





# MASH 2016 EVALUATION OF A NON-PROPRIETARY TYPE III BARRICADE:

# MASH TEST DESIGNATION NO. 3-72

Submitted by

Jennifer D. Rasmussen, Ph.D., P.E. Research Associate Professor

Jaryd Flores Research Assistant Mojdeh Asadollahi Pajouh, Ph.D., P.E. Research Assistant Professor

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

# MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

**Main Office** 

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36<sup>th</sup> Street Lincoln, Nebraska 68524

Submitted to

# NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Transportation Research Board National Research Council 2101 Constitution Avenue, N.W. Washington, D.C. 20418

MwRSF Research Report No. TRP-03-416-20

September 25, 2020

## **TECHNICAL REPORT DOCUMENTATION PAGE**

| <b>1. Report No.</b><br>TRP-03-416-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. Government Accession No.                                               | 3. Recipient's Catalog No.      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|--|--|
| <b>4. Title and Subtitle</b><br>MASH 2016 Evaluation of a Non<br>Designation No. 3-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. Report Date<br>September 25, 2020                                      |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | 6. Performing Organization Code |  |  |
| <b>7. Author(s)</b><br>Rasmussen, J.D., Flores, J.R., Asa<br>Lechtenberg, K.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>8. Performing Organization Report No.</b><br>TRP-03-416-20             |                                 |  |  |
| <b>9. Performing Organization Nat</b><br>Midwest Roadside Safety Facility<br>Nebraska Transportation Center<br>University of Nebraska-Lincoln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>10. Work Unit No.</b><br>NCHRP Project No. 03-119                      |                                 |  |  |
| Main Office:<br>Prem S. Paul Research Center at Room 130, 2200 Vine Street<br>Lincoln, Nebraska 68583-0853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>11. Contract</b><br>HR 03-119                                          |                                 |  |  |
| <b>12. Sponsoring Agency Name an</b><br>National Cooperative Highway R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>13. Type of Report and Period Covered</b><br>Final Report: 2019 – 2020 |                                 |  |  |
| Transportation Research Board<br>National Research Council<br>2101 Constitution Avenue, N.W.<br>Washington, D.C. 20418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 14. Sponsoring Agency Code      |  |  |
| <b>15. Supplementary Notes</b><br>Prepared in cooperation with U.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Department of Transportation, Federal Highw                             | yay Administration.             |  |  |
| 16. Abstract<br>Several work-zone traffic control devices have not yet been evaluated to the American Association of State Highway and Transportation Officials' (AASHTO's) <i>Manual for Assessing Safety Hardware, Second Edition</i> (MASH 2016) safety performance criteria. In this study, two identical Type III barricades were evaluated in the same crash test, according to MASH 2016, test designation no. 3-72. In test no. WZNP-2, a 5,001-lb (2,268-kg) pickup truck impacted System A, oriented at 90 degrees or perpendicular to the vehicle, at a speed of 64.7 mph (104.2 km/h) and System B, oriented at 0 degrees or head on to the vehicle, at a speed of 62.6 mph (100.8 km/h), respectively. The devices were spaced 60 ft (18.3 m) apart and each device impacted at the quarter-points on the front bumper. Each Type III barricade consisted of three horizontal High Density Polyethylene (HDPE) panels, measuring 96 in. (2,428 mm) in length, with a 48-in. x 30-in. x 0.08-in. (1,219-mm x 762-mm x 2-mm) aluminum sign attached to the top two barricade panels. The barricade panel was targeted to have a cross-sectional dimension of 8 in. (203 mm) x 1 in. (25 mm). During test no. WZNP-2, the 2270P pickup truck readily disengaged both |                                                                           |                                 |  |  |

barricades from their support. Both tests successfully met all evaluation criteria in MASH 2016 for test designation no. 3-72. 17. Key Words **18. Distribution Statement** Highway Safety, Crash Test, Roadside Appurtenances, No restrictions. Document available from: National Compliance Test, MASH 2016, Test Level 3, Work-Zone Technical Information Services, Springfield, Virginia Traffic Control Device, Non-Proprietary, Road Closed 22161 Barricade, Roadside Appurtenances, and Type III Barricade 22 D. 21 No .e n

| 19. Security Classification (of this report) | 20. Security Classification<br>(of this page) | 21. No. of Pages       | 22. Price |
|----------------------------------------------|-----------------------------------------------|------------------------|-----------|
| Unclassified                                 | Unclassified                                  | 117                    |           |
| Form DOT F 1700.7 (8-72)                     | Reproduction of comp                          | pleted page authorized |           |

#### ACKNOWLEDGMENT OF SPONSORSHIP

This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Research Council.

#### DISCLAIMER

This is an uncorrected draft as submitted by the research agency. The opinions and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the Transportation Research Board, the National Research Council, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program.

#### UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

#### **INDEPENDENT APPROVING AUTHORITY**

The Independent Approving Authority (IAA) for the data contained herein was Mr. Scott Rosenbaugh, Research Engineer.

#### ACKNOWLEDGMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) NCHRP for sponsoring this project; (2) George Mason University, the lead agency on NCHRP; and (3) MwRSF personnel for constructing the systems and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

#### Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., E.I.T., Research Engineer & Assistant Director - Physical Testing Division R.W. Bielenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer C.S. Stolle, Ph.D., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

#### NCHRP 03-119 Panel

Mark S. Bush, Transportation Research Board Camille Crichton-Sumners, Transportation Research Board Jason Siwula, Kentucky Transportation Cabinet Kayode Adenaiya, Maryland Department of Transportation Matthew Briggs, Pennsylvania Department of Transportation Vue Her, California Department of Transportation Michael Hurtt, Clough Harbour and Associates Paul Lorton, Illinois Department of Transportation Charles McDevitt, McDevitt Consulting Stephen Maher, Transportation Research Board Nicholas Artimovich, Federal Highway Administration Kelly Hardy, American Association of State Highway and Transportation Officials

#### George Mason University

Dhafer Marzougui, Associate Professor Cing-Dao (Steve) Kan, Professor Kenneth Opiela, Consultant

# **TABLE OF CONTENTS**

| TECHNICAL REPORT DOCUMENTATION PAGE                                                                                                                                    | i                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ACKNOWLEDGMENT OF SPONSORSHIP                                                                                                                                          | ii                                                       |
| DISCLAIMER                                                                                                                                                             | ii                                                       |
| UNCERTAINTY OF MEASUREMENT STATEMENT                                                                                                                                   | ii                                                       |
| INDEPENDENT APPROVING AUTHORITY                                                                                                                                        | ii                                                       |
| ACKNOWLEDGMENTS                                                                                                                                                        | . iii                                                    |
| TABLE OF CONTENTS                                                                                                                                                      | . iv                                                     |
| LIST OF FIGURES                                                                                                                                                        | . vi                                                     |
| LIST OF TABLES                                                                                                                                                         | . ix                                                     |
| 1 INTRODUCTION<br>1.1 Background<br>1.2 Objective<br>1.3 Scope                                                                                                         | 1<br>1<br>2<br>2                                         |
| 2 TEST REQUIREMENTS AND EVALUATION CRITERIA<br>2.1 Test Requirements<br>2.2 Evaluation Criteria                                                                        | 3<br>3<br>3                                              |
| 3 DESIGN DETAILS                                                                                                                                                       | 5                                                        |
| <ul> <li>4 TEST CONDITIONS.</li> <li>4.1 Test Facility</li></ul>                                                                                                       | 17<br>17<br>17<br>22<br>22<br>22<br>22<br>22<br>22<br>23 |
| 5 FULL-SCALE CRASH TEST NO. WZNP-2<br>5.1 Weather Conditions<br>5.2 Test Description<br>5.3 System Damage<br>5.4 Vehicle Damage<br>5.5 Occupant Risk<br>5.6 Discussion | 25<br>25<br>25<br>36<br>42<br>46<br>47                   |

| 6 SUMMARY, CON | CLUSIONS AND RECOMMENDATIONS                                  | 50 |
|----------------|---------------------------------------------------------------|----|
| 7 MASH EVALUAT | ION                                                           | 52 |
| 8 REFERENCES   |                                                               | 54 |
| 9 APPENDICES   |                                                               | 55 |
| Appendix A.    | Material Specifications                                       | 56 |
| Appendix B.    | Vehicle Center of Gravity Determination                       | 71 |
| Appendix C.    | Vehicle Deformation Records                                   | 73 |
| Appendix D.    | Accelerometer and Rate Transducer Data Plots, Test No. WZNP-2 | 84 |

# LIST OF FIGURES

| Figure 1. Test Installation Layout, Test No. WZNP-2                                  | 6  |
|--------------------------------------------------------------------------------------|----|
| Figure 2. Barricade Overview, Test No. WZNP-2                                        | 7  |
| Figure 3. Barricade Details, Test No. WZNP-2                                         | 8  |
| Figure 4. Plastic Beam Details, Test No. WZNP-2                                      | 9  |
| Figure 5. Perforated Steel Tube Details, Test No. WZNP-2                             | 10 |
| Figure 6. Sign and Warning Light Details, Test No. WZNP-2                            | 11 |
| Figure 7. System Hardware, Test No. WZNP-2                                           | 12 |
| Figure 8. Bill of Materials, Test No. WZNP-2                                         | 13 |
| Figure 9. Test Installation, Test No. WZNP-2                                         | 14 |
| Figure 10. Test Installation, Test No. WZNP-2                                        | 15 |
| Figure 11. Test Impact Point, Test No. WZNP-2                                        | 16 |
| Figure 12. Test Vehicle, Test No. WZNP-2                                             | 18 |
| Figure 13. Test Vehicle's Interior Floorboards and Undercarriage                     | 19 |
| Figure 14. Vehicle Dimensions, Test No. WZNP-2                                       | 20 |
| Figure 15. Target Geometry, Test No. WZNP-2                                          | 21 |
| Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. WZNP-2              | 24 |
| Figure 17. Impact Location, Test No. WZNP-2                                          | 27 |
| Figure 18. Sequential Photographs, Test No. WZNP-2                                   | 30 |
| Figure 19. Documentary Photographs, Test No. WZNP-2                                  | 31 |
| Figure 20. Additional Documentary Photographs, Test No. WZNP-2                       | 32 |
| Figure 21. Additional Documentary Photographs, Test No. WZNP-2                       | 33 |
| Figure 22. Additional Documentary Photographs, Test No. WZNP-2                       | 34 |
| Figure 23. Vehicle Trajectory and Final Position, Test No. WZNP-2                    | 35 |
| Figure 24. Overall System A and System B Damage, Test No. WZNP-2                     | 37 |
| Figure 25. System A Damage, Test No. WZNP-2                                          | 38 |
| Figure 26. Additional System A Damage, Test No. WZNP-2                               | 39 |
| Figure 27. System B Damage, Test No. WZNP-2                                          | 40 |
| Figure 28. Additional System B Damage, Test No. WZNP-2                               | 41 |
| Figure 29. Vehicle Damage, Test No. WZNP-2                                           | 43 |
| Figure 30. Vehicle Damage Details, Test No. WZNP-2                                   | 44 |
| Figure 31. Occupant Compartment and Undercarriage Damage, Test No. WZNP-2            | 45 |
| Figure 32. Summary of Test Results and Sequential Photographs for System A, Test No. |    |
| WZNP-2                                                                               | 48 |
| Figure 33. Summary of Test Results and Sequential Photographs for System B, Test No. |    |
| WZNP-2                                                                               | 49 |
| Figure A-1. Plastic Panel Material Certificate, Test No. WZNP-2                      | 58 |
| Figure A-2. Square Tubing Material Certificate, Test No. WZNP-2                      | 59 |
| Figure A-3. Square Tubing Material Certificate, Test No. WZNP-2                      | 60 |
| Figure A-4. Sign Certificate of Conformance, Test No. WZNP-2                         | 61 |
| Figure A-5. Warning Light Certificate of Compliance, Test No. WZNP-2                 | 62 |
| Figure A-6. Hex Bolt Material Certificate, Test No. WZNP-2                           | 63 |
| Figure A-7. Hex Bolt Material Certificate, Test No. WZNP-2                           | 64 |
| Figure A-8. Hex Bolt Material Certificate, Test No. WZNP-2                           | 65 |
| Figure A-9. Flat Washer Material Certificate, Test No. WZNP-2                        | 66 |
| Figure A-10. Flat Washer Material Certificate, Test No. WZNP-2                       | 67 |

| Figure | A-11. Flat Washer Test Report, Test No. WZNP-2                                                                                                           | 68  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure | A-12. Material Certification 3/8-16 UNC Lock Nut, Test No. WZNP-2                                                                                        | 69  |
| Figure | A-13. Material Certification 1/4-20 UNC Lock Nut, Test No. WZNP-2                                                                                        | 70  |
| Figure | B-1. Vehicle Mass Distribution, Test No. WZNP-2                                                                                                          | 72  |
| Figure | C-1. Left Floor Pan Deformation Data – Set 1, Test No. WZNP-2                                                                                            | 74  |
| Figure | C-2. Left Floor Pan Deformation Data – Set 2, Test No. WZNP-2                                                                                            | 75  |
| Figure | C-3. Left Interior Crush Data – Set 1, Test No. WZNP-2                                                                                                   | 76  |
| Figure | C-4. Left Interior Crush Data – Set 2, Test No. WZNP-2                                                                                                   | 77  |
| Figure | C-5. Right Floor Pan Deformation Data – Set 1, Test No. WZNP-2                                                                                           | 78  |
| Figure | C-6. Right Floor Pan Deformation Data – Set 2, Test No. WZNP-2                                                                                           | 79  |
| Figure | C-7. Right Interior Crush Data – Set 1, Test No. WZNP-2                                                                                                  | 80  |
| Figure | C-8. Right Interior Crush Data – Set 2, Test No. WZNP-2                                                                                                  | 81  |
| Figure | C-9. Exterior Vehicle Crush (NASS) - Front, Test No. WZNP-2                                                                                              | 82  |
| Figure | C-10. Exterior Vehicle Crush (NASS) - Side, Test No. WZNP-2                                                                                              | 83  |
| Figure | D-1. 10-ms Average Longitudinal Deceleration System A (SLICE-1), Test No.                                                                                |     |
| U      | WZNP-2                                                                                                                                                   | 85  |
| Figure | D-2. Longitudinal Occupant Impact Velocity System A (SLICE-1), Test No. WZNP-2                                                                           | 86  |
| Figure | D-3. Longitudinal Occupant Displacement System A (SLICE-1), Test No. WZNP-2                                                                              | 87  |
| Figure | D-4. 10-ms Average Lateral Deceleration System A (SLICE-1), Test No. WZNP-2                                                                              |     |
| Figure | D-5. Lateral Occupant Impact Velocity System A (SLICE-1), Test No. WZNP-2                                                                                | 89  |
| Figure | D-6. Lateral Occupant Displacement System A (SLICE-1), Test No. WZNP-2                                                                                   | 90  |
| Figure | D-7. Vehicle Angular Displacements System A (SLICE-1), Test No. WZNP-2                                                                                   | 91  |
| Figure | D-8. Acceleration Severity Index System A (SLICE-1). Test No. WZNP-2                                                                                     | 92  |
| Figure | D-9. 10-ms Average Longitudinal Deceleration System A (SLICE-2). Test No.                                                                                |     |
|        | WZNP-2                                                                                                                                                   | 93  |
| Figure | D-10. Longitudinal Occupant Impact Velocity System A (SLICE-2), Test No.                                                                                 |     |
|        | WZNP-2                                                                                                                                                   | 94  |
| Figure | D-11. Longitudinal Occupant Displacement System A (SLICE-2). Test No. WZNP-                                                                              |     |
|        | 2                                                                                                                                                        | 95  |
| Figure | D-12. 10-ms Average Lateral Deceleration System A (SLICE-2). Test No. WZNP-2                                                                             | 96  |
| Figure | D-13. Lateral Occupant Impact Velocity System A (SLICE-2), Test No. WZNP-2                                                                               | 97  |
| Figure | D-14. Lateral Occupant Displacement System A (SLICE-2). Test No. WZNP-2                                                                                  | 98  |
| Figure | D-15. Vehicle Angular Displacements System A (SLICE-2), Test No. WZNP-2                                                                                  | 99  |
| Figure | D-16. Acceleration Severity Index System A (SLICE-2). Test No. WZNP-2                                                                                    | 100 |
| Figure | D-17, 10-ms Average Longitudinal Deceleration System B (SLICE-1). Test No.                                                                               | 100 |
|        | WZNP-2                                                                                                                                                   | 101 |
| Figure | D-18. Longitudinal Occupant Impact Velocity System B (SLICE-1), Test No.                                                                                 | 102 |
| Figure | D-19 Longitudinal Occupant Displacement System B (SLICE-1) Test No. WZNP-                                                                                | 102 |
| riguie | 2                                                                                                                                                        | 103 |
| Figure | D-20 10-ms Average Lateral Deceleration System R (SLICE-1) Test No. W/ZND 2                                                                              | 107 |
| Figure | D-20. TO-INS AVERAGE LATERIA DECENTION SYSTEM D (SLICE-1), Test NO. WZNE-2<br>D-21. Lateral Occupant Impact Velocity System B (SLICE 1). Test No. WZNE 2 | 104 |
| Figure | D-22 Lateral Occupant Displacement System B (SLICE-1), Test No. WZNP-2                                                                                   | 105 |
| Figure | D-22. Lateral Occupant Displacements System B (SLICE-1), Test No. WZNP-2                                                                                 | 107 |
| Figure | D 24. A cooleration Soverity Index System D (SLICE 1), Test No. WZND 2                                                                                   | 107 |
| rigure | D-24. Acceleration seventy muck system D (SLICE-1), Test NO. WZNP-2                                                                                      | 100 |

| Figure D-25. 10-ms Average Longitudinal Deceleration System B (SLICE-2), Test No.   |      |
|-------------------------------------------------------------------------------------|------|
| WZNP-2                                                                              | .109 |
| Figure D-26. Longitudinal Occupant Impact Velocity System B (SLICE-2), Test No.     |      |
| WZNP-2                                                                              | .110 |
| Figure D-27. Longitudinal Occupant Displacement System B (SLICE-2), Test No. WZNP-  |      |
| 2                                                                                   | .111 |
| Figure D-28. 10-ms Average Lateral Deceleration System B (SLICE-2), Test No. WZNP-2 | .112 |
| Figure D-29. Lateral Occupant Impact Velocity System B (SLICE-2), Test No. WZNP-2   | .113 |
| Figure D-30. Lateral Occupant Displacement System B (SLICE-2, Test No. WZNP-2       | .114 |
| Figure D-31. Vehicle Angular Displacements System B (SLICE-2), Test No. WZNP-2      | .115 |
| Figure D-32. Acceleration Severity Index System B (SLICE-2), Test No. WZNP-2        | .116 |

# LIST OF TABLES

| Table 1. MASH 2016 TL-3 Crash Test Conditions for Work-Zone Traffic Control Devices | 3  |
|-------------------------------------------------------------------------------------|----|
| Table 2. MASH 2016 Evaluation Criteria for Work-Zone Traffic Control Devices        | 4  |
| Table 3. Weather Conditions, Test No. WZNP-2                                        | 25 |
| Table 4. Sequential Description of Impact Events, Test No. WZNP-2, System A         | 28 |
| Table 5. Sequential Description of Impact Events, Test No. WZNP-2, System B         | 29 |
| Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. WZNP-2        | 46 |
| Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WZNP-2            | 47 |
| Table 8. Summary of Safety Performance Evaluation                                   | 51 |
| Table 9. MASH 2016 TL-3 Crash Test Conditions for Work-Zone Traffic Control Devices | 52 |
| Table A-1. Bill of Materials, Test No. WZNP-2                                       | 57 |
|                                                                                     |    |

#### **1 INTRODUCTION**

#### 1.1 Background

Through a project funded jointly by Dicke Safety Products, the Mid-America Transportation Center, and the Smart Work Zone Deployment Initiative (SWZDI) from 2008 to 2010, several work-zone sign stands were evaluated [1-2]. These sign stands were crashworthy according to the crash testing and safety performance criteria in National Cooperative Highway Research Program (NCHRP) Report No. 350 [3]. In 2009,

the American Association of State Highway and Transportation Officials (AASHTO) implemented an updated standard for the evaluation of roadside hardware [4]. The new standard, entitled the *Manual for Assessing Safety Hardware* (MASH 2009), improved the criteria for evaluating roadside hardware beyond the previous NCHRP Report No. 350 standard through updates to test vehicles, test matrices, and impact conditions. However, when NCHRP Report No. 350 work-zone devices were subjected to the new MASH 2009 crash testing and safety performance criteria, several of the work-zone sign stands produced undesirable results, including windshield and floorboard penetration and excessive windshield and roof deformation [1-2]. This testing indicated that devices tested under previous NCHRP Report No. 350 safety performance standards. Subsequently, an updated version of MASH, MASH 2016, was published, which contained no changes to the impact conditions or evaluation criteria for work-zone devices [5].

In an effort to encourage state departments of transportation (DOTs) and hardware developers to advance hardware designs, the Federal Highway Administration (FHWA) and AASHTO collaborated to develop a MASH implementation policy that included sunset dates for various roadside hardware categories. The new policy by the FHWA and AASHTO required that temporary work-zone devices manufactured after December 31, 2019 be evaluated to MASH 2016.

SWZDI and the Midwest Roadside Safety Facility (MwRSF) collaborated to conduct testing on a Type III barricade in accordance with MASH 2016 [6]. Three full-scale crash tests are required to evaluate a Type III barricade to MASH 2016 Test Level 3 (TL-3) criteria. According to MASH Section 2.2.4.2, test designations nos. 3-70, 3-71, and 3-72 are required, although test designation no. 3-70 is optional since the Type III barricade weighs less than 220 lb (100 kg) [5]. Test designation no. 3-71 (test no. WZNP-1) was conducted, which involved a 2,420-lb (1,100-kg) car (designated 1100C) impacting the barricade at 62 mph (100 km/h) at both 0 and 90 degrees [6]. Test designation no. 3-72, which involves a 5,000-lb (2,270-kg) pickup truck (designated 2270P) impacting the barricade at 62 mph (100 km/h) at both 0 and 90 degrees, was not conducted as part of the previous research effort with SWZDI.

The Type III barricade consisted of three reflective panels connected to two steel upright legs, which was held to the ground by sandbags placed on the legs. The panels supported a "Road Closed" aluminum sign and two lights, which were not connected to the legs. In test no. WZNP-1, two Type III barricades were placed 60 ft (18.3 m) apart on level terrain with one sandbag on the end of each leg. During the test, the 1100C small car impacted and disengaged both barricades from their supports. The systems readily activated in a predicable manner and allowed the 1100C vehicle to continue traveling without any major obstruction of the windshield. There were no

detached elements or fragments which showed potential for penetrating the occupant compartment or presented undue hazard to other traffic. No penetration or deformation of the occupant compartment that could have caused serious injury occurred. Therefore, test no. WZNP-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-71. Test designation no. 3-72 was still required to complete the evaluation of the system to MASH TL-3 criteria.

#### **1.2 Objective**

The objective of this research effort was to evaluate the Type III barricade to MASH 2016 TL-3 safety criteria through two full-scale crash tests at 0-degree and 90-degree impact angles. For test designation no. 3-72, the Type III barricade was impacted by a 2270P pickup truck at an impact speed of 62 mph (100 km/h), as required by MASH 2016.

#### 1.3 Scope

The research objective was achieved through the completion of several tasks. Two fullscale crash tests were conducted on a Type III barricade according to MASH 2016 test designation no. 3-72. Next, vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the Type III barricade.

### 2 TEST REQUIREMENTS AND EVALUATION CRITERIA

#### **2.1 Test Requirements**

Category 2 work-zone traffic control devices, such as Type III barricades, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [5]. Note that there is no difference between MASH 2009 [4] and MASH 2016 for work-zone traffic control devices, such as Type III barricades tested in this project. According to TL-3 of MASH 2016, work-zone traffic control devices must be subjected to three full-scale vehicle crash tests, as summarized in Table 1. Note, only one of the prescribed full-scale crash tests, test designation no. 3-72, was conducted with two critical impact angles and reported herein.

|           | Test        |         | Vehicle | Impact C | onditions |                                              |
|-----------|-------------|---------|---------|----------|-----------|----------------------------------------------|
| Test      | Designation | Test    | Weight, | Speed,   | Angle     | Evaluation                                   |
| Article   | No.         | Vehicle | lb      | mph      | (degrees) | Criteria <sup>1</sup>                        |
|           |             |         | (Kg)    | (km/h)   | × 0 /     |                                              |
|           | 3 70        | 1100C   | 2,425   | 19       | CIA       | PDEEUIN                                      |
| Work-Zone | 3-70        | 11000   | (1,100) | (30)     | CIA       | D,D,E,F,I1,I,I                               |
| Traffic   | 2 71        | 1100C   | 2,425   | 62       | CIA       | PDEEUIN                                      |
| Control   | 5-71        | 11000   | (1,100) | (100)    | CIA       | D, D, L, L', L', L', L', L', L', L', L', L', |
| Devices   | 2 72        | 22700   | 5,000   | 62       | CIA       | DDEEIIIN                                     |
|           | 5-72        | 2270P   | (2,270) | (100)    | CIA       | D,D,E,F,H,I,N                                |

Table 1. MASH 2016 TL-3 Crash Test Conditions for Work-Zone Traffic Control Devices

<sup>1</sup> Evaluation criteria explained in Table 2.

CIA= Critical Impact Angle

The low-speed test, test designation no. 3-70, was not required, since the Type III barricade weighed less than 220 lb (100 kg) [5]. Test designation no. 3-71 was previously successfully conducted on the barricade [6]. MASH 2016 recommends test designation no. 3-72 be conducted both perpendicular to the device (0 degrees) and parallel to the device (90 degrees), as both orientations may occur along roadsides. MwRSF has developed a procedure for testing multiple work-zone traffic control devices in one test run. The barricade was evaluated at two impact angles, 90 degrees (System A) and 0 degrees (System B), in one full-scale crash test. The devices were spaced 60 ft (18.3 m) apart and each device impacted at the quarter points on the front bumper. Thus, two MASH 2016 test designation no. 3-72 crash tests were conducted at two critical impact angles (CIAs) and are reported herein.

### 2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the work-zone traffic control device to break away, fracture, or yield in a predictable manner. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential

of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

| Appraisal<br>area                    | Evaluation criteria                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                         |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|--|
| Structural<br>Adequacy               | В.                                                                                                                                                | The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.                                                                                                                                                                                                                                                                                              |                      |                                         |  |
|                                      | D.                                                                                                                                                | Detached elements, fragments or other debris from the test article<br>should not penetrate or show potential for penetrating the occupant<br>compartment, or present an undue hazard to other traffic, pedestrians,<br>or personnel in a work zone. Deformations of, or intrusions into, the<br>occupant compartment should not exceed limits set forth in Section<br>5.2.2 and Appendix E of MASH 2016. |                      |                                         |  |
|                                      | E.                                                                                                                                                | Detached elements, fragments, or other debris from the test article, or<br>vehicular damage should not block the driver's vision or otherwis<br>cause the driver to lose control of the vehicle.<br>The vehicle should remain upright during and after collision. The<br>maximum roll and pitch angles are not to exceed 75 degrees.                                                                     |                      |                                         |  |
|                                      | F.                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                         |  |
| Occupant<br>Risk                     | Occupant<br>Risk H. Occupant Impact Velocity (OIV) (see Appendix A, Section<br>MASH 2016 for calculation procedure) should satisfy the<br>limits: |                                                                                                                                                                                                                                                                                                                                                                                                          |                      | , Section A5.2.2 of tisfy the following |  |
|                                      |                                                                                                                                                   | Occupant Impact Velocity Limits                                                                                                                                                                                                                                                                                                                                                                          |                      |                                         |  |
|                                      |                                                                                                                                                   | Component                                                                                                                                                                                                                                                                                                                                                                                                | Preferred            | Maximum                                 |  |
|                                      |                                                                                                                                                   | Longitudinal                                                                                                                                                                                                                                                                                                                                                                                             | 10 ft/s<br>(3.0 m/s) | 16 ft/s<br>(4.9 m/s)                    |  |
|                                      | I. The Occupant Ridedown Acceleration (ORA) (see Appen<br>Section A5.2.2 of MASH 2016 for calculation procedure)<br>satisfy the following limits: |                                                                                                                                                                                                                                                                                                                                                                                                          |                      | (see Appendix A, procedure) should      |  |
|                                      |                                                                                                                                                   | Occupant Ridedown Acceleration Limits                                                                                                                                                                                                                                                                                                                                                                    |                      |                                         |  |
|                                      |                                                                                                                                                   | Component                                                                                                                                                                                                                                                                                                                                                                                                | Preferred            | Maximum                                 |  |
|                                      |                                                                                                                                                   | Longitudinal and Lateral                                                                                                                                                                                                                                                                                                                                                                                 | 15.0 g's             | 20.49 g's                               |  |
| Post-Impact<br>Vehicular<br>Response | N.                                                                                                                                                | Vehicle trajectory behind the test article is acceptable.                                                                                                                                                                                                                                                                                                                                                |                      |                                         |  |

Table 2. MASH 2016 Evaluation Criteria for Work-Zone Traffic Control Devices

#### **3 DESIGN DETAILS**

The test installation consisted of two Type III barricades, as shown in Figures 1 through 8. Photographs of the test installation are shown in Figures 9 and 10. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

Each Type III barricade consisted of three horizontal High Density Polyethylene (HDPE) panels, measuring 96 in. (2,428 mm) in length, with a 48-in. x 30-in. x 0.08-in. (1,219-mm x 762-mm x 2-mm) aluminum sign attached to the top two barricade panels. The barricade panel was targeted to have nominal cross-sectional dimensions of 8 in. (203 mm) tall x 1 in. (25 mm) thick. However, the dimensions vary between manufacturers, and the supplied barricade panel was 8<sup>1</sup>/<sub>4</sub> in. (210 mm) x <sup>3</sup>/<sub>4</sub> in. (19 mm). The barricade panels were attached to two 1<sup>3</sup>/<sub>4</sub>-in. (44-mm) x 14-ga (1.9-mm) thick Perforated Square Steel Tubing (PSST) uprights, which were inserted into two 2-in. (51-mm) x 14-ga (1.9-mm) thick x 6-in. (152-mm) long PSST vertical stubs that were each welded to one of the two legs. The legs were 2-in. (51-mm) x 14-ga (1.9-mm) thick x 60-in. (1,524-mm) long PSST. All PSST used was galvanized ASTM 1011 Grade 55 steel with a minimum yield strength of 60 ksi (414 MPa). A 50-lb (23-kg) sandbag was placed on top of both ends of each leg. A Type A/C warning light was attached to the front of the top barricade panel and to the upright at both upright locations.

Two identical Type III barricades were evaluated. System A was oriented at 90 degrees, end-on to the vehicle. System B was oriented at 0 degrees, or head-on to the vehicle. Initial vehicle impact with System A was to occur with a right quarter-point offset from the centerline of the vehicle and initial vehicle impact with System B was to occur with a left quarter-point offset from the centerline of the vehicle, as shown in Figure 11.



Figure 1. Test Installation Layout, Test No. WZNP-2



Figure 2. Barricade Overview, Test No. WZNP-2



UNITS: in.[mm] MAP

Figure 3. Barricade Details, Test No. WZNP-2



Figure 4. Plastic Beam Details, Test No. WZNP-2



Figure 5. Perforated Steel Tube Details, Test No. WZNP-2



Figure 6. Sign and Warning Light Details, Test No. WZNP-2



| Item<br>No. | QTY. | Description                                                                      | Material Specification                          | Treatment Specification       |
|-------------|------|----------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------|
| a1          | 2    | Plastic Panel, 96" [2,438] Long                                                  | High Density Polyethylene                       | _                             |
| ۵2          | 4    | Plastic Panel, 96" [2,438] Long                                                  | High Density Polyethylene                       | -                             |
| b1          | 4    | 1 3/4"x1 3/4"x14-gauge [44x44x1.9], 58"<br>[1,473] Long Perforated Square Tubing | ASTM 1011 Gr. 55<br>Min. yield 60 ksi [414 MPa] | ASTM A653-G90 or AASHTO M-120 |
| b2          | 4    | 2"x2"x14—gauge [51x51x1.9], 60" [1,524] Long<br>Perforated Square Tubing         | ASTM 1011 Gr. 55<br>Min. yield 60 ksi [414 MPa] | ASTM A653-G90 or AASHTO M-120 |
| b3          | 4    | 2"x2"x14—gauge [51x51x1.9], 6" [152] Long<br>Perforated Square Tubing            | ASTM 1011 Gr. 55<br>Min. yield 60 ksi [414 MPa] | ASTM A653-G90 or AASHTO M-120 |
| c1          | 2    | 48"x30"x0.08" [1,219x762x2] Sign with Reflective Sheeting                        | Aluminum Alloy 5052 or similar                  | -                             |
| c2          | 4    | Warning Light (Type A or C)                                                      | As Supplied                                     | -                             |
| d1          | 20   | 3/8"—16 UNC [M10x1.5], 3 1/2" [89] Long Hex<br>Head Bolt                         | ASTM A307 Gr. A or equivalent                   | Fe/Zn 3AN per ASTM F1941      |
| d2          | 4    | 1/2"—13 UNC [M14x2], 6" [152] Long Hex Head<br>Bolt                              | ASTM A307 Gr. A or equivalent                   | Fe/Zn 3AN per ASTM F1941      |
| d3          | 8    | 1/4"—20 UNC [M6x1], 1 3/4" [44] Long Hex<br>Head Bolt                            | ASTM A307 Gr. A or equivalent                   | Fe/Zn 3AN per ASTM F1941      |
| d4          | 40   | 3/8" [10] Dia. Plain USS Washer                                                  | Low Carbon Steel                                | Fe/Zn 3AN per ASTM F1941      |
| d5          | 4    | 1/2" [13] Dia. Plain USS Washer                                                  | Low Carbon Steel                                | Fe/Zn 3AN per ASTM F1941      |
| d6          | 16   | 1/4" [6] Dia. Plain USS Washer                                                   | Low Carbon Steel                                | Fe/Zn 3AN per ASTM F1941      |
| d7          | 20   | 3/8"-16 UNC [M10x1.5] Lock Nut                                                   | SAE J995 Gr. 2 or equivalent                    | Fe/Zn 3AN per ASTM F1941      |
| d8          | 8    | 1/4"-20 UNC [M6x1] Lock Nut                                                      | SAE J995 Gr. 2 or equivalent                    | Fe/Zn 3AN per ASTM F1941      |
|             | •    | ·                                                                                |                                                 |                               |

|                                                                                                                     | MURSE                | Type III Barricade<br>Test No. WZNP—2 |                               | SHEET:<br>8 of 8<br>DATE:<br>7/22/2020 | - |
|---------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|-------------------------------|----------------------------------------|---|
| Note: (1) Part c1 shall have a reflective sheeting.                                                                 | <br>Midwest Roadside | Bill of Materials                     |                               | DRAWN BY:<br>DJW/SBW                   |   |
| (2) Parts a1 & a2 will have orange and white striped reflective sheeting on<br>at least one side (sign panel side). | Safety Facility      | DWG. NAME. S<br>WZNP-2_R1 U           | SCALE: None<br>UNITS: in.[mm] | REV. BY:<br>MAP                        |   |

Figure 8. Bill of Materials, Test No. WZNP-2



Figure 9. Test Installation, Test No. WZNP-2



Figure 10. Test Installation, Test No. WZNP-2



Figure 11. Test Impact Point, Test No. WZNP-2

16

#### **4 TEST CONDITIONS**

#### 4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

#### 4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the first barricade. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [7] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the second system. The  $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

#### 4.3 Test Vehicle

For test no. WZNP-2 a 2011 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,105 lb (2,316 kg), 5,001 lb (2,268 kg), and 5,165 lb (2,343 kg), respectively. MASH recommends using test vehicles within 6 model years on the day the test is conducted. Additionally, vehicles within 6 model years of the award date of the research project, which was in 2015, were allowed at the time. Thus, a test vehicle older than 6 years from the test date was utilized, and all dimensions and properties of the test vehicle met the requirements in MASH. The test vehicle is shown in Figures 12 and 13, and vehicle dimensions are shown in Figure 14.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [7] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 14 and 15. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 15. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.







Figure 12. Test Vehicle, Test No. WZNP-2



Figure 13. Test Vehicle's Interior Floorboards and Undercarriage





| Date:                                                                         | 3/21/2019                        | 9                    | Test Name                                | WZNP-2                                 | VIN No: _                                                                                               | 1D7RB10                                                                                                                                                        | GP6BS634520                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|----------------------------------|----------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year:                                                                         | 2011                             |                      | Make                                     | Dodge                                  | Model:                                                                                                  | Model: Ram 1500                                                                                                                                                |                                                                                                                                                                                                                    |
| Tire Size:                                                                    | P265/70R                         | <u>17 Ti</u>         | re Inflation Pressure                    | 40 psi                                 | Odometer:                                                                                               | 2                                                                                                                                                              | 62517                                                                                                                                                                                                              |
|                                                                               |                                  |                      |                                          |                                        | Vehicle Ge<br>Target Ranges                                                                             | eometry - in. (r<br>s listed below                                                                                                                             | nm)                                                                                                                                                                                                                |
|                                                                               |                                  |                      | Test Inertial CG                         |                                        | A: 77 1/8<br>78±2 (19<br>C: 229 1/2<br>237±13 (6)<br>E: 140 3/4<br>148±12 (3)<br>G: 28 5/16<br>min: 28  | (1959)         B:           (50±50)         D:           (5829)         D:           (32535)         F:           (3575)         F:           (719)         H: | 74 1/4         (1886)           38 3/8         (975)           39±3 (1000±75)         (1226)           48 1/4         (1226)           61         9/16         (1564)           63±4 (1575±100)         (1575±100) |
|                                                                               |                                  |                      | s contractions                           |                                        | I: <u>10 1/2</u><br>3 K: <u>20 3/8</u><br>M: <u>67 7/8</u><br>67±1.5 (1<br>O: <u>43 7/8</u><br>43±4 (11 |                                                                                                                                                                | 27         (686)           29 7/8         (759)           67 3/8         (1711)           67±1.5 (1700±38)         (114)                                                                                           |
| -                                                                             |                                  | HE<br>               | +<br>+                                   | — F — •                                | Q: <u>31 1/4</u><br>S: 13 7/8                                                                           | (794) R:                                                                                                                                                       | <u>18 1/2 (470)</u><br>77 1/4 (1962)                                                                                                                                                                               |
|                                                                               |                                  |                      |                                          |                                        | U (ir                                                                                                   | npact width):                                                                                                                                                  | 38 4/7 (979)                                                                                                                                                                                                       |
| Gross Static                                                                  | LF <u>1422</u><br>LR <u>1131</u> | (645) RF<br>(513) RR | 1485 (674)<br>1127 (511)                 |                                        | Cle                                                                                                     | Wheel Center<br>Height (Front): _<br>Wheel Center<br>Height (Rear): _<br>Wheel Well<br>arance (Front):                                                         | <u>15 1/4 (387)</u><br><u>15 1/4 (387)</u><br>35 1/4 (895)                                                                                                                                                         |
| Weights<br>Ib (kg)                                                            | Curk                             | b                    | Test Inertial                            | Gross Static                           | Cle                                                                                                     | Wheel Well<br>earance (Rear):                                                                                                                                  | 37 7/8 (962)                                                                                                                                                                                                       |
| W-front                                                                       | 2875                             | (1304)               | 2814 (1276)                              | 2907 (1319                             | )                                                                                                       | Bottom Frame<br>Height (Front): _                                                                                                                              | 9 1/2 (241)                                                                                                                                                                                                        |
| W-rear                                                                        | 2230                             | (1012)               | 2187 (992)                               | 2258 (1024                             | )                                                                                                       | Bottom Frame<br>Height (Rear):                                                                                                                                 | 10 3/8 (264)                                                                                                                                                                                                       |
| W-total                                                                       | 5105                             | (2316)               | <b>5001 (2268)</b><br>5000±110 (2270±50) | <b>5165 (2343</b><br>5165±110 (2343±50 | )))                                                                                                     | Engine Type: _                                                                                                                                                 | Gasoline                                                                                                                                                                                                           |
| GVWR Ratin                                                                    | as - Ib                          | Su                   | urrogate Occupant D                      | ata                                    | Transn                                                                                                  | nission Type                                                                                                                                                   | Automatic                                                                                                                                                                                                          |
| Front                                                                         | 3700                             |                      | Type:                                    | Hybrid II                              | Tunan                                                                                                   | Drive Type:                                                                                                                                                    | RWD                                                                                                                                                                                                                |
| Rear                                                                          | 3900                             |                      | Mass:                                    | 164 lb                                 |                                                                                                         | Cab Style:                                                                                                                                                     | Quad Cab                                                                                                                                                                                                           |
| Total                                                                         | 6700                             |                      | Seat Position:                           | Right/Passenger                        | _                                                                                                       | Bed Length:                                                                                                                                                    | 76"                                                                                                                                                                                                                |
| Note any damage prior to test: Right front bumper cover is deformed slightly. |                                  |                      |                                          |                                        |                                                                                                         |                                                                                                                                                                |                                                                                                                                                                                                                    |

Figure 14. Vehicle Dimensions, Test No. WZNP-2



Figure 15. Target Geometry, Test No. WZNP-2

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. 5B flash bulbs were mounted under the vehicle's left and right-side windshield wipers and were fired by pressure tape switches mounted on both quarter points of the bumper. The flash bulbs fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

#### 4.4 Simulated Occupant

For test no. WZNP-2, a Hybrid II 50<sup>th</sup>-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy had a final weight of 164 lb (74 kg). As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

#### 4.5 Data Acquisition Systems

#### 4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using SAE Class 60 and SAE Class 180 Butterworth filters conforming to the SAE J211/1 specifications [8].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of  $\pm 500$  g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

#### 4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

### 4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Four retroreflective targets, spaced at approximately 18-in. (457-mm) intervals,

were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

#### 4.5.4 Digital Photography

Five AOS high-speed digital video cameras, six GoPro digital video cameras, four Panasonic digital video cameras, and one SoloShot digital video camera were utilized to film test no. WZNP-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 16.

The high-speed videos were analyzed using the Redlake MotionScope software program. Actual camera speed and camera divergence factors were considered in the analysis of the highspeed videos. A digital still camera was also used to document pre- and post-test conditions for the test.



| No.      | Туре              | Operating Speed<br>(frames/sec) | Lens          | Lens Setting |
|----------|-------------------|---------------------------------|---------------|--------------|
| AOS-1    | AOS Vitcam CTM    | 500                             | KOWA 25 mm    | -            |
| AOS-5    | AOS X-PRI Gigabit | 500                             | 100 mm        | -            |
| AOS-7    | AOS X-PRI Gigabit | 500                             | Fujinon 50 mm | -            |
| AOS-9    | AOS TRI-VIT       | 500                             | KOWA 12 mm    | -            |
| AOS MINI | AOS Smize         | 500                             | Fujinon 35mm  | -            |
| GP-7     | GoPro Hero 4      | 120                             |               |              |
| GP-8     | GoPro Hero 4      | 120                             |               |              |
| GP-18    | GoPro Hero 6      | 240                             |               |              |
| GP-19    | GoPro Hero 6      | 240                             |               |              |
| GP-20    | GoPro Hero 6      | 240                             |               |              |
| GP-21    | GoPro Hero 6      | 240                             |               |              |
| PAN-1    | Panasonic HC-V770 | 60                              |               |              |
| PAN-2    | Panasonic HC-V770 | 60                              |               |              |
| PAN-3    | Panasonic HC-V770 | 60                              |               |              |
| PAN-4    | Panasonic HC-V770 | 60                              |               |              |
| SoloShot | SoloShot          | 120                             |               |              |

Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. WZNP-2

#### 5 FULL-SCALE CRASH TEST NO. WZNP-2

#### **5.1 Weather Conditions**

Test no. WZNP-2 was conducted on March 21, 2019 at approximately 3:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Table 3. Weather Conditions, Test No. WZNP-2

| Temperature                  | 59° F            |
|------------------------------|------------------|
| Humidity                     | 38 %             |
| Wind Speed                   | 7 mph            |
| Wind Direction               | Variable         |
| Sky Conditions               | Sunny            |
| Visibility                   | 10 Statute Miles |
| Pavement Surface             | Dry              |
| Previous 3-Day Precipitation | 0.34 in.         |
| Previous 7-Day Precipitation | 0.40 in.         |

#### **5.2 Test Description**

MwRSF has developed a procedure for testing multiple work-zone traffic control devices in one test run. However, in order to have two devices impacted in one test run using the previously established method, it was necessary to align the systems with the quarter points of the vehicle to distinguish damage between the two systems. Additionally, MASH 2016 does not provide specific guidance on how to align the test vehicle and test article. Therefore, impacting the centerline of each barricade with a quarter point of the test vehicle seemed adequate.

During test no. WZNP-2, initial vehicle impact with System A was to occur with a right quarter-point offset from the centerline of the vehicle, and initial vehicle impact with System B was to occur with a left quarter-point offset from the centerline of the vehicle, as shown in Figure 17. The centerlines of both Systems A and B impacted the vehicle at the right and left quarter-point offsets from the centerline of the vehicle, respectively. The 5,001-lb (2,268-kg) 2011 Dodge Ram 1500 quad cab pickup truck impacted System A at a speed of 64.7 mph (104.2 km/h). The pickup truck impacted System B 0.694 seconds after the initial impact with System A at a speed of 62.6 mph (100.8 km/h). Note, the HDPE panel from System A impacted the outer edge of the middle panel on System B 0.002 seconds before the vehicle impacted System B as System A was sliding off to the right side of the pickup truck. The contact lasted approximately 0.004 seconds. However, this contact occurred outside of the vehicle contact area on System A did not affect the evaluation of System B. The vehicle came to rest 277 ft – 6 in. (84.6 m) downstream after brakes were applied.

A detailed description of the sequential impact events is contained in Tables 4 and 5. Sequential photographs are shown in Figure 18. Documentary photographs of the crash test are shown in Figures 20 through 22. The vehicle trajectory and final position are shown in Figure 23.






Figure 17. Impact Location, Test No. WZNP-2

| TIME<br>(sec) | EVENT                                                                                                |
|---------------|------------------------------------------------------------------------------------------------------|
| 0.000         | Vehicle's front bumper contacted System A's bottom panel.                                            |
| 0.002         | Vehicle's grille contacted System A's middle panel.                                                  |
| 0.010         | Vehicle's front bumper contacted System A's upstream support, and System A deflected downstream.     |
| 0.012         | Vehicle's hood contacted System A's upstream support, and System A's upstream support bent upstream. |
| 0.014         | System A's middle panel deformed.                                                                    |
| 0.016         | Vehicle's front bumper deformed.                                                                     |
| 0.018         | System A's top panel contacted vehicle's hood, and bottom panel of System A deformed.                |
| 0.020         | System A's top panel deformed.                                                                       |
| 0.022         | System A's upstream leg detached, and downstream support rotated downstream.                         |
| 0.028         | System A's sign deformed from contact with vehicle's grille.                                         |
| 0.032         | Vehicle's hood contacted System A's sign.                                                            |
| 0.054         | System A's middle panel detached from upstream support.                                              |
| 0.080         | System A's downstream leg detached, and System A became airborne.                                    |
| 0.164         | Bottom panel of System A contacted ground.                                                           |

Table 4. Sequential Description of Impact Events, Test No. WZNP-2, System A

| TIME   | EVENT                                                                                                                             |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|
| (sec)  |                                                                                                                                   |
| -0.002 | System A's middle panel contacted System B's middle panel, and System B's middle panel slightly deformed.                         |
| 0.000  | Vehicle's front bumper contacted System B's bottom panel; vehicle's front bumper contacted System B's right support.              |
| 0.002  | Vehicle's hood contacted System B's sign.                                                                                         |
| 0.004  | Vehicle's grille contacted System B's middle panel, System B's right support bent upstream, and System B's bottom panel deformed. |
| 0.006  | Vehicle's hood deformed, and System B's top panel and sign deformed.                                                              |
| 0.012  | Vehicle's left headlight contacted System B's sign.                                                                               |
| 0.014  | System B's right support deflected left.                                                                                          |
| 0.016  | System B's left leg deflected downstream.                                                                                         |
| 0.022  | System A lost contact with vehicle and became airborne.                                                                           |
| 0.030  | System B's right leg detached.                                                                                                    |
| 0.056  | System B's left support contacted vehicle's left fender.                                                                          |
| 0.058  | Vehicle's left fender deformed.                                                                                                   |
| 0.072  | System B's left support snagged on left-front fender deformations.                                                                |
| 0.106  | System B's left leg detached, and System B became airborne.                                                                       |
| 0.114  | System B's left support contacted vehicle's left-side mirror.                                                                     |
| 0.228  | System A contacted ground target.                                                                                                 |
| 0.358  | Vehicle's right headlight became disengaged.                                                                                      |
| 0.412  | System B contacted ground.                                                                                                        |
| 0.440  | System B's left light detached.                                                                                                   |
| 0.448  | System B's middle panel detached from left support.                                                                               |
| 1.210  | Vehicle yawed clockwise.                                                                                                          |

Table 5. Sequential Description of Impact Events, Test No. WZNP-2, System B



0.000 sec



0.250 sec



0.450 sec



0.700 sec







1.100 sec



0.000 sec



0.050 sec



0.100 sec



0.150 sec



0.200 sec



0.250 sec

Figure 18. Sequential Photographs, Test No. WZNP-2



Figure 19. Documentary Photographs, Test No. WZNP-2



Figure 20. Additional Documentary Photographs, Test No. WZNP-2











Figure 21. Additional Documentary Photographs, Test No. WZNP-2















Figure 22. Additional Documentary Photographs, Test No. WZNP-2





Figure 23. Vehicle Trajectory and Final Position, Test No. WZNP-2

#### 5.3 System Damage

Damage to the barricades was extensive, as shown in Figures 24 through 28. Barricade damage consisted of punctured sandbags, bent uprights and legs, bent and torn barricade panels, and bolts pulled through the barricade panels. The vehicle readily disengaged both barricades from their bases.

System A was facing perpendicular to the direction of travel. The centerline of the system was aligned to the right quarter-point and offset from the centerline of the vehicle. The two uprights disengaged from each leg upon impact. The upstream left and downstream left sandbags were torn open. The upstream end of the middle barricade panel tore. The upstream upright was bent inward toward the center of the sign. The bottom barricade panel was deformed. Three bolts were partially pulled out of the bottom barricade panel. Two bolts were pulled out of the middle barricade panel, and one was partially pulled out. Three bolts were pulled out of the aluminum sign.

System B was oriented to face the direction of travel. The centerline of the system was aligned to the left quarter-point and offset from the centerline of the vehicle. The downstream right and the downstream left sandbags were torn open. The upstream leg was deformed. The right upright was bent 17 in. (432 mm) from the bottom. The aluminum sign was bent. Both warning lights were rotated, and the left light lens disengaged from the warning light system. One bolt was pulled out of the bottom barricade panel, and three bolts were partially pulled out. The two left side bolts on the middle barricade panel were pulled out. The aluminum sign bolts were partially pulled out of the middle barricade panel and thoroughly pulled out of the top barricade panel.



Figure 24. Overall System A and System B Damage, Test No. WZNP-2



Figure 25. System A Damage, Test No. WZNP-2



Figure 26. Additional System A Damage, Test No. WZNP-2





Figure 27. System B Damage, Test No. WZNP-2



Figure 28. Additional System B Damage, Test No. WZNP-2



#### **5.4 Vehicle Damage**

The damage to the vehicle was minimal, as shown in Figures 29 through 31. The maximum occupant compartment intrusions are listed in Table 6 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C.

The majority of the damage was concentrated on the right-front corner where the vehicle impacted System A. The torn piece of the middle panel from System A was stuck inside the right side of the grille. A small dent was found on the left side of the front bumper. A vertical crush line extending from the bottom of the bumper to the top of the hood was found on the vehicle. The right headlight was disengaged from the vehicle. A dent was found on the left-front fender. The left mirror was partially disengaged from the vehicle. The roof, remaining window glass, and undercarriage remained undamaged.







Figure 29. Vehicle Damage, Test No. WZNP-2





Figure 30. Vehicle Damage Details, Test No. WZNP-2



Figure 31. Occupant Compartment and Undercarriage Damage, Test No. WZNP-2

| LOCATION                                | MAXIMUM<br>INTRUSION<br>in. (mm) | MASH 2016 ALLOWABLE<br>INTRUSION<br>in. (mm)                                |
|-----------------------------------------|----------------------------------|-----------------------------------------------------------------------------|
| Wheel Well & Toe Pan                    | 0.2 (5.1)                        | ≤ 9 (229)                                                                   |
| Floor Pan & Transmission Tunnel         | 0.1 (2.5)                        | ≤ 12 (305)                                                                  |
| A-Pillar                                | 0.6 (15.2)                       | ≤ 5 (127)                                                                   |
| B-Pillar                                | 0.6 (15.2)                       | ≤ 5 (127)                                                                   |
| A-Pillar (Lateral)                      | 0.3 (7.6)                        | ≤ 3 (76)                                                                    |
| B-Pillars (Lateral)                     | 0.3 (7.6)                        | ≤3 (76)                                                                     |
| Side Front Panel (in Front of A-Pillar) | 1.2 (30.5)                       | ≤ 12 (305)                                                                  |
| Side Door (Above Seat)                  | 0.2 (5.1)                        | ≤ 9 (229)                                                                   |
| Side Door (Below Seat)                  | 0.1 (2.5)                        | ≤ 12 (305)                                                                  |
| Roof                                    | 0.3 (7.6)                        | ≤4 (102)                                                                    |
| Windshield                              | 0.0 (0)                          | ≤3 (76)                                                                     |
| Side Window                             | Intact                           | No shattering resulting from contact with structural member of test article |
| Dash                                    | 1.5 (38.1)                       | N/A                                                                         |

Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. WZNP-2

Note: Negative values denote outward deformation N/A . Not appliable

N/A - Not applicable

#### 5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, for System A and System B are shown in Table 7. Note that lateral and longitudinal occupant displacements do not meet the required distances specified in MASH. Therefore, the ORA values are not applicable, and the OIV numbers are determined from the change in velocity at the time where the vehicle clears the footing according to MASH 2016. The calculated THIV, PHD, and ASI values for each system are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix D.

|                                  |              |                  | Transducer           |                  |                      |              |  |  |  |  |  |  |  |
|----------------------------------|--------------|------------------|----------------------|------------------|----------------------|--------------|--|--|--|--|--|--|--|
| Evaluatio                        | on Criteria  | SYST             | TEM A                | SYST             | MASH 2016            |              |  |  |  |  |  |  |  |
|                                  |              | SLICE-1          | SLICE-2<br>(primary) | SLICE-1          | SLICE-2<br>(primary) |              |  |  |  |  |  |  |  |
| ΟΙV                              | Longitudinal | -1.44<br>(-0.44) | -1.34<br>(-0.41)     | -1.28<br>(-0.39) | -1.13<br>(-0.34)     | ±16 (4.9)    |  |  |  |  |  |  |  |
| ft/s (m/s)                       | Lateral      | 0.91<br>(0.28)   | 0.72<br>(0.22)       | -0.39<br>(-0.12) | -0.23<br>(-0.07)     | ±16 (4.9)    |  |  |  |  |  |  |  |
| ORA                              | Longitudinal | N/A              | N/A                  | N/A              | N/A                  | ±20.49       |  |  |  |  |  |  |  |
| g's                              | Lateral      | N/A              | N/A                  | N/A              | N/A                  | ±20.49       |  |  |  |  |  |  |  |
| MAX.                             | Roll         | -0.78            | 1.16                 | -0.78            | 1.16                 | ±75          |  |  |  |  |  |  |  |
| ANGULAR<br>DISPL.                | Pitch        | 5.93             | 2.87                 | 5.93             | 2.87                 | ±75          |  |  |  |  |  |  |  |
| deg.                             | Yaw          | 1.22             | -2.45                | 1.22             | -2.45                | not required |  |  |  |  |  |  |  |
| THIV<br>ft/s (m/s)<br>PHD<br>g's |              | N/A              | N/A                  | N/A              | N/A                  | not required |  |  |  |  |  |  |  |
|                                  |              | N/A              | N/A                  | N/A              | N/A                  | not required |  |  |  |  |  |  |  |
| A                                | SI           | 0.054            | 0.055                | 0.087            | 0.065                | not required |  |  |  |  |  |  |  |

#### Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WZNP-2

N/A - Not applicable (due to reasons explained in section 5.5)

#### **5.6 Discussion**

A summary of the test results and sequential photographs for System A and System B are shown in Figures 32 and 33, respectively. The analysis of the test results for test no. WZNP-2 showed that both systems readily activated in a predicable manner and allowed the 2270P vehicle to continue traveling without any major obstruction of the windshield. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle's trajectory did not violate the bounds of the exit box. Therefore, test no. WZNP-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-72.



Figure 32. Summary of Test Results and Sequential Photographs for System A, Test No. WZNP-2

September 25, 2020 MwRSF Report No. TRP-03-416-20



0.100 sec

0.000 sec





0.150 sec

0.200 sec

Transducer Data

|                  |              | Trans         | MASH 2016            |              |
|------------------|--------------|---------------|----------------------|--------------|
| Evaluatio        | on Criteria  | SLICE-1       | SLICE-2<br>(primary) | Limit        |
| OIV<br>ft/a      | Longitudinal | -1.28 (-0.39) | -1.13 (-0.34)        | ±16 (4.9)    |
| (m/s)            | Lateral      | -0.39 (-0.12) | -0.23 (-0.07)        | ±16 (4.9)    |
| ORA              | Longitudinal | N/A           | N/A                  | ±20.49       |
| g's              | Lateral      | N/A           | N/A                  | ±20.49       |
| MAX              | Roll         | -0.78         | 1.16                 | ±75          |
| ANGULAR<br>DISP. | Pitch        | 5.93          | 2.87                 | ±75          |
| deg.             | Yaw          | 1.22          | -2.45                | Not required |
| THIV –           | ft/s (m/s)   | N/A           | N/A                  | Not required |
| PHD              | ) – g's      | N/A           | N/A                  | Not required |
| A                | SI           | 0.087         | 0.065                | Not required |

N/A - Not applicable (due to reasons explained in section 5.5)

Figure 33. Summary of Test Results and Sequential Photographs for System B, Test No. WZNP-2

#### **6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS**

Test no. WZNP-2 was conducted on a non-proprietary Type III barricade according to MASH 2016 test designation no. 3-72. Two barricades were impacted sequentially by the same test vehicle. In test no. WZNP-2, the 5,001-lb (2,268-kg) 2011 Dodge Ram 1500 quad cab pickup truck impacted System A, oriented at 90 degrees or perpendicular to the vehicle, at a speed of 64.7 mph (104.2 km/h) and System B, oriented at 0 degrees or head-on to the vehicle, at a speed of 62.6 mph (100.8 km/h), respectively. During test no. WZNP-2, the 2270P pickup truck impacted and disengaged both barricades from their bases. The systems readily activated and allowed the 2270P vehicle to continue travelling without any major obstruction of the windshield. There were no detached elements or fragments that showed potential for penetrating the occupant compartment nor present undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle remained upright during and after the collisions. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle's trajectory did not violate the bounds of the exit box. Therefore, test no. WZNP-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-72. A summary of the test evaluation and sequential photos are shown in Table 8.

When assembling this Type III barricade, hardware parts and materials that are similar to those used in the as-tested system should be utilized. Sandbags, weighing approximately 50 lb, should be placed on the ends of each leg. One Type A/C warning light was attached to the top and front-side of the HDPE panels at each PSST upright on each barricade to evaluate a worst-case configuration with attachments. Thus, two warning lights were attached to each barricade. Utilizing one or no warning lights would also be acceptable. The warning lights were attached to the top barricade panel but could also be attached to the backside of the top barricade panel, as that would be a less critical configuration.

An aluminum sign panel can be attached to the Type III, with a maximum sign size and location similar to the as-tested installation. Smaller aluminum sign panels attached with a top height that is even with the top barricade panel or lower, or omitting the aluminum sign panel would also be acceptable configurations.

The Type III barricade panels consisted of three horizontal High Density Polyethylene (HDPE) panels, measuring 96 in. (2,428 mm) in length. The barricade panel was targeted to have nominal cross-sectional dimensions of 8 in. (203 mm) tall x 1 in. (25 mm) thick. However, the dimensions vary between manufacturers, and the supplied barricade panel was 8¼ in. (210 mm) x  $^{3}4$  in. (19 mm). HDPE panels that are similar to those in the as-tested installation or with the nominal dimensions could also be used for this Type III barricade.

| Evaluation<br>Factors                                        |                                                                                                                                                                                               | Evaluation Criteria                                                                                                                                                                                                                                    |                                               |                                    |      |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|------|--|--|--|--|--|--|
| Structural<br>Adequacy                                       | В                                                                                                                                                                                             | The test article should readily breaking away, fracturing, or yie                                                                                                                                                                                      | activate in a predic<br>lding.                | table manner by                    | S    |  |  |  |  |  |  |
|                                                              | D.                                                                                                                                                                                            | 1. Detached elements, fragments or other debris from the test article<br>should not penetrate or show potential for penetrating the occupant<br>compartment, or present an undue hazard to other traffic, pedestrians, or<br>personnel in a work zone. |                                               |                                    |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | 2. Deformations of, or intrusions<br>not exceed limits set forth in Se<br>2016.                                                                                                                                                                        | into, the occupant contection 5.2.2 and Appen | npartment should<br>ndix E of MASH | S    |  |  |  |  |  |  |
|                                                              | E. Detached elements, fragments, or other debris from the test article, or vehicular damage should not block the driver's vision or otherwise cause the driver to lose control of the vehicle |                                                                                                                                                                                                                                                        |                                               |                                    |      |  |  |  |  |  |  |
|                                                              | F.                                                                                                                                                                                            | The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.                                                                                                                          |                                               |                                    |      |  |  |  |  |  |  |
| Occupant<br>Risk                                             | H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:                                                |                                                                                                                                                                                                                                                        |                                               |                                    |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Occupant Impact Velocity Limits                                                                                                                                                                                                                        |                                               |                                    |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Component                                                                                                                                                                                                                                              | Preferred                                     | Maximum                            |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Longitudinal and Lateral                                                                                                                                                                                                                               | 30 ft/s (9.1 m/s)                             | 16 ft/s (4.9 m/s)                  |      |  |  |  |  |  |  |
|                                                              | I.                                                                                                                                                                                            | The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:                                                                                                  |                                               |                                    |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Occupant Rided                                                                                                                                                                                                                                         | own Acceleration Lim                          | its                                | S    |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Component                                                                                                                                                                                                                                              | Maximum                                       |                                    |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Longitudinal and Lateral                                                                                                                                                                                                                               | 15.0 g's                                      | 20.49 g's                          |      |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | MASH 2016 Test Desig                                                                                                                                                                                                                                   | gnation No.                                   |                                    | 3-72 |  |  |  |  |  |  |
|                                                              |                                                                                                                                                                                               | Final Evaluation (Pas                                                                                                                                                                                                                                  | s or Fail)                                    |                                    | Pass |  |  |  |  |  |  |
| S - Satisfactory $U - Unsatisfactory$ $N/A - Not Applicable$ |                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                               |                                    |      |  |  |  |  |  |  |

Table 8. Summary of Safety Performance Evaluation

#### 7 MASH EVALUATION

This Type III barricade had three horizontal High Density Polyethylene (HDPE) panels, measuring 96 in. (2,428 mm) in length, with a 48-in. x 30-in. x 0.08-in. (1,219-mm x 762-mm x 2-mm) aluminum sign attached to the top two barricade panels. The barricade panel was targeted to have nominal cross-sectional dimensions of 8 in. (203 mm) x 1 in. (25 mm). However, the dimensions vary between manufacturers, and the supplied barricade panel was 8<sup>1</sup>/<sub>4</sub> in. (210 mm) x  $^{3}/_{4}$  in. (19 mm). The barricade panels were attached to two 1<sup>3</sup>/<sub>4</sub>-in. (44-mm) x 14-ga (1.9-mm) thick Perforated Square Steel Tubing (PSST) uprights, which were inserted into two 2-in. (51-mm) x 14-ga (1.9-mm) thick x 6-in. (152-mm) long PSST vertical stubs that were welded to two legs. The legs were 2-in. (51-mm) x 14-ga (1.9-mm) thick x 60-in. (1,524-mm) long PSST. All PSST used was galvanized ASTM 1011 Grade 55 steel with a minimum yield strength of 60 ksi (414 MPa). A 50-lb (23-kg) sandbag was placed on top of the end of each leg. A Type A/C warning light was attached to the front of the top barricade panel and upright at both upright locations.

According to TL-3 of MASH 2016, work-zone traffic control devices, such as a Type III barricade, must be subjected to three full-scale vehicle crash tests, as summarized in Table 9. The low-speed test, test designation no. 3-70, was optional according to MASH Section 2.2.4.2 and was not conducted, since the Type III barricade weighed less than 220 lb (100 kg) [5]. MASH 2016 recommends these tests be conducted both perpendicular to the device (0 degrees) and parallel to the device (90 degrees), as both orientations may occur along roadsides. Test designation no. 3-71 was previously successfully conducted on the barricade at two critical impact angles, both perpendicular to the device (0 degrees) and parallel to the device (90 degrees) [6]. Test designation no. 3-72 was successfully conducted on the barricade at two critical impact angles, both perpendicular to the device (0 degrees) and parallel to the device (90 degrees), as reported herein.

| Test                                       | Test        |         | Vehicle | Impact Conditions |           |  |  |  |
|--------------------------------------------|-------------|---------|---------|-------------------|-----------|--|--|--|
|                                            | Designation | Test    | Weight, | Speed,            | Angle     |  |  |  |
| Article                                    | No          | Vehicle | lb      | mph               | (degrees) |  |  |  |
|                                            | 110.        |         | (kg)    | (km/h)            | (degrees) |  |  |  |
| Work-Zone<br>Traffic<br>Control<br>Devices | 3 70*       | 1100C   | 2,425   | 19                | CIA       |  |  |  |
|                                            | 5-70*       | 11000   | (1,100) | (30)              | CIA       |  |  |  |
|                                            | 2 71        | 11000   | 2,425   | 62                | CIA       |  |  |  |
|                                            | 3-71        | 11000   | (1,100) | (100)             | CIA       |  |  |  |
|                                            | 2 72        | 22700   | 5,000   |                   |           |  |  |  |
|                                            | 5-72        | 2270P   | (2,270) | (100)             | CIA       |  |  |  |

Table 9. MASH 2016 TL-3 Crash Test Conditions for Work-Zone Traffic Control Devices

\* Optional for devices weighing less than 220 lb (100 kg)

CIA= Critical Impact Angle

In test no. WZNP-1, two identical Type III barricades were impacted by an 1100C small car in accordance with MASH 2016 test designation no. 3-71 [6]. The two Type III barricades were placed 60 ft (18.3 m) apart on level terrain with one sandbag on the end of each leg. Initial vehicle impact with System A, oriented at 90 degrees or perpendicular to the vehicle, was to occur with a right quarter-point and offset from the centerline of the car and initial vehicle impact with

System B, oriented at 0 degrees or head on to the vehicle, was to occur with a left quarter-point and offset from the centerline of the car. The 2,426-lb (1,100-kg) small car impacted System A at a speed of 64.7 mph (104.2 km/h) and System B at a speed of 61.2 mph (98.6 km/h). During the test, the 1100C small car impacted and disengaged both barricades from their bases. The systems readily activated in a predictable manner and allowed the 1100C vehicle to continue traveling without any major obstruction of the windshield. There were no detached elements or fragments which showed potential for penetrating the occupant compartment or presented undue hazard to other traffic

In test no. WZNP-2, two identical Type III barricades were impacted by a 2270P pickup truck in accordance with MASH 2016 test designation no. 3-72. The two Type III barricades were placed 60 ft (18.3 m) apart on level terrain with one sandbag on the end of each leg. Initial vehicle impact with System A, oriented at 90 degrees or perpendicular to the vehicle, was to occur with a right quarter-point and offset from the centerline of the car and initial vehicle impact with System B, oriented at 0 degrees or head on to the vehicle, was to occur with a left quarter-point and offset from the centerline of the car and initial vehicle impact with System B, oriented at 0 degrees or head on to the vehicle, was to occur with a left quarter-point and offset from the centerline of the car. The 5,001-lb (2,268-kg) 2011 Dodge Ram 1500 quad cab pickup truck impacted System A at a speed of 64.7 mph (104.2 km/h) and System B at a speed of 62.6 mph (100.8 km/h). During the test, the 2270P pickup truck impacted and disengaged both barricades from their bases. The systems readily activated and allowed the 2270P vehicle to continue travelling without any major obstruction of the windshield. Thus, this Type III barricade satisfied all of the requirements for the crash tests in the TL-3 test matrix and, therefore, is a MASH TL-3 crashworthy device.

#### **8 REFERENCES**

- 1. Schmidt, J.D., Sicking, D.L., Lechtenberg, K.A., Faller, R.K., and Holloway, J.C., *Analysis of Existing Work-Zone Devices with MASH Safety Performance Criteria*, Mid-America Transportation Center, University of Nebraska-Lincoln, Lincoln, NE, 2009.
- Schmidt, J.D., Faller, R.K., Lechtenberg, K.A., and Sicking, D.L., Analysis of Existing Work-Zone Sign Supports Using Manual for Assessing Safety Hardware Safety Performance Criteria, Journal of Transportation Safety & Security, Taylor & Francis, Volume 3, Number 4, December 2011, DOI: 10.1080/19439962.2011.599015, pp. 237-251.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993. <u>http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp\_rpt\_350-a.pdf</u>.
- 4. *Manual for Assessing Safety Hardware (MASH), First Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.*
- 5. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 6. Schmidt, J.D., Langel, T.J., Asselin, N., Pajouh, M.A., and Faller, R.K., *MASH 2016 Evaluation of a Non-Proprietary Type III Barricade*, Report No. TRP-03-394-18, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 19, 2018.
- 7. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 8. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July 2007.
- 9. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

### **9 APPENDICES**

# Appendix A. Material Specifications

Table A-1. Bill of Materials, Test No. WZNP-2

| Item<br>No. | Description                                                                      | Material Specification        | Reference                                        |
|-------------|----------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|
| a1          | Plastic Panel, 96" [2,438] Long                                                  | Petrothene LR734001           | Technical Data Sheet                             |
| a2          | Plastic Panel, 96" [2,438] Long                                                  | Petrothene LR734001           | Technical Data Sheet                             |
| b1          | 1 3/4"x1 3/4"x14-gauge [44x44x1.9], 58"<br>[1,473] Long Perforated Square Tubing | ASTM 1011 Gr. 55              | H#A90050<br>(Coil#168755)                        |
| b2          | 2"x2"x14-gauge [51x51x1.9], 60" [1,524]<br>Long Perforated Square Tubing         | ASTM 1011 Gr. 55              | H#C87907<br>(Coil#4169112)                       |
| b3          | 2"x2"x14-gauge [51x51x1.9], 6" [152] Long<br>Perforated Square Tubing            | ASTM 1011 Gr. 55              | H#C87907<br>(Coil#4169112)                       |
| <b>c</b> 1  | 48" x 30" x 0.08" [1,219 x 762 x 2] Sign with<br>Reflective Sheeting             | Aluminum Alloy 5052           | RTS-154299 COC                                   |
| c2          | Warning Light (Type A or C)                                                      | As Supplied                   | Fastenal COC                                     |
| d1          | 3/8"-16 UNC [M10x1.5], 3 1/2" [89] Long Hex<br>Head Bolt                         | ASTM A307 Gr. A or equivalent | H#18205931-3<br>(Coil#130075362)                 |
| d2          | 1/2"-13 UNC [M14x2], 6" [152] Long Hex<br>Head Bolt                              | ASTM A307 Gr. A or equivalent | H#G1808306001<br>(Coil#210170612)                |
| d3          | 1/4"-20 UNC [M6x1], 1 3/4" [44] Long Hex<br>Head Bolt                            | ASTM A307 Gr. A or equivalent | H#18300616-3<br>(Coil#180154274)                 |
| d4          | 3/8" [10] Dia. Plain Round Washer                                                | Low Carbon Steel              | L#1831501<br>(C#210163871)<br>(P#133008)         |
| d5          | 1/2" [13] Dia. Plain Round Washer                                                | Low Carbon Steel              | C#480006818<br>(P#1133012)                       |
| d6          | 1/4" [6] Dia. Plain Round Washer                                                 | Low Carbon Steel              | L#M-SWE0412056-1<br>(C#110243322)<br>(P#1133004) |
| d7          | 3/8"-16 UNC [M10x1.5] Lock Nut                                                   | SAE J995 Gr. 2 or equivalent  | H#321605150<br>(Coil#210115915)                  |
| d8          | 1/4"-20 UNC [M6x1] Lock Nut                                                      | SAE J995 Gr. 2 or equivalent  | H#G1711322002<br>(Coil#210151171)                |

# **Product Comparison**

# PROSPECTOR®

| ne LR734001 is a high density polyeth<br>ack resistance. Typical applications inc<br>care products.<br>Process Hexene Copolymer<br>Petrothene®<br>LR734001<br>- LyondellBasell Industries<br>- HDPE<br>- Commercial: Active<br>- Processing - Mold Shrink (English)<br>- Processing - Polyolefin Injection Mol<br>(English)<br>- Technical Datasheet (English)<br>- E62552-100622145<br>- LyondellBasell Industries<br>- Petrothene®<br>- North America<br>- Good ESCR (Stress Crack Resist.)<br>- Good Stiffness<br>- Bottles<br>- Packaging<br>- Rigid Packaging<br>- Extrusion Blow Molding<br>- Petrothene® | Vene resin that exhibits g<br>aude bottles for househol<br>HDPE 0039<br>- Arnoo Pol<br>- HDPE<br>- Commerc<br>ding Guide<br>- Technical<br>- Arnco Pol<br>- North Arn<br>- Copolyme<br>- Food Con<br>- High ESC<br>- High Stiffr<br>- Blow Mole<br>- Sheet<br>- FDA 21 C<br>- Blow Mole<br>- Sheet Ext<br>- Thermofo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ood stiffness an<br>d chemicals, foo<br>555P<br>ymers<br>ial: Active<br>Datasheet<br>Datasheet<br>erica<br>tact Acceptable<br>omonomer<br>R (Stress Crack<br>ness<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                              | d environmental<br>d products, and<br>Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Process Hexene Copolymer Petrothene® R734001   LyondellBasell Industries HDPE Commercial: Active Processing - Mold Shrink (English) Processing - Polyolefin Injection Mol (English) Technical Datasheet (English) E82552-100822145 LyondellBasell Industries Petrothene® North America Good ESCR (Stress Crack Resist.) Good Stiffness Bottles Bottles Bottles Rigid Packaging Rigid Packaging Extrusion Blow Molding Petrothene® LR734001                                                                                                                                                                      | PRIMATOP<br>HDPE 0039<br>- Arnco Pol<br>- HDPE<br>- Commerc<br>ding Guide<br>- Technical<br><br>- Arnco Pol<br>- North Arn<br>- Copolyme<br>- Food Con<br>- Hexene C<br>- High ESC<br>- High Stiffr<br>- Blow Mole<br>- Sheet<br>- FDA 21 C<br>- Blow Mole<br>- Sheet Ext<br>- Sheet Ext<br>- Thermofo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B<br>55P<br>ymers<br>ial: Active<br>Datasheet<br>Datasheet<br>ymers<br>erica<br>erica<br>tact Acceptable<br>comonomer<br>R (Stress Crack<br>ness<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                                               | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Petrothene®<br>LR734001<br>- LyondellBasell Industries<br>- HDPE<br>- Commercial: Active<br>- Processing - Mold Shrink (English)<br>- Processing - Polyolefin Injection Mol<br>(English)<br>- Processing - Polyolefin Injection Mol<br>(English)<br>- Technical Datasheet (English)<br>- E62552-100622145<br>- LyondellBasell Industries<br>- Petrothene®<br>- North America<br>- Good ESCR (Stress Crack Resist.)<br>- Good Stiffness<br>- Bottles<br>- Packaging<br>                                                                                                                                          | PRIMATOPO<br>HDPE 0039<br>- Amco Pol<br>- HDPE<br>- Commerc<br>ding Guide<br>- Technical<br>- Amco Pol<br>- North Am<br>- Copolyme<br>- Food Con<br>- Hexene C<br>- High Stiffr<br>- Blow Mole<br>- Sheet<br>- Sheet Ext<br>- Blow Mole<br>- Sheet Ext<br>- Blow Mole<br>- Sheet Ext<br>- Thermoto<br>- PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>55P<br>ymers<br>ial: Active<br>Datasheet<br>Datasheet<br>ymers<br>erica<br>erica<br>erica<br>triticat Acceptable<br>omonomer<br>R (Stress Crack<br>hess<br>ding Applications<br>FR 177.1520<br>ding<br>rusion<br>rming                                                                                                         | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| LyondellBasell Industries     HDPE     Commercial: Active     Processing - Mold Shrink (English)     Processing - Polyolefin Injection Mol     (English)     Technical Datasheet (English)     E62552-100622145     LyondellBasell Industries     Petrothene®     North America     Good ESCR (Stress Crack Resist.)     Good Stiffness     Bottles     Packaging     Rigid Packaging     Extrusion Blow Molding      Petrothene®     LR734001                                                                                                                                                                  | Arnoo Pol     HDPE     Commerc     Commerc  ding Guide     Technical      Anco Pol     North Am     Copolyme     Food Con     High ESC     High Stiffr     Blow Mole     Sheet     FDA 21 C     Blow Mole     Sheet Ext     Thermofo  PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ymers<br>ial: Active<br>Datasheet<br>ymers<br>erica<br>erica<br>erica<br>tact Acceptable<br>iomonomer<br>R (Stress Crack<br>hess<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                                                               | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| HDPE     Commercial: Active     Processing - Mold Shrink (English)     Processing - Polyolefin Injection Mol     (English)     Technical Datasheet (English)     E62552-100622145     LyondellBasell Industries     Petrothene®     North America     Good ESCR (Stress Crack Resist.)     Good Stiffness     Bottles     Packaging     Rigid Packaging     Extrusion Blow Molding      Petrothene®     LR734001                                                                                                                                                                                                | HDPE     Commerce     Commerce  ding Guide     Technical      Amco Pol     North Am     Copolyme     Food Con     Hexene C     High Stiffr     Blow Mole     Sheet     FDA 21 C     Blow Mole     Sheet Ext     Sheet Ext     Thermofo  PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ial: Active<br>Datasheet<br>ymers<br>erica<br>erica<br>eric<br>tact Acceptable<br>iomonomer<br>R (Stress Crack<br>ness<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                                                                         | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Commercial: Active     Processing - Mold Shrink (English)     Processing - Polyolefin Injection Mol     (English)     Technical Datasheet (English)     E62552-100622145     LyondellBasell Industries     Petrothene®     North America     Good ESCR (Stress Crack Resist.)     Good Stiffness     Bottles     Packaging     Rigid Packaging     Extrusion Blow Molding      Petrothene®                                                                                                                                                                                                                      | Commerce  ding Guide     Technical      -      Amco Pol      North Am      Copolyme      Food Con      High Stiffr      Blow Mole      Sheet      FDA 21 C      Blow Mole      Sheet Ext      Thermofo  PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ial: Active<br>Datasheet<br>ymers<br>erica<br>erica<br>tact Acceptable<br>iomonomer<br>R (Stress Crack<br>hess<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                                                                                 | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Processing - Mold Shrink (English)     Processing - Polyolefin Injection Mol<br>(English)     Technical Datasheet (English)     E62552-100622145     LyondellBasell Industries     Petrothene®     North America     Good ESCR (Stress Crack Resist.)     Good Stiffness     Bottles     Packaging     Rigid Packaging     Extrusion Blow Molding      Petrothene®     LR734001                                                                                                                                                                                                                                 | ding Guide - Technical<br>-<br>- Amco Pol<br>- North Am<br>- Copolyme<br>- Food Con<br>- Hexene C<br>- High Stiffr<br>- Blow Mole<br>- Sheet<br>- FDA 21 C<br>- Blow Mole<br>- Sheet Ext<br>- Blow Mole<br>- Sheet Ext<br>- Blow Mole<br>- Sheet Ext<br>- Sheet Ext | Datasheet<br>ymers<br>erica<br>erica<br>tact Acceptable<br>omonomer<br>R (Stress Crack<br>hess<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                                                                                                 | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| E62552-100822145     LyondellBasell Industries     Petrothene®     North America     Good ESCR (Stress Crack Resist.)     Good Processability     Good Stiffness     Bottles     Packaging     Rigid Packaging     Extrusion Blow Molding     Petrothene®     LR734001                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ymers<br>erica<br>erica<br>tact Acceptable<br>omonomer<br>R (Stress Crack<br>hess<br>ding Applications<br>FR 177.1520<br>ding<br>rming                                                                                                                                                                                              | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| <ul> <li>LyondellBasell Industries</li> <li>Petrothene®</li> <li>North America</li> <li>Good ESCR (Stress Crack Resist.)</li> <li>Good Processability</li> <li>Good Stiffness</li> <li>Bottles</li> <li>Packaging</li> <li>Rigid Packaging</li> <li>Extrusion Blow Molding</li> <li>Petrothene®<br/>LR734001</li> </ul>                                                                                                                                                                                                                                                                                         | Amco Pol     North Am     Copolyme     Food Con     Hexene C     High ESC     High Stiffr     Blow Mole     Sheet     FDA 21 C     Blow Mole     Sheet Ext     Thermofo  PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ymers<br>erica<br>ir<br>taot Acceptable<br>comonomer<br>R (Stress Crack<br>hess<br>ding Applications<br>FR 177.1520<br>ding<br>rusion<br>rming                                                                                                                                                                                      | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| North America     Good ESCR (Stress Crack Resist.)     Good Processability     Good Stiffness     Bottles     Packaging     Extrusion Blow Molding     Petrothene@     LR734001                                                                                                                                                                                                                                                                                                                                                                                                                                 | North Am     Copolyme     Food Con     Hexene C     High ESC     High Stiffr     Blow Mole     Sheet     FDA 21 C     Blow Mole     Sheet Ext     Thermofo     PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erica<br>r<br>tact Acceptable<br>comonomer<br>R (Stress Crack<br>ess<br>ding Applications<br>FR 177.1520<br>ding<br>rusion<br>rming                                                                                                                                                                                                 | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| <ul> <li>Good ESCR (Stress Crack Resist.)</li> <li>Good Processability</li> <li>Good Stiffness</li> <li>Bottles</li> <li>Packaging</li> <li>Rigid Packaging</li> <li>Extrusion Blow Molding</li> </ul> Petrothene@<br>LR734001                                                                                                                                                                                                                                                                                                                                                                                  | Copolyme     Food Com     Hexene C     High ESC     High Stiffr     Blow Mole     Sheet     FDA 21 C     Blow Mole     Sheet Ext     Thermofo  PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er<br>tact Acceptable<br>comonomer<br>R (Stress Crack<br>ness<br>ding Applications<br>FR 177.1520<br>ding<br>rusion<br>rming                                                                                                                                                                                                        | Resist.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| <ul> <li>Bottles</li> <li>Packaging</li> <li>Rigid Packaging</li> <li>Extrusion Blow Molding</li> <li>Petrothene@<br/>LR734001</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Blow Mole     Sheet     FDA 21 C     Blow Mole     Sheet Ext     Thermofo     PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ting Applications<br>FR 177.1520<br>ting<br>rusion<br>rming                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| - Extrusion Blow Molding<br>Petrothene®<br>LR734001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FDA 21 C     Blow Mole     Sheet Ext     Thermofo     PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FR 177.1520<br>ling<br>rusion<br>rming                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <ul> <li>Extrusion Blow Molding</li> <li>Petrothene®<br/>LR734001</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blow Mole     Sheet Ext     Thermoto     PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ling<br>rusion<br>rming                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Petrothene®<br>LR734001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRIMATOP®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1011110                                                                                                                                                                                                                                                                                                                             | - Blow Molaing<br>- Sheet Extrusion<br>- Thermoforming                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HDPE 003955P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit                                                                                                                                                                                                                                                                                                                                | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ter ter                                                                                                                                                                                                                                                                                                                             | ASTM D1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/cm*                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g/cm*                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| (g) 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/10 min                                                                                                                                                                                                                                                                                                                            | ASTM D1238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he                                                                                                                                                                                                                                                                                                                                  | ACTM D1802D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | br                                                                                                                                                                                                                                                                                                                                  | ASTM D1803A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | br                                                                                                                                                                                                                                                                                                                                  | ASTM D1693B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Petrothene®<br>LR734001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRIMATOP®<br>HDPE 003955P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 1994 - 1990 - 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     | ASTM D638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | psi                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 4 15 4 G V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | psi                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     | ASTM D638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| > 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1000 Jack 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                   | ASTM D790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | psi                                                                                                                                                                                                                                                                                                                                 | 2000 A 12 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 176000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | psi                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Al Rights Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Documen                                                                                                                                                                                                                                                                                                                             | Form No. TDS-20304-11936<br>I Created Monday, April 30,                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -         35.0           -         45.0           25.0         -           Petrothene®         PRIMATOP®           LR734001         HDPE 003955P           -         4000           4000         -           4000         -           500         -           -         > 600           -         200000           176000         - | -         35.0         hr           -         45.0         hr           25.0         -         hr           25.0         -         hr           Petrothene@         PRIMATOP@         Unit           -         4000         psi           -         4000         -           4000         -         psi           -         4000         -           500         -         %           -         > 600         %           -         200000         psi           176000         -         psi |  |  |  |  |

Figure A-1. Plastic Panel Material Certificate, Test No. WZNP-2



#### ALLIED TUBE & CONDUIT PRODUCT CERTIFICATION

A PART OF A atkore

| A01                                                                                                                 |               |                          |                                           | A02 TYP                                                                                                                                                          | E OF DOCU                                               | JMENT               |       |                        | A03 D                                            | OC NO.                                                                      |      |                                         |                                                                                                                         |                                                              |                      |                     | A06 CI     | USTOMER     |          |
|---------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|-------|------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|---------------------|------------|-------------|----------|
| ALLIED TUBE & CONDUIT PRODUCT TEST REPORT AS F<br>16100 S. LATHROP AVE A500; TEST METHOD AS PER<br>HARVEY, IL 60426 |               |                          |                                           |                                                                                                                                                                  | ort as pe<br>) as per                                   | R ASTH<br>ASTM A370 |       | ALLIED MTR NO. 0041950 |                                                  |                                                                             |      |                                         |                                                                                                                         |                                                              |                      | M61014<br>ATC/TELES | SPAR       |             |          |
| A07 CUST                                                                                                            | OMER ORDER    | ER PRODUCT DATE PART NO. |                                           |                                                                                                                                                                  |                                                         |                     |       | DIAM                   | ETER                                             |                                                                             |      | GAGE                                    |                                                                                                                         | THICKNE                                                      | SS                   | B06 MARI            | INGS       |             |          |
|                                                                                                                     |               | 10/<br>10/<br>10/<br>10/ | 19/18<br>19/18<br>19/18<br>19/18<br>19/18 | 695983 TEL-SQ PGAL/H 1.750 14 289.750<br>730052 TEL-SQ PGAL/H 1.750 14 216.750<br>914656 TELSQ PG/H 1.750 14 241.7550H0<br>914657 TELSQ PG/H 1.750 14 289.7550H0 |                                                         |                     |       |                        | 750 1.750<br>750 1.750<br>ОНО 1.750<br>ОНО 1.750 |                                                                             |      |                                         | 14         .083           14         .083           14         .083           14         .083           14         .083 |                                                              |                      | COATING WT908       |            |             |          |
| B01 PRODUCT: STEEL TUBING B02 SPECIFICATION:<br>60 MD                                                               |               |                          |                                           | 60 MIN                                                                                                                                                           | /IELD                                                   |                     |       |                        |                                                  |                                                                             |      | 803<br>Made and Manufactured in the USA |                                                                                                                         |                                                              | TUBE MECHANICAL TEST |                     |            |             |          |
| B07                                                                                                                 | B16           | STEEL G                  | ADE:                                      | A1011GR55                                                                                                                                                        |                                                         |                     |       | CHEMI                  | CAL COMP                                         | OSITION :                                                                   | z    |                                         | 1                                                                                                                       |                                                              |                      |                     | C11        | C12         | C13      |
|                                                                                                                     |               | C71                      | C73                                       | C74                                                                                                                                                              | C75                                                     | C72                 | C76   | C82                    | C80                                              | C81                                                                         | C79  | C78                                     | C77                                                                                                                     | C83                                                          |                      | CEV                 | YIELD STR  | TENSILE STR | El in 2" |
| COIL NO.                                                                                                            | HEAT NO.      | с                        | Mn                                        | р                                                                                                                                                                | s                                                       | Si                  | Al    | Cu                     | Ni                                               | Cr                                                                          | Mo   | v                                       | СЬ                                                                                                                      | Ti                                                           | N                    | z                   | KSI        | KSI         | z        |
| 168755 A90050 .22                                                                                                   |               | .85                      | .011                                      | .003                                                                                                                                                             | .030                                                    | .031                | .120  | .040                   | .060                                             | .020                                                                        | .001 | .001                                    | .001                                                                                                                    | .008                                                         | . 387                | 64.7                | 76.5       | 16.6        |          |
|                                                                                                                     |               |                          |                                           |                                                                                                                                                                  |                                                         |                     |       |                        |                                                  |                                                                             |      |                                         |                                                                                                                         |                                                              |                      |                     |            |             |          |
| ZO1 TEF                                                                                                             | RMS AND CONDI | TIONS OF                 | THE SALE                                  |                                                                                                                                                                  |                                                         |                     | Z05 C | ERTIFIC                | ATIONS                                           |                                                                             |      | Z04                                     |                                                                                                                         |                                                              |                      | 202/203             | Giulio Sca | rtozzi      |          |
| WE HEREBY CERTIFY THAT THE ABOVE MENTIONED MATERIAL HAS BEEN<br>DELIVERED IN ACCORDANCE WITH THE TERMS OF THE ORDER |               |                          |                                           | QS-SYST                                                                                                                                                          | QS-SYSTEM:ISD 9001:2008 ALLIED T<br>16100 S.<br>HARVEY, |                     |       |                        |                                                  | LLIED TUBE & CONDUIT MET<br>6100 S. LATHROP AVE<br>ARVEY, IL 60426 USA Sign |      |                                         | Signature                                                                                                               | atio Scartozzi<br>ture: Giulio Goartozzi<br>ALLIEDMTR-REV 00 |                      |                     |            |             |          |

Figure A-2. Square Tubing Material Certificate, Test No. WZNP-2



#### ALLIED TUBE & CONDUIT PRODUCT CERTIFICATION

A PART OF A atkore

| A01                                                                                                                 | A02 TYPE OF DOCUMENT           |                          |                |                          |                       |                                 |                        | A03 D             | DC NO.   |                    |      |          | _               |                        |              | A06 CI    | JSTOMER     |                       |          |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|----------------|--------------------------|-----------------------|---------------------------------|------------------------|-------------------|----------|--------------------|------|----------|-----------------|------------------------|--------------|-----------|-------------|-----------------------|----------|
| ALLIED TUBE & CONDUIT PRODUCT TEST REPORT AS P<br>16100 S. LATHROP AVE A500; TEST METHOD AS PER<br>HARVEY, IL 60426 |                                |                          |                |                          | DRT AS PE<br>D AS PER | ER ASTM<br>ASTM A370 ALLIED MTR |                        |                   |          | ED MTR NO. 0041951 |      |          |                 | M61014<br>ATC/TELESPAR |              |           |             |                       |          |
| A07 CUSTOMER ORDER PRODUCT DATE PART NO.                                                                            |                                |                          |                |                          |                       |                                 | DIAM                   | IETER             |          |                    | GAGE |          | THICKNE         | SS                     | BOG MAR      | INGS      |             |                       |          |
|                                                                                                                     |                                | 10/<br>10/               | 24/18<br>24/18 | 695799<br>914661         | TEL-SQ<br>TELSQ       | PGAL/H 2<br>PG/H 2.00           | .000 14 2<br>0 14 289. | 289.750<br>75SOHO | 2.00     | 0                  |      |          | 14<br>14        |                        | .083<br>.083 |           | COATING N   | VT:.920               |          |
| B01 PRODU                                                                                                           | JCT: STEEL TU                  | BING                     |                | B02 SPE                  | CIFICATIO             | N:<br>MIN 60                    | YIELD                  |                   |          |                    |      |          | B03<br>Made and | l Manufac <sup>+</sup> | tured in t   | the USA   |             |                       |          |
| 807                                                                                                                 | 816                            | STEEL C                  | DADE           | A1011CRE5                |                       |                                 | 1                      | CHEMT             |          |                    | ,    |          | 1               |                        |              |           | TUBE MECHAN | C12                   | C13      |
| 507                                                                                                                 | 510                            | 671                      | C73            | C74                      | C75                   | 672                             | 676                    | CR2               | CRA COMP | CRI                |      | 679      | 677             | C 97                   | 1            | CEV       | VIELD CTD   | TENETIE CTD           | E1 in 21 |
| COTL NO                                                                                                             | HEAT NO                        |                          | 6/3            | C/4                      | C                     | C/2                             | 41                     | Cu                | <u> </u> | Col                | 679  | <u> </u> | Ch              |                        |              |           | VET         | TENSILE STR           | EI 10 2  |
| 169112                                                                                                              | C87907                         | .21                      | .84            | .013                     | . 003                 | .040                            | .031                   | .120              | .040     | .080               | .020 | .001     | .001            | .001                   | .006         | . 380     | 69.9        | 87.9                  | 23.2     |
|                                                                                                                     |                                |                          |                |                          |                       |                                 |                        |                   |          |                    |      |          |                 | -                      |              |           |             |                       |          |
| ZO1 TEF                                                                                                             | RMS AND CONDI                  | TIONS OF                 | THE SALE       |                          |                       |                                 | Z05 C                  | ERTIFICA          | TIONS    |                    |      | Z04      | TUBE & COL      |                        |              | Z02/Z03   | Giulio Sca  | rtozzi                |          |
| WE HEREBY<br>DELIVEREI                                                                                              | Y CERTIFY THA<br>D IN ACCORDAN | T THE ABOV<br>CE WITH TH | E MENTION      | NED MATERI<br>OF THE ORD | AL HAS BE<br>ER       | EN                              | QS-SYST                | EM:ISO 9          | 001:2008 |                    |      | 16100 S  | IL 60426        | AVE<br>USA             |              | Signature | Giulio Soa  | ntozzi<br>DMTR-REV 00 |          |

Figure A-3. Square Tubing Material Certificate, Test No. WZNP-2

60



300 Cadman Plaza West, ste 1303 Brooklyn NY 11201 Phone: 1-800-952-1457

2/13/19

#### **CERTIFICATE OF COMPLIANCE**

Smartsign hereby certifies that all materials supplied against purchase order PO: WZNP-2 / RTS-154299 shipped on 2/7/19 conforms to the material and/ or manufacturing specifications as called on this said purchase order without expectations.

Item # x-R11-2

Description: Road Closed Engineer Grade Reflective Aluminum Sign, 80 mil]

Sincerely,

Tahyna Colon Call Center Manager <u>tahyna@smartsign.com</u> 800-952-1457 x 7140

Figure A-4. Sign Certificate of Conformance, Test No. WZNP-2



## **Certificate of Compliance**

|                                          |                 |                         | - |  |
|------------------------------------------|-----------------|-------------------------|---|--|
| Sold To:                                 | Purchase Order: | WZNP-2                  |   |  |
| UNL TRANSPORTATION/Midwest Roadside Safe | Job:            | Item#c2, d1, d2, d3, d4 |   |  |
|                                          | Invoice Date:   | 02/8/2019               |   |  |
|                                          | Invoice Date:   | 02/8/2019               |   |  |

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

4 PCS 7" 3V D-Cell Polycarbonate Flashing or Steady Barricade Light SUPPLIED UNDER OUR TRACE NUMBER IIne38754 AND UNDER PART NUMBER 1076058

24 PCS 3/8"-16 x 3-1/2" ASTM A307 Grade A Zinc Finish Hex Bolt SUPPLIED UNDER OUR TRACE NUMBER 130075362 AND UNDER PART NUMBER 11117

This is to certify that the above document is true and accurate to the best of my knowledge.

Fastenal Account Representative Signature

**Printed Name** 

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 02/11/2019 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure A-5. Warning Light Certificate of Compliance, Test No. WZNP-2


MANUFACTURER : GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 130075362 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 3/8-16X3-1/2 NC LOT NO : 1B1862839 SHIP QUANTITY: 24, 400 PCS LOT QUANTITY 65, 045 PCS HEADMARKS: CYI & 307A MANUFACTURE DATE : 2018/08/14

COUNTRY OF ORIGIN : CHINA Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE : 2019/02/13 PACKING NO: GEM181024041 INVOICE NO: GEM/FNL-181112SL PART NO: 11117 SAMPLING PLAN : ASME B18. 18-2011 (Category. 2) / ASTM F1470-2012 HEAT NO : 18205931-3 MATERIAL : X1008A FINISH : Fe/Zn 3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

| Chemistry    | AL%    | C%                      | MN%     | P%     | S%     | SI%     |
|--------------|--------|-------------------------|---------|--------|--------|---------|
| Spec. : MIN. |        | 1992 De 1918 991 438 19 |         |        |        |         |
| MAX.         |        | 0.3300                  | 1.2500  | 0.0410 |        |         |
| Test Value   | 0.0300 | 0.0600                  | 0. 2900 | 0.0090 | 0.0100 | 0. 0200 |

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 1-2012

|                         |        | SAMPLEL                       | JET: HQIN          |      |      |
|-------------------------|--------|-------------------------------|--------------------|------|------|
| INSPECTIONS ITEM        | SAMPLE | SPECIFIED                     | ACTUAL RESULT      | ACC. | REJ. |
| THREAD LENGTH           | 15 PCS | 1.0000 inch                   | 1.1200-1.1250 inch | 15   | 0    |
| MAJOR DIAMETER          | 15 PCS | 0.3640-0.3740 inch            | 0.3650-0.3720 inch | 15   | 0    |
| BODY DIAMETER           | 5 PCS  | 0.3600-0.3880 inch            | 0.3690-0.3730 inch | 5    | 0    |
| WIDTH ACROSS CORNERS    | 5 PCS  | 0.6200-0.6500 inch            | 0.6240-0.6490 inch | 5    | 0    |
| HEIGHT                  | 5 PCS  | 0.2260-0.2680 inch            | 0.2380-0.2430 inch | 5    | 0    |
| NOMINAL LENGTH          | 15 PCS | 3.4400-3.5400 inch            | 3.4630-3.4750 inch | 15   | 0    |
| WIDTH ACROSS FLATS      | 5 PCS  | 0.5440-0.5620 inch            | 0.5460-0.5550 inch | 5    | 0    |
| SURFACE DISCONTINUITIES | 29 PCS | ASTM F788-2013                | PASSED             | 29   | 0    |
| THREAD                  | 15 PCS | ASME B1. 1-2003 3A GO 2A NOGO | PASSED             | 15   | 0    |

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

|                          |        |                |     | SAMPLE                                         | DBY: GDAN LIAN |      |      |
|--------------------------|--------|----------------|-----|------------------------------------------------|----------------|------|------|
| INSPECTIONS ITEM         | SAMPLE | TEST METHOD    | REF | SPECIFIED                                      | ACTUAL RESULT  | ACC. | REJ. |
| CORE HARDNESS            | 15 PCS | ASTM F606-2016 |     | Max. 100 HRB                                   | 82-84 HRB      | 15   | 0    |
| TENSILE STRENGTH         | 4 PCS  | ASTM F606-2016 |     | Min. 60 KSI                                    | 77-78 KSI      | 4    | 0    |
| PLATING THICKNESS ( µ m) | 29 PCS | ASTM B568-1998 |     | >=3                                            | 3. 63–3. 89    | 29   | 0    |
| SALT SPRAY TEST          | 15 PCS | ASTM B117-16   |     | 6 HOURS NO WHITE RUST,<br>12 HOURS NO RED RUST | ОК             | 15   | 0    |

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER. WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Figure A-6. Hex Bolt Material Certificate, Test No. WZNP-2



MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210170612 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 1/2-13X6 NC LOT NO : 1B1891613 SHIP QUANTITY : 4, 320 PCS LOT QUANTITY : 17, 397 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2018/11/07

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2019/01/31 PACKING NO: GEM181114014 INVOICE NO: GEM/FNL-181128ED PART NO: 11225 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: G1808306001 MATERIAL: ML08 FINISH: Fe/Zn 3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

| Chemistry    | AL%    | C%     | MN%    | P%     | S%     | SI%    |
|--------------|--------|--------|--------|--------|--------|--------|
| Spec. : MIN. |        |        |        |        |        |        |
| MAX.         |        | 0.3300 | 1.2500 | 0.0410 |        |        |
| Test Value   | 0.0330 | 0.0800 | 0.3900 | 0.0210 | 0.0040 | 0.0400 |

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 1-2012

|                         |        | SAMPLED                      | BY: HQIN           |      |      |
|-------------------------|--------|------------------------------|--------------------|------|------|
| INSPECTIONS ITEM        | SAMPLE | SPECIFIED                    | ACTUAL RESULT      | ACC. | REJ. |
| THREAD LENGTH           | 15 PCS | 1.2500 inch                  | 1.3570-1.3590 inch | 15   | 0    |
| MAJOR DIAMETER          | 15 PCS | 0.4880-0.4980 inch           | 0.4910-0.4930 inch | 15   | 0    |
| BODY DIAMETER           | 4 PCS  | 0.4820-0.5150 inch           | 0.5040-0.5070 inch | 4    | 0    |
| WIDTH ACROSS CORNERS    | 4 PCS  | 0.8260-0.8660 inch           | 0.8350-0.8400 inch | 4    | 0    |
| HEIGHT                  | 4 PCS  | 0.3020-0.3640 inch           | 0.3360-0.3390 inch | 4    | 0    |
| NOMINAL LENGTH          | 15 PCS | 5.9000-6.0000 inch           | 5.9160-5.9630 inch | 15   | 0    |
| WIDTH ACROSS FLATS      | 4 PCS  | 0.7250-0.7500 inch           | 0.7390-0.7450 inch | 4    | 0    |
| SURFACE DISCONTINUITIES | 29 PCS | ASTM F788-2013               | PASSED             | 29   | 0    |
| THREAD                  | 15 PCS | ASME B1.1-2003 3A GO 2A NOGO | PASSED             | 15   | 0    |

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

|                        |        |                |     | SAMPLE                                         | DBY: ZLINGLING |      |      |  |  |  |  |
|------------------------|--------|----------------|-----|------------------------------------------------|----------------|------|------|--|--|--|--|
| INSPECTIONS ITEM       | SAMPLE | TEST METHOD    | REF | SPECIFIED                                      | ACTUAL RESULT  | ACC. | REJ. |  |  |  |  |
| CORE HARDNESS          | 15 PCS | ASTM F606-2016 |     | Max. 100 HRB                                   | 82–86 HRB      | 15   | 0    |  |  |  |  |
| TENSILE STRENGTH       | 4 PCS  | ASTM F606-2016 |     | Min. 60 KSI                                    | 76-81 KSI      | 4    | 0    |  |  |  |  |
| PLATING THICKNESS( µm) | 4 PCS  | ASTM B568-1998 |     | >=3                                            | 3. 22-3. 36    | 4    | 0    |  |  |  |  |
| SALT SPRAY TEST        | 15 PCS | ASTM B117-16   |     | 6 HOURS NO WHITE RUST,<br>12 HOURS NO RED RUST | ОК             | 15   | 0    |  |  |  |  |

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

page 1 of 2

Figure A-7. Hex Bolt Material Certificate, Test No. WZNP-2



MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 180154274 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 1/4-20X1-3/4 NC LOT NO : 1B1840908 SHIP QUANTITY : 115, 200 PCS LOT QUANTITY 173, 017 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2018/07/03

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE : 2019/01/31 PACKING NO : GEM180718006 INVOICE NO : GEM/FNL-180806DE PART NO : 11010 SAMPLING PLAN : ASWE B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO : 18300616-3 MATERIAL : X1008A FINISH : Fe/Zn 3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

| Chemistry    | AL%    | C%                      | MN%     | P%     | S%     | SI%     |
|--------------|--------|-------------------------|---------|--------|--------|---------|
| Spec. : MIN. |        | 1992 De 1918 991 438 19 |         |        |        |         |
| MAX.         |        | 0.3300                  | 1.2500  | 0.0410 |        |         |
| Test Value   | 0.0500 | 0.0700                  | 0. 2900 | 0.0140 | 0.0090 | 0. 0300 |

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 1-2012

|                         |        | SAMPLED                       | BY: WDANDAN        |      |     |
|-------------------------|--------|-------------------------------|--------------------|------|-----|
| INSPECTIONS ITEM        | SAMPLE | SPECIFIED                     | ACTUAL RESULT      | ACC. | REJ |
| THREAD LENGTH           | 15 PCS | 0.7500 inch                   | 0.8260-0.8420 inch | 15   | 0   |
| MAJOR DIAMETER          | 15 PCS | 0.2410-0.2490 inch            | 0.2460-0.2480 inch | 15   | 0   |
| BODY DIAMETER           | 6 PCS  | 0.2370-0.2600 inch            | 0.2450-0.2480 inch | 6    | 0   |
| WIDTH ACROSS CORNERS    | 6 PCS  | 0.4840-0.5050 inch            | 0.4910-0.4930 inch | 6    | 0   |
| HEIGHT                  | 6 PCS  | 0.1500-0.1880 inch            | 0.1570-0.1600 inch | 6    | 0   |
| NOMINAL LENGTH          | 15 PCS | 1.7100-1.7700 inch            | 1.7330-1.7400 inch | 15   | 0   |
| WIDTH ACROSS FLATS      | 6 PCS  | 0.4250-0.4380 inch            | 0.4320-0.4340 inch | 6    | 0   |
| SURFACE DISCONTINUITIES | 29 PCS | ASTM F788-2013                | PASSED             | 29   | 0   |
| THREAD                  | 15 PCS | ASME B1. 1-2003 3A GO 2A NOGO | PASSED             | 15   | 0   |

#### MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

|                          |        | ,              |     | SAMPLE                                         | DBY: ZLINGLING |      |      |  |  |  |
|--------------------------|--------|----------------|-----|------------------------------------------------|----------------|------|------|--|--|--|
| INSPECTIONS ITEM         | SAMPLE | TEST METHOD    | REF | SPECIFIED                                      | ACTUAL RESULT  | ACC. | REJ. |  |  |  |
| CORE HARDNESS            | 15 PCS | ASTM F606-2016 |     | Max. 100 HRB                                   | 76–78 HRB      | 15   | 0    |  |  |  |
| TENSILE STRENGTH         | 5 PCS  | ASTM F606-2016 |     | Min. 60 KSI                                    | 67-70 KSI      | 5    | 0    |  |  |  |
| PLATING THICKNESS ( µ m) | 4 PCS  | ASTM B568-1998 |     | >=3                                            | 3. 21-3. 44    | 4    | 0    |  |  |  |
| SALT SPRAY TEST          | 15 PCS | ASTM B117-16   | 1   | 6 HOURS NO WHITE RUST,<br>12 HOURS NO RED RUST | ОК             | 15   | 0    |  |  |  |

-----

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

page 1 of 2

Figure A-8. Hex Bolt Material Certificate, Test No. WZNP-2

## CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS ZP

| FACTORY: IFI & Morg                                                                     | an Ltd                                                                              | II. '                                                          | REPORT DATE:                                                        | 12/2/2019                     |                 |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|-----------------|
| ADDRESS: Chang an N                                                                     | iorth Road, wuyuan Town                                                             | , Haiyan,Znejiang                                              | MFG LOT NUMBER:                                                     | 1831501                       |                 |
| SAMPLING PLAN PER AS                                                                    | SME B18.18-11                                                                       | 1 (10000.00                                                    | PO NUMBER:                                                          | 210163871                     |                 |
| HEADMARKS: NO MARK                                                                      | QNTY(Lot size):                                                                     | 144000PCS                                                      | PART NO:                                                            | 133008                        | 1               |
| DIMENSIONAL INSPECTI                                                                    | IONS                                                                                | SPECIFICA                                                      | TION: ASTM B18.21.1-                                                | 2011                          |                 |
| CHARACTERISTICS                                                                         | SPECIFIED<br>************                                                           | ****                                                           | ACTUAL RESULT                                                       | ACC.<br>*******               | REJ.<br>******* |
| APPEARANCE                                                                              | ASTM F844                                                                           |                                                                | PASSED                                                              | 100                           | 0               |
| OUTSIDE DIA                                                                             | 0.993-1.030                                                                         |                                                                | 0.996-1.004                                                         | 10                            | 0               |
| INSIDE DIA                                                                              | 0.433-0.453                                                                         |                                                                | 0.443-0.450                                                         | 10                            | 0               |
| THICKNESS                                                                               | 0.064-0.104                                                                         |                                                                | 0.064-0.079                                                         | 10                            | 0               |
| CHARACTERISTICS                                                                         | TEST METHOD<br>************************************                                 | SPECIFIED                                                      | ACTUAL RESULT                                                       | ACC.<br>*******               | REJ.<br>******* |
| ZINC PLATED                                                                             | ASTM F1941                                                                          | Min 3 um                                                       | 3-4um                                                               | 8                             | 0               |
| ALL TESTS IN ACCO<br>ASTM SPECIFICATION<br>INFORMATION PROVI<br>ISO 9001:2015 SGS Certi | RDANCE WITH THE M<br>N. WE CERTIFY THA'<br>DED BY THE MATERI/<br>ficate # HK04/0105 | ethods prescr<br>F THIS DAIA IS<br>AL SUPPLIER<br>检验<br>QUANLI | ATRUE REPRES<br>A TRUE REPRES<br>ORGAN TESTING<br>专用章<br>TY CONTROL | ICABLE<br>ENTATION<br>LABORAT | N OF<br>ORY.    |

Figure A-9. Flat Washer Material Certificate, Test No. WZNP-2

## CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS ZP

| FACTORY: IFI & Mon                                                                     | rgan Ltd<br>North Road, Wuwung                                               | Town Haiyan Zhaijar                                                                                     | REPORT DATE:                                                                                             | 2018-05-09                 |                |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|----------------|
| ADDRESS. Chang an                                                                      | North Road, wuyuan                                                           | 10wii, Maryan,Zhejiai                                                                                   | MANUFACTURE DAT                                                                                          | ГЕ:                        |                |
| CUSTOMER:                                                                              |                                                                              |                                                                                                         | MFG LOT NUMBER:                                                                                          |                            |                |
| SAMPLING PLAN PER A                                                                    | SME B18.18-11                                                                | A (A 50 D 30                                                                                            | PO NUMBER:                                                                                               | 480006818                  |                |
| SIZE: USS 1/2 ZP<br>HEADMARKS: NO MAR                                                  | QNTY(Lot s<br>K                                                              | ize): 26250PCS                                                                                          | PART NO:                                                                                                 | 1133012                    |                |
| DIMENSIONAL INSPEC                                                                     | TIONS                                                                        | SPECIFICA                                                                                               | TION: ASTM B18 21 1-                                                                                     | 2011                       |                |
| CHARACTERISTICS                                                                        | SPECII<br>***********                                                        | TED<br>******                                                                                           | ACTUAL RESULT<br>****************                                                                        | ACC.                       | REJ.<br>****** |
| APPEARANCE                                                                             | ASTM F8                                                                      | 344                                                                                                     | PASSED                                                                                                   | 100                        | 0              |
| OUTSIDE DIA                                                                            | 1.368-1.405                                                                  |                                                                                                         | 1.370-1.378                                                                                              | 10                         | 0              |
| INSIDE DIA                                                                             | 0.557-0.577                                                                  |                                                                                                         | 0.567-0.575                                                                                              | 10                         | 0              |
| THICKNESS                                                                              | 0.086-0.132                                                                  |                                                                                                         | 0.086-0.102                                                                                              | 10                         | 0              |
| CHARACTERISTICS<br>******                                                              | TEST METHOD<br>******                                                        | SPECIFIED<br>******                                                                                     | ACTUAL RESULT *********                                                                                  | ACC.<br>******             | REJ.<br>****** |
| ZINC PLATED                                                                            | ASTM F1941                                                                   | Min 3 um                                                                                                | 3-4um                                                                                                    | 8                          | 0              |
| ALL TESTS IN ACCO<br>ASTM SPECIFICATION<br>INFORMATION PROVID<br>MFG ISO9002 CERTIFIC. | DRDANCE WITH TH<br>I. WE CERTIFY TH<br>DED BY THE MATER<br>ATE NO. HK04/0105 | E METHODS PRESCH<br>AT THIS DALA FOR<br>IAL SUPPLIER AND (<br>检验专<br>(SIGNATOLE OF Q.A<br>(NAME OF MANU | RIBED IN THE APPL<br>ROP REPRESENTAT<br>DUR TESEING LABOR<br>用章<br>CONTROL<br>. LAB (KIR. )<br>FACTURER) | ICABLE<br>ION OF<br>ATORY. |                |

Figure A-10. Flat Washer Material Certificate, Test No. WZNP-2

## **TEST REPORT**

### USS FLAT WASHER, ZP

| CUSTOMER:                                                                                                                |                                                                   |                                                    | DATE: 2018-11-12                                                                                             | 1                                     |        |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|
| PO NUMBER: 110243322                                                                                                     |                                                                   | MFG LOT                                            | NUMBER: M-SWE041                                                                                             | 2056-1                                |        |
| SIZE: 1/4                                                                                                                |                                                                   | F                                                  | PART NO: <b>1133004</b>                                                                                      |                                       |        |
| HEADMARKS:                                                                                                               |                                                                   |                                                    | QNTY:                                                                                                        | 540,000                               | PCS    |
|                                                                                                                          |                                                                   |                                                    |                                                                                                              |                                       |        |
| DIMENSIONAL INSPECTION                                                                                                   | S                                                                 | SPECIFI                                            | ICATION: ASME B18                                                                                            | .21.1(2009                            | )      |
| CHARACTERISTICS                                                                                                          | SPE                                                               | CIFIED                                             | ACTUAL RESULT                                                                                                | ACC.                                  | REJ.   |
| *****                                                                                                                    | ********                                                          | *****                                              | ******                                                                                                       | ******                                | ****** |
| APPEARANCE                                                                                                               | AS                                                                | TM F788-07                                         | PASSED                                                                                                       | 100                                   | 0      |
| OUTSIDE DIA                                                                                                              | 0.                                                                | 727-0.749                                          | 0.730-0.732                                                                                                  | 8                                     | 0      |
| INSIDE DIA                                                                                                               | 0.                                                                | 307-0.327                                          | 0.321-0.323                                                                                                  | 8                                     | 0      |
| THICKNESS                                                                                                                | 0.                                                                | .051-0.080                                         | 0.053-0.056                                                                                                  | 8                                     | 0      |
|                                                                                                                          |                                                                   |                                                    |                                                                                                              |                                       |        |
|                                                                                                                          | ASTM<br>1941/F1941M                                               | Min 2 um                                           | 36-41 um                                                                                                     | 8                                     | •      |
| ZINGTERTED                                                                                                               | FE/ZN 3AN                                                         |                                                    | 5.5-4.1 µ III                                                                                                | Ŭ                                     | U      |
| Salt Spray test result                                                                                                   | ASTM B117                                                         | Min 6 hrs No White Rust                            | Pass                                                                                                         | 8                                     | 0      |
| ALL TESTS IN ACCORDANCE W<br>WE CERTIFY THAT THIS DAIA I<br>SUPPLIER AND OUR TESTING I<br>MFG ISO 9001:2015 SGS Certific | /ITH THE METHO<br>S A TRUE REPR<br>_ABORATORY.<br>ate # HK04/0105 | DDS PRESCRIBED IN THE APPRESENTATION OF INFORMATIO | DICABLE ASTM SPECIF<br>DN PROVIDED BY THE<br>他整专用章<br>QUALITY CONTROL<br>JRE OF Q.A. LAB M<br>OF MANUFACTURE | FICATION.<br>MATERIAL<br>GR. )<br>:R) | -      |

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure A-11. Flat Washer Test Report, Test No. WZNP-2



MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210115915 COMMODITY : NYLON INSERT NUT GR-A SIZE : 3/8-16 NC LOT NO : IN1680060 SHIP QUANTITY : 150,000 PCS LOT QUANTITY : 150,000 PCS LOT QUANTITY : 378,534 PCS HEADMARKS : GENIUS SYMBOL MANUFACTURE DATE : 2016/09/06 COUNTRY OF ORIGIN : CHINA Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/05/09 PACKING NO: GEM/61201020 INVOICE NO: GEM/FNL-161213ED PART NO: 1137024 SAMPLING PLAN: ASME B18.18-2011(Category.2)/ASTM F1470-2012 HEAT NO: 321605150 MATERIAL: ML08 FINISH: FeZn3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO IFI 100/107 GR-A

| Chemistry    | AL%    | С%     | MN%    | P%     | S%     | SI%    |
|--------------|--------|--------|--------|--------|--------|--------|
| Spec. : MIN. |        |        |        |        |        |        |
| MAX.         |        | 0.5800 |        | 0.1300 | 0.2300 |        |
| Test Value   | 0.0380 | 0.0800 | 0.4300 | 0.0130 | 0.0040 | 0.0600 |

DIMENSIONAL INSPECTIONS ACCORDING TO ASIME B18.16.6-2014

|                       |          | UCIMIT LEL         | DI TYÓNG               |
|-----------------------|----------|--------------------|------------------------|
| INSPECTIONS ITEM      | SAMPLE   | SPECIFIED          | ACTUAL RESULT ACC. REJ |
| WIDTH ACROSS CORNERS  | 6PCS     | Min. 0.6220 inch   | 0.6250-0.6290 inch 6 0 |
| THICKNESS             | 6 PCS    | 0.4380-0.4680 inch | 0.4410-0.4640 inch 6 0 |
| WIDTH ACROSS FLATS    | 6PCS     | 0.5510-0.5640 inch | 0.5540-0.5610 inch 6 0 |
| SURFACE DISCONTINUITE | S 29 PCS | ASTM F812-2012     | PASSED 29 0            |
| THREAD                | 15PCS    | GAGING SYSTEM 21   | PASSED 15 0            |

MECHANICAL PROPERTIES : ACCORDING TO IFI 100/107 GR-A

#### SAMPLED BY : GDAN LIAN

PAMPIED BY . I VOINTO

|                        |                       |                                              | ODIN' DUN      |           |
|------------------------|-----------------------|----------------------------------------------|----------------|-----------|
| INSPECTIONS ITEM       | SAMPLE TEST METHOD    | REF SPECIFIED                                | A CTUAL RESULT | ACC. REJ. |
| CORE HARDNESS          | 15PCS ASTMF606-2014   | Max 104 HRB                                  | 86-87 HRB      | 15 (      |
| PROOF LOAD             | 5PCS ASTMF606-2014    | Min. 7,000 LBF                               | OK             | 5 0       |
| PLATING THICKNESS( µm) | 29 PCS ASTM B568-1998 | >=3                                          | 3.21-5         | 29; 0     |
| SALT SPRAY TEST        | 15 PCS ASTM B117-16   | 6 HOURS NO WHITE RUS<br>12 HOURS NO RED RUST | r, ok          | 15 0      |

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER: 3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor.

Grin

page 1 of 1

Figure A-12. Material Certification 3/8-16 UNC Lock Nut, Test No. WZNP-2



MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR

ROAD, E. D. Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210151171 COMMODITY : NYLON INSERT NUT GR-A SIZE : 1/4-20 NC LOT NO : 1N1820357 SHIP QUANTITY : 120, 000 PCS LOT QUANTITY 481, 402 PCS HEADMARKS : GENIUS SYMBOL MANUFACTURE DATE : 2018/05/10

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2019/01/31 PACKING NO: GEM180628004 INVOICE NO: GEM/FNL-180713ED-1 PART NO: 1137018 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: G1711322002 MATERIAL: ML08 FINISH: Fe/Zn 3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015 Chemistry AL% C% MN% P% S% SI% Spec. : MIN. MAX. 0.5800 0.1300 0.2300 **Test Value** 0.0510 0.0700 0.3900 0.0110 0.0060 0.0200

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 16. 6-2014

SAMPLED BY : WANGYAN ACTUAL RESULT INSPECTIONS ITEM SAMPLE SPECIFIED ACC. REJ. WIDTH ACROSS CORNERS 6 PCS Min. 0.4860 inch 0.4950-0.4960 inch 6 0 0.2980-0.3270 inch THICKNESS 6 PCS 0.3090-0.3110 inch 6 0 0.4300-0.4370 inch 0.4330-0.4350 inch WIDTH ACROSS FLATS 6 PCS 6 0 ASTM F812-2012 SURFACE DISCONTINUITIES **29 PCS** PASSED 29 0 THREAD 15 PCS GAGING SYSTEM 21 PASSED 15 0

MECHANICAL PROPERTIES : ACCORDING TO IFI 100/107 GR-A-2002

|                        |        |                |     | SAMPLE                                         | DBY: PAN LU      |      |      |
|------------------------|--------|----------------|-----|------------------------------------------------|------------------|------|------|
| INSPECTIONS ITEM       | SAMPLE | TEST METHOD    | REF | SPECIFIED                                      | ACTUAL RESULT    | ACC. | REJ. |
| PROOF LOAD             | 7 PCS  | ASTM F606-2014 |     | Min. 2,900 LBF                                 | OK               | 7    | 0    |
| FIRST INSTALL          | 7 PCS  |                |     | Max. 40 LB.IN                                  | 12.3-13.9 LB.IN  | 7    | 0    |
| FIRST REMOVAL          | 7 PCS  |                |     | Min. 5 LB.IN                                   | 10.2-11.99 LB.IN | 7    | 0    |
| THIRD REMOVAL          | 7 PCS  |                |     | Min. 1.5 LB.IN                                 | 6.3-7.8 LB.IN    | 7    | 0    |
| CORE HARDNESS          | 15 PCS | ASTM F606-2014 |     | Max. 104 HRB                                   |                  | 15   | 0    |
| PLATING THICKNESS( µm) | 29 PCS | ASTM B568-1998 |     | >=3                                            | 3. 06-3. 6       | 29   | 0    |
| SALT SPRAY TEST        | 15 PCS | ASTM B117-16   |     | 6 HOURS NO WHITE RUST,<br>12 HOURS NO RED RUST | OK               | 15   | 0    |

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

nn

page 1 of 1

Figure A-13. Material Certification <sup>1</sup>/<sub>4</sub>-20 UNC Lock Nut, Test No. WZNP-2

# Appendix B. Vehicle Center of Gravity Determination

| Year:           Vehicle CG De           Vehicle Equipme           +           U           +           H           +           Bit           +           Pit           +           Bit           +           C           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - | 2011<br>etermination<br>ent<br>Juballasted<br>Jub<br>Brake activa<br>Preumatic ta<br>Brobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Gelate inc<br>Battery<br>Dil<br>Coolant<br>Vasher fluic<br>Vasher fluic<br>Vater Ballas<br>Duboard Su | Make:                                                                                                                                   | Dodge<br>frame        | Model:           Weight<br>(lb)           5105           19           8           31           5           6           42           -10           -104           -166           -11           -6           110           14 | Vertical CG<br>(in.)<br>28.378869<br>15.25<br>31 1/8<br>29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8 | Ram 1500<br>Vertical M<br>(lb-in.)<br>144874.13<br>289.75<br>249<br>914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25 |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Vehicle CG De<br>Vehicle Equipme<br>+ U<br>+ H<br>+ Bi<br>+ Pi<br>+ Si<br>+ Si<br>+ Si<br>- Si<br>- O<br>- In<br>- Fi<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eterminatio<br>ent<br>Inballasted<br>Iub<br>Brake activa<br>Preumatic ta<br>Probe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Gelate inc<br>Battery<br>Dil<br>Noter Fallas<br>Daboard Su                                                     | Truck (Curb)<br>tion cylinder &<br>ank (Nitrogen)<br>e Battery<br>ver/Wires<br>cluding DAQ                                              | frame<br>frame        | Weight<br>(lb)<br>5105<br>19<br>8<br>31<br>5<br>6<br>42<br>-42<br>-42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                      | Vertical CG<br>(in.)<br>28.378869<br>15.25<br>31 1/8<br>29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8 | Vertical M<br>(lb-in.)<br>144874.13<br>289.75<br>249<br>914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25             |            |
| Vehicle Equipme           +         U           +         H           +         B           +         P           +         Si           +         Bi           +         C           -         Bi           -         Bi           -         C           -         In           -         C           -         Note:           +         O                                                                                                                                                                                                                                                                                                                                          | ent<br>Inballasted<br>Jub<br>Brake activa<br>Pneumatic ta<br>Strobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Dnboard Su                                                                        | Truck (Curb)<br>tion cylinder &<br>ank (Nitrogen)<br>e Battery<br>ver/Wires<br>cluding DAQ                                              | frame<br>frame        | Weight<br>(lb)<br>5105<br>19<br>8<br>31<br>5<br>6<br>42<br>-42<br>-42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                      | Vertical CG<br>(in.)<br>28.378869<br>15.25<br>31 1/8<br>29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8 | Vertical M<br>(lb-in.)<br>144874.13<br>289.75<br>249<br>914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25             |            |
| + U<br>+ H<br>+ B<br>+ P<br>+ Si<br>+ Si<br>+ Si<br>+ C<br>- Bi<br>- O<br>- In<br>- Fu<br>- C<br>- V<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jnballasted<br>Jub<br>Brake activa<br>Preumatic ta<br>Strobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Fuel<br>Coolant<br>Vasher fluic<br>Vasher fluic<br>Vater Ballas<br>Dnboard Su                                                       | Truck (Curb)<br>ition cylinder &<br>ank (Nitrogen)<br>e Battery<br>iver/Wires<br>cluding DAQ<br>d<br>st (In Fuel Tank<br>pplemental Bat | frame<br>()<br>tery   | 5105<br>19<br>8<br>31<br>5<br>6<br>42<br>-42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                               | 28.378869<br>15.25<br>31 1/8<br>29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                         | 144874.13<br>289.75<br>249<br>914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                       |            |
| + H<br>+ B<br>+ P<br>+ S<br>+ B<br>+ C<br>- B<br>- O<br>- In<br>- Fu<br>- C<br>- V<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lub<br>Brake activa<br>Preumatic ta<br>Strobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Guel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Dnboard Su                                                                                      | tion cylinder &<br>ank (Nitrogen)<br>e Battery<br>iver/Wires<br>cluding DAQ<br>d<br>st (In Fuel Tank<br>pplemental Bat                  | frame<br>(x)<br>tery  | 19         19         8         31         5         6         42         -42         -10         -104         -166         -11         -6         110         14                                                           | 15.25<br>31 1/8<br>29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                      | 289.75<br>249<br>914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                    |            |
| + B<br>+ P<br>+ Si<br>+ B<br>+ C<br>- Bi<br>- O<br>- In<br>- Fi<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Brake activa<br>Preumatic ta<br>Strobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Suel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Dinboard Su                                                                                            | tion cylinder &<br>ank (Nitrogen)<br>e Battery<br>ver/Wires<br>cluding DAQ<br>d<br>st (In Fuel Tank<br>pplemental Bat                   | frame<br>()<br>tery   | 8<br>31<br>5<br>6<br>42<br>-42<br>-10<br>-104<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                     | 31 1/8<br>29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                               | 249<br>914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                              |            |
| + P<br>+ Si<br>+ B<br>+ C<br>- Bi<br>- O<br>- In<br>- Fi<br>- C<br>- V<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pneumatic ta<br>Strobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Uel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                              | ank (Nitrogen)<br>e Battery<br>ver/Wires<br>cluding DAQ<br>st (In Fuel Tank<br>pplemental Bat                                           | k)<br>tery            | 31<br>5<br>6<br>42<br>-42<br>-10<br>-104<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                          | 29 1/2<br>27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                         | 914.5<br>136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                                     |            |
| + Si<br>+ B<br>- Bi<br>- O<br>- In<br>- In<br>- Fr<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strobe/Brake<br>Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Fuel<br>Coolant<br>Vasher fluic<br>Vasher fluic<br>Vater Ballas<br>Dnboard Su                                                                                                             | e Battery<br>iver/Wires<br>cluding DAQ<br>st (In Fuel Tank<br>pplemental Bat                                                            | k)<br>tery            | 5<br>6<br>42<br>-42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                                        | 27 1/4<br>52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                   | 136.25<br>313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                                              |            |
| + B<br>+ C<br>- B;<br>- O<br>- In<br>- Fr<br>- C<br>- V<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Brake Recei<br>CG Plate inc<br>Battery<br>Dil<br>Interior<br>Guel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Dinboard Su                                                                                                                                            | ver/Wires<br>cluding DAQ<br>d<br>st (In Fuel Tank<br>pplemental Bat                                                                     | k)<br>tery            | 6<br>42<br>-42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                                             | 52 1/4<br>30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                             | 313.5<br>1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                                                        |            |
| + C<br>- Bi<br>- O<br>- In<br>- Fr<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CG Plate ind<br>Battery<br>Dil<br>Interior<br>Guel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                                                                            | cluding DAQ<br>I<br>st (In Fuel Tank<br>pplemental Bat                                                                                  | k)<br>tery            | 42<br>-42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                                                  | 30 7/8<br>38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                                       | 1296.75<br>-1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                                                                 |            |
| - B<br>- O<br>- In<br>- Fu<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Battery<br>Dil<br>Fuel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                                                                                                        | l<br>st (In Fuel Tank<br>pplemental Bat                                                                                                 | k)<br>tery            | -42<br>-10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                                                        | 38 1/4<br>8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                                                 | -1606.5<br>-85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966.25                                                                                                            |            |
| - O<br>- In<br>- Fr<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dil<br>Interior<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                                                                                                               | l<br>st (In Fuel Tank<br>pplemental Bat                                                                                                 | k)<br>tery            | -10<br>-104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                                                               | 8 1/2<br>33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                                                           | -85<br>-3523<br>-3071<br>-401.5<br>-222.75<br>1966 25                                                                                                                       |            |
| - In<br>- Fi<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nterior<br>Goolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                                                                                                                       | l<br>st (In Fuel Tank<br>pplemental Bat                                                                                                 | ()<br>tery            | -104<br>-166<br>-11<br>-6<br>110<br>14                                                                                                                                                                                      | 33 7/8<br>18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                                                                    | -3523<br>-3071<br>-401.5<br>-222.75<br>1966 25                                                                                                                              |            |
| - Fi<br>- C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uel<br>Coolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                                                                                                                           | t<br>st (In Fuel Tank<br>pplemental Bat                                                                                                 | ()<br>tery            | -166<br>-11<br>-6<br>110<br>14                                                                                                                                                                                              | 18 1/2<br>36 1/2<br>37 1/8<br>17 7/8                                                                                                                              | -3071<br>-401.5<br>-222.75<br>1966 25                                                                                                                                       |            |
| - C<br>- W<br>+ W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coolant<br>Vasher fluic<br>Vater Ballas<br>Onboard Su                                                                                                                                                                                                                  | l<br>st (In Fuel Tank<br>pplemental Bat                                                                                                 | ()<br>tery            | -11<br>-6<br>110<br>14                                                                                                                                                                                                      | 36 1/2<br>37 1/8<br>17 7/8                                                                                                                                        | -401.5<br>-222.75<br>1966 25                                                                                                                                                |            |
| - W<br>+ N<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vasher fluic<br>Vater Ballas<br>Onboard Su<br>equipment to v                                                                                                                                                                                                           | l<br>st (In Fuel Tank<br>pplemental Bat                                                                                                 | <sup>()</sup><br>tery | -6<br>110<br>14                                                                                                                                                                                                             | 37 1/8<br>17 7/8                                                                                                                                                  | -222.75<br>1966.25                                                                                                                                                          |            |
| + W<br>+ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vater Ballas<br>Onboard Su<br>equipment to v                                                                                                                                                                                                                           | st (In Fuel Tanl<br>pplemental Bat                                                                                                      | ()<br>tery            | 110<br>14                                                                                                                                                                                                                   | 17 7/8                                                                                                                                                            | 1966 25                                                                                                                                                                     |            |
| + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Onboard Su                                                                                                                                                                                                                                                             | pplemental Bat                                                                                                                          | tery                  | 14                                                                                                                                                                                                                          |                                                                                                                                                                   | 1000.20                                                                                                                                                                     |            |
| Note: (+) is added ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equipment to v                                                                                                                                                                                                                                                         |                                                                                                                                         |                       |                                                                                                                                                                                                                             | 24 1/2                                                                                                                                                            | 343                                                                                                                                                                         | 1          |
| Note: (+) is added ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equipment to v                                                                                                                                                                                                                                                         |                                                                                                                                         |                       |                                                                                                                                                                                                                             |                                                                                                                                                                   | 0                                                                                                                                                                           | 1          |
| Note: (+) is added e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | equipment to v                                                                                                                                                                                                                                                         |                                                                                                                                         |                       |                                                                                                                                                                                                                             |                                                                                                                                                                   | 0                                                                                                                                                                           |            |
| Vehicle Dimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sions for C                                                                                                                                                                                                                                                            | G Calculatio                                                                                                                            | ins                   |                                                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                             |            |
| Wheel Base:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140.75                                                                                                                                                                                                                                                                 | in.                                                                                                                                     | Front Tr<br>Rear Tr   | ack Width:<br>ack Width:                                                                                                                                                                                                    | 67.875<br>67.375                                                                                                                                                  | in.<br>in.                                                                                                                                                                  |            |
| Center of Gravi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity                                                                                                                                                                                                                                                                    | 2270P MAS                                                                                                                               | H Targets             | 5                                                                                                                                                                                                                           | Test Inertial                                                                                                                                                     |                                                                                                                                                                             | Difference |
| Test Inertial Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eight (lb)                                                                                                                                                                                                                                                             | 5000 :                                                                                                                                  | ± 110                 |                                                                                                                                                                                                                             | 5001                                                                                                                                                              |                                                                                                                                                                             | 1.0        |
| Longitudinal CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 (in.)                                                                                                                                                                                                                                                                | 63 :                                                                                                                                    | ± 4                   |                                                                                                                                                                                                                             | 61.55174                                                                                                                                                          |                                                                                                                                                                             | -1.44820   |
| Lateral CG (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                                                                                                                                                                                                      | NA                                                                                                                                      |                       |                                                                                                                                                                                                                             | -0.223118                                                                                                                                                         |                                                                                                                                                                             | NA         |
| Vertical CG (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .)                                                                                                                                                                                                                                                                     | 28 0                                                                                                                                    | or greater            |                                                                                                                                                                                                                             | 28.29                                                                                                                                                             |                                                                                                                                                                             | 0.28902    |
| Note: Long. CG is n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | measured fror                                                                                                                                                                                                                                                          | n front axle of test                                                                                                                    | vehicle               |                                                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                             |            |
| Note: Lateral CG m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neasured from                                                                                                                                                                                                                                                          | ı centerline - positi                                                                                                                   | ve to vehicle rig     | ht (passenger                                                                                                                                                                                                               | ) side                                                                                                                                                            |                                                                                                                                                                             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                        |                                                                                                                                         |                       |                                                                                                                                                                                                                             | TEST INER                                                                                                                                                         | TIAL WEIGH                                                                                                                                                                  | T (lb)     |
| CURB WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Г (Ib)                                                                                                                                                                                                                                                                 |                                                                                                                                         |                       |                                                                                                                                                                                                                             |                                                                                                                                                                   | l off                                                                                                                                                                       | Diaht      |
| CURB WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Г (Ib)                                                                                                                                                                                                                                                                 | Diaht                                                                                                                                   |                       |                                                                                                                                                                                                                             | Front                                                                                                                                                             |                                                                                                                                                                             | 1206       |
| CURB WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Left                                                                                                                                                                                                                                                                   | Right                                                                                                                                   |                       |                                                                                                                                                                                                                             |                                                                                                                                                                   | 1410                                                                                                                                                                        | 1090       |
| CURB WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Г <b>(Ib)</b><br>Left<br>1439                                                                                                                                                                                                                                          | Right<br>1436                                                                                                                           |                       |                                                                                                                                                                                                                             | Poar                                                                                                                                                              |                                                                                                                                                                             | 1000       |
| CURB WEIGHT<br>Front<br>Rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Г <b>(Ib)</b><br>Left<br>1439<br>1132                                                                                                                                                                                                                                  | Right<br>1436<br>1098                                                                                                                   |                       |                                                                                                                                                                                                                             | Rear                                                                                                                                                              | 1099                                                                                                                                                                        |            |
| CURB WEIGHT<br>Front<br>Rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Left<br>1439<br>1132                                                                                                                                                                                                                                                   | Right<br>1436<br>1098                                                                                                                   |                       |                                                                                                                                                                                                                             | Rear                                                                                                                                                              | 2814                                                                                                                                                                        | lb         |
| CURB WEIGHT<br>Front<br>Rear<br>FRONT<br>REAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r (lb)<br>Left<br>1439<br>1132<br>2875<br>2230                                                                                                                                                                                                                         | Right<br>1436<br>1098<br>Ib                                                                                                             |                       |                                                                                                                                                                                                                             | Rear<br>FRONT<br>REAR                                                                                                                                             | 2814<br>2187                                                                                                                                                                | lb<br>lb   |

Figure B-1. Vehicle Mass Distribution, Test No. WZNP-2

# Appendix C. Vehicle Deformation Records

| Date:<br>Year: | 3/14/<br>20 | 2019<br>11            |                       |                       | Test Name:<br>Make: | WZ<br>Do              | NP-2<br>dge         |                          |                          | VIN:<br>Model:           | 1D7R             | B1GP6BS6<br>Ram 1500        | 34520                                   |
|----------------|-------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|---------------------|--------------------------|--------------------------|--------------------------|------------------|-----------------------------|-----------------------------------------|
|                |             |                       |                       |                       | VE<br>DRIVE         | HICLE DE<br>R SIDE FL | FORMATIO            | ON<br>- SET 1            |                          |                          |                  |                             |                                         |
|                | POINT       | Pretest<br>X<br>(in.) | Pretest<br>Y<br>(in.) | Pretest<br>Z<br>(in.) | Posttest X<br>(in.) | Posttest Y<br>(in.)   | Posttest Z<br>(in.) | ∆X <sup>A</sup><br>(in.) | ΔΥ <sup>Α</sup><br>(in.) | ∆Z <sup>A</sup><br>(in.) | Total ∆<br>(in.) | Crush <sup>B</sup><br>(in.) | Directions<br>for<br>Crush <sup>C</sup> |
|                | 1           | 51.8916               | -6.6450               | 2.5037                | 51.9362             | -6.5510               | 2.6133              | -0.0446                  | 0.0940                   | -0.1096                  | 0.1511           | 0.0000                      | NA                                      |
|                | 2           | 51.8723               | -10.9186              | 2.5255                | 51.9275             | -10.8757              | 2.6115              | -0.0552                  | 0.0429                   | -0.0860                  | 0.1108           | 0.0000                      | NA                                      |
|                | 3           | 52.0198               | -14.9467              | 2.4394                | 52.0644             | -14.7746              | 2.5336              | -0.0446                  | 0.1721                   | -0.0942                  | 0.2012           | 0.0000                      | NA                                      |
| ż              | 4           | 52.1428               | -18.7576              | 2.3779                | 52.2189             | -18.6352              | 2.4563              | -0.0761                  | 0.1224                   | -0.0784                  | 0.1641           | 0.0000                      | NA                                      |
| Z VAI          | 5           | 52.2128               | -23.3626              | 2.3547                | 52.2589             | -23.3181              | 2.4527              | -0.0461                  | 0.0445                   | -0.0980                  | 0.1171           | 0.0000                      | NA                                      |
| ШШ×            | 6           | 48.8720               | -7.3045               | 4.1454                | 48.9605             | -7.2282               | 4.2111              | -0.0885                  | 0.0763                   | -0.0657                  | 0.1341           | 0.0000                      | NA                                      |
| 은 뿐 이          | 7           | 48.7919               | -12.3588              | 4.1818                | 48.8456             | -12.2710              | 4.2676              | -0.0537                  | 0.0878                   | -0.0858                  | 0.1340           | 0.0000                      | NA                                      |
| ` >            | 8           | 48.6769               | -15.8111              | 4.2517                | 48.7174             | -15.7080              | 4.3454              | -0.0405                  | 0.1031                   | -0.0937                  | 0.1451           | 0.0000                      | NA                                      |
|                | 9           | 48.6398               | -20,5447              | 4.2734                | 48,7246             | -20.4539              | 4.3451              | -0.0848                  | 0.0908                   | -0.0717                  | 0.1434           | 0.0000                      | NA                                      |
|                | 10          | 48.6334               | -23.2506              | 4.2853                | 48.6774             | -23.2441              | 4.3807              | -0.0440                  | 0.0065                   | -0.0954                  | 0.1053           | 0.0000                      | NA                                      |
|                | 11          | 45.6275               | -7.0316               | 4.9671                | 45.6655             | -6.9442               | 5.0526              | -0.0380                  | 0.0874                   | -0.0855                  | 0.1280           | -0.0855                     | Z                                       |
|                | 12          | 45.3625               | -10.6772              | 4,9531                | 45,4544             | -10.6120              | 5.0407              | -0.0919                  | 0.0652                   | -0.0876                  | 0.1427           | -0.0876                     | Z                                       |
|                | 13          | 45,3505               | -14.8207              | 4,9455                | 45,4544             | -14,7488              | 5.0288              | -0.1039                  | 0.0719                   | -0.0833                  | 0.1513           | -0.0833                     | Z                                       |
|                | 14          | 45.1717               | -18.8420              | 4.9357                | 45.2436             | -18,7276              | 5.0216              | -0.0719                  | 0.1144                   | -0.0859                  | 0.1601           | -0.0859                     | z                                       |
|                | 15          | 44,9526               | -23,1484              | 4,9350                | 45.0728             | -23.0885              | 5.0214              | -0.1202                  | 0.0599                   | -0.0864                  | 0.1597           | -0.0864                     | Z                                       |
|                | 16          | 40.0968               | -7.0930               | 5.0053                | 40.1746             | -6,9956               | 5.0845              | -0.0778                  | 0.0974                   | -0.0792                  | 0.1477           | -0.0792                     | z                                       |
|                | 17          | 39 7516               | -10.1620              | 5 0081                | 39 8443             | -10.0536              | 5.0920              | -0.0927                  | 0 1084                   | -0.0839                  | 0.1655           | -0.0839                     | Z                                       |
| -              | 18          | 39.6125               | -14.8832              | 4,9861                | 39,7387             | -14.8093              | 5.0701              | -0.1262                  | 0.0739                   | -0.0840                  | 0.1687           | -0.0840                     | Z                                       |
| AN             | 19          | 39.3352               | -18.6599              | 4.9736                | 39.4107             | -18.5685              | 5.0588              | -0.0755                  | 0.0914                   | -0.0852                  | 0.1460           | -0.0852                     | z                                       |
| d $\sim$       | 20          | 39 0867               | -22 8627              | 4 9777                | 39 2563             | -22 8507              | 5 0617              | -0 1696                  | 0.0120                   | -0.0840                  | 0 1896           | -0.0840                     | 7                                       |
| Ϋ́Ν            | 21          | 34.6751               | -7.2307               | 5.0420                | 34,7866             | -7.1182               | 5.1202              | -0.1115                  | 0.1125                   | -0.0782                  | 0.1766           | -0.0782                     | z                                       |
| 2              | 22          | 34,7240               | -10,4481              | 5.0430                | 34.8201             | -10.3638              | 5.1355              | -0.0961                  | 0.0843                   | -0.0925                  | 0.1578           | -0.0925                     | z                                       |
| ш              | 23          | 34,7073               | -13.6927              | 5.0213                | 34,8027             | -13.6150              | 5.1115              | -0.0954                  | 0.0777                   | -0.0902                  | 0.1526           | -0.0902                     | Z                                       |
|                | 24          | 34.6600               | -17.8361              | 4,9983                | 34,7723             | -17,7863              | 5.0860              | -0.1123                  | 0.0498                   | -0.0877                  | 0.1509           | -0.0877                     | z                                       |
|                | 25          | 34,9396               | -22,9962              | 5.0184                | 35.0635             | -22.9491              | 5.1074              | -0.1239                  | 0.0471                   | -0.0890                  | 0.1597           | -0.0890                     | Z                                       |
|                | 26          | 30,9602               | -8,1917               | 4.3196                | 31.0421             | -8.0920               | 4.3975              | -0.0819                  | 0.0997                   | -0.0779                  | 0.1507           | -0.0779                     | Z                                       |
|                | 27          | 31.0995               | -11.5599              | 4.3043                | 31,1627             | -11.5403              | 4.3879              | -0.0632                  | 0.0196                   | -0.0836                  | 0.1066           | -0.0836                     | z                                       |
|                | 28          | 31.2355               | -14,9993              | 4.0673                | 31.3688             | -14.9636              | 4.1619              | -0.1333                  | 0.0357                   | -0.0946                  | 0.1673           | -0.0946                     | Z                                       |
|                | 29          | 31,2803               | -18.6329              | 4.2668                | 31.3556             | -18.5869              | 4.3467              | -0.0753                  | 0.0460                   | -0.0799                  | 0.1190           | -0.0799                     | z                                       |
|                | 30          | 31.3844               | -23.5078              | 4.2554                | 31.4496             | -23.4208              | 4.3373              | -0.0652                  | 0.0870                   | -0.0819                  | 0.1361           | -0.0819                     | Z                                       |

<sup>B</sup> Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

<sup>C</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.



Figure C-1. Left Floor Pan Deformation Data – Set 1, Test No. WZNP-2

| Date:    | 3/14/ | 2019                  |                      |              | Test Name:          | wz                    | NP-2                |                          |                          | VIN:                     | 1D7R             | B1GP6BS6                    | 34520             |
|----------|-------|-----------------------|----------------------|--------------|---------------------|-----------------------|---------------------|--------------------------|--------------------------|--------------------------|------------------|-----------------------------|-------------------|
| Year:    | 20    | 111                   |                      |              | Make:               | Do                    | dge                 |                          |                          | Model:                   | -                | Ram 1500                    |                   |
|          |       |                       |                      |              | VE<br>DRIVE         | HICLE DE<br>R SIDE FL | FORMATIO            | ON<br>- SET 2            |                          |                          |                  |                             |                   |
|          | POINT | Pretest<br>X<br>(in.) | Pretest<br>Y<br>(in) | Pretest<br>Z | Posttest X<br>(in.) | Posttest Y<br>(in.)   | Posttest Z<br>(in.) | ∆X <sup>A</sup><br>(in.) | ΔΥ <sup>Α</sup><br>(in.) | ∆Z <sup>A</sup><br>(in.) | Total ∆<br>(in.) | Crush <sup>B</sup><br>(in.) | Directions<br>for |
|          | 1     | 54 2701               | 25 1445              | 1 3346       | 54.0635             | 25 1045               | 1 1967              | 0.2156                   | 0.0400                   | 0 1470                   | 0.2645           | 0.2156                      | v                 |
|          | 2     | 54 3452               | -29.1445             | -1.3340      | 54.0055             | -29.1043              | -1.7007             | 0.2198                   | 0.0400                   | -0.1473                  | 0.2045           | 0.2130                      | Ŷ                 |
| 801      | 3     | 54 5516               | -23.4525             | -1 3945      | 54.3286             | -33 3245              | -1.2020             | 0.2230                   | 0.1329                   | -0.1237                  | 0.2323           | 0.2100                      | X                 |
| 그 규      | 4     | 54 7471               | -37 2543             | -1 4512      | 54 5475             | -37 1818              | -1.3809             | 0.2200                   | 0.0725                   | -0.0703                  | 0.2237           | 0.1996                      | X                 |
| Z NA     | 5     | 54 8732               | -41 9008             | -1 4484      | 54 6651             | -41 8634              | -1.3994             | 0.2081                   | 0.0374                   | -0.0490                  | 0.2170           | 0.2081                      | X                 |
| ШЩ×      | 6     | 51 2412               | -25 8844             | 0 2952       | 51 0862             | -25 8362              | 0 3838              | 0 1550                   | 0.0482                   | -0.0886                  | 0 1849           | 0 1550                      | X                 |
| 응필 )     | 7     | 51 2340               | -30 8952             | 0.3501       | 51 0544             | -30 8804              | 0 4228              | 0 1796                   | 0.0148                   | -0.0727                  | 0 1943           | 0 1796                      | X                 |
|          | 8     | 51,1895               | -34.3910             | 0.4205       | 50.9825             | -34.3193              | 0.4884              | 0.2070                   | 0.0717                   | -0.0679                  | 0.2293           | 0.2070                      | X                 |
|          | 9     | 51,2450               | -39.0883             | 0.4480       | 51.0682             | -39.0644              | 0.4726              | 0.1768                   | 0.0239                   | -0.0246                  | 0.1801           | 0.1768                      | X                 |
|          | 10    | 51.2992               | -41.8327             | 0.4597       | 51.0669             | -41.8551              | 0.4987              | 0.2323                   | -0.0224                  | -0.0390                  | 0.2366           | 0.2323                      | X                 |
|          | 11    | 47.9996               | -25.6892             | 1.0933       | 47.7801             | -25.6096              | 1.1985              | 0.2195                   | 0.0796                   | -0.1052                  | 0.2561           | -0.1052                     | Z                 |
|          | 12    | 47.7716               | -29.3258             | 1.0948       | 47.6298             | -29.2803              | 1.1729              | 0.1418                   | 0.0455                   | -0.0781                  | 0.1682           | -0.0781                     | Z                 |
|          | 13    | 47.8531               | -33.4732             | 1.0886       | 47.6984             | -33.4165              | 1.1475              | 0.1547                   | 0.0567                   | -0.0589                  | 0.1750           | -0.0589                     | Z                 |
|          | 14    | 47.7344               | -37.4559             | 1.0886       | 47.5536             | -37.3981              | 1.1255              | 0.1808                   | 0.0578                   | -0.0369                  | 0.1934           | -0.0369                     | Z                 |
|          | 15    | 47.6623               | -41.8009             | 1.0949       | 47.4550             | -41.7613              | 1.1096              | 0.2073                   | 0.0396                   | -0.0147                  | 0.2116           | -0.0147                     | Z                 |
|          | 16    | 42.4830               | -25.8186             | 1.1129       | 42.2907             | -25.7518              | 1.1842              | 0.1923                   | 0.0668                   | -0.0713                  | 0.2157           | -0.0713                     | Z                 |
|          | 17    | 42.1521               | -28.9059             | 1.1195       | 42.0110             | -28.8149              | 1.1790              | 0.1411                   | 0.0910                   | -0.0595                  | 0.1781           | -0.0595                     | Z                 |
| 7        | 18    | 42.1579               | -33.6165             | 1.1081       | 41.9843             | -33.5716              | 1.1407              | 0.1736                   | 0.0449                   | -0.0326                  | 0.1823           | -0.0326                     | Z                 |
| A        | 19    | 41.8901               | -37.3951             | 1.1028       | 41.7187             | -37.3357              | 1.1143              | 0.1714                   | 0.0594                   | -0.0115                  | 0.1818           | -0.0115                     | Z                 |
| 4 61     | 20    | 41.7933               | -41.6316             | 1.1170       | 41.6352             | -41.6198              | 1.1019              | 0.1581                   | 0.0118                   | 0.0151                   | 0.1593           | 0.0151                      | Z                 |
| NO N     | 21    | 37.0754               | -26.0307             | 1.1270       | 36.9053             | -25.9636              | 1.1743              | 0.1701                   | 0.0671                   | -0.0473                  | 0.1889           | -0.0473                     | Z                 |
| L C      | 22    | 37.1407               | -29.2867             | 1.1390       | 36.9925             | -29.2083              | 1.1793              | 0.1482                   | 0.0784                   | -0.0403                  | 0.1724           | -0.0403                     | Z                 |
| <u>ш</u> | 23    | 37.2109               | -32.5154             | 1.1222       | 37.0291             | -32.4592              | 1.1446              | 0.1818                   | 0.0562                   | -0.0224                  | 0.1916           | -0.0224                     | Z                 |
|          | 24    | 37.2474               | -36.6499             | 1.1068       | 37.0680             | -36.6303              | 1.1051              | 0.1794                   | 0.0196                   | 0.0017                   | 0.1805           | 0.0017                      | Z                 |
|          | 25    | 37.6381               | -41.8321             | 1.1419       | 37.4444             | -41.7877              | 1.1121              | 0.1937                   | 0.0444                   | 0.0298                   | 0.2009           | 0.0298                      | Z                 |
|          | 26    | 33.3372               | -27.0516             | 0.3880       | 33.1836             | -26.9967              | 0.4171              | 0.1536                   | 0.0549                   | -0.0291                  | 0.1657           | -0.0291                     | Z                 |
|          | 27    | 33.5837               | -30.4838             | 0.3852       | 33.3614             | -30.4425              | 0.3972              | 0.2223                   | 0.0413                   | -0.0120                  | 0.2264           | -0.0120                     | Z                 |
|          | 28    | 33.7798               | -33.8859             | 0.1593       | 33.6261             | -33.8611              | 0.1618              | 0.1537                   | 0.0248                   | -0.0025                  | 0.1557           | -0.0025                     | Z                 |
|          | 29    | 33.8447               | -37.5328             | 0.3623       | 33.6713             | -37.4848              | 0.3346              | 0.1734                   | 0.0480                   | 0.0277                   | 0.1820           | 0.0277                      | Z                 |
|          | 30    | 34.0531               | -42.3419             | 0.3665       | 33.8453             | -42.3164              | 0.3102              | 0.2078                   | 0.0255                   | 0.0563                   | 0.2168           | 0.0563                      | Z                 |

<sup>B</sup> Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

<sup>C</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.



Figure C-2. Left Floor Pan Deformation Data – Set 2, Test No. WZNP-2

| Prove Provided Provid                         | Year:    | 20    | 11      |          |          | Make:      | Do         | dge              |                 |                 | Model:          | 10713          | Ram 1500           | 04020     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------|----------|----------|------------|------------|------------------|-----------------|-----------------|-----------------|----------------|--------------------|-----------|
| VENICLE DE-DYNMAILON           DRIVER DISCIPCION           DRIVER DISCIPCION           TOTAL DISCIPCION           Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" <colspan="2">Colspan="2"Colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspa< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>~~~</th><th></th><th></th><th>8</th><th></th><th></th></colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspa<></colspan="2"> |          |       |         |          |          |            |            |                  | ~~~             |                 |                 | 8              |                    |           |
| UNIVER SIDE INTERNOR CRUSH - Set 1           POINT         Pretest         Pretest         Postest X         Postest Z         N/L         N/L         N/L         Dire           1         42.5702         47.324         24.16471         -7.237         24.8667         41.3715         -5.8213         28.766         0.0365         1.3059         0.0683         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3892         1.3891         1.3891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.2891         1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |         |          |          | VE         | HICLE DE   | FORMATIO         |                 |                 |                 |                |                    |           |
| Protest<br>POINT         Protest<br>(n)         Protest<br>POINT         Protest<br>(n)         Postest X<br>(n)         Postest X<br>(n)         Postest X<br>(n)         Ax^A<br>(n)         Ax^A<br>(n)         Ax^A<br>(n)         Ax^A<br>(n)         Ax^A<br>(n)         Disc<br>(n)         Pointest Z<br>(n)         Pointest Z (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |         |          |          | DRIVER S   | IDE INTER  | RIOR CRUS        | 5H - SET 1      |                 |                 |                |                    |           |
| POINT         Ym         Ym         Ym         Ym         Postest Y         Postes Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Г        |       | Pretest | Pretest  | Pretest  |            |            | 100 - 100 - 1000 |                 |                 |                 | 675276 1 N 1 N |                    | Direction |
| POINT         (in)         (in) </td <td></td> <td></td> <td>X</td> <td>Y</td> <td>Z</td> <td>Posttest X</td> <td>Posttest Y</td> <td>Posttest Z</td> <td>ΔX<sup>A</sup></td> <td>ΔY<sup>A</sup></td> <td>ΔZ<sup>A</sup></td> <td>Total ∆</td> <td>Crush<sup>B</sup></td> <td>for</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | X       | Y        | Z        | Posttest X | Posttest Y | Posttest Z       | ΔX <sup>A</sup> | ΔY <sup>A</sup> | ΔZ <sup>A</sup> | Total ∆        | Crush <sup>B</sup> | for       |
| 1         42.5702         4.52702         4.52702         4.52702         4.52702         4.52702         4.52702         1.5079         X.           3         4.15465         1-9.1544         29.3166         1.7373         -59.266         1.3763         0.0995         1.3982         X.         3.3982         X.           5         37.6341         7.2376         2.8261         7.7333         -29.2481         0.1802         1.3763         0.0966         1.4441         X.           6         381.395         -26.2796         1.6221         35.6657         2.42395         1.62239         0.4272         1.3401         0.0564         1.3383         1.3383         X.           9         50.5436         -27.75146         1.6335         42.2352         -22.2303         -0.0214         0.1264         0.1294         0.0245         0.1711         0.2485         0.1524         0.1741         0.2485         0.1524         0.1711         0.2485         0.1524         0.0266         0.1284         0.0267         0.1411         0.2485         0.1524         0.0267         0.1414         0.0487         0.4245         0.0267         0.1414         0.1426         0.22750         0.1110         0.2425         0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | POINT | (in.)   | (in.)    | (in.)    | (in.)      | (in.)      | (In.)            | (in.)           | (in.)           | (in.)           | (in.)          | (in.)              | Crush     |
| Product         2         41.5871         -7.2876         -28.6667         -1.3715         -5.9213         -28.7664         0.2256         1.3705         0.0863         1.3982         1.3982         X.           4         35.6617         4.6981         -17.5158         38.4472         5.9183         -17.4292         0.8065         1.2851         X.           6         33.1395         -26.2766         -16.3221         0.3331         1.2946         0.0664         1.3851         X.           6         33.1395         -26.2766         -16.3221         0.23315         -16.2237         0.3331         1.2946         1.2841         1.2841         X.           7         47.5542         -27.5193         -52.855         47.8794         -26.2793         -0.03168         1.2444         0.0651         1.2891         1.2441           9         50.5436         -27.4897         3.7301         -20.2064         0.1524         0.1734         0.2254         0.0596           10         37.4867         -29.5391         9.9758         15.803         -29.2478         -0.0587         0.1000         0.1224         0.1734         0.2256         0.0596           112         127.739         -28.5685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1     | 42.5702 | 4.5249   | -28.2140 | 41.9196    | 5.8818     | -28.1181         | 0.6506          | -1.3569         | 0.0959          | 1.5079         | 1.5079             | X, Y, Z   |
| 3         41.5465         -19.1544         -29.3166         41.7347         -17.7339         -29.2481         -0.1882         1.7370         -0.0885         1.3851         1.3851         1.3851         1.3851         X.           5         37.6341         -7.2334         -16.2971         5.9183         -7.2324         -0.0222         1.2401         0.0686         1.4441         X.           6         38.1395         -28.2786         -16.2327         0.4227         1.3401         1.4100         X.           9         50.5436         -27.5447         -3.2585         74.835         -22.2393         -0.2221         1.4441         0.1264         1.2481         0.0284         0.1524         0.1791         0.2485         0.1524         0.1791         0.2485         0.1524         0.1791         0.2485         0.1524         0.0896         0.0896         0.0896         0.0896         0.0171         0.2485         0.2750         0.1110         0.2425         0.2750         0.1110         0.2425         0.2750         0.1110         1.2245         0.2750         0.1100         0.0425         0.2750         0.1110         1.2245         0.2750         0.1100         0.0426         0.2455         0.2750         0.1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 🗊      | 2     | 41.5971 | -7.2976  | -28.8657 | 41.3715    | -5.9213    | -28.7664         | 0.2256          | 1.3763          | 0.0993          | 1.3982         | 1.3982             | X, Y, Z   |
| A         35.8617         4.6981         -17.5158         34.4472         5.9183         -17.4292         0.0066         1.4041         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4641         1.4411         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611         1.4611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5×       | 3     | 41.5465 | -19.1544 | -29.3166 | 41.7347    | -17.7839   | -29.2481         | -0.1882         | 1.3705          | 0.0685          | 1.3851         | 1.3851             | X, Y, Z   |
| 5         37         6341         -7.2341         -16.2371         0.3331         1.2446         0.0682         1.4100         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.3383         1.2414         0.16981         1.2414         0.16981         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414         1.2414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0×       | 4     | 35.6517 | 4.6981   | -17.5158 | 34.8472    | 5.9183     | -17.4292         | 0.8045          | -1.2202         | 0.0866          | 1.4641         | 1.4641             | X, Y, Z   |
| b         39.395         -26.296         -16.229         -16.229         -0.42/2         1.340         0.0962         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.4100         1.41100         1.41100         1.41100         1.41100         1.41100         1.41100         1.41100         1.41100         1.41100         1.41100         1.41100 </td <td>Ŭ</td> <td>5</td> <td>37.6341</td> <td>-7.2334</td> <td>-16.2971</td> <td>37.3010</td> <td>-5.9388</td> <td>-16.2327</td> <td>0.3331</td> <td>1.2946</td> <td>0.0644</td> <td>1.3383</td> <td>1.3383</td> <td>X, Y, Z</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ        | 5     | 37.6341 | -7.2334  | -16.2971 | 37.3010    | -5.9388    | -16.2327         | 0.3331          | 1.2946          | 0.0644          | 1.3383         | 1.3383             | X, Y, Z   |
| y jj </td <td></td> <td>6</td> <td>39.1395</td> <td>-26.2796</td> <td>-16.3221</td> <td>39.5667</td> <td>-24.9395</td> <td>-16.2239</td> <td>-0.4272</td> <td>1.3401</td> <td>0.0982</td> <td>1.4100</td> <td>1.4100</td> <td>X, Y, Z</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 6     | 39.1395 | -26.2796 | -16.3221 | 39.5667    | -24.9395   | -16.2239         | -0.4272         | 1.3401          | 0.0982          | 1.4100         | 1.4100             | X, Y, Z   |
| No.         8         40.9165         -27.4827         -32242         50.6240         -27.3827         -20.8168         -1.2461         0.01615         1.2481         0.01615         1.2481         0.02455         0.1524           00         37.4657         -29.5302         -20.4868         37.5466         -29.4106         -20.3134         -0.0630         0.0796         0.0796         0.2465         0.1524           00         00         11         27.0071         -29.530         -10.9796         16.8035         -29.6267         -11.6613         -0.0465         0.0687         0.1000         0.1224         0.0687           14         30.1439         -30.9640         -4.4488         30.2273         -30.8305         -4.3370         -0.0631         0.1335         0.1096         0.1224         0.0687           16         34.0372         6.018         -29.9277         -30.8461         -2.4982         0.0398         0.0438         0.1036         0.1135         0.1096         0.1241         0.1506         0.1241         0.1506         0.1335         0.1096         0.1411         0.1536         0.1265         0.1262         0.1431         0.1045         0.1636         0.1135         0.1086         0.1187         0.1356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 빌린       |       | 47.5542 | -27.5193 | -5.2855  | 47.8794    | -26.2779   | -5.1591          | -0.3252         | 1.2414          | 0.1264          | 1.2895         | 1.2414             | Y         |
| L         9         003436         7-28,502         20,2486         72,300         20,3013         -0,0638         0,1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.1824         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0264         0.0425         0.0135         0.0466         0.1135         0.0135         0.0135         0.0135         0.0135         0.0135         0.0135         0.0135         0.0135         0.0136         0.1193         0.1036         0.1193         0.1036         0.1193         0.1036         0.1193         0.1036         0.1193         0.1036         0.1193         0.1036         0.1193         0.1133         0.1103         0.1103         0.1103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAS      | 8     | 47.9185 | -27.5146 | -1.6335  | 48.2353    | -26.2665   | -1.5/20          | -0.3168         | 1.2481          | 0.0615          | 1.2891         | 1.2481             | Y         |
| 10         37.4657         -29.3002         -20.304         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.3134         -20.311678         -20.3136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ш        | 9     | 30.3430 | -27.4027 | -3.2342  | 30.6240    | -27.3303   | -3.0751          | -0.0604         | 0.1524          | 0.1791          | 0.2465         | 0.1524             | T         |
| No.         11         21/201         29/203         11/201         29/203         11/201         29/203         11/201         20/203         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201         11/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8        | 10    | 37.4037 | -29.5002 | -20.4000 | 27 27/1    | -29.4100   | 10 7373          | -0.0639         | 0.0096          | 0.1734          | 0.2054         | 0.0096             | Y V       |
| VAC         12         13         37.6686         -28.055         6.6801         37.685         -28.4356         -18.007         -0.0165         0.0697         0.1000         0.1224         0.0567           14         30.1439         -30.9640         -4.448         30.2273         -30.8306         -4.3370         -0.0831         0.1200         0.0721         0.1536         0.1204         0.0567         .01606         0.0687         0.1008         0.1193         0.1204         0.0120         0.0721         0.1536         0.1204         0.01204         0.0069         0.1441         0.1036         0.1193         0.1206         0.1204         0.0040         0.1441         0.1036         0.1193         0.1206         0.1204         0.1181         0.1206         0.1204         0.1264         0.1762         0.1181         0.1036         0.1191         0.1264         0.1762         0.1411         1.1553         0.1224         0.0040         0.1441         0.1667         0.1461         0.1667         0.1461         0.1562         0.1316         0.0042         0.1807         0.1848         0.1672         0.1843         0.1976         0.1417         0.1627         0.1627         0.1627         0.1562         0.1316         0.1776         0.1569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ω M      | 12    | 16 7630 | -29.5339 | -19.9790 | 16 8035    | -29.4229   | -19.7373         | -0.0670         | 0.0789          | 0.2423          | 0.2750         | 0.0789             | Y         |
| V C         13         37.333         30.3660         4.4468         30.2273         30.830         4.3370         -0.0834         0.1336         0.1098         0.1191         0.1335           15         19.1626         -30.1845         -2.9504         19.2273         -30.806         -2.8783         -0.0634         0.1336         0.1098         0.1193         0.1136         0.11200           17         34.1631         0.2256         +42.9564         43.9573         42.9560         +42.942         0.0399         0.0438         0.1036         0.1193         0.1136         0.1100           19         32.4850         -12.4984         +42.7376         32.5197         -12.5469         +42.5614         -0.0367         -0.0485         0.1762         0.1864         0.1762           20         31.1678         -17.3893         +42.3427         31.2054         +17.3895         +42.3665         -0.0376         -0.0092         0.1807         0.1846         0.1762         0.1867         0.1867         0.1265         0.1627         0.1848         0.1627         0.1868         0.1627         0.1867         0.0254         0.1035         0.1627         0.1636         0.1874         0.1647         0.1926         0.1867         0.1844 </td <td>588F</td> <td>12</td> <td>37 6688</td> <td>-28.5055</td> <td>-6.6801</td> <td>37 6853</td> <td>-29.0207</td> <td>-6.5801</td> <td>-0.0403</td> <td>0.0703</td> <td>0.2402</td> <td>0.1224</td> <td>0.0703</td> <td>V</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 588F     | 12    | 37 6688 | -28.5055 | -6.6801  | 37 6853    | -29.0207   | -6.5801          | -0.0403         | 0.0703          | 0.2402          | 0.1224         | 0.0703             | V         |
| ▲         15         19.1626         -30.1845         -2.9504         19.2257         -30.0645         -2.8783         -0.0831         0.1200         0.0721         0.1536         0.11200           16         34.0372         5.0018         -43.0528         33.9973         4.9580         -42.9492         0.0839         0.0438         0.1036         0.1193         0.1036         0.1193         0.1036         0.1191         0.2165         0.1411         0.1550         0.1411         0.1550         0.1411         0.1550         0.14141         0.1550         0.14141         0.1550         0.14141         0.1550         0.14141         0.1550         0.1467         0.1426         0.1177         0.1184         0.11807         0.1280         0.1467         0.1467         0.1265         0.1467         0.01457         0.1167         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.1867         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 14    | 30 1439 | -30,9640 | -4 4468  | 30 2273    | -30,8305   | -4.3370          | -0.0834         | 0.1335          | 0.1000          | 0.1224         | 0.1335             | Y         |
| 16         34.0372         5.0018         +43.0528         33.9973         4.9580         +42.9492         0.0399         0.0438         0.1036         0.1193         0.1036           17         34.1631         0.2956         42.9584         34.1774         0.2247         +42.8143         0.0143         0.0499         0.1441         0.1505         0.1441           19         32.2886         -62.2844         42.8176         0.2597         +0.28464         -0.0367         -0.0485         0.1762         0.1848         0.1840         0.1848         0.1807           20         31.1678         17.393         42.3665         -0.0325         0.1205         0.1847         0.1848         0.1807           21         23.9012         6.1360         +46.3854         23.9337         6.0155         +46.2387         -0.0325         0.1467         0.1847         0.1847         0.1667           22         24.4740         -5.4586         -46.355         45.17         -45.9968         0.0234         0.0169         0.1667         0.1627         0.2289         0.1762         0.2289         0.1766         0.2298         0.1766         0.2298         0.1766         0.2298         0.17766         0.1291         0.2298 <t< td=""><td>≥  </td><td>15</td><td>19 1626</td><td>-30 1845</td><td>-2 9504</td><td>19 2257</td><td>-30.0645</td><td>-2 8783</td><td>-0.0631</td><td>0.1200</td><td>0.0721</td><td>0.1536</td><td>0.1200</td><td>Y</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥        | 15    | 19 1626 | -30 1845 | -2 9504  | 19 2257    | -30.0645   | -2 8783          | -0.0631         | 0.1200          | 0.0721          | 0.1536         | 0.1200             | Y         |
| 17         34.1631         0.2956         42.9584         34.1774         0.2547         42.8143         -0.0143         0.0409         0.1441         0.1505         0.1441           18         33.5286         6.2684         42.876         33.6289         6.2684         42.7059         -0.0045         0.1001         -0.0440         0.1917         0.2163         0.1917           20         31.1678         17.3983         42.5472         31.2549         42.3665         -0.0376         -0.0082         0.1762         0.1844         0.1807           21         23.9012         6.1360         46.3854         23.9337         6.0155         46.2887         -0.0325         0.1205         0.1467         0.1846         0.1762           22         24.3543         -0.2128         46.3046         24.4254         -0.3341         44.119         -0.0111         -0.1213         0.1627         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380         0.1997         0.2380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 16    | 34 0372 | 5 0018   | -43 0528 | 33 9973    | 4 9580     | -42 9492         | 0.0399          | 0.0438          | 0.1036          | 0 1193         | 0.1036             | 7         |
| 18         33.5288         -6.2644         -42.8976         33.6289         -6.2684         -42.7059         -0.1001         -0.0420         0.1917         0.2163         0.1917           19         32.4830         12.4984         -42.7376         32.5197         -12.5469         -42.3665         -0.0376         -0.0485         0.1762         0.1844         0.1762           21         23.9012         6.1380         -46.3854         23.3937         6.0155         +42.3676         -0.0325         0.1205         0.1467         0.1986         0.1867           22         24.3543         -0.2128         +46.3046         24.4254         -0.3341         +46.1419         -0.0711         -0.1213         0.1627         0.2150         0.1627           24         24.3476         -10.3012         +45.9301         24.4739         +10.3455         +45.7344         -0.1263         -0.0443         0.1907         0.2330         0.1907           25         24.1382         +44.8484         +45.631         +42.9267         +0.0200         0.1246         0.1231         0.1752         0.1231           26         9.9818         5.9860         +7.2072         9.9888         5.8614         +47.0614         -0.0607         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 17    | 34 1631 | 0.2956   | -42 9584 | 34 1774    | 0 2547     | -42 8143         | -0.0143         | 0.0409          | 0.1000          | 0.1505         | 0 1441             | 7         |
| 19         32,4830         -12,4984         42,7376         32,5197         -12,5489         -42,5614         -0.0387         -0.0485         0.1762         0.1864         0.1762           20         31,1678         -17,3893         -42,5472         31,2054         -17,3895         -42,3665         -0.0376         -0.0092         0.1807         0.1864         0.1467           21         23,9012         61,380         -46,3354         23,9337         0.0155         46,2387         -0.0325         0.1205         0.1467         0.1467           22         24,3476         -10.3012         -45,9301         24,4739         -10.3455         -45,7394         -0.1263         -0.0443         0.1907         0.2330         0.1907           25         24,1382         -14,8803         -45,6031         24,2329         -14,808         -45,425         -0.0102         0.1263         0.1786         0.2288         0.1786           24         24,3476         -10.3012         -47,2130         9.8672         -0.0308         -47,0619         -0.0617         0.1576         0.1511         0.2289         0.1511           28         10.0386         -10.5979         -46,8817         10.4111         -10.7159         -0.0118         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 18    | 33,5288 | -6.2644  | -42.8976 | 33.6289    | -6.2684    | -42,7059         | -0.1001         | -0.0040         | 0.1917          | 0.2163         | 0.1917             | z         |
| 20         31.1678         -17.3893         42.5472         31.2054         -17.3895         42.3665         -0.0376         -0.0092         0.1807         0.1848         0.1807           21         23.9012         6.360         46.3884         23.9337         6.0155         -46.2887         -0.0326         0.1205         0.1467         0.1926         0.1467           22         24.3543         -0.2128         46.3044         24.4506         -5.4517         -45.9984         0.0099         0.1669         0.1588         0.1569           24         24.3476         -10.3012         45.9301         24.4506         -5.4517         -45.9394         -0.1633         0.0097         0.2300         0.1907           25         24.1382         -14.9434         45.6031         24.2392         -14.8608         45.4245         -0.1010         0.1026         0.1786         0.2298         0.1786           26         9.9818         5.9860         -47.2072         9.9938         5.8614         -47.0841         -0.0020         0.1245         0.1774         0.1762         0.1231           28         10.0330         -4.8152         -47.1161         10.0448         -4.9025         -46.9507         -0.0147         0.1607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 19    | 32,4830 | -12,4984 | -42.7376 | 32.5197    | -12.5469   | -42.5614         | -0.0367         | -0.0485         | 0.1762          | 0.1864         | 0.1762             | z         |
| Q         21         23.9012         6.1360         46.3854         23.9337         6.0155         46.2387         -0.0325         0.1205         0.1467         0.1926         0.1467           22         24.3543         -0.2128         48.3046         24.4254         -0.3341         46.1419         -0.0711         -0.1213         0.1627         0.1627         0.1627           23         24.4740         -5.45817         45.9086         0.0234         0.0090         0.1568         0.1586         0.1586         0.1586         0.1586         0.1586         0.1586         0.1586         0.1298         0.1786           24         24.3476         -10.3012         45.9301         24.4739         -10.3455         45.7394         -0.1283         -0.0443         0.1907         0.2330         0.1907           25         24.1382         -14.9843         45.6011         24.2392         -14.8004         47.0641         -0.0020         0.1246         0.1771         0.1776         0.1786         0.1874         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674         0.1674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 20    | 31.1678 | -17.3893 | -42.5472 | 31.2054    | -17.3985   | -42.3665         | -0.0376         | -0.0092         | 0.1807          | 0.1848         | 0.1807             | Z         |
| Q         22         24.3643         -0.2128         -46.3046         24.4254         -0.3341         -46.149         -0.0711         -0.1213         0.1627         0.2160         0.1682           23         24.4740         -5.4566         -46.1537         24.4506         -5.4517         -45.9968         0.0214         0.01690         0.1568         0.1569           24         24.3476         -10.3012         -45.9301         24.4739         -10.3455         -45.7394         -0.1263         -0.0443         0.1907         0.2330         0.1907           25         24.1382         -14.9843         -45.031         24.2323         -14.8808         45.4245         -0.1010         0.1035         0.1786         0.2298         0.1786           26         9.9818         5.9860         -47.2072         9.9838         5.8614         -47.0619         -0.0617         0.1576         0.1511         0.2269         0.1511           28         10.0330         -4.8152         -47.1161         10.04181         -4.9025         46.9627         -0.0118         0.0174         0.1624         0.1891           30         10.8870         -15.1470         -46.6073         10.8517         -15.3077         -46.4182         -0.0147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        | 21    | 23.9012 | 6.1360   | -46.3854 | 23.9337    | 6.0155     | -46.2387         | -0.0325         | 0.1205          | 0.1467          | 0.1926         | 0.1467             | Z         |
| Port         23         24.4740         -5.4586         -6.4517         -46.9988         0.0234         0.0069         0.1568         0.1588         0.1589           24         24.3476         -10.3012         -45.9301         24.4739         -10.3455         -45.7394         -0.1263         -0.0443         0.1907         0.2330         0.1907           25         24.1382         -14.8903         426.5031         24.2392         -14.8808         45.4245         -0.1010         0.1035         0.1786         0.2288         0.1786           26         9.9818         5.9860         -47.2072         9.9838         5.8614         -47.0619         -0.0617         0.1576         0.1511         0.2289         0.1511           28         10.0330         -4.8152         -47.1161         10.0448         -49.025         -0.0203         -0.1180         0.1774         0.2146         0.1874         0.1584           29         10.3868         -10.5977         46.7043         -0.0243         -0.1180         0.1744         0.2142         0.1692         N           30         10.8370         -51.470         -46.8177         -15.3077         46.4182         -0.0147         -0.1891         0.2466         0.1892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 22    | 24.3543 | -0.2128  | -46.3046 | 24.4254    | -0.3341    | -46.1419         | -0.0711         | -0.1213         | 0.1627          | 0.2150         | 0.1627             | Z         |
| Q         24         24.3476         -10.3012         -45.9301         24.739         -10.3455         -45.7394         -0.10363         -0.0443         0.1907         0.2330         0.1907           25         24.1382         -14.9843         -45.6031         24.2392         -14.8808         45.4245         -0.1010         0.1035         0.1786         0.2298         0.1786           26         9.9818         5.9860         -47.2072         9.9838         5.8614         -47.0619         -0.0617         0.1576         0.1511         0.2296         0.1511           28         10.0330         -4.8152         -47.1161         10.0448         -4.9025         -46.5077         -0.0187         0.1654         0.1774         0.1774           30         10.8370         -15.1470         -46.6073         10.8517         -15.3077         -46.4182         -0.0147         -0.1607         0.1891         0.2486         0.1891           31         45.6407         -25.7164         -29.8767         45.7496         -25.6074         -29.7473         -0.1069         0.1990         0.1294         0.2012         0.1992         Y           33         42.1968         -24.8757         -32.5073         42.3406         -24.8011 </td <td>5</td> <td>23</td> <td>24.4740</td> <td>-5.4586</td> <td>-46.1537</td> <td>24.4506</td> <td>-5.4517</td> <td>-45.9968</td> <td>0.0234</td> <td>0.0069</td> <td>0.1569</td> <td>0.1588</td> <td>0.1569</td> <td>Z</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        | 23    | 24.4740 | -5.4586  | -46.1537 | 24.4506    | -5.4517    | -45.9968         | 0.0234          | 0.0069          | 0.1569          | 0.1588         | 0.1569             | Z         |
| C         25         24,1382         -14,8803         -45,6031         24,2392         -14,8808         -45,4245         -0.0101         0.1035         0.1786         0.2288         0.1786           26         9,9818         5,9860         -47,2130         9,8672         -0.0308         -47,0811         -0.0020         0.1266         0.1511         0.1269         0.1511           28         10.0330         -4.8152         -47,1161         10.0448         -4.9025         -46,9507         -0.0118         0.0673         0.1654         0.1874         0.1654           29         10.3868         -10.5979         -46.8817         10.517         15.5077         -46.7128         -0.0147         -0.1080         0.1990         0.1294         0.2124         0.1891           30         10.8370         -15.1470         -46.8073         10.8517         -15.5077         -25.6074         -29.7473         -0.1089         0.1990         0.1294         0.2012         0.1892         N           33         42.1968         -24.8757         -32.5073         42.3406         -24.8011         -32.3623         -0.1438         0.0766         0.1366         0.21174         0.1552         N           34         38.9986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ğ [      | 24    | 24.3476 | -10.3012 | -45.9301 | 24.4739    | -10.3455   | -45.7394         | -0.1263         | -0.0443         | 0.1907          | 0.2330         | 0.1907             | Z         |
| 26         9.8818         5.9860         -47.2072         9.9838         5.8614         -47.0841         -0.0020         0.1226         0.1231         0.1752         0.1231           27         9.8055         0.1268         -47.2130         9.8672         -0.0308         -47.0619         -0.0617         0.1576         0.1511         0.2269         0.1511         0.2269         0.1511         0.2269         0.1511         0.2269         0.1654         0.1874         0.1654         0.1874         0.1654         0.1874         0.1654         0.1874         0.1654         0.1874         0.1654         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486         0.1891         0.2486 <td>œ [</td> <td>25</td> <td>24.1382</td> <td>-14.9843</td> <td>-45.6031</td> <td>24.2392</td> <td>-14.8808</td> <td>-45.4245</td> <td>-0.1010</td> <td>0.1035</td> <td>0.1786</td> <td>0.2298</td> <td>0.1786</td> <td>Z</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | œ [      | 25    | 24.1382 | -14.9843 | -45.6031 | 24.2392    | -14.8808   | -45.4245         | -0.1010         | 0.1035          | 0.1786          | 0.2298         | 0.1786             | Z         |
| 27         9.8055         0.1268         -47.2130         9.8672         -0.0308         -47.0619         -0.0617         0.1576         0.1511         0.2269         0.1511           28         10.0330         -48152         -47.1161         10.0448         -4.9025         -46.507         -0.0118         -0.0873         0.1654         0.1874         0.1654           29         10.3868         -10.579         -46.817         10.8111         -0.0243         -0.0147         -0.1807         0.1891         0.2486         0.1891           30         10.8370         -15.1470         -46.6073         10.8517         -15.3077         -46.4182         -0.0147         -0.1607         0.1994         0.2144         0.1774           31         45.6407         -25.7164         -29.8767         42.25.3097         -30.1438         0.0766         0.1450         0.2174         0.1681         N           33         42.1968         -24.8757         -32.5073         42.3406         -24.801         -32.3623         -0.1472         0.0666         0.1368         0.2117         0.1522         N           34         38.9986         -24.8767         -32.6767         -39.8678         -0.1472         0.0666         0.1368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 26    | 9.9818  | 5.9860   | -47.2072 | 9.9838     | 5.8614     | -47.0841         | -0.0020         | 0.1246          | 0.1231          | 0.1752         | 0.1231             | Z         |
| 28         10.0330         -4.8152         -47.1161         10.0448         -4.9027         -0.0118         -0.0873         0.1654         0.1874         0.1654           29         10.3868         -10.5979         -46.8817         10.4111         -10.7159         -46.7043         -0.0147         -0.1607         0.1891         0.2486         0.1891           30         10.8370         -15.1470         -46.6073         10.8517         -15.3077         -46.4182         -0.0147         -0.1690         0.1294         0.2012         0.1692         N           31         45.6407         -25.7164         -29.8767         45.7496         -25.6074         -29.7473         -0.1089         0.1090         0.1294         0.2012         0.1692         N           33         42.1968         -24.8757         -32.6073         42.3406         -24.8011         -32.623         -0.1438         0.0746         0.1450         0.2174         0.1631         N           34         38.9986         -24.1896         -34.739         39.1458         -24.1230         -34.6371         -0.1472         0.0666         0.1368         0.2117         0.1522         N           35         35.3881         -23.5093         -37.2879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 27    | 9.8055  | 0.1268   | -47.2130 | 9.8672     | -0.0308    | -47.0619         | -0.0617         | 0.1576          | 0.1511          | 0.2269         | 0.1511             | Z         |
| 29         10.3886         -10.5979         -46.8817         10.4111         -10.7159         -46.7043         -0.0243         -0.1180         0.1774         0.21486         0.1774           30         10.8370         -15.1470         -46.6073         10.8517         -15.3077         -46.4182         -0.0147         -0.1607         0.1891         0.2486         0.1891           31         45.6407         -25.7164         -29.7473         -0.1089         0.1090         0.1294         0.2174         0.1631         N           32         44.1371         -25.4046         -31.0885         44.2832         -25.3097         -30.9141         -0.1438         0.0746         0.1450         0.2174         0.1631         N           33         42.1968         -24.8757         -32.5073         42.1230         -34.6371         -0.1438         0.0775         0.1547         0.2319         0.1730         N           36         30.9643         -22.7542         -40.0225         31.1187         -22.6767         -39.8678         -0.1641         0.0775         0.1547         0.2319         0.1730         N           31         45.6407         -25.1046         -31.0885         44.2832         -25.3097         -30.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 28    | 10.0330 | -4.8152  | -47.1161 | 10.0448    | -4.9025    | -46.9507         | -0.0118         | -0.0873         | 0.1654          | 0.1874         | 0.1654             | Z         |
| 30         10.8370         -15.1470         446.6073         10.8371         -15.307         446.4182         -0.0147         -0.1807         0.1891         0.2486         0.1891           31         45.6407         -25.7164         -29.8767         45.7496         -25.6074         -29.7473         -0.1689         0.1090         0.1294         0.2012         0.1692         N           32         44.1371         -25.4046         -31.0885         44.2832         -25.3097         -30.9141         -0.1461         0.0949         0.1744         0.2465         0.1692         N           33         42.1968         -24.8757         -32.5073         42.3406         -24.1200         -34.6371         -0.1472         0.0666         0.1368         0.2117         0.1522         N           35         35.3881         -23.5093         -37.2879         35.4288         -23.3987         -37.1758         -0.0407         0.1106         0.1121         0.1627         0.1730         N           36         30.9643         -22.7542         -40.0225         31.1187         -22.6767         -39.8678         -0.1438         0.0746         0.1450         0.2174         0.0746           31         45.6407         -25.4046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | 29    | 10.3868 | -10.5979 | -46.8817 | 10.4111    | -10.7159   | -46.7043         | -0.0243         | -0.1180         | 0.1774          | 0.2144         | 0.1774             | Z         |
| 31       45.6407       -25.7164       -29.8767       45.7496       -25.6074       -29.7473       -0.1089       0.1090       0.1294       0.2012       0.1692       N         32       44.1371       -25.4046       -31.0885       44.2832       -25.3097       -30.9141       -0.1461       0.0949       0.1744       0.2465       0.1885       N         33       42.1968       -24.8757       -32.5073       42.3406       -24.8011       -32.3623       -0.1438       0.0746       0.1450       0.2174       0.1522       N         34       38.9986       -24.8757       -32.5073       42.3408       -23.9877       -37.1758       -0.0407       0.1106       0.1121       0.1627       0.1575       N         36       30.9643       -22.7542       -40.0225       31.1187       -22.6767       -39.8678       -0.1544       0.0775       0.1547       0.2174       0.1730       N         32       44.1371       -25.7164       -29.8773       -25.3097       -30.9141       -0.1481       0.0775       0.1547       0.2174       0.0746         32       44.1371       -25.7644       -29.7473       -0.1481       0.0999       0.1744       0.2465       0.0949       0.1730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 30    | 10.8370 | -15.1470 | -46.6073 | 10.8517    | -15.3077   | -46.4182         | -0.0147         | -0.1607         | 0.1891          | 0.2486         | 0.1891             | <u> </u>  |
| 32       44.1371       -22.4046       -31.0885       44.2832       -22.309       -30.9141       -0.1461       0.0949       0.1744       0.2465       0.1985       1         33       42.1968       -24.8757       -32.5073       42.3406       -24.8011       -32.3623       -0.1438       0.0746       0.1450       0.2174       0.1631       Y         34       38.9986       -24.8903       -37.2879       35.4288       -23.3987       -37.1758       -0.0407       0.1106       0.1121       0.1627       0.1575       Y         36       30.9643       -22.7542       -40.0225       31.1187       -22.6767       -39.8678       -0.1544       0.0775       0.1547       0.2319       0.1730       Y         31       45.6407       -25.7164       -29.8767       45.7496       -25.6074       -29.7473       -0.1689       0.1990       0.1294       0.2012       0.1090         32       44.1371       -25.4046       -31.0885       44.2832       -22.53097       -30.9141       -0.1461       0.0949       0.1744       0.2465       0.9494         33       42.1968       -24.8757       -32.5073       42.3406       -24.8011       -32.3623       -0.1438       0.0746       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ ~      | 31    | 45.6407 | -25.7164 | -29.8767 | 45.7496    | -25.6074   | -29.7473         | -0.1089         | 0.1090          | 0.1294          | 0.2012         | 0.1692             | Y, Z      |
| Image: 1       3.3       42.1986       -24.8757       -32.5073       42.3406       -24.8101       -32.3623       -0.1438       0.0746       0.1450       0.2174       0.1631       1         Mode: 2       34       38.9986       -24.1896       -34.7739       39.1458       -24.1230       -34.6371       -0.1472       0.0666       0.1160       0.1121       0.1627       0.1575       N         36       30.9643       -22.7542       -40.0225       31.1187       -22.6767       -39.8678       -0.1544       0.0775       0.1547       0.2319       0.1730       N         31       45.6407       -25.7164       -29.8767       45.7496       -25.6074       -29.7473       -0.1089       0.1090       0.1294       0.2012       0.1090         32       44.1371       -25.4046       -31.0885       44.2832       -25.3097       -30.1438       0.0746       0.1450       0.2174       0.0746         33       42.1968       -24.8757       -32.5073       42.3406       -24.8011       -32.3623       -0.1438       0.0746       0.1450       0.2174       0.0746         34       38.9966       -24.8757       -32.5073       42.3406       -24.8011       -32.3623       -0.1472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H H H    | 32    | 44.13/1 | -25.4046 | -31.0885 | 44.2832    | -25.3097   | -30.9141         | -0.1461         | 0.0949          | 0.1/44          | 0.2465         | 0.1985             | Y,Z       |
| A mer         35         35,3881         -23,5993         -37,775         -0.1472         0.0000         0.1306         0.2117         0.1522         1           A mer         35         35,3881         -23,5093         -37,2879         354,288         -23,3987         -37,7758         -0.0407         0.1106         0.1121         0.1627         0.1575         N           36         30.9643         -22.7542         -40.0225         31.1187         -22.6767         -39.8678         -0.1544         0.0775         0.1547         0.2319         0.1730         N           31         45.6407         -25.7164         -29.8767         45.7496         -25.6074         -29.7473         -0.1089         0.1090         0.1744         0.2012         0.1090           32         44.1371         -24.8757         -32.5073         42.3406         -24.8011         -32.3623         -0.1438         0.0746         0.1450         0.2174         0.0746           33         42.1968         -24.877         -32.5073         42.3406         -24.8130         -34.6371         -0.1472         0.0666         0.1368         0.2174         0.0746           34         38.9986         -24.7522         -40.0225         31.1187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 글통거나     | 34    | 38 0000 | -24.0/0/ | -32.00/3 | 42.3406    | -24.8011   | -34 6274         | -0.1438         | 0.0/46          | 0.1260          | 0.21/4         | 0.1631             | Y, Z      |
| 36         30.9643         -22.7542         -40.0225         31.1187         -22.6767         -39.8678         -0.1544         0.0775         0.1547         0.2319         0.1730         N           36         30.9643         -22.7542         -40.0225         31.1187         -22.6767         -39.8678         -0.1544         0.0775         0.1547         0.2319         0.1730         N           31         45.6407         -22.7644         -29.8767         45.7496         -22.6707         -39.8678         -0.1684         0.0775         0.1547         0.2319         0.1730         N           32         44.1371         -25.4046         -31.0885         44.2832         -25.3097         -30.9141         -0.1461         0.0949         0.1744         0.2465         0.0949           33         42.1966         -24.877         -32.5073         42.3406         -24.8371         -3.1438         0.0746         0.1450         0.2174         0.0746           35         35.888         -23.5983         -37.1758         -0.0407         0.1106         0.1121         0.1627         0.1106           36         30.9643         -22.7542         -40.0225         31.1187         -22.6767         -39.8678         -0.0407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A as     | 35    | 35 3881 | -24.1090 | -37 2879 | 35 / 288   | -24.1230   | -37 1758         | -0.1472         | 0.1106          | 0.1300          | 0.2117         | 0.1522             | Y 7       |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | 36    | 30,9643 | -22 7542 | -40 0225 | 31,1187    | -22 6767   | -39.8678         | -0.1544         | 0.0775          | 0.1547          | 0.2319         | 0.1730             | Y 7       |
| 32       44.1371       -25.4046       -25.3097       -25.3097       -20.1035       0.1034       0.1234       0.2012       0.10949         33       42.1371       -25.4046       -31.0885       44.2832       -25.3097       -30.9141       -0.1461       0.0949       0.1474       0.2465       0.0949         33       42.1968       -24.8757       -32.5073       42.3406       -24.8011       -32.3623       -0.1438       0.0746       0.1450       0.2174       0.0746         34       38.9966       -24.8956       -34.7739       39.1458       -24.1230       -34.6371       -0.1472       0.0666       0.1368       0.2117       0.0666         35       35.3881       -23.5093       -37.2879       35.4288       -23.3987       -0.1472       0.0666       0.1368       0.2117       0.0666         36       30.9643       -22.7542       -40.0225       31.1187       -22.6767       -39.8678       -0.1544       0.0775       0.1547       0.2319       0.0775         37       6.4496       -24.5877       -36.2592       6.4471       -24.4975       -36.1022       0.0025       0.0902       0.1570       0.1811       0.1811       X,         39       8.6498 <t< td=""><td></td><td>31</td><td>45 6407</td><td>-25 7164</td><td>-29 8767</td><td>45 7496</td><td>-25 6074</td><td>-29 7472</td><td>-0 1089</td><td>0 1000</td><td>0.1294</td><td>0 2012</td><td>0.1000</td><td>V</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 31    | 45 6407 | -25 7164 | -29 8767 | 45 7496    | -25 6074   | -29 7472         | -0 1089         | 0 1000          | 0.1294          | 0 2012         | 0.1000             | V         |
| C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         <thc< th=""> <thc< th=""></thc<></thc<></thc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ms 1     | 32    | 44 1371 | -25 4046 | -31 0885 | 44 2832    | -25 3097   | -30 9141         | -0.1461         | 0.0949          | 0.1234          | 0.2012         | 0.0949             | V         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLO I    | 33    | 42,1968 | -24.8757 | -32,5073 | 42,3406    | -24.8011   | -32,3623         | -0.1438         | 0.0746          | 0.1450          | 0.2174         | 0.0746             | Y         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | era      | 34    | 38,9986 | -24,1896 | -34,7739 | 39,1458    | -24,1230   | -34,6371         | -0.1472         | 0.0666          | 0.1368          | 0.2117         | 0.0666             | Ý         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lat      | 35    | 35,3881 | -23.5093 | -37.2879 | 35,4288    | -23.3987   | -37,1758         | -0.0407         | 0.1106          | 0.1121          | 0.1627         | 0.1106             | Y         |
| X         37         6.4496         -24.5877         -36.2592         6.4471         -24.4975         -36.1022         0.0025         0.0902         0.1570         0.1811         0.1811         X,           38         4.2047         -27.5121         -23.7134         4.3044         -27.4138         -23.5763         -0.0997         0.0983         0.1371         0.1960         0.1687         N           39         8.6498         -27.6698         -19.6973         8.7277         -27.5675         -19.6103         -0.0779         0.1023         0.0870         0.1553         0.1343         N           40         4.8321         -27.8480         -14.7507         4.8897         -27.7408         -14.6389         -0.0576         0.1072         0.1118         0.1653         0.1549         N           40         4.8321         -27.8480         -14.7507         -36.2592         6.4471         -24.4975         -36.1022         0.0025         0.0902         0.1570         0.1811         0.0902           5         37         6.4496         -24.5877         -36.2592         6.4471         -24.4975         -36.1022         0.0025         0.0902         0.1570         0.1811         0.0902           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 36    | 30.9643 | -22.7542 | -40.0225 | 31.1187    | -22.6767   | -39.8678         | -0.1544         | 0.0775          | 0.1547          | 0.2319         | 0.0775             | Y         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ύεαί     | 37    | 6.4496  | -24.5877 | -36.2592 | 6.4471     | -24.4975   | -36.1022         | 0.0025          | 0.0902          | 0.1570          | 0.1811         | 0.1811             | X, Y. Z   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 38    | 4.2047  | -27.5121 | -23.7134 | 4.3044     | -27.4138   | -23.5763         | -0.0997         | 0.0983          | 0.1371          | 0.1960         | 0.1687             | Y,Z       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l S si l | 39    | 8.6498  | -27.6698 | -19.6973 | 8.7277     | -27.5675   | -19.6103         | -0.0779         | 0.1023          | 0.0870          | 0.1553         | 0.1343             | Y, Z      |
| 37         6.4496         -24.5877         -36.2592         6.4471         -24.4975         -36.1022         0.0025         0.0902         0.1570         0.1811         0.0902           38         4.2047         -27.5121         -23.7134         4.3044         -27.4138         -23.5763         -0.0997         0.0983         0.1371         0.1960         0.0983           39         8.6498         -27.6698         -19.6973         8.7277         -27.5675         -19.6103         -0.0779         0.1023         0.0870         0.1553         0.1023           40         4.8321         -27.8480         -14.7507         -27.7408         -14.6389         -0.0576         0.1072         0.1118         0.1653         0.1072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₩ã⊖      | 40    | 4.8321  | -27.8480 | -14.7507 | 4.8897     | -27.7408   | -14.6389         | -0.0576         | 0.1072          | 0.1118          | 0.1653         | 0.1549             | Y, Z      |
| Single         38         4.2047         -27.5121         -23.7134         4.3044         -27.4138         -23.5763         -0.0997         0.0983         0.1371         0.1960         0.0983           39         8.6498         -27.6698         -19.6973         8.7277         -27.5675         -19.6103         -0.0779         0.1023         0.0870         0.1553         0.1023           40         4.8321         -27.8480         -14.7507         4.8897         -27.7408         -14.6389         -0.0576         0.1072         0.1118         0.1653         0.1072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥        | 37    | 6.4496  | -24.5877 | -36.2592 | 6.4471     | -24.4975   | -36.1022         | 0.0025          | 0.0902          | 0.1570          | 0.1811         | 0.0902             | Y         |
| a t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) era    | 38    | 4.2047  | -27.5121 | -23.7134 | 4.3044     | -27.4138   | -23.5763         | -0.0997         | 0.0983          | 0.1371          | 0.1960         | 0.0983             | Y         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O at a   | 39    | 8.6498  | -27.6698 | -19.6973 | 8.7277     | -27.5675   | -19.6103         | -0.0779         | 0.1023          | 0.0870          | 0.1553         | 0.1023             | Y         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mi –     | 40    | 4.8321  | -27.8480 | -14.7507 | 4.8897     | -27.7408   | -14.6389         | -0.0576         | 0.1072          | 0.1118          | 0.1653         | 0.1072             | Y         |

deforming inward toward the occupant compartment. <sup>c</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-3. Left Interior Crush Data – Set 1, Test No. WZNP-2

| IMPACI SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y)      | POINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                          | Pretest<br>X<br>(in)<br>44.8609<br>44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435                                                                        | Pretest<br>Y<br>(in.)<br>-14.2196<br>-26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283 | Pretest<br>Z<br>(in.)<br>-32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577<br>-24.334  | VE<br>DRIVER S<br>Posttest X<br>(in.)<br>44.1167<br>43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.4036            | HICLE DE<br>DE INTEF<br>Posttest Y<br>(in.)<br>-12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-44.6757<br>-43.6364<br>-44.8762 | FORMATI<br>RIOR CRUS<br>Posttest Z<br>(in.)<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354 | ON<br>SH - SET 2<br>ΔX <sup>A</sup><br>(in.)<br>0.7442<br>0.3346<br>-0.0632<br>0.9481  | ΔΥ <sup>A</sup><br>(in.)<br>1.4801<br>1.5117<br>1.5154<br>1.2866 | ΔΖ <sup>A</sup><br>(in.)<br>0.1947<br>0.1255<br>0.0265<br>0.1494 | Total Δ<br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Crush <sup>B</sup><br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Direction<br>for<br>Crush <sup>C</sup><br>X, Y, Z<br>X, Y, Z<br>X, Y, Z |
|---------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| IMPACI SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y) (X, Y, Z) | POINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                          | Pretest<br>X<br>(in.)<br>44.8609<br>44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                            | Pretest<br>Y<br>(in.)<br>-14.2196<br>-26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283 | Pretest<br>Z<br>(in.)<br>-32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577<br>-24.3344 | VE<br>DRIVER S<br>Posttest X<br>(in.)<br>44.1167<br>43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277<br>co.4465 | Posttest Y<br>(in.)<br>-12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                         | Posttest Z<br>(in.)<br>-31.9402<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354             | ON<br>SH - SET 2<br>ΔX <sup>A</sup><br>(in.)<br>0.7442<br>0.3346<br>-0.0632<br>0.9481  | ΔΥ <sup>A</sup><br>(in.)<br>1.4801<br>1.5117<br>1.5154<br>1.2866 | ΔZ <sup>A</sup><br>(in.)<br>0.1947<br>0.1255<br>0.0265<br>0.1494 | Total Δ<br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Crush <sup>B</sup><br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Direction<br>for<br>Crush <sup>C</sup><br>X, Y, Z<br>X, Y, Z            |
| IMPACT SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y) (Y)  | POINT 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15                                        | Pretest<br>X<br>(in.)<br>44.8609<br>44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                            | Pretest<br>Y<br>(in.)<br>-26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.0017<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283             | Pretest<br>Z<br>(in.)<br>-32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577<br>-7.23344 | DRIVER S<br>Posttest X<br>(in.)<br>44.1167<br>43.7691<br>44.3320<br>39.5892<br>42.1676<br>50.4036<br>50.7277<br>c6.4465                  | Posttest Y<br>(in.)<br>-12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-34.6757<br>-43.6364<br>-44.8762                         | Posttest Z<br>(in.)<br>-31.9402<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354             | ΔX <sup>A</sup> (in.)           0.7442         0.3346           -0.0632         0.9481 | ΔY <sup>A</sup><br>(in.)<br>1.4801<br>1.5117<br>1.5154<br>1.2866 | ΔZ <sup>A</sup><br>(in.)<br>0.1947<br>0.1255<br>0.0265<br>0.1494 | Total ∆<br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Crush <sup>B</sup><br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Direction<br>for<br>Crush <sup>C</sup><br>X, Y, Z<br>X, Y, Z<br>X, Y, Z |
| IMPACT SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y) (Y)  | POINT 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15                                        | Pretest<br>X<br>(in.)<br>44.8609<br>44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                            | Pretest<br>Y<br>(in.)<br>-14.2196<br>-26.0595<br>-37.9165<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                         | Pretest<br>Z<br>(in.)<br>-32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577<br>-24.3344 | Posttest X<br>(in.)<br>44.1167<br>43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.4036<br>50.7277                   | Posttest Y<br>(in.)<br>-12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                         | Posttest Z<br>(in.)<br>-31.9402<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354             | ΔX <sup>A</sup><br>(in.)<br>0.7442<br>0.3346<br>-0.0632<br>0.9481                      | ΔΥ <sup>A</sup><br>(in.)<br>1.4801<br>1.5117<br>1.5154<br>1.2866 | ΔZ <sup>A</sup><br>(in.)<br>0.1947<br>0.1255<br>0.0265<br>0.1494 | Total ∆<br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Crush <sup>B</sup><br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Direction<br>for<br>Crush <sup>c</sup><br>X, Y, Z<br>X, Y, Z<br>X, Y, Z |
| IMPACT SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y) (Y)  | POINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                          | 44.8609           44.8609           44.2688           37.8990           40.0917           41.9406           50.3336           50.6836           53.3140           40.3612           30.0831           19.6435           40.4730 | Y<br>(in.)<br>-14.2196<br>-26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283            | 2<br>(in.)<br>-32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577                        | Posttest X<br>(in.)<br>44.1167<br>43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277<br>50.4465                   | Posttest Y<br>(in.)<br>-12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                         | Posttest Z<br>(in.)<br>-31.9402<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354             | ΔX <sup>A</sup><br>(in.)<br>0.7442<br>0.3346<br>-0.0632<br>0.9481                      | ΔΥ <sup>A</sup><br>(in.)<br>1.4801<br>1.5117<br>1.5154<br>1.2866 | ΔZ <sup>A</sup><br>(in.)<br>0.1947<br>0.1255<br>0.0265<br>0.1494 | Total ∆<br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | Crush <sup>B</sup><br>(in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052 | for<br>Crush <sup>c</sup><br>X, Y, Z<br>X, Y, Z<br>X, Y, Z              |
| IMPACI SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y)      | POINT 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15                                      | (in.)<br>44.8609<br>44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                            | (in.)<br>-14.2196<br>-26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.0866<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                 | 2<br>(in.)<br>-32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577<br>-24.3344            | (in.)<br>44.1167<br>43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277<br>50.4462                                 | (in.)<br>-12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                                       | (in.)<br>-31.9402<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354                           | (in.)<br>0.7442<br>0.3346<br>-0.0632<br>0.9481                                         | (in.)<br>1.4801<br>1.5117<br>1.5154<br>1.2866                    | (in.)<br>0.1947<br>0.1255<br>0.0265<br>0.1494                    | (in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052            | (in.)<br>1.6681<br>1.5534<br>1.5169<br>1.6052                       | Crush <sup>C</sup><br>X, Y, Z<br>X, Y, Z<br>X, Y, Z                     |
| IMPACT SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y)      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 44.8609<br>44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                     | -14.2196<br>-26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                          | -32.1349<br>-32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577                                      | 44.1167<br>43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277                                                     | -12.7395<br>-24.5478<br>-36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                                                | -31.9402<br>-32.6325<br>-33.1503<br>-21.3143<br>-20.1354                                    | 0.7442<br>0.3346<br>-0.0632<br>0.9481                                                  | 1.4801<br>1.5117<br>1.5154<br>1.2866                             | 0.1947<br>0.1255<br>0.0265<br>0.1494                             | 1.6681<br>1.5534<br>1.5169<br>1.6052                     | 1.6681<br>1.5534<br>1.5169<br>1.6052                                | X, Y, Z<br>X, Y, Z<br>X, Y, Z                                           |
| IMPACT SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z)<br>(Y) (Y)      | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13<br>14<br>15     | 44.1037<br>44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                           | -26.0595<br>-37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                      | -32.7580<br>-33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577                                                  | 43.7691<br>44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277                                                                | -24.5478<br>-36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                                                            | -32.6325<br>-33.1503<br>-21.3143<br>-20.1354                                                | 0.3346<br>-0.0632<br>0.9481                                                            | 1.5117<br>1.5154<br>1.2866                                       | 0.1255                                                           | 1.5534<br>1.5169<br>1.6052                               | 1.5534<br>1.5169                                                    | X, Y, Z<br>X, Y, Z<br>X, Y, Z                                           |
| IMPACT SIDE SIDE DASH<br>DOOR PANEL (X, Y, Z<br>(Y) (Y)       | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                | 44.2688<br>37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                           | -37.9165<br>-14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                                  | -33.1768<br>-21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577<br>24.3344                                                   | 44.3320<br>36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277                                                                           | -36.4011<br>-12.8564<br>-24.6757<br>-43.6364<br>-44.8762                                                                        | -33.1503<br>-21.3143<br>-20.1354                                                            | -0.0632<br>0.9481                                                                      | 1.5154                                                           | 0.0265                                                           | 1.5169                                                   | 1.5169                                                              | X, Y, Z                                                                 |
| IMPACI SIDE SIDE DA:<br>DOOR PANEL (X, Y<br>(Y) (Y)           | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                     | 37.8990<br>40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                      | -14.1430<br>-26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                                              | -21.4637<br>-20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577                                                                          | 36.9509<br>39.5892<br>42.1676<br>50.4036<br>50.7277                                                                                      | -12.8564<br>-24.6757<br>-43.6364<br>-44.8762                                                                                    | -21.3143<br>-20.1354                                                                        | 0.9481                                                                                 | 1,2866                                                           | 0 1/0/                                                           | 1.6052                                                   | 1 6052                                                              | VV7                                                                     |
| IMPACI SIDE SIDE I<br>DOOR PANEL ()<br>(Y) (Y) (2)            | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                          | 40.0917<br>41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                                 | -26.0335<br>-45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                                                          | -20.2049<br>-20.1722<br>-9.1002<br>-5.4469<br>-7.0577                                                                                      | 39.5892<br>42.1676<br>50.4036<br>50.7277                                                                                                 | -24.6757<br>-43.6364<br>-44.8762                                                                                                | -20.1354                                                                                    |                                                                                        |                                                                  | 0.1434                                                           |                                                          | 1.0002                                                              | A, T, Z                                                                 |
| IMPACT SIDE SIDE<br>DOOR PANEL<br>(Y) (Y)                     | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                               | 41.9406<br>50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                                            | -45.0494<br>-46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                                                                      | -20.1722<br>-9.1002<br>-5.4469<br>-7.0577                                                                                                  | 42.1676<br>50.4036<br>50.7277                                                                                                            | -43.6364                                                                                                                        | 00 1000                                                                                     | 0.5025                                                                                 | 1.3578                                                           | 0.0695                                                           | 1.4495                                                   | 1.4495                                                              | X, Y, Z                                                                 |
| IMPACT SIDE SIDE<br>DOOR PANEL<br>(Y) (Y)                     | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                    | 50.3336<br>50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                                                       | -46.1077<br>-46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                                                                                  | -9.1002<br>-5.4469<br>-7.0577                                                                                                              | 50.4036<br>50.7277                                                                                                                       | -44.8762                                                                                                                        | -20.1696                                                                                    | -0.2270                                                                                | 1.4130                                                           | 0.0026                                                           | 1.4311                                                   | 1.4311                                                              | X, Y, Z                                                                 |
| IMPACT SIDE SID<br>DOOR PAN<br>(Y) (Y) (Y)                    | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                         | 50.6836<br>53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                                                                  | -46.0866<br>-46.0117<br>-48.3103<br>-48.5283                                                                                                              | -5.4469<br>-7.0577                                                                                                                         | 50.7277                                                                                                                                  |                                                                                                                                 | -9.0362                                                                                     | -0.0700                                                                                | 1.2315                                                           | 0.0640                                                           | 1.2351                                                   | 1.2315                                                              | Y                                                                       |
|                                                               | 9<br>10<br>11<br>12<br>13<br>14<br>15                                              | 53.3140<br>40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                                                                             | -46.0117<br>-48.3103<br>-48.5283                                                                                                                          | -7.0577                                                                                                                                    | EO 4400                                                                                                                                  | -44.8713                                                                                                                        | -5.4460                                                                                     | -0.0441                                                                                | 1.2153                                                           | 0.0009                                                           | 1.2161                                                   | 1.2153                                                              | Y                                                                       |
| IMPACT SIDE<br>DOOR<br>(Y)                                    | 10<br>11<br>12<br>13<br>14<br>15                                                   | 40.3612<br>30.0831<br>19.6435<br>40.4730                                                                                                                                                                                        | -48.3103<br>-48.5283                                                                                                                                      | 24 3344                                                                                                                                    | 53.1468                                                                                                                                  | -45.8905                                                                                                                        | -6.9314                                                                                     | 0.1672                                                                                 | 0.1212                                                           | 0.1263                                                           | 0.2421                                                   | 0.1212                                                              | Y                                                                       |
| IMPACT SIC<br>DOOR<br>(Y)                                     | 11<br>12<br>13<br>14<br>15                                                         | 30.0831<br>19.6435<br>40.4730                                                                                                                                                                                                   | -48.5283                                                                                                                                                  | -24.5544                                                                                                                                   | 40.2606                                                                                                                                  | -48.1259                                                                                                                        | -24.2916                                                                                    | 0.1006                                                                                 | 0.1844                                                           | 0.0428                                                           | 0.2144                                                   | 0.1844                                                              | Y                                                                       |
| IMPACT<br>DOO<br>(Y)                                          | 12<br>13<br>14<br>15                                                               | 19.6435<br>40.4730                                                                                                                                                                                                              | 10 0                                                                                                                                                      | -23.8665                                                                                                                                   | 29.9820                                                                                                                                  | -48.3093                                                                                                                        | -23.8066                                                                                    | 0.1011                                                                                 | 0.2190                                                           | 0.0599                                                           | 0.2485                                                   | 0.2190                                                              | Y Y                                                                     |
|                                                               | 13<br>14<br>15                                                                     | 40.4730                                                                                                                                                                                                                         | -48.8884                                                                                                                                                  | -23.8336                                                                                                                                   | 19.5159                                                                                                                                  | -48.6856                                                                                                                        | -23.8240                                                                                    | 0.1276                                                                                 | 0.2028                                                           | 0.0096                                                           | 0.2398                                                   | 0.2028                                                              | Y                                                                       |
|                                                               | 14                                                                                 | 20.0054                                                                                                                                                                                                                         | -47.2758                                                                                                                                                  | -10.5298                                                                                                                                   | 40.2594                                                                                                                                  | -4/.19/6                                                                                                                        | -10.5545                                                                                    | 0.2136                                                                                 | 0.0782                                                           | -0.0247                                                          | 0.2288                                                   | 0.0782                                                              | Y                                                                       |
|                                                               | 10                                                                                 | 32.9031                                                                                                                                                                                                                         | 49.0039                                                                                                                                                   | -0.3100                                                                                                                                    | 32.0224                                                                                                                                  | 49.7214                                                                                                                         | -0.3035                                                                                     | 0.1027                                                                                 | 0.1425                                                           | -0.0669                                                          | 0.2204                                                   | 0.1372                                                              | r<br>V                                                                  |
|                                                               | 10                                                                                 | 26.2790                                                                                                                                                                                                                         | -43.2700                                                                                                                                                  | 47.0074                                                                                                                                    | 26.2446                                                                                                                                  | 43.1410                                                                                                                         | 46.9420                                                                                     | 0.0264                                                                                 | 0.10/2                                                           | -0.1000                                                          | 0.2004                                                   | 0.1072                                                              | 7                                                                       |
| _                                                             | 17                                                                                 | 36 5884                                                                                                                                                                                                                         | -18 6392                                                                                                                                                  | -46.8997                                                                                                                                   | 36,5980                                                                                                                                  | -18 4424                                                                                                                        | -46.7229                                                                                    | -0.0304                                                                                | 0.1941                                                           | 0.1035                                                           | 0.2504                                                   | 0.1035                                                              | 7                                                                       |
| -                                                             | 18                                                                                 | 36 0724                                                                                                                                                                                                                         | -25 2094                                                                                                                                                  | -46.8234                                                                                                                                   | 36 1561                                                                                                                                  | -24 9740                                                                                                                        | -46 6411                                                                                    | -0.0837                                                                                | 0.1300                                                           | 0.1700                                                           | 0.3093                                                   | 0.1700                                                              | 7                                                                       |
| -                                                             | 19                                                                                 | 35 1386                                                                                                                                                                                                                         | -31 4608                                                                                                                                                  | -46 6503                                                                                                                                   | 35 1494                                                                                                                                  | -31 2703                                                                                                                        | -46 5272                                                                                    | -0.0108                                                                                | 0.1905                                                           | 0.1231                                                           | 0.2271                                                   | 0.1020                                                              | 7                                                                       |
|                                                               | 20                                                                                 | 33.9111                                                                                                                                                                                                                         | -36.3742                                                                                                                                                  | -46.4516                                                                                                                                   | 33,9136                                                                                                                                  | -36,1435                                                                                                                        | -46.3601                                                                                    | -0.0025                                                                                | 0.2307                                                           | 0.0915                                                           | 0.2482                                                   | 0.0915                                                              | Z                                                                       |
|                                                               | 21                                                                                 | 26.2361                                                                                                                                                                                                                         | -12.9942                                                                                                                                                  | -50.3817                                                                                                                                   | 26.2912                                                                                                                                  | -12.8391                                                                                                                        | -50.2188                                                                                    | -0.0551                                                                                | 0.1551                                                           | 0.1629                                                           | 0.2316                                                   | 0.1629                                                              | Z                                                                       |
| ₿ F                                                           | 22                                                                                 | 26.8034                                                                                                                                                                                                                         | -19.3335                                                                                                                                                  | -50.2818                                                                                                                                   | 26.8866                                                                                                                                  | -19.1800                                                                                                                        | -50.1388                                                                                    | -0.0832                                                                                | 0.1535                                                           | 0.1430                                                           | 0.2257                                                   | 0.1430                                                              | Z                                                                       |
| ц.                                                            | 23                                                                                 | 27.0172                                                                                                                                                                                                                         | -24.5759                                                                                                                                                  | -50.1162                                                                                                                                   | 26.9950                                                                                                                                  | -24.2971                                                                                                                        | -50.0104                                                                                    | 0.0222                                                                                 | 0.2788                                                           | 0.1058                                                           | 0.2990                                                   | 0.1058                                                              | Z                                                                       |
| 8                                                             | 24                                                                                 | 26.9774                                                                                                                                                                                                                         | -29.4194                                                                                                                                                  | -49.8799                                                                                                                                   | 27.0966                                                                                                                                  | -29.1907                                                                                                                        | -49.7691                                                                                    | -0.1192                                                                                | 0.2287                                                           | 0.1108                                                           | 0.2807                                                   | 0.1108                                                              | Z                                                                       |
| <u>د</u>                                                      | 25                                                                                 | 26.8512                                                                                                                                                                                                                         | -34.1046                                                                                                                                                  | -49.5409                                                                                                                                   | 26.9340                                                                                                                                  | -33.7302                                                                                                                        | -49.4713                                                                                    | -0.0828                                                                                | 0.3744                                                           | 0.0696                                                           | 0.3897                                                   | 0.0696                                                              | Z                                                                       |
|                                                               | 26                                                                                 | 12.3251                                                                                                                                                                                                                         | -13.3976                                                                                                                                                  | -51.2562                                                                                                                                   | 12.3537                                                                                                                                  | -13.2198                                                                                                                        | -51.1883                                                                                    | -0.0286                                                                                | 0.1778                                                           | 0.0679                                                           | 0.1925                                                   | 0.0679                                                              | Z                                                                       |
| _                                                             | 27                                                                                 | 12.2545                                                                                                                                                                                                                         | -19.2590                                                                                                                                                  | -51.2467                                                                                                                                   | 12.3341                                                                                                                                  | -19.1132                                                                                                                        | -51.1866                                                                                    | -0.0796                                                                                | 0.1458                                                           | 0.0601                                                           | 0.1767                                                   | 0.0601                                                              | Z                                                                       |
|                                                               | 28                                                                                 | 12.5707                                                                                                                                                                                                                         | -24.1959                                                                                                                                                  | -51.1355                                                                                                                                   | 12.5910                                                                                                                                  | -23.9816                                                                                                                        | -51.0900                                                                                    | -0.0203                                                                                | 0.2143                                                           | 0.0455                                                           | 0.2200                                                   | 0.0455                                                              | Z                                                                       |
|                                                               | 29                                                                                 | 13.0279                                                                                                                                                                                                                         | -29.9705                                                                                                                                                  | -50.8840                                                                                                                                   | 13.0509                                                                                                                                  | -29.7891                                                                                                                        | -50.8597                                                                                    | -0.0230                                                                                | 0.1814                                                           | 0.0243                                                           | 0.1845                                                   | 0.0243                                                              | Z                                                                       |
|                                                               | 30                                                                                 | 13.5590                                                                                                                                                                                                                         | -34.5101                                                                                                                                                  | -50.5954                                                                                                                                   | 13.5646                                                                                                                                  | -34.3739                                                                                                                        | -50.5849                                                                                    | -0.0056                                                                                | 0.1362                                                           | 0.0105                                                           | 0.1367                                                   | 0.0105                                                              | <u> </u>                                                                |
| ~                                                             | 31                                                                                 | 48.4829                                                                                                                                                                                                                         | -44.4049                                                                                                                                                  | -33.7034                                                                                                                                   | 48.4795                                                                                                                                  | -44.1557                                                                                                                        | -33.6399                                                                                    | 0.0034                                                                                 | 0.2492                                                           | 0.0635                                                           | 0.2572                                                   | 0.2572                                                              | X, Y, Z                                                                 |
| 수 별 (?) ㅡ                                                     | 32                                                                                 | 46.9786                                                                                                                                                                                                                         | -44.1236                                                                                                                                                  | -34.9218                                                                                                                                   | 47.0187                                                                                                                                  | -43.8781                                                                                                                        | -34.8186                                                                                    | -0.0401                                                                                | 0.2455                                                           | 0.1032                                                           | 0.2693                                                   | 0.2663                                                              | Y,Z                                                                     |
| 티 흔 거 누                                                       | 33                                                                                 | 40.0340                                                                                                                                                                                                                         | -43.0335                                                                                                                                                  | -30.3494                                                                                                                                   | 45.0606                                                                                                                                  | -43.3900                                                                                                                        | -30.2023                                                                                    | -0.0462                                                                                | 0.2370                                                           | 0.0671                                                           | 0.2506                                                   | 0.2403                                                              | 1, Z                                                                    |
| A Rain                                                        | 35                                                                                 | 38 2200                                                                                                                                                                                                                         | -42 4030                                                                                                                                                  | -41 1596                                                                                                                                   | 38 1895                                                                                                                                  | -42.7032                                                                                                                        | -41 1521                                                                                    | 0.0314                                                                                 | 0.2401                                                           | 0.0471                                                           | 0.2001                                                   | 0.2020                                                              | X V 7                                                                   |
| `-  -                                                         | 36                                                                                 | 33,7948                                                                                                                                                                                                                         | -41,7352                                                                                                                                                  | -43 9131                                                                                                                                   | 33 8919                                                                                                                                  | -41 4311                                                                                                                        | -43,8797                                                                                    | -0.0971                                                                                | 0.3041                                                           | 0.0334                                                           | 0.3210                                                   | 0.3059                                                              | Y 7                                                                     |
|                                                               | 31                                                                                 | 48 4820                                                                                                                                                                                                                         | -44 4040                                                                                                                                                  | -33 7034                                                                                                                                   | 48 4705                                                                                                                                  | -44 1557                                                                                                                        | -33 6300                                                                                    | 0.0034                                                                                 | 0.2492                                                           | 0.0635                                                           | 0.2572                                                   | 0.2492                                                              | V V                                                                     |
| mc -                                                          | 32                                                                                 | 46 9786                                                                                                                                                                                                                         | -44 1236                                                                                                                                                  | -34 9218                                                                                                                                   | 47 0187                                                                                                                                  | -43 8781                                                                                                                        | -34 8186                                                                                    | -0.0401                                                                                | 0.2452                                                           | 0.1032                                                           | 0.2693                                                   | 0.2452                                                              | v v                                                                     |
| AC -                                                          | 33                                                                                 | 45.0346                                                                                                                                                                                                                         | -43.6335                                                                                                                                                  | -36.3494                                                                                                                                   | 45.0808                                                                                                                                  | -43.3965                                                                                                                        | -36,2823                                                                                    | -0.0462                                                                                | 0.2370                                                           | 0.0671                                                           | 0.2506                                                   | 0.2370                                                              | Y                                                                       |
| era                                                           | 34                                                                                 | 41.8333                                                                                                                                                                                                                         | -43.0113                                                                                                                                                  | -38.6301                                                                                                                                   | 41.8954                                                                                                                                  | -42,7632                                                                                                                        | -38,5830                                                                                    | -0.0621                                                                                | 0.2481                                                           | 0.0471                                                           | 0.2601                                                   | 0.2481                                                              | Ý                                                                       |
| Lat                                                           | 35                                                                                 | 38.2209                                                                                                                                                                                                                         | -42.4030                                                                                                                                                  | -41.1596                                                                                                                                   | 38.1895                                                                                                                                  | -42.0913                                                                                                                        | -41.1521                                                                                    | 0.0314                                                                                 | 0.3117                                                           | 0.0075                                                           | 0.3134                                                   | 0.3117                                                              | Y                                                                       |
|                                                               | 36                                                                                 | 33.7948                                                                                                                                                                                                                         | -41.7352                                                                                                                                                  | -43.9131                                                                                                                                   | 33.8919                                                                                                                                  | -41.4311                                                                                                                        | -43.8797                                                                                    | -0.0971                                                                                | 0.3041                                                           | 0.0334                                                           | 0.3210                                                   | 0.3041                                                              | Y                                                                       |
| ¥ EΩ                                                          | 37                                                                                 | 9.3028                                                                                                                                                                                                                          | -44.0010                                                                                                                                                  | -40.2384                                                                                                                                   | 9.2215                                                                                                                                   | -43.6706                                                                                                                        | -40.3388                                                                                    | 0.0813                                                                                 | 0.3304                                                           | -0.1004                                                          | 0.3548                                                   | 0.3403                                                              | X, Y                                                                    |
| A nu Z                                                        | 38                                                                                 | 7.0625                                                                                                                                                                                                                          | -46.9321                                                                                                                                                  | -27.6934                                                                                                                                   | 7.0170                                                                                                                                   | -46.6652                                                                                                                        | -27.8422                                                                                    | 0.0455                                                                                 | 0.2669                                                           | -0.1488                                                          | 0.3089                                                   | 0.2708                                                              | X, Y                                                                    |
| L Sail                                                        | 39                                                                                 | 11.4942                                                                                                                                                                                                                         | -46.9988                                                                                                                                                  | -23.6600                                                                                                                                   | 11.4072                                                                                                                                  | -46.7598                                                                                                                        | -23.8377                                                                                    | 0.0870                                                                                 | 0.2390                                                           | -0.1777                                                          | 0.3103                                                   | 0.2543                                                              | X, Y                                                                    |
| ah ≌ ⊂                                                        | 40                                                                                 | 7.6613                                                                                                                                                                                                                          | -47.2327                                                                                                                                                  | -18.7274                                                                                                                                   | 7.5290                                                                                                                                   | -47.0134                                                                                                                        | -18.9011                                                                                    | 0.1323                                                                                 | 0.2193                                                           | -0.1737                                                          | 0.3095                                                   | 0.2561                                                              | X, Y                                                                    |
| ¥_                                                            | 37                                                                                 | 9.3028                                                                                                                                                                                                                          | -44.0010                                                                                                                                                  | -40.2384                                                                                                                                   | 9.2215                                                                                                                                   | -43.6706                                                                                                                        | -40.3388                                                                                    | 0.0813                                                                                 | 0.3304                                                           | -0.1004                                                          | 0.3548                                                   | 0.3304                                                              | Y                                                                       |
|                                                               | 38                                                                                 | 7.0625                                                                                                                                                                                                                          | -46.9321                                                                                                                                                  | -27.6934                                                                                                                                   | 7.0170                                                                                                                                   | -46.6652                                                                                                                        | -27.8422                                                                                    | 0.0455                                                                                 | 0.2669                                                           | -0.1488                                                          | 0.3089                                                   | 0.2669                                                              | Y                                                                       |
|                                                               | 39                                                                                 | 11.4942                                                                                                                                                                                                                         | -46.9988                                                                                                                                                  | -23.6600                                                                                                                                   | 11.4072                                                                                                                                  | -46.7598                                                                                                                        | -23.8377                                                                                    | 0.0870                                                                                 | 0.2390                                                           | -0.1777                                                          | 0.3103                                                   | 0.2390                                                              | Y                                                                       |
| mi –                                                          | 40                                                                                 | 7.6613                                                                                                                                                                                                                          | -47.2327                                                                                                                                                  | -18.7274                                                                                                                                   | 7.5290                                                                                                                                   | -47.0134                                                                                                                        | -18.9011                                                                                    | 0.1323                                                                                 | 0.2193                                                           | -0.1737                                                          | 0.3095                                                   | 0.2193                                                              | Y                                                                       |

deforming inward toward the occupant components will disregard components that are negative and only include positive values where the or <sup>c</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-4. Left Interior Crush Data – Set 2, Test No. WZNP-2

| Date:<br>Year: | 3/14/<br>20 | /2019<br>111          |                       |                       | Test Name:<br>Make: | WZ<br>Do             | NP-2<br>dge         |                          |                          | VIN:<br>Model:           | 1D7R             | B1GP6BS6<br>Ram 1500        | 34520                                   |
|----------------|-------------|-----------------------|-----------------------|-----------------------|---------------------|----------------------|---------------------|--------------------------|--------------------------|--------------------------|------------------|-----------------------------|-----------------------------------------|
|                |             |                       |                       |                       | VE                  | HICLE DE<br>GER SIDE | FORMATIC            | ON<br>N - SET 1          |                          |                          |                  |                             |                                         |
|                | POINT       | Pretest<br>X<br>(in.) | Pretest<br>Y<br>(in.) | Pretest<br>Z<br>(in.) | Posttest X<br>(in.) | Posttest Y<br>(in.)  | Posttest Z<br>(in.) | ∆X <sup>A</sup><br>(in.) | ΔΥ <sup>Α</sup><br>(in.) | ∆Z <sup>A</sup><br>(in.) | Total ∆<br>(in.) | Crush <sup>B</sup><br>(in.) | Directions<br>for<br>Crush <sup>C</sup> |
|                | 1           | 55.2346               | 32.0113               | -1.5403               | 55.2220             | 32.0556              | -1.3620             | 0.0126                   | -0.0443                  | -0.1783                  | 0.1842           | 0.0126                      | X                                       |
|                | 2           | 56.0127               | 29.1949               | -0.2558               | 56.0140             | 29.2546              | -0.1220             | -0.0013                  | -0.0597                  | -0.1338                  | 0.1465           | 0.0000                      | NA                                      |
|                | 3           | 55.7108               | 25.9067               | 0.0439                | 55.6973             | 25.9444              | 0.1734              | 0.0135                   | -0.0377                  | -0.1295                  | 0.1355           | 0.0135                      | Х                                       |
| żΨ             | 4           | 55.4657               | 23.3568               | -0.0348               | 55.4549             | 23.4429              | 0.0786              | 0.0108                   | -0.0861                  | -0.1134                  | 0.1428           | 0.0108                      | Х                                       |
| R ≥ Q          | 5           | 54.2642               | 21.6627               | -1.5696               | 54.2668             | 21.8255              | -1.3988             | -0.0026                  | -0.1628                  | -0.1708                  | 0.2360           | 0.0000                      | NA                                      |
| ж<br>Ш         | 6           | 50.8912               | 32.6256               | 2.7549                | 50.9063             | 32.7508              | 2.8586              | -0.0151                  | -0.1252                  | -0.1037                  | 0.1633           | 0.0000                      | NA                                      |
| 은 뿐            | 7           | 50.8806               | 28.6701               | 2.7721                | 50.9231             | 28.8273              | 2.8624              | -0.0425                  | -0.1572                  | -0.0903                  | 0.1862           | 0.0000                      | NA                                      |
| · >            | 8           | 51.0141               | 25.6962               | 2.7273                | 51.0467             | 25.8328              | 2.8224              | -0.0326                  | -0.1366                  | -0.0951                  | 0.1696           | 0.0000                      | NA                                      |
|                | 9           | 50.8971               | 23.1290               | 2.5518                | 50.9127             | 23.2613              | 2.6733              | -0.0156                  | -0.1323                  | -0.1215                  | 0.1803           | 0.0000                      | NA                                      |
|                | 10          | 50.0692               | 21.1014               | 0.2794                | 50.0565             | 21.2626              | 0.4505              | 0.0127                   | -0.1612                  | -0.1711                  | 0.2354           | 0.0127                      | Х                                       |
|                | 11          | 45.2116               | 34.2453               | 5.0508                | 45.2639             | 34.3217              | 5.1505              | -0.0523                  | -0.0764                  | -0.0997                  | 0.1361           | -0.0997                     | Z                                       |
|                | 12          | 44.9768               | 29.8539               | 5.0172                | 45.0207             | 29.9183              | 5.1155              | -0.0439                  | -0.0644                  | -0.0983                  | 0.1254           | -0.0983                     | Z                                       |
|                | 13          | 44.7672               | 26.3345               | 5.0305                | 44.8177             | 26,4063              | 5.1287              | -0.0505                  | -0.0718                  | -0.0982                  | 0.1317           | -0.0982                     | Z                                       |
|                | 14          | 44,7369               | 23.2152               | 5.0178                | 44,7441             | 23.3043              | 5.1172              | -0.0072                  | -0.0891                  | -0.0994                  | 0.1337           | -0.0994                     | Z                                       |
|                | 15          | 44.5559               | 20.3186               | 4.7805                | 44.5602             | 20.3955              | 4.8803              | -0.0043                  | -0.0769                  | -0.0998                  | 0.1261           | -0.0998                     | Z                                       |
|                | 16          | 40.5707               | 34.4791               | 5.1106                | 40.6098             | 34.5679              | 5.2072              | -0.0391                  | -0.0888                  | -0.0966                  | 0.1369           | -0.0966                     | Z                                       |
|                | 17          | 40,1689               | 30.3747               | 5.0711                | 40.2249             | 30,4823              | 5.1670              | -0.0560                  | -0.1076                  | -0.0959                  | 0.1546           | -0.0959                     | Z                                       |
| 7              | 18          | 39.6967               | 26.0647               | 5.0719                | 39.7652             | 26.1659              | 5.1673              | -0.0685                  | -0.1012                  | -0.0954                  | 0.1550           | -0.0954                     | Z                                       |
| AP             | 19          | 39.2462               | 22.9082               | 5.0733                | 39.2909             | 22.9482              | 5.1683              | -0.0447                  | -0.0400                  | -0.0950                  | 0.1124           | -0.0950                     | Z                                       |
| а<br>с ()      | 20          | 39.1815               | 17.8692               | 5.0741                | 39.2358             | 17.9557              | 5.1698              | -0.0543                  | -0.0865                  | -0.0957                  | 0.1400           | -0.0957                     | Z                                       |
| ΫŅ             | 21          | 34.6625               | 34.3302               | 5.1387                | 34.7189             | 34,4115              | 5.2302              | -0.0564                  | -0.0813                  | -0.0915                  | 0.1348           | -0.0915                     | Z                                       |
| P              | 22          | 34.6595               | 30.7932               | 5.1376                | 34.6915             | 30.8611              | 5.2287              | -0.0320                  | -0.0679                  | -0.0911                  | 0.1180           | -0.0911                     | Z                                       |
| ш              | 23          | 34.9819               | 25.4563               | 5.1017                | 35.0209             | 25.5320              | 5.1938              | -0.0390                  | -0.0757                  | -0.0921                  | 0.1254           | -0.0921                     | Z                                       |
|                | 24          | 34.8232               | 21.6166               | 5.1091                | 34.8772             | 21.6812              | 5.2006              | -0.0540                  | -0.0646                  | -0.0915                  | 0.1243           | -0.0915                     | Z                                       |
|                | 25          | 35.0005               | 17.2748               | 5.1075                | 35.0093             | 17.3250              | 5.1997              | -0.0088                  | -0.0502                  | -0.0922                  | 0.1053           | -0.0922                     | Z                                       |
|                | 26          | 30.6182               | 33.8089               | 4.1514                | 30.6254             | 33.8889              | 4.2399              | -0.0072                  | -0.0800                  | -0.0885                  | 0.1195           | -0.0885                     | Z                                       |
|                | 27          | 30.7718               | 30.0524               | 4.3797                | 30.8101             | 30.1038              | 4.4667              | -0.0383                  | -0.0514                  | -0.0870                  | 0.1081           | -0.0870                     | Z                                       |
|                | 28          | 31.0939               | 25.0769               | 4.3685                | 31.1283             | 25.1438              | 4.4550              | -0.0344                  | -0.0669                  | -0.0865                  | 0.1146           | -0.0865                     | Z                                       |
|                | 29          | 31.1409               | 20.8643               | 4.3656                | 31.2175             | 20.9748              | 4.4565              | -0.0766                  | -0.1105                  | -0.0909                  | 0.1623           | -0.0909                     | Z                                       |
|                | 30          | 31.1655               | 16.6633               | 4.3721                | 31.2053             | 16.6826              | 4.4605              | -0.0398                  | -0.0193                  | -0.0884                  | 0.0988           | -0.0884                     | Z                                       |

<sup>B</sup> Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

<sup>C</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.



Figure C-5. Right Floor Pan Deformation Data – Set 1, Test No. WZNP-2

| Date:<br>Year: | 3/14. | /2019<br>011          |                       |                       | Test Name:<br>Make: | WZ<br>Do              | NP-2<br>dge         | i<br>i                   |                          | VIN:<br>Model:           | 1D7R             | B1GP6BS6<br>Ram 1500        | 34520                                   |
|----------------|-------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|---------------------|--------------------------|--------------------------|--------------------------|------------------|-----------------------------|-----------------------------------------|
|                |       |                       |                       |                       | VE                  | EHICLE DE<br>GER SIDE | FORMATIC            | ON<br>AN - SET 2         |                          |                          |                  |                             |                                         |
|                | POINT | Pretest<br>X<br>(in.) | Pretest<br>Y<br>(in.) | Pretest<br>Z<br>(in.) | Posttest X<br>(in.) | Posttest Y<br>(in.)   | Posttest Z<br>(in.) | ∆X <sup>A</sup><br>(in.) | ΔΥ <sup>Α</sup><br>(in.) | ∆Z <sup>A</sup><br>(in.) | Total ∆<br>(in.) | Crush <sup>B</sup><br>(in.) | Directions<br>for<br>Crush <sup>C</sup> |
|                | 1     | 56.9506               | 13.5389               | -5.4618               | 56.7813             | 13.5184               | -5.0272             | 0.1693                   | 0.0205                   | -0.4346                  | 0.4669           | 0.1693                      | Х                                       |
|                | 2     | 57.7727               | 10.7397               | -4.1671               | 57.6069             | 10.7264               | -3.7886             | 0.1658                   | 0.0133                   | -0.3785                  | 0.4134           | 0.1658                      | Х                                       |
| . H            | 3     | 57.5274               | 7.4474                | -3.8606               | 57.3396             | 7.4108                | -3.5052             | 0.1878                   | 0.0366                   | -0.3554                  | 0.4036           | 0.1878                      | Х                                       |
| żΨ             | 4     | 57.3275               | 4.8934                | -3.9341               | 57.1372             | 4.9062                | -3.6090             | 0.1903                   | -0.0128                  | -0.3251                  | 0.3769           | 0.1903                      | Х                                       |
| Z Z A          | 5     | 56.1624               | 3.1747                | -5.4698               | 55.9867             | 3.2747                | -5.1007             | 0.1757                   | -0.1000                  | -0.3691                  | 0.4208           | 0.1757                      | Х                                       |
| ШШ×            | 6     | 52.5790               | 14.0869               | -1.1863               | 52.4209             | 14.1336               | -0.8402             | 0.1581                   | -0.0467                  | -0.3461                  | 0.3834           | 0.1581                      | х                                       |
| 은뿔             | 7     | 52.6378               | 10.1319               | -1.1594               | 52.4991             | 10.2108               | -0.8473             | 0.1387                   | -0.0789                  | -0.3121                  | 0.3505           | 0.1387                      | Х                                       |
| 3              | 8     | 52.8237               | 7.1607                | -1.1964               | 52.6699             | 7.2187                | -0.8947             | 0.1538                   | -0.0580                  | -0.3017                  | 0.3436           | 0.1538                      | Х                                       |
|                | 9     | 52.7527               | 4.5914                | -1.3661               | 52.5774             | 4.6459                | -1.0522             | 0.1753                   | -0.0545                  | -0.3139                  | 0.3636           | 0.1753                      | Х                                       |
|                | 10    | 51.9701               | 2.5443                | -3.6370               | 51.7708             | 2.6406                | -3.2876             | 0.1993                   | -0.0963                  | -0.3494                  | 0.4136           | 0.1993                      | Х                                       |
|                | 11    | 46.8621               | 15.6120               | 1.0818                | 46.7361             | 15.6093               | 1.4098              | 0.1260                   | 0.0027                   | -0.3280                  | 0.3514           | -0.3280                     | Z                                       |
|                | 12    | 46.7047               | 11.2171               | 1.0579                | 46.5622             | 11.2027               | 1.3603              | 0.1425                   | 0.0144                   | -0.3024                  | 0.3346           | -0.3024                     | Z                                       |
|                | 13    | 46.5569               | 7.6946                | 1.0790                | 46.4141             | 7.6880                | 1.3620              | 0.1428                   | 0.0066                   | -0.2830                  | 0.3171           | -0.2830                     | Z                                       |
|                | 14    | 46.5815               | 4.5752                | 1.0738                | 46.3891             | 4.5852                | 1.3411              | 0.1924                   | -0.0100                  | -0.2673                  | 0.3295           | -0.2673                     | Z                                       |
|                | 15    | 46.4524               | 1.6753                | 0.8428                | 46.2528             | 1.6746                | 1.0945              | 0.1996                   | 0.0007                   | -0.2517                  | 0.3212           | -0.2517                     | Z                                       |
|                | 16    | 42.2177               | 15.7643               | 1.1215                | 42.0784             | 15.7825               | 1.4290              | 0.1393                   | -0.0182                  | -0.3075                  | 0.3381           | -0.3075                     | Z                                       |
|                | 17    | 41.8881               | 11.6534               | 1.0904                | 41.7578             | 11.6915               | 1.3741              | 0.1303                   | -0.0381                  | -0.2837                  | 0.3145           | -0.2837                     | Z                                       |
| 7              | 18    | 41.4918               | 7.3357                | 1.0998                | 41.3658             | 7.3685                | 1.3584              | 0.1260                   | -0.0328                  | -0.2586                  | 0.2895           | -0.2586                     | Z                                       |
| A              | 19    | 41.0968               | 4.1718                | 1.1071                | 40.9420             | 4.1438                | 1.3465              | 0.1548                   | 0.0280                   | -0.2394                  | 0.2865           | -0.2394                     | Z                                       |
| н<br>К ()      | 20    | 41.1207               | -0.8675               | 1.1200                | 40.9650             | -0.8489               | 1.3334              | 0.1557                   | 0.0186                   | -0.2134                  | 0.2648           | -0.2134                     | Z                                       |
| DO 10          | 21    | 36.3129               | 15.5117               | 1.1253                | 36.1907             | 15.5340               | 1.4032              | 0.1222                   | -0.0223                  | -0.2779                  | 0.3044           | -0.2779                     | Z                                       |
| LC<br>LC       | 22    | 36.3721               | 11.9751               | 1.1327                | 36.2189             | 11.9836               | 1.3914              | 0.1532                   | -0.0085                  | -0.2587                  | 0.3008           | -0.2587                     | Z                                       |
| ш              | 23    | 36.7883               | 6.6446                | 1.1113                | 36.6320             | 6.6604                | 1.3442              | 0.1563                   | -0.0158                  | -0.2329                  | 0.2809           | -0.2329                     | Z                                       |
|                | 24    | 36.6971               | 2.8028                | 1.1275                | 36.5485             | 2.8078                | 1.3389              | 0.1486                   | -0.0050                  | -0.2114                  | 0.2585           | -0.2114                     | Z                                       |
|                | 25    | 36.9507               | -1.5353               | 1.1373                | 36.7488             | -1.5458               | 1.3268              | 0.2019                   | -0.0105                  | -0.1895                  | 0.2771           | -0.1895                     | Z                                       |
|                | 26    | 32.2826               | 14.9169               | 0.1223                | 32.1141             | 14.9503               | 0.3779              | 0.1685                   | -0.0334                  | -0.2556                  | 0.3080           | -0.2556                     | Z                                       |
|                | 27    | 32.5012               | 11.1643               | 0.3604                | 32.3561             | 11.1680               | 0.5955              | 0.1451                   | -0.0037                  | -0.2351                  | 0.2763           | -0.2351                     | Z                                       |
|                | 28    | 32.9107               | 6.1952                | 0.3628                | 32.7521             | 6.2136                | 0.5724              | 0.1586                   | -0.0184                  | -0.2096                  | 0.2635           | -0.2096                     | Z                                       |
|                | 29    | 33.0318               | 1.9841                | 0.3704                | 32.9065             | 2.0465                | 0.5629              | 0.1253                   | -0.0624                  | -0.1925                  | 0.2380           | -0.1925                     | Z                                       |
|                | 30    | 33.1301               | -2.2158               | 0.3873                | 32.9616             | -2.2454               | 0.5547              | 0.1685                   | -0.0296                  | -0.1674                  | 0.2394           | -0.1674                     | Z                                       |

<sup>B</sup> Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

<sup>C</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.



Figure C-6. Right Floor Pan Deformation Data – Set 2, Test No. WZNP-2

| Year:           | 20    | 011     | 9<br>8  |          | Make:      | Do         | dge        |                 |                 | Model:          |                 | Ram 1500 |           |
|-----------------|-------|---------|---------|----------|------------|------------|------------|-----------------|-----------------|-----------------|-----------------|----------|-----------|
|                 |       |         |         |          | VE         |            | CODMATU    |                 |                 |                 |                 |          |           |
|                 |       |         |         | PA       | SSENGER    | R SIDE INT |            | USH - SE        | T 1             |                 |                 |          |           |
| ſ               |       | Pretest | Pretest | Pretest  |            | -          |            | ٨               |                 |                 |                 | Р        | Direction |
|                 |       | Х       | Y       | Z        | Posttest X | Posttest Y | Posttest Z | ΔX <sup>A</sup> | ΔY <sup>A</sup> | ΔZ <sup>Δ</sup> | lotal∆<br>(in.) | Crush    | for       |
|                 | POINT | (in.)   | (in.)   | (in.)    | (111.)     | (111.)     | (111.)     | (in.)           | (in.)           | (in.)           | (m.)            | (in.)    | Crush     |
|                 | 1     | 42.5805 | 4.4646  | -28.2357 | 42.2176    | 4.8593     | -28.1835   | 0.3629          | -0.3947         | 0.0522          | 0.5387          | 0.5387   | X, Y, Z   |
| $-\overline{N}$ | 2     | 42.1795 | 16.4458 | -27.7750 | 41.7185    | 16.8600    | -27.6837   | 0.4610          | -0.4142         | 0.0913          | 0.6264          | 0.6264   | X, Y, Z   |
| ASt. ∕          | 3     | 43.5913 | 32.7279 | -27.1442 | 42.9760    | 33.1676    | -27.0547   | 0.6153          | -0.4397         | 0.0895          | 0.7615          | 0.7615   | X, Y, Z   |
| 0×              | 4     | 35.6580 | 4.6833  | -17.4948 | 35.2623    | 4.9981     | -17.3774   | 0.3957          | -0.3148         | 0.0003          | 0.5191          | 0.5191   | X, Y, Z   |
|                 | 6     | 38.3435 | 33 1453 | -16.3397 | 37 6990    | 33,5380    | -16,2161   | 0.4972          | -0.3334         | 0.0993          | 0.0079          | 0.0079   | X Y 2     |
|                 | 7     | 47 6294 | 37 0809 | -5.0823  | 47 0114    | 37 4463    | -4.9683    | 0.6180          | -0.3654         | 0.1140          | 0.7269          | -0.3654  | Y         |
| ΞΪЯ             | 8     | 47.7156 | 37.0587 | -0.3821  | 47.0999    | 37.4223    | -0.2615    | 0.6157          | -0.3636         | 0.1206          | 0.7251          | -0.3636  | Ý         |
| D A C           | 9     | 49.6820 | 37.0614 | -2.5690  | 49.0159    | 37.4433    | -2.4376    | 0.6661          | -0.3819         | 0.1314          | 0.7790          | -0.3819  | Y         |
| ш               | 10    | 38.0588 | 38.9786 | -19.3935 | 37.4222    | 39.2742    | -19.2810   | 0.6366          | -0.2956         | 0.1125          | 0.7108          | -0.2956  | Y         |
|                 | 11    | 26.2088 | 38.8460 | -18.3675 | 25.5596    | 39.0287    | -18.2752   | 0.6492          | -0.1827         | 0.0923          | 0.6807          | -0.1827  | Y         |
| - Ö 🖓           | 12    | 15.6850 | 39.5418 | -17.7652 | 15.0435    | 39.6241    | -17.6065   | 0.6415          | -0.0823         | 0.1587          | 0.6659          | -0.0823  | Y         |
| A D C           | 13    | 37.4303 | 37.6034 | -6.8585  | 36.8095    | 37.9271    | -6.8258    | 0.6208          | -0.3237         | 0.0327          | 0.7009          | -0.3237  | Y         |
| Ę               | 14    | 28.4348 | 40.1436 | -3.6056  | 27.7637    | 40.3459    | -3.4959    | 0.6711          | -0.2023         | 0.1097          | 0.7095          | -0.2023  | Y         |
| -               | 15    | 16.0051 | 39.2685 | -2.9015  | 15.3206    | 39.3644    | -2.7729    | 0.6845          | -0.0959         | 0.1286          | 0.7030          | -0.0959  | Y         |
|                 | 16    | 34.0213 | 4.8882  | -43.0854 | 33.6278    | 5.1938     | -42.9189   | 0.3935          | -0.3056         | 0.1665          | 0.5253          | 0.1665   | Z 7       |
|                 | 18    | 33 3036 | 15 7737 | 42 8007  | 33.4704    | 16.0228    | 42.0404    | 0.3639          | -0.3202         | 0.1955          | 0.5550          | 0.1955   | 7         |
|                 | 10    | 32 4106 | 20.8193 | -42.0307 | 31 9143    | 21 1067    | -42.5706   | 0.4963          | -0.2431         | 0.1700          | 0.6043          | 0.1700   | 7         |
|                 | 20    | 30.9663 | 26.3807 | -42.4575 | 30.4283    | 26.7114    | -42.2454   | 0.5380          | -0.3307         | 0.2121          | 0.6662          | 0.2121   | Z         |
| 0               | 21    | 23.8955 | 5.9450  | -46.4042 | 23.5442    | 6.1664     | -46.2193   | 0.3513          | -0.2214         | 0.1849          | 0.4546          | 0.1849   | Z         |
| N I             | 22    | 23.9585 | 11.1828 | -46.2978 | 23.5277    | 11.3361    | -46.1171   | 0.4308          | -0.1533         | 0.1807          | 0.4917          | 0.1807   | Z         |
| ц.              | 23    | 23.8953 | 16.3896 | -46.0906 | 23.3412    | 16.6121    | -45.9195   | 0.5541          | -0.2225         | 0.1711          | 0.6211          | 0.1711   | Z         |
| õ               | 24    | 23.3865 | 22.1010 | -45.7694 | 22.8928    | 22.3236    | -45.5752   | 0.4937          | -0.2226         | 0.1942          | 0.5753          | 0.1942   | Z         |
| Ľ I             | 25    | 22.8205 | 27.0259 | -45.3638 | 22.2982    | 27.2645    | -45.1594   | 0.5223          | -0.2386         | 0.2044          | 0.6095          | 0.2044   | Z         |
|                 | 26    | 9.9701  | 5.9491  | -47.2094 | 9.6094     | 6.0093     | -47.0474   | 0.3607          | -0.0602         | 0.1620          | 0.4000          | 0.1620   | Z         |
|                 | 27    | 9.6380  | 11.1704 | -47.1303 | 9.1472     | 11.2215    | -46.9728   | 0.4908          | -0.0511         | 0.1635          | 0.5198          | 0.1635   |           |
|                 | 20    | 11 2036 | 20.9736 | -46.9329 | 9.9094     | 21 0097    | -40.7743   | 0.5231          | -0.0361         | 0.1589          | 0.5491          | 0.1589   | 7         |
|                 | 30    | 11.8980 | 25.3162 | -46.3502 | 11.3269    | 25.4388    | -46 1856   | 0.5423          | -0.0001         | 0.1509          | 0.0000          | 0.1509   | 7         |
|                 | 31    | 45 3664 | 35 5243 | -30 4379 | 44.8803    | 35,9235    | -30 2628   | 0.4861          | -0.3992         | 0.1751          | 0.6529          | 0.5167   | X 7       |
| YEO             | 32    | 43 4673 | 35 0927 | -31 8196 | 42 9247    | 35 4579    | -31 6796   | 0.5426          | -0.3652         | 0.1400          | 0.6689          | 0.5604   | X Z       |
|                 | 33    | 41.3102 | 34.6061 | -33.3831 | 40.7147    | 34.9308    | -33.2486   | 0.5955          | -0.3247         | 0.1345          | 0.6915          | 0.6105   | X,Z       |
|                 | 34    | 39.2185 | 34.0691 | -34.9434 | 38.6873    | 34.3951    | -34.8236   | 0.5312          | -0.3260         | 0.1198          | 0.6347          | 0.5445   | X, Z      |
| 4 2 °           | 35    | 36.1268 | 33.4921 | -37.1928 | 35.5284    | 33.7716    | -37.0881   | 0.5984          | -0.2795         | 0.1047          | 0.6687          | 0.6075   | X, Z      |
|                 | 36    | 31.5301 | 32.4782 | -39.9912 | 31.0119    | 32.7305    | -39.8273   | 0.5182          | -0.2523         | 0.1639          | 0.5992          | 0.5435   | X, Z      |
|                 | 31    | 45.3664 | 35.5243 | -30.4379 | 44.8803    | 35.9235    | -30.2628   | 0.4861          | -0.3992         | 0.1751          | 0.6529          | -0.3992  | Y         |
| RA S            | 32    | 43.4673 | 35.0927 | -31.8196 | 42.9247    | 35.4579    | -31.6796   | 0.5426          | -0.3652         | 0.1400          | 0.6689          | -0.3652  | Y         |
| ilLL            | 33    | 41.3102 | 34.6061 | -33.3831 | 40./14/    | 34.9308    | -33.2486   | 0.5955          | -0.3247         | 0.1345          | 0.6915          | -0.3247  | Y         |
| A-P<br>ate      | 35    | 36 1269 | 33 /001 | -34.9434 | 35.528/    | 33 7716    | -34.0230   | 0.5312          | -0.3260         | 0.1198          | 0.6697          | -0.3260  | Y V       |
| ~ _             | 36    | 31 5301 | 32 4782 | -39 9912 | 31 0119    | 32 7305    | -39 8273   | 0.5364          | -0.2523         | 0.1639          | 0.5992          | -0.2523  | Y         |
| LE O            | 37    | 5 9475  | 33 7852 | -35 5795 | 5 3917     | 33 7843    | -35 4461   | 0.5558          | 0.0009          | 0.1334          | 0.5716          | 0.5716   | XY        |
| N I I           | 38    | 3.7464  | 36,3412 | -24,4609 | 3,1336     | 36,3293    | -24,2579   | 0.6128          | 0.0119          | 0.2030          | 0.6457          | 0.6457   | XYZ       |
| 금눐강             | 39    | 8.2263  | 36.6378 | -18.4434 | 7.6033     | 36.6596    | -18.3177   | 0.6230          | -0.0218         | 0.1257          | 0.6359          | 0.6356   | X Z       |
| μăς             | 40    | 4.3314  | 36.7277 | -13.2758 | 3.7079     | 36.7138    | -13.1541   | 0.6235          | 0.0139          | 0.1217          | 0.6354          | 0.6354   | X, Y, Z   |
| ¥               | 37    | 5.9475  | 33.7852 | -35.5795 | 5.3917     | 33.7843    | -35.4461   | 0.5558          | 0.0009          | 0.1334          | 0.5716          | 0.0009   | Y         |
| Gera            | 38    | 3.7464  | 36.3412 | -24.4609 | 3.1336     | 36.3293    | -24.2579   | 0.6128          | 0.0119          | 0.2030          | 0.6457          | 0.0119   | Y         |
|                 | 39    | 8.2263  | 36.6378 | -18.4434 | 7.6033     | 36.6596    | -18.3177   | 0.6230          | -0.0218         | 0.1257          | 0.6359          | -0.0218  | Y         |
| 'n –            | 40    | 4.3314  | 36.7277 | -13.2758 | 3.7079     | 36.7138    | -13.1541   | 0.6235          | 0.0139          | 0.1217          | 0.6354          | 0.0139   | Y         |

deforming inward toward the occupant compartment. <sup>c</sup> Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-7. Right Interior Crush Data – Set 1, Test No. WZNP-2

| Year:                                              | 2011                                                 |                                | Make:        |                                      |                  |             |                |                 |                 | Model:          | 10/6        | Ram 1500                  | 34520              |
|----------------------------------------------------|------------------------------------------------------|--------------------------------|--------------|--------------------------------------|------------------|-------------|----------------|-----------------|-----------------|-----------------|-------------|---------------------------|--------------------|
|                                                    |                                                      |                                |              |                                      | VE               | HICLE DE    | FORMATI        | ON              |                 |                 |             |                           |                    |
|                                                    |                                                      |                                |              | PA                                   | SSENGE           | R SIDE INT  | FERIOR CF      | RUSH - SE       | Т 2             |                 |             |                           |                    |
|                                                    |                                                      | Pretest                        | Pretest      | Pretest                              | Posttest X       | Posttest Y  | Posttest Z     | ΔX <sup>A</sup> | ΔY <sup>A</sup> | ΔZ <sup>A</sup> | Total ∆     | Crush <sup>B</sup>        | Direction          |
|                                                    | POINT                                                | (in.)                          | (in.)        | (in.)                                | (in.)            | (in.)       | (in.)          | (in.)           | (in.)           | (in.)           | (in.)       | (in.)                     | Crush <sup>C</sup> |
| DASH<br>(X, Y, Z)                                  | 1                                                    | 44.8857                        | -14.2855     | -32.1464                             | 44.9318          | -14.0979    | -32.0439       | -0.0461         | 0.1876          | 0.1025          | 0.2187      | 0.2187                    | X, Y, Z            |
|                                                    | 2                                                    | 44.2717                        | -2.3122      | -31.7159                             | 44.2666          | -2.1068     | -31.5096       | 0.0051          | 0.2054          | 0.2063          | 0.2912      | 0.2912                    | X, Y, Z            |
|                                                    | 3                                                    | 45.3936                        | 13.9937      | -31.1183                             | 45.2986          | 14.2141     | -30.8182       | 0.0950          | -0.2204         | 0.3001          | 0.3843      | 0.3843                    | X, Y, Z            |
|                                                    | 5                                                    | 39.5141                        | -2.1641      | -20.4113                             | 39.4297          | -2.0821     | -20.2158       | 0.0844          | 0.0820          | 0.1955          | 0.2282      | 0.2282                    | X, Y, Z            |
|                                                    | 6                                                    | 40.0958                        | 14.3435      | -20.3358                             | 39.9307          | 14.4774     | -20.0212       | 0.1651          | -0.1339         | 0.3146          | 0.3797      | 0.3797                    | X, Y, Z            |
| E SIDE<br>PANEL<br>(Y)                             | 7                                                    | 49.2654                        | 18.4684      | -9.0509                              | 49.0994          | 18.4736     | -8.6866        | 0.1660          | -0.0052         | 0.3643          | 0.4004      | -0.0052                   | Y                  |
|                                                    | 8                                                    | 49.3331                        | 18.4585      | -4.3504                              | 49.1507          | 18.4352     | -3.9793        | 0.1824          | 0.0233          | 0.3711          | 0.4142      | 0.0233                    | Y                  |
|                                                    | 10                                                   | 39,7206                        | 20 1638      | -23 4047                             | 39 6009          | 20 2195     | -23 0698       | 0.1197          | -0.0557         | 0.3349          | 0.3600      | -0.0557                   | Y                  |
| ST SIDE<br>DOR<br>Y)                               | 11                                                   | 27.8707                        | 19.8245      | -22.4256                             | 27.7351          | 19.8108     | -22.1601       | 0.1356          | 0.0137          | 0.2655          | 0.2984      | 0.0137                    | Ý                  |
|                                                    | 12                                                   | 17.3340                        | 20.3359      | -21.8669                             | 17.2069          | 20.2620     | -21.5739       | 0.1271          | 0.0739          | 0.2930          | 0.3278      | 0.0739                    | Y                  |
| DDD                                                | 13                                                   | 39.0659                        | 18.8067      | -10.8691                             | 38.9071          | 18.8230     | -10.6244       | 0.1588          | -0.0163         | 0.2447          | 0.2922      | -0.0163                   | Y                  |
| IMI                                                | 15                                                   | 17.5989                        | 20.1027      | -7.0014                              | 17.3691          | 19.9569     | -6.7394        | 0.2298          | 0.1458          | 0.2620          | 0.3756      | 0.1458                    | Y                  |
|                                                    | 16                                                   | 36.3802                        | -14.0473     | -47.0311                             | 36.4561          | -13.8304    | -46.8466       | -0.0759         | 0.2169          | 0.1845          | 0.2947      | 0.1845                    | Z                  |
| ROOF - (Z)                                         | 17                                                   | 36.1237                        | -8.6394      | -47.0012                             | 36.2309          | -8.4071     | -46.7579       | -0.1072         | 0.2323          | 0.2433          | 0.3531      | 0.2433                    | Z                  |
|                                                    | 18                                                   | 35.5599                        | -3.1742      | -46.8649                             | 35.6079          | -3.0126     | -46.6105       | -0.0480         | 0.1616          | 0.2544          | 0.3052      | 0.2544                    | Z                  |
|                                                    | 20                                                   | 34.4875                        | 7 3893       | -46.7512                             | 34.5251          | 2.0566      | -46.4610       | -0.0375         | -0.2030         | 0.2902          | 0.3561      | 0.2902                    | 7                  |
|                                                    | 21                                                   | 26.2509                        | -13.1770     | -50.3927                             | 26.3870          | -12.9829    | -50.2247       | -0.1361         | 0.1941          | 0.1680          | 0.2906      | 0.1680                    | Z                  |
|                                                    | 22                                                   | 26.2210                        | -7.9387      | -50.2986                             | 26.2998          | -7.8143     | -50.1060       | -0.0788         | 0.1244          | 0.1926          | 0.2424      | 0.1926                    | Z                  |
|                                                    | 23                                                   | 26.0652                        | -2.7334      | -50.1041                             | 26.0404          | -2.5420     | -49.8931       | 0.0248          | 0.1914          | 0.2110          | 0.2860      | 0.2110                    | Z                  |
|                                                    | 24                                                   | 25.4545                        | 2.9689       | -49.7984                             | 25.5122          | 3.1618      | -49.5340       | -0.0577         | -0.1929         | 0.2644          | 0.3323      | 0.2644                    | 7                  |
|                                                    | 26                                                   | 12.3309                        | -13.4204     | -51.2534                             | 12.4626          | -13.3252    | -51.1650       | -0.1317         | 0.0952          | 0.0884          | 0.1850      | 0.0884                    | Z                  |
|                                                    | 27                                                   | 11.9065                        | -8.2057      | -51.1941                             | 11.9295          | -8.1200     | -51.0775       | -0.0230         | 0.0857          | 0.1166          | 0.1465      | 0.1166                    | Z                  |
|                                                    | 28                                                   | 12.6861                        | -2.8651      | -50.9999                             | 12.6980          | -2.7833     | -50.8551       | -0.0119         | 0.0818          | 0.1448          | 0.1667      | 0.1448                    | Z                  |
|                                                    | 30                                                   | 13.2971                        | 5.9796       | -50.7535                             | 13.9105          | 6 1228      | -50.5607       | 0.0030          | -0.0615         | 0.1726          | 0.1637      | 0.1726                    | 7                  |
| A-PILLAR<br>Maximum<br>(X, Y, Z)                   | 31                                                   | 47.1323                        | 16.8134      | -34.4116                             | 47.1910          | 17.0061     | -34.0021       | -0.0587         | -0.1927         | 0.4095          | 0.4564      | 0.4095                    | Z                  |
|                                                    | 32                                                   | 45.2468                        | 16.3451      | -35.7998                             | 45.2533          | 16.5188     | -35.4360       | -0.0065         | -0.1737         | 0.3638          | 0.4032      | 0.3638                    | Z                  |
|                                                    | 33                                                   | 43.1049                        | 15.8169      | -37.3707                             | 43.0632          | 15.9672     | -37.0244       | 0.0417          | -0.1503         | 0.3463          | 0.3798      | 0.3488                    | X, Z               |
|                                                    | 35                                                   | 37 9573                        | 14 6028      | -30.9360                             | 37 9238          | 14 7509     | -30.0174       | 0.0335          | -0.1700         | 0.3206          | 0.3039      | 0.3208                    | X 7                |
|                                                    | 36                                                   | 33.3904                        | 13.5016      | -44.0127                             | 33.4438          | 13.6581     | -43.6879       | -0.0534         | -0.1565         | 0.3248          | 0.3645      | 0.3248                    | Z                  |
| A-PILLAR<br>Lateral (Y)                            | 31                                                   | 47.1323                        | 16.8134      | -34.4116                             | 47.1910          | 17.0061     | -34.0021       | -0.0587         | -0.1927         | 0.4095          | 0.4564      | -0.1927                   | Y                  |
|                                                    | 32                                                   | 45.2468                        | 16.3451      | -35.7998                             | 45.2533          | 16.5188     | -35.4360       | -0.0065         | -0.1737         | 0.3638          | 0.4032      | -0.1737                   | Y                  |
|                                                    | 33                                                   | 43.1049                        | 15.2395      | -37.3707                             | 43.0632          | 15.9672     | -37.0244       | -0.0266         | -0.1503         | 0.3463          | 0.3639      | -0.1503                   | Y<br>Y             |
|                                                    | 35                                                   | 37.9573                        | 14.6028      | -41.1984                             | 37.9238          | 14.7509     | -40.9091       | 0.0335          | -0.1481         | 0.2893          | 0.3267      | -0.1481                   | Y                  |
|                                                    | 36                                                   | 33.3904                        | 13.5016      | -44.0127                             | 33.4438          | 13.6581     | -43.6879       | -0.0534         | -0.1565         | 0.3248          | 0.3645      | -0.1565                   | Y                  |
| AR UM                                              | 37                                                   | 7.7713                         | 14.3671      | -39.7060                             | 7.7775           | 14.3518     | -39.5090       | -0.0062         | 0.0153          | 0.1970          | 0.1977      | 0.1976                    | Y,Z                |
| Xim Y.                                             | 38                                                   | 5.4807                         | 16.9097      | -28.6024                             | 5.3960<br>9.8134 | 16.8290     | -28.3311       | 0.0847          | 0.0807          | 0.2713          | 0.2954      | 0.2954                    | X, Y, Z            |
| A-B-R<br>X                                         | 40                                                   | 6.0138                         | 17.3323      | -17.4161                             | 5.8765           | 17.1844     | -17.2220       | 0.1373          | 0.1479          | 0.1941          | 0.2800      | 0.2800                    | X, Y, Z            |
| B-PILLAR<br>Lateral<br>(Y)                         | 37                                                   | 7.7713                         | 14.3671      | -39.7060                             | 7.7775           | 14.3518     | -39.5090       | -0.0062         | 0.0153          | 0.1970          | 0.1977      | 0.0153                    | Y                  |
|                                                    | 38                                                   | 5.4807                         | 16.9097      | -28.6024                             | 5.3960           | 16.8290     | -28.3311       | 0.0847          | 0.0807          | 0.2713          | 0.2954      | 0.0807                    | Y                  |
|                                                    | 39                                                   | 9.9304                         | 17.2991      | -22.5679                             | 9.8134           | 17 1998     | -22.3543       | 0.1170          | 0.0993          | 0.2136          | 0.2630      | 0.0993                    | Y                  |
| Positive v<br>ompartme<br>Crush cal<br>leforming i | ralues denot<br>ent.<br>culations that<br>nward towa | e deformation<br>at use multip | on as inward | I toward the<br>al compone<br>tment. | occupant c       | ompartment  | , negative va  | ilues denote    | e deformatio    | ns outward a    | away from t | he occupan<br>ere the con | t<br>nponent is    |
| Direction                                          | for Crush co                                         | olumn denote                   | es which din | ections are                          | included in t    | he crush ca | Iculations. If | "NA" then       | no intrusion    | is recorded,    | and Crush   | will be 0.                |                    |

Figure C-8. Right Interior Crush Data – Set 2, Test No. WZNP-2



Figure C-9. Exterior Vehicle Crush (NASS) - Front, Test No. WZNP-2



Figure C-10. Exterior Vehicle Crush (NASS) - Side, Test No. WZNP-2

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. WZNP-2



Figure D-1. 10-ms Average Longitudinal Deceleration System A (SLICE-1), Test No. WZNP-2



Figure D-2. Longitudinal Occupant Impact Velocity System A (SLICE-1), Test No. WZNP-2



Figure D-3. Longitudinal Occupant Displacement System A (SLICE-1), Test No. WZNP-2



Figure D-4. 10-ms Average Lateral Deceleration System A (SLICE-1), Test No. WZNP-2



Figure D-5. Lateral Occupant Impact Velocity System A (SLICE-1), Test No. WZNP-2



Figure D-6. Lateral Occupant Displacement System A (SLICE-1), Test No. WZNP-2



Figure D-7. Vehicle Angular Displacements System A (SLICE-1), Test No. WZNP-2

91



Figure D-8. Acceleration Severity Index System A (SLICE-1), Test No. WZNP-2



Figure D-9. 10-ms Average Longitudinal Deceleration System A (SLICE-2), Test No. WZNP-2



Figure D-10. Longitudinal Occupant Impact Velocity System A (SLICE-2), Test No. WZNP-2



Figure D-11. Longitudinal Occupant Displacement System A (SLICE-2), Test No. WZNP-2



Figure D-12. 10-ms Average Lateral Deceleration System A (SLICE-2), Test No. WZNP-2



Figure D-13. Lateral Occupant Impact Velocity System A (SLICE-2), Test No. WZNP-2



Figure D-14. Lateral Occupant Displacement System A (SLICE-2), Test No. WZNP-2


Figure D-15. Vehicle Angular Displacements System A (SLICE-2), Test No. WZNP-2



Figure D-16. Acceleration Severity Index System A (SLICE-2), Test No. WZNP-2



Figure D-17. 10-ms Average Longitudinal Deceleration System B (SLICE-1), Test No. WZNP-2



Figure D-18. Longitudinal Occupant Impact Velocity System B (SLICE-1), Test No. WZNP-2



Figure D-19. Longitudinal Occupant Displacement System B (SLICE-1), Test No. WZNP-2



Figure D-20. 10-ms Average Lateral Deceleration System B (SLICE-1), Test No. WZNP-2



Figure D-21. Lateral Occupant Impact Velocity System B (SLICE-1), Test No. WZNP-2



Figure D-22. Lateral Occupant Displacement System B (SLICE-1), Test No. WZNP-2



Figure D-23. Vehicle Angular Displacements System B (SLICE-1), Test No. WZNP-2



Figure D-24. Acceleration Severity Index System B (SLICE-1), Test No. WZNP-2



Figure D-25. 10-ms Average Longitudinal Deceleration System B (SLICE-2), Test No. WZNP-2



Figure D-26. Longitudinal Occupant Impact Velocity System B (SLICE-2), Test No. WZNP-2



Figure D-27. Longitudinal Occupant Displacement System B (SLICE-2), Test No. WZNP-2



Figure D-28. 10-ms Average Lateral Deceleration System B (SLICE-2), Test No. WZNP-2



Figure D-29. Lateral Occupant Impact Velocity System B (SLICE-2), Test No. WZNP-2



Figure D-30. Lateral Occupant Displacement System B (SLICE-2, Test No. WZNP-2



Figure D-31. Vehicle Angular Displacements System B (SLICE-2), Test No. WZNP-2



Figure D-32. Acceleration Severity Index System B (SLICE-2), Test No. WZNP-2

## **END OF DOCUMENT**