

Hawaii Department of Transportation Research Contract No. 68212 Research Project No. STP-1500(092) – Phase II

CRASH TESTING AND EVALUATION OF THE HAWAII MODIFIED

DELAWARE RETROFIT THRIE-BEAM BRIDGE RAIL ON SIDEWALK:

MASH TEST NOS. 3-10 AND 3-11

Submitted by

Christopher A. Storf Undergraduate Research Assistant

Karla A. Lechtenberg, M.S.M.E. Research Engineer Mojdeh Asadollahi Pajouh, Ph.D., P.E. Research Assistant Professor

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

Erin L. Urbank, B.A. Research Communication Specialist Jessica R. Revell, M.S.C.E. Research Communication Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

Hawaii Department of Transportation Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813

MwRSF Research Report No. TRP-03-448-21

November 12, 2021

TECHNICAL REPORT DOCUMENTATION PAGE

4. Title and Subtitle Crash Testing and Evaluation of the Hawaii Modified Delaware Retrofit Thrie- Beam Bridge Rail on Sidewalk: MASH Test Nos. 3-10 and 3-11	
	10. Work Unit No.
Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract Research Contract No. 68212 Research Project No. STP-1500(092) – Phase II
SS	13. Type of Report and Period Covered Final Report: 2020-2021
	14. Sponsoring Agency Code
ent of Transportation, Federal Highwa	ay Administration
	nberg, K.A, Faller, R.K., Urbank, Address F) Outdoor Test Site: 4630 N.W. 36th Street

16. Abstract

This report documents three full-scale crash tests conducted to evaluate the safety performance of the Hawaii Department of Transportation's Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail according to the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) Test Level 3 (TL-3) crash test criteria. The bridge rail consisted of 10-gauge thrie-beam rail with 32-in. mounting height, supported by W6x25 steel posts, spaced at 75 in., and installed on a concrete sidewalk. Test no. HMDBR-1 was conducted using test designation no. 3-11 on a 9-in. tall sidewalk configuration. Test nos. HMDBR-2 and HMDBR-3 were conducted to test designation nos. 3-10 and 3-11, respectively, with a 6-in. tall sidewalk configuration.

In test no. HMDBR-1, a 2014 Dodge Ram pickup truck impacted the system at a speed of 63.1 mph and an angle of 25.5 degrees. In test no. HMDBR-2, a 2016 Hyundai Accent impacted the system at a speed of 62.5 mph and an angle of 24.5 degrees. In test no. HMDBR-3, a 2015 Dodge Ram pickup truck impacted the system at a speed of 63.3 mph and an angle of 25.5 degrees. In all tests, the bridge rail successfully contained and safely redirected the test vehicles. All occupant risk measurements were found to be within the established MASH 2016 limits. Therefore, test nos. HMDBR-1, HMDBR-2, and HMDBR-3 were deemed to have satisfied all safety performance criteria, and the Hawaii Modified Delaware Thrie-Beam Bridge Rail installed on a 6-in. to 9-in. tall concrete sidewalk was determined to be crashworthy according to MASH 2016 TL-3.

17. Key Words Highway Safety, Crash Test, Road Compliance Test, MASH 2016, Te Delaware Retrofit Thrie-Beam Bri	est Level 3, and Modified	18. Distribution Statement No restrictions. This documer National Technical Informatio 5285 Port Royal Road Springfield, VA 22161	•
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages 279	22. Price
Unclassified	Unclassified		

DISCLAIMER STATEMENT

This material is based upon work supported by the Hawaii Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln nor the Hawaii Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Hawaii do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Dr. Chen Fang.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Hawaii Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Retired Professor J.C. Holloway, M.S.C.E., Research Engineer & Assistant Director-Physical Testing Division R.W. Bielenberg, M.S.M.E., Research Engineer S.K. Rosenbaugh, M.S.C.E., Research Engineer C.S. Stolle, Ph.D., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor C. Sim, Ph.D., Assistant Professor C.R. Song, Ph.D., Associate Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Bridge Design Engineer Kimberly Okamura, Bridge Design Engineer

		RN METRIC) CONVER		
G 1 1		XIMATE CONVERSIONS		6 1 1
Symbol	When You Know	Multiply By LENGTH	To Find	Symbol
n.	inches	25.4	millimeters	mm
n. Ft	feet	0.305	meters	m
/d	yards	0.914	meters	m
Лi	miles	1.61	kilometers	km
,	innes	AREA	Kilonicuis	KIII
n ²	square inches	645.2	square millimeters	mm ²
t ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m^2
Ac	acres	0.405	hectares	ha
ni ²	square miles	2.59	square kilometers	km ²
		VOLUME		
l oz	fluid ounces	29.57	milliliters	mL
Gal	gallons	3.785	liters	L
t ³	cubic feet	0.028	cubic meters	m ³
/d ³	cubic yards	0.765	cubic meters	m ³
u		E: volumes greater than 1,000 L shall b		111
	101	MASS		
Oz	ounces	28.35	grams	σ
Lb	pounds	0.454	kilograms	g kg
Г	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
1	31011 1011 (2,000 10)	TEMPERATURE (exact de		Mg (of t)
		5(F-32)/9	giees)	
°F	Fahrenheit		Celsius	°C
		or (F-32)/1.8		
-	a b b b b b b b b b b	ILLUMINATION		
Fc	foot-candles	10.76	lux	lx
Fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
		FORCE & PRESSURE or S		
Lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXI	MATE CONVERSIONS I	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
v		LENGTH		~
Mm	millimeters	0.039	inches	in.
M	meters	3.28	feet	ft
M	meters	1.09	yards	yd
Km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in ²
m ²	•		square feet	ft^2
	square meters	10.764		
	square meters	10.764		vd^2
m ²	square meters	1.195	square yard	yd ²
n² Ha	square meters hectares	1.195 2.47	square yard acres	yd ² ac
m² Ha	square meters	1.195 2.47 0.386	square yard	yd ²
m ² Ha km ²	square meters hectares square kilometers	1.195 2.47 0.386 VOLUME	square yard acres square miles	yd ² ac mi ²
m ² Ha km ² mL	square meters hectares square kilometers milliliter	1.195 2.47 0.386 VOLUME 0.034	square yard acres square miles fluid ounces	yd ² ac mi ² fl oz
m ² Ha km ² mL L	square meters hectares square kilometers milliliter liters	1.195 2.47 0.386 VOLUME 0.034 0.264	square yard acres square miles fluid ounces gallons	yd ² ac mi ² fl oz gal
n ² Ha cm ² nL L n ³	square meters hectares square kilometers milliliter liters cubic meters	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	square yard acres square miles fluid ounces gallons cubic feet	yd ² ac mi ² fl oz gal ft ³
n ² Ha cm ² nL	square meters hectares square kilometers milliliter liters	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	square yard acres square miles fluid ounces gallons	yd ² ac mi ² fl oz gal
n ² Ha km ² nL n ³ n ³	square meters hectares square kilometers milliliter liters cubic meters cubic meters cubic meters	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	square yard acres square miles fluid ounces gallons cubic feet cubic yards	yd ² ac mi ² fl oz gal ft ³ yd ³
n ² Ha cm ² nL n ³ n ³ G	square meters hectares square kilometers milliliter liters cubic meters cubic meters grams	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces	yd ² ac mi ² fl oz gal ft ³ yd ³ oz
n^2 Ha km ² nL \tilde{n}^3 r^3 G ζ_g	square meters hectares square kilometers milliliter liters cubic meters cubic meters cubic meters grams kilograms	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb
n ² Ha cm ² nL n ³ n ³ G Kg	square meters hectares square kilometers milliliter liters cubic meters cubic meters grams	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb)	yd ² ac mi ² fl oz gal ft ³ yd ³ oz
m ² Ha km ² mL L m ³ m ³ G Kg Mg (or "t")	square meters hectares square kilometers milliliter liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact de	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb) grees)	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
n ² Ha cm ² nL n ³ n ³ G Kg Mg (or "t")	square meters hectares square kilometers milliliter liters cubic meters cubic meters cubic meters grams kilograms	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb)	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb
n ² Ha km ² nL L n ³ n ³ G Kg	square meters hectares square kilometers milliliter liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact de	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb) grees)	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
n ² Ha cm ² nL L n ³ n ³ G Kg Mg (or "t")	square meters hectares square kilometers milliliter liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact de 1.8C+32	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb) grees)	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F
n ² Ha cm ² nL n ³ S Kg Mg (or "t")	square meters hectares square kilometers milliliter liters cubic meters grams kilograms megagrams (or "metric ton") Celsius lux	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact de 1.8C+32 ILLUMINATION	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb) grees) Fahrenheit foot-candles	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
n^{2} Ha m ² nL n ³ G G Ag (or "t") C LX	square meters hectares square kilometers milliliter liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius lux candela per square meter	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact de 1.8C+32 ILLUMINATION 0.0929 0.2919	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb) grees) Fahrenheit foot-candles foot-Lamberts	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc
n^{2} Ha m ² nL n ³ G G Ag (or "t") C LX	square meters hectares square kilometers milliliter liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius lux candela per square meter	1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (exact de 1.8C+32 ILLUMINATION 0.0929	square yard acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short ton (2,000 lb) grees) Fahrenheit foot-candles foot-Lamberts	yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xiv
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	5
3 DESIGN DETAILS, TEST NO. HMDBR-1	
4 DESIGN DETAILS, TEST NOS. HMDBR-2 AND HMDBR-3	
5 TEST CONDITIONS 5.1 Test Facility 5.2 Vehicle Tow and Guidance System 5.3 Test Vehicles 5.4 Simulated Occupant 5.5 Data Acquisition Systems 5.5.1 Accelerometers 5.5.2 Rate Transducers 5.5.3 Retroreflective Optic Speed Trap 5.5.4 Digital Photography	70 70 70 84 84 84 84 84 84 84 85
 6 FULL-SCALE CRASH TEST NO. HMDBR-1	89 89 98 103 107 108
7.1 Weather Conditions	

7.2 Test Description	11
7.3 Barrier Damage11	19
7.4 Vehicle Damage	24
7.5 Occupant Risk 12	28
7.6 Barrier Loads	
7.7 Discussion	30
8 FULL-SCALE CRASH TEST NO. HMDBR-3	32
8.1 Weather Conditions	32
8.2 Test Description	32
8.3 Barrier Damage 14	40
8.4 Vehicle Damage	45
8.5 Occupant Risk 14	49
8.6 Barrier Loads	50
8.7 Discussion	51
9 SUMMARY AND CONCLUSIONS 15	53
10 REFERENCES	55
11 APPENDICES	56
Appendix A. Critical Impact Point Determination15	57
Appendix B. Material Specifications, Test No. HMDBR-1	51
Appendix C. Material Specifications, Test Nos. HMDBR-2 and HMDBR-3 19	94
Appendix D. Vehicle Center of Gravity Determination	28
Appendix E. Vehicle Deformation Records	32
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. HMDBR-1 25	52
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. HMDBR-2 26	51
Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. HMDBR-3 27	70

LIST OF FIGURES

Figure 1. Hawaii Modified Delaware Retrofit Bridge Rail, Plan and Elevation	2
Figure 2. Hawaii Modified Delaware Retrofit Bridge Rail, Details and Typical Sections	3
Figure 3. Test Installation Layout, Test No. HMDBR-1	10
Figure 4. Bridge Rail Layout, Test No. HMDBR-1	11
Figure 5. Rail Heights, Transition Layout, Test No. HMDBR-1	12
Figure 6. Rail Heights, Post Nos. 11 through 19, Test No. HMDBR-1	
Figure 7. Post Details, Post Nos. 3 through 10, Test No. HMDBR-1	14
Figure 8. Post Details, Post Nos. 11 through 13, Test No. HMDBR-1	
Figure 9. Post Details, Post Nos. 14 through 16, Test No. HMDBR-1	16
Figure 10. Post Details, Post Nos. 17 through 18, Test No. HMDBR-1	
Figure 11. End Section and Splice Details, Test No. HMDBR-1	
Figure 12. End Section and Splice Details, Cont., Test No. HMDBR-1	19
Figure 13. Post Nos. 16 through 18 Components, Test No. HMDBR-1	20
Figure 14. Post Nos. 10 through 15 Components, Test No. HMDBR-1	21
Figure 15. Post Nos. 3 through 7 Components, Test No. HMDBR-1	
Figure 16. Post Nos. 8 and 9 Blockout Details, Test No. HMDBR-1	
Figure 17. BCT Timber Post and Foundation Tube Details, Test No. HMDBR-1	24
Figure 18. Ground Strut Details, Test No. HMDBR-1	25
Figure 19. BCT Anchor Cable, Test No. HMDBR-1	26
Figure 20. Cable Assembly and Anchor Components, Test No. HMDBR-1	27
Figure 21. Transition Curb Details, Test No. HMDBR-1	
Figure 22. Transition Curb Reinforcement Details, Test No. HMDBR-1	
Figure 23. Bridge Rail Post Details, Test No. HMDBR-1	30
Figure 24. Bridge Rail Post Components, Test No. HMDBR-1	31
Figure 25. Bridge Rail Sidewalk Details, Test No. HMDBR-1	32
Figure 26. Sidewalk Reinforcement Details, Test No. HMDBR-1	
Figure 27. Sidewalk Reinforcement Details, Cont., Test No. HMDBR-1	
Figure 28. Curb Reinforcement Details, Test No. HMDBR-1	
Figure 29. Downstream Anchorage Assembly, Test No. HMDBR-1	36
Figure 30. Anchor Post Assembly Details, Test No. HMDBR-1	37
Figure 31. Anchor Post Components, Test No. HMDBR-1	
Figure 32. Thrie-Beam Details, Test No. HMDBR-1	
Figure 33. Transition Rail and End Shoe Details, Test No. HMDBR-1	40
Figure 34. Hardware Details, Test No. HMDBR-1	41
Figure 35. Bill of Materials, Test No. HMDBR-1	42
Figure 36. Bill of Materials, Cont., Test No. HMDBR-1	
Figure 37. Bill of Materials, Cont., Test No. HMDBR-1	
Figure 38. Test Installation Photographs, Test No. HMDBR-1	45
Figure 39. Photographs of (a) Full Installation and (b) AGT with Transition Curb and	
MGS, Test No. HMDBR-1	
Figure 40. Test Installation Photographs, Typical Post Installation, Test No. HMDBR-1	
Figure 41. Test Installation Photographs, End Anchorage Assemblies, Test No. HMDBR-1	
Figure 42. Test Installation Layout, Test Nos. HMDBR-2 and HMDBR-3	
Figure 43. Bridge Rail Details, Test Nos. HMDBR-2 and HMDBR-3	
Figure 44. Typical Rail Splice, Test Nos. HMDBR-2 and HMDBR-3	52

Figure 45. Bridge Rail Post Components, Test Nos. HMDBR-2 and HMDBR-3	53
Figure 46. Sidewalk Details, Test Nos. HMDBR-2 and HMDBR-3	
Figure 47. Sidewalk Reinforcement Details, Test Nos. HMDBR-2 and HMDBR-3	
Figure 48. Sidewalk Reinforcement Details, Cont., Test Nos. HMDBR-2 and HMDBR-3	
Figure 49. Rebar Details, Test Nos. HMDBR-2 and HMDBR-3	57
Figure 50. Upstream Anchorage, Test Nos. HMDBR-2 and HMDBR-3	58
Figure 51. Downstream Anchorage, Test Nos. HMDBR-2 and HMDBR-3	
Figure 52. Anchor Post Assembly Details, Test Nos. HMDBR-2 and HMDBR-3	
Figure 53. Anchor Post Components, Test Nos. HMDBR-2 and HMDBR-3	61
Figure 54. Thrie-Beam Details, Test Nos. HMDBR-2 and HMDBR-3	62
Figure 55. Hardware Details, Test Nos. HMDBR-2 and HMDBR-3	63
Figure 56. Bill of Materials, Test Nos. HMDBR-2 and HMDBR-3	64
Figure 57. Bill of Materials, Cont., Test Nos. HMDBR-2 and HMDBR-3	65
Figure 58. Test Installation, Test No. HMDBR-2	66
Figure 59. Test Installation, Upstream Anchor and Typical Post, Test No. HMDBR-2	67
Figure 60. Test Installation, Test No. HMDBR-3	68
Figure 61. Test Installation, Upstream Anchor and Typical Post, Test No. HMDBR-3	69
Figure 62. Test Vehicle, Test No. HMDBR-1	
Figure 63. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HMDBR-1	72
Figure 64. Vehicle Dimensions, Test No. HMDBR-1	
Figure 65. Test Vehicle, Test No. HMDBR-2	74
Figure 66. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HMDBR-2	75
Figure 67. Vehicle Dimensions, Test No. HMDBR-2	76
Figure 68. Test Vehicle, Test No. HMDBR-3	77
Figure 69. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HMDBR-3	78
Figure 70. Vehicle Dimensions, Test No. HMDBR-3	79
Figure 71. Target Geometry, Test No. HMDBR-1	
Figure 72. Target Geometry, Test No. HMDBR-2	82
Figure 73. Target Geometry, Test No. HMDBR-3	
Figure 74. Camera Locations, Speeds, and Lens Settings, Test No. HMDBR-1	86
Figure 75. Camera Locations, Speeds, and Lens Settings, Test No. HMDBR-2	
Figure 76. Camera Locations, Speeds, and Lens Settings, Test No. HMDBR-3	
Figure 77. Target Impact Location, Test No. HMDBR-1	
Figure 78. Sequential Photographs, Test No. HMDBR-1	
Figure 79. Sequential Photographs, Test No. HMDBR-1	
Figure 80. Documentary Photographs, Test No. HMDBR-1	
Figure 81. Documentary Photographs, Test No. HMDBR-1	
Figure 82. Vehicle Final Position and Trajectory Marks, Test No. HMDBR-1	
Figure 83. System Damage, Test No. HMDBR-1	
Figure 84. Rail Damage, Test No. HMDBR-1	
Figure 85. System Damage, Post Nos. 24 and 25, Test No. HMDBR-1	
Figure 86. Permanent Set, Dynamic Deflection, and Working Width, Test No. HMDBR-1	
Figure 87. Vehicle Damage, Test No. HMDBR-1	
Figure 88. Vehicle Damage, Test No. HMDBR-1	
Figure 89. Interior and Undercarriage Damage, Test No. HMDBR-1	106
Figure 90. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2),	100
Test No. HMDBR-1	109

Figure 91. Summary of Test Results and Sequential Photographs, Test No. HMDBR-1	110
Figure 92. Target Impact Location, Test No. HMDBR-2	
Figure 93. Sequential Photographs, Test No. HMDBR-2	114
Figure 94. Sequential Photographs, Test No. HMDBR-2	115
Figure 95. Documentary Photographs, Test No. HMDBR-2	116
Figure 96. Documentary Photographs, Test No. HMDBR-2	117
Figure 97. Vehicle Final Position and Trajectory Marks, Test No. HMDBR-2	118
Figure 98. System Damage, Test No. HMDBR-2	
Figure 99. Rail Damage, Test No. HMDBR-2	121
Figure 100. System Damage, Post No. 13, Test No. HMDBR-2	122
Figure 101. Sidewalk Damage and Contact Marks, Test No. HMDBR-2	123
Figure 102. Permanent Set, Dynamic Deflection, and Working Width, Test No. HMDBR-2	124
Figure 103. Vehicle Damage, Test No. HMDBR-2	
Figure 104. Vehicle Damage, Test No. HMDBR-2	
Figure 105. Interior and Undercarriage Damage, Test No. HMDBR-2	127
Figure 106. Perpendicular and Tangential Forces Imparted to the Barrier System	
(SLICE-1), Test No. HMDBR-2	
Figure 107. Summary of Test Results and Sequential Photographs, Test No. HMDBR-2	131
Figure 108. Target Impact Location, Test No. HMDBR-3	
Figure 109. Sequential Photographs, Test No. HMDBR-3	
Figure 110. Sequential Photographs, Test No. HMDBR-3	
Figure 111. Documentary Photographs, Test No. HMDBR-3	
Figure 112. Documentary Photographs, Test No. HMDBR-3	
Figure 113. Vehicle Final Position and Trajectory Marks, Test No. HMDBR-3	
Figure 114. System Damage, Test No. HMDBR-3	
Figure 115. Rail Damage, Test No. HMDBR-3	
Figure 116. Curb Damage and Contact Marks, Test No. HMDBR-3	143
Figure 117. Curb Damage at Post No. 6 (Top) and Post No. 7 (Bottom), Test No.	
HMDBR-3	
Figure 118. Permanent Set, Dynamic Deflection, and Working Width, Test No. HMDBR-3	
Figure 119. Vehicle Damage, Test No. HMDBR-3	
Figure 120. Vehicle Damage, Test No. HMDBR-3	
Figure 121. Interior and Undercarriage Damage, Test No. HMDBR-3	148
Figure 122. Perpendicular and Tangential Forces Imparted to the Barrier System	
(SLICE-2), Test No. HMDBR-3	
Figure 123. Summary of Test Results and Sequential Photographs, Test No. HMDBR-3	
Figure A-1. CIP Determination, Test No. HMDBR-1	
Figure A-2. CIP Determination, Test No. HMDBR-2	
Figure A-3. CIP Determination, Test No. HMDBR-3	160
Figure B-1. 10-gauge Thrie-Beam Section, Test No. HMDBR-1 (Item No. a6)	
Figure B-2. Base Plate, Test No. HMDBR-1 (Item No. b1)	
Figure B-3. 1 ¹ / ₄ -in. Dia. Anchor Rod, Test No. HMDBR-1 (Item No. b2), Page 1 of 2	
Figure B-4. 1 ¹ / ₄ -in. Dia. Anchor Rod, Test No. HMDBR-1 (Item No. b2), Page 2 of 2	
Figure B-5. ⁵ / ₈ -in. Dia. Anchor Rod, Test No. HMDBR-1 (Item No. b3), Page 1 of 2	
Figure B-6. ⁵ / ₈ -in. Dia. Anchor Rod, Test No. HMDBR-1 (Item No. b3), Page 2 of 2	
Figure B-7. W6x25 Steel Post, Test No. HMDBR-1 (Item No. d9)	
Figure B-8. #4 Rebar, Test No. HMDBR-1 (Item Nos. e1, e2, and e7)	171

Figure B-9. 5% in. Dia. Guardrail Bolt, Test No. HMDBR-1 (Item No. f3)	.172
Figure B-10. ⁵ / ₈ -in. – 11 UNC, 2-in. Long Guardrail Bolt, Test No. HMDBR-1 (Item No.	
f7)	.173
Figure B-11. 7/8-in. Dia. Heavy Hex Head Bolt, Test No. HMDBR-1 (Item No. f8)	.174
Figure B-12. 5%-in. Dia. Plain USS Washer, Test No. HMDBR-1 (Item No. g1)	
Figure B-13. ⁵ / ₈ -in. Dia. Hardened Washer, Test No. HMDBR-1 (Item No. g2)	
Figure B-14. ⁷ / ₈ -in. Dia. Plain Round Washer, Test No. HMDBR-1 (Item No. g3)	
Figure B-15. 1 ¹ / ₄ -in. Dia. Hardened Washer, Test No. HMDBR-1 (Item No. g5)	
Figure B-16. 1-in. Dia. Hardened Flat Washer, Test No. HMDBR-1 (Item No. g6)	
Figure B-17. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h1)	
Figure B-18. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h2)	
Figure B-19. 1 ¹ / ₄ -in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h4)	
Figure B-20. 1-in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h5)	
Figure B-21. ⁷ / ₈ -in. Dia. UNC Heavy Hex Nut, Test No. HMDBR-1 (Item No. h7)	
Figure B-22. 1-in. Dia. Threaded Rod, Test No. HMDBR-1 (Item No. i1), Page 1 of 2	
Figure B-23. 1-in. Dia. Threaded Rod, Test No. HMDBR-1 (Item No. i1), Page 2 of 2	
Figure B-24. 10-gauge Thrie-Beam Terminal Connector, Test No. HMDBR-1 (Item No. i2)	
Figure B-25. ¹ / ₂ -in. Thick Steel Plate, Test No. HMDBR-1 (Item Nos. i3, i5, and i7)	
Figure B-26. 6-in. x 12-in. x ¹ / ₄ -in. HSS Tube, Test No. HMDBR-1 (Item No. i4)	
Figure B-27. 6-in. x 4-in. x $\frac{5}{16}$ -in. HSS Tube, Test No. HMDBR-1 (Item No. i6)	
Figure B-28. Concrete, Test No. HMDBR-1 (Item No. j1)	
Figure B-29. Epoxy Adhesive, Test No. HMDBR-1 (Item No. k1)	
Figure B-30. Epoxy Post Cavity Filler, Test No. HMDBR-1 (Item No. k2)	
Figure C-1. 10-gauge Thrie Beam Section, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	
a1)	197
Figure C-2. 10-gauge Thrie Beam Terminal Connector, Test Nos. HMDBR-2 and	171
HMDBR-3 (Item No. a2)	198
Figure C-3. Base Plate, Test Nos. HMDBR-2 and HMDBR-3 (Item No. b1)	
Figure C-4. 1 ¹ / ₄ -in. Dia., 1-ft 2-in. Long Anchor Rod, Test Nos. HMDBR-2 and HMDBR-3	1///
	.200
Figure C-5. ⁵ / ₈ -in. Dia., 8-in. Long Anchor Rod, Test Nos. HMDBR-2 and HMDBR-3 (Item	200
	.201
Figure C-6. W6x25 Steel Post, Test Nos. HMDBR-2 and HMDBR-3 (Item No. b4)	-
Figure C-7. 1-in. Dia., UNC Threaded Rod, Test Nos. HMDBR-2 and HMDBR-3 (Item	
	.203
Figure C-8. 1-ft 2-in. x 1-ft-2in. x ¹ / ₂ -in. Steel Plate, Test Nos. HMDBR-2 and HMDBR-3	
(Item No. c2)	.204
Figure C-9. 6-in. x 1-ft x ¹ / ₄ in. 3-ft 2 ¹ / ₂ -in. Long HSS Tube, Test Nos. HMDBR-2 and	
	.205
Figure C-10. 11 ¹ / ₂ -in. x 5 ¹ / ₂ -in. x ¹ / ₂ -in. Steel Plate, Test Nos. HMDBR-2 and HMDBR-3	
5	.206
Figure C-11. 6-in. x 4-in. x ⁵ / ₁₆ -in., 3-ft 10-in. Long HSS Tube, Test Nos. HMDBR-2 and	
HMDBR-3 (Item No. c5)	.207
Figure C-12. 1-ft 4-in. x 1-ft x ¹ / ₂ -in. Steel Plate, Test Nos. HMDBR-2 and HMDBR-3	-
-	.208
Figure C-13. #4 Rebar, 2 ft $-6^{3/4}$ in. Total Unbent Length, Test Nos. HMDBR-2 and	-
HMDBR-3 (Item No. d1)	.209

Figure C-14. #4 Rebar, 97 ft – 1 in. Total Length, 1 ft – 6 in. Minimum Lap Length, Test	
Nos. HMDBR-2 and HMDBR-3 (Item No. d2)	.210
Figure C-15. #4 Rebar, 2 ft – 8 in. Total Unbent Length, Test Nos. HMDBR-2 and	
HMDBR-3 (Item No. d3)	.211
Figure C-16. Reinforced Concrete, Test Nos. HMDBR-2 and HMDBR-3 (Item No. e1),	
Page 1 of 2	.212
Figure C-17. Reinforced Concrete Continued, Test Nos. HMDBR-2 and HMDBR-3 (Item	
	.213
Figure C-18. ⁵ / ₈ -in. – 11 UNC, 2-in. Long Guardrail Bolt, Test Nos. HMDBR-2 and	
	.214
Figure C-19. ⁵ / ₈ -in. – 11 UNC, 1 ¹ / ₄ -in. Long Guardrail Bolt, Test Nos. HMDBR-2 and	
-	.215
Figure C-20. ⁷ / ₈ -in. Dia. UNC Heavy Hex Head Bolt, Test Nos. HMDBR-2 and HMDBR-3	
(Item No. f3)	.216
Figure C-21. ⁵ / ₈ -in. Dia. Plain USS Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item	
	.217
Figure C-22. 5/8-in. Dia. Hardened Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	
	.218
Figure C-23. ⁷ / ₈ -in. Dia. Plain Round Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item	
	.219
Figure C-24. 1 ¹ / ₄ -in. Dia. Hardened Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item	
No. g4)	.220
Figure C-25. 1-in. Dia. Hardened Round Washer, Test Nos. HMDBR-2 and HMDBR-3	
	.221
Figure C-26. 5/8-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	
	.222
Figure C-27. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	
h2)	.223
Figure C-28. 1 ¹ / ₄ -in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	0
	.224
Figure C-29. 1 ¹ / ₄ -in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	
-	.225
Figure C-30. 1-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	0
h4)	.226
Figure C-31. ⁷ / ₈ -in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No.	
h5)	.227
Figure D-1. Vehicle Mass Distribution, Test No. HMDBR-1	
Figure D-2. Vehicle Mass Distribution, Test No. HMDBR-2	
Figure D-3. Vehicle Mass Distribution, Test No. HMDBR-3	
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. HMDBR-1	
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. HMDBR 1	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. HMDBR-1	
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. HMDBR 1	
Figure E-5. Maximum Occupant Compartment Deformation Data – Set 2, Test No. Invibility 1	
HMDBR-1	237
Figure E-6. Exterior Vehicle Crush (NASS) – Front, Test No. HMDBR-1	
Figure E-7. Exterior Vehicle Crush (NASS) – Side, Test No. HMDBR-1	
ingute 2 (Enterior (entere crush (i i i b)) blue, restrict initiable i initiality	/

Figure E-8. Floor Pan Deformation Data – Set 2, Test No. HMDBR-2	240
Figure E-9. Occupant Compartment Deformation Data - Set 2, Test No. HMDBR-2	
Figure E-10. Maximum Occupant Compartment Deformations by Location, Test No.	
HMDBR-2	242
Figure E-11. Exterior Vehicle Crush (NASS) - Front, Test No. HMDBR-2	
Figure E-12. Exterior Vehicle Crush (NASS) - Side, Test No. HMDBR-2	
Figure E-13. Floor Pan Deformation Data – Set 1, Test No. HMDBR-3	
Figure E-14. Floor Pan Deformation Data – Set 2, Test No. HMDBR-3	
Figure E-15. Occupant Compartment Deformation Data – Set 1, Test No. HMDBR-3	
Figure E-16. Occupant Compartment Deformation Data – Set 2, Test No. HMDBR-3	248
Figure E-17. Maximum Occupant Compartment Deformations by Location, Test No.	• 10
HMDBR-3.	
Figure E-18. Exterior Vehicle Crush (NASS) - Front, Test No. HMDBR-3	
Figure E-19. Exterior Vehicle Crush (NASS) - Side, Test No. HMDBR-3	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HMDBR-1	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HMDBR-1	
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HMDBR-1	
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HMDBR-1	
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HMDBR-1	
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. HMDBR-1	
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. HMDBR-1	
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. HMDBR-1	
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HMDBR-1	
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HMDBR-1	
Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HMDBR-1	
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HMDBR-1	
Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HMDBR-1	
Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-1 Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. HMDBR-1	
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. HMDBR-1 Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HMDBR-2	
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HMDBR-2	
Figure G-2. Longitudinal Occupant Impact velocity (SLICE-1), Test No. HMDBR-2	
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HMDBR-2	
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HMDBR-2	
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-2	
Figure G-0. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-2	
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. HMDBR-2	
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HMDBR-2	
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HMDBR-2	
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HMDBR-2	
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HMDBR-2	
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HMDBR-2	
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. HMDBR-2	
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. HMDBR-2	
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. HMDBR-2	
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HMDBR-3	

Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HMDBR-3	271
Figure H-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HMDBR-3	272
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HMDBR-3	272
Figure H-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HMDBR-3	273
Figure H-6. Lateral Occupant Displacement (SLICE-2), Test No. HMDBR-3	273
Figure H-7. Vehicle Angular Displacements (SLICE-2), Test No. HMDBR-3	274
Figure H-8. Acceleration Severity Index (SLICE-2), Test No. HMDBR-3	274
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HMDBR-3	275
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HMDBR-3	275
Figure H-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HMDBR-3	276
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HMDBR-3	276
Figure H-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HMDBR-3	277
Figure H-14. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-3	277
Figure H-15. Vehicle Angular Displacements (SLICE-1), Test No. HMDBR-3	278
Figure H-16. Acceleration Severity Index (SLICE-1), Test No. HMDBR-3	278

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	5
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers	6
Table 3. Weather Conditions, Test No. HMDBR-1	89
Table 4. Sequential Description of Impact Events, Test No. HMDBR-1	91
Table 5. Sequential Description of Impact Events, Test No. HMDBR-1, Cont	92
Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. HMDBR-1	107
Table 7. Summary of Occupant Risk Values, Test No. HMDBR-1	108
Table 8. Weather Conditions, Test No. HMDBR-2	111
Table 9. Sequential Description of Impact Events, Test No. HMDBR-2	113
Table 10. Maximum Occupant Compartment Intrusion by Location, Test No. HMDBR-2	128
Table 11. Summary of Occupant Risk Values, Test No. HMDBR-2	129
Table 12. Weather Conditions, Test No. HMDBR-3	132
Table 13. Sequential Description of Impact Events, Test No. HMDBR-3	134
Table 14. Maximum Occupant Compartment Intrusion by Location, Test No. HMDBR-3	149
Table 15. Summary of Occupant Risk Values, Test No. HMDBR-3	150
Table 16. Summary of Safety Performance Evaluation	154
Table B-1. Bill of Materials, HMDBR-1	162
Table B-2. Bill of Materials, HMDBR-1, Cont.	163
Table C-1. Bill of Materials, HMDBR-2 and HMDBR-3	195
Table C-2. Bill of Materials, HMDBR-2 and HMDBR-3, Cont	196

1 INTRODUCTION

1.1 Background

The Hawaii Department of Transportation (HDOT) utilizes the Hawaii Modified Delaware Thrie-Beam Bridge Rail to safely redirect vehicles on bridges. However, the crashworthiness of this bridge rail has not been investigated under current impact safety standards. This report documents three full-scale crash tests conducted in support of a study to evaluate the safety performance of the Hawaii Modified Delaware Thrie-Beam Bridge Rail installed on a concrete sidewalk according to the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [1].

The original HDOT standard plans of the Hawaii Modified Delaware Thrie-Beam Bridge Rail are shown in Figures 1 and 2. The bridge rail consisted of 10-gauge thrie-beam rail with a mounting height of 32 in. above finish grade, supported by W6x25 steel posts, spaced 6 ft – 3 in. apart, and installed on a concrete sidewalk. The W6x25 steel posts were welded to steel base plates countersunk into the top of the sidewalk, and the base plate's perimeter was backfilled with an epoxy grout. The base plates were secured to the top of the sidewalk using two 1¼-in. diameter by 14-in. long anchor rods at the traffic side of the plate and two $\frac{5}{8}$ -in. diameter by 8-in. long anchor rods at the plate.

The traffic face of the thrie-beam rail was set flush with the front face of the sidewalk, and the bridge rail was designed for use with 6-in. to 9-in. tall concrete sidewalks. The HDOT standard plans also include details to transition the thrie-beam bridge rail to the Midwest Guardrail System (MGS) using an Approach Guardrail Transition (AGT). Full-scale crash testing and evaluation of this HDOT AGT is part of a parallel MwRSF research effort that will be documented in a separate report [2].

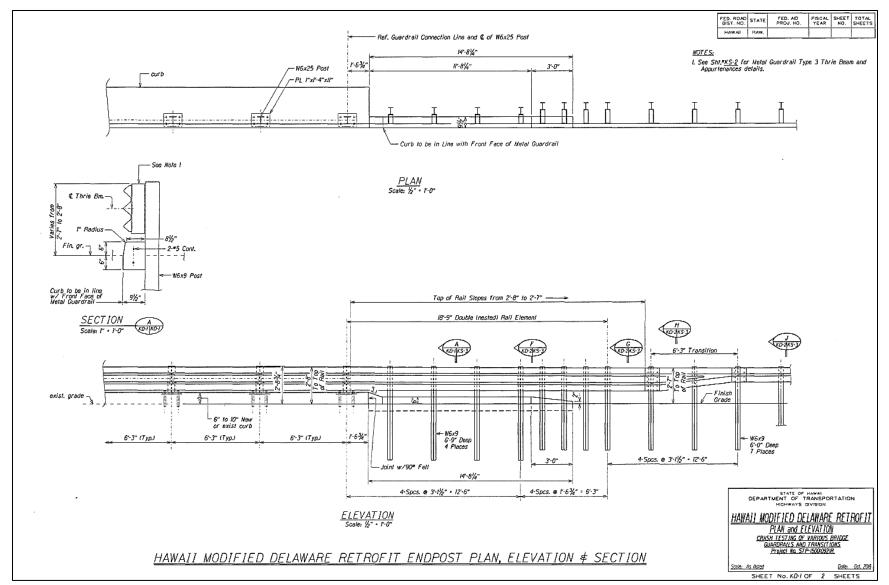


Figure 1. Hawaii Modified Delaware Retrofit Bridge Rail, Plan and Elevation

Ν

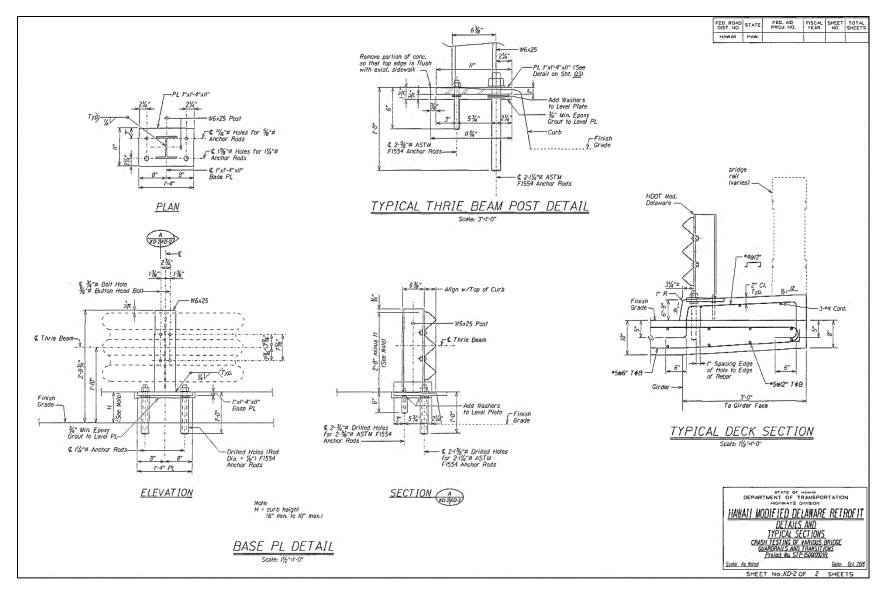


Figure 2. Hawaii Modified Delaware Retrofit Bridge Rail, Details and Typical Sections

 $\boldsymbol{\omega}$

1.2 Objective

The objective of this research included a safety performance evaluation of the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail, installed on 9-in. and 6-in. tall concrete sidewalks. The system was to be evaluated according to the TL-3 criteria of MASH 2016 [1].

1.3 Scope

The research objective was achieved through the completion of several tasks. The first task included a review of HDOT's existing standard plans for the Hawaii Modified Delaware Retrofit Bridge Rail and its transition to the MGS, the identification of potential safety issues, and the recommendation of system modifications to improve the crashworthiness of the bridge rail and AGT. Three full-scale crash tests were conducted on the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail according to MASH 2016 test designation nos. 3-10 and 3-11: one full-scale crash test was conducted on the 9-in. tall sidewalk configuration under test designation no. 3-11, and two full-scale crash tests were conducted on the 6-in. tall sidewalk configuration under test designation nos. 3-10 and 3-11. The 9-in. tall sidewalk configuration was tested with the HDOT AGT anchoring the upstream end of the system and a simulated tensile anchor on the downstream end, while the 6-in. tall sidewalk configuration was tested using simulated tensile anchors on both the upstream and downstream ends of the system. Following full-scale vehicle crash testing, the test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as bridge rails, must satisfy impact safety standards to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System. For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [1]. Note that there is no difference between MASH 2009 [3] and MASH 2016 for longitudinal barriers, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

	Test	Vehicle	Impact Conditions				
Test Article	Designation No.	Test Vehicle Ib	Weight	Speed mph	Angle deg.	Evaluation Criteria ¹	
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I	
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I	

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria are explained in Table 2.

Note that the test matrix detailed herein represents a practical worst-case condition with respect to the MASH 2016 safety requirements and a crashworthiness evaluation of the barrier system. Test designation no. 3-11, which utilizes a pickup truck (2270P vehicle), evaluates vehicle instability and pocketing during and after the impact with the bridge rail and sidewalk, and was deemed more critical for the bridge rail installed on a 9-in. tall concrete sidewalk. Therefore, a small car (1100C vehicle) crash test according to test designation no. 3-10 was not performed on the bridge rail installed on a 9-in. tall concrete sidewalk.

Both prescribed full-scale crash tests, test designation nos. 3-10 and 3-11, were deemed critical to evaluate the system performance of the bridge rail installed on a 6-in. tall concrete sidewalk. Test designation no. 3-10, which utilizes a small car, evaluates front end and wheel wedging below the thrie-beam rail as well as snag on the bridge rail posts in conjunction with the 6-in. tall sidewalk. If 1100C crash testing, which utilizes a small car, is successful for the bridge rail installed on a 6-in. tall sidewalk, then it would be believed to also perform satisfactorily when installed on a 9-in. tall sidewalk. Test designation no. 3-11, which utilizes a pickup truck, evaluates the system's safety performance and structural adequacy of the post anchorage when using the shorter sidewalk.

According to MASH 2016, the Hawaii Modified Delaware Thrie-Beam Retrofit Bridge Rail should be crash tested at a location that evaluates the greatest propensity for vehicle snag, and at a location that maximizes structural loading of the bridge rail at a critical section. For non-rigid longitudinal barriers, the critical impact points (CIPs) are primarily controlled by the post dynamic yield force, Fp, and the barrier rail plastic moment, Mp. For this bridge rail, the critical impact

points were selected using the calculated Fp and Mp values in conjunction with the CIP plots found in Section 2.3.2.1 of MASH 2016. The rail splice located at the centerline of the posts was selected as the reference point for the critical impact distance, x, in the MASH CIP plots. This CIP determination is provided in Appendix A.

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.					
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.					
Occupant	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.					
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
Risk		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s	40 ft/s			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Ridedown Acceleration Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			

Note that the test matrix detailed herein represents the researchers' best engineering judgement of which tests are necessary to assess system crashworthiness according to MASH 2016 safety requirements. However, future evaluation may be required due to revisions to the MASH criteria or additional knowledge gained over time.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three factors: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bridge railing to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable.

Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3 DESIGN DETAILS, TEST NO. HMDBR-1

The 177-ft 6-in. long test installation featured a 100-ft long section of the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail connected to the HDOT AGT at the upstream end and a thrie-beam anchorage system at the downstream end, as shown in Figures 3 through 38. Photographs of the test installation are shown in Figures 39 through 41. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B. Note that the drawing set includes details for the entire system, inclusive of the bridge rail, AGT, and W-beam rail installation. However, test conditions were such that the AGT would not influence the bridge rail performance, and therefore only the bridge rail details are described below and in Appendix B.

The Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail consisted of a 10-gauge thrie-beam rail with a mounting height of 32 in. above finish grade, supported by W6x25 steel posts, spaced at 75 in., and anchored to a 9-in. tall concrete sidewalk. The W6x25 steel posts were welded to 16-in. long x 11-in. wide x 1-in. thick ASTM A36 steel base plates. The base plates were countersunk into the top of the sidewalk, and the approximately ³/₄-in. wide gap remaining under the base plate and around the edges was backfilled with an epoxy grout following the specifications of ASTM C881, Type IV, Grade I, Class C epoxy filler recommended by HDOT. The base plates were secured to the sidewalk using two 1¹/₄-in. diameter, 14-in. long anchor rods at the traffic side (front side) of the base plate and two ⁵/₈-in. diameter, 8-in. long anchor rods at the non-traffic side (back side) of the base plate with heavy hex nuts and hardened washers. All anchor rods were epoxied into drilled out holes in the concrete sidewalk to develop their full tensile strength. The front rods were epoxied through the full depth of the concrete sidewalk and 2¹/₂ in. into the concrete tarmac, and the back anchor rods were epoxied 6 in. into the concrete sidewalk. All anchor rods were installed using Hilti RE-500, Class C881. ASTM F436, hardened washers were used to level the baseplates at the traffic side and non-traffic side of the base plates.

The thrie-beam rail splices located at the post installation utilized $\frac{5}{8}$ -in. diameter by 1¹/₄-in. long guardrail bolts with heavy hex nuts and plain washers. The thrie-beam rail sections were attached to the posts using two $\frac{5}{8}$ -in. diameter by 2-in. long guardrail bolts with heavy hex nut and plain washers. Note that the $\frac{5}{8}$ -in. diameter washers (item no. g1) intended for use with the guardrail bolts connecting the thrie-beam rail to the posts were not installed, but this omission had no impact on rail performance in the crash test.

The traffic face of the sidewalk was aligned with the face of the thrie-beam rail and was sloped at 6V:1H to the ground. The top surface of the sidewalk was sloped at 1V:24H toward the traffic-side face. The concrete mix for the sidewalk required a minimum 28-day compressive strength of 4,000 psi, and the sidewalk was reinforced with a combination of transverse and longitudinal ASTM A615 Grade 60 rebar. The sidewalk reinforcement consisted of three no. 4 longitudinal bars that were vertically spaced 12 in. apart with an 18-in. minimum lap length. The sidewalk transverse reinforcement was vertical no. 4 stirrups formed from two L-shaped bars with a minimum lap length of 12 in. The bars were shaped to match the sidewalk profile and spaced at 12-in. on center along the full sidewalk length. The transverse reinforcing bars were epoxied into the concrete tarmac on both the traffic-side and non-traffic-side to a depth of 6 in. using Hilti HIT RE-500 epoxy to develop the full tensile strength of the rebars.

The downstream end of the system incorporated a thrie-beam end anchor assembly that developed the necessary tensile strength and consisted of a vertical HSS $6x12x^{1/4}$ steel tube, a HSS $6x4x^{5/16}$ steel tube angled at 55 degrees to the ground, and a 10-gauge thrie-beam terminal connector, as shown in Figure 29. This thrie-beam downstream end anchorage was successfully crash tested and reported in another project [4]. The upstream end of the bridge rail was connected to the HDOT thrie-beam AGT system. The design details of the AGT and its modifications from HDOT's original plans will be discussed in a subsequent report [2].

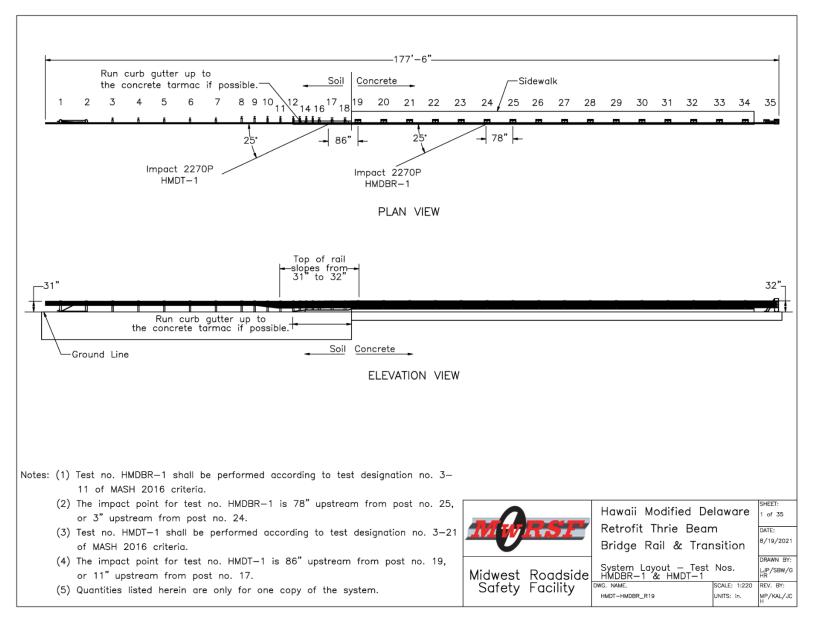


Figure 3. Test Installation Layout, Test No. HMDBR-1

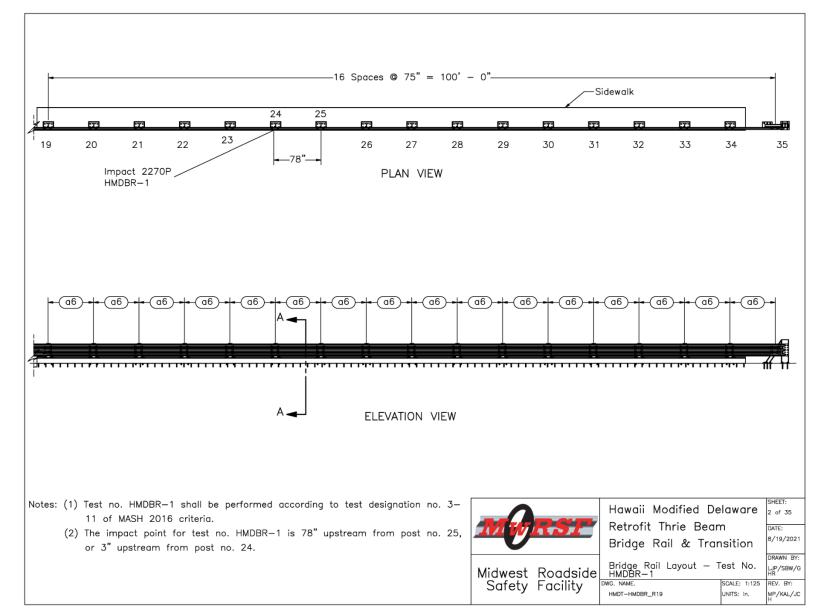


Figure 4. Bridge Rail Layout, Test No. HMDBR-1

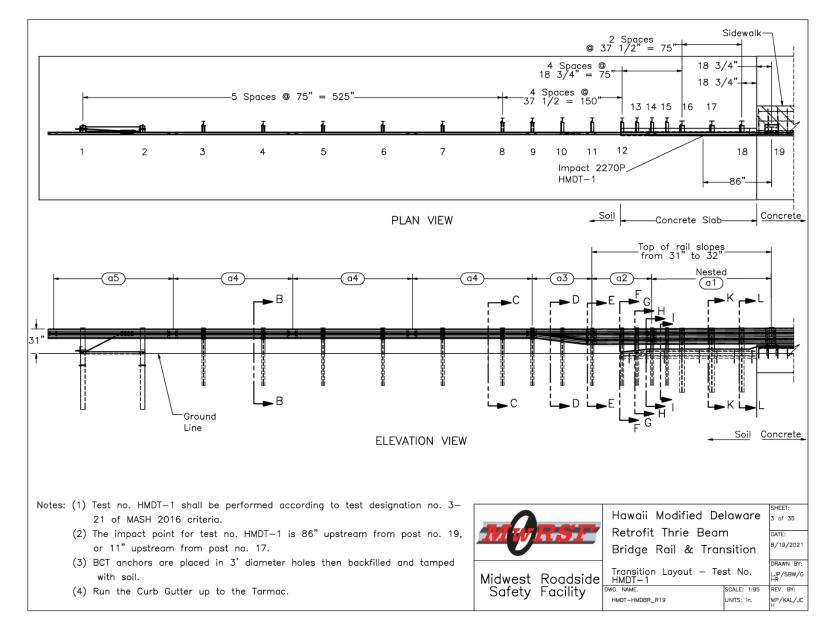


Figure 5. Rail Heights, Transition Layout, Test No. HMDBR-1

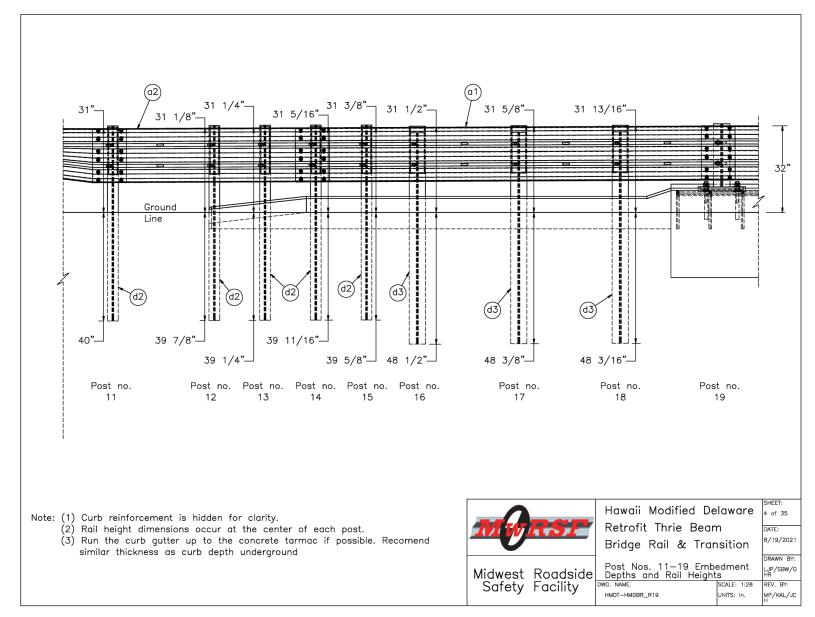


Figure 6. Rail Heights, Post Nos. 11 through 19, Test No. HMDBR-1

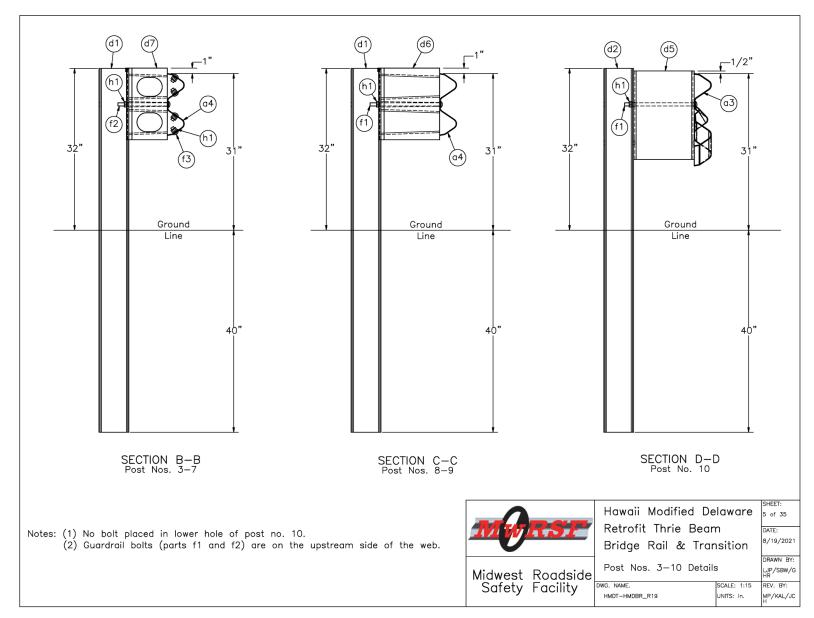


Figure 7. Post Details, Post Nos. 3 through 10, Test No. HMDBR-1

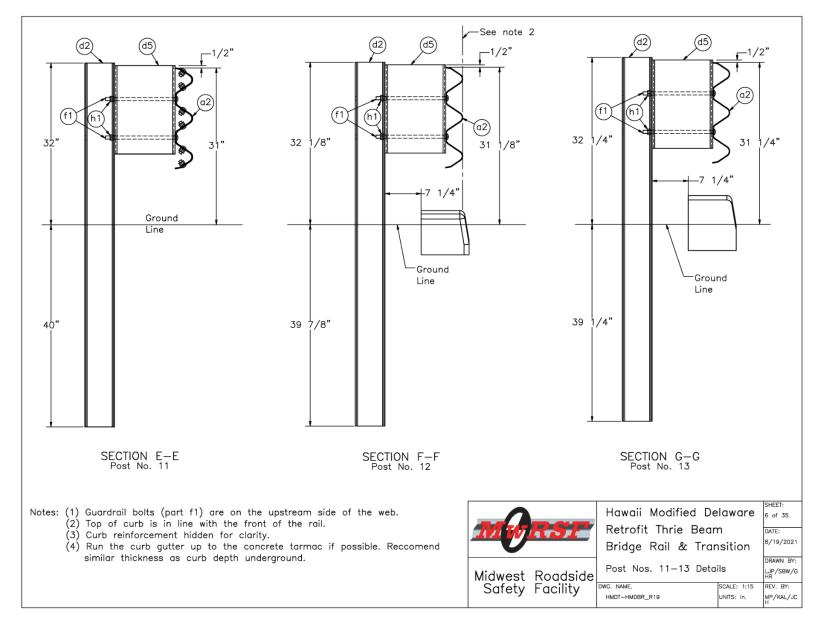


Figure 8. Post Details, Post Nos. 11 through 13, Test No. HMDBR-1

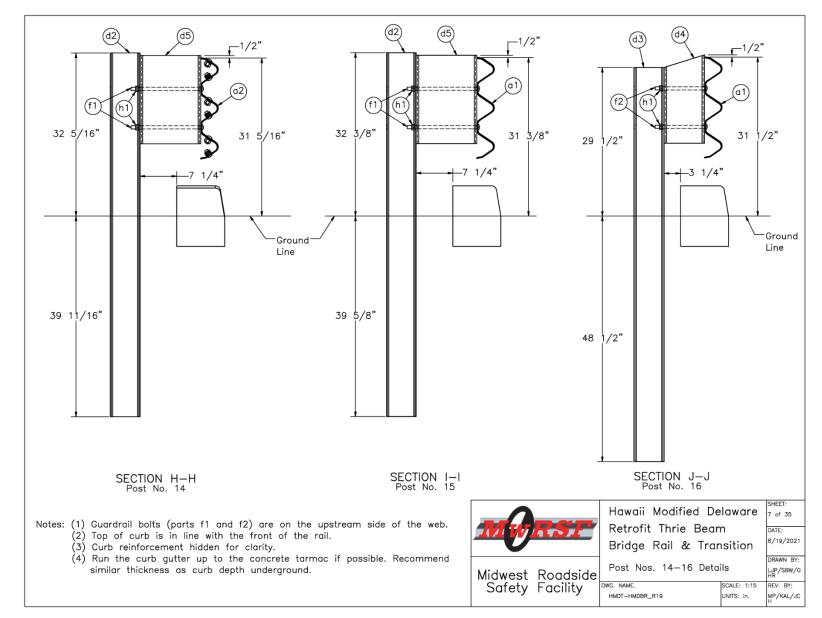


Figure 9. Post Details, Post Nos. 14 through 16, Test No. HMDBR-1

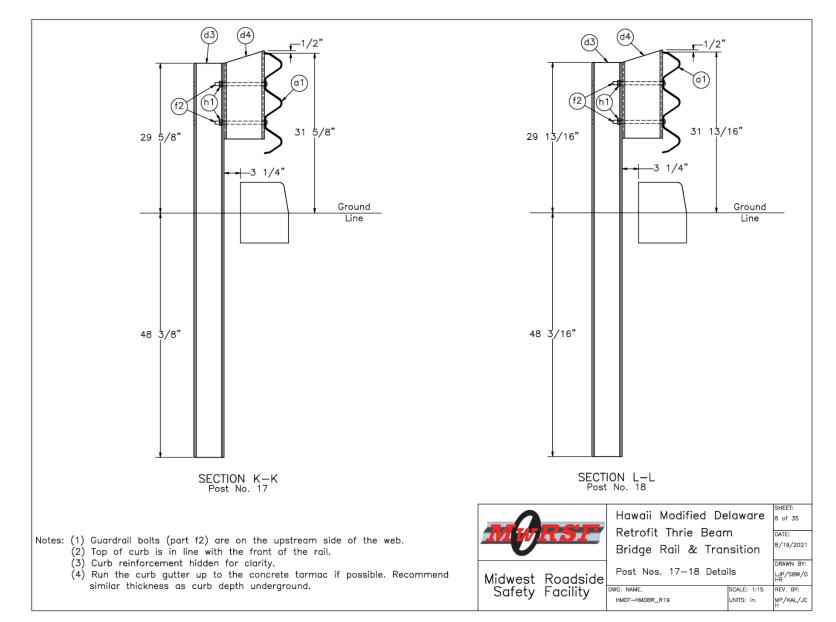


Figure 10. Post Details, Post Nos. 17 through 18, Test No. HMDBR-1

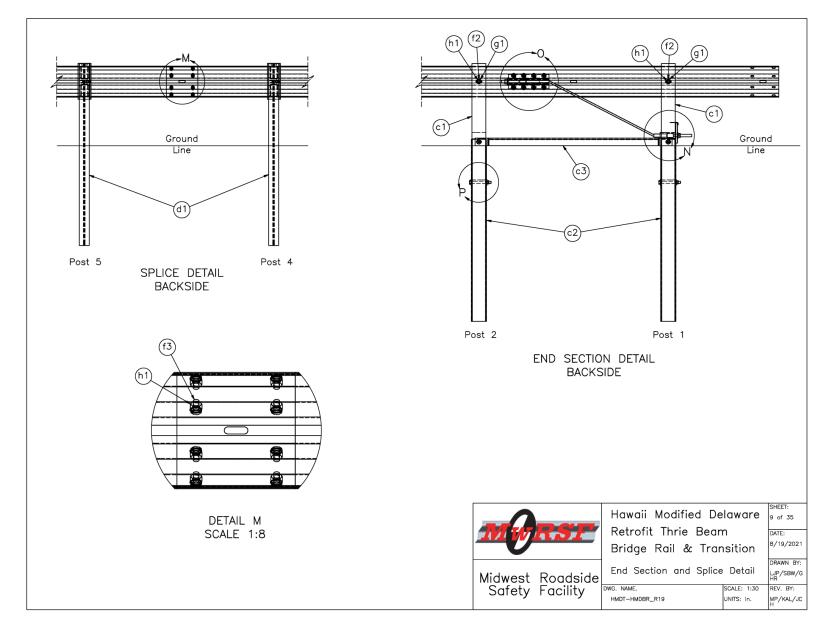


Figure 11. End Section and Splice Details, Test No. HMDBR-1

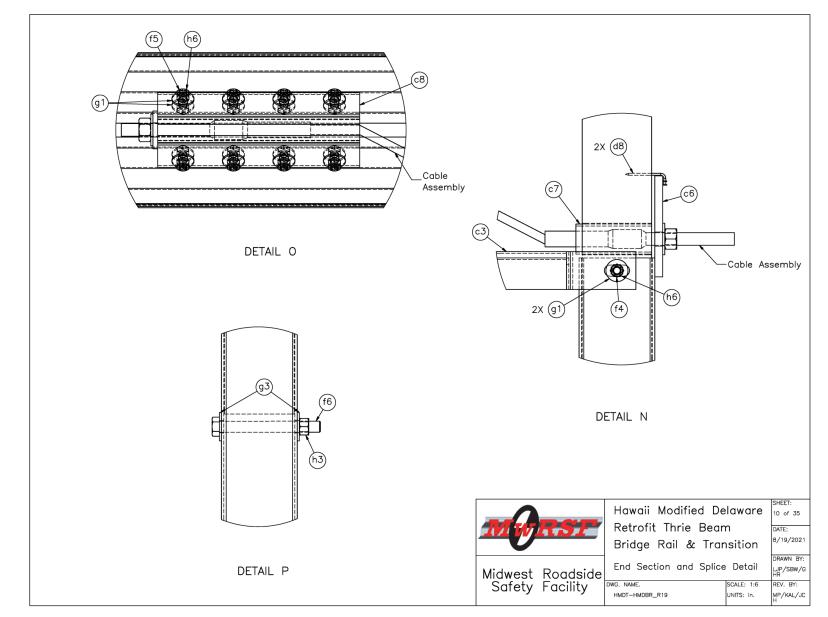


Figure 12. End Section and Splice Details, Cont., Test No. HMDBR-1

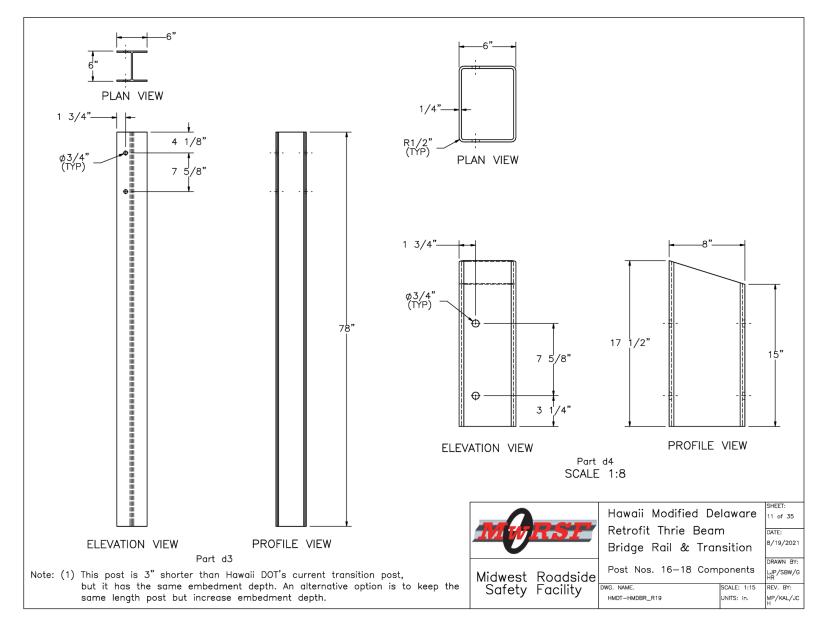


Figure 13. Post Nos. 16 through 18 Components, Test No. HMDBR-1

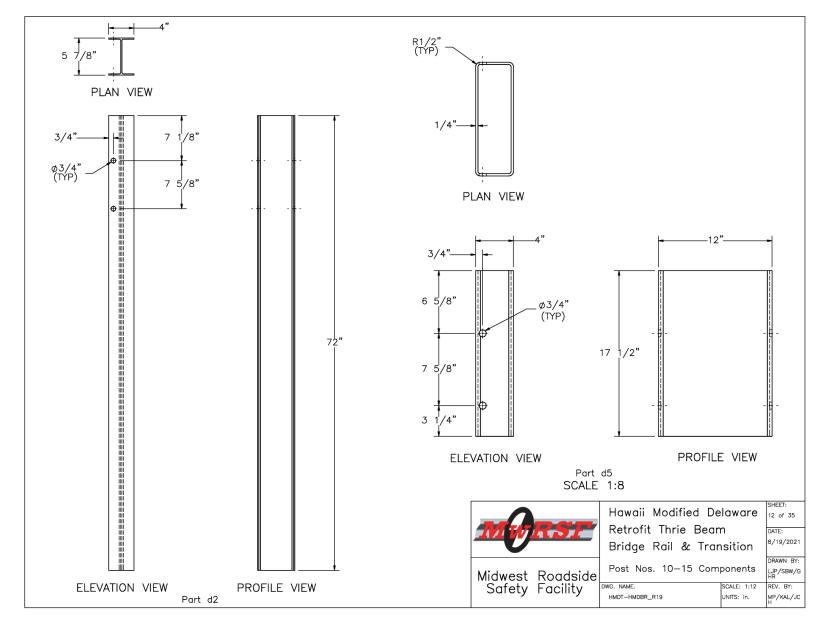


Figure 14. Post Nos. 10 through 15 Components, Test No. HMDBR-1

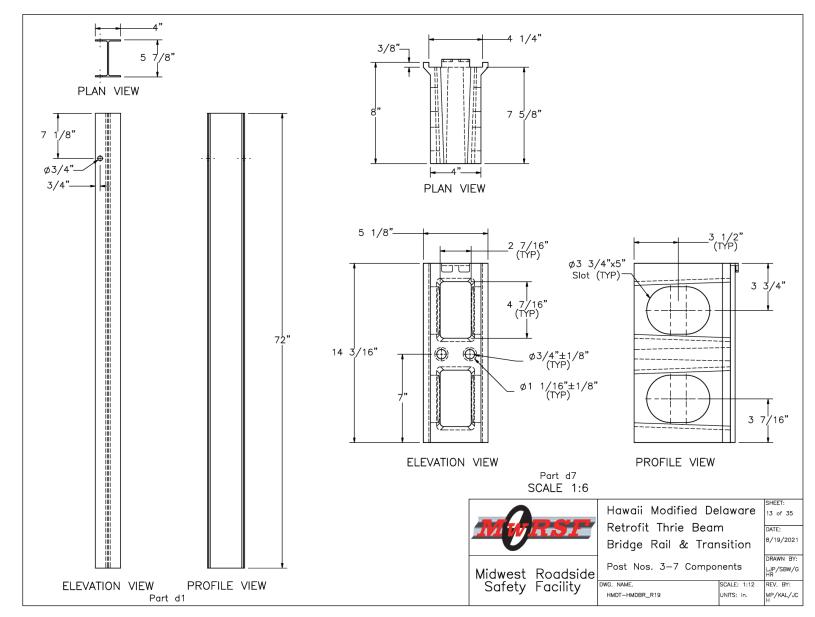


Figure 15. Post Nos. 3 through 7 Components, Test No. HMDBR-1

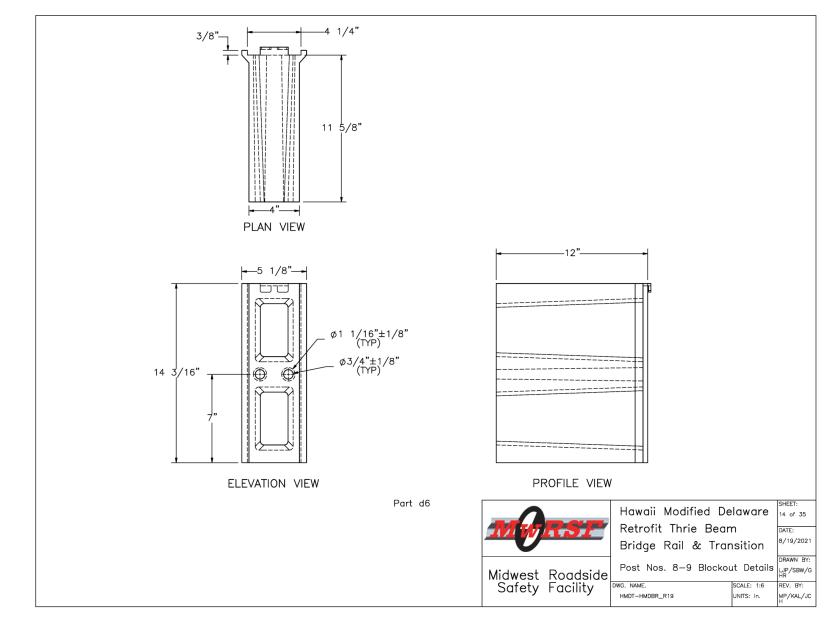


Figure 16. Post Nos. 8 and 9 Blockout Details, Test No. HMDBR-1

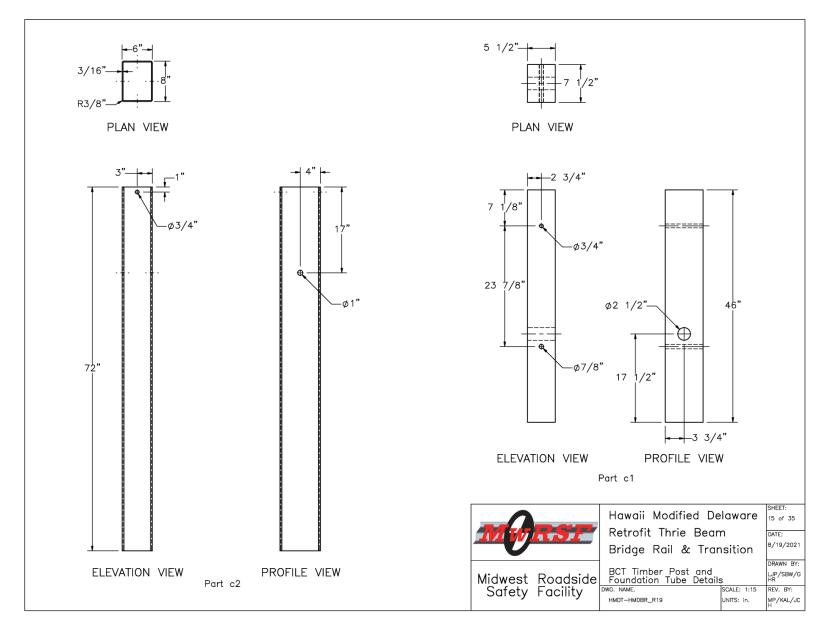


Figure 17. BCT Timber Post and Foundation Tube Details, Test No. HMDBR-1

Figure 18. Ground Strut Details, Test No. HMDBR-1

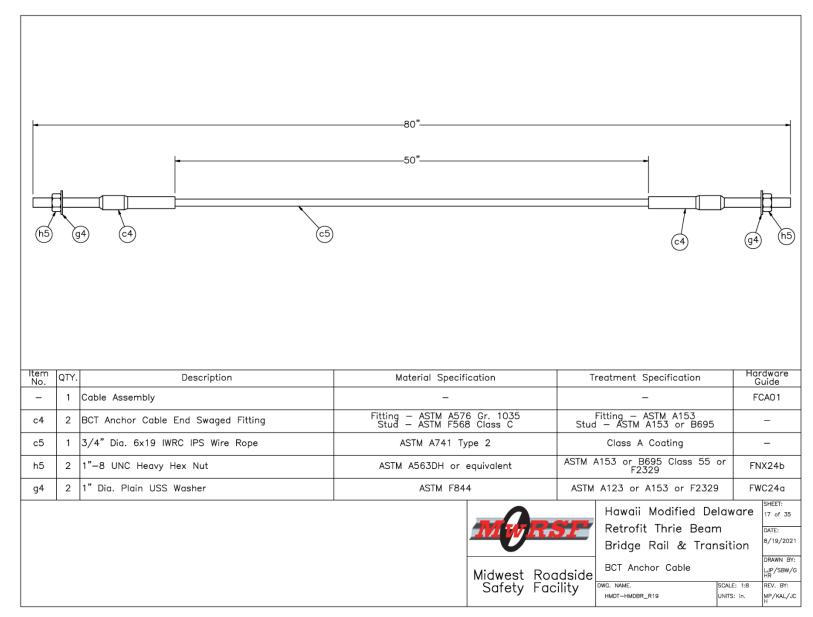


Figure 19. BCT Anchor Cable, Test No. HMDBR-1

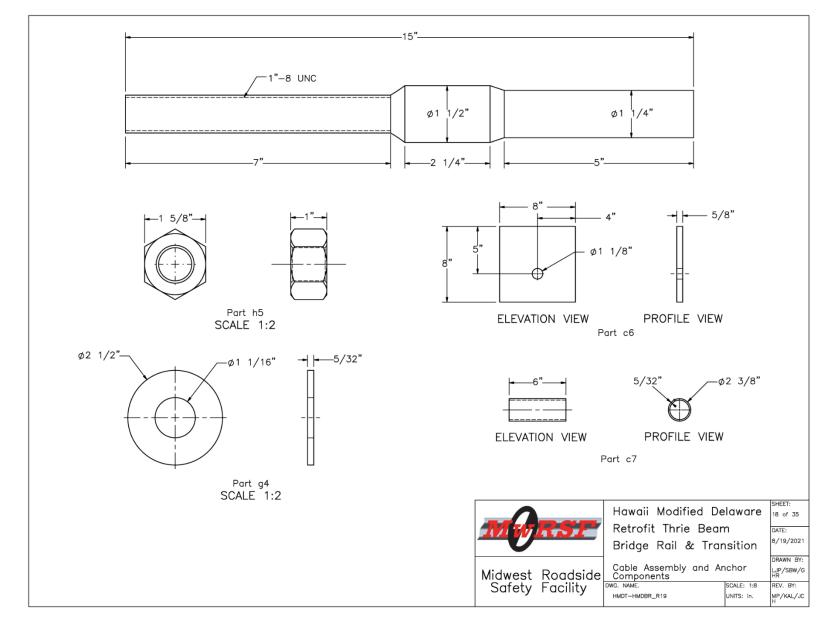


Figure 20. Cable Assembly and Anchor Components, Test No. HMDBR-1

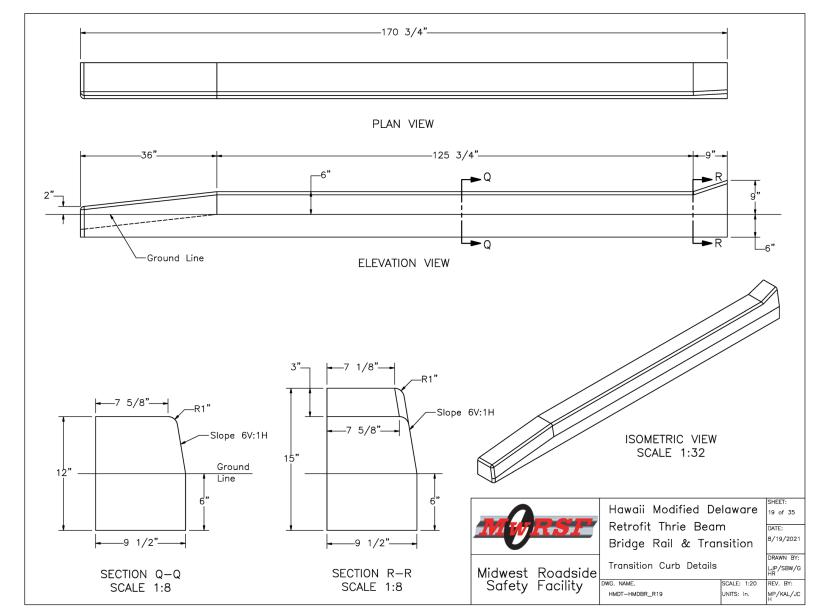


Figure 21. Transition Curb Details, Test No. HMDBR-1

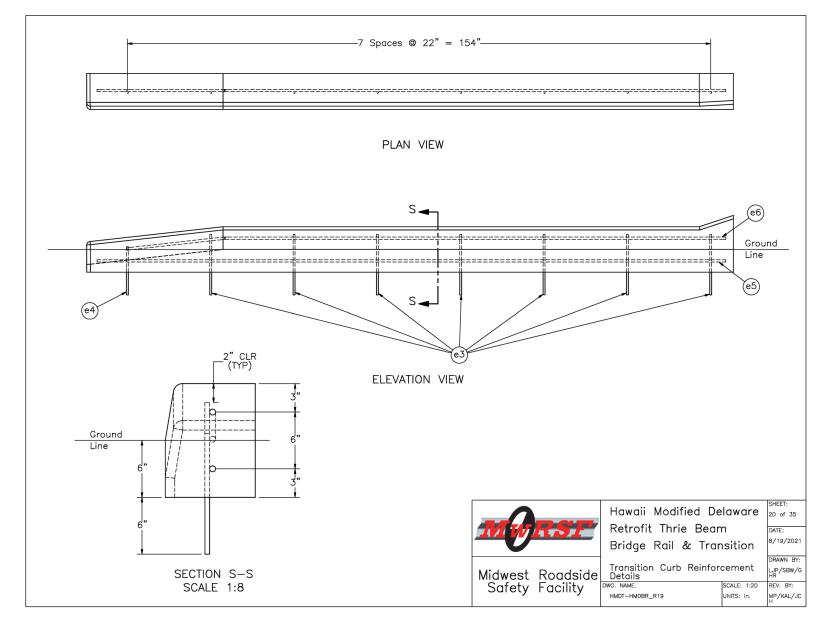


Figure 22. Transition Curb Reinforcement Details, Test No. HMDBR-1

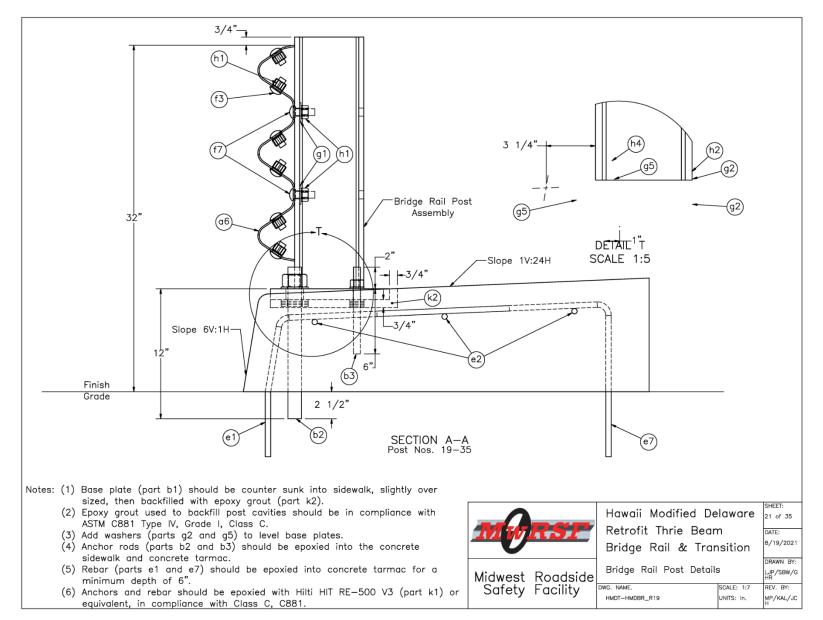


Figure 23. Bridge Rail Post Details, Test No. HMDBR-1

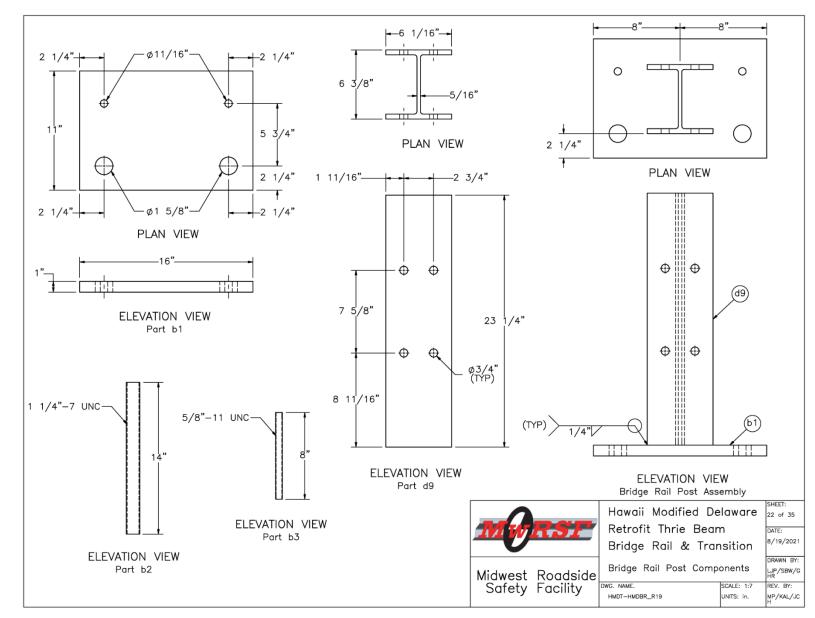


Figure 24. Bridge Rail Post Components, Test No. HMDBR-1

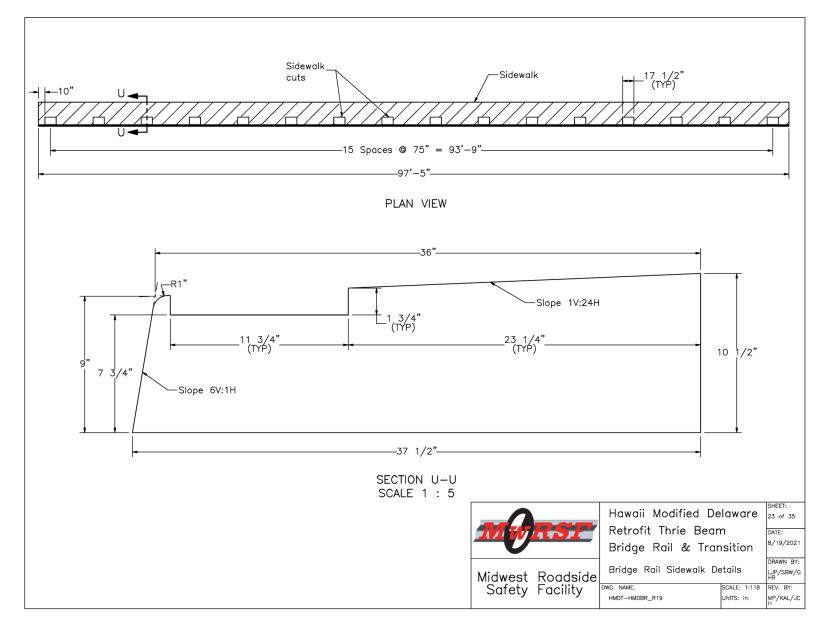


Figure 25. Bridge Rail Sidewalk Details, Test No. HMDBR-1

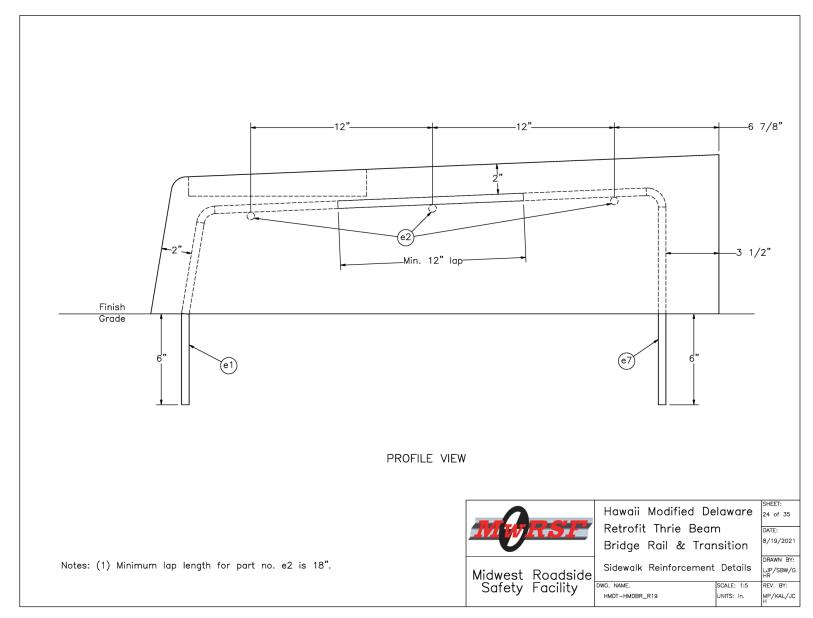


Figure 26. Sidewalk Reinforcement Details, Test No. HMDBR-1

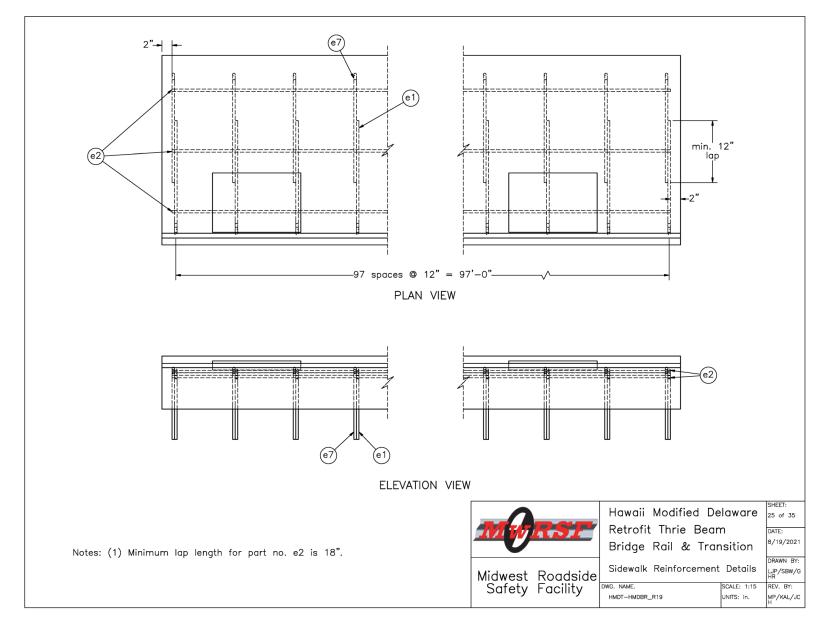


Figure 27. Sidewalk Reinforcement Details, Cont., Test No. HMDBR-1

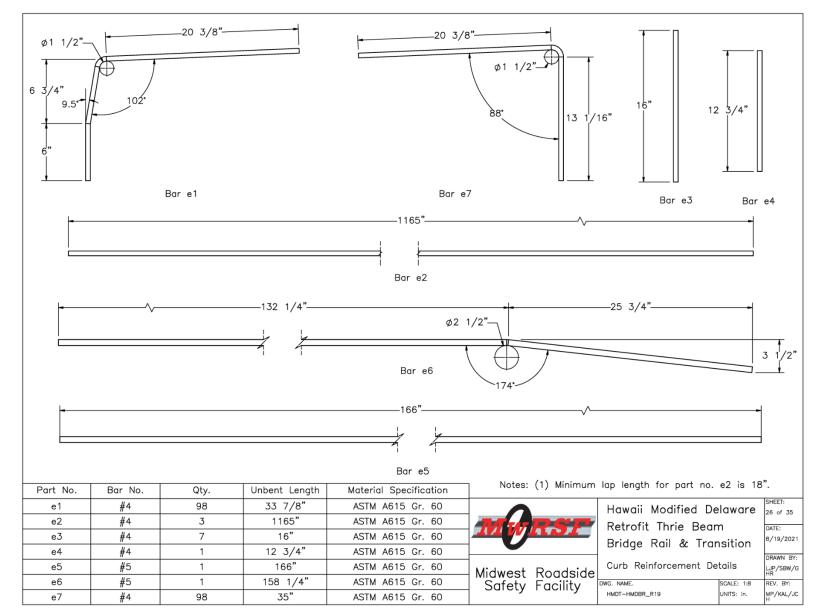


Figure 28. Curb Reinforcement Details, Test No. HMDBR-1

Figure 29. Downstream Anchorage Assembly, Test No. HMDBR-1

Figure 30. Anchor Post Assembly Details, Test No. HMDBR-1

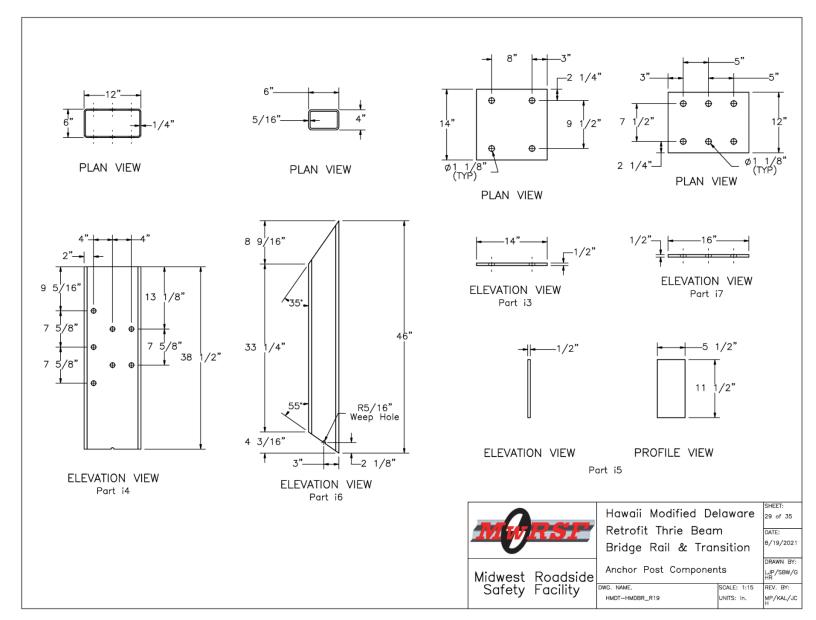


Figure 31. Anchor Post Components, Test No. HMDBR-1

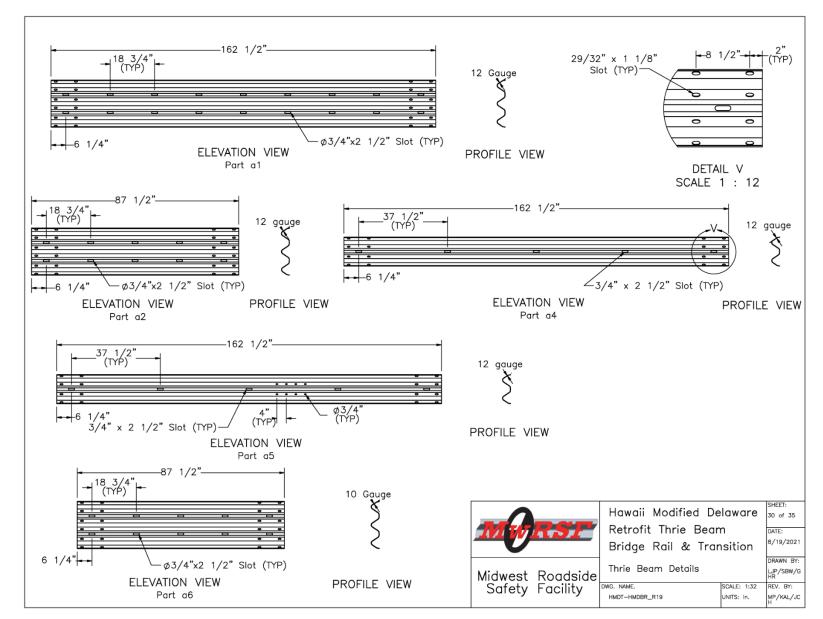


Figure 32. Thrie-Beam Details, Test No. HMDBR-1

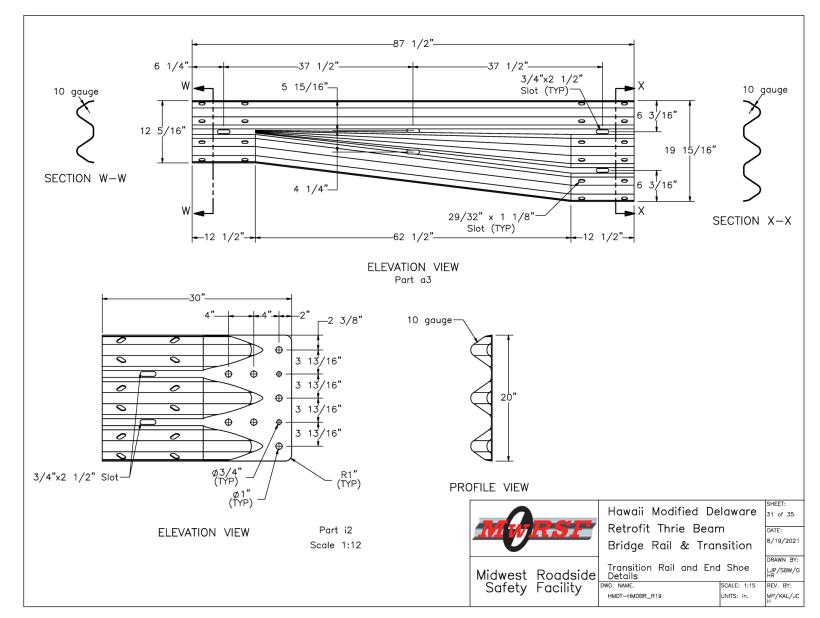
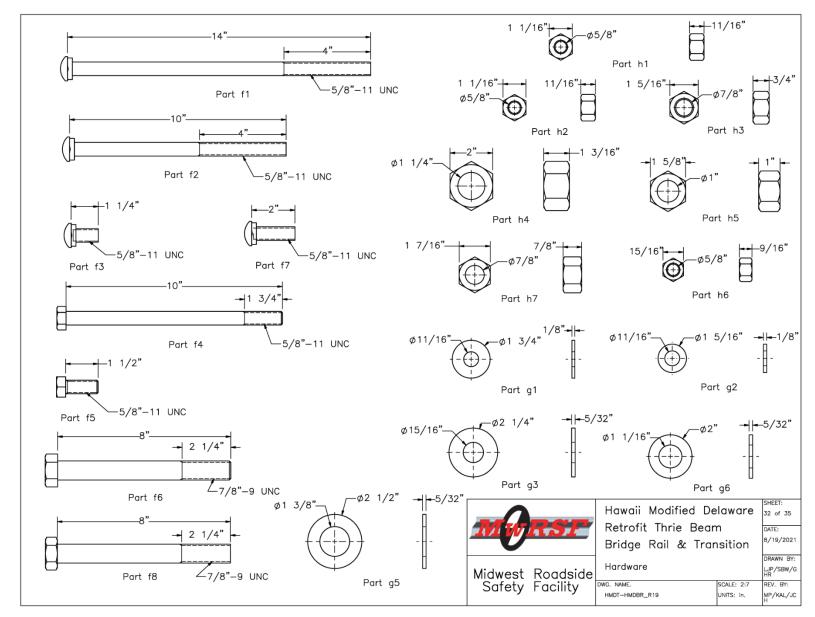



Figure 33. Transition Rail and End Shoe Details, Test No. HMDBR-1

November 12, 2021 MwRSF Report No. TRP-03-448-21

Figure 34. Hardware Details, Test No. HMDBR-1

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	2	12'-6" 12-gauge Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM08a
a2		6'—3" 12—gauge Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM19a
aЗ	1	6'-3" 10-gauge W-Beam to Thrie-Beam Asymmetric Transition Section	AASHTO M180	ASTM A653	RWT02
a4	3	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a5	1	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a6	16	6'—3" 10—gauge Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM19a
b1		16"x11"x1" Base Plate	ASTM A36	ASTM A123	-
b2	32	1 1/4" Dia., 14" Long Anchor Rod	ASTM F1554—15 Grade 105, Class 2A	ASTM F2329 / F2329M-15	-
b3	32	5/8" Dia., 8" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	ASTM F2329 / F2329M-15	-
c1	2	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 18" from ground on tension face)	-	PDF01
c2	2	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
cЗ	1	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
c4	2	BCT Anchor Cable End Swaged Fitting	Fitting — ASTM A576 Gr. 1035 Stud — ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695	-
c5	1	BCT Cable Anchor Assembly	_	-	FCA01
c6	1	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
c7	1	2 3/8" O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
c8	1	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
d1	7	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992	ASTM A123*	PWE06
d2	6	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992	ASTM A123*	PWE06
d3	3	W6x15, 78" Long Steel Post	ASTM A992	ASTM A123*	-
d4	3	17 1/2" Long, 8"x6"x1/4" Steel Blockout	ASTM A500 Gr. B	ASTM A123*	-
d5	6	17 1/2" Long, 12"x4"x1/4" Steel Blockout	ASTM A500 Gr. B	ASTM A123*	-
d6	2	14 3/16"x12"x5 1/8" Composite Recycled Blockout	Mondo Polymer MGS14SH or Equivalent	-	-
d7	5	14 3/16"x8"x5 1/8" Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	-	-
d8	2	16D Double Head Nail	Galvanized	-	-
d9	16	W6x25, 23 1/4" Long Steel Post	ASTM A992	ASTM A123	-

Notes: (1) Quantities listed herein are only for one copy of the system. (2) Purchase additional materials to repair the barrier system following the first transition test, test no. HMDT-1.

MORSE		Hawaii Modified De Retrofit Thrie Bear Bridge Rail & Trar	n	SHEET: 33 of 35 DATE: 8/19/2021
Midwest	Roadside	Bill of Materials		DRAWN BY: LJP/SBW/G HR
Safety	Facility	DWG. NAME. HMDT-HMDBR_R19	SCALE: None UNITS: in.	REV. BY: MP/KAL/JC H

Figure 35. Bill of Materials, Test No. HMDBR-1

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	98	#4 Rebar, 33 7/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e2	3	#4 Rebar, 97'1" Total Length*	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
eЗ	7	#4 Rebar, 16" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e4	1	#4 Rebar, 12 3/4" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e5	1	#5 Rebar, 166" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
e6	1	#5 Rebar, 158 1/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775 or A934)	-
e7	98	#4 Rebar, 35" Total Unbent Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775 or A934)	-
f1	13	5/8"—11 UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB06
f2	13	5/8"—11 UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB03
f3	260	5/8"-11 UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
f4	2	5/8"-11 UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f5	8	5/8"-11 UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f6	2	7/8"-9 UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	-
f7	32	5/8"-11 UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM F2329	FBB01
f8	7	7/8" Dia., 8" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 Type 1	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX22b
g1	54	5/8" Dia. Plain USS Washer	ASTM F844	ASTM F2329	FWC16a
g2	192	5/8" Dia. Hardened Washer	ASTM F436	ASTM F2329	FWC16a
g3	11	7/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
g4	2	1" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
g5	160	1 1/4" Dia. Hardened Washer	ASTM F436	ASTM F2329	FWC30a
g6	10	1" Dia. Hardened Flat Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	FWC24b
h1	318	5/8"—11 UNC Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16b
h2	32	5/8"—11 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	ASTM F2329 / F2329U-15	FNX16b
h3	2	7/8"-9 UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	-
h4	32	1 1/4"—7 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	ASTM F2329 / F2329U-15	-
h5	12	1" Dia. Heavy Hex Nut	ASTM A563DH or A194 Gr. 2H	ASTM A153 or B633 or B695 Class 55 or F1941 or F2329	FNX24b
h6	10	5/8"-11 UNC Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16a
h7	7	7/8" Dia. UNC Heavy Hex Nut	ASTM A563DH or ASTM A194 Gr. 2H	ASTM A153 for Class C or ASTM B695 for Class 50	_
*	Minim	num lap length for part e2 is 18".	m	Hawaii Modified Delawar Retrofit Thrie Beam Bridge Rail & Transitior	DATE:

*	Minimum	lap	ler

Figure 36. Bill of Materials, Cont., Test No. HMDBR	-1
rigure 50. Din of Materials, Cont., Test 10. Invibble	. 1

MURSE	Hawaii Modified Delaware Retrofit Thrie Beam Bridge Rail & Transition		SHEET: 34 of 35 DATE: 8/19/2021
Midwest Roadside	Bill of Materials		DRAWN BY: LJP/SBW/G HR
Safety Facility	DWG. NAME.	SCALE: None	REV. BY:
	HMDT-HMDBR_R19	UNITS: in.	MP/KAL/JC

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
i1	10	1" Dia. UNC, 11" Long Threaded Rod	ASTM A449 or A354 Gr. BC or A193 Gr. B7	ASTM A153 or B633 or B695 Class 55 or F1941 or F2329	FRR24b
i2	1	10-gauge Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi Min. tensile strength = 70 ksi	ASTM A123 or A653	RTE01b
i3	1	14"x14"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	ASTM A123*	-
i4	1	HSS 6"x12"x1/4" Tube, 38 1/2" Long	ASTM A500 Gr. B	ASTM A123*	-
i5	1	11 1/2"x5 1/2"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	ASTM A123*	-
i6	1	HSS 6"x4"x5/16" Tube, 46" Long	ASTM A500 Gr. B	ASTM A123*	-
i7	1	16"x12"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	ASTM A123*	-
j1	1	Concrete	Min. f'c = 4,000 psi NE Mix 47BD1S/1PF4000HW	-	-
k1	-	Hilti HIT RE-500 V3 Epoxy Adhesive	Class C 881	_	-
k2	-	SpecChem 500 Epoxy Filler	ASTM C881 Type IV, Grade I, Class C	-	-

* Component does not need to be galvanized for testing purposes

MURSE	Hawaii Modified De Retrofit Thrie Bear Bridge Rail & Trar	n	SHEET: 35 of 35 DATE: 8/19/2021
Midwest Roadside	Bill of Materials		DRAWN BY: LJP/SBW/G HR
Safety Facility	DWG. NAME. HMDT-HMDBR_R19	SCALE: None UNITS: in.	REV. BY: MP/KAL/JC

Figure 37. Bill of Materials, Cont., Test No. HMDBR-1

Figure 38. Test Installation Photographs, Test No. HMDBR-1

(a)

(b)

Figure 39. Photographs of (a) Full Installation and (b) AGT with Transition Curb and MGS, Test No. HMDBR-1

Figure 40. Test Installation Photographs, Typical Post Installation, Test No. HMDBR-1

Figure 41. Test Installation Photographs, End Anchorage Assemblies, Test No. HMDBR-1

4 DESIGN DETAILS, TEST NOS. HMDBR-2 AND HMDBR-3

The test installation for test nos. HMDBR-2 and HMDBR-3 was the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail with a total length of approximately 110 ft, as shown in Figures 42 through 57. These systems were identical installations to the system crash tested in test no. HMDBR-1, except that the bridge rail installation did not connect to an AGT, and the thrie-beam anchorage assembly was used at both the upstream and downstream ends of the installation. In addition, the sidewalk height was reduced from 9 in. to 6 in., thereby increasing the threaded rod embedment depth at the post anchorages by 3 in. Photographs of the test installation for test no. HMDBR-2 are shown in Figures 58 and 59. Photographs of the test installation for test no. HMDBR-3 are shown in Figures 60 and 61. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix C. Note that in test no. HMDBR-2, the ⁵/₈-in. diameter washers (item no. g1) intended for use with the guardrail bolts connecting the thrie-beam rail to the posts were not installed, but this omission had no impact on rail performance in the crash test. Item no. g1 was included in the test no. HMDBR-3 installation.

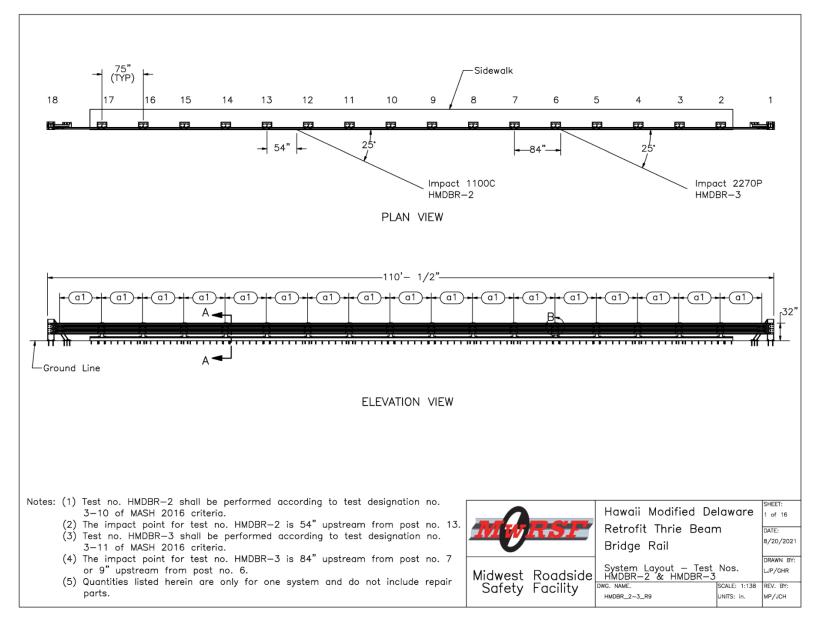


Figure 42. Test Installation Layout, Test Nos. HMDBR-2 and HMDBR-3

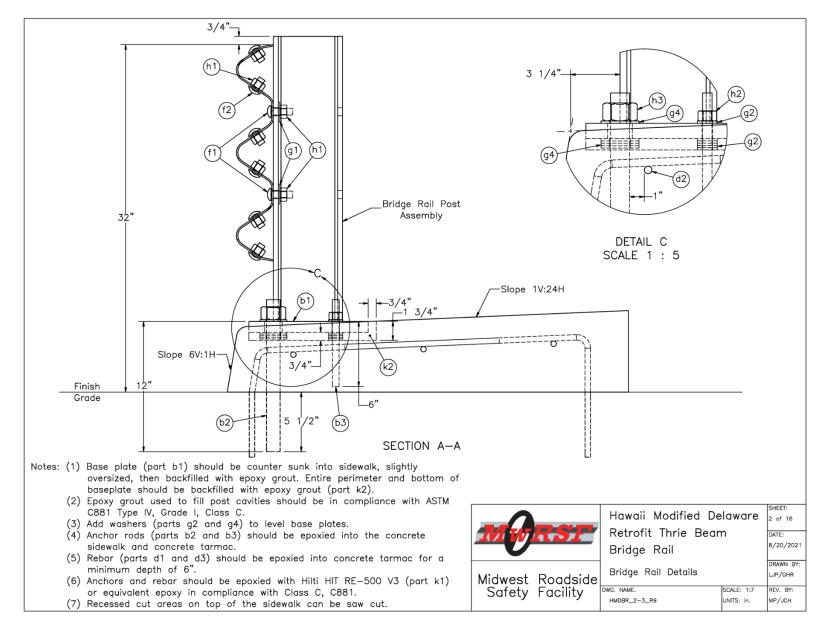


Figure 43. Bridge Rail Details, Test Nos. HMDBR-2 and HMDBR-3

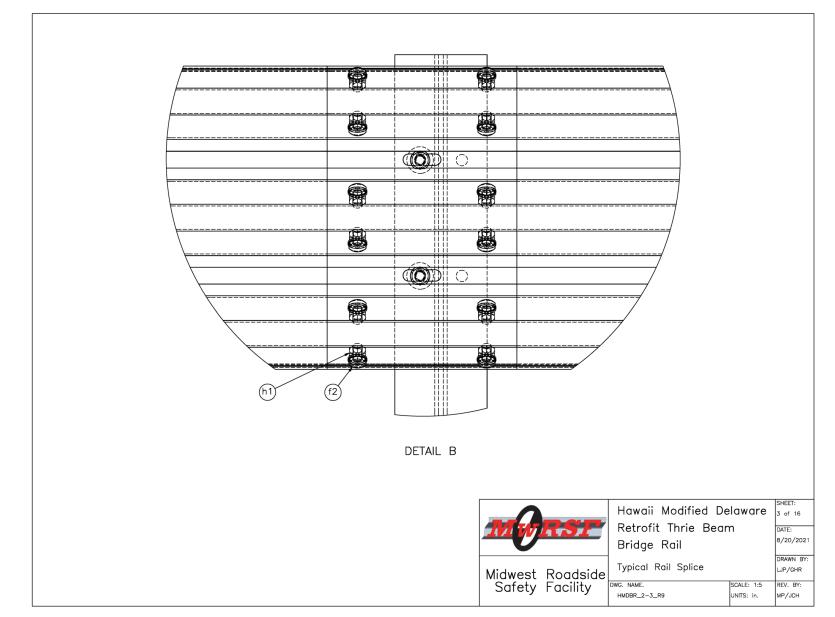


Figure 44. Typical Rail Splice, Test Nos. HMDBR-2 and HMDBR-3

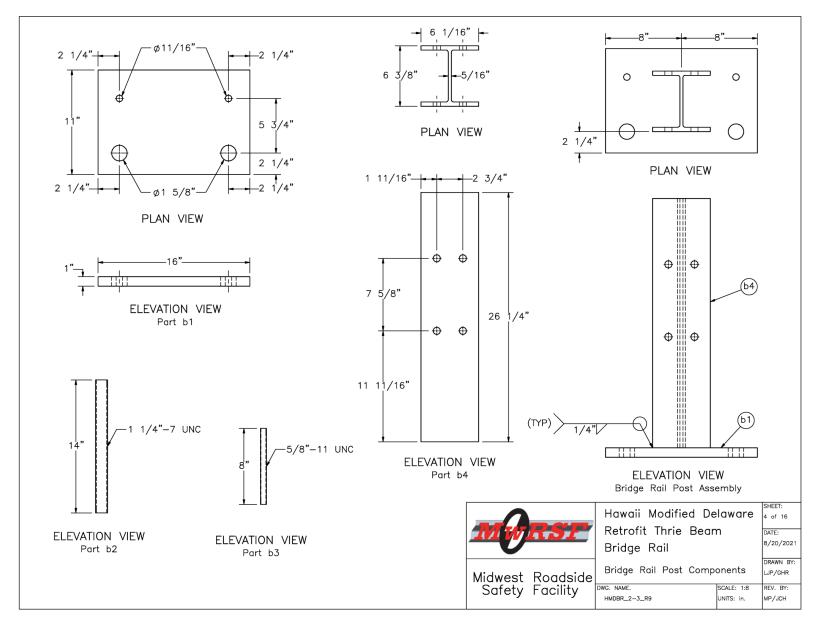


Figure 45. Bridge Rail Post Components, Test Nos. HMDBR-2 and HMDBR-3

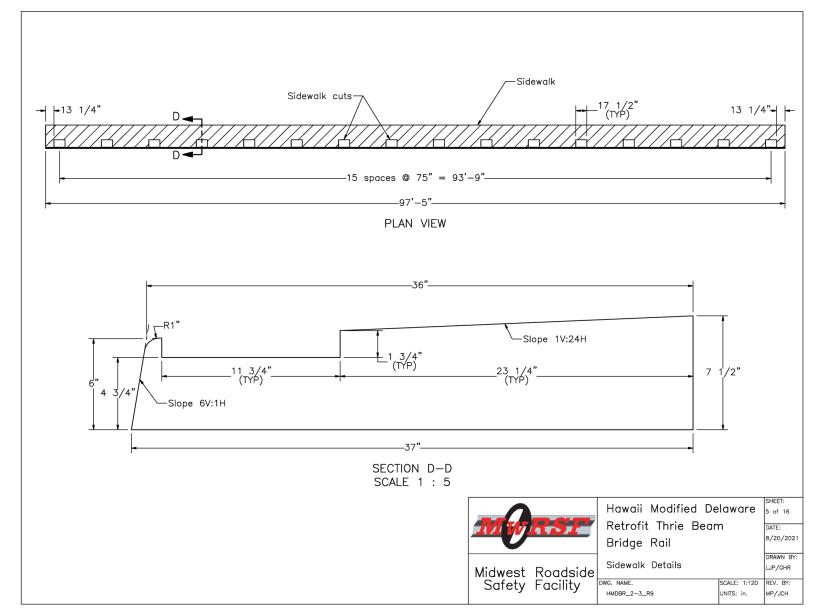


Figure 46. Sidewalk Details, Test Nos. HMDBR-2 and HMDBR-3

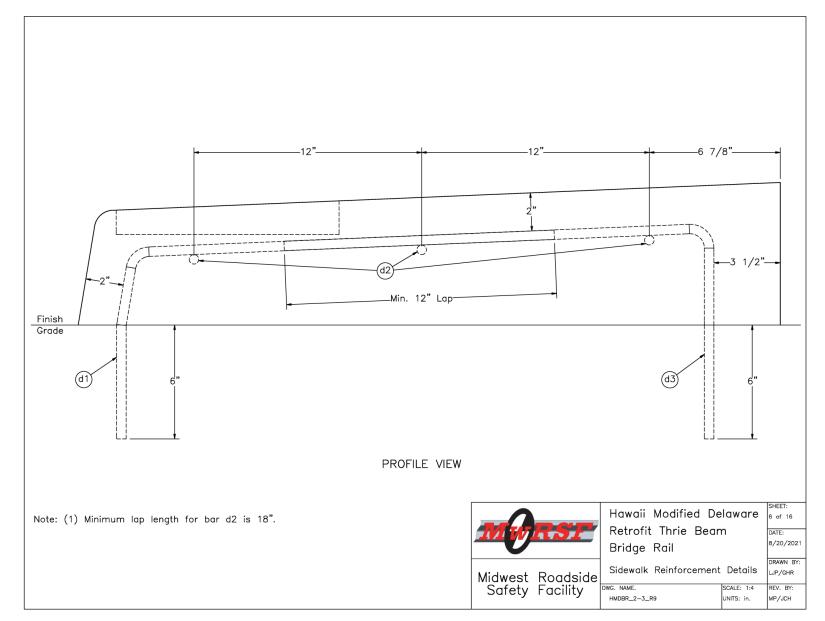


Figure 47. Sidewalk Reinforcement Details, Test Nos. HMDBR-2 and HMDBR-3

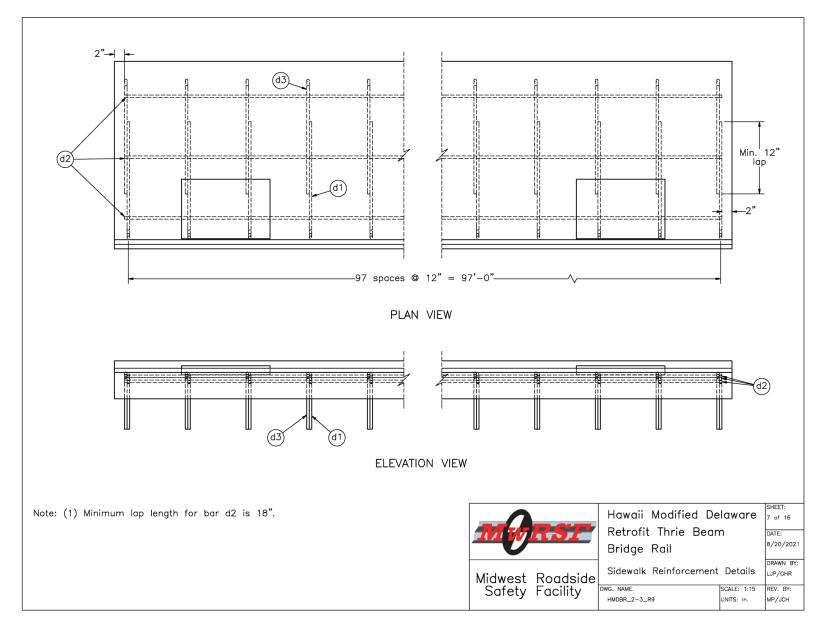


Figure 48. Sidewalk Reinforcement Details, Cont., Test Nos. HMDBR-2 and HMDBR-3

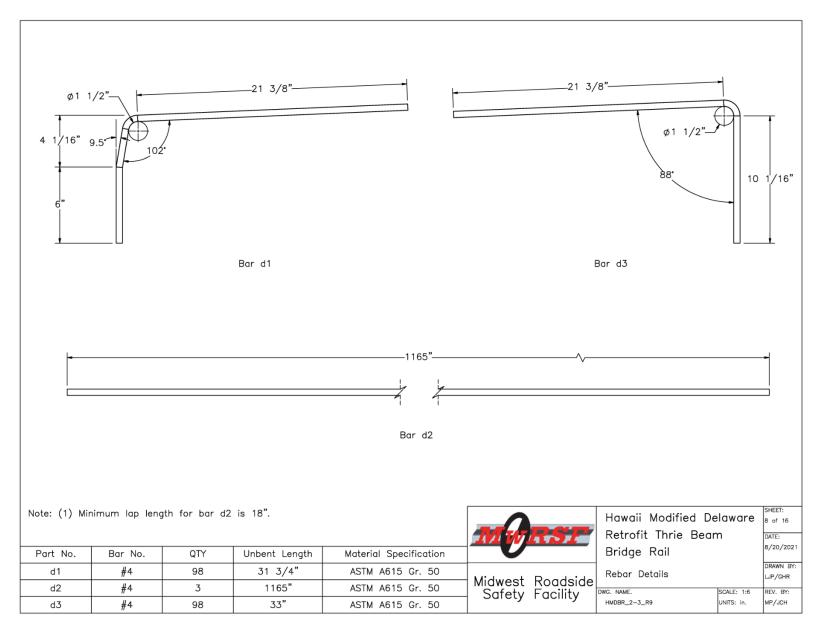


Figure 49. Rebar Details, Test Nos. HMDBR-2 and HMDBR-3

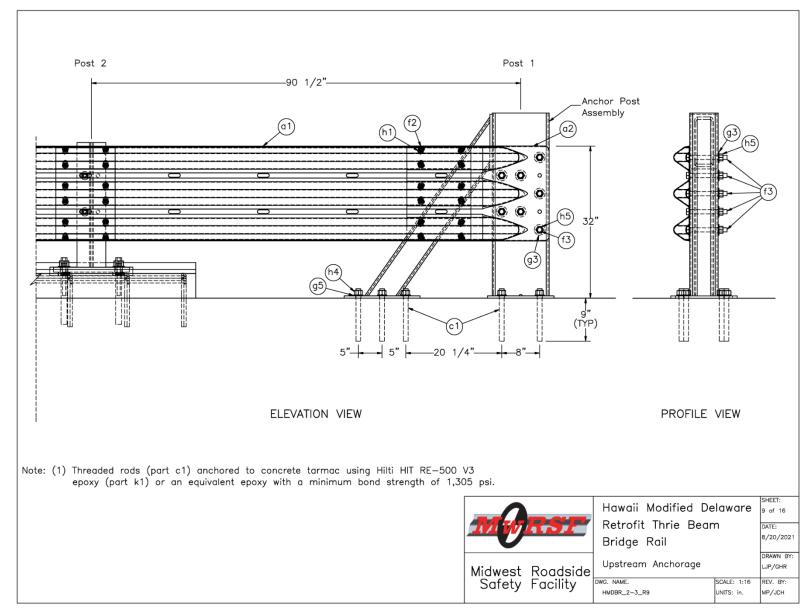


Figure 50. Upstream Anchorage, Test Nos. HMDBR-2 and HMDBR-3

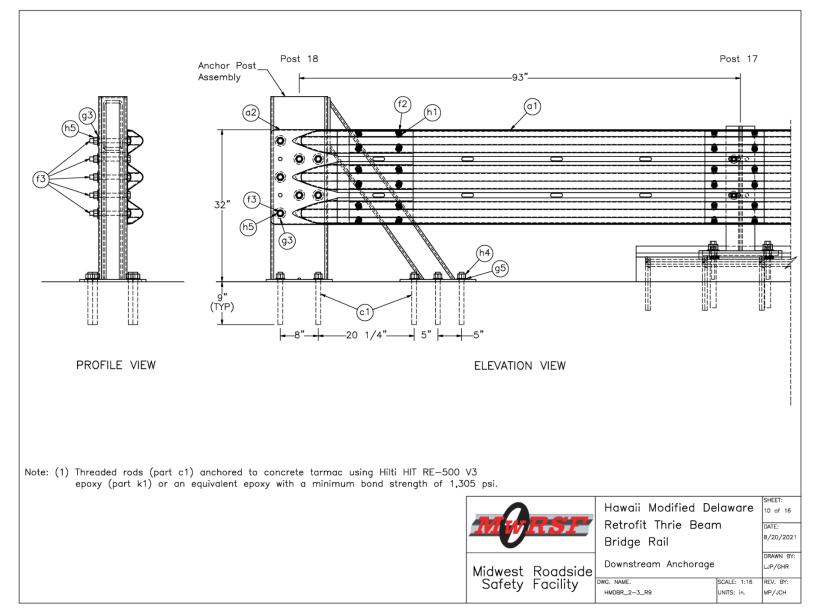


Figure 51. Downstream Anchorage, Test Nos. HMDBR-2 and HMDBR-3

59

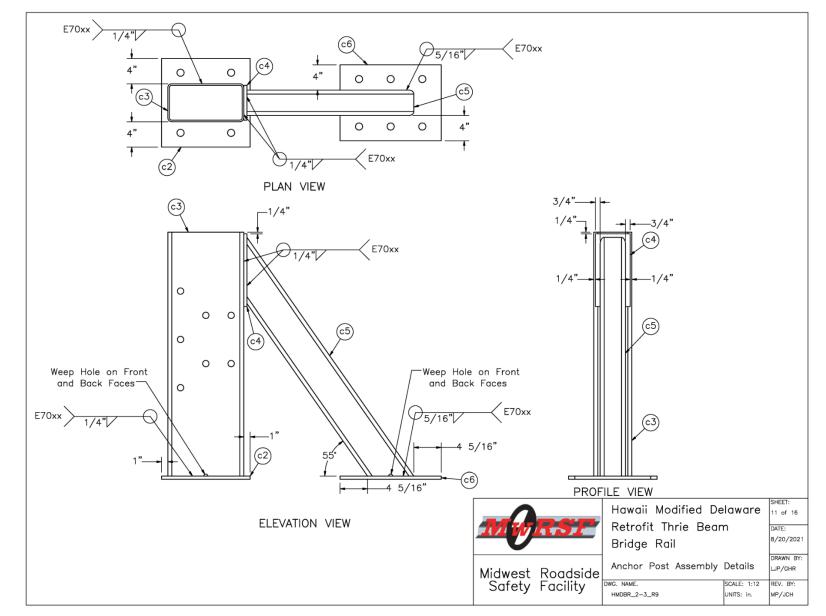


Figure 52. Anchor Post Assembly Details, Test Nos. HMDBR-2 and HMDBR-3

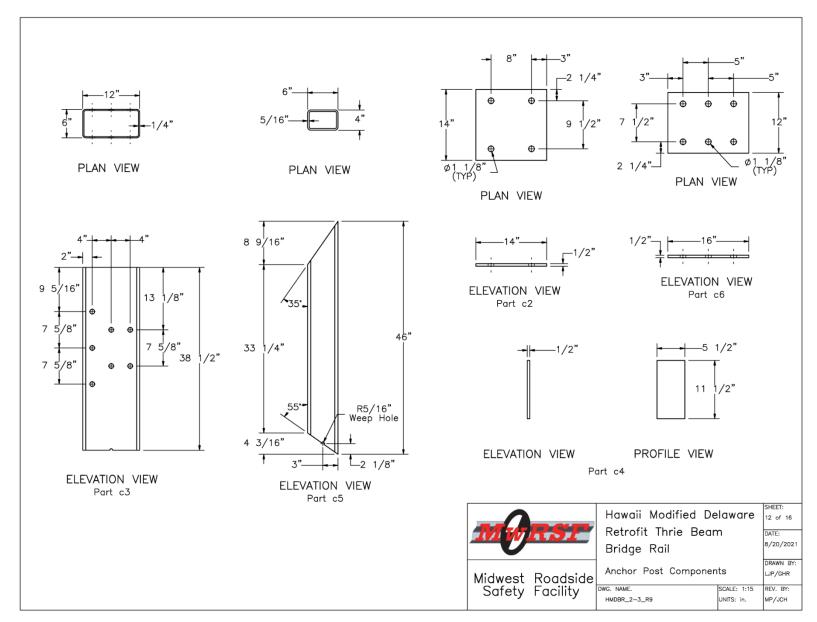


Figure 53. Anchor Post Components, Test Nos. HMDBR-2 and HMDBR-3

61

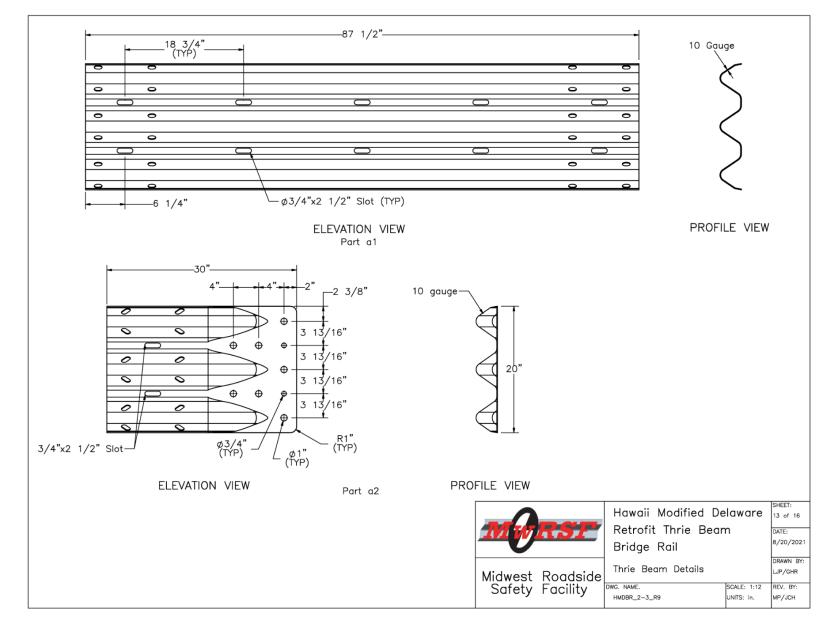


Figure 54. Thrie-Beam Details, Test Nos. HMDBR-2 and HMDBR-3

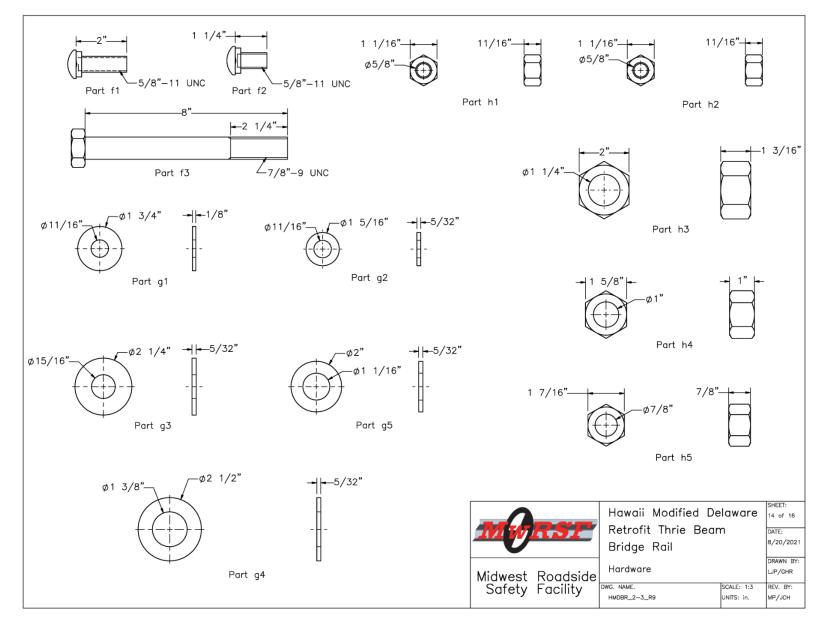


Figure 55. Hardware Details, Test Nos. HMDBR-2 and HMDBR-3

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	17	6'—3" 10—gauge Thrie Beam Section	-3" 10-gauge Thrie Beam Section AASHTO M180		RTM19a
a2	2	10-gauge Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi Min. tensile strength = 70 ksi	ASTM A123 or A653	RTE01b
b1	16	16"x11"x1" Base Plate	ASTM A36	ASTM A123	-
b2	32	1 1/4" Dia., 14" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	ASTM F2329 / F2329M-15	_
b3	32	5/8" Dia., 8" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	ASTM F2329 / F2329M-15	-
b4	16	W6x25, 26 1/4" Long Steel Post	ASTM A992	ASTM A123	-
c1	20	1" Dia. UNC, 11" Long Threaded Rod	ASTM A449 or A354 Gr. BC or A193 Gr. B7	ASTM A153 or B633 or B695 Class 55 or F1941 or F2329	FRR24b
c2	2	14"x14"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	ASTM A123*	_
сЗ	2	HSS 6"x12"x1/4" Tube, 38 1/2" Long	ASTM A500 Gr. B	ASTM A123*	-
c4	2	11 1/2"x5 1/2"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	ASTM A123*	-
c5	2	HSS 6"x4"x5/16" Tube, 46" Long	ASTM A500 Gr. B	ASTM A123*	-
c6	2	16"x12"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	ASTM A123*	-
d1		#4 Rebar, 31 3/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	-
d2	3	#4 Rebar, 97'1" Total Length, 18" Min. Lap Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775 or A934)	-
d3	98	#4 Rebar, 33" Total Unbent Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775 or A934)	_
e1	1	Reinforced Concrete	Min. f'c = 4,000 psi NE Mix 47B1S/1PF4000HW	_	-
f1	32	5/8"—11 UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM F2329	FBB01
f2	216	5/8"—11 UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM F2329	FBB01
f3	14	7/8"—9 UNC, 8" Long Heavy Hex Bolt	ASTM F3125 Gr. A325 Type 1	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX22b

Note: (1) Quantities listed herein are only for one system and do not include repair parts.

MURSE	Hawaii Modified De Retrofit Thrie Bear Bridge Rail		SHEET: 15 of 16 DATE: 8/20/2021
Midwest Roadside Safety Facility	Bill of Materials DWG. NAME. HMDBR 2-3_R9	SCALE: None UNITS: in.	DRAWN BY: LJP/GHR REV. BY: MP/JCH

Figure 56. Bill of Materials, Test Nos. HMDBR-2 and HMDBR-3

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
g1	32	5/8" Dia. Plain Round Washer	ASTM F844	ASTM F2329	FWC16a
g2	192	5/8" Dia. Hardened Washer	ASTM F436	ASTM F2329	FWC16b
gЗ	14	7/8" Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
g4	160	1 1/4" Dia. Hardened Washer	ASTM F436	ASTM F2329	FWC30b
g5	20	1" Dia. Hardened Round Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	FWC24b
h1	248	5/8"—11 UNC Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16b
h2	32	5/8"—11 UNC Heavy Hex Nut	ASTM A563—15 Grade DH	ASTM F2329 / F2329U-15	FNX16b
h3	32	1 1/4"—7 UNC Heavy Hex Nut	ASTM A563—15 Grade DH	ASTM F2329 / F2329U-15	FNX30b
h4	20	1" Dia. Heavy Hex Nut	ASTM A563DH or A194 Gr. 2H	ASTM A153 or B633 or B695 Class 55 or F1941 or F2329	FNX24b
h5	14	7/8" Dia. UNC Heavy Hex Nut	ASTM A563DH or ASTM A194 Gr. 2H	ASTM A153 for Class C or ASTM B695 for Class 50	FNX22b
k1	-	Hilti HIT RE-500 V3 Epoxy Adhesive	Class C, C881	_	_
k2	-	SpecChem 500 Epoxy Filler	ASTM C881 Type IV, Grade I, Class C	_	_

65

M	RSF	Hawaii Modified De Retrofit Thrie Bear Bridge Rail		SHEET: 16 of 16 DATE: 8/20/2021
Midwest	Roadside	Bill of Materials		DRAWN BY: LJP/GHR
Safety		DWG. NAME. HMDBR_2-3_R9	SCALE: None UNITS: in.	REV. BY: MP/JCH

Figure 57. Bill of Materials, Cont., Test Nos. HMDBR-2 and HMDBR-3

Figure 58. Test Installation, Test No. HMDBR-2

November 12, 2021 MwRSF Report No. TRP-03-448-21

Figure 59. Test Installation, Upstream Anchor and Typical Post, Test No. HMDBR-2

November 12, 2021 MwRSF Report No. TRP-03-448-21

67

Figure 60. Test Installation, Test No. HMDBR-3

Figure 61. Test Installation, Upstream Anchor and Typical Post, Test No. HMDBR-3

5 TEST CONDITIONS

5.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately five miles northwest of the University of Nebraska-Lincoln.

5.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel each test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the $\frac{3}{8}$ -in. diameter tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [5] was used to steer the test vehicles. A guide flag, attached to the non-impact side front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

5.3 Test Vehicles

For test no. HMDBR-1, a 2014 Dodge Ram quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,104 lb, 5,001 lb, and 5,165 lb, respectively. The test vehicle is shown in Figures 62 and 63, and vehicle dimensions are shown in Figure 64.

For test no. HMDBR-2, a 2016 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,497 lb, 2,453 lb, and 2,616 lb, respectively. The test vehicle is shown in Figures 65 and 66, and vehicle dimensions are shown in Figure 67.

For test no. HMDBR-3, a 2015 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,963 lb, 5,001 lb, and 5,162 lb, respectively. The test vehicle is shown in Figures 68 and 69, and vehicle dimensions are shown in Figure 70.

Figure 62. Test Vehicle, Test No. HMDBR-1



Figure 63. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HMDBR-1

				Test Name:	НМС)BR-1	VIN No:	1C6R	RGT6ES314	223
Model Year:	2014	4		Make	Do	dge	Model:		Ram	
Tire Size:	P265/70	R17	Tire Inflat	ion Pressure:	40	psi	Odometer:		225539	
								Geometry - in the second se	n. (mm)	
		G	Test Inertia			T	C: <u>228 1/2</u> 237±13 (6 E: <u>140 1/4</u> 148±12 (3	950±50) (5804) 5020±325) (3562) 3760±300)	D: 40 39±3 (1	(1226)
			Test merua				l: <u>12 1/4</u>	(311)	J: 24 1/2	(622)
P-+	- R-	6				l B	K: <u>21</u>	(533)	L: <u>30</u>	(762)
		Ē			5 4		M: 67 7/8	(1724) 1700±38)	N: 67 5/8	(1718)
			g G	s			O: 44 1/2	(1130) 100±75)		(114)
		-н	— E — — —	t			Q:	10	R: <u>18 1/2</u>	(470)
-	5		c	-1-			S: 15 3/8	(391)	T: 76 1/2	(1943)
Mass Distrib	ution - lb (ka)						U (i	mpact width	n): <u>36 1/2</u>	(927)
		(a=1)	-	(0-0)				Wheel Cent	State of the second	(004)
Gross Static	LF <u>1480</u>		RF <u>1481</u>	(672)				Height (Fron Wheel Cent		(381)
	LR 1077	(489) F	R <u>1127</u>	(511)				Height (Rea Wheel W		(387)
Weights							Cl	earance (Fron Wheel W	t): 34 3/4	(883)
lb (kg)	Cı	urb	Test Ir	nertial	Gross	s Static	С	learance (Rea	r): <u>38 1/5</u>	(970)
W-front	2932	(1330)	2862	(1298)	2961	(1343)		Bottom Fran Height (Fron		(464)
W-rear	2172	(985)	2139	(970)	2204	(1000)		Bottom Frar Height (Rea		(663)
W-total	5104	(2315)	5001	(2268)	5165	(2343)		Engine Typ	e: Gas	oline
			5000±110 ((2270±50)	5165±110) (2343±50)		Engine Siz	e: <u>5.71</u>	- V8
GVWR Rating	gs - Ib		Surrogate	Occupant Da	ata		Transı	nission Typ	e: Auto	matic
Front	3700	5- 		Type:	Hybrid	d II		Drive Typ	e: RV	VD
Rear	3900	_		Mass:	164	b		Cab Styl	e: Quad	l Cab
Total	6800	-	Seat	Position:	Left/Dri	vers		Bed Lengt	h: <u>7</u>	6"
Note ar	ny damage pri-	or to test: _				No	ne			

Figure 64. Vehicle Dimensions, Test No. HMDBR-1



Figure 65. Test Vehicle, Test No. HMDBR-2

Figure 66. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HMDBR-2

			Test Name	: HMD	BR-2	VIN No:	KMHCT4	AE3GU97	9226
Model Year:	2016		Make	: Hyu	ndai	Model:		Accent	
Tire Size:	175/70R14	Tire Infla	tion Pressure	: 33	psi	Odometer:		159468	
	- And				Ť	Vehicle Ge Target Ranges	ometry - in. (n listed below	nm)	
	M		N		 T 	A: $66 1/4$ $65\pm3 (16)$ C: $171 3/4$ $169\pm8 (43)$	(4362) D: 00±200)	23 7/8 35±4 (9	(1432) (606) 000±100)
				J	•	E: 101 98±5 (250	(2565) F: 00±125)	37 7/8	(962)
		Te	est Inertial CG			G: <u>21 13/16</u>	(554) H:	39 1/16 39±4 (9	(992) 990±100)
	Q-> R			<u> </u>	4	l: 7	<u> </u>	23 1/4	(591)
		G				K: <u>10 1/4</u> M: <u>59</u> ^{59±2 (14)}	(1499) N:	59 1/2	(641) (1511) (425±50)
					<u>K </u> 	O: 29 1/4 28±4 (71	(743) P:	6 1/4	(159)
	- D	HE ⊂		F —		Q: <u>23 1/2</u>		15 1/4	(387)
	-			-1		S: <u>10 5/8</u>	(270) T:	66 1/2	(1689)
Mass Distrib	ution - Ib (kg)					U (ir	npact width):	30 3/8	(772)
		359) RF 803	(364)			Тор о	f radiator core support:	29 1/2	(749)
		234) RR 506	(230)			I	Wheel Center Height (Front):		(283)
							Wheel Center Height (Rear):	11 1/4	(286)
Weights Ib (kg)	Curb	Test	Inertial	Gross	Static	Clea	Wheel Well arance (Front):	24 3/4	(629)
W-front	1544 (700) 1505	(683)	1595	(723)		Wheel Well arance (Rear):	25	(635)
W-rear	953 (432) 948	(430)	1021	(463)		Bottom Frame Height (Front):	14 /8	#######
W-total	2497 (1	133) 2453 2420±55	(1113)	2616 2585±55	(1187)		Bottom Frame Height (Rear):	16	(406)
			. ,		. ,		Engine Type:	Gas	oline
GVWR Ratin	gs lb	Surroga	te Occupant I	Data			Engine Size:	1.4L	. 4cyl
Front	1874		Туре:	Hybrid	1 11	Transn	nission Type:	Auto	matic
Rear	1852		Mass:	163 I	b		Drive Type:	F۱	ND
Total	3527	Seat	t Position:	Right/Pas	senger				
Note any	y damage prior to	o test:			N	lone			

Figure 67. Vehicle Dimensions, Test No. HMDBR-2

Figure 68. Test Vehicle, Test No. HMDBR-3

Figure 69. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HMDBR-3

November 12, 2021 MwRSF Report No. TRP-03-448-21

				Test Name:	HMD	BR-3	VIN No:	1C6RF	R6KG2FS506	6038
Model Year:	2015	5		Make:	Doc	dge	Model:		Ram 1500	
Tire Size:	265/701	R17	Tire Inflatio	on Pressure:	40	psi	Odometer:		268247	
							Vehicle G Target Range	eometry - ir	n. (mm)	
			Test Inertial			T T	E: 140 1/4 148±12 (3 G: 28 1/16 min: 28	(5817) ((020±325) ((3562) ((760±300) ((713) (D: $41 \ 1/2$ $39\pm3 (11)$ F: $47 \ 1/4$ H: $65 \ 1/16$ $63\pm4 (15)$	(1200) (1653) ^{375±100)}
				s 1	-F		I: 13 1/2 K: 19 1/4 M: 68 67 ± 1.5 (°) Q: 41 1/2 43\pm4 (1) Q: 30 1/2 S: 14 3/4	(489) (1727) ^(700±38) (1130) 100±75) (775)	J: <u>24</u> L: <u>28 1/2</u> N: <u>68</u> 67±1.5 (* P: <u>4 1/2</u> R: <u>18 1/2</u> T: <u>77</u>	(610) (724) (1727) ^(700±38) (114) (470) (1956)
Mass Distrib	ution - Ib (ka)						U (i	mpact width	n): <u>36 1/4</u>	(921)
Gross Static		<u>(644)</u> RI (527) RF	F <u>1357</u> R <u>1225</u>	<u>(616)</u> (556)				Wheel Cent Height (Fron Wheel Cent Height (Rea Wheel W	t): <u>15</u> er r): <u>15 1/4</u> ell	(381) (387)
Weights	0		Testie		0	04-41-		earance (Fron Wheel W	ell	(889)
lb (kg)		urb	Test Inc		Gross		Ci	earance (Rea Bottom Fran	ne	(946)
W-front	2704	(1227)	2682	<u>(1217)</u>	2776	(1259)		Height (Fron Bottom Fran	ne	(298)
W-rear	2259	(1025)	2319	(1052)	2386	(1082)		Height (Rea		(324)
W-total	4963	(2251)	5001 5000±110 (2	(2268) 270±50)	5162 5165±110	(2341) (2343±50)			e: Gas	
			-						e: <u>3.61</u>	
GVWR Rating			Surrogate	Occupant Dat			Transr		e: Auto	
Front	3700	-		Туре:		2			e: <u>RV</u>	
Rear Total	<u>3900</u> 6800		Soot F	Mass: Position:					e: <u>Crew</u> h: 67	
5	y damage pri	or to test:		osition:		No	ne	Ded Lengt	<u> </u>	

Figure 70. Vehicle Dimensions, Test No. HMDBR-3

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [6] was used to determine the vertical component of the c.g. for the 2270P vehicles. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicles were suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by the Society of Automotive Engineers (SAE) [7]. The location of the final c.g. and ballast information are shown in Appendix D.

Square, black-and-white, checkered targets were placed on the vehicles, as shown in Figures 71 through 73, to serve as a reference in the high-speed digital video and aid in the video analysis. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in values were adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's right-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. Radio-controlled brake systems were installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

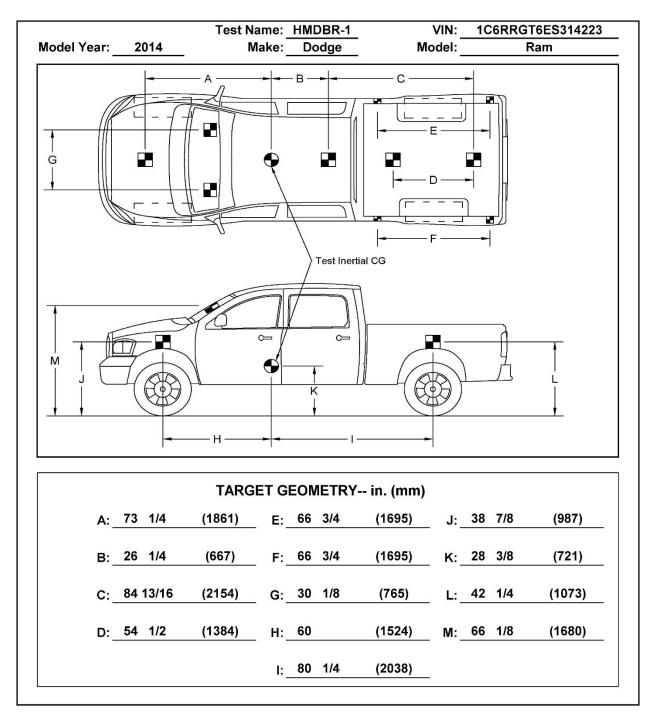


Figure 71. Target Geometry, Test No. HMDBR-1

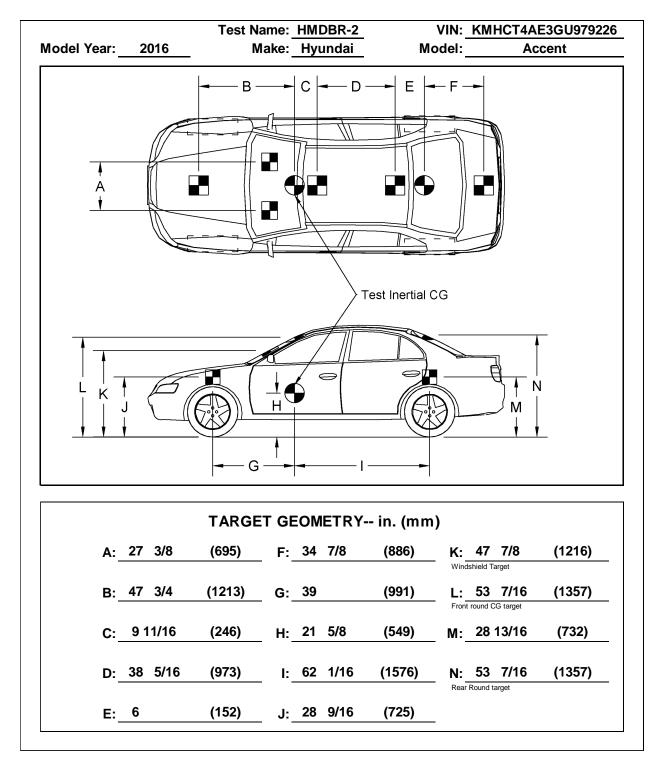


Figure 72. Target Geometry, Test No. HMDBR-2

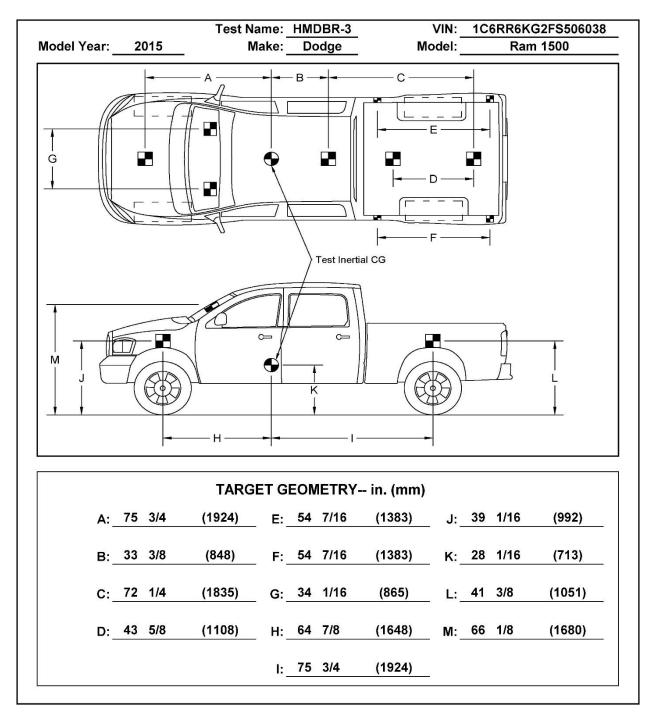


Figure 73. Target Geometry, Test No. HMDBR-3

5.4 Simulated Occupant

In each test, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed the test vehicle with the seat belt fastened. The simulated occupant was positioned in the impact-side front seat, which was the left-front seat for test no. HMDBR-1 and the right-front seat for test nos. HMDBR-2 and HMDBR-3. The final simulated occupant weights were 164 lb, 163 lb, and 161 lb in test nos. HMDBR-1 through HMDBR-3, respectively. As recommended by MASH 2016, the simulated occupant weight was not included in calculating the c.g. location.

5.5 Data Acquisition Systems

5.5.1 Accelerometers

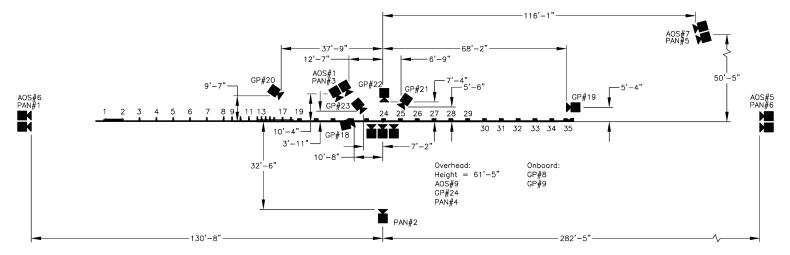
In each test, two environmental shock and vibration sensor/recorder systems mounted near the c.g. of the test vehicle were used to measure the accelerations in the longitudinal, lateral, and vertical directions. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [8].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. The SLICE-2 unit was designated as the primary system for test nos. HMDBR-1 and HMDBR-3, and the SLICE-1 unit was designated as the primary system for test no. HMDBR-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

5.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

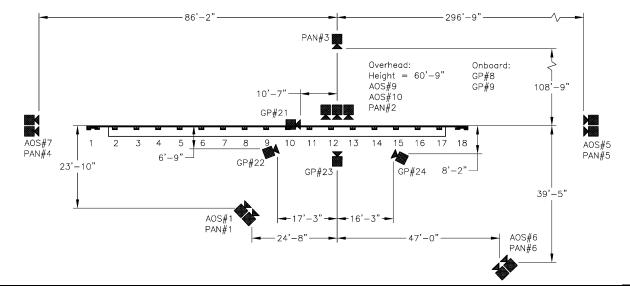
5.5.3 Retroreflective Optic Speed Trap


A retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of each vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and

high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the electronic data.

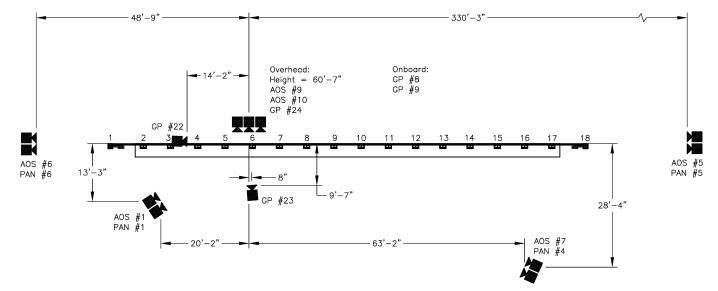
5.5.4 Digital Photography

Five AOS high-speed digital video cameras, nine GoPro digital video cameras, and six Panasonic digital video cameras were utilized to film test no. HMDBR-1. Six AOS high-speed digital video cameras, six GoPro digital video cameras, and six Panasonic digital video cameras were utilized to film test no. HMDBR-2. Six AOS high-speed digital video cameras, five GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. HMDBR-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 74 through 76. Due to technical difficulties, one GoPro camera in test nos. HMDBR-1 and HMDBR-3 and two GoPro cameras in test no. HMDBR-2 did not capture the impact event.


The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Kowa 25mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	100mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 75mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 75mm Fixed	-
AOS-9	AOS TRI-VIT	1000	Kowa 12mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-18*	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

* Camera did not record impact event due to technical difficulties.


Figure 74. Camera Locations, Speeds, and Lens Settings, Test No. HMDBR-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Nikon 28-70	50
AOS-5	AOS X-PRI Gigabit	500	100mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-9	AOS TRI-VIT	1000	Kowa 12mm Fixed	-
AOS-10	AOS TRI-VIT	1000	100mm Fixed	_
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-21	GoPro Hero 6	240		
GP-22*	GoPro Hero 7	240		
GP-23*	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

* Camera did not record impact event due to technical difficulties.

Figure 75. Camera Locations, Speeds, and Lens Settings, Test No. HMDBR-2

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Kowa 25mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	100mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 35mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-9	AOS TRI-VIT	1000	Kowa 12mm Fixed	-
AOS-10	AOS TRI-VIT	1000	Kowa 16mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-22*	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

* Camera did not record impact event due to technical difficulties.

88

Figure 76. Camera Locations, Speeds, and Lens Settings, Test No. HMDBR-3

6 FULL-SCALE CRASH TEST NO. HMDBR-1

6.1 Weather Conditions

Test no. HMDBR-1 was conducted on December 18, 2020 at approximately 3:15 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 3.

Temperature	47°F
Humidity	54%
Wind Speed	14 mph
Wind Direction	290° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.49 in.

Table 3. Weather Conditions, Test No. HMDBR-1

6.2 Test Description

Initial vehicle impact was to occur 78 in. upstream from the centerline of post no. 25, as shown in Figure 77, which was selected using the CIP plots found in Figure 2-11 of MASH 2016 to maximize probability of vehicle snag as well as structural loading of the bridge rail. The 5,001-lb quad cab pickup truck impacted the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail at a speed of 63.1 mph and an angle of 25.5 degrees. The actual point of impact was 2.9 in. downstream from the targeted impact location. The vehicle was captured and redirected by the bridge rail. During the redirection of the vehicle, the left-front fender and left-front wheel snagged on the bridge rail (post no. 25). The snag was sufficient to push the left-front wheel backward, which resulted in toe pan area deformation. However, the snag of the vehicle components did not pose a risk to the vehicle occupant compartment, nor did it pose a hazard due to the velocity change or deceleration of the vehicle.

The vehicle came to rest 141 ft – 3 in. downstream from impact and 39 ft – 3 in. laterally in front of the barrier after brakes were applied. Impact Severity (I.S.) is an additional limiting condition required in MASH 2016. The measured I.S. of test no. HMDBR-1 was 123.7 kip-ft, which fell into the acceptable range of greater than or equal to 106 kip-ft, as defined in MASH 2016 for test designation no. 3-11.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 78 and 79. Documentary photographs of the crash test are shown in Figures 80 and 81. The vehicle trajectory and final position are shown in Figure 82.

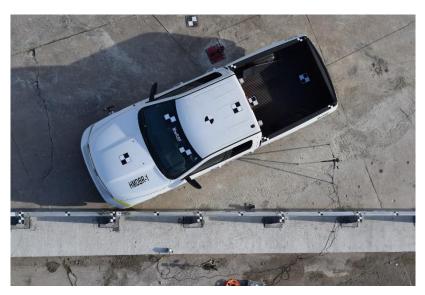


Figure 77. Target Impact Location, Test No. HMDBR-1

Time	Event					
sec						
0.000	Vehicle's front bumper contacted rail 75.1 in. upstream from post no. 25.					
0.002	Vehicle's front bumper deformed, and vehicle's left fender contacted rail between post nos. 24 and 25.					
0.004	04 Vehicle's left fender deformed, and vehicle's left headlight contacted rail bet post nos. 24 and 25.					
0.008	Vehicle's left headlight deformed.					
0.010	Vehicle's left-front tire contacted rail between post nos. 24 and 25.					
0.018	Post nos. 24 and 25 deflected backward.					
0.020	Vehicle's hood deformed, and vehicle's grille contacted rail. Vehicle's grille deformed.					
0.026	Vehicle yawed away from system.					
0.030	Vehicle's left headlight shattered. Vehicle rolled toward system.					
0.036	Vehicle's left-front tire deflated.					
0.040	Vehicle pitched upward.					
0.044	Vehicle's left-front door contacted rail and deformed.					
0.046	Vehicle's grille became disengaged.					
0.048	Top of vehicle's left-front door deformed.					
0.051	Vehicle's roof deformed.					
0.056	Concrete sidewalk at post no. 25 spalled on front side.					
0.064	Vehicle's right headlight deformed, and vehicle's left headlight contacted post no. 25.					
0.086	Post no. 25 bent backward.					
0.090	Post no. 26 deflected backward.					
0.120	Vehicle's right-front tire became airborne.					
0.124	Vehicle's left fender contacted post no. 26, and vehicle's right-rear tire became airborne.					
0.126	Vehicle's windshield cracked due to vehicle's impact with barrier.					
0.130	Vehicle's left-rear door contacted rail and deformed.					
0.186	Vehicle's left quarter panel contacted rail and deformed.					
0.196	Vehicle's left-rear tire contacted rail.					
0.206	Post no. 27 slightly deflected backward.					
0.207	Vehicle was parallel to system at a speed of 47.0 mph.					
0.210	Vehicle's rear bumper and left taillight contacted rail, and vehicle's rear bumper deformed.					
0.218	Vehicle's left-rear tire deflated.					
0.224	Vehicle pitched downward, and vehicle's tailgate deformed.					
0.284	Vehicle's left taillight disengaged.					
0.354	Vehicle's left A-pillar deformed.					

Table 4. Sequential Description of Impact Events, Test No. HMDBR-1

Time sec	Event
0.392	Vehicle's left-rear tire became airborne, and vehicle exited system at a speed of
	46.8 mph and at angle of 5.9 degrees.
0.412	Vehicle's left-front wheel contacted ground and deformed.
0.728	Vehicle rolled away from system.
0.972	Vehicle's left-rear wheel contacted ground and deformed.
1.000	System came to a rest.
1.158	Vehicle's right headlight disengaged.
1.184	Vehicle's right-rear tire regained contact with ground.
1.210	Vehicle's right-front tire regained contact with ground.
1.238	Vehicle rolled toward system.
1.286	Vehicle pitched downward, and vehicle's right-rear tire became airborne.
1.867	Vehicle's right-rear tire regained contact with ground.
4.042	Vehicle came to rest 136 ft $- 6$ in. downstream from impact.

Table 5. Sequential Description of Impact Events, Test No. HMDBR-1, Cont.

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 78. Sequential Photographs, Test No. HMDBR-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.500 sec

0.000 sec

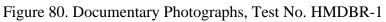
0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec


Figure 79. Sequential Photographs, Test No. HMDBR-1

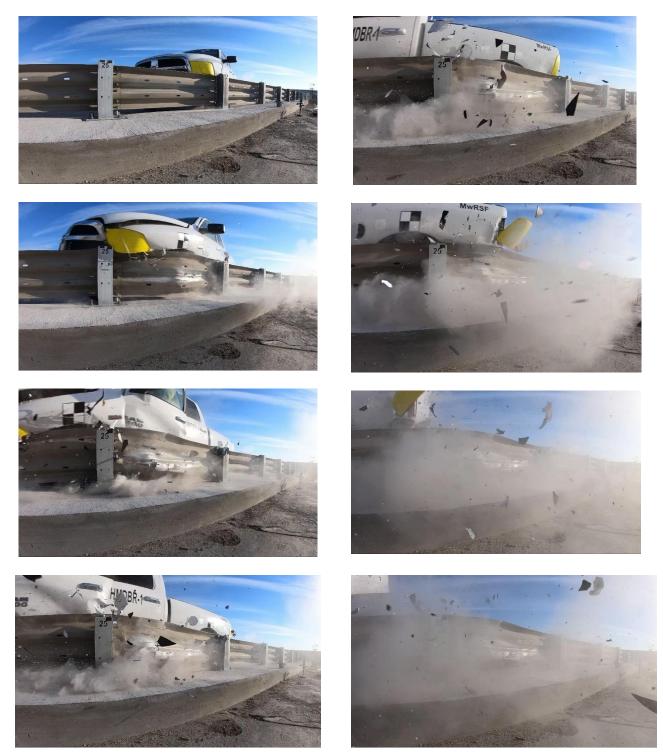
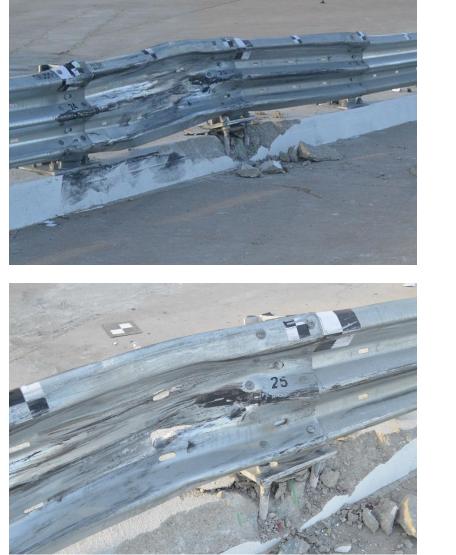


Figure 81. Documentary Photographs, Test No. HMDBR-1

Figure 82. Vehicle Final Position and Trajectory Marks, Test No. HMDBR-1

6.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 83 through 85. Barrier damage was largely concentrated between post nos. 24 and 26 and consisted of contact marks, concrete spalling, anchor bolt pullout, and thrie-beam rail tearing. The length of vehicle contact along the barrier was approximately 15 ft – $1\frac{3}{4}$ in. and began slightly upstream from post no. 24.


Concrete breakout and anchor rod pullout occurred at post no. 25. Concrete spalling was observed along 76¹/₂ in. of the traffic face of the sidewalk, centered about post no. 25. The concrete cone-shaped breakout with a maximum width of 15 in. extended 31³/₄ in. downstream from post no. 24 on the traffic face of the sidewalk and extended outward roughly 41³/₄ in. upstream from post no. 26. Contact marks were found on the traffic face of the sidewalk slightly upstream from post no. 24 and extended to the concrete breakout. The filler epoxy fractured and was removed from under the base plate of post no. 25.

Post no. 25 rotated backward about the back edge of the base plate, and the front edge of the base plate was lifted upward approximately $3\frac{7}{8}$ in. from the original position. The upstreamfront anchor rod was visibly bent at a point approximately $3\frac{1}{2}$ in. below the top of the base plate. The front flange of post no. 25 deformed, and the lower guardrail connection bolt at post no. 25 sheared. Post nos. 24 and 26 deflected backward, and post nos. 5 and 18 twisted counterclockwise. Other bridge rail posts as well as the AGT installation remained undamaged. No movement was observed in the downstream and upstream anchorage systems.

Contact marks were visible over the full height of the thrie-beam rail between post nos. 24 and 26. The rail was bent and flattened between post nos. 24 and 25. A 9½-in. long by 2-in. wide tear formed in the middle corrugation of the thrie-beam rail, beginning approximately 20 in. upstream from post no. 25. At post nos. 19 through 24, post-to-rail bolts slid in their slots, which caused the rail to move slightly downstream.

Figure 83. System Damage, Test No. HMDBR-1

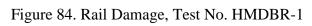


Figure 85. System Damage, Post Nos. 24 and 25, Test No. HMDBR-1

The maximum lateral permanent set of the barrier system was 6.9 in. at post no. 25, as measured using GPS. The maximum lateral permanent set of the thrie-beam rail was 5.9 in., which occurred between post nos. 24 and 25. The maximum lateral dynamic barrier deflection was 10.2 in. at post no. 25. The maximum lateral dynamic deflection of the thrie-beam rail was 8.3 in., which occurred between post nos. 12 and 13. Exclusive of the sidewalk, the working width of the system was 21.6 in. and was controlled by vehicle overhang. Note that when including the sidewalk, the working width was the system width of 37.5 in. Both dynamic deflection and working width were determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 86.

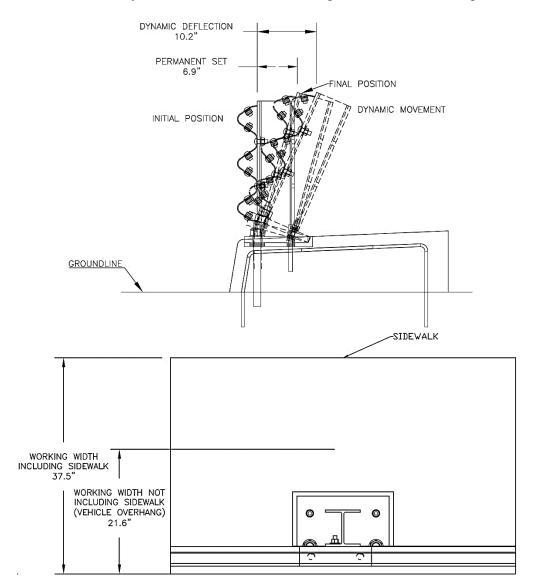


Figure 86. Permanent Set, Dynamic Deflection, and Working Width, Test No. HMDBR-1

6.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 87 through 89. The maximum occupant compartment intrusions are listed in Table 6, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. The tabulated values reflect the maximum occupant compartment intrusions measured using two reference sets, as documented in Appendix E. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix E, are not considered crush toward the occupant and are not evaluated by the MASH 2016 criteria.

Majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. Due to the vehicle wheel snag on post no. 25, the vehicle's left-front wheel was pushed inward and rearward. The vehicle's grille and left headlight were disengaged, and the left side of the front bumper was crushed. The left-front fender was crushed inward and rearward. Both left-side doors were dented at mid-height along their full length, and the left-front door was ajar. The left side of the rear bumper was dented, and both left-side tires were deflated. The left side of the windshield was cracked, which was not in violation of the MASH 2016 criteria. All other window glass remained intact and undamaged.

The lower-left control arm mounts fractured, and the upper-left control arm bent severely around the ball joint. The left-front sway bar link fractured and disengaged. The left inner tie rod disengaged from the steering rack, and the outer tie rod was bent slightly. The left-rear wheel bent, the left-front spring disengaged, and the left-front shock bent approximately 90 degrees. The bottom lower control arm mount fractured and disengaged. The left side of the frame horn leading edge bent inward and upward about 6 in. and 3 in., respectively.

Figure 87. Vehicle Damage, Test No. HMDBR-1

November 12, 2021 MwRSF Report No. TRP-03-448-21

Figure 88. Vehicle Damage, Test No. HMDBR-1



Figure 89. Interior and Undercarriage Damage, Test No. HMDBR-1

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	7.4	≤ 9
Floor Pan & Transmission Tunnel	3.5	≤ 12
A-Pillar	0.4	≤ 5
A-Pillar (Lateral)	0.4	≤ 3
B-Pillar	0.5	≤ 5
B-Pillar (Lateral)	0.5	≤ 3
Side Front Panel (in Front of A-Pillar)	4.1	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	0.3	<i>≤</i> 4
Windshield	0.0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	2.2	N/A

Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. HMDBR-1

N/A - No MASH 2016 criteria exist for this location.

6.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1	SLICE-2 (primary)	MASH 2016 Limits
OIV	Longitudinal	-25.84	-25.07	±40
ft/s	Lateral	23.72	27.21	±40
ORA	Longitudinal	-13.22	-14.78	±20.49
g's	Lateral	13.67	-12.06	±20.49
Maximum	Roll	-42.2	-37.9	±75
Angular Displacement	Pitch	-10.5	-12.6	±75
deg.	Yaw	73.8	73.5	not required
THIV – ft/s		34.83	36.05	not required
PHD – g's		16.06	15.41	not required
ASI		1.53	1.64	not required

Table 7. Summary of Occupant Risk Values, Test No. HMDBR-1

6.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 90. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 75.4 kips, as determined by the SLICE-2 (primary) unit.

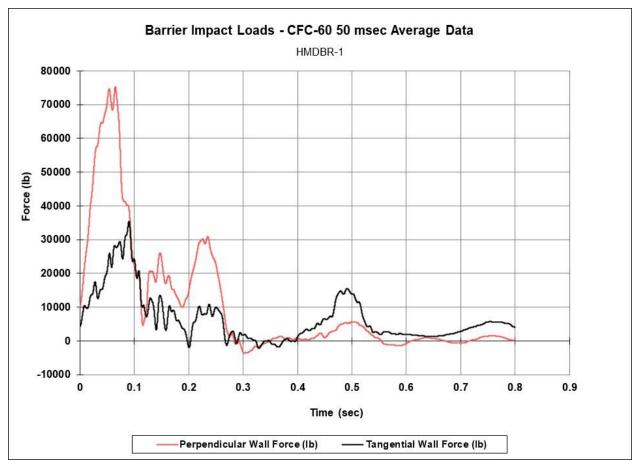
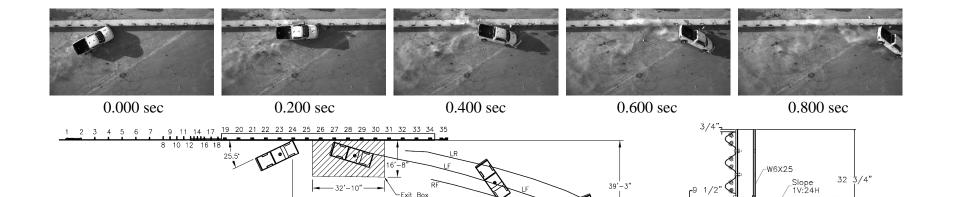



Figure 90. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2), Test No. HMDBR-1

6.7 Discussion

The analysis of the test results for test no. HMDBR-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 91. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 5.9 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HMDBR-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

141' - 3

Test Agency	MwRSF
6	
Date	
	No
6	Hawaii Modified Delaware Thrie-Beam Bridge Rail
Key Component – Thrie-Beam	
Key Component – Steel Posts	
5 1	
Anchor Rods	two 1¼-in. dia., epoxied 2½ in. into concrete tarmac
	two ⁵ / ₈ -in. dia., epoxied 6 in. into concrete sidewalk
Key Component – Sidewalk	
Anchorage	
Surface Type	
Vehicle Make /Model	
Test Inertial	
Gross Static	
Impact Conditions	
	25.5 deg. (MASH 2016 Limit 25 ± 1.5 deg.)
Impact Severity	123.7 kip-ft > 106 kip-ft limit from MASH 2016
Exit Conditions	
1	
0	
Exit Box Criterion	Pass
Vehicle Stability	Satisfactory

110

• Vehicle	Vehicle Stopping Distance					
					Moderate	
Max	imum Inter	ior Deformation	7.4 in. at '	Toe Pan ≤ 9 in. N	ASH 2016 limit	
 Test Art 	icle Damag	e			Moderate	
		cle Deflections				
Perr	nanent Set				6.9 in.	
Dyn	amic				10.2 in.	
Wor	Dynamic			20.1 in.		
	Working Width (with sidewalk)					
	Transducer Data					
	Transducer MASH 2016					
	Evaluation Criteria			SLICE-2 (primary)	Limits	
(DIV	Longitudinal	-25.84	-25.07	±40	
	ft/s	Lateral	23.72	27.21	±40	

Slope_ 6V:1H

L_{2 1/2"}

12"

OIV ft/s	Longitudinal	-25.84	-25.07	±40
	Lateral	23.72	27.21	±40
ORA	Longitudinal	-13.22	-14.78	±20.49
g's	Lateral	13.67	-12.06	±20.49
Maximum Angular Displacement deg.	Roll	-42.2	-37.9	±75
	Pitch	-10.5	-12.6	±75
	Yaw	73.8	73.5	not required
THIV – ft/s		34.83	36.05	not required
PHD – g's		16.06	15.41	not required
ASI		1.53	1.64	not required

November 12, 2021 MwRSF Report No. TRP-03-448-21

7 FULL-SCALE CRASH TEST NO. HMDBR-2

7.1 Weather Conditions

Test no. HMDBR-2 was conducted on March 12, 2021 at approximately 1:15 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 8.

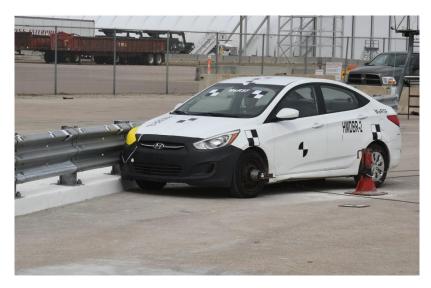

Temperature	51°F
Humidity	32%
Wind Speed	11 mph
Wind Direction	110° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 8. Weather Conditions, Test No. HMDBR-2

7.2 Test Description

Initial vehicle impact was to occur 54 in. upstream from post no. 13, as shown in Figure 92, which was selected using the CIP plots found in Figure 2-8 of MASH 2016 to maximize propensity for vehicle snag. The 2,453-lb small car impacted the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail at a speed of 62.7 mph and an angle of 24.6 degrees. The actual point of impact was 6.4 in. upstream from the targeted impact location. The vehicle was captured and redirected safely by the bridge rail with minor deflections. The vehicle came to rest 146 ft – 6 in. downstream from impact and 1 ft laterally behind the barrier after brakes were applied. I.S. is an additional limiting condition required in MASH 2016. The measured I.S. for test no. HMDBR-1 was 55.9 kip-ft, which fell into the acceptable range of greater than or equal to 51.0 kip-ft as defined in MASH 2016 for test designation no. 3-10.

A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figures 93 and 94. Documentary photographs of the crash test are shown in Figures 95 and 96. The vehicle trajectory and final position are shown in Figure 97.

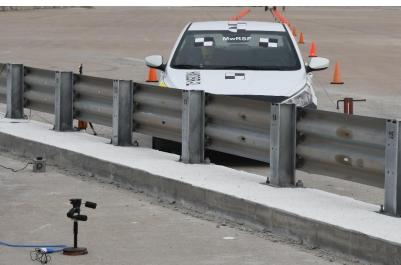


Figure 92. Target Impact Location, Test No. HMDBR-2

Time sec	Event
0.000	Vehicle's front bumper contacted rail 60.4 in. upstream from post no. 13 and deformed.
0.004	Vehicle's right-front tire contacted rail between post nos. 12 and 13.
0.007	Vehicle's right headlight contacted rail between post nos. 12 and 13 and shattered.
0.009	Vehicle's hood deformed, and vehicle pitched downward.
0.011	Vehicle's right fender contacted rail between post nos. 12 and 13.
0.018	Vehicle's hood contacted rail between post nos. 12 and 13. Vehicle's right-front tire deflated. Vehicle's grille deformed.
0.028	Vehicle's left headlight deformed, and vehicle pitched upward.
0.030	Vehicle's right-front door deformed, and vehicle yawed away from system.
0.037	Vehicle rolled away from system. Post no. 13 twisted counterclockwise, vehicle's windshield cracked, and vehicle's right-front door contacted rail.
0.042	Top of vehicle's left-front door deformed.
0.058	Post no. 13 bent backward.
0.060	Vehicle's front bumper fractured into pieces.
0.077	Simulated occupant's head contacted vehicle's right-front window and window shattered.
0.082	Vehicle rolled toward system.
0.104	Vehicle pitched downward, and vehicle's right mirror shattered.
0.114	Vehicle's left-rear tire became airborne.
0.158	Vehicle was parallel to system at a speed of 46.1 mph.
0.196	Vehicle's right quarter panel contacted rail and deformed, and vehicle's trunk deformed.
0.201	Vehicle's left headlight disengaged. Vehicle's rear bumper contacted rail and deformed.
0.223	Vehicle's rear bumper fractured.
0.292	Vehicle exited system at a speed of 43.8 mph and at angle of 11.9 degrees.
0.301	System came to a rest.
0.526	Vehicle's left-rear tire regained contact with ground.
0.636	Vehicle yawed toward system.
0.778	Vehicle rolled away from system.
3.533	Vehicle came to rest 146 ft – 6 in. downstream from impact.

Table 9. Sequential Description of Impact Events, Test No. HMDBR-2

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 93. Sequential Photographs, Test No. HMDBR-2

0.300 sec

0.350 sec

0.400 sec

0.450 sec

0.500 sec

0.550 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 94. Sequential Photographs, Test No. HMDBR-2



Figure 95. Documentary Photographs, Test No. HMDBR-2

5

Figure 96. Documentary Photographs, Test No. HMDBR-2

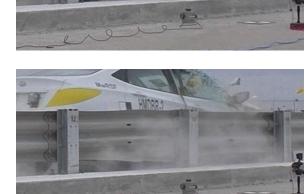


Figure 97. Vehicle Final Position and Trajectory Marks, Test No. HMDBR-2

7.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 98 through 101. Barrier damage consisted of contact marks, minor concrete sidewalk spalling, and deformed thrie-beam rail. The length of vehicle contact along the barrier was approximately 11 ft $-1\frac{1}{2}$ in. and began $8\frac{1}{2}$ in. downstream from post no. 12.

Contact marks were visible along the front face and top surface of the concrete sidewalk and along the full depth of the thrie-beam rail between post nos. 12 and 14. The front edge of the concrete sidewalk was spalled near the post no. 13 base plate. The thrie-beam rail was bent, and the bottom corrugation flattened between post nos. 12 and 13. Post no. 13 deformed slightly backward, and the upstream side of the front flange deformed 3¹/₂ in. above the base plate. Other bridge rail posts remained undamaged. No movement was observed in the downstream and upstream anchorage systems.

The maximum lateral permanent set of the barrier system was 2.6 in. which occurred in the thrie-beam rail between post nos. 12 and 13, as measured using GPS. The maximum post permanent set was 0.6 in. at post no. 13. The maximum lateral dynamic barrier deflection was 3.8 in., which also occurred in the thrie-beam rail between post nos. 12 and 13. The maximum lateral post dynamic deflection was 1.0 in. at post no. 13. Exclusive of the sidewalk, the working width of the system was 11.9 in. and was controlled by vehicle overhang. Note that when including the sidewalk, the working width was the system width of 37 in. Both dynamic deflection and working width were determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 102.

Figure 98. System Damage, Test No. HMDBR-2

Figure 99. Rail Damage, Test No. HMDBR-2

Figure 100. System Damage, Post No. 13, Test No. HMDBR-2

Figure 101. Sidewalk Damage and Contact Marks, Test No. HMDBR-2

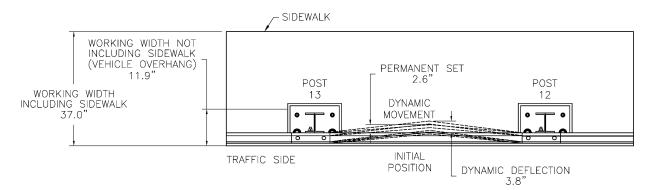


Figure 102. Permanent Set, Dynamic Deflection, and Working Width, Test No. HMDBR-2

7.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 103 through 105. The maximum occupant compartment intrusions are listed in Table 10, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. As documented in Appendix E, the primary reference set was compromised, and the tabulated values reflect the maximum occupant compartment intrusions measured using the secondary reference set. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix E, are not considered crush toward the occupant and are not evaluated by the MASH 2016 criteria.

Damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The right side of the front bumper was crushed and pushed into the engine compartment. The right side of the engine hood was crushed, and the left side was deformed upward. The full length of the right-front quarter panel was pushed into the engine compartment, and the right-front door was shifted backward. Scrapes and dents were visible along the entire right side of the vehicle. The rear bumper was cracked and scraped, and a kink was visible on the left-front quarter panel. Both left-side tires were deflated. The lower-right side of the windshield was cracked, which did not violate the MASH 2016 criteria. The right-front window shattered due to contact with the simulated occupant's head. All other window glass remained intact and undamaged.

On the undercarriage, the lower right-side control arm buckled and was pushed rearward. The right-side front shock was pushed rearward. The front sway bar link and the right-side outer tie rod were bent. The engine cradle was bent upward at the right-side control arm mounting points. The right-side frame horn was bent inward and upward. A small dent was found on the right side of the floor pan, and the right-side drive shaft was bent.

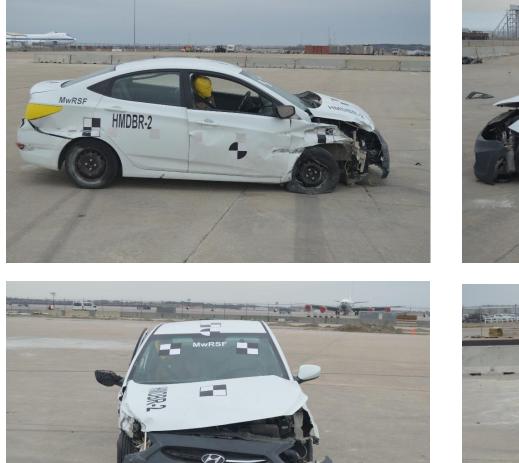


Figure 103. Vehicle Damage, Test No. HMDBR-2

November 12, 2021 MwRSF Report No. TRP-03-448-21

126

Figure 105. Interior and Undercarriage Damage, Test No. HMDBR-2

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	1.8	≤ 9
Floor Pan & Transmission Tunnel	0.5	≤ 12
A-Pillar	0.5	≤ 5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.5	≤ 5
B-Pillar (Lateral)	0.0	≤ 3
Side Front Panel (in Front of A-Pillar)	1.7	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	0.0	<i>≤</i> 4
Windshield	0.0	≤ 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	1.2	N/A

 Table 10. Maximum Occupant Compartment Intrusion by Location, Test No. HMDBR-2

N/A - No MASH 2016 criteria exist for this location.

7.5 Occupant Risk

The calculated OIVs and maximum 0.010-sec average ORAs in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 11. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 11. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1 (primary)	SLICE-2	Limits
OIV	Longitudinal	-28.12	-30.45	±40
ft/s	Lateral	-39.56	-37.48	±40
ORA	Longitudinal	-12.89	-6.41	±20.49
g's	Lateral	16.11	20.12	±20.49
Maximum Angular Displacement deg.	Roll	-7.8	-9.9	±75
	Pitch	-4.7	-6.0	±75
	Yaw	-47.3	-48.0	not required
THIV – ft/s		0.20	0.07	not required
PHD – g's		36.16	34.91	not required
ASI		2.96	2.80	not required

Table 11. Summary of Occupant Risk Values, Test No. HMDBR-2

7.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 106. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 67.9 kips, as determined by the SLICE-1 (primary) unit.

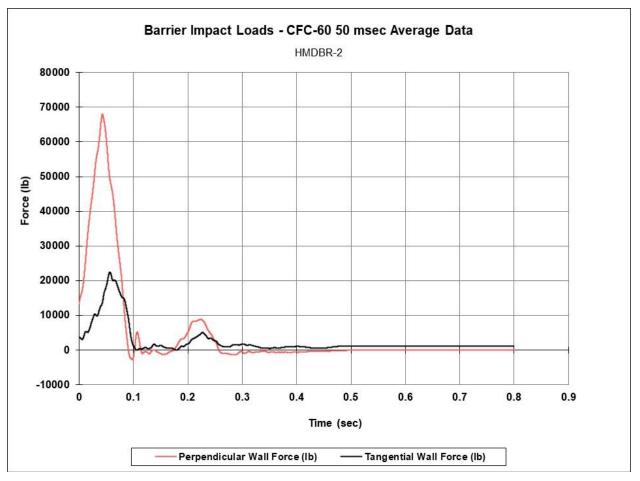


Figure 106. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1), Test No. HMDBR-2

7.7 Discussion

The analysis of the test results for test no. HMDBR-2 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 107. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 11.9 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HMDBR-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

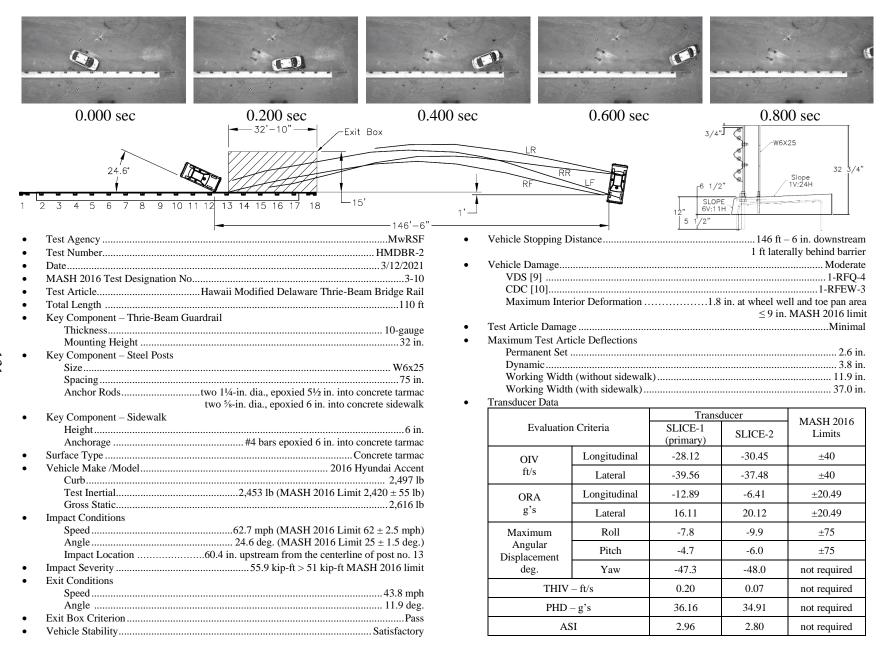


Figure 107. Summary of Test Results and Sequential Photographs, Test No. HMDBR-2

8 FULL-SCALE CRASH TEST NO. HMDBR-3

8.1 Weather Conditions

Test no. HMDBR-3 was conducted on April 6, 2021 at approximately 2:00 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 12.

Temperature	74°F
Humidity	56%
Wind Speed	29 mph
Wind Direction	160° from True North
Sky Conditions	Partly Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.04 in.
Previous 7-Day Precipitation	0.04 in.

Table 12. Weather Conditions, Test No. HMDBR-3

8.2 Test Description

Initial vehicle impact was to occur 84 in. upstream from the centerline of post no. 7, as shown in Figure 108, which was selected using the CIP plots found in Figure 2-11 of MASH 2016 to maximize propensity for vehicle snag as well as structural loading of the bridge rail. The 5,001-lb crew cab pickup truck impacted the Hawaii Modified Delaware Thrie-Beam Bridge Rail at a speed of 63.3 mph and an angle of 25.5 degrees. The actual point of impact was 3.4 in. downstream from the targeted impact location. The vehicle was captured and redirected safely by the bridge rail with minor deflections. The vehicle came to rest 200 ft – 7 in. downstream from the impact and 40 ft laterally behind the barrier after brakes were applied. I.S. is an additional limiting condition required in MASH 2016. The measured I.S. of test no. HMDBR-3 was 124.2 kip-ft, which fell into the acceptable range of greater than or equal to 106 kip-ft, as defined in MASH 2016 for test designation no. 3-11.

A detailed description of the sequential impact events is contained in Table 13. Sequential photographs are shown in Figures 109 and 110. Documentary photographs of the crash test are shown in Figures 111 and 112. The vehicle trajectory and final position are shown in Figure 113.

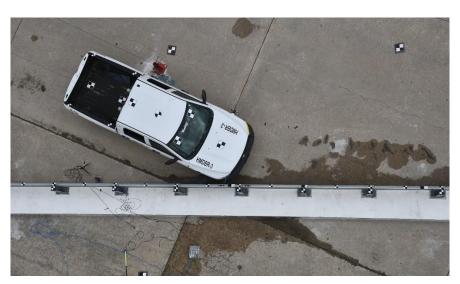


Figure 108. Target Impact Location, Test No. HMDBR-3

Time sec	Event				
0.000	Vehicle's front bumper and right headlight contacted rail 80.5 in. upstream from post no. 7 and deformed.				
0.008	Vehicle's right fender and tire contacted rail at post no. 6 and deformed.				
0.016	Post no. 6 deflected backward, and vehicle's right headlight fractured.				
0.018	Vehicle's hood deformed.				
0.020	Vehicle's grille contacted rail between post nos. 6 and 7 and deformed.				
0.026	Vehicle pitched upward.				
0.032	Top of left-front door deformed.				
0.040	Post no. 7 deflected backward. Vehicle's right-front door contacted rail and deformed.				
0.048	Vehicle rolled toward system and yawed away from system.				
0.050	Vehicle's right-rear door deformed.				
0.072	Vehicle's grille fractured.				
0.100	Vehicle's right-front window shattered during vehicle's impact with barrier.				
0.110	Vehicle's left-front tire became airborne.				
0.124	Vehicle pitched downward.				
0.134	Vehicle's right-front tire deflated.				
0.140	Vehicle's left-rear tire became airborne.				
0.170	Vehicle's right quarter panel contacted rail at post no. 6 and deformed.				
0.176	Vehicle's right taillight and rear bumper contacted rail at post no. 6 and deformed.				
0.178	Vehicle was parallel to system at a speed of 49.6 mph.				
0.180	Post no. 8 deflected backward.				
0.206	Vehicle's right taillight disengaged.				
0.440	Vehicle exited system at a speed of 45.1 mph and at angle of 6.8 degrees.				
0.458	System came to rest.				
0.474	Vehicle pitched upward.				
0.480	Vehicle's front bumper contacted ground.				
0.672	Vehicle rolled away from system.				
0.825	Vehicle yawed toward system.				
1.148	Vehicle's left-front tire regained contact with ground.				
1.354	Vehicle's left-rear tire regained contact with ground.				
1.408	Vehicle pitched downward.				
1.440	Vehicle rolled toward system.				
6.183	Vehicle came to rest 200 ft – 7 in. downstream from impact.				

Table 13. Sequential Description of Impact Events, Test No. HMDBR-3

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 109. Sequential Photographs, Test No. HMDBR-3

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 110. Sequential Photographs, Test No. HMDBR-3

Figure 111. Documentary Photographs, Test No. HMDBR-3



Figure 112. Documentary Photographs, Test No. HMDBR-3

Figure 113. Vehicle Final Position and Trajectory Marks, Test No. HMDBR-3

8.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 114 through 117. Note that there was pre-existing damage on the system from a previous test, test no. HMBDR-2, that was reported in Chapter 7. The pre-existing damage included contact marks on the concrete curb between post nos. 12 and 14, and minor spalling on the front edge of the concrete curb near post no. 13. The thrie-beam rail between post nos. 12 and 13 that was flattened in the previous test, was replaced.

Barrier damage consisted of contact marks, minor concrete curb spalling and gouging, and deformed thrie-beam rail. The length of vehicle contact along the barrier was approximately 14 ft -4 in. and began 29 in. upstream from post no. 6.

Contact marks were visible along the front face and top surface of the concrete sidewalk and the full depth of the thrie-beam rail between post nos. 6 and 8. The front edge of the concrete sidewalk was spalled near the post no. 6 base plate, starting 6¹/₂ in. upstream from post no. 6 and extending to 5³/₄ in. downstream from post no. 6. Minor gouging of the top traffic-side edge of the sidewalk occurred at several locations between post nos. 6 and 7. The thrie-beam rail between post nos. 6 and 7 was bent backward 3¹/₄ in. for a length of 76¹/₄ in. The lower thrie-beam corrugation was flattened between post nos. 6 and 7. Tire marks were visible on the base plate and the two front-side anchor rods at post nos. 6 and 7, but the anchor rods remained intact. Other bridge rail posts sustained no visible damage. No movement was observed in the downstream and upstream anchorage systems.

The maximum lateral permanent set of the barrier system was 3.7 in., which occurred in the thrie-beam rail between post nos. 6 and 7, as measured using GPS. The maximum post permanent set was 0.7 in. at post no. 7. The maximum lateral dynamic barrier deflection was 4.7 in., which occurred in the thrie-beam rail between post nos. 6 and 7. The maximum lateral post dynamic deflection was 1.1 in. at post no. 6. Exclusive of the curb, the working width of the system was 19.3 in. and was controlled by vehicle overhang. Note that when including the curb, the working width was the system width of 37 in. Both dynamic deflection and working width were determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 118.

Figure 114. System Damage, Test No. HMDBR-3

Figure 115. Rail Damage, Test No. HMDBR-3

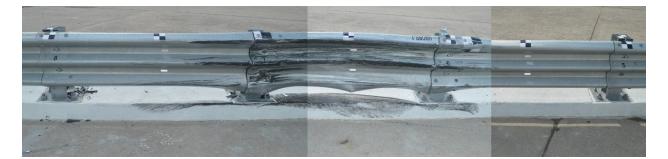


Figure 116. Curb Damage and Contact Marks, Test No. HMDBR-3

Figure 117. Curb Damage at Post No. 6 (Top) and Post No. 7 (Bottom), Test No. HMDBR-3

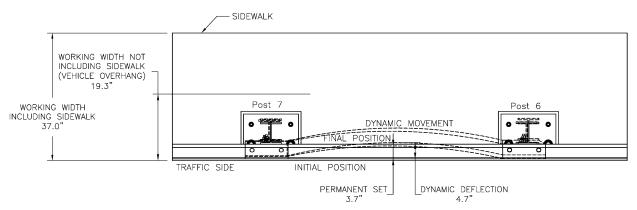


Figure 118. Permanent Set, Dynamic Deflection, and Working Width, Test No. HMDBR-3

8.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 119 through 121. Note that the test vehicle experienced two impacts: (1) the intended impact with the bridge rail system and (2) a secondary impact with PCBs placed downstream from the bridge rail to contain the vehicle after exiting the system. Vehicle damage after impacting the bridge rail was moderate, and the secondary impact caused slight additional damage to the front end of the vehicle. The maximum occupant compartment intrusions are listed in Table 14, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. The tabulated values reflect the maximum occupant compartment intrusions measured using two reference sets, as documented in Appendix E. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix E, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. During impact, the vehicle's right-front wheel was pushed inward. The front of the engine hood was bent downward, and the right side of the hood was dented. The right corner of the front bumper was pushed inward and scraped on the right side. The grille was detached from the vehicle and the right-front fender was partially detached. The right-front door was deformed outward. Scrapes and dents were visible along the entire right side of the vehicle. The rear bumper was detached, and the left-front fender was bent. The right-front tire was deflated. The right-front window was shattered during the vehicle's impact with the barrier. The windshield and all other window glass remained intact and undamaged.

On the undercarriage, several suspension components on the right side of the vehicle were bent, including the front shock, spring, the sway bar end link, and the right-side outer tie rod. The right-front steering knuckle disconnected from the control arm. The lower control arm was fractured at both cross members. The steering gear box was cracked, and the left engine mount was disconnected. The right frame horn was bent and crushed, and the engine cross members were scraped.

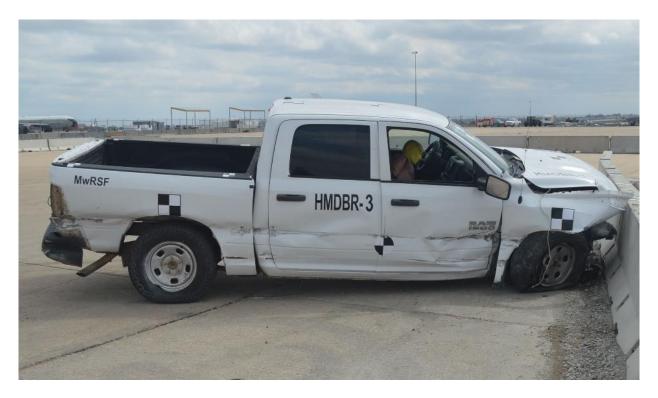


Figure 119. Vehicle Damage, Test No. HMDBR-3

Figure 120. Vehicle Damage, Test No. HMDBR-3

Figure 121. Interior and Undercarriage Damage, Test No. HMDBR-3

November 12, 2021 MwRSF Report No. TRP-03-448-21

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	4.8	≤ 9
Floor Pan & Transmission Tunnel	0.7	≤ 12
A-Pillar	0.0	≤ 5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.1	≤ 3
Side Front Panel (in Front of A-Pillar)	3.3	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	0.0	<i>≤</i> 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	1.3	N/A

Table 14. Maximum Occupant Compartment Intrusion by Location, Test No. HMDBR-3

N/A - No MASH 2016 criteria exist for this location.

8.5 Occupant Risk

The calculated OIVs and maximum 0.010-sec average ORAs in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 15. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 15. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix H.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits	
OIV	Longitudinal	-21.58	-20.51	±40	
ft/s	Lateral	-25.52	-26.55	±40	
ORA	Longitudinal	-9.34	-9.78	±20.49	
g's	Lateral	-12.75	-11.37	±20.49	
Maximum	Roll	42.9	39.4	±75	
Angular Displacement	Pitch	-5.6	-7.8	±75	
deg.	Yaw	-50.6	-50.7	not required	
THIV – ft/s		31.99	32.58	not required	
PHD – g's		13.49	12.57	not required	
ASI		1.52	1.61	not required	

Table 15. Summary of Occupant Risk Values, Test No. HMDBR-3

8.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 122. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 75.8 kips, as determined by the SLICE-2 (primary) unit.

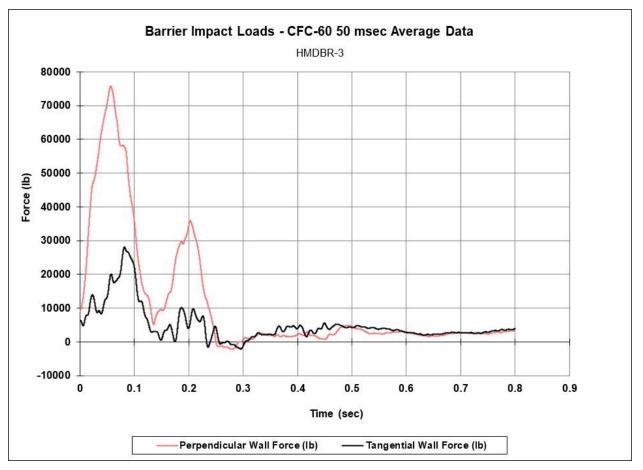


Figure 122. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2), Test No. HMDBR-3

8.7 Discussion

The analysis of the test results for test no. HMDBR-3 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 123. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 6.8 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HMDBR-3 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

0.000 sec	0.200 sec	0.400 sec		0.600 s	Sec	0.800 se	ec
Exit Box - 32'-10" -	LR	_					
25.5		RF LF			3/4" 6 1/2" 6 1/2" 5LOPE_∫ ^{ther}	W6X25 Slope 1V:24H	32 3/4"
	<u>+</u>		_Ħ	1	5 1/2"	U	
 Test Number Date MASH 2016 Test Designation Not Test Article Total Length Key Component – Thrie-Beam Go Thickness 	200'-7" H	IMDBR-3 4/6/2021 • 3-11 ridge Rail 110 ft .10-gauge •	Vehicle Damag VDS [9] CDC [10] Maximum I Test Article Dat Maximum Test	e Interior Deformati mage Article Deflectior	on4.8	$200 \text{ ft} - 7 \text{ in.}$ $40 \text{ ft laterally be}$ in. at wheel well and $\leq 9 \text{ in. MAS}$	ehind barrier Moderate 1-RFQ-5 1-RFEW-4 toe pan area H 2016 limit Minimal
		W6x25	Dynamic				4.7 in.
			U	· · · · · · · · · · · · · · · · · · ·	,		
Anchor Rods	two 11/4-in. dia., epoxied 51/2 in. into concre		U	· ·	lk		37.0 in.
K C ()	two 5/8-in. dia., epoxied 6 in. into con-	crete curb	Transducer Data	a	Trans	sducer	<u> </u>
			Evaluatio	n Criteria	SLICE-1	SLICE-2 (primary)	MASH 2016 Limits
	Concre		OIV	Longitudinal	-21.58	-20.51	±40
			ft/s	Lateral	-25.52	-26.55	±40
		,	0.7.4	Longitudinal	-9.34	-9.78	±20.49
		,	ORA g's	0			
Impact Conditions		_	g s	Lateral	-12.75	-11.37	±20.49
			Maximum	Roll	42.9	39.4	±75
			Angular	Pitch	-5.6	-7.8	±75
			Displacement deg.	Yaw	-50.6	-50.7	not required
Exit Conditions	r i i						-
			THIV	- It/s	31.99	32.58	not required
8		0	PHD	-g's	13.49	12.57	not required
			A	SI	1.52	1.61	not required

Figure 123. Summary of Test Results and Sequential Photographs, Test No. HMDBR-3

152

November 12, 2021 MwRSF Report No. TRP-03-448-21

9 SUMMARY AND CONCLUSIONS

The Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail evaluated in this research study consisted of a 10-gauge thrie-beam rail with a mounting height of 32 in. above the finished grade, supported by W6x25 steel posts, spaced at 75 in., and anchored to a concrete curb. Both 6-in. and 9-in. tall curb configurations were tested and evaluated. The bridge rail is intended for use with an approach guardrail transition system. The bridge rail installation with the 9-in. tall curb was connected to the HDOT AGT and a W-beam guardrail system. The crash testing and evaluation of the AGT was conducted in a parallel study and documented in a separate report [2]. The 6-in. tall curb configuration was constructed as a standalone bridge rail installation with two end anchorages.

The Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail was subjected to three full-scale crash tests in accordance with the TL-3 evaluation criteria of MASH 2016. Test no. HMDBR-1 was conducted on the 9-in. tall sidewalk configuration according to MASH 2016 test designation no. 3-11. Test nos. HMDBR-2 and HMDBR-3 were conducted on the 6-in. tall sidewalk configuration according to MASH 2016 test designations nos. 3-10 and 3-11, respectively. The test evaluations are summarized in Table 16.

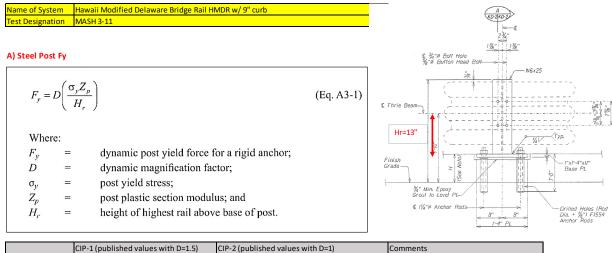
In test no. HMDBR-1, the 5,001-lb pickup truck impacted the Hawaii Modified Delaware Thrie-Beam Bridge Rail with 9-in. tall sidewalk at a speed of 63.1 mph and an angle of 25.5 degrees. The impact occurred 75.1 in. upstream from the centerline of post no. 25, and the impact severity was 123.4 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 42.2 mph and an angle of 11.1 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier system and the vehicle. All occupant risk values fell within the recommended safety limits established in MASH 2016. Therefore, test no. HMDBR-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

In test no. HMDBR-2, the 2,453-lb small car impacted the Hawaii Modified Delaware Thrie-Beam Bridge Rail with 6-in. tall sidewalk at a speed of 62.7 mph and an angle of 24.6 degrees. The impact occurred 60.4 in. upstream from post no. 13, and the impact severity was 55.9 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 43.8 mph and an angle of 11.9 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier system and moderate damage to the vehicle. All occupant risk values fell within the recommended safety limits established in MASH 2016. Therefore, test no. HMDBR-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

In test no. HMDBR-3, the 5,001-lb pickup truck impacted the Hawaii Modified Delaware Thrie-Beam Bridge Rail with 6-in. tall sidewalk at a speed of 63.3 mph and an angle of 25.5 degrees. The impact occurred 80.5 in. upstream from post no. 7, and the impact severity was 124.2 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 45.1 mph and an angle of 6.8 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier system and moderate damage to the vehicle. All occupant risk values fell within the recommended safety limits established in MASH 2016. Therefore, test no. HMDBR-3 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Based on the successful completion of the three full-scale crash tests required for the evaluation of longitudinal barriers and bridge rails in MASH 2016, it is believed that the Hawaii Modified Delaware Retrofit Thrie-Beam Bridge Rail installed on a concrete sidewalk with a height ranging between 6 in. and 9 in. meets the safety criteria for MASH 2016 TL-3.

Evaluation Factors		Evaluation	Criteria		Test No. HMDBR-1	Test No. HMDBR-2	Test No. HMDBR-3
Structural Adequacy	A.	Test article should conta or bring the vehicle to a should not penetrate, u installation although con the test article is accepta	S	S	S		
	D.	1. Detached elements, from the test article sho potential for pene compartment, or presen traffic, pedestrians, or pe	ould not penet strating the t an undue ha	rate or show occupant zard to other	S	S	S
		compartment should not	2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			S	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S	S	S
Occupant Risk	H.	I. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Impa	act Velocity L	imits	S	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s	40 ft/s			
	I.	Appendix A, Section A	own Acceleration (ORA) (see A A5.2.2 of MASH 2016 for b) should satisfy the following			6	C
		Occupant Ridedow	vn Acceleratio	on Limits	S	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
	MASH 2016 Test Designation No.					3-10	3-11
		Final Evaluation (Pass	or Fail)		Pass	Pass	Pass
S -	S – Satisfactory U – Unsatisfactory				NA	– Not Appl	icable


Table 16. Summary of Safety Performance Evaluation

10 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- Selva Kumar, G., Asadollahi Pajouh, M., Lechtenberg, K.A., Faller, R.K., Holloway, J.C., and Urbank, E.L., *Crash Testing and Evaluation of Hawaii Transition to Modified Delaware Retrofit Bridge Rail: MASH Test Nos. 3-20 and 3-21*, Draft Report No. TRP-03-449-21, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, in Progress.
- 3. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- Stolle, C.S., Asselin, N., Schmidt, J.D., Faller, R.K., Holloway, J.C., Reid, J.D., and Rilett, L.R., *Development of a Non-Proprietary ASTM F2656-15 M30 and FS30 P1 Barrier*, Report No. TRP-03-365-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 18, 2017.
- 5. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 6. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 7. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 8. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July 2007.
- 9. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 10. *Collision Deformation Classification*, SAE International Surface Vehicle Recommended Practice, SAE Standard J224_201702, Society of Automotive Engineers, Warrendale, PA, February 2017.

11 APPENDICES

Appendix A. Critical Impact Point Determination

	CIP-1 (published values with D=1.5)	CIP-2 (published values with D=1)	Comments
D	1.5	1	MASH recommends
Zp (in^3)	18.9	18.9	W6x25
σy (ksi)	50	50	A992
Hr (in)	13	13	
Fy (kips)	109.04	72.69	
Spacing (ft)	6.25	6.25	Full post spacing
Fp (kip/ft)	17.45	11.63	

(Eq. A3-2)

B) Soil Forces Fs

$$F_s' = F_s \times \left(\frac{D_e'}{D_e}\right)^2$$

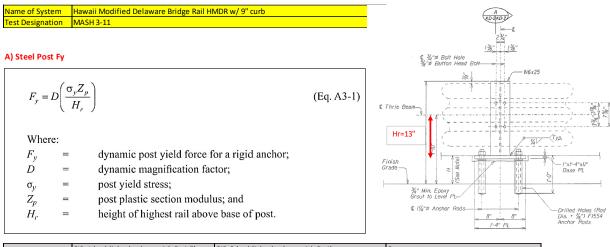
Where:

D_{e}^{\prime}		soil dynamic yield force at alternate embedment depth, D_e' ;
F_s	Lanan	soil dynamic yield force shown in Table A-3;
D_{e}'	-	alternate embedment depth; and
D_e	internet Barran	post embedment depth shown in Table A-3.

		Commnets
Fs (kips)	NA	From MASH Table A-3 or MwRSF soil tests
De (in)	NA	
D'e (in)	NA	
F's (kips)	NA	

Smallest of Fy and Fs controls Fp	Fy	No soil is involved
Fp for CIP-1	17.45	with 1.5 factor
Fp for CIP-2	11.63	without 1.5 factor

C) Rail plastic Moment


	MASH Table A-1	Using actual mill certs	Comments
Zp	3.92	3.92	10-gauge thrie beam
σy (ksi)	50		
Mp	16.33		

D) CIP) CIP					
Test 3-11	Figure 2-11			From Post/splice no. 25		
Fp	17.45		X=6.5ft =78 in (CIP1)	25		
Мр	16.33		x=0.51t =7811 (CFF1)			
Fp	11.63		X=7.5 ft =90 in (CIP2)	25		
Мр	16.33		x=7.5 ft =50 fit (CIP2)			

Figure A-1. CIP Determination, Test No. HMDBR-1

-			
Name of System	Hawaii Modified Delaware Bridge Rail H	MDR w/ 6" curb	A RD 2KD 2
Test Designation	MASH 3-11 and 3-10		k-e
			23/4"
			1 <u>%" 11%"</u>
A) Steel Post Fy			使 ¾ "ø Balt Hole % "ø Button Head Balt
(7)		
$F_y = D\left(\frac{\sigma}{r}\right)$	$\frac{y^2 p}{y}$	(Eq. A3-1)	· · · · · · · · · <u>∦</u> }
,	H_r)		C Thrie Beam
			Hr=16"
Where:			
$F_y =$	dynamic post yield force f	or a rigid anchor:	
D =	dynamic magnification fac		Finish Grade
		.01,	1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
$\sigma_y =$	post yield stress;		3//" Min. Epoxy Grout to Level PL
$Z_p =$	post plastic section module	is; and	
$H_r^{\nu} =$	height of highest rail above		€ 1%"# Anchor Rods + + + + + + + + + + + + + + + + + + +
$n_r =$	neight of nighest fan abov	coase or post.	I.d. 7 yg 171354 I.d. 7 kg 171354 Anchor Rods
		CID 2 / publishes to at a set of the set	Commente
	CIP-1 (published values with D=1.5)	CIP-2 (published values with D=1)	Comments AAAGU as a series of the series of
U 7= (i= 42)	1.5	1	MASH recommends
Zp (in^3)	18.9	18.9	W6x25
σy (ksi)	50	50	A992
Hr (in)	16	16	<u> </u>
Fy (kips)	88.59	59.06	
C (fi)	C 25	6.25	E. Harrison day
Spacing (ft)	6.25	6.25	Full post spacing
Fp (kip/ft)	14.18	9.45	
B) Soil Forces Fs			
$F_s' = F_s \times \left(\frac{l}{L}\right)$	$\left(\frac{D'_e}{2}\right)^2$	(Eq. A3-2	2)
) _e)		
Where:			
D' =	soil dynamic vield force a	t alternate embedment depth, D_e	′:
$\begin{array}{cc} D_e' & = \\ F_s & = \end{array}$	soil dynamic yield force s		
$D_{e}^{'} =$	alternate embedment dept	h: and	
$D_{\rho} =$	post embedment depth she		
D_e	post embedment depth sho	Jwit in Table A-3.	
		Commnets	
Fs (kips)	NA	From MASH Table A-3 or MwRSF soil tests	
De (in)	NA		
D'e (in)	NA		—
F's (kips)	NA		
		I	
Smallest of Fy and	Fy	No soil is involved	
Fs controls Fp			
Fp for CIP-1	14.18	with 1.5 factor	
Fp for CIP-2	9.45	without 1.5 factor	
C) Rail plastic Mo			
	MASH Table A-1	Using actual mill certs	Comments
Zp	3.92	3.92	10-gauge thrie beam
σy (ksi)	50		
Mp	16.33		
D) CIP	T	Ι	
			From Post/splice no.
Test 3-11	Figure 2-11		
Test 3-11 Fp	14.18	X=7 ft =84 in. (CIP1)	
Test 3-11 Fp Mp	14.18 16.33	X=7 ft =84 in. (CIP1)	25
Test 3-11 Fp	14.18	X=7 ft =84 in. (CIP1) X=8 ft = 96 in. (CIP2)	

Figure A-2. CIP Determination, Test No. HMDBR-2

	CIP-1 (published values with D=1.5)	CIP-2 (published values with D=1)	Comments
D	1.5	1	MASH recommends
Zp (in^3)	18.9	18.9	W6x25
σy (ksi)	50	50	A992
Hr (in)	13	13	
Fy (kips)	109.04	72.69	
Spacing (ft)	6.25	6.25	Full post spacing
Fp (kip/ft)	17.45	11.63	

B) Soil Forces Fs

$$F'_{s} = F_{s} \times \left(\frac{D'_{e}}{D_{e}}\right)^{2}$$
(Eq. A3-2)
Where:

Where:

D_{e}^{\prime}	and a second	soil dynamic yield force at alternate embedment depth, D_e' ;
F_s	in the second se	soil dynamic yield force shown in Table A-3;
D_{e}^{\prime}		alternate embedment depth; and
D_e	- Handred Handred	post embedment depth shown in Table A-3.

$$e_{e}$$
 = post embedment depth shown in Table A-3.

Fs (kips) NA De (in) NA	From MASH Table A-3 or MwRSF soil tes
De (in) NA	
D'e (in) NA	
F's (kips) NA	

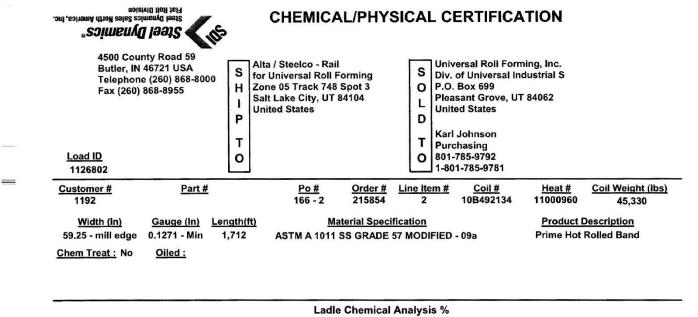
Fs controls Fp	Fy	No soil is involved
Fp for CIP-1	17.45	with 1.5 factor
Fp for CIP-2	11.63	without 1.5 factor

C) Rail plastic M	oment		
	MASH Table A-1	Using actual mill certs	Comments
Zp	3.92	3.92	10-gauge thrie beam
σy (ksi)	50		
Mp	16.33		

D) CIP			
Test 3-11	Figure 2-11		From Post/splice no. 25
Fp	17.45	X=6.5ft =78 in (CIP1)	25
Мр	16.33	X=0.51t =78111 (CIP1)	23
Fp	11.63	X=7.5 ft =90 in (CIP2)	25
Мр	16.33	X=7.31(=50111(CIF2)	23

Figure A-3. CIP Determination, Test No. HMDBR-3

Appendix B. Material Specifications, Test No. HMDBR-1


As discussed in Chapter 3, the drawing set for test no. HMDBR-1 included details for the entire system, inclusive of the AGT and bridge rail installation. However, the bridge rail alone was under evaluation in this test, and therefore, only the bridge rail components are documented in this appendix.

Item No.	Description	Material Specification	Reference
аб	6'-3" 10-gauge Thrie-Beam Section	AASHTO M180	H#1100960
b1	16"x11"x1" Base Plate	ASTM A36	H#B0H751
b2	1 1/4" Dia., 14" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	H#A194079
b3	5/8" Dia., 8" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	H#10543730
d9	W6x25, 23 1/4" Long Steel Post	ASTM A992	H#59089655/02
e1	#4 Rebar, 33 7/8" Total Unbent Length	ASTM A615 Gr. 60	H#7006848
e2	#4 Rebar, 97' 1" Total Length	ASTM A615 Gr. 60	H#7006848
e7	#4 Rebar, 35" Total Unbent Length	ASTM A615 Gr. 60	H#7006848
f3	5/8"-11 UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	H#10657410
f7	5/8"-11 UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	H#10439100
f8	7/8" Dia., 8" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 Type 1	H#3093334
g1	5/8" Dia. Plain USS Washer	ASTM F844	L#M-SWE0412454-8
g2	5/8" Dia. Hardened Washer	ASTM F436	H#1P832
g3	7/8" Dia. Plain Round Washer	ASTM F844	L#1844804
g5	1 1/4" Dia. Hardened Washer	ASTM F436	H#182540
g6	1" Dia. Hardened Flat Washer	ASTM F436	H#105594
h1	5/8"-11 UNC Heavy Hex Nut	ASTM A563A or equivalent	H#62151324 H#62152527
h2	5/8"-11 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	H#1100890711
h4	1 1/4"-7 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	H#F19080206
h5	1" Dia. Heavy Hex Nut	ASTM A563DH or A194 Gr. 2H	H#621253305
h7	7/8" Dia. UNC Heavy Hex Nut	ASTM A563DH or ASTM A194 Gr. 2H	H#100203930

Table B-1. Bill of Materials, HMDBR-1

Item No.	Description	Material Specification	Reference
i1	1" Dia. UNC, 11" Long Threaded Rod	ASTM A449 or A354 Gr. BC or A193 Gr. B7	H#A201673
i2	10-gauge Thrie-Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi Min. tensile strength = 70 ksi	H#A81568
i3	14"x14"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	H#B705783
i4	HSS 6"x12"x1/4" Tube, 38 1/2" Long	ASTM A500 Gr. B	H#17003401
i5	11 1/2"x5 1/2"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	H#B705783
i6	HSS 6"x4"x5/16" Tube, 46" Long	ASTM A500 Gr. B	H#A81506
i7	16"x12"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	H#B705783
j1	Concrete	Min. f'c = 4,000 psi NE Mix 47B1S384000HW or 47B1PF4000HW	Project#00110546.00
k1	Epoxy Adhesive	Hilti HIT RE-500 V3 Class C881	COC
k2	Epoxy Post Cavity Filler	ASTM C881 Type IV, Grade I, Class C	COC

Table B-2. Bill of Materials, HMDBR-1, Cont.

С	Mn	P	S	Si	AI	Cu	Ni	Cr	Mo	Sn	N	V	Nb	Ti	В	Ca	Pb
0.20	0.87	0.012	0.006	0.03	0.027	0.12	0.05	0.06	0.02	0.007	0.009	0.002	0.014	0.001	0.0000	0.002	0.00

Yield Strength (PSI)	Tensile Strength (PSI)	Percent Elongation	Rockwell Result
68,630	85,669	27.0	88

Made in USA Shipped from Butler, IN, United States Melted , thin slab cast and rolled by proud Americans in Butler , IN. All tests were performed according to applicable standards and are correct as contained in the records of the company. Quality Assurance_________ Retrieved on : 01/11/10 14:46:02 Steel Dynamics, Inc. Rev. Level 5.1 [1003]

Figure B-1. 10-gauge Thrie-Beam Section, Test No. HMDBR-1 (Item No. a6)

Page 1 of 4

	1110	Bill Sharp Bou	evard, Mu	iscaune	, 14 021														
Customer					Cust	omer P	.O.No.:45	003517	727		IN	ill Order I	lo. 41-		m TC1: F				MT412667
	PIPE SUPPI	LY			Prod	uct Desc	cription: AS AA		6(19)/A7 M270(19					Sh		28 Aug	20 C	ert No:	061851364
AANHATT	TAN				Size	1.000	X 72.00 X	x 240	0 (IN)				-	_					
	Testec	Pieces:				Tensile							Cha	py Imp	act Tests	5		1	
Heat Id	Piece Id	Tested Thickness	Tst Loc	YS (KSI)	UTS (KSI)	%RA	Elong % 2in 8in		Hard	1855		iergy(FTL 3 Avg	3)	% Sh 2 3	ear Avg	Tst Tmp	Tst Dir	Tst Siz (mm)	BDWTT Tmp %Shr
0G112 0H751	B16 B33 B34	1.002 (DISCRT) 1.249 (DISCRT)	L	57 47	78 71		27 27	T T T											
0H751 Heat		0.748 (DISCRT)		49	73		38 Chem	ical An	alvele	_									
Id	c	Mn P	S	Si 1	l'ot Al (Cu			alysis										ORG
0G112						uu I	NI Cr	Mo	Cb	V	n	в	N					in the second	UKG
NH751 KILLEN MERCUN OF THI MTR EN 100% N	IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	D MANUFACTU	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 OMPONE FIFICA	030 .34 032 .30 NT OF ' TE 3.1	I .14 .16 THE ST COMPL	1 .17 5 .18 CEEL AND	.03 .04 NO MI	.002 .001	.031 .004	.002 .024	.0001 .0 .0002 .0	075 087 ADDE	D DURI	NG THE 1, LI		ACTUR 4901		
0H751 KILLEI MERCUN OF THI MTR EN 100% N PRODUC A0GI	20 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	A METALLUR T. 004 INSPECT D MANUFACTU ED: B16	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 DMPONE FIFICA THE US CES :	030 .34 032 .30 NT OF ' TE 3.1 A 2, LBS	I .14 .16 THE ST COMPL	4 .17 5 .18 TEEL AND JIANT 9802	.03 .04 NO MI	.002 .001 ERCURS	.031 .004	.002 .024	.0001 . .0002 .	075 087 ADDE						US
0H751 KILLEI MERCUN OF THI MTR EN 100% N PRODUC A0GI	20 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	A METALLUR T. 004 INSPECT D MANUFACTU ED: B16	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 DMPONE FIFICA THE US CES :	030 .34 032 .30 NT OF ' TE 3.1 A 2, LBS	I .14 .16 THE ST COMPL	4 .17 5 .18 TEEL AND JIANT 9802	.03 .04 NO MI	.002 .001 ERCURS	.031 .004	.002 .024	.0001 . .0002 .	075 087 ADDE						US
KILLEI MERCUN OF THI MTR EN 100% N PRODUC A0GI	20 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	A METALLUR T. 004 INSPECT D MANUFACTU ED: B16	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 DMPONE FIFICA THE US CES :	030 .34 032 .30 NT OF ' TE 3.1 A 2, LBS	I .14 .16 THE ST COMPL	4 .17 5 .18 TEEL AND JIANT 9802	.03 .04 NO MI	.002 .001 ERCURS	.031 .004	.002 .024	.0001 . .0002 .	075 087 ADDE						US
KILLEI MERCUN OF THI MTR EN 100% N PRODUC A0GI	20 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	A METALLUR T. 004 INSPECT D MANUFACTU ED: B16	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 DMPONE FIFICA THE US CES :	030 .34 032 .30 NT OF ' TE 3.1 A 2, LBS	I .14 .16 THE ST COMPL	4 .17 5 .18 TEEL AND JIANT 9802	.03 .04 NO MI	.002 .001 ERCURS	.031 .004	.002 .024	.0001 . .0002 .	075 087 ADDE						US
OH751 KILLEI MERCUN OF THI MTR EN 100% N PRODUC A0GI	20 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	A METALLUR T. 004 INSPECT D MANUFACTU ED: B16	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 DMPONE FIFICA THE US CES :	030 .34 032 .30 NT OF ' TE 3.1 A 2, LBS	I .14 .16 THE ST COMPL	4 .17 5 .18 TEEL AND JIANT 9802	.03 .04 NO MI	.002 .001 ERCURS	.031 .004	.002 .024	.0001 . .0002 .	075 087 ADDE						US
OH751 KILLEI MERCUN OF THI MTR EN 100% N PRODUC A0GI	20 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 112	A METALLUR T. 004 INSPECT D MANUFACTU ED: B16	.002 . .001 . GICAL CO ION CER RED IN T	18 .0 19 .0 DMPONE FIFICA THE US CES :	030 .34 032 .30 NT OF ' TE 3.1 A 2, LBS	I .14 .16 THE ST COMPL	4 .17 5 .18 TEEL AND JIANT 9802	.03 .04 NO MI	.002 .001 ERCURS	.031 .004	.002 .024	.0001 . .0002 .	075 087 ADDE						US

Figure B-2. Base Plate, Test No. HMDBR-1 (Item No. b1)

Vuican THREADED PRODUCTS, INC	Vulcan Threaded Pro 10 Cross Creek Trail Pelham, AL 35124 Tel (205) 620-5100 C. Fax (205) 620-5150		IOB MATERIAL	CERTIFI	Page 13 o
the state of the s	647405	Job Informatio	n Certified D	ate: 10/29/19	
Containers:	S16189360 S16189	496 S16190823 S16192	377 S16192738		
Customer:	Conklin and Conklin		Ship	To: 34201 Sev	enth Street
	BAR B7 1.1523x144 S	C		Union City,	CA 94587
Customer Part No:	BAR B7 1.152x144				
Customer PO No:	19595		01.1		
Order No:	385750			Qty: 15028 lbs	
Note:			Line	No: 5	
		Applicable Specificat			
		SA-193/SA-102M D7	2018		
	Α	SA-193/SA-193M B7 STM A193 B7	2013 2017	in a sa	
	Α		2013		
ee following pages for tests	A		2013 2017		
ee following pages for tests Heat N	A 5 0: A194079 Lot 1.218	STM A193 B7 Certified Chemical Ana	2013 2017	SA	
ee following pages for tests Heat N C Mn 0.40 0.80	A	STM A193 B7 Certified Chemical Ana Si Cr	2013 2017 Alysis Mo Ni V	/ Cu	AI
ee following pages for tests Heat N C Mn 0.40 0.80 Cb Sn	A s o: A194079 Lot 1.218 P S 0.013 0.022 N B	STM A193 B7 Certified Chemical Ana	2013 2017 Nysis Mo Ni V 0.17 0.11 0.0	Cu 002 0.25	0.023
C Mn 0.40 0.80 Cb Sn 0.001 0.009	A S C: A194079 Lot 1.218 P S 0.013 0.022 N B 0.0093 0.0002	STM A193 B7 Certified Chemical Ana Si Cr 0.24 0.83 Ca As 0.0007 0.004	2013 2017 Nysis Mo Ni V 0.17 0.11 0.0 Sb H, ppm D	/ Cu 102 0.25 DI RR	0.023 G.S.
ee following pages for tests Heat N C Mn 0.40 0.80 Cb Sn 0.001 0.009	A S 0: A194079 Lot 1.218 P S 0.013 0.022 N B 0.0093 0.0002 Macro C J1	Certified Chemical Ana Si Cr 0.24 0.83 Ca As 0.0007 0.004 J2 J3	2013 2017 Alysis Mo Ni V 0.17 0.11 0.0 Sb H, ppm E 0.002 2.3 4.4 J4 J5 J	Cu 002 0.25 01 RR 44 124.6:1	0.023 G.S. 8
Eee following pages for tests Heat N C Mn 0.40 0.80 Cb Sn 0.001 0.009 Macro S Macro R	A S 0: A194079 Lot 1.218 P S 0.013 0.022 N B 0.0093 0.0002 Macro C J1 2 56	STM A193 B7 Certified Chemical Ana Si Cr 0.24 0.83 Ca As 0.0007 0.004 J2 J3 56 56	2013 2017 Nysis Mo Ni V 0.17 0.11 0.0 Sb H, ppm D 0.002 2.3 4.4 J5 J5 J1 56 56 56 51	/ Cu 002 0.25 01 RR 44 124.6:1 6 J7	0.023 G.S. 8 J8
Eee following pages for tests Heat N C Mn 0.40 0.80 Cb Sn 0.001 0.009 Macro S Macro R M 1 1	A 5 0: A194079 Lot 1.218 P S 0.013 0.022 N B 0.0093 0.0002 Macro C J1 2 56	STM A193 B7 Certified Chemical Ana Si Cr 0.24 0.83 Ca As 0.0007 0.004 J2 J3 56 56 J16 J18	2013 2017 Nysis Mo Ni V 0.17 0.11 0.0 Sb H, ppm D 0.002 2.3 4.4 J5 J20 J24 J2	Cu Cu 002 0.25 01 RR 14 124.6:1 6 J7 3 51 18 J32	0.023 G.S. 8
C Mn 0.40 0.80 Cb Sn 0.001 0.009 Macro S Macro R 1 1 J9 J10 48 47	A S O: A194079 Lot 1.218 P S 0.013 0.022 N B 0.0093 0.0002 Macro C J1 2 56 J12 J14 44 42	STM A193 B7 Certified Chemical Ana Si Cr 0.24 0.83 Ca As 0.0007 0.004 J2 J3 56 56 J16 J18 39 38 Notes Notes	2013 2017 Alysis Mo Ni V 0.17 0.11 0.0 Sb H, ppm E 0.002 2.3 4.4 J4 J5 J 56 56 56 53	Z Cu 002 0.25 01 RR 44 124.6:1 6 J7 3 51 18 J32 3 32	0.023 G.S. 8 J8 49

PORTLAND BOLT PO 45740 INV 80296 50 1-114" X 144" B7 ATR, H.D.G. 10F2 MAY 13, 2020

ACT (F) 2819

01-07-5h

https://www.plexonline.com/8b3f6397-ab3b-40a7-8908-032dc75c84b8/Sales/Report_Job_Cert.asp?Mod... 10/30/2019

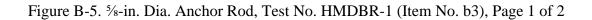
Test No: 57115 Test: A193 B7, F1554-105 Requirements 127 15 8in 59.8 Description Tensile Yield 0.2% Elongation Elongation ROA Midradius Surface Center Hardness Test Type 139 126 21 4D 61 29 29 28 HRC 139 127 21 4D 62 30 30 28 HRC 139 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30			MATERIAL (JOB	Trail 24 00	ulcan Threaded 0 Cross Creek T elham, AL 3512 el (205) 620-510 ax (205) 620-51	an Pe Tel	Vãic THREADED PRODU	
Containers: S16189360 S16189496 S16190823 S16192677 S16192738 Test Results Part No: BAR B7 1.1523x290 HT Test No: 57112 Test: Quench & Temper Information (Lbs) Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) Test No: 57112 Test: Quench & Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) Description Surface Carb. (in.) Quench Water Temp (F) Test No: 57113 Test: Partial Decarb Test Partial Surface Decarb. (in.) 0 0.007 Test No: 57114 Test: F1554-105 FB Requirements Description Tensile (Ksi) (Ksi) File Station Elongation (%) Elongation Gage Length (8in) ROA (%) Test No: 57115 Test: A193 B7, F1554-105 Requirements Description Tensile (Ksi) (Ksi) Gff a 21 AD <td colsp<="" th=""><th></th><th>ate: 10/29/19</th><th>Certified Dat</th><th></th><th></th><th></th><th></th><th>and the second s</th></td>	<th></th> <th>ate: 10/29/19</th> <th>Certified Dat</th> <th></th> <th></th> <th></th> <th></th> <th>and the second s</th>		ate: 10/29/19	Certified Dat					and the second s
Test Results Part No: BAR B7 1.1523x290 HT Test No: 57112 Test: Quench & Temper Information (Lbs) Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) Test No: 57113 Test: Partial Decarb Test Description Surface Carb. (in.) O O Description Surface Carb. (in.) Partial Surface Decarb. (in.) O O Test No: 57114 Test: F1554-105 FB Requirements Description Tensile (ksi) (ksi) Yield 0.2% Offset (ksi) (ksi) Elongation (%) Elongation Gage Length (8in) ROA (% Test No: 57115 Test: A193 B7, F1554-105 Requirements Surface Carb. (in.) O Description Tensile (ksi) (ksi) Yield 0.2% Elongation ROA Midradius Surface Center			16192738	823 S16192677 S1	189496 S16190	189360 S161	ainers: S161	Conta	
Test No: 57112 Test: Quench & Temper Information (Lbs) Quench & Temper Information (Lbs) Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) 1.603 1.345 19.5 34 Test No: 57113 Test: Partial Decarb Test Partial Surface Decarb. (in.) Partial Surface Decarb. (in.) 0 0 0 0.007 Test No: 57114 Test: F1554-105 FB Requirements Elongation (%) Elongation Gage Length (8in) ROA (%) 137 127 127 15 8in 59.8 rest No: 57115 Test: A193 B7, F1554-105 Requirements Elongation ROA Midradius Surface Center Hardness 139 126 21 4D 61 29 28 HRC 138 127 21 4D 61 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127 21 4D <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>Test Results</td></t<>				-				Test Results	
Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) 84 1,603 1,345 19.5 84 Description Surface Carb. (in.) Partial Surface Decarb. (in.) Partial Surface Decarb. (in.) 84 Description Surface Carb. (in.) 0 0.007 0.007 0.007 Test No: 57114 Test: F1554-105 FB Requirements Elongation (%) Elongation Gage Length (8in) ROA (%) Test No: 57115 Test: A193 B7, F1554-105 Requirements Elongation Kisi Surface Carb. (%) Hardness Test No: 57115 Test: A193 B7, F1554-105 Requirements Elongation ROA Midradius Surface Hardness Hardness Test Type 139 126 21 4D 61 29 29 28 HRC 138 127 21 4D 61 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127							1.1523x290 HT	Part No: BAR B7 1.	
Description Austenitizing Temp (F) Tempering Temp (F) Run Speed (Ft/min) Quench Water Temp (F) 1,603 1,345 19.5 84 Description Surface Carb. (in.) Partial Surface Decarb. (in.) Partial Surface Decarb. (in.) 0 0 0.007 Test No: 57114 Test: F1554-105 FB Requirements Elongation (%) Elongation Gage Length (8in) ROA (%) 0 137 127 15 8in 59.8 est No: 57115 Test: A193 B7, F1554-105 Requirements Elongation (%) Hardness Hardness Hardness Test Type 139 126 21 4D 61 29 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127 21	1000				on (Lbs)				
Vieto Carlo. Partial Surface Decarb. (in.) 0 0.007 Pertial Surface Decarb. (in.) 0 137 137 127 15 Bin 59.8 est No: 57115 Test: A193 B7, F1554-105 Requirements Elongation Elongation Surface Center Hardness 139 126 21 4D 61 29 29 28 HRC 139 127 21 4D 60 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 <td>Note</td> <td></td> <td>Sector Sector Se</td> <td></td> <td>Tempering Temp</td> <td>mp (F)</td> <td>ustenitizing Tem 1,603</td> <td>Description A</td>	Note		Sector Se		Tempering Temp	mp (F)	ustenitizing Tem 1,603	Description A	
Description Tensile (ksi) (ksi) Yield 0.2% Offset (ksi) (ksi) Elongation Gage Length (8in) ROA (%) 137 127 15 8in 59.8 est No: 57115 Test A193 87, F1554-105 Requirements Elongation ROA Midradius Surface Center Hardness Test Type 139 126 21 4D 61 29 28 HRC 138 127 21 4D 60 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 138 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29	Note	n.)	the second se	Par		0	t: F1554-105 FB I	and a set of the	
Jascription Tensile (ksi) Vield 0.2% Offset (ksi) Elongation (%) Elongation Gage Length ROA (%) Midradius Hardness Surface Hardness Center Hardness Hardness Test Type 139 126 21 4D 61 29 29 28 HRC 139 127 21 4D 60 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC st No: 57116 Test: F1554 Gd105 S4 Charpy ft/lbs Requirements 29 28 HRC 20 91 87 97 92	Note		longation Gage Length (8in	State of the state	offset (ksi) (ksi) 127	Yield 0.2% Of 1	ile (ksi) (ksi) 137	escription Tensil	
(ksi) Offset (ksi) 0% Gage Length (KoA Midradius Surface Center Hardness 139 126 21 4D 61 29 29 28 HRC 140 127 22 4D 62 30 30 28 HRC 139 127 21 4D 60 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC st No: 57116 Test: F1554 Gd105 S4 Charpy ft/lbs Requirements 61 30 29 28 HRC 20 91 87 97 92 91 97 92	2n 2	and the second sec				4-105 Requirer	Viold 0 2%	Tensile	
140 127 22 4D 62 30 28 HRC 138 127 21 4D 60 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC ast No: 57116 Test: F1554 Gd105 S4 Charpy ft/bs Requirements 61 30 29 28 HRC Description Container Test Temp (F) Test1 (ft/lbs) Test2 (ft/lbs) Test3 (ft/lbs) Results Avg (ft/lbs) -20 91 87 97 92	Note	ss Test Type	Hardness Hardness	(%) Hardness	Gage Length	(%)	Offset (ksi)	(ksi) 139	
139 127 21 4D 60 30 29 28 HRC 139 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC 140 127 21 4D 61 30 29 28 HRC st No: 57116 Test: F1554 Gd105 S4 Charpy ft/lbs Requirements 29 28 HRC Description Container Test Temp (F) Test1 (ft/lbs) Test2 (ft/lbs) Test3 (ft/lbs) Results Avg (ft/lbs) -20 91 87 97 92		and the second sec	20	and the second	4D	22	100		
140 127 21 4D 61 30 29 28 HRC st No: 57116 Test: F1554 Gd105 S4 Charpy ft/lbs Requirements Gd105 S4 Charpy ft/lbs Requirements 29 28 HRC Description Container Test Temp (F) Test1 (ft/lbs) Test2 (ft/lbs) Test3 (ft/lbs) Results Avg (ft/lbs) -20 91 87 97 92				60 30	provenue all'interne a sulla			and the second second second	
ast No: 57116 Test: F1554 Gd105 S4 Charpy ft/lbs Requirements Description Container Test Temp (F) Test1 (ft/lbs) Test2 (ft/lbs) Test3 (ft/lbs) Results Avg (ft/lbs) -20 91 87 97 92		- deve at assess	the second se		the second se		e to e commence and the second	and the second s	
Description Container Test Temp (F) Test1 (ft/lbs) Test2 (ft/lbs) Test3 (ft/lbs) Results Avg (ft/lbs) -20 91 87 97 92	ge e ser	the second se	29 28	61 30			A CONTRACT OF A CONTRACT OF	st No: 57116 Test	
-20 91 87 97 92		and the second						Description Con	
Sallie Norwood	Note					and the second se			
June of a moore	10/29/19	od	Illie Norwoon	Sa					
Norwood, Saltie - Certification Engineer	Date	aingor	vood, Sallie - Certification Engin	Norw					

Plex 10/29/19 7:54 AM vuic.sano Page 2 of 2

PORTLAND BOLT PO 45740 INV 80296 50 1-1/4" X 144" B7 ATR, H.D.G. 20F2 MAY 13, 2020

NEW ALL SER

https://www.plexonline.com/8b3f6397-ab3b-40a7-8908-032dc75c84b8/Sales/Report_Job_Cert.asp?Mod... 10/30/2019


Figure B-4. 1¼-in. Dia. Anchor Rod, Test No. HMDBR-1 (Item No. b2), Page 2 of 2

U	PRODUCTS, INC	10 Cross (Pelham, A Tel (205) 6	L 35124 520-5100	2	JOE	В МАТЕ		ERTIFIC	Page 5 of
	Job No:	578337		Job Inf	ormation	С	ertified Date:	5/15/18	
	Containers:	S14030915	5						
	Customer:	Conklin and	Conklin				Ship To:	34201 Seve Union City,	enth Street
Vu	can Part No:	BAR B7 .562	26x144 SC					onion oity,	CA 94007
	mer Part No:								
	omer PO No:						agains assessment		
	Order No:						Shipped Qty:	3039 lbs	
		000040					Line No:	2	
	Note:								
				Applicable S	Specifications				
Туј)e	a an	Spe	cification	Are to another the	R	ev Am	end	Option
			ASTM F1	554 Gd 105 S	4	the second s	15	enu	Option
Heat "	Freat		ASME SA-	193/SA-193M	B7	the second s	13		· · · · · · · · · · · · · · · · · · ·
			AST	A A193 B7	and the second second second	and all the second second as	16	and the statement of the	
Qua	lity		EN	10204 3.1		and the second s	04		
est Results		1			and the second second	e and the s	T		and the second s
See following	pages for test	s							
				Certified Cher	mical Analysis	8			
		eat No: 105437	30		,, _,, _		Origin: USA		
C	Mn	Р	S	Si	Cr	Mo	Ni	v	
0.410	0.89	0.008	0.023	0.27	0.93	0.21	0.06	0.003	Cu 0.14
AI	Nb	Sn	Ti	N	В	DI	RR	G.S.	Macro S
0.027 Macro R	0.002	0.006	0.002	0.0060	0.0001	5.31	81:1	Fine	2
2	Macro C 2	J1	J2	J3	J4	J5	J6	J7	ے ال
2 J9	Constants of A second second of	57	57	57	57	57	57	57	55
54	J10 53	J12 50	J14	J16	J18	J20	J24	J28	J32
~ 1		50	49	47	46	45	43	41	39
				Ma	tes				

Plex 5/15/18 9:42 AM vulc.mgri Page 1 of 2

PORTLAND BOLT PO 46352 INV 80522 45 5/8" X 144" B7 ATR, H.D.G. 10F2 JUNE 25, 2020

۲/۱۵/2018 م ۲۰۰۰ ۲/۱۵/2018 م ۲۰۰۰ ۲/۱۵/2018 م ۲۰۰۰ ۲/۱۵/2018 ۲/۲۰۰۰ ۲/۱۵/2018 ۲/۲۰۰۰ ۲/۱۵/2018

b Materia		ication								Page 6 c
Vi		Pel Tel	can Threaded Cross Creek T ham, AL 3512 (205) 620-510 (205) 620-51	rail 4 0		JOE	MATER	RIAL CE	ERTIFIC	ATION
	Jo	b No: 5783:	37	Jo	b Infor	mation	Cer	tified Date:	5/15/18	
	Contai	iners: S140	30915							
Test Resul	ts								······	
Part No: B	AR B7 .56	26x292 HT								
		Quench & Tem	per Information	n (Lbs)			No. (11) (a) an area a	Sector and the sector of the	Section 10	
and a second	Descripti				noring	form (C) De				and the second second
Quench & T		rmation Results	1.6	g Temp (F) Tem	1,32	RC (F) RC		n) Quench W	ater Temp (F)	Note
		Partial Decarb			1,32		37	e de la composición	89	
and a state of the second	scription	1997 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	and the second second second	ce Carb. (in.)		e per e con o	Surface F	Annah (Ta)	anna a anna	
e da daga A	an a	na a como construir a secondaria da secondaria da secondaria da secondaria da secondaria da secondaria da second	P. Soniylogies and a generative strategy	0.000		t management		Decarb. (in.)	den commune de la commune d	Note
Test No: 485	12 Test:	A193 B7, F155	4-105 Require	ments			······································	.003	and the second	
Description	Tensile (ksi)	Yield 0.2% Offset (ksi)	Elongation	Elongation Gage Length	ROA (%)	Midradius Hardness	Surface Hardness	Center Hardness	Hardness Test Type	Note
	135	125	21	4D	63	30	28	- Hardness	HRC	1999 Andrew (1999)
1	136	125	22	4D	63	30	28		HRC	ير يون رويون ومصيف بماي
the second second	136	125	24	4D	60	31	28		HRC	
10	136 135	125 125	23	4D	62	30	28	an a	HRC	a takan dari karing
ومحمد ومردف ويسمعه فالمرد	134	120	23	4D	64	30	27		HRC	ter e to e construir anna
and a second	136	124	23	4D 4D	63 62	31	27	-	HRC	ай, т. т. т. т. т. т. т. т. т. т . ₍ . т.
Fest No: 185		A COMMENSION CONTRACTOR COMMENSION				31	29		HRG	dhidada falada
Descriptio				lbs Requirements	anta ana a	· · · · · · · · · · · · · · · · · · ·	the start and		ting or straight	and a set of the set of the set
coscriptio	Cont	ainer Test	Temp (F)	Test1 (ft/lbs)	Test	2 (ft/lbs)	Test3 (ft/lbs)	Results /	Avg (ft/lbs)	Note
an an ann an a'	<u></u>	<u>, sandara na</u>	-20	179	1	144	190		171	e e ann an comanna
						G	Indichell - Cert	illh	sr.	5/15/18 Date

Plex 5/15/18 9:42 AM vulc.mgri Page 2 of 2

PORTLAND BOLT PO 46352 INV 80522 45 5/8'' X 144'' B7 ATR, H.D.G. 20F2 JUNE 25, 2020

https://www.plexonline.com/a2a08224-b139-4fcf-b6fb-272d0eba1b07/Sales/Report_Job_Cert.asp?Mode=... 7/10/2018

Figure B-6. ⁵/₈-in. Dia. Anchor Rod, Test No. HMDBR-1 (Item No. b3), Page 2 of 2

GÐ GERD/			IP TO TPE SUPPLY CO TURY PKWY	CU	FIED MATERIAL TO ISTOMER BILL TO TEEL AND PIPE SUPP		GRAT A992/	DE A572-50		IAPE / SIZE ide Flange Beam / 6 1	
S-ML-MIDLOTHIAN 00 WARD ROAD		EW CENTUI SA	RY,KS 66031-11	27 M. US	ANHATTAN,KS 6650 SA	5-1688	LENC 40'00'		PCS 9	WEIGHT 9,000 LB	HEAT / BATCH 59089655/02
IIDLOTHIAN, TX 76065 SA		ALES ORDE 536068/0000:			CUSTOMER MATER 000000000376250040		ASTM ASTM	IFICATION / I A6-17 A709-17		ISION	1.
CUSTOMER PURCHASE ORDER NUM 1500341233	ABER		BILL OF LAI 1327-0000355		DATE 01/21/2020			A992-11 (2015), 40.21-13 345WM			
CHEMICAL COMPOSITION C Mn 1 0.10 0.95 0.0	6 015	§∕₀ 0.031	\$/0 0.27	Su 0.34	Ni %	Сл 0.24	Mo % 0.026	\$% 0.005	¥ 0.001	Nb % 0.012	Al % 0.004
CHEMICAL COMPOSITION CE9946 0.34											
MECHANICAL PROPERTIES YS 0.2% PSI 51405 51560	UTS PSI 69244 70077		Y MI 35 35	Sa 4 6	UTS MPa 477 483		Y/[0.7- 0.7-	40		G/L Inch 8.000 8.000	
MECHANICAL PROPERTIES G/L mm 200.0 200.0	Elong. 23.20 24.60										
COMMENTS / NOTES											
					ined in the permanent ial. This material, inclu						
	kor	вил. 7оцы	SKAR YALAMANCH LITY DIRECTOR	063				Wale &	. FL WA	ADE LUMPKINS VALITY ASSURANCE MGR	
			manchili@gerdau	com			Pho	ne: 972-779-3118		e.Lumpkins@gerdau.con	

Figure B-7. W6x25 Steel Post, Test No. HMDBR-1 (Item No. d9)

CMC STEEL TENNESSEE 1919 Tennessee Avenue Knoxville TN 37921-2686 CERTIFIED MILL TEST REPORT For additional copies call We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Jim Hall

Quality Assurance Manager

HEAT NO.:7006848 SECTION: REBAR 13MM (#4) 60'0" - GRADE: ROLL DATE: MELT DATE: 01/05/2020 Cert. No.: 82944733 / 006848L265	L D	0 L 2236 S Yukon Ave D Tulsa OK US 74107-2765 T 9185852587 O 9185858131		CPU Chicago Depot 13535 S Torrence Ave Chicago IL US 60633-2164 7736466363		Delivery#: 82944733 BOL#: 1865847 CUST PO#: 010620-Minn CUST P/N: DLVRY LBS / HEAT: 26932.000 LB DLVRY PCS / HEAT: 672 EA	
Characteristic	Value	Characteristic		Value		Characteristic Value	
Mn P S Si Cu Cr	0.27% 0.59% 0.008% 0.048% 0.20% 0.33% 0.17%	Rebar Deformation Avg. Rebar Deformation Avg. Rebar Deformation Max	Heigh	0.034IN			
Mo (V	0.11% 0.014% 0.002% 0.007%				"Material is fully k	d rolled in the USA	
Yield Strength test 1 (metri) Tensile Strength test 1 Tensile Strength 1 (metric) Elongation test 1 Elongation Gage Lgth test 1 Elongation Gage Lgth 1(metri)	85.9ksi 592MPa 99.1ksi 684MPa 13% BIN 200mm Passed				*Manufactured in of the plant qua *Meets the "Buy A *Warning: This p known to the Si	roury contamination accordance with the latest version lifty manual America" requirements of 23 CFR835.410, 49 CFR 661 irroduct can expose you to chemicals which are take of California to cause cancer, birth defects uctive harm. For more information go	

REMARKS :

Page 1 OF 1 01/21/2020 09:09:21

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 209038

SHIPPER #: 069386 DATE SHIPPED: 07/23/2020

LOT#: 32756-P

SPECIFICATION: ASTM A307, GRADE A MILD CARBON STEEL BOLTS TENSILE: SPEC: 60,000 psi*min RESULTS: 69,800

		69,900
HARDNESS:	100 max	67.50
		68.60
*Pounda Per Square Inc	h.	

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE AZZ GALVANIZING: 32756-P

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	P	S	Si
CHARTER STEEL	1010	10657410	.09	.38	.007	.007	.09

QUANTITY AND DESCRIPTION:

88,000 PCS 5/8" X 1.25" GUARD RAIL BOLT P/N 3360G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

Official Sea/ Merry F Shane Notary Public State of Illinois My Commission Expires 10/03/2022

57 200 1/0

Sinde Milomas OVED SIGNATORY

7/21/2020 DATE

Figure B-9. ⁵/₈ in. Dia. Guardrail Bolt, Test No. HMDBR-1 (Item No. f3)

172

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 182402

SHIPPER #: 059943 DATE SHIPPED: 03/07/2017

LOT#: 29221

SPECIFICATION: ASTM A307, GRADE A MILD CARBON STEEL BOLTS

TENSILE:	SPEC:	60,000 psi*min	RESULTS:	68,460
				66,327
HARDNESS	5:	100 max		71.30
				71.60

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 29221

CHEMICAL COMPOSITION

GRADE	HEAT#	С	Mn	Р	S	Si
1010	10490100	00	40	008	011	.090
	GRADE 1010					

QUANTITY AND DESCRIPTION:

10,400 PCS 5/8" X 2" GUARD RAIL BOLT P/N 3400G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINDIS, USA, THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS ROVED SIGNATORY OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3:2018

Figure B-10. ⁵/₈-in. – 11 UNC, 2-in. Long Guardrail Bolt, Test No. HMDBR-1 (Item No. f7)

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

CERTIFICATE OF CONFORMANCE

For: MIDWEST ROADSIDE SAFETY FACIL PB Invoice#: 134913 Cust PO#: HMDT Date: 9/16/2020 Shipped: 9/16/2020

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Desc	ription:	7/8	X 8 GALV	ASTM	F3125 G	GRADE A325 HEAVY	HEX BOLT		
He	at#: 3093	334	1 :	Base S	teel: 4	140 Di	am: 7/8		
Sour	ce: COMM	IERCIA	L METALS	CO		Proof Load:	40,428 I	BF	
с:	.400	Mn:	.810	Р:	.016	Hardness:	269 HBN		
s :	.019	Si:	.240	Ni:	.190	Tensile: 58,	440 LBF	RA:	.00%
Cr:	.870	Mo:	.208	Cu:	.320	Yield:	0	Elon:	.00%
Pb:	.000	V :	.024	Cb:	.000	Sample Length	.: 0		
N :	.000			CE:	.6329	Charpy:		CVN Temp:	
LOT#	19810								

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

By Certification Department Quality Assurance Dane McKinnon

Figure B-11. 7/8-in. Dia. Heavy Hex Head Bolt, Test No. HMDBR-1 (Item No. f8)

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:			DATE: 30/12/201	8	
PO NUMBER: 18016412	6	MFG L	OT NUMBER: M-SWE04	12454-8	
SIZE: 5/8			PART NO: 1133185		
HEADMARKS:			QNTY:	6,000	PCS
DIMENSIONAL INSPECTI	ONS	SPE	CIFICATION: ASME B1	8.21.1(200)9)
CHARACTERISTICS	SPECI	FIED	ACTUAL RESULT	ACC.	REJ.
*****	*****	*****	****	******	******
APPEARANCE	ASTM F	788-07	PASSED	100	0
OUTSIDE DIA	1.743-1	1.780	1.752-1.756	8	0
INSIDE DIA	0.681-0	0.718	0.700-0.707	8	0
THICKNESS	0.108-0	0.160	0.114-0.119	8	0
HOT DIP GALVANIZED	TM A <mark>153</mark> class C. oHS Compliant	Min 0.0017"	Min 0.0019 In	8	0
ALL TESTS IN ACCORDANC WE CERTIFY THAT THIS DA SUPPLIER AND OUR TESTI MFG ISO 9001:2015 SGS Ce We hereby certify that ab We here by certify that th	IA IS A TRUE REPR NG LABORATORY. rtificate # HK04/0105 ove products supp	ESENTATION OF INF	ORMATION PROVIDED B	Y THE MAT	ERIAL
we here by certify that th		(SIGN	ATURE OF MANUFACTUR	MGR.) KER)	

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure B-12. 5%-in. Dia. Plain USS Washer, Test No. HMDBR-1 (Item No. g1)

HEXICO ENTERPRISE CO., LTD.

NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL : 886 - 6 - 2390616 FAX : 886 - 6 - 2308947

INSPECTION CERTIFICATE

CUSTOMER	FASTENAL	СОМР	ANY		REPO	RT DATE	2019/10/22			
PART NAME	Flat Washer	, SAE , Ed	coGuard	1						
SIZE	5/8"				MAF.	DATE	2019/6/17			
PART NO.	W2A2C5003	S2LK0		-	REPO	RT NO.	1081022-44			
CUST. PART NO.	11241707			-	ORDE	R NO.	210189154			
MATERIAL	10B21 / 19 n	nm		_	MAT.	CER. NO.	10806002			
HEAT(COIL) NO.	1P832			_	LOT 1	NO.	872C5FNY5			
LOT QTY	103,500	PCS		_	MAF.	QTY	103,500	PCS		
THE PRODUCTS S	UPPLIED AF	E IN CO	MPLIAN	- NCE WITH	REQUI	REMENT OF	THE ORDE	R.		
THE REPORT IS IS	SUED ACCC	RDING	FO EN1	0204 3.1						
SAMPLING PLAN	STANDARD		ASMI	E B18.18-20)17 / A	STM F1470-	2018			
DIMENSION STAN	NDARD		ASMI	E B18.21.1	-2009					
COATING STAND	ARD		FNL.	C.1000.ECC).S RE	V-002				
HARDNESS TEST	METHOD		ASTM	1 F606/F60	6 M-2 01	6				
COATING TEST M	IETHOD									
SALT SPRAY TES	T METHOD		ASTM	ASTM B117-2016						
			-				DIMEN	SIONS IN inch		
DIGDECTION		an		TION	TEST	INSPECTIO	N RESULTS	INSPECTION		
INSPECTION	TIEM	SPI	ECIFICA	TION	QTY	MIN.	MAX.	EQUIPMENT		
1 OUTSIDE	DIAMETER	1.305	-	1.342	8	1.3202	1.3324	Caliper		
2 INSIDE D	IAMETER	0.649	-	0.686	8	0.6777	0.6807	Caliper		
3 THICK	KNESS	0.074		0.121	8	0.1014	0.1037	Caliper		
4 HARD	DNESS	HRC	38	- 45	5	41.2	42.3	Hardness tester		
5 COAT	ſING	GEOMET 3	321+PLUSI		5	C)K			
	AVTECT					0	W	C C T tootar		
6 SALT SPF	RAY TEST	1000	Hrs No	Red Rust	5		ЭК	S.S.T tester		

INSPECTOR Yu Tain Lin

APPEARANCE

7

QC CHIEF

100

Jing Yeh Tsao

OK

Figure B-13. 5%-in. Dia. Hardened Washer, Test No. HMDBR-1 (Item No. g2)

VISUAL

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morg ADDRESS: Chang'an N	an Ltd orth Road, Wuyuan Town, Ha	iyan,Zhejia	REPORT DATE: ang, China	23/4/2019	
			MFG LOT NUMBER:	1844804	
SAMPLING PLAN PER AS SIZE: USS 7/8 HDC		7200PCS	PO NUMBER:	170089822	
HEADMARKS: NO MARK		72001 CO	PART NO:	33187	
DIMENSIONAL INSPECTI	ONS	SPECIFIC	CATION: ASTM B18.21	1.1-2011	
CHARACTERISTICS	SPECIFIED		ACTUAL RESULT	ACC.	REJ.
******	********	*****	*****	*****	*****
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	2.243-2.280		2.246-2.254	10	0
INSIDE DIA	0.931-0.968		0.956-0.965	10	0
THICKNESS	0.136-0.192		0.136-0.157	10	0
		a. 1990) - 1990			
CHARACTERISTICS		CIFIED *********	ACTUAL RESULT	ACC. *******	REJ. *******
HOT DIP GALVANIZED	ASTM F2329-13 Min	0.0017"	0.0017-0.0020 in	8	0
ALL TESTS IN ACCOR	DANCE WITH THE METHO	ODS PRES	CRIBED IN THE AP	PLICABLE	
ASTM SPECIFICATION	. WE CERTIFY THAT TH	IS DAIA	IS A TRUE REPR	ESENTAT	ION OF
INFORMATION PROVID	DED BY THE MATERIAL S	IPPLIER	ANR GAR TESTIN	G LABOR	ATORY
ISO 9001:2015 SGS Certif		8	MUNUMAN	S 2.1001	
100 7001.2013 000 COUII		15	~今)		
		检	验专用章		

QUANLITY CONTROL NATURE OF 94. LAB MGR.)

Figure B-14. 7/8-in. Dia. Plain Round Washer, Test No. HMDBR-1 (Item No. g3)

NUCOR SHEET MILL GROU	P				META	ALLURGICA	l testid	NG CERTIF	ICATION					6			D0695	
Nucor Steel-Crawfordsville 4537 South Nucor Road Crawfordsville, IN 47933-0907														Leri	tificate N Date I	ssued:		/2018
Order Number: 304155 - 0 Order Dimensions: 0.1360 in > HRPO,MILL,	\$ 48.000	HOT ROLLI) in	ED PICKL	ED & OIL	ED						Custo Customer	mer Name Address	s: 2100 S	BAY ST	R HFG INC			
ASTM A568-1 Sae J403-14										į	Release Cust PO Nu		MILLAU H3454	KEE.		Ш	53207	
Coil Number 2316515.000 Rockwell B:	TAIL 87					u.												
Part Number 842149-60 TONS Weight: 41,920 LBS																		
							CHE	tical ana	LYSIS									
Heat Slab C 182540 04 0.33	Min 0.850	P 0.010	S 0.002	Si 0.250	Cu 0.135	Sn 0.003	Ni 0.069	Cr 0.053	Mo 0.023	Al 0.028	N 0.007	V 0.002	Nb <0.001	Ti 0.003	B <0.0005	Sb 0.00)	
Coil Number 2316516.000 Rockwell B:	TAIL 87																	
Part Number 842149-60 TONS Weight: 41,920 LBS										x								
							CHE	MICAL ANG	LYSIS									
Heat Slab C 182540 05 0.33	Mn 0.850	P 0.010	S 0.002	Si 0.250	Cu 0.135	Sn 0.003	Ni 0.069	Cr 0.063	Mo 0.023	Al 0.028	N 0.007	V 0.002	- № <0.001	Ti 0.003	B <0.0005	Sb 0.00		
QF-0261 11/29/2012	WE HERE	BY CERTI	FY THE A	ABOVE IS	Correct Melted A	as conti ND Rollei	AINED IN D IN THE	the reco USA	ords of t	HE CORPO						£		Julio -
			1.	-800-777	-0950	MTR_IND	INQUIRI	ESENUCOR	COM		NUCUR	UPILITY	ASSURAN	£				

Figure B-15. 1¹/₄-in. Dia. Hardened Washer, Test No. HMDBR-1 (Item No. g5)

		ETHEFOROTOME LESITING CERTIFITOM		0007040
Nucor Steel Indiana			Cert	ificate Number: 869979
4537 South Nucor Road Crawfordsville, IN 47933-0907				Date Issued: 03/11/2020
CI201010501116, 1N 4/353-0507				Page: 3 of 3
			Customer Name: WROUGHT WASHER	R MFG INC
Order Number: 325853 - Order Dimensions: 0.1360 in	X 49.0000 in		Customer Address: 2100 S BAY ST	10 52007
HRPO, MILL,			MILWAUKEE Release Order:	WI 53207
ASTM A568- SAE J403-1			Cust PO Number: 003102	
Coil Number	TAIL	í.		
2476792.000 Rockwell B:				
Part Number				
M842149-100 TONS				
Weight: 43,080 LBS				
		CHEMICAL ANALYSIS		
Heat Slab C	Mn P S Si Cu		Al N V Nb Ti	B Sb
105594 05 0.34	0.840 0.008 0.001 0.254 0.05	72 0.005 0.044 0.062 0.022	0.030 0.007 0.004 0.001 0.002	(0.0005 0.001
		8		
				20
		2		
		ECT AS CONTAINED IN THE RECORDS OF TH O AND ROLLED IN THE USA	HE CORPORATION	En E. Dalla
QF-0261 04/01/2019			NUCOR QUALITY ASSURANCE	Eric E. Gallo
	∞ 1-800-777-0950	MTR_IND_INQUIRIES@NUCOR.COM		
1				

Figure B-16. 1-in. Dia. Hardened Flat Washer, Test No. HMDBR-1 (Item No. g6)

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514

CUSTOMER NAME: GREGORY INDUSTRIES

CUSTOMER PO: 46382

SHIPPER #: 069203 DATE SHIPPED: 06/26/2020

RKFD LOT#	P39274 R74015-03
UNYTITE INC. LOT#:	32610-6215132402, 32610-6215252702, 32609-6215252702

SPECIFICATION: ASTM 563, GRADE A, REQUIREMENTS FOR CARBON STEEL NUTS

 COATING:
 ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE

 UNIVERSAL GALVANIZING:
 32610-6215132402, 32610-6215252702, 32609-6215252702

CHEMICAL COMPOSITION

HARDNESS: SPEC: B68 Min.

B: 88.72 85.22 86.36

MILL	HEAT#	С	Mn	P	S	Si	
GERDAU	62151324	.44	.71	.010	.031	.23	
GERDAU	62152527	.44	.68	.006	.027	.19	
GERDAU	62152527	.44	.68	.006	.027	.19	

QUANTITY AND DESCRIPTION:

241,239 PCS 5/8" GUARD RAIL NUT .031 P/N 1000G

WE HEREBY CERTIFY THE ABOVE PARTS HAVE BEEN MANUFACTURED IN THE U.S.A. WITH DOMESTIC STEEL. WE FURTHER CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMANTION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENTS PER ABOVE SPECIFICATION.

COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

20

nomas nola

APPROVED SIGNATORY

DATE

Official Seal Merry F Shane Notary Public State of Illinois My Commission Expires 10/03/2022

Figure B-17. ⁵/₈-in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h1)

LOT NO. Post Office Box 6100 NUCOR 437306A Saint Joe, Indiana 46785 Telephone 260/337-1600 FASTENER DIVISION
 FASTENER
 DIVIST

 CUSTOHER NO/NAME
 7495
 FASTENAL COMPANY-TX

 TEST REPORT SENIAL#
 FB633133
 TEST REPORT ISSUE DATE
 6/05/20

 DATE SHIPPED
 8/25/20
 8/25/20
 NUCOR ORDER # 2134 CUST PART # 38207 213442 CUSTOMER P.O. # 180203570 MATERIAL GRADE -1026L **CHEMISTRY COMPOSITION (WT% HEAT ANALYSIS) BY MATERIAL SUPPLIER C MN P S SI NUCOR STI .24 .71 .005 .020 .22 -CHEMISTRY MATERIAL HEAT NUMBER NUCOR STEEL - NEBRASKA NUMBER RM032619 100890711 -MECHANICAL PROPERTIES IN ACCORDANCE WITH ASTM A563-15 TENSILE STRENGTH SURFACE CORE PRODE LOAD 33900 LBS SURFACE HARDNESS (R30N) N/A N/A N/A N/A N/A N/A AVERAGE V DEG-WEDGE STRESS (PSI) HARDNESS (LBS) (RC) PASS N/A 31.9 31.9 N/A N/A N/A N/A N/A PASS N/A 33.3 N/A 32.4 N/A 31.3 AVERAGE VALUES FROM TESTS N/A N/A N/A PASS PASS PASS 32.2 PRODUCTION LOT SIZE 245000 PCS --VISUAL INSPECTION IN ACCORDANCE WITH ASTM A563-15 160 PCS. SAMPLED LOT PASSED -- COATING - HOT DIP GALVANIZED TO ASTM F2329-15 - GALVANIZING PERFORMED IN THE U.S.A.
 10.
 0.00365
 2.
 0.00297
 3.
 0.00573
 4.
 0.00402
 5.
 0.00408
 6.
 0.00409

 8.
 0.00547
 9.
 0.00502
 10.
 0.00290
 11.
 0.00247
 12.
 0.00403
 13.
 0.00319
 0.00319 14. 0.00237 0.00290 AVERAGE THICKNESS FROM 15 TESTS .00379 --HEAT TREATMENT - AUSTENITIZED, OIL QUENCHED & TEMPERED (MIN 800 DEG F) --DIMENSIONS PER ASME B18.2.6-2010 CHARACTERISTIC #SAMPLES TESTED Width Across Corners 8 Thickness 32 MINIMUM MAXIMUM 1.186 1.194

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISNUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL. CERTIFICATION FORMAT MEETS ENLO204 3.1

MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/21

NUCOR FASTENER A DIVISION OF NUCOR COMPORATION BOB HAYWOOD QUALITY ASSI 1 dy NCE SPERVISOR ASSUR

Page 1 of 1

Figure B-18. ⁵/₈-in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h2)

NINGBO DONGXIN HIGH-STRENGTH NUT CO.,LTD TEST CERTIFICATE (EN 10204 3 1)

			(E	N 10204	1.3.1)				
Customer:	Production Lo	t No.:		1910DX100-	1339-1		Issue Date	:	2020/4/22
FASTENAL COMPANY PURCHASING	Add.of Custor	ner:		4730 SERVIC	E DRIVEWI	NONA MN 55897	Inv. No.:		20167DX100-871
PORCHASING	Description			ASTM A563	GR.DH HEA	VY HEX NUT	Manu. Da	te:	2019/11/29
	Description:		3	HDG With E	lue Wax		Manu. Qty	r:	1680
	PO No.:			210199067			Shipped Q	ty:	1620
	Manufacture	:		Ningbo Dong	pxin High-st	rength Nut	Marking:		DX,DH
	Address:			Xijingtang,Lu	iotuo,Ningt	oo,China	LOT No.:		1217DX100-1339-1
	Tel./Fax:	0574-86533	751/86531	751	Sample Plan: Part No.:		ASME B18.18- 2017(Category.2)/AS M F1470-2019		
	Size:	1 1/4"-7					36767		
	•		Chemi	ical Com	positic	on			•
Material type	e: 45#	Ф34				Heat No.:		F19	9080206
Chemical Analysis %	с	Mn	Р	S	Si	Cr	Ni	Mo	Others
(items)	0.18-0.58	MIN0.57	MAX0.048	MAX0.058	1	1	1	1	1
Result	0.45	0.60	0.022	0.007	0.27	0.064	0.019	0.007	1

Dimensions

Material supplier:

DIM.SPEC: ASME B18.2	.2-2015	INSPEC	TOR & SAMPER:	Ms.Li	DATE:	2020/4/22	
ltem	Specified	Result	Sampling	Rej.	Remark	Specification	
Widthacrossflats(inch)	1.938 - 2.002	1.952 - 1.961	3	0	ОК	<u></u>	
Widthacrossangle(inch)	2.209 - 2.309	2.239 - 2.242	3	0	ОК		
Height(inch)	1.187 - 1.251	1.228 - 1.232	3	0	ОК		
Minor diameter(inch)	1.119 - 1.147	1.125 - 1.128	13	0	ОК	<u></u> -	
Thread GO gau		ОК	13	0	ОК	ASME B1.1-03	
Thread-2b	Thread NO GO gauge	ОК	13	0	ОК		
Appearance	ОК	ОК	18	0	ОК	ASTM F812-17	
FIM	MAX 0.03	0.005 - 0.009	3	0	ОК	ASME B18.2.2-2015	

Mechanical Properties

MEC,SPEC:ASTM A563-15	11	INSPECTOR & SAMPLER: Ms.Li					
ITEM	Test Method	SPECIFIED	Sampling	Result	JUG		
CoreHardness HRC	ASTM F606/F606M-19	24 - 38	3	26 - 29	ОК		
Proof loading KSI	ASTM F606/F606M-19	175	2	179	ОК		

Plating

Plating Spec:	ASTM F2329-15	Inspector	& Sampler : Ms Li	Date:	2020/4/22
ITEM	Test Method	SPECIFIED	Sampling	Result	JUG
HDG With Blue Wax	ASTM B487 -2017	50.8 um Average	13	57 - 96 um	ок

		MACROETCH		
Division	Surface Condition	Random Condition	Center Segregation	Test method
Spec.	S2	R2	C3	
Results	\$2	R2	C3	ASTM E381-2017

REMARK:

Cert #:

*This inspection certificate is for responsibility under test sample only.

*Quench at880℃ about 90 minutes,Tempering at550℃ about 120 minutes

*This test report shall not be reproduced except in full without written approval of the LAB.

F9080265

*The samples tested CONFORM to the fastener specification & standards above.

*Dimensional Testing is done at Ningbo Dongxin High-Strength Nut Co.,Ltd

*The documentation for chemical analysis is provided by the suppliers.

*Parts are manufactured and tested according to above specification and compliance with order, we certify that this is a true

representation of information provided by manufacturer and laboratory.

*The products supplied are in compliance with all the requirements of the order.

*The MTR's are in compliance to DIN EN 10204 3.1.

an Ying jun

QA: Yan Yingjun Ningbo Dongxin High-Strength Nut Co.,Ltd

QUZhou YuanLi Metal

Figure B-19. 1¹/₄-in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h4)

		VAIIVE	FASTENI	NG SYS	TEMS	Tel 815-224-2221 Fax 815-224-3434		15 Laurenna 1965 197 - 198 - 197			
	Job N	lo: 3334	12		Job	o Information		Certified	Date: 10/2	21/20	
	Custom	er:								Ship To:	
Cust	omer Part N	lo:									
Cus	tomer PO N	lo:							Ship	ped Qty:	
	Lot Numb	er : 3334	2-62152533	05					50694040 •	• 000-000 00-000 • 0.00	
		10.			Par	rt Information					
	Dort N	lo: 0563	3 1-8 +0.024								
	Parti	IO. A003) 1-0 +0.024							1	-
	Decorinti	ASTI	M A563 Hea	vy Hex Nu	t, Grade	DH, Hot Dipped				((
	Descriptic	Galv	, Blue Dye							0	OH
Manufactu	ured Quanti	ty: 54,3	73								
					Applica	able Specification	ıs				
	Specific	ation		Am	end	1	Specifi	cation		1	Amend
ASME B1.1	opeoine	Julion		2003	ena	ASME B18.2.2	opeoin	oution		2015	Anena
SME B18.	26			2019		ASME B18.2.6M				2012	
ASTM A563				2015		ASTM F2329/F2				2015	
ASTM F606				2019		ASTM F812	020111			2017	
est Results				2013		701111012				2011	
		3 DH Mec	hanical Prope	rties							
Description	Hardness	(HRC)	Tempering Te degree F			oad (Pass ASTM Min LBS)	Shape & D ASME E		Thread P ASME B		Visual AST F812
Sample	28.9	5	1.16	~		90,900	Pa		Pas		Pass
Inspection			,		Certified	Chemical Analy	sis			*/**/	
Heat No	Grade	Manufacture	r Origin	c	M		s	Si	Cr	Ni	Cu
6215253305	1045	Gerdau Ameristeel	USA	0.4400	0.74	400 0.0090	0.0250	0.2200	0.1900	0.0800	0.3000
						Notes					
ne samples te erformed in th oducts.	ested conform ne production	the speci of the proc	fications as de ducts. No heat	escribed/liste s to which E	ed above a Bismuth, S	bed in the applicable and were manufactu Selenium, Tellurium, s manufactured and	ired free of m or Lead was	ercury contar intentionally a	mination and t		
						he material supplier ed except in full.	and our testi	ng laboratory	. This certified	l material t	est report
~~~~~~			2								
	FICIAL SEAL	10						. 10			
JEAN	E MARGHER		ł.				MC	M			10/21/20
NOTARY D							1 11. Y				10/21/20
	ISSION EXPIRES		1				Junit.	ma			
							Theres	nris - Superviso			Date

Figure B-20. 1-in. Dia. Heavy Hex Nut, Test No. HMDBR-1 (Item No. h5)

NUC	R	LOT NO. 441261 <b>A</b>			Post Office Box 6100 Spint Joe, Indiana 46785
FASTENER	DIVISION				Telephone 260/337-1600
CUSTOMER NO/NAME	01110101				
7494 FASTENAL COMPANY	- IN	NUCOR ORDER #	219514		
TEST REPORT SERIAL#	FB644981	CUST PART #	38209		
TEST REPORT ISSUE DATE	8/25/20				
DATE SHIPPED	9/23/20	CUSTOMER P.O. #	120418048	DH	
NAME OF LAB SAMPLER:	DEANN WATSON, LAB	TECHNICIAN		$/ \gg $	
********************CERTIF	IED MATERIAL TEST	REPORT * * * * * * * * * *	*****	$A \in \mathbb{N}$	
NUCOR PART NO QUAN	ITITY LOT NO.	DESCRIPTION		<u> </u>	/
175667	4950 441261A 7	/8-9 GR DH HV H	.D.G.		
MANUFACTURE DATE 6/22/	20	HEX NUT HDG/GREE	N LUBE	n	
CHEMISTRY		GRADE -1045L			
MATERIAL HEAT			AT ANALYSIS) BY	MATERIAL SUPPLIER	
NUMBER NUMBER	C MN P	고려가지? 귀엽에 가지만 문화 구성을		NUCOR STEEL	NEBRASKA
RM033997 100203930	.44 .67 .	009 .011 .18			
MECHANICAL PROPERTIES SURFACE CORE HARDNESS (R30N) (RC) N/A 29.6 N/A 31.9 N/A 29.5 N/A 29.7 N/A 29.7 N/A 30.6 AVERAGE VALUES FROM TES 30.3 PRODUCTION LOT SIZE	PROOF LOAD 69300 LBS PASS PASS PASS PASS PASS PASS	TENSIL	E STRENGTH IEG-WEDGE STRESS (PSI) N/A N/A N/A N/A N/A N/A		
VISUAL INSPECTION IN	ACCORDANCE WITH AS	TM A563-15		80 PCS. SAMPLED	LOT PASSED
	00404 3. 0.002 00424 10. 0.002	63 4. 0.0034	5 5. 0.00453	6. 0.00267 7.	0.00311 . 0.00329
HEAT TREATMENT - AUST	ENITIZED, CIL QUEN	CHED & TEMPERED	(MIN 800 DEG F)		
DIMENSIONS PER ASME I	18.2.6-2010				
CHARACTERISTIC	#SAMPLES TESTED	MINIMUM M	AXIMUM		
Width Across Corne		1.611	1.628		
Thickness	32	0.846	0.866		

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFICE MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL. CERTIFICATION FORMAT MEETS EN10204 3.1



MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/21

NUCOR FASTENER A DIVISION OF NUCOR COMPORATION 0 79 BOB HAYWOOD QUALITY ASSURANCE SM ERVISOR

Page 1 of 1


Figure B-21. ⁷/₈-in. Dia. UNC Heavy Hex Nut, Test No. HMDBR-1 (Item No. h7)

Job Material Certification Page 3 of 6 Vulcan Threaded Products 10 Cross Creek Trail 10 Pelham, AL 35124 JOB MATERIAL CERTIFICATION Tel (205) 620-5100 THREADED PRODUCTS, INC. Fax (205) 620-5150 Job No: 671813 Job Information Certified Date: 5/6/20 Containers: S16960313 S16960316 S16960327 34201 Seventh Street Customer: Conklin and Conklin Ship To: Union City, CA 94587 Vulcan Part No: BAR B7 .9144x144 SC Customer Part No: RAWSTEEL-,910-B Customer PO No: 19944 Shipped Qty: 8985 lbs Order No: 399299 Line No: 1 Note: Applicable Specifications Туре Specification Rev Amend Option ASTM F1554 Gd 105 S4 2018 Heat Treat ASTM A193 B7 2019 Test Results See following pages for tests Certified Chemical Analysis Heat No: A201673 Lot .9688 Origin: USA С Mn Ρ S Si Cr Mo Ni ٧ Cu AI 0.41 0.80 0.008 0.021 0.25 0.82 0.16 0.19 0.002 0.27 0.025 Sn N в Ca As Sb H, ppm DI RR G.S. Macro S 0.012 0.0077 0.0002 0.0007 0.004 0.003 0.6 4.51 196.9:1 8 Macro R 1 Macro C J1 J2 J3 J4 J5 J6 .17 J8 J9 2 57 57 57 57 57 53 52 50 49 J10 J12 .114 J16 J18 J20 J24 J28 J32 47 44 43 40 39 38 36 34 32 Notes Processed material is Tempered - Stress Free. No weld repair performed on the material. No Mercury used in the production of this material. Melted and Grade - 4140 EAF Melted Plex 5/6/20 3:44 PM vulc.sano Page 1 of 2

PORTLAND BOLT PO 47853 INV 081156 100 1" x 144" B7 ATR HDG 10F2 SEPT 29, 2020

47853-8

https://www.plexonline.com/733d7d16-dbb6-4893-ac4f-979d7fd9f9b4/Sales/Report_Job_Cert.asp?Mode... 5/21/2020



	PRODUC		< (205) 620-515		-					
		<b>b No:</b> 6718			b Infor	nation	Cer	ified Date:	5/6/20	
	Contai	iners: S169	60313 S169	60316 S16960	0327					
Test Result	73									
Part No: BA	R B7 .91	144x290 HT					and the second			
Test No: 600	63 Test:	Quench & Tem	per Information	n (Lbs)						
	Descripti	on	Austenitizin	g Temp (F) Ten	npering T	emp (F) R	un Speed (Ft/mi	n) Quench Wa	terTemp /E)	Note
Quench & Te	mper Info	rmation Results	3 1.6	25	1,34		25		39	NOLE
Test No: 6000	64 Test:	Partial Decarb	Test							
	scription	//		e Carb.			Dontial Court	Desert		
				e carb. Ess			Partial Surface	Decarb.		Note
Test No: 600	55 Teet	F1554-105 FB					Pass			
Description				Hoot (hei) (h	-					
	- challe	- (nai) (KSI)	neiu 0.2% ()	fset (ksi) (ksi)	Elonga	tion (%)	Elongation Gag	e Length (8in)	ROA (%)	Note
		136	1	26		16	8ii		63	tested by
							01		03	external provider
Test No: 6006	66 Test:	A193 B7, F155	4-105 Requirer	nents						
Description	Tensile	Yield 0.2%	Elongation	Elongation	ROA	Midradius	Surface	Center	Hardness	
	(ksi) 143	Offset (ksi) 127	(%) 19	Gage Length	(%)	Hardness	Hardness	Hardness	Test Type	Note
	141	130	21	4D 4D	56	30	28	30	HRC	
	142	129	22	4D 4D	61 63	28 29	30	27	HRC	
	141	129	21	4D	64	29	29 29	28 27	HRC	
	141	129	22	4D	65	29	28	26	HRC HRC	
	142	129	22	4D	65	28	28	26	HRC	
	141	129	22	4D	64	28	29	27	HRC	
	141 142	128 130	21	4D	63	30	29	28	HRC	
	142	130	20 23	4D	63	30	29	29	HRC	
	141	129	23	4D 4D	63 64	29	30	29	HRC	
	141	128	21	4D 4D	61	30 30	30 30	28	HRC	
	141	129	21	4D	65	30	30	29 29	HRC HRC	
	138	126	21	4D	66	29	29	29	HRC	
		F1554 Gd105 S	64 Charpy ft/lbs	Requirements					10.0	
Test No: 6006	7 Test:									
Test No: 6006 Description			tTemp (F)	Test1 (ft/lbs)	Test	(ft/lhe)	Test3 (#/lbc)	Poculte .		
Test No: 6006 Description			tTemp (F) -20	Test1 (ft/lbs) 106		2 (ft/lbs) 116	Test3 (ft/lbs) 108	Results Av		Note

PORTLAND BOLT PO 47853 INV 081156 100 1" × 144" B7 ATR HDG 20F2 SEPT 29, 2020

https://www.plexonline.com/733d7d16-dbb6-4893-ac4f-979d7fd9f9b4/Sales/Report_Job_Cert.asp?Mode... 5/21/2020

Figure B-23. 1-in. Dia. Threaded Rod, Test No. HMDBR-1 (Item No. i1), Page 2 of 2

	STEEL GALI	LATIN	Phor	48	31 U.S. Hi Ghent, KY	eel Gallati ghway 42 W 41045-9704 53 Fax: (859	'est 4		13	
-			META	LLU	RGICA	L CERTI	FICATION	ł		
Invoice T	702 Port F	A-Flat Rolled d ilie, IN 4713		ville SI	R Pi 70	letals USA-F olled-Jeffers ick Up 02 Port Road offersonville,	onville d		Date: 9/ comer No: 2 mer P.O.: C4	7599
Mill Order	No: 201815	i-1	Custo	mer R	eference	No: NA		Load No:	680178	
in the US		e requireme		0.		0.05 max, Si eel Bands	50 modified w 0.04 max rdered Size:			
					_			Min 3.2 (mm	) X 1581 (mπ	n) X Coil
CHEMICA	L ANALYSIS	S (Weight	%)							
Heat No	C	Mn	P		S	Si	Cu	Ni	Cr	Mo
A81568	0.20	0.70	0.010	-	0.002	0.03	0.11	0.03	0.04	0.02
	Al 0.025	Ca 0.0014	Nb 0.000	-	V 0.001	B 0.0001	Ti 0.001	N 0.0065	Sn 0.005	
MECHANI	CAL PROPER		0.000		0.001	0.0001	0.001	0.0000	0.000	
Tensile St Tensile St K Elongat N-Value N-Value R Hardness Test Secti Drientatio Test Methe	ngth(ksi) ngth(mpa) rength(ksi) rength(mpa) lon ange HRBW) on n od ST RESULTS	26 0.1 5-15 88 Mill Lor AST	.1	57.6 397 81.5 562 23.0 0.15 15% 85.4 41 ong STM	of Pass/ ks Fail					
This product is bove tests pe- letermined usi- company. The elongation bove test resu- end method a his report sha This mechani- he informati he informati	In compliance w. rformed in accord original gauge le ills were perform- a conducted in ac- a 180 degree be- il not be reproduc- cal property has to on contained in ender of this m	Ih DFARS 252.22 Jance to ASTM at method) or JIS 22 ngth is 2 inches fi ed in accordance cordance with IS md Bend test spi red, except th full, peen tested at a s n this report ma	5, the Buy An endards E8 (y 241, E18, E4' or ASTM test to EN 10204 O 7438, ASTM comen is long without writte ubcontractor's ty be confid	merican / vield stre 15, and 1 method 3.1 M E290, jer than 1 n approv s laborati ential in f recipiel	Act ngth determin E1019 and are and 1.97 inche or JIS 22248 e 3" and wider th val of the under ory. Iformation 1	ed using 0.2% o correct as conti as for JIS test m using the press, han 0.8° arsigned laborate ntended only to hereby notifie	guided, two suppo ory managers. for the use of the d that any disse	longation s of the rt and a mandrol a individual or o	bution, or	Sipple boratory iboratory

Figure B-24. 10-gauge Thrie-Beam Terminal Connector, Test No. HMDBR-1 (Item No. i2)

	Steel Tube June 2017		TEAM1-1	
PS Coil Processing Tulsa 275 Bird Creek Ave. ort of Catoose, OK 74015 66031-1127	MET TES	ALLURGICAL T REPORT	DATE TIME USER	1 of 1 05/23/2017 13:01:47 WILLIAMR
rde: Material No. Description 0285163-0020 701672120TM 1/2 72 X 120 A36	C TEMPERPASS STPMLPL	Quantity Weight Custome 8 9,801.600	r Part Customer	PO Ship Date 05/23/2017
est No. B705783 Vendor STEEL DYNAMICS COLUME	Chemical A BUS DOMESTIC		Distantio Manual	d Manufactured in the USA
				н т
oduced from Coll		Boron Copper Aluminum	Titanium Vanadium Colum	nbium Nitrugen Tin
oduced from Coli rbon Manganese Phosphorus Sulphur Silicon Ni	okel Chromium Molybdenum 400 0.0600 0.0200		and the second se	
iduced from Coli rbon Manganese Phosphorus Sulphur Silicon Ni	400 0.0600 0.0200	0.0001 0.1000 0.0250	and the second se	
duced from Coll then Manganese Phosphorus Sulphur Silicon Ni 6600 0.8400 0.0150 0.0020 0.0200 0.04 1 Coll No. 178750407	400 0.0600 0.0200 Mechanical / Phys	0.0001 0.1000 0.0250 sical Properties	0.0030 0.0040 0.	.0030 0.0077 0.0056
oduced from Coli rbon Manganese Phosphorus Sulphur Silicon Ni 1600 0.8400 0.0150 0.0020 0.0200 0.0 11 Coli No. 1718760407 Temaile Yield Elong Ro	400 0.0600 0.0200	0.0001 0.1000 9.0250 sical Properties Charpy Charpy Dr	0.0030 0.0040 0.	
oduced from Coll obon Mangamese Phosphorus Sulphur Silicon Nil 5600 0.8400 0.0150 0.0020 0.0200 0.04 1 Coll No. 1718750407	400 0.0600 0.0200 Mechanical / Phys	0.0001 0.1000 9.0250 sical Properties Charpy Charpy Dr	0.0030 0.0040 0.	.0030 0.0077 0.0050
oduced from Coll rbon Mangamese Phosphorus Sulphur Silicon Nil 0600 0.8400 0.0150 0.0020 0.0200 0.04 Il Coll No. 178760407 Temaile Yield Elong Ro 63149.000 45337.000 41.35 62436.000 44521.000 39.20	400 0.0600 0.0200 Mechanical / Phys skwi Grain	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr O NA O NA	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olsen
oduced from Coli ofon Manganese Phosphorus Sulphur Silicon Nil 1600 0.8400 0.0150 0.0020 0.0200 0.0 1 Coli No. 178750407 Temaile Yield Elong Ro 63149.000 45337.000 41.35	400 0.0600 0.0200 Mechanical / Phys	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	.0030 0.0077 0.0050
duced from Coll thon Manganesa Phosphorus Sulphur Silicon Nil 500 0.8400 0.0150 0.0020 0.0200 0.0 a Coll No. 1718750407 Temile Vield Elong Re 63149.000 45337.000 41.35 62438.000 44521.000 39.20 Batch 0004777307 8 EA 9.801.600 LB	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
duced from Coll thon Manganesa Phosphorus Sulphur Silicon Nil 500 0.8400 0.0150 0.0020 0.0200 0.0 a Coll No. 1718750407 Temile Vield Elong Re 63149.000 45337.000 41.35 62438.000 44521.000 39.20 Batch 0004777307 8 EA 9.801.600 LB	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
Valueed from Coll         Mangamesa         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           al Coll No.         1718750407         Temaile         Yield         Elong         Re           62149.000         45237.000         41.35         62438.000         4521.000         39.20           Batch 0004777307         8 EA 9.801.600         LB         100         100         100	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
Valueed from Coll         Mangamesa         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           al Coll No.         1718750407         Temaile         Yield         Elong         Re           62149.000         45237.000         41.35         62438.000         4521.000         39.20           Batch 0004777307         8 EA 9.801.600         LB         100         100         100	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olsen
Joduced from Coll         Mangamese         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           Il Coll No.         1718750407         Temsile         Yield         Elong         Rc           63148.000         45237.000         41.35         62436.000         39.20         Batch 0004777307         8 EA 9.801.600         LB	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
Joduced from Coll         Mangamese         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           Il Coll No.         1718750407         Temsile         Yield         Elong         Rc           63148.000         45237.000         41.35         62436.000         39.20         Batch 0004777307         8 EA 9.801.600         LB	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
Joduced from Coll         Mangamese         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           Il Coll No.         1718750407         Temsile         Yield         Elong         Rc           63148.000         45237.000         41.35         62436.000         39.20         Batch 0004777307         8 EA 9.801.600         LB	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
Valueed from Coll         Mangamesa         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           al Coll No.         1718750407         Temaile         Yield         Elong         Re           62149.000         45237.000         41.35         62438.000         4521.000         39.20           Batch 0004777307         8 EA 9.801.600         LB         100         100         100	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser
Valueed from Coll         Mangamesa         Phosphorus         Sulphur         Silicon         Nil           0600         0.8400         0.0150         0.0020         0.0200         0.0           al Coll No.         1718750407         Temaile         Yield         Elong         Re           62149.000         45237.000         41.35         62438.000         4521.000         39.20           Batch 0004777307         8 EA 9.801.600         LB         100         100         100	400 0.0600 0.0200 Mechanical / Phys skwi Grain Batch 0004777312 7 1	0.0001 0.1000 0.0250 sical Properties Charpy Charpy Dr 0 NA 0 NA EA 8,576.400 LB	0.0030 0.0040 0.	0030 0.0077 0.0050 emperature Olser

Figure B-25. ¹/₂-in. Thick Steel Plate, Test No. HMDBR-1 (Item Nos. i3, i5, and i7)

Atias Tube Corp (Chicaga) 1855 East 122nd Street Chicago, Illinois, USA 60633 Tat: 773-646-6128



**DOD** A DIVISION OF ZEKELMAN INDUSTRIES

Ref.B/L: 80759148 Date: 04.05.2017 Customer: 179

## MATERIAL TEST REPORT

Sold to

Steel & Pipe Supply Company PO Box 1688 MANHATTAN KS 66505 USA

### Shipped to

Steel & Pipe Supply Company 1020 West Fort Gibson CATOOSA OK 74015

Material: 12.0x	6.0x250	x481010(2x3)			M	aterial No	: 120060	2504800				Made in Meited i			
Sales order: 1	169882				P	irchase (	Inder; C4	5000646	0	Cust Mat	erial #:	66120060			
Heat No	c	Mn	P	s	\$1	AJ	Cu	Cb	Мо	Ni	Cr	v	TÌ	8	N
17003461	0.220	0.700	0.015	0.004	0.020	0.027	0.120	0.000	0.013	0.040	0.050	0.001	0.000	0.000	0.008
Bundle No M900910838	PCs 6	Yield 061929 Psi	******	isile IS01 Psi	Ein.2in 34 %					on 00-13 GRAD			CE: 0.30		
Material Note: Sales Or.Note:															

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. Steer The Source Center Institute Page : 3 Of 3 Metals Service Center Institute

Figure B-26. 6-in. x 12-in. x ¹/₄-in. HSS Tube, Test No. HMDBR-1 (Item No. i4)

!

....

.



1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-818-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

.

## **Certified Test Report**

					The second se				and the second		
Customer: SPS - Tulsa			s	ara: 04.00X06.00		Customer Ordar 4500276501		Date:	1/28/2016	ł	
1020 Fort G Catoosa OK	ibson Road 74015-3033		¢	Cauge: Detwory No:82862694 5/16 Loss No:3817781							
			S	ASTM A500	-13 Gr.B/C						
			- Station - State - St						•	****	
Heat No AB1506	Yield KSI 55.2	Tensile KSI 62.5	Elongat % 2 inc 36.00							t	
										+	
										ŧ.,	
Heat No AB1506	C 0.0800	MN 0.8300	P 0.0120	5 0.0030	SI 0.0200	CU 0.1600	NI 0.0500	CR 0.0600	MO 0.0200	1	V 0.0010
									•	1	
						0				•	
We hereby accordance	al was melted & m certify that all test to A.S.T.M. paran s manufactured in	results shown neters encomp	in this report assed within	the scope of t	the specific	in the records a ations denoted i	of our company	y. All testing i stion and grad	end manufa e tiles abov	ctifrin e. Th	ng is in lis
This materia testing, or in	si has not come int respections.	to direct contac	ot with mercu	ury, any of its o	compaunds	, or any mercur	y bearing devi	ces during our	manufactu	ring p	NOCESS.
This materia	al is in compliance	with EN 1020-	4 Section 4.1	Inspection Co	ortificate Ty	pe 3.1				:	
	completed using t										
						STEEL VEN	ITURES, LL	C dba EXL1	TUBE	1	
0						ford	ballof	b			
						v				!	

Jonathan Wolfe Quality Assurance Manager

Figure B-27. 6-in. x 4-in. x ⁵/₁₆-in. HSS Tube, Test No. HMDBR-1 (Item No. i6)

in



## Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	007
Description:	HMDBR-1

## Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number:		Air Content (%):	
Truck Number:		Unit Weight (Ib/ft³):	
Load Volume (yd³):		Air Temp (°F):	
Mold Date:	10/20/2020	Mix Temp (°F):	
Molded By:	0	Min Temp (°F):	
Initial Cure Method:		MaxTemp (°F);	

### Laboratory Test Data (ASTM C39)

Sample Number:	007	007			
Set Number:	1	2			
Specimen Number:	1	1			
Age:	24	24			
Length (in):	12	12			
Diameter (in):	6	6.02			
Area (in²):	28.27	28.46		c	
Test Date:	11/13/2020	11/13/2020			
Break Type:	2	5			
Max Load (lbf):	138,392	128,341	2		
Strength (psi):	4,890	4,510			
Spec Strength (psi):	5				

Remarks: Average 24-day Compressive Strength (psi):			4,70	0	Date received: 11/13/2020 Curing: XStandard Field ASTM C511		
						Submitted by:	
$\times \times$		1			$\sim$	Distribution:	
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 11/13/20	

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure B-28. Concrete, Test No. HMDBR-1 (Item No. j1)



Date: 12/13/2016

## Subject: Certificate of Conformance

## Product: HIT RE-500 V3 Adhesive

To Whom it May Concern:

This is to certify that the HIT-RE 500 V3 is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,

Hilti, Inc. 5400 South 122 East Avenue Tulsa, Oklahoma 74146

800-879-8000 800-879-7000 fax <u>US-Sales@hilti.com</u>

Figure B-29. Epoxy Adhesive, Test No. HMDBR-1 (Item No. k1)

Δ

# e c h n i c a l d a t SPECPOXY 500



ASTM 881 compliant hi-mod, ultra-low viscosity epoxy injection adhesive

## DESCRIPTION

Т

SPECPOXY 500 is a two component, very low viscosity, moisture insensitive, high modulus, structural epoxy bonding adhesive and crack injection resin. SPECPOXY 500 is 100% solids, solvent free, low odor, and high strength.

- Bonding concrete, steel and wood
- Gravity feed or pressure injection crack repairs
- Anchoring bolts, dowels and reinforcing bar

### APPLICATION

**Mixing Instructions:** Air, material, and surface temperatures must be a minimum of 40°F prior to mixing or installation. To assist with mixing and dispensing, precondition material to 75°F. For bulk applications, mix two parts of component A and one part of component B by volume for three minutes with a low speed drill motor using a Jiffy mixer or paddle. Mix only as much material as can be used within the pot life. For cartridges, the resin and hardener are uniformly dispensed and mixed simultaneously through a mixing nozzle.

Surface Preparation: Surfaces to be bonded must be clean and structurally sound. Remove all oil, grease, dirt, laitance, curing compounds, and any other foreign matter by sandblasting, mechanical abrasion or oil free compressed air. For pressure injection, prepare the surface adjacent to the cracks to expose clean, sound concrete.

**Crack Injection:** Injection ports should be fastened to the surface of the concrete using SPECPOXY 3000 FS. The injection ports should be spaced approximately 6" to 24" apart depending upon the crack width and the thickness of the concrete. The surface of the crack should also be sealed using the SPECPOXY 3000 FS overlapping the crack approximately 1-1/2" on both sides. After the ports and crack surface have cured, inject SPECPOXY 500 with pressurized dispensing equipment or use cartridges.

**Gravity Filling**: Thoroughly remove any dust or contaminates from surface cracks with compressed air or wire brush. Pour or spread the properly mixed SpecPoxy 500 across the surface and reapply until rejection. Remove any excess epoxy from the surface or grind excess after cured.

Bonding: As a structural adhesive, apply the SPECPOXY

### CLEANING

**Tools and Equipment:** Uncured material can be removed with SpecChem Orange Peel Citrus Cleaner or other approved solvent. Dispose of in accordance with local, state, and federal disposal regulations. Mechanical removal is necessary for cured material.

Revised 07/01/2018

## PACKAGING

1 gallon units; 3 gallon units; 15 gallon units; 15 oz. dual cartridge

## SHELF LIFE

Store SPECPOXY 500 in its original containers and keep tightly closed. Do not allow the accumulation of water, dirt, or other contaminants.

The shelf life of properly stored SPECPOXY 500 is two

## STANDARDS

SPECPOXY 500 meets ASTM C-881, Type I, II, IV, and V Grade 1, Classes B & C.

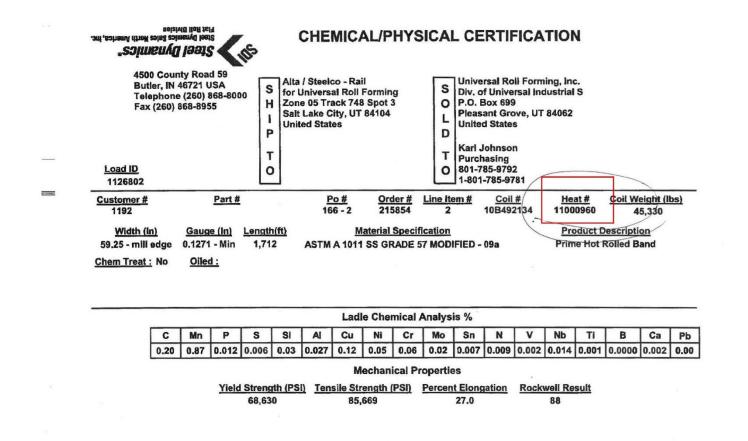
## TYPICAL PROPERTIES

Mix Ratio	2 to 1
Mixed Color:	Amber
Viscosity:	180 CPS
Gel time (ASTM 881)	25 minutes
Tack free time @ 70°	F: 3.5 hours
TYPICAL	CURED PROPERTIES
Initial Cure	24 hours
Final Cure	7 days
Compressive Strengt	th (ASTM D-695) 12,175 psi
Compressive Modulu (ASTM D-695)	is 265,500 psi
Bond Strength at 2 d (ASTM 882)	ays 2,275 psi
Bond Strength at 14 (ASTM 882)	days 2,550 psi
Elongation (ASTM D	-638) 2.4%
Tensile Strength (AS	STM D-638) 7,050 psi
Water Absorption (As	STM D-570) < 0.5%
Heat Deflection (AST	M D-648) 121°F



Kansas City, MO 64108 www.specchem/lc.com 866.791.8700

Figure B-30. Epoxy Post Cavity Filler, Test No. HMDBR-1 (Item No. k2)


Appendix C. Material Specifications, Test Nos. HMDBR-2 and HMDBR-3

Item No.	Description	Material Specification	Reference
a1	6'-3" 10-gauge Thrie Beam Section	AASHTO M180	H#11000960
a2	10-gauge Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi Min. tensile strength = 70 ksi	H#A90588
b1	16"x11"x1" Base Plate	ASTM A36	H#A0G801
b2	1 1/4" Dia., 14" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	H#A202999
b3	5/8" Dia., 8" Long Anchor Rod	ASTM F1554-15 Grade 105, Class 2A	H#10546920
b4	W6x25, 26 1/4" Long Steel Post	ASTM A992	H#59093087.02
c1	1" Dia. UNC, 11" Long Threaded Rod	ASTM A449 or A354 Gr. BC or A193 Gr. B7	H#A202719
c2	14"x14"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	H#B705783
c3	HSS 6"x12"x1/4" Tube, 38 1/2" Long	ASTM A500 Gr. B	H#17003401
c4	11 1/2"x5 1/2"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	H#B705783
c5	HSS 6"x4"x5/16" Tube, 46" Long	ASTM A500 Gr. B	H#A81506
сб	16"x12"x1/2" Steel Plate	ASTM A36 or A572 Gr. 50	H#B705783
d1	#4 Rebar, 30 3/4" Total Unbent Length	ASTM A615 Gr. 60	H#3600014740
d2	#4 Rebar, 97' 1" Total Length, 18" Min. Lap Length	ASTM A615 Gr. 60	H#62151622
d3	#4 Rebar, 32" Total Unbent Length	ASTM A615 Gr. 60	H#3600014740
e1	Concrete	Min. f'c = 4,000 psi NE Mix 47B1S384000HW or 47B1PF4000HW	Project#00110546.00
f1	5/8"-11 UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	H#10621520
f2	5/8"-11 UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	H#10653380 H#10647410
f3	7/8" Dia., 8" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 Type 1	H#75068447
g1	5/8" Dia. Plain USS Washer	ASTM F844	L#20200831

Table C-1. Bill of Materials, HMDBR-2 and HMDBR-3

Item No.	Description	Material Specification	Reference
g2	5/8" Dia. Hardened Washer	ASTM F436	H#193903
g3	7/8" Dia. Plain Round Washer	ASTM F844	L#1844804
g4	1 1/4" Dia. Hardened Washer	ASTM F436	H#209197
g5	1" Dia. Hardened Flat Washer	ASTM F436	H#105594
h1	5/8"-11 UNC Heavy Hex Nut	ASTM A563A or equivalent	H#10635460 H#62151324 H#62152527
h2	5/8"-11 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	H#100890711
h3	1 1/4"-7 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	H#F19080206
h4	1" Dia. Heavy Hex Nut	ASTM A563DH or A194 Gr. 2H	H#6215253305
h5	7/8" Dia. UNC Heavy Hex Nut	ASTM A563DH or ASTM A194 Gr. 2H	H#100894559
k1	Epoxy Adhesive	Hilti HIT RE-500 V3 Class C881	COC
k2	Epoxy Post Cavity Filler	ASTM C881 Type IV, Grade I, Class C	COC

Table C-2. Bill of Materials, HMDBR-2 and HMDBR-3, Cont.



Steel Dynamics, Inc. Rev. Level 5.1 [1003]

Figure C-1. 10-gauge Thrie Beam Section, Test Nos. HMDBR-2 and HMDBR-3 (Item No. a1)

All tests were performed according to applicable standards and are correct as contained in the records of the company.

Made in USA

**Quality Assurance** 

Shipped from Butler, IN, United States

Retrieved on : 01/11/10 14:46:02

Melted , thin slab cast and rolled by proud Americans in Butler , IN.

Page 1 of 4

					Ν	ucor St	eel Gallatin	n			k
NU	COR'						ighway 42 We ( 41045-9704		The	Fr.	
	STEEL GAL	LATIN		Phone			353 Fax: (859		53	25	
			IV	IETAL	LU	RGICA	L CERTI	FICATION			
nvoice 1	To: Metals US 702 Port		Rolled-Je	ffersonvi	lleSI		Aetals USA-FI			Date: 10	145/2049
	Jefferson		47130				Rolled-Jefferso Netals USA -F		Cust		
							Rolled-Jefferso			omer No: 2	
							02 Port Road		Custo	mer P.O.: C4	14390
Mill Orde	er No: 22089	7-1		Custom	er R	eference			Load No:	766606	
This pro in the US	duct was m SA to meet t	elted a the req	nd manu uirements	factured of:	0.	02max, S	1-18 SS Gr 5 0.05 max, Si iteel Bands	0 modified w 0.04 max	/ 70 ksi min te	en, C 0.26 ma	ax, P
							Or	dered Size:	Min 0.125 (Ir	n.) X 62.00 (Ir	n.) X Coil
Coil Nur	nber(s): 151	5933							Min 3.175 (n	nm) X 1575 (r	nm) X Co
CHEMIC	AL ANALYS	IS (\	Veight %)								
leat No	С	M	n	Р	T	S	Si	Cu	Ni	Cr	Mo
A90588	0.20	0.4	49	0.008		0.004	0.02	0.12	0.05	0.06	0.02
	Al	С	a	Nb		V	В	Ti	N	Sn	
	0.032	0.0	017	0.002		0.001	0.0001	0.001	0.0052	0.006	
MECHAN	NICAL PROPE	ERTIES									
Coil Test	ted		1515931	15159	31	151593	6 1515936				
	ength(ksi)		55.1				51.3	the second se			
and the second se	ength(mpa)		380				354				
	Strength(ksi		75.0				73.7				
% Elong	Strength(mp	(a)	25.1				29.6				
N-Value	ation		0.16	0	.15	0.1	The second se	the state of the s			
N-Value	Range		5-15%	5-15%         5-1           83.2         8           YARD         YAR		5-15	6 5-15%				
Hardnes	s(HRBW)					80.					
Test Sec	the second se					YARD	YARD				
Orientati	and the second se		Long	Construction of the local division of the lo		Lon	And in case of the local division of the loc	the second s			
Test Met	and all the second		ASTM	AS	TIVI	ASTI	M ASTM		1		
	EST RESUL	and the second se	ter/radius	No. of	Ci-	e of Pas	-7				
Coil ID #	Orientation		andrel	cracks		cks Fa					
							_				
					-	_	-				
					-						
					-		-				
Hot rolled c	oils manufacture	d through	Nucor Steel (	Sallatin do n	ot con	tain welds of	weld repairs at th	e time of shipmen	t (fca mill).		
Mercury wa size of 6 or	is not added durin finer according to	ng produc o ASTM E	tion of this ma 112.	iterial. The r	nateri	al was produ	ced using a fully ki	lled fine grain pra	ctice with a grain		
This produc	t is in compliance	e with DF	ARS 252.225,	the Buy An	nerical	n Act.					
Above tests	s performed in ac	cordance	to ASTM stan	dards E8 (y	ield st	rength deter	nined using 0.2% of correct as contain	offset method and	elongation	Pili	274
The elonga		e length i	is 2 inches for	ASTM test	metho		ches for JIS test n		of the company.	David Du	
Bend tests	CARRENT IN PROPERTY	in accorda	ance with ISO	7438. ASTN	A E29	0, or JIS Z22 n 6" and wid	48 using the press ar than 0.8"	, guided, two supp	port and a mandre		
	sala iou ucgie		and tool aper							dave.duncan@	gnucor.con
This report	shall not be repro- nanical property h						ndersigned labora	tory managers.			

Figure C-2. 10-gauge Thrie Beam Terminal Connector, Test Nos. HMDBR-2 and HMDBR-3 (Item No. a2)

	1770	Bill Shar	p Boule	evard, M	uscatine	e, IA 52	761-9412	2, US					ouno		more informat Form TC1: F	•			
Customer: STEEL & PIPE SUPPLY P.O. BOX 1688							P.O.No.:45				ill Order	No. 4	11-616	884-02	Shipp	oing Ma	anifest:	MT414463	
					Pro	duct Des			<mark>6(</mark> 19)/A709(18) M270(19)36	36/ASME	SA36(19)			Ship Date: Cert Date:			ert No: Page 1 d	061855475 of 1)	
	AN																		
<s 66502<="" th=""><th><b>T</b> 4 - 4</th><th>Dia</th><th></th><th></th><th></th><th>Siz</th><th></th><th>X 72.00</th><th>X 120.</th><th>0 (IN)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s>	<b>T</b> 4 - 4	Dia				Siz		X 72.00	X 120.	0 (IN)									
Heat	Piece	Pieces: Tested		Ts	t YS	UTS	Tensile %RA	s: Elong %	6 Tst	Hardness	Abs Fi	nergy(FTL			Impact Test	s Tst	Tst	Tst	BDWTT
ld	Id	Thickn	ess	Loc	5000 CO. 000 CO.			2in 8in				3 Avg			3 Avg	Tmp	Dir	Siz (mm)	Tmp %SI
0G801 0I121		0.999 (DI 0.998 (DI		l	52 49	75 72		25 26	T T										
01807	C07	0.999 (DI		ľ	49	72		20	T										
Heat									mical Ar	-		1010							
0G801	.20	.93	P .018	.002		Tot AI	Cu 28 .16	Ni Cr 5 .15	.01	Cb 1.001	<u>/ Ti</u> 3 1.017	B .0003	N.	T					c
			.013	.001			27 .25	.18	.04	.001 .00	5 .023	.0001	.0071						
NI21 NB07 KILLEI MERCUF OF THI MTR EN 100% N	IS PRODUC N 10204:2 MELTED AN CTS SHIPP 121	T. 004 INS D MANUS	.011 ALLURG SPECTI FACTUF	.002 GICAL ( ION CE RED IN	COMPONE	ENT OF	1 COMPI BS: 1	TEEL AND		002 014	3 INTEN	.0002 TIONALLY	.0084 Y ADI				TACTUR 7350		
DI21 NB07 KILLEI MERCUF OF THI MTR EN 100% N PRODUC A011	.19 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 121	.93 A META T. 004 INS D MANUI ED: B03	.011 ALLURG SPECTI FACTUF	.002 GICAL ( ION CE RED IN	COMPONE RTIFIC THE US	ENT OF ATE 3. SA 5, L	THE ST 1 COMPI BS: 1	FEEL AND LIANT	NO M	ERCURY WAS	3 INTEN	TIONALLY		DED I					
N121 N807 MERCUP OF THI MTR EN 100% N PRODUC A011	.19 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 121	.93 A META T. 004 INS D MANUI ED: B03	.011 ALLURG SPECTI FACTUF	.002 GICAL ( ION CE RED IN	COMPONE RTIFIC THE US	ENT OF ATE 3. SA 5, L	THE ST 1 COMPI BS: 1	FEEL AND LIANT	NO M	ERCURY WAS	3 INTEN	TIONALLY		DED I					
N121 N807 MERCUP OF THI MTR EN 100% N PRODUC A011	.19 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 121	.93 A META T. 004 INS D MANUI ED: B03	.011 ALLURG SPECTI FACTUF	.002 GICAL ( ION CE RED IN	COMPONE RTIFIC THE US	ENT OF ATE 3. SA 5, L	THE ST 1 COMPI BS: 1	FEEL AND LIANT	NO M	ERCURY WAS	3 INTEN	TIONALLY		DED I					
N121 N807 KILLEI MERCUF OF THI MTR EN 100% N PRODUC A011	.19 D STEEL RY IS NOT IS PRODUC N 10204:2 MELTED AN CTS SHIPP 121	.93 A META T. 004 INS D MANUI ED: B03	.011 ALLURG SPECTI FACTUF	.002 GICAL ( ION CE RED IN	COMPONE RTIFIC THE US	ENT OF ATE 3. SA 5, L	THE ST 1 COMPI BS: 1	FEEL AND LIANT	NO M	ERCURY WAS	3 INTEN	TIONALLY		DED I					

Figure C-3. Base Plate, Test Nos. HMDBR-2 and HMDBR-3 (Item No. b1)

nickel cause

Job Material Certification H202999 R#21-166 1 1/4" Dia., 14" Long Anchor Rod Page 5 of 10

	PRODUCTS. IN	10 Cross Pelham, Tel (205	Threaded Proc s Creek Trail AL 35124 620-5100 5) 620-5150	ducts		јов м	ATER	AL CE	RTIFI	CA			
	Job No	: 688287		Jol	Informatio	on	Certi	fied Date:	9/17/20				
	Containers	: S174822	79										
	Customer	: Portland E	Bolt & Mfg., I	nc.	Ship						im Street 17210		
٧u	Ican Part No	: ATR B7 1	-1/4x12										
Custo	omer Part No	: ATR B7 1	-1/4x12										
Cus	tomer PO No	: 47880					Sh	ipped Qty:	70 pcs				
		: 408834						Line No:	1.000				
	Note						Line No:			. 4			
	Note			Applia	able Specific	ationo		·					
						auons							
Ту	/pe		ACT	Specificatio M F1554 Gd			Rev	An	nend		Option		
Host	- t Treat			SA-193/SA-1			2018			2			
near	lineal			ASTM A193		10 10 10 10 K	2013	a diama n	1000 100000	2012			
est Result		1 10100 101					Loro		a (a) (4	4 ( 4 ) 44	(1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)-1 (1-4)(		
	s g pages for te	ala											
see lonowin	y pages for te	515		Certifier	I Chemical A	halveie			مى اللاي بالكي التي الم	-			
	Hea	t No: A202999	Lot 1.218	Certifiet	Ghennicar	analy sis		Origin: USA					
С	Mn	Р	S	Si	Cr	Mo	Ni	V	Cu	D:	AI		
0.40	0.80	0.010	0.019	0.24	0.86	0.16	0.16	0.003	0.2	9	0.027		
Sn	ті	N	В	Ca	As	Sb	H, ppm	DI	RR		G.S.		
0.012	0.001	0.0093	0.0002	0.0006	0.004	0.004	1.4	4.61	124.6	5:1	8		
Macro S	Macro R	Macro C	J1	J2	J3	J4	J5	J6	J7		J8		
1	1	2	56	56	56	56	56	53	52		50		
J9	J10	J12	J14	J16	J18	J20	J24	J28	J32		1		
	48	45	43	40	39	38	37	34	33				
49					Notes								

Plex 9/17/20 4:07 PM vulc.sano Page 1 of 2

Figure C-4. 1¹/₄-in. Dia., 1-ft 2-in. Long Anchor Rod, Test Nos. HMDBR-2 and HMDBR-3 (Item No. b2)

JOU IVIALEMAI CERTIFICATION

-

Г

rage 2 01 12

1

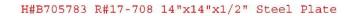
U THREADED P	<b>Gan</b> PRODUCTS, INC	10 Cross Pelham, A Tel (205)			JOE	MATER	RIAL CE	RTIFIC	ATION			
	Job No:	586779		Job Info	Job Information Certified Date: 6/27/18							
(	Containers:	S1414979	5 S14150345									
	Customer		d Conklin		TLAND 48127	BOLT	Ship To:	34201 Seve Union City, (				
Vul	can Part No:	BAR B7 .56	26x144 SC		081495							
Custo	mer Part No:	BAR B7 .56	32x144	50	5/8" x	111" B7	ATR H	.D.G. 10	DE2			
Custo	omer PO No:	18772					Shipped Qty:		21 2			
	Order No:	349870		NOV	/ 12, 20	20	Line No:	2				
	Note:											
				Applicable \$	Specifications	;						
Heat Qua Test Results	lity		ASME SA-1 ASTM	54 Gd 105 S 93/SA-193M 1 A193 B7 0204 3.1		201 201 201 200	3 6					
See following	pages for tes	ts										
				Certified Che	mical Analys	is						
	energy and the second	leat No: 1054			ويوريه الإرادية والمراجع	ومعتقد والمعارين والمتعاد والمعارية	Origin: USA	art a successful queenseries art	مريد المراجع المراجع المراجع			
C 0.420	Mn 0.88	P 0.009	S 0.023	Si 0.28	Cr 0.91	Mo 0.20	NI 0.06	V 0.002	Cu 0.16			
0.420 Al	0.66 Nb	Sn	0.025 Ti	0.20 N	0.91 B	0.20 DI	RR	G.S.	Macro S			
0.028	0.001	0.007	0.002	0.0060	0.0001	5.37	99:1	Fine	2			
Macro R	Macro C	J1	J2	J3	J4	J5	J6	J7	J8			
2	2	57	57	57	57	57	57	57	55			
J9	J10	J12	J14	J16	J18	J20	J24	J28	J32			
54	53	50	48	46	45	45	43	40	38			
				N	otes							
System registe	ared June 30th,	2017. No weld	ected as required b d repair performed - 3.1B of 2004 (3.1)	on the materia					ty Management			

Plex 6/27/18 9:22 AM vulc.mgri Page 1 of 2

Figure C-5. ⁵/₈-in. Dia., 8-in. Long Anchor Rod, Test Nos. HMDBR-2 and HMDBR-3 (Item No. b3)

			AU	STEEL AND F 401 NEW CEN	IPE SUPPLY ( TURY PKWY		STEEL AND	PIPE SUPPLY	COINC	A992//	A572-50	W 37.		25# / 150 X 0000515762
-ML-MIDLO				NEW CENTU USA	RY,KS 66031-1		MANHATTA USA	AN,KS 66505-1	688	LENG 40'00"		PCS 18	WEIGHT 18,000 LB	HEAT / BATCH 59093087/02
DLOTHIAN, A		i		SALES ORDE 9307972/0000				ER MATERIA 0376250040	L Nº	ASTM	IFICATION / D/ A6-17 A709-17	ATE or REV	VISION	
USTOMER PUI 00353334	RCHASE C	ORDER NU	MBER		BILL OF LA 1327-00003			DATE 10/05/2020			A992-11 (2015), A 40.21-13 345WM,			
	position n (%) 0.94	P (%) 0.015	S (%) 0.032		Cu (%) 0.32	Ni (%) 0.13	Cr (%) 0.31	Mo(%) 0.034	Sn (%) 0.005	V (%) 0.002	Nb (%) 0.016	Al (%) 0.004	CEqvA6 (%) 0.35	
ECHANICAL PR YS 0.2% (F 52077 53762	COPERTIES PSI)		FS (PSI) 68094 69642		YS (MPa) 359 371		UTS (MPa 470 480	)	Y/T rati (%) 0.760 0.770		G/L (Inche 8.000 8.000	s)	G/L (mm) 200.0 200.0	Elong. (%) 23.30 22.20
MMENTS / NOT	TES													

		anent records of company. We certify that these data are correct and in compliance with , including the billets, was melted and manufactured in the USA. CMTR complies with EN	
Mackay	BHASKAR YALAMANCIIILI QUALITY DIRECTOR	Wale A. LL WADE LUMPKINS QUALITY ASSURANCE MGR	
Phone: (409) 267-1071 Email: Bha	skar. Yalamanchili@gerdau.com	Phone: 972-779-3118 Email: Wade.Lumpkins@gerdau.com	


Figure C-6. W6x25 Steel Post, Test Nos. HMDBR-2 and HMDBR-3 (Item No. b4)

Job Material Certification H#A202719 R#21-166 1" Dia. UNC, 11" Long Threaded Rod Page 7 of 10

		10 Cros Pelham Tel (205	Threaded Produ s Creek Trail , AL 35124 5) 620-5100 5) 620-5150	ucts		Job M	ATERI	AL CE	RTIFIC	ATION
	Job No:	680891		Jol	b Informatio	on	Certifi	ed Date:	8/11/20	
	Containers:	S173433	80							
	Customer	Portland E	3olt & Mfg., In	C.				Ship To:	3441 N W G Portland, OF	
v	ulcan Part No:	ATR B7 1	x12							
Cust	omer Part No:	ATR B7 1	x12							
Cus	stomer PO No	47376					Shir	ped Qty:	120 pcs	
Gua							Out		800 000 000 000 000 000 000 000 000 000	
	Order No							Line No:	1	
	Note	:								
				Applic	able Specific	ations				
т	уре			Specificatio	'n		Rev	Am	end	Option
	<u>13</u>			1 F1554 Gd			2018			
Hea	t Treat		ASME	SA-193/SA-	193M B7		2013	80 20 - 10 - 10 - 10		
127 - 227			. A	ASTM A193	B7		2019			
est Resul	ts									
ee followir	ng pages for te	sts								
				Certified	d Chemical A	Analysis				
		No: A202719						rigin: USA		
с	Mn	Р	S	Si	Cr	Мо	Ni	v	Cu	AI
0.41	0.79	0.008	0.021	0.28	0.85	0.16	0.24	0.002	0.25	0.024
Cb 0.001	<b>Sn</b> 0.011	Ti 0.001	N 0.0088	B 0.0003	Ca 0.0013	As	Sb	H, ppm		RR
G.S.	Macro S	Macro R	Macro C	0.0003 J1	0.0013 J2	0.004 J3	0.004 J4	2.1 J5	4.69 J6	196.9:1 J7
7	1	Macro R	1 1	57	57	57	57	57	55	53
J8	J9	J10	J12	J14	J16	J18	J20	J24	55 J28	- 53 J32
52	51	49	46	44	42	41	40	38	35	34
					Notes		-10			
	naterial is Tempe of in the USA. 0/42	red - Stress I	Free. No weld r	epair perform	ed on the mate	rial. No Mercu	ry used in the	production of	of this material.	Melted and

Plex 8/11/20 10:46 AM vulc.sano Page 1 of 2

Figure C-7. 1-in. Dia., UNC Threaded Rod, Test Nos. HMDBR-2 and HMDBR-3 (Item No. c1)



PS Coil Processing Tulsa 275 Bird Creek Ave. ort of Catoosa, OK 74015		METALLURG TEST REPOR		PAGE 1 of 1 DATE 05/23/2017 TIME 13:01:47 USER WILLIAMR
66031-1127			ty Warehouse Century Parkway TURY KS	
Order Material No. 0285163-0020 701672120TM	Description 1/2 72 X 120 A36 TEM	Quantity Weig PERPASS STPMLPL 8 9,801.60		Customer PO Ship Date 05/23/2013
	and the second s	Chemical Analysis		
	STEEL DYNAMICS COLUMBUS		DYNAMICS COLUMBUS	Molted and Manufactured in the USA
Produced from Co8 Carbon Manganese Phosphorus 0.0600 0.8400 0.0150	Sulphor Silicon Nickel 0.0020 0.0200 0.0400	Chromisen Melybdenum Boron Copper 0.0600 0.0200 0.0001 0.1000		odium Columbium Nitrugen Tin 0040 0.0030 0.0077 0.0050
1		Mechanical / Physical Properties	4.212	
Will Coll No. 178750407			1 S	
Tensile Yield	Elong Rokwi	Grain Charpy	Charpy Dr Charpy S	2 Temperature Olsen
63149.000 45337.000 62436.000 44521.000	. 41.35 39.20	0	NA NA	a series in the
Batch 0004777307 8 EA		Batch 0004777312 7 EA 8,576.400 LB Batch 0004777324 7 EA 8,676.400 LB	Betch 00047	77322 7 EA 8,576.400 LB
Batch 0004777323 7 EA	0,070,400 LS	Batch 000+777324 7 ER 6,070-400 EB		· · · · · · · · · · · · · · · · · · ·
				1
	1		1	
*	*			
	and the second states of the states of the states	and the second	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	a locale and a second of the second second
THE CHEMICAL, PHYSICAL,		ED ABOVE ACCURATELY REFLECT INFORMATIO mpliance with EN 10204 Section 4.1 Inspection		ORDS OF THE COMPURATION.
	a construction of and many			

Figure C-8. 1-ft 2-in. x 1-ft-2in. x ¹/₂-in. Steel Plate, Test Nos. HMDBR-2 and HMDBR-3 (Item No. c2)

	1.3-040	-4500 -6128													
				N	ATER	RIAL	TEST	REP	ORT						
Sold to	2										Ship	ped to			
Steel 8 PO Bo MANH USA	ATTA	Supply Co B NKS 6650	mpanj 15	(							Stee 1020 CAT USA	Vest I OOSA	Supply Fort Gib OK 740	Comp son 15	any
Material: 12.0x Sales order: 1							o: 120060 Order: C4		D	Cust Mat	erial #: 6	Made in Meited I 6120060	n: USA		******
Heat No	c	Mn	P	8	\$i	A	Cu	Cb	Мо	Ni	Cr	۷	TÌ	в	N
17003461	0.220	0.700	0.015	0.004	0.020	0.027	0.120	0.000	0.013	0.040	0.050	0.001	0.000	0.000	0.008
Bundle No	PCs	Yield	*****	nsile	Ein.2in				rtificatio				CE: 0.39		
M900910838	6	061929 Psi	924	3591 Psi	34 %			A	ITNE ASU	0-13 GRAI	10 10 10 10				
Material Note: Sales Or Note:															

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. Specification and contract requirements. Specification and contract requirements. S Metals Service Center Institute Institute Page : 3 Of 3

Figure C-9. 6-in. x 1-ft x ¹/₄ in. 3-ft 2¹/₂-in. Long HSS Tube, Test Nos. HMDBR-2 and HMDBR-3 (Item No. c3)

R#17-708 NSRI PHASE III TEAM1-1 Steel Tube Frames June 2017 SMT

### H#B705783 R#17-708 11 1/2"x5 1/2"x1/2" Steel Plate

SPS Coll Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015		METALLU TEST REP	PAGE 1 of 1 DATE 05/23/2017 TIME 13:01:47 USER WILLIAMR		
s 6 τ 0 66031-1127		P 401	16 Has City Warehouse New Century Parkway CENTURY KS		
Order Material No. 40285163-0020 701672120TM	Description 1/2 72 X 120 A36 TEM	Quantity PERPASS STPMLPL 8 9	Weight Customer Part ,801.600		Date 23/2017
	STEEL DYNAMICS COLUMBUS .	Chemical Analysis DOMESTIC Mill	STEEL DYNAMICS COLUMBUS	Motted and Manufactured in th	w USA
Produced from Coll Carbon Manganese Phosphorus 0.0500 0.8400 0.0150	Sulphur Silioon Nickel 0.0020 0.0200 0.0400	Chromisen Molybdenum Boron 0.0600 0.0200 0.0001	Copper Aluminum Titanium 0.1000 0.0250 0.0030		7in 0.0050
		Mechanical / Physical Propert	ies		
Mill Coll No. 178750407 Tensile Vield 63149.000 45337.000 62436.000 44521.000 Batch 0004777307 8 EA Betch 0004777323 7 EA	41.35 39.20 9.901.600 LB	Grain         Cherpy 0           0         0           Batch 0004777312         7 EA         8,576.400           Batch 0004777324         7 EA         8,576.400	NA NA DIB Betc?	Charpy Sz Temperature 6 0004777322 7 EA 8,576.400 LB	Olsen
n na sana ang ang ang ang ang ang ang ang ang	and the second state of the state of the		· · · · · · · · · · · · · · · · · · ·		- 1
THE CHEMICAL, PHYSICAL,	OR MECHANICAL TESTS REPORT	ED ABOVE ACCURATELY REFLECT INFO	RMATION AS CONTAINED IN 1	THE RECORDS OF THE CORPURATION.	

Figure C-10. 11¹/₂-in. x 5¹/₂-in. x ¹/₂-in. Steel Plate, Test Nos. HMDBR-2 and HMDBR-3 (Item No. c4)

# H#A81506 R#17-708 HSS 6"x4"x5/16" Tube, 46" Long

			J.	A F	XL	TUB	E	•		1
	1000 BURLI	NGTON STREE	T. NORTH	KANSAS CITY, N				F 1.800.892.TI	142	
				EL VENTURE					/ML	1
		*		Certified	Test	Report				:
Customer: SPS - Tulsa		*****		Size: 04.00X06.00	,	Customer Drd 450027650		Date:	/28/2016	1
1020 Fort G Catoose OK	lbson Road 74015-3033			Gauge: 5/16		Delivery No:8 Lovel No:381				,
			-	Specification: ASTM A500-	13 Gr.B/C					-
									*	ł
Heat No AB1506	Yield KSI 55.2	Tensile KSI 62.5	Elong: % 2 li 36.00	nah						t
										!
Heat No AB1506	C 0.0800	MN 0.8300	₽ 0.0120	S 0.0030	SI 0.0200	CU 0.1600	NI 0.0500	CR 0.0600	MO 0.0200	0.001
							۰.	•		1
						o				
										1
										*
We hereby a accordance product was	l was metted & m sertify that all test to A.S.T.M. parar a manufactured in	results shown neters encomp accordance w	in this repo bassed with ith your pur	ort are correct as in the scope of t chase order requ	he specific viremonts.	cations denoted	d in the specific	ation and grade	tiles abov	a. Trea
This materia testing, or in	al has not come in repections.	to direct conta	ct with mer	cury, any of its c	compound	s, or any merci	ury bearing devi	cas during our r	nanufactu	ring proces
This materia	al is in compliance	with EN 1020	4 Section 4	1 Inspection Ce	rtificate T	ype 3.1				:
	completed using									
						STEEL VE	NTURES, LL	C dba EXLT	UBE	

foratherhold

1

!

Jonstean Wolfs Quality Assurance Manager

Figure C-11. 6-in. x 4-in. x  $^{5}/_{16}$ -in., 3-ft 10-in. Long HSS Tube, Test Nos. HMDBR-2 and HMDBR-3 (Item No. c5)

0

e

Description     Description     METALLURGICAL DATE     MATE     Social of T DATE     Social of											
SPS Coll Processing Tutes       3275 Bind Creek Ave.       TIME 13:01:47       USR WILLIAMR         Port of Catoose, OK 74015       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.         Port of Catoose, OK 74015       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.         Port of Catoose, OK 74015       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.         Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Image: Spin Creek Ave.         Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Spin Dre.         Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Image: Spin Creek Ave.       Spin Dre.         Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Spin Dre.         Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Description       Image: Spin Creek Ave.       Spin Dre.       Ope: Spin Creek Ave.       O											
SPS Coll Processing Tutes       3201 A7       TIME 13.01:47       USR WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USR WILLIAMR       Image: 13.01:47         Image: Ima											
SPS Coll Processing Tutes 3275 Bind Creek Ave. Port of Catoose, OK 74015         TEST NEPONT         TIME 13.01:47 USR WILLIAMR           0											
SPS Coll Processing Tutes 3275 Bind Creek Ave. Port of Catoose, OK 74015         TEST NEPONT         TIME 13.01:47 USR WILLIAMR           0											
SPS Coll Processing Tutes       32.01:47       USER       WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USER       WILLIAMR         0       66031-1127       Image: 13.01:47       USER       USER       USER         0       0       0       0       0       USER       U											
SPS Coll Processing Tutes       32.01:47       USER       WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USER       WILLIAMR         0       66031-1127       Image: 13.01:47       USER       USER       USER         0       0       0       0       0       USER       U											
SPS Coll Processing Tutes       B275 Bind Creek Ave.       TIME 13:01:47       USER WILLIAMR         Port of Catoose, OK 74015       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Port of Catoose, OK 74015       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Image: Spin Science Ave.       Description       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Order       Method Re.       Description       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Order       Method Re.       Description       Image: Spin Science Ave.											
SPS Coll Processing Tutes       B275 Bind Creek Ave.       TIME 13:01:47       USER WILLIAMR         Port of Catoose, OK 74015       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Port of Catoose, OK 74015       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Image: Spin Science Ave.       Description       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Order       Method Re.       Description       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.       Image: Spin Science Ave.         Order       Method Re.       Description       Image: Spin Science Ave.											
SPS Coll Processing Tutes       32:01:47       USER WILLIAMR         Port of Catoose, OK 74015       Image: 13:01:47       USER WILLIAMR         Image: Imag											
SPS Coll Processing Tutes       32.01:47       USER       WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USER       WILLIAMR         0       66031-1127       Image: 13.01:47       USER       USER       USER         0       0       0       0       0       USER       U											
SPS Coll Processing Tutes       32.01:47       USER       WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USER       WILLIAMR         0       66031-1127       Image: 13.01:47       USER       USER       USER         0       0       0       0       0       USER       U											
SPS Coll Processing Tutes       32.01:47       USER       WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USER       WILLIAMR         0       66031-1127       Image: 13.01:47       USER       USER       USER         0       0       0       0       0       USER       U											
SPS Coll Processing Tutes       32.01:47       USER       WILLIAMR         Port of Catoose, OK 74015       Image: 13.01:47       USER       WILLIAMR         0       66031-1127       Image: 13.01:47       USER       USER       USER         0       0       0       0       0       USER       U											
SPS Coll Processing Tutes B275 Bind Creek Ave. Port of Catoose. OK 74015         TEST NEPORT         TIME USR         13.01:47 USR         TIME WILLIAMR           0 0         66031-1127         0         0         13716         Kansas City Warehouse 401 New Century Parkway NEW CENTURY KS           0-det         Method Re. 04285183-0020         Description 1/2         72.X 120 A35 TEMPERPARS STPMLPL         6         Guentry 9.801.000         Weight Customer Part 2         Customer Port 05/23/2017           Chemical Analysis Dodes then Coll Cateon Marganese         Produced Street DYNAMICS COLUMBUS Network Street DYNAMICS COLUMBUS 0.0020         Method and Manufactured in the UBA 0.0020           Method Re. 00200         0.0020         0.0020         0.0020         0.0020         0.0020         0.0000         0.0020         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.00000         0.0000         0.0000 <th></th>											
SPS Coll Processing Tutsa         TIME         13.01:47         USR         WILLIAMR           Port of Catoosa, OK         74015         Image: Second	VA STEE				M	ETALLU	JRGICAL				ζ
B2/15 Bind Creek AVe. Port of Clatoses, OK 74015           Solution         Image: Solution of Solution	SPS Coll Proce	ssing Tulsa			TE	ST RE	PORT		TIME 13:	01:47	1
En         Material No. 40285183-0020         Description 12         Material 12         Description 12         Descriptio		ek Ave.									
Deck         Material No.         Description         Description         Quantity         Weight         Customer Part         Customer P0         Ship Date           0.7.de:         Material No.         Description         1/2         7.2         X.10         A36         TEMPERPASS STPALER         8         9.801.600         Customer Part         Customer P0         Ship Date         06/23/2017           Heat No.         B705/83         Vexdor         Stell         DVMAMICS COLUMBUS         Defecting         DoMESTIC         MRI STEEL DYNAMICS COLUMBUS         Method and Manufactured in the USA           Catchen Minages Phosphonus         Subplus         Silicon         Nikele         Chromian Multylidenum         Boron         Copper         Aluminum         Vander         Copper         Aluminum         Columbus         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0000         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020         0.0020	Port of Catoos	a, OK 74015							ootn mit		
Line         Acterial No.         Description         Description         Quantity         Weight         Customer Part         Customer P0         Ship Date           40285183-0020         7016721207M         1/2         72 X 120 A35 TEMPERPASS STPMLEL         B         9,801.000         Customer Part         Customer P0         Ship Date         0/5/23:2017           Heat No.         8705783         Vendor STEEL DYNAMICS COLUMBUS         DoMESTIC         MRI STEEL DYNAMICS COLUMBUS         Material Manufactured in the USA           Produced from Coll         Cathom Manufactured in Coll         DoMESTIC         MRI STEEL DYNAMICS COLUMBUS         Material Mon.         0,0250         0,0040         0,0030         0,0077         0,0050           0,0500         0,8400         0,0150         0,0200         0,0200         0,0040         0,0030         0,0077         0,0050           0,0500         0,8400         0,0150         0,0200         0,0200         0,0040         0,0030         0,0077         0,0050           0,0500         0,8400         0,1500         0,0200         0,0040         0,0030         0,0077         0,0050           MBI Coll Ro.         178750407         Material Kong         Material Kong         0         NA         0         NA		a, OK 74015							oben vite		
Declar       Material No.       Description       Description       Duamity       Weight       Customer Part       Op/23/2017         Vender       1/2       7.2       X 120       A35       TEMPERPASS STPMLPL       8       9.801.600       Customer Part       Customer Part       Op/23/2017         Vender       Strept       Vender       STEEL       DVMAMICS COLUMBUS       Mill STEEL DVMAMICS COLUMBUS       Method and Manufactured in the UBA         Cobine 0       0.0000       0.0020       0.0020       0.0000       0.0020       0.0000       0.0000       0.0020       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000		a, OK 74015		1	•	H		56	USER VIE	4	
40283163.0020         7016721207M         1/2         7 2 X 120 A36 TEMPERPASS STPALPL         8         9.801.600         001.000         05/23.2017           Charmical Analysis DoMeSTIC         Mill STEEL DYNAMICS COLUMBUS         Meted and Manufactured in the USA           Fradet No. 8706783         Vendor STEEL DYNAMICS COLUMBUS         Mill STEEL DYNAMICS COLUMBUS         Meted and Manufactured in the USA           Cathon Manganese         Plosphorus         Sulphur         Silcon         Niekel         Chromiser         Mill STEEL DYNAMICS COLUMBUS         Meted and Manufactured in the USA           Cathon Manganese         Plosphorus         Sulphur         Silcon         Niekel         Chromiser         Meltylidemum         Berein         Capere         Aleminum         Tambus         Vandot         Calumbium         Nitragen         Tin           0.0600         0.9400         43337.000         41.35         O         NA         O         NA           62438.000         44521.000         39.20         O         O         NA         O         NA           Batch 0004777323         7 EA 8,576.400 LB         Batch 0004777332 7 EA 8,576.400 LB         Batch 0004777322 7 EA 8,576.400 LB         Disch 0004777322 7 EA 8,576.400 LB	S O L D	a, OK 74015			•	H Kar P 40	nsas City Warehou 1 New Century Pa		OULT THE	4	
Lineat No. 8705783       Vender STEEL DYNAMICS COLUMBUS       Chemical Analysis       Mail STEEL DYNAMICS COLUMBUS       Mailed and Manufactured is the USA         Cachen Marganese       Phosphorus       Sulphue       Silipon       Nickel       Chromium       Mini STEEL DYNAMICS COLUMBUS       Mailed and Manufactured is the USA         Cachen Marganese       Phosphorus       Sulphue       Silipon       Nickel       Chromium       Mini STEEL DYNAMICS COLUMBUS       Mailed and Manufactured is the USA         Cachen Marganese       Phosphorus       Sulphue       Silipon       Nickel       Chromium       Mini Streege       Auminum       Tamilum       Vandelium       Nickegen       Tin         0.0600       0.0200       0.0200       0.0200       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.00000       0.0000       0.000					•	H Kar P 40	nsas City Warehou 1 New Century Pa		OULN VIL	4	
Haat No.         B205733         Vendor         STEEL DYNAMICS         DOMESTIC         Mill         STEEL DYNAMICS         COLUMBUS         Mature and Manufacture in the USA           Produed from Cel	s 0 1 0 66031-111	27 Material No. 1			•	H Kau P 40 T NE Quantity	nsas City Warehou 1 New Century Pa W CENTURY KS Weight Custom	rkway		s Ship	
Produced from Coll           Carbon         Marganese         Phosphorus         Sulphur         Silicon         Nickel         Caromium         Matyludenum         Boren         Coper         Alaminum         Tamlum         Vanadium         Celumbium         Nitregen         Tin           0.0600         0.0150         0.0120         0.0200         0.0600         0.0200         0.0010         0.0026         0.0030         0.0040         Celumbium         Nitregen         Tin           Mil Coll No. 17/8750407           Tensile         Yind         Elong         Rckwl         Orain         Charpy         Charpy Dr         Charpy Sz         Temperature         Olsen           63149.000         45337.000         41.35         0         NA         0         NA         NA         Na         Disen         Disen         Na         Earth 0004777307         8 EA 9,801.600 L8         Batch 0004777327 7 EA 8,576.400 L8         Batch 0004777322 7 EA 8,576.400 L8         Batch 0004777322 7 EA 8,576.400 L8         Disch 0004777	S D T O 0 0 0 0 0 0 0 0 0 0 0 0 0	27 Material No. 1		A36 TEMPERPAI	ss stpmlpl	H Kau P 40 T NE Quantity	nsas City Warehou 1 New Century Pa W CENTURY KS Weight Custom	rkway		s Ship	
OLGOD         0.8400         0.0150         0.0200         0.0200         0.0600         0.0200         0.0001         0.1000         0.0250         0.0030         0.0030         0.0077         0.0050           Mechanical / Physical Properties           Mill Coll No.         178750407         Temale         Yield         Elong         Rckwl         Grain         Charpy         Charpy Dr         Charpy Sz         Temperature         Olsen           6314.8 000         45337.000         39.20         0         NA         NA         NA         Disen         State 0004777322         7 EA 5,576.400 LB         Batch 0004777324         7 EA 5,576.400 LB         Batch 0004777322         7 EA 5,576.400 LB         Batch 0004777324         7 EA 5,576.400 LB         Batch 0004777322         7 EA 5,576.400 LB         Batch 0004777324         7 EA 5,576.400 LB         Batch 0004777322         7 EA 5,576.400 LB         Batch 0004777324         7 EA 5,576.400 LB         Batch 0004777322         7 EA 5,576.400 LB         Charpe Carbon	S 0 1 0 66031-11 0 0 det 40285183-0020	27 Material No. 1 '701672320TM	1/2 72 X 120	1	Chemic	Quantity 8 al Analysis	Isas City Warehou New Century Pa W CENTURY KS Weight Custom 9,801.600	rkway ar Part	Customer PO	4 Ship 05/23	\$2017
Mill Coll Ro.         178750407           Tensile         Yield         Eong         Rckwl         Orain         Charpy         Charpy Dr.         Charpy Sz         Temperature         Otsen           63148.000         43537.000         41.35         39.20         0         NA         0         NA           Batch 0004777307         8 EA         9.901.600 LB         Batch 0004777312         7 EA         8,576.400 LB         Betch 0004777322         7 EA         5,576.400 LB	S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 Material No. 1 701672120TM 83 Vendor STE	1/2 72 X 120	.umaus .	Chemic DOME:	M Kai P 40 T NE O Quantity 8 sal Analysis STIC Mi	Isas City Warehou New Century Pa W CENTURY KS Weight Custom 9,801.600	rkway ar Part JOLUMBUS	Customer PO Motical and M	Ship 05/2: anufactured in the	52017
Tensile         Yield         Elong         Rckwl         Grain         Charpy         Charpy         Charpy Sz         Temparature         Olsen           63149.000         45337.000         45337.000         45337.000         39.20         0         NA         0         NA           62436.000         44521.000         39.20         0         NA         0         NA           Batch 0004777307         8 EA         9.801.600 L8         Batch 0004777312         7 EA         8.576.400 L8         Batch 0004777322         7 EA         8.576.400 L8           Batch 0004777323         7 EA         8.576.400 L8         Batch 0004777322         7 EA         8.576.400 L8         Batch 0004777322         7 EA         8.576.400 L8	S 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	27 Material No. 1 701672120TM 83 Vendor Sfe 84 Stose Phosphorus St	1/2 72 X 120 EEL DYNAMICS COU	.uMBUS . Nickel Chrom	Chemic DOME: nium Molyfide 1600 0.0	M Kai P 40 T NE Quantity 8 al Analysis STIC Mi num Boron	sass City Warehou 1 New Century Pa W CENTURY KS Weight Custom 9.801.600 I STEEL DYNAMICS C Copper Aluerinum	rkway er Part OLUMBUS TRanium Vaned	Customer PO Moted and M	Ship OS/21 anufactured in the n Nitrogen	1,2017
62436.000         44521.000         39.20         0         NA           Batch 0004777307         8 EA         9,501.600 LB         Batch 0004777312         7 EA         8,576.400 LB         Betch 0004777322         7 EA         8,576.400 LB           Batch 0004777323         7 EA         8,576.400 LB         Batch 0004777324         7 EA         8,576.400 LB         Betch 0004777322         7 EA         8,576.400 LB	S 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	27 Material No. 1 701672320TM 83 Vendor STE 8 84 80 00 0.0150 0.	1/2 72 X 120 EEL DYNAMICS COU	.UMBUS . Nickel Chrom 0.0400 0.0	Chemic DOMES nium Melybde 1600 0.0	Quantity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calentity 8 Calento	Isas City Warehou New Century Pe W CENTURY KS Weight Custom 9,801.600 I STEEL DYNAMICS C Copper Alxeninum 0.1000 0.0250	rkway er Part OLUMBUS TRanium Vaned	Customer PO Moted and M	Ship OS/21 anufactured in the n Nitrogen	1,2017
Batch 0004777323 7 EA 8,576.400 LB Batch 0004777324 7 EA 8,576.400 LB	S         0           D         66031-11:           Ordet         40285183-0020           Heast No.         B2057/           Produced from Cc         Carbon           0.0600         0.84           Mill Coll No.         171           Tensile         1	27 Material No. 1 701672120TM 83 Wendor STE 84 85 90 0.0150 0. 8760407 Yield	1/2 72 X 120 EEL DVNAMICS COU ulphut Silison 0.020 0.0200 Elong	.uMBUS . Nickel Chrom 0.0400 0.0 Mi	Chemic DOME nium Metybde 600 0.0 echanical / I	Quantity 8 Cluantity 8 Cluantity 8 Charpy Charpy Charpy	Isas City Warehou New Century Pe W CENTURY KS Weight Custom 9,801.000 N STEEL DYNAMICS C Copper Alveninum 0.1000 0.0250 rties Charpy Dr	rkway sr Part CRUMBUS Titanium Vanad 0.0030 0.0	Customer PO Metted and Mi Isrn Celumbiur 040 0.003	Ship O5/21 anufactured in the Mitrugen O 0.0077 0	12017 1484 7in .0050
	S 0 0 0 0 0 0 0 0 0 0 0 0 0	27 Material No. 1 701672120TM 83 Vender STE 84 85 Phosphorus St 80 0.0150 0. 8750407 Yield 45337.000	1/2 72 X 120 EEL DYNAMICS COL ulphur Silicon 0.0220 0.0200 Elong 41.35	.uMBUS . Nickel Chrom 0.0400 0.0 Mi	Chemic DOME nium Metybde 600 0.0 echanical / I	Quantity B Analysis STIC Mi anum Boron 2000 0.0001 Physical Prope Charpy 0	Isas City Warehou New Century Ps Weight Custom 9.801.800 STEEL DYNAMICS ( Copper Alveninum 0.1000 0.0250 rties Charpy Dr NA	rkway sr Part CRUMBUS Titanium Vanad 0.0030 0.0	Customer PO Metted and Mi Isrn Celumbiur 040 0.003	Ship O5/21 anufactured in the Mitrugen O 0.0077 0	12017 1484 7in .0050
	S 0 0 0 0 0 0 0 0 0 0 0 0 0	27 Material No. 1 701672120TM 83 Vendor Sfe 84 85 86 86 87 80 80 80 80 80 80 80 80 80 80	1/2 72 X 120 22EL DYNAMICS COL ulphur Silicon 0.0220 0.0200 Elong 41.35 39.20 1.600 L8	Niekel Chrom D.0400 0.0 Mr Rokwi Batch	Chemic DOMES nium Nelvlude 600 0.0 echanical / I Grain	M Kai P 40 T 0 Countity 8 al Analysis STIC Mi STIC Mi STIC Mi Physical Prope Cherpy 0 0 7 EA 8,576.4	INSUME CONTRACTOR OF CONTRACTO	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	ship OS/2: anufactured in the m Nitroyan 0 0.0077 0 erature	12017 1484 7in .0050
	S         0           D         66031-111           Order         40285163-0020           Produced from Co         Carbon Mangane           0.0600         0.84           Mill Coll No. 17/1         Tensile           63149.000         62436.000           Batch 000         Batch 000	27 Material No. 1 701672120TM 83 Vendor Sfe 84 85 86 86 87 80 80 80 80 80 80 80 80 80 80	1/2 72 X 120 22EL DYNAMICS COL ulphur Silicon 0.0220 0.0200 Elong 41.35 39.20 1.600 L8	Niokel Chron D.0400 0.0 Mi Rokwi Biston Batch	Chemic DOME: nium Network 600 0.0 echanical / I Grain 1 0004777312 1 0004777312	H         Kai           P         40           V         40           V         40           V         0	INSES City Warehou I New Century Pa Weight Custom 9,801.600 I STEEL DYNAMICS ( Copper Alueninum 0,1000 0.0250 rtties Charpy Dr NA NA NA NA	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	Ship OS/2: anufactured in the Mitrogen 0 0.0077 0 eventure 76-400 LB	12017 1484 7in .0050
	S         0           D         66031-111           Order         40285163-0020           Produced from Co         Carbon Mangane           0.0600         0.84           Mill Coll No. 17/1         Tensile           63149.000         62436.000           Batch 000         Batch 000	27 Material No. 1 701672120TM 83 Vendor Sfe 84 85 86 Phosphorus St 80 0,0150 0, 8750407 Vield 45337,000 44521,000 94777307 8 EA 9,50 94777302 7 EA 6,57	1/2 72 X 120 22EL DYNAMICS COL ulphur Silicon 0.0220 0.0200 Elong 41.35 39.20 1.600 L8	Niokel Chron D.0400 0.0 Mi Rekwi Bister Batch	Chemic DOME: nium Network 600 0.0 echanical / I Grain 1 0004777312 1 0004777312	H         Kai           P         40           V         8           Mail Analysis         5110           Mail Analysis         5110           Mail Analysis         60           NEW         0.0001           Physical Prope         Charpy           0         0           7         54         8,576.4           7         EA         8,576.4	INSES City Warehou I New Century Pa Weight Custom 9,801.600 I STEEL DYNAMICS ( Copper Alueninum 0,1000 0.0250 rtties Charpy Dr NA NA NA NA	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	Ship OS/2: anufactured in the Mitrogen 0 0.0077 0 eventure 76-400 LB	12017 1484 7in .0050
	S         0           D         66031-11           Order         40285163-0020           Produced from Coc         Carbon Mangane           Carbon Mangane         0.0600         0.84           Mil Coll No. 17/I         Tensile         63149.000           63436.000         Batch 000         Batch 000	27 Material No. 1 701672120TM 83 Vendor Sfe 84 85 86 Phosphorus St 80 0,0150 0, 8750407 Vield 45337,000 44521,000 94777307 8 EA 9,50 94777302 7 EA 6,57	1/2 72 X 120 22EL DYNAMICS COL ulphur Silicon 0.0220 0.0200 Elong 41.35 39.20 1.600 L8	Niokel Chron D.0400 0.0 Mi Rekwi Bister Batch	Chemic DOME: nium Network 600 0.0 echanical / I Grain 1 0004777312 1 0004777312	H         Kai           P         40           V         8           Mail Analysis         5110           Mail Analysis         5110           Mail Analysis         60           NEW         0.0001           Physical Prope         Charpy           0         0           7         54         8,576.4           7         EA         8,576.4	INSES City Warehou I New Century Pa Weight Custom 9,801.600 I STEEL DYNAMICS ( Copper Alueninum 0,1000 0.0250 rtties Charpy Dr NA NA NA NA	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	Ship OS/2: anufactured in the Mitrogen 0 0.0077 0 eventure 76-400 LB	12017 1484 7in .0050
	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 701672320TM 83 Vender STE 84 85 Phospharus St 80 0.0150 0. 8750407 Yield 45337.000 44521.000 94777302 8 EA 9,90	1/2 72 X 120 PEL DYNAMICS COL ulphur Silison (0020 0.0200 Elong 41.35 39.20 1.600 LB 6.400 LB	Niokel Chron D.0400 0.0 Mi Rekwi Bister Batch	Chemic DOME: nium Ntelybde 6600 0.0 echanical / H Grain 0004777312 0004777324	Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity B Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditity Auditi	Isas City Warehou New Century KS Weight Custom 9.801.600 I STEEL DYNAMICS ( Copper Alveninum 0.1000 0.0250 rtles Charpy Dr NA NA 20 LB 20 LB	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	Ship OS/2: anufactured in the Mitrogen 0 0.0077 0 eventure 76-400 LB	12017 1484 7in .0050
	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 701672320TM 83 Vender STE 84 85 Phospharus St 80 0.0150 0. 8750407 Yield 45337.000 44521.000 94777302 8 EA 9,90	1/2 72 X 120 PEL DYNAMICS COL ulphur Silison (0020 0.0200 Elong 41.35 39.20 1.600 LB 6.400 LB	Niokel Chron D.0400 0.0 Mi Rekwi Bister Batch	Chemic DOME: nium Ntelybde 6600 0.0 echanical / H Grain 0004777312 0004777324	Quantity 8 al Analysis STIC Mi num Beren 1200 0.0001 Physicsl Prope Charpy 0 7 EA 8,576.4 7 EA 8,676.4	Isas City Warehou New Century Ps Weight Custom 9.801.600 I STEEL DYNAMICS ( Copper Alveninum 0.1000 0.0250 rtles Charpy Dr NA NA 20 LB 20 LB	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	Ship OS/2: anufactured in the Mitrogen 0 0.0077 0 eventure 76-400 LB	12017 1484 7in .0050
	S         0           0         66031-11.           Order         40285163-0020           Heat No.         82057           Produced from Cc         Carbon Mangane           0.6600         0.644           Mill Coll No.         171           Tensile         63148.000           63448.000         63436.000           Batch 000         Batch 000	27 701672320TM 83 Vender STE 84 85 Phospharus St 80 0.0150 0. 8750407 Yield 45337.000 44521.000 94777302 8 EA 9,90	1/2 72 X 120 EEL DYNAMICS COL ulphur Silicon 0.0220 0.0200 Elong 41.36 39.20 1.600 L9 6.400 L9	Nickel Chron D.0400 0.0 Mi Rokwi Batch	Chemic DOME: nium Ntelybde 6600 0.0 echanical / H Grain 0004777312 0004777324	Quantity 8 al Analysis STIC Mi num Beren 1200 0.0001 Physicsl Prope Charpy 0 7 EA 8,576.4 7 EA 8,676.4	Isas City Warehou New Century Ps Weight Custom 9.801.600 I STEEL DYNAMICS ( Copper Alveninum 0.1000 0.0250 rtles Charpy Dr NA NA 20 LB 20 LB	rkway ar Part COLUMBUS Titamium Vaned 0.0030 0.0 Charpy Sz	Customer PO Metted and M larm Columbiu 040 0.003 Temp	Ship OS/2: anufactured in the Mitrogen 0 0.0077 0 eventure 76-400 LB	12017 1484 7in .0050

Figure C-12. 1-ft 4-in. x 1-ft x ¹/₂-in. Steel Plate, Test Nos. HMDBR-2 and HMDBR-3 (Item No. c6)

4

NUCOR

a,

**Mill Certification** 

09/02/2020

MTR#:458890-2 Lot #:360001474020 ONE NUCOR WAY BOURBONNAIS, IL 60914 US 815 937-3131 Fax: 815 939-5599

Sold To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

. 1

Ship To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

Elongation	in 8" (%	): 14.5		Bend Te	est:Pass			Weight Percent Variance (%): -4.00			
Yield (PSI)		0		Tensile	(PSI): 992	00		Average	Deformation	on Height (IN): 0.036	l .
Other Test Re	sults										
0.34	0.90	0.015	0.043	0.198	0.18	0.23	0.06	0.40	0.012	0.002	324
C (%)	Mn (%	) P(%)	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	V (%)	Nb (%)	
Melt Country	of Origi	n : United Stat	tes			an a	ing	M	elting Dat	e: 08/07/2020	
hereby cartify that	the materia	I described herein ha	s been manufac	tured in accorda	ince with the spe	ecifications and s	tandards listed a				
Descr	ription								Number		
Original								Origi	nal Item		
Product Co	untry Drigin	United States	5	1				Qty Shi	oped EA	567	
Production		08/12/2020	2012		- 10			Qty Ship	bed LBS	22725	
Desci	ription	Rebar #4/13 10000 lbs	mm A615 (	ar 60/AASH	ITO M31 6	0' 0" [720"]	6001-	Custome		1	
E	30L #	BOL-567414	N					Load #	458890		
	Size	#4					112 - 112	Heat #	3600014740		
(	Grade	A615 Gr 60/A	ASHTO M	31					Lot #	360001474020	
Product (	Group	Rebar						P	roduct #	2110206	
Custom	er PO	MN-3748						Sales	Order #	36013225 - 1.31	

Comments:

All manufacturing processes of the steel materials in this product, including melting, have occurred within the United States. Products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

mach Sprint Zachary Sprintz, Chief Metallurgist

Page 1 of 1

Figure C-13. #4 Rebar, 2 ft –  $6\frac{3}{4}$  in. Total Unbent Length, Test Nos. HMDBR-2 and HMDBR-3 (Item No. d1)

	CTIONS) (PR GUN PA		ATERIAL TEST REPORT	<u>г</u>					Page 1/1
GD GERDAU	CUSTOMER SHIP TO SIMCOTE INC 1645 RED ROCK RD SAINT PAUL, MN 55119 USA				GRADE 60 (420) LENGTH		APE / SIZE aar / #4 (13MM) WEIGHT	HEA	DOCUMENT ID 0000037412
1678 RED ROCK ROAD	SALES ORDER	-			60'00"		36,834 LB	6215	<b>1622/</b> 02
SAINT PAUL, MN 55119 USA	8328518/000010	CUSTO	MER MATERIAL N°		SPECIFICATION / DA ASTM A615/A615M-16	ATE or REVI	SION	_	
CUSTOMER PURCHASE ORDER NUMBER MN-3734	BILL OF 1332-000	LADING 0076333	DATE 12/16/2019						
CHEMICAL COMPOSITION C Mn P 0.46 0.99 0.011	\$ \$i % 0.011 0.22	Cu % 0.32 0.	Ni Cr % %	Mc % 0.02		¥ 0.004	Nb % 0.001		
MECHANICAL PROPERTIES YSI MI 68681 47		UTS PSI 109077	UTS MPa 752		G/L Inch 8,000		G/L mm 203.2	-	
MECHANICAL PROPERTIES Elong. Bend 11.20 OI						2			
GEOMETRIC CHARACTERISTICS % Light Def Hgt Def Gap Inch Inch 4.75 0.033 0.135	DefSpace Inch 0.327								
COMMENTS / NOTES Material 100% melted and rolled in the USA. Manu and hot rolling, have been performed at Gerdau St. 1 cast billets. Silicon Killed (deoxidized) steel. No we liquid at ambient temperatures during processing or provided by Gerdau-St. Paul Mill without the express report shall not be reproduced except in full, withou responsible for the inability of this material to meet: Roll batch 62151622/02 roll date 11/26/2019	eld repairmen performed. Ste while in Gerdau St. Paul Mill ssed written consent of Gerda t the expressed written concern	ad, Saint Paul, Minnesota, U el not exposed to mercury o s possession. Any modifica	ISA. All product produced to any liquid alloy which is tion to this certification as	from stra	nd				
The above figures are certif specified requirements. We 10204 3.1.	ied chemical and physical tes ld repair has not been perform	t records as contained in the ned on this material. This ma	permanent records of comp aterial, including the billets,	any. We was melt	certify that these data are ted and manufactured in	e correct and i the USA. CM	in compliance with TR complies with EN		
Macko					mr		BRANDENBURG TY ASSURANCE MGR.		
Phone: (409) 267-1071 En	ail: Bhaskar.Yalamanchili@gerd:	au.com			Phone: (651) 731-5662	Email: Alea.Br	randenburg@gerdau.com		

Figure C-14. #4 Rebar, 97 ft -1 in. Total Length, 1 ft -6 in. Minimum Lap Length, Test Nos. HMDBR-2 and HMDBR-3 (Item No. d2)

8



**Mill Certification** 

09/02/2020

MTR#:458890-2 Lot #:360001474020 ONE NUCOR WAY BOURBONNAIS, IL 60914 US 815 937-3131 Fax: 815 939-5599

Sold To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

.

Ship To: SIMCOTE INC 1645 RED ROCK RD ST PAUL, MN 55119 US

Elongation	in 8" (%)	: 14.5		Bend Te	est : Pass			Weight Percent Variance (%): -4.00		
ther Test Re Yield (PSI)		)		Tensile	(PSI): 992	00		Average	Deformation	on Height (IN): 0.036
0.34	0.90	0.015	0.043	0.198	0.18	0.23	0.06	0.40	0.012	0.002
C (%)	Mn (%	· · · · · ·	S (%)	Si (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	V (%)	Nb (%)
lelt Country	of Origi	n : United Stat	es					M	elting Dat	e: 08/07/2020
nereby cartily that	the maleria	described herein ha	s been manufac	tured in accorda	nce with the spe	cifications and s	standards listed a	bove and that it	satisfies those	requirements.
	iption		st	12.0		20			Number	
Original		any)						Origi	nal Item	
Product Co	untry   Drigin	United States	6	84				Qty Shi	pped EA	567
Production		08/12/2020			Qty Ship	ped LBS	22725			
Desci	ription	Rebar #4/13 10000 lbs	nm A615 (	Gr 60/AASH	Custom	er Part #				
E	30L #	BOL-567414						8 55	Load #	458890
	Size	#4			1				Heat #	3600014740
(	Grade	A615 Gr 60/	ASHTO N	131					Lot #	360001474020
Product (	Group	Rebar		0.84			-	P	roduct #	2110206
Custom	er PO	MN-3748						Sales	Order #	36013225 - 1.31

Comments:

All manufacturing processes of the steel materials in this product, including melting, have occurred within the United States. Products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

mach Sprint Zachary Sprintz, Chief Metallurgist

Page 1 of 1

Figure C-15. #4 Rebar, 2 ft - 8 in. Total Unbent Length, Test Nos. HMDBR-2 and HMDBR-3 (Item No. d3)



# Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	016
Description:	HMDBR2

### Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number:		Air Content (%):	
Truck Number:		Unit Weight (Ib/ft³):	
Load Volume (yd3):		Air Temp (°F):	
Mold Date:	01/21/2021	Mix Temp (°F):	
Molded By:		Min Temp (°F):	
Initial Cure Method:		MaxTemp (°F):	

### Laboratory Test Data (ASTM C39)

Sample Number:	016	016		
Set Number:	001	002		
Specimen Number:	1	1		
Age:	8	8		
Length (in):	8	12		
Diameter (in):	4.01	5.98		
Area (in²):	12.63	28.09		
Test Date:	01/29/2021	01/29/2021		
Break Type:	5	6		
Max Load (lbf):	62,108	110,695		
Strength (psi):	4,920	3,940		
Spec Strength (psi):				

Remarks: Average 8-day Compressive Strength (psi):			4,43	0	Date received: 01/29/2021 Curing: ☑Standard ☐Field ASTM C511	
						Submitted by:
$\times \times$	以人	1			$\sim$	Distribution:
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 1/29/21

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

# Figure C-16. Reinforced Concrete, Test Nos. HMDBR-2 and HMDBR-3 (Item No. e1), Page 1 of 2



# Concrete Sample Test Report Cylinder Compressive Strength

Page 1 of 1

Project Name:	Midwest Roadside Safety - Misc Testing	
Project Number:	00110546.00	
Client:	Midwest Roadside Safety Facility	
Location:	MNPD	
Sample:	017	
Description:	HMDBR2	

### Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:			Property	Test Result
Mix Name:			Slump (in):	
Ticket Number:			Air Content (%):	
Truck Number:			Unit Weight (Ib/ft ³ ):	
Load Volume (yd ³ ):			Air Temp (°F):	
Mold Date:	01/21/2021		Mix Temp ("F):	
Molded By:			Min Temp (°F):	
Initial Cure Method:			MaxTemp (°F):	
Laboratory Te	est Data (	ASTM C39)		
Set Number:	1	2		
	-	2		
Specimen Number:	1	1		
Age:	14	14		

Specimen Number:	1			
Age:	14	14		
Length (in):	12	12		
Diameter (in):	5.99	6		
Area (in²):	28.18	28.27		
Test Date:	02/04/2021	02/04/2021		
Break Type:	5	1		
Max Load (lbf):	116,988	122,711		
Strength (psi):	4,150	4,340		
Spec Strength (psi):				

Remarks:						Date received: 02/04/2021	
Average 14	erage 14-day Compressive Strength (psi): 4,250				Curing: Standard Field ASTM C511		
						Submitted by:	
$\times \times$	四人	1			$\frown$	Distribution:	
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 2/4/21	

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure C-17. Reinforced Concrete Continued, Test Nos. HMDBR-2 and HMDBR-3 (Item No. e1), Page 2 of 2

				ÿ							ï
. s										•	
							( <b>1</b> )				
				CALVAN ROCK				·	÷		
•	24		,								
	4.		CERTI	FICATE OF CO	MPLIANCE		•		3	6	
•			FOR	HOT DIP GAL	ANIZING						
			21								
. 1	CUSTOMER:		FAS	TENAL		×.					
]	DATE:		' <u>Oct</u>	ober 4, 2019				•			
]	PO#:		040	044155							
	ORDER#:		. 480	010485						×	
	OND LINT.		<u> 400</u>	010405							
(	conforms to :	specifi	cation AST	dip galvanizin M A-153. The	following s	izes an	nd lot nu	mbers			
	conforms to s comply with of ASTM F232	specifi the cos 29 spec	cation AST ating, worl cifications	dip galvanizin M A-153. The kmanship, finis . The hot dip y conducted in a	following s sh, and app galvanizing	izes ai earan is RO	nd lot nu ce requir HS comp	mbers ement liant.	ş .		• •
o o T S	conforms to s comply with of ASTM F232 The galyanizi 355F. HEAT# PAR	specifi the cos 29 spec ing pro	leation AST ating, worl cifications ocess was DESCRIPTI	M A-153. The kmanship, finis . The hot dip s conducted in a	following s sh, and app galvanizing temperatu PIE	izes ai earan is RO	nd lot nu ce requir HS comp	mbers ement liant. )F to MIL	ş .		
) ) 3 1 1 1 1	conforms to s comply with of ASTM F232 The galyanizi 355F. HEAT# PAR 10621520 1039	specifi the cos 29 spec ing pro T# 93684	lcation AST ating, worl cifications ocess was DESCRIPTI 5/8-11 x 2 A	M A-153. The kmanship, finis . The hot dip g conducted in a ON 	following s sh, and app galvanizing temperatu temperatu PIE plt 48,	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	ş .	•	
) ) 3 1 1 1 1	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 Chis certifica	specifi the cos 29 spec ing pro T# 93684 tion in	ication AST ating, worl cifications occess was DESCRIPTI 5/8-11 x 2 A	M A-153. The smanship, finis . The hot dip j conducted in a ON	following s sh, and app galvanizing temperatu PIE plt 48, g other thar	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81			· .
) ) 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica not dip galva	specifi the co 29 specing pro T# 93684 tion in nizing	leation AST ating, worl cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta	M A-153. The cmanship, finis. The hot dip g conducted in a ON 307 Guard Rail Bo applies anything	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	ş .	•	• •
2 2 3 3 1 2 1 7 7	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica not dip galva	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81			
( ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica not dip galva	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	3.		
	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1036 This certifica 10t dip galvan This product AZZ Galvanizing	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81			• •
	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica not dip galva	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81			
	Conforms to s Comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certification tot dip galvanizing AZZ Galvanizing Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conformation Conforma	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	3 ·		
	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica 10t dip galvan This product AZZ Galvanizing Cargy Doering Office Manager	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	3 ·		
	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica 10t dip galvan This product AZZ Galvanizing Cargy Doering Office Manager	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	3 .		
	conforms to s comply with of ASTM F232 The galvanizi 355F. HEAT# PAR 10621520 1039 This certifica 10t dip galvan This product AZZ Galvanizing Cargy Doering Office Manager	specifi the cos 29 specing pro T# 93684 tion in nizing was ga	leation AST ating, work cifications occess was DESCRIPTI 5/8-11 x 2 A no way in as it perta alvanized i	M A-153. The cmanship, finis. The hot dip p conducted in a ON 307 Guard Rail Bo applies anything ins to your or	following s sh, and app galvanizing temperatu PIE blt 48, g other thar der.	izes an earan is RO re ran CES 525	nd lot nu ce requir HS comp ge of 830 .LOT# 848773-1	mbers ement liant. )F to MIL 3 5.81	3 · ·		· .

.

.

.

.

Figure C-18. 5%-in. – 11 UNC, 2-in. Long Guardrail Bolt, Test Nos. HMDBR-2 and HMDBR-3 (Item No. f1)

		CERTIFIC	CATE OF						
			126 MILL S DCKFORD, 815-968-	IL 6110	1				
CUSTOMER NAME:	TRINITY IND	USTRIES							
CUSTOMER PO:	210315								
					DA		PER #: 06	9858 9/23/2020	
LOT#: 32756-B									
SPECIFICATION:	ASTM A307,	GRADE A MI	LD CARBOI	N STEEL	BOLTS				
TENSILE: SPEC:	60,000 psi*m	'n	RESULTS;		71,000				
HARDNESS:	100 max				68,300 70.40				
*Pounds Per Square Inch.					70.20				
COATING: ASTM SP UNIVERSAL GALVANI		F-2329 HOT 756-B	DIP GALV/	NIZE					
	CHE	MICAL COM	POSITION						
MILL	GRADE	HEAT#	С	Ma	þ	S	Si		
MILL CHARTER STEEL	GRADE	HEAT#	C .10	<u>Mn</u> ,44	P .007	S .011	5i .080		
	1010								
CHARTER STEEL	1010 PTION: ' X 1.25" GU/	10653380	.10						
CHARTER STEEL QUANTITY AND DESCRI 39,967 PCS 5/8'	1010 PTION: ' X 1.25" GUA	10653380 RD RAIL BO	.10 LT	.44	.007	.011	.080	FACILITY IN	
CHARTER STEEL QUANTITY AND DESCRI 39,967 PCS 5/8 P/N 336(	1010 PTION: ' X 1.25" GUA DG ABOVE BOLTS HA THE MATERIAL U	10653380 RD RAIL BO VE BEEN MANU SED WAS MELT	.10 LT JFACTURED E	,44 Y ROCKFO	.007 DRD BOLT A ED IN THE L	.011 AND STEE JSA. WE	.080 EL AT OUR I	CERIFY THAT	
CHARTER STEEL QUANTITY AND DESCRI 39,967 PCS 5/8 P/N 3360 WE HEREBY CERTIFY THE ROCKFORD, ILLINOIS, USA.	1010 PTION: ' X 1.25" GUA DG ABOVE BOLTS HA THE MATERIAL U RESENTATION OF DDUCT QUALITY /	10653380 RD RAIL BO VE BEEN MANU SED WAS MELT NFORMATION SSURE THAT A	.10 LT TED AND MAN PROVIDED BY	,44 Y ROCKFO UFACTUR THE MAT	.007 DRD BOLT A ED IN THE L ERIALS SUF	.011 ND STEE JSA. WE PPLIER, A	.080 ELATOURI FURTHER	CERIFY THAT DUR PROCEDURES	
CHARTER STEEL QUANTITY AND DESCRI 39,967 PCS 5/8' P/N 3360 WE HEREBY CERTIFY THE ROCKFORD, ILLINOIS, USA, THIS DATA IS A TRUE REPF FOR THE CONTROL OF PRO	1010 PTION: ' X 1.25" GUA DG ABOVE BOLTS HA THE MATERIAL U RESENTATION OF DDUCT QUALITY /	10653380 RD RAIL BO VE BEEN MANU SED WAS MELT NFORMATION SSURE THAT A	.10 LT TED AND MAN PROVIDED BY	,44 Y ROCKFO UFACTUR THE MAT	.007 DRD BOLT A ED IN THE L ERIALS SUF	.011 ND STEE JSA. WE PPLIER, A	.080 ELATOURI FURTHER	CERIFY THAT DUR PROCEDURES	
CHARTER STEEL QUANTITY AND DESCRI 39,967 PCS 5/8' P/N 3360 WE HEREBY CERTIFY THE ROCKFORD, ILLINOIS, USA, THIS DATA IS A TRUE REPP FOR THE CONTROL OF PRO TESTS, PROCESS, AND INS STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS	1010 PTION: ' X 1.25" GUA OG ABOVE BOLTS HA THE MATERIAL U RESENTATION OF DOUCT QUALITY A PECTION REQUIR	10653380 RD RAIL BO VE BEEN MANU SED WAS MELT NFORMATION SSURE THAT A	.10 LT IFACTURED B TED AND MAN PROVIDED BY ALL ITEMS FUR BOVE SPECIFI	,44 Y ROCKFO UFACTUR THE MAT THE MAT RNISHED C CATION.	.007 DRD BOLT A ED IN THE L ERIALS SUF IN THIS ORI MUC. C	.011 NND STEE JSA. WE PPLIER, A DER MEE	.080 EL AT OUR FURTHER ND THAT C	CERIFY THAT DUR PROCEDURES	
CHARTER STEEL QUANTITY AND DESCRI 39,967 PCS 5/8 P/N 3360 WE HEREBY CERTIFY THE ROCKFORD, ILLINOIS, USA. THIS DATA IS A TRUE REPF FOR THE CONTROL OF PRI TESTS, PROCESS, AND INS STATE OF ILLINOIS COUNTY OF WINNEBAGO	1010 PTION: ' X 1.25" GUA OG ABOVE BOLTS HA THE MATERIAL U RESENTATION OF DOUCT QUALITY A PECTION REQUIR	10653380 RD RAIL BO VE BEEN MANU SED WAS MELT NFORMATION SSURE THAT A REMENT PER AR	.10 LT IFACTURED B TED AND MAN PROVIDED BY ALL ITEMS FUE BOVE SPECIFI	,44 Y ROCKFO UFACTUR THE MAT THE MAT RNISHED C CATION.	.007 DRD BOLT A ED IN THE L ERIALS SUF IN THIS ORI MUC. C	.011 NND STEE JSA. WE PPLIER, A DER MEE	.080 EL AT OUR FURTHER ND THAT C	CERIFY THAT DUR PROCEDURES ED ALL APPLICABLE	

Figure C-19. ⁵/₈-in. – 11 UNC, 1¹/₄-in. Long Guardrail Bolt, Test Nos. HMDBR-2 and HMDBR-3 (Item No. f2)

mmmmm



Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

CERTIFICATE OF CONFORMANCE

For: MIDWEST ROADSIDE SAFETY FACIL PB Invoice#: 136936 Cust PO#: HMDBR-2/3 Date: 11/19/2020 Shipped: 11/23/2020

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Description:	7/8	X 8 GAL	V ASTM	F3125 (	GRADE A325 HE	AVY HEX	BOLT		
Heat#: 7506	8447		Base S	teel: 4	4140	Diam:	7/8		
Source: KREH	IER ST	EEL CO I	LLC		Proof Loa	d: 39	,300 LH	BF	
<b>C :</b> .410	Mn:	.880	Р:	.011	Hardness:	262	HBN		
<b>S</b> : .022	Si:	.240	Ni:	.080	Tensile:	57,660	LBF	RA:	.00%
<b>Cr:</b> 1.010	Mo:	.170	Cu:	.220	Yield:	0		Elon:	.00%
<b>Pb:</b> .000	v :	.002	Cb:	.000	Sample Le	ngth:	0		
N: .000			CE:	.6635	Charpy:			CVN Temp:	

LOT#18734

#### Product:

ASTM F1554G105 ALL THRD ROD ASTM A449 ALL THRD RODS

#### Nuts:

ASTM A563DH HVY HX

# ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Coatings:

Other: ALL ITEMS MELTED & MANUFACTURED IN THE USA

ويستدون فالمستيعين By: Certification Department Quality Assurance Dane McKinnon

Figure C-20. ⁷/₈-in. Dia. UNC Heavy Hex Head Bolt, Test Nos. HMDBR-2 and HMDBR-3 (Item No. f3)

#### L#20200831 P#1133185 C#120403777 Inv#384753 R#21-153

# SSF INDUSTRIAL CO., LIMITED

MILL TEST CERTIFICATION Certification Conforms to EN1024 3.1B

Supplier: Buyer:	SSF INDUSTRIAL CO.,LIMITED FASTENAL COMPANY PURCHASING				Certificate No.: Invoice No.:		000826 FASTCO2020083101			
Product De Product Siz	NAMES OF A DESCRIPTION OF	5/8 USS F/W GALV			Shipped Q'ty:	6 MPCS				
Quality Acceptance: ISO 32		269		Lot No.:	20200831					
RAW MATE	RIAL	scrap								
Element	С	Si	Mn	S	Р	Ni	Cr	Cu		

SURFACE			
Test Item	Spec.	Standard	Remark
Appearance	Flawless	1	ок

	Standa	rd (mm)	Sampling	Dement	
Test Item	Min	Max		Remark	Test Result
INNER DIAMETER (d1)	17.3	18.23	80	ок	
OUTTER DIAMETER (d2)	44.28	45.21	80	ок	
THICKNESS (h)	2.75	4.06	80	ок	

MACHANICAL PROPERTIES		According to :	ISO 6507	
Test Item	Spec.	Sampling	Remark	Test Result
HARDNESS (HRC/HV)	HV10 140 ~ HV10 250	10	ок	HV10 145 ~ HV10 150

COATING	According to : ISO 4042			
Test Item	Spec.	Sampling	Remark	Test Result
Plating thickness	min.3 µm	5	ок	4.573 μm - 5.328 μm
SST	2 hours no white corrosion and 12 hours no red rust	5	ок	ок

We hereby certify that all the above material were manufactured, sampled, tested, and inspected in accordance with the relevant specification and any supplementary requirements or other requirements designated in the purchase order and was found to meet those requirements.

Inspector: QC Chen

Inspc. Date: 2020.11.16

Far end on Sebay of SSF INDUSTRIAL CO., LIMITED ~ 晚 ~

Figure C-21. 5%-in. Dia. Plain USS Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item No. g1)



Wrought Washer Mfg., Inc 2100 South Bay Street Milwaukee, WI 53207 Tel 414-744-0771

# **Material Certification**

Customer:	Fastenal Company		
Ship To:	Fastenal - Edwardsville		
Customer PO No:	210233008		
Vrought Washer Mfg., Inc. Order No:	10347		
Order Line:	1		
Wrought Washer Mfg., Inc. Part No:	017285		
Customer Part No:	0156025		
Shipped Qty:	13,500		
Heat:	193903		
Heat Code:	193903		
Grade:	1035		
Grade:	1035 Melted and rolled in the USA		
Grade:	Melted and rolled in the USA	Material Specification	Actual
Grade: Note:	Melted and rolled in the USA		Actual 0.34 %
Grade: Note: Material Specification	Melted and rolled in the USA	Material Specification	
Grade: Note: Material Specification	Melted and rolled in the USA	Material Specification	0.34 %
Grade: Note: Material Specification	Melted and rolled in the USA	Material Specification C Mn	0.34 %
Grade: Note: Material Specification	Melted and rolled in the USA	Material Specification C Mn P	0.34 % 0.83 % 0.011 %
Grade: Note: Material Specification	Melted and rolled in the USA	Material Specification C Mn P S	0.34 % 0.83 % 0.011 % 0.001 %
Grade: Note: Material Specification	Melted and rolled in the USA	Material Specification C Mn P S Si	0.34 % 0.83 % 0.011 % 0.001 % 0.277 %

Plex 11/3/2020 3:40 PM / AHess.ww

1 of 1

Figure C-22. ⁵/₈-in. Dia. Hardened Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item No. g2)

P#33187 C#17089822 L#1844804 7/8" Dia. Plain Round Washer

# CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morg ADDRESS: Chang'an N	an Ltd Iorth Road, Wuyuan Tow	REPORT DATE ang, China	: 23/4/	2019	
			MFG LOT NUM	IBER: 1844	4804
SAMPLING PLAN PER AS		70000/20	PO NUMBER:	170089	9822
SIZE: USS 7/8 HDO HEADMARKS: NO MARK		7200PCS	PART NO:	32	3187
DIMENSIONAL INSPECTI	ONS	SPECIFIC	CATION: ASTM I	B18.21.1-201	1
CHARACTERISTICS	SPECIFIED		ACTUAL RES		
*******		***********	*****	and the state of the	
APPEARANCE	ASTM F844		PASSED		
OUTSIDE DIA	2.243-2.280		2.246-2.254	10	U
INSIDE DIA	0.931-0.968		0.956-0.965	10	~
THICKNESS	0.136-0.192		0.136-0.157	10	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RES		at ress.
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020	in 8	0
ALL TESTS IN ACCOR ASTM SPECIFICATION	RDANCE WITH THE M	METHODS PRES		E APPLICA REPRESEN	
INFORMATION PROVI			and the second se	STING LAI	BORATORY.
ISO 9001:2015 SGS Certi	ficate # HK04/0105	18	MONDAN	<b>`</b>	
		台检	验专用章	)	
		QUAN (SIGNAT	ITY CONTROL URE OF OK.	LAB MGF	R. )

Figure C-23. ⁷/₈-in. Dia. Plain Round Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item No. g3)

FNL Part#0156040

PRODUCT CERTIFICATION CERTIFICATION NUMBER

217853

		PRODUCT STATED BELOW			
		FASTENAL/EDWARDSVILL 9911 WOODEND ROAD EDWARDSVILLE, KS 66 UISA	111		
R#0156040	C#210227501 L	USA D9597 H#209197 R#:	21-176 1 1/4"	Dia. Hard	lened Washer
Manu	Prestige Part:	1-1/4" F436 H/D GALV 210227501 B227760 A0248543 1050	Lot:	CF436 GRAD D9597 209197 .53 .63 .008 .002	
1.1	SPECIFICATIONS		TEST RESULTS		
	HARDNESS: TEST MET HRC 40 – 45 CHECKED TO ASTM CHECKED AFTER GA	F606	HARDNESS: HRC 41 - 4	43	
ĵ	PLATING: TEST METH HOT DIP GALV TO AND ASTM 153 CLA	ASTM F-2329	PLATING: 0.0020" - 0.	.0022"	
Chemistry This produc (ATF 1594 Material w This produ Sampling P The test re This test re Materiale Product is ( No weld re	is as reported from raw material certifi t was produced under an IATT 16949 9 Certification No: 800334. as melted and manufactured in the U.S tt was manufactured in Warren. Michig t conforms to all requirements for war- Nan per P.S.I W.I. # 54.18.015. suits only apply to the items tested. sport must not be reproduced except in	.A. an U.S.A. hers as produced according to A.S.T.M. F-43/	<ul> <li>■ 0.4504/0.047 (* 51.5 EEE 200501)</li> </ul>		SCHUBERT Assurance Manager
Econ	Information Syster	n 09/03/20	08:26	RFOR	PAGE 1 of 1

23513 Groesbeck Highway Warren, Michigan 48089 (586)773-2700 * Fax (586)773-2298 www.PrestigeStamping.com

Prestige

LLC

Stamping,

Figure C-24. 1¹/₄-in. Dia. Hardened Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item No. g4)

Wrought Washer Mfg., Inc 1901 Chicory Road Mount Pleasant, WI 53403 H#105594 P#156034 C#210231732 R#21-176 1" D Date: Certification To: Fastenal Company 9911 Woodend Road Edwardsville, KS 66111 USA	Certificate Of Conformance Dia. Hardened Flat Washer
Part Info	
PO No Revision: Customer Part No: 0156034 Part Name: 1" F436 S MARK HDG Quantity: 3,150 Supplier: Master Unit No(s): M035723	Customer Part Rev Level: Customer PO No: 210231732 Line No: 2
Piece List: Tracking No(s): S400883 Wrought Washer Mfg., Inc. Part No: 017315 Heat/Lot No(s): 105594 Shipper No: WW11572 Job No(s): 7005 hT Order 3036	Revision:
Supplier Heat No Nucor Steel 105594	Attachment 105594
We hereby certify that all statutory requirements as to American Produ purchase applicable to the transaction have been complied with and the transaction have been completed with and transaction have b	
Ta	nd there
	Signature Date

Figure C-25. 1-in. Dia. Hardened Round Washer, Test Nos. HMDBR-2 and HMDBR-3 (Item No. g5)

	INFACTORING CORPORATION
	i Streut Igan 49224
SINGE 1927 www.dpskornut.com P: 517.629 8	3855 = F: 517.629.3535
•	
TRINITY HWY PRODUCTS LLC 55 Printed: 10/8/ October 6, 2	2020 3:39:27 PM 2020
550 E ROBB AVENUE	
LIMA, OH 45801	
PRODUCT MATERIAL CERTIFICATION	
CUSTOMER PART NUMBER : 003340G INVOICE:	522623
CUSTOMER P.O. NUMBER : 207374 B2	
LOT NUMBER: 20-35-006 DESCRIPTION: 5/8 GRD RAIL NUT	.031
DATE: Dec 11, 2019 QUANTITY: 27,000	
HEAT NUMBER: 10635460 MATERIAL SUPPLIER: CHARTER STEEL	
MATERIAL: STEEL - C1010	
We certify the product above was manufactured at DECKER MANUFACTURING CORPORATION from the raw material and that said product is certified to be manufactured, randomly sampled, tested and/or inspecte conforms to applicable specifications. We additionally certify that said raw material was domestically manufactured the United States of America and that said raw material was manufactured free of mercury contamination.	ed and
The items were processed under the Decker Quality Manual. The current revision is dated January 12, 200 No welding was performed.	5
This document accurately represents values and statements provided by our suppliers accredited testing far original metallurgical test report shall be retained on file by DECKER MANUFACTURING CORPORATION to period of not less than (10) years.	cility. The for a
CHEMICAL ANALYSIS BY MATERIAL SUPPLIER	
CARBON: 0.090 PHOSPHOROUS: 0.007	
MANGANESE : 0.470 SULFUR : 0.009	
DECKER MANUFACTURING CORPORA	TION
Russel L. Wilson Quality Assurance Manager	
The above results parts in only to the items tested. This report shall not be reproduced except in full without the approval of this testing	facility.

Figure C-26. 5%-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No. h1)

### H#100890711 P#38207 C#180202299 R#21-181 5/8"-11 UNC Heavy Hex Nut

	UCC			LOT NO. 435042A					Post Office 8 Saint Joe, In: Telephone 26	diana 46785
	STENER	DIVISIO	N						relephone ze	50/55/-1000
USTOMER N	TENAL COMPANY			COR ORDER		1 45 4 4				
	T SERIAL #			ST PART #						
	T ISSUE DATE		CO.	SI PARI #	50207					
ATE SHIPP		7/29/20	C11	STOMER P.	0 - 1	84202200		12 BUS	17	
	AB SAMPLER:				0. # 1	00202299		DH	1	
	AB SAMPLER:							110	1 6	
UCOR PART		TITY LOT N		CRIPTION				(4) (4)	11 12	
1000K PART	NO QUAN		42A 5/8-			0		111	11 8	
	E DATE 2/05			NUT HOT				n	1	
ANOFACION	LE DATE 27057	20	HEA	NOT HOT	DIF GAL			Circuit	41.4 1	
-CHEMISTR	v	MAT	ERTAL GRA	DE -1026						
ATERIAL	HEAT					ANALYSIS) BY M	MATERT	AL SUPPLIE	R	
UMBER	NUMBER	C MN			SI				TEEL - NEBRASKA	
RM032619	100890711		1 .005							25
	AL PROPERTIES									
URFACE	CORE	PROOF L		TE		TRENGTH				
	HARDNESS	33900	LBS			WEDGE				
(R30N)	(RC)			(LBS)	ki i	STRESS (PSI)				
1/A	30.4	PASS	1 1	A/A		N/A				
1/A	28.1	PASS		A/A		N/A				
N/A	30.3	PASS		N/A		N/A				
1/A	26.4	PASS		A/A		N/A				
A/A	28.9	PASS		N/A		N/A				
VERAGE VA	LUES FROM TES	TS								
	28.8									
RODUCTION	LOT SIZE	200000 PCS								
-VISUAL I	INSPECTION IN	ACCORDANCE W	ITH ASTM	4563-15			160	PCS. SAMP	LED LOT PAS	SED
						G PERFORMED IN				
	219 2. 0.0					5. 0.00722				
		10.351 10.	0.00616	11. 0.	00430	12. 0.00243	13.	0.00242	14. 0.00253	
15. 0.004										
VERAGE TH	ICKNESS FROM	15 TESTS .	00364							
	ATMENT - AUST		AUFNOUE							
-HEAT TRE	ATMENT - AUST	ENTITZED, UT	L QUENCHE	U & TEMPE	RED (MI	N OUU DEG FJ				
DINENCTO	NS PER ASHE	10 2 4-2010								
	ACTERISTIC	#SAMPLES TE	STER	MINIMUM	MAXI	мим				
	ACTERISTIC		SIED	1.18		num 1.193				
Thick	Contraction contraction	32		0.60		0.607				
THICK	Iness	36		0.00	12	0.007				

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTH SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISHUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252,225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUNT TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCE EXCEPT IN FULL. CERTIFICATION FORMAT MEETS EN10204 3.1



MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/21

NUCOR FASTENER A DIVISION OF NUCOR COMPORATION 0 ANCE SPERVISOR QUALITY ASSUR

Page 1 of 1

Figure C-27. ⁵/₈-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No. h2)

### H#F19080206 P#36767 C#210199067 R#21-176 1-1/4"-7 UNC Heavy Hex Nut NINGBO DONGXIN HIGH-STRENGTH NUT CO., LTD TEST CERTIFICATE (FN 10204.3.1)

	(1	11 10204.5.1)		
Customer:	Production Lot No.:	1910DX100-1339-1	Issue Date:	2020/4/22
FASTENAL COMPANY PURCHASING	Add.of Customer:	4730 SERVICE DRIVEWINONA MN 55897	Inv. No.:	20167DX100-871
PORCHASING	Description:	ASTM A563 GR.DH HEAVY HEX NUT	Manu. Date:	2019/11/29
	Description:	HDG With Blue Wax	Manu. Qty:	1680
	PO No.:	210199067	Shipped Qty:	1620
	Manufacturer:	Ningbo Dongxin High-strength Nut	Marking:	DX,DH
	Address:	Xijingtang,Luotuo,Ningbo,China	LOT No.:	1217DX100-1339-1
	Tel./Fax:	0574-86533751/86531751	Sample Plan:	ASME B18.18- 2017(Category.2)/AST M F1470-2019
	Size:	1 1/4"-7	Part No.:	36767
	Chem	ical Composition	•	•

### **Chemical Composition**

Material type:	45#	Φ34	4		Heat No.:			F19	080206
Chemical Analysis %	С	Mn	Р	5	Si	Cr	Ni	Мо	Others
(items)	0.18-0.58	MIN0.57	MAX0.048	MAX0.058	1	/	1	1	/
Result	0.45	0.60	0.022	0.007	0.27	0.064	0.019	0.007	/
Cert #:	F9080265			Material supplier:			QUZhou YuanLi Metal		

		1	Dimensions			
DIM.SPEC: ASME B18.2	.2-2015	INSF	ECTOR & SAMPER: M	DATE:	2020/4/22	
ltem	Specified	Result	Sampling	Rej.	Remark	Specification
Widthacrossflats(inch)	1.938 - 2.002	1.952 - 1.961	3	0	ОК	
Widthacrossangle(inch)	2.209 - 2.309	2.239 - 2.242	3	0	ОК	
Height(inch)	1.187 - 1.251	1.228 - 1.232	3	0	OK	
Minor diameter(inch)	1.119 - 1.147	1.125 - 1.128	13	0	OK	
Thread-2B	Thread GO gauge	OK	13	0	OK	ASME B1.1-03
Thread-28	Thread NO GO gauge	ОК	13	0	OK	ASIVIE D1.1-05
Appearance	OK	ОК	18	0	OK	ASTM F812-17
FIM	MAX 0.03	0.005 - 0.009	3	0	OK	ASME B18.2.2-2015

### **Mechanical Properties**

MEC,SPEC:ASTM A563-	15 INSP	ECTOR & SAMPLER: M	s.Li	DATE:	2020/4/22
ITEM	Test Method	SPECIFIED	Sampling	Result	JUG
CoreHardness HRC	ASTM F606/F606M-19	24 - 38	3	26 - 29	ОК
Proof loading KSI	ASTM F606/F606M-19	175	2	179	ОК

			Plating							
Plating Spec: ASTM F2329-15 Inspector & Sampler : Ms Li Date: 2020/4/22										
ITEM	Test Method	SPECIFIED	Sampling	Result	JUG					
HDG With Blue Wax	ASTM B487 -2017	50.8 um Average	13	57 - 96 um	ок					

MACROETCH									
Division	Surface Condition	Random Condition	Center Segregation	Test method					

Figure C-28. 1¹/₄-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No. h3), Page 1 of 2

Spec.	52	R2	C3	ASTM E381-2017
Results	52	R2	C3	ASTIVI E581-2017

#### **REMARK:**

*This inspection certificate is for responsibility under test sample only.

*Quench at880°C about 90 minutes, Tempering at550°C about 120 minutes

*This test report shall not be reproduced except in full without written approval of the LAB.

*The samples tested CONFORM to the fastener specification & standards above.

*Dimensional Testing is done at Ningbo Dongxin High-Strength Nut Co.,Ltd

*The documentation for chemical analysis is provided by the suppliers.

*Parts are manufactured and tested according to above specification and compliance with order, we certify that this is a true

representation of information provided by manufacturer and laboratory.

*The products supplied are in compliance with all the requirements of the order. *The MTR's are in compliance to DIN EN 10204 3.1.

Jan Yingmin

QA: Yan Yingjun Ningbo Dongxin High-Strength Nut Co.,Ltd

Figure C-29. 1¹/₄-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No. h3), Page 2 of 2

		c	ERTIFIED MA	TERIAL TEST REPO	RT					Page 1 / 1
GÐ GERDAU		LASALLE PLANT		INC		GRADE 1045M23FJZN		PE / SIZE d Bar / 1 1/4"		DOCUMEN D: 0000044194
US-ML-ST PAUL	325 CIVIC RO LA SALLE,IL USA		I UNYTIT PERU,IL 6 USA			LENGTH 24'10"		WEIGHT 32,772 LB		AT / BATCH 152533/05
1678 RED ROCK ROAD SAINT PAUL, MN 55119 USA	SALES ORD 8563324/0000			MER MATERIAL N° C1.2500 B		SPECIFICATION / DAT REVISION ASTM A29-16	E or			
CUSTOMER PURCHASE ORDER NUMBER P008976	1	BILL OF LADIN 1332-0000080652		DATE 05/05/2020		ASTM A576-17				
CHEMICAL COMPOSITION C Ma B 0.44 0.74 0.009	§ 0.025	Şi 0.22 0	Çu l %.30 0	Ni Cr % .08 0.19		40 Şn 023 0.009	¥ 0.030	ND 0.000	AJ 0.005	
HARDENABILITY DI A255 Inch 1.61										
report shall not be reproduced except in full responsible for the inability of this material Roll back 6215253/05 roll date 3/19/2020 Macro SI RI CI ASTM E381-17, Reduction Quality Program Manual Rev. 10, Implemen	o meet specific a Fine Grain FG 5 Ration 24.4	applications. -8	or Geldau SL		. radi M				1. M	
						Deb	DEB	BRA L. KARIES ary Public-Minnes Innission Epires Jan 31 E Ko	SCH sota	isch
	ed requirements.	Weld repair has not				company. We certify that t , including the billets, was	melted and	i manufactured in t		
Mask	QUAL	KAR YALAMANCHILI					QUAL	BRANDENBURG		
Phone: (409) 267-10	1 Email: Bhaskar.)	r'alamanchili@gerdau.co	m			Phone: (651) 731-5662	Email: A	lea.Brandenburg@ger	dau.com	

Figure C-30. 1-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No. h4)

	UCC		LOT NO. 417521B		Post Office Box 6100 Saint Joe, Indiana 46785
		DIVISION			Telephone 260/337-1600
CUSTOMER NO					
	HTON-BEST/CA		NUCOR ORDER #	175251	
TEST REPORT		FB594019	CUST PART #	175092	
	ISSUE DATE	3/04/19	and a second second second second second	100000000	(79 mm mm)
DATE SHIPPE		12/08/19	CUSTOMER P.O. #	U70154	DH
NAME OF LAB		DEANN WATSON, L			
			T REPORT ********	******	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
NUCOR PART			DESCRIPTION		
175667		900 417521B	7/8-9 GR DH HV H HEX NUT HDG/GREE		n
ANUFACTURE	DATE 12/04/1	.8	HEX NUT HDG/GREE	N LUBE	Challen
-CHEMISTRY		MATERIA	L GRADE -1045L		
MATERIAL	HEAT		OMPOSITION (WT% HE	AT ANALYSTS) BY M	ATERTAL SUPPLIER
NUMBER	NUMBER	C MN	P S SI	AT ANALISIST DI H	NUCOR STEEL - NEBRASKA
RM032885	100894559	.44 .67	.007 .017 .18		HOCON STELL HEDRASKA
	1000000000				
-MECHANICA	L PROPERTIES	IN ACCORDANCE W	ITH ASTM A563-15		
SURFACE	CORE	PROOF LOAD		E STRENGTH	
ARDNESS	HARDNESS	69300 LBS		EG-WEDGE	
(R30N)	(RC)		(LBS)	STRESS (PSI)	
N/A	30.3	PASS	N/A	N/A	
1/A	31.7	PASS	N/A	N/A	
N/A	31.9	PASS	N/A	N/A	
N/A	29.4	PASS	N/A	N/A	
N/A	29.6	PASS	NZA	N/A	
	UES FROM TEST		10.00		
	30.6				
RODUCTION	LOT SIZE	118000 PCS			
		CCORDANCE WITH			80 PCS. SAMPLED LOT PASSED
			F2329-15 - GALVANI		
1. 0.0025				7 5. 0.00223	6. 0.00354 7. 0.00267
8. 0.0028		400 10. 0.0	0300 11. 0.0032	2 12. 0.00398	13. 0.00294 14. 0.00261
15. 0.0026		-			
AVERAGE THI	UKNESS FROM 1	5 TESTS .0030	2		
UPAT TOPA	THENT AUGT				
ICAT IKEA	AUSTE	MILITED! OIL QU	ENCHED & TEMPERED	CUTH DOD DEG E)	
-DIMENSTON	S PER ASHE BI	8 2 6-2010			
		#SAMPLES TESTED	MINIMUM M	AXIMUM	
	Across Corner		1.616	1.623	
Thickr		32	0.858	0.879	
Interi	1035		0.050	0.017	
ALL TESTS	ARE IN ACCORD	ANCE WITH THE L	ATEST REVISIONS OF	THE METHODS PRES	CRIBED IN THE APPLICABLE SAE AND ASTM
SPECIFICAT	IONS. THE SA	MPLES TESTED CO	NFORM TO THE SPECI	FICATIONS AS DESC	RIBED/LISTED ABOVE AND WERE MANUFACTURED
FREE OF ME	RCURY CONTAMI	NATION. NO INT	ENTIONAL ADDITIONS	OF BISMUTH, SELE	NIUM, TELLURIUM, OR LEAD WERE USED IN TH
THE STEEL	WAS MELTED AN	D MANUFACTURED	IN THE U.S.A. AND	THE PRODUCT WAS M	ANUFACTURED AND TESTED IN THE U.S. A
PRODUCT CO	MPLIES WITH I	FARS 252.225-70	14. WE CERTIFY TH	AT THIS DATA IS A	TRUE REPRESENTATION OF INFORMATION
PROVIDED B	Y THE MATERIA	L SUPPLIER AND	OUR TESTING LABORA	TORY. THIS CERTIN	NIOW, TELLORIDH, OK LEAD WERE USED IN TH ANUFACTURED AND TESTED IN THE U.S.A. TRUE REPRESENTATION OF INFORMATION FIED MATERIAL TEST REPORT RELATES ONLY FULL. CERTIFICATION FORMAT MEETS ENLO204
TO THE ITE	MS LISTED ON	THIS DOCUMENT A	NU MAY NUT BE REPR	UDUCED EXCEPT IN I	FULL. CERTIFICATION FORMAT MEETS EN10204
-					
7			NUCOR FAST	ENER	
			A DIVISION	OF NUCOR COMPORA	TION O
Loca	REDITED		-	- /	
ACC	REDITED		12.	211	
			- 10	1 der	
MECHANICAL	FASTENER		00	, and	
CERTIFICAT	E NO. A2LA 0 DATE 12/31/	139.01	BOB HAYWOO QUALITY AS	DURANCE SUPERVISO	R
EAFIRATION	DATE 12/31/	.,	QUALITY AS	SUPARE SPERVISU	
			Page 1 of	1	

H#100894559 R#21-166 7/8" Dia. UNC Heavy Hex Nut

Figure C-31. 7/8-in. Dia. Heavy Hex Nut, Test Nos. HMDBR-2 and HMDBR-3 (Item No. h5)

# Appendix D. Vehicle Center of Gravity Determination

M = -I = I \/	Test Name:		VIN:	1	RGT6ES31	4223
Model Year	: <u>2014</u> Make: _	Dodge	Model:		Ram	
Vehicle CG	Determination					
				Vertical CG		
Vehicle Equi			(lb)	(in.)	(lb-in.)	
+	Unballasted Truck (Curb)		5104	28.786056	146924.03	
+	Hub		19	15	285	
+	Brake activation cylinder &	frame	7	29	203	
+	Pneumatic tank (Nitrogen)		30	26	780	
+	Strobe/Brake Battery		5	28	140	
+	Brake Receiver/Wires		5	52.25	261.25	
+	CG Plate including DAQ		30	31.375	941.25	
-	Battery		-39	43	-1677	
-	Oil		-12	20	-240	
-	Interior		-105	42	-4410	
-	Fuel		-166	18	-2988	
-	Coolant		-16	30	-480	
-	Washer fluid		-4	34	-136	
+	Water Ballast (In Fuel Tank		130	17	2210	
+	Onboard Supplemental Bat	tery	5	28	140	
					0	
	ed equipment to vehicle, (-) is remov				0 141953.53	
Vehicle Dim	ensions for C.G. Calculatio					
Wheel Base	:: <u>140.25</u> in.	Front Tra			in.	
		Rear Tra	ck Width:	67.625	in.	
Center of G	ravity 2270P MAS					
<b>T</b> 1 1 1 1 1				Test Inertial		
Test Inertial	Weight (lb) 5000 ±	110		5001		1.
Longitudinal	Weight (lb)         5000 ±           CG (in.)         63 ±	110		5001 59.986953		1. -3.0130
Longitudinal Lateral CG	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA	110 4		5001 59.986953 -0.196436		1. -3.0130 N/
Longitudinal Lateral CG ( Vertical CG	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c	110 4 r greater		5001 59.986953		1. -3.0130 N/
Longitudinal Lateral CG Vertical CG Note: Long. CG	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c           a is measured from front axle of test	110 4 r greater vehicle		5001 59.986953 -0.196436 28.43		1. -3.0130 N/
Longitudinal Lateral CG Vertical CG Note: Long. CG	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c	110 4 r greater vehicle	(passenge	5001 59.986953 -0.196436 28.43		1. -3.0130 N/
Longitudinal Lateral CG Vertical CG Note: Long. CG	Weight (lb)       5000 ±         CG (in.)       63 ±         (in.)       NA         (in.)       28 c         S is measured from front axle of test         G measured from centerline - positive	110 4 r greater vehicle	(passenge	5001 59.986953 -0.196436 28.43 r) side	TIAL WEIGH	1. -3.0130 N/ 0.4305
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C	Weight (lb)       5000 ±         CG (in.)       63 ±         (in.)       NA         (in.)       28 c         B is measured from front axle of test       G measured from centerline - positive         GHT (lb.)       CHT (lb.)	110 4 r greater vehicle	(passenge	5001 59.986953 -0.196436 28.43 r) side	TIAL WEIGH	1./ -3.0130 N/ 0.4305 T (Ib.)
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C CURB WEIG	Weight (lb)       5000 ±         CG (in.)       63 ±         (in.)       NA         (in.)       28 c         B is measured from front axle of test         G measured from centerline - positive         GHT (lb.)         Left       Right	110 4 r greater vehicle	(passenger	5001 59.986953 -0.196436 28.43 r) side TEST INER	TIAL WEIGH	1./ -3.0130 N/ 0.4305 <b>T (Ib.)</b> Right
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C CURB WEIG	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c           is measured from front axle of test         G           G measured from centerline - positive         SHT (lb.)           Left         Right           1497         1435	110 4 r greater vehicle	(passenge	5001 59.986953 -0.196436 28.43 r) side TEST INER Front	TIAL WEIGH Left 1456	1./ -3.0130 N/ 0.4305 <b>T (Ib.)</b> Right 1406
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C CURB WEIG	Weight (lb)       5000 ±         CG (in.)       63 ±         (in.)       NA         (in.)       28 c         B is measured from front axle of test         G measured from centerline - positive         GHT (lb.)         Left       Right	110 4 r greater vehicle	(passenge	5001 59.986953 -0.196436 28.43 r) side TEST INER	TIAL WEIGH	1./ -3.0130 N/ 0.4305 <b>T (Ib.)</b> Right
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C CURB WEIG Front Rear	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c           a is measured from front axle of test         G           G measured from centerline - positive         SHT (lb.)           Left         Right           1497         1435           1085         1087	110 4 r greater vehicle	(passenge	5001 59.986953 -0.196436 28.43 r) side <b>TEST INER</b> Front Rear	<b>TIAL WEIGH</b> Left 1456 1059	1.1 -3.0130 N/ 0.4305 <b>T (Ib.)</b> Right 1406 1080
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C CURB WEIG Front Rear FRONT	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c           a is measured from front axle of test         G           G measured from centerline - positiv         SHT (lb.)           Left         Right           1497         1435           1085         1087           2932         lb	110 4 r greater vehicle	(passenger	5001 59.986953 -0.196436 28.43 r) side <b>TEST INER</b> Front Rear FRONT	TIAL WEIGH Left 1456 1059 2862	Right 1406 1080
Longitudinal Lateral CG ( Vertical CG Note: Long. CG Note: Lateral C CURB WEIG Front Rear	Weight (lb)         5000 ±           CG (in.)         63 ±           (in.)         NA           (in.)         28 c           a is measured from front axle of test         G           G measured from centerline - positive         SHT (lb.)           Left         Right           1497         1435           1085         1087	110 4 r greater vehicle	(passenger	5001 59.986953 -0.196436 28.43 r) side <b>TEST INER</b> Front Rear	TIAL WEIGH Left 1456 1059 2862 2139	1.1 -3.0130 N/ 0.4305 <b>T (Ib.)</b> Right 1406 1080

Figure D-1. Vehicle Mass Distribution, Test No. HMDBR-1

Model Year:	2016	Test Name: Make:	Hyundai	VIN: Model:		Accent	979226
wouer rear.	2010		пушиат	Model.		Accent	
Vehicle CG	Determina	ation			M/sisht		
					Weight		
	Vehicle E		)		(lb)	7	
	+	Unballasted C	ar (Curb)		2497	x0x	
	+	Hub		fra 100 a	19		
	+	Brake activatio		Irame	7 30		
	+	Pneumatic tar Strobe/Brake			5		
	+ +	Brake Receive			5	***	
	+	CG Plate inclu			18		
	-	Battery			-36		
	-	Oil			-2	***	
	-	Interior			-66		
	-	Fuel			-8		
	-	Coolant			-6	aun	
	-	Washer fluid			-4		
	+	Water Ballast	(In Fuel Tank	()			
	+	Onboard Supp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			***	
						~	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~	~~~	
	Note: (+) is a	added equipment to Estir	o vehicle, (-) is re mated Total V			ehicle	
Vehicle Dim			mated Total V			ehicle	
Vehicle Dim Wheel Base:	ensions fo	Estir	mated Total V tions			ehicle	_
	ensions fo	Estir or C.G. Calculat	mated Total V tions Front Tra	Veight (Ib)	2459]	_
Wheel Base:	ensions fo	Estir or C.G. Calculat in.	mated Total V tions Front Tra	Veight (Ib)	2459 59.0] in.	_
Wheel Base: Roof Height:	ensions fo 101.0 56.375	Estir or C.G. Calculat in. in.	mated Total W tions Front Tra Rear Tra	Veight (lb) ck Width: ck Width:	2459 59.0 59.5	in. in.	
Wheel Base: Roof Height: Center of Gr	ensions fo 101.0 56.375 ravity	Estir or C.G. Calculat in. in. 1100C MAS	mated Total V tions Front Tra Rear Tra SH Targets	Veight (lb) ck Width: ck Width:	2459 59.0 59.5 Fest Inertia	in. in.	
Wheel Base: Roof Height: Center of Gr Test Inertial V	101.0 56.375 ravity Weight (Ib)	Estir or C.G. Calculat in. in. in. in. 	mated Total V tions Front Tra Rear Tra SH Targets ± 55	Veight (lb) ck Width: ck Width:	2459 59.0 59.5 Fest Inertia 2453	in. in.	33.
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal (101.0 56.375 7avity Weight (lb) CG (in.)	Estir or C.G. Calculat in. in. 1100C MAS 2420 : 39 :	mated Total V tions Front Tra Rear Tra SH Targets ± 55	Veight (lb) ck Width: ck Width:	2459 59.0 59.5 Fest Inertia 2453 39.033	in. in.	33.0 0.03
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal (Lateral CG (i	ravity Weight (Ib) CG (in.)	Estir or C.G. Calculat in. in. in. in. 	mated Total V tions Front Tra Rear Tra SH Targets ± 55	Veight (lb) ck Width: ck Width:	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954	in. in.	33.0 0.03 N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG	ravity Veight (Ib) CG (in.) (in.)	Estir or C.G. Calculat in. in. 1100C MAS 2420 : 	mated Total W tions Front Tra Rear Tra SH Targets ± 55 ± 4	Veight (lb) ck Width: ck Width:	2459 59.0 59.5 Fest Inertia 2453 39.033	in. in.	33.0 0.03 N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG Note: Long. CG	ravity Neight (lb) CG (in.) in.) is measured	Estir or C.G. Calculat in. in. in. 	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (lb) ck Width: ck Width:	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827	in. in.	33.0 0.03 N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal (Lateral CG (i Vertical CG Note: Long. CG Note: Lateral C	ravity Neight (Ib) CG (in.) in.) G measured f	Estir or C.G. Calculat in. in. in. 	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side	in. in. al	33. 0.03 N/ N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG Note: Long. CG	ravity Neight (Ib) CG (in.) in.) G measured f	Estir or C.G. Calculat in. in. in. 	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side	in. in.	33. 0.03 N/ N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal (Lateral CG (i Vertical CG Note: Long. CG Note: Lateral C	ravity Neight (Ib) CG (in.) in.) G measured f	Estir or C.G. Calculat in. in. in. 	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side	in. in. al	33. 0.03 N/ N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal (Lateral CG (i Vertical CG Note: Long. CG Note: Lateral C	ravity Veight (Ib) CG (in.) in.) (in.) is measured f HT (Ib)	Estir or C.G. Calculat in. in. 	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (lb)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side	in. in. al	33. 0.03 N/ N/
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG Note: Long. CG Note: Lateral C CURB WEIG	ravity Veight (Ib) CG (in.) in.) (in.) G measured f HT (Ib) Left	Estir or C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA from front axle of t from centerline - pos	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side TEST INEF	in. in. al RTIAL WEIC	Right
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG Note: Long. CG Note: Lateral C CURB WEIG Front	ravity Neight (Ib) CG (in.) in.) is measured G measured f HT (Ib) Left 763	Estir or C.G. Calculat in. in. 1100C MAS 2420 : 39 : NA MA from front axle of t from centerline - pos Right 781	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side TEST INEF Front	in. in. al RTIAL WEIC Left 773	33. 0.03 N/ N/ BHT (Ib) Right 732
Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal (Lateral CG (i Vertical CG Note: Long. CG Note: Lateral C CURB WEIG Front Rear	tensions for 101.0 56.375 Tavity Weight (Ib) CG (in.) in.) (in.) G measured for HT (Ib) Left 763 516	Estin	tions Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2459 59.0 59.5 Fest Inertia 2453 39.033 -0.954 21.827 nger) side TEST INEF Front Rear	in. in. al RTIAL WEIC 	33.0 0.033 N/ N/ BHT (Ib) Right 732 455

Figure D-2. Vehicle Mass Distribution, Test No. HMDBR-2

			HMDBR-3	VIN:	Statistic of the second states	R6KG2FS50	/0000
Model Ye	ear: 2015	Make:	Dodge	Model:		Ram 1500	
Vehicle C	G Determination	n					
				Weight	Vertical CG	Vertical M	
Vehicle Ec	quipment			(lb)	(in.)	(lb-in.)	
+	Unballasted :	Truck (Curb)		4963	28.480128	141346.88	
+	Hub			19	15	285	
+	Brake activat	tion cylinder 8	k frame	7	28	196	
+	Pneumatic ta	ank (Nitrogen)		30	25 1/2	765	
+	Strobe/Brake	Battery		4	26	104	
+	Brake Receiv			5	52 1/4	261.25	
+	CG Plate inc			50	29 5/8	1481.25	
-	Battery	<u> </u>		-46	43	-1978	
-	Oil			-9	19	-171	
-	Interior			-89	34	-3026	
-	Fuel			-154	18	-2772	
-	Coolant			-1	31	-31	
_	Washer fluid			o	35	0	
+		t (In Fuel Tan	k)	218	18	3924	
+		oplemental Ba		4	26	104	
	Onboard Oup		litery	-	20	0	
						0	
	dded equipment to ve						
		Estimated Tot	tal Weight (lb) Location (in.)	5001]	140489.38	
Vahiala D	I	Estimated Tot Vertical CG	tal Weight (lb) Location (in.)	5001]	140469.36	
	imensions for C	Estimated Tot Vertical CG . G. Calculati	tal Weight (lb) Location (in.) ons	5001 28.0923	68		
Vehicle D Wheel Ba	imensions for C	Estimated Tot Vertical CG	tal Weight (lb) Location (in.) ons Front Tr	5001 28.0923 ack Width:		in.	
	imensions for C	Estimated Tot Vertical CG . G. Calculati	tal Weight (lb) Location (in.) ons Front Tr	5001 28.0923			
	imensions for C	Estimated Tot Vertical CG . G. Calculati	tal Weight (lb) Location (in.) ons Front Tr	5001 28.0923 ack Width:		in.	
Wheel Ba	imensions for C ise: <u>140.25</u> i Gravity	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr 6H Targets	5001 28.0923 ack Width:	68 Test Inertial	in. in.	Difference
Wheel Ba Center of Test Inertia	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb)	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	5001 28.0923 ack Width:	68	in. in.	1.0
Wheel Ba Center of Test Inertia	imensions for C ise: <u>140.25</u> i Gravity	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	5001 28.0923 ack Width:	68 Test Inertial	in. in.	1.0
Wheel Ba Center of Test Inertia	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.)	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	5001 28.0923 ack Width:	68 Test Inertia 5001	in. in.	1.0 2.03494
Wheel Ba Center of Test Inertia Longitudin	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.) G (in.)	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	5001 28.0923 ack Width:	68 Test Inertial 5001 65.034943	in. in.	1.0 2.0349 N/
Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.) G (in.)	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28	tal Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	5001 28.0923 ack Width:	68 Test Inertia 5001 65.034943 -0.564287	in. in.	1.0 2.0349 N/
Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CC Note: Long.	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.) G (in.) G (in.)	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertia 5001 65.034943 -0.564287 28.09	in. in.	1.0 2.03494 N/
Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera	imensions for C ise: 140.25 i Gravity al Weight (Ib) al CG (in.) G (in.) G (in.) CG is measured from	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side	in. in.	1.0 2.03494 N/ 0.09220
Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera	imensions for C ise: 140.25 i Gravity al Weight (lb) al CG (in.) G (in.) CG is measured from	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side	in. in.	1.0 2.03494 N/ 0.09220
Wheel Ba Center of Test Inertia Longitudin Lateral CC Vertical CC Note: Long. Note: Latera	imensions for C ise: <u>140.25</u> i al Weight (lb) al CG (in.) G (in.) CG is measured from I CG measured from	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side	in. in.	1.0 2.03494 N/ 0.09220 IT (Ib.)
Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long. Note: Latera CURB WE	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured from I CG measured from EIGHT (lb.) Left	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit Right	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side TEST INER	in. in. TIAL WEIGH	1.0 2.03494 N/ 0.09220 I T (Ib.) Right
Wheel Ba	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured from I CG measured from EIGHT (lb.) Left 1405	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit Right 1299	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side TEST INER Front	in. in. TIAL WEIGH Left 1403	1.1 2.0349 N/ 0.09220 IT (Ib.) Right 1279
Wheel Ba Center of Test Inertia Longitudin Lateral CG Vertical CG Note: Long. Note: Latera CURB WE	imensions for C ise: <u>140.25</u> i Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured from I CG measured from EIGHT (lb.) Left	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit Right	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side TEST INER	in. in. TIAL WEIGH	Right
Wheel Ba	imensions for C ise: 140.25 i Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured from I CG measured from	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit Right 1299 1143	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1403 1139	1.1 2.0349 N/ 0.09220 IT (Ib.) Right 1279 1180
Wheel Ba	imensions for C ise: 140.25 i Gravity al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured from I CG Measured from I CG Measured from I CG Measured from I CG Me	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit Right 1299 1143	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side TEST INER Front Rear FRONT	in. in. TIAL WEIGH Left 1403 1139 2682	1.1 2.0349 N/ 0.09220 IT (Ib.) Right 1279 1180 Ib
Wheel Ba	imensions for C ise: 140.25 i al Weight (lb) al CG (in.) G (in.) G (in.) CG is measured from CG is measured from CG is measured from CG is measured from CG is measure	Estimated Tot Vertical CG .G. Calculation in. 2270P MAS 5000 63 NA 28 n front axle of tes centerline - posit Right 1299 1143	tal Weight (Ib) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	5001 28.0923 ack Width: ack Width:	68 Test Inertial 5001 65.034943 -0.564287 28.09 r) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1403 1139 2682 2319	1.1 2.0349 N/ 0.09220 IT (Ib.) Right 1279 1180

Figure D-3. Vehicle Mass Distribution, Test No. HMDBR-3

Appendix E. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing documented herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria. In test no. HMDBR-2, the reference points for Data Set 1 were compromised, therefore, only Data Set 2 is reported.

odel Year:	20)14			Test Name: Make:)BR-1 dge			VIN: Model:	1C6F	RGT6ES3 Ram	14223
							FORMATIC						
1		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	AXA	AVA	• 7 A	Total A	Quert B	Directions
		Х	Y	Z	(in.)	(in.)	(in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	for
	POINT	(in.)	(in.)	(in.)	2 2		101-10	1.00			5.15	(G - 6)	Crush ^C
	1	53.0291 54.1597	-25.3022 -22.0314	-1.5337 -0.6596	47.8465 49.1658	-19.9607 -16.8396	-4.3417 -3.5364	5.1826 4.9939	5.3415 5.1918	2.8080 2.8768	7.9546 7.7569	5.8944 5.7632	X, Z X, Z
	3	54.1800	-17.8279	-0.4255	52.0978	-16.3540	-0.4939	2.0822	1.4739	0.0684	2.5520	2.0833	X, Z
TOE PAN - WHEEL WELL (X, Z)	4	53.6102	-13.7587	-0.1033	52.6650	-13.7435	0.6664	0.9452	0.0152	-0.7697	1.2190	0.9452	X
A N	5	52.8590	-9.5803	-0.9037	52.0602	-9.6804	-0.4456	0.7988	-0.1001	-0.4581	0.9263	0.7988	Х
TOE PAN HEEL WE (X, Z)	6	50.0257	-25.8895	1.9094	43.8374	-19.8553	-2.0859	6.1883	6.0342	3.9953	9.5220	7.3660	X, Z
Ĕξ	7	50.5023	-20.6689	1.6253	47.2457	-16.5190	0.8373	3.2566	4.1499	0.7880	5.3337	3.3506 1.2577	X, Z
-	9	50.1797 50.1785	-17.8856 -14.3001	1.7922 1.7882	48.9220 49.5469	-17.3889 -14.1244	2.4592 2.7454	1.2577 0.6316	0.4967	-0.6670 -0.9572	1.5078 1.1602	0.6316	X
	10	50.2136	-8.1151	1.7305	49.9940	-7.9556	2.4820	0.2196	0.1595	-0.7515	0.7990	0.2196	X
	11	46.3731	-26.7862	3.9706	42.2149	-22.9535	0.5195	4.1582	3.8327	3.4511	6.6250	3.4511	Z
	12	46.3869	-21.5636	3.8722	44.5974	-19.9557	3.8217	1.7895	1.6079	0.0505	2.4063	0.0505	Z
	13	46.5075	-17.7698	3.7895	46.1673	-17.3293	5.1339	0.3402	0.4405	-1.3444	1.4551	-1.3444	Z
	14	46.5966	-13.6154	3.7401	46.3492	-13.2395	4.9283	0.2474	0.3759	-1.1882	1.2706	-1.1882	Z
	15	46.4850	-7.7307	3.2036	46.1751	-7.4211	3.8473	0.3099	0.3096	-0.6437	0.7786	-0.6437	Z
	16	42.6016 42.5308	-26.5119	4.5170	41.2186	-25.0206	3.6887	1.3830	1.4913	0.8283	2.1961 1.7918	0.8283	Z
	17 18	42.5308	-22.0098 -18.3515	4.4352 4.4408	42.2278 42.3514	-21.4089 -17.8678	6.0958 6.3996	0.3030	0.6009	-1.6606 -1.9588	2.0238	-1.6606 -1.9588	Z
AN	19	42.5007	-14.2956	4.4487	42.2822	-13.8590	5.9222	0.2185	0.4366	-1.4735	1.5523	-1.4735	Z
FLOOR PAN (Z)	20	42.9118	-8.4392	4.2837	42.6261	-8.0576	4.8418	0.2857	0.3816	-0.5581	0.7340	-0.5581	Z
NOR (Z)	21	37.0412	-26.7185	4.6805	36.8686	-26.2076	6.6095	0.1726	0.5109	-1.9290	2.0030	-1.9290	Z
E I	22	37.0659	-22.9679	4.5272	36.9293	-22.5820	6.4597	0.1366	0.3859	-1.9325	1.9754	-1.9325	Z
_	23	36.9901	-18.5105	4.5297	36.7950	-18.1694	6.0791	0.1951	0.3411	-1.5494	1.5985	-1.5494	Z
	24 25	36.8314 37.0165	-14.9140 -9.1527	4.5409 4.5574	36.5716 36.7312	-14.5384 -8.8017	5.6246 4.9557	0.2598	0.3756	-1.0837 -0.3983	1.1760 0.6027	-1.0837 -0.3983	Z
	26	31.3433	-27.2233	4.6429	31.3035	-26.8892	5.8554	0.0398	0.3341	-1.2125	1.2583	-1.2125	Z
	27	31.2307	-23.1343	4.6326	31.1348	-22.8727	5.6113	0.0959	0.2616	-0.9787	1.0176	-0.9787	Z
	28	30.9909	-18.8114	4.5823	30.9075	-18.6232	5.3823	0.0834	0.1882	-0.8000	0.8261	-0.8000	Z
	29	30.9323	-15.4169	4.5742	30.7711	-15.1218	5.2141	0.1612	0.2951	-0.6399	0.7229	-0.6399	Z
	30	31.4084	-9.5828	4.6702	31.1688	-9.2825	4.9614 negative va	0.2396	0.3003	-0.2912	0.4821	-0.2912	Z
eforming in	nward towa	rd the occup	ant compart	ment.			nents that ar						ponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		42
	-1	2 12 12 17 18 23	8 .9 13 .14 		K				-12 -12 -12 -12 -12 -12			R	0

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. HMDBR-1

del Veer	20	14			Test Name:		DBR-1			VIN: Madak		RGT6ES3	14223
del Year:	2)14	•		Make:	D0	dge			Model:	9.	Ram	
							FORMATIC						
					DRIVE	R SIDE FL	OOR PAN	- SET 2					
ĺ	-	Pretest	Pretest	Pretest						2			Directions
		X	Y	Z	Posttest X	22.0		ΔX ^A	ΔΥ ^Α	ΔZ ^A	Total ∆	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	53.7954	-10.8289	-5.5310	48.7799	-5.1959	-8.4177	5.0155	5.6330	2.8867	8.0758	5.7869	X, Z
	2	54.9718	-7.5714	-4.6678	50.0981	-2.1381	-7.6077	4.8737	5.4333	2.9399	7.8687	5.6917	X, Z
- E	3	55.0515 54.5393	-3.3679 0.7102	-4.4485 -4.1410	53.0443 53.6634	-1.7072 0.8773	-4.5204 -3.3601	2.0072 0.8759	1.6607 -0.1671	0.0719	2.6061 1.1853	2.0085 0.8759	X, Z X
I DE PAN - WHEEL WELL (X, Z)	5	53.8479	4.8959	-4.9565	53.1147	5.0297	-4.4200	0.7332	-0.1338	-0.5365	0.9183	0.7332	X
, Жың	6	50.7821	-11.3615	-2.0876	44.7274	-5.0950	-6.1575	6.0547	6.2665	4.0699	9.6173	7.2954	X, Z
드립	7	51.3328	-6.1492	-2.3899	48.3523	-1.8457	-3.1347	2.9805	4.3035	0.7448	5.2876	3.0722	X, Z
5	8	51.0496	-3.3609	-2.2329	49.8650	-2.7370	-1.5872	1.1846	0.6239	-0.6457	1.4864	1.1846	X
	9 10	51.0993 51.2221	0.2241 6.4078	-2.2496 -2.3291	50.5352 51.0424	0.5402 6.6785	-1.2795 -1.4626	0.5641	-0.3161 -0.2707	-0.9701 -0.8665	1.1659 0.9254	0.5641 0.1797	X
	10	47.1160	-12.1989	-0.0254	43.0756	-8.2103	-1.4626	4.0404	3.9886	3.5089	6.6743	3.5089	X Z
	12	47.1160	-6.9774	-0.0254	45.4943	-5.2553	-0.2490	1.7095	1.7221	0.1068	2.4289	0.1068	Z
	13	47.3784	-3.1861	-0.2383	47.1054	-2.6443	1.0817	0.2730	0.5418	-1.3200	1.4527	-1.3200	Z
	14	47.5263	0.9665	-0.3022	47.3177	1.4479	0.9287	0.2086	-0.4814	-1.2309	1.3380	-1.2309	Z
	15	47.4985	6.8502	-0.8596	47.2239	7.2443	-0.0794	0.2746	-0.3941	-0.7802	0.9162	-0.7802	Z
	16	43.3484	-11.8692	0.5178	42.0669	-10.2519	-0.4394	1.2815	1.6173	0.9572	2.2747	0.9572	Z
	17	43.3416	-7.3669 -3.7087	0.4201	43.1136	-6.7251	1.9804	0.2280	0.6418	-1.5603	1.7025	-1.5603	Z
FLOOR PAN (Z)	18 19	43.3724 43.4208	0.3470	0.4127	43.2451 43.2475	-3.2134 0.8573	2.3508	0.1273 0.1733	0.4953	-1.9381 -1.4971	2.0044 1.5911	-1.9381 -1.4971	ZZ
A P	20	43.9150	6.1963	0.2209	43.6781	6.6326	0.8985	0.2369	-0.4363	-0.6776	0.8400	-0.6776	Z
R N N N N	21	37.7855	-11.9964	0.6786	37.7215	-11.4893	2.4318	0.0640	0.5071	-1.7532	1.8262	-1.7532	Z
	22	37.8636	-8.2471	0.5122	37.8173	-7.8045	2.3491	0.0463	0.4426	-1.8369	1.8900	-1.8369	Z
-	23	37.8510	-3.7891	0.4989	37.7077	-3.3757	2.0081	0.1433	0.4134	-1.5092	1.5713	-1.5092	Z
	24	37.7433	-0.1907	0.4973	37.5408	0.1979	1.5966	0.2025	0.3886	-1.0993	1.1834	-1.0993	Z
	25 26	38.0101 32.0811	5.5674 -12.4205	0.4936	37.7774 32.1751	6.0227 -12.0426	0.9689	0.2327	-0.4553 0.3779	-0.4753 -1.0680	0.6981	-0.4753	Z
	27	32.0265	-8.3303	0.6148	31.9558	-8.0299	1.4721	0.0707	0.3004	-0.8573	0.9112	-0.8573	Z
	28	31.8481	-4.0047	0.5491	31.8275	-3.7123	1.2998	0.0206	0.2924	-0.7507	0.8059	-0.7507	Z
	29	31.8376	-0.6098	0.5289	31.7263	-0.2738	1.1655	0.1113	0.3360	-0.6366	0.7284	-0.6366	Z
	30	32.3964	5.2173	0.6046	32.1814	5.5544	0.9768 , negative va	0.2150	-0.3371	-0.3722	0.5463	-0.3722	Z
eforming in	nward towa	rd the occup	ant compart	ment.			onents that ar						ponent is
		Pre	test Floor	Pan					Post	ttest Floor	Pan		
		12 12 12 12	8 .9 13 .14 		K							N.	

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. HMDBR-1

lodel Year	20	14				-				1000			14223
	20	14			Ware.	D0	uye			WOUCH.		Naili	
					VE	HICLE DE	FORMATI	ON					
V Y Z Postest X Postest X Postest Z Postest X PosteX													
[Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions
	POINT				(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	
					42.0404	-27.2610	-28.6926	-0.4036	0.0730	-1.1821	1.2512	1.2512	X, Y, Z
								-					X, Y, Z
SH [3	36.2064		-27.4220	36.8263		-27.6646	-0.6199	-0.0958	-0.2426	0.6725	0.6725	X, Y, Z
Δ×													X, Y, Z
													X, Y, Z
SAS S													
<u> </u>									the second s				
IS R													
5 g c													
	14		-33.0667	-3.8201	25.5955	-34.0551	-3.8863	0.7583	-0.9884		1.2475		Y
<u> </u>	15	30.6020	-33.0437	-4.0419	29.8202	-33.9705	-4.2124	0.7818	-0.9268	-0.1705	1.2244	-0.9268	Y
						-							
Ñ						-							
Ľ.			2012/2018 N. 2										
8													
Ř											-		
	26	6.3026	-18.9659	-46.6713	7.1901	-19.1106	-46.4669	-0.8875	-0.1447	0.2044	0.9222	0.2044	Z
[
~ -													
AF TU													-
, ×ir													
A A													
					A CONTRACTOR OF THE CONTRACTOR								
	31	42.0206	-27.7238	-31.8408	43.2454	-28.1392	-32.5119	-1.2248	-0.4154	-0.6711	1.4571	-0.4154	Y
ЧE	32			-33.9456	39.5046	-26.5805	-34.5176				1.4017		
al (0.3772												
ate P													
Ľ													
~ -													
AF TH		0.8425		-39.0938		-25.9427							
,≺ ši Ľ	38 39	4.0796	-27.6297 -29.0467	-34.3368	4.7937 2.3428	-27.7050	-34.0819 -29.4997	-0.7141 -0.6688	-0.0753 -0.0081	0.2549	0.7620	0.2549	Z
ABA	40	5.1053	-29.0487	-29.0329	5.5815	-29.0348	-29.4997	-0.4762	0.0465	0.1332	0.5224	0.2148	Y, Z
RC I	37	0.8425	-25.8461	-39.0938	1.6335	-25.9427	-38.9647	-0.7910	-0.0966	0.1291	0.8073	-0.0966	Y
E E	38	4.0796	-27.6297	-34.3368	4.7937	-27.7050	-34.0819	-0.7310	-0.0753	0.2549	0.7620	-0.0300	Y
B-PILLAR Lateral (Y)	39	1.6740	-29.0467	-29.6529	2.3428	-29.0548	-29.4997	-0.6688	-0.0081	0.1532	0.6862	-0.0081	Ý
at	40	5.1053	-29.6593		5.5815	-29.6128		-0.4762	0.0465	0.2097	0.5224	0.0465	Y

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure E-3. Occupant Compartment Deformation Data - Set 1, Test No. HMDBR-1

lodel Year:	2014			Test Name: HMDBR-1 Make: Dodge					VIN: Model:	VIN: 1C6RRGT6ES314223 Model: Ram			
-	20				Walto.		age			NOGCI.		Rum	
					VE	HICLE DE	FORMATI	ON					
					DRIVER S	IDE INTER	RIOR CRU	SH - SET 2	2				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
DASH (X, Y, Z)	1	42.4266	-12.8022	-31.4574	42.8335	-12.2151	-32.9018	-0.4069	0.5871	-1.4444	1.6114	1.6114	X, Y, Z
	2	39.8029	-0.8515	-34.3502	40.5268	-0.1763	-35.2958	-0.7239	0.6752	-0.9456	1.3690	1.3690	X, Y, Z
	3	37.4131	15.9122	-31.4789	37.9805	16.4983	-31.6000	-0.5674	-0.5861	-0.1211	0.8247	0.8247	X, Y, Z
	4	37.6128	-13.3441	-20.4006	36.5901	-13.0058	-22.6183	1.0227	0.3383	-2.2177	2.4655	2.4655	X, Y, Z
	5	35.8838 34.6601	-1.7456	-19.5039	35.0636	-1.3708	-20.8659	0.8202	0.3748	-1.3620 -0.2961	1.6335	1.6335	X, Y, Z
	6		16.4355	-20.7673	34.6126	16.6511	-21.0634	0.0475	-0.2156	1	0.3693	0.3693	X, Y, Z
SIDE PANEL (Y)	7 8	47.2712 47.6881	-15.0788 -15.3076	-2.5835 -10.7969	42.8874 45.0266	-10.9747 -13.6078	-4.6696 -12.0862	4.3838 2.6615	4.1041 1.6998	-2.0861 -1.2893	6.3571 3.4110	4.1041 1.6998	Y Y
	9	51.6367	-15.1487	-10.4861	48.1409	-12.0209	-11.8237	3.4958	3.1278	-1.3376	4.8778	3.1278	Y
	10	15.4663	-17.7162	-22.1601	14.3788	-20.1980	-22.1142	1.0875	-2.4818	0.0459	2.7100	-2.4818	Y
<u> </u>	10	25.6899	-16.9722	-23.1282	24.5517	-20.0208	-23.4668	1.1382	-3.0486	-0.3386	3.2717	-3.0486	Y
IMPACT SIDE DOOR (Y)	12	37.8241	-17.4730	-22.6930	36.7988	-19.9739	-23.4362	1.0253	-2.5009	-0.7432	2.8032	-2.5009	Y
	13	15.3861	-17.3946	-7.1854	14.6787	-18.7113	-7.4423	0.7074	-1.3167	-0.2569	1.5166	-1.3167	Ý
	14	27.0222	-18.2282	-7.7735	26.3122	-19.0367	-8.1538	0.7100	-0.8085	-0.3803	1.1412	-0.8085	Y
2	15	31.2706	-18.2678	-7.9880	30.5376	-19.0021	-8.4809	0.7330	-0.7343	-0.4929	1.1487	-0.7343	Y
	16	21.1311	-5.0643	-49.7771	22.0180	-4.5217	-49.9401	-0.8869	0.5426	-0.1630	1.0524	-0.1630	Z
	17	21.6490	-1.1668	-50.0941	22.4273	-0.6325	-50.2165	-0.7783	0.5343	-0.1224	0.9520	-0.1224	Z
	18	24.7609	5.8893	-50.0890	25.5650	6.4111	-50.0576	-0.8041	-0.5218	0.0314	0.9591	0.0314	Z
	19	26.0928	13.0335	-50.1020	26.8538	13.5323	-49.9244	-0.7610	-0.4988	0.1776	0.9271	0.1776	Z
Ñ	20	26.7189	18.6105	-50.0370	27.3940	19.1125	-49.7420	-0.6751	-0.5020	0.2950	0.8915	0.2950	Z
	21	13.7314	-4.3241	-50.4672	14.4939	-3.8369	-50.4964	-0.7625	0.4872	-0.0292	0.9053	-0.0292	Z
ROOF - (Z)	22	14.9444	0.9224	-50.7200	15.6380	1.3878	-50.8963	-0.6936	-0.4654	-0.1763	0.8537	-0.1763	Z
Š.	23 24	16.2765 17.9027	6.0456 12.0034	-50.9131 -51.0982	17.0337 18.7056	6.5543 12.4778	-50.9719 -51.0083	-0.7572 -0.8029	-0.5087 -0.4744	-0.0588 0.0899	0.9141 0.9369	-0.0588 0.0899	Z
RO	24	18.0862	17.4147	-51.1490	18.8817	17.9252	-50.9620	-0.7955	-0.4744	0.0899	0.9635	0.1870	Z
	26	7.2499	-3.9890	-50.7084	8.0828	-3.4591	-50.5829	-0.8329	0.5299	0.1255	0.9951	0.1255	Z
	27	7.4352	0.7636	-51.0328	8.3187	1.2385	-51.2354	-0.8835	-0.4749	-0.2026	1.0233	-0.2026	Z
	28	7.3263	6.2662	-51.3076	8.1707	6.7786	-51.4416	-0.8444	-0.5124	-0.1340	0.9968	-0.1340	Z
	29	7.5934	10.7614	-51.4447	8.4504	11.2260	-51.4824	-0.8570	-0.4646	-0.0377	0.9756	-0.0377	Z
	30	7.7680	15.0478	-51.5111	8.5864	15.5208	-51.4578	-0.8184	-0.4730	0.0533	0.9468	0.0533	Z
	31	42.8119	-13.2128	-35.7857	44.0262	-13.0721	-36.7298	-1.2143	0.1407	-0.9441	1.5446	0.1407	Y
A-PILLAR Maximum (X, Y, Z)	32	39.1009	-11.6401	-37.9023	40.3046	-11.4476	-38.7190	-1.2037	0.1925	-0.8167	1.4673	0.1925	Y
	33	37.2591	-12.1053	-40.2685	38.3480	-11.8674	-41.0613	-1.0889	0.2379	-0.7928	1.3678	0.2379	Y
	34	34.9664	-11.5866	-41.7138	36.0082	-11.3079	-42.4327	-1.0418	0.2787	-0.7189	1.2961	0.2787	Y
	35 36	32.5791 27.8740	-11.0820	-43.2208 -45.0198	33.5318	-10.7383 -9.3094	-43.8475 -45.4385	-0.9527 -0.9401	0.3437	-0.6267	1.1910	0.3437	Y
			-9.6890		28.8141					-0.4187			
A-PILLAR Lateral (Y)	31 32	42.8119 39.1009	-13.2128 -11.6401	-35.7857 -37.9023	44.0262 40.3046	-13.0721 -11.4476	-36.7298 -38.7190	-1.2143 -1.2037	0.1407 0.1925	-0.9441 -0.8167	1.5446 1.4673	0.1407 0.1925	Y Y
	32	39.1009	-11.6401	-37.9023	38.3480	-11.4476	-38.7190	-1.2037	0.1925	-0.8167	1.3678	0.1925	Y
	34	34.9664	-11.5866	-41.7138	36.0082	-11.3079	-42.4327	-1.0418	0.2787	-0.7189	1.2961	0.2787	Y
	35	32.5791	-11.0820	-43.2208		-10.7383	-43.8475	-0.9527	0.3437	-0.6267	1.1910	0.3437	Ý
	36	27.8740	-9.6890	-45.0198	28.8141	-9.3094	-45.4385	-0.9401	0.3796	-0.4187	1.0969	0.3796	Y
<u>۳</u> ۲ ۸	37	1.6777	-10.7623	-43.1162	2.4431	-10.2916	-43.1433	-0.7654	0.4707	-0.0271	0.8990	0.4707	Y
A Mu	38	4.8805	-12.5758	-38.3475	5.5824	-12.1397	-38.2789	-0.7019	0.4361	0.0686	0.8292	0.4415	Y, Z
B-PILLAR Maximum (X, Y, Z)	39	2.4467	-13.9412	-33.6627	3.1162	-13.5020	-33.7086	-0.6695	0.4392	-0.0459	0.8020	0.4392	Y
₩ Z O	40	5.8595	-14.5841	-28.1247	6.3494	-14.1535	-28.1290	-0.4899	0.4306	-0.0043	0.6523	0.4306	Y
B-PILLAR Lateral (γ)	37	1.6777	-10.7623	-43.1162	2.4431	-10.2916	-43.1433	-0.7654	0.4707	-0.0271	0.8990	0.4707	Y
al	38	4.8805	-12.5758	-38.3475	5.5824	-12.1397	-38.2789	-0.7019	0.4361	0.0686	0.8292	0.4361	Y
ater	39	2.4467	-13.9412	-33.6627	3.1162	-13.5020	-33.7086	-0.6695	0.4392	-0.0459	0.8020	0.4392	Y
Ľà	40	5.8595	-14.5841	-28.1247	6.3494	-14.1535	-28.1290	-0.4899	0.4306	-0.0043	0.6523	0.4306	Y

[^] Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure E-4. Occupant Compartment Deformation Data - Set 2, Test No. HMDBR-1

Model Year:	2014		Test Name: Make:		VIN: Model:					
	2011	-	marto:	Dodgo	initiati.					
			Driver Side Maxi	num Deformation						
	Reference Se	t 1		Reference Set 2						
Location	(in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C			
Roof	0.2	≤ 4	Z	Roof	0.3	≤ 4	Z			
Windshield ^D	0.0	0.0 ≤ 3		Windshield ^D	NA	≤ 3	X, Z			
A-Pillar Maximum	0.0	≤ 5 NA		A-Pillar Maximum	0.4	≤ 5	Y			
A-Pillar Lateral	-0.4	≤ 3	Y	A-Pillar Lateral	0.4	≤ 3	Y			
3-Pillar Maximum	0.3	≤ 5	Z	B-Pillar Maximum	0.5	≤ 5	Y			
3-Pillar Lateral	-0.4	≤ 3 Y		B-Pillar Lateral	0.5	≤ 3	Y			
Foe Pan - Wheel Well	7.4	≤ 9	X, Z	Toe Pan - Wheel Well	7.3	≤ 9	X, Z			
Side Front Panel	3.9	≤ 12	Y	Side Front Panel	4.1	≤ 12	Y			
Side Door (above seat)	-3.4	≤ 9	Y	Side Door (above seat)	-3.0	≤ 9	Y			
Side Door (below seat)	-1.5	≤ 12	Y	Side Door (below seat)	-1.3	≤ 12	Y			
Floor Pan	3.5	≤ 12	Z	Floor Pan	3.5	≤ 12	Z			
Dash - no MASH requirement	2.2	NA	X, Y, Z	Dash - no MASH requirement	2.2	NA	X, Y, Z			
For Toe Pan - Wheel Well the d lirections. The direction of deforr occupant compartment. If direction	ion as inward towar irection of defromat nation for Toe Pan on of deformation is	rd the occupant comp ion may include X an -Wheel Well, A-Pillar "NA" then no intrusio	d Z direction. For A-F Maximum, and B-Pill on is recorded and de	lues denote deformations outward av Pillar Maximum and B-Pillar Maximum ar Maximum only include component formation will be 0. posttest with an examplar vehicle, the	n the direction of de s where the deform	formation may includ nation is positive and	intruding into the			
lotes on vehicle interior cru	e ou ou reale no									
Point number 7 on the Floor Pa	an is an estimatec	l location. The refe	erence point was dis	placed during the impact.						

Figure E-5. Maximum Occupant Compartment Deformations by Location, Test No. HMDBR-1

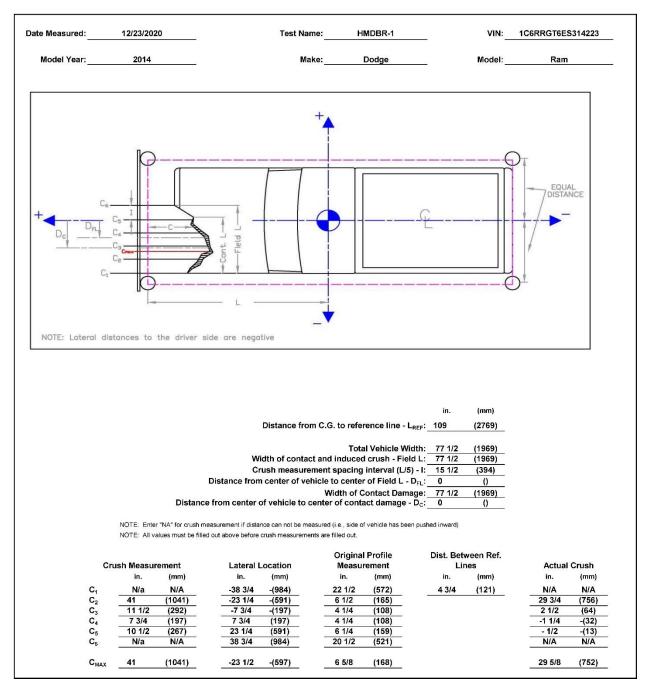


Figure E-6. Exterior Vehicle Crush (NASS) - Front, Test No. HMDBR-1

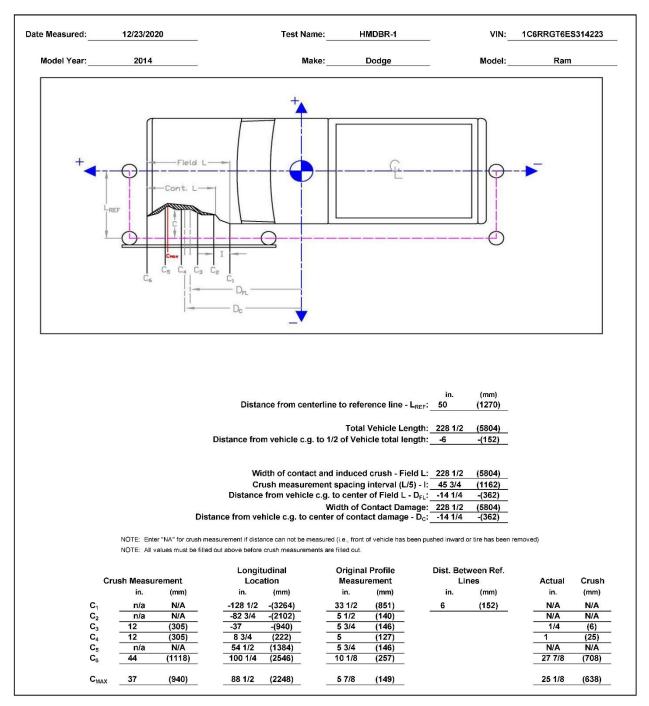


Figure E-7. Exterior Vehicle Crush (NASS) - Side, Test No. HMDBR-1

	00	40		-	Test Name:		DBR-2			VIN:		CT4AE3GU	979226
odel Year:	20	10			Make:	Hyu	ndai			woder:		Accent	
					VEI		FORMATI						
				F		-	-	-	2				
		·		1		-	· T		- 	 ,			T
ļ		Pretest	Pretest	Pretest	Posttest X	Posttest	Posttest Z	ΔX ^A	ΔΥ ^Α	ΔZ ^A	Total ∆	Crush ^B	Direction
ļ	!	X	Y	Z	(in.)	Y	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for
]	POINT	(in.)	(in.)	(in.)	. ,	(in.)		. ,	. ,	. ,	. ,	. ,	Crush ^C
ļ	1	49.2093	17.8370	-9.1453	49.2519	17.6864	-9.1204	-0.0426	0.1506	-0.0249	0.1585	0.0000	NA
ļ	2	50.8272	22.0561	-7.2283	50.6707	21.8144	-7.5423	0.1565	0.2417	0.3140	0.4260	0.3508	X, Z
1	3	51.6240	28.2497	-8.0600	50.8256	27.6889	-8.5893	0.7984	0.5608	0.5293	1.1100	0.9579	X, Z
IOE PAN - WHEEL WELL (X, Z)	4	52.0245	33.1047	-8.7716	51.3282	32.4237	-9.3670	0.6963	0.6810	0.5954	1.1415	0.9162	X, Z
	5	49.7807	36.6535	-11.2587	48.1453	34.8487	-12.0944	1.6354	1.8048	0.8357	2.5749	1.8366	X, Z
Щ Щ Х I	6	44.2409	17.6581	-7.6468	44.1902	17.4733	-7.8068	0.0507	0.1848	0.1600	0.2496	0.1678	X, Z
2 ¥	7	43.9795	22.9274	-3.2138	43.7585	22.6331	-3.5256	0.2210	0.2943	0.3118	0.4824	0.3822	X, Z
5	8	44.9319	28.8477	-4.1569	44.7171	28.3590	-4.2640	0.2148	0.4887	0.1071	0.5445	0.2400	X, Z
ļ	9	45.5432	34.1087	-4.8524	45.3353	33.5700	-4.9485	0.2079	0.5387	0.0961	0.5854	0.2290	X, Z
	10	45.9627	39.0151	-5.3489	45.5998	37.9094	-5.6716	0.3629	1.1057	0.3227	1.2076	0.4856	X, Z
ı	11	39.9245	17.7657	-7.5884	39.9279	17.5813	-7.8126	-0.0034	0.1844	0.2242	0.2903	0.2242	Z
I	12	39.3699	22.3303	-2.6141	39.3140	22.1927	-2.8505	0.0559	0.1376	0.2364	0.2792	0.2364	Z
Į	13	40.1530	28.2720	-2.8070	39.9342	27.8481	-2.8907	0.2188	0.4239	0.0837	0.4843	0.0837	Z
I	14	40.5006	34.6429	-3.1995	40.2827	34.1891	-3.2908	0.2179	0.4538	0.0913	0.5116	0.0913	Z
ļ	15	41.1388	39.0289	-3.6268	41.0223	38.4889	-4.0398	0.1165	0.5400	0.4130	0.6897	0.4130	Z
ļ	16	36.3585	17.6022	-7.5183	36.3336	17.4031	-7.7670	0.0249	0.1991	0.2487	0.3196	0.2487	Z
I	17	35.6708	23.0501	-2.5077	35.5422	22.8403	-2.7679	0.1286	0.2098	0.2602	0.3581	0.2602	Z
	18	35.4401	28.5286	-2.7875	35.1803	28.1816	-2.9172	0.2598	0.3470	0.1297	0.4525	0.1297	Z
FLOOR PAN (Z)	19	35.4126	34.8753	-3.4447	35.2709	34.4583	-3.5431	0.1417	0.4170	0.0984	0.4513	0.0984	Z
	20	36.6948	39.0843	-3.3952	36.4979	38.6146	-3.7129	0.1969	0.4697	0.3177	0.6003	0.3177	Z
(Z)	21	31.6202	17.6683	-7.3095	31.5831	17.4277	-7.6466	0.0371	0.2406	0.3371	0.4158	0.3371	Z
۱ <u>۲</u>	22	31.7739	22.7923	-2.2144	31.7538	22.5390	-2.5358	0.0201	0.2533	0.3214	0.4097	0.3214	Z
ш I	23	31.5349	28.3102	-2.6439	31.3741	27.9692	-2.6465	0.1608	0.3410	0.0026	0.3770	0.0026	Z
1	24	31.3941	34.8541	-3.2949	31.3423	34.5856	-3.3829	0.0518	0.2685	0.0880	0.2873	0.0880	Z
1	25	31.6604	39.0373	-3.2111	31.4944	38.7184	-3.4962	0.1660	0.3189	0.2851	0.4588	0.2851	Z
1	26	26.3635	17.5760	-7.0990	26.3071	17.3369	-7.5569	0.0564	0.2391	0.4579	0.5196	0.4579	Z
1	27	26.8658	22.3104	-2.0474	26.7362	22.1032	-2.4443	0.1296	0.2072	0.3969	0.4661	0.3969	Z
ł	28	26.6984	28.1750	-2.3361	26.5806	28.0131	-2.6510	0.1178	0.1619	0.3149	0.3732	0.3149	Z
ł	29	26.5170	34.5047	-2.6761	26.3372	34.1720	-2.7982	0.1798	0.3327	0.1221	0.3974	0.1221	Z
	30	26.6271	39.0942	-2.8951	26.4817	38.8707	-3.1178	0.1454	0.2235	0.2227	0.3474	0.2227	Z

toward the occupant compartment, negative values denote deformations outward away from the occupan compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

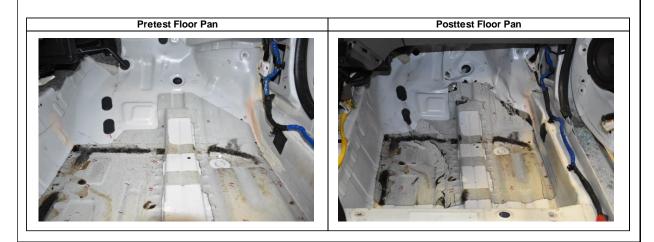


Figure E-8. Floor Pan Deformation Data - Set 2, Test No. HMDBR-2

odel Year:	20	16			Test Name: Make:)BR-2 Indai			VIN: Model:	КМНС	CT4AE3GU Accent	979226
					VEH	IICLE DE	FORMATI	ON					
				PAS	SENGER	SIDE INT	ERIOR CF	RUSH - S	ET 2				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX^{A}	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	40.3631	13.2657	-32.2900	40.2431	13.2983	-32.6650	0.1200	-0.0326	-0.3750	0.3951	0.3951	X, Y, Z
$-\widehat{N}$	2	42.8023	27.1993	-32.1517	42.3816	27.3254	-32.7891	0.4207	-0.1261	-0.6374	0.7741	0.7741	X, Y, Z
DASH (X, Y, Z)	3	41.9057	37.4401	-32.4744	41.2287	37.4281	-33.3802	0.6770	0.0120	-0.9058	1.1309	1.1309	X, Y, Z
کظ ک	4	32.4014	13.6541	-24.7732	32.2639	13.7018	-25.0027	0.1375	-0.0477	-0.2295	0.2718	0.2718	X, Y, Z
-	5	35.2926	27.4569	-26.8021	34.8535	27.5403	-27.4807	0.4391	-0.0834	-0.6786	0.8126	0.8126	X, Y, Z
	6	35.3703	35.7427	-27.8845	34.6129	35.6797	-28.7704	0.7574	0.0630	-0.8859	1.1672	1.1672	X, Y, Z
SIDE PANEL (Y)	7	42.2090	40.3922	-10.7566	41.5527	39.8996	-11.5641	0.6563	0.4926	-0.8075	1.1513	0.4926	Y
ls ₹ Σ.	8	42.8677	40.2360	-13.5673	41.9398	39.7788	-14.4013	0.9279	0.4572	-0.8340	1.3288	0.4572	Y
	9	47.6081	40.2360	-12.9355	46.0971	38.5663	-13.6659	1.5110	1.6697	-0.7304	2.3674	1.6697	Y
IMPACT SIDE DOOR (Y)	10	7.5210	41.3649	-27.3114	6.8092	43.3302	-27.7319	0.7118	-1.9653	-0.4205	2.1321	-1.9653	Y
SIC	11	20.8744	41.4796	-27.6685	20.0217	43.7499	-28.1918	0.8527	-2.2703	-0.5233	2.4810	-2.2703	Y
ACT SI DOOR (Y)	12	28.4718	40.8734	-27.3594	27.6445	43.3092	-28.0661	0.8273	-2.4358	-0.7067	2.6678	-2.4358	Y
Ă O O	13	10.7022	41.9071	-14.0847	9.9732	42.4803	-13.7211	0.7290	-0.5732	0.3636	0.9961	-0.5732	Y
۳.	14	20.9531	42.5992	-12.1914	20.5750	44.1220	-12.7790	0.3781	-1.5228	-0.5876	1.6755	-1.5228	Y
	15	28.5062	43.1138	-13.2811	27.9976	45.4112	-13.8406	0.5086	-2.2974	-0.5595	2.4186	-2.2974	Y
	16	24.2333	12.0024	-45.5267	23.9586	12.2049	-45.8470	0.2747	-0.2025	-0.3203	0.4680	-0.3203	Z
-	17	23.4844	21.9983	-46.0492	23.2364	22.2797	-46.4297	0.2480	-0.2814	-0.3805	0.5343	-0.3805	Z
	18	22.3395	30.9904	-46.1483	22.0033	31.1804	-46.6384	0.3362	-0.1900	-0.4901	0.6240	-0.4901	Z
	19	15.6433	11.7599	-48.6427	15.3175	11.9381	-48.9013	0.3258	-0.1782	-0.2586	0.4525	-0.2586	Z
	20	15.3230	21.4485	-49.0464	14.9432	21.5718	-49.3804	0.3798	-0.1233	-0.3340	0.5206	-0.3340	Z
Ñ	21	15.1922	29.5244	-49.0256	14.8511	29.7706	-49.3995	0.3411	-0.2462	-0.3739	0.5628	-0.3739	Z
ROOF - (Z)	22	9.0787	12.7698	-49.3810	8.8472	12.9271	-49.6017	0.2315	-0.1573	-0.2207	0.3564	-0.2207	Z
Ö	23	7.9225	21.4761	-49.7391	7.5493	21.6750	-50.0203	0.3732	-0.1989	-0.2812	0.5079	-0.2812	Z
N N	24 25	6.8766	28.1848	-49.7725	6.5866	28.3390	-49.8809 -49.8255	0.2900	-0.1542	-0.1084 -0.1337	0.3459	-0.1084	Z
-		2.1674	13.5773	-49.6918	1.8697	13.7604	·	0.2977	-0.1831		0.3742	-0.1337	
	26 27	2.3467 2.3528	21.2286 28.0795	-49.9135 -49.8869	2.0194 2.0572	21.3444 28.2392	-50.1059 -50.0588	0.3273	-0.1158 -0.1597	-0.1924 -0.1719	0.3969	-0.1924 -0.1719	Z
-	28	-6.9438	14.6172	-49.6669	-7.2685	14.6659	-50.0566	0.2956	-0.1597	-0.0939	0.3774	-0.0939	Z
-	28	-8.2612	21.8228	-49.6197	-8.6106	21.9259	-49.0130	0.3494	-0.1031	-0.1088	0.3413	-0.1088	Z
	30	-8.5022	29.8080	-49.5082	-8.8664	29.8284	-49.7283	0.3494	-0.0204	-0.1088	0.3833	-0.1088	Z
	30						-49.0258						
~ ~ ~	31	47.1436 41.6571	38.7379 37.6093	-34.4352 -37.7624	46.6597 41.3560	39.2851 37.9882	-35.0354	0.4839	-0.5472 -0.3789	-0.6002 -0.8386	0.9454	0.4839 0.3011	X X
A nu Z	33	37.1067	36.6545	-39.9904	36.8403	37.9882	-40.9553	0.2664	-0.3789	-0.8380	1.0883	0.2664	X
A-PILLAR Maximum (X, Y, Z)	34	33.8628	35.9164	-41.2491	33.5939	36.3376	-40.9555	0.2689	-0.4211	-0.8456	0.9822	0.2689	X
A-R C	35	28.9964	34.8084	-43.5222	28.6697	35.1239	-44.2153	0.3267	-0.3155	-0.6931	0.8286	0.3267	X
٣	36	24.3387	33.9646	-45.5694	23.9343	34.2434	-46.2209	0.4044	-0.2788	-0.6515	0.8159	0.4044	X
	31	47.1436	38.7379	-34.4352	46.6597	39.2851	-35.0354	0.4839	-0.5472	-0.6002	0.9454	-0.5472	Y
<u>к</u> с ,	32	41.6571	37.6093	-37.7624	41.3560	37.9882	-38.6010	0.3011	-0.3789	-0.8386	0.9682	-0.3789	Ý
A-PILLAR Lateral (Υ)	33	37.1067	36.6545	-39.9904	36.8403	37.0816	-40.9553	0.2664	-0.4271	-0.9649	1.0883	-0.4271	Ý
PIL	34	33.8628	35.9164	-41.2491	33.5939	36.3376	-42.0947	0.2689	-0.4212	-0.8456	0.9822	-0.4212	Y
Lat -	35	28.9964	34.8084	-43.5222	28.6697	35.1239	-44.2153	0.3267	-0.3155	-0.6931	0.8286	-0.3155	Y
-	36	24.3387	33.9646	-45.5694	23.9343	34.2434	-46.2209	0.4044	-0.2788	-0.6515	0.8159	-0.2788	Y
μ ε Ω	37	1.9324	33.9797	-44.8914	1.4588	34.1653	-45.0698	0.4736	-0.1856	-0.1784	0.5390	0.4736	Х
ILLAR timum Y, Z)	38	-0.1929	36.0014	-40.7280	-0.6428	36.1096	-40.8801	0.4499	-0.1082	-0.1521	0.4871	0.4499	X
B-PILLAR Maximum (X, Y, Z)	39	3.7634	37.9485	-36.6482	3.3374	38.0757	-36.8076	0.4260	-0.1272	-0.1594	0.4723	0.4260	X
ΨΞÇ	40	0.4837	38.6894	-33.5162	0.1251	38.8096	-33.6376	0.3586	-0.1202	-0.1214	0.3972	0.3586	X
КС	37	1.9324	33.9797	-44.8914	1.4588	34.1653	-45.0698	0.4736	-0.1856	-0.1784	0.5390	-0.1856	Y
B-PILLAR Lateral (Y)	38	-0.1929	36.0014	-40.7280	-0.6428	36.1096	-40.8801	0.4499	-0.1082	-0.1521	0.4871	-0.1082	Y
PIL	39	3.7634	37.9485	-36.6482	3.3374	38.0757	-36.8076	0.4260	-0.1272	-0.1594	0.4723	-0.1272	Y
T T	40	0.4837	38.6894	-33.5162	0.1251	38.8096	-33.6376	0.3586	-0.1202	-0.1214	0.3972	-0.1202	Y

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure E-9. Occupant Compartment Deformation Data – Set 2, Test No. HMDBR-2

			Test Name:	HMDBR-2	VIN:			
Model Year:	2016	-	Make:	Hyundai	Model:			
		Pa	ssenger Side Max	kimum Deformations				
	Reference Se	t 1			Reference Se	t 2		
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	
Roof		≤ 4	Z	Roof	-0.5	≤ 4	Z	
Windshield ^D		≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z	
A-Pillar Maximum		≤ 5	NA	A-Pillar Maximum	0.5	≤ 5	Х	
A-Pillar Lateral		≤ 3	Y	A-Pillar Lateral	-0.5	≤ 3	Y	
B-Pillar Maximum	Deference	≤ 5	NA	B-Pillar Maximum	0.5	≤ 5	Х	
B-Pillar Lateral	Reference Points	≤ 3	Y	B-Pillar Lateral	-0.2	≤ 3	Y	
Toe Pan - Wheel Well	Compromised	≤ 9	NA	Toe Pan - Wheel Well	1.8	≤ 9	X, Z	
Side Front Panel		≤ 12	Y	Side Front Panel	1.7	≤ 12	Y	
Side Door (above seat)		≤ 9	Y	Side Door (above seat)	-2.4	≤ 9	Y	
Side Door (below seat)		≤ 12	Y	Side Door (below seat)	-2.3	≤ 12	Y	
Floor Pan		≤ 12	Z	Floor Pan	0.5	≤ 12	Z	
Dash - no MASH requirement		NA	X, Y, Z	Dash - no MASH requirement	1.2	NA	X, Y, Z	
² For Toe Pan - Wheel Well the and Z directions. The direction ntruding into the occupant com	direction of defrom of deformation for partment. If directi	ation may include > Toe Pan -Wheel We on of deformation is	(and Z direction. Fo ell, A-Pillar Maximum s "NA" then no intrus	ve values denote deformations out r A-Pillar Maximum and B-Pillar Max , and B-Pillar Maximum only include ion is recorded and deformation wi ured posttest with an examplar veh	imum the direction components when ll be 0.	n of deformation ma ere the deformation	ay include X, Y, is positive and	
Notes on vehicle crush: The reference points for Refere	ence Set 1 were o	compromised, ther	efore, maximum de	formations are only reported for F	Reference Set 2.			

Figure E-10. Maximum Occupant Compartment Deformations by Location, Test No. HMDBR-2

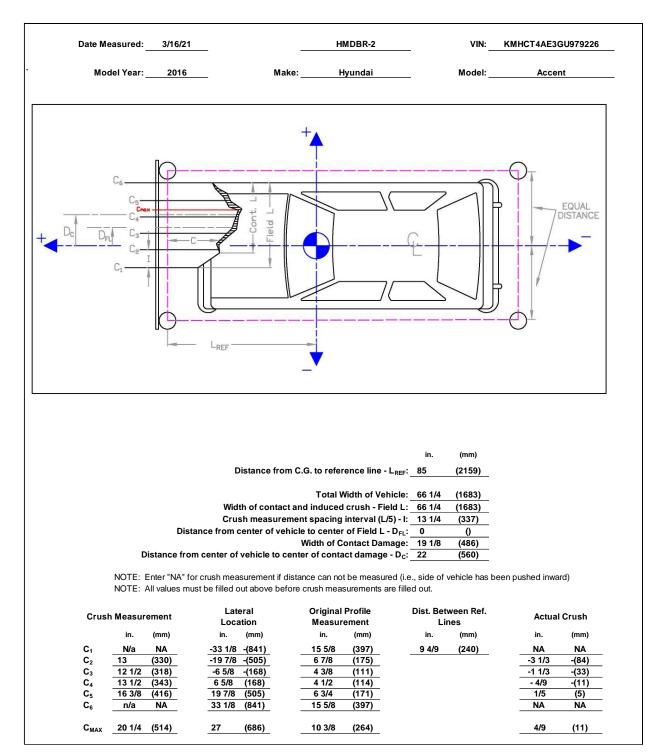


Figure E-11. Exterior Vehicle Crush (NASS) - Front, Test No. HMDBR-2

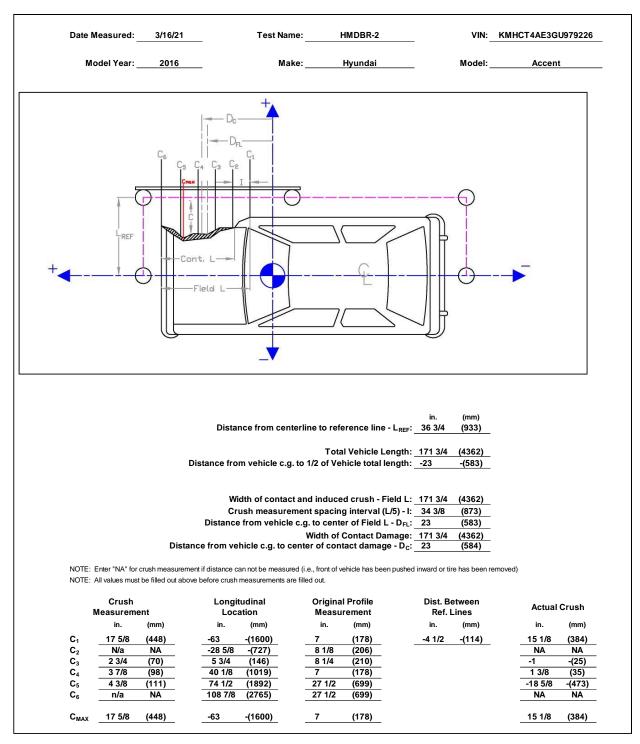


Figure E-12. Exterior Vehicle Crush (NASS) - Side, Test No. HMDBR-2

del Year:	20)15			Test Name: Make:		DBR-3 dge			VIN: Model:	1C6R	R6KG2FS5 Ram 1500	
							FORMATIC						
		Pretest	Pretest	Pretest	Posttest X	Poettoet V	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total A	Crush ^B	Direction
		Х	Y	Z	(in.)	Posttest Y (in.)	(in.)	ΔX (in.)	ΔY (in.)	۵۷ (in.)	Total ∆ (in.)	(in.)	for
	POINT	(in.)	(in.)	(in.)	0.00		101-0		a 10		5.15		Crush ^C
	1	57.3105 58.0099	13.8433 17.6761	-4.2068 -2.2469	56.9649 57.5141	14.4396 18.1969	-4.5066 -2.5375	0.3456	-0.5963 -0.5208	0.2998	0.7516	0.4575	X, Z X, Z
	3	59.3170	21.1910	1.1835	58.8706	21.2402	1.0625	0.4958	-0.0492	0.2900	0.4651	0.4625	X, Z
	4	59.4654	26.8564	1.9199	55.5603	25.6874	-0.6639	3.9051	1.1690	2.5838	4.8262	4.6825	X, Z
L WEL	5	59.3435	32.0706	1.9544	55.3828	30.1428	-0.7281	3.9607	1.9278	2.6825	5.1575	4.7836	X, Z
NHEEL WELL (X, Z)	6	54.0518	11.5031	-3.3689	53.6681	12.0472	-3.9049	0.3837	-0.5441	0.5360	0.8547	0.6592	X, Z
A LEEL	7	55.0913	17.7094	-0.1254	54.6642	17.9886	-0.3065	0.4271	-0.2792	0.1811	0.5414	0.4639	X, Z
5	8	56.3886	21.3191	3.2555	56.0687	21.4777	3.2295	0.3199	-0.1586	0.0260	0.3580	0.3210	X, Z
	9	56.4475	27.4881	3.6233	54.1484	26.8798	2.3225	2.2991	0.6083	1.3008	2.7107	2.6416	X, Z
	10	56.1821	32.5321	3.7713	53.3712	30.3974	3.1300	2.8109	2.1347	0.6413	3.5874	2.8831	X, Z
	11	50.5508	11.4468	-1.9399	50.3761	11.7022	-2.2493	0.1747	-0.2554	0.3094	0.4376	0.3094	Z
	12	52.0437	17.0022	2.1320	51.7825	17.0772 21.5240	1.9662	0.2612	-0.0750	0.1658	0.3183	0.1658	Z
	13 14	53.1358 52.8219	21.4888 28.2894	5.0909 5.0708	52.8464 52.1862	21.5240	5.1321 5.5079	0.2894	-0.0352 -0.0530	-0.0412 -0.4371	0.2944	-0.0412	Z
	14	52.8219	32.4771	5.0708	52.1862	31.5367	4.6462	1.0866	0.9404	0.5242	1.5297	0.5242	Z
	15	46.9748	11.6722	-1.0568	46.8235	11.9287	-1.2010	0.1513	-0.2565	0.3242	0.3309	0.3242	Z
	10	48.9729	16.8556	5.0660	48.7509	17.0023	4.9666	0.2220	-0.1467	0.0994	0.2841	0.0994	Z
_	18	49.2463	21.6683	5.0669	48.9633	21.7631	5.4448	0.2830	-0.0948	-0.3779	0.4815	-0.3779	Z
AN	19	49.2835	28.2155	5.0901	49.0167	28.2647	6.5528	0.2668	-0.0492	-1.4627	1.4876	-1.4627	Z
R D	20	49.0861	32.2905	5.1893	48.6716	31.8235	6.2682	0.4145	0.4670	-1.0789	1.2466	-1.0789	Z
FLOOR PAN (Z)	21	43.0170	11.7957	-0.6131	42.8426	12.2918	-0.8423	0.1744	-0.4961	0.2292	0.5736	0.2292	Z
	22	43.3798	16.8326	5.0612	43.1659	16.8638	5.0734	0.2139	-0.0312	-0.0122	0.2165	-0.0122	Z
	23	43.2675	21.5243	5.0577	43.0623	21.6234	5.5295	0.2052	-0.0991	-0.4718	0.5239	-0.4718	Z
	24	43.1110	27.5655	5.1016	42.9059	27.5849	6.5888	0.2051	-0.0194	-1.4872	1.5014	-1.4872	Z
	25	43.1877	32.6177	5.1965	42.9117	32.3837	6.7779	0.2760	0.2340	-1.5814	1.6223	-1.5814	Z
	26 27	37.9973 37.6426	12.1796 14.8569	0.2274 4.3570	37.7760 37.4473	12.6484 14.9707	-0.1409 4.2675	0.2213	-0.4688 -0.1138	0.3683	0.6359	0.3683	Z
	28	37.5738	21.5456	4.3731	37.4845	21.7090	4.5488	0.0893	-0.1130	-0.1757	0.2560	-0.1757	Z
	29	37.6940	28.2121	4.3946	37.6276	28.3166	4.9117	0.0664	-0.1045	-0.5171	0.5317	-0.5171	Z
	30	37.6004	32.4536	4.1818	37.6175	32.6016	5.0339	-0.0171	-0.1480	-0.8521	0.8650	-0.8521	Z
eforming i	nward towa	rd the occup	ant compart	ment.			nents that ar						ponent is
		Pre	test Floor	Pan					Post	ttest Floor	Pan		
		* * **											

Figure E-13. Floor Pan Deformation Data – Set 1, Test No. HMDBR-3

odel Year:	20	15			Test Name: Make:)BR-3 dge			VIN: Model:		R6KG2FS8 Ram 1500	
							FORMATIC						
		Pretest	Pretest	Pretest	-	-				A			Direction
		х	Y	Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY^A	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	0.00		101-10		(in.)	8 B		(in.)	Crush ^C
	1	60.5539	30.7806	-8.3108	60.2256	30.9841	-8.6789	0.3283	-0.2035	0.3681	0.5336	0.4932	X, Z
	2	61.2714 62.5956	34.6077 38.1122	-6.3462 -2.9117	60.7972 62.1703	34.7445 37.7914	-6.7222 -3.1316	0.4742	-0.1368 0.3208	0.3760	0.6204	0.6052	X, Z X, Z
NHEEL WELL (X, Z)	4	62.7703	43.7759	-2.1681	58.8895	42.2537	-4.8758	3.8808	1.5222	0.2199 2.7077	4.9708	4.7320	X, Z
NA NA	5	62.6723	48.9906	-2.1270	58.7404	46.7099	-4.9553	3.9319	2.2807	2.8283	5.3536	4.8435	X, Z
цщ×	6	57.2847	28.4544	-7.4749	56.9133	28.6147	-8.0716	0.3714	-0.1603	0.5967	0.7209	0.7028	X, Z
2 뿐 ~	7	58.3537	34.6517	-4.2238	57.9444	34.5620	-4.4928	0.4093	0.0897	0.2690	0.4979	0.4898	X, Z
3	8	59.6685	38.2511	-0.8387	59.3682	38.0542	-0.9676	0.3003	0.1969	0.1289	0.3815	0.3268	X, Z
	9	59.7557	44.4192	-0.4629	57.4830	43.4652	-1.8946	2.2727	0.9540	1.4317	2.8504	2.6861	X, Z
	10	59.5135	49.4642	-0.3085	56.7275	46.9903	-1.0997	2.7860	2.4739	0.7912	3.8089	2.8962	X, Z
	11	53.7840	28.4122	-6.0448	53.6180	28.2963	-6.4174	0.1660	0.1159	0.3726	0.4241	0.3726	Z
	12	55.3035	33.9556	-1.9663	55.0552	33.6766	-2.2192	0.2483	0.2790	0.2529	0.4511	0.2529	Z
	13 14	56.4170 56.1343	38.4334 45.2353	0.9979	56.1449 55.5278	38.1274 44.9511	0.9323	0.2721	0.3060	0.0656	0.4147	0.0656	Z
	14	56.2447	49.4225	1.0915	55.1889	48.1446	0.4114	1.0558	1.2779	0.6801	1.7917	0.6801	Z
	16	50.2093	28.6529	-5.1604	50.0661	28.5489	-5.3726	0.1432	0.1040	0.2122	0.2763	0.2122	Z
	17	52.2330	33.8193	0.9684	52.0209	33.6312	0.7791	0.2121	0.1881	0.1893	0.3409	0.1893	Z
	18	52.5284	38.6307	0.9753	52.2632	38.3922	1.2411	0.2652	0.2385	-0.2658	0.4448	-0.2658	Z
AN	19	52.5956	45.1776	1.0069	52.3570	44.8971	2.3270	0.2386	0.2805	-1.3201	1.3705	-1.3201	Z
FLOOR PAN (Z)	20	52.4170	49.2534	1.1114	52.0347	48.4570	2.0300	0.3823	0.7964	-0.9186	1.2745	-0.9186	Z
000	21	46.2522	28.7940	-4.7153	46.0873	28.9384	-5.0183	0.1649	-0.1444	0.3030	0.3740	0.3030	Z
FLO	22	46.6398	33.8219	0.9653	46.4351	33.5285	0.8820	0.2047	0.2934	0.0833	0.3673	0.0833	Z
	23	46.5490	38.5142	0.9678	46.3613	38.2902	1.3218	0.1877	0.2240	-0.3540	0.4590	-0.3540	Z
	24 25	46.4202 46.5201	44.5559 49.6076	1.0195 1.1207	46.2420 46.2781	44.2561 49.0554	2.3606 2.5333	0.1782	0.2998	-1.3411 -1.4126	1.3857 1.5359	-1.3411 -1.4126	Z
	26	41.2346	29.1999	-3.8728	41.0225	29.3295	-4.3221	0.2420	-0.1296	0.4493	0.5135	0.4493	Z
	27	40.8934	31.8735	0.2603	40.7052	31.6690	0.0781	0.1882	0.2045	0.1822	0.3323	0.1822	Z
	28	40.8553	38.5625	0.2849	40.7849	38.4078	0.3364	0.0704	0.1547	-0.0515	0.1776	-0.0515	Z
	29	41.0061	45.2283	0.3149	40.9697	45.0156	0.6769	0.0364	0.2127	-0.3620	0.4214	-0.3620	Z
	30	40.9319	49.4705	0.1075	40.9867	49.3009	0.7845 negative va	-0.0548	0.1696	-0.6770	0.7001	-0.6770	Z
eforming i	culations tha	rd the occup	ant compart	ment.			nents that ar culations. If						ponent is
		Pre	test Floor	Pan					Post	ttest Floor	Pan		

Figure E-14. Floor Pan Deformation Data – Set 2, Test No. HMDBR-3

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	506038 D
PASSENGER SIDE INTERIOR CRUSH - Set 1 Image: Set 1 Pretest (n) Pretest Y Pretest Y Pretest Y Pretest C Pretest C Pretest C Pretest Y	
v v z Positest / Positest	
POINT (n.) (n.) </td <td>Directions</td>	Directions
Image: Provided HTML 1 50.2885 33.4910 28.8051 20.1983 33.5069 27.6352 0.0947 -0.0969 -0.8301 0.8384 0.8384 Model Hamman 4 45.5133 33.7702 -16.5788 45.5685 27.4336 -0.0459 -0.1129 -0.4624 0.4782 0.4782 0.4782 Model Hamman 4 45.5334 33.7702 -16.16291 42.4517 3.7814 -16.71129 0.0437 -0.0189 -0.0229 0.5811 0.5811 Model Ma 5 5.41670 35.5522 2.2464 53.1885 33.0411 -0.4400 0.9825 2.9995 -0.9149 2.2007 2.9895 Model Ma 9.55.5390 55.418 -15.2466 53.2802 2.28041 -1.8578 0.1578 2.2580 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280 -0.2147 2.5280	Crush ^C
Product 2 48.5865 20.487 26.5788 48.5683 21.0800 27.2086 0.0182 -0.112 -0.4604 0.4782 3 45.513 3.5566 25.9712 45.569 3.6665 -2.7436 -0.0469 -0.1129 -0.4644 0.4782 0.4782 5 44.0682 21.8751 16.4243 44.5007 21.8568 16.7619 0.0915 -0.2368 -0.8170 0.8101 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8410 0.8420 2.9685 0.9144 2.8071 3.0774 4.9143 2.2072 0.2646 1.8310 0.0575 2.2560 0.2121 2.7047 2.5260 0.2121 2.7047 2.5260 0.2121 2.7047 2.5260 0.2121 2.7047 2.5260 0.2264 1.0237 0.7742 1.2371 1.4324 2.5260 0.2264 1.0237 0.7742 1.2754 1.77954 2.25600 1.0237 <td>X, Y, Z</td>	X, Y, Z
S 41.302 21.0301 11.211 0.112 0.226 0.521 0.511 <th< td=""><td>X, Y, Z</td></th<>	X, Y, Z
S 41.3032 21.0301 11.2113 0.1121 0.1112 0.2206 0.5220 0.5411 0.5410 0.52 3.5546 1.5231 42.4517 3.7914 1.07610 0.2206 0.5222 0.5511 0.5811 0.5811 0.52 9.56.5399 35.59418 -19.546 55.2502 32.8044 -2.8688 12.897 3.1374 -0.9142 3.5132 3.1374 0.50 9 56.5399 35.59418 -19.546 55.2502 32.8044 -2.8688 12.897 3.1374 -0.9142 3.5132 3.1374 1.1 3.1912 3.5000 -14.8110 0.0666 41.0260 -14.7531 0.9432 -2.5260 -0.2121 2.7047 -2.5260 -10.237 -0.0742 1.2656 -1.0237 -0.0742 1.2656 -1.0237 -0.0287 1.0370 -1.0237 -0.0287 0.3707 -0.2087 -1.0237 -0.0287 0.3707 -0.2087 0.3707 -0.2087 0.3707 -0.2087 0.3707 -	X, Y, Z
S 41.3032 21.0301 11.2113 0.1121 0.1112 0.2206 0.5220 0.5411 0.5410 0.52 3.5546 1.5231 42.4517 3.7914 1.07610 0.2206 0.5222 0.5511 0.5811 0.5811 0.52 9.56.5399 35.59418 -19.546 55.2502 32.8044 -2.8688 12.897 3.1374 -0.9142 3.5132 3.1374 0.50 9 56.5399 35.59418 -19.546 55.2502 32.8044 -2.8688 12.897 3.1374 -0.9142 3.5132 3.1374 1.1 3.1912 3.5000 -14.8110 0.0666 41.0260 -14.7531 0.9432 -2.5260 -0.2121 2.7047 -2.5260 -10.237 -0.0742 1.2656 -1.0237 -0.0742 1.2656 -1.0237 -0.0287 1.0370 -1.0237 -0.0287 0.3707 -0.2087 -1.0237 -0.0287 0.3707 -0.2087 0.3707 -0.2087 0.3707 -0.2087 0.3707 -	X, Y, Z
U H C	X, Y, Z
B S 8 54,1870 35,9772 -3,9300 53,1985 33,0077 -4,8539 0.9885 2,9695 0.9144 3,2807 2,9896 0 0 20,0210 38,1732 -1,47811 30,0065 40,004 -2,8686 1,2897 3,1374 -0,9142 3,5132 3,1374 0 20,0210 38,1732 -1,47811 0,0865 40,002 -14,5310 0,0455 -2,5260 -0,2121 2,7047 -2,5260 12 39,9725 38,398 -15,2469 38,9566 40,1830 -1,6755 1,0237 -0,0742 1,2656 -1,0237 14 32,4458 38,0492 4,2575 31,6766 39,5099 -4,2134 0,7880 -0,3217 0,0742 1,2355 -1,1706 15 38,5210 3,4148 -2,8697 31,2374 -0,0742 1,2325 -0,1790 -0,2377 -0,0742 1,2265 -1,8810 -0,3723 -0,1667 -0,2057 -1,1706 -1,2371 -1,4280 <td< td=""><td>X, Y, Z</td></td<>	X, Y, Z
No. 10 20.0210 38.1732 14.7811 19.0865 40.042 14.8386 0.9432 -2.5260 -0.0575 2.0685 -1.8310 12 39.9725 38.3800 -15.446 38.5666 41.0280 -14.5731 0.9432 -2.5260 -0.2121 2.7047 -2.5260 13 20.4184 38.0047 4.1637 19.6779 39.0284 -4.2379 0.7405 -1.0237 -0.0742 1.2656 -1.0237 14 32.4586 38.4292 4.2575 31.6756 39.9090 -4.5204 -0.7200 -0.0742 1.2255 -1.0237 15 39.5210 39.1486 -3.7423 38.7312 28.9092 -4.2134 0.7898 -0.3416 -0.4711 0.9810 -0.3267 0.3235 -0.1656 1.2257 0.0139 0.3325 -0.1667 1.2252 0.1166 0.3723 -0.1656 1.372 4.0998 -0.0247 0.2268 0.1179 0.2252 0.1166 0.3723 -0.1165 0.3251 -0.	Y
No. 10 20.0210 38.1732 14.7811 19.0865 40.042 14.8386 0.9432 -2.5260 -0.0575 2.0685 -1.8310 12 39.9725 38.3800 -15.446 38.5666 41.0280 -14.5731 0.9432 -2.5260 -0.2121 2.7047 -2.5260 13 20.4184 38.0047 4.1637 19.6779 39.0284 -4.2379 0.7405 -1.0237 -0.0742 1.2656 -1.0237 14 32.4586 38.4292 4.2575 31.6756 39.9090 -4.5204 -0.7200 -0.0742 1.2255 -1.0237 15 39.5210 39.1486 -3.7423 38.7312 28.9092 -4.2134 0.7898 -0.3416 -0.4711 0.9810 -0.3267 0.3235 -0.1656 1.2257 0.0139 0.3325 -0.1667 1.2252 0.1166 0.3723 -0.1656 1.372 4.0998 -0.0247 0.2268 0.1179 0.2252 0.1166 0.3723 -0.1165 0.3251 -0.	Y
P 11 31 9128 38 5000 14 5410 30 9666 41 0280 14 7531 0.9422 2.8260 -0.2121 2.7077 -2.5280 P 12 39.9725 38.3988 -15.2469 38.9666 40 1893 -15.6765 1.0159 -1.7005 -0.4296 2.1030 -1.7905 13 20.4184 38.0074 -4.637 19.6779 39.0294 -4.2379 0.7405 -1.0237 -0.0742 1.2585 -1.0170 15 39.5210 39.1466 -3.7423 38.712 39.4902 -4.2134 0.7898 -0.3416 -0.4711 0.9810 -0.2077 17 40.5612 15.4136 42.2697 0.0421 -0.2900 -0.1666 0.3723 -0.1667 18< 41.315 3.7314 42.9533 45.2452 -0.0244 -0.1667 0.2025 -0.1199 19 32.154 24.7174 45.0785 32.1798 24.9533 45.2452 -0.0244 -0.1667 0.2055 -0.1656	Y
Image: Property of the system of th	Y
Image: Property of the system of th	Y
Image: Property of the system of th	Y
Image: Property of the system of th	Y
Image: Second state 16 37.9520 25.4149 42.4147 37.9940 25.7139 42.6234 -0.0420 -0.2990 -0.2087 0.3670 -0.2087 17 40.5612 15.4136 42.8697 40.5605 15.7465 42.8223 -0.0193 -0.3290 -0.1656 0.3723 -0.1656 18 41.3151 3.7331 42.9794 41.4257 40.321 43.0998 -0.0424 -0.2364 -0.1667 0.2905 -0.1667 20 34.3201 14.7688 45.6433 34.3383 15.0467 45.0075 -0.0252 -0.0119 -0.3252 -0.1199 0.3252 -0.1199 0.3252 -0.1199 0.3252 -0.1199 0.3251 -0.1667 0.2905 -0.1667 0.2905 -0.1667 0.2905 -0.1667 0.2905 -0.1667 0.2905 -0.1687 0.2618 -0.1105 0.2218 -0.1105 0.2618 -0.1105 0.2618 -0.1105 0.2618 -0.1105 0.2618 -0.11059 0.3050 -0.1559	Y
Image: Second state 17 40.5612 15.1436 42.6907 40.5805 15.7465 42.8623 0.0193 0.3329 0.1656 0.3723 0.01687 18 41.3815 3.7331 42.9799 41.4257 4.0321 43.0996 0.0442 0.2905 0.01687 0.01667 20 34.3291 14.7688 45.6284 35.2075 3.8312 45.788 0.0491 0.2322 0.1105 0.2616 0.1105 21 35.1584 3.5990 45.6284 35.2075 3.8312 45.789 0.0491 0.2322 0.1105 0.2618 0.1496 0.3137 0.1496 23 27.2123 15.1662 -46.4065 27.214 15.4288 -46.5539 0.011 0.2625 0.1496 0.3377 0.1496 0.3377 0.1496 0.3377 0.1496 0.3377 0.1496 0.3377 0.1494 0.3328 0.1294 0.3328 0.1294 0.3328 0.1294 0.3251 0.1559 0.3650 0.1559 0.3650 </td <td>Y</td>	Y
Image: Properties 18 41.3815 3.7331 42.9799 41.4257 4.0321 43.0998 0.0442 0.2990 0.1199 0.3252 0.01199 19 32.1534 24.7174 45.0785 32.1798 24.9538 45.2452 0.0264 0.0284 0.1667 0.2905 0.1167 20 34.3291 14.7688 45.6433 34.3333 15.0467 45.0777 0.0092 0.2779 0.1444 0.3133 0.1444 21 35.1584 3.5990 -45.6284 35.2075 3.8312 -45.7388 0.0019 0.2258 0.1496 0.3137 0.1496 22 26.6805 24.3288 45.8471 26.5776 24.6804 46.7877 0.0568 0.3251 0.1559 0.3560 -0.1559 25 20.6025 24.5672 46.2346 20.5580 15.8506 46.9787 0.0377 0.3034 0.1294 0.3284 0.1294 26 20.5966 15.543 46.7891 1.5504 0.1771 0.1663	Z
Image: Product of the state of the	Z
Q 34.3291 14.7688 45.4633 34.3383 15.0467 45.6077 -0.0092 -0.2779 -0.1444 0.3133 -0.1444 21 35.1584 3.5990 -45.6284 35.075 3.8312 -45.738 -0.0491 -0.2322 -0.1105 0.2618 -0.1105 22 26.6805 24.3288 -45.847 15.462 -45.9967 0.0029 -0.2558 -0.1474 0.3011 -0.1474 23 27.2123 15.1662 -46.0365 27.2134 15.4268 -46.539 0.0011 -0.2626 -0.1474 0.3011 -0.1474 24 28.6240 4.5379 -46.6318 28.5672 4.8630 -46.7877 0.0568 -0.3251 -0.1579 -0.1283 0.2991 -0.1283 0.2991 -0.1283 0.2991 -0.1283 0.2991 -0.1283 0.2991 -0.1283 0.0137 0.2374 0.1370 0.2738 -0.1283 26 20.5966 15.5463 46.7101 14.5599 24.7927 4	Z
P 21 35.1584 3.9990 45.6284 35.2075 3.8312 45.7889 -0.0491 -0.2322 -0.1105 0.2618 -0.1105 22 26.6805 24.3288 45.8471 26.5776 24.5846 45.9967 0.1029 -0.2558 -0.1496 0.3137 -0.1496 23 27.2123 15.1662 46.6318 25.672 4.8630 -46.7877 0.0568 -0.3251 -0.1559 0.3350 -0.1283 24 28.6240 4.5379 46.6318 25.5672 4.66302 0.0715 -0.2255 -0.1283 0.2691 -0.1283 25 20.6025 24.5672 46.510 24.5789 4.65310 24.7927 -46.3629 0.0175 -0.2255 -0.1283 0.2691 -0.1283 0.2691 -0.1283 26 20.5996 15.5463 46.799 24.5708 46.5410 14.5375 2.7894 46.6322 0.0142 -0.2168 -0.922 0.2413 -0.0573 -0.1683 0.2773 -0.5586 </td <td>Z</td>	Z
N Q 22 26.6805 24.3288 45.8471 26.5776 24.5846 -45.9967 0.1029 -0.2558 -0.1496 0.3137 -0.1496 23 27.2123 15.1662 -46.065 27.2134 15.4288 -46.5539 -0.0011 -0.2256 -0.1474 0.3011 -0.1474 24 28.6240 4.5379 -46.6318 28.5672 4.6803 -0.6578 -0.0255 -0.1283 0.2691 -0.1283 25 20.6025 24.5672 -46.7349 20.5589 15.8506 -46.9193 0.0377 -0.3043 -0.1294 0.3328 -0.1294 27 22.5699 4.6735 24.7894 -46.6322 0.0442 -0.2186 -0.0922 0.2413 -0.0923 -0.1365 29 14.6810 15.2590 -47.3461 14.5791 5.1589 -47.4627 0.1209 -0.2674 -0.1166 0.3138 -0.1166 30 14.7000 4.8915 -3.01674 52.7678 34.7752 -3.6811	Z
Product 23 20.023 24.023 20.3246 20.3546 20.5366 15.5463 46.789 20.5589 15.8506 46.9193 0.0175 -0.2273 -0.1203 0.2798 -0.1203 26 20.5966 15.5463 46.738 20.5589 15.8506 46.9193 0.0377 -0.0303 -0.1294 0.3328 -0.1294 27 22.5699 4.6735 47.0448 22.5562 4.9109 47.1805 0.0137 -0.2374 -0.1357 0.2738 -0.1357 28 14.5799 24.5708 46.5410 14.5357 24.7894 46.6332 0.0442 -0.2186 -0.0922 0.2413 -0.0922 29 14.6810 15.2590 47.3611 14.5911 5.1549 -7.7722 -0.2674 -0.1166 0.318 -0.1166 31 55.3424 35.0550 -27.7798 55.5147 35.4612 -0.1416 -0.2807 -0.6838 0.7526 0.0000 33 49.0104 33.7691 -35.857	Z
Product 23 20.023 24.032 20.5366 15.5463 46.7389 20.5589 15.8506 46.9193 0.0175 -0.1233 0.2291 -0.1233 26 20.5966 15.5463 46.7899 20.5589 15.8506 46.9193 0.0377 -0.0303 -0.1294 0.3328 -0.1294 27 22.5699 4.6735 47.0448 22.5562 4.9109 47.1805 0.0137 -0.2374 -0.1357 0.2738 -0.1357 28 14.5799 24.5708 46.5410 14.5357 24.7894 46.6332 0.0442 -0.2186 -0.0922 0.2413 -0.0922 29 14.6810 15.2590 47.0819 14.5791 5.1589 47.4627 0.1209 -0.2674 -0.1166 0.3158 -0.1166 31 55.3424 35.0550 -27.7798 55.147 35.4812 -0.1416 -0.2807 -0.6838 0.7526 0.0000 33 49.0104 33.7091 -35.5857 46.0660 33.4235 <td>Z</td>	Z
Product 23 20.023 24.023 20.3246 20.3546 20.5366 15.5463 46.789 20.5589 15.8506 46.9193 0.0173 -0.2273 -0.1203 0.2798 -0.1283 26 20.5966 15.5463 46.739 20.5589 15.8506 46.9193 0.0377 -0.0343 -0.1294 0.3328 -0.1294 27 22.5699 4.6735 47.0448 22.5562 4.9109 47.1805 0.0137 -0.2374 -0.1357 0.2738 -0.1357 28 14.5799 24.5708 46.5410 14.5357 24.7894 46.6332 0.0442 -0.2186 -0.0922 0.2413 -0.0922 29 14.6810 15.2590 47.7461 15.5204 47.1702 0.0909 -0.2674 -0.1166 0.318 -0.1166 31 55.3424 35.0550 -27.7798 55.5147 35.6812 -0.1416 -0.2807 -0.6883 0.7526 0.0000 32 52.6262 34.495189 33.0791 <td>Z</td>	Z
Product 23 20.023 24.023 20.3246 20.3546 20.5366 15.5463 46.789 20.5589 15.8506 46.9193 0.0173 -0.2273 -0.1203 0.2798 -0.1283 26 20.5966 15.5463 46.739 20.5589 15.8506 46.9193 0.0377 -0.0343 -0.1294 0.3328 -0.1294 27 22.5699 4.6735 47.0448 22.5562 4.9109 47.1805 0.0137 -0.2374 -0.1357 0.2738 -0.1357 28 14.5799 24.5708 46.5410 14.5357 24.7894 46.6332 0.0442 -0.2186 -0.0922 0.2413 -0.0922 29 14.6810 15.2590 47.7461 15.5204 47.1702 0.0909 -0.2674 -0.1166 0.318 -0.1166 31 55.3424 35.0550 -27.7798 55.5147 35.6812 -0.1416 -0.2807 -0.6883 0.7526 0.0000 32 52.6262 34.495189 33.0791 <td>Z</td>	Z
27 22.5699 4.6735 -47.0448 22.5562 4.9109 -47.1805 0.0137 -0.2374 -0.1357 0.2738 -0.1357 28 14.5799 24.5708 -46.5410 14.5357 24.7894 -46.6332 0.0442 -0.2186 -0.0922 0.2413 -0.0922 29 14.6810 15.2500 -47.0819 14.5011 15.5204 -47.1702 0.0909 -0.2614 -0.0883 0.2905 -0.0883 30 14.7000 4.8915 -47.3461 14.5791 55.147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6673 0.0000 32 52.6262 34.4945 30.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3874 0.5386 0.0000 33 49.0104 33.715 49.1291 34.0871 -33.6081 -0.1187 -0.3874 0.5386 0.0000 0.33 34 45.9189 33.0791 -35.5857 46.0600 33.4235 -59.731 -0.	Z
28 14.5799 24.5708 46.5410 14.5357 24.7894 46.6332 0.0442 -0.2186 -0.0922 0.2413 -0.0922 29 14.6810 15.2590 47.0819 14.5901 15.5204 47.1702 0.0909 -0.2614 -0.0883 0.2905 -0.0883 30 14.7000 4.8915 47.3461 14.5791 51589 47.4627 0.1209 -0.2674 -0.1166 0.3158 -0.1166 31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 0.0000 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1147 -0.3702 -0.5386 0.6626 0.0000 0.33.423 35.9731 -0.1471 -0.3444 -0.3874 0.5388 0.0000 0.0000 0.363 37.3616 31.1288 40.7907 37.4554 31.4201 40.9990 -0.0938 -0.2131 -0.2083 0.3702 0.5368	Z
29 14.6810 15.2590 47.0819 14.5901 15.5204 47.1702 0.0909 -0.2614 -0.0883 0.2905 -0.0883 30 14.7000 4.8915 47.3461 14.5791 5.1589 47.4627 0.1209 -0.2674 -0.1166 0.3158 -0.1166 31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 0.0000 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1416 -0.2807 -0.6838 0.7526 0.0000 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6045 -0.1187 -0.3702 -0.5366 0.6626 0.0000 34 45.9189 33.0791 -35.5857 46.0660 33.4235 -0.9238 -0.1232 -0.3141 0.4859 0.0000 36 37.3616 31.1288 40.7907 37.4554 31.4201 40.9990 -	Z
30 14.7000 4.8915 47.3461 14.5791 5.1589 47.4627 0.1209 -0.2674 -0.1166 0.3158 -0.1166 31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 0.0000 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1416 -0.2807 -0.6838 0.7526 0.0000 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3702 -0.5366 0.6626 0.0000 34 45.9189 33.0791 -35.857 46.0660 33.4235 -35.9731 -0.1471 -0.3444 -0.3874 0.5388 0.0000 36 37.3616 31.1288 40.7907 37.4554 31.421 -40.9990 -0.0283 -0.2807 -0.3481 0.4859 0.0000 31 55.3424 35.0550 -27.7798 55.147 34.418 -2	Z
31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 0.0000 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1416 -0.2807 -0.6838 0.7526 0.0000 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3702 -0.5366 0.6626 0.0000 34 45.9189 33.0791 -35.5857 46.0660 33.4235 -35.9731 -0.1471 -0.3444 -0.3874 0.5388 0.0000 36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 0.0000 31 55.3424 35.0550 -27.7798 55.147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 -0.4068 32 52.6262 34.4945 -30.1674 52.7678 34.752	Z
No. Signal Signal <td>Z</td>	Z
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 0.0000 NC 31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 -0.4068 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1116 -0.2807 -0.6838 0.7526 -0.2807 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3702 -0.5366 0.6626 -0.3702 34 45.9189 33.0791 -35.5857 46.0660 33.4235 -35.9731 -0.1471 -0.3444 -0.3874 0.5388 -0.3444 35 41.8440 32.1751 -38.2978 41.9672 32.4910 -38.6459 -0.2132 -0.3159 -0.3481 0.4859 -0.3159 36 37.3616 31.1288 -40.7907 37.4554	NA
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 0.0000 NC 31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 -0.4068 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1116 -0.2807 -0.6838 0.7526 -0.2807 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3702 -0.5366 0.6626 -0.3702 34 45.9189 33.0791 -35.5857 46.0660 33.4235 -35.9731 -0.1471 -0.3444 -0.3874 0.5388 -0.3444 35 41.8440 32.1751 -38.2978 41.9672 32.4910 -38.6459 -0.2132 -0.3159 -0.3481 0.4859 -0.3159 36 37.3616 31.1288 -40.7907 37.4554	NA
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 0.0000 NC 31 55.3424 35.0550 -27.7798 55.5147 35.4618 -28.2919 -0.1723 -0.4068 -0.5121 0.6763 -0.4068 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1116 -0.2807 -0.6838 0.7526 -0.2807 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3702 -0.5366 0.6626 -0.3702 34 45.9189 33.0791 -35.5857 46.0660 33.4235 -35.9731 -0.1471 -0.3444 -0.3874 0.5388 -0.3444 35 41.8440 32.1751 -38.2978 41.9672 32.4910 -38.6459 -0.2132 -0.3159 -0.3481 0.4859 -0.3159 36 37.3616 31.1288 -40.7907 37.4554	NA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NA NA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NA
N 32 52.6262 34.4945 -30.1674 52.7678 34.7752 -30.8512 -0.1416 -0.2807 -0.6838 0.7526 -0.2807 33 49.0104 33.7169 -33.0715 49.1291 34.0871 -33.6081 -0.1187 -0.3702 -0.5366 0.6626 -0.3702 34 45.9189 33.0791 -35.5857 46.0660 33.4235 -35.9731 -0.1471 -0.3444 -0.3874 0.5388 -0.3444 35 41.8440 32.1751 -38.2978 41.9672 32.4910 -38.6459 -0.1232 -0.3159 -0.3481 0.4859 -0.3159 36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 -0.2913 37 13.3168 30.7494 -41.5801 13.3261 30.9695 -41.5231 -0.0093 -0.2210 0.0570 0.2276 0.0570 38 10.8163 34.3100 -31.6803 10.7732	
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 -0.2913 No 37 13.3168 30.7494 -41.5801 13.3261 30.9695 -41.5231 -0.0093 -0.2201 0.0570 0.2276 0.0570 38 10.8163 34.3100 -31.6803 10.7732 34.4448 -31.6151 0.0431 -0.1348 0.0652 0.1558 0.0782 39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 0.0433 40 11.4383 35.4924 -24.0394 11.3918 35.5870 -23.9303 0.0465 -0.0946 0.1091 0.1517 0.1186	Y
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 -0.2913 No 37 13.3168 30.7494 -41.5801 13.3261 30.9695 -41.5231 -0.0093 -0.2201 0.0570 0.2276 0.0570 38 10.8163 34.3100 -31.6803 10.7732 34.4448 -31.6151 0.0431 -0.1348 0.0652 0.1558 0.0782 39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 0.0433 40 11.4383 35.4924 -24.0394 11.3918 35.5870 -23.9303 0.0465 -0.0946 0.1091 0.1517 0.1186	Y
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 -0.2913 No 37 13.3168 30.7494 -41.5801 13.3261 30.9695 -41.5231 -0.0093 -0.2201 0.0570 0.2276 0.0570 38 10.8163 34.3100 -31.6803 10.7732 34.4448 -31.6151 0.0431 -0.1348 0.0652 0.1558 0.0782 39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 0.0433 40 11.4383 35.4924 -24.0394 11.3918 35.5870 -23.9303 0.0465 -0.0946 0.1091 0.1517 0.1186	Y
36 37.3616 31.1288 -40.7907 37.4554 31.4201 -40.9990 -0.0938 -0.2913 -0.2083 0.3702 -0.2913 No 37 13.3168 30.7494 -41.5801 13.3261 30.9695 -41.5231 -0.0093 -0.2201 0.0570 0.2276 0.0570 38 10.8163 34.3100 -31.6803 10.7732 34.4448 -31.6151 0.0431 -0.1348 0.0652 0.1558 0.0782 39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 0.0433 40 11.4383 35.4924 -24.0394 11.3918 35.5870 -23.9303 0.0465 -0.0946 0.1091 0.1517 0.1186	Y
N 37 13.3168 30.7494 -41.5801 13.3261 30.9695 -41.5231 -0.0093 -0.2201 0.0570 0.2276 0.0570 38 10.8163 34.3100 -31.6803 10.7732 34.4448 -31.6151 0.0431 -0.1348 0.0652 0.1558 0.0782 39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 0.0433 40 11.4383 35.4924 -24.0394 11.3918 35.5870 -23.9303 0.0465 -0.0946 0.1091 0.1517 0.1186	Y
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Z
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X, Z
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X, Z
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	X, Z
37 13.3168 30.7494 -41.3201 30.9995 -41.5231 -0.0093 -0.2201 0.0570 0.2276 -0.2201 38 10.8163 34.3100 -31.6803 10.7732 34.4448 -31.6151 0.0431 -0.1348 0.0652 0.1558 -0.1348 39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 -0.1436	
39 14.3221 35.0200 -28.3390 14.3032 35.1636 -28.3000 0.0189 -0.1436 0.0390 0.1500 -0.1436	Y Y
	Y
H H 40 11.4383 35.4924 -24.0394 11.3918 35.5870 -23.9303 0.0465 -0.0946 0.1091 0.1517 -0.0946	-

ⁿ Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure E-15. Occupant Compartment Deformation Data - Set 1, Test No. HMDBR-3

lodel Year:	20	15			Test Name: Make:)BR-3 dge			VIN: Model:	1C6R	R6KG2FS5 Ram 1500	
				PA			FORMATIO		Т 2				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	53.6219	50.2667	-30.8553	53.5904	50.0672	-31.8826	0.0315	0.1995	-1.0273	1.0470	1.0470	X, Y, Z
	2	51.8619	37.6300	-30.6522	51.8896	37.5260	-31.4082	-0.0277	0.1040	-0.7560	0.7636	0.7636	X, Y, Z
SZ	3	48.7065	20.3519	-31.0737	48.7739	20.2020	-31.5650	-0.0674	0.1499	-0.4913	0.5181	0.5181	X, Y, Z
DASH (X, Y, Z)	4	48.8688	50.5490	-20.1993	48.5198	50.5156	-21.4263	0.3490	0.0334	-1.2270	1.2761	1.2761	X, Y, Z
	5	47.9790	38.6583	-20.4945	47.8187	38.4331	-21.4469	0.1603	0.2252	-0.9524	0.9917	0.9917	X, Y, Z
	6	45.7401	20.3478	-20.3414	45.6615	20.3883	-20.8966	0.0786	-0.0405	-0.5552	0.5622	0.5622	X, Y, Z
SIDE PANEL (Y)	7	57.5170	52.6624	-3.7616	56.5585	49.6418	-4.7070	0.9585	3.0206	-0.9454	3.3070	3.0206	Y
SAN	8	57.5332 59.8860	52.6948 52.6452	-7.9851 -6.0009	56.5724 58.6212	49.5876 49.3801	-9.0968 -7.1090	0.9608	3.1072 3.2651	-1.1117 -1.1081	3.4371 3.6727	3.1072 3.2651	Y Y
	10	23.3768	52.0452	-18.8209	22.5112	49.3601 56.7473	-19.1391	0.8656	-1.6808	-0.3182	1.9172	-1.6808	Y
IMPACT SIDE DOOR (Y)	10	35.2701	55.3383	-18.5811	34.4001	57.6985	-19.1391	0.8700	-1.8608	-0.3162	2.5583	-2.3602	Y
IS R	12	43.3291	55.2014	-19.2877	42.3828	56.8105	-19.9604	0.9463	-1.6091	-0.6727	1.9842	-1.6091	Ý
384	13	23.7742	54.8774	-8.2038	23.0878	55.8106	-8.5341	0.6864	-0.9332	-0.3303	1.2046	-0.9332	Ŷ
	14	35.8165	55.3106	-8.2977	35.0885	56.2192	-8.8681	0.7280	-0.9086	-0.5704	1.2965	-0.9086	Y
≤	15	42.8818	55.9330	-7.7817	42.1435	56.1588	-8.4948	0.7383	-0.2258	-0.7131	1.0510	-0.2258	Y
	16	41.2475	42.2747	-46.4782	41.3566	42.2329	-46.8499	-0.1091	0.0418	-0.3717	0.3896	-0.3717	Z
	17	43.8108	32.2622	-46.7780	43.8838	32.2493	-47.0464	-0.0730	0.0129	-0.2684	0.2784	-0.2684	Z
	18	44.5775	20.5785	-47.0818	44.6593	20.5292	-47.2362	-0.0818	0.0493	-0.1544	0.1816	-0.1544	Z
	19	35.4456	41.6085	-49.1428	35.5402	41.4969	-49.4737	-0.0946	0.1116	-0.3309	0.3618	-0.3309	Z
	20	37.5756	31.6507	-49.5453	37.6398	31.5758	-49.7944	-0.0642	0.0749	-0.2491	0.2679	-0.2491	Z
Ñ	21	38.3537	20.4776	-49.7301	38.4422	20.3548	-49.8798	-0.0885	0.1228	-0.1497	0.2129	-0.1497	Z
,	22 23	29.9709	41.2464	-49.9117	29.9366	41.1581	-50.2286	0.0343	0.0883	-0.3169	0.3308	-0.3169	ZZ
R00F - (Z)	23	30.4606 31.8237	32.0824 21.4482	-50.4872 -50.7314	30.5182 31.8091	31.9965 21.4220	-50.7484 -50.9385	-0.0576 0.0146	0.0859	-0.2612 -0.2071	0.2809	-0.2612	Z
RO	24	23.8941	41.5133	-50.2983	23.8917	41.4009	-50.6008	0.0024	0.1124	-0.3025	0.3227	-0.3025	Z
	26	23.8467	32.4935	-50.8695	23.8666	32.4565	-51.1213	-0.0199	0.0370	-0.2518	0.2553	-0.2518	Z
	27	25.7702	21.6122	-51.1437	25.7988	21.5042	-51.3369	-0.0286	0.1080	-0.1932	0.2232	-0.1932	Z
	28	17.8715	41.5450	-50.6043	17.8966	41.4322	-50.8763	-0.0251	0.1128	-0.2720	0.2955	-0.2720	Z
	29	17.9299	32.2339	-51.1616	17.8962	32.1610	-51.3761	0.0337	0.0729	-0.2145	0.2290	-0.2145	Z
	30	17.9013	21.8668	-51.4440	17.8236	21.7987	-51.6270	0.0777	0.0681	-0.1830	0.2102	-0.1830	Z
~	31	58.6828	51.8093	-31.8276	58.9231	51.9336	-32.5423	-0.2403	-0.1243	-0.7147	0.7642	0.0000	NA
¥ ⊑ Ω	32	55.9639	51.2654	-34.2160	56.1743	51.2531	-35.1012	-0.2104	0.0123	-0.8852	0.9099	0.0123	Y
J≣≻	33	52.3443	50.5095	-37.1212	52.5338	50.5757	-37.8585	-0.1895	-0.0662	-0.7373	0.7641	0.0000	NA
A-PILLAR Maximum (X, Y, Z)	34	49.2498	49.8904	-39.6363	49.4689	49.9208	-40.2235	-0.2191	-0.0304	-0.5872	0.6275	0.0000	NA
₹ 2	35 36	45.1707 40.6834	49.0098	-42.3497	45.3668	49.0021 47.9487	-42.8962 -45.2488	-0.1961 -0.1673	0.0077	-0.5465	0.5807	0.0077	Y Y
			47.9885	-44.8441	40.8507				0.0398	-0.4047	0.4397		
~ ~	31 32	58.6828 55.9639	51.8093 51.2654	-31.8276 -34.2160	58.9231 56.1743	51.9336 51.2531	-32.5423 -35.1012	-0.2403 -0.2104	-0.1243 0.0123	-0.7147 -0.8852	0.7642 0.9099	-0.1243 0.0123	Y Y
A-PILLAR Lateral (Υ)	32	52.3443	50.5095	-34.2160	52.5338	50.5757	-35.1012	-0.2104	-0.0662	-0.0052	0.9099	-0.0662	Y
era	34	49.2498	49.8904	-39.6363	49.4689	49.9208	-40.2235	-0.2191	-0.0304	-0.5872	0.6275	-0.0304	Y
A-F Lat	35	45.1707	49.0098	-42.3497		49.0021	-42.8962	-0.1961	0.0077	-0.5465	0.5807	0.0077	Ŷ
	36	40.6834	47.9885	-44.8441	40.8507	47.9487	-45.2488	-0.1673	0.0398	-0.4047	0.4397	0.0398	Ŷ
£ E ↔	37	16.6370	47.7206	-45.6324	16.7197	47.6399	-45.7921	-0.0827	0.0807	-0.1597	0.1971	0.0807	Y
B-PILLAR Maximum (X, Y, Z)	38	14.1535	51.2752	-35.7262	14.1791	51.1702	-35.9004	-0.0256	0.1050	-0.1742	0.2050	0.1050	Y
axi.	39	17.6627	51.9632	-32.3839	17.7105	51.8813	-32.5852	-0.0478	0.0819	-0.2013	0.2225	0.0819	Y
u ≥ ○	40	14.7814	52.4413	-28.0833	14.7980	52.3396	-28.2197	-0.0166	0.1017	-0.1364	0.1709	0.1017	Y
B-PILLAR Lateral (Y)	37	16.6370	47.7206	-45.6324	16.7197	47.6399	-45.7921	-0.0827	0.0807	-0.1597	0.1971	0.0807	Y
al (38	14.1535	51.2752	-35.7262	14.1791	51.1702	-35.9004	-0.0256	0.1050	-0.1742	0.2050	0.1050	Y
ater	39	17.6627	51.9632	-32.3839	17.7105	51.8813	-32.5852	-0.0478	0.0819	-0.2013	0.2225	0.0819	Y
Ľ œ	40	14.7814	52.4413	-28.0833	14.7980	52.3396	-28.2197	-0.0166	0.1017	-0.1364	0.1709	0.1017	Y

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure E-16. Occupant Compartment Deformation Data - Set 2, Test No. HMDBR-3

			Test Name:		, VIN:			
Model Year:	2015	-	Make:	Dodge	Model	1500		
		F	Passenger Side Ma	aximum Deformation				
	Reference Se	t 1			Reference Se	t 2		
Maximum Deformation ^{A,B} MASH A Location (in.) Deforma			Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	
Roof	-0.2	≤ 4	Z	Roof	-0.4	≤ 4	Z	
Windshield ^D	0.0	≤ 3	X, Z	Windshield	NA	≤ 3	X, Z	
A-Pillar Maximum	0.0	≤ 5	NA	A-Pillar Maximum	0.0	≤ 5	Y	
A-Pillar Lateral	-0.4	≤ 3	Y	A-Pillar Lateral	0.0	≤ 3	Y	
3-Pillar Maximum	0.1	≤ 5	X, Z	B-Pillar Maximum	0.1	≤ 5	Y	
3-Pillar Lateral	-0.2	≤ 3	Y	B-Pillar Lateral	0.1	≤ 3	Y	
oe Pan - Wheel Well	4.8	≤ 9	X, Z	Toe Pan - Wheel Well	4.8	≤ 9	X, Z	
ide Front Panel	3.1	≤ 12	Y	Side Front Panel	3.3	≤ 12	Y	
Side Door (above seat)	-2.5	≤ 9	Y	Side Door (above seat)	-2.4	≤ 9	Y	
Side Door (below seat)	-1.0	≤ 12	Y	Side Door (below seat)	-0.9	≤ 12	Y	
Floor Pan	0.5	≤ 12	Z	Floor Pan	0.7	≤ 12	Z	
Dash - no MASH requirement	1.1	NA	X, Y, Z	Dash - no MASH requirement	1.3	NA	X, Y, Z	
For Toe Pan - Wheel Well the di lirections. The direction of deforr occupant compartment. If direction	ion as inward towar rection of defromat nation for Toe Pan on of deformation is the windshield then	rd the occupant comp ion may include X an -Wheel Well, A-Pillar "NA" then no intrusio	d Z direction. For A- Maximum, and B-Pil on is recorded and de	alues denote deformations outward av Pillar Maximum and B-Pillar Maximun Ilar Maximum only include component eformation will be 0. posttest with an examplar vehicle, the	n the direction of de s where the deform	formation may includ nation is positive and	intruding into the	

Figure E-17. Maximum Occupant Compartment Deformations by Location, Test No. HMDBR-3

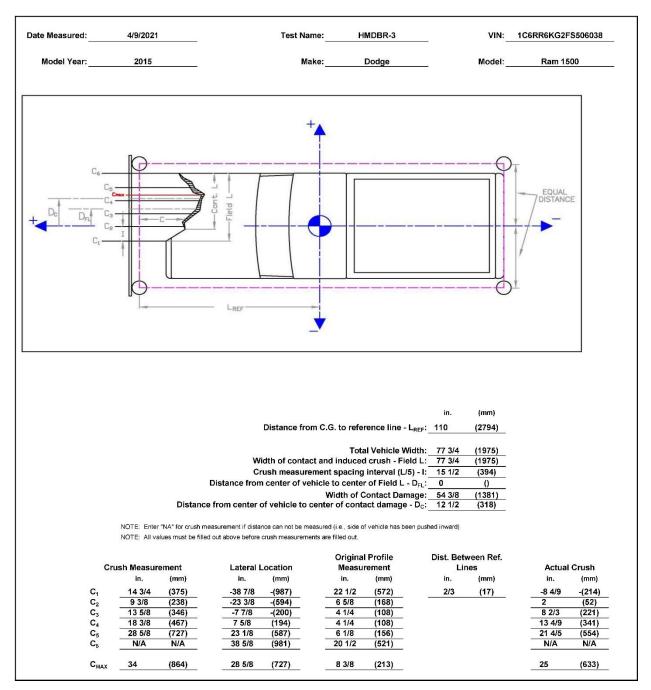


Figure E-18. Exterior Vehicle Crush (NASS) - Front, Test No. HMDBR-3

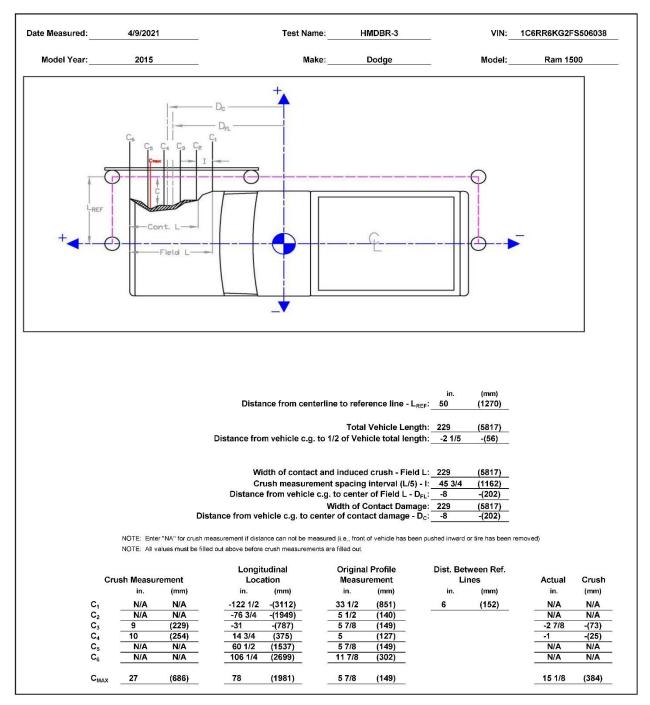


Figure E-19. Exterior Vehicle Crush (NASS) - Side, Test No. HMDBR-3

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. HMDBR-1

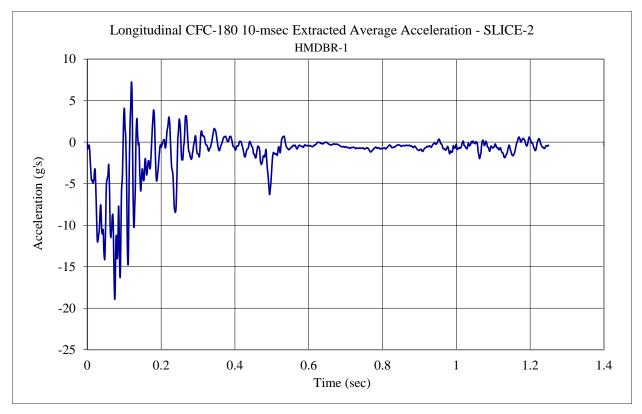


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HMDBR-1

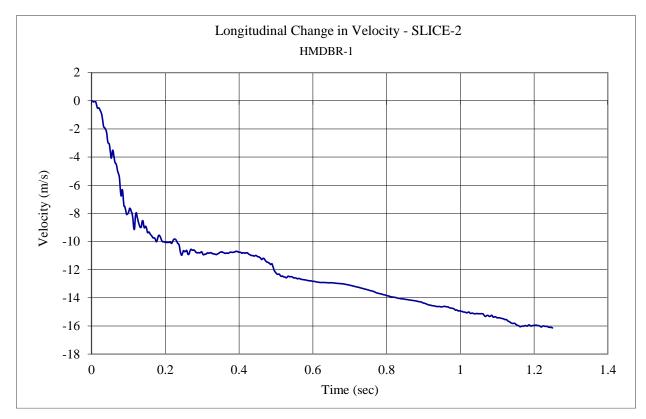


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HMDBR-1



Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HMDBR-1

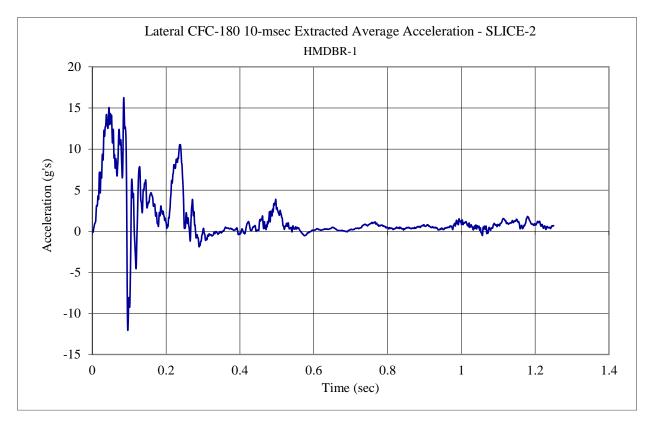


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HMDBR-1

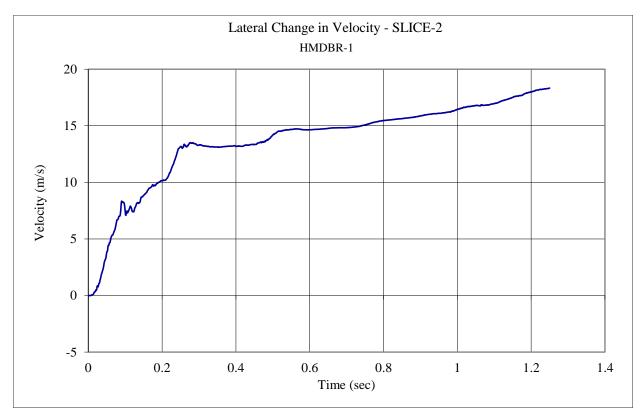


Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HMDBR-1

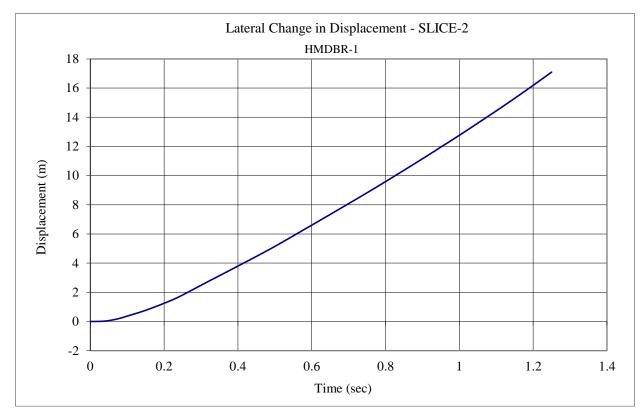


Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. HMDBR-1

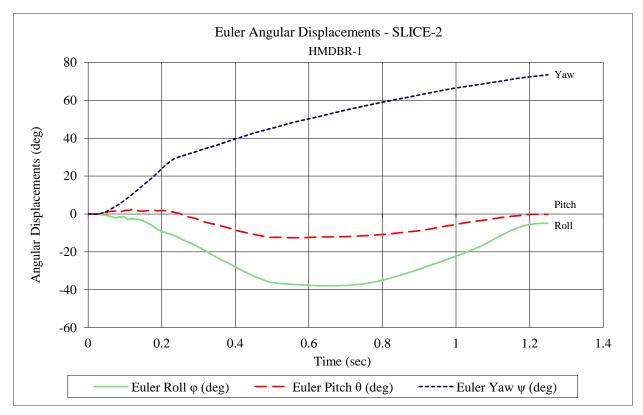


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. HMDBR-1

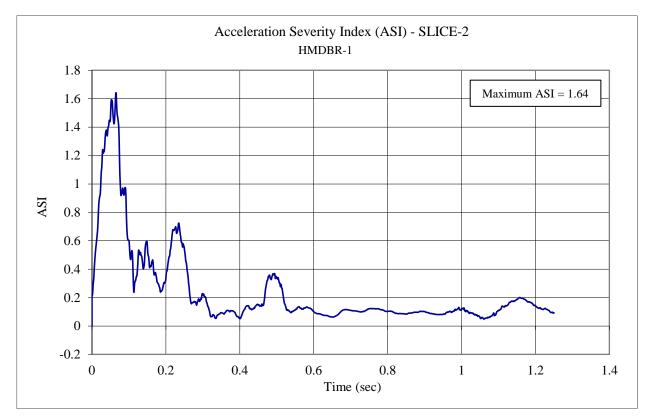


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. HMDBR-1

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HMDBR-1

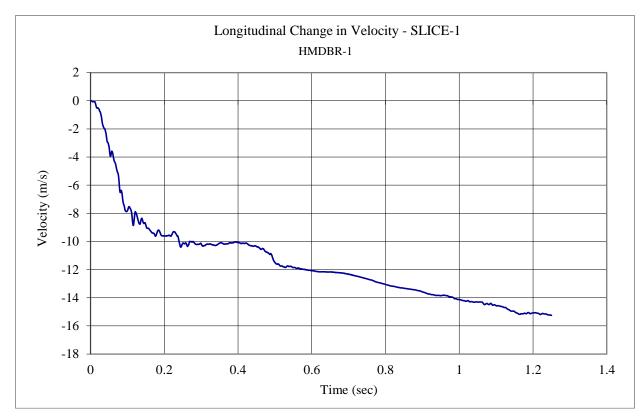


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HMDBR-1

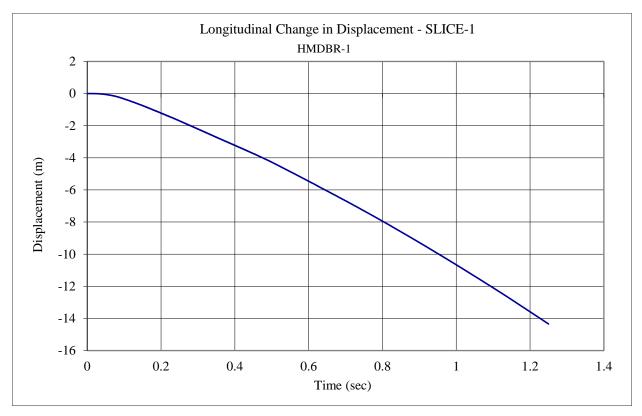


Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HMDBR-1

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HMDBR-1



Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HMDBR-1

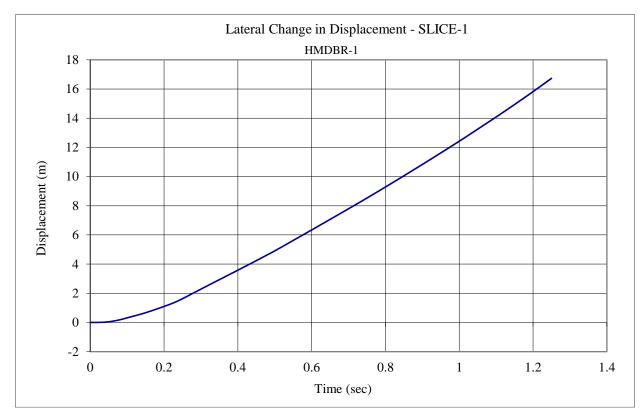


Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-1

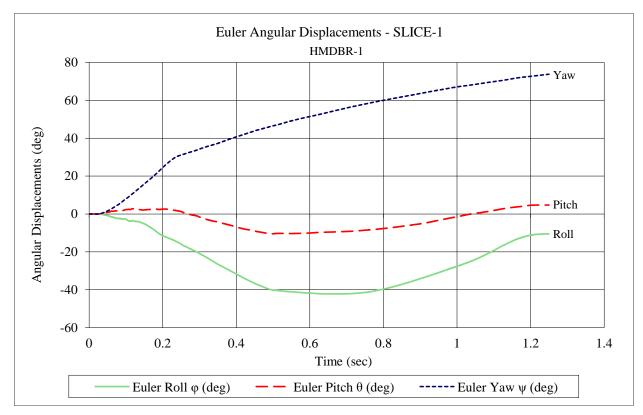


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. HMDBR-1

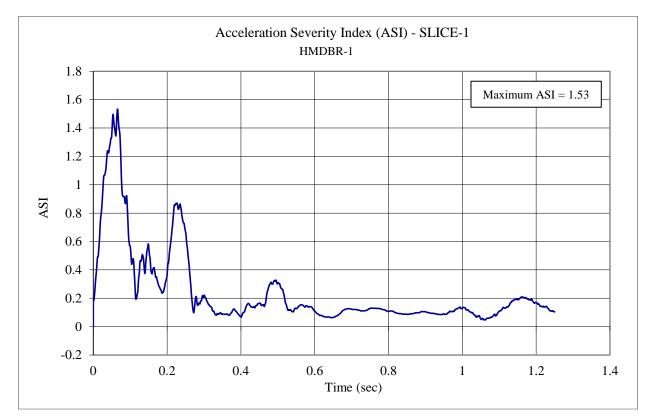


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. HMDBR-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. HMDBR-2

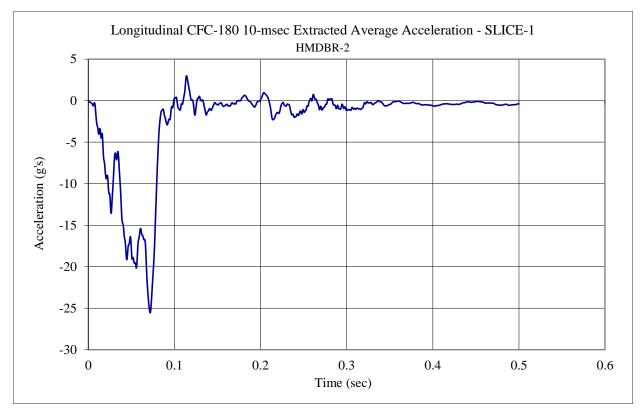


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HMDBR-2

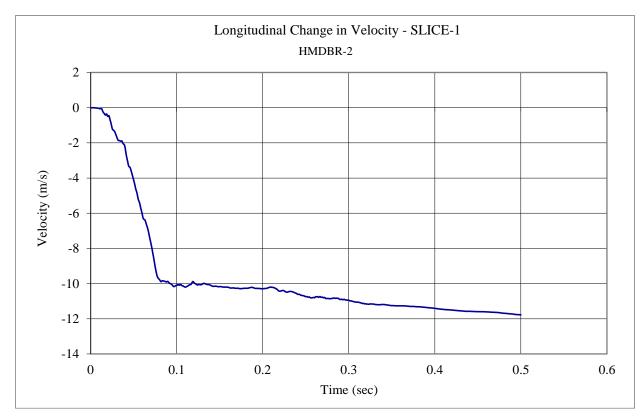


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HMDBR-2

Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HMDBR-2

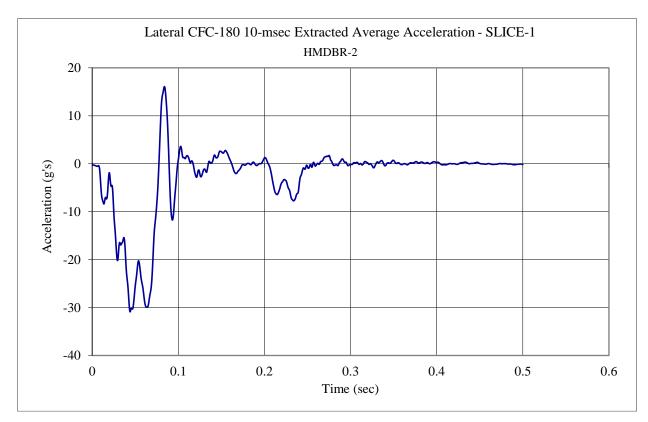


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HMDBR-2

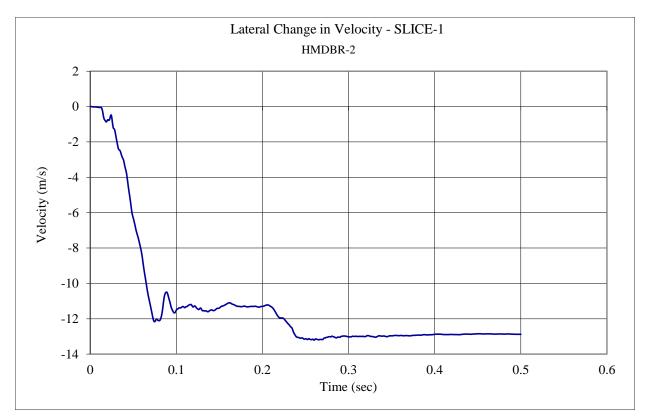


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HMDBR-2

Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-2

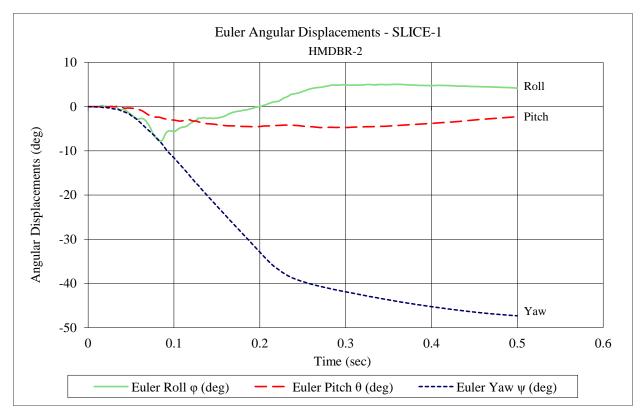


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. HMDBR-2

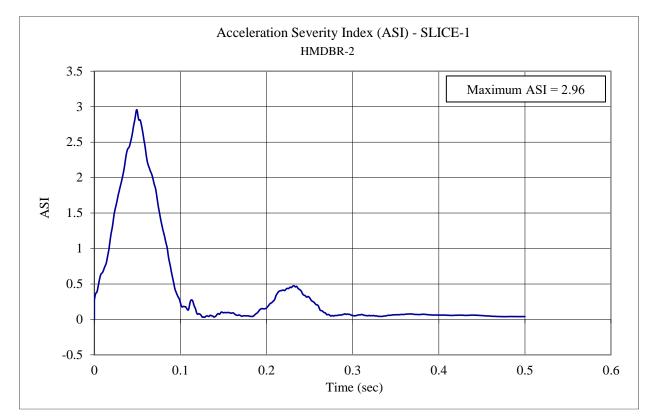


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. HMDBR-2

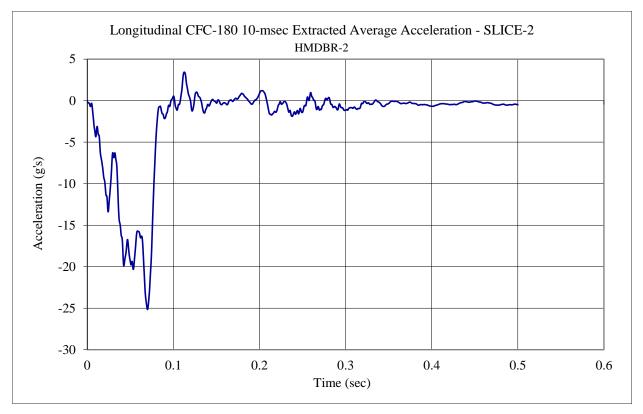


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HMDBR-2

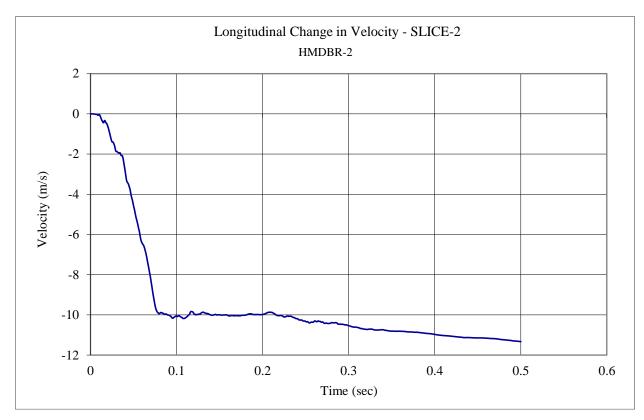


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HMDBR-2

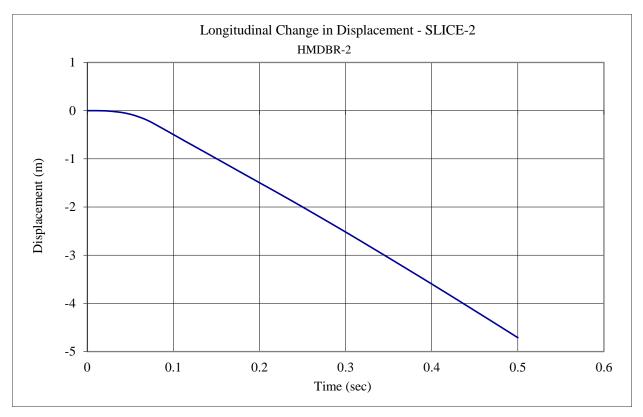


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HMDBR-2

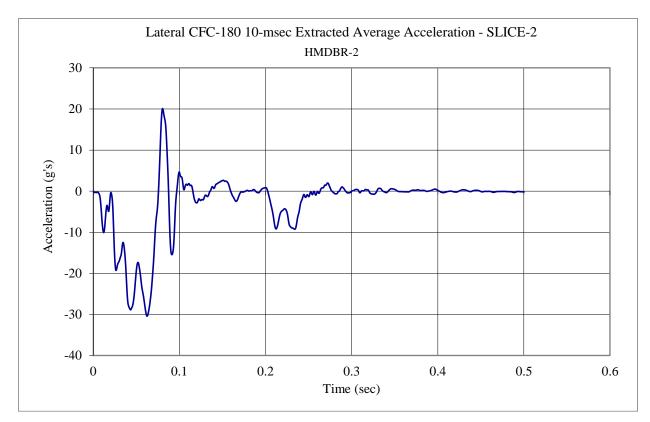


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HMDBR-2

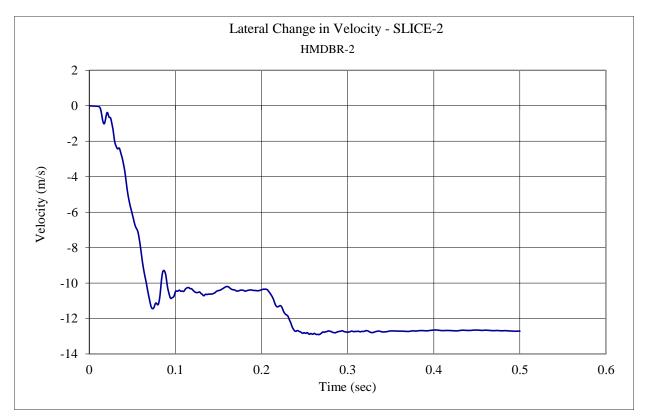


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HMDBR-2

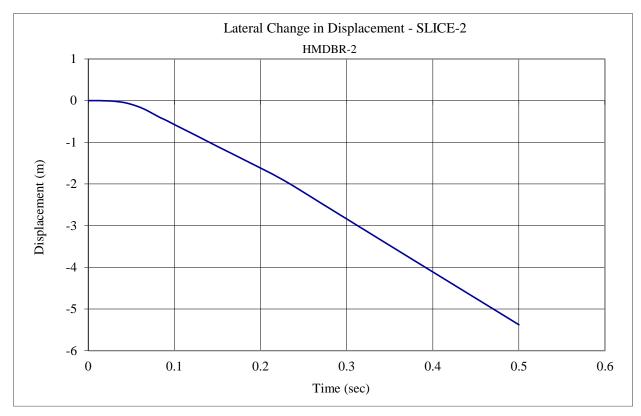


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. HMDBR-2

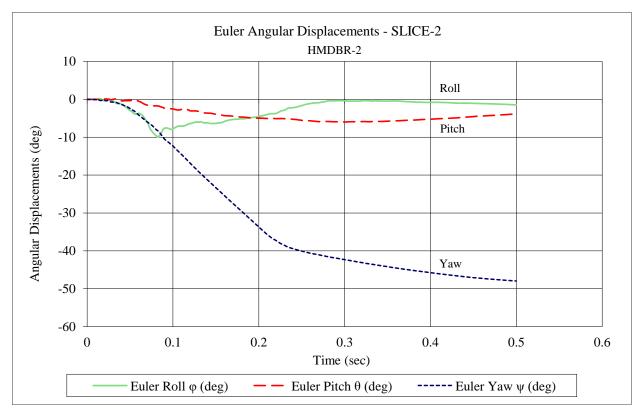


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. HMDBR-2

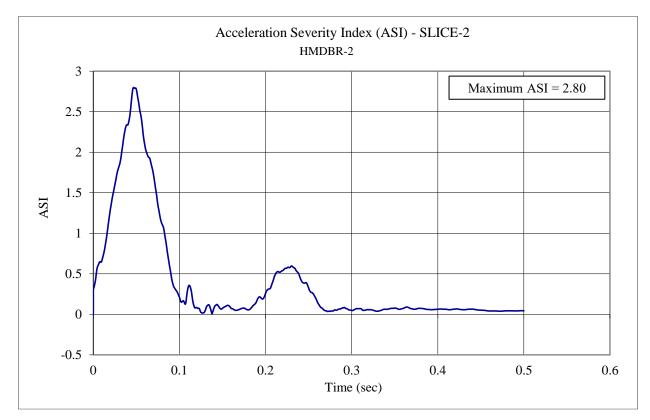


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. HMDBR-2

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. HMDBR-3

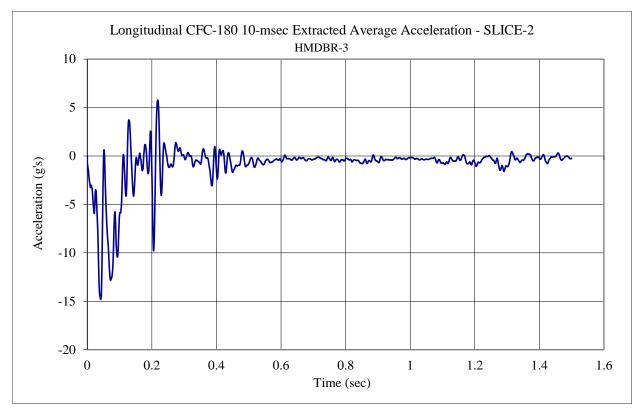


Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HMDBR-3

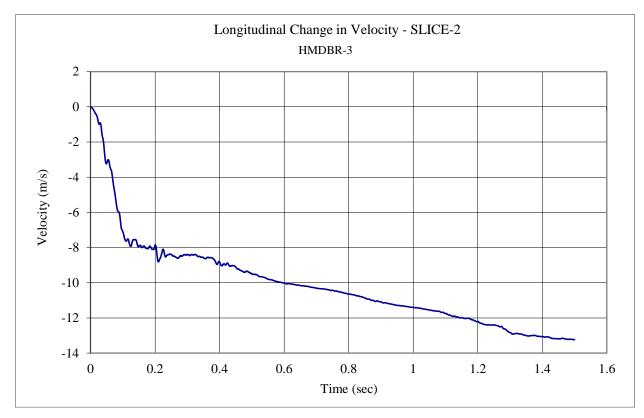


Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HMDBR-3

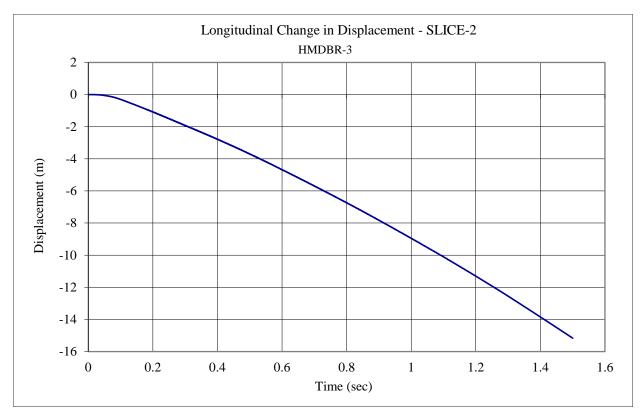


Figure H-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HMDBR-3

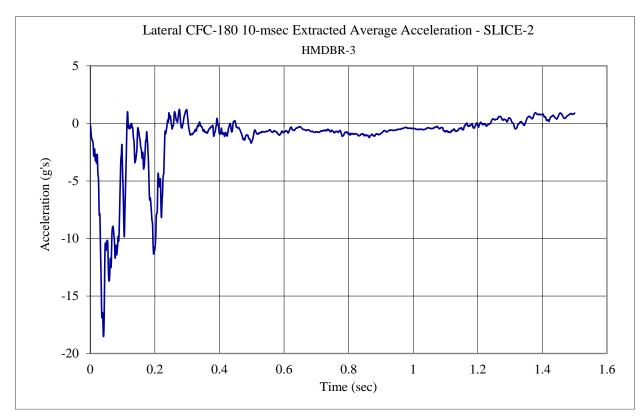


Figure H-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HMDBR-3

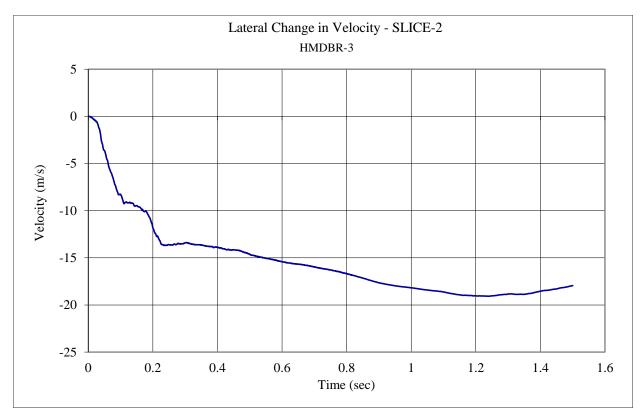


Figure H-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HMDBR-3

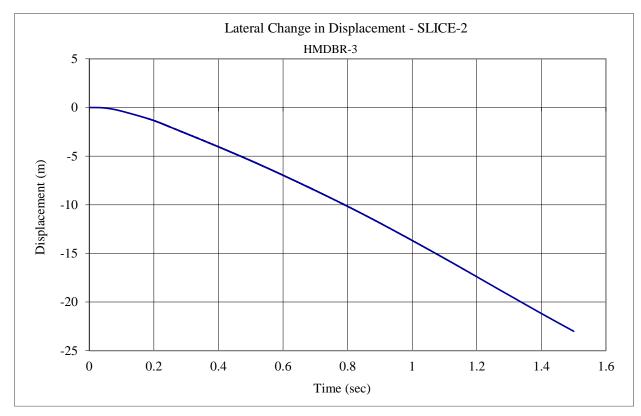


Figure H-6. Lateral Occupant Displacement (SLICE-2), Test No. HMDBR-3

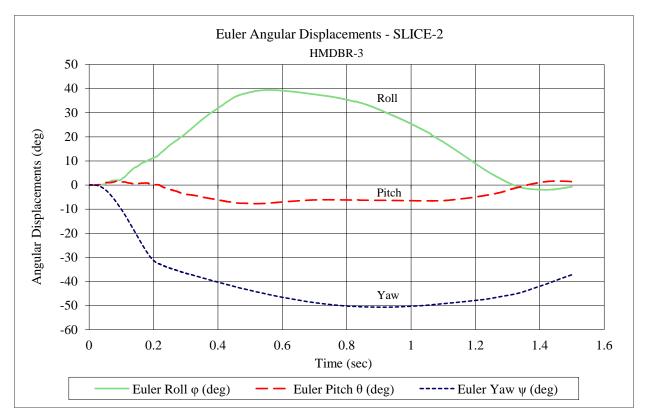


Figure H-7. Vehicle Angular Displacements (SLICE-2), Test No. HMDBR-3

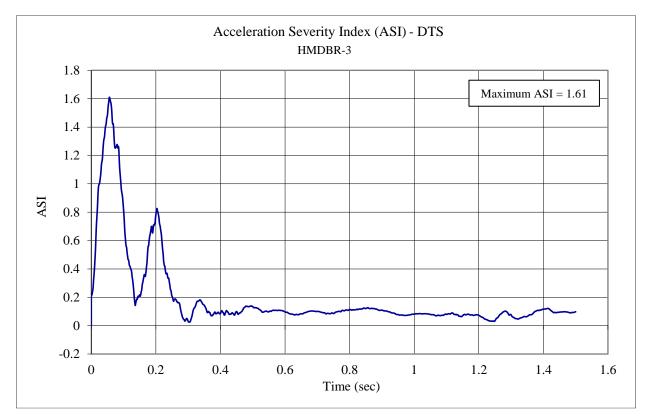


Figure H-8. Acceleration Severity Index (SLICE-2), Test No. HMDBR-3

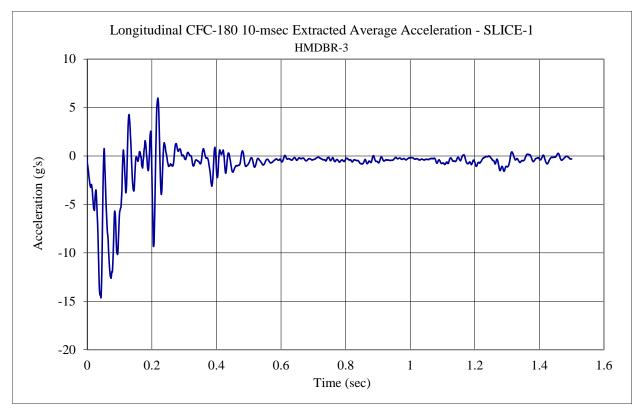


Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HMDBR-3

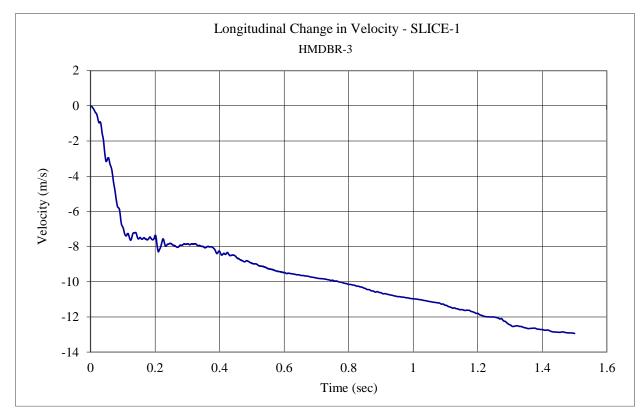


Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HMDBR-3

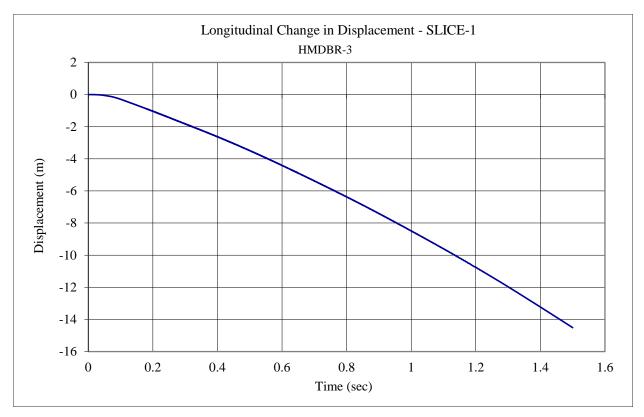


Figure H-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HMDBR-3

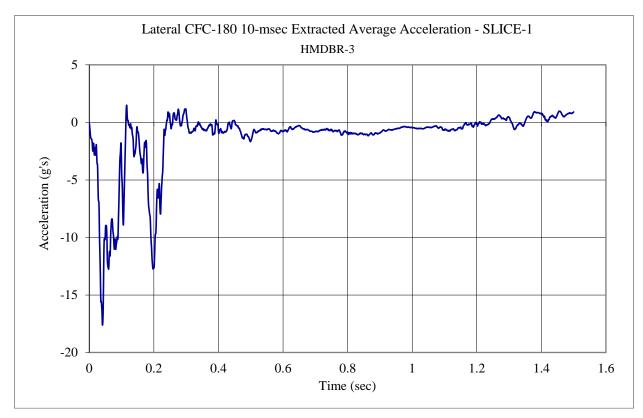


Figure H-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HMDBR-3

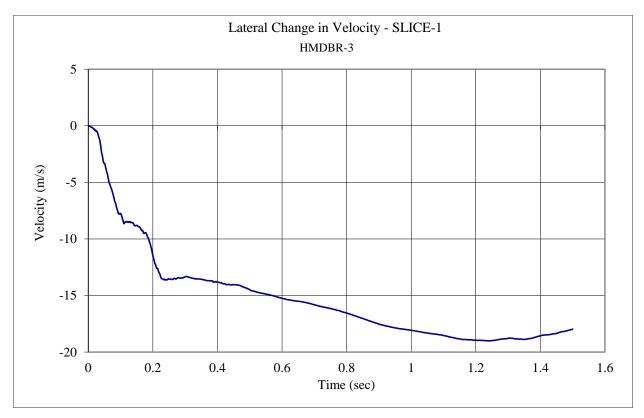


Figure H-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HMDBR-3

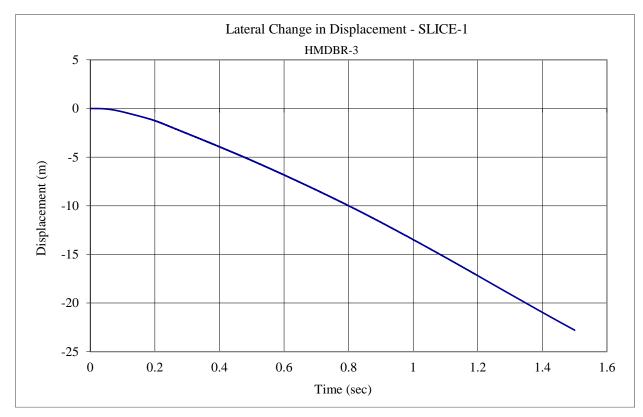


Figure H-14. Lateral Occupant Displacement (SLICE-1), Test No. HMDBR-3

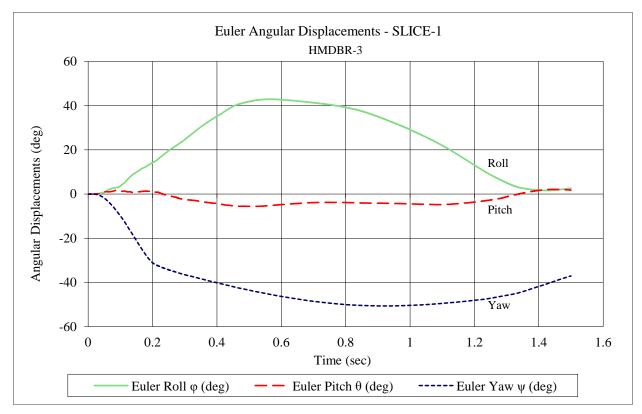


Figure H-15. Vehicle Angular Displacements (SLICE-1), Test No. HMDBR-3

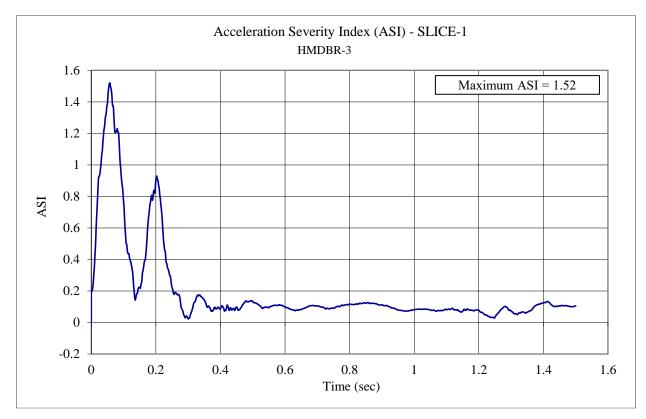


Figure H-16. Acceleration Severity Index (SLICE-1), Test No. HMDBR-3

END OF DOCUMENT