								

Figure A-7. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a2)

	TRUCK DRI	ER CUSTO	MER PROJEC	T TAX F	ONUMBER	DA	TE TIME	TICKET
1 stomer	056 05	6 6246	1 Delivery Address	N01 1	CBR-H34S	9/16 Special Inst	121 10 43 A	M 1270203
NL-MIDV	VEST ROADSI	DE SAFETY	4630 NW 36TH	ST		NORTH OI	F OLD GOODYE/	AR HANGARS
LOAD		ORDERED	PRODUCT	PRODUCT DESC	RIPTION	UOM	UNIT PRICE	EXTENDED
8.00	16.00	24.00	QL324504	LNK47B1PF400	OHW	yd	\$132.50	\$1,060.00
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)							
Vater Adde Customer	ed On Job At	SLUMP	Notes:			TICKET S	SUBTOTAL AX	\$1,060.00
		4.00 11			and the second second	TICKET T	OTAL	\$1,060.00
	•]					PREVIOU GRAND T	S TOTAL	\$1,060.00 \$2,120.00
ontains Port ncrete or gr ntact with s juipment (P oroughly wi tention pror	CAUTION FRE KEEP CHIL Iland cement. Fre rout may cause s skin. Always wear PE). In case of c th water. If irritation aptly.	SH CONCRE DREN AWAY shly mixed ceme kin injury. Avoid appropriate Per- ontact with eyes on persists, seek	ent, mortar, prolonged sonal Protective or skin, flush medical	This concrete is prodi concrete. Strengths a the mix to exceed this acceptance of any de thereof. Cylinder tests drawn by a licensed t Ready Mixed Concret unless expressly told personal or property o The purchaser's exce within 3 days from tim to investigate any sux proce of the materials	teed with the A re based on a slump, except crease in comp. must be hand esting lab and/ e Company with to do so by cui- lamage that m ptions and clai e of deliver/. I h claim. Selle against which	STM standai 3" slump. Dri t under the ar- pressive strer led according or certified te 11 not deliver i stomer and c ay occur as a ms shall be o n such a cas rs hability sh any claims ar	d specifications for vers are not permitt uthorization of the c ngth and any risk of g to ACI/ASTM spe chnician. any product beyond ustomer assumes a result of any such leemed waived unite e, seller shall be giù all in no event exce re made.	ready mix ted to add water to sustomer and their floss as a result cifications and any curb lines all liability for any directive. ess made in writing ven full opportunity ed the purchase

Figure A-8. Bridge Rail Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a2)

Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	027
Description:	OCBR

Field Data	(ASTM C172,	C143,	C173/C231,	C138,	C1064)
------------	-------------	-------	------------	-------	--------

		Prop	perty	Test	Result
		Slun	np (In):		
		Air C	Content (%):	0	
		Unit	Weight (Ib/tts):		
		Air T	ſemp (°F):		
09/16/2021		Mix	Temp (°⊢):		
		Min	Temp ("+):		
		Max	Temp (°F):		
027	027				
Data					
	OCPP 2	-			-
JCBR-1	OCBR-2				
1	1				
14	14				
12	12				
5.96	5.95				
27.90	27.81				
09/30/2021	09/30/2021				
~	0				
6	6				
6 96,378	108,018				
6 96,378 3,450	108,018 3,880				
6 96,378 3,450	6 108,018 3,880				
	D9/16/2021 Data (Astri D27 DCBR-1 1 14 12 5.96 27.90 D9/30/2021	D9/16/2021 Data (ASTM C39) D27 027 DCBR-1 OCBR-2 1 1 14 14 12 12 5.96 5.95 27.90 27.81 D9/30/2021 09/30/2021	Slur Air C Unit D9/16/2021 Mix Min D9/16/2021 Mix Min Max Data (ASTM C39) D27 027 DCBR-1 0CBR-2 1 1 14 14 12 12 5.96 5.95 27.90 27.81 09/30/2021 09/30/2021	Slump (In): Air Content (%): Unit Weight (Ib/tt²): Air Temp (°F): D9/16/2021 Mix Temp (°F): Min Temp (°F): Min Temp (°F): MaxTemp (°F): D27 027 D27 027 DCBR-1 OCBR-2 1 1 14 14 12 12 5.96 5.95 27.90 27.81 09/30/2021 09/30/2021	Slump (in): Air Content (%): Unit Weight (lb/t*): Unit Weight (lb/t*): Air Temp (*F): D9/16/2021 Mix Temp (*F): Min Temp (*F): Mix Temp (*F): MaxTemp (*F): MaxTemp (*F): D27 027 DCBR-1 OCBR-2 1 1 14 14 12 12 5.96 5.95 27.90 27.81 09/30/2021 09/30/2021

Laboratory Test Data (ASTM C39)

Sample Number:	027	027		
Set Number:	OCBR-1	OCBR-2		
Specimen Number:	1	1		
Age:	14	14		
Length (in):	12	12		
Diameter (in):	5.96	5.95		
Area (in²):	27.90	27.81		
Test Date:	09/30/2021	09/30/2021		
Break Type:	6	6		
Max Load (lbf):	96,378	108,018		
Strength (psi):	3,450	3,880		
Spec Strength (psi):				
Excl in Ava Strenath:				

5		l.e.
ĸ	emar	KS:

Remarks:						Date received: 09/30/2021
Average 14-day Compressive Strength (psi):			3,670		Curing: Standard Field ASTM C511	
						Submitted by:
$\times \times$	贝贝	5)			\sim	Distribution:
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 9/30/21

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested.

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	027
Description:	OCBR

Field Data (ASTM	C172, C143, C173/C	231, C138, C1064)
------------------	--------------------	-------------------

Supplier:		Property	Test Result
Mix Name:		Slump (In):	
Ticket Number:		Air Content (%):	
Truck Number:		Unit Weight (Ib/tt ^s):	
Load Volume (yd3):		Air Temp (°F):	
Mold Date:	09/16/2021	Mix Temp (`+):	
Molded By:		Min Temp (``+):	
Initial Cure Method:		MaxTemp (°F):	

Laboratory Test Data (ASTM C39)

Sample Number:	027	027		
Set Number:	OCBR-1	OCBR-2		
Specimen Number:	1	1		
Age:	14	14		
Length (in):	12	12		
Diameter (in):	5.96	5.95		
Area (in²):	27.90	27.81		
Test Date:	09/30/2021	09/30/2021		
Break Type:	6	6		
Max Load (lbf):	96,378	108,018		
Strength (psi):	3,450	3,880		
Spec Strength (psi):				
Excl in Ava Strenath:				

|--|

Remarks:						Date received: 09/30/2021
Average 14-day Compressive Strength (psi):			3,670		Curing: Standard Field ASTM C511	
						Submitted by: Mit Rocula
$\times \times$	观人	5			\sim	Distribution:
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 9/30/21

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	020
Description:	OCBR

Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:				Property	Test Result	
Mix Name:				Slump (in):		
Ticket Number:				Air Content (%):		
Truck Number:				Unit Weight (Ib/ft³):		
Load Volume (yd3):				Air Temp (°F):		
Mold Date:	08/31/2020			Mix Temp (°F):		
Molded By:	MwRSF			Min Temp (°F):		
Initial Cure Method:				MaxTemp (°F):		
Sample Number:	020	020				
Laboratory Tes	st Data (AST	M C39)				
Set Number:	1	2				
Specimen Number:	1	1				
		Contraction of the Contraction o				
Age:	193	193				
Age: Length (in):	193 12	193 12				
Age: Length (in): Diameter (in):	193 12 6	193 12 6				
Age: Length (in): Diameter (in): Area (in²):	193 12 6 28.27	193 12 6 28.27				
Age: Length (in): Diameter (in): Area (in²): Test Date:	193 12 6 28.27 03/12/2021	193 12 6 28.27 03/12/2021				
Age: Length (in): Diameter (in): Area (in²): Test Date: Break Type:	193 12 6 28.27 03/12/2021 2	193 12 6 28.27 03/12/2021 2				
Age: Length (in): Diameter (in): Area (in²): Test Date: Break Type: Max Load (lbf):	193 12 6 28.27 03/12/2021 2 179,475	193 12 6 28.27 03/12/2021 2 198,020				
Age: Length (in): Diameter (in): Area (in²): Test Date: Break Type: Max Load (lbf): Strength (psi):	193 12 6 28.27 03/12/2021 2 179,475 6,350	193 12 6 28.27 03/12/2021 2 198,020 7,000				

Laboratory Test Data (ASTM C39)

Sample Number:	020	020		
Set Number:	1	2		
Specimen Number:	1	1		
Age:	193	193		
Length (in):	12	12		
Diameter (in):	6	6		
Area (in ²):	28.27	28.27		
Test Date:	03/12/2021	03/12/2021		
Break Type:	2	2		
Max Load (lbf):	179,475	198,020		
Strength (psi):	6,350	7,000		
Spec Strength (psi):				

1	Rema

Remarks:						Date received: 03/12/2021
Average 193	3-day Compre	ssive Stren	gth (psi):	6,68	30	Curing: 🗴 Standard 🔲 Field
Concrete test	specimens alo	ng with docu	mentation and	l test data		ASTM C511
were submitte concrete spec	ed by MNPD. To cimens as recei	est results proved.	esented relate	to the		Submitted by: Mit Roculer
$\times \times$		4				Distribution:
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 3/12/21

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

one: (402) 434	-1844 Fax: (4	402) 434-1877									(5)
Job:	4630 NW 3	36TH ST							Page		1
	LINCOLN							Account N	umber		62461
									mount	0	8/31/20 702 FD
ill To:	สมาร์ เป็นสำนัก			ΥτΩΥ				Invoice N	umber	HI	600351
	ATTN VAL	ERIE SWART	CZ					Amoun	t Paid		
	130 WHIT	TIER RESEA	ARCH CE	NTER				Amoun	() ala	-	
	UNIVERSI	TY OF NEBI	RASKA L	JINCOL	N						
	LINCOLN		NE 00	0000				2			
			T	nvoice	e Terms:	Net 30					
	To insure	proper credi	t, please	detach	n and retur	n top portion	of invo	bice with remitt	ance.		
oice No.: HI	600351	Invoice Date	: 08/31	L/20	PO Noji	4506250		Order:		Ship	#:
ne		tem Descript	lion			Quanti	ty	Unit Price	Mis	<u>c.</u>	Extension
1 LNK47B1	PF4500STR		Ç	QL32D4	123	12.5	0 CY	127.00	0.	10	1,587.50
CONC										6	
TKTS:	1255881	1255889	125587	79							
8											
	,										
							3	н			
								8		8	
		12									
				3							
									1		
										07	
5 B						j.		с.	1	8	a
						2 ·					
							<u>. </u>	Sub T	otol	┍╴┶	
Account: .lob:	62461	UNL-MIDWES	ST ROAD	SIDE	SAFETY			Sales	Tax		115.09
ax Code:	RMN01	Lincoln Sa	ales Ta	ax				Total Am	ount		L,702.59
	unaren (18 - 11						The second second				
											

Figure A-12. Grade Beam Concrete, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. a3)

Date: November 5, 2020

CERTIFICATE OF COMPLIANCE

To: Concrete Industries, Inc.

Re: PO# 144607-1

Project No: #4 & #5 x 40'-0" Epoxy Straight Bar

County:

Contractor:

To Whom It May Concern:

The representative samples of the coated bars have been coated and tested. They conform to the requirements of the State of *Nebraska* Department of Roads Specification.

Sincerely,

SIMCOTE, INC.

Adam Simmet President

9

250 N. Greenwood St., Marion, OH 43302 Phone: (740) 382-5000 Fax: (740) 383-1167

Figure A-13. #4 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b1)

 	*	a a construction of the second s	
	SUM	MARY SHEET	11/5/20;
JOB/ORDER NU	IMBER	52249	
CUSTOMER NA	ME	CONCRETE IND	USTRIES
CONTRACTOR			
TICKET/RELEAS	SE # (S)	9	
SIZE	HEAT	Lot	DATE
4	55064958	0K06	11-03-20A
4	3600014739	69479	10-19-20C
5	58042433	0K07	11-02-20A
1			3 * 2
n 1999 - Norsewan Alfrey, Sover Standard, and a standard many standard standard standard standard standard stan			
Kana (K. Managan K. M. Jakatan K. Japan) and a ship and a			
CRXX 8107 Landers 1994, and 1994 Marcula de Landers and an annual de landers and an annual de landers and an an			
55.5500.00.588.85000.00.45 <u>00000000000000000000000000000</u>			
000-000 MM (84888888846446446484848448444444444444			antin <mark>a ya</mark> manan fan ya manan kanan makala ka ata katala kata
20.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11 N N N N	
		N 9	
an a			
88.20180344.2418-2418-2419-44-4-9- <u>112-22-4-9-9-211-228-99-24-21-8-21-9-2</u> 49-2			๛๛๛ _๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
anna a suite a			9999 <u>899999999999999999999999999999999</u>
NORMET MARKARAN JULIA AND TO THE TO THE OTHER DESIGNATION			

Figure A-14. #4 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b1)

				CERTIFIED M	ATERIAL T	EST REPORT						9.	100 \$12
Geo G	ERDAU	SIMCOTE INC 1645 RED ROC	P TO K RD	CUSTOMER SIMCOTE 1645 RED	R BILL TO INC ROCK ROAI	5		GRADE 60 (420)		SHAP Rebar	E/SIZE / #5 (16MM)	00 000	CUMENT ID: 10036750
US-ML-ST PAUL		USA	1N 55119	SAINT PAU USA	UL,MN 5511	9-6014		LENGTH 40'00"	I		WEIGHT 8.594 LB	HEAT / B	ATCH
1678 RED ROCK R SAINT PAUL, MN	OAD 55119	SALES ORDER	ι	CUSTO	MER MATE	PIAL Nº		SDECIE	CLINICAL (D)			02130922	202
USA		8328518/000050	0					ASTM A6	15/A615M-16	ATE of REVISE	ON		
CUSTOMER PURCE MN-3734	IASE ORDER NUMBER		BILL OF LADING 1332-0000075667		DATE 11/21/2019	2							
CHEMICAL COMPOSI	TION Mn P	c	C: (-									
% 0.42	1.09 0.009	% 0.021	0.23 0.	.29 0	N: 0.12	Çr 0.19	Mc %	9	Sr. 0.012	¥	.¥p		
MECHANICAL PROPE	RTIES		L TIPLS							0.004	0.002		
PSI 68545		a 3	PSI 107801		MPa 743			G/L Inch 8.000		G/ m 201	L m 12		
MECHANICAL PROPE Elong. % 13.80	RTIES Bend OF	Fest							- -				
GEOMETRIC CHARAC %Light E % 1.75	TERISTICS Def Hgt Def Gap Inch Inch 0.380 0,131	DefSpace Inch 0.419					-	2 2 2				n de la composition de la comp	
COMMENTS / NOTES Material 100% meliced and hot rolling, have b cast billets. Silicon kit liquid a ambient temp provided by Gerdau-St report shall not he repor responsible for the inat Roll batch 62150922/0	and rolled in the USA. Manu cen performed at Gerdau St. P. led (dox)dized) steel. No we eratures during processing or Paul Mill without the expres oduced except in full, without jilty of this material to meet a 2 roll date 8/26/2019	facturing processe aul Mill, 1678 Re Id repairment per while in Gerdau S sed written conset the expressed wr pecific applicatio	es for this steel, which d Rock Road. Saint P formed. Steel not exp t. Paul Mills possessi nt of Gerdau St. Paul I tien consent of Gerda ns.	may include sor, aul, Minnesota, I osed to mercury on. Any modifica Will negates the u St. Paul Mill.	np meltod in a USA. All pro- or any liquid ation to this ci validity of this Gerdau St. Pa	in electric arc fit duct produced f alloy which is ertification as test report. Th ul Mill is not	rnace tom stra	nd				81	
	The above figures are certif specified requirements. We 10204 3.1.	ied chemical and id repair has not b	physical test records a een performed on this	s contained in th material. This m	e permanent r naterial, inclus	ecords of comp ling the billets.	any. We was mel	certify the ted and ma	i these data ar inufactured in	e correct and in the USA, CMT	compitance with R complies with EN	L.	
	Marko	BHASK.	AR YALAMANCHILI						m	ALEA BR	ANDENBURG		
	Phone: (100) 267 2071 T-	QUALIT	YDIRECTON							QUALITY	ASSURANCE MGR.		
	1 done, (409) 207-1071 EN	au, offaskar i alam	ancen n @ gerdau.com					Phone: (0	51) 731-5662	Email: Alea.Brar	idenburg@gerdau.com		

Figure A-15. #5 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item Nos. b2 through b4, b6, and b12)

We hereby certify that the test results presented here

CMC S 584 OI Durant	TEEL OKLAI I Highway 70 OK 74701-00	HOM 0 000	A	CERTIFIED MILL TES For additional cop 830-372-8771	T R bies	CEPORT are acc call	curate and conf	Form to the reported Robert Boo Robert Booth	grade specification AC
							Quality	Assurance Manager	
HEAT NO.:6015833 SECTION: SPOOL REBAR 13MM A615/A706-60 3.5T GRADE: ASTM A615 GR A706-6 ROLL DATE: 06/19/2020 MELT DATE: 06/19/2020 Cert. No.: 83139931 / 015833J05	l (#4)) Dual Gr I	S O L D T O	Concrete 6300 Corr Lincoln US 68529 40243418 40243418	Industries Inc nhusker Hwy NE -0529 99 99	S H P T O	Concrete Industries Inc 6300 Cornhusker Hwy Lincoln NE US 68529-0529 4024341899 4024341899		Delivery#: 8313993 BOL#: 73665794 CUST PO#: 142456 CUST P/N: DLVRY LBS / HEA' DLVRY PCS / HEA'	1 Г: 6864.000 LB Г: 1 EA
Characteristic	Value			Characteristic		Value		Characteristic	Value
G Mr F S S S C C C C N Mc S S S S Carbon Eq A700 Yield Strength test 1 Yield Strength test 1 Tensile Strength test 1 Tensile Strength test 1 Tensile Strength test 1 Elonation test 1	0.29% 1.22% 0.009% 0.023% 0.26% 0.28% 0.16% 0.051% 0.001% 0.004% 0.004% 0.0124% 0.0124% 0.53% 73.9ksi 510MPa 103.8ksi 716MPa 15%			Elongation Gage Lgth te Tensile to Yield ratio t Bend Te Rebar Deformation Avg. S Rebar Deformation Avg. S Rebar Deformation Max. Bend Test Diam Strain at Peak Stress te	st 1 est1 st 1 oaci eigh Gap eter st 1	8IN 1.41 Passed 0.334IN 0.028IN 0.117IN 1.500IN 11.3%	The Following is "Material is fully ki "100% melted and "EN10204:2004 3 "Contains no weke "Contains no mere "Manufactured in a of the plant qual "Meets the "Buy A "Warning: This pu known to the St or other reproduc	true of the material repres lied i rolled in the USA (comptiont repair ury contamination social contained with the latest v fly manual imerice" requirements of 33 ordotc can expose you to ch et of California to cause ca citive harm. For more inform	ented by this MTR: ersion CFR635.410, 49 CFR 661 emicals which are ner, birth defects ation go

REMARKS : ALSO MEETS AASHTO M31

Page 1 OF 1 07/13/2020 13:55:16

Figure A-16. #4 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b5)

1919 Ten Knozville	inesses Ave e TN 37921-2	nue 686	For additional	copies	call	Jin	- Hall Hall X Assurance Menager
EAT NO.:7006548 ECTION: REBAR 13MM (#4) 60'0 RADE: OLL DATE: ELT DATE: ELT DATE: 01/05/2020 ert. No.: 82944733 / 006548L265	" 420/60	S AE O 222 D Tu US T 911 O 91	36 Coating Co - Tulsa 38 S Yukon Ave 1959 OK 74107-2765 86882587 85863131	SH P TO	CPU Chicago Depot 13535 S Torrence Ave Chicago IL US 60633-2164 7736466363		Delivery#: 82944733 BOL#: 1865847 CUST PO#: 010620-Minn CUST P/M: DLVRY LBS / HEAT: 26932.000 LE DLVRY PCS / HEAT: 672 EA
Characteristic C Mri P S Si Cu Cr Cr Ni Mo V	Value 0.27% 0.59% 0.006% 0.048% 0.20% 0.33% 0.17% 0.11% 0.014% 0.002%		Characteristi Rebar Deformation Avg Rebar Deformation Avg Rebar Deformation Ma	c . Spac . Heigi ix. Gap	Value 0.329IN 0.034IN 0.0106IN	The Following is Waterial is fully k	Characteristic Value
Sn Yield Strength test 1 Yield Strength test 1 Tensile Strength 1 (metri Tensile Strength 1 (metric) Elongation Gage Lgth test 1 Elongation Gage Lgth 1(metri Bend Test 1	0.007% 85.9ksi 592MPa 99,1ksi 884MPa 13% 81N 200mm Passed					"100% metted and "EN10204:2004 3. "Contains no welk "Contains no Men "Manufactured in a of the plant qual "Meets the "Buy A "Warning: This pr known to the St or other reprodu	I rolled in the USA 1 compliant (repair cury contamination accordance with the latest version lity manual Invervice: requirements of 23 CFR055.410.49 CFR 95 roduct can expose you to chemically which are ted of California to curse cancer, birth defects offer latert. For more information go

Page 1 OF 1 01/21/2020 09:09:21

Figure A-17. #4 Bent Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item Nos. b7, b8, b10, b15 through b17)

NUCOR

Mill Certification 07/14/2020

MTR#:451286-2 Lot #:360001348621 ONE NUCOR WAY BOURBONNAIS, IL 60914 US 815 937-3131 Fax: 815 939-5599

Sold To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US Ship To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

Customer PC	MN-3748						Sales	Order #	36013225	- 4.1
Product Group	Rebar						P	roduct #	2110264	
Grade	A615 Gr 60/	ASHTO M	31					Lot #	36000134	3621
Size	#6							Heat #	36000134	36
BOL#	BOL-533793							Load #	451286	
Description	Rebar #6/19 10000 lbs	mm A615 G	Gr 60/AAS⊦	ITO M31 4	0' 0" [480"]	6001-	Custome	er Part #	0	
Production Date	06/14/2020						Qty Ship	oed LBS	38390	
Product Country Of Origin	United States	5					Qty Shi	oped EA	639	
Original Item Description							Origii	nal Item Number		
I hereby certify that the mate	rial described herein ha	s been manufac	tured in accorda	ince with the spe	cifications and s	standards listed	above and that it :	satisfies those	requirements.	
Melt Country of Or	gin : United Sta	tes					M	elting Dat	e: 06/12/202	20
C (%) Mn 0.38 0.4	(%) P (%) 36 0.015	S (%) 0.046	Si (%) 0.180	Ni (%) 0.26	Cr (%) 0.20	Mo (%) 0.07	Cu (%) 0.35	V (%) 0.003	Nb (%) 0.001	Sn (%) 0.013
<u>Other Test Results</u> Yield (PSI): 662 Elongation in 8'' (200 %): 16.1		Tensile Bend Te	(PSI): 104 est:Pass	100		Average Weight F	Deformati Percent Va	on Height (IN) riance (%) :	: 0.052 3.70

Comments:

All manufacturing processes of the steel materials in this product, including melting, have occurred within the United States. Products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

nachSprint

Zachary Sprintz, Chief Metallurgist

Page 1 of 1

Figure A-18. #6 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item Nos. b9 and b13)

8

M	L	C	R°
876 A. M.			

1

Mill Certification

09/02/2020

MTR#:458890-2 Lot #:360001474020 ONE NUCOR WAY BOURBONNAIS, IL 60914 US 815 937-3131 Fax: 815 939-5599

Sold To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

.

Ship To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

Customer PC	MN-	3748						Sales	Order #	36013225 - 1.31		
Product Group	Reb	ar						P	roduct #	2110206		
Grade	A61	5 Gr 60/A	ASHTO M	31					Lot #	360001474020		
Size	#4								Heat #	3600014740		
BOL #	BOL	-567414							Load #	458890		
Descriptior	Reb 1000	ar #4/13r 00 lbs	mm A615 (àr 60/AASH	ITO M31 6	0' 0" [720"]	6001-	Custom	er Part #			
Production Date	08/1	2/2020						Qty Shipped LBS 22725				
Product Country Of Origin	Unite	ed States	5					Qty Shi	oped EA	567		
Original Item Description								Origir	nal Item Number			
hereby cartify that the mat	erial descrit	oed herein ha	s been manufac	tured in accorda	nce with the spe	cifications and s	tandards listed a	bove and that it	satisfies those	requirements.		
Melt Country of Or	igin : Ur	nited Stat	tes					M	elting Dat	e: 08/07/2020		
	(9/)	P (%)	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	V (%)	Nb (%)		
C (%) Mn	(70)							o 10		0.000		

Comments:

All manufacturing processes of the steel materials in this product, including melting, have occurred within the United States. Products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

mach Sprint Zachary Sprintz, Chief Metallurgist

Page 1 of 1

Figure A-19. #4 Bent Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b11)

NUCOR

Mill Certification

05/04/2021

MTR#:685135-1 Lot #:970000693620 500 REBAR RD SEDALIA, MO 65301 US 660 951-1679 Fax: 660 951-1698

Sold To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US Ship To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

Customer PO	MN-3766	Sales Order #	97003933 - 3.2
Product Group	Rebar	Product #	2110230
Grade	A615 Gr 60/AASHTO M31	Lot #	970000693620
Size	#5	Heat #	9700006936
BOL #	BOL-765190	Load #	685135
Description	Rebar #5/16mm A615 Gr 60/AASHTO M31 40' 0" [480"] 4001- 8000 lbs	Customer Part #	
Production Date	04/17/2021	Qty Shipped LBS	47563.2
Product Country Of Origin	United States	Qty Shipped EA	1140
Original Item Description		Original Item Number	

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those requirements.
Meltion Date: 04/17/2021

			2000 - Contra							
Melt Country of Origi	n : United 8	States						Ν	Aelting Date: (04/17/2021
C (%)	Mn (%)	P (%)	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	V (%)	Nb (%)	
0.26	0.83	0.011	0.023	0.239	0.10	0.15	0.02	0.005	0.001	

Mechanical

Mechanical	Average	Bend Test	
	Deformation Height (IN)		
(1)	0.037	Pass	
Tensile testing			
	Yield (PSI)	Tensile (PSI)	Elongation in
(1)	82200	98100	14.3

Comments:

All manufacturing processes of the steel materials in this product, including melting, casting and rolling were performed in the USA.
 Mercury, Radium, Hexavalent Chrome or Alpha source materials in any form have not been used in the production and testing of this material.
 Weld repair was not performed on this material.

A-A-
Lauren Jellison, Division Metallurgist

Page 1 of 1

Figure A-20. #5 Rebar, Test Nos. OCBR-1, OCBR-2, and OCBR-3 (Item No. b14)

Appendix B. Vehicle Center of Gravity Determination

		Test Name:	OCBR-1	VIN:	KMHC	CT4AF5FU	879644
Model Year:	2015	Make:	Hyundai	Model:		Accent	
Vehicle CG D	eterminati	ion					
					Weight		
<u>_</u>	Vehicle Eq	uipment			(lb)		
-	+	Unballasted C	ar (Curb)		2460		
-	+	Hub			19		
	+	Brake activation	on cylinder & t	frame	7		
-	+	Pneumatic tar	nk (Nitrogen)		30		
-	+	Strobe/Brake	Battery		5		
2	+	Brake Receive	er/Wires		5		
2	+	CG Plate inclu	uding DAQ		20		
2	•	Battery			-35		
2	-	Oil			-14		
2	-	Interior			-80		
_	-	Fuel			0		
-	-	Coolant			-7		
2. 2.	-	Washer fluid			-4		
-	+	Water Ballast	(In Fuel Tank)	0		
	+	Onboard Sup	plemental Bat	tery	0		
-							
-	+ Note: (+) is ac	Spare Tire ded equipment to v Esti	rehicle, (-) is remo	oved equipmer Weight (Ib) [24 nt from vehicle 2430		
- - - Vehicle Dimer	+ Note: (+) is ac	Spare Tire Ided equipment to v Esti	rehicle, (-) is remo imated Total V ons	oved equipmer	24 nt from vehicle 2430		
- T Vehicle Dimer Wheel Base: _	+ Note: (+) is ac <u>1sions for</u> 101.0	Spare Tire Ided equipment to v Esti <u>C.G. Calculatio</u> _in.	rehicle, (-) is remo imated Total V ons Front Tra	oved equipmer Veight (Ib) [ack Width: _	24 Int from vehicle 2430 59.25	in.	
Vehicle Dimer Wheel Base: Roof Height:	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> _in. _in.	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra	oved equipmer Weight (Ib) [ack Width: ack Width:	24 Int from vehicle 2430 59.25 59.375	in. in.	
Vehicle Dimer Wheel Base: Roof Height:	+ Note: (+) is ac isions for 101.0 56.25	Spare Tire dded equipment to v Esti <u>C.G. Calculatic</u> _in. _in.	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra	oved equipmer Veight (Ib) [ack Width: ack Width:	24 nt from vehicle 2430 59.25 59.375	in. in.	
Vehicle Dimer Wheel Base: Roof Height: Center of Grav	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. 1100C MAS	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets	oved equipmer Weight (Ib) [ack Width: ack Width:	24 Int from vehicle 2430 59.25 59.375	in. in.	 Difference
Vehicle Dimer Wheel Base: Roof Height: Center of Grav	+ Note: (+) is ac <u>1sions for</u> 101.0 56.25 vity eight (lb)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. 1100C MAS 2420	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55	oved equipmer Weight (Ib) [ack Width: ack Width:	24 nt from vehicle 2430 59.25 59.375 Test Inertial 2431	in. in.	Difference
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial Wi Longitudinal Co	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (lb) G (in.)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 39	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipmer Weight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763	in. in.	Difference 11.0 -0.237
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal C Lateral CG (in	+ Note: (+) is ac <u>1sions for</u> 101.0 56.25 vity eight (lb) G (in.) .)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. in. in. 39 NA	vehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipmer Weight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 -0.988	in. in.	Difference 11.0 -0.237 N/
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal Co Lateral CG (in Vertical CG (ir	+ Note: (+) is ac nsions for 101.0 56.25 vity eight (Ib) G (in.) .) 1.)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. 2420 39 NA NA	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipmer Veight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743	in. in.	Difference 11.0 -0.237 NA NA
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CO Lateral CG (in Vertical CG (ir Note: Long. CG is	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (lb) G (in.) .) 1.)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. 2420 39 NA NA NA NA	vehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipmer Veight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743	in. in.	Difference 11.(-0.237 N/ N/
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial Wi Longitudinal CC Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG (+ Note: (+) is ac <u>1sions for</u> 101.0 56.25 vity eight (lb) G (in.) .) 1.) measured from	Spare Tire dded equipment to v Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA NA om front axle of test m centerline - positi	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipmer Veight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side	in. in.	Difference 11.0 -0.237 NA NA
Vehicle Dimer Wheel Base: Roof Height: Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r	+ Note: (+) is ac 1sions for 101.0 56.25 vity eight (lb) G (in.) .) .) measured from T (lb)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 39 NA NA om front axle of test m centerline - positi	vehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipmer Veight (Ib) [ack Width: ack Width:	24 nt from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER	in. in.	Difference 11.0 -0.237 N/ N/ SHT (Ib)
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (in Vertical CG (is Note: Long. CG is Note: Lateral CG r	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (Ib) G (in.) .) n.) measured from measured from T (Ib)	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. 1100C MAS 2420 39 NA NA NA NA NA NA	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipmer Veight (Ib) [ack Width: _ ack Width: _	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER	in. in. TIAL WEIG	Difference 11.0 -0.237 N/ N/ BHT (Ib)
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (in Vertical CG (is Note: Long. CG is Note: Lateral CG r	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (lb) G (in.) .) n.) measured from measured from T (lb) Left	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. <u>1100C MAS</u> 2420 39 NA 2420 39 NA m front axle of test m centerline - positi Right	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipmer Veight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER	in. in. TIAL WEIG	Difference 11.0 -0.237 N/ SHT (Ib) Right
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG r CURB WEIGH	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (Ib) G (in.) .) .) measured from measured from T (Ib) Left 827	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. <u>1100C MAS</u> 2420 39 NA 00 MA NA om front axle of test m centerline - positi Right 723	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipmer Veight (Ib) [ack Width: ack Width:	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER Front	in. in. TIAL WEIG Left 792	Difference 11.0 -0.237 N/ N/ SHT (Ib) Right 706
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial Wi Longitudinal Co Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r CURB WEIGH	+ Note: (+) is ac isions for 101.0 56.25 vity eight (lb) G (in.) .) measured from T (lb) Left 827 427	Spare Tire dded equipment to v Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA 2420 39 NA om front axle of test m centerline - positi Right 723 483	vehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipmer Veight (Ib)	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER Front Rear	in. in. TIAL WEIG Left 792 464	Difference 11.0 -0.237 NA NA BHT (Ib) Right 706 469
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (in Vertical CG (is Note: Long. CG is Note: Lateral CG r CURB WEIGH Front Rear	+ Note: (+) is ac isions for 101.0 56.25 vity eight (lb) G (in.) .) .) measured from measured from T (lb) Left 827 427 1550	Spare Tire dded equipment to v Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA 2420 39 NA om front axle of test m centerline - positi Right 723 483 Ib	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipmer Veight (Ib) [ack Width: _ ack Width: _	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER Front Rear ERONT	in. in. TIAL WEIG Left 792 464	Difference 11.0 -0.237 N/ N/ SHT (Ib) Right 706 469 Ib
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CG Lateral CG (in Vertical	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (lb) G (in.) .) 1.) measured from T (lb) Left 827 427 1550 910	Spare Tire dded equipment to v Esti <u>C.G. Calculatio</u> in. in. in. 1100C MAS 2420 39 	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipmer Veight (Ib) [ack Width: _ ack Width: _	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INERT Front Rear FRONT REAR	in. in. TIAL WEIG Left 792 464 1498 933	Difference 11.0 -0.237 NA NA SHT (Ib) Right 706 469 Ib Ib
Vehicle Dimer Wheel Base: Roof Height: Center of Grav Test Inertial W Longitudinal CG Lateral CG (in Vertical CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG i CURB WEIGH Front Rear FRONT REAR	+ Note: (+) is ac <u>nsions for</u> 101.0 56.25 vity eight (lb) G (in.) .) n.) measured from T (lb) Left 827 427 1550 910 2422	Spare Tire dded equipment to v Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA 2420 39 NA om front axle of test m centerline - positi Right 723 483 Ib = Ib = Ib	rehicle, (-) is remo imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipmer Veight (Ib)	24 ant from vehicle 2430 59.25 59.375 Test Inertial 2431 38.763 -0.988 21.743 side TEST INER Front Rear FRONT REAR TEST IN	in. in. TIAL WEIG Left 792 464 1498 933	Difference 11.0 -0.237 NA NA SHT (Ib) Right 706 469 Ib Ib

Figure B-1. Vehicle Mass Distribution, Test No. OCBR-1

Model Year: 2015 Make: Dodge Model: Ram 1500 Vehicle CG Determination Vehicle Equipment (lb) (in.) (lb-in.) + Unballasted Truck (Curb) 4921 28.458628 140044.91 + Hub 19 14.75 280.25 + Brake activation cylinder & frame 7 27 189 + Pneumatic tank (Nitrogen) 30 26 780 + Strobe/Prake Battery 10 24 240 + Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Wast	tical M b-in.) 044.91 30.25 189 780 240 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 705.66 Difference 2.0 3.14349 N/ 0.72390 WEIGHT (Ib) Left Right	Model Year:	
Vehicle CG Determination Weight Vertical CG Vertical M (lb) Vertical CG Vertical M (lb) (lb) (lb) (lb) (lb) (lb) (lb) + Urities and the second of the s	tical M b-in.) 044.91 30.25 189 780 240 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 3705.66 Difference 2.0 3.1434 N/ 0.72390 WEIGHT (Ib) Left Right	www.extensionara.com. 120-204523007-04EC	
Vehicle Equipment (the final constraint) + Unballasted Truck (Curb) 4921 28.458628 140044.91 + Hub 19 14.75 280.25 + Brake activation cylinder & frame 7 27 189 + Pneumatic tank (Nitrogen) 30 26 780 + Strobe/Brake Battery 10 24 240 + Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Waster Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 vertical CG Location	Do-in.) 044.91 30.25 189 780 240 300 92.5 1716 168 3103 1026 455 136 158 0 425 0 425 0 425 0 425 0 425 0 425 0 425 0 425 0 9705.66	Vehicle CG E	
Output Utput Utput <t< td=""><td>044.91 30.25 189 780 240 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 1425 0 705.66</td><td>Vehicle Equin</td></t<>	044.91 30.25 189 780 240 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 1425 0 705.66	Vehicle Equin	
Hub 101 102.1 102.15 120.1000 110.11 + Hub 19 14.75 180.25 140.751 + Brake activation cylinder & frame 7 27 189 + Pneumatic tank (Nitrogen) 30 26 780 + Strobe/Prake Battery 10 24 240 + Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oli -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Washer fluid -4 34 -136 + Walter Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 341/4	Difference 0 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 7705.66 WEIGHT (Ib) Left Right		
Hold 10 11 10 10 + Brake activation cylinder & frame 10 10 189 + Pneumatic tank (Nitrogen) 30 26 780 + Strobe/Brake Battery 10 24 240 + Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Wather Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34.1/4 3425	189 780 240 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 3705.66	+	
Pneumatic tank (Nitrogen) 30 26 780 + Strobe/Brake Battery 10 24 240 + Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - 0 0 0 0 + Ballast Plates 100 34 1/4 3425 - 5003 28.7239 Vetrical CG Lo	780 240 300 92.5 1716 168 3103 1026 455 136 158 0 1425 0 3705.66 WEIGHT (Ib)	+	
+ Strobe/Brake Battery 10 24 240 + Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - Italist Plates 100 34 1/4 3425 - Estimated Total Weight (Ib) 5003 28.7239 Vehicle Dimensions for C.G. Calculations Estimated Total Weight (Ib) 5002 Longitudinal CG (in.) 63 ± 4 66.143493 3 Left of Gravity	240 300 92.5 1716 168 3103 1026 455 136 158 0 4255 0 3705.66 Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) Left Right	+	
+ Brake Receiver/Wires 6 50 300 + CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - u 0 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 143705.66 Estimated Total Weight (Ib) 5003 28.7239 Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in.	300 92.5 1716 168 3103 1026 455 136 158 0 425 0 3705.66 WEIGHT (Ib)	+	
+ CG Plate including DAQ 30 29 3/4 892.5 - Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - - - 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in. Front Track Width: 67.875 in. Rear Track Width: 67.75 in. Rear Track Width: 67.75 in. Left S000 ± 110 5002 5002 5002 5002 5002<	92.5 1716 168 3103 1026 455 136 158 0 425 0 3705.66 Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) Left Right	+	
- Battery -44 39 -1716 - Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 - Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - - - 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 143705.66 Estimated Total Weight (Ib) 5003 Vertical CG Location (in) 28.7239 - Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in. Rear Track Width: 67.875 in. Rear Track Width: 67.875	1716 168 3103 1026 455 136 158 0 425 0 425 0 705.66 WEIGHT (Ib)	+	
- Oil -12 14 -168 - Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Ballast Plates 100 341/4 3425 - 0 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 Estimated Total Weight (lb) 5003 28.7239	168 3103 1026 455 136 1158 0 1425 0 1425 0 1425 0 3705.66	-	
- Interior -107 29 -3103 - Fuel -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - - 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 143705.66 Estimated Total Weight (Ib) 5003 Vertical CG Location (in.) 28.7239 Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in. Rear Track Width: 67.875 in. Center of Gravity 2270P MASH Targets Test Inertial Diff Test Inertial Weight (Ib) 5000 ± 110 5002 10 10 5002 Longitudinal CG (in.)	Difference 0 455 136 158 0 3425 0 3705.66 WEIGHT (Ib) _eft Right		
Fuel 171 6 1026 - Coolant -171 6 -1026 - Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - - 0 0 0 + Ballast Plates 100 34 1/4 3425 - - - 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 Estimated Total Weight (Ib) 5003 28.7239 Vehicle Dimensions for C.G. Calculations - - - Wheel Base: 140.25 in. Rear Track Width: 67.875 in. Center of Gravity 2270P MASH Targets Test Inertial Diff Test Inertial Weight (Ib) 5	1026 455 136 158 0 3425 0 3705.66 Difference 2.0 3.1434 N/ 0.72390 WEIGHT (Ib)		
- Coolant -13 35 -455 - Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - Image: State of Control Control State of Contenterline - positive to vehicle right (passenger) side	455 136 158 0 425 0 3705.66 Difference 2.0 3.1434 N/ 0.72390 WEIGHT (Ib) Left Right	-	
- Washer fluid -4 34 -136 + Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - 0 0 0 0 + Ballast Plates 100 34 1/4 3425 - 0 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 143705.66 Estimated Total Weight (Ib) 5003 28.7239 143705.66 Vehicle Dimensions for C.G. Calculations	Difference 0 0425 0 3705.66 0 3.1434 0 0.72390 WEIGHT (Ib) _eft Right		
+ Water Ballast (In Fuel Tank) 231 18 4158 + Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 - - 0 0 0 + Ballast Plates 100 34 1/4 3425 - - 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 143705.66 Estimated Total Weight (lb) 5003 Vertical CG Location (in.) 28.7239 Vehicle Dimensions for C.G. Calculations - - - - Wheel Base: 140.25 in. Front Track Width: 67.875 in. Rear Track Width: 67.75 in. - - - - Vehicle Dimensions for C.G. Calculations Test Inertial Diff - <	Difference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 705.66 0 0 0 0 0 0 72390 0 0.72390 0 0 0 72390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
+ Onboard Supplemental Battery 0 0 0 + Ballast Plates 100 34 1/4 3425 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 Estimated Total Weight (lb) 5003 Vertical CG Location (in.) 28.7239 Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in. Front Track Width: 67.875 G7.75 In. Front Track Width: 67.875 G7.75 Meel Base: 140.25 In. Front Track Width: 67.875 G7.75 Note: Inertial Weight (lb) 5000 ± 110 5002 Longitudinal CG (in.) 63 ± 4 G6.143493 Vertical CG (in.) NA Vertical CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side CURB WEIGHT (lb) Test INERTIAL WEIGHT (II <td co<="" td=""><td>0 3425 0 3705.66 Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) Left Right</td><td>+</td></td>	<td>0 3425 0 3705.66 Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) Left Right</td> <td>+</td>	0 3425 0 3705.66 Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) Left Right	+
+ Ballast Plates 100 34 1/4 3425 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 Estimated Total Weight (lb) 5003 Vertical CG Location (in.) 28.7239 Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in. Front Track Width: 67.875 in. Rear Track Width: 67.75 in. Center of Gravity 2270P MASH Targets Test Inertial Diff Test	Difference 0 3705.66 0 0 3.14345 0 0.72390 WEIGHT (Ib) _eft Right	+	
Image: Index inde	0 3705.66 Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) _eft Right	+	
Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 143705.66 Estimated Total Weight (lb) 5003 28.7239 Vehicle Dimensions for C.G. Calculations Wheel Base: 140.25 in. Front Track Width: 67.875 in. Rear Track Width: 67.75 in. Center of Gravity 2270P MASH Targets Test Inertial Diff 5000 ± 110 5002 Longitudinal CG (in.) 63 ± 4 66.143493 3 Lateral CG (in.) NA -0.759196 Vertical CG (in.) Vote: Long. CG is measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (IL) Front 1389 1305 Front 1390	Difference 2.0 3.14345 N/ 0.72390 WEIGHT (Ib) _eft Right		
Wheel Base: 140.25 in. Front Track Width: 67.875 in. Rear Track Width: 67.75 in. Rear Track Width: 67.75 in. Test Inertial Weight (lb) 5000 ± 110 5002 Longitudinal CG (in.) 63 ± 4 66.143493 3 Lateral CG (in.) NA -0.759196 Vertical CG (in.) 28 or greater 28.72 0 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (II Front 1389 1305 Image: transmitted of test vehicle Front 1390 1	Difference 2.0 3.1434 N/ 0.72390 WEIGHT (Ib) _eft Right	Vehicle Dime	
Center of Gravity 2270P MASH Targets Test Inertial Diff Test Inertial Weight (Ib) 5000 ± 110 5002 Longitudinal CG (in.) 63 ± 4 66.143493 3 Lateral CG (in.) NA -0.759196 3 Vertical CG (in.) 28 or greater 28.72 0 Note: Long. CG is measured from front axle of test vehicle 3 3 Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side 5 CURB WEIGHT (Ib) Left Right Front 1389 1305 Front 1390	Differenc: 2.0 3.1434 N/ 0.72390 WEIGHT (Ib)	Wheel Base:	
Test Inertial Weight (lb) 5000 ± 110 5002 Longitudinal CG (in.) 63 ± 4 66.143493 3 Lateral CG (in.) NA -0.759196 Vertical CG (in.) 28 or greater 28.72 0 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (III) CURB WEIGHT (Ib) Left Right Left Front 1389 1305	2. 3.1434 N/ 0.7239 WEIGHT (Ib)		
Longitudinal CG (in.) 63 ± 4 66.143493 3 Lateral CG (in.) NA -0.759196 0 Vertical CG (in.) 28 or greater 28.72 0 Note: Lateral CG is measured from front axle of test vehicle 0	3.1434 N/ 0.7239 WEIGHT (Ib) _eft Right	Center of Gra	
Lateral CG (in.) NA -0.759196 Vertical CG (in.) 28 or greater 28.72 () Note: Long. CG is measured from front axle of test vehicle 0.00000000000000000000000000000000000	N/ 0.7239 WEIGHT (Ib) _eft Right	Center of Gra Test Inertial W	
Vertical CG (in.) 28 or greater 28.72 0 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (II) Left Right Front 1389 1305 Front	0.7239 WEIGHT (Ib) _eft Right	Center of Gra Test Inertial W Longitudinal C	
Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (II) Left Right Front 1389 1390 1	WEIGHT (Ib) _eft Right	Center of Gra Test Inertial W Longitudinal C Lateral CG (ir	
LeftRightLeftFront13891305Front13901	Left Right	Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i	
LeftRightLeftFFront13891305Front13901	Left Right	Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	
Front 1389 1305 Front 1390 1		Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Vertical CG (i Note: Lateral CG Note: Lateral CG	
	390 1253	Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH	
Rear 1103 1124 Rear 1167 1	167 1192	Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH	
	2643 lb	Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	
REAR 2227 lb REAR 2359 lb	2359 lb	Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	
	5000 lb	Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear FRONT REAR	

Figure B-2. Vehicle Mass Distribution, Test No. OCBR-2

Model Year: 2013 Make: International Model: 4300 SBA 4X2 Vehicle CG Determination Weight Vertical CG Vertical M (b): (b): (m): (b): (m): (b): + Unbailasted Truck (Curb) 16784 40.887 686241.648 + Hub 43 18.75 686225 521 52 + Drake activation cylinder & frame 7 44.0 308.0 - + Strobe/Brake Battery 5 42.25 211.25 -<			Test Name:	OCBR-3	VIN:	1HT	MMAAPXDH	412511
Vehicle CG Determination Vehicle Equipment (lb) (ln,) (lb-in,) + Unbailsated Truck (Curb) 16784 40.887 686241.648) + Hub 43 18.75 806.221.648) + Hub 43 18.75 806.221.648) + Brake activation cylinder & frame 7 44.0 308.0 + Pneumatic tank (Nitrogen) 31 44.0 1384.0 + Brake Receiver/Wires 6 98.75 592.5 + C. G DAQ Unit & Mouting Plate 32 30.5 976.0 + Rear axle DAQ Units & Enclosure 16 32.625 522.0 - Dil -51 23.0 -1173.0 - Interior -0 70.0 -0 - Coolant -60 47.0 -2620.0 - Coolant -60 47.0 93025.5 + Tdas 17 41.5 705.5 + T	Model Year	: 2013	Make: In	ternational	Model:		4300 SBA 4	X2
Weight Vertical CG Vertical M Vehicle Equipment Weight Vertical CG Vertical M + Hub 686241 648 + Hub 43 18.75 686251 + Hub 14.3 18.75 686251 + Pneumatic tank (Nitrogen) 31 44.0 1384.0 + Strobe/Brake Battery 5 42.25 211.25 + Tow Pin Plate 9 12.5 112.5 + C G DAQ Units & Enclosure 16 32.625 522.0 - Battery -112 26.5 -2666.0 - Dil -51 23.0 -1173.0 - Interior 0 70.0 0 - Battery -112 26.5 -2266.0 - Oil -51 23.0 -1173.0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 2820.0 - Concrete blo			-					
Vehicle CG Determination Weight Vertical CG Vertical M (b) Vehicle Equipment (b) (in) + Hub 43 18.75 6862241 643 + Hub 43 18.75 6862241 643 + Brake activation cylinder & frame 7 44.0 308.0 + Pneumatic tank (Nitrogen) 31 44.0 1364.0 + Pneumatic tank (Nitrogen) 31 44.0 1364.0 + Brake Receiver/Mres 6 98.75 592.5 + C.G.DAQ Unit & Mouting Plate 32 30.5 976.0 + Rear axic DAQ Units & Enclosure 16 32.625 522.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Fuel -938 23.5 -2240.0 - Coolant -660 47.0 -2820.0 - Fuel -100 64.75 330225.7								
Vertical CG		Vehicle C	G Determination	i i				
Vehicle Equipment (b) (in.) (b) (in.) (b) (b) + Unballasted Truck (Curb) 16784 40.887 686241.648 + Brake activation cylinder & frame 7 44.0 308.0 + Pneumatic tank (Nitrogen) 31 44.0 1384.0 + Strobe/Brake Battery 5 42.25 211.25 + Tow Pin Plate 9 12.5 111.25 + Brake Receiver/Wres 6 98.75 592.5 + C. G DAQ Units & Enclosure 16 32.625 522.0 - Battery -112 26.5 -22043.0 - Oli -51 23.0 -1173.0 - Interior 0 70.0 0 - Golant -60 47.0 2820.0 - Golant -60 47.0 2820.0 - Washer fluid -6 27.5 -165.0 + Todas 1						Weight	Vertical CG	Vertical M
+ Unbalasted Truck (Curb) 16784 40.887 686241.643 + Brake activation cylinder & frame 7 44.0 308.0 + Brake activation cylinder & frame 7 44.0 308.0 + Brobe/Brake Battery 5 42.25 211.25 + Tow Pin Plate 9 12.5 112.5 + Brake Receiver/Wires 6 98.75 592.5 - C.G.DAQ Unit & Mouting Plate 32 30.5 592.5 - Battery -112 28.6 -2968.0 - Interior 0 70.0 0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 57.5 1330225.0 - Concrete blocks 1286 55.5 7137.0 + Hardware 148 47.0 6956.0 + Udoo 0 0		Vehicle Eq	uipment			(lb)	(in.)	(lb-in.)
+ Hub 43 18.75 806.25 + Brake activation cylinder & frame 7 44.0 308.0 + Pneumatic tank (Nitrogen) 31 44.0 1364.0 + Strobe/Brake Battery 5 42.25 211.25 + Tow Pin Plate 9 12.5 111.25 + Brake Receiver/Wres 6 98.75 552.5 + C.G DAQ Units & Enclosure 16 32.625 522.0 - Battery -112 26.6 -2063.0 - Oli -51 23.0 -1173.0 - Interior 0 70.0 0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 705.5 - Concrete blocks 1286 55.6 7137.0 + Hardware 148 47.0 6956.0		+	Unballasted Tru	ıck (Curb)		16784	40.887	686241.648
+ Brake activation cylinder & frame 7 44.0 1384.0 + Pneumatic tank (Nitrogen) 31 44.0 1384.0 + Strobe/Brake Battery 5 42.25 211.25 + Tow Pin Plate 9 12.5 112.5 + Brake Receiver/Wires 6 98.75 592.5 - C.G DAQ Unit & Mouting Plate 32 30.5 976.0 - Battery -112 26.5 -2968.0 - Dil -51 23.0 -1173.0 - Interior 0 70.0 0 - Fuel -938 23.5 -22043.0 - Colant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 705.5 - O 0 - - 0.0 Attrians 17 41.6 27.5 -165.0		+	Hub			43	18.75	806.25
+ Pneumatic tank (Nitrogen) 31 44.0 1384.0 + Strobe/Brake Battery 5 42.25 211.25 + Tow Pin Plate 9 1.2.5 112.5 + Brake Receiver/Wires 6 98.75 592.5 + C.G.DAQ Units & Mouting Plate 32 30.5 976.0 - Battery -112 26.5 -2968.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Coolant -60 47.0 -2820.0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 + Tdas 17 41.5 705.5 + Concrete blocks 1286 55.5 71373.0 + Hardware 148 47.0 6986.0 + 0 0 0 Vertical CG Location (in.		+	Brake activation	n cylinder & fra	ame	7	44.0	308.0
* Strobe/Brake Battery 5 442.5 211.25 + Tow Pin Plate 9 12.5 112.5 + Brake Receiver/Wires 6 98.75 592.5 + C.G.DAQ. Unit & Mouting Plate 32 30.5 976.0 + Rear axle DAQ. Units & Enclosure 16 32.625 522.0 - Battery -112 26.5 -2968.0 - - 0 70.0 0 - Interior 0 770.0 0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 707.5 + Concrete blocks 1286 55.5 7137.0 + Hardware 148 47.0 6956.0 + Hardware 148 47.0 6956.0 +		+	Pneumatic tank	(Nitrogen)		31	44.0	1364.0
+ Tow Pin Plate 9 12.5 112.5 + Brake Receiver/Wires 6 98.75 592.5 + C.G DAQ Unit & Mouting Plate 32 30.5 976.0 + Rear axle DAQ Units & Enclosure 16 32.625 522.0 - Battery -112 26.5 -2988.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Coolant -60 47.0 -2820.0 - Fuel -938 23.5 -2043.0 - Tdas 17 41.5 705.5 + Tdas 17 41.5 705.5 + Concrete blocks 1286 55.5 71373.0 + Hardware 148 47.0 6996.0 + - 0 0 0 Vertical CG Location (in,) 22317 Total Ballast Vertical CG Location (in,) 6534 Ve		+	Strobe/Brake Ba	attery		5	42.25	211.25
+ Brake Receiver/Wres 6 98.75 592.5 + C.G DAQ Unit & Mouting Plate 32 30.5 976.0 + Rear axle DAQ Units & Enclosure 16 32.625 522.0 - Battery -112 28.5 -2968.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Coolant -60 47.0 -2820.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 703.0 - Concrete blocks 1286 55.5 7137.0 + Hardware 148 47.0 6966.0 + - 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 1071224.648 Estimated Total Weight (Ib) 22317 Total Ballast Verical CG Location (in.) Whee		+	Tow Pin Plate	-		9	12.5	112.5
+ C.G DAQ Unit & Mouting Plate 32 30.5 976.0 + Rear axle DAQ Units & Enclosure 16 32.625 522.0 - Battery -112 26.5 -2968.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 705.5 + Tdas 17 41.5 706.6 + Tdas 5100 64.75 330225.0 + Concrete blocks 1286 55.5 71373.0 + Hardware 148 47.0 6956.0 + - 0 0 0 Vetrical CG Location (in.) 22317 Total Ballast Weight (lb) 655.4 Vetrical CG Location (in		+	Brake Receiver.	Wires		6	98.75	592.5
+ Rear axle DAQ Units & Enclosure 16 32.825 522.0 - Battery -112 26.5 -2968.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 705.5 - O 0 64.75 330225.0 + Tdas 1286 55.5 71373.0 + Hardware 148 47.0 0 + Hardware 148 47.0 0 + Hardware 148 47.0 655.0 + Hardware 148.0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 1071224.648 Estimated Total Weight (Ib) 22317		+	C.G DAQ Unit &	& Mouting Plat	te	32	30.5	976.0
- Battery -112 26.5 -2988.0 - Oil -51 23.0 -1173.0 - Interior 0 70.0 0 - Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 411.5 705.5 - 0 64.75 330225.0 + Concrete blocks 1286 55.5 71373.0 + Hardware 148 47.0 6956.0 + - 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 1071224.648 Estimated Total Weight (Ib) 22317 Total Ballast Weight (Ib) 6534 Vertical CG Location (in.) 48.0 Ballast Vertical CG Location (in.) 62.527 Vehicle Dimensions for C.G. Calculations - 73.0 in. Test Inertial D		+	Rear axle DAQ	Units & Enclo	sure	16	32.625	522.0
$\begin{tabular}{ c c c c c c c } \hline -51 & 23.0 & -1173.0 \\ \hline - & Interior & 0 & 70.0 & 0 \\ \hline - & Fuel & -938 & 23.5 & -22043.0 \\ \hline - & Coolant & -60 & 47.0 & -2820.0 \\ \hline - & Coolant & -60 & 47.0 & -2820.0 \\ \hline - & Washer fluid & -6 & 27.5 & -165.0 \\ \hline + & Tdas & 17 & 41.5 & 705.5 \\ \hline + & Tdas & 17 & 41.5 & 705.5 \\ \hline + & Concrete blocks & 1286 & 55.5 & 71373.0 \\ \hline + & Hardware & 148 & 47.0 & 6956.0 \\ \hline + & & & & & 0 \\ \hline + & & & & & & 0 \\ \hline & & & & & & 0 \\ \hline & & & & & & & 0 \\ \hline & & & & & & & 0 \\ \hline & & & & & & & & 0 \\ \hline & & & & & & & & 0 \\ \hline & & & & & & & & & 0 \\ \hline & & & & & & & & & 0 \\ \hline & & & & & & & & & & 0 \\ \hline & & & & & & & & & & 0 \\ \hline & & & & & & & & & & 0 \\ \hline & & & & & & & & & & & 0 \\ \hline & & & & & & & & & & & & 0 \\ \hline & & & & & & & & & & & & & 0 \\ \hline & & & & & & & & & & & & & & 0 \\ \hline & & & & & & & & & & & & & & & & & &$		-	Batterv			-112	26.5	-2968.0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-	Oil			-51	23.0	-1173.0
- Fuel -938 23.5 -22043.0 - Coolant -60 47.0 -2820.0 - Washer fluid -6 27.5 -165.0 + Tdas 17 41.5 705.5 - - 0 - 0 BALLAST + PCB 5100 64.75 330225.0 + Concrete blocks 1286 55.5 71373.0 + Hardware 148 47.0 6956.0 + 0 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 1071224.648 Estimated Total Weight (lb) 22317 Total Ballast Weight (lb) 62.527 Vertical CG Location (in.) 48.0 Ballast Vertical CG Location (in.) 62.527 Vehicle Dimensions for C.G. Calculations		-	Interior			0	70.0	0
Image: constraint of the second sec		-	Fuel			-938	23.5	-22043.0
- Washer fluid -6 27.5 -166.0 + Tdas 17 41.5 705.5 BALLAST + PCB 5100 64.75 330225.0 + Concrete blocks 1286 55.5 71373.0 + Hardware 148 47.0 6956.0 + 0 0 0 0 + 0 0 0 0 Vertical CG Location (in.) 22317 Total Ballast Weight (lb) 6534 Vertical CG Location (in.) 48.0 Ballast Vertical CG Location (in.) 62.527 Vehicle Dimensions for C.G. Calculations - - 73.0 in. Test Inertial Weight (lb) 22045 ± 660 21906 -140.0		-	Coolant			-60	47.0	-2820.0
Image: Second		_	Washer fluid			-6	27.5	-165.0
Index Index <th< td=""><td></td><td>+</td><td>Tdae</td><td></td><td></td><td>17</td><td>11.5</td><td>705.5</td></th<>		+	Tdae			17	11.5	705.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		·	Tudo			17	41.5	/05.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DALLAST	+	DCD			5100	64.75	330335.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DALLAST	<u>+</u>	Conoroto blook			1286	04.75 55.5	71272.0
+Hardware14647.06936.0+-00+00Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle1071224.648Estimated Total Weight (lb)22317Total Ballast Weight (lb)6534Vertical CG Location (in.)48.0Ballast Vertical CG Location (in.)62.527Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Front Track Width:30.25in.Center of Gravity10000S MASH TargetsTest InertialDifferenceTest InertialWeight (lb)22046 ± 66021906-140.0Longitudinal CG (in.)NA147.829NALateral CG (in.)NA-0.241NABallast Vertical CG (in.)NA48.0NABallast Vertical CG (in.)NA48.0NABallast Vertical CG (in.)63 ± 262.527-0.47260Note:Lateral CG measured from centerline - positive to vehicle right (passenger) sideEst Inertial Weight (lb)FrontLateral CG measured from centerline - positive to vehicle right (passenger) sideEst INERTIAL WEIGHT (lb)FrontLeftRight FrontFront4182FRONT8284bREAR13700REAR8500bFRONT8206bREAR8500bTOTAL21906b		<u>+</u>	Concrete blocks	5		1200	55.5	71373.0
+0Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle0Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle1071224.648Estimated Total Weight (lb)22317Total Ballast Weight (lb)6534Vertical CG Location (in.)48.0Ballast Vertical CG Location (in.)62.527Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Front Track Width:80.25in.Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb)22046 ± 66021906-140.0Longitudinal CG (in.)NA147.829NALateral CG (in.)NA-0.241NAVertical CG (in.)NA48.0NABallast Vertical CG (in.)NA48.0NABallast Vertical CG (in.)S3 ± 262.527-0.47260Note:Lateral CG measured from front axle of test vehicleNANote:Lateral CG measured from centerline - positive to vehicle right (passenger) sideCURB WEIGHT (lb)LeftRight FrontLeftRight RearFRONT8206FRONT8284IbFRONT8206REAR8500IbTOTAL21906TOTAL16784IbIbIb		+	Hardware			148	47.0	0.0000
+0Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 00 Estimated Total Weight (lb)22317Total Ballast Weight (lb) 6534 Vertical CG Location (in.) 48.0 Ballast Vertical CG Location (in.) 62.527 Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Front Track Width: 80.25 in.Rear Track Width: 73.0 in.IntertialDifferenceTest Inertial Weight (lb)22046 ± 66021906-140.0Longitudinal CG (in.)NA147.829NALateral CG (in.)NA-0.241NAVertical CG (in.)NA48.0NABallast Vertical CG (in.)NA48.0NAVertical CG (in.)NA48.0NABallast Vertical CG (in.)NA48.0NAVertical CG (in.)NA48.0NALeftRightFront41824024Rear43904110Front4182FRONT8284IbFRONT8206IbREAR8500IbTOTAL		+						0
Image: constraint of the strength of the stre		+						0
Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle1071224.648Estimated Total Weight (lb)23317Total Ballast Weight (lb)6534Vehicle Dimensions for C.G. CalculationsWheel Base: 236.375 in.Front Track Width: 80.25 in.Rear Track Width: 80.25 in.Rear Track Width: 73.0 in.Center of Gravity 10000S MASH Targets Test Inertial DifferenceTest Inertial Weight (lb)22046 \pm 66021906-140.0Longitudinal CG (in.)NALateral CG (in.)NAAlateral CG (in.)NABallast Vertical CG (in.)NABallast Vertical CG (in.)NALateral CG (in.)NALateral CG (in.)NALateral CG (in.)NABallast Vertical CG (in.)NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>								0
Estimated Total Weight (lb)22317Total Ballast Weight (lb)6534Vertical CG Location (in.)6534Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Front Track Width:80.25Wheel Base:236.375in.Front Track Width:80.25Metrical CG for C.G. CalculationsWheel Base:236.375in.Rear Track Width:80.25Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb)22046 ± 66021906-140.0Longitudinal CG (in.)NALateral CG (in.)NALateral CG (in.)NALateral CG (in.)NAVehicle TGG (in.)NAVehicle TGG (in.)NALateral CG (in.)NALateral CG (in.)NAVehicle TGG (in.)NALateral CG measured from centerline - positive to vehicle right (passenger) sideCURB WEIGHT (lb)FrontLeftRightFront <th< td=""><td></td><td>Note: (+) is ac</td><td>ded equipment to ve</td><td>hicle, (-) is remov</td><td>ed equipm</td><td>ent from vehicle</td><td></td><td>10/1224.648</td></th<>		Note: (+) is ac	ded equipment to ve	hicle, (-) is remov	ed equipm	ent from vehicle		10/1224.648
Estimated Total Weight (lb)22317Total Ballast Weight (lb)6534Vertical CG Location (in.)48.0Total Ballast Weight (lb)6534Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Front Track Width:80.25Meer Track Width:206.375in.Rear Track Width:60.2527Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Rear Track Width:80.25In.Rear Track Width:80.25In.Rear Track Width:73.0in.Rear Track Width:73.0In.Rear Track Width:80.25In.Rear Track Width:73.0In.Rear Track Width:80.25In.Rear Track Width:73.0In.Rear Track Width:80.25In.Rear Track Width:80.25In.Rear Track Width:80.25In.Rear Track Width:10.47In.Tota								
Vertical CG Location (in.)48.0Ballast Vertical CG Location (in.)62.527Vehicle Dimensions for C.G. CalculationsWheel Base: 236.375 in.Front Track Width: 80.25 in. Rear Track Width: 73.0 in.Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb)22046 \pm 66021906-140.0Longitudinal CG (in.)NA147.829NALateral CG (in.)NA-0.241NAVertical CG (in.)NA48.0NABallast Vertical CG (in.)63 \pm 262.527-0.47260Note: Long. CG is measured from centerline - positive to vehicle right (passenger) sideCURB WEIGHT (Ib)Image: LeftRight Rear43904110Front41564128 Rear68406860FRONT8284Ib REAR8500Ib TOTAL16784ReAR8500Ib TOTAL16784Ib	Estimated Tota	al Weight (lb) 22317			Total Ballas	t Weight (lb)	6534
Vehicle Dimensions for C.G. CalculationsWheel Base: 236.375 in.Front Track Width: 80.25 in.Rear Track Width: 73.0 in.Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb) 22046 ± 660 21906 -140.0 Longitudinal CG (in.)NA 147.829 NALateral CG (in.)NA -0.241 NAVertical CG (in.)NA 48.0 NABallast Vertical CG (in.) 63 ± 2 62.527 -0.47260 Note:Long. CG is measured from front axle of test vehicleNote:Long. CG is measured from centerline - positive to vehicle right (passenger) sideTest INERTIAL WEIGHT (lb)LeftRightFront 41156 41128 Rear 4390 4110 FRONT 8284 lbREAR 8500 lbTOTAL 16784 lb	Vertical CG	Location (in.) 48.0		Ballast V	/ertical CG L	.ocation (in.)	62.527
Vehicle Dimensions for C.G. CalculationsWheel Base:236.375in.Front Track Width: 80.25 in.Rear Track Width: 73.0 in.Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb)22046 ± 66021906-140.0Longitudinal CG (in.)NA147.829NALateral CG (in.)NA-0.241NAVertical CG (in.)NA48.0NABallast Vertical CG (in.)63 ± 262.527-0.47260Note:Long. CG is measured from front axle of test vehicleNote: Long. CG measured from centerline - positive to vehicle right (passenger) sideCURB WEIGHT (lb)LeftRightFront4182Front415641284024RearRear43904110Front8206bFRONT8284bFRONT8206bREAR8500bTOTAL16784b								
Wheel Base:236.375 in.Front Track Width: 80.25 in. 73.0 in.Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb)22046 ± 66021906-140.0Longitudinal CG (in.)NALateral CG (in.)NALateral CG (in.)NA-0.241NAVertical CG (in.)NABallast Vertical CG (in.)63 ± 262.527-0.47260Note:Long. CG is measured from front axle of test vehicleNote:LeftRightFront <u>4156</u> 4128Rear43904110FRONT8284IbREAR <u>8500</u> IbTOTAL16784Ib	Vehicle Dim	ensions for	C.G. Calculation	าร				
Rear Track Width: 73.0 in.Center of Gravity 10000S MASH Targets Test Inertial DifferenceTest Inertial Weight (lb)22046 \pm 66021906-140.0Longitudinal CG (in.)NA147.829NALateral CG (in.)NA-0.241NAVertical CG (in.)NA-0.241NABallast Vertical CG (in.)NA48.0NABallast Vertical CG (in.)63 \pm 262.527-0.47260Note: Long. CG is measured from front axle of test vehicleNote: Lateral CG measured from centerline - positive to vehicle right (passenger) sideTEST INERTIAL WEIGHT (lb)LeftRight RearFront41564128 RearRear43904110FRONT8284lb REARREAR8500lb TOTAL16784lb	Wheel Base	: 236.375	in.	Front Trac	k Width:	80.25	in.	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Rear Trac	k Width:	73.0	in.	
Center of Gravity10000S MASH TargetsTest InertialDifferenceTest Inertial Weight (lb) 22046 ± 660 21906 -140.0 Longitudinal CG (in.)NA 147.829 NALateral CG (in.)NA -0.241 NAVertical CG (in.)NA -0.241 NABallast Vertical CG (in.) 63 ± 2 62.527 -0.47260 Note: Long. CG is measured from front axle of test vehicleNote: Lateral CG measured from centerline - positive to vehicle right (passenger) sideTEST INERTIAL WEIGHT (lb)LeftRightFront 4156 4128 Rear 4390 4110 FRONT 8284 lbREAR 8500 lbTOTAL 16784 lb								
Test Inertial Weight (lb) 22046 ± 660 21906 -140.0 Longitudinal CG (in.)NA 147.829 NALateral CG (in.)NA -0.241 NAVertical CG (in.)NA 48.0 NABallast Vertical CG (in.) 63 ± 2 62.527 -0.47260 Note: Long. CG is measured from front axle of test vehicleNote: Lateral CG measured from centerline - positive to vehicle right (passenger) sideTEST INERTIAL WEIGHT (lb)LeftRightFront 4156 4128 Rear 4390 4110 FRONT 8284 lbREAR 8500 lbTOTAL 16784 lb	Center of G	ravity	10000S MAS	H Targets	8	Test Inertia		Difference
Longitudinal CG (in.) NA 147.829 NA Lateral CG (in.) NA -0.241 NA Vertical CG (in.) NA 48.0 NA Ballast Vertical CG (in.) 63 ± 2 62.527 -0.47260 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib) Left Right Left Right Front 4156 4128 4024 Rear 4390 4110 Front 4182 4024 Rear 6840 6860 FRONT 8284 Ib REAR 8500 Ib TOTAL 16784 Ib	Test Inertial \	Weight (Ib)	22046 ±	660		21906		-140.0
Lateral CG (in.)NA-0.241NAVertical CG (in.)NA48.0NABallast Vertical CG (in.) 63 ± 2 62.527 -0.47260Note: Long. CG is measured from front axle of test vehicleNote: Lateral CG measured from centerline - positive to vehicle right (passenger) sideTEST INERTIAL WEIGHT (Ib)Image: Kear diamondrom of the test vehicleImage: Kear diamondrom of test vehicle right (passenger) sideImage: Kear diamondrom of test vehicle right (passenger) sideImage: Kear diamondrom of test vehicle right (passenger) vehicl	Longitudinal	CG (in.)	NA			147.829		NA
Vertical CG (in.)NA48.0NABallast Vertical CG (in.) 63 ± 2 62.527 -0.47260 Note: Long. CG is measured from front axle of test vehicleNote: Lateral CG measured from centerline - positive to vehicle right (passenger) sideTEST INERTIAL WEIGHT (Ib)LeftRightFront 4156 4128 Rear 4390 4110 FRONT 8284 IbREAR 8500 IbTOTAL 16784 Ib	Lateral CG (in.)	NA			-0.241		NA
Ballast Vertical CG (in.) 63 ± 2 62.527 -0.47260 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib) Left Right Left Right Front 4156 4128 Front 4182 4024 Rear 4390 4110 Front 4182 4024 Rear 6840 6860 FRONT 8284 Ib REAR 8500 Ib TOTAL 16784 Ib TOTAL 21906 Ib	Vertical CG	(in.)	NA			48.0		NA
Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib) Left Right Front 4156 4128 Rear 4390 4110 FRONT 8284 Ib REAR 8500 Ib TOTAL 16784 Ib	Ballast Vertic	al CG (in.)	63 ±	2		62.527		-0.47260
Note: Lateral CG measured from centerline - positive to vehicle right (passenger) sideCURB WEIGHT (Ib)LeftRightFront41564128Rear43904110FRONT8284IbREAR8500IbTOTAL16784Ib	Note: Long. CG	is measured fr	om front axle of test v	ehicle				
CURB WEIGHT (Ib)LeftRightFront41564128Rear43904110FRONT8284IbREAR8500IbTOTAL16784	Note: Lateral C	G measured fro	m centerline - nositive	to vehicle right (nassender) side		
Left Right Left Right Front 4156 4128 Front 4182 4024 Rear 4390 4110 Rear 6840 6860 FRONT 8284 lb FRONT 8206 lb REAR 8500 lb TOTAL 16784 lb TOTAL 21906 lb	Holo. Euloidi O		in contonino pooline	o to tomolo light	pubbongon	/ 0100		
Left Right Left Right Front 4156 4128 Front 4182 4024 Rear 4390 4110 Rear 6840 6860 FRONT 8284 Ib FRONT 8206 Ib REAR 8500 Ib TOTAL 16784 Ib TOTAL 21906 Ib	CURB WEIG	HT (lb)				TEST INER	TIAL WEIGH	IT (lb)
Left Right Left Right Front 4156 4128 Front 4182 4024 Rear 4390 4110 Rear 6840 6860 FRONT 8284 lb FRONT 8206 lb REAR 8500 lb TOTAL 16784 lb TOTAL 21906 lb						LOTINEN		
Front 4156 4128 Rear 4390 4110 FRONT 8284 REAR 8500 Ib TOTAL 16784 Ib		Left	Right				l off	Right
Home 4130 4120 Rear 4390 4110 FRONT 8284 REAR 8500 TOTAL 16784 Ib TOTAL 16784 Ib	Front	A156	4128			Front	A182	4024
Real 4390 4110 Real 6840 6860 FRONT 8284 lb FRONT 8206 lb REAR 8500 lb REAR 13700 lb TOTAL 16784 lb TOTAL 21906 lb	Pion	4130	4120			Pion	6940	6960
FRONT 8284 lb FRONT 8206 lb REAR 8500 lb REAR 13700 lb TOTAL 16784 lb TOTAL 21906 lb	Real	4390	4110			Real	0040	0000
REAR 8500 lb REAR 13700 lb TOTAL 16784 lb TOTAL 21906 lb	FRONT	0004	16			FRONT	8000	16
REAR 8500 ID REAR 13700 Ib TOTAL 16784 Ib TOTAL 21906 Ib	FRONT	8284	ID			FRUNI	8206	a
TOTAL 16784 lb TOTAL 21906 lb	REAR	8500	=			REAR	13/00	a
	TOTAL	16784	lb			TOTAL	21906	lb

Figure B-3. Vehicle Mass Distribution, Test No. OCBR-3

Appendix C. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing detailed herein. MASH defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria. Reference Set 2 from test no. OCBR-1 was omitted due to visually compromised reference points. Both interior crush reference sets for test no. OCBR-3 were compromised so no measurements were taken. However, comparisons were made to an exemplar vehicle with the same cab and interior configuration and is shown below.

Model Year:	20)15			Test Name: Make:	OCI Hyu	BR-1 Indai			VIN: Model:	KMHC	CT4AF5FU8 Accent	79644
					VE	HICLE DE	FORMATIO	NC					
					PASSENC	GER SIDE	FLOOR PA	N - SET 1					
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions
	POINT	(in.)	(in.)	∠ (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^c
	1	71.9441	10.2557	3.5959	72.7122	10.0360	5.0444	-0.7681	0.2197	-1.4485	1.6542	0.0000	NA
	2	72.9457	14.6304	4.3707	73.6055	14.2291	5.6412	-0.6598	0.4013	-1.2705	1.4868	0.0000	NA
, H	3	73.3937	19.8557	3.9433	72.6522	19.1186	5.2554	-0.6785	0.7371	-1.3121	1.6508	0.0000	NA
AN C	5	71 1586	29,2851	2 9016	70.6067	27 1330	3 6748	0.5519	2 1521	-0.7732	2 3524	0.5519	X
Х Ш Ш	6	66.9852	10.2093	5.4931	67.6358	10.0600	6.6409	-0.6506	0.1493	-1.1478	1.3278	0.0000	NA
5 Å	7	68.0857	15.2843	7.1931	68.5682	14.8037	8.2673	-0.4825	0.4806	-1.0742	1.2719	0.0000	NA
5	8	68.7042	19.9590	6.6747	69.2753	19.4681	7.7862	-0.5711	0.4909	-1.1115	1.3426	0.0000	NA
	9	68.3321	24.4353	6.7466	69.0256	23.8749	7.7270	-0.6935	0.5604	-0.9804	1.3252	0.0000	NA
	10	62,9065	29.5767	0.2000	62 2009	20.9239	7.3040	-0.9526	0.0000	-1.1075	1.0002	0.0000	
	12	63 4636	14.6168	8 6054	63 9643	14 4121	9.5058	-0.5933	0.0900	-0.9678	1.1307	-0.9678	
	13	63.3138	19.4472	8.6426	63.8970	19.1448	9,7096	-0.5832	0.3024	-1.0670	1.2530	-1.0670	Z
	14	63.8230	24.5330	8.4590	64.4918	24.1330	9.4394	-0.6688	0.4000	-0.9804	1.2524	-0.9804	Z
	15	63.3454	29.3372	8.5367	64.0837	28.8861	9.2620	-0.7383	0.4511	-0.7253	1.1290	-0.7253	Z
	16	58.7081	9.9085	6.0341	59.3314	9.8711	6.7633	-0.6233	0.0374	-0.7292	0.9600	-0.7292	Z
	17	58.3647	14.4147	8.6193	58.9422	14.3610	9.4073	-0.5775	0.0537	-0.7880	0.9784	-0.7880	
Z	18	58.7378	19.2604	8.6501	59.3237	19.1295	9.4421	-0.5859	0.1309	-0.7920	0.9938	-0.7920	
P/A	20	58 2014	28.8952	8.3550	58 9697	28.6012	9.5264	-0.0937	0.2408	-0.0070	1.1321	-0.0070	7
OF Z	21	53.5824	9.5204	5.9798	54,1503	9.5997	6.5096	-0.5679	-0.0793	-0.5298	0.7807	-0.5298	Z
LO LO	22	53.4674	14.4358	8.7803	54.0050	14.4279	9.3838	-0.5376	0.0079	-0.6035	0.8083	-0.6035	Z
ш	23	53.1592	19.4071	8.6723	53.7570	19.3018	9.5183	-0.5978	0.1053	-0.8460	1.0412	-0.8460	Z
	24	53.1400	24.3317	8.6686	54.2435	24.0370	9.4633	-1.1035	0.2947	-0.7947	1.3914	-0.7947	Z
	25	52.8953	28.6540	8.3681	53.6763	28.5999	9.3328	-0.7810	0.0541	-0.9647	1.2424	-0.9647	Z
	20	49.0031	9.2001	8 7138	49.6223	9.3950	9 1217	-0.6194	-0.1349	-0.2973	0.7002	-0.2973	
	28	48.3460	18,7378	8,7397	48.9654	18,7696	9.3142	-0.6194	-0.0318	-0.5745	0.8454	-0.5745	Z
	29	48.2266	24.1064	8.7457	48.9176	24.2083	9.4673	-0.6910	-0.1019	-0.7216	1.0043	-0.7216	Z
	30	48.2480	28.6081	8.7132	48.9986	28.6447	9.5956	-0.7506	-0.0366	-0.8824	1.1590	-0.8824	Z
compartme ^B Crush cald deforming i ^C Direction	nt. culations tha nward towar for Crush co	at use multip rd the occup olumn denote	ele directiona ant compart es which dire	I componer ment. ections are i	nts will disre	gard compo he crush cal	nents that ar culations. If	e negative a	and only inc	lude positive s recorded,	e values whe	ere the comp	ponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		
								2					

Figure C-1. Floor Pan Deformation Data – Set 1, Test No. OCBR-1

		10			VE		FORMATI	ON		ino doi:		/1000111	
				PA	SSENGER	R SIDE INT	ERIOR CF	RUSH - SE	T 1				
Ī		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(11.)	(11.)	(0)	(11.)	(11.)	(11.)	(11.)	(11.)	Crush
	1	61.6559	30.6222	-18.9985	60.1462	29.4760	-19.1462	1.5097	1.1462	-0.14/7	1.9013	1.9013	X, Y, Z
цŃ	3	61.0405	6.8792	-10.0000	61.2613	20.0371	-19.6168	-0.0142	1.14/0	0.0009	1.4/03	1 2998	X Y 7
AS Y	4	58,2226	29.6148	-15.3661	56.6576	28,2599	-15.6757	1.5650	1.3549	-0.3096	2.0930	2.0930	XYZ
L R	5	58.7340	21.0828	-14.9269	57.6599	19.7983	-15.0239	1.0741	1.2845	-0.0970	1.6772	1.6772	X, Y, Z
	6	55.9515	6.4802	-11.1883	55.3311	5.3544	-10.4731	0.6204	1.1258	0.7152	1.4710	1.4710	X, Y, Z
шщ	7	66.5846	32.9619	-2.0583	64.9880	30.1291	-2.1879	1.5966	2.8328	-0.1296	3.2543	2.8328	Y
S AND	8	63.7748	32.8605	2.6973	63.3570	31.0810	3.3697	0.4178	1.7795	0.6724	1.9476	1.7795	Y
0 d	9	69.3248	33.0636	2.3826	67.7190	30.6301	2.7066	1.6058	2.4335	0.3240	2.9335	2.4335	Y
Ж	10	52.6828	33.4759	-14.6947	51.1126	35.0653	-14.1060	1.5702	-1.5894	0.5887	2.3105	-1.5894	Y
N N	11	45.5988	34.0319	-15.5872	44.4011	36.7107	-15.1557	1.1977	-2.6788	0.4315	2.9659	-2.6788	Y
588	12	38.0558	33.7390	-16.90/4	30.8229	37.13/0	-16.3/62	1.2329	-3.3980	0.0312	3.0536	-3.3980	Y
DAD	10	44 0020	34.2009	-1.0/77	42 7665	35.4371	-0.0407	1.2000	-0.4301	0.4290	1.8/27	-0.4301	T V
Σ	15	36 2120	33 2923	-1 2067	35 4876	34 8797	-0.9855	0.7244	-1.5874	0.2212	1.7588	-1.5874	Y
	16	47 9351	23.0837	-35 0479	48 1926	23 4539	-36 2693	-0.2575	-0.3702	-1 2214	1.3020	-1 2214	7
	17	49.5915	16.1825	-35, 1964	49.6055	16.5278	-35,4996	-0.0140	-0.3453	-0.3032	0.4597	-0.3032	Z
	18	50.5307	5.6132	-35.2413	50.5096	5.9548	-34.6625	0.0211	-0.3416	0.5788	0.6724	0.5788	Z
	19	39.5760	21.5175	-37.9582	39.5529	21.5368	-38.5923	0.0231	-0.0193	-0.6341	0.6348	-0.6341	Z
	20	39.9676	14.7513	-38.3270	40.0692	14.8396	-37.4833	-0.1016	-0.0883	0.8437	0.8544	0.8437	Z
Ñ	21	40.5917	4.8294	-38.4675	40.8743	5.0894	-38.1810	-0.2826	-0.2600	0.2865	0.4791	0.2865	Z
	22	27.0850	19.9311	-39.3558	27.2467	20.0647	-39.2375	-0.1617	-0.1336	0.1183	0.2408	0.1183	Z
Ğ.	23	27.3993	13.7428	-39.6946	27.6686	13.9081	-39.5532	-0.2693	-0.1653	0.1414	0.3462	0.1414	<u>∠</u>
R R	24	11 1610	4.0920	39.0044	21.9030	4.7525	-39.0040	-0.2701	-0.0597	0.2304	0.3600	0.2304	7
	25	12 1578	12 0430	-39.6752	12 4033	12 0383	-39.2000	-0.1747	0.0000	0.0510	0.1904	0.0510	7
	27	12.2291	3.3869	-39.8083	12.4606	3.3891	-39,7039	-0.2315	-0.0022	0.1044	0.2540	0.1044	Z
	28	-2.4031	17.3846	-37.6124	-2.1858	17.3430	-37.6372	-0.2173	0.0416	-0.0248	0.2226	-0.0248	Z
	29	-2.1357	11.1634	-37.9945	-1.9177	11.1094	-38.0037	-0.2180	0.0540	-0.0092	0.2248	-0.0092	Z
	30	-1.8166	4.9037	-38.1557	-1.5833	4.8691	-38.1591	-0.2333	0.0346	-0.0034	0.2359	-0.0034	Z
	31	65.7401	32.0179	-22.4687	64.5434	30.0970	-22.1724	1.1967	1.9209	0.2963	2.2825	2.2825	X, Y, Z
H H N	32	62.8755	31.2305	-25.1024	62.0112	29.6823	-25.1527	0.8643	1.5482	-0.0503	1.7738	1.7731	X, Y
∃ ii ≻	33	58.2096	30.0682	-27.5361	57.7227	29.0012	-28.3571	0.4869	1.0670	-0.8210	1.4316	1.1728	X, Y
Alax Xax	34	55.0210	29.3838	-29.4/06	54.9598	28.6541	-30.7503	0.0612	0.7297	-1.2/9/	1.4/44	0.7323	X, Y
4	36	47.6586	27 7613	-31,1301	18 2100	27.9024	-35 1263	-0.2407	0.4559	-1.0302	2 3214	0.4009	V
	31	65.7401	32 0170	-32.3522	64 54 34	30.0970	-30.1203	1 1967	1 9209	0.2963	2.3214	1 9209	V
ЧЭ	32	62.8755	31,2305	-25.1024	62.0112	29.6823	-25.1527	0.8643	1.5482	-0.0503	1.7738	1.5482	Ý
al C	33	58.2096	30.0682	-27.5361	57.7227	29.0012	-28.3571	0.4869	1.0670	-0.8210	1.4316	1.0670	Ý
PIL	34	55.0210	29.3838	-29.4706	54.9598	28.6541	-30.7503	0.0612	0.7297	-1.2797	1.4744	0.7297	Y
La ⁻	35	51.9718	28.3563	-31.1581	52.2205	27.9024	-32.9883	-0.2487	0.4539	-1.8302	1.9020	0.4539	Y
	36	47.6586	27.7613	-32.9522	48.2190	27.1713	-35.1263	-0.5604	0.5900	-2.1741	2.3214	0.5900	Y
AR H N	37	25.6722	26.6206	-33.9782	25.9267	26.8408	-33.9369	-0.2545	-0.2202	0.0413	0.3391	0.0413	Z
L'in L	38	23.3988	27.8357	-31.0246	23.6549	27.9673	-30.9508	-0.2561	-0.1316	0.0738	0.2972	0.0738	Z
Aax Xax	39	26.4970	29.4917	-27.1641	26.7125	29.5875	-27.0840	-0.2155	-0.0958	0.0801	0.2491	0.0801	Z
	40	23.7396	30.3923	-23.5992	23.9449	30.4110	-23.4962	-0.2053	-0.018/	0.1030	0.2304	0.1030	L
AR	3/	25.6/22	26.6206	-33.9782	25.9267	26.8408	-33.9369	-0.2545	-0.2202	0.0413	0.3391	-0.2202	Y
eral	30	23.3908	21.000/	-31.0240	25.0049	21.90/3	-30.9508	-0.2001	-0.1316	0.0736	0.2972	-0.1310	ľ V
B-P -ate	40	23 7396	30 3923	-23 5992	23,9449	30 4110	-23 4962	-0.2155	-0.0900	0.0001	0.2491	-0.0908	Y
	aluos donot	o doformativ	an as inwar	toward the	occupart o	ompartmor	nogativo	aluos donot	o doformativ	ane outword	away from	the occurrent	nt .
r usilive v	aides deriot nt		un as iriwaro	i lowaru lhe	occupant c	ompartmen	., negative v	aides denot		ons outward	away IIOM	ine occupat	IL.
onpartne	n.												

Reference Set 1 Maximum Deformation ^{A,B} MASH All Deformation ^{A,B} Coof 0.8 ≤ 4 Mindshield ^D 0.0 ≤ 3 A-Pillar Maximum 2.3 ≤ 5 A-Pillar Lateral 1.9 ≤ 3 B-Pillar Lateral 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Foe Pan - Wheel Well 0.6 ≤ 5	Passenger Side M owable Directions of on (in.) Deformation ^C Z X, Z X, Y, Z Y Z Z	Aximum Deformations Location Roof Windshield ^D A-Pillar Maximum	Reference Set Maximum Deformation ^{A,B} (in.) 0.0 NA	MASH Allowable Deformation (in.) ≤ 4	Directions of Deformation ^C Z
Reference Set 1 Maximum MASH All Deformation ^{A,B} MASH All Coof 0.8 ≤ 4 Mindshield ^D 0.0 ≤ 3 A-Pillar Maximum 2.3 ≤ 5 A-Pillar Lateral 1.9 ≤ 3 B-Pillar Lateral 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Foe Pan - Wheel Well 0.6 ≤ 5	Passenger Side M owable Directions of Deformation ^C Z X, Z X, Y, Z Y	Aximum Deformations	Reference Set Maximum Deformation ^{A,B} (in.) 0.0 NA	ASH Allowable Deformation (in.) ≤ 4	Directions of Deformation ^C Z
Reference Set 1 Maximum MASH All Deformation ^{A,B} MASH All Coof 0.8 Andshield ^D 0.0 A-Pillar Maximum 2.3 B-Pillar Lateral 1.9 B-Pillar Lateral -0.2 B-Pillar Lateral -0.2 B-Pillar Lateral 0.6	owable Directions of on (in.) Deformation ^C Z X, Z X, Y, Z Y	Location Roof Windshield ^D A-Pillar Maximum	Reference Set Maximum Deformation ^{A,B} (in.) 0.0 NA	MASH Allowable Deformation (in.) ≤ 4	Directions of Deformation ^C Z
Maximum Deformation^A,BMASH All DeformationRoof0.8< 4	owable on (in.) Deformation ^C Z X, Z X, Y, Z Y	Location Roof Windshield ^D A-Pillar Maximum	Maximum Deformation ^{A,B} (in.) 0.0 NA	MASH Allowable Deformation (in.) ≤ 4	Directions of Deformation ^C Z
Roof 0.8 ≤ 4 Windshield ^D 0.0 ≤ 3 A-Pillar Maximum 2.3 ≤ 5 A-Pillar Lateral 1.9 ≤ 3 B-Pillar Maximum 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Toe Pan - Wheel Well 0.6 ≤ 5	Z X, Z X, Y, Z Y	Roof Windshield ^D A-Pillar Maximum	0.0 NA	≤4	Z
Windshield ^D 0.0 ≤ 3 A-Pillar Maximum 2.3 ≤ 5 A-Pillar Lateral 1.9 ≤ 3 B-Pillar Maximum 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Toe Pan - Wheel Well 0.6 ≤ 5	X, Z X, Y, Z Y	Windshield ^D A-Pillar Maximum	NA		
A-Pillar Maximum 2.3 ≤ 5 A-Pillar Lateral 1.9 ≤ 3 B-Pillar Maximum 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Toe Pan - Wheel Well 0.6 ≤ 5	X, Y, Z Y	A-Pillar Maximum		≤3	X, Z
A-Pillar Lateral 1.9 ≤ 3 B-Pillar Maximum 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Toe Pan - Wheel Well 0.6 ≤ 5	Y 7	A Diller Leteral	0.0	≤ 5	NA
B-Pillar Maximum 0.1 ≤ 5 B-Pillar Lateral -0.2 ≤ 3 Toe Pan - Wheel Well 0.6 ≤ 9	7	A-Pillar Lateral	0.0	≤ 3	Y
3-Pillar Lateral -0.2 ≤ 3 Toe Pan - Wheel Well 0.6 ≤ 9	2	B-Pillar Maximum	0.0	≤ 5	NA
Toe Pan - Wheel Well 0.6 ≤ 9	Y	B-Pillar Lateral	0.0	≤ 3	Y
	Х	Toe Pan - Wheel Well	0.0	≤ 9	NA
Side Front Panel 2.8 ≤ 1	2 Y	Side Front Panel	0.0	≤ 12	Y
Side Door (above seat) -3.4 ≤ 9	Y	Side Door (above seat)	0.0	≤ 9	Y
Side Door (below seat) -1.6 ≤ 1.	2 Y	Side Door (below seat)	0.0	≤ 12	Y
Floor Pan -1.1 ≤ 1.	2 Z	Floor Pan	0.0	≤ 12	Z
Dash - no MASH requirement 2.1 NA	X, Y, Z	Dash - no MASH requirement	0.0	NA	X, Y, Z
Positive values denote deformation as inward toward the occup For Toe Pan - Wheel Well the direction of defromation may inclu- lirections. The direction of deformation for Toe Pan -Wheel Well occupant compartment. If direction of deformation is "NA" then n If deformation is observered for the windshield then the windshi recorded.	ant compartment, negative o ude X and Z direction. For A , A-Pillar Maximum, and B-F o intrusion is recorded and o eld deformation is measured	values denote deformations outward awa A-Pillar Maximum and B-Pillar Maximum Pillar Maximum only include components deformation will be 0. I posttest with an examplar vehicle, there	ny from the occupar the direction of defo where the deforma efore only one set o	at compartment. ormation may include tion is positive and in f reference is measur	X, Y, and Z truding into the red and
Notes on vehicle crush:					

Figure C-3. Maximum Occupant Compartment Deformation by Location, Test No. OCBR-1

Figure C-4. Exterior Vehicle Crush (NASS) - Front, Test No. OCBR-1

Figure C-5. Exterior Vehicle Crush (NASS) - Side, Test No. OCBR-1

Model Year:	20	015			Test Name: Make:	OCE Do	3R-2 dge			VIN: Model:	1C6R	R6FG6FS7 Ram 1500	20783
					VE PASSENC	HICLE DE GER SIDE	FORMATIC FLOOR PA	ON IN - SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	54.8010	29.3599	-7.9976	54.6491	29.3942	-7.9910	0.1519	-0.0343	-0.0066	0.1559	0.1519	Х
	2	55.6835	33.3055	-5.9341	55.4589	33.2923	-5.6872	0.2246	0.0132	-0.2469	0.3340	0.2246	Х
. 🖃	3	56.9143	36.5973	-2.5067	56.8333	36.3894	-2.1188	0.0810	0.2079	-0.3879	0.4475	0.0810	X
N N N	4	57.2738	40.9300	-2.1646	56.6/20	40.4628	-2.1/34	0.6018	0.46/2	0.0088	0.7619	0.6019	X, Z
EL V	5	51,5505	28.0366	-2.0002	51 3383	40.0001	-2.3734	0.2122	0.0158	0.0886	0.2305	0.2300	X, Z X 7
ЮЩ С	7	52 6806	33 2207	-3.8716	52 4954	33,0094	-0.0440	0.2122	0.0150	-0.0000	0.2303	0.2300	Λ, Ζ Χ
ΓŞ	8	53 8577	36 6731	-0.5334	53 6887	36,3620	-0.1317	0.1690	0.3111	-0.4017	0.5355	0.1690	X
A120000	9	54 1860	41,5081	-0.3937	53,9191	41.0820	0.0878	0.2669	0.4261	-0.4815	0.6962	0.2669	X
	10	54.2568	47.5080	-0.3529	53,7694	46,7032	0.0665	0.4874	0.8048	-0.4194	1.0301	0.4874	X
	11	48,1461	27,1894	-5.6314	48.1229	26.9325	-5.4845	0.0232	0.2569	-0.1469	0.2968	-0.1469	Z
	12	49.6589	32.6946	-1.4346	49.5145	32.3190	-1.1891	0.1444	0.3756	-0.2455	0.4714	-0.2455	Z
	13	50.6951	36.9795	1.0445	50.5399	36.6527	1.4654	0.1552	0.3268	-0.4209	0.5550	-0.4209	Z
	14	50.8504	41.8867	1.0448	50.7374	41.3764	1.8270	0.1130	0.5103	-0.7822	0.9408	-0.7822	Z
	15	51.0027	47.6332	1.0233	50.8186	47.1697	1.9463	0.1841	0.4635	-0.9230	1.0491	-0.9230	Z
	16	44.7411	27.3128	-4.5005	44.6419	27.0896	-4.4328	0.0992	0.2232	-0.0677	0.2535	-0.0677	Z
	17	46.7698	31.9069	0.9140	46.6161	31.6218	1.1014	0.1537	0.2851	-0.1874	0.3742	-0.1874	Z
z	18	46.9944	37.2805	1.0979	46.8764	36.9897	1.5702	0.1180	0.2908	-0.4723	0.5671	-0.4723	Z
PA	19	47.1740	42.23/6	1.0789	47.0785	41.8981	2.0336	0.0955	0.3395	-0.9547	1.01/8	-0.954/	<u>∠</u>
RC (Z)	20	47.1772	47.7017	1.0896	47.1018	47.2542	2.1251	0.0627	0.44/5	-1.0300	1.1306	-1.0300	<u>∠</u> 7
8	21	40.8558	32 2481	-3.0401	40.7448	32 0120	-3.7940	0.0627	-0.0001	0.1407	0.1602	0.1407	7
Ē	22	40.0000	37 0442	1 1175	40.7440	36 7282	1.2902	0.1022	0.2352	-0.1440	0.2977	-0.1440	7
	24	41 1342	42 6995	1.0988	41 0808	42 3063	2 0058	0.0534	0.3932	-0.9070	0.9900	-0.9070	7
	25	41.2370	47.9690	1.0959	41.2691	47.6269	2.1388	-0.0321	0.3421	-1.0429	1.0980	-1.0429	Z
	26	35.0681	27.9657	-3.1699	35.0106	28.0637	-3.3575	0.0575	-0.0980	0.1876	0.2193	0.1876	Z
	27	35.2234	32.4693	0.3679	35.1313	32.1885	0.4183	0.0921	0.2808	-0.0504	0.2998	-0.0504	Z
	28	35.3603	36.9954	0.3400	35.3252	36.7665	0.5227	0.0351	0.2289	-0.1827	0.2950	-0.1827	Z
	29	35.3545	41.6382	0.3223	35.3511	41.4204	0.6496	0.0034	0.2178	-0.3273	0.3932	-0.3273	Z
	30	35.5231	46.6965	0.3090	35.5552	46.5394	0.7518	-0.0321	0.1571	-0.4428	0.4709	-0.4428	Z
^B Crush cale deforming i ^C Direction	culations tha nward towa for Crush co	at use multip rd the occup olumn denote	le directiona ant compart es which dire	I componer ment. ections are	nts will disre	gard compo he crush cal	nents that ar	e negative : "NA" then r	and only inc to intrusion i	lude positive s recorded,	e values whe	ere the comp vill be 0.	oonent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		

Figure C-6. Floor Pan Deformation Data – Set 1, Test No. OCBR-2

odel Year:	20	015			Test Name: Make:	OC Do	BR-2 dge			VIN: Model:	1C6F	RR6FG6FS7 Ram 1500	20783
					VE	HICLE DE GER SIDE	FORMATI	ON N - SET 2					
1		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest 7	۸YA	AVA	۸7 ^A	Total A	Crush ^B	Direction
		X (in)	Y (in)	Z (in)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Cruch ^C
	1	51.2332	15.8477	-4.0429	51,1587	15.8172	-3.7210	0.0745	0.0305	-0.3219	0.3318	0.0745	X
	2	51.9851	19.8129	-1.9655	51.8286	19.7400	-1.4142	0.1565	0.0729	-0.5513	0.5777	0.1565	X
. . .	3	53.1155	23.1310	1.4711	53.0890	22.8813	2.1577	0.0265	0.2497	-0.6866	0.7311	0.0265	X
Z) WE	4	53 1132	33,6797	1.8317	51.8438	26.9467	2.1048	1 2694	0.5255	-0.2731	1.8683	1 2710	X X 7
ЧЩ Х.	6	48.0384	14.4036	-2.7916	47.8963	14.3284	-2.5803	0.1421	0.0752	-0.2113	0.2655	0.1421	X
5 H	7	48.9979	19.6118	0.1116	48.8740	19.3527	0.6058	0.1239	0.2591	-0.4942	0.5716	0.1239	Х
>	8	50.0684	23.0889	3.4600	49.9444	22.7430	4.1402	0.1240	0.3459	-0.6802	0.7731	0.1240	X
	10	50.0819	33,9302	3.6893	49.6636	33.0806	4.3622	0.2132	0.4636	-0.6541	1.1509	0.2152	X
	11	44.6722	13.4305	-1.6537	44.7190	13.1278	-1.2250	-0.0468	0.3027	-0.4287	0.5269	-0.4287	Z
	12	46.0094	18.9672	2.5613	45.9155	18.5573	3.0749	0.0939	0.4099	-0.5136	0.6638	-0.5136	Z
	13	46.9050	23.2751	5.0551	46.7852	22.9228	5.7329	0.1198	0.3523	-0.6778	0.7732	-0.6778	Z
	14	46.8853	28.1847	5.0777	46.8170	33 4429	6.0970	0.0683	0.5343	-1.0193	1.1529	-1.0193	
	16	41.2708	13.4273	-0.5051	41.2331	13.1626	-0.1783	0.0377	0.2647	-0.3268	0.4222	-0.3268	Z
	17	43.1624	18.0664	4.9206	43.0399	17.7582	5.3608	0.1225	0.3082	-0.4402	0.5512	-0.4402	Z
z	18	43.1963	23.4437	5.1285	43.1119	23.1316	5.8326	0.0844	0.3121	-0.7041	0.7748	-0.7041	Z
PA	19	43.1990	28.4041	5.1318	43.1418	28.0438	6.2986	0.0572	0.3603	-1.1668	1.2225	-1.1668	Z
NOR (Z)	20	35 5839	13 6249	0.3795	35 5667	13 6725	0.3927	0.0295	-0.0476	-1.2246	0.0883	-1.2246	
LO	22	37.2413	18.1954	5.1832	37.1583	17.9439	5.5414	0.0830	0.2515	-0.3582	0.4455	-0.3582	Z
ш	23	37.1072	22.9898	5.1775	37.0392	22.6578	5.7198	0.0680	0.3320	-0.5423	0.6395	-0.5423	Z
	24	37.1467	28.6501	5.1841	37.1336	28.2424	6.2623	0.0131	0.4077	-1.0782	1.1528	-1.0782	Z
	25	31.5877	13 7287	0.8768	31.1357	13 7003	0.8836	-0.0/41	0.3538	-1.1927	1.2463	-1.1927	
	20	31.6007	18.2190	4.4349	31.5434	17.9238	4.6614	0.0573	0.2952	-0.2265	0.3765	-0.2265	z
	28	31.5760	22.7472	4.4275	31.5771	22.5057	4.7683	-0.0011	0.2415	-0.3408	0.4177	-0.3408	Z
	29	31.4046	27.3868	4.4316	31.4403	27.1576	4.8974	-0.0357	0.2292	-0.4658	0.5204	-0.4658	Z
_	30	31.3927	32.4479	4.4411	31.4653	32.2805	5.0024	-0.0726	0.1674	-0.5613	0.5902	-0.5613	Z
compartme ³ Crush cald deforming in ² Direction f	nt. culations th nward towa for Crush co	at use multip ard the occup olumn denote	le directiona ant compart es which dire	al componen ment. ections are	nts will disre	gard compo	nents that an	e negative a "NA" then r	and only inc	lude positive	e values wh	ere the com will be 0.	ponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		
	1		-	1	40 T.	S.						X	

Figure C-7. Floor Pan Deformation Data – Set 2, Test No. OCBR-2

Nodel Year:	20)15	-2		Test Name: Make:		BR-2 dge	9. 8		VIN: Model:	1065	R6FG6FS7 Ram 1500	20783
				PA	VE	HICLE DE R SIDE INT	FORMATI	ON RUSH - SE	T 1				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A	ΔY ^A	∆Z ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(01.)	(01.)	(11.)	(in.)	(in.)	(III.)	(01.)	(In.)	Crush
	1	48.0048	48.2788	-30.7616	48.1675	48.1532	-31.0327	-0.1627	0.1256	-0.2711	0.3402	0.3402	X, Y, 2
тÑ	2	46.31/4	34.1099	-31.0191	46.4252	33.9940	-31.3162	-0.1078	0.1159	-0.29/1	0.3366	0.3366	X, Y, Z
ASI ,	3	42.0833	48.6263	-30.8412	42.8269	18.3609	-31.0184	-0.1436	0.1665	-0.3/95	0.2836	0.2836	X, Y, 4
Ω×.	5	42 2390	36 5923	-20.8576	42 2915	36 3632	-20.0270	-0.0525	0.2402	-0.3828	0.4000	0.4000	X Y
ŀ	6	39.7393	18.6579	-20,1431	39.8168	18.5481	-20.4171	-0.0775	0.1098	-0.2740	0.3052	0.3052	X. Y. 2
	7	52.0636	50,9181	-4.3059	51,7025	49,2602	-4.3863	0.3611	1.6579	-0.0804	1.6987	1.6579	Y
ĽZZ	8	52.0528	50.9280	-8.7097	51.5371	48.7977	-8.7783	0.5157	2.1303	-0.0686	2.1929	2.1303	Y
NA)	9	54.9277	50.8414	-6.6212	54.4811	49.3025	-6.8567	0.4466	1.5389	-0.2355	1.6196	1.5389	Y
111	10	19.6130	53.7280	-17.9955	19.0914	54.9637	-17.9696	0.5216	-1.2357	0.0259	1.3415	-1.2357	Y
	11	32.4776	53.7330	-17.9626	31.8476	54.5093	-18.1488	0.6300	-0.7763	-0.1862	1.0170	-0.7763	Y
E B C [12	39.7079	53.3830	-18.3973	39.0212	53.2768	-18.5441	0.6867	0.1062	-0.1468	0.7102	0.1062	Y
AGC .	13	19.1846	53.7773	-8.0521	18.6760	54.7787	-8.2805	0.5086	-1.0014	-0.2284	1.1461	-1.0014	Y
₽ M	14	31.9737	54.4488	-8.3579	31.3932	54.9300	-8.5618	0.5805	-0.4812	-0.2039	0.7811	-0.4812	Y
-	15	38.7510	53.8806	-7.8567	38.1500	53.9089	-8.0138	0.6010	-0.0283	-0.1571	0.6218	-0.0283	Y
	16	35.8008	40.2969	-46.4626	35.8892	40.2995	-46.9812	-0.0884	-0.0026	-0.5186	0.5261	-0.5186	Z
-	17	37.8657	31.4838	-46.6295	37.9308	31.5253	-47.0339	-0.0651	-0.0415	-0.4044	0.4117	-0.4044	Z
-	18	38.5481	22.7994	-46.7991	38.6800	22.7570	-47.0434	-0.1319	0.0424	-0.2443	0.2809	-0.2443	Z 7
-	19	29.8042	39.8941	-49.0603	29.8401	39.8907	-49.4940	-0.0359	0.0034	-0.4287	0.4302	-0.4287	7
	20	32 3024	16 5553	49,4010	32 3035	22 02/17	49.0900	-0.0754	6 3694	-0.1912	6.3790	-0.1912	7
	22	12 3581	40.0702	-49.47.90	12 3110	40.0176	-49.0209	0.0011	0.0526	-0.0438	0.1096	-0.0438	7
цĹ –	23	12 4528	31 3988	-51 2167	12.5062	31 4104	-51 2723	-0.0534	-0.0116	-0.0556	0.0780	-0.0556	7
8	24	12.0733	23.1981	-51.3627	12.0902	23,1397	-51,4459	-0.0169	0.0584	-0.0832	0.1030	-0.0832	Z
Ω.	25	-1.0675	40.2695	-50.9046	-0.9850	40.2541	-51.1034	-0.0825	0.0154	-0.1988	0.2158	-0.1988	Z
[26	-1.4773	31.6226	-51.3297	-1.4119	31.5306	-51.4548	-0.0654	0.0920	-0.1251	0.1685	-0.1251	Z
[27	-1.3055	23.0382	-51.5097	-1.2045	22.9280	-51.6133	-0.1010	0.1102	-0.1036	0.1819	-0.1036	Z
	28	-17.2215	40.4583	-50.7377	-17.1739	40.4130	-50.8963	-0.0476	0.0453	-0.1586	0.1717	-0.1586	Z
-	29	-17.2998	31.2036	-51.0998	-17.2926	31.0722	-51.2284	-0.0072	0.1314	-0.1286	0.1840	-0.1286	Z
	30	-16.9010	22.9490	-51.1642	-16.8986	22.8309	-51.2654	-0.0024	0.1181	-0.1012	0.1555	-0.1012	Z
~ -	31	52.9143	49.6806	-32.0992	52.6550	49.6767	-32.3529	0.2593	0.0039	-0.2537	0.3628	0.2593	X, Y
AF TUT	32	49.1742	40.0022	-34.8223	48.9983	48.7927	-30.2200	0.1759	0.0695	-0.4033	0.4490	0.1974	X, Y
Ľ, ži Ľ	34	44.1173	47.7400	-30.0/02	44.0423	47.0910	-39.1227	0.0746	0.0000	-0.5405	0.5565	0.0932	
A-P Ma	35	37 7320	46 7258	-43 6713	37 7987	46 7908	-44 3325	-0.0667	-0.0650	-0.6612	0.6677	0.0000	NA
	36	34 3580	45,7166	-45.0573	34 3653	45.8555	-45 6991	-0.0073	-0.1389	-0.6418	0.6567	0.0000	NA
	31	52 9143	49 6806	-32 0992	52 6550	49.6767	-32 3529	0.2593	0.0039	-0.2537	0.3628	0.0039	Y
R S	32	49.1742	48.8822	-34.8223	48.9983	48,7927	-35.2256	0.1759	0.0895	-0.4033	0.4490	0.0895	Ý
al (33	44.1173	47.7466	-38.5762	44.0425	47.6910	-39.1227	0.0748	0.0556	-0.5465	0.5544	0.0556	Y
PIL	34	41.0589	47.3256	-41.1915	40.9881	47.2943	-41.7426	0.0708	0.0313	-0.5511	0.5565	0.0313	Y
₹ a	35	37.7320	46.7258	-43.6713	37.7987	46.7908	-44.3325	-0.0667	-0.0650	-0.6612	0.6677	-0.0650	Y
	36	34.3580	45.7166	-45.0573	34.3653	45.8555	-45.6991	-0.0073	-0.1389	-0.6418	0.6567	-0.1389	Y
LA LA	37	10.9874	46.2645	-45.7876	10.9398	46.1973	-46.0421	0.0476	0.0672	-0.2545	0.2675	0.0824	X, Y
J E -	38	8.5032	49.4340	-37.4506	8.4703	49.3368	-37.6477	0.0329	0.0972	-0.1971	0.2222	0.1026	X, Y
X Jax	39	11.9323	50.1442	-34.7965	11.9163	50.0557	-34.9587	0.0160	0.0885	-0.1622	0.1855	0.0899	X, Y
Ⅲ 2○	40	9.2654	51.1208	-28.9069	9.2421	51.0054	-29.03/4	0.0233	0.1154	-0.1305	0.1/58	0.11/7	X, Y
AR .	37	10.9874	46.2645	-45.7876	10.9398	46.1973	-46.0421	0.0476	0.0672	-0.2545	0.2675	0.0672	Y
al	38	0.0032	49.4340	-31.4506	8.4/03	49.3368	-31.64/7	0.0329	0.09/2	-0.19/1	0.2222	0.0972	Y
ate -	40	9 2654	51 1208	-28 9069	9.2421	51,005/	-34.900/	0.0100	0.0000	-0.1022	0.1000	0.0000	T V
- Desitive v	aluos donot	o deformativ		toward the	0.2421	ompartmon	t pogotivov	aluos donot	o doformati	one outword	oursy from	the ecoura	nt
^A Positive va compartmen ^B Crush calc deforming ir ^c Direction f	alues denot nt. culations tha nward towa or Crush co	e deformation at use multip rd the occup olumn denote	on as inward ole directiona oant compar es which dir	d toward the al compone tment. ections are	e occupant c nts will disre included in t	ompartmen gard compo	t, negative v onents that a lculations. I	alues denot re negative f "NA" then	e deformati and only inc no intrusion	ons outward clude positiv is recorded	away from e values wh , and Crush	the occupation occupation the occupation of the	nt 1 ponent i

lodel Year:	20)15			Make:	Do	dge			Model:		Ram 1500)
				PA	VE SSENGEF	HICLE DE R SIDE INT	FORMATI	ON RUSH - SE	T 2				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(In.)	(Iri.)	(In.)	(In.)	(in.)	(in.)	(iri.)	(in.)	Crush ^C
	1	43.6446	34.5734	-26.7318	44.0516	34.3503	-26.7768	-0.4070	0.2231	-0.0450	0.4663	0.4663	X, Y, Z
ц Ñ	3	39.3840	4.6540	-26.8851	39.7577	4.3892	-26,7793	-0.3737	0.2648	0.1058	0.4094	0.4094	X, Y, Z
SAS	4	38.9940	34.7200	-16.2226	38.9949	34.4025	-16.3772	-0.0009	0.3175	-0.1546	0.3531	0.3531	X, Y, Z
-~	5	38.3501	22.6575	-16.8381	38.5801	22.3579	-16.9958	-0.2300	0.2996	-0.1577	0.4093	0.4093	X, Y, Z
	6	36.4935	4.6433	-16.1716	36.7299	4.4668	-16.1817	-0.2364	0.1765	-0.0101	0.2952	0.2952	X, Y, Z
正恒の	/	47.7460	37.2705	-0.2886	47.5130	35.5701	-0.1256	0.2330	1.7004	0.1630	1.7240	1.7004	Y
PANC	9	50.5989	37.3032	-2.6188	50 2915	35,7106	-2.5926	0.3423	1.5926	0.0262	1.6222	1.5926	Y
111	10	15.1445	38.9681	-13.8016	14.7388	40.1332	-13.7473	0.4057	-1.1651	0.0543	1.2349	-1.1651	Y
Ë ~	11	28.0008	39.4307	-13.8348	27.5033	40.1260	-13.9109	0.4975	-0.6953	-0.0761	0.8583	-0.6953	Y
EQS	12	35.2366	39.3395	-14.3079	34.7161	39.1456	-14.2977	0.5205	0.1939	0.0102	0.5555	0.1939	Y
AD -	13	14.7669	38.9703	-3.8560	14.3183	39.9301	-4.0588	0.4486	-0.9598	-0.2028	1.0787	-0.9598	Y
MI I	14	34 3181	40.0973	-4.2253	33,8105	40.5267	-4.3243	0.4996	-0.4294	-0.0990	0.5083	-0.4294	Y
	16	31 6498	26 2128	-42 3969	32 0754	26.0776	-42 7431	-0.4256	0.0202	-0.3462	0.5650	-0.3462	7
	17	34.0258	17.4793	-42.6043	34.4232	17.3803	-42.7964	-0.3974	0.0990	-0.1921	0.4524	-0.1921	Z
	18	35.0157	8.8253	-42.8068	35.4790	8.6436	-42.8079	-0.4633	0.1817	-0.0011	0.4977	-0.0011	Z
1	19	25.6577	25.6053	-44.9701	26.0474	25.4581	-45.2636	-0.3897	0.1472	-0.2935	0.5096	-0.2935	Z
	20	27.9091	16.8138	-45.3466	28.3359	16.6540	-45.3632	-0.4268	0.1598	-0.0166	0.4560	-0.0166	Z
	21	29.0/19	2.3/4/	-45.4/63	29.1939	8.5921	-45.6012	-0.1220	-6.21/4	-0.1249	6.2199	-0.1249	7
Ľ.	22	8.6083	25.1653	-46.3234	9.0234	16 3767	-40.3000	-0.3170	0.1936	-0.0606	0.3765	-0.0606	7
<u> </u>	24	8.5198	8.2965	-47.2330	8.8976	8.0965	-47.2433	-0.3778	0.2000	-0.0103	0.4276	-0.0103	Z
Ř I	25	-5.2170	24.8881	-46.6494	-4.7694	24.7424	-46.9111	-0.4476	0.1457	-0.2617	0.5386	-0.2617	Z
	26	-5.3214	16.2335	-47.1017	-4.8901	16.0095	-47.2659	-0.4313	0.2240	-0.1642	0.5130	-0.1642	Z
	27	-4.8454	7.6613	-47.3118	-4.3814	7.4195	-47.4272	-0.4640	0.2418	-0.1154	0.5358	-0.1154	Z
	28	-21.3000	24.5016	-46.3989	-20.9542	24.3341	-40.7240	-0.4123	0.16/0	-0.3251	0.5252	-0.3251	7
	30	-20.4258	7.0162	-46.8864	-20.0628	6.7726	-47.0987	-0.3630	0.2436	-0.2123	0.4860	-0.2123	Z
	31	48.4940	36.1532	-28.0900	48.4847	36.0305	-28.0909	0.0093	0.1227	-0.0009	0.1231	0.1231	X, Y
	32	44.7705	35.2310	-30.7964	44.8646	35.0201	-30.9684	-0.0941	0.2109	-0.1720	0.2880	0.2109	Y
Υ, inu	33	39.7374	33.9283	-34.5281	39.9553	33.7471	-34.8721	-0.2179	0.1812	-0.3440	0.4457	0.1812	Y
Aax Aax	34	36.6823	33.4072	-37.1291	36.9199	33.2446	-37.4958	-0.2376	0.1626	-0.3667	0.4662	0.1626	Y
٩ ۲	30	30,0226	31.5732	-39.5938	30.3563	31.5763	-40.0899	-0.3874	-0.0031	-0.4961	0.6330	0.0000	Ϋ́
	31	48 4940	36 1532	-40.0000	48 4847	36,0305	-28.0909	0.0003	0.1227	-0.4001	0.1231	0.0000	Y
ЧЯ	32	44.7705	35.2310	-30.7964	44.8646	35.0201	-30.9684	-0.0941	0.2109	-0.1720	0.2880	0.2109	Y
al (33	39.7374	33.9283	-34.5281	39.9553	33.7471	-34.8721	-0.2179	0.1812	-0.3440	0.4457	0.1812	Y
ater	34	36.6823	33.4072	-37.1291	36.9199	33.2446	-37.4958	-0.2376	0.1626	-0.3667	0.4662	0.1626	Y
Ϋ́	35	33.3658	32.6973	-39.5938	33.7532	32.6307	-40.0899	-0.3874	0.0666	-0.4961	0.6330	0.0666	Y
<i>~</i> с	30	50.0226	31.0/32	-40.9009	6,0006	31.0/03	-41.4010	-0.3337	-0.0031	-0.4951	0.09/1	-0.0031	Y
TULAF	38	4 0924	34 3441	-41.5/42	4 3454	34 1455	-41.0329	-0.2699	0.1941	-0.2387	0.4343	0.1941	Y
PIL axin	39	7.5079	35.1673	-30.5749	7.7608	34.9836	-30.7470	-0.2529	0.1837	-0.1721	0.3568	0.1837	Y
₩₹¢	40	4.8389	36.0296	-24.6685	5.0478	35.8367	-24.8287	-0.2089	0.1929	-0.1602	0.3264	0.1929	Y
ΨE	37	6.6437	31.2917	-41.5742	6.9336	31.0976	-41.8329	-0.2899	0.1941	-0.2587	0.4343	0.1941	Y
al	38	4.0924	34.3441	-33.2138	4.3454	34.1455	-33.4406	-0.2530	0.1986	-0.2268	0.3936	0.1986	Y
3-PI	39	1.5079	35.1673	-30.5749	7.7608 5.0479	34.9836	-30.7470	-0.2529	0.1837	-0.1721	0.3568	0.1837	Y
Positive vi	alues denot nt.	e deformatio	on as inward	toward the	occupant c	ompartmen	t, negative v	alues denot	e deformatio	ons outward	away from	the occupa	nt
Crush calc eforming in Direction f	culations tha nward towa for Crush co	at use multip rd the occup olumn denote	ele directiona ant compar es which dire	al compone tment. ections are	nts will disre included in t	gard compo	onents that a	re negative f "NA" then	and only inc	lude positiv	e values wh , and Crush	ere the con will be 0.	nponent is

Figure C-9. Occupant Compartment Deformation Data – Set 2, Test No. OCBR-2

Passenger Side Maximum Deformation Reference Set 1 Maximum Deformation ^{A,B} MASH Allowable Directions of Deformation ^C Maximum Deformation ^{A,B} MASH Allowable Directions of Deformation ^C Roof -0.5 ≤ 4 Z Maximum Deformation ^{C,B} MASH Allowable Directions of Deformation ^C Location Maximum Deformation (in.) Deformation ^{C,B} MASH Allowable Directions of Deformation ^{C,B} Most Allowable Directions Aprillar Maximum 0.0 ≤ 3 X, Z A-Pillar Maximum 0.2 ≤ 5 Y A-Pillar Maximum 0.1 ≤ 5 X, Y A-Pillar Lateral 0.2 ≤ 5 Y B-Pillar Lateral 0.1 ≤ 9 X, Z B-Pillar Maximum 0.2 ≤ 5 Y B-Pillar Lateral 0.1 ≤ 9 X, Z Side Front Panel 2.2 ≤ 12 Y Side Door (above seat) 0.1 ≤ 9 Y Side Door (above seat) 0.2 ≤ 9 Y Side Door (be	Model Year:	2015	-	Make:	Dodge	Model:	Ram	1500
Reference Set 1 Reference Set 2 Maximum Deformation ^{A,B} (in.) MASH Allowable Deformation (in.) Directions of Deformation ^C Maximum Deformation ^{A,B} MASH Allowable Directions of (in.) Maximum Deformation ^{A,B} MASH Allowable Directions of (in.) Directions of Deformation (in.) Roof -0.5 ≤ 4 Z Mindshield ⁰ NA ≤ 3 X,Z A-Pillar Maximum 0.3 ≤ 5 X,Y Mindshield ⁰ NA ≤ 3 X,Z A-Pillar Lateral 0.1 ≤ 5 X,Y A-Pillar Maximum 0.2 ≤ 5 Y B-Pillar Maximum 0.1 ≤ 5 X,Y B-Pillar Maximum 0.2 ≤ 5 Y B-Pillar Maximum 0.1 ≤ 9 X,Z Side Front Panel 0.2 ≤ 3 Y B-Pillar Maximum 0.2 ≤ 12 Y Side Door (above seat) 0.0 ≤ 12 Y Side Door (above seat) 0.1 ≤ 9 Y Side Door (above seat) 0.0 ≤ 12 Y Side Door (above seat) 0.0			F	Passenger Side Ma	aximum Deformation			
Maximum Deformation ^{A,B} (in.)MASH Allowable Deformation (in.)Directions of Deformation ^C Deformation ^C Maximum Deformation ^{A,B} MASH Allowable Deformation (in.)Maximum Deformation (in.)Directions Deformation (in.)Roof-0.5≤ 4ZWindshield ^D 0.0≤ 3X, ZA-Pillar Maximum0.3≤ 5X, YA-Pillar Maximum0.1≤ 3YB-Pillar Maximum0.1≤ 5X, YB-Pillar Lateral0.1≤ 5X, YB-Pillar Lateral0.1≤ 5X, YB-Pillar Lateral0.1≤ 3YB-Pillar Lateral0.1≤ 3YB-Pillar Lateral0.2≤ 5YB-Pillar Lateral0.2≤ 3YSide Front Panel2.1≤ 12YSide Door (above seat)0.1≤ 9YSide Door (above seat)0.2≤ 12YSide Door (below seat)0.0≤ 12YSide Door (below seat)0.0≤ 12YSide Door (below seat)0.0≤ 12YSide Door (below seat)0.0≤ 12YDash - no MASH requirement0.5NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.Por Toe Pan - Wheel Well He direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation in try include X, Y, and Z<		Reference Set	t 1			Reference Se	t 2	
Roof-0.5 ≤ 4 ZMindshield ^D 0.0 ≤ 3 X, ZA-Pillar Maximum0.3 ≤ 5 X, YA-Pillar Maximum0.1 ≤ 3 YB-Pillar Maximum0.1 ≤ 5 X, YB-Pillar Maximum0.1 ≤ 5 X, YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Lateral0.2 ≤ 3 YB-Pillar Lateral0.2 ≤ 3 YB-Pillar Lateral0.2 ≤ 3 YToe Pan - Wheel Well1.4 ≤ 9 X, ZSide Door (above seat)0.1 ≤ 12 YSide Door (below seat)-1.0 ≤ 12 YSide Door (below seat)-1.0 ≤ 12 YFloor Pan0.2 ≤ 12 ZDash - no MASH requirement0.5NAX, Y, ZNem shighlighted in red do not meet MASH allowable deformations. \Rightarrow \Rightarrow Prostive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. $For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and ZPortice Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum only include components where the deformation is positive and intruding into the direction of deformation for Toe Pan - Wheel Well A-Pillar Maximum $	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Mindshield0.0 ≤ 3 X, ZWindshieldNA ≤ 3 X, ZA-Pillar Maximum0.3 ≤ 5 X, YA-Pillar Maximum0.2 ≤ 5 YA-Pillar Lateral0.1 ≤ 3 YA-Pillar Maximum0.2 ≤ 5 YB-Pillar Maximum0.1 ≤ 5 X, YB-Pillar Maximum0.2 ≤ 3 YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Maximum0.2 ≤ 5 YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Maximum0.2 ≤ 5 YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Maximum0.2 ≤ 3 YToe Pan - Wheel Well1.4 ≤ 9 X, ZSide Front Panel2.2 ≤ 12 YSide Door (above seat)0.1 ≤ 9 YSide Door (above seat)0.2 ≤ 9 YSide Door (below seat)-1.0 ≤ 12 YSide Door (above seat)0.0 ≤ 12 YFloor Pan0.2 ≤ 12 ZZDash - no MASH requirement0.5NAX, Y, ZDash - no MASH requirement0.5NAX, Y, ZDash - no MASH requirement0.5NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.Proor Pan - Wheel Well the direction of deformations.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of	Roof	-0.5	≤ 4	Z	Roof	-0.3	≤ 4	Z
A-Pillar Maximum 0.3 ≤ 5 X, YA-Pillar Maximum 0.2 ≤ 5 YA-Pillar Lateral 0.1 ≤ 3 YA-Pillar Maximum 0.2 ≤ 3 YB-Pillar Maximum 0.1 ≤ 5 X, YB-Pillar Maximum 0.2 ≤ 3 YB-Pillar Lateral 0.1 ≤ 5 X, YB-Pillar Maximum 0.2 ≤ 3 YB-Pillar Lateral 0.1 ≤ 5 X, YB-Pillar Maximum 0.2 ≤ 5 YB-Pillar Lateral 0.1 ≤ 3 YB-Pillar Maximum 0.2 ≤ 5 YB-Pillar Lateral 0.2 ≤ 5 YB-Pillar Lateral 0.2 ≤ 5 YB-Dide Front Panel 2.1 ≤ 12 YSide Front Panel 2.2 ≤ 12 YSide Door (below seat) 0.1 ≤ 9 YSide Door (above seat) 0.2 ≤ 9 YSide Door (below seat) -1.0 ≤ 12 YSide Door (above seat) 0.2 ≤ 9 YFloor Pan 0.2 ≤ 12 ZZDash - no MASH requirement 0.5 NAX, Y, ZDash - no MASH requirement 0.5 NAX, Y, ZDash - no MASH requirement 0.5 NAX, Y, Z'Items highlighted in red do not meet MASH allowable deformations.''For Toe Pan - Wheel Well Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z'For Toe Pan - Wheel Well Well Well	Windshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
A-Pillar Lateral 0.1 ≤ 3 Y 3-Pillar Maximum 0.1 ≤ 5 X, Y 3-Pillar Lateral 0.1 ≤ 5 X, Y 3-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Lateral 0.2 ≤ 3 Y Side Front Panel 2.1 ≤ 12 Y Side Door (above seat) 0.1 ≤ 9 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Doash - no MASH requirement 0.5 NA X, Y, Z Deash - no MASH requirement	A-Pillar Maximum	0.3	≤ 5	Χ, Υ	A-Pillar Maximum	0.2	≤ 5	Y
B-Pillar Maximum 0.1 ≤ 5 X, Y B-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Lateral 0.2 ≤ 5 Y B-Pillar Lateral 0.2 ≤ 3 Y Foe Pan - Wheel Well 1.4 ≤ 9 X, Z Side Front Panel 2.1 ≤ 12 Y Side Door (above seat) 0.1 ≤ 9 Y Side Door (below seat) -1.0 ≤ 12 Y Floor Pan 0.2 ≤ 12 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) 0.2 ≤ 9 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Dash - no MASH requirement 0.5 NA X, Y, Z Dash - no MASH requirement 0.5 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward	A-Pillar Lateral	0.1	≤ 3	Y	A-Pillar Lateral	0.2	≤ 3	Y
3-Pillar Lateral 0.1 ≤ 3 Y Toe Pan - Wheel Well 1.4 ≤ 9 X, Z Side Front Panel 2.1 ≤ 12 Y Side Door (above seat) 0.1 ≤ 9 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) 0.2 ≤ 9 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.2 ≤ 9 Y Side Door (below seat) 0.0 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Doash - no MASH requirement 0.5 NA X, Y, Z Dash - no MASH requirement 0.5 NA X, Y, Z Thems highlighted in red do not meet MASH allowable deformations. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z For Toe Pan - Wheel Well the direction	3-Pillar Maximum	0.1	≤ 5	Χ, Υ	B-Pillar Maximum	0.2	≤ 5	Y
Toe Pan - Wheel Well1.4 ≤ 9 X, ZSide Front Panel2.1 ≤ 12 YSide Door (above seat)0.1 ≤ 9 YSide Door (below seat)-1.0 ≤ 12 YSide Door (below seat)-1.0 ≤ 12 YFloor Pan0.2 ≤ 12 ZDash - no MASH requirement0.5NAX, Y, ZNetwork with the direction of deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the directi	3-Pillar Lateral	0.1	≤ 3	Y	B-Pillar Lateral	0.2	≤ 3	Y
Side Front Panel 2.1 ≤ 12 Y Side Door (above seat) 0.1 ≤ 9 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) -1.0 ≤ 12 Y Floor Pan 0.2 ≤ 12 Z Dash - no MASH requirement 0.5 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformati	Γoe Pan - Wheel Well	1.4	≤ 9	X, Z	Toe Pan - Wheel Well	1.3	≤ 9	X, Z
Side Door (above seat) 0.1 ≤ 9 Y Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) 0.2 ≤ 9 Y Floor Pan 0.2 ≤ 12 Z Dash - no MASH requirement 0.5 NA X, Y, Z Floor Pan -1.2 ≤ 12 Z Dash - no MASH requirement 0.5 NA X, Y, Z Dash - no MASH requirement 0.5 NA X, Y, Z Tetms highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. To ash - no MASH requirement 0.5 NA X, Y, Z To be Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z If the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformation is positive and intruding into the components where the deformati	Side Front Panel	2.1	≤ 12	Y	Side Front Panel	2.2	≤ 12	Y
Side Door (below seat) -1.0 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Floor Pan 0.2 ≤ 12 Z Floor Pan -1.2 ≤ 12 Z Dash - no MASH requirement 0.5 NA X, Y, Z Side Door (below seat) 0.0 ≤ 12 Y Positive values denote do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. Side Door (below seat) 0.0 ≤ 12 Y Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. Positive values denote deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z Iterestions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is posinon the dinecond positive and intruding into the dinec	Side Door (above seat)	0.1	≤ 9	Y	Side Door (above seat)	0.2	≤ 9	Y
Floor Pan 0.2 ≤ 12 Z Floor Pan -1.2 ≤ 12 Z Dash - no MASH requirement 0.5 NA X, Y, Z Dash - no MASH requirement 0.5 NA X, Y, Z Ntems highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the direction of deformation is positive and intruding into the dinectin direction of de	Side Door (below seat)	-1.0	≤ 12	Y	Side Door (below seat)	0.0	≤ 12	Y
Dash - no MASH requirement 0.5 NA X, Y, Z Dash - no MASH requirement 0.5 NA X, Y, Z ¹ Items highlighted in red do not meet MASH allowable deformations. ³ Items denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ³ For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the section. MA X, Y, Z	Floor Pan	0.2	≤ 12	Z	Floor Pan	-1.2	≤ 12	Z
A Items highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of defromation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into t	Dash - no MASH requirement	0.5	NA	X, Y, Z	Dash - no MASH requirement	0.5	NA	X, Y, Z
iccupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and ecorded.	Positive values denote deformat For Toe Pan - Wheel Well the di lirections. The direction of deform occupant compartment. If direction ¹ If deformation is observered for the ecorded.	on as inward toward rection of defromatio nation for Toe Pan - n of deformation is the windshield then	d the occupant comp on may include X and Wheel Well, A-Pillar "NA" then no intrusio the windshield defor	artment, negative val d Z direction. For A-F Maximum, and B-Pill n is recorded and def mation is measured p	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0. osttest with an examplar vehicle, there	ay from the occupar the direction of defore where the deformate efore only one set o	nt compartment. ormation may include ttion is positive and ir f reference is measu	x, Y, and Z ntruding into the red and

Figure C-10. Maximum Occupant Compartment Deformation by Location, Test No. OCBR-2

Figure C-11. Exterior Vehicle Crush (NASS) – Front, Test No. OCBR-2

Figure C-12. Exterior Vehicle Crush (NASS) - Side, Test No. OCBR-2

Figure C-13. Comparative Occupant Compartment Crush Measurement, Test No. OCBR-3

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. OCBR-1

Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OCBR-1

Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OCBR-1

Figure D-3. Longitudinal Occupant Displacement (SLICE-1), Test No. OCBR-1

Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OCBR-1

Figure D-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. OCBR-1

Figure D-6. Lateral Occupant Displacement (SLICE-1), Test No. OCBR-1

Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. OCBR-1

Figure D-8. Acceleration Severity Index (SLICE-1), Test No. OCBR-1

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. OCBR-1

Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. OCBR-1

Figure D-11. Longitudinal Occupant Displacement (SLICE-2), Test No. OCBR-1

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. OCBR-1

Figure D-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. OCBR-1

Figure D-14. Lateral Occupant Displacement (SLICE-2), Test No. OCBR-1

Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. OCBR-1

Figure D-16. Acceleration Severity Index (SLICE-2), Test No. OCBR-1

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. OCBR-2

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OCBR-2

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OCBR-2

Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No.OCBR-2

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OCBR-2

Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. OCBR-2

Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. OCBR-2

Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. OCBR-2

Figure E-8. Acceleration Severity Index (SLICE-1), Test No. OCBR-2

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. OCBR-2

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. OCBR-2

Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. OCBR-2

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. OCBR-2

Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. OCBR-2

Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. OCBR-2

Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. OCBR-2

Figure E-16. Acceleration Severity Index (SLICE-2), Test No. OCBR-2

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. OCBR-3

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OCBR-3

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OCBR-3

Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. OCBR-3

Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OCBR-3

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. OCBR-3

Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. OCBR-3

Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. OCBR-3

Figure F-8. Acceleration Severity Index (SLICE-1), Test No. OCBR-3

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. OCBR-3

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. OCBR-3

Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. OCBR-3

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. OCBR-3

Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. OCBR-3

Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. OCBR-3

Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. OCBR-3

Figure F-16. Acceleration Severity Index (SLICE-2), Test No. OCBR-3

Figure F-17. 10-ms Average Longitudinal Deceleration (DTS), Test No. OCBR-3

Figure F-18. Longitudinal Occupant Impact Velocity (DTS), Test No. OCBR-3

Figure F-19. Longitudinal Occupant Displacement (DTS), Test No. OCBR-3

Figure F-20. 10-ms Average Lateral Deceleration (DTS), Test No. OCBR-3

Figure F-21. Lateral Occupant Impact Velocity (DTS), Test No. OCBR-3

Figure F-22. Lateral Occupant Displacement (DTS), Test No. OCBR-3

Figure F-23. Vehicle Angular Displacements (DTS), Test No. OCBR-3

Figure F-24. Acceleration Severity Index (DTS), Test No. OCBR-3

END OF DOCUMENT