

Hawaii Department of Transportation Research Contract No. 68212 Project 2, Phase II, System No. 4 Research Project No. STP-1500(092) – Phase II

CRASH TESTING AND EVALUATION OF HDOT'S THRIE-BEAM APPROACH GUARDRAIL TRANSITION ATTACHED TO 42-IN. TALL, SOLID CONCRETE BRIDGE RAIL WITH AESTHETIC, RECESSED, ROUNDED PANELS AND 6-FT WIDE SIDEWALK: MASH TEST NOS. 3-20 AND 3-21

Submitted by

Tewodros Y. Yosef, Ph.D. Post-Doctoral Research Associate

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Joshua S. Steelman, Ph.D., P.E Associate Professor

Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402)472-0965

Outdoor Test Site

4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

Hawaii Department of Transportation

Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813

MwRSF Research Report No. TRP-03-472-22

December 13, 2022

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
TRP-03-472-22		
4. Title and Subtitle		5. Report Date
Crash Testing and Evaluation of HDOT's T	**	December 13, 2022
Transition Attached to 42-in. Tall, Solid Concrete Bridge Rail with Aesthetic, Recessed, Rounded Panels and 6-ft Wide Sidewalk: MASH Test Nos. 3-20 and 3-21		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Yosef, T.Y., Steelman, J.S., Faller, R.K., and	d Urbank, E.L.	TRP-03-472-22
9. Performing Organization Name and Ac	ldress	10. Work Unit No.
Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln)	
Prem S. Paul Research Center at Whittier School	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract Research Contract No. 68212 Research Project No. STP-1500(092) – Project 2, Phase II, System No. 4
12. Sponsoring Agency Name and Addres	s	13. Type of Report and Period Covered
Hawaii Department of Transportation Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813		Final Report: 2020 – 2022

15. Supplementary Notes

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration

16. Abstract

This report documents two full-scale crash tests conducted to evaluate the safety performance of the Hawaii Department of Transportation's (HDOT's) Thrie-Beam, Approach Guardrail Transition (AGT) attached to the 42-in. tall, solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk according to the Test Level 3 (TL-3) criteria of the Association of State Highway and Transportation Official (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016). The AGT consisted of nested thrie-beam rail supported by W6x15 and W6x8.5/W6x9 steel posts and was attached to a reinforced concrete buttress and 42-in. tall solid concrete bridge rail. The upstream section included the Midwest Guardrail System (MGS) stiffness transition utilizing an asymmetrical W-to-thrie transition segment to ensure a crashworthy connection between the upstream W-beam and the downstream nested thrie beam. The thrie-beam AGT was full-scale crash tested in conjunction with a 6-in. tall curb placed below the thrie-beam rail.

Test nos. H42ST-1 and H42ST-2 were conducted in accordance with MASH 2016 test designation nos. 3-21 and 3-20, respectively. In test no. H42ST-1, a 2270P pickup truck impacted the barrier at a speed of 64.7 mph and an angle of 24.8 degrees. Although the impact speed exceeded the MASH limits, MASH accepts values in excess of the criteria for longitudinal barriers. In test no. H42ST-2, an 1100C small car impacted the barrier at a speed of 62.4 mph and an angle of 25.1 degrees. In both tests, the thrie-beam AGT successfully contained and safely redirected the vehicles. All occupant risk measurements were found to be within the established MASH 2016 limits. Therefore, test nos. H42ST-1 and H42ST-2 were deemed to have satisfied all safety performance criteria, and the HDOT thrie-beam AGT attached to the 42-in. tall, solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft sidewalk was determined to be crashworthy to MASH 2016 TL-3.

17. Key Words	•	18. Distribution Statement	
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Approach Guardrail Transition, Thrie-Beam, Concrete Parapet, Sidewalk, Concrete Bridge Rail		No restrictions. This document is available through the National Technical Information Service. 5285 Port Royal Road Springfield, VA 22161	
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	226	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Hawaii Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, the Hawaii Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Hawaii do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Dr. Mojdeh Asadollahipajouh, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Hawaii Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., Research Engineer & Assistant Director –Physical Testing Division

K.A. Lechtenberg, M.S.M.E., Research Engineer

R.W. Bielenberg, M.S.M.E., Research Engineer

S.K. Rosenbaugh, M.S.C.E., Research Engineer

C.S. Stolle, Ph.D., Research Assistant Professor

M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor

B.J. Perry, M.E.M.E., Research Associate Engineer

C. Sim, Ph.D., P.E., Associate Professor

A.T. Russell, B.S.B.A., Testing and Maintenance Technician II

E.W. Krier, B.S., Former Engineering Testing Technician II

D.S. Charroin, Engineering Testing Technician II

R.M. Novak, Engineering Testing Technician II

S.M. Tighe, Engineering Testing Technician I

T.C. Donahoo, Engineering Testing Technician I

J.T. Jones, Engineering Testing Technician I

C. Charroin, Temporary Engineering Construction Testing Technician I

T. Shapland, Temporary Engineering Construction Testing Technician I

Z.Z. Jabr, Engineering Technician

J. Oliver, Solidworks Drafting Coordinator

Undergraduate and Graduate Research Assistants

Hawaii Department of Transportation

James Fu, P.E., Chief, State Bridge Engineer

Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

		N METRIC) CONVE		
~		IMATE CONVERSION		
Symbol	When You Know	Multiply By	To Find	Symbol
	. ,	LENGTH	***	
n.	inches	25.4	millimeters	mm
t	feet	0.305	meters	m
d ·	yards	0.914	meters	m
ni	miles	1.61	kilometers	km
2		AREA		2
n ²	square inches	645.2	square millimeters	mm^2
2	square feet	0.093	square meters	m^2
d^2	square yard	0.836	square meters	m ²
c ·2	acres	0.405	hectares	ha
ni ²	square miles	2.59	square kilometers	km ²
		VOLUME		
OZ	fluid ounces	29.57	milliliters	mL
al	gallons	3.785	liters	L
3	cubic feet	0.028	cubic meters	m^3
d^3	cubic yards	0.765	cubic meters	m^3
	NOTE:	volumes greater than 1,000 L shall	l be shown in m ³	
		MASS		
z	ounces	28.35	grams	g
)	pounds	0.454	kilograms	kg
	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
	r	FEMPERATURE (exact d	egrees)	
		5(F-32)/9		
F	Fahrenheit	or (F-32)/1.8	Celsius	°C
		ILLUMINATION		
	foot condles		1,	1
	foot-candles foot-Lamberts	10.76 3.426	lux	lx cd/m ²
			candela per square meter	Cu/III
		ORCE & PRESSURE or S		
bf	poundforce	4.45	newtons	N
bf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIM	IATE CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
•		LENGTH		·
nm	millimeters	0.039	inches	in.
1	meters	3.28	feet	ft
1	meters	1.09	yards	yd
m	kilometers	0.621	miles	mi
111	KHOHICICIS	AREA	innes	1111
2	*11:		• 1	. 2
m ²	square millimeters	0.0016	square inches	in ²
2	square meters	10.764	square feet	ft ²
²	square meters	1.195	square yard	yd ²
1 ,	hectares	2.47	acres	ac
m ²	square kilometers	0.386	square miles	mi ²
		VOLUME		
ıL	milliliter	0.034	fluid ounces	fl oz
,_	liters	0.264	gallons	gal
n^3	cubic meters	35.314	cubic feet	ft ³
1^3	cubic meters	1.307	cubic yards	yd³
		MASS		
	grams	0.035	ounces	oz
g	kilograms	2.202	pounds	lb
g (or "t")	megagrams (or "metric ton")	1.103	short ton (2,000 lb)	T
		ΓΕΜΡΕRATURE (exact d		
2	Celsius	1.8C+32	Fahrenheit	°F
	Colsius	ILLUMINATION	1 differment	•
	1		foot com 11	¢.
1/22	lux	0.0929	foot-candles	fc
d/m ²	candela per square meter	0.2919	foot-Lamberts	fl
		ORCE & PRESSURE or S		
		0.225	poundforce	lbf
Pa	newtons kilopascals	0.145	poundforce per square inch	lbf/in ²

^{*}SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
SI* (MODERN METRIC) CONVERSION FACTORS	iii
LIST OF FIGURES	vi
LIST OF TABLES	xii
1 INTRODUCTION	
1.1 Background	
1.2 Objective	
1.3 Scope	5
2 DESIGN DETAILS	6
3 TEST REQUIREMENTS AND EVALUATION CRITERIA	47
3.1 Test Requirements	
3.2 Evaluation Criteria	48
3.3 Soil Strength Requirements	49
4 TEST CONDITIONS	50
4.1 Test Facility	
4.2 Vehicle Tow and Guidance System	
4.3 Test Vehicles	
4.4 Simulated Occupant	
4.5 Data Acquisition Systems	
4.5.1 Accelerometers	
4.5.2 Rate Transducers	60
4.5.3 Retroreflective Optic Speed Trap	60
4.5.4 Digital Photography	61
5 FULL-SCALE CRASH TEST NO. H42ST-1	64
5.1 Static Soil Test	
5.2 Weather Conditions	
5.3 Test Description	
5.4 Barrier Damage	
5.5 Vehicle Damage	
5.6 Occupant Risk	
5.7 Discussion	

6 FULL-SCALE CRASH TEST NO. H42ST-2	90
6.1 Static Soil Test	90
6.2 Weather Conditions	90
6.3 Test Description	90
6.4 Barrier Damage	100
6.5 Vehicle Damage	
6.6 Occupant Risk	110
6.7 Discussion	
7 SUMMARY AND CONCLUSIONS	113
8 MASH EVALUATION	115
9 REFERENCES	117
10 APPENDICES	119
Appendix A. Material Specifications, Test Nos. H42ST-1 and H42ST-2	120
Appendix B. Vehicle Center of Gravity Determination	
Appendix C. Static Soil Tests	188
Appendix D. Vehicle Deformation Records	193
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. H42ST-1	208
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. H42ST-2	217

LIST OF FIGURES

Figure 1. System Layout, Test No. HWTT-1 [2]	2
Figure 2. System Layout, Test No. HWTT-2 [2]	3
Figure 3. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2 [2]	4
Figure 4. System Layout, Test Nos. H42ST-1 and H42ST-2	
Figure 5. AGT and Transition Layout, Test Nos. H42ST-1 and H42ST-2	8
Figure 6. Post Nos. 3 through 10 Details, Test Nos. H42ST-1 and H42ST-2	
Figure 7. Post Nos. 11 through 19 Details, Test Nos. H42ST-1 and H42ST-2	10
Figure 8. Transition Buttress and Terminal Connector, Test Nos. H42ST-1 and H42ST-2	11
Figure 9. Sidewalk and Ramp Details, Test Nos. H42ST-1 and H42ST-2	12
Figure 10. Sidewalk Reinforcement Detail, Test Nos. H42ST-1 and H42ST-2	13
Figure 11. Transition Buttress Details, Test Nos. H42ST-1 and H42ST-2	14
Figure 12. Transition Buttress Reinforcement Details, Test Nos. H42ST-1 and H42ST-2	15
Figure 13. Transition Buttress Reinforcement Details, Test Nos. H42ST-1 and H42ST-2	
Figure 14. Curb Reinforcement Details, Test Nos. H42ST-1 and H42ST-2	17
Figure 15. Curb Details, Test Nos. H42ST-1 and H42ST-2	18
Figure 16. End Anchorage Detail, Test Nos. H42ST-1 and H42ST-2	19
Figure 17. BCT Anchor Detail, Test Nos. H42ST-1 and H42ST-2	20
Figure 18. Post Nos. 16 through 19 Components, Test Nos. H42ST-1 and H42ST-2	21
Figure 19. Post Nos. 10 through 15 Components, Test Nos. H42ST-1 and H42ST-2	
Figure 20. Post Nos. 3 through 7 Components, Test Nos. H42ST-1 and H42ST-2	23
Figure 21. Post Nos. 8 through 9 Blockout Details, Test Nos. H42ST-1 and H42ST-2	24
Figure 22. BCT Timber Post and Foundation Tube Details, Test Nos. H42ST-1 and	
H42ST-2	
Figure 23. Ground Strut Details, Test Nos. H42ST-1 and H42ST-2	
Figure 24. Anchor Bracket Details, Test Nos. H42ST-1 and H42ST-2	
Figure 25. BCT Anchor Cable, Test Nos. H42ST-1 and H42ST-2	
Figure 26. Cable Assembly and Anchor Components, Test Nos. H42ST-1 and H42ST-2	
Figure 27. Guardrail Section Details, Test Nos. H42ST-1 and H42ST-2	
Figure 28. Rail Transition and Component Details, Test Nos. H42ST-1 and H42ST-2	
Figure 29. Sidewalk Rebar Details, Test Nos. H42ST-1 and H42ST-2	
Figure 30. Parapet Reinforcement Details, Test Nos. H42ST-1 and H42ST-2	
Figure 31. End Post Reinforcement Details, Test Nos. H42ST-1 and H42ST-2	
Figure 32. Transition Buttress Vertical Stirrups, Test Nos. H42ST-1 and H42ST-2	
Figure 33. Transition Buttress End Reinforcement, Test Nos. H42ST-1 and H42ST-2	36
Figure 34. Longitudinal Buttress and Curb Reinforcement Details, Test Nos. H42ST-1 and	
H42ST-2	
Figure 35. Expansion Joint Components, Test Nos. H42ST-1 and H42ST-2	
Figure 36. Hardware, Test Nos. H42ST-1 and H42ST-2	
Figure 37. Bill of Materials, Test Nos. H42ST-1 and H42ST-2	
Figure 38. Bill of Materials, Cont., Test Nos. H42ST-1 and H42ST-2	
Figure 39. Bill of Materials, Cont., Test Nos. H42ST-1 and H42ST-2	
Figure 40. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2	
Figure 41. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2	
Figure 42. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2	
Figure 43. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2	46

Figure 44. Test Vehicle, Test No. H42ST-1	51
Figure 45. Test Vehicle's Interior Floorboards and Undercarriage, Test No. H42ST-1	52
Figure 46. Vehicle Dimensions, Test No. H42ST-1	53
Figure 47. Test Vehicle, Test No. H42ST-2	54
Figure 48. Test Vehicle's Interior Floorboards and Undercarriage, Test No. H42ST-2	55
Figure 49. Vehicle Dimensions, Test No. H42ST-2	56
Figure 50. Target Geometry, Test No. H42ST-1	58
Figure 51. Target Geometry, Test No. H42ST-2	
Figure 52. Camera Locations, Speeds, and Lens Settings, Test No. H42ST-1	62
Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. H42ST-2	
Figure 54. Target Impact Location, Test No. H42ST-1	
Figure 55. Sequential Photographs, Test No. H42ST-1	67
Figure 56. Additional Sequential Photographs, Test No. H42ST-1	
Figure 57. Documentary Photographs, Test No. H42ST-1	69
Figure 58. Additional Documentary Photographs, Test No. H42ST-1	70
Figure 59. Additional Documentary Photographs, Test No. H42ST-1	
Figure 60. Additional Documentary Photographs, Test No. H42ST-1	72
Figure 61. Additional Documentary Photographs, Test No. H42ST-1	73
Figure 62. Vehicle Final Position and Trajectory Marks, Test No. H42ST-1	74
Figure 63. System Damage, Test No. H42ST-1	
Figure 64. Thrie Beam Damage, Test No. H42ST-1	77
Figure 65. Rail Connection Terminal, Buttress, and Post Damage, Test No. H42ST-1	78
Figure 66. Buttress Damage, Test No. H42ST-1	
Figure 67. Permanent Set, Dynamic Deflection, and Working Width, Test No. H42ST-1	
Figure 68. Vehicle Damage, Test No. H42ST-1	
Figure 69. Vehicle Damage, Test No. H42ST-1	
Figure 70. Vehicle Damage, Test No. H42ST-1	
Figure 71. Vehicle's Left-Front Rim Damage and Debris, Test No. H42ST-1	
Figure 72. Vehicle Floorboard and Undercarriage Damage, Test No. H42ST-1	
Figure 73. Summary of Test Results and Sequential Photographs, Test No. H42ST-1	
Figure 74. Target Impact Location, Test No. H42ST-2	
Figure 75. Sequential Photographs, Test No. H42ST-2	
Figure 76. Additional Sequential Photographs, Test No. H42ST-2	
Figure 77. Documentary Photographs, Test No. H42ST-2	
Figure 78. Additional Documentary Photographs, Test No. H42ST-2	
Figure 79. Additional Documentary Photographs, Test No. H42ST-2	
Figure 80. Additional Documentary Photographs, Test No. H42ST-2	
Figure 81. Vehicle Final Position and Trajectory Marks, Test No. H42ST-2	
Figure 82. System Damage, Test No. H42ST-2	
Figure 83. Thrie Beam Damage, Test No. H42ST-2	
Figure 84. Rail Connection Terminal, Buttress, and Post Damage, Test No. H42ST-2	
Figure 85. Permanent Set, Dynamic Deflection, and Working Width, Test No. H42ST-2	
Figure 86. Vehicle Damage, Test No. H42ST-2	
Figure 87. Vehicle Damage, Test No. H42ST-2	
Figure 88. Vehicle Damage, Test No. H42ST-2	
Figure 89. Vehicle Damage, Test No. H42ST-2	
Figure 90. Summary of Test Results and Sequential Photographs, Test No. H42ST-2	112

Figure A-1. 12-ft 6-in. 12-Gauge Thrie Beam Section, Test Nos. H42ST-1 and H42ST-2	
(Item No. a1)	124
Figure A-2. 6-ft 3-in. 12-gauge Thrie Beam Section, Test Nos. H42ST-1 and H42ST-2	
(Item No. a2)	125
Figure A-3. 6-ft 3-in. 10-gauge W-Beam to Thrie-Beam Asymmetric Section, Test Nos.	
H42ST-1 and H42ST-2 (Item No. a3)	126
Figure A-4. 6-ft 3-in. 10-gauge W-Beam to Thrie-Beam Asymmetric Section, Test Nos.	
H42ST-1 and H42ST-2, Cont. (Item No. a3)	127
Figure A-5. 12-ft 6-in. 12-gauge W-Beam MGS Section, Test Nos. H42ST-1 and H42ST-2	
(Item No. a4)	128
Figure A-6. 12-ft 6-in. 12-gauge W-Beam MGS End Section, Test Nos. H42ST-1 and	
H42ST-2 (Item No. a5)	129
Figure A-7. 10-gauge Thrie Beam Terminal Connector, Test Nos. H42ST-1 and H42ST-2,	
Cont. (Item No. a6)	130
Figure A-8. Concrete, Test Nos. H42ST-1 and H42ST-2 (Item No. b1)	
Figure A-9. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)	
Figure A-10. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)	
Figure A-11. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)	
Figure A-12. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)	
Figure A-13. BCT Timber Post – MGS Height, Test Nos. H42ST-1 and H42ST-2 (Item	,133
No. c1)	136
Figure A-14. BCT Timber Post – MGS Height, Test Nos. H42ST-1 and H42ST-2, Cont.	130
(Item No. c1)	137
Figure A-15. 72-in. Long Foundation Tube, Test Nos. H42ST-1 and H42ST-2 (Item No.	137
c2)	120
Figure A-16. Ground Strut Assembly, Test Nos. H42ST-1 and H42ST-2 (Item No. c3)	
Figure A-17. Ground Strut Assembly, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No.	139
c3)	140
Figure A-18. Ground Strut Assembly, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No.	140
·	141
C3)	141
Figure A-19. BCT Anchor Cable End Swaged Fitting, Test Nos. H42ST-1 and H42ST-2	1.40
(Item No. c4)	142
Figure A-20. ¾-in. 6x19 IWRC IPS Wire Rope BCT, Test Nos. H42ST-1 and H42ST-2	1.42
(Item No. c5)	143
Figure A-21. 8-in. x 8-in. x 5/8-in. Anchor Bearing Plate, Test Nos. H42ST-1 and H42ST-2	1 4 4
(Item No. c6)	144
Figure A-22. 23/8-in. O.D. x 6-in. Long BCT Post Sleeve, Test Nos. H42ST-1 and H42ST-2	1.45
(Item No. c7)	
Figure A-23. Anchor Bracket Assembly, Test Nos. H42ST-1 and H42ST-2 (Item No. c8)	146
Figure A-24. W6x8.5 or W6x9, 72-in. Long Steel Post, Test Nos. H42ST-1 and H42ST-2	
(Item Nos. d1 and d2)	147
Figure A-25. W6x8.5 or W6x9, 72-in. Long Steel Post, Test No. H42ST-2 (Item Nos. d1	
and d2)	148
Figure A-26. W6x15 or W6x9, 72-in. Long Steel Post, Test Nos. H42ST-1 and H42ST-2	
(Item No. d3)	149
Figure A-27. 17½-in. Long, 8-in. x 6-in. x ¼-in. Steel Blockout, Test No. H42ST-1 (Item	
No. d4)	150

Figure A-28. 17½-in. Long, 8-in. x 6-in. x ¼-in. Steel Blockout, Test No. H42ST-2 (Item	
No. d4)	151
Figure A-29. 17½-in. Long, 12-in. x 4-in. x ¼-in. Steel Blockout, Test Nos. H42ST-1 and	
,	152
Figure A-30. 17½-in. Long, 12-in. x 4-in. x ¼-in. Steel Blockout, Test Nos. H42ST-1 and	
H42ST-2, Cont. (Item No. d5)	153
Figure A-31. 14 ³ / ₁₆ -in. x 8-in. x 5 ¹ / ₈ -in. Composite Recycled Blockout, Test Nos. H42ST-1 and H42ST-2 (Item No. d6)	154
Figure A-32. 14 ³ / ₁₆ -in. x 8-in. x 5 ¹ / ₈ -in. Composite Recycled Blockout, Test Nos. H42ST-1	15 1
and H42ST-2 (Item No. d7)	155
Figure A-33. 16D Double Head Nail, Test Nos. H42ST-1 and H42ST-2 (Item No. d8)	
Figure A-34. #4 Rebar, 16-in. Total Length, Test Nos. H42ST-1 and H42ST-2 (Item Nos.	
	157
Figure A-35. #5 Rebar, 172-in. Total Length, Test Nos. H42ST-1 and H42ST-2 (Item Nos.	20 /
e3 and e4)	158
Figure A-36. #6 Rebar, 109-in. Unbent Length, Test Nos. H42ST-1 and H42ST-2 (Item	
Nos. e5, e6, e9, e10, e11, e12, e16 and e17)	159
Figure A-37. %-in. Dia. 11 UNC, 14-in. Long Guardrail Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f1)	160
Figure A-38. 5/8-in. Dia. 11 UNC, 10-in. Long Guardrail Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f2)	161
Figure A-39. 5/8-in. Dia. 11 UNC, 1½-in. Long Guardrail Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f3)	162
Figure A-40. 5/8-in. Dia. 11 UNC, 1½-in. Long Guardrail Bolt, Test Nos. H42ST-1 and	
H42ST-2, Cont. (Item No. f3)	163
Figure A-41. %-in. Dia. 11 UNC, 10-in. Long Hex Head Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f4)	164
Figure A-42. 5%-in. Dia. 11 UNC, 1½-in. Long Hex Head Bolt, Test Nos. H42ST-1 (Item	
No. f5)	165
Figure A-43. 5/8-in. Dia. 11 UNC, 11/2-in. Long Hex Head Bolt, Test Nos. H42ST-2 (Item	
No. f5)	166
Figure A-44. %-in. Dia. 9 UNC, 16-in. Long Hex Head Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f6)	167
Figure A-45. 7/8-in. Dia. 9 UNC, 8-in. Long Hex Head Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f7)	168
Figure A-46. 5%-in. Dia. 11 UNC, 2-in. Long Guardrail Bolt, Test Nos. H42ST-1 and	
H42ST-2 (Item No. f8)	169
Figure A-47. 5%-in. Dia. 11 UNC, 2-in. Long Guardrail Bolt, Test Nos. H42ST-1 and	
H42ST-2, Cont. (Item No. f8)	170
Figure A-48. 5%-in. Dia. 11 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item	
No. f9)	
Figure A-49. %-in. Dia. 9 UNC, Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item No. f10)	172
Figure A-50. %-in. Dia. 9 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item	
No. f11)	173
Figure A-51. 1-in. Dia. 8 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item	
No. f12)	174

Figure A-52. %-in. Dia. 11 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item	
No. f13)	.175
Figure A-53. %-in. Dia. Plain USS Washer, Test Nos. H42ST-1 and H42ST-2 (Item No.	
	.176
Figure A-54. %-in. Dia. Plain Round Washer, Test Nos. H42ST-1 and H42ST-2 (Item No.	
g2)	
$Figure\ A-55.\ 1-in.\ Dia.\ Plain\ USS\ Washer,\ Test\ Nos.\ H42ST-1\ and\ H42ST-2\ (Item\ No.\ g3)\$.178
Figure A-56. 3-in. x 3-in. x 1/4-in. or 31/2-in. x 31/2-in. x 1/4-in. Square Washer Plate, Test	
Nos. H42ST-1 and H42ST-2 (Item No. g4)	
Figure A-57. Epoxy Adhesive, Test Nos. H42ST-1 and H42ST-2 (Item No. i1)	
Figure A-58. Expansion Joint Filler, Test Nos. H42ST-1 and H42ST-2 (Item No. i2)	
Figure A-59. Expansion Joint Filler, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. i2)	
Figure A-60. Expansion Joint Sealant, Test Nos. H42ST-1 and H42ST-2 (Item No. i3)	.183
Figure A-61. Expansion Joint Sealant, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No.	
i3)	
Figure B-1. Vehicle Mass Distribution, Test No. H42ST-1	
Figure B-2. Vehicle Mass Distribution, Test No. H42ST-2	
Figure C-1. Soil Strength, Initial Calibration Test, Test No. H42ST-1	
Figure C-2. Static Soil Test, Test No. H42ST-1	
Figure C-3. Soil Strength, Initial Calibration Test, Test No. H42ST-2	
Figure C-4. Static Soil Test, Test No. H42ST-2	
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. H42ST-1	
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. H42ST-1	
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. H42ST-1	
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. H42ST-1	.197
Figure D-5. Maximum Occupant Compartment Deformation by Location, Test No.	100
H42ST-1	.198
Figure D-6. Exterior Vehicle Crush (NASS) – Front, Test No. H42ST-1	
Figure D-7. Exterior Vehicle Crush (NASS) – Side, Test No. H42ST-1	
Figure D-8. Floor Pan Deformation Data – Set 1, Test No. H42ST-2	
Figure D-9. Floor Pan Deformation Data – Set 2, Test No. H42ST-2	
Figure D-10. Occupant Compartment Deformation Data – Set 1, Test No. H42ST-2	.203
Figure D-11. Occupant Compartment Deformation Data – Set 2, Test No. H42ST-2	.204
Figure D-12. Maximum Occupant Compartment Deformation by Location, Test No.	205
H42ST-2	
Figure D-13. Exterior Vehicle Crush (NASS) – Front, Test No. H42ST-2	
Figure D-14. Exterior Vehicle Crush (NASS) – Side, Test No. H42ST-2	
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42ST-1	
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. H42ST-1	
Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. H42ST-1	
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42ST-1	
Figure E-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. H42ST-1	
Figure E-6. Lateral Occupant Displacement (SLICE-2), Test No. H42ST-1	
Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. H42ST-1	
Figure E-8. Acceleration Severity Index (SLICE-2), Test No. H42ST-1	
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42ST-1	
TIRDIC D-10. DOURHUUHIAI OCCUDAIR HIDACE VEIOCHV (SEICE-1). TESENO. 114281-1	

Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. H42ST-1	214
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42ST-1	214
Figure E-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. H42ST-1	215
Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. H42ST-1	215
Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. H42ST-1	216
Figure E-16. Acceleration Severity Index (SLICE-1), Test No. H42ST-1	216
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42ST-2	218
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. H42ST-2	218
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. H42ST-2	219
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42ST-2	219
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. H42ST-2	220
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. H42ST-2	220
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. H42ST-2	221
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. H42ST-2	221
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42ST-2	222
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. H42ST-2	222
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. H42ST-2	223
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42ST-2	223
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. H42ST-2	224
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. H42ST-2	224
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. H42ST-2	225
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. H42ST-2	225

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barrier Transitions	47
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	48
Table 3. Weather Conditions, Test No. H42ST-1	64
Table 4. Sequential Description of Impact Events, Test No. H42ST-1	66
Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. H42ST-1	87
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42ST-1	88
Table 7. Weather Conditions, Test No. H42ST-2	90
Table 8. Sequential Description of Impact Events, Test No. H42ST-2	92
Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. H42ST-2	110
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42ST-2	111
Table 11. Summary of Safety Performance Evaluation	116
Table A-1. Bill of Materials, Test Nos. H42ST-1 and H42ST-2	121
Table A-2. Bill of Materials, Test Nos. H42ST-1 and H42ST-2, Cont.	122
Table A-3. Bill of Materials, Test Nos. H42ST-1 and H42ST-2, Cont.	123

1 INTRODUCTION

1.1 Background

The Hawaii Department of Transportation (HDOT) utilizes a thrie-beam, approach guardrail transition (AGT) to connect W-beam guardrail to concrete bridge rails. However, the crashworthiness of this transition attached to the 42-in. tall, solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft sidewalk with approach ramp has not been demonstrated under current impact safety standards. This report documents full-scale crash testing conducted to evaluate the safety performance of HDOT's thrie-beam AGT attached to a 42-in. tall, solid concrete bridge railing with aesthetic, recessed, rounded panels and a 6-ft sidewalk with approach ramp according to the Test Level 3 (TL-3) criteria of the Association of State Highway and Transportation Officials' (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [1].

Researchers at the Midwest Roadside Safety Facility (MwRSF) modified HDOT's thrie beam AGT design to safely transition from W-beam guardrail to a rigid concrete parapet [2]. The modified AGT consisted of nested thrie-beam rail supported by W6x15 and W6x9/W6x8.5 steel posts and was attached to HDOT's specially-designed, reinforced concrete end post, the Type D2 End Post. The AGT was also designed for use with a 6-in. tall curb placed below the thrie beam. Although not originally part of HDOT's AGT design, the upstream section was modified to include the Midwest Guardrail System (MGS) stiffness transition utilizing an asymmetrical W-to-thrie transition segment to ensure a crashworthy connection between the upstream W-beam and the downstream nested thrie-beam. The modified HDOT thrie-beam AGT, including a concrete parapet, transition, MGS, and a guardrail anchorage system, is shown in Figures 1 through 3. Details regarding the design modification of the HDOT thrie-beam AGT can be found in MwRSF's previously published report [2]. It should be noted that the 42-in. tall, aesthetic concrete bridge rail system without a sidewalk was previously evaluated to the MASH 2016 TL-3 criteria [3].

Furthermore, two full-scale crash tests were conducted on the modified HDOT thrie-beam AGT to investigate the safety performance according to TL-3 criteria in MASH 2016 [2]. Test nos. HWTT-1 and HWTT-2 were conducted per MASH 2016 test designation nos. 3-20 and 3-21, respectively. In both tests, the transition successfully contained and safely redirected the vehicles. All occupant risk measurements were within the established MASH 2016 limits. Therefore, test nos. HWTT-1 and HWTT-2 were deemed to have satisfied all safety performance criteria, and the modified HDOT thrie-beam AGT to concrete parapet was determined to be crashworthy to MASH 2016 TL-3 criteria.

The modified HDOT AGT system in this research study was similar to HDOT's AGT system that was full-scale crash tested in test nos. HWTT-1 and HWTT-2. However, the current AGT was connected to a 42-in. tall, solid concrete bridge railing with aesthetic, recessed, rounded panels with a 6-ft wide by 6-in. tall, tapered sidewalk with an approach ramp on the upstream end, which was previously crash tested and met MASH 2016 criteria [4]. The sidewalk was anchored to MwRSF's existing, unreinforced concrete tarmac using epoxied, vertical, steel dowel bars. A curb was located under a portion of the thrie-beam AGT system. The upstream stiffness transition utilized the MGS and asymmetric W-beam to thrie-beam transition section.

Figure 1. System Layout, Test No. HWTT-1 [2]

4 Spaces @ 18 3/4" [476] = 6'-3"[1905]

Figure 2. System Layout, Test No. HWTT-2 [2]

Figure 3. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2 [2]

1.2 Objective

The objective of this research was to conduct a safety performance evaluation of HDOT's thrie-beam AGT attached to the 42-in. tall, solid concrete bridge railing with aesthetic, recessed, rounded panels with a 6-ft wide by 6-in. tall sidewalk with an approach ramp. The system was evaluated according to the TL-3 criteria of the MASH 2016.

1.3 Scope

Two full-scale crash tests were conducted on HDOT's thrie beam AGT attached to the 42-in. tall, solid concrete bridge railing with aesthetic, recessed, rounded panels with a 6-ft wide by 6-in. tall sidewalk according to MASH 2016 test designation nos. 3-20 and 3-21. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made about the safety performance of the HDOT system.

2 DESIGN DETAILS

The barrier system used for the test installation had a total length of $184 \text{ ft} - 6\frac{1}{2} \text{ in.}$ and consisted of a concrete parapet, thrie-beam AGT, MGS, a guardrail anchorage system, and concrete bridge rail with 6-ft wide sidewalk and an approach ramp, as shown in Figures 4 through 39. Photographs of the test installation are shown in Figures 40 through 43. Material specifications, mill certificates, and certificates of conformity for the system materials are shown in Appendix A. Note that the drawings include details for the entire system, inclusive of the thrie-beam AGT, W-beam rail installation, and end anchorage system. The downstream end of the barrier system consisted of a reinforced concrete bridge rail with a total length of $88 \text{ ft} - 1\frac{1}{2} \text{ in.}$ and measured 42 in. tall and 10 in. wide, as shown in Figure 4.

The downstream end of HDOT's thrie-beam AGT comprised 12.5 ft of nested thrie-beam rail supported by W6x9 and W6x15 steel posts at various spacings. The upstream end of the AGT incorporated the previously MASH-tested MGS upstream stiffness transition to connect the AGT to the adjacent MGS. Approximately 51 ft of the MGS extended from the upstream end of the AGT and was anchored using an MGS trailing end anchor system. The anchorage system was originally designed to simulate the strength of other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which closely resembled the hardware used in the Modified Breakaway Cable Terminal (BCT) system. The guardrail anchorage has been MASH TL-3 crash-tested as a downstream trailing-end terminal system [5-8].

The W6x15 posts were 6 ft – 6 in. long and the W6x8.5/W6x9 posts were 6 ft long. All guardrail segments had a top mounting height of 31 in. Blockouts within the AGT consisted of rectangular HSS steel tubes. To ensure the width of the blockouts matched the width of the posts, 6-in. wide blockouts were utilized with W6x15 posts, and 4-in. wide blockouts were used with W6x8.5/W6x9 posts. Posts were embedded into a compacted, coarse, crushed limestone material, alternatively classified as well-graded gravel by the Unified Soil Classification System that met American Association of State Highway and Transportation Officials (AASHTO) standard soil designation M147 Grade B. The MGS region of the test installation utilized plastic blockouts manufactured by Mondo Polymer Technologies.

An 18-ft long concrete transition buttress was attached at the upstream end of the bridge rail. The upstream end of the buttress was 32 in. tall, and the downstream end was 49½ in. tall. The concrete transition buttress was 18 in. wide and reinforced with a combination of longitudinal and lateral steel reinforcement bars. The vertical steel bars of the concrete buttress were directly anchored to the non-reinforced concrete tarmac using a chemical epoxy with a minimum bond strength of 1,450 psi. The concrete for the transition buttress was found to have a compressive strength of approximately 4,340 psi before crash testing.

A 6-in. tall concrete curb was placed below the AGT with its front face tapered with a 6V:1H slope and flush with the face of the guardrail. The curb began at the upstream end of the concrete end post and extended 176½ in. upstream. The curb was terminated with a taper measuring 6 in. vertically by 36 in. longitudinally prior to extending below the asymmetrical W-to-thrie transition segment. A 4-in. vertical x 24-in. longitudinal taper was applied to the downstream end of the curb adjacent to the concrete end post to mitigate wheel snag on the end post.

Figure 4. System Layout, Test Nos. H42ST-1 and H42ST-2

7

Figure 5. AGT and Transition Layout, Test Nos. H42ST-1 and H42ST-2

Figure 6. Post Nos. 3 through 10 Details, Test Nos. H42ST-1 and H42ST-2

Figure 7. Post Nos. 11 through 19 Details, Test Nos. H42ST-1 and H42ST-2

Figure 8. Transition Buttress and Terminal Connector, Test Nos. H42ST-1 and H42ST-2

Figure 9. Sidewalk and Ramp Details, Test Nos. H42ST-1 and H42ST-2

Figure 10. Sidewalk Reinforcement Detail, Test Nos. H42ST-1 and H42ST-2

Figure 11. Transition Buttress Details, Test Nos. H42ST-1 and H42ST-2

Figure 12. Transition Buttress Reinforcement Details, Test Nos. H42ST-1 and H42ST-2

 $Figure\ 13.\ Transition\ Buttress\ Reinforcement\ Details,\ Test\ Nos.\ H42ST-1\ and\ H42ST-2$

Figure 14. Curb Reinforcement Details, Test Nos. H42ST-1 and H42ST-2

Figure 15. Curb Details, Test Nos. H42ST-1 and H42ST-2

Figure 16. End Anchorage Detail, Test Nos. H42ST-1 and H42ST-2

Figure 17. BCT Anchor Detail, Test Nos. H42ST-1 and H42ST-2

Figure 18. Post Nos. 16 through 19 Components, Test Nos. H42ST-1 and H42ST-2

Figure 19. Post Nos. 10 through 15 Components, Test Nos. H42ST-1 and H42ST-2

Figure 20. Post Nos. 3 through 7 Components, Test Nos. H42ST-1 and H42ST-2

Figure 21. Post Nos. 8 through 9 Blockout Details, Test Nos. H42ST-1 and H42ST-2

Figure 22. BCT Timber Post and Foundation Tube Details, Test Nos. H42ST-1 and H42ST-2

Figure 23. Ground Strut Details, Test Nos. H42ST-1 and H42ST-2

Figure 24. Anchor Bracket Details, Test Nos. H42ST-1 and H42ST-2

Figure 25. BCT Anchor Cable, Test Nos. H42ST-1 and H42ST-2

Figure 26. Cable Assembly and Anchor Components, Test Nos. H42ST-1 and H42ST-2

Figure 27. Guardrail Section Details, Test Nos. H42ST-1 and H42ST-2

Figure 28. Rail Transition and Component Details, Test Nos. H42ST-1 and H42ST-2

Figure 29. Sidewalk Rebar Details, Test Nos. H42ST-1 and H42ST-2

Figure 30. Parapet Reinforcement Details, Test Nos. H42ST-1 and H42ST-2

Figure 31. End Post Reinforcement Details, Test Nos. H42ST-1 and H42ST-2

Figure 32. Transition Buttress Vertical Stirrups, Test Nos. H42ST-1 and H42ST-2

Figure 33. Transition Buttress End Reinforcement, Test Nos. H42ST-1 and H42ST-2

Figure 34. Longitudinal Buttress and Curb Reinforcement Details, Test Nos. H42ST-1 and H42ST-2

Figure 35. Expansion Joint Components, Test Nos. H42ST-1 and H42ST-2

Figure 36. Hardware, Test Nos. H42ST-1 and H42ST-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide		
a 1	2	12'-6" 12-gauge Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM08a		
a2	1	6'-3" 12-gauge Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM19a		
a3	1	6'-3" 10-gauge W-Beam to Thrie-Beam Asymmetric Transition Section	AASHTO M180 Min. yield strength = 50 ksi Min. ultimate strength = 70 ksi	ASTM A123 or A653	RWT02		
a4	3	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a		
a 5	1	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a		
a6	1	10-gauge Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi Min. ultimate strength = 70 ksi	ASTM A123 or A653	RTE01b		
ь1	-	Concrete*	Min. f'c = 4,000 psi	-	-		
c1	2	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	AASHTO M133	PDF01		
c2	2	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06		
с3	1	Ground Strut Assembly	ASTM A36	ASTM A123	-		
c4	2	BCT Anchor Cable End Swaged Fitting	Fitting — ASTM A576 Gr. 1035 Stud — ASTM F568 Class C	Fitting — ASTM A153 Stud — ASTM A153 or B695	-		
с5	1	3/4" 6x19 IWRC IPS Wire Rope	ASTM A741 Type 2	Class A Coating	FCA01		
с6	1	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01		
с7	1	2 3/8" O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02		
с8	1	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01		
d1	7	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	**ASTM A123	PWE06		
d2	6	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	**ASTM A123	PWE06		
d3	4	W6x15, 78" Long Steel Post	ASTM A992 Gr. 50	**ASTM A123	_		
d4	4	17 1/2" Long, 8"x6"x1/4" Steel Blockout	ASTM A500 Gr. B	**ASTM A123	-		
d5	6	17 1/2" Long, 12"x4"x1/4" Steel Blockout	ASTM A500 Gr. B	**ASTM A123	-		
d6	2	14 3/16"x12"x5 1/8" Composite Recycled Blockout	Mondo Polymer MGS14SH or Equivalent	-	-		
d7	5	14 3/16"x8"x5 1/8" Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	-	-		
d8	2	16D Double Head Nail	-	_	-		
* NE Mix 47B15/1PF4000HW was used for testing purposes. ** Component does not need to be galvanized for testing purposes. Note: (1) Quanitites listed herein are only for one complete system. Hawaii Phase 2 SHEET: 39 of 41							
			Midwest Roa		DRAWN BY: LJP/SBW/G HR		
			Safety Fac	III V	E: None REV. BY: S: in. KAL/SHY/F RF/JCH/RE		

Figure 37. Bill of Materials, Test Nos. H42ST-1 and H42ST-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	7	#4 Rebar, 16" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e2	1	#4 Rebar, 12 3/4" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
е3	1	#5 Rebar, 172" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e4	1	#5 Rebar, 164 1/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e5	5	#6 Rebar, 108" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e6	3	#6 Rebar, 109" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e7	6	#4 Rebar, 169 1/2" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
е8	2	#4 Rebar, 100 1/4" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
е9	1	#6 Rebar, 49 7/8" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e10	1	#6 Rebar, 51 7/8" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e11	1	#6 Rebar, 54 5/8" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e12	6	#6 Rebar, 34 3/16" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e13	1	#4 Rebar, 49 1/2" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	<u> </u>
e14	2	#4 Rebar, 52 1/8" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e15	15	#4 Rebar, Vertical Stirrup Varying Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e16	19	#6 Rebar, Vertical Stirrup Varying Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e17	3	#6 Rebar, 52 3/8" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e18	6	#4 Rebar, 1196" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e19	1	#4 Rebar, 1095 1/2" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e20	125	#4 Rebar, 101 9/16" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e21	11	#4 Rebar, 50 11/16" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e22	11	#4 Rebar, 64 1/2" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e23	4	#5 Rebar, 340 9/16" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e24	1	#5 Rebar, 340 9/16" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e25	30	#5 Rebar, 260" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	_
e26	4	#5 Rebar, 334" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e27	1	#5 Rebar, 334 1/8" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e28	275	#5 Rebar, 60 1/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e29	18	#5 Rebar, 47 13/16" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
				Hawaii Phase 2 Systems 3 and 4 Test Nos. H42S-1-2 a H42ST-1-2 Bill of Materials	DRAWN BY
				t Roadside of the Facility of	

Figure 38. Bill of Materials, Cont., Test Nos. H42ST-1 and H42ST-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
f1	13	5/8"—11 UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB06
f2	15	5/8"–11 UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB03
f3	44	5/8"—11 UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
f4	2	5/8"-11 UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f5	8	5/8"-11 UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f6	5	7/8"-9 UNC, 16" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX22b
f7	2	7/8"-9 UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX22b
f8	24	5/8"-11 UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB02
f9	96	5/8"-11 UNC Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16b
f10	2	7/8"-9 UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX22a
f11	5	7/8"-9 UNC Heavy Hex Nut	ASTM A563DH	ASTM A153 or B695 Class 55 or F2329	FNX22b
f12	2	1"-8 UNC Heavy Hex Nut	ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24b
f13	10	5/8"-11 UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16a
g1	46	5/8" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
g2	4	7/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
g3	2	1" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
g 4	5	3"x3"x1/4" or 3 1/2"x3 1/2"x1/4" Square Washer Plate	ASTM A572 Gr. 50	ASTM A123	FWR09
h1	12	#8 Smooth Rebar, 24 1/2" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
h2	20	1 1/4" Dia. 12 3/4" Long PVC Pipe	Schedule 80 PVC Gr. 12454	-	-
h3	20	1 5/8" Dia. PVC Cap	Schedule 80 PVC Gr. 12454	-	-
i1	_	Epoxy Adhesive	Hilti HIT RE-500 V3	-	-
i2	_	Expansion Joint Filler	AASHTO M33, M153, or M213	-	-
i3	-	Expansion Joint Sealant	AASHTO M173, M282, M301, ASTM D3581, or ASTM D5893	-	-
_	-	Coarse Crushed Limestone (Well Graded Gravel)	_	_	-

Figure 39. Bill of Materials, Cont., Test Nos. H42ST-1 and H42ST-2

Figure 40. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2

Figure 41. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2

Figure 42. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2

Figure 43. Test Installation Photographs, Test Nos. H42ST-1 and H42ST-2

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

Longitudinal barriers, such as AGTs, must satisfy impact safety standards to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. Note that there is no difference between MASH 2009 [9] and MASH 2016 [1] for longitudinal barriers such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016.

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barrier Transitions

Toot	Test Designation No. Test Vehicle	Та «4	Vehicle Weight lb	Impact Conditions		Evaluation
Test Article		Vehicle		Speed mph	Angle degrees	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

¹ Evaluation criteria explained in Table 2.

Recent AGT testing has illustrated the importance of evaluating two different transition regions along the length of the AGT: (1) the downstream stiffness transition where the thrie-beam rail connects to the rigid parapet and (2) the upstream stiffness transition where the W-beam guardrail transitions to a stiffer thrie-beam barrier. However, the upstream stiffness transition of this HDOT thrie-beam AGT was specifically designed to replicate the MASH-crashworthy MGS stiffness transition [10]. Thus, crash testing of the upstream stiffness transition was deemed non-critical.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgment with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the guardrail transition system. However, these opinions may change in the future due to the development of new knowledge (crash testing, real-world performance, etc.) or changes to the evaluation criteria. Therefore, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.					
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.					
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.					
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
Risk		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s	40 ft/s			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Ridedown Acceleration Limits					
		Component Preferred		Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three factors: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the thrie-beam guardrail transition system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil-dependent system, W6x16 posts were installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The 3/8-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. H42ST-1, a 2016 Dodge Ram 1500 Quad cab pickup truck was used as the test vehicle. The test vehicle is shown in Figures 44 and 45, and vehicle dimensions are shown in Figure 46. The curb, test inertial, and gross static vehicle weights were 5,258 lb, 5,041 lb, and 5,199 lb, respectively. The authors acknowledge that the track width measurement of 68¾ in., measurement M in Figure 46, was ¼ in. outside of the MASH recommended limits of 67±1½ in. This measurement was deemed acceptable as ¼ in. beyond the limit would not affect the safety performance of the system or vehicle behavior. MASH states that these recommendations should be adhered to when practical.

For test no. H42ST-2, a 2016 Hyundai Accent passenger car was used as the test vehicle. The test vehicle is shown in Figures 47 and 48, and vehicle dimensions are shown in Figure 49. The curb, test inertial, and gross static vehicle weights were 2,543 lb, 2,430 lb, and 2,592 lb, respectively.

Figure 44. Test Vehicle, Test No. H42ST-1

Figure 45. Test Vehicle's Interior Floorboards and Undercarriage, Test No. H42ST-1

Figure 46. Vehicle Dimensions, Test No. H42ST-1

Figure 47. Test Vehicle, Test No. H42ST-2

Figure 48. Test Vehicle's Interior Floorboards and Undercarriage, Test No. H42ST-2

Figure 49. Vehicle Dimensions, Test No. H42ST-2

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. for the 2270P vehicle is shown in Figures 46 and 50. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [13]. The final c.g. location is shown in Figures 49 and 51. Ballast information and data used to calculate the location of the c.g. are shown in Appendix B.

Square, black-and-white checkered targets were placed on the vehicles to serve as a reference in the high-speed digital video and aid in the video analysis, as shown in Figures 50 and 51. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicles' left-side and right-side windshield wipers for test nos. H42ST-1 and H42ST-2, respectively, and was fired by a pressure tape switch mounted at the impact corner of the bumper for both tests. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicle so the vehicles could be brought safely to a stop after the test.

Figure 50. Target Geometry, Test No. H42ST-1

Figure 51. Target Geometry, Test No. H42ST-2

4.4 Simulated Occupant

For test nos. H42ST-1 and H42ST-2, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the left-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 158 lb and 162 lb for test nos. H42ST-1 and H42ST-2, respectively. As recommended by MASH 2016, the simulated occupant weight was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

In each test, two environmental shock and vibration sensor/recorder systems mounted near the c.g. of the test vehicle were used to measure the accelerations in the longitudinal, lateral, and vertical directions. The electronic data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAEJ211/1 specifications [14].

The two systems, the SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. The SLICE-2 unit was designated as the primary system for test no. H42ST-1, and the SLICE-1 unit was designated as the primary system for test no. H42ST-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

A retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Two retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras, six GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. H42ST-1. Six AOS high-speed digital video cameras, nine GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. H42ST-2. Due to technical difficulties, GP-18 did not capture the impact event. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system for test nos. H42ST-1 and H42ST-2 are shown in Figures 52 and 53, respectively.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and post-test conditions for the test.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Kowa 16mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 24-135	100
AOS-12	AOS J-PRI	500	Sigma 18-50	50
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	120		
GP-22	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-V981	120		

Figure 52. Camera Locations, Speeds, and Lens Settings, Test No. H42ST-1

62

No.	Type	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	Sigma 24-135	135
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-8	AOS X-PRI Gigabit	500	Kowa 16mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12mm Fixed	-
AOS-11	AOS J-PRI	500	Nikon 50mm Fixed	-
AOS-12	AOS J-PRI	500	Nikon 17-50	50
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-V981	120		

^{*}Due to technical difficulties, GP-18 did not capture the impact event.

Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. H42ST-2

5 FULL-SCALE CRASH TEST NO. H42ST-1

5.1 Static Soil Test

Before full-scale crash test no. H42ST-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. H42ST-1 was conducted on February 7, 2022 at approximately 2:30 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 3.

Table 3. Weather Conditions, Test No. H42ST	Table 3.	Weather	Conditions.	Test No.	H42ST-
---	----------	---------	-------------	----------	--------

Temperature	60.5°F
Humidity	22%
Wind Speed	14 mph
Wind Direction	290° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

5.3 Test Description

Initial vehicle impact was to occur 84 in. upstream from the upstream end of the concrete buttress, as shown in Figure 54, which was selected using the CIP plots found in Figure 2-17 of MASH 2016 to maximize pocketing and the probability of wheel snag on the concrete parapet. The 5,041-lb pickup truck impacted the HDOT 42-in. bridge rail transition with sidewalk at a speed of 64.7 mph and at an angle of 24.8 degrees. Note that the impact speed of 64.7 mph was above the MASH nominal impact speed of 62.0 mph ± 2.5 mph. However, impact speeds exceeding the nominal criteria are acceptable for longitudinal barriers. The actual point of impact was 4.1 in. downstream from the targeted impact location. The impact severity for the crash test was 124.1 kip-ft, which was greater than the minimum value of 105.6 kip-ft defined in MASH 2016. As such, the crash test results could be used as a valid indicator of the system's overall safety performance. The vehicle was captured and redirected with minor deflections of the barrier system. The vehicle remained stable throughout the impact event. During the redirection of the vehicle, the simulated occupant's head contacted the side window, but the window remained intact. Moreover, the occupant's head did not strike any component of the barrier. All measured accelerations resulted in occupant risk values (OIV and ORA) within MASH limits. A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 55 and 56. Documentary photographs of the crash test are shown in Figures 57 through 61. The vehicle trajectory and final position are shown in Figure 62.

Figure 54. Target Impact Location, Test No. H42ST-1

Table 4. Sequential Description of Impact Events, Test No. H42ST-1

Time	Event
(sec) 0.000	Vehicle's front bumper impacted rail 79.9 in. upstream from upstream end concrete buttress.
0.006	Vehicle's left-front tire contacted rail.
0.007	Vehicle left fender contacted rail and was crushed inward.
0.012	Post no. 17 rotated backward.
0.014	Post no. 16 rotated backward, and post no. 18 rotated backward and flange bent.
0.020	Vehicle's hood deformed, and post no. 19 rotated backward.
0.034	Vehicle pitched up.
0.036	Vehicle yawed away from barrier.
0.048	Vehicle's grille contacted rail and deformed.
0.050	Post no. 18 rotated downstream.
0.052	Vehicle's right headlight deformed and detached, and vehicle rolled away from barrier.
0.056	Vehicle's left-front door contacted rail and was crushed inward, and vehicle's left-front door became ajar.
0.058	Post no. 16 rotated clockwise.
0.070	Vehicle's roof deformed.
0.072	Post no. 17 rotated counterclockwise, and vehicle's left-front tire deflated.
0.078	Vehicle's left headlight contacted concrete transition and shattered.
0.083	Vehicle's windshield cracked.
0.090	Vehicle pitched down.
0.092	Post no. 17 rotated clockwise, and post no. 18 rotated upstream.
0.094	Post no. 16 rotated clockwise.
0.110	Vehicle's right-front tire became airborne.
0.146	Simulated occupant's head contacted left-front window.
0.148	Vehicle's right-rear became airborne.
0.243	Vehicle became parallel to system at 40.2 mph.
0.256	Vehicle's rear bumper contacted rail and deformed.
0.294	Vehicle's left quarter panel contacted rail and deformed.
0.437	Vehicle exited system at a speed of 40.2 mph and an angle of 10.5 degrees.
0.439	System came to rest.
0.454	Vehicle's tailgate right side hinge disengaged.
0.704	Vehicle pitched up.
0.756	Vehicle rolled toward barrier.
0.817	Vehicle's left-rear tire contacted ground.
1.412	Vehicle yawed toward barrier.
1.972	Vehicle's right-front tire contacted ground.
2.092	Vehicle's right-rear tire contacted ground.
4.450	Vehicle came to rest.

Figure 55. Sequential Photographs, Test No. H42ST-1

Figure 56. Additional Sequential Photographs, Test No. H42ST-1

Figure 57. Documentary Photographs, Test No. H42ST-1

Figure 58. Additional Documentary Photographs, Test No. H42ST-1

Figure 59. Additional Documentary Photographs, Test No. H42ST-1

Figure 60. Additional Documentary Photographs, Test No. H42ST-1

Figure 61. Additional Documentary Photographs, Test No. H42ST-1

Figure 62. Vehicle Final Position and Trajectory Marks, Test No. H42ST-1

5.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 63 through 66. Barrier damage consisted of post deflections, contact marks, rail kinking, and gouging and spalling of the concrete buttress and curb. The length of vehicle contact along the barrier was approximately 17 ft -2 in., which spanned from 11 in. downstream from the center of post no. 16 and extended downstream onto the concrete buttress.

Contact marks on the thrie-beam rails were concentrated on the upper-middle and bottom corrugations. The marks started 13 in. downstream from the center of post no. 16 and onto the front and top face of the curb extending to the front and top of the concrete buttress. The upper half of the thrie-beam rails between post nos. 16 and 19 were flattened. Various rail kinking was found on the guardrail spanning from post no. 13 to post no. 19. The largest rail kinks were found around post nos. 17 and 19. The lower corrugation was also bent backward between post nos. 16 and 18.

Post no. 1 had a 1-in. soil gap on the upstream side, but no other damage was documented to the upstream anchorage. Post nos. 3 through 17 experienced slight counterclockwise rotation around the vertical axis. Post nos. 16 through 19 rotated backward, leaving soil gaps adjacent to the front flange, the largest of which were measured to be around 1 in. at post nos. 17 and 18. In addition to being deflected backward, post no. 18 experienced clockwise rotation, resulting in minor localized plastic deformations to the upstream sides of the front flanges adjacent to the blockouts.

The concrete curb had tire marks on the front and top face, starting 13 in. downstream from post no. 16 and extending onto the front and top face of the curb and front and top of the concrete buttress. The tire mark on the curb was 12 ft -4 in long and 8 in. wide. A 6 ft -10 in. long contact mark was found at the upstream end of the top face of the concrete buttress and extended across the entire width. Concrete spalling was found on the top-front edge of the concrete buttress behind the nested thrie beam, as depicted in Figure 66. Minor concrete spalling also occurred at the joint between the curb and the concrete buttress. Concrete cracking was observed on the back face of the curb (i.e., 3 in. from the top of the curb), starting 1 in. from the upstream face of the concrete buttress.

Figure 63. System Damage, Test No. H42ST-1

Figure 64. Thrie Beam Damage, Test No. H42ST-1

Figure 65. Rail Connection Terminal, Buttress, and Post Damage, Test No. H42ST-1

Figure 66. Buttress Damage, Test No. H42ST-1

The maximum lateral permanent set of the barrier system was 6.9 in. at post no. 18, as measured in the field. The maximum lateral dynamic barrier deflection was 11.0 in. at rail no. 17, as determined from high-speed digital video analysis. The working width of the system was found to be 27.8 in. at post no. 18, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 67.

Figure 67. Permanent Set, Dynamic Deflection, and Working Width, Test No. H42ST-1

5.5 Vehicle Damage

The damage to the vehicle was moderate to severe, as shown in Figures 68 through 72. The maximum occupant compartment intrusions are listed in Table 5, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The grille disengaged from the vehicle, and the front

bumper was crushed inward. The left headlight was disengaged from the vehicle, while the hood remained intact. Significant damage was imparted to the left-front fender, including being crushed inward and folded at the bottom of the panel. The region by the lower A-pillar was severely crushed and dented by the wheel opening. The left-front door was scraped and crushed inward along its entire length, causing the door to bow outward in its center with the window frame severely bent; nonetheless, the glass remained intact. The left-rear door and fender remained intact. The left side of the windshield was cracked. The left box side was dented and scraped along its entire length, with the dent starting in the vertical center of the panel and ending at the lower edge of the panel behind the rear wheel opening.

The left-front shock was bent rearward with the bend at the top of the shock, and the bump stop showed an indication of contact with the lower control arm. The spring was disengaged from the vehicle. The sway and anti-roll bar linkage was detached from the lower control arm. The left-front steering knuckle was detached from both control arms and tie rod. The knuckle assembly was attached to the wheel hub and brake assembly but only attached to the vehicle by the brake line. The left-side upper control arm was bent and torn through the upper ball joint. The lower control arm was disengaged from the vehicle. The lower-left control arm was broken off at the ball joint and frame pivot mounts. The left tie rod was disengaged from the vehicle, and both inner and outer tie rods were detached from their mounting points. The engine mount on the left-front side was broken, and the engine tilted down on the left side. This fracture caused stress on the right-side engine and transmission mounts. The vehicle frame was bent near the right side of the wheel assembly. The front cross member was bent on the extreme right lower end, and the middle cross member buckled in the middle. On the right side, the horn frame bent inward.

Figure 69. Vehicle Damage, Test No. H42ST-1

Figure 70. Vehicle Damage, Test No. H42ST-1

Figure 71. Vehicle's Left-Front Rim Damage and Debris, Test No. H42ST-1

Figure 72. Vehicle Floorboard and Undercarriage Damage, Test No. H42ST-1

Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. H42ST-1

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	6.1	≤ 9
Floor Pan & Transmission Tunnel	3.5	≤ 12
A-Pillar	0.4	≤ 5
A-Pillar (Lateral)	0.0*	≤3
B-Pillar	1.3	≤ 5
B-Pillar (Lateral)	0.0*	≤ 3
Side Front Panel (in Front of A- Pillar)	5.4	≤ 12
Side Door (Above Seat)	0.0*	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	1.1	≤ 4
Windshield	0.0	≤ 3
Side Window	Remained intact	No shattering resulting from contact with structural member of test article
Dash	3.0	N/A

 $\overline{N/A}$ – No MASH 2016 criteria exist for this location.

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers is graphically demonstrated in Appendix E.

^{*}Negative value reported as 0.0. See Appendix D for further information.

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42ST-1

Evaluation Criteria		Trans	ducer	MASH
		SLICE-2 (primary)	SLICE-1 (backup)	2016 Limits
OIV	Longitudinal	-32.53	-34.61	±40
ft/s	Lateral	25.05	23.20	±40
ORA	Longitudinal	-15.26	-14.96	±20.49
g's	Lateral	19.60	14.44	±20.49
Maximum	Roll	-29.6	-33.8	±75
Angular Displacement	Pitch	-16.4	-14.6	±75
degrees	Yaw	74.1	74.3	not required
THIV – ft/s		39.22	39.86	not required
PHD – g's		20.21	15.21	not required
ASI		1.78	1.77	not required

5.7 Discussion

During test no. H42ST-1, the left-front wheel contacted the thrie-beam rail and produced a more aggressive interaction between the elements than was observed in test no. HWTT-2 [2]. It should be noted that the 2270P test vehicle for test no. H42ST-1 had an aluminum rim, while a steel rim was used in test no. HWTT-2. A snag event occurred at the middle corrugation of the middle of the 37.5-in. long span nearest to the concrete buttress, resulting in some vehicle pocketing near the concrete buttress as well as rim gouging and/or snagging on the middle and lower rail humps. Again, these noted behaviors did not occur in test no. HWTT-2 as that thriebeam rail appears to be smoother as compared to the test no. H42ST-1 observations. In test no. H42ST-1, this snagging behavior did not violate MASH 2016 evaluation criteria. Further details regarding test no. HWTT-2 can be found in the MwRSF report [2].

The analysis of the test results for test no. H42ST-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 73. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused severe injury did not occur. As shown in Appendix E, vehicle roll, pitch, and yaw angular displacements were deemed acceptable because they did not adversely influence occupant risk nor cause a rollover. After impact, the vehicle exited the barrier at an angle of 10.5 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. H42ST-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no.3-21.

Figure 73. Summary of Test Results and Sequential Photographs, Test No. H42ST-1

6 FULL-SCALE CRASH TEST NO. H42ST-2

6.1 Static Soil Test

Before full-scale crash test no. H42ST-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. H42ST-2 was conducted on March 29, 2022 at approximately 2:15 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 7.

Table 7. Weather Conditions, Test No. H42ST-2

Temperature	65°F
Humidity	45%
Wind Speed	22 mph
Wind Direction	120° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0.45 in.

6.3 Test Description

Initial vehicle impact was to occur 60 in. upstream from the upstream end of the concrete buttress, as shown in Figure 74, which was selected using the CIP plots found in Figure 2-14 of MASH 2016 to maximize the probability of pocketing and vehicle snag on the concrete parapet. The 2,430-lb passenger car impacted the thrie-beam AGT attached to the 42-in. tall, solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk at a speed of 62.4 mph and at an angle of 25.1 degrees. The TL-3 impact severity for test no. H42ST-2 was 56.9 kip-ft, which was greater than the minimum value of 51.1 kip-ft. As such, results from test no. H42ST-2 could be considered as a valid indicator of the system's overall safety performance. The actual point of impact was 1.1 in. upstream from the targeted impact location. The vehicle was contained and redirected with only minor system deflections. During the redirection of the vehicle, the simulated occupant's head contacted the side window and caused the window to shatter but did not strike any barrier components. All measured accelerations resulted in occupant risk values (OIV and ORA) within the MASH allowed limits. The vehicle remained stable throughout the impact event. After exiting the system, the vehicle continued traveling downstream before the remote brakes were applied, and the vehicle came to a stop 156.8 ft downstream and 51.7 ft in front of the system. A detailed description of the sequential impact events is contained in Table 8. Sequential photographs are shown in Figures 75 and 76. Documentary photographs of the crash test are shown in Figures 77 and 80. The vehicle trajectory and final position are shown in Figure 81.

Figure 74. Target Impact Location, Test No. H42ST-2

Table 8. Sequential Description of Impact Events, Test No. H42ST-2

Time (sec)	Event
0.000	Vehicle's front bumper contacted rail 60 in. upstream from end of concrete buttress.
0.006	Vehicle's left fender contacted rail and was crushed inward and scraped along its entire length.
0.010	Vehicle's left headlight contacted rail and shattered.
0.012	Rail between post no. 17 and post no. 18 deflected backward.
0.016	Post no. 17 rotated backward.
0.017	Vehicle's left-front tire contacted curb. Rail between post no. 18 and post no. 19 deflected backward.
0.020	Post nos. 18, 19, and 20 rotated backward.
0.030	Vehicle's right headlight disengaged.
0.032	Vehicle's left A-pillar deformed.
0.036	Vehicle's left-front door contracted rail and was crushed inward. Vehicle yawed away from barrier.
0.040	Vehicle's windshield cracked and vehicle's left-front tire deflected. Vehicle's left-front door became ajar. Vehicle's roof deformed.
0.052	Vehicle rolled toward barrier.
0.058	Vehicle's rear-view mirror disengaged.
0.090	Vehicle rolled away from barrier.
0.100	Simulated occupant's head contacted left-front window and shattered it.
0.118	Vehicle's front bumper and grille disengaged.
0.167	Vehicle became parallel to system at a speed of 46.8 mph.
0.196	Vehicle's rear bumper contacted rail and deformed.
0.214	Vehicle's left quarter panel contacted rail and deformed.
0.222	Vehicle's right-front tire became airborne, vehicle's left quarter panel contacted concrete parapet and deformed, and vehicle's left-rear door contacted concrete parapet and deformed.
0.260	Vehicle's left taillight contacted concrete parapet and shattered.
0.282	Vehicle's right-rear tire become airborne.
0.292	Vehicle exited system at a speed of 38.5 mph and 10.8 degrees.
0.294	System came to rest.
0.380	Vehicle pitched downward.
0.424	Vehicle's left-rear tire become airborne.
0.536	Vehicle's right-front tire contacted ground.
0.660	Vehicle pitched upward.
0.858	Vehicle's left-rear tire contacted ground.
1.036	Vehicle's right-rear tire became airborne.
1.612	Vehicle's right rear tire contacted ground.
3.726	Vehicle came to rest.

Figure 75. Sequential Photographs, Test No. H42ST-2

Figure 76. Additional Sequential Photographs, Test No. H42ST-2

Figure 77. Documentary Photographs, Test No. H42ST-2

Figure 78. Additional Documentary Photographs, Test No. H42ST-2

Figure 79. Additional Documentary Photographs, Test No. H42ST-2

Figure 80. Additional Documentary Photographs, Test No. H42ST-2

Figure 81. Vehicle Final Position and Trajectory Marks, Test No. H42ST-2

6.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figure 82 through 84. Barrier damage consisted of contact marks and kinking of the thrie-beam sections, contact marks on the front face of the concrete buttress, and gouging of the concrete. The length of vehicle contact along the barrier was approximately 10 ft - 9 in., which began 2 in. downstream from the center of post no. 17 and extended onto the concrete parapet.

Contact marks on the thrie beam began 2 in. downstream from the centerline of post no. 17 and extended to the downstream end of thrie beam and onto the anchor plate for a total length of $6 \text{ ft} - 9\frac{1}{2} \text{ in.}$ A contact mark was found on the upstream face of the concrete parapet with a length of 5 ft - 3 in. and extended to the downstream end of the curb. The bottom corrugation sustained various degrees of flattening damage beginning 9 in. downstream from the center of post no. 17. Multiple kinks were found on the top and bottom of the thrie beam around post nos. 13, 14, 17, and 19. Post nos. 18 and 19 slightly rotated counterclockwise, but there was no damage to the posts.

A contact mark was found on the concrete curb starting $2\frac{1}{2}$ in. downstream from the centerline of post no. 17 and extending to the downstream edge of the concrete parapet. The length of this contact mark was approximately 5 ft – 4 in. The top and front edge of the curb was gouged beginning $9\frac{1}{2}$ in. downstream from the centerline of post no. 19 and continued downstream onto the upstream edge of the concrete parapet. The most significant gouging occurred 21 in. downstream from the upstream edge of the concrete parapet. A $\frac{1}{4}$ -in. soil gap was observed behind the back of the curb starting 15 in. upstream from the centerline of post no. 17 and extending to the upstream face of the concrete parapet.

Figure 82. System Damage, Test No. H42ST-2

December 13, 2022 MwRSF Report No. TRP-03-472-22

Figure 84. Rail Connection Terminal, Buttress, and Post Damage, Test No. H42ST-2

The maximum lateral permanent set of the barrier system was 1.3 in., which occurred in the thrie beam between post nos. 17 and 18, as measured in the field. The maximum lateral dynamic barrier deflection was 2.5 in. at post no. 18, as determined from high-speed digital video analysis. The working width of the system was found to be 21.9 in. at post no. 15, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 85.

Figure 85. Permanent Set, Dynamic Deflection, and Working Width, Test No. H42ST-2

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 86 through 89. The maximum occupant compartment intrusions are listed in Table 9, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The left side of the vehicle hood was bent and slightly scraped.

Scraping and inward crushing were recorded on the left-front fender. The front bumper cover disengaged from the vehicle, with the bumper structure detached on the right side after snagging between the thrie beam and curb. The left side of the leading edge of the hood was bent and slightly scraped. The left-front and right-front headlights shattered, and the left-front door was crushed inward at its leading edge and dented throughout. The left-front door panel was separated from the inner panel at the rear edge and protruded outward. The left-rear door was slightly scraped, starting at the panel's trailing edge about 10 in. below the door handle. The left-rear quarter panel was dented and scraped above the wheel opening, extending rearwards to the taillight area. The left-rear taillight was intact, but the lens was disengaged. The rear bumper cover was scraped along the extreme left end of the cover, wrapping around and slightly extending to the lateral section of the bumper. Contact with the head of the simulated occupant caused the left-front window to shatter.

Undercarriage damage was moderate. No damage occurred to the left-front shock and springs, including the bump stops. The front-left side link of the sway and anti-roll bar were bent, and there was no damage to the rear side. The left-front steering knuckle was fractured at the strut mount. The left control arm was bent and slightly twisted with scraping along the trailing edge of the arm in the center of the test vehicle. The left outer tie rod of the steering control arm was significantly bent. The transmission case was cracked on the very left end. There was no damage to the oil pan, engine, or transmission mounts. The front engine cross member was bent and twisted, with the majority of the damage on the left side. The right side of the frame horn was slightly bent outward, while the left side was slightly bent inward.

The windshield was cracked across its entire width and was deformed inward 3.5 in., which exceeded the MASH 2016 limit of 3 in. However, the deformation was due to the translation of the base of the bottom-left A-pillar and did not occur due to direct contact with the test article, nor pose a penetration hazard to the vehicle occupant. Thus, this damage was not a violation of MASH 2016 criteria. Similar windshield damage and deformation had been observed in other recent MASH 1100C tests into rigid barriers, including full-scale crash testing of the Hawaii 34-in. tall (i.e., test no. H34BR-1) and 42-in. (i.e., test no. H42BR-1) tall concrete bridge rails [3, 17] as well as full-scale crash testing of the North Carolina two-bar metal bridge rail (i.e., test no. NCBR-1) [18]. Windshield damage in the form of tearing and deformations have been allowed for these other systems/tests when the barrier does not make direct contact with the windshield, as seen in the FHWA eligibility letters provided for each system [19-21].

Figure 86. Vehicle Damage, Test No. H42ST-2

Figure 87. Vehicle Damage, Test No. H42ST-2

Figure 88. Vehicle Damage, Test No. H42ST-2

Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. H42ST-2

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.				
Wheel Well & Toe Pan	1.2	≤ 9				
Floor Pan & Transmission Tunnel	0.9	≤ 12				
A-Pillar	0.6	≤ 5				
A-Pillar (Lateral)	0.6	≤ 3				
B-Pillar	0.3	≤ 5				
B-Pillar (Lateral)	0.6	≤ 3				
Side Front Panel (in Front of A- Pillar)	2.7	≤ 12				
Side Door (Above Seat)	0.0*	≤ 9				
Side Door (Below Seat)	0.0*	≤ 12				
Roof	0.2	≤ 4				
Windshield	3.5 [†]	≤3				
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article				
Dash	2.2	N/A				

N/A – No MASH 2016 criteria exist for this location.

†The windshield damage occurred due to translation of the base of the vehicle's bottom-left A-pillar. The windshield experienced lateral flexure, which resulted in vertical creases, but this deformation was unrelated to impact and does not violate MASH 2016 evaluation criteria.

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix F.

^{*}Negative value reported as 0.0. See Appendix D for further information.

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. H42ST-2

		Trans	sducer	MASH
Evaluation (Criteria	SLICE-1 (primary)	SLICE-2 (backup)	2016 Limits
OIV	Longitudinal	-30.24	-30.19	±40
ft/s	Lateral	33.49	30.29	±40
ORA	Longitudinal	-11.79	-10.52	±20.49
g's	Lateral	10.92	13.77	±20.49
Maximum	Roll	8.8	9.4	±75
Angular Displacement	Pitch	-7.2	-10.0	±75
degrees	Yaw	61.5	60.5	not required
THIV –	ft/s	39.65	38.32	not required
PHD – g	g's	11.02	13.85	not required
ASI		2.76	2.69	not required

6.7 Discussion

The analysis of the test results of test no. H42ST-2 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of test results and sequential photographs are shown in Figure 85. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusion into, the occupant compartment that could have caused severe injury did not occur. The simulated occupant's head extended out the side window but did not contact any barrier components. Deformation of the windshield measuring 3.5 in. exceeded the MASH 2016 limit of 3 in. However, the deformation was due to the translation of the base of the bottom-left A-pillar and did not occur due to direct contact with the test article, nor pose a penetration hazard to the vehicle occupant. Thus, this damage was not a violation of MASH 2016 criteria. The test vehicle did not penetrate nor override the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable as they did not adversely influence occupant risk nor caused rollover. After impact, the vehicle exited the barrier at angle of 10.8 degrees, and its trajectory did not violate the bounds of the exit box. Thus, test no. H42ST-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-20.

MASH 2016

Limits

 ± 40

 ± 40

 ± 20.49

 ± 20.49

±75

±75

not required

not required

not required

not required

Figure 90. Summary of Test Results and Sequential Photographs, Test No. H42ST-2

7 SUMMARY AND CONCLUSIONS

HDOT desired to test and evaluate their thrie-beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft sidewalk according to MASH 2016 TL-3 criteria. Although MASH 2016 only specifies two full-scale crash tests to evaluate longitudinal transitions, recent research has illustrated the importance of evaluating two different regions within AGTs: (1) the upstream stiffness transition where W-beam connects to stiffened thrie beam and (2) the downstream stiffness transition of an AGT where the guardrail attaches to the rigid concrete parapet. The upstream region of the HDOT thrie-beam AGT includes the MGS upstream stiffness transition, which has already been successfully crash tested to MASH TL-3 [2]. Therefore, the thrie-beam approach guardrail transition attached to the 42-in. tall solid concrete bridge rail was subjected to test designation nos. 3-21 (test no. H42ST-1) and 3-20 (test no. H42ST-2). Summaries of the full-scale crash test evaluations are shown in Table 11.

In test no. H42ST-1, the 2270P vehicle impacted the HDOT thrie-beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk at a speed of 64.7 mph, an impact angle of 24.8 degrees, and at a location of 79.9 in. upstream from the upstream end of the concrete buttress. Note that the impact speed of 64.7 mph was above the MASH nominal impact speed of 62.0 mph ±2.5 mph. However, impact speeds exceeding the nominal criteria are acceptable for longitudinal barriers. The TL-3 impact severity for the crash test was 124.1 kip-ft, which was greater than the minimum value of 105.6 kip-ft. As such, the crash test results could be used as a valid indicator of the system's overall safety performance. The vehicle was captured and safely redirected by the barrier system. The vehicle exited the system at a speed of 40.2 mph and an angle of 10.5 deg, which did not violate the bounds of the exit box and came to rest 134.0 ft downstream from the impact and 23.9 ft laterally in front of the barrier system. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016.

During test no. H42ST-1, the left-front wheel contacted the thrie-beam rail and produced a more aggressive interaction between the elements than was observed in test no. HWTT-2 [2]. It should be noted that the 2270P test vehicle used in test no. H42ST-1 had aluminum rims, while the test vehicle had steel rims in test no. HWTT-2. A snag event occurred at the middle corrugation of the middle of the 37.5-in. long span nearest to the concrete buttress. Some vehicle pocketing occurred near the concrete buttress as well as rim gouging and/or snagging on the middle and lower rail humps. Again, these noted behaviors did not occur in test no. HWTT-2 as that thrie-beam rail appeared to be smoother when compared to the test no. H42ST-1 observations. Regardless, test no. H42ST-1 successfully met the safety performance criteria for MASH 2016 test no. 3-21.

In test no. H42ST-2, the 1100C vehicle impacted the HDOT thrie-beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk at a speed of 62.4 mph, an impact angle of 25.1 degrees, and at a location of 61.1 in. upstream from the upstream end of the concrete buttress. The TL-3 impact severity for the crash test was 56.9 kip-ft, which was greater than the minimum value of 51.1 kip-ft. As such, the crash test results could be used as a valid indicator of the system's overall safety performance. The vehicle exited the system at a speed of 38.5 mph and an angle of 10.8 degrees, which did not violate the bounds of the exit box, and came to rest 156.8 ft downstream from impact and 51.7 ft

laterally in front of the barrier. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016.

During test no. H42ST-2, the windshield was fractured across its entire width and length and deformed inward 3.5 in., which exceeded the MASH 2016 limits of 3 in. As the deformation was due to the translation of the base of the lower-left A-pillar instead of direct contact with the test article and did not pose a penetration hazard to the vehicle occupant. This damage was not a violation of MASH 2016 criteria. Similar windshield damage and deformation had been observed in other recent MASH 1100C tests into rigid barriers, including full-scale crash testing of the Hawaii 34-in. tall (i.e., test no. H34BR-1) and 42-in. tall (i.e., test no. H42BR-1) concrete bridge rails [3, 17] as well as full-scale crash testing of the North Carolina two-bar metal bridge rail (i.e., test no. NCBR-1) [18]. Windshield damage in the form of tearing and deformation have been allowed for these other systems when the barrier did not make direct contact with the system, as seen in FHWA eligibility letters for each system [19-21]. Therefore, test no. H42ST-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-20.

With the successful crash tests documented herein, the downstream region of the thrie beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk has been proven crashworthy. Therefore, the HDOT AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft sidewalk meets the safety performance criteria for MASH 2016 TL-3.

8 MASH EVALUATION

The research objective of this study was to evaluate the safety performance of the HDOT thrie-beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk according to MASH 2016 TL-3 criteria. The thrie-beam approach guardrail transition consisted of 51 ft of MGS connected to an 18-ft long concrete transition buttress, which attached to an 88-ft 1½-in. long, 42-in. tall, and 10-in. wide reinforced concrete bridge rail. According to TL-3 evaluation criteria in MASH 2016, two tests are required to evaluate longitudinal barrier systems: (1) test designation no. 3-21 (test no. H42ST-1) and (2) test designation no. 3-20 (test no. H42ST-2).

During test no. H42ST-1, a 5,041-lb pickup truck with a simulated occupant seated in the left-front passenger seat impacted the HDOT transition system at a speed of 64.7 mph and at an angle of 24.8 degrees, resulting in an impact severity of 124.1 kip-ft. Note that the impact speed of 64.7 mph was above the MASH nominal impact speed of 62.0 mph ±2.5 mph. However, impact speeds exceeding the nominal criteria are acceptable for longitudinal barriers. The vehicle was successfully contained and smoothly redirected. Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 6 in., which did not violate the limits established in MASH 2016. Damage to the barrier was moderate, consisting of post deflections, contact marks, rail kinking, and some gouging of the concrete buttress and curb. The maximum dynamic barrier deflection was 11.0 in. The working width of the system was found to be 27.8 in. at post no. 18. All occupant risk measures were within the recommended limits, and the occupant compartment deformations were deemed acceptable. Therefore, the HDOT thriebeam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk successfully met all the safety performance criteria of MASH 2016 test designation no. 3-21.

During test no. H42ST-2, a 2,430-lb small car with a simulated occupant seated in the left-front passenger seat impacted the HDOT transition system at a speed of 62.4 mph and at an angle of 25.1 degrees, resulting in an impact severity of 56.9 kip-ft. The vehicle was successfully contained and smoothly redirected. Exterior vehicle damage was moderate. Deformation of the windshield measuring 3.5 in. exceeded the MASH 2016 limit of 3 in. However, the deformation was due to the translation of the base of the bottom-left A-pillar and did not occur due to direct contact with the test article, nor pose a penetration hazard to the vehicle occupant. Thus, this damage was not a violation of MASH 2016 criteria. Damage to the barrier was minimal, consisting of contact marks and kinking of the thrie beam sections, contact marks on the front face of the concrete buttress, and some concrete gouging. The maximum dynamic barrier deflection was 2.5 in. The working width of the system was found to be 21.9 in. at post no. 15. All occupant risk measures were within the recommended limits, and the occupant compartment deformations were deemed acceptable. Therefore, the HDOT thrie-beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft sidewalk successfully met all the safety performance criteria of MASH 2016 test designation no. 3-20.

HDOT's thrie-beam AGT attached to the 42-in. tall solid concrete bridge rail with aesthetic, recessed, rounded panels and 6-ft wide sidewalk was crash tested and evaluated according to the MASH 2016 TL-3 criteria and successfully met all the requirements of MASH 2016 test designation no. 3-20 and test designation no. 3-21.

December 13, 2022 MwRSF Report No. TRP-03-472-22

Table 11. Summary of Safety Performance Evaluation

Evaluation Factors		Eva	aluation Criteria		Test No. H42ST-1	Test No. H42ST-2					
Structural Adequacy	A.	Test article should contain and r controlled stop; the vehicle shou installation although controlled	ıld not penetrate, underride	, or override the	S	S					
	D.	1. Detached elements, fragments penetrate or show potential for pan undue hazard to other traffic,	mpartment, or present	S	S						
		S	S								
	F.	The vehicle should remain uprig and pitch angles are not to exceed	S	S							
0	H.	Occupant Impact Velocity (OIV for calculation procedure) shoul									
Occupant Risk		Occupa	S	S							
		Component	Preferred	Maximum							
		Longitudinal and Lateral	30 ft/s	40 ft/s							
	I.	The Occupant Ridedown Accele MASH 2016 for calculation pro									
		Occupant I	Ridedown Acceleration Lir	nits	S	S					
		Component	Maximum								
		20.49 g's									
		MASH 2016 Test	Designation No.		3-21	3-20					
	Final Evaluation (Pass or Fail)										

S-Satisfactory

U-Unsatisfactory

N/A – Not Applicable

9 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 2. Rosenbaugh, S.K., Hovde, S.E., Faller, R.K., and Urbank, E.L., *Crash Testing and Evaluation of the Hawaii Thrie Beam Approach Guardrail Transition MASH Test Nos. 3-20 and 3-21*, Report No. TRP-03-425-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 20, 2020.
- 3. Bielenberg, R.W., Dowler, N.T., Faller, R.K., and Urbank, E.L., *Crash Testing and Evaluation of the HDOT 42-in. Tall Aesthetic Concrete Bridge Rail: MASH Test Designation Nos. 3-10 and 3-11*, Report No. TRP-03-424-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, January 2020.
- 4. Quintero, R.A., Sim, C., Faller, R.K., and Urbank, E.L., Crash Testing and Evaluation of the HDOT 42-in. Tall, Solid Concrete Bridge Rail with Aesthetic Recessed Rounded Panels and 6-in. Tall Sidewalk: MASH Test Designation Nos. 3-10 and 3-11, Report No. TRP-03-455-22, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, December 2022.
- 5. Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., *Downstream Anchoring Requirements for the Midwest Guardrail System*, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- 6. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- 7. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 8. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 9. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 10. Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 21, 2010.

- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 13. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 14. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July 2007.
- 15. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 16. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 17. Bielenberg, R.W., Yoo, S.H., Faller, R.K., and Urbank, E.L., *Crash Testing and Evaluation of the HDOT 34-in. Tall Aesthetic Concrete Bridge Rail: MASH Test Designation Nos. 3-10 and 3-11*, Report No. TRP-03-420-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 2019.
- 18. Dowler, N.T., Stolle, C.S., Hinojosa, M.A., and Fang. G., *Full-Scale Crash Test of a Two-Bar Metal Bridge Rail*, Report No. TRP-03-419-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, November 2019.
- 19. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST-1/B-345* for: HDOT 34" Tall Aesthetic Concrete Bridge Rail, August 14, 2020.
- 20. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST-1/B-346* for: HDOT 42" Tall Aesthetic Concrete Bridge Rail, August 14, 2020.
- 21. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST-1/B-358* for: NC Two-Bar Metal Bridge Rail, August 9, 2021.

10 APPENDICES

Appendix A. Material Specifications, Test Nos. H42ST-1 and H42ST-2

Table A-1. Bill of Materials, Test Nos. H42ST-1 and H42ST-2

Item No.	Description	Material Specification	Reference
a1	12'-6" 12-gauge Thrie Beam Section	AASHTO M180	H#L33720
a2	6'-3" 12-gauge Thrie Beam Section	AASHTO M180	H#L33720
a3	6'-3" 10-gauge W-Beam to Thrie Beam Asymmetric Transition Section	AASHTO M180 Min. yield strength = 50 ksi Min. ultimate strength = 70 ksi"	H#248953
a4	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	H#C84187 HCode#1207 UNL PO#4500281503
a5	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	H#9411949 HCode#8534
аб	10-gauge Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi Min. ultimate strength = 70 ksi"	H#A90588
b1	Concrete	Min. f'c = 4,000 psi NE Mix 47BD"	Ticket#1263368 & 1263375 and Ticket#1268281 & 1268282
c1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	Ch#4697
c2	72" Long Foundation Tube	ASTM A500 Gr. B	H#821T08220 R#18-642 Black Paint
с3	Ground Strut Assembly	ASTM A36	Black Paint R#18-642
c4	BCT Anchor Cable End Swaged Fitting	Fitting - ASTM A576 Gr. 1035 Stud - ASTM F568 Class C	R#22-107 White Paint
c5	3/4" 6x19 IWRC IPS Wire Rope	ASTM A741 Type 2	Reel#0243493
с6	8"x8"x5%" Anchor Bearing Plate	ASTM A36	H#4181496
c7	2¾" O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#712810
c8	Anchor Bracket Assembly	ASTM A36	H#JK16101488
d1	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	H#55069378 (both); H#55048942 (H42ST-2)
d2	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Gr. 50	H#55069378 (both); H#55048942 (H42ST-2)
d3	W6x15, 78" Long Steel Post	ASTM A992 Gr. 50	H#59094758/02

Table A-2. Bill of Materials, Test Nos. H42ST-1 and H42ST-2, Cont.

Item No.	Description	Material Specification	Reference
d4	17½" Long, 8"x6"x¼" Steel Blockout	ASTM A500 Gr. B	H#A97575 (H42ST-1); H#841P04950 (H42ST-2)
d5	17½" Long, 12"x4"x¼" Steel Blockout	ASTM A500 Gr. B	H#SK1853 R#21-807
d6	"14 ³ / ₁₆ "x12"x5½" Composite Recycled Blockout"	Mondo Polymer MGS14SH or Equivalent	COC
d7	14 ³ / ₁₆ "x8"x5½" Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	COC
d8	16D Double Head Nail	-	PO E000548963
e1	#4 Rebar, 16" Total Length	ASTM A615 Gr. 60	H#55064958
e2	#4 Rebar, 12¾" Total Length	ASTM A615 Gr. 60	H#55064958
e3	#5 Rebar, 172" Total Length	ASTM A615 Gr. 60	H#3600014140
e4	#5 Rebar, 164 ¹ / ₄ " Total Unbent Length	ASTM A615 Gr. 60	H#3600014140
e5	#6 Rebar, 108" Total Length	ASTM A615 Gr. 60	H#7011423
e6	#6 Rebar, 109" Unbent Length	ASTM A615 Gr. 60	H#7011423
e7	#4 Rebar, 1691/2" Total Length	ASTM A615 Gr. 60	H#55064958
e8	#4 Rebar, 1001/4" Total Length	ASTM A615 Gr. 60	H#55064958
e9	#6 Rebar, 49%" Unbent Length	ASTM A615 Gr. 60	H#7011423
e10	#6 Rebar, 51%" Unbent Length	ASTM A615 Gr. 60	H#7011423
e11	#6 Rebar, 545/8" Unbent Length	ASTM A615 Gr. 60	H#7011423
e12	#6 Rebar, 34 ³ / ₁₆ " Unbent Length	ASTM A615 Gr. 60	H#7011423
e13	#4 Rebar, 491/2" Unbent Length	ASTM A615 Gr. 60	H#55064958
e14	#4 Rebar, 521/8" Unbent Length	ASTM A615 Gr. 60	H#55064958
e15	#4 Rebar, Vertical Stirrup Varying Length	ASTM A615 Gr. 60	H#55064958
e16	#6 Rebar, Vertical Stirrup Varying Length	ASTM A615 Gr. 60	H#7011423
e17	#6 Rebar, 523/8" Unbent Length	ASTM A615 Gr. 60	H#7011423
f1	5/8"-11 UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	H#100104009 L#33076
f2	5/8"-11 UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	H#10666100 L#931491-7 R#21-155 Yellow
f3	%"-11 UNC, 1¼" Long Guardrail Bolt	ASTM A307 Gr. A	H#10653380 Lot#32756-B
f4	%"-11 UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	H#JK18104124 L#81342 Light Blue Paint
f5	%"-11 UNC, 1½" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	P#91919 T#180170611 (H42ST-1); H#17301484-3 P#1191919 (H42ST-2)

Table A-3. Bill of Materials, Test Nos. H42ST-1 and H42ST-2, Cont.

Item No.	Description	Material Specification	Reference
f6	7/8"-9 UNC, 16" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 or equivalent	H#100794352 Inv#138185
f7	%"-9 UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	R#18-758 P#92005 C#llne35042 COC ONLY
f8	5/8"-11 UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	H#10621520 L#848773-13
f9	%"-11 UNC Heavy Hex Nut	ASTM A563A or equivalent	H#10635460 L#20-35-006
f10	%"-9 UNC Hex Nut	ASTM A563A or equivalent	H#331704677 L#1N1810005 P#36717 C#110254885
f11	%"-9 UNC Heavy Hex Nut	ASTM A563DH	H#100894559 Inv#138185
f12	1"-8 UNC Heavy Hex Nut	ASTM A563DH or equivalent	P#38210 C#210157128 COC
f13	%"-11 UNC Hex Nut	ASTM A563A or equivalent	H#331608011 P#36713 R#17- 507
g1	5/8" Dia. Plain USS Washer	ASTM F844	L#1851805 P#1133185 C#200152825 R#21-191
g2	78" Dia. Plain Round Washer	ASTM F844	P#33187 C#170089822 L#1844804
g3	1" Dia. Plain USS Washer	ASTM F844	P#33188 C#210151571
g4	3"x3"x ¹ / ₄ " or 3 ¹ / ₂ "x ³ / ₂ "x ¹ / ₄ " Square Washer Plate	ASTM A572 Gr. 50	H#A9F220 R#21-196 Inv#57199
i1	Epoxy Adhesive	Hilti HIT Re-500 V3	COC
i2	Expansion Joint Filler	AASHTO M33, M153, or M213	Tech Sheet
i3	Expansion joint Sealant	AASHTO M173, M282, M301, ASTM D3581, or ASTM D5893	Tech Sheet

124

December 13, 2022 IwRSF Report No. TRP-03-472-22

Certified Analysis

Order Number: 1328797

BOL Number: 113647

Prod Ln Grp: 0-OE2.0

Ship Date:

Trinity Highway Products LLC

550 East Robb Ave.

Project:

Lima, OH 45801 Phn:(419) 227-1296

Customer: MIDWEST MACH & SUPPLY CO

MILFORD, NE 68405

P.O. BOX 703

STOCK

DIFFER MACHINE OF THE MACHINE

Document #: 1

Customer PO: 4006

Shipped To: NE

Use State: NE

E Producto

As of: 9/30/20

Qty	Part#	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P S	Si	Cu	Сь (r	Vn /	ACW
			M-180	A	2	245021	64,480	83,940	22.2	0.190	0.700	0.013 0.004	0.020	0.060	0.000 0.0	60 0.	100	4
			M-180	A	2	245984	62,860	80,840	26.2	0.190	0.720	0.008 0.003	0.010	0.080	0.000 0.0	50 0.	000	4
155	12365G	T12/12'6/8@1'6.75/S			2	L33720												
			M-180	A	2	254833	62,344	82,251	25.5	0.190	0.720	0.015 0.002	0.020	0.150	0.000 0.0	70 0.	002	4
			M-180	A	2	255300	62,065	80,722	24.9	0.200	0.730	0.008 0.004	0.010	0.060	0.000 0.0	40 0.	002	4
27	32218G	T10/TRAN/TB:WB/ASYM/R	M-180	В	2	833M66260	66,600	74,800	29.0	0.060	0.820 (0.015 0.005	0.029	0.019	0.042 0.03	0.0	001	4
22	32219G	T10/TRAN/TB:WB/ASYM/LT	M-180	В	2	248834	59,940	78,890	27.2	0.210	0.720 (0.013 0.003	0.020	0.100	0.000 0.09	0.0	000	4

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410.

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329, UNLESS

OTHERWISE STATED.

3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH - 46000 LB

Figure A-1. 12-ft 6-in. 12-Gauge Thrie Beam Section, Test Nos. H42ST-1 and H42ST-2 (Item No. a1)

Prod Ln Grp: 0-OE2.0

Ship Date:

Trinity Highway Products LLC 550 East Robb Ave.

Lima, OH 45801 Phn:(419) 227-1296

Customer: MIDWEST MACH & SUPPLY CO

P. O. BOX 703

MILFORD, NE 68405

Project: STOCK

Order Number: 1328797

Customer PO: 4006

BOL Number: 113647 Document #: 1

Shipped To: NE

Use State: NE

As of: 9/30/20

Part#	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P	S S	Cu	Сь С	r Vn	ACW
261G	T12/25/3'1.5/S			2	L33820											
		M-180	A	2	255300	62,065	80,722	24.9	0.200	0.730	0.008 0.0	04 0.01	0.060	0.000 0.04	0.002	4
738A	5'TUBE SL.188X6X8 1/4 /PL	A-500			823L69130	56,796	75,727	31.0	0.150	0.850	0.013 0.0	0.00	0.017	0.002 0.03	0.001	4
749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A712224	79,860	80,000	25.8	0.050	0.810	0.008 0.0	0.03	0.090	0.000 0.05	0.003	4
929G	10/END SHOE/KS/2 EXT			2	L13520											
		M-180	Α	2	251391	62,050	80,960	23.0	0.200	0.730	0.011 0.0	01 0.02	0.100	0.000 0.07	0.000	4
		M-180	A	2	251392	62,580	81,450	21.6	0.190	0.730	0.009 0.0	03 0.02	0.100	0.000 0.07	0 0.002	4
		M-180	Α	2	253045	67,090	84,510	24.6	0.190	0.720	0.012 0.0	02 0.02	0.120	0.000 0.07	0 0.023	4
		M-180	Α	2	253236	64,040	81,570	24.1	0.190	0.710	0.014 0.0	20 0.02	0.110	0.000 0.08	0.000	4
		M-180	Α	2	253968	62,900	80,220	25.1	0.190	0.730	0.013 0.0	02 0.02	0.120	0.000 0.06	0.002	4
		M-180	В	2	253972	62,480	79,220	25.9	0.190	0.730	0.016 0.0	01 0.02	0.080	0.000 0.08	0.002	4
950A	T12/FLARE/12 HOLE ASS'Y	*		2	L23820											
		M-180	A	2	254834	62,484	81,174	25.8	0.190	0.730	0.010 0.0	03 0.02	0.120	0.000 0.06	0.001	4
		M-180	A	2	254835	62,594	81,284	23.3	0.190	0.730	0.012 0.0	05 0.01	0.140	0.000 0.07	0.002	4
		M-180	A	2	254836	65,000	84,343	26.6	0.190	0.720	0.013 0.0	01 0.02	0.130	0.000 0.07	0.001	4
		M-180	Α	2	255522	62,070	79,830	24.9	0.190	0.720	0.010 0.0	04 0.01	0.100	0.000 0.05	0.002	4
		M-180	A	2	255523	61,380	79,990	22.0	0.200	0.730	0.013 0.0	03 0.02	0.100	0.000 0.08	0.001	4
		M-180	A	2	255524	62,050	81,610	26.4	0.190	0.730	0.010 0.0	02 0.01	0.110	0.000 0.05	0.002	4
957G	T12/BUFFER/ROLLED	A-36			31847970	48,400	62,300	35.0	0.060	0.450	0.015 0.0	1 0.030	0.090	0.001 0.070	0.002	4
12173G	T12/6'3/4@1'6.75"/S			2	L33720											
		M-180	Α	2	254833	62,344	82,251	25.5	0.190	0.720	0.015 0.0	02 0.02	0.150	0.000 0.07	0.002	4
12173G		M-180	Α	2	255300 L34919	62,065	80,722	24.9	0.200	0.730	0.008 0.0	0.01	0.060	0.000 0.04	0.002	4
	261G 738A 749G 929G 950A	261G T12/25/3'1.5/S 738A 5'TUBE SL.188X6X8 1/4 /PL 749G TS 8X6X3/16X6'-0" SLEEVE 929G 10/END SHOE/KS/2 EXT 950A T12/FLARE/12 HOLE ASS'Y 957G T12/BUFFER/ROLLED 12173G T12/6'3/4@1'6.75"/S	261G T12/25/3'1.5/S 738A 5'TUBE SL.188X6X8 1/4 /PL A-500 749G TS 8X6X3/16X6'-0" SLEEVE A-500 929G 10/END SHOE/KS/2 EXT M-180	261G T12/25/3*1.5/S 738A STUBE SL.188X6X8 1/4/PL A-500 749G TS 8X6X3/16X6*-0" SLEEVE A-500 929G 10/END SHOE/KS/2 EXT M-180 A M-180 A M-180 A M-180 B 950A T12/FLARE/12 HOLE ASS'Y M-180 A	261G T12/25/3*1.5/S 2 738A 5*TUBE SL.188X6X8 1/4 /PL A-500 749G TS 8X6X3/16X6*-0** SLEEVE A-500 929G 10/END SHOE/KS/2 EXT 2 M-180 A 2 M-180 A 2 M-180 A 2 M-180 A 2 M-180 B 2 M-180 A 2	2 L33820 M-180 A 2 255300 738A 5*TUBE SL.188X6X8 1/4 /PL A-500 823L69130 749G TS 8X6X3/16X6'-0" SLEEVE A-500 A712224 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 M-180 A 2 251392 M-180 A 2 253926 M-180 A 2 253236 M-180 A 2 253972 950A T12/FLARE/12 HOLE ASS'Y 2 L23820 M-180 A 2 254834 M-180 A 2 254835 M-180 A 2 254836 M-180 A 2 255522 M-180 A 2 255523 M-180 A 2 255524 31847970 12173G T12/6'3/4@1'6.75*/S M-180 A 2 254833 M-180 A 2 255300	2 L33820 M-180 A 2 255300 62,065 738A 5'TUBE SL.188X6X8 1/4 /PL A-500 823L69130 56,796 749G TS 8X6X3/16X6'-0" SLEEVE A-500 A712224 79,860 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62,050 M-180 A 2 251392 62,580 M-180 A 2 253045 67,090 M-180 A 2 253236 64,040 M-180 A 2 253968 62,900 M-180 B 2 253972 62,480 M-180 B 2 253972 62,480 M-180 A 2 254834 62,484 M-180 A 2 254835 62,594 M-180 A 2 254836 65,000 M-180 A 2 255522 62,070 M-180 A 2 255523 61,380 M-180 A 2 255524 62,050 957G T12/BUFFER/ROLLED A-36 31847970 48,400 12173G T12/63/4@1'6.75"/S M-180 A 2 254833 62,344 M-180 A 2 2555300 62,065	2 L33820 M-180 A 2 255300 62,065 80,722 738A 5*TUBE SL.188X6X8 1/4 /PL A-500 823L69130 56,796 75,727 749G TS 8X6X3/16X6*-0" SLEEVE A-500 A712224 79,860 80,000 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62.050 80,960 M-180 A 2 251392 62,580 81,450 M-180 A 2 253045 67,090 84,510 M-180 A 2 253045 67,090 84,510 M-180 A 2 253968 62,900 80,220 M-180 B 2 253972 62,480 79,220 950A T12/FLARE/12 HOLE ASS'Y 2 L23820 M-180 A 2 254834 62,484 81,174 M-180 A 2 254835 62,594 81,284 M-180 A 2 254836 65,000 84,343 M-180 A 2 255522 62,070 79,830 M-180 A 2 255523 61,380 79,990 M-180 A 2 255524 62,050 81,610 957G T12/BUFFER/ROLLED A-36 31847970 48,400 62,300 12173G T12/6'3/4@1'6,75"/S M-180 A 2 254833 62,344 82,251 M-180 A 2 2555300 62,065 80,722	261G T12/25/3'1.5/S 2 L33820 M-180 A 2 255300 62,065 80,722 24.9 738A 5'TUBE SL.188X6X8 1/4 /PL A-500 823L69130 56,796 75,727 31.0 749G TS 8X6X3/16X6'-0" SLEEVE A-500 A712224 79,860 80,000 25.8 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62,050 80,960 23.0 M-180 A 2 251392 62,580 81,450 21.6 M-180 A 2 253045 67,090 84,510 24.6 M-180 A 2 253236 64,040 81,570 24.1 M-180 A 2 253968 62,900 80,220 25.1 M-180 A 2 253972 62,480 79,220 25.9 950A T12/FLARE/12 HOLE ASS'Y 2 L23820 M-180 A 2 254834 62,484 81,174 25.8 M-180 A 2 254836 65,000 84,343 26.6 M-180 A 2 254836 65,000 84,343 26.6 M-180 A 2 255522 62,070 79,830 24.9 M-180 A 2 255524 62,050 81,610 26.4 957G T12/BUFFER/ROLLED A-36 31847970 48,400 62,300 35.0 12173G T12/63/4@16.75*/S M-180 A 2 255300 62,065 80,722 24.9	2 L33820 M-180 A 2 255300 62,065 80,722 24,9 0.200 738A 5TUBE SL.188X6X8 1/4 /PL A-500 823L69130 56,796 75,727 31.0 0.150 749G TS 8X6X3/16X6'-0" SLEEVE A-500 A712224 79,860 80,000 25.8 0.050 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62.050 80,960 23.0 0.200 M-180 A 2 251392 62,580 81,450 21.6 0.190 M-180 A 2 253236 64,040 81,570 24.1 0.190 M-180 A 2 253236 64,040 81,570 24.1 0.190 M-180 A 2 253972 62,480 79,220 25.9 0.190 950A T12/FLARE/12 HOLE ASS'Y 2 L23820 M-180 A 2 254834 62,484 81,174 25.8 0.190 M-180 A 2 254835 62,594 81,284 23.3 0.190 M-180 A 2 254836 65,000 84,343 26.6 0.190 M-180 A 2 255522 62,070 79,830 24.9 0.190 M-180 A 2 255523 61,380 79,990 22.0 0.200 M-180 A 2 255524 62,050 81,610 26.4 0.190 957G T12/BUFFER/ROLLED A-36 31847970 48,400 62,300 35.0 0.060 12173G T12/6'3/4@1'6.75"/S M-180 A 2 254833 62,344 82,251 25.5 0.190 M-180 A 2 255530 62,065 80,722 24.9 0.200	M-180	2 L33820 M-180 A 2 255300 62,065 80,722 24.9 0.200 0.730 0.008 0.00 738A STUBE SL188X6X8 1/4 /PL A-500 823169130 56,796 75,727 31.0 0.150 0.850 0.013 0.00 749G TS 8X6X3/16X6'-0" SLEEVE A-500 A712224 79,860 80,000 25.8 0.050 0.810 0.008 0.00 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62,050 80,960 23.0 0.200 0.730 0.011 0.00 M-180 A 2 251392 62,580 81,450 21.6 0.190 0.730 0.001 0.00 M-180 A 2 253326 64,040 81,570 24.1 0.190 0.700 0.012 0.00 M-180 A 2 2533968 62,900 80,220 25.1 0.190 0.730 0.013 0.00 950A T12/FLARE/12 HOLE ASS'Y 2 L23820 M-180 A 2 254836 62,900 80,220 25.9 0.190 0.730 0.016 0.00 M-180 A 2 254836 65,000 84,343 26.6 0.190 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.010 0.00 M-180 A 2 255524 62,070 79,830 24.9 0.190 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255525 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 20.0 0.200 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 20.0 0.200 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 20.0 0.200 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 20.0 0.200 0.730 0.010 0.00 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.010 0.00 M-180 A 2 255523 61,380 79,990 20.0 0.200 0.730 0.010 0.00	2 L33820 M-180 A 2 255300 62,065 80,722 24,9 0.200 0.730 0.008 0.004 0.017 738A STUBE SL.188X6X8 1/4 /PL A-500 823L69130 56,796 75,727 31.0 0.150 0.850 0.013 0.004 0.007 749G TS 8X6X3/16X6-0" SLEEVE A-500 A712224 79,860 80,000 25.8 0.050 0.810 0.008 0.002 0.030 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62,050 80,960 23.0 0.200 0.730 0.011 0.001 0.022 M-180 A 2 251392 62,580 81,450 21.6 0.190 0.730 0.012 0.002 0.020 M-180 A 2 253045 67,090 84,510 24.6 0.190 0.730 0.012 0.002 0.020 M-180 A 2 253945 64,040 81,570 24.1 0.190 0.710 0.014 0.020 0.020 M-180 A 2 253972 62,480 79,220 25.9 0.190 0.730 0.016 0.001 0.021 950A T12/FLARE/12 HOLE ASS'Y M-180 A 2 254834 62,484 81,174 25.8 0.190 0.730 0.010 0.003 0.022 M-180 A 2 254835 62,594 81,284 23.3 0.190 0.730 0.010 0.003 0.022 M-180 A 2 254836 65,000 84,343 26.6 0.190 0.730 0.012 0.005 0.014 M-180 A 2 255522 62,070 79,830 24.9 0.190 0.720 0.013 0.001 0.022 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.010 0.003 0.022 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.013 0.001 0.020 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255523 61,380 79,990 22.0 0.200 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.002 0.014 M-180 A 2 255524 62,050 81,610 26.4 0.190 0.730 0.013 0.003 0.024 M-180 A 2 255524 62,050 81,610 26.4 0.1	2 L33820 M-180 A 2 255300 62,065 80,722 24,9 0,200 0,730 0,008 0,004 0,010 0,066 738A \$TUBE \$SL188X6X8 1/4 /PL A-500 823L69130 56,796 75,727 31.0 0,150 0,850 0,013 0,004 0,007 0,017 0,017 0,017 0,017 0,018 0,008 0,000 0,009 0,000 0,0	2 L33820 M-180 A 2 255300 62,065 80,722 24.9 0.200 0.730 0.008 0.004 0.010 0.060 0.000 0.04 738A STUBE SL188X6X8 14 /PL A-500 823L69130 56,796 75,727 31.0 0.150 0.850 0.013 0.004 0.007 0.017 0.002 0.034 749G TS \$X6X3/16X6-0" SLEEVE A-500 A712224 79,860 80,000 25.8 0.050 0.810 0.008 0.002 0.030 0.090 0.000 0.056 929G 10/END SHOE/KS/2 EXT 2 L13520 M-180 A 2 251391 62.050 80,960 23.0 0.200 0.730 0.011 0.001 0.020 0.100 0.000 0.076 M-180 A 2 251392 62,580 81,450 21.6 0.190 0.730 0.001 0.002 0.000 0.070 M-180 A 2 253366 64,040 81,570 24.1 0.190 0.730 0.012 0.002 0.020 0.120 0.000 0.070 M-180 A 2 253968 62,900 80,220 25.1 0.190 0.730 0.014 0.020 0.020 0.120 0.000 0.08 M-180 B 2 253972 62,480 79,220 25.9 0.190 0.730 0.016 0.001 0.020 0.000 0.08 M-180 A 2 254834 62,484 81,174 25.8 0.190 0.730 0.010 0.003 0.020 0.120 0.000 0.070 M-180 A 2 254835 65,000 84,343 26.6 0.190 0.730 0.012 0.000 0.000 0.000 M-180 A 2 255832 61,380 79,990 22.0 0.000 0.730 0.012 0.000 0.000 0.000 0.000 M-180 A 2 255532 61,380 79,990 22.0 0.000 0.730 0.013 0.001 0.002 0.000 0.000 M-180 A 2 255522 62,070 79,830 24.9 0.190 0.730 0.013 0.001 0.000 0.000 0.000 0.000 M-180 A 2 255532 61,380 79,990 22.0 0.000 0.730 0.013 0.001 0.000 0.000 0.000 M-180 A 2 255523 61,380 79,990 22.0 0.000 0.730 0.013 0.000 0.000 0.000 0.000 M-180 A 2 255532 62,070 79,830 24.9 0.190 0.730 0.013 0.000 0.000 0.000 0.000 M-180 A 2 255532 61,380 79,990 22.0 0.000 0.730 0.013 0.000 0.000 0.000 0.000 M-180 A 2 255532 62,070 79,830 24.9 0.190 0.730 0.013 0.000 0.000 0.000 0.000 M-180 A 2 255532 62,070 79,830 24.9 0.190 0.730 0.013 0.000 0.000 0.000 0.000 0.000 M-180 A 2 255532 62,070 79,830 24.9 0.190 0.730 0.013 0.000 0.000 0.000 0.000 0.000 M-180 A 2 255532 62,070 79,830 24.9 0.190 0.730 0.013 0.000 0.00	M-180

Figure A-2. 6-ft 3-in. 12-gauge Thrie Beam Section, Test Nos. H42ST-1 and H42ST-2 (Item No. a2)

Date: May 21, 2020

To: Universal Rollforming 435 N. 1200 West Lindon, UT 84042

CERTIFICATE OF COMPLIANCE

IMH PRODUCTS, INC. hereby certifies that all materials used in the manufacture of parts called for on Purchase Order No. <u>28540</u> conform to the material and/or manufacturing specifications indicated in drawings or specifications as called for on the said purchase order. Test reports are on file with us or with our suppliers for the examination and indicate conformance with applicable specification requirements (AASHTO M180, section 8.1.2).

Further, IMH PRODUCTS, INC. certifies that all materials and services used in the manufacture of these parts were made or performed in the USA.

Part No.: <u>RWT-ATbB</u> Heat# .: <u>248953</u> Quantity: 200

Description: asymmetrical transition, LH (Trailing end)

By IMH PRODUCTS, INC.

Joe Gillen

(Authorized Signature)

General Manager
(Title or Position in Firm)

(Title of Fosition in Film)

Figure A-3. 6-ft 3-in. 10-gauge W-Beam to Thrie-Beam Asymmetric Section, Test Nos. H42ST-1 and H42ST-2 (Item No. a3)

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC

6767 County Road 9 Delta Ohio 43515

Telephone: (888) 822-2112 Customer:

TriAmerica Steel Resources

Ordered Width (mm/in) 1384.808 / 54.52

Weight(kg/lb) 19808 / 43669

1617 Akron Peninsula Rd

Order #

Heat #

Ordered Gauge (mm/in) 3.607 / 0.142 N 456584

Akron, OH 44313 Customer P.O:

076169

Line Item # 248953 Produced Date/Time Coil #

2/17/20 09:38

Cust. Ref/Part # ip

Material Desc: InvPrime

2003535

Chemical Analysis (wt%)

Type	С	Mn	P	s	Si	Al	Cu	Cr	Ni	Mo	Sn	N	В	V	Nb	Ti	Ca	Pb
Heat	0.05	0.58	0.011	0.002	0.02	0.02	0.11	0.07	0.04	0.02	0.00	0.007	0.0000	0.001	0.021	0.001	0.002	0.000
Coil Hea	0.05	0.58	0.011	0.002	0.02	0.02	0.11	0.07	0.04	0.02	0.00	0,007	0.0000	0.001	0.021	0.001	0.002	0.000
Coil Tail	0.05	0.58	0.011	0.002	0.18	0.03	0.10	0.06	0.04	0.01	0.00	0.008	0.0000	0.003	0.019	0.064	0.001	0.000

This hot rolled steel has been produced to conform to DIN EN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM A370-14, JIS Z2201:1998, JIS Z2241:2011. Pressure Equipment Directive (PED) 2014/68/EU, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC is not responsible for the inability of this material to meet specific applications. Any modifications to this certification as provided negates the validity of this test report. All reproductions must have the written approval of North Star BlueScope Steel. This product was manufactured, melted, cast, and hot-rolled (min. 3:1 reduction ratio), entirely within the U.S.A at North Star BlueScope Steel LLC, Delta, Ohio. This material was not exposed to Mercury or any alloy which is liquid at ambient temperature during processing or while in North Star BlueScope Steel LLC possession. Test equipment calibration certificates are available upon request, NIST traceability is established through test equipment calibration certificates which are available upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at a 4.1 ratio in accordance with NIST standards. Uncertainty data is available upon request.

John Meece

Manager Quality Assurance and Technology

Date issued: Feb 27, 2020 1:03 PM Revision#: 01

Figure A-4. 6-ft 3-in. 10-gauge W-Beam to Thrie-Beam Asymmetric Section, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. a3)

Nucor Steel Gallatin 4831 U.S. Highway 42 West Ghent, KY 41045-9704 Phone: 1(800)581-3853 Fax: (859)567-3165 HUCOR' NUCOR STEEL GALLATIN METALLURGICAL TEST REPORT Invoice To: Gregory Industries 4100 13th Street SW Ship To: Gregory Industries 4100 13th Street SW Date: 1/21/2018 Canton, OH 44710 Canton, OH 44710 Customer No: 10019 Customer P.O.: 39620 Mill Order No: 214078-1 Customer Reference No: 39620 Load No: 736148 1020 steel for SS 50 grade for Guard Rails - 50 ksi min yield, 70 ksi min This product was melted and manufactured in the USA to meet the requirements of: tensile, 0.10% max Si, and 0.06% Cr max HR Sheet Steel Bands Ordered Size: Min 0.095 (In.) X 56.88 (In.) X Coil Coil Number(s): 1465177 Min 2.413 (mm) X 1445 (mm) X Coil CHEMICAL ANALYSIS (Weight %) **Heat No** C Mn P S Si Cu Ni Cr Mo C85187 0.20 0.48 0.008 0.003 0.03 0.06 0.02 0.05 0.01 Ti Al Ca Nb V B N Sn 0.0017 0.001 0.0001 0.001 0.0080 0.003 0.029 0.000 **MECHANICAL PROPERTIES Coil Tested** Yield Strength(ksi) Yield Strength(mpa) Tensile Strength(ksi) Tensile Strength(mpa) % Elongation N-Value N-Value Range Hardness(HRBW) **Test Section** Orientation **Test Method BEND TEST RESULTS** Coil ID # Orientation Diameter/radius No. of Size of Pass/ Ht done of mandrel cracks cracks Fail 1207 Hot rolled coils manufactured through Nucor Steel Gallatin do not contain welds or weld repairs at the time of shipment (fca mill), Mercury was not added during production of this material. The material was produced using a fully killed fine grain practice with a grain size of 6 or finer according to ASTM E112. This product is in compliance with DFARS 252.225, the Buy American Act. Above tests performed in accordance to ASTM standards E8 (yield strength determined using 0.2% offset method and elongation determined using at fracture method) or JIS Z2241, E18, E415, and E1019 and are correct as contained in the records of the company. The elongation original gauge length is 2 inches for ASTM test method and 1.97 inches for JIS test method. Above test results were performed in accordance to EN 10204 3.1 Stephen S. Sipple **Chemical Laboratory** Bend tests were conducted in accordance with ISO 7438, ASTM E290, or JIS Z2248 using the press, guided, two support and a mandrel bend method at a 180 degree bend. Bend test specimen is longer than 6" and wider than 0.8" Mechanical Laboratory steve.siople@nucor.com steve.sipple@nucor.com This report shall not be reproduced, except in full, without written approval of the undersigned laboratory managers. * This mechanical property has been tested at a subcontractor's laboratory. The information contained in this report may be confidential information intended only for the use of the individual or entity named above. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and destroy the original message. Thank You. Page 1 of 1

Figure A-5. 12-ft 6-in. 12-gauge W-Beam MGS Section, Test Nos. H42ST-1 and H42ST-2 (Item No. a4)

129

December 13, 2022 MwRSF Report No. TRP-03-472-22

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

UNIVERSITY OF NEBRASKA-LINCOLN

401 CANFIELD ADMIN BLDG P O BOX 860439 LINCOLN,NE,68588-0439

Customer:

Ship Date: Customer P.O. Shipped to:

Test Report

7/9/2015

4500274709/ 07/07/2015 UNIVERSITY OF NEBRASKA-LINCOLN

Project:

TESTING COIL GHP Order No.: 183306

HT # code	Heat #	C.	Mn.	P.	S.	SI.	Tensile	Yield	Elong.	Quantity	Class	Type
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	10	A	2
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	100	A	2
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	20	A	2

Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled axidized/corrosion resistant Guardrail and terminal sections meet ASTM AG06, Type 4.

Boits comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated.

Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

Description 12GA 25FT WB T2 MGS ANCHOR PANEL 12GA 12FT6IN/3FT1 1/2IN WB T2 12GA 25FT0IN 3FT1 1/2IN WB T2

Figure A-6. 12-ft 6-in. 12-gauge W-Beam MGS End Section, Test Nos. H42ST-1 and H42ST-2 (Item No. a5)

Nucor Steel Gallatin 4831 U.S. Highway 42 West Ghent, KY 41045-9704 NUCOR NUCOR STEEL GALLATIN Phone: 1(800)581-3853 Fax: (859)567-3165 METALLURGICAL CERTIFICATION Invoice To: Metals USA-Flat Rolled-Jeffersonville Ship To: Metals USA-Flat Date: 10/15/2018 702 Port Rd Rolled-Jeffersonville Jeffersonville, IN 47130 Metals USA -Flat Customer No: 27599 Rolled-Jeffersonville 702 Port Road Customer P.O.: C44390 effersonville, IN 47130 Mill Order No: 220897-1 Customer Reference No: NA Load No: 766606 This product was melted and manufactured ASTM A1011-18 SS Gr 50 modified w/ 70 ksi min ten, C 0.26 max, P in the USA to meet the requirements of: 0.02max, S 0.05 max, Si 0.04 max HR Sheet Steel Bands Ordered Size: Min 0.125 (In.) X 62.00 (In.) X Coil Coil Number(s): 1515933 Min 3.175 (mm) X 1575 (mm) X Coll (Weight %) CHEMICAL ANALYSIS Heat No C Mn Cu 8 Si Ni Cr Mo A90588 0.20 0.49 0.008 0.12 0.06 0.004 0.02 0.05 0.02 Ca Al Nb V В TI N Sn 0.032 0.0017 0.002 0.001 0.0001 0.001 0.0052 0.006 MECHANICAL PROPERTIES 1515931 Coil Tested 1515931 1515936 1515936 Yield Strength(ksi) 51.3 Yield Strength(mpa) 380 354 Tensile Strength(ksi) 73.7 75.0 Tensile Strength(mpa) 517 508 % Elongation 25.1 29.6 0.15 N-Value 0.16 0.17 0.17 N-Value Range 5-15% 5-15% 5-15% 5-15% 80.8 83.2 Hardness(HRBW) 83.2 80.8 **Test Section** YARD YARD YARD Long Orientation Long Long Long ASTM **Test Method** ASTM ASTM ASTM BEND TEST RESULTS Coil ID # Orientation Diameter/radius No. of Size of |Pass/ of mandrel cracks cracks Hot rolled coils manufactured through Nucor Steel Gallatin do not contain welds or weld repairs at the time of shipment (fea mill). Mercury was not added during production of this material. The material was produced using a fully killed fine grain practice with a grain size of 6 or finer according to ASTM E112. This product is in compliance with DFARS 252.225, the Buy American Act. Above tests performed in accordance to ASTM standards E8 (yield strength determined using 0.2% offset method and elongation determined using at fracture method) or JIS Z2241, E18, E415, and E1019 and are correct as contained in the records of the compan The elongation original gauge length is 2 inches for ASTM test method and 1.97 inches for JIS test method. Above test results were performed in accordance to EN 10204 3.1 David Duncan II Chief Metallurgist Bend tests were conducted in accordance with ISO 7438, ASTM E290, or JIS 22248 using the press, guided, two support and a mandrel bend method at a 180 degree bend. Bend test specimen is longer than 6" and wider than 0.8" dave.duncan@nucor.com This report shall not be reproduced, except in full, without written approval of the undersigned laboratory managers. * This mechanical property has been tested at a subcontractor's laboratory. The information contained in this report may be confidential information intended only for the use of the individual or entity named above. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and destroy the original message. Thank You. Page 1 of 1

Figure A-7. 10-gauge Thrie Beam Terminal Connector, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. a6)

Figure A-8. Concrete, Test Nos. H42ST-1 and H42ST-2 (Item No. b1)

CAUTION FRESH CONCRE
KEEP CHILDREN AWAY

This concrete is produced with the ASTM standard specifications for ready mix concrete. Strengths are based on a 3" slump. Drivers are not permitted to add water to the mix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician. Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

Figure A-9. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)

within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's fiability shall in no event exceed the purchase

price of the materials against which any claims are made.

Figure A-10. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)

Customer's Signature: TRUCK | DRIVER | CUSTOMER | PROJECT PLANT TAX PO NUMBER TICKET 6285 62461 H42 8/4/21 10:54 AM 1268282 Delivery Address Special Instructions Customer UNL-MIDWEST ROADSIDE SAFETY 4630 NW 36TH ST HWY 34 WEST TO NW 31ST ST & SOUTH TO W CUMING ST & EAST / PUMP LOAD CUMULATIVE ORDERED PRODUCT PRODUCT DESCRIPTION UOM UNIT PRICE **EXTENDED** QUANTITY QUANTITY QUANTITY CODE PRICE 8.00 17.00 17.00 QL324504 LNK47B1PF4000HW yd \$132.50 \$1,060,00 TICKET SUBTOTAL \$1,060.00 Water Added On Job At SLUMP \$0.00 SALES TAX Customer's Request: 4.00 TICKET TOTAL \$1,060.00 PREVIOUS TOTAL \$1,192.50 **GRAND TOTAL** \$2,252.50

(I) CAI

CAUTION FRESH CONCRETE KEEP CHILDREN AWAY

Terms & Conditions

This concrete is produced with the ASTM standard specifications for ready mix concrete. Strengths are based on a 3" slump. Drivers are not permitted to add water to the mix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician. Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any

unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

Figure A-11. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)

Page 1 of 1

Concrete Sample Test Report Cylinder Compressive Strength

Project Name:	Midwest Roadside	e Safety - Misc Tes	ting			
Project Number:	00110546.00					
Client:	Midwest Roadside	e Safety Facility				
Location:	MNPD					
Sample:	025					
Description:	H42					
Field Data (AST)	M C172, C143, C1	73/C231, C138, C1	064)			
Supplier:				Property	Test	Result
Mix Name:				Slump (in):		
Ticket Number:				Air Content (%):		
Truck Number:				Unit Weight (lb/ft³):		
Load Volume (yd³):				Air Temp (°F):		
Mold Date:	08/04/2021			Mix Temp (°F):		
Molded By:				Min Temp (°F):		
Initial Cure Method:				MaxTemp (°F):		
Laboratory Tes	t Data (ASTM	C39)	I		1	1
Set Number:	001	002				
Specimen Number:	1	1			 	
Age:	9	9				
Length (in):	12	12				
Diameter (in):	6	5.99				
Area (in²):	28.27	28.18			 	
Test Date:	08/13/2021	08/13/2021			+	
Break Type:	6	5				
Max Load (lbf):	117,979	127,070				
Strength (psi):	4,170	4,510				
Spec Strength (psi):	-,	,,,,,,,				
Excl in Avg Strength:				П	\vdash	\vdash
Remarks:				Data and the data		
Average 9-day Compr	ressive Strength (p	si):	4,340	Date received: 0: Curing: Stance ASTM CS Submitted by:	dard Field	
					M	Koeuler
$\times \times \downarrow \downarrow$				Distribution:		
Type 1 Type 2	Type 3	Type 4 Type 5	Type	6 Report Date: 8/1	13/21	

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure A-12. Concrete, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. b1)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: Midwest Machinery and Supply

BOL# N45211

Customer PO# 5055

Preservative: CCA - C 0.60D pcf AWPA UC4

Part #	Physical Description	# Pieces	Charge #	Retention
GS6846PS T	5.5x7,5-46" BCT	42	4697	.615

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

VA: Iowa Wood Preservers certifies that fine treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Nick Sowl, General Counsel

1

7/20/21 Date

Kebecea a Becker

GENERAL NOTARY - State of Netraska REBECCA A. BECKER My Comm. Exp. May 21, 2023

Figure A-13. BCT Timber Post – MGS Height, Test Nos. H42ST-1 and H42ST-2 (Item No. c1)

			. -					Total Tim		01:39		Gallons Start:	7,
					*					632.9		Gallons Finish:	6
		4007		m	TRINITY	MARDRAI	L .	Change Out (mir	1):			Gailons Used:	"1
Charge		4697		Treatment	7/17/2021	ALELENA,		Change Out Reaso	n:			Penetration Sampled:	
_	entral Nebraska		H 141 1.			7.57 2304		Board	Ft:	5,908		Penetration Sampros.	
nt (02) Ct	BILST MEDIASSE	•	COM.	Preservative:				Cubic	Pt:	455		Penetration Failed:	
		EPA Reg. No. 30	08-36 R	etention Target:	0.6	100000000000000000000000000000000000000	501	DVIn/DVC	nt- 416	1 445	i	_ , _	
rton, NE	0.00	EPA REE No. 30	1	Cylinder:		Void (900)	0)	Treat		Tally			
			1	Tank				Treat	y				
				Operator:				Date Off DripP	ad: //1///2	1 3-20 11	-		4
					. Chiis	tention	Flow P	late Temp		Time	W 3		
	Time	l Pre	essure .	Injection			Min Ma	Act I	Ramp	Start 1	End		
Step		Act Min 3	Viax I Act I	Min Max A	et Min		Distri 4 state	0.0009		07:57:56	08:04		
	Min Max	-	-22 -22	•	0.00	0.000		the second secon		08:05:00	08:09		
irial Vaccuum	7.0	7.0		with the experience of the same of the same of the same of	0.65	0.104		2,5550		08:09:56	08:10		
111	6.0	4.9	-		1.11	0.178		0.0000				SAWDUST-PCF	
the state and its	7.0	0.7	75 77			0.547	. 0.03	00 0.0126		08:10:38	08:35	Last restander-dised 25/6/2020	25-69
taise Press	25 25.0	25.0	147 149	The second of the second leads to	3.41	A DESCRIPTION AND DESCRIPTION		0.0000	4	08:35:40	08:38		
Lessme	we in example !		25 -1		3.31	0.532				08:38:32	08:43	DXFDRD LAB-X COA	1
ress Relief	12.0	to the same and address.			3.24	0.540)	0.0000		08:43:52	09:28	WOOD ANALYSIS	
Empty	15.0	5.3			3.38	0.564	1	0.0000			market pol		
Final Vacuum	45 45.0	45.0	-22 -21	2.10	manufactured in the second of the	0.402	An animal property and the	0.0000		09:28:54	09:36	17/7/2021 10:52	
and the property of the party o	7.0	A 44 MM M	-1		238	THE PERSON NAMED IN		0.0000	and the second	09:36:02	09:36	Calibration title: SAMDUST-pcF	
Final Empty	0.5	the sales operated with a property and	· -1		2.37	0.401		0.000				perioration fifts: quoquo,-bcL	
Finish	0.5				-						- 3	1	
			Auto	omatic Mix Inform				ctual Difference	1	-		SAMPLE ID: 4697	
		Current	Target	As Mi	12/010			1.001.0 15.	2		-1	7,000	
Chemical		Cartent		a 05	- 0		985.3					SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN 1	and in
		1055	7.860	7,87	7 9	als.	manual Company of the Person o					350000 Management	
Water		6,856	7,860			ials.	18.8	18.8 0.			74		
Water		6,856 1.8814 %	1,9000 9			-	manual Company of the Person o			•		DEMSITY = 32.0 pcf	
arrestment makes treatment to					9 % · G	ials.	18.8	18.8 0.		,	Co	DENSITY = 32.0 pcf	otentic
arrestment makes treatment to		1.8814 %	1.9000 9	Chemical Usag	9% .0	al I	18.8 .	18.8 0.	<u>.</u> .	· -	Copper	DENSITY = 32.0 pcf	desta
arrestment makes treatment to		1.8814 % Solution	1.9000 9	Chemical Usag	9 % · G	ials.	18.8 .	18.8 0. Retention d Gauge Adjust	i .	, 	Copper	DENSITY = 32.0 pcf XVI ONIDES X86LRM	otentic
CCA	hemical	1.8814 % Solution Start	1.9000 9	Chemical Usag	9 % G	al l	18.8 .	18.8 0. Retention d Gauge Adjust	i .		-	DENSITY = 32.0 pcf XMT ONIDES X861401 8R03 = 0.930 % 51.5	desta
CCA Type C	Chemical	1.8814 % Solution	1.9000 9	Chemical Usag	9 % G	al l	18.8 .	18.8 0. Retention d Gauge Adjust	i .	L	Copper	DENSITY = 32.0 pcf XHT ONIDES X861.60 \$803 = 0.990 % 51.5	desta
CCA	hemical	1.8814 % Solution Start	1.9000 9	Chemical Usag	9 % G	al l	Lbs Used ge Adjusted 3.43 182.7	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013		Copper	DENSITY = 32.0 pcf XMT ONIDES X2614M 8R03 = 0.990 % 51.5 6U0 = 0.837 % 17.5	desta
Type C	hemical	Solution Start 1,9000 %	1,9000 9	Chemical Usag Unit Lbs (Active)	9 % G Lbs/G Start F	al Sinish Gau	Lbs Used ge Adjusted 3.43 182.7	18.8 0. Retention d Gauge Adjust	1 1013	Retreat	Copper	DENSITY = 32.0 pcf	otentic
Type C Active CCA	hemical	1.8814 % Solution Start	1,9000 9	Chemical Usage Unit Lbs (Active)	9 % G Lbs/G Stert F 0.1606	al I	Lbs Used ge Adjusted 3.43 182.7	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	DENSITY = 32.0 pcf XMT ONIDES X2614M 8R03 = 0.990 % 51.5 6U0 = 0.837 % 17.5	desta
Type CAActive CCA	Chemical	Solution Start 1.9000 % Description	1,9000 9	Chemical Usag Unit Lbs (Active) Pieces Pa	9 % G Lbs/G Stert I 0.1606	als. Noish Gau 0.1592 17 Material In BF 1,176	18.8 Lbs Used ge Adjuster 3.43 182.7 offermation 98	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	DENSITY = 32.0 pcf	ξ
Type C Active CCA fremCode 1 r0061208	Chemical	Solution Start 1,9000 % Descripti	1,9000 9 Finish	Chemical Usag Unit Lbs (Active) Pieces Pa	9 % G Lbs/G Stert F 0.1606	al	Lbs Used ge Adjuster 3.43 182.7 formation 98	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	UNITED SERVICE	ξ
Type CAActive CCA	Chemical	Solution Start 1.5000 % Descripti Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % ion rdivall	Chemical Usag Unit Lbs (Active) Prices Pa 168 168	9 % G Lbs/G Stert I 0.1606	ais. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588	Lbs Used ge Adjuster 3.43 182.7 formation 98 133 49	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	UNITY = 32.0 pcf WHT CRIBES X261-818 GROS = 0.950 X 51.5 GROS = 0.537 X 17.5 ASSUS = 0.585 X 31.6 TOTAL = 1.922 TFT 100.0 RETENTION	ξ
Type C Active CCA	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % ion rdirall retrail	Chemical Usag Unit Lbs (Active) Prices Pa 168 168 126	Lbs/G Start 0.1606 2 @ 84 3 @ 56 1 @ 126	ais. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588	Lbs Used ge Adjuster 3.43 182.7 formation 98	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	UNITED SERVICE	ξ
Type CA Active CCA 1 t0061208 2 t1052421 3 t004075	Chemical	Solution Start 1.5000 % Descripti Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % ion rdirall retrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/Gs Start	als. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588 1,288	Lbs Used ge Adjuster 3.43 182.7 formation 98 133 49	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	UNSITY = 32.0 pcf WHT ORIBES X86481 8R03 = 0.890 X 51.5 600 = 0.897 X 17.5 88605 = 0.585 X 31.0 FOTAL = 1.922 XWT 100.0 RETENTION 0803 = 0.217 pcf	ξ
Type C Active CCA Type C Active CCA	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/G Start 0.1606 2 @ 84 3 @ 56 1 @ 126	ais. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588	18.8 Lbs Used ge Adjuster 3.43	18.8 0. Retention Adjust 2 0.3809 0.4	1 e6 013	Retreat	Copper	UNITY = 32.0 pcf WHT ONIDES X861AN 8803 = 0.990 % 51.5 800 = 0.995 % 17.5 88005 = 0.595 % 31.0 FOTAL = 1.922 %Y 100.0 RETENTION 6803 = 0.217 pcf 500 = 0.109 pcf	Σ
Type CA Active CCA 1 t0061208 2 t1052421 3 t004075	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/Gs Start	als. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588 1,288	18.8 Lbs Used ge Adjuster 3.43	18.8 0. Retention Gauge Adjust 2 0.3809 0.4	1 e6 013	·. . —	Totals Cus	UNITY 32.0 pcf	ξ
Type C Active CCA Type C Active CCA	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/Gs Start	als. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588 1,288	18.8 Lbs Used ge Adjusted 3.43 182.7 formation CF 98 133 49 85 90	18.8 0. Retention Gauge Adjust 2 0.3809 0.4	ed last	·. . —	Totals Cus	UNITY 32.0 pcf	ξ
Type C Active CCA Type C Active CCA	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/Gs Start	als. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588 1,288	18.8 Lbs Used ge Adjusted 7.43 182.7 formation 98 133 49 85 90	18.8 0. Retention Gauge Adjust 2 0.3809 0.4	ed last	Retreat	Totals Cus	UNITED SECTION	Ē
Type C Active CCA Type C Active CCA	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/Gs Start	als. Finish Gau 0.1592 17 Material In BF 1,176 1,596 588 1,288	18.8 Lbs Used ge Adjusted 3.43 182.7 formation CF 98 133 49 85 90	18.8 0. Retention Gauge Adjust 2 0.3809 0.4	ed last	·. . —	Totals Cus	UNITED SECTION	Ē
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbs (Active) Pricess Pa 168 126 126 34	Lbs/Gs Start		18.8 Lbs Used ge Adjuster 7,45 182.7 formation 107 98 133 49 85 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITY 32.0 pcf	Ē
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,9000 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 5	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	Lbs/Gs Start		18.8 Lbs Used ge Adjuster 7,45 182.7 formation 107 98 133 49 85 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITED SECTION	Ē
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,9000 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 9 Finish 1,8840 % fon dirail adrail ardrail ardrail	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	S Start I S Start I S S S S S S S S S		18.8 Lbs Used ge Adjuster 7,45 182.7 formation 107 98 133 49 85 90	18.8 0. Retention Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITED SECTION	Ē
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,9000 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 5	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	S Start I S Start I S S S S S S S S S		18.8 Lbs Used ge Adjuster 7,45 182.7 formation 107 98 133 49 85 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITED SECTION	Σ
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,9000 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 5	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	S Start I S Start I S S S S S S S S S		18.8 Lbs Used ge Adjuster 7,45 182.7 formation 107 98 133 49 85 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITED SECTION	Σ
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,9000 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 5	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	S Start I S Start I S S S S S S S S S		18.8 Lbs Used ge Adjuster 7,45 182.7 formation 107 98 133 49 85 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITED SECTION	Ξ
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	Chemical	Solution Start 1,9000 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 5	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	System S		18.8 Lbs Used gg Adjuster for mation 98 133 99 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITY = 32.0 pcf WHT ORIDES X264.6H 8R03 = 0.990 X 51.5 6U0 = 0.337 X 17.5 88205 = 0.555 X 31.6 FDTBL = 1.922 LWT 100.0 RETENTION 6803 = 0.317 pcf 500 = 0.100 pcf 777770	E
Type CA Active CCA Type CA TiemCode 1 10061208 2 1052421 3 1004075 4 1626079	hemical had a second se	Solution Start 1,900 % Descripti Trinity Gua Trinity Gua Trinity Gua Trinity Gua	1,9000 5	Chemical Usag Unit Lbc (Artive) Pricess Pa 168 168 168 188 184	System S		18.8 Lbs Used gg Adjuster for mation 98 133 99 90	18.8 0. Retention d Gauge Adjust 2 0.3809 0.4	in the second se	·. . —	Totals Cus	UNITED SECTION	E

Figure A-14. BCT Timber Post – MGS Height, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. c1)

3046HD6

Atlas Tube Corp (Chicago) 1855 East 122nd Street Chicago, Illinois, USA 60633 Tel: 773-646-4500 Fax: 773-646-6128

Ref.B/L: 80728203 Date: 08.17.2016 Customer: 2908

MATERIAL TEST REPORT

Sold to

Gregory Industries Inc. 4100 13th Street SW. CANTON OH 44710 USA Shipped to

Tru-Form Steel & Wire 1204 Gilkey Ave HARTFORD CITY IN 47348

H#821T08220 R#18-642 Black Paint 72" Long Foundation Tube

Material: 8.0x6			ILDOM	US.			: 800601					Made in Melted i	n: USA		
Sales order: 1	105121				Pu	rchase C	rder: 35	569		Cust Mat	erial #:	TRB3/16-8	-6-27		
Heat No	С	Mn	Р	s	Si	Al	Cu	СЬ	Мо	Ni	Cr	V	Ti	В	N
616137	0.210	0.930	0.011	0,003	0,020	0.041	0.020	0.008	0.020	0.020	0.030	0.008	0.001	0.000	0.00
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			С	ertification	on		(CE: 0.38		
M800650076	4	058210 Psi	073	3148 Psi	32 %			A	STM A50	0-13 GRAD	E B&C				
Material Note: Sales Or.Note:		,													
Material: 8.0x6	.0x188x	30'0"0(2x3)S	LDOM	US	Ма	terial No	: 800601	88				Made in Melted i	107201717		
Sales order: 1	105121				Pu	rchase C	order: 35	569		Cust Mat	erial#: 1	TRB3/16-8	-6-30		
Heat No	C	Mn	P	s	Si	Al	Cu	СЬ	Mo	Ni	Cr	٧	Ti	В	N
821T08220	0.220	0.810	0.013	0.006	0.006	0.041	0.160	0.002	0.005	0.010	0.020	0.002	0.002	0.000	0.00
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			С	ertification	on			CE: 0.37		
M800650038	6	057275 Psi	070	934 Psi	32 %			A	STM A50	0-13 GRAD	E B&C				
Material Note: Sales Or.Note:															
Material: 8.0x6	6,0x188x	30'0"0(2x3)S	ILDOM	us	Ma	iterial No	: 800601	88				Made in Melted i			
Sales order: 1	105121				Pu	rchase C	order: 35	569		Cust Mat	erial #: 7	TRB3/16-8	-6-30		
Heat No	С	Mn	Р	s	SI	Al	Cu	Cb	Mo	Ni	Cr	٧	Ti	В	N
821T08220	0.220	0.810	0.013	0.006	0.006	0.041	0.160	0.002	0.005	0.010	0.020	0.002	0.002	0.000	0.00
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			С	ertification	on		(CE: 0.37		
		057275 Psi	070	***************************************	32 %			**	***************************************	0-13 GRAD					

Jason Richard

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.
CE calculated using the AWS D1.1 method.

Page: 1 Of 6

Metals Service Center Institute

Figure A-15. 72-in. Long Foundation Tube, Test Nos. H42ST-1 and H42ST-2 (Item No. c2)

December 13, 2022 WRSF Report No. TRP-03-472-22

Certified Analysis

Trinity Highway Products, LLC 550 East Robb Ave.

Lima, OH 45801 Phn:(419) 227-1296

Customer: MIDWEST MACH.& SUPPLY CO.

P. O. BOX 703

MIDWEST MACH.& SUPPLY CO.

MILFORD, NE 68405

Project: RESALE

4

Order Number: 1275017 Prod Ln Grp: 3-Guardrail (Dom)

Customer PO: 3400

BOL Number: 99202

Document #: 1

Shipped To: NE Use State: NE

To: NE

Ship Date:

As of: 3/22/17

Qty	Part#	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P	S	Si	Cu	Cb	Cr	Vn	ACV
400	3380G	5/8"X1.5" HEX BOLT A307	HW			0052429-113200													
600	3400G	5/8"X2" GR BOLT	HW			R#18-642	Black	Paint	Ground	St	rut	Ass	emb.	ly					
500	3480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550-B													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190	0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36			A82292	54,000	73,300	31.0	0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		HW			15056184													
20	12173G	T12/6'3/4@1'6.75"/S			2	L35216											4		
			M-180	A	2	209331	62,090	81,500	28.1	0.190	0.720	0.013	0.002	0.020	0.110	0.00	0.070	0.002	. 4
			M-180	A	2	209332	61,400	81,290	25.3	0.190	0.730	0.014	0.003	0.020	0.120			0.001	
			M-180	A	2	209333	61,200	80,050	25.8	0.200	0.740	0.016	0.005	0.010	0.120	0.00	0 0.070	0.002	. 4

2 of 4

Figure A-16. Ground Strut Assembly, Test Nos. H42ST-1 and H42ST-2 (Item No. c3)

140

December 13, 2022 wRSF Report No. TRP-03-472-22

As of: 3/22/17

Certified analysis

Trinity Highway Products, LLC

550 East Robb Ave.

Lima, OH 45801 Phn:(419) 227-1296

Customer: MIDWEST MACH.& SUPPLY CO.

P.O. BOX 703

MILFORD, NE 68405

Project: RESALE

Order Number: 1275956 Prod Ln Grp: 3-Guardrail (Dom)

Ship Date:

Customer PO: 3415

BOL Number: 99204 Document #: 1

Shipped To: NE

Use State: NE

Qty Part# Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P S	Si	Cu	Cb Cr	Vn	ACW
	M-180	A	2	208318	64,140	81,540	24.5	0.190	0.720	0.011 0.003	0.020	0.110	0.000 0.06	0.000	4
	M-180	A	2	208674	63,250	82,410	22.7	0.190	0.730	0.011 0.003	0.020	0.100	0.000 0.06	0.002	4
	M-180	A	2	208675	62,100	81,170	22.7	0.190	0.730	0.012 0.004	0.020	0.090	0.000 0.05	0.001	4
	M-180	A	2	208676	62,920	82,040	25.4	0.190	0.720	0.012 0.004	0.010	0.100	0.000 0.06	0.002	4
12365G			2	L35216											
	M-180	A	2	209331	62,090	81,500	28.1	0.190	0.720	0.013 0.002	0.020	0.110	0.000 0.07	0.002	4
	M-180	A	2	209332	61,400	81,290	25.3	0.190	0.730	0.014 0.003	0.020	0.120	0.000 0.06	0.001	4
	M-180	Δ	2	209333	61 200	80.050	25.8	0.200	0.740	0.016 0.005	0.010	0.120	0.000 0.07	0.002	4

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410.

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329.

3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING

STRENGTH-46000 LB

Figure A-17. Ground Strut Assembly, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. c3)

Certified _ analysis

N Products

As of: 3/22/17

Trinity Highway Products , LLC

Order Number: 1275956 Prod Ln Grp: 3-Guardrail (Dom)

Customer PO: 3415

BOL Number: 99204 Ship Date:

Document #: 1

Shipped To: NE

Use State: NE

Project: RESALE

Trinity Highway Products, LLC

Lima, OH 45801 Phn:(419) 227-1296

P.O. BOX 703

MILFORD, NE 68405

550 East Robb Ave.

State of Ohio, County of Allen. Sworn and subscribed before me this 22nd day of March, 2017.

Notary Public: June 9 Durs
Commission Expires: 2

Customer: MIDWEST MACH.& SUPPLY CO.

JAMIE L DAVIS
Notary Public, State of Ohio
My Commission Expires
March 22, 2021

Certified By:

Quality Assurance

141

Figure A-18. Ground Strut Assembly, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. c3)

	b.	VALLAMSPORT, PA. 17701-5809										
PTIN	MUS		CUSTOMER SHIP TO									
STE				PA. 17701-5809		MSPORT, PA. 17701-5	5809	WEIGHT		HEA	T/BATCH	
US-ML-BEAU		ECT	809800		33,050,05			47,416.00			OT0016343	
VIDOR, TX 7		ESI	SALES ORDER	TOMER SHIP TO CUSTOMER BILL TO GRADE SHAPE / SIZE WIRE ROD / 7/32 EROPE WORKS INC 100086167 WIRE ROD / 7/32 MAYNARD ST 100 MERCHING ST								
USA			996316688		600	210						
CUSTOMER PU	JRCHASE ORDER	NUMBER		2840429			7/20					
CHEMICAL CON	MPOSITION					76						
C % 0.52	%	%	96	%	%	96	%	%	%	96	96	N % 0.0068
MECHANICAL F	PROPERTIES											
Tensile psi 129065				psi				%				Tensile Mpa 890
			OT EXPOSED TO ME	RCURY						(*)		
					rds of company. We						LEONARD	O RADICCHI
						ne; 409-769-1086 chi@optimus-steelu						

Figure A-19. BCT Anchor Cable End Swaged Fitting, Test Nos. H42ST-1 and H42ST-2 (Item No. c4)

Wirerope Works, Inc. 100 Maynard St Williamsport, PA 17701

Manufacturer of Bethlehem Wire Rope *
"Our Quality Management Systems are registered to ISO 9001: 2015 and API-Q1"

CERTIFICATE OF COMPLIANCE

CUSTOMER: MAZZELLA LIFTING TECHNOLOGIES

ORD# 267872 CUST. PO P202954

WW FILE NAME 267872ORD

REEL# 0243493

DESCRIPTION: 3/4" 0619 W GA IPS RR SAC GALVANIZED WIRE ROPE

IN ACCORDANCE WITH AASHTO DESIGNATION M30-02

ACTUAL TEST RESULTS

ACTUAL BREAKING STRENGTH: 63,400 LBS REQUIRED BREAKING STRENGTH: 42,800 LBS

MINIMUM MASS OF COATING:

WIRE DIAMETER MAINWIRES

.054" MINIMUM CLASS A COATING .40- ACTUAL RANGE .55/.66 oz/fl2 .040" MINIMUM CLASS A COATING .40- ACTUAL RANGE .52/.53 oz/fl2

STEEL CERTIFICATES FOR ROD MANUFACTURER ARE ATTACHED
The following are heat numbers and wire diameters as shown on the Steel Certificates

.054" HEAT # OT0016343 20676920 .040" HEAT # 614442 OT0013913

.061" HEAT # 20676920 20643620 OT0009792

.046" HEAT # 531380084/02

ALL MATERIALS "MELTED AND MANUFACTURED IN THE USA"

tatti Walkens DATE: 09/08/2020 CERTIFICATE# AA30816

PATTI WATKINS, Inv. Control/QA Customer Coordinator

Per the authority of, ROGER GILLILAND, DIRECTOR OF ENGINEERING

Figure A-20. ¾-in. 6x19 IWRC IPS Wire Rope BCT, Test Nos. H42ST-1 and H42ST-2 (Item No. c5)

MIDWEST MA	CHINERY & S	LUPPLY CO				Test Report Ship Date:	11/17/2017		
P. O. BOX 703						Customer P.O.: Shipped to:	3515 MIDWEST MAC	CHINERY & SU	PPLY CO
MILFORD,NE,6	18405					Project:			
						GHP Order No:	128AA		
LOT#	C.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quant
	-				4.44				7.7.7.1

	0.01217	79277										
HT # code	LOT#	C.	Mn.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Type
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	A	2
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2
196828BM		0.04	0.84	0.014	0.003		76000	74000	25			2
E22985		0.17	0.51	0.013	800.0	0.008	72510	64310	29.5	4		2
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	8		2

Description
12GA TB TRANS.
588N X BIN X BIN X BIN FR.
350 STRUT & YOKE
350 STRUT & YOKE
28N X 5 1/28N PPE SLEEVE
3/15N X BIN X BIN X 6/TOIN TUBE SLEEVE

144

James P. Definks

Motary Public, State of Ohio

**No Commission Expires 10-19-2019

All Galvanizing has occurred in the United States
All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"
All Steel used meets Title 23CFR 635.410 - Buy America
All Guardraii and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270
All Bolts and Nuts are of Domestic Origin
All material febricated in accordance with Nebraska Department of Transportation

All material febricated in accordance with Nebraska Department of Transportation
All controlled oxidized/corrosion resistant Guardrall and terminal sections meet ASTM A606, Type 4.

STATE OF OHIO: COUNTY OF STARK, Sworn to and subscribed before me, a Notary Public Andrew Affar this 21 day of November, 2017

Notary Public, State of Ohio

Figure A-21. 8-in. x 8-in. x 5/8-in. Anchor Bearing Plate, Test Nos. H42ST-1 and H42ST-2 (Item No. c6)

Atlas Tube (Alabama), Inc. 171 Cleage Dr Birmingham; Alabama, USA 35217 Tel: Fax:

Ref.B/L: 80791452 Date: 11.10.2017 Customer: 179

MATERIAL TEST REPORT

Sold_to

Steel & Pipe Supply Compan PO Box 1688 MANHATTAN KS 66505 USA

Shipped to

Steel & Pipe Supply Compan 401 New Century Parkway NEW CENTURY KS 66031 USA

H#712810 R#18-773 2 3/8" O.D. x 6" Long BCT Post Sleeve

	x2.0x18	Bx40'0"0(5	x4).		M	aterial No	o: 0300	2018840	000-B			Made in Melted	n: USA in: USA		
Sales order:	122697	6			Pi	ırchase (Order: 4	5002966	556	Cust Ma	terial #:	663002	0018840)	
Heat No	С	Mn	P	s	Si	AI	Cu	Cb	Мо	Ni	Cr	V	Ti	В	N
B704212	0.200	0.450	0.010	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bundle No	PCs	Yield		nsile	Eln.					rtification			c	E: 0.2	3
40867002	20	064649 P		7652 Psi	24 %					00-13 GR					
Material Note Sales Or.Note															
Material: 2.3	75x154x	42'0"0(34)	ĸ1).		м	aterial No	o: R023	7515442	200			Made in	n: USA		
Sales order:	122697	6			Pu	ırchase (Order: 4	5002966	556	Cust Ma	terial #:	642004		•	
Heat No	С	Mn	P	s	Si	AI	Cu	Cb	Мо	Ni	Cr	v	Ti	В	N
8712810	0.210	0.460	0.012	0.002	0.020	0.024	0.100	0.002	0.020	0.030	0.060	0.004	0.002	0.000	0.008
Bundle No	PCs	Yield	Төг	nsile	Eln.	2in	Rb		Се	rtification			c	E: 0.3	2
MC00006947		063688 P	si 08	3220 Psi	25 %	91			STM A5	00-13 GR	ADE B&	С			
Material Note Sales Or.Note															
			κ1).		М	aterial No	: R023	7515442	200			Made in	ı: USA		
Material: 2.3	75x154x	42'0"0(34)													
Material: 2.3					Pt	rchase C	Order: 4	5002966	556	Cust Ma	terial #:	642004	042		
			Р	s	Pt Si	rchase C	Order: 4 Cu	5002966 Сь	556 Mo	Cust Ma Ni	terial #: Cr	642004 V	042 Ti	В	N
Sales order:	122697	6	P 0.005	S 0.004										B 0.000	N 0.000
Sales order: Heat No	122697 C	'6 Mn	0.005 Tel		Si	0.000 2in	Cu	О.000	Mo 0.000	Ni	Cr	V	Ti 0.000		0.000

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Steel Tubes D1.1 method. Institute

Page: 3 Of 4

Metals Service Center Institute

Figure A-22. 23/8-in. O.D. x 6-in. Long BCT Post Sleeve, Test Nos. H42ST-1 and H42ST-2 (Item No. c7)

Certified Analysis

Trinity Highway Products, LLC

550 East Robb Ave.

Order Number: 1269489

Prod Ln Grp: 3-Guardrail (Dom)

Asof: 11/7/16

Lima, OH 45801 Phn:(419) 227-1296

Customer PO: 3346 BOL Number: 97457

Customer: MIDWEST MACH & SUPPLY CO.

Document #: 1 P.O. BOX 703

Ship Date:

Shipped To: NE

MILFORD, NE 68405

Use State: NE

Project: RESALE

Qty	Part#	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P	S	Si	Cu	Cb	Cr	Va	ACV
	701A	ANCHOT BOX	A-36			JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0,001	0.140	0.028	4
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
20	738A	5TUBE \$L.188X6X8 1/4 /PL	A-36		2	4182164	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A.		A-500			A49248	64,818	78,412	32.0	0,200	0.810	0.014	0.002	0.040	0.020	0,000	0.040	0.001	4
6	749G	TS 8X6X3/16X6-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A.	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 3/4X6'6/DBL	HW			119048													
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW			28971-B													
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													

Figure A-23. Anchor Bracket Assembly, Test Nos. H42ST-1 and H42ST-2 (Item No. c8)

MwR.	
SF Rep	
MwRSF Report No. TRP-03-472-22	Ę
. TRP-	December 13, 2022
-03-47	er 13,
2-22	7707

	ł		ſ			CER		TERIAL TEST	REPORT	1						Page 1 / 1
00				CUSTOMER SHIP			CUSTOMER I			GRADE A992/A7			HAPE / S Vide Flans		X 8.5# / 15	DOCUMENT ID: 0 X 0000367997
GĐ	GE	KUP	M	HIGHWAY SAI 473 W FAIRGR			HIGHWAY	SAFETY CORP				13	5.0			
10 M CA	-			MARION,OH 4: USA	3302-1701		GLASTONB USA	URY,CT 06033	-0358	LENGTI 42'00"		PCS 21		IGHT 97 LB		AT / BATCH 069378/02
	RTERSVILLE RASSDALE R			USA			USA			42 07		2.	1442			
	VILLE, GA 301			SALES ORDER			CUSTON	ER MATERIA	L Nº		ICATION / DAT			le le	01.60	D
JSA				9435965/00002	9					ASTM AS	6-17, A36-14, ASM 709-17	(E SA-36		ľ	305	win
	R PURCHASE O	RDER NUM	BER		BILL OF LA			DATE			992-11 (2015) 3.21-13 345 WM, 50			I	B-BU	ause
1865					1323-000016	9430		11/08/2020		CA CHO	1.21-13 343 Wils, Ju	iw.				
CHEMICAL	COMPOSITION															
C (%)	Mn (%)	P (%)	S (%)	Si (%)	Cu (%)	Ni (%)	Cr (%)	Mo(%)	Sn (%)	V (%)	Nb (%)					
0.12	0.81	0.009	0.016	0.20	0.24	0.06	0.10	0.012	0.009	0.001	0.006					
YS 0.2	AL PROPERTIES 2% (PSI) 3700 4100	70	(PSI) 1900 1400	,	7S (MPa) 370 373		UTS (MPa 489 485	1)	Y/T rati (%) 0.760 0.770		Elong. (%) 25.60 26.30					

Phone: (770) 387 5718 Email: yan.wang@gerdau.com

Figure A-24. W6x8.5 or W6x9, 72-in. Long Steel Post, Test Nos. H42ST-1 and H42ST-2 (Item Nos. d1 and d2)

Phone: (409) 267-1071 Fmail: Bhaskar Yalamanchili@serdau.com

P.O. BOX 358 **GLASTONBURY, CT 06033** CERTIFICATE OF COMPLIANCE/ANALYSIS REPORT

SOLD TO:

MIDWEST MACHINERY & SUPPLY 974-238th Road

Milford, NE, USA

SHIP TO:

MIDWEST MACHINERY & SUPPLY 974 238TH ROAD MILFORD,

INVOICE / S.O.: 0201778 / 0148102 CUSTOMER P.O.: 3508

REFERENCE: STOCK DATE SHIPPED: 10/23/2017

QTY: ITEM NUMBER:

HEAT/LOT NO: YIELD: T-POG060080600

DESCRIPTION: Mn:

S: THRIE POST W06 x 008,5# x 06'00 GALV

CI:

Type ACW

550 (200) 1702411

(350) 55048942

400

PSG030050503-20

IBSB03005000

POST S03@05.7 x 05'03.0 3 HL 2 SD W/PLT 3.5-3-3 SPGLV

1703040 B76745

PL-B025-080240

CC:

TENSILE:

IB-B0600800

%ELONG

ALL STEEL USED IN MANUFACTURING IS MADE AND MELTED IN THE USA, INCLUDING HARDWARE FASTENERS, AND COMPLIES WITH THE BUY AMERICA ACT. ALL COATINGS PROCESSES ARE PERFORMED IN THE USA AND COMPLY WITH THE BUY AMERICA ACT. BOLTS COMPLY WITH ASTMA-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUT'S COMPLY WITH ASTMA-153 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. MUSHERS COMPLY WITH ASTMA-154 SAND/OR F-844 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTMA-154. NULESS OTHERWISE STATED. ALL GALVANIZED IN ACCORDANCE WITH ASTMA-153. UNLESS OTHERWISE STATED. ALL ASTMA-154. AS ASTMA-155 AND ASTMA-155 AND ASTMA-155. AND ASTMA-155 AND ASTMA-155 AND ASTMA-155. AND ASTMA-155 AND

HIGHWAY SAFETY CORPORATION

QUALITY ASSURANCE MANAGER

NOTARIZED UPON REQUEST:

STATE OF CONNECTICUT COUNTY OF HARTFORD SWORN AND SUBSCRIBED BEFORE ME THIS

NOV

Jalino

MARGARET J. SATALINO NOTARY PUBLIC MY COMMISSION EXPIRES OCT. 31, 2021

Page 1 - 0148102

Figure A-25. W6x8.5 or W6x9, 72-in. Long Steel Post, Test No. H42ST-2 (Item Nos. d1 and d2)

December
December 13, 2022

QUALITY ASSURANCE MGR.

GÐ GE	RD/	VU	NORFOLK IRC	ON & METAL	COINC	CUSTOMER B	BILL TO RON & METAL	. CO INC	A992/A572-50				DOCUMEN 15# / 150 X 0000558688
S-ML-MIDLOTHIAN 00 WARD ROAD MIDLOTHIAN, TX 76065 ISA			DURANT.IA 52747-9800 USA SALES ORDER 9385250/000010			NORFOLK,NE 68702-1129 USA				Н	PCS 12	WEIGHT 3,600 LB	HEAT/BATCH 59094758/03
						CUSTOMER MATERIAL Nº 00255			SPECIFICATION / DATE or RI ASTM A6-17 ASTM A709-17			ISION	
CUSTOMER PURCHASE 15015094	ORDER NUM	MBER	BILL OF LADING 1327-0000402243						ASTM A992-11 (2015), A572-15 CSA G40.21-13 345WM, 50W				
CHEMICAL COMPOSITION C (%) Mn (%)	P (%)	S (%)	Si (%)	Cu (%)	Ni (%)	Cr (%)	Mo(%)	Sn (%)	V (%)	Nb (%)	Al (%)	CEqvA6 (%)	
0.10 0.99	0.021	0.032	0.21	0.30									
			0.21	0.39	0.12	0.22	0.026	0.008	0.002	0.012	0.004	0.35	
YS 0.2% (PSI) 55505 57602 OMMENTS / NOTES	UT	S (PSI) 19495 199077		YS (MPa) 383 397		UTS (MPa 479 476	a)	0.008 Y/T rati (%) 0.800 0.830	0.002	0.012 G/L (Inch. 8.000 8.000		G/L (mm) 200.0 200.0	Elong. (%) 22.60 22.40
YS 0.2% (PSI) 55505 57602 OMMENTS / NOTES	UT	9495		YS (MPa) 383 397		UTS (MPa 479 476	a)	Y/T rati (%) 0.800	0.002	G/L (Inche 8,000		G/L (mm) 200.0	Elong. (%) 22.60 22.40
YS 0.2% (PSI) 55505 57602 OMMENTS / NOTES	UT	9495		YS (MPa) 383 397		UTS (MPa 479 476	a)	Y/T rati (%) 0.800	6.002	G/L (Inche 8,000		G/L (mm) 200.0	Elong. (%) 22.60 22.40
YS 0.2% (PSI) 55505 57602 OMMENTS / NOTES	UT	9495		YS (MPa) 383 397		UTS (MPa 479 476	a)	Y/T rati (%) 0.800	6.002	G/L (Inche 8,000		G/L (mm) 200.0	Elong. (%) 22.60 22.40
55505	UT	9495		YS (MPa) 383 397		UTS (MPa 479 476	a)	Y/T rati (%) 0.800	6.002	G/L (Inche 8,000		G/L (mm) 200.0	Elong. (%) 22.60 22.40

Figure A-26. W6x15 or W6x9, 72-in. Long Steel Post, Test Nos. H42ST-1 and H42ST-2 (Item No. d3)

```
30Jul20 3: 3
                          TEST CERTIFICATE
                                                                         No: MAR 380309
      NUCOR TUBULAR PRODUCTS INC.
                                                 P/O No 01031988
      6226 W. 74TH STREET
CHICAGO, IL 60638
                                                 Rel
                                                  S/O No MAR 396220-002
                                                 B/L No MAR 235650-006 Shp 30Jul20
      Tel: 708-496-0380 Fax: 708-563-1950
                                                 Inv No
                                                                           Inv
                                                Ship To: ( 1)
NORFOLK IRON & METAL
      Sold To:
                  ( 1403)
      NORFOLK IRON & METAL
      P.O. BOX 1129
                                                 3001 NORTH VICTORY RD
      NORFOLK, NE 68701
                                                 NORFOLK, NE 68702
     Tel: 402-371-1810 Fax: 402 379-5409
                  CERTIFICATE of ANALYSIS and TESTS Cert. No: MAR 380309
                                                                                24Jul20
Part No 01209
TUBING A500 GRADE B(C)
                                                                           PCS
                                                                                    Wgt
8" X 6" X 1/4" X 20'
                                                                            12
                                                                                  5,380
Heat Number
                 Tag No
                                                                           Pcs
                                                                                     Wgt
A97575
                 914842
                                                                                  2,690
                                                                             6
                      YLD=58050/TEN=66570/ELG=32.6
A97575
                 914843
                                                                             6 2,690
Heat Number
                       *** Chemical Analysis ***
A97575
                 C=0.0500 Mn=0.4100 P=0.0090 S=0.0030 Si=0.0300 Al=0.0360
                 Cu=0.1500 Cr=0.0700 Mo=0.0200 V=0.0030 Ni=0.0400 Nb=0.0160 Sn=0.0100 N=0.0070 B=0.0002 Ti=0.0020 Ca=0.0023
                 MELTED AND MANUFACTURED IN THE USA
THE SPECIFICATIONS LISTED BELOW REPRESENT THE
CURRENT ISSUED DATES OF THESE STANDARDS. THIS
DOES NOT INDICATE THAT THE MATERIAL ABOVE CONFORMS TO EACH OR ALL OF THE STANDARDS. WE CERTIFY THE MATERIAL ABOVE TO THE SPECIFICATION LISTED IN THE
LINE DESCRIPTION.
CURRENT STANDARDS:
A252-19
A500/A500M-20
A513/A513M-20
ASTM A53/A53M-18 | ASME SA-53/SA-53M-18
A847/A847M-14
A1085/A1085M-15
IN COMPLIANCE WITH EN 10204 SECTION 4.1
INSPECTION CERTIFICATE TYPE 3.1
```

Page: 1 Last

Figure A-27. 17½-in. Long, 8-in. x 6-in. x ¼-in. Steel Blockout, Test No. H42ST-1 (Item No. d4)

H#841P04950 R#21-807 17-1/2" Long, 8"x6"x1/4" Steel Blockout BULL MOOSE TUBE - ELKHART FACILITY 12/09/2020 **CERTIFICATION OF TESTS** Page 2 of 2 EN 10204:2004 TYPE 3.1 CERT 1819 Clarkson Rd. Chesterfield, Missouri 63017 636-537-2600 BILL TO : Norfolk Iron & Metal Company P.O. Box 1129 Norfolk NE 68701 SHIP TO : Norfolk Iron & Metal Company (NE) 3001 Victory Rd. Norfolk NE 68701-0000 B/L Number 510494 IK4886_J19553 Ship Via 8" X 6" X 0.250 HR X 40" Order# 680352 152.4 X 203.2 mm Ladle Analysis and Physicals Purchase Order # 01032930 **ASTM A500-20 GRADE B & C** Item # 101394 3844 Customer Item # 01211 Raw Material is of Domestic Origin - Melted and Manufactured in the USA Heat # = Y6523 NG Si Cb Cu Mo B Ti N Ceq YLD psiTSN psi ELN % .013 .005 .030 .020 .022 .120 .090 .040 .002 .000 .010 .000 .000 .191 59840 71430 8" X 6" X 0.250 HR X 40" Order# 680352 Ladle Analysis and Physicals Purchase Order # 152.4 X 203.2 mm 01032930 **ASTM A500-20 GRADE B & C** Item # 101394 3844 Customer Item # 01211 Raw Material is of Domestic Origin - Melted and Manufactured in the USA Heat # = 841P04950 P NG Mn P S AI Si Cb Cu Cr Ni V Mo B Ti N Ceq YLD psiTSN psi ELN % .060 .640 .009 .005 .049 .027 .029 .025 .020 .010 .001 .000 .004 .000 .000 58298 68553 THIS WELDED STEEL TUBING IS MANUFACTURED IN THE UNITED STATES OF AMERICA AND HAS BEEN PRODUCED IN ACCORDANCE WITH THE STATED SPECIFICATION. LADLE CHEMISTRIES ARE REPORTED FROM DOCUMENTS PROVIDED BY THE SUPPLYING STEEL MILL. ANY PHYSICAL AND MECHANICAL TESTING RESULTS SHOWN ON THIS CERTIFICATION ARE CORRECT AS CONTAINED IN THE RECORDS OF THE COMPANY.

Figure A-28. 17½-in. Long, 8-in. x 6-in. x ¼-in. Steel Blockout, Test No. H42ST-2 (Item No. d4)

```
H#SK1853 R#21-807 17-1/2" Long, 12"x4"x1/4"
                                              CERTIFICATE
  200ct20 21:30
                                TEST
                                                                                     No: MAR 448355
        NUCOR TUBULAR PRODUCTS INC.
                                                          P/O No 03054578
        6226 W. 74TH STREET
                                                          Rel
        CHICAGO, IL 60638
                                                          S/O No MAR 404424-002
        Tel: 708-496-0380 Fax: 708-563-1950
                                                          B/L No MAR 239794-003
                                                                                        Shp 200ct20
                                                          Inv No
                                                                                        Inv
        Sold To: ( 1403)
NORFOLK IRON & METAL
                                                          Ship To: (3)
NORFOLK (GREELEY)
31181 COUNTY RD 39 1/2
        P.O. BOX 1129
        NORFOLK, NE 68701
                                                          970-352-6722
                                                          GREELEY, CO 80631
        Tel: 402-371-1810 Fax: 402 379-5409
                     Part No 01239
  TUBING A500 GRADE B(C)
                                                                                        Pcs
                                                                                                   Wat
  12" X 4" X 1/4" X 20
                                                                                                 3,098
                                                                                          6
                  Tag No
  Heat Number
                                                                                        PCS
                                                                                                   Wat
  SK1853
                      936109
                                                                                          6
                                                                                                 3,098
                          YLD=59010/TEN=73730/ELG=32.2
                     *** Chemical Analysis ***
C=0.2000 Mn=0.3800 P=0.0080 S=0.0020 Si=0.0300 Al=0.0270
Cu=0.1000 Cr=0.0500 Mo=0.0100 V=0.0020 Ni=0.0300 Nb=0.0060
  Heat Number
  SK1853
                     N=0.0059 B=0.0001 Ti=0.0010 Ca=0.0018 MELTED AND MANUFACTURED IN THE USA
 THE SPECIFICATIONS LISTED BELOW REPRESENT THE CURRENT ISSUED DATES OF THESE STANDARDS. THIS DOES NOT INDICATE THAT THE MATERIAL ABOVE CONFORMS TO EACH OR ALL OF THE STANDARDS. WE CERTIFY THE MATERIAL ABOVE TO THE SPECIFICATION LISTED IN THE
 LINE DESCRIPTION.
CURRENT STANDARDS:
 A252-19
 A500/A500M-20
 A513/A513M-20
 ASTM A53/A53M-18 | ASME SA-53/SA-53M-18
A847/A847M-14
A1085/A1085M-15
 IN COMPLIANCE WITH EN 10204 SECTION 4.1
 INSPECTION CERTIFICATE TYPE 3.1
```

Figure A-29. 17½-in. Long, 12-in. x 4-in. x ¼-in. Steel Blockout, Test Nos. H42ST-1 and H42ST-2 (Item No. d5)

Page: 1 Last

TEST CERTIFICATE No: MAR 442180 210ct20 9:16 P/O No 01033046 NUCOR TUBULAR PRODUCTS INC. 6226 W. 74TH STREET CHICAGO, IL 60638 Rel S/O No MAR 403523-001 Tel: 708-496-0380 Fax: 708-563-1950 B/L No MAR 239466-002 Shp 210ct20 Inv No Ship To: (1) NORFOLK IRON & METAL 3001 NORTH VICTORY RD NORFOLK, NE 68702 Sold To: (1403) NORFOLK IRON & METAL P.O. BOX 1129 NORFOLK, NE 68701 Tel: 402-371-1810 Fax: 402 379-5409 Cert. No: MAR 442180 CERTIFICATE of ANALYSIS and TESTS 120ct20 Part No 01245 TUBING A500 GRADE B(C)
12" X 4" X 1/4" X 40' Pcs Wat 6,197 6 Wat Heat Number PCS Tag No SK1853 435482 6 6,197 YLD=59010/TEN=73730/ELG=32.2 *** Chemical Analysis ***
C=0.2000 Mn=0.3800 P=0.0080 S=0.0020 Si=0.0300 Al=0.0270
Cu=0.1000 Cr=0.0500 Mo=0.0100 V=0.0020 Ni=0.0300 Nb=0.0060
N=0.0059 B=0.0001 Ti=0.0010 Ca=0.0018 Heat Number SK1853 MELTED AND MANUFACTURED IN THE USA THE SPECIFICATIONS LISTED BELOW REPRESENT THE CURRENT ISSUED DATES OF THESE STANDARDS. THIS DOES NOT INDICATE THAT THE MATERIAL ABOVE CONFORMS TO EACH OR ALL OF THE STANDARDS. WE CERTIFY THE MATERIAL ABOVE TO THE SPECIFICATION LISTED IN THE LINE DESCRIPTION. CURRENT STANDARDS: A252-19 A500/A500M-20 A513/A513M-20 ASTM A53/A53M-18| ASME SA-53/SA-53M-18 A847/A847M-14 A1085/A1085M-15 IN COMPLIANCE WITH EN 10204 SECTION 4.1 INSPECTION CERTIFICATE TYPE 3.1

Page: 1 Last

Figure A-30. 17½-in. Long, 12-in. x 4-in. x ¼-in. Steel Blockout, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. d5)

O. BC 620 S ENO,	From Today fo DX 250 T. RT. 7 NORT OH 45773					PAGE	
620 S ENO, ione:	T. RT. 7 NORT OH 45773	гн					
eno,	ОН 45773	гн					
one:						TERMS	
						SHIP METHOD	
	740-376-9396 0-376-9960					SHIP WETHOL	PEDEXF
	SOLD TO				SHIF	РТО	
	Midwest Road				Midv	west Roadside Safety	
	4630 NW 36th Lincoln, NE 6					0 NW 36th Street oln, NE 68524	
14	I-3/16"x12	2"x5-1/8"	Compo	site Recycled	Bloc	ckout	
RDEF	NUMBER	ORDER DATE		CUSTOMER ID	P	PURCHASE ORDER	SHIP DATE
4	40255	01/11/21		MIDWEST	٦	Test H42S & H42ST	1/14/2021
NE	ORDERED	SHIPPED	UOM	ITEM NUMBER		DESCRIPTION	
	10.0000	10.0000	EACH	GB14SH1		Composite Guardrail Block 14"	or Steel Post w/hang
	4.0000	4.0000	EACH	MGS14SH		210111 Midwest Composite Block 14" h 210111	x 12" d for Steel Pos

Figure A-31. $14^3/_{16}$ -in. x 8-in. x $5\frac{1}{8}$ -in. Composite Recycled Blockout, Test Nos. H42ST-1 and H42ST-2 (Item No. d6)

	oday for Tomorrow 7 NORTH 773	CHNOLOGIES INC.	MATERIAL CERTIFICATE SHIPMENT NUMBER: 40255 PURCHASE ORDER Test H42S & H42ST SHIPMENT DATE: 1/11/2021 PAGE: 1						
	GNED TO		SHIP TO						
Midwes	st Roadside Safety IW 36th Street I, NE 68524		Midwest Roadside Safety 4630 NW 36th Street Lincoln, NE 68524						
CONSIGNED	ITEM NUMBER	DESCRIPTIO	DN .	LOT#	SHIP VIA				
10	GB14SH1	Composite Guardrail Block Post w/hanger	14" for Steel	210111	FedEx Freight				
manufa compo reimbursem This produc	actured by Mond sition, and test p ent by the Feder t is also manufa	MADE IN Unardrail offset blocks for o Polymer Technologies properties as those whice all Highway Administration Approval No. HSS octured to the same form HRP 350, and approved to No. HSA-10/B	the Midwest G s, Inc. and are h were MASH on under the F T/B-39D. ulation, compo by the Federal	of the same qualified ar ederal-aid osition and	formulation, nd eligible for highway program, test properties as				
Approved by: _	Moje	Ellis	Date	: <u>1/11/</u>	2021				

Figure A-32. $14^3/_{16}$ -in. x 8-in. x $5^1/_{8}$ -in. Composite Recycled Blockout, Test Nos. H42ST-1 and H42ST-2 (Item No. d7)

Certificate of Compliance

600 N County Line Rd Elmhurst IL 60126-2081 630-600-3600 chi.sales@mcmaster.com University of Nebraska Midwest Roadside Safety Facility M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802 Attention: Shaun M Tighe Purchase Order E000548963 Order Placed By Shaun M Tighe McMaster-Carr Number 7204107-01 Page 1 of 1 08/02/2018

Line Product Ordered Shipped

1 97812A109 Raised-Head Removable Nails, 16D Penny Size, 3" Long, Packs of 5 Packs

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Midwest Roadside Safety Facility

Sarah Weinberg Compliance Manager

Figure A-33. 16D Double Head Nail, Test Nos. H42ST-1 and H42ST-2 (Item No. d8)

GD GE US-ML-MIDLOTHIAN 300 WARD ROAD MIDLOTHIAN, TX 76 USA		CUSTOMER SHI SIMCOTE INC 1645 RED ROG SAINT PAUL.I USA SALES ORDE 8587123/0000	CK MN 55119	SAINT PAU USA			GRADE 60 (420) LENGTH 60'00" SPECIFICATION REVISION ASTM A615/A615M	/ DATE or	PE / SIZE ar / #4 (13MM) WEIGHT 6,012 LB	DOCUMENT ID: 0000448538 HEAT / BATCH 55064958/03
CUSTOMER PURCHAS MN-3736	SE ORDER NUMBER		BILL OF LADING 1327-0000367999)	DATE 05/01/2020					
CHEMICAL COMPOSITE C Man 0.46 0.85	, P	§ 0.029	Şi Ç 0.23 0.	u §	ji Ç 10 0.16	M 0.0	to Sn 223 0.009	0.002	₩ 0.014	
MECHANICAL PROPERTYS VS PSI 72545	ries M 50	S Pa 00	UTS PSI 111435		UTS MPa 768		G/L Inch 8.000		G/L mm 200.0	
MECHANICAL PROPER Elong. 11.80	Bend	Test K								
COMMENTS / NOTES										
			·			e de la companya de l				
	The above figures are compliance with speci- USA. CMTR complies	fied requirements	. Weld repair has no	ecords as conta t been performe	med in the perman of on this material	ent records of This material	a, including the trace	is, was incline	and manufactured to us	
	Mack Phone: (409) 267-10	27_00	SKAR YALAMANCHILI ALITY DIRECTOR Yalamanchili@gerdau.or	om			W.L. Phone: 972-779		nde Lumpkins Mality Assurance mor. Wade Lumpkins@gerdau.co	MIL.

Figure A-34. #4 Rebar, 16-in. Total Length, Test Nos. H42ST-1 and H42ST-2 (Item Nos. e1, e2, e7, e8, e14, and e15)

HUCOR'

Mill Certification

08/26/2020

MTR#:454619-1 Lot #:360001414020 ONE NUCOR WAY BOURBONNAIS, IL 60914 US 815 937-3131 Fax: 815 939-5599

Sold To:

SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US Ship To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

Customer PO	MN-3748	Sales Order#	36013225 - 2.10
Product Group	Rebar	Product#	2110230
Grade	A615 Gr 60/AASHTO M31	Lot#	360001414020
Size	#5	Heat#	3600014140
BOL#	BOL-562924	Load #	454619
Description	Rebar #5/16mm A615 Gr 60/AASHTO M31 40' 0" [480"] 4001- 8000 lbs	Customer Part #	
Production Date	07/17/2020	Qty Shipped LBS	45060
Product Country Of Origin	United States	Qty Shipped EA	1080
Original Item Description		Original Item Number	

Country	of Origin :	United Sta	tes				elting Date	lting Date: 07/14/2020		
C (%)	Mn (%)	P (%)	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	V (%)	Nb (%)
0.36	0.94	0.012	0.048	0.215	0.23	0.14	0.08	0.37	0.009	0.002

Other Test Resu	lts
-----------------	-----

Yield (PSI): 66700 Elongation in 8" (%): 13.1 Tensile (PSI): 101600

Bend Test : Pass

Average Deformation Height (IN): 0.043 Weight Percent Variance (%): -2.40

Comments:

All manufacturing processes of the steel materials in this product, including melting, have occurred within the United States. Products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

York Sprinty Zachary Sprintz, Chief Metallurgist

Page 1 of 1

Figure A-35. #5 Rebar, 172-in. Total Length, Test Nos. H42ST-1 and H42ST-2 (Item Nos. e3 and e4)

CMC STEEL TENNESSEE 1919 Tennessee Avenue Knoxville TN 37921-2686

CERTIFIED MILL TEST REPORT For additional copies call 865-202-5972/888-870-0766

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

// Jim Haii

Quality Assurance Manager

HEAT NO.:7011423		s	Simcote Inc	s	Т	Simcote Inc		Delivery#: 831687	88
SECTION: REBAR 19MM (#6) 40'0"	420/60	ŏ	onicote inc	Гй	- 1	Officoto filo		BOL#: 1962514	•
SIM	420/00	١ĭ	1645 Red Rock Rd	- 17		1645 Red Rock Rd		CUST PO#: MN-37	750
SRADE: ASTM A615-20 Gr 420/60	SIM	٦	Saint Paul MN	l P	- 1	Saint Paul MN		CUST P/N:	
ROLL DATE: 08/07/2020	Olini Olini	١	US 55119-6014	- 1.	- 1	US 55119-6014			T: 137527.000 LB
MELT DATE: 08/07/2020		lτ	6517359660	I -	- 11	6517359660		DLVRY PCS / HEA	
Cert. No.: 83168788 / 011423L797		١٥	0317033000	l è	- 1	0317333000		DEVICTION	11. 2200 LA
		ľ		ľ					
Characteristic	Value	_	Character	ristic	_	Value		Characteristic	Value
С	0.32%		Rebar Deformation	Avg. Spac	ı	0.480IN			
Mn	0.70%		Rebar Deformation A	Avg. Heigh	h	0.047IN			
P	0.007%		Rebar Deformation	Max. Gap	р	0.125IN			
S	0.040%								
Si	0.24%								
Cu	0.26%								
Cr	0.14%								
Ni	0.13%								
Mo	0.013%						The Following is	true of the material repre	sented by this MTR:
v	0.004%						*Material is fully ki	illed	
Sn	0.006%						*100% melted and	d rolled in the USA	
							*EN10204:2004 3.	1 compliant	
Yield Strength test 1	85.2ksi						*Contains no weld	f repair	
Yield Strength test 1 (metri	587MPa						*Contains no Mere	cury contamination	
Tensile Strength test 1	105.2ksi						*Manufactured in a	accordance with the latest	version
Tensile Strength 1 (metric)	725MPa						of the plant qual	lity manual	

REMARKS :

Elongation test 1

Bend Test 1

Elongation Gage Lgth test 1 Elongation Gage Lgth 1(metri 15%

200mm

Passed

Page 1 OF 1 08/07/2020 23:56:38

"Meets the "Buy America" requirements of 23 CFR635.410, 49 CFR 661

*Warning: This product can expose you to chemicals which are

known to the State of California to cause cancer, birth defects

or other reproductive harm. For more information go

to www.P65Warnings.ca.gov

Figure A-36. #6 Rebar, 109-in. Unbent Length, Test Nos. H42ST-1 and H42ST-2 (Item Nos. e5, e6, e9, e10, e11, e12, e16 and e17)

		se a s a	7	
			M	
		Mill Certification		MTR#:409671-
MUCC	11S.	05/26/2020		2911 E NUCOR ROAL
				PO BOX 30
	741			NORFOLK, NE 68701 U
				402-644-020
		15.14		Fax: 402-644-032
	L GROUP OWN RD	Ship To: G3 STEE		
70,000,000,000	MI 48359 US		MI 48359 US	
5		, order,	11 10000 00	
		* .		
	6. 38			
Customer PO	RNP 39138-2		Sales Order #	10026005 - 1,12
Product Group	Wire Rod - Industria	Quality	Product #	1078148
Grade	1010R3		Lot #	10010400920
Size	0.5938"		Heat #	100104009

BOL*#	BOL-503262	Quality Round 19/32". 1010R3 COIL 5200	Load#	409671
Description	ibs	Quality Round 19/32 . 10 10R3 COIL 3200	Customer Part #	
Production Date	04/25/2020	* * * *	Qty Shipped LBS	45950
Product Country Of Origin	United States		Qty Shipped EA	9
Original Item Description			Original Item Number	
		refectived in accordance with the specifications and standards list		
Melt-Country of Orig	in : United States		Melting Dar	te: 04/23/2020
G (%) Mn (9	CONT.			AI (%) Nb (%)
0.11 - 0.5			0.09 0.03	0.001 0.000
Pb (%) Sn (% 0.000 0.00				
		0.000		
Reduction Ratio 158.	56:1			
Other Test Results				
Yield (PSI): 4810	00	Tensile(PSI): 64900	Elongation in 8" (%	5): 25.0
Comments:		42 92		
Coarse Grain Pr	actice		187	
EN 10204 3.1				
- All manufacturin	g processes of the steel t is hot rolled in the Unite	materials in this product, including melting, have b	een performed in the Unit	ed States.
	fuced are weld free.	o otalos.		N 9 10
Mercury, in any	form, has not been used	n the production or testing of this material.		1.4
		415 and ASTM E1019-resulphurized grades or appears in an Electric Arc Furnace.	plicable customer requiren	nents.
Strand Cast		1:	* * * * *	
Tests included in	ISO 17025 scope: Che	mistry, Tensile, Brinell Hardness, Rockwell Hardne	ess, Inclusion, and Grain S	Size.
Exporting Count Sales@nucome				
· geles/Munroule	Actif	N X		6.8 ii
	7)		9 9	
			6.9	

Figure A-37. $\frac{5}{8}$ -in. Dia. 11 UNC, 14-in. Long Guardrail Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f1)

CERTIFICATE OF COMPLIANCE FOR HOT DIP GALVANIZING

CUSTOMER: FASTENAL

DATE: SEPTEMBER 14, 2020

PO#: 040050891

ORDER#: 480015970

This is to certify that the hot dip galvanizing of the following material conforms to specification ASTM A-153. The following sizes and lot numbers comply with the coating, workmanship, finish, and appearance requirements of ASTM F2329 specifications. The hot dip galvanizing is ROHS compliant. The galvanizing process was conducted in a temperature range of 830F to 850F.

HEAT# PART# DESCRIPTION PIECES LOT# MIL 10666100 10406631 5/8-11 X 10 GUARD RAIL BOLT 2485 931491-7 5.6

This certification in no way implies anything other than the quality of our hot dip galvanizing as it pertains to your order.

This product was galvanized in Rockford, IL USA

AZZ Galvanizing Rockford, IL

Peggy Doering Office Manager

PD:ac

Figure A-38. %-in. Dia. 11 UNC, 10-in. Long Guardrail Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f2)

Melted in USA			A	CHA	Ouste	Cust P.O. mer Part # sales Order Heat # Ship Lot #				1010.4.4	K CO BUG	P39272-3 100905 70095626 10653380 4635392
Rockford Bolt & Steel 126 Mill St. Rockford,lL-61101		1			Grade Process		25		1010 A A	K FG HHC	19/32 RNDCOIL HRSA	
		4	1		Finish Size					19/32		
	Kind Attn :Linda McComas			1.4		Ship date					-	27-MAR-20
Lab Code: 7358 CHEM	c	MN	p	Test	esults of Hea	t Lat # 106533	80 CR		MO	cu	SN	v
%Wŧ	.10 AL .038	,44 N′ ,0080	.007 B .0001	.011 Ti .001	.080 NB .001	.04	.08		.01	.06	.003	,001
			+-	Test re	sults of Rolli	ng Lot #1292	382					74"
DECIMATION	RATIO=109:1											

Figure A-39. $\frac{5}{8}$ -in. Dia. 11 UNC, $\frac{1}{2}$ -in. Long Guardrail Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f3)

The following statements are applicable to the material described on the front of this Test Report:

- Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS compliance, LEEDS compliance, REACH compliance, ROHS-WEEE compliance, and Conflict Materials Restrictions.
- Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing.
- 3. Unless directed by the customer, there are no welds in any of the coils produced for this order.
- 4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	100	Labora	tory		Address	
0358-01	7388	CSSM	Charter S	eel Melting Division	1658 Cold Sp	orings Road, Saukville, WI 53080
0358-02	8171	CSSR	Charter S	teel Rolling	1658 Cold Sp	orings Road, Saukville, WI 53080
0358-07	8171	CSSP	Charter S	teel Processing Division	1658 Cold Sp	orings Road, Saukville, WI 53080
0358-03	123633	CSFP	Charter S	eel Ohio Processing Division	6255 US Hig	hway 23, Rising Sun, OH 43457
0358-04	125544	CSCM/ CSCR	Charter S	teel Cleveland	The state of the s	St., Cuyahoga Heights, OH 44125-1004
• • •	* .	J ·	Subcontr	acted test performed by laborate	ry not in Charte	er Steel System

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specifications	CSSM	CSSR/	CSFP	CSCM
Chemistry Analysis	A\$TM E415; ASTM E1019	X			X
Macroetch	ASTM E381	Χ.			Х
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	X			X
Grain Size	ASTM E112	X	X	X	X
Tensile Test	ASTM E8; ASTM A370		X	- X	X
Rockwell Hardness	ASTM E18; ASTM A370	×	X	X	. X
Microstructure (spheroidization)	ASTM A892	1	X	X.	
Inclusion Content (Methods A, E)	ASTM E45		. X	1	Х
Decarburization	ASTM E1077		X	X	X
And the second s					-

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 01/31/21. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

6. The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.

- 7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:
 - · It may be distributed only to their customers
 - . Both sides of all pages must be reproduced in full
- This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.
- Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Figure A-40. %-in. Dia. 11 UNC, 1½-in. Long Guardrail Bolt, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. f3)

Certificate of Compliance Birmingham Fastener Manufacturing

Birmingham Fastener Manufacturing PO Box 10323 Birmingham, AL 35202 (205) 595-3512

Customer	Midwest Machinery & Supply			Date Shipped			11/28/2018		
Customer Ore	der Number	3664		BFM Order Number			1553751		
		Item	Descrip	tion					
Description		5/8"-11 x 10	" Hex Bolt			Qty	298		
Lot#	81342	Specification	ASTM A30	7-14 Gr A	Finish	ASTM	F2329		
		Raw M	aterial A	nalysis					
Heat#	JI	K18104124							
Chemical Co C 0.18	omposition (v Mn 1.19	vt% Heat Analysis) B P S 0.012 0.034	y Material S Si 0.20	upplier Cu 0.29	Ni 0.13	Cr 0.11	Mo 0.04		
		Mechai	nical Pro	perties					
Sample # 1 2 3 4 5	Hardness 93 HRBW		trength (lbs) ,049		Tensile Str 99,4)		
customer ord	er. The samp	s the most recent analoles tested conform to factured in the U.S.A.				stated			
Authorized Signature:		Bally rian Hughes		Date:	11/29	2018			

Figure A-41. $\frac{5}{8}$ -in. Dia. 11 UNC, 10-in. Long Hex Head Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f4)

Certificate of Compliance

Sold To:	Purchase Order:	E000810303
UNL / UNMC E-SHOP / PUNCHOUT	Job:	
	Invoice Date:	11/11/2020
THIS IS TO CERTIFY THAT WE HA THESE PARTS WERE PURCH	VE SUPPLIED YOU WITH THE FOL ASED TO THE FOLLOWING SPECIF	LOWING PARTS. FICATIONS.
60 PCS 5/8"-11 x 1-1/2" ASTM A307 Grade A Hot Dipped 6 AND UNDER PART NUMBER 91919	Galvanized Hex Bolt SUPPLIED UND	ER OUR TRACE NUMBER 1801706
00 PCS 5/8" x 1.750" OD Low Carbon Hot Dipped Galvan TRACE NUMBER 210215887 AND UNDER PART NUM	ized Finish Steel USS General Purpose BER 1133185	Flat Washer SUPPLIED UNDER OUR
at a		
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revision	n to avoid using obsolete copies.
Lon Scholl	This document was printed time.	on 11/11/2020 and was current at that
Sastenal Account Representative Signature	Fastenal Store Location/A	ddress
Ross Schall	3201 N. 23rd Street STE 1	
rinted Name	LINCOLN, NE 68521	
	Phone #: (102)476-7900	
11-11-2020	Fax #: 402/476-7958	

Page 1 of 1

Figure A-42. 5%-in. Dia. 11 UNC, 1½-in. Long Hex Head Bolt, Test Nos. H42ST-1 (Item No. f5)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER : GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR

ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R.CHINA

PURCHASER: FASTENAL COMPANY PURCHASING

PO. NUMBER: 220024456

COMMODITY: HEX MACHINE BOLT GR-A

SIZE: 5/8-11X1-1/2 NC LOT NO: 1B1740865 SHIP QUANTITY: 11,840 PCS LOT QUANTITY 12,009 PCS HEADMARKS: CYI & 307A

MANUFACTURE DATE: 2017/05/19 COUNTRY OF ORIGIN:

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/12/04

PACKING NO: GEM170525004 INVOICE NO: GEM/FNL-170608IN-4

PART NO: 1191919 SAMPLING PLAN:

ASME B18.18-2011 (Category. 2) / ASTM F1470-2012

HEAT NO: 17301484-3 MATERIAL: X1008A

FINISH: HOT DIP GALVANIZED PER ASTM A153-

2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.3300	1. 2500	0.0410		
Test Value	0. 0270	0.0600	0. 2900	0. 0110	0. 0070	0. 0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18. 2. 1-2012

SAMPLED BY: HXNAN

		ONIVII LLI	DI. HANAN		and the same
INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ
MAJOR DIAMETER	15 PCS	0.6130-0.6250 inch	0. 6220-0. 6230 inch	15	0
WIDTH ACROSS CORNERS	4PCS	1.0330-1.0830 inch	1.0630-1.0650 inch	4	0
HEIGHT	4PCS	0.3780-0.4440 inch	0.3940-0.3940 inch	4	0
NOMINAL LENGTH	15 PCS	1.4200-1.5600 inch	1. 4330-1. 4370 inch	15	0
WIDTH ACROSS FLATS	4PCS	0.9060-0.9380 inch	0. 9340-0. 9350 inch	4	0
SURFACE DISCONTINUITIES	29 PCS	ASTM F788-2013	PASSED	29	0
THREAD	15 PCS	ASME B1.1-2003 nut	PASSED	15	0

MECHANICAL PROPERTIES: ACCORDING TO ASTM A 307-2014

SAMPLED BY: GDAN LIAN

INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2016		69-100 HRB	82-84 HRB	15	0
TENSILE STRENGTH	4 PCS	ASTM F606-2016		Min. 60 KSI	76-78 KSI	4	0
PLATING THICKNESS (µ m)	5 PCS	ASTM B568-1998		>=53	70. 25-78. 47	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

page 1 of 1

Figure A-43. %-in. Dia. 11 UNC, 1½-in. Long Hex Head Bolt, Test Nos. H42ST-2 (Item No. f5)

Phone: 800-547-6758 | Fax: 503-227-4634 3441 NW Guam Street, Portland, OR 97210

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

| CERTIFICATE OF CONFORMANCE |

For: MIDWEST ROADSIDE SAFETY FACIL

PB Invoice#: 138185 Cust PO#: H42

Date: 1/15/2021 Shipped: 1/18/2021

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Description: 7/8 X 16 GALV ASTM F3125 GRADE A325 HEAVY HEX BOLT | Heat#: 100794352 Base Steel: 4140 Source: KREHER STEEL CO LLC Proof Load: 39,250 LBF C: .420 Mn: .850 P: .007 Hardness: 285 HBN Si: .290 **s** : .017 Ni: .060 Tensile: 75,480 LBF RA: .00% Cr: 1.000 Mo: .200 Cu: .150 Yield: 0 Elon: .00% **Pb:** .000 **v** : .005 Cb: .000 Sample Length: CE: .6639 N : .000 Charpy: CVN Temp: LOT#19529

Nuts:

ASTM A563DH HVY HX

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Other:

ALL ITEMS MELTED & MANUFACTURED IN THE USA

Certification Department Quality Assurance

Figure A-44. %-in. Dia. 9 UNC, 16-in. Long Hex Head Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f6)

Apr. 12. 2018 4:32PM . Fastenal-NELIN

No. 4682 P. 3

Certificate of Compliance

Sold To:	Purchase Order	
UNL TRANSPORTATION	Job:	TL-2 and Bullnose
	Invoice Date:	03/27/2018
THIS IS TO CERTIFY THAT WE HA THESE PARTS WERE PURCH	VE SUPPLIED YOU WITH THE ASED TO THE FOLLOWING SP	FOLLOWING PARTS. ECIFICATIONS.
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galva UNDER PART NUMBER 92005	nized Hex Bolt SUPPLIED UNDE	R OUR TRACE NUMBER line35042 AND
20 PCS 7/8"-9 Hot Dip Galvanized Finish Grade A Finished UNDER PART NUMBER 36717	Hex Nut SUPPLIED UNDER OU	JR TRACE NUMBER 110254885 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvar UNDER PART NUMBER 92005	nized Hex Bolt SUPPLIED UNDE	R OUR TRACE NUMBER ilne35042 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvar UNDER PART NUMBER 92005	nized Hex Bolt SUPPLIED UNDE	R OUR TRACE NUMBER line35042 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvar UNDER PART NUMBER 92005	nized Hex Bolt SUPPLIED UNDE	R OUR TRACE NUMBER IIne35042 AND
		ř
		, in the second
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current r	evision to avoid using obsolete copies.
Said M	This document was pr time.	inted on 04/12/2018 and was current at that
Fasterial Account Representative Signature	Fastenal Store Locat	ion/Address
Printed Name	3201 N. 23rd Street S. LINCOLN, NE 68521 Phone #: (402)476-79	
4/12/18	Fax #: 402/476-7958	
Date	Page 1 of 1	

Figure A-45. %-in. Dia. 9 UNC, 8-in. Long Hex Head Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f7)

LUAU

1658 Cold Springs Road Saukville, Wisconsin 53080 [262] 268-2400 1-800-437-8789 Fax [262] 268-2570

Melted in USA Manufactured in USA

CHARTER STEEL TEST REPORT

040046880	Gust P.O.
09007018	Customer Part #
70093161	Charter Sales Order
10621520	Heat#
4605955	Ship Lot#
1018 R SK FG RHQ 19/32 RNDCOIL	Grade
HRCC	Process
19/32	Finish Size
30-AUG-19	Ship date

Fastenal Company 5800 Industrial Ave, Loves Park,IL-61111

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false, ficilitious and fraudulent statements or entries on this document may be punishable as a felony under faderal statute.

					lest ro	suits of Hea	it Lot # 1982	1520				
Lab Code; 7366 CHEM %Wt		C .17	MN .76	р ,008	,007	SI .190	NI .05	CR .08	MO .02	.08	5N .006	.002
		AL 039	N .0000	,0001	.001	NB ,001						
JOMINY(HRC)	J1 43	J2 24	J3 21	2								
	JOMIN	YSAMPLE	TYPE ENG	LISH-C								

		Test results of	Holling Lot # 1277383		
	# of Tests	Min Value	Max Value	Mean Value	
TENSILE (KSI)	2	70.9	71.2	71.1	TENSILE LAB # 0358-02
REDUCTION OF AREA (%)	2	60	51	51	RA LAB = 0358-02
ROCKWELL B (HRBW)	2	76	77	76	HB LAB = 0358-02
REDUCTION RATIO=10	19:1	437			
C d M	harter Steel certifies etectors in place to n	neasure for the presence floations with any applic	uishable from backgroun of radiation within our p	tions for the following cu	
Additional Comments:					

Melt Source; Charter Steel Saukville, WI, USA

This MTR supersedes all previously dated MTRs for this order

Spance Bounaud

Janice Barnard Division Mgr. of Quality Assurance
barnardJ@charlersteal.com

Figure A-46. %-in. Dia. 11 UNC, 2-in. Long Guardrail Bolt, Test Nos. H42ST-1 and H42ST-2 (Item No. f8)

The following statements are applicable to the material described on the front of this Test Report:

- Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS
 compliance, LEEDS compliance, REACH compliance, ROHS-WEEE compliance, and Conflict Materials Restrictions.
- Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing.
- Unless directed by the customer, there are no welds in any of the colls produced for this order.
- 4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	Lab Code	Labora	tory	Address
0358-01	7388	CSSM	Charter Steel Melting Division	1658 Cold Springs Road, Saukville, WI 53080
0358-02	8171	CSSR/	Charter Steel Rolling/ Processing Division	1658 Cold Springs Road, Saukville, WI 53080
0358-03	123633	CSFP	Charter Steel Ohlo Processing Division	6255 US Highway 23, Rising Sun, OH 43457
0358-04	125544	CSCM/ CSCR	Charter Steel Cleveland	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004
•			Subcontracted test performed by laborator	y not in Charter Steel System

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specifications CSSI		CSSR/ CSSP	ÇSFP	CSCM/ CSCR
Chemistry Analysis	ASTM E415; ASTM E1019	X			X
Macroetch	ASTM E381	X			X ·
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	X		02-1000	Х
Grain Size	ASTM E112	Х	Х	Х	X.
Tensile Test	ASTM E8; ASTM A370		Х	Х	Х
Rockwell Hardness	ASTM E18; ASTM A370	х	X	Х	X
Microstructure (spheroidization)	ASTM A892		Х	Х	
Inclusion Content (Methods A, E)	ASTM E45		Х		Х
Decarburization	ASTM E1077 .		Х	Х	Х

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 01/31/21. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

- The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.
- 7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:
 - . It may be distributed only to their oustomers
 - Both sides of all pages must be reproduced in full
- This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.
- Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Figure A-47. 5/8-in. Dia. 11 UNC, 2-in. Long Guardrail Bolt, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. f8)

AD.	Malon of rior Manufac	RTER	, trc.	CHARTER STEEL TEST REPORT				1459 Cold Springs Road Saulnide, Witcomin 33030 (264) 359-3400 1-200-437-0789 Fan (263) 260-3570			
						Cust P.O.		-		-	50368 1912
						omer Part #	1				1.125 1010
					Charter	Sales Order					30177830
		- 1				Ship Lot #		-			1063548 482073
						Grade			1010 A	K FG RHC	1-1/8 RNDCO
		cturing Co	rgo.			Process					HRCC
703 N. C						Finish Ston	-				1-1/
Albion,I	VII-4922	6				Bhip date	1				12-DEC-19
ab Code: 7369 HEM LWK	C .08 AL .094	8004 ,657 18 ,8000	.007 El .0001	8 .000 19 .001	69 ,000, 884 ,001	10638 10 10 109	GR .00	69. 20.	UD 80.	8N 808	.00a
ROCKWELL B (MRB ROD SZE (Inch) ROD OUT OF ROUN	D (Inoli)	# of Teets 2 14 7		Yest re Min Veloc es 1.124 ,004	culto of Rall B	ing Let # 1984 Mant Visio 68 1.188 .008	1807 19	Mon 65 1.10 400		nn	LAB = 0385-03
REDUCTION R	ATIO-80:1										
Specifications: Additional Garanesi	Che delt Stee Gue	nutnobured per river Oped per schoru in pilac rius cupilaren rius cupilaren riveren Docum	tillen this p e to riseau specificalit ent e ASTRI	roduct is h ro for the p we with an	resette of resettes of v spellosti	sable from by molletion wit	roliground hin our pr of excepti	iona for thi	fevels by fe reducts. a following o	ving proce	es radiation ourments:

Figure A-48. $\frac{11}{6}$ In. Dia. 11 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item No. f9)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD.

ADDRESS: NO.8 GEM-YEAR

ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER: FASTENAL COMPANY PURCHASING

PO. NUMBER: 110254885

COMMODITY: FINISHED HEX NUT GR-A SIZE: 7/8-9 NC 0/T 0.56MM

LOT NO: 1N1810005

SHIP QUANTITY: 9,000 PCS LOT QUANTITY 55,748 PCS

HEADMARKS:

MANUFACTURE DATE: 2018/01/05 COUNTRY OF ORIGIN: CHINA Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567

DATE: 2018/03/28

PACKING NO: GEM180115010
INVOICE NO: GEM/FNL-180201WI-1

PART NO: 36717 SAMPLING PLAN:

ASME B18.18-2011 (Category.2)/ASTM F1470-2012

HEAT NO: 331704677 MATERIAL: XGML08

FINISH: HOT DIP GALVANIZED PER ASTM A153-

2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0360	0.0600	0.4500	0.0140	0.0030	0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18. 2. 2-2015

SAMPLED BY: WDANDAN

INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	5 PCS	1.4470-1.5160 inch	1.4850-1.4930 inch	5	0
FIM	15 PCS	ASME B18. 2. 2-2015 Max. 0. 0250 inch	0.0110-0.0200 inch	15	0
THICKNESS	5 PCS	0.7240-0.7760 inch	0.7460-0.7570 inch	5	0
WIDTH ACROSS FLATS	5 PCS	1.2690-1.3120 inch	1.2930-1.2980 inch	5	0
SURFACE DISCONTINUITIES	29 PCS	ASTM F812-2012	PASSED	29	0
THREAD	15 PCS	GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES: ACCORDING TO ASTM A563-2015

SAMPLED BY: TANGHAO

					LILITOILEO		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	86-90 HRB	15	O.
PROOF LOAD	5 PCS	ASTM F606-2014		Min. 31,416 LBF	OK	5	0
PLATING THICKNESS(µm)	29 PCS	ASTM B568-1998		>=53	62. 38-62. 57	29	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01)
WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Figure A-49. %-in. Dia. 9 UNC, Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item No. f10)

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE HANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL WEST TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DEARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL, CERTIFICATION FORMAT MEETS EN10204 3.1

MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/19 NUCOR FASTENER A DIVISION OF NUCOR COMPORATION

BOB HAYWOOD QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

Figure A-50. 78-in. Dia. 9 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item No. f11)

Nov. 26. 2018 3:4/PM Fastenal-NELIN

No. 594/ P. 2

Certificate of Compliance

Sold To:		Purchase Order:	STBR
UNL TRANSPORTATION		Job:	Item# f3, h1 and i1
		Invoice Date:	11/8/2018
. THIS IS TO CERTIFY THAT WE F THESE PARTS WERE PURC			
80 PCS 1"-8 Hot Dipped Galvanized A563 Grade DH He 210157128 AND UNDER PART NUMBER 38210	avy Hex Nut Mad	e In USA SUPPLIED U	NDER OUR TRACE NUMBER
450 PCS-3/4"-10 Hot Dipped Galvanized A563 Grade DI 210169774 AND UNDER PART NUMBER 38208.	Heavy Hex Nut	Made In USA SUPPLIE	D UNDER OUR TRACE NUMBER
80 PCS 1"-8 Hot Dipped Galvanized A563 Grade DH He 210157128 AND UNDER PART NUMBER 38210	avy Hex Nut Mad	e In USA SUPPLIED U	NDER OUR TRACE NUMBER
This is to certify that the above document is true and accurate to the best of my knowledge.	P1	ease check current revis	ion to avoid using obsolete copies.
della		nis document was printe me.	d on 11/26/2018 and was current at that
Fastenal Account Representative Signature	F	astenal Store Location	Address
Ashly Stanczyk Printed Name	L	201 N. 23rd Street STE 1 INCOLN, NE 68521 hone #: (402)476-7900	-
11/29/18	F	ax #: 402/476-7958	
Date	Page 1 of 1		

Figure A-51. 1-in. Dia. 8 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item No. f12)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER : GEM-YEAR INDUSTRIAL CO., LTD.

ADDRESS: NO.8 GEM-YEAR

ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R.CHINA

PURCHASER: FASTENAL COMPANY PURCHASING

PO. NUMBER: 110216407

COMMODITY: FINISHED HEX NUT GR-A 5/8-11 NC 0/T 0.51MM

LOT NO: 1N1680027

SHIP QUANTITY: 23, 400 PCS LOT QUANTITY 170, 278 PCS

HEADMARKS:

R#17-507 H#331608011

MANUFACTURE DATE: 2016/08/26 COUNTRY OF ORIGIN: CHINA

BCT Cable Bracket Nuts

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2007

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0. 2300	
Test Value	0.0350	0.0700	0.4100	0.0160	0.0060	0.0500

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18. 2. 2-2010

SAMPLED BY: DWTING

Tel: (0573)84185001(48Lines)

DATÉ: 2017/03/23

PART NO: 3671

SAMPLING PLAN:

MATERIAL: ML08

HEAT NO: (331608011)

Fax: (0573)84184488 84184567

PACKING NO: GEM160919007

INVOICE NO: GEM/FNL-160929WI

ASME B18.18-2011(Category.2)/ASTM F1470-2012

FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6 PCS	1.0510-1.0830 inch	1.0560-1.0690 inch	6	0
FIM	15 PCS	ASME B18.2.2-2010 Max. 0.0210 inch	0.0020-0.0040 inch	15	0
THICKNESS	6 PCS	0.5350-0.5590 inch	0.5390-0.5570 inch	6	0
WIDTH ACROSS FLATS	6 PCS	0.9220-0.9380 inch	0.9240-0.9340 inch	6	0
SURFACE DISCONTINUITIES	29 PCS	ASTM F812-2012	PASSED	29	0
THREAD	15 PCS	GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES: ACCORDING TO ASTM A563-2007

SAMPLED BY: GDAN LIAN

Grin

INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	79-81 HRB	15	0
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	ОК	4	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	70. 02-75. 81	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Figure A-52. %-in. Dia. 11 UNC, Heavy Hex Nut, Test Nos. H42ST-1 and H42ST-2 (Item No. f13)

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morgan Ltd REPORT DATE: 14/1/2021

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

TEL: (852)25423366 MANUFACTURE DATE:

CUSTOMER:

MFG LOT NUMBER: 1851805

+

SAMPLING PLAN PER ASME B18.18-11 PO NUMBER: 200152825

SIZE: USS 5/8 HDG QNTY(Lot size): 12000PCS

HEADMARKS: NO MARK PART NO: 1133185

DIMENSIONAL INSPECT	TIONS	SPECIFIC	CATION: ASTM B	18.21.1-2011	
CHARACTERISTICS	SPECIF	TED	ACTUAL RESU	JLT ACC.	REJ.
*******	*********	*******	******	***: ******	*****
APPEARANCE	ASTM F8	44	PASSED	100	0
OUTSIDE DIA	1.743-1.780		1.746-1.754	10	0
INSIDE DIA	0.681-0.718		0.707-0.715	10	0
THICKNESS	0.108-0.160		0.108-0.126	10	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESU	JLT ACC.	REJ.
*******	******	*******	* *********	**** *****	*****
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020	in 8	0

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

MFG ISO9002 CERTIFICATE NO. HK04/0105

Figure A-53. %-in. Dia. Plain USS Washer, Test Nos. H42ST-1 and H42ST-2 (Item No. g1)

LAB MGR.) ACTURER)

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morgan Ltd REPORT DATE: 23/4/2019

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

MFG LOT NUMBER: 1844804

SAMPLING PLAN PER ASME B18.18-11 PO NUMBER: 170089822

SAMI ENGLI EARTER ASME DIG.10-11

USS 7/8 HDG QNTY(Lot size): 7200PCS

HEADMARKS: NO MARK PART NO: 33187

DIMENSIONAL INSPECT	TIONS	SPECIFIC	CATION: ASTM B18.2	21.1-2011	
CHARACTERISTICS ************************************	SPECII	FIED *******	ACTUAL RESULT		REJ. ******
APPEARANCE OUTSIDE DIA INSIDE DIA THICKNESS	ASTM F8 2.243-2.28 0.931-0.96 0.136-0.19	0 8	PASSED 2.246-2.254 0.956-0.965 0.136-0.157	100 10 10 10	0 0 0
CHARACTERISTICS ************************************	TEST METHOD **********	SPECIFIED *********	ACTUAL RESULT		REJ. *****
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020 in	8	0

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIES AND COUNTESTING LABORATORY.

Figure A-54. %-in. Dia. Plain Round Washer, Test Nos. H42ST-1 and H42ST-2 (Item No. g2)

ISO 9001:2015 SGS Certificate # HK04/0105

177

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morgan Ltd REPORT DATE: 22/10/2018

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

SAMPLING PLAN PER ASME B18.18-11 PO NUMBER: 210151571

SIZE: USS 1 HDG QNTY(Lot size): 3240PCS

HEADMARKS: NO MARK PART NO: 33188

DIMENSIONAL INSPECT	TIONS	SPECIFIC	CATION: ASTM B18.	21.1-2011	
CHARACTERISTICS	SPECII	FIED	ACTUAL RESUL	Γ ACC.	REJ.
********	*******	******	******	*: ******	*****
APPEARANCE	ASTM F8	344	PASSED	100	0
OUTSIDE DIA	2.492-2.529		2.496-2.504	10	0
INSIDE DIA	1.055-1.092		1.080-1.089	10	0
THICKNESS	0.135-0.192		0.135-0.157	10	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESUL	Γ ACC.	REJ.
********	******	******	* *********	** ******	******
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020 i	n 8	0

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND QUARTESTING LABORATORY.

ISO 9001:2015 SGS Certificate # HK04/0105

Figure A-55. 1-in. Dia. Plain USS Washer, Test Nos. H42ST-1 and H42ST-2 (Item No. g3)

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 10/10/2019 TIME 05:39:05

S	
0	
L	
D	
т	
o	66031-1127

S 13716 H Kansas City Warehouse P 401 New Century Parkway NEW CENTURY KS

0 660	31-1127							0							
Order 4033744		Material No. 72896120A2	Descrip	otion 96 X 120 A5	572GR50 M	MILL PLATE	Qu	antity 1	Weight 816.800		er Part	(Customer PO		hip Date 0/09/2019
							Chemical Ar	nalvsis							
Heat No.	A9F220	Vend	for SSAB - N	ONTPELIER	R WORKS		DOMESTIC	,	Mill SSAB -	MONTPELIE	R WORKS		Melted and Ma	nufactured i	n the USA
														Produced	from Coil
Carbon	Manganes	se Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.1500	0.850	0.0120	0.0040	0.0400	0.1100	0.1200	0.0300	0.0000	0.2700	0.0250	0.0070	0.0200	0.0010	0.0000	0.0000
						Mecha	nical / Physic	cal Prope	erties						
Mill Coil N	No. A9F220	00699					•								
1	ensile	Yield		Elong	Rckwl	(Grain	Charpy		Charpy Dr	C	harpy Sz	Temper	ature	Olsen
770	00.000	59500.000		25.60				65	Lo	ongitudinal		5.0		-20 F	
754	00.000	57600.000		26.70				71	Lo	ongitudinal		5.0		-20 F	
767	00.000	58700.000		25.20				66	Lo	ongitudinal		5.0		-20 F	
746	00.000	56900.000		28.30				0		NA					

Batch 0005980631 1 EA 816.800 LB

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION.

The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure A-56. 3-in. x 3-in. x 1/4-in. or 31/2-in. x 1/4-in. Square Washer Plate, Test Nos. H42ST-1 and H42ST-2 (Item No. g4)

Date: 12/13/2016

Subject: Certificate of Conformance

Product: HIT RE-500 V3 Adhesive

To Whom it May Concern:

This is to certify that the HIT-RE 500 V3 is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,

Hilti, Inc.

5400 South 122 East Avenue

Tulsa, Oklahoma 74146

800-879-8000

800-879-7000 fax

US-Sales@hilti.com

Figure A-57. Epoxy Adhesive, Test Nos. H42ST-1 and H42ST-2 (Item No. i1)

FIBRE EXPANSION JOINT

Multi-Purpose, Expansion-Contraction Joint Filler

DESCRIPTION

FIBRE EXPANSION JOINT is composed of cellular fibers securely bonded together and uniformly saturated with asphalt to assure longevity. Wherever a cost-effective joint filler is required, FIBRE EXPANSION JOINT meets the need. Manufactured and marketed by W. R. MEADOWS since the early 1930s, FIBRE EXPANSION JOINT is backed by over 80 years of proven application experience. FIBRE EXPANSION JOINT is versatile, resilient, flexible, and non-extruding. When compressed to half of its original thickness, it will recover to a minimum of 70% of its original thickness. FIBRE EXPANSION JOINT will not deform, twist, or break with normal on-the-job handling. Breakage, waste and functional failure resulting from the use of inferior, foreign fiber materials can cost you time and dollars and can result in a substandard finished job, generating costly callbacks and rework expenses. However, the purchase and installation of FIBRE EXPANSION JOINT (a small segment of the total project's cost) contributes to both the final cost efficiency and functional success, far greater in proportion than its original cost.

Representative United States patents: USPNs 7,815,722; 8,057,638; 8,038,845; and D558,305. (See also www.wrmeadows.com/patents for further patent/intellectual property information.)

USES

FIBRE EXPANSION JOINT is ideal for use on highways, streets, airport runways, sidewalks, driveways, flatwork, and scores of commercial and industrial applications subject to pedestrian and vehicular traffic.

FEATURES/BENEFITS

- Provides the ideal product for the majority of all expansion/contraction joint requirements.
- Non-extruding ... versatile ... offers a minimum 70% recovery after compression.
- This tough, lightweight, easy-to-use, semi-rigid joint filler is available in strips and shapes fabricated to your requirements.
- Easy to cut ... dimensionally stable ... not sticky in summer or brittle in winter.
- Provides neat, finished joints requiring no trimming.
- Often copied ... but never equaled.
- Remains the standard of the industry today ... with over 80 years of proven and satisfactory performance.
- Can be punched for dowel bars and laminated to thicknesses greater than 1" (25.4 mm).

Conforms to or meets:	Thickness	Slab Widths	Standard Lengths	Weight per ft.3
AASHTO M 213 ASTM D1751 Corps of Engineers CRD-C 508 FAA Specification Item P-610-2.7 HH-F-341 F, Type 1	3/8", 1/2" 3/4", 1" (9.5, 12.7, 19.1, 25.4 mm)	36", 48" (91, 1.22 m)	10° (3.05 m) Also available: 5′,6′,12° (1.5, 1.83, 3.66 m)	>19 lb.

CONTINUED ON REVERSE SIDE...

W. R. MEADOWS, INC. P.O. Box 338 • HAMPSHIRE, IL 60140-0338 Phone: 847/214-2100 • Fax: 847/683-4544 1-800-342-5976 www.wrmeadows.com

HAMPSHIRE, IL /CARTERSVILLE, GA /YORK, PA FORT WORTH, TX /BENICIA, CA /POMONA, CA GOODYEAR, AZ / MILTON, ON /ST, ALBERT, AB

Figure A-58. Expansion Joint Filler, Test Nos. H42ST-1 and H42ST-2 (Item No. i2)

PAGE 2 ... FIBRE EXPANSION JOINT #320-F ... APRIL 2018

TYPICAL APPLICATIONS

SPECIFICATIONS AND SIZE INFORMATION APPLICATION

FIBRE EXPANSION JOINT is positioned against the forms, at interrupting objects or columns, and against abutting structures prior to the placement of concrete. FIBRE EXPANSION JOINT should be installed 1/2" (12.7 mm) below the concrete surface to accept a joint sealant which will provide for maximum protection from water infiltration and weathering, in addition to keeping the joint free from incompressibles. SNAP-CAP® from W. R. MEADOWS is recommended to create the reservoir for the joint sealant and the use of POURTHANE SL, POURTHANE NS, or DECK-O-SEAL as the sealant to protect the joint. Before sealing, slide SNAP-CAP over the top of the expansion joint. Place the concrete and screed to finish grade, as usual. When concrete is cured, insert a screwdriver through the top of SNAP-CAP, pull free and discard. In applications where one of the above-mentioned joint sealants is used without SNAP-CAP, W. R. MEADOWS recommends the use of KOOL-ROD or a bond-breaker tape to isolate

FIBRE EXPANSION JOINT from the joint sealant material. SOF-SEAL® or any hot-applied sealant, such as HI-SPEC®, can be used to protect the joint. In this case, the use of SNAP-CAP, KOOL-ROD, or a bond-breaker tape is not necessary. Simply apply the sealant directly over FIBRE EXPANSION JOINT.

LEED INFORMATION

May help contribute to LEED credits:

 MRc9: Construction and Demolition Waste Management

For most recent data sheet, further LEED information, and SDS, visit www.wrmeadows.com.

LIMITED WARRANTY

W. R. MEADOWS, INC. warrants at the time and place we make shipment, our material will be of good quality and will conform with our published specifications in force on the date of acceptance of the order. Read complete warranty. Copy furnished upon request.

<u>Disclaimer</u>

The information contained herein is included for illustrative purposes only, and to the best of our knowledge, is accurate and reliable. W. R. MEADOWS, INC. cannot however under any circumstances make any guarantee of results or assume any obligation or liability in connection

with the use of this information. As W. R. MEADOWS, INC. has no control over the use to which others may put its product, it is recommended that the products be tested to determine if suitable for specific application and/or our information is valid in a particular circumstance. Responsibility remains with the architect or engineer, contractor and owner for the design, application and proper installation of each product. Specifier and user shall determine the suitability of products for specific application and assume all responsibilities in connection therewith.

© W. R. MEADOWS 2018 04/18-400

Figure A-59. Expansion Joint Filler, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. i2)

Pecora 301 NS

Specification Data Sheet

Non-Sag Silicone Highway & Pavement Joint Sealant

I. BASIC USES

Sealing of transverse contraction and expansion joints, longitudinal, centerline and shoulder joints in Portland cement concrete (PCC) and asphalt.

2. MANUFACTURER

Pecora Corporation 165 Wambold Road Harleysville, PA 19438

Phone: 215-723-6051

800-523-6688 Fax: 215-721-0286 Website: www.pecora.com

3. PRODUCT DESCRIPTION

Pecora 301 NS Silicone Pavement Sealant is a one part, ultra low modulus product designed for sealing joints in concrete or asphalt pavement. It has excellent unprimed adhesion to concrete, metal and asphalt substrates, superior weather resistance and remains flexible at extremely low temperatures.

Pecora 301 NS Silicone Pavement Sealant is a non-sag product designed for applications on flat and sloped surfaces.

Advantages:

- Reduces pavement deterioration by restricting surface water penetration into underlying base and sub base layers.
- Convenient one component, neutral moisture curing system.
- Ultra low modulus resulting in high movement capability.
- Ease of application with standard automated bulk dispensing equipment such as Graco or Pyles.
- VOC compliant.
- Primerless adhesion to concrete and asphalt.
- Aids in elimination of non-compressables entering expansion joints.

Limitations:

Pecora 301 NS Silicone Pavement Sealant should not be used:

- for continuous water immersion conditions.
- when ambient temperatures is below 40°F (4°C) or above 120°F (49°C).
- flush with traffic surface. (Sealant must be recessed below surface.)
- for applications requiring support of hydrostatic pressures.
- with solvents for dilution purposes.
- with concrete that is cured less than 7 days.

- with newly applied asphalt until cooled to ambient temperature (usually 24-48 hours).
- as a structural component or in longitudinal joints greater than 3/4" in width that are intended to be used as a constant travelling surface.

PACKAGING

- 30 fl. oz. (887ml) cartridges
- 20 fl. oz. (592ml) sausages
- · 4.5 gallon pails (17.0L)
- 50 gallon drum (188.9L) Color: pavement gray

		LANT COV RECESS GL	ERAGE CHART JIDELINES		
Joint Width (inches)	Sealant Depth (inches)	Recess (inches)	Backer Rod Diameter (in)	Minimum Joint Depth (in)	Linear ft./gal
1/4	1/4	1/8	3/8	3/4	308
3/8	1/4	1/8	1/2	7/8	205
1/2	1/4	1/8	5/8	1-1/4	154
3/4	3/8	1/4	7/8	1-1/4	68
1.0	1/2	1/4	1-1/4	2	38

TABLE I:TYPICAL UNCURED PROPERTIES

Test Property	Value	Test Procedure
Cure Through (days)	7	0.5" cross section
Extrusion Rate (grams/min)	90-250	Mil-S-8802
Rheological Properties	non-sag	
Tack Free Time (mins)	60	ASTM C679
VOC Content (g/L)	50	ASTM D3960
Test Property	Value	Test Procedure
	cure at 77°F (25°C	
Test Property	Value	lest Procedure
Adhesion, minimum elongation		ASTM D5329*
Asphalt	500	
Concrete	500	
Metal	500	
The state of the s	500 >1400	ASTMD412
Metal Elongation (%) Resilience (%)	19 7 To 19 10 10 10 10 10 10 10 10 10 10 10 10 10	ASTMD412 ASTM D5329
Elongation (%)	>1400	7077 C 1777 C 17
Elongation (%) Resilience (%)	>1400 >95	ASTM D5329
Elongation (%) Resilience (%) Stress @ 150% Elongation (psi)	>1400 >95	ASTM D5329
Elongation (%) Resilience (%) Stress @ 150% Elongation (psi) Hardness, maximum	>1400 >95 22	ASTM D5329 ASTMD412

Since Pecora architectural sealants are applied to varied substrates under diverse environmental conditions and construction situations it is recommended that substrate testing be conducted prior to application.

Figure A-60. Expansion Joint Sealant, Test Nos. H42ST-1 and H42ST-2 (Item No. i3)

modified section 14

Specification Data Sheet

4.TECHNICAL DATA

Applicable Standards: Complies with TT-S-00230C,TT-S-001543,ASTM C920, Class 100, Type S, Grade NS, Use T₂, M, O, ASTM D5893 Type NS. Conforms to FAA Engineering Brief No. 36. Review Pecora Technical Bulletin #81 for airfield standards. Conforms to approximately 30 state DOT specifications which require low modulus, high movement, cold applied sealant.

Joint Design: Sealant depth should be 1/4"-1/2" and joint width should be 1/4"-1". Ideally, the ratio of joint width to sealant depth should be 2:1, when appropriate. For joint widths greater than 1", consult Pecora Technical Services department.

5. INSTALLATION

Surface Preparation: New or old concrete surface must be dry and free of dust, laitance, grease, oils, curing compounds, water repellents, waxes, foreign particles, and disintegrated substrate. Restoration work requires saw cutting and sandblasting, followed by blowing out with compressed air (moisture and oil-free). Joint area should be free of all dust and foreign debris before back-up material is installed. Priming may be required. P-225 / concrete or P-200 / asphalt. Proper adhesion should be confirmed prior to full scale production.

Joint Backing: Backer rod should be used to control the sealant depth and cushion it from impact. Closed cell polyethylene is recommended. Use a size that will compress a minimum of 25% when inserted into the joint.

Application: Ideal surface temperature should be 60°F(16°C) - 85°F(29°C). Sealant should be applied to the prepared joint in a continuous operation. Tool the sealant slightly concave using dry-tooling techniques. Sealant must be recessed below traffic surface. (See Figure 1).

PEC103

Figure I

Initial Skin: Approximately 60 minutes at 77°F (25°C), 50% R.H. Higher temperatures and/or humidity will shorten this time period.

Cleaning: Immediately remove all excess sealant and smears adjacent to joints with mineral spirits. For equipment cleanup, also use mineral spirits. Consult manufacturer's MSDS for handling and safety precautions.

Shelf Life: Approximately one (1) year when stored in original, unopened container in a dry area at temperatures below 80°F(27°C).

Precautions: Use with adequate ventilation or wear an appropriate NIOSH-approved respirator. Contact with uncured sealant or with vapors generated during curing may cause respiratory tract irritation. Contact with skin or eyes may cause irritation or allergic reaction. Avoid contact and wash thoroughly after handling. May be harmful if swallowed. Refer to Safety Data Sheets (SDS) for more information.

FOR PROFESSIONAL USE ONLY KEEP OUT OF THE REACH OF CHILDREN.

6.AVAILABILITY AND COST

Pecora products are available from our plants and warehouses, or from stocking distributors in all major cities. For the name and telephone number of your nearest representative call one of our locations listed below or visit our website at www.pecora.com.

7.WARRANTY

Pecora Corporation warrants its products to be free of defects. Under this warranty, we will provide, at no charge, replacement materials for, or refund the purchase price of, any product proven to be defective when used in strict accordance with our published recommendations and in applications considered by us as suitable for this product. This warranty is in lieu of any and all other warranties, expressed or implied, and in no case will Pecora be liable for incidental or consequential damages.

8. MAINTENANCE

Once sealant is in place and cured, it is basically maintenance free. If damage to sealant occurs, cut out the effected area, clean with vacuum or compressed air and recaulk.

9.TECHNICAL SERVICES

Pecora representatives are available to assist you in selecting an appropriate product and to provide on-site application instructions or to conduct jobsite inspections. For further assistance call our Technical Service Department at 800-523-6688

10. FILING SYSTEMS

- http://: www. sweets. com
- 07 10 00 Waterproofing
 07 92 00 Joint Sealants

www.pecora.com

PEOPLE • PRODUCTS • PERFORMANCE

HARLEYSVILLE, PA

165 Wambold Road, Harleysville, PA 19438 Phone: 800-523-6688 • 215-723-6051 • FAX: 215-721-0286

Figure A-61. Expansion Joint Sealant, Test Nos. H42ST-1 and H42ST-2, Cont. (Item No. i3)

Appendix B. Vehicle Center of Gravity Determination

		Test Name		VIN:		R6G T2G \$26	19090
Model Year:	2016	Make	: Ram	Model:		1500	
Vehicle CG Det	terminati	on		Weight	Vertical CG	Vertical M	
Vehicle Equipme	ent			(lb)	(in.)	(lb-in.)	
		Truck (Curb	1	5258	28.945892	152197.5	
+ Hı		rrack (Garb	<u>/</u>	19	15.25	289.75	
		ation cylinder	& frame	7	28	196	
		tank (Nitroge		30	27 1/2	825	
		ke Battery		10	26 1/2	265	
		eiver/Wires		6	52 3/4	316.5	
+ C(G Plate in	cluding DAQ		42	30 5/8	1286.25	
- Ba	attery			-41	42 1/2	-1742.5	
- Oi	1			-10	16	-160	
- Int	terior			-113	40	-4520	
- Fu	ıel			-162	18 1/2	-2997	
- Co	oolant			-13	38	-494	
	asher flui			-8	31	-248	
		ist (In Fuel Ta		0	0	0	
+ Or	nboard Si	upplemental E	Battery	0	0	0	
						0	
Note: (+) is added ed	quipment to	Estimated T	moved equipmen otal Weight (It G Location (in	5025		0 145214.5	
Note: (+) is added ed		Estimated T Vertical C	otal Weight (It G Location (in	5025			
Vehicle Dimens		Estimated T Vertical C	otal Weight (It G Location (in tions	5025	68.75		
Vehicle Dimens	ions for	Estimated T Vertical C C.G. Calcula	otal Weight (It G Location (in tions Front	5025 .) 28.89841		145214.5	
Vehicle Dimens	ions for	Estimated T Vertical C C.G. Calcula	otal Weight (It G Location (in tions Front	5025 .) 28.89841 Track Width:		145214.5	
Vehicle Dimens Wheel Base:	ions for 140.375	Estimated T Vertical C C.G. Calcula in.	otal Weight (It G Location (in tions Front Rear	5025 .) 28.89841 Track Width:	68.25 Test Inertial	145214.5 in. in.	
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei	ty ght (lb)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110	5025 .) 28.89841 Track Width:	68.25 Test Inertial 5041	145214.5 in. in.	41.0
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4	5025 .) 28.89841 Track Width:	68.25 Test Inertial 5041 59.926007	145214.5 in. in.	41.0 -3.07399
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.)	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6.	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4	5025 .) 28.89841 Track Width:	68.25 Test Inertial 5041 59.926007 0.7134001	145214.5 in. in.	41.0 -3.07399 NA
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.)	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 4 8 or greater	5025 .) 28.89841 Track Width:	68.25 Test Inertial 5041 59.926007	145214.5 in. in.	41.0 -3.07399 NA
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater est vehicle	5025 .) 28.89841 Track Width: Track Width:	68.25 Test Inertial 5041 59.926007 0.7134001 28.90	145214.5 in. in.	41.0 -3.07399 NA
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.)	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	68.25 Test Inertial 5041 59.926007 0.7134001 28.90	145214.5 in. in.	Difference 41.0 -3.07399 NA 0.89841
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59.926007 0.7134001 28.90	145214.5 in. in.	41.0 -3.07399 NA 0.89841
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m	ty ght (lb) (in.)	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/ 21 om front sxle of to	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59.926007 0.7134001 28.90	145214.5 in. in.	41.0 -3.07399 NA 0.89841
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m	ty ght (lb) (in.) neasured fro	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59.926007 0.7134001 28.90	in.	41.0 -3.07399 NA 0.89841
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG one Note: Long. CG is monother. Lateral CG me	ty ght (lb) (in.) neasured fro	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/ 21 pm front extended to the content of the content	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59.926007 0.7134001 28.90	in. in. TIAL WEIGH	41.0 -3.07399 NA 0.89841 IT (Ib)
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT Front Rear	ty ght (lb) (in.) Left 1521 1132	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/ 22 om front axle of t m centerline - pc Right 1473 1132	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59 926007 0.7134001 28.90 TE ST INER	145214.5 in. in. Left 1412 1056	41.0 -3.07399 NA 0.89841 IT (lb) Right 1477 1096
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT Front Rear FRONT	ty ght (lb) (in.) Left 1521 1132	Estimated T Vertical C C.G. Calcula in. 2270P M/ 500 6. N/ 21 pm front extended to the content of the content	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59 926007 0.7134001 28.90 side TE ST INER Front Rear FRONT	145214.5 in. in. Left 1412 1056 2889	41.0 -3.07399 NA 0.89841 IT (Ib) Right 1477
Vehicle Dimens Wheel Base: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT Front Rear	ty ght (lb) (in.) Left 1521 1132	Estimated T Vertical C C.G. Calcularin. 2270P M/ 500 6: N/ 220m front axle of to moenterline - po	otal Weight (It G Location (in tions Front Rear A SH Targets 0 ± 110 3 ± 4 A 8 or greater lest vehicle	5025 .) 28.89841 Track Width:	Test Inertial 5041 59 926007 0.7134001 28.90 TE ST INER	145214.5 in. in. Left 1412 1056	41.0 -3.07399 NA 0.89841 IT (Ib) Right 1477 1096

Figure B-1. Vehicle Mass Distribution, Test No. H42ST-1

Model Veen	2046	Test Name: _	H 42ST-2	VIN:			47887
Model Year:	2016	Make:_	Hyundai	Model:		Accent	
W-E'-I- 00 I	D - 4						
Vehicle CG I	Determinat	ion			Weight		
	Vehicle Eq	u ipm ent			(lb)		
	+	Unballasted C	ar (Curb)		2543	1	
	+	Hub			19		
	+	Brake activation	n cylinder & f	rame	7		
	+	P neum atic tan			12		
	+	Strobe/Brake I			5		
	+	Brake Receive	.		5		
	+	CG Plate inclu	ding DAQ		19		
	-	Battery			-37		
	-	Oil			-12		
	-	Interior			-64		
	-	Fuel			-27		
	-	Coolant			-7		
	_	Washerfluid			-6		
	+	Water Ballast					
	+	Onboard Supp	lem ental Batt	ery			
	_	Spare tire			-38		
						l	
	Note: (+) is a	dded equipment to v	ehicle, (-) is remo				
Vehicle Dime			mated Total V				
Vehicle Dime Wheel Base:	ensions for	Esti	mated Total V		2419	in.	_
	ensions for	Esti	mated Total V ons Front Tra	Veight (lb)	2419 58.875	in. in.	_
Wheel Base: Roof Height:	ensions for 101.0 56.75	Esti C.G. Calculatio _ in. _ in.	mated Total V ons Front Tra Rear Tra	Veight (lb)	2419 58.875 59.25	in.	_
Wheel Base: Roof Height: Center of Gr	ensions for 101.0 56.75 avity	Esti C.G. Calculatio in. in. 1100C MAS	mated Total V ons Front Tra Rear Tra GH Targets	Veight (lb)	2419 58.875 59.25 Test Inertial	in.	
Wheel Base: Roof Height: Center of Gri Test Inertial V	ensions for 101.0 56.75 avity Veight (lb)	Esti C.G. Calculatio in. in. 1100C MAS	mated Total V ons Front Tra Rear Tra GH Targets ± 55	Veight (lb)	2419 58.875 59.25 Test Inertial 2430	in.	10.
Wheel Base: Roof Height: Center of Gn Test Inertial V Longitudinal (ensions for 101.0 56.75 avity Veight (lb) CG (in.)	C.G. Calculation in. in. 1100C MAS 2420:	mated Total V ons Front Tra Rear Tra GH Targets ± 55	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948	in.	10. -1.05
Wheel Base: Roof Height: Center of Gn Test Inertial V Longitudinal C Lateral CG (i	ensions for 101.0 56.75 avity Veight (lb) CG (in.)	C.G. Calculation in. in. 1100C MAS 2420: 39: NA	mated Total V ons Front Tra Rear Tra GH Targets ± 55	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049	in.	10. -1.05 N
Wheel Base: Roof Height: Center of Gn Test Inertial V Longitudinal C Lateral CG (i	ensions for 101.0 56.75 avity Veight (lb) CG (in.) n.)	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948	in.	10. -1.05 N
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (ensions for 101.0 56.75 avity Veight (lb) CG (in.) n.) in.) is measured fr	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432	in.	10. -1.05 N
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (ensions for 101.0 56.75 avity Veight (lb) CG (in.) n.) in.) is measured fr	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432	in.	10. -1.05 N
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (ensions for 101.0 56.75 avity Veight (lb) CG (in.) in.) is measured from	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432	in.	10. -1.05 N. N.
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG	ensions for 101.0 56.75 avity Veight (lb) CG (in.) In.) is measured fro HT (lb)	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test m centerline - positiv	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side	TIAL WEIG	10. -1.05 N N HT (Ib)
Wheel Base: Roof Height: Center of Grant Test Inertial V Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG) Note: Lateral CG	ensions for 101.0 56.75 avity Veight (lb) CG (in.) In.) is measured fro HT (lb) Left	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test m centerline - position	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side TEST INER	TIAL WEIG	10. -1.05 N. N. HT (Ib)
Wheel Base: Roof Height: Center of Gritest Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CG CURB WEIGH	ensions for 101.0 56.75 avity Veight (lb) CG (in.) In.) is measured fro HT (lb) Left 810	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test moenterline - position Right 759	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side TEST INER	TIAL WEIG	10. -1.05 N. N. HT (lb) Right 757
Wheel Base: Roof Height: Center of Grant Test Inertial V Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG) Note: Lateral CG	ensions for 101.0 56.75 avity Veight (lb) CG (in.) In.) is measured fro HT (lb) Left	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test m centerline - position	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side TEST INER	TIAL WEIG	10. -1.05 N. N. HT (Ib)
Wheel Base: Roof Height: Center of Gritest Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CG CURB WEIGH	ensions for 101.0 56.75 avity Veight (lb) CG (in.) in.) is measured fro HT (lb) Left 810 493	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test m centerline - positiv Right 759 481	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side TEST INER	TIAL WEIG Left 760 457	Right 757 456
Wheel Base: Roof Height: Center of Gritest Inertial V Longitudinal C Lateral CG (i Vertical CG () Note: Long. CG Note: Lateral CG CURB WEIGH Front Rear FRONT	ensions for 101.0 56.75 avity Veight (lb) CG (in.) in.) is measured fro HT (lb) Left 810 493	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test m centerline - position Right 759 481	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side TEST INER' Front Rear FRONT	TIAL WEIG Left 760 457	10. -1.05 N N HT (Ib) Right 757 456
Wheel Base: Roof Height: Center of Gritest Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CG CURB WEIGH	ensions for 101.0 56.75 avity Veight (lb) CG (in.) in.) is measured fro HT (lb) Left 810 493	C.G. Calculation in. in. 1100C MAS 2420: 39: NA NA om front axle of test m centerline - positiv Right 759 481	mated Total V ons Front Tra Rear Tra GH Targets ± 55 ± 4 vehide	Veight (lb)	2419 58.875 59.25 Test Inertial 2430 37.948 -0.049 22.432 side TEST INER	TIAL WEIG Left 760 457	10. -1.05 N N HT (Ib) Right 757 456

Figure B-2. Vehicle Mass Distribution, Test No. H42ST-2

Appendix C. Static Soil Tests

Figure C-1. Soil Strength, Initial Calibration Test, Test No. H42ST-1

Figure C-2. Static Soil Test, Test No. H42ST-1

Figure C-3. Soil Strength, Initial Calibration Test, Test No. H42ST-2

Figure C-4. Static Soil Test, Test No. H42ST-2

Appendix D. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

del Year:	20	118			Test Name: Make:	H42	ST-1 m			VIN: . Model:	1C6R	R6GT2GS2 1500	269090
der rear.		710	•		Make.	R	a11			Model.		1500	
					VE	HICLE DE	FORMATIO	ON					
							OOR PAN						
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZÅ	Total Δ	Crush ⁶	Directio
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush
	1	55.5926	-44.8970	-6.9658	51.4477	-39.1481	-10.0312	4.1449	5.7489	3.0858	7.7219	5.1554	ΧZ
TOE PAN - WHEEL WELL (X, Z)	2 3	58.7989	-39.5924	-4.2591	53.4966	-35.2859	-6.4061	3.3023	4.3065	2.1470	5.8362	3.9389	X Z X Z X Z
	3	56.8796	-34.2463	-4.0000	55.0538	-31.5807	-4.5701	1.8258	2.6656	0.5701	3.2809	1.9127	ΧZ
	4	55.4421	-29.1962	-4.8471	53.9459	-26.8817	-5.8519	1.4962	2.3345	1.0048	2.9493	1.8023	ΧZ
	5	52.8133	-23.8053	-7.0772	51.1808	-22.5484	-9.4785	1.6325	1.2589	2.4013	3.1648	2.9037	X, Z
	6	49.4729	-45.3684	0.0034	44.6264	-39.3338	-3.6144	4.8465	6.0348	3.6178	8.5438	6.0479	Χ,Z
	7	49.0879	-39.8616	0.1140	46.7738	-36.6478	-0.5779	2.2941	3.2138	0.6919	4.0088	2.3962	X, Z
	8 9	48.8211	-34.8104	0.2345	46.9449	-31.6138	-0.6887	1.8762	3.1968	0.9032	3.8150	2.0823	X Z X Z
		48.9843	-29.2858	0.1547	47.0468	-26.1597	-1.5028	1.9375	3.1261	1.6575	4.0341	2.5497	ΧZ
	10	47.3789	-24.1444	-5.1680	45.6417	-23.0728	-7.8303	1.7372	1.0716	2.6623	3.3547	3.1789	Χ,Z
T	11	45.1204	-45.8012	1.7035	42.8924	-41.7111	0.1071	2.2280	4.0901	1.5964	4.9238	1.5964	Z Z Z Z
	12	45.1603	-40.3855	1.2074	43.2799	-37.0229	0.9910	1.8804	3.3626	0.2164	3.8587	0.2164	Z
ĺ	13	45.0925	-34.7085	1.2281	43.1283	-31.4889	0.2043	1.9642	3.2416	1.0238	3.9261	1.0238	Z
	14	45.0487	-30.0805	1.2302	42.9666	-26.8777	-0.5758	2.0801	3.2028	1.8060	4.2245	1.8060	Z
	15	43.2238	-24.3682	-4.5921	41.4475	-23.3963	-7.3192	1.7763	0.9719	2.7271	3.3966	2.7271	Z
	16	41.0237	-46.1161	1.8360	39.3611	-42.4417	1.7771	1.6626	3.6744	0.0589	4.0335	0.0589	Z Z Z Z Z
	17	40.9787	-40.7148	1.1941	39.2706	-37.4585	1.2633	1.7081	3.2583	-0.0892	3.6795	-0.0892	Z
_	18	40.5522	-33.9595	1.0350	38.7133	-30.9847	-0.5482	1.8389	2.9948	1.5812	3.8536	1.5812	Z
PAN	19	40.9094	-30.5079	1.2142	38.9411	-27.5725	-1.3317	1.9683	2.9354	2.5459	4.3557	2.5459	Z
~ 0	20	39.8753	-24.6868	-3.7674	38.0663	-23.8396	-6.6809	1.8090	0.8472	2.9135	3.5325	2.9135	Z
FLOOR (Z)	21	36.1801	-46.1982	1.7959	34.5429	-43.2286	1.6543	1.6372	2.9696	0.1416	3.3940	0.1416	Z Z
9	22	36.0783	-40.9256	1.2191	34.3169	-37.8955	1.0683	1.7614	3.0301	0.1508	3.5081	0.1508	Z Z
ш.	23	35.7629	-35.2888	1.2227	33.8823	-32.4802	-0.6104	1.8806	2.8084	1.8331	3.8450	1.8331	Z
	24	36.0362	-29.9812	1.2407	34.0248	-27.3578	-2.0085	2.0114	2.6234	3.2492	4.6352	3.2492	Z
	25	35.1572	-25.4532	-1.7689	33.2453	-24.9083	-4.7712	1.9119	0.5489	3.0023	3.6011	3.0023	Z
	28	30.6823	-48.1488	0.4953	29.2511	-43.3278	1.5423	1.4312	2.8212	-1.0470	3.3322	-1.0470	Z Z Z
	27	30.5903	-40.1552	0.1750	29.3147	-37.9322	-0.9084	1.2758	2.2230	1.0834	2.7826	1.0834	7
	28	30.7728	-33.9133	0.4256	29.0744	-31.7851	-2.1862	1.6982	2.1282	2.6118	3.7729	2.6118	Z
	28 29	30.6855	-29.0119	0.4353	28.5569	-27.0383	-1.1005	2.1286	1.9756	1.5358	3.2852	1.5358	Z Z Z
	30	31.2093	-25.1315	-2.6844	29.8804		-4.3755	1.3289	0.9782	1.6911	23819	1.6911	<u>=</u>

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. H42ST-1

⁸ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

odel Year:	20)16		Test Name: H42ST-1 Make: Ram							1C6RR6GT2GS269090 1500		
							FORMATI OOR PAN						
	DOLLET	Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ⁶ (in.)	Direction for
	POINT	(in.)	(in.)	(in.)					` '	` '			Crusi
ļ	1 2	57.6332	-24.1829	-2.8815	53.3803	-18.8552	-6.1522	4.2529	5.3277	3.2907	7.5897	5.3773	X, Z X, Z
ļ	3	58.7142	-18.8524	-0.1530	55.4279	-14.8242	-2.7150	3.2863	4.0282	2.5820	5.7957	4.1670	Х, 2
. ∃ ↓		58.6702	-13.5080	0.1077	56.9462	-11.0241	-1.0481	1.7240	2.4819	1.1558	3.2354	2.0758	Χ, 2
TOE PAN - WHEEL WELL (X, Z)	4	57.1159	-8.4904	-0.7388	55.7088	-6.3780	-2.4881	1.4093	2.1124	1.7293	3.0723	2.2308	Х,
	5	54.3834	-3.1616	-2.9688	52.7653	-2.2536	-6.1773	1.5981	0.9080	3.2085	3.6977	3.5845	X, 2
	6	51.5224	-24.7987	4.1040	48.7147	-18.9547	0.4280	4.8077	5.8440	3.6760	8.4130	6.0520	X, 2
řį ļ	7	50.9892	-19.3029	4.2159	48.8728	-16.1178	3.3161	2.1164	3.1851	0.8998	3.9286	2.2997	Х,
5	8	50.6247	-14.2588	4.3377	48.9322	-11.0877	3.0443	1.6925	3.1711	1.2934	3.8201	2.1301	X, 2
	9	50.6593	-8.7319	4.2596	48.8962	-5.6659	2.0168	1.7631	3.0680	2.2428	4.1880	2.8528	Χ, 2
	10	48.9374	-3.6277	-1.0826	47.2786	-2.8386	-4.3799	1.6588	0.7911	3.3173	3.7924	3.7089	X, 2
	11	47.1803	-25.3333	5.8016	45.1192	-21.2335	4.2710	2.0811	4.0998	1.5308	4.8373	1.5308	Z
l	12	47.0943	-19.9180	5.3071	45.4250	-16.5096	4.9801	1.6693	3.4084	0.3270	3.8093	0.3270	Z Z
[13	46.8942	-14.2441	5.3293	45.1344	-10.9896	4.0024	1.7598	3.2545	1.3269	3.9306	1.3269	Z
ľ	14	48.7407	-9.6184	5.3327	44.8550	-6.4356	3.0656	1.8857	3.1828	2.2871	4.3389	2.2671	Z
ľ	15	44.7884	-3.9485	-0.4890	43.1053	-3.2293	-3.7579	1.6831	0.7192	3.2689	3.7464	3.2689	Z
ľ	16	43.0919	-25.7435	5.9319	41.6441	-21.9778	6.0495	1.4478	3.7657	-0.1176	4.0381	-0.1178	Z Z Z Z Z
ľ	17	42.9215	-20.3448	5.2914	41.4334	-17.0171	5.3831	1.4881	3.3275	-0.0717	3.6458	-0.0717	Z
_ [18	42.3379	-13.6010	5.1339	40.6934	-10.6070	3.3402	1.6445	2.9940	1.7937	3.8582	1.7937	Z
PAN	19	42.6145	-10.1421	5.3143	40.8293	-7.2409	2.4308	1.7852	2.9012	2.8835	4.4830	2.8835	Z
* C	20	41.4477	-4.3451	0.3337	39.7502	-3.7202	-3.0239	1.6975	0.6249	3.3576	3.8139	3.3578	Z
FLOOR (2)	21	38.2516	-25.9385	5.8891	36.8427	-22.8891	6.0893	1.4089	3.0694	-0.1802	3.3821	-0.1802	Z
2	22	38.0273	-20.6694	5.3137	38.4873	-17.5882	5.3018	1.5400	3.1032	0.0119	3.4843	0.0119	Z
-	23	37.5807	-15.0414	5.3187	35.8963	-12.2245	3.4447	1.6844	2.8169	1.8740	3.7794	1.8740	Z
1	24	37.7303	-9.7290	5.3384	35.8951	-7.1533	1.8843	1.8352	2.5757	3.4741	4.6980	3.4741	Z
İ	25	36.7477	-5.2218	2.3295	34.9988	-4.8187	-0.9635	1.7489	0.4031	3.2930	3.7503	3.2930	Z
İ	26	32.7548	-26.0167	4.5856	31.5531	-23.0827	6.0871	1.2017	2.9340	-1.5015	3.5081	-1.5015	Z Z Z Z
1	27	32.5234	-20.0268	4.2889	31.4427	-17.7780	3.4475	1.0807	2.2488	0.8194	2.6261	0.8194	: 7
ľ	28	32.5801	-13.7824	4.5193	31.0393	-11.6867	1.9804	1.5208	2.0957	2.5589	3.6404	2.5589	Z
ľ	29	32.3589	-8.8843	4.5303	30.4440	-6.9141	2.8907	1.9149	1.9702	1.6396	3.1995	1.6396	Z Z Z
ŀ	30	32.7939	-4.9920	1.4120	31.6285	-4.1247	-0.5143	1.1654	0.8673	1.9263	2.4127	1.9263	÷

[^] Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. H42ST-1

⁸ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

Model Year:	20	016			Test Name: Make:		ST-1 am			Model:	icur	R6GT2GS 1500	209090
					VE	HICLE DE	FORMATION	ON					
					DRIVER S	IDE INTER	RIOR CRU	SH - SET 1					
	DOINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total Δ (in.)	Crush ⁸ (in.)	Directions for
	POINT 1	(in.) 41.6510	(in.) -48.5314	(in.) -29.4721	41.7128	-45.2518	-31.6942	-0.0818	1.2796	-2.2221	2.5849	2.5849	Crush ^C
ถ	2	39.8080	-34.3863	-33.5827	40.2908	-33.0321	-35.7809	-0.4826	1.3542	-2.1982	2.6266	2.6266	X, Y, Z X, Y, Z
BS ≻	3	38.4875	-15.7452	-30.7858	38.6722	-14.3856	-32.7889	-0.1847	1.3596	-2.0033	2.4281	2.4281	X, Y, Z
9 €	4 5	38.7813 36.8112	-48.4753 -34.2932	-19.8486 -19.1045	37.8400 35.9392	-45.2308 -33.0745	-22.3255 -21.6564	0.9413 0.8720	1.2445 1.2187	-2.4789 -2.5519	2.9274 2.9594	2.9274	X,Y,Z
	6	35.9359	-16.1235	-17.6584	35.3757	-15.0729	-19.7638	0.5802	1.0508	-2.1054	2.4187	2.4187	X, Y, Z X, Y, Z
필립스	7	48.7028	-48.3407	-8.3091	45.7789	-43.6492 -42.5658	-9.9978	2.9239	4.6915	-1.6887	5.7802	4.6915	Y
동물건	8 9	49.0932 51.1095	-48.2241 -48.1935	-5.4055 -7.2190	45.8140 47.7084	-42.5558 -42.5508	-7.2793 -9.0892	3.2792 3.4031	5.6583 5.6429	-1.8738 -1.8502	6.8030 6.8445	5.6583 5.6429	Ÿ
	10	13.4805	-50.5768	-18.4085	12.1215	-52.3351	-18.9384	1.3390	-1.7583	-0.5279	2.2723	-1.7583	Y
B	11	24.1503 25.2158	-50.9123 -50.5908	-18.7612 -19.4042	22.7478	-52.8680 -52.2811	-19.4297 -20.2070	1.4025 1.4431	-1.9557 -1.6905	-0.6685 .0.9029	2.4977	-1.9557	Y
385	12 13	35.3156 13.4320	-50.5906 -50.4771	-19.4042 -7.2483	33.8725 12.4681	-52.2811	-20.3070 -7.9313	0.9639	-1.0905 -1.0247	-0.9028 -0.6830	2.3990 1.5638	-1.6905 -1.0247	Ÿ
ROOF . (Z) DOOR (Y)	14	26.3662	-50.9883	-3.7694	25.1191	-51.5023	-4.6531	1.2471	-0.5160	-0.8837	1.6132	-0.5160	Y
=	15	34.8169	-51.0768 -40.2185	-3.0885	33.5590 30.8065	-50.9448	-4.1351	1.2579 -0.3334	0.1320	-1.0688	1.6558	0.1320	Y
	18 17	30.4731 33.7582	-40.2185 -27.9573	-46.1848 -46.6392	33.9696	-39.4318 -27.1277	-48.7614 -47.0708	-0.3334 -0.2134	0.7867 0.8296	-0.5768 -0.4316	1.0308 0.9592	-0.5768 -0.4316	Z Z
	18	34.4509	-16.9787	-48.9112	34.5599	-16.1697	-47.2280	-0.1090	0.8090	-0.3168	0.8756	-0.3168	Z
-	19	23.5023 25.4326	-39.1184 -28.2854	-49.2664 -49.8203	23.8810 25.6669	-38.4432 -27.5439	-49.6411 -50.1900	-0.3587 -0.2343	0.6752 0.7415	-0.3747 -0.3897	0.8514 0.8610	-0.3747 -0.3697	Z
	20 21	27.0744	-18.2052	-49.8413	27.3277	-17.4067	-50.1041	-0.2533	0.7985	-0.2628	0.8780	-0.2628	Z
Ņ	22 23	7.8790	-37.7149	-50.6588	8.2549	-37.0985	-50.6220	-0.3759	0.6164	0.0386	0.7229	0.0388	Z Z Z Z Z
ğ	23 24	8.1603 8.0957	-28.8970 -18.1847	-51.2838 -51.4480	8.4335 8.2602	-26.3100 -17.5189	-51.6143 -51.6925	-0.2732 -0.1645	0.5870 0.6658	-0.3507 -0.2485	0.7383 0.7288	-0.3507 -0.2465	
28	25	-5.3813	-38.1008	-50.9599	-4.9908	-37.5898	-51.2058	-0.3705	0.5310	-0.2459	0.6926	-0.2459	Z Z Z
	26	-5.5279	-25.9555	-51.5372	-5.3152	-25.4373	-51.7775	-0.2127	0.5182	-0.2403	0.6095	-0.2403	Z
	27 28	-5.7553 -20.5845	-17.5584 -38.2079	-51.6594 -50.8705	-5.5560 -20.1988	-17.0841 -37.8113	-51.8978 -51.2754	-0.1993 -0.3857	0.4743 0.3968	-0.2384 -0.4049	0.5870 0.6745	-0.2384 -0.4049	Z Z
	29	-21.2144	-26.6942	-51.3080	-21.0253	-26.2982	-51.7017	-0.1891	0.3960	-0.3957	0.5909	-0.3957	Z Z
	30	-21.3658	-17.4888	-51.3907	-21.2388	-17.1132	-51.6973	-0.1270	0.3734	-0.3088	0.4996	-0.3068	
m E G	31 32	46.8837 43.5296	-46.5988 -45.6939	-34.3862 -36.9938	47.5518 44.1438	-46.0469 -45.1378	-35.3764 -38.0782	-0.6681 -0.6142	0.5519 0.5581	-1.0102 -1.0844	1.3310 1.3847	0.5519 0.5581	Y
₹ Ē.Y.	33	40.7284	-45.2002	-39.0053	41.3582	-44.5915	-40.0118	-0.6278	0.6087	-1.0085	1.3333	0.6087	Y
<u> </u>	34 35	39.0112 36.9705	-44.8180 -44.3438	-40.2089 -41.5865	39.5827 37.5223	-44.1958 -43.6865	-41.1797 -42.4725	-0.5715 -0.5518	0.6224 0.6571	-0.9708 -0.8860	1.2870 1.2334	0.6224	Y
~ _	38	33.6529	-43.8034	-43.6623	34.0974	-43.0857	-44.4520	-0.4445	0.0071	-0.7897	1.1580	0.7177	Ÿ
	31	46.8837	-46.5988	-34.3882	47.5518	-46.0469	-35.3784	-0.6681	0.5519	-1.0102	1.3310	0.5519	Y
₹ε	32 33	43.5296 40.7284	-45.6939 -45.2002	-36.9938 -39.0053	44.1438 41.3582	-45.1378 -44.5915	-38.0782 -40.0118	-0.6142 -0.6278	0.5561 0.6087	-1.0844 -1.0085	1.3847 1.3333	0.5581	Y
PIL	34	39.0112	-44.8180	-40.2089	39.5827	-44.1958	-41.1797	-0.5715	0.6224	-0.9708	1.2870	0.6224	Ÿ
∢ 5	35	38.9705	-44.3436	-41.5885	37.5223	-43.6865	-42.4725	-0.5518	0.6571	-0.8880	1.2334	0.6571	Y
~ 5 ~	38 37	33.6529	-43.8034 -43.5388	-43.6823 -44.5217	34.0974 3.3490	-43.0857 -43.0035	-44.4520 -44.5994	-0.4445 -0.1031	0.7177 0.5331	-0.7897 -0.0777	1.1580 0.5485	0.7177	Y
B-PILLAR Maximum (X, Y, Z)	38	6.3072	-44.7885	-40.9915	6.5574	-44.3047	-41.1082	-0.1031	0.4818	-0.1167	0.5553	0.4818	Y
<u> </u>	39	3.7848	-47.0085	-34.7802	3.8851	-48.6270	-34.8210	-0.1205	0.3795	-0.0808	0.4028	0.3795	Y
	40 37	7.4344 3.2459	-47.8009 -43.5386	-29.0198 -44.5217	7.4807 3.3490	-47.5015 -43.0035	-29.1028 -44.5994	-0.0463 -0.1031	0.2994	-0.0830 -0.0777	0.3141 0.5485	0.2994	Y
ILLAR stal (?)	38	6.3072	-44.7885	-40.9915	6.5574	-44.3047	-41.1082	-0.1031	0.4818	-0.1167	0.5553	0.4818	Ÿ
B-PIL Later	39 40	3.7646	-47.0085	-34.7802	3.8851		-34.8210 -29.1028	-0.1205	0.3795	-0.0808	0.4028	0.3795 0.2994	Y
^ Positive vi	alues denot nt.	te deformation	on as inward	toward the	occupant o	ompartment	, negative va	alues denote	e deformatio	ns outward	away from t	ne occupar	
deforming in	nward towa	at use multip rd the occup olumn denot	ant compar	tment				-					nponent is

Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. H42ST-1

							RIOR CRU		!				
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	PosttestY (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^A (in.)	ΔZ ^A (in.)	Total Δ (in.)	Crush ⁸ (in.)	Direction: for
	1	43.7481	-26.1506	-25.3758	43.2744	-25.9410	-27.3435	0.4737	0.2096	-1.9679	2.0349	2.0349	X, Y, Z
DASH (X, Y, Z)	3	41.62.55 39.87.11	-14.0523 4.5538	-29.4896 -26.6971	41.4946 39.5441	-13.9077 4.7965	-31.8242 -29.4550	0.1309 0.3270	0.1448 -0.2429	-2.3346 -2.7579	2.3427 2.7878	2.3427 2.7878	X, Y, Z X, Y, Z
χ. Υ	4	40.8735	-26.1592	-15.7535	39.6199	-25.6646	-17.8915	1.2538	0.4946	-2.1380	2.5273	2.5273	X, Y, Z
٠	5 6	38.62.06 37.32.28	-14.0259 4.1188	-15.0128 -13.5709	37.4734 36.5657	-13.5341 4.5082	-17.6070 -16.3387	1.1472 0.7571	0.4918 -0.3894	-2.5942 -2.7678	2.8789 2.8958	2.8789 2.8958	X, Y, Z X, Y, Z
12日人	7	50.8303	-27.7913	-4.2090	47.8063	-23.4781	-5.8207	3.0240	4.3132	-1.6117	5.5087	4.3132	Y
SIDE PANEL (?)	8 9	51.2165 53.2324	-27.6650 -27.5880	-1.3053 -3.1178	47.8810 49.7307	-22.2974 -22.3071	-3.1438 -4.9778	3.3355 3.5017	5.3676 5.2809	-1.8385 -1.8600	6.5815 6.6037	5.3676 5.2809	Y
	10	15.8541	-30.8474	-14.3241	14.1461	-33.1747	-13.6395	1.5080	-2.3273	0.6846	2.8564	-2.3273	Y
IMPACT SIDE DOOR (Y)	11 12	26.3489 37.5041	-30.9347 -30.3537	-14.6718 -15.3097	24.7671 35.8533	-33.5044 -32.7188	-14.3676 -15.5309	1.5818 1.6508	-2.5897 -2.3851	0.3042 -0.2212	3.0328 2.8927	-2.5697 -2.3651	Y
	13	15.6181	-30.7461	-3.1639	14.7294	-31.9406	-2.6821	0.8887	-1.1945	0.4818	1.5648	-1.1945	Y
	14 15	28.5591 37.0093	-30.9541 -30.8482	0.3210 1.0279	27.4500 35.8857	-31.5613 -30.8107	0.2906 0.5866	1.1091 1.1236	-0.6072 0.0375	-0.0304 -0.4413	1.2648 1.2077	-0.8072 0.0375	Y
	16	32.43.44	-20.1023	-42.0947	31.8990	-20.8919	-42.3419	0.5354	-0.7896	-0.2472	0.9855	-0.2472	Z
İ	17 18	35.4320	-7.7683 3.2235	-42.5502 -42.8243	34.7879 35.1379	-8.5438 2.4114	-43.1613 -43.7197	0.6441	-0.7755 0.8121	-0.6111 -0.8954	1.1789	-0.8111 -0.8954	Z Z
	19	35.8716 25.4413	-19.1651	-42.8243 -45.1798	24.8689	-20.1513	-45.0877	0.7337 0.5724	-0.9862	0.0921	1.4141 1.1440	0.0921	Z
	20 21	27.1198	-8.2903	-45.7350	26.4260	-9.2438	-46.0644	0.6938	-0.9533	-0.3294	1.2242	-0.3294	Z
Q.	21 22	28.5270 9.7903	1.8254 -18.1251	-45.7575 -46.5794	27.8693 9.2190	0.9224 -19.1665	-48.3785 -45.7421	0.6577 0.5713	0.9030 -1.0414	-0.6190 0.8373	1.2772 1.4533	-0.6190 0.8373	Z Z
P.	23	9.8205	-7.3037	-47.1866	9.1418	-8.4192	-47.1189	0.6787	-1.1155	0.0677	1.3075	0.0677	Z
8	24 25	9.5537 -3.4373	1.4047 -18.8183	-47.3708 -46.8867	8.7771 -4.0235	0.3580 -19.9328	-47.5035 -45.9919	0.7766 0.5862	1.0467 -1.1145	-0.1327 0.8948	1.3101 1.5448	-0.1327 0.8948	Z Z
	26	-3.8857	-6.6805	-47.4887	-4.6227	-7.8381	-46.9840	0.7370	-1.1576	0.4827	1.4547	0.4827	Z Z
	27 28	-4.3081 -18.6340	1.7091 -19.2787	-47.5907 -46.8042	-5.0464 -19.2203	0.4986 -20.4921	-47.3935 -45.6893	0.7383 0.5863	1.2105 -1.2134	0.1972 1.1149	1.4315 1.7490	0.1972 1.1149	Z Z
	29	-19.5509	-7.7833	-47.2425	-20.3046	-9.0213	-46.5022	0.7537	-1.2380	0.7403	1.6275	0.7403	Z
	30 31	-19.9161 48.9833	1.4183 -26.0973	-47.3292 -30.2672	-20.7160 49.0423	0.1515 -26.7462	-46.8172 -31.1339	0.7999 -0.0590	1.2668 -0.6489	0.5120 -0.8887	1.5833	0.5120	Z NA
S EV	32	45.8103	-25.2712	-32.8966	45.5538	-26.0053	-33.7838	0.0585	-0.7341	-0.8872	1.1529	0.0565	
事覧光	33 34	42.7993 41.0742	-24.8430 -24.5011	-34.9095 -36.1139	42.7111 40.9028	-25.5867 -25.2696	-35.6683 -36.8067	0.0882 0.1714	-0.7437 -0.7685	-0.7588 -0.6928	1.0661 1.0488	0.0882 0.1714	X X X
B-PILLAR APILLAR APILLAR APILLAR IMPACT 8 Maximum (X, Y, Z) (X, Y, Z) (X, Y, Z) (Y)	35	39.0237	-24.0745	-37.4926	38.8025	-24.8501	-38.0671	0.2212	-0.7756	-0.5745	0.9902	0.2212	X
	36	35.6955	-23.6119	-39.5701	35.3205	-24.3917 -26.7462	-39.9841	0.3750	-0.7798	-0.4140	0.9592	0.3750	X
4 ک	31 32	48.9833 45.6103	-26.0973 -25.2712	-30.2672 -32.8966	49.0423 45.5538	-26.0053	-31.1339 -33.7838	-0.0590 0.0565	-0.6489 -0.7341	-0.8667 -0.8872	1.0843 1.1529	-0.6489 -0.7341	-
	33 34	42.7993	-24.8430	-34.9095	42.7111	-25.5867 -25.2696	-35.6683 -36.8067	0.0882 0.1714	-0.7437	-0.7588 -0.6928	1.0661	-0.7437	Y
A P Late	35 38	41.0742 39.0237	-24.5011 -24.0745	-38.1139 -37.4928	40.9028 38.8025	-25.2090 -24.8501	-38.0671	0.1714	-0.7685 -0.7756	-0.0928 -0.5745	1.0488 0.9902	-0.7685 -0.7758	Ÿ
	36	35.8955	-23.6119	-39.5701	35.3205	-24.3917	-39.9841	0.3750	-0.7798	-0.4140	0.9592	-0.7798	Υ
\$ [0]	37 38	5.2908 8.3787	-24.0516 -25.2294	-40.4434 -38.9116	4.5823 7.8981	-24.9524 -26.0609	-39.3990 -35.9418	0.7085 0.4806	-0.9008 -0.8315	1.0444 0.9698	1.5505 1.3649	1.2620 1.0824	X,Z X Z
axin X	39	5.8855	-27.5066	-30.6810	5.4228	-28.2113	-29.5143	0.4627	-0.7047	1.1667	1.4394	1.2551	X,Z X,Z
	40 37	9.5701 5.2908	-28.2143 -24.0516	-24.9387 -40.4434	9.1679 4.5823	-28.8057 -24.9524	-23.8564 -39.3990	0.4022	-0.5914 -0.9008	1.0823	1.2973 1.5505	1.1546 -0.9008	X,Z Y
LAR al C)	38	8.3787	-25.2294	-36.9116	7.8981	-26.0609	-35.9418	0.4806	-0.8315	0.9698	1.3649	-0.8315	Ÿ
B-PILL/ Lateral I	39 40						-29.5143 -23.8564				1.4394		Y
							t, negative v						
compartme Crush cak	nt. culations tha		le directiona	al componer		-	onents that a				-	-	

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. H42ST-1

Model Year:	2016	-	Test Name: _ Make: _	H42ST-1 Ram	VIN: Model:			
			Driver Side Maxi	mum Deformation				
	Reference Se	t 1			Reference Se	t 2		
Location	M ax imum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	
Roof Windshield ^D	0.0 0.0 0.7	≤ 4 ≤ 3	Z X, Z Y	Roof Windshield ^D	1.1 NA	≤ 4 ≤ 3 ≤ 5	Z X, Z X	
A-Pillar Maximum A-Pillar Lateral	0.7	≤ 5 ≤ 3	Υ	A-Pillar Maximum A-Pillar Lateral	0.4 -0.8	≤3	Υ	
B-Pillar Maximum B-Pillar Lateral	0.5 0.7	≤5 ≤3	Y	B-Pillar Maximum B-Pillar Lateral	1.3 -0.9	≤5 ≤3	X, Z Y	
Toe Pan - Wheel Well Side Front Panel	6.0 5.7	≤ 9 ≤ 12	X, Z Y	Toe Pan - Wheel Well Side Front Panel	6.1 5.4	≤ 9 ≤ 12	X, Z Y	
Side Door (above seat) Side Door (below seat)	-2.0 0.1	≤ 9 ≤ 12	Y	Side Door (above seat) Side Door (below seat)	-2.6 0.0	≤ 9 ≤ 12	Y Y	
Floor Pan Dash - no MASH requirement	3.2 3.0	≤ 12 NA	Z X, Y, Z	Floor Pan Dash - no MASH requirement	3.5 3.0	≤ 12 NA	Z X, Y, Z	
^C For Toe Pan - Wheel Well the di directions. The direction of deforr occupant compartment. If direction	ion as inward towar rection of de fromati nation for Toe Pan on of deformation is	d the occupant comp ion may include X an -Wheel Well, A-Pillar "NA" then no intrusio	d Z direction. For A-f Maximum, and B-Pill on is recorded and de	ues denote deformations outward aw Pillar Maximum and B-Pillar Maximum lar Maximum only include component formation will be 0. osttest with an examplar vehicle, the	the direction of de s where the deform	formation may include ation is positive and i	ntruding into the	
Notes on vehicle interior cru	sh:							

Figure D-5. Maximum Occupant Compartment Deformation by Location, Test No. H42ST-1

Figure D-6. Exterior Vehicle Crush (NASS) – Front, Test No. H42ST-1

Figure D-7. Exterior Vehicle Crush (NASS) – Side, Test No. H42ST-1

Figure D-8. Floor Pan Deformation Data – Set 1, Test No. H42ST-2

del Year:	20	16			Test Name: Make:		ST-2 Indai			VIN: Model:	KITIO	ct4ae8gu94 Accent	1001
					VE	HICLE DE	FORMATION	ON					
							OOR PAN						
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush
	1	84.9854	-4.2579	6.2237	84.6589	-3.6808	4.2182	0.3265	0.5771	2.0055	2.1123	2.0319	
	2	84.9346	0.2817	6.4467	84.4581	0.3341	4.5007	0.4765	-0.0524	1.9480	2.0042	2.0035	X,Z X,Z
_	3	84.6938	4.1823	6.7042	84.4281	4.2828	4.9255	0.2657	-0.1005	1.7787	1.8012	1.7984	ΧZ
∴ 🗔	4	84.9450	7.8926	6.5788	84.8515	7.9288	4.7387	0.0935	-0.0382	1.8401	1.8428	1.8425	X 7
¥ãŭ.	5	83.5584	12.0473	3.6530	83.5568	11.8188	1.8677	0.0016	0.2287	1.7853	1.7999	1.7853	X Z
iii iii X	6	81.0965	-4.5844	8.5228	80.9163	-4.3842	6.8039	0.1802	0.2002	1.7189	1.7399	1.7283	X.Z
TOE PAN - WHEEL WELL (X, Z)	7	80.6480	-0.0626	8.3440	80.5968	0.1354	6.8735	0.0512	0.1980	1.4705	1.4847	1.4714	Χ,Z
		80.6267	4.1904	9.0772	80.5817	4.3057	7.4094	0.0850	-0.1153	1.6878	1.6730	1.6891	ΧZ
	8 9	80.6970	6.4463	9.1135	80.6342	6.5986	7.3583	0.0828	-0.1523	1.7572	1.7849	1.7583	X, Z
	10	79.6104	12.3076	4.8159	79.6603	12.0846	3.1892	-0.0499	0.2230	1.6267	1.6427	1.6267	Z
	11	75.3020	-8.6925	10.1126	75.2716	-8.3991	8.5271	0.0304	0.2934	1.5855	1.6127	1.5855	Z
	12 13	74.4354	-1.8277	9.5890	74.4597	-1.6771	8.2396	-0.0243	0.1508	1.3494	1.3580	1.3494	Z Z Z Z Z Z
	13	74.6459	3.0226	10.3834	74.7181	3.2034	9.0430	-0.0722	-0.1808	1.3404	1.3545	1.3404	Z
	14	74.5980	8.1912	10.3629	74.6818	8.2535	8.6631	-0.0838	-0.0823	1.6998	1.7030	1.6998	Z
	15	74.4889	11.8296	6.6404	74.5531	11.6329	4.9800	-0.0842	0.1987	1.6804	1.6931	1.6804	Z
	16	71.7378	-8.1243	9.8396	71.6908	-7.9165	8.5052	0.0468	0.2078	1.3344	1.3513	1.3344	Z
	17	71.5855	-1.8253	9.5309	71.6402	-1.7443	8.2221	-0.0547	0.0810	1.3088	1.3124	1.3088	Z
_	18	71.3591	3.0278	10.3905	71.3815	3.1946	9.1753	-0.0224	-0.1668	1.2152	1.2268	1.2152	Z
Ž.	19	71.5370	8.2134	10.3702	71.6525	8.2485	8.7137	-0.1155	-0.0351	1.6565	1.6809	1.6565	Z
~ C	20	71.1572	12.3350	5.5902	71.2899	12.2152	3.8680	-0.1327	0.1198	1.7222	1.7315	1.7222	Z
FLOOR PAN (Z)	19 20 21	67.7902	-8.0436	9.9398	67.8316	-7.8516	8.6393	-0.0414	0.1920	1.3005	1.3152	1.3005	Z Z Z Z
9	22	67.7258	-1.8257	9.7348	67.7732	-1.6548	8.4859	-0.0474	0.1711	1.2489	1.2615	1.2489	Z
	23	68.0643	3.1308	10.4155	68.1047	3.2949	9.1752	-0.0404	-0.1641	1.2403	1.2518	1.2403	Z
	24	68.6219	8.5208	10.4019	68.7099	8.5828	8.7815	-0.0880	-0.0822	1.6204	1.6240	1.6204	Z
	25	71.1394	12.3326	5.6010	68.3083	12.2543	3.9175	2.8311	0.0783	1.6835	3.2948	1.6835	Z Z Z
	28	62.9969	-7.3370	10.2447	63.0126	-7.1677	9.1613	-0.0157	0.1693	1.0834	1.0967	1.0834	Z
	26 27 28	62.9195	-1.6012	9.8799	62.9989	-1.4434	8.6954	-0.0794	0.1578	1.1845	1.1976	1.1845	Z Z Z
	28	63.0644	3.2417	10.6548	63.1502	3.2907	9.2458	-0.0858	-0.0490	1.4090	1.4125	1.4090	Z
	29 30	63.0803	8.5733	10.6766	63.1893	8.6818	9.1076	-0.1090	-0.1085	1.5890	1.5765	1.5890	Z Z
	30	63.3555	12.5278	5.7704	63.4811	12.4848	4.1622	-0.1256	0.0428	1.6082	1.6137	1.6082	Z

[©] Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure D-9. Floor Pan Deformation Data – Set 2, Test No. H42ST-2

⁸ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

fodel Year:	20)16			Test Name: Make:		ST-2 Indai			VIN: Model:	kmh	ct4ae8gu94 Accent	7887
lodel Year.		110								Model:		Accent	
							FORMATION CRU						
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total Δ	Crush [®]	Directi
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in .)	(in.)	(in.)	(in.)	for Crust
	1	74.3963	-41.2023	-18.0804	74.1598	-40.4144	-19.9109	0.2365	0.7879	-1.8305	2.0069	2.0069	X, Y,
DASH (X, Y, Z)	2	70.9527	-29.1167	-22.1508	71.0756	-28.2023	-23.7879	-0.1229	0.9144	-1.6373	1.8794	1.8794	X, Y,
8 ≻.	3 4	74.2071 70.8196	-15.7220 -39.8886	-18.8300 -10.3249	74.4297 70.3208	-15.1619 -38.9633	-19.7986 -12.2982	-0.2226 0.4988	0.5601 0.9253	-0.9686 -1.9733	1.1408 2.2358	1.1408 2.2358	X, Y, X, Y,
98	5	72.7614	-30.3595	-7.1280	72.8983	-29.6853	-8.5068	0.0851	0.9293	-1.3788	1.5382	1.5382	X, Y,
	6	69.6007	-15.5239	-12.3888	69.7737	-15.1227	-13.4401	-0.1730	0.4012	-1.0513	1.1385	1.1385	X, Y,
	7	78.0103	-43.0522	2.2361	77.5784	-41.6110	0.5738	0.4319	1,4412	-1.6825	2.2422	1.4412	Y
348	8	78.7683	-43.0396	-0.3716	78.0103	-41.5342	-2.0277	0.7580	1.5054	-1.6561	2.3629	1.5054	Ÿ
SIDE SANEL	9	82.4537	-43.2241		81.2214	-40.5118	-0.2228	1.2323	2.7123	-1.6052	3.3841	2.7123	Ÿ
	10	44.7520	-43.0701	-15.8859	44.0790	-44.8423	-16.2217	0.6730	-1.7722	-0.3358	1.9252	-1.7722	Y
⊒ _~	11	58.4126	-43.8513	-14.7731	57.6812	-45.9143	-15.5610	0.7314	-2.0630	-0.7879	2.3263	-2.0630	Y
IMPACT SIC DOOR (Y)	12	65.0640	-43.5897	-14.4064	64.1496	-45.2084	-15.3812	0.9144	-1.6187	-0.9748	2.0992	-1.6187	Υ
	13	47.5488	-43.2270	-1.8817	47.4307	-44.5252	-2.3229	0.1181	-1.2982	-0.4412	1.3762	-1.2982	Υ
	14	59.2759	-44.6331	1.0735	59.3199	-48.0357	0.1271	-0.0440	-1.4026	-0.9464	1.6926	-1.4028	Υ
	15	65.4952	-45.2497	0.4052	65.4286	-46.7343	-0.5938	0.0666	-1.4846	-0.9990	1.7907	-1.4846	Υ
	16	60.6926	-32.9245	-33.7340	60.3985	-33.7738	-34.6930	0.2941	-0.8491	-0.9590	1.3142	-0.9590	Z
	17 18	62.4170 63.0536	-24.5353 -16.0302	-33.8363 -33.8408	62.0223 62.6067	-25.4406 -16.8755	-34.2856 -33.9162	0.3947 0.4469	-0.9053 -0.8453	-0.4493 -0.0754	1.0850 0.9591	-0.4493 -0.0754	
A PILLAR A PILLAR ROOF · (Z) IMPACT SIDE Lateral (Y) (X, Y, Z) (Y)	19	55.4588	-32.3822	-35.7928	55.1154	-33.1088	-38.7084	0.4409	-0.8403	-0.0754	1.2305	-0.0754	
	20	56.2880	-23.0338	-38.1352	55.9682	-23.8214	-36.8714	0.3178	-0.7876	-0.7382	1.1240	-0.7382	- -
	21	56.0906	-16.6106	-36.2870	55.7387	-17.3960	-38.5234	0.3519	-0.7854	-0.2364	0.8925	-0.2384	ž
	22	39.6630	-30.3940	-37.5375	39.2972	-31.0627	-37.6946	0.3658	-0.6687	-0.1571	0.7782	-0.1571	Z Z Z Z Z Z
	23	39.9692	-22.2980	-37.8760	39.6807	-23.0629	-38.2810	0.2885	-0.7649	-0.4050	0.9123	-0.4050	Z
	24	39.9149	-16.1132	-37.9435	39.7183	-16.7821	-38.2317	0.1966	-0.6689	-0.2882	0.7544	-0.2882	Z Z Z
	25 28	19.9726	-30.4340	-36.5658	19.6998	-30.9692	-38.5229	0.2728	-0.5352	0.0429	0.6022	0.0429	Z
		19.8458	-22.5010	-38.9132	19.5192	-23.0830	-38.9225	0.3266	-0.5820	-0.0093	0.6674	-0.0093	Z
	27	20.2796	-13.5538	-37.0021 -34.9353	20.0256	-14.1728 -30.3734	-37.0544	0.2540	-0.6190	-0.0523 0.2201	0.6711	-0.0523	Z Z Z
	28 29	10.4011 9.7472	-29.8797 -21.8526	-34.9353	9.4564	-22.3817	-34.7152 -35.0603	0.2782 0.2908	-0.4937 -0.5291	0.2201	0.6079 0.6197	0.2201 0.1398	
	30	9.6870	-14.5939	-35.2364	9.4835	-15.1484	-35.1709	0.2035	-0.5545	0.0855	0.5943	0.0655	<u>z</u>
	31	78.7722	-41.7083	-22.5809	78.8318	-41.1152	-24.2722	-0.0596	0.5931	-1.7113	1.8121	0.5931	Y
S E C	32	74.8352	-40.8087	-24.7623	74.8738	-40.7968	-28.5371	-0.0386	0.0119	-1.7748	1.7753	0.0119	······
riLLAR ximum , Y, Z)	33	71.9233	-40.1477	-26.1752	71.9698	-40.4664	-27.9297	-0.0465	-0.3187	-1.7545	1.7838	0.0000	NA
E W	34	68.7468	-39.1900	-28.2081	68.7520	-39.5943	-29.8103	-0.0052	-0.4043	-1.6022	1.6524	0.0000	NA
450	35	64.2565	-38.0265	-29.9521	64.1542	-38.5689	-31.4391	0.1023	-0.5424	-1.4870	1.5861	0.1023	X
	38	60.4078	-37.3035	-31.8889	60.2182	-37.9729	-33.2659	0.1896	-0.6694	-1.3770	1.5428	0.1896	X
	31	78.7722	-41.7083	-22.5809	78.8318	-41.1152	-24 2722	-0.0596	0.5931	-1.7113	1.8121	0.5931	Y
₩ ε	32	74.8352	-40.8087	-24.7623	74.8738	-40.7968	-26.5371	-0.0386	0.0119	-1.7748	1.7753	0.0119	Y
글필	33 34	71.9233 68.7468	-40.1477 -39.1900	-26.1752 -28.2081	71.9698 68.7520	-40.4664 -39.5943	-27.9297 -29.8103	-0.0465 -0.0052	-0.3187 -0.4043	-1.7545 -1.6022	1.7838 1.6524	-0.3187 -0.4043	Y
age 4	35	64.2565	-38.0265	-29.9521	64.1542	-38.5689	-25.6103	0.1023	-0.5424	-1.0022 -1.4870	1.5861	-0.5424	Y
	36	60.4078	-37.3035	-31.8889	60.2182	-37.9729	-33.2659	0.1023	-0.6694	-1.3770	1.5428	-0.6694	<u>'</u>
# FO	37	37.7158	-36.0111	-32.5339	37.4031	-36.8553	-32.7603	0.3125	-0.8442	-0.2264	0.9282	0.3125	X
B-PILLAR Maximum (X, Y, Z)	38	36.1341	-37.6961	-28.5160	35.8096	-38.3765	-28.7440	0.3245	-0.6804	-0.2280	0.7875	0.3245	X
급했다	39	39.3763	-39.0567	-25 7351	39.1796	-39.7609	-26.0258	0.1967	-0.7042	-0.2907	0.7868	0.1967	X X X
చక్ర	40	36.6087	-40.4159	-20.3727	36.3821	-40.9636	-20.5246	0.2266	-0.5477	-0.1519	0.6119	0.2266	X
98	37	37.7156	-36.0111	-32.5339	37.4031	-36.8553	-32.7603	0.3125	-0.8442	-0.2264	0.9282	-0.8442	Υ
4 =	38	36.1341	-37.6961	-28.5160	35,8096	-38.3765	-28.7440	0.3245	-0.6804	-0.2280	0.7875	-0.6804	Υ
B-PILLAR Lateral (Y)	39	39.3763	-39.0567	-25.7351	39.1796	-39.7609	-26.0258	0.1967	-0.7042	-0.2907	0.7868	-0.7042	Υ
- ₫	40	36.6087	-40.4159	-20.3727	36.3821	-40.9636	-20.5246	0.2266	-0.5477	-0.1519	0.6119	-0.5477	Υ

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure D-10. Occupant Compartment Deformation Data – Set 1, Test No. H42ST-2

	2016		Test Name: H42ST-2						VIN: Model:	kmhct4ae8g u947887			
odel Year:				Make: Hyundai							Accent		
					VE	HICLEDE	FORMATI	ON					
							RIOR CRU						
		Pretest	Pre test	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total Δ	Crush ⁸	Direction
	DOINT	Χ	Y (5-1)	Z	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in .)	(in.)	for
	POINT	(in.) 73.3798	(in.) -8.9464	(in.) -17.8418	72.8521	-8.9052	-20.3711	0.5275	0.0412	-2.5293	2.5840	2.5840	Crush X, Y, Z
DASH (X, Y, Z)	2	69.5967	3.0429	-21.8957	69.4828	3.2029	-24.3359	0.1139	-0.1600	-2.5293 -2.4402	2.4481	2.4481	X, Y, Z
	3	72.4750	16.5194	-18.5592	72.6004	18.3474	-20.4991	-0.1254	0.1720	-1.9399	1.9515	1.9515	X, Y, 2
	4	69.7701	-7.7433	-10.0835	69.0491	-7.4606	-12.7391	0.7210	0.2827	-2.6556	2.7662	2.7662	X, Y, 2
	5	71.4448	1.8325	-6.8753	71.2844	1.9004	-9.0562	0.1804	-0.0679	-2.1809	2.1894	2.1894	X, Y, 2
	6	67.8671	16.5801	-12.1164	67.9991	16.3516	-14.1008	-0.1320	0.2285	-1.9844	2.0019	2.0019	X, Y, 2
m iii	7	77.0511	-10.7198	2.4712	76.4697	-9.8344	0.0931	0.5814	0.8852	-2.3781	2.6033	0.8852	Y
SIDE	8	77.8076	-10.6824	-0.1367	76.8776	-9.7737	-2.5125	0.9300	0.9087	-2.3758	2.7083	0.9087	Ÿ
240	9	81.4973	-10.7656	1.6159	80.0822	-8.6681	-0.7454	1.4151	2.0975	-2.3813	3.4609	2.0975	Y
Щ	10	43.8002	-11.6484	-15.6406	42.9020	-13.9166	-16.3775	0.8982	-2.2682	-0.7389	2.5484	-2.2682	Y
IMPACT SIDE DOOR (Y)	11	57.4777	-12.0472	-14.5330	56.5286	-14.7016	-15.8256	0.9491	-2.6544	-1.2928	3.1012	-2.6544	Ý
	12	64.1192	-11.5994	-14.1679	62.9823	-13.8608	-15.7091	1.1369	-2.2614	-1.5412	2.9634	-2.2614	Υ
	13	46.6051	-11.7442	-1.6374	46.3651	-13.3971	-2.5121	0.2400	-1.6529	-0.8747	1.8854	-1.6529	Υ
	14	58.3680	-12.8243	1.3124	58.3035	-14.6386	-0.1520	0.0645	-1.8143	-1.4644	2.3324	-1.8143	Y
	15	64.6020	-13.2652	0.6414	64.4189	-15.2180	-0.9198	0.1831	-1.9528	-1.5812	2.5069	-1.9528	Y
6	16	59.4436	-1.0389	-33.4807	58.8305	-2.6916	-35.0942	0.6131	-1.6547	-1.6135	2.3911	-1.6135	Z
	17	60.9317	7.3975	-33.5730	60.2849	5.6766	-34.7795	0.6468	1.7209	-1.2065	2.1990	-1.2065	Z
	18	61.3294	15.9171	-33.5670	60.6951	14.2550	-34.4960	0.6343	1.6621	-0.9290	2.0070	-0.9290	Z
	19	54.1953	-0.6192	-35.5370	53.5177	-2.1553	-37.0695	0.6776	-1.5381	-1.5325	2.2732	-1.5325	Z
	20	54.7603	8.7291	-35.8681	54.1768	7.1458	-37.3275	0.5835	1.5833	-1.4594	2.2310	-1.4594	Z
	21	54.3846	15.1445	-36.0118	53.8173	13.5680	-37.0380	0.5673	1.5765	-1.0262	1.9648	-1.0262	Z Z Z Z Z
Ÿ	22	38.3500	0.9070	-37.2746	37.6527	-0.4451	-37.9386	0.6973	1.3521	-0.6820	1.6591	-0.6620	Z
ъ	23	38.4286	9.0089	-37.6030	37.8656	7.5549	-38.6017	0.5630	1.4540	-0.9987	1.8516	-0.9987	Z Z Z
R00F -	24	38.2007	15.1897	-37.6627	37.7738	13.8353	-38.6119	0.4271	1.3544	-0.9492	1.7082	-0.9492	<u>Z</u>
	25	18.6688	0.3131	-38.2969	18.0683	-0.7444	-36.5946	0.6005	1.0575	-0.2977	1.2520	-0.2977	<u>Z</u>
	28 27	18.3192	8.2397	-38.6342	17.7211	7.1323	-37.0668	0.5981	1.1074	-0.4326 -0.5751	1.3309	-0.4326	Z Z
-		18.5016	17.1958	-38.7120	18.0419	16.0493	-37.2871	0.4597	1.1465		1.3825	-0.5751	
	28 29	9.0861 8.2070	0.5964 8.6023	-34.6627 -34.9172	8.4969 7.6622	-0.3287 7.6438	-34.7089 -35.1234	0.5892 0.5448	0.9251 0.9585	-0.0462 -0.2062	1.0978	-0.0462 -0.2062	<u> </u>
	30	7.9430	15.8564	-34.9443	7.5388	14.8747	-35.3024	0.4042	0.9817	-0.3581	1.1210	-0.3581	Z Z Z
	31		-9.3237	-22.3243	77.5001	-9.5514	-24.7663	0.4042	-0.2277			0.2883	
~ - ~	27	77.7664 73.8050	-9.3237 -8.5322	-22.3243 24.5222	73.5172	-9.3384	-24.7003 -26.9994	0.2878	-0.2277	-2.4420 -2.4761	2.4670 2.6193	0.2003	X
A PILLAR Maximum (X, Y, Z)	32 33	70.8752	-8.5322 -7.9515	-24.5233 -25.9345	70.5952	-9.0793	-20.9994 -28.3696	0.2800	-1.1278	-2.4701 -2.4351	2.0193	0.2878	X X
	34	67.6724	-7.0808	-27.9653	67.3440	-8.2919	-30.2302	0.3284	-1.2111	-2.4301	2.5893	0.3284	
	35	63.1506	-6.0416	-29.7064	62.7123	-7.3771	-31.8283	0.4383	-1.3355	-2.1219	2.5452	0.4383	X X X
	38	59.2825	-5.4248	-31.6410	58.7493	-6.8799	-33.6261	0.5332	-1.4553	-1.9851	2.5185	0.5332	· · · · · · · · · · · · · · · · · · ·
	31	77.7884	-9.3237	-22.3243	77.5001	-9.5514	-24.7883	0.2663	-0.2277	-2.4420	2.4670	-0.2277	Ŷ
~ 0	31 32	73.8050	-8.5322	-24.5233	73.5172	-9.3364	-26.9994	0.2878	-0.8042	-2.4781	2.6193	-0.8042	-
<u>₹</u> ⊆	33	70.8752	-7.9515	-25.9345	70.5952	-9.0793	-28.3696	0.2800	-1.1278	-2.4351	2.6982	-1.1278	Ÿ
A PILLAR Lateral (Y)	34	67.6724	-7.0808	-27.9653	67.3440	-8.2919	-30.2302	0.3284	-1.2111	-2.2849	2.5893	-1.2111	Ÿ
	35	63.1506	-6.0416	-29.7064	62.7123	-7.3771	-31.8283	0.4383	-1.3355	-2.1219	2.5452	-1.3355	Y
	36	59.2825	-5.4248	-31.6410	58.7493	-6.8799	-33.6261	0.5332	-1.4553	-1.9851	2.5185	-1.4553	Y
S E C	37	36.5627	-4.7688	-32.2775	35.9212	-6.2279	-32.9316	0.6415	-1.4591	-0.6541	1.7229	0.6415	Х
B-PILLAR Maximum (X, Y, Z)	38	35.0305	-6.5025	-28.2612	34.3939	-7.7430	-28.8874	0.6366	-1.2405	-0.6262	1.5285	0.6366	X
	39	38.3106	-7.7751		37.8149	-9.0316	-26.1858	0.4957		-0.7027	1.5228	0.4957	X
	40	35.5841	-9.2181	-25.4831 -20.1215	35.0900	-10.2387	-20.6493	0.4941	-1.2565 -1.0206	-0.5278	1.2507	0.4941	X
B-PILLAR Lateral (Y)	37	36.5627	-4.7688	-32.2775	35.9212	-6.2279	-32.9316	0.6415	-1.4591	-0.6541	1.7229	-1.4591	Υ
	38	35.0305	-6.5025	-28.2612	34.3939	-7.7430	-28.8874	0.6366	-1.2405	-0.6262	1.5285	-1.2405	Υ
	39	38.3106	-7.7751	-25.4831	37.8149	-9.0316	-26.1858	0.4957	-1.2585	-0.7027	1.5226	-1.2565	Y
	40	35.5841	-9.2181	-20.1215	35.0900	-10.2387	-20.6493	0.4941	-1.0206	-0.5278	1.2507	-1.0206	· V

Figure D-11. Occupant Compartment Deformation Data – Set 2, Test No. H42ST-2

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

CDirection for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Model Year:	-	Test Name: _ Make: _		VIN: Model:						
			Driver Side Maxi	mum Deformations						
	Reference Set	t1		Reference Set 2						
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^o			
Roof	0.2	≤ 4	Z	Roof	-1.6	≤4	Z			
Windshield ^D	3.5 ≤3		X, Z	Windshield ^D	NA .	≤3	X, Z			
A-Pillar Maximum	0.6	≤5	Y	A-Pillar Maximum	0.5	≤5	X			
A-Pillar Lateral	0.6	≤3	Y	A-Pillar Lateral	-1.5	≤3	Y			
B-Pillar Maximum	0.3	≤5	X	B-Pillar Maximum	0.6	≤5	X			
B-Pillar Lateral	0.6	≤3	Y	B-Pillar Lateral	-1.5	≤3	Υ -			
Foe Pan - Wheel Well	1.2	≤ 9	X, Z	Toe Pan - Wheel Well	2.0	≤9	X, Z			
Side Front Panel	2.7	≤ 12	Y	Side Front Panel	2.1	≤ 12	Y			
Side Door (above seat)	-2.1	≤ 9	Y	Side Door (above seat)	-2.7	≤9	Y			
Side Door (below seat)	-1.5	≤ 12	Y	Side Door (below seat)	-2.0	≤ 12	Y			
Floor Pan	0.9	≤ 12	Z	Floor Pan	1.7	≤ 12	Z			
Dash - no MASH requirement Items highlighted in red do not m	2.2	NA	X, Y, Z	Dash - no MASH requirement	2.2	NA	X, Y, Z			
For Toe Pan - Wheel Well the dir directions. The direction of deform occupant compartment. If direction	ection of defromation ation for Toe Pan -\ n of deformation is "	on may include X and Wheel Well, A-Pillar I "NA" then no intrusion	Z direction. For A-P Maximum, and B-Pills n is recorded and def	ues denote deformations outward away pillar Maximum and B-Pillar Maximum to ar Maximum only include components of formation will be 0. osttes t with an examplar vehicle, therefore the design of the state of t	ne direction of defor where the deformati	mation may include > on is positive and intr	uding into the			
Notes on vehicle crush:										

Figure D-12. Maximum Occupant Compartment Deformation by Location, Test No. H42ST-2

Figure D-13. Exterior Vehicle Crush (NASS) – Front, Test No. H42ST-2

Figure D-14. Exterior Vehicle Crush (NASS) – Side, Test No. H42ST-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. H42ST-1

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42ST-1

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. H42ST-1

Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. H42ST-1

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42ST-1

Figure E-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. H42ST-1

Figure E-6. Lateral Occupant Displacement (SLICE-2), Test No. H42ST-1

Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. H42ST-1

Figure E-8. Acceleration Severity Index (SLICE-2), Test No. H42ST-1

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42ST-1

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. H42ST-1

Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. H42ST-1

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42ST-1

Figure E-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. H42ST-1

Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. H42ST-1

Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. H42ST-1

Figure E-16. Acceleration Severity Index (SLICE-1), Test No. H42ST-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. H42ST-2

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. H42ST-2

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. H42ST-2

Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. H42ST-2

Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. H42ST-2

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. H42ST-2

Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. H42ST-2

Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. H42ST-2

Figure F-8. Acceleration Severity Index (SLICE-1), Test No. H42ST-2

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. H42ST-2

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. H42ST-2

Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. H42ST-2

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. H42ST-2

Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. H42ST-2

Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. H42ST-2

Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. H42ST-2

Figure F-16. Acceleration Severity Index (SLICE-2), Test No. H42ST-2

END OF DOCUMENT