ISO 17025 LABORATORY
TESTING CERT \# 2937.01

MASH 2016 TEST LEVEL 3 EVALUATION OF MNDOT BICYCLE AND PEDESTRIAN RAIL

Submitted by

Miguel A. Hinojosa, B.S.M.E. Graduate Research Assistant

Scott Rosenbaugh, M.S.C.E.
Research Engineer
Robert W. Bielenberg, M.S.M.E.
Research Engineer
Joshua S. Steelman, Ph.D., P.E.
Associate Professor

Ronald K. Faller, Ph.D., P.E.
Professor \& MwRSF Director
Cody S. Stolle, Ph.D.
Research Assistant Professor
Jennifer D. Rasmussen, Ph.D., P.E.
Research Associate Professor
James C. Holloway, M.S.C.E. Research Engineer \& Assistant Director Physical Testing Division

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center
University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School
Room 130, 2200 Vine Street
Lincoln, Nebraska 68583-0853
(402) 472-0965

Submitted to
MINNESOTA DEPARTMENT OF TRANSPORTATION
395 John Ireland Blvd
St. Paul, Minnesota 55155
MwRSF Research Report No. TRP-03-443-20
December 11, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-443-20	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle MASH 2016 Test Level 3 Evaluation of MnDOT Bicycle and Pedestrian Rail		5. Report Date December 11, 2020
		6. Performing Organization Code
7. Author(s) Hinojosa, M.A., Faller, R.K., Rosenbaugh, S.K., Stolle, C.S., Bielenberg, R.W, Rasmussen J.D., Steelman, J.S., and Holloway, J.C.		8. Performing Organization Report No. TRP-03-443-20
9. Performing Organization Name and Address Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln		10. Work Unit No.
Main Office: Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Outdoor Test Site: 630 N.W. 36th Street incoln, Nebraska 68524	11. Contract TPF-5(193) Suppl. \#153
12. Sponsoring Agency Name and Address Minnesota Department of Transportation 395 John Ireland Blvd St. Paul, Minnesota 55155		13. Type of Report and Period Covered Final Report: 2019-2020
		14. Sponsoring Agency Code TPF-5(193) Suppl. \#153
15. Supplementary Notes Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration		
16. Abstract The Minnesota Department of Transportation (MnDOT) desires to use a vehicle, bicycle, and pedestrian combination bridge railing system along pedestrian and bicycle bridge paths. A variation of the MnDOT combination bicycle and pedestrian railing was full-scale crash tested according to the Test Level 3 (TL-3) procedures described in the Manual for Assessing Safety Hardware (MASH 2016). The combination bicycle and pedestrian railing included a $32-\mathrm{in}$. tall concrete barrier consistent with the MnDOT "J"-shaped barrier and a steel rail constructed from upper and lower longitudinal rails, welded vertical spindles, and steel posts mounted to the backside of the concrete barrier. Two longitudinal cables were threaded through the longitudinal rail elements and anchored to the backside of the concrete barrier at the upstream and downstream ends. For the tested system, an existing New Jersey (NJ) safety shape concrete barrier was modified for use as a J-shape barrier, and the steel rail was fastened to the back-side face of the barrier using a welded post and plate assembly.		
In full-scale crash test no. MNPD-3, the system was evaluated according to MASH test designation no. 3-11. The 2014 Dodge Ram 1500 crew cab pickup truck impacted the system $71 \frac{1}{4} \mathrm{in}$. upstream from the centerline of post no. 4 with a speed of 63.4 mph at an angle of 25.3 degrees. The vehicle was successfully redirected, resulting in minimal plastic deformation to the steel rail and minimal scraping and gouging to the concrete barrier. This bicycle and pedestrian railing system minimized the potential for vehicle snag on the vertical spindles by welding them on the back-side faces of the top and bottom longitudinal tubular rails. The combination railing system was found to meet the AASHTO MASH 2016 TL-3 impact safety criteria.		

17. Key Words

Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Test Level 3, TL-3, Bicycle Rail, Pedestrian Rail, Concrete Safety Shape, and Bridge Rail
20. Security Classification (of this page)
Unclassified

18. Distribution Statement

No restrictions. This document is available through the National Technical Information Service.
5285 Port Royal Road
Springfield, VA 22161
21. No. of Pages

150
22. Price

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Minnesota Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, Minnesota Department of Transportation, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government, the State of Nebraska, and the State of Minnesota do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. John Reid, Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Minnesota Department of Transportation and (2) MwRSF personnel for constructing the barriers and conducting the crash test. Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor
K.A. Lechtenberg, M.S.M.E., Research Engineer
M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician II
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
R.M. Novak, Construction and Testing Technician I
T.C. Donahoo, Construction and Testing Technician I
J.T. Jones, Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
E.L. Urbank, B.A., Research Communication Specialist
Z.Z. Jabr, Engineering Technician

Undergraduate and Graduate Research Assistants

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer
Paul Rowekamp, P.E., Bridge Standards and Research Engineer
Joe Black, P.E., Bridge Standards Unit
David Dahlberg, P.E., Bridge Design Manual \& Policy Unit
Jihshya Lin, P.E., Bridge Evaluation and Fabrication Methods Engineer

SL* (MODERN METRIC) CONVERSION FACTORS				
APPROXIMATE CONVERSIONS TO SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
LENGTH				
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
AREA				
in^{2}	square inches	645.2	square millimeters	mm^{2}
ft^{2}	square feet	0.093	square meters	m^{2}
yd^{2}	square yard	0.836	square meters	m^{2}
ac	acres	0.405	hectares	ha
$m i^{2}$	square miles	2.59	square kilometers	km^{2}
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft^{3}	cubic feet	0.028	cubic meters	m^{3}
yd^{3}	cubic yards	0.765		m^{3}
NOTE: volumes greater than 1,000 L shall be shown in m^{3}				
MASS				
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
T	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
TEMPERATURE (exact degrees)				
${ }^{\circ} \mathrm{F}$	Fahrenheit	$\begin{gathered} 5(\mathrm{~F}-32) / 9 \\ \text { or }(\mathrm{F}-32) / 1.8 \end{gathered}$	Celsius	${ }^{\circ} \mathrm{C}$
ILLUMINATION				
fc	foot-candles	10.76	lux	1 x
fl	foot-Lamberts	3.426	candela per square meter	$\mathrm{cd} / \mathrm{m}^{2}$
FORCE \& PRESSURE or STRESS				
lbf	poundforce	4.45	newtons	N
$\mathrm{lbf} / \mathrm{in}^{2}$	poundforce per square inch	6.89	kilopascals	kPa
APPROXIMATE CONVERSIONS FROM SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
LENGTH				
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
AREA				
mm^{2}	square millimeters	0.0016	square inches	
m^{2}	square meters	10.764	square feet	ft^{2}
m^{2}	square meters	1.195	square yard	yd^{2}
ha	hectares	2.47	acres	ac
km^{2}	square kilometers	0.386	square miles	mi^{2}
VOLUME				
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m^{3}	cubic meters	35.314	cubic feet	ft^{3}
m^{3}	cubic meters	1.307	cubic yards	yd^{3}
MASS				
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short ton (2,000 lb)	T
TEMPERATURE (exact degrees)				
${ }^{\circ} \mathrm{C}$	Celsius	$1.8 \mathrm{C}+32$	Fahrenheit	${ }^{\circ} \mathrm{F}$
ILLUMINATION				
1x	lux	0.0929	foot-candles	fc
$\mathrm{cd} / \mathrm{m}^{2}$	candela per square meter	0.2919	foot-Lamberts	fl
FORCE \& PRESSURE or STRESS				
N	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	$\mathrm{lbf} / \mathrm{in}^{2}$

[^0]
TABLE OF CONTENTS

DISCLAIMER STATEMENT ii
UNCERTAINTY OF MEASUREMENT STATEMENT ii
INDEPENDENT APPROVING AUTHORITY ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES vii
LIST OF TABLES x
1 INTRODUCTION 1
1.1 Background 1
1.2 Research Objective 2
1.3 Scope 2
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 9
2.1 Test Requirements 9
2.2 Critical Impact Point 11
2.3 Evaluation Criteria 12
3 DESIGN DETAILS - TEST NO. MNPD-3 13
4 TEST CONDITIONS 46
4.1 Test Facility 46
4.2 Vehicle Tow and Guidance System 46
4.3 Test Vehicle 46
4.4 Simulated Occupant 52
4.5 Data Acquisition Systems 52
4.5.1 Accelerometers 52
4.5.2 Rate Transducers 52
4.5.3 Retroreflective Optic Speed Trap 52
4.5.4 Digital Photography 53
5 FULL-SCALE CRASH TEST NO. MNPD-3 55
5.1 Weather Conditions 55
5.2 Test Description 55
5.3 Barrier Damage 63
5.4 Vehicle Damage 74
5.5 Head Ejection 84
5.6 Occupant Risk 91
5.7 Discussion 92
6 SUMMARY AND CONCLUSIONS 94
6.1 Summary 94
6.2 Conclusions 95
7 REFERENCES 97
8 APPENDICES 99
Appendix A. Material Specifications 100
Appendix B. Vehicle Center of Gravity Determination 123
Appendix C. Vehicle Deformation Records 125
Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. MNPD-3 133

LIST OF FIGURES

Figure 1. 2020 MwRSF Combination Bicycle and Pedestrian Bridge Railing Installation 1
Figure 2. 1998 MwRSF Construction Plans [4], Test No. MNPD-1 3
Figure 3. 1998 MwRSF Construction Plans [4], Test No. MNPD-1 4
Figure 4. 2020 MnDOT Bicycle and Pedestrian Rail Standard Plans [5], Test No. MNPD-3 5
Figure 5. 1998 MnDOT Bicycle and Pedestrian Rail with Mid-Tube Spindle Positioning [4], Test No. MNPD-1 6
Figure 6. 2020 MnDOT Bicycle and Pedestrian Rail Spindle with Back of Tube Positioning, Test No. MNPD-3 7
Figure 7. Slope End Section Comparison, Test Nos. MNPD-1 and MNPD-3 8
Figure 8. System Layout, Test No. MNPD-3 15
Figure 9. Profile Detail, Test No. MNPD-3 16
Figure 10. Pre-Existing Concrete Barrier Assembly, Test No. MNPD-3 17
Figure 11. Retrofit Assembly, Test No. MNPD-3 18
Figure 12. Retrofit Wall Reinforcement Details, Test No. MNPD-3 19
Figure 13. Upstream End Rail Details, Test No. MNPD-3 20
Figure 14. Downstream End Rail Details, Test No. MNPD-3 21
Figure 15. Rail Post Details, Test No. MNPD-3 22
Figure 16. Rail-Post Connection Details, Test No. MNPD-3 23
Figure 17. Upstream Railing Assembly, Test No. MNPD-3 24
Figure 18. Downstream Railing Details, Test No. MNPD-3 25
Figure 19. Intermediate Post Assembly, Test No. MNPD-3 26
Figure 20. Upstream End Rail Assembly, Test No. MNPD-3 27
Figure 21. Mid Rail Assembly, Test No. MNPD-3 28
Figure 22. Cable Anchor Plate Assembly, Test No. MNPD-3 29
Figure 23. Rail Components, Test No. MNPD-3 30
Figure 24. Rail Components, Test No. MNPD-3 31
Figure 25. Post Components, Test No. MNPD-3 32
Figure 26. Cable Anchor Components, Test No. MNPD-3 33
Figure 27. System Rebar, Test No. MNPD-3 34
Figure 28. Cable Assembly, Test No. MNPD-3 35
Figure 29. Cable Components, Test No. MNPD-3 36
Figure 30. Hardware, Test No. MNPD-3 37
Figure 31. Bill of Materials, Test No. MNPD-3 38
Figure 32. Bill of Materials, Test No. MNPD-3 39
Figure 33. Concrete Barrier Modification, Test No. MNPD-3 40
Figure 34. Construction Process, Test No. MNPD-3 41
Figure 35. System Installation, Test No. MNPD-3 42
Figure 36. Mid-Rail Assembly, Test No. MNPD-3 43
Figure 37. Upstream Sloped End, Post No. 1, and Post-Rail Connection, Test No. MNPD-3 44
Figure 38. Upstream Sloped End, Post No. 1, and Post-Rail Connection, Test No. MNPD-3 45
Figure 39. Test Vehicle, Test No. MNPD-3 47
Figure 40. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNPD-3 48
Figure 41. Vehicle Dimensions, Test No. MNPD-3 49
Figure 42. Target Geometry, Test No. MNPD-3 51
Figure 43. Camera Locations, Speeds, and Lens Settings, Test No. MNPD-3 54
Figure 44. Impact Location, Test No. MNPD-3 57
Figure 45. Sequential Photographs, Test No. MNPD-3 59
Figure 46. Sequential Photographs, Test No. MNPD-3 60
Figure 47. Documentary Photographs, Test No. MNPD-3 61
Figure 48. Vehicle Final Position and Trajectory Marks, Test No. MNPD-3 62
Figure 49. System Damage, Test No. MNPD-3 64
Figure 50. System Damage, Test No. MNPD-3 65
Figure 51. Tire Marks and Concrete Gouging, Test No. MNPD-3 66
Figure 52. Tire Marks and Concrete Scraping, Test No. MNPD-3 67
Figure 53. Rail and Post No. 4 Damage, Test No. MNPD-3 68
Figure 54. Rail and Post No. 4 Damage, Test No. MNPD-3 69
Figure 55. Spindle Contact and Debris, Test No. MNPD-3 70
Figure 56. Rail and Post No. 4 Damage, Test No. MNPD-3 71
Figure 57. Rail and Post No. 4 Damage, Test No. MNPD-3 72
Figure 58. Rail and Post No. 4 Damage, Test No. MNPD-3 73
Figure 59. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. MNPD-3 74
Figure 60. Vehicle Damage, Test No. MNPD-3 76
Figure 61. Vehicle Damage, Test No. MNPD-3 77
Figure 62. Vehicle Damage, Test No. MNPD-3 78
Figure 63. Vehicle Damage, Test No. MNPD-3 79
Figure 64. Vehicle Floor Pan, Test No. MNPD-3 80
Figure 65. Undercarriage Damage, Test No. MNPD-3 81
Figure 66. Undercarriage Damage, Test No. MNPD-3 82
Figure 67. Windshield Damage (Post-Test), Test No. MNPD-3 83
Figure 68. Documentary Photographs, Test No. MNPD-3 85
Figure 69. Documentary Photographs, Test No. MNPD-3 86
Figure 70. Overhead View of Head Ejection, Test No. MNPD-3 87
Figure 71. Upstream View of Head Ejection, Test No. MNPD-3 88
Figure 72. Downstream View of Head Ejection, Test No. MNPD-3 89
Figure 73. Angled Downstream View of Head Ejection, Test No. MNPD-3 90
Figure 74. Summary of Test Results and Sequential Photographs, Test No. MNPD-3 93
Figure A-1. Retrofit Concrete, Test No. MNPD-3 [b1] 104
Figure A-2. 301/4-in. Long No. 4 Reinforcement Bar, Test No. MNPD-3 [b2] 105
Figure A-3. 123/4-in. Long No. 4 Reinforcement Bar, Test No. MNPD-3 [b3] 106
Figure A-4. 1,19612-in. Long No. 4 Reinforcement Bar, Test No. MNPD-3 [b4, b5] 107
Figure A-5. HSS3x2x¹/8 ASTM A500 Grade B Rail Tube, Test No. MNPD-3 [c1, c2, c4, c5, c6] 108
Figure A-6. HSS4x2x¹⁄8 31½-in. Long ASTM A500 Grade B Post, Test No. MNPD-3 [c3] 109
Figure A-7. 1/4-in. Plate, Test No. MNPD-3 [c7, c10, c11, c12] 110
Figure A-8. $1 / 2$-in. Plate, Test No. MNPD-3 [c8, c9, c16] 111
Figure A-9. 16 -in. x $5 / 8$-in. x $5 / 8$-in. Long Rail Spindle, Test No. MNPD-3 [c13, c14, c15] 112
Figure A-10. $7 / 8$-in. Diameter - 9 UNC, 9 -in. Long Threaded Rod, Washer, and Hex Nut, Test No. MNPD-3 [d1, d3, d6] 113
Figure A-11. $5 / 8$-in. Diameter - 11 UNC $71 / 4$-in. Long Threaded Rod and Washer, Test No. MNPD-3 [d2, d5] 114
Figure A-12. $1 / 2$-in. Diameter Hardened SAE Washer, Test No. MNPD-3 [d4] 115
Figure A-13. ½-in. Diameter -13 Threads Jam Nut, Test No. MNPD-3 [d7] 116
Figure A-14. $1 / 2$-in. Diameter -13 Threads Jam Nut, Test No. MNPD-3 [d7] 117
Figure A-15. $5 / 8-\mathrm{in}$. Diameter -9 UNC Hex Nut, Test No. MNPD-3 [d8] 118
Figure A-16. $1 / 2$-in. Diameter -13 UNC, $11 / 2$-in. Long Round Head Bolt, Test No. MNPD-3 [d9] 119
Figure A-17. Forged Series Open Body Clevis and Socket Turnbuckle, Test No. MNPD-3 [d10] 120
Figure A-18. $5 / 16$-in. Diameter by 7 x 19 Wire Rope, Test No. MNPD-3 [d11] 121
Figure A-19. Hilti Chemical Epoxy, Test No. MNPD-3 [f1] 122
Figure B-1. Vehicle Mass Distribution, Test No. MNPD-3 124
Figure C-1. Floor Pan Deformation Data - Set 1, Test No. MNPD-3 126
Figure C-2. Floor Pan Deformation Data - Set 2, Test No. MNPD-3 127
Figure C-3. Occupant Compartment Deformation Data - Set 1, Test No. MNPD-3 128
Figure C-4. Occupant Compartment Deformation Data - Set 2, Test No. MNPD-3 129
Figure C-5. Exterior Vehicle Crush (NASS) - Front, Test No. MNPD-3 130
Figure C-6. Exterior Vehicle Crush (NASS) - Side, Test No. MNPD-3 131
Figure C-7. Maximum Occupant Compartment Deformations by Location, Test No. MNPD-3 132
Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNPD-3 134
Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNPD-3 135
Figure D-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MNPD-3 136
Figure D-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNPD-3 137
Figure D-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNPD-3 138
Figure D-6. Lateral Occupant Displacement (SLICE-2), Test No. MNPD-3 139
Figure D-7. Vehicle Angular Displacements (SLICE-2), Test No. MNPD-3 140
Figure D-8. Acceleration Severity Index (SLICE-2), Test No. MNPD-3 141
Figure D-9. $10-\mathrm{ms}$ Average Longitudinal Deceleration (SLICE-1), Test No. MNPD-3 142
Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNPD-3 143
Figure D-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MNPD-3 144
Figure D-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNPD-3 145
Figure D-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNPD-3. 146
Figure D-14. Lateral Occupant Displacement (SLICE-1), Test No. MNPD-3 147
Figure D-15. Vehicle Angular Displacements (SLICE-1), Test No. MNPD-3 148
Figure D-16. Acceleration Severity Index (SLICE-1), Test No. MNPD-3 149

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers 9
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier 10
Table 3. Weather Conditions, Test No. MNPD-3 55
Table 4. Sequential Description of Impact Events, Test No. MNPD-3 58
Table 5. Maximum Occupant Compartment Deformations by Location, Test No. MNPD-3 84
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNPD-3 91
Table 7. Summary of Safety Performance Evaluation 96
Table A-1. Bill of Materials, Test No. MNPD-3 101
Table A-2. Bill of Materials, Test No. MNPD-3, Cont. 102
Table A-3. Bill of Materials, Test No. MNPD-3, Cont. 103

1 INTRODUCTION

1.1 Background

The Minnesota Department of Transportation (MnDOT) currently uses a concrete barrier with an upper steel bicycle and pedestrian railing system, a test installation of which was constructed for research purposes at the Midwest Roadside Safety Facility (MwRSF) located in Lincoln, Nebraska, as shown in Figure 1. The crashworthiness of this bridge rail was previously recognized as meeting National Cooperative Highway Research Program (NCHRP) Report No. 350, Recommended Procedures for the Safety Performance Evaluation of Highway Features [1], Test Level 4 (TL-4) safety performance standards. NCHRP Report No. 350 has since been superseded by the American Association of State Highway and Transportation Officials' (AASHTO) Manual for Assessing Safety Hardware (MASH 2016) [2]. Thus, MnDOT desired to evaluate the bridge rail according to the MASH 2016 impact safety standards. In an effort to encourage state departments of transportation (DOTs) and hardware developers to advance their designs, the Federal Highway Administration (FHWA) and AASHTO developed an implementation policy that included sunset dates for various categories of roadside safety hardware [3]. The new policy recommended that all bridge rails installed on federal-aid roadways were to be tested and evaluated under MASH 2016 by December 31, 2019. As a result, MnDOT began to plan for this crash testing effort in 2018.

MnDOT plans to use the combination bridge railing system under two different scenarios: (1) as a retrofit attachment to existing 32 -in. tall, New Jersey and F-shaped concrete barriers, as shown in Figure 1, which is derived from the system that was developed and crash tested by MwRSF in 1998 [4] and shown in Figures 2 and 3 and (2) in combination with new installations of MASH 2016 TL-4 36-in. tall, single-slope concrete barriers. The bridge rail system attached to a concrete barrier is provided in MnDOT Standard Plan Fig. 5 - 397.158(A) (32-in. tall, J-shaped concrete barrier) [5], as shown in Figure 4.

Figure 1. 2020 MwRSF Combination Bicycle and Pedestrian Bridge Railing Installation

MnDOT updated its combination bridge railing system in two ways prior to conducting this research effort. In test no. MNPD-1 [4], the spindles were welded at the centerlines of the top face of the bottom tube rail and the bottom face of the top tube rail, as shown in Figures 3 and 5. Currently, the spindles are welded to the back-side face of both longitudinal rails, as shown in Figures 1,4 , and 6 , which increased the lateral spindle setback by $1 \frac{13}{16} \mathrm{in}$. The total lateral spindle setback is measured from the top front corner of the J-shape concrete barrier to the front face of the spindles. Additionally, the sloped end treatment on the upstream and downstream ends of the steel railing system was flattened from a $1 \mathrm{~V}: 1 \mathrm{H}$ slope (Figures 2 and 7) to a 1V:2H slope (Figures 4 and 7).

MnDOT installs the steel bicycle and pedestrian railing system on multiple concrete barrier shapes and heights. The 32 -in. tall, New Jersey-shape concrete barrier was historically associated with higher Zone of Intrusion values (ZOIs) (or lateral vehicle extent over the barrier) during MASH crash testing as compared to observed ZOIs for 32-in. tall, F-shape and 36-in. tall, single slope concrete barriers [6]. Thus, the $32-\mathrm{in}$. tall, New Jersey (NJ) shape concrete barrier was identified as the critical concrete barrier for use in evaluating the bicycle and pedestrian railing system as it would accentuate the risk for vehicle snag on the upper steel railing, specifically the vertical support posts and spindles.

1.2 Research Objective

The objective of this research effort was to conduct a MASH 2016 TL-3 safety performance evaluation on MnDOT's bicycle and pedestrian railing system installed on a surrogate 32 -in. tall, J-shape concrete barrier.

1.3 Scope

The research effort included the construction of a test installation consisting of a steel bicycle and pedestrian railing system mounted to an existing 32-in. tall, NJ-shape concrete barrier [7], which was modified to meet MnDOT's J-shape concrete barrier dimensions. The test installation was full-scale crash tested and evaluated according to MASH 2016 test designation no. 3-11. The critical impact point was selected using MASH guidance [2], which is discussed herein. A summary of test results is provided herein, along with conclusions.

Figure 2. 1998 MwRSF Construction Plans [4], Test No. MNPD-1

Figure 3. 1998 MwRSF Construction Plans [4], Test No. MNPD-1

Figure 4. 2020 MnDOT Bicycle and Pedestrian Rail Standard Plans [5], Test No. MNPD-3

Figure 5. 1998 MnDOT Bicycle and Pedestrian Rail with Mid-Tube Spindle Positioning [4], Test No. MNPD-1

Figure 6. 2020 MnDOT Bicycle and Pedestrian Rail Spindle with Back of Tube Positioning, Test No. MNPD-3

Figure 7. Slope End Section Comparison, Test Nos. MNPD-1 and MNPD-3

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as bicycle and pedestrian rails, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [2]. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. Note that there is no difference between MASH 2009 [8] and MASH 2016 [2] for longitudinal barriers, such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016.

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

Test Article	Test Designation No.	Test	Vehicle	Vehicle Weight lb	Impact Conditions	
	Evaluation mph	Angle degrees	Criteria 1			

${ }^{1}$ Evaluation criteria explained in Table 2.
MASH 2016 test designation no. 3-10, which involves an 1100C vehicle, was deemed unnecessary or non-critical for two reasons. First, this NJ-shape concrete barrier passed test no. $2214 \mathrm{NJ}-1$ under the test designation no. 3-10 impact conditions as a part of NCHRP Project No. 22-14(2) [7]. The 1100C vehicle impacted $18 \mathrm{ft}-6 \mathrm{in}$. downstream from the upstream end of the New Jersey concrete barrier at 60.8 mph and at a 26.1-degree angle. The New Jersey barrier sustained no permanent set deflection, no dynamic deflection, and a working width of approximately 16 in . The vehicle exited the barrier at 49.3 mph and at a 6.6 -degree angle. The occupant risk summary for test no. $2214 \mathrm{NJ}-1$ consisted of occupant impact velocities (OIVs) of $16.47 \mathrm{ft} / \mathrm{s}$ longitudinally and $35 \mathrm{ft} / \mathrm{s}$ laterally, and occupant ride-down accelerations (ORAs) of 5.49 g 's longitudinally and 8.08 g 's laterally [7]. Second, the ZOI value for test no. $2214 \mathrm{NJ}-1$ was approximately 7 in . MnDOT's J-shape concrete bridge railing has a top width of $91 / 4 \mathrm{in}$. with the nearest exposed metal railing component (i.e., support posts) positioned $93 / 4 \mathrm{in}$. away from the top front corner of the barrier. Consequently, no 1100C small car contact would occur with the attached bicycle and pedestrian railing system. Therefore, test no. $2214 \mathrm{NJ}-1$ was deemed sufficient for use as a test designation no. 3-10 evaluation of the MnDOT bicycle and pedestrian railing system installed on a J-concrete barrier and would not need to be rerun. Therefore, only test designation no. 3-11 was deemed critical for evaluating the MASH 2016 TL-3 safety performance of the MnDOT bicycle and pedestrian railing system installed on a J-shape concrete barrier.

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.		
Occupant Risk	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.		
		The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.		
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:		
		Occupant Impact Velocity Limits		
		Component	Preferred	Maximum
		Longitudinal and Lateral	$30 \mathrm{ft} / \mathrm{s}$	$40 \mathrm{ft} / \mathrm{s}$
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
		Occupant Ridedown Acceleration Limits		
		Component	Preferred	Maximum
		Longitudinal and Lateral	15.0 g's	20.49 g's

2.2 Critical Impact Point

In MASH 2016 [2], the impact point refers to the location at which the test vehicle first contacts the test article. The impact point for a redirective, longitudinal barrier can affect its overall safety performance. The potential for vehicle instability, rollover, snag, pocketing, excessive interior occupant deformation, elevated occupant risk, test article penetration, and structural failure is often associated with the selection of the impact point used to evaluate the barrier system. Within practical limits, the impact location should be selected to represent the point along the barrier system that will maximize the risk for test failure. The impact location that maximizes the risk of test failure is known as the critical impact point (CIP).

The MnDOT bridge railing system is configured with a lower, rigid, reinforced-concrete barrier along with an upper, metal, beam and post railing. MASH 2016 specifies that post-andbeam longitudinal barriers may have two potential CIPs: one associated with wheel snagging and pocketing on a post (i.e., hard point) and another that induces maximum loading to a critical portion of the system, such as a rail splice [2]. For the MnDOT bridge railing system, wheel snag on lower posts would not be a concern as no openings exist within the $32-\mathrm{in}$. tall concrete barrier. As such, maximum loading to the rigid concrete barrier may more likely be associated with an increase in vehicle deformation. For shorter width concrete barrier, the engine hood and front fender panel may extend over the top of the rigid barrier, where vehicle-to-barrier contact may occur if the metal railing system is located near the front face of the barrier. If the upper metal railing is located farther away from the front face of the rigid concrete barrier, then additional longitudinal distance and time may be appropriate to allow for the vehicle to maximize its lateral extent over the top of the barrier. At this point, the vehicle's upper structure may be able to contact the metal structure, snag on vertical elements, and laterally load elements at splice locations.

When splices are coincident with a hard point, such as at a vertical support post, a single test can be conducted to evaluate both critical points. If splices are spaced away from a hard point, it may be necessary to conduct two full-scale crash tests with a particular vehicle to properly evaluate CIPs. However, it should be noted that only the 2270P vehicle crash test needs to be run as it produces the greatest splice loading and hence the greatest chance for structural failure. Due to the fact that rail splices within the new bicycle and pedestrian railing are located near the vertical support posts, it was believed that vehicle snagging on a post, which is near a splice, as well as maximum loading on a post or splice above the parapet could be evaluated with one test with the 2270P passenger vehicle.

The CIP for a rigid barrier under test designation no. 3-11 is noted as 4.3 ft (51.2 in .) upstream from the component that maximizes the snag severity of the railing system, as provided in Table 2.7 of MASH 2016 [2]. For the MnDOT bicycle and pedestrian railing system, a post was determined to be the component that maximizes the snag severity. Each metal post and mounting plate assembly is attached to the back-side vertical face of the concrete barrier, which provides a lateral offset of the $93 / 4 \mathrm{in}$. between the front barrier face and the front face of each post. As noted above, it may be prudent to provide additional longitudinal distance and time for the vehicle to maximize its lateral extent over the top of the barrier. Using a 25 -degree impact angle in combination with a $93 / 4-\mathrm{in}$. lateral post offset, the additional longitudinal distance to maximize lateral vehicle extent over the top of barrier would be approximately 20.9 in . When combining the two lengths of 51.2 in . and 20.9 in ., one would arrive at a CIP distance of approximately 72.1 in .,
which would be measured upstream from the upstream face of a vertical support post. Since the vertical support posts are 2 in . wide, the CIP distance to the centerline of a post would actually be around 73.1 in . Based on an approximate calculation early in the project, the CIP for test no. MNPD-3 was chosen to be $73^{3} / 16$ in., which was measured upstream from the centerline of post no. 4 .

For comparison purposes, test no. MNPD-1 [4] was conducted on the original combination bridge railing system according to TL-3 of the NCHRP Report No. 350 impact safety standards [1]. For test no. MNPD-1 with a 2000P pickup truck (test designation no. 3-11), the CIP was 78.7 in. upstream from the centerline of post no. 4, which is very similar to the CIP selected for use in the MASH 2016 crash testing program with a 2270P pickup truck.

2.3 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bridge railing to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3 DESIGN DETAILS - TEST NO. MNPD-3

The test installation consisted of a $100-\mathrm{ft}$ long concrete barrier with a back-mounted, bicycle and pedestrian bridge railing system. The test plan and construction drawings are shown in Figures 8 through 32. Photographs of the test installation are shown in Figures 33 through 38. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

For the test no. MNPD-3 crash testing program, the modified reinforced-concrete barrier was consistent with MnDOT's 32 -in. tall, J-shape concrete barrier with a $91 / 4-\mathrm{in}$. top width and an 181/4-in. bottom width, as shown in Figure 9. All steel reinforcing bars conformed to ASTM A615 Grade 60 and were epoxy-coated according to ASTM A775. The J-shape concrete barrier was constructed from two pieces: (1) an existing New Jersey profile barrier system measuring $120 \mathrm{ft}-$ 2 in . long and 32 in . tall, with a $6-\mathrm{in}$. top width and $15-\mathrm{in}$. base width that provided the correct front profile of the concrete barrier [7], and (2) a $3 \frac{1}{4}-\mathrm{in}$. wide by $32-\mathrm{in}$. tall by $100-\mathrm{ft}$ long, reinforced-concrete wall that was retrofitted to the back side of the existing, NJ-shape concrete barrier to achieve the minimum $91 / 4-$ in. barrier top width, as shown in Figures 9 and 33. The downstream end of the retrofit wall was flush with the downstream end of the New Jersey-shape concrete barrier, thus creating a retrofit length equal to 100 ft , as shown in Figures 7 and 35 .

Note that the standard MnDOT J-barrier was later determined to have a top width and a bottom width of 9 in . and 18 in ., respectively. Thus, the rectangular retrofit wall should have been 3 in. wide versus $31 / 4-\mathrm{in}$. wide. In summary, the concrete barrier was constructed to be $1 / 4 \mathrm{in}$. wider than intended.

The retrofit wall used a series of rebar assemblies that consisted of three L-shaped No. 4 rebar tied to a $301 / 4$-in. tall, vertical No. 4 stirrup, as shown in Figure 11. To anchor the retrofit wall, the three L-shaped No. 4 rebar were anchored with an epoxy adhesive 5 in . deep into the existing NJ-shape concrete barrier [7] by drilling a $5 / 8$-in. diameter hole at heights of $2 \mathrm{in} ., 105 / 8 \mathrm{in}$., and $245 / 8$ in. from the top of the concrete barrier. The retrofit wall used five horizontal No. 4 rebar tied through a length of 100 ft at heights of $13 / 4 \mathrm{in}$., $3^{13 / 16} \mathrm{in}$., $93 / 4 \mathrm{in}$., $16^{13 / 16} \mathrm{in}$., and $25^{11 / 16} \mathrm{in}$. from the top of the concrete barrier, as shown in Figures 11 and 12. The retrofit wall consisted of three horizontal spacing patterns, as shown in Figure 11. The downstream end's pattern is shown in Detail B in Figure 11, the post-to-post pattern is shown in Detail C in Figure 11, and the upstream end pattern is shown in Detail D in Figure 11.

The bicycle and pedestrian railing system utilized nine post assemblies which were anchored to the back-side, vertical face of the concrete barrier. Each post was fabricated from ASTM A500 Grade B HSS steel tubing, measuring 4 in. x 2 in. $x \frac{1 / 8}{}$ in., which were treated according to ASTM A123 hot-dip galvanizing. Two $31 / 2-\mathrm{in}$. x $49 / 16$-in. x $1 / 4$-in. bent plates, configured with ASTM A709 Grade 36 steel, were welded to the post at the upper and lower rail heights of $541 / 2 \mathrm{in}$. and $371 / 2 \mathrm{in}$. above the ground, as shown in Figures 9, 17, 18, and 19. The lower bent plates were welded onto each post using a three-sided sealed ends weld of $1 / 8 \mathrm{in}$. The bent plates were used to attach the rail panels to the posts using $1 / 2$-in. diameter, 13 UNC by $11 / 2-\mathrm{in}$. long SAE J2484 round head machine screws, zinc-plated in accordance to ASTM F1941 with two ASTM F436 $1 / 2$-in. diameter hardened SAE washers zinc-plated in accordance to ASTM F2329, and $1 / 2$-in. diameter, 13 UNC ASTM A563A jam nuts zinc-plated in accordance to ASTM F1941 for both downstream and upstream post assemblies, as shown Figures 15, 37, and 38. MnDOT's
standard plan [5] specified the use of ASTM A307 Grade B round head bolts, each measuring $1 / 2$ in. diameter x $11 / 2 \mathrm{in}$. long with an ASTM F436 $1 / 2$-in. diameter hardened SAE washer and two ASTM A563A $1 / 2$-in.-13 UNC jam nuts, as shown in Figure 4.

MnDOT specified the use of round head bolts for attaching rail panels to vertical posts. For these round head bolts, it is necessary to acquire a special treatment on each head for holding the bolt while tightening the lower two nuts. These special treatments may include: (1) flat, Philips, torx, hex, or other key shapes within the center region of head or (2) two flattened sides sufficient for holding each head with an open-end wrench. Note that the original bicycle and pedestrian railing system was developed and successfully crash tested under TL-4 impact conditions of NCHRP Report No. 350 using hex head bolts to attached rail panels to posts [4].

Each ASTM A500 Grade B HSS 4-in. x 2-in. x $1 / 8-\mathrm{in}$. steel post was welded onto a $10-\mathrm{in}$. x 7 -in. $x^{1 / 2}$-in. ASTM A709 Grade 36 steel mounting plate with a $1 / 4$-in. fillet weld on the sides, a $1 / 8$-in. fillet weld on the bottom, and a $3 / 16$-in. fillet weld on the top of the plate. Each post assembly was anchored to the backside of the barrier using four ASTM F1554 Grade 36 galvanized $7 / 8$-in. diameter -9 UNC by $9-\mathrm{in}$. long, threaded rods; $7 / 8-\mathrm{in}$. diameter -9 UNC hex nuts; and a $7 / 8-\mathrm{in}$. diameter hardened washer. The post assemblies were treated according to ASTM A123 hot-dip galvanizing.

The longitudinal upper and lower rails consisted of ASTM A500 Grade B HSS 3 in. x 2 in. $x 1 / 8$ in. sections measuring $1171 / 2$ in. long. The termination end rail assemblies consisted of two ASTM A500 Grade B HSS $3-\mathrm{in}$. x $2-\mathrm{in}$. x $1 / 8-\mathrm{in}$. tubes welded together with a $1 / 4-\mathrm{in}$. fillet weld along the length of the tubes, as shown in Figures 17 and 18. The top angled rail was welded onto the top of the post using a $1 / 8-\mathrm{in}$. fillet weld at an angle of 26.6 degrees. The lower angled rail was welded onto an ASTM A500 Grade B HSS 3-in. x 2 -in. x $1 / 8$-in. post using a $1 / 8-\mathrm{in}$. fillet weld at the lower bent plate height, as shown in Figures 17 and 18. For each rail assembly, $16-\mathrm{in}$. x $5 / 8-\mathrm{in}$. $x 5 / 8-i n$. vertical spindles spaced at $6-i n$. centers, were welded to the back sides of the longitudinal rails with a $1 / 8$-in. fillet weld, as shown in Figures 20 and 21.

The cable assembly used for test nos. MNPD-1 and MNPD-2, as detailed in MwRSF report, Design and Evaluation of the TL-4 Minnesota Combination Traffic/Bicycle Bridge Rail [4], consisted of a $1 / 2$-in. diameter, UNJ, Crosby HG 4037 jaw; a $1 / 2$-in. UNC Crosby threaded turnbuckle; an Electroline stud socket GD-331-X; and $5 / 16$-in. diameter by 7×19 wire rope, as shown in Figure 28. The cable assembly used for test no. MNPD-3 consisted of an Electroline Forged Series Open body Clevis and Socket Turnbuckle with an Electroline part no. XD-4031-BX and a $3 / 16$-in. diameter by 7 x 19 wire rope, as shown in Figures 28, 29, and 32.

Figure 8. System Layout, Test No. MNPD-3

Figure 9. Profile Detail, Test No. MNPD-3

Figure 10. Pre-Existing Concrete Barrier Assembly, Test No. MNPD-3

Figure 11. Retrofit Assembly, Test No. MNPD-3

Note: (1) $12^{\prime \prime}$ minimum longitudinal lap length.
DETAIL D

Figure 12. Retrofit Wall Reinforcement Details, Test No. MNPD-3

DETAIL E

Note: (1) At each cable anchor bolt: 5" minimum embedment, and torque to 30 $\mathrm{ft}-\mathrm{lb}$.
(2) Provide an adhesive with a minimum characteristic bond strength in uncracked concrete of 1.5 ksi . Embed the anchorage no less than embedment shown regardless of characteristic bond strength. Drill through reinforcement (If encountered) to achieve minimum embedment. Ensure hex nut is in contact with the adjacent surface and torque to value specified unless a higher torque is recommended by the manufacturer.
Midwest Roadside
Safety Facility

Figure 13. Upstream End Rail Details, Test No. MNPD-3

Note: (1) At each cable anchor bolt: 5" minimum embedment, and torque to 30 $\mathrm{ft}-\mathrm{lb}$.
(2) Provide an adhesive with a minimum characteristic bond strength in uncracked concrete of 1.5 ksi . Embed the anchorage no less than embedment shown regardless of characteristic bond strength. Drill through reinforcement (If encountered) to achieve minimum embedment. Ensure hex nut is in contact with the adjacent surface and torque to value specified unless a higher torque is recommended by the manufacturer.

Figure 15. Rail Post Details, Test No. MNPD-3

DETAIL L
TYPICAL FOR ALL FIXED ENDS
(DOWNSTREAM ENDS EXCEPT LOCATION OF DETAIL I)

Notes: (1) At expansion end provide $1 / 16 \mathrm{in}$. gap between underside of bent plate and upper nut to allow lateral movement of of the rail.
(2) Dome head bolts may have a flat head key in center region, heads, or flattened sides sufficient for an open-end wrench to sufficiently reduce snagging on the heads. If flattened sides are used, use a washer under the reduced head size.

DETAIL K
TYPICAL FOR ALL EXPANSION/UPSTREAM ENDS

DETAIL J
DOWNSTREAM END RAIL-POST ONLY

Figure 16. Rail-Post Connection Details, Test No. MNPD-3
Note: Parts $\mathrm{c} 1, \mathrm{c} 2$, and c 10 are centered on part c 7 .

Figure 17. Upstream Railing Assembly, Test No. MNPD-3

Figure 18. Downstream Railing Details, Test No. MNPD-3

Figure 19. Intermediate Post Assembly, Test No. MNPD-3

Figure 20. Upstream End Rail Assembly, Test No. MNPD-3

Figure 21. Mid Rail Assembly, Test No. MNPD-3

PROFILE VIEW

Figure 22. Cable Anchor Plate Assembly, Test No. MNPD-3

Figure 23. Rail Components, Test No. MNPD-3

Figure 24. Rail Components, Test No. MNPD-3

Figure 25. Post Components, Test No. MNPD-3

Figure 26. Cable Anchor Components, Test No. MNPD-3

Figure 28. Cable Assembly, Test No. MNPD-3

Figure 29. Cable Components, Test No. MNPD-3

Figure 30. Hardware, Test No. MNPD-3

Figure 31. Bill of Materials, Test No. MNPD-3

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
d8	12	5/8"-9 UNC Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55	-
d9	36	1/2"-13 UNC, 1 1/2" Long Round Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55	-
d10	4	Electroline XD-4031-BX Forged Series Open Body Clevis and Socket Turnbuckle	ASTM F1145 Type ${ }^{1}$ Gr. ${ }^{1} \mathrm{Min}$. Breaking Strength $9,160 \mathrm{lbs}$	ASTM A153	-
d11	4	5/16" Dia. 7×19 FC Wire Rope	$\begin{gathered} \text { ASTM A1023 Table } 7 \text { EIP MIN Breaking } \\ \text { Strength } 9800 \end{gathered}$	ASTM A1007	-
f1	-	Chemical Epoxy	Min. Bond Strength (1.5 ksi)	-	-

Figure 35. System Installation, Test No. MNPD-3

Figure 36. Mid-Rail Assembly, Test No. MNPD-3

Figure 37. Upstream Sloped End, Post No. 1, and Post-Rail Connection, Test No. MNPD-3

Figure 38. Upstream Sloped End, Post No. 1, and Post-Rail Connection, Test No. MNPD-3

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of NebraskaLincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer, located on the tow vehicle, was used to increase the accuracy of the test vehicle's impact speed.

A vehicle guidance system developed by Hinch [9] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The $3 / 8-\mathrm{in}$. diameter guide cable was tensioned to approximately $3,500 \mathrm{lb}$ and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. MNPD-3, a 2014 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were $4,994 \mathrm{lb}, 5,001 \mathrm{lb}$, and 5,182 lb , respectively. The test vehicle is shown in Figures 39 and 40, and vehicle dimensions are shown in Figure 41.

Figure 39. Test Vehicle, Test No. MNPD-3

Figure 40. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNPD-3

Figure 41. Vehicle Dimensions, Test No. MNPD-3

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [10] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely-suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figure 42. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 42. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards, except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the highspeed digital videos. A radio-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

Figure 42. Target Geometry, Test No. MNPD-3

4.4 Simulated Occupant

For test no. MNPD-3, a Hybrid II $50^{\text {th }}$-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front seat of the test vehicle with the seat belt fastened. The simulated occupant had a final weight of 161 lb . As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [11].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the body of custom-built, SLICE 6DX event data recorders and recorded data at $10,000 \mathrm{~Hz}$ to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of $\pm 500 \mathrm{~g}$'s, a sample rate of $10,000 \mathrm{~Hz}$, and a $1,650 \mathrm{~Hz}$ (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the body of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees $/ \mathrm{sec}$ in each of the three directions (roll, pitch, and yaw) and recorded data at $10,000 \mathrm{~Hz}$ to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately $18-\mathrm{in}$. intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz , as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras, seven GoPro digital video cameras, and six Panasonic digital video cameras were utilized to film test no. MNPD-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 43.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for test no. MNPD-3.

Figure 43. Camera Locations, Speeds, and Lens Settings, Test No. MNPD-3

5 FULL-SCALE CRASH TEST NO. MNPD-3

5.1 Weather Conditions

Test no. MNPD-3 was conducted on June 4, 2020 at approximately 12:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Table 3. Weather Conditions, Test No. MNPD-3

Temperature	$90^{\circ} \mathrm{F}$
Humidity	51%
Wind Speed	11 mph
Wind Direction	190° from True North
Sky Conditions	Sunny
Visibility	9.94 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.48 in.
Previous 7-Day Precipitation	0.58 in.

5.2 Test Description

Test no. MNPD-3 was conducted on a steel bicycle and pedestrian railing system mounted to the existing 32-in. tall, New Jersey-shaped, concrete barrier under the MASH 2016 TL-3 guidelines for test designation no. 3-11. Test designation no. 3-11 involves an impact with a 2270P vehicle at 62 mph and 25 degrees on the bridge railing system. The CIP for this system was selected to maximize the potential for vehicle interaction and snag on the support posts of the metal railing, as discussed in Section 2.2.

Initial vehicle impact was to occur $733 / 16$ in. upstream from the centerline of post no. 4 , as shown in Figure 44 . The 5,001-lb crew cab pickup truck impacted the combination bicycle pedestrian bridge railing system at a speed of 63.4 mph and at an angle of 25.3 degrees. The actual point of impact was $71 \frac{1}{4} \mathrm{in}$. upstream from the centerline of post no. 4 .

In the test, the vehicle was safely captured and smoothly redirected by the 32-in. tall, New Jersey-shape, concrete barrier with attached bicycle and pedestrian bridge railing system. During the redirection of the vehicle, the right-front fender and right-front corner of the engine hood snagged on the upstream corner of the first spindle upstream from post no. 4. The maximum vehicle-to-barrier contact occurred when the right-front corner of the engine hood and the rightfront fender snagged on the upstream face of post no. 4, thus resulting in the quarter panel being torn rearward and away from the vehicle. However, this vehicle snag was not determined to pose a risk to the vehicle's occupant compartment nor did it pose any concerns for excessive change in velocity or deceleration of the vehicle. Vehicle redirection was primarily facilitated by the concrete barrier. Other vehicle contact with the steel bicycle and pedestrian bridge railing system occurred when the vehicle's right-front fender engaged the lower tube rail and the upstream corner of the first spindle upstream from post no. 4 as well as when the right-front rearview mirror made contact
with the upper tube rail. The vehicle came to rest $204 \mathrm{ft}-6 \mathrm{in}$. downstream and $16 \mathrm{ft}-5 \mathrm{in}$. laterally in front of the barrier after brakes were applied.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 45 and 46. Documentary photographs of the crash test are shown in Figure 47. The vehicle trajectory and final position are shown in Figure 48.

Figure 44. Impact Location, Test No. MNPD-3

Table 4. Sequential Description of Impact Events, Test No. MNPD-3

Time $(s e c)$	
0.000	Vehicle's right-front tire impacted concrete barrier 711/4 in. upstream from post no. 4.
0.002	Vehicle's bumper cover contacted concrete barrier.
0.008	Vehicle's right-front fender deformed, and vehicle's right headlight contacted concrete barrier.
0.012	Vehicle's right fender contacted concrete barrier.
0.022	Vehicle's engine hood and right-front door deformed.
0.034	Vehicle's right fender contacted metal rail.
0.042	Vehicle's right-rear door deformed.
0.044	Vehicle pitched upward.
0.054	Vehicle's right-front door contacted concrete barrier.
0.056	Vehicle's hood contacted post no. 4.
0.062	Vehicle's right fender contacted post no.4
0.094	Vehicle's right-front window shattered, and simulated occupant's head passed through right-front window.
0.112	Vehicle's left-front tire became airborne.
0.114	Vehicle's grille became disengaged.
0.144	Vehicle's right-rear tire contacted concrete barrier.
0.172	Vehicle's rear bumper contacted concrete barrier.
0.178	Simulated occupant's head reentered through right-front window. Vehicle was parallel to the system. Parallel vehicle velocity was 51.8 mph.
0.220	Vehicle's left-rear tire became airborne.
0.260	Vehicle's right-front tire became airborne.
0.292	Vehicle's tailgate detached from left side.
0.312	System came to a rest.
0.358	Vehicle's right-rear tire became airborne.
0.362	Vehicle exited the system at a velocity of 53.0 mph.
0.476	Vehicle's right-front tire regained contact with ground.
0.594	Vehicle pitched upward.
0.628	Vehicle rolled away from system.
0.742	Vehicle's right-rear tire regained contact with ground.
0.796	Vehicle's left-front tire regained contact with ground.
0.938	Vehicle's left-rear tire regained contact with ground.
2.782	Vehicle's left-rear tire became disengaged.
4.558	Vehicle came to rest.

Figure 45. Sequential Photographs, Test No. MNPD-3

Figure 46. Sequential Photographs, Test No. MNPD-3

Figure 47. Documentary Photographs, Test No. MNPD-3

Figure 48. Vehicle Final Position and Trajectory Marks, Test No. MNPD-3.

5.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 49 through 58. Barrier damage largely consisted of contact marks, scraping, and gouging of the concrete barrier. The length of vehicle contact along the barrier extended downstream approximately 13 ft - 11 in ., starting $141 / 2$ in. upstream from the impact point.

Contact marks measuring $1 / 4 \mathrm{in}$. wide were found on the top corner of the lower rail, starting $231 / 4 \mathrm{in}$. upstream from post no. 4 and extending $313 / 4 \mathrm{in}$. downstream to the end of the rail. Contact marks $1 / 2$ in. wide were found on the bottom corner of the lower rail, starting $101 / 2 \mathrm{in}$. upstream from post no. 4 and extending $81 / 2 \mathrm{in}$. downstream. Contact marks were found on the front face, near the top corner of the lower rail, starting $51 / 4 \mathrm{in}$. downstream from post no. 4 and extending 12 in. downstream. Minor vehicle contact occurred with the first vertical spindle located upstream from post no. 4, as shown in Figures 54 and 55. A small amount of vehicle debris remained on the spindle. Contact marks on the front face of the first spindle upstream from post no. 4 extended upward $71 / 2$ in. from the top face of the lower rail, as shown in Figure 53. Contact marks on the upstream face of post no. 4 began $71 / 2 \mathrm{in}$. from the top and extended $11 \frac{1}{2} \mathrm{in}$. downward. A separate contact mark was observed on the downstream face of post no. 4 , starting $43 / 4 \mathrm{in}$. from the top and extending $1 \frac{1}{4} \mathrm{in}$. downward.

Tire marks were visible on the front face of the J-shape concrete barrier, starting $141 / 2 \mathrm{in}$. upstream from impact and extending 167 in . downstream across the traffic side of the barrier. Scuff marks were also found along the length of vehicle contact. Gouging was found on the front face of the barrier measuring $41 / 2 \mathrm{in}$. long and located 15 in . from the top edge and extending $51 / 2 \mathrm{in}$. downstream from the impact point with a height of 4 in . and a width of $1 / 4 \mathrm{in}$. Scraping measuring 10 in . long was located 31 in . downstream from the impact point and 7 in . from the top front corner of the concrete barrier with a width of $1 / 2 \mathrm{in}$. Chipping, measuring $2 \frac{1}{2} \mathrm{in}$. long, was located 17 in . downstream from the impact point and $131 / 4$ in. below the top front corner of the concrete barrier with a width of $3 / 4 \mathrm{in}$. Additional chipping, measuring $11 \frac{1}{4} \mathrm{in}$. long, was located on the top trafficside corner of the concrete barrier $241 / 2$ in. downstream from post no. 4 with a height of $3 / 4 \mathrm{in}$.

The maximum lateral permanent set of the barrier system was 0.4 in . between post nos. 5 and 6 , as measured in the field. The maximum lateral dynamic barrier deflection, including rotation of the metal railing, was 0.6 in . on the upper rail at post no. 6 , as determined from high-speed digital video analysis. The working width of the system was found to be 23.2 in., also determined from high-speed digital video analysis. The ZOI was $12 \frac{3}{4} \mathrm{in}$. Barrier deflections are shown schematically in Figure 59.

Figure 49. System Damage, Test No. MNPD-3

s

Figure 50. System Damage, Test No. MNPD-3

ब

Figure 51. Tire Marks and Concrete Gouging, Test No. MNPD-3

Figure 52. Tire Marks and Concrete Scraping, Test No. MNPD-3

Figure 54. Rail and Post No. 4 Damage, Test No. MNPD-3

Figure 55. Spindle Contact and Debris, Test No. MNPD-3

Figure 56. Rail and Post No. 4 Damage, Test No. MNPD-3

Figure 57. Rail and Post No. 4 Damage, Test No. MNPD-3

Figure 59. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. MNPD-3

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 60 through 67. The maximum occupant compartment deformations are listed in Table 5 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Occupant compartment deformations along with the corresponding locations are provided in Appendix C.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle, where impact had occurred, as shown in Figure 60. The vehicle's steel engine hood was deformed across its entirety, and the right edge was deformed inward, as shown in Figures 60, 61, and 62. The left side of the front bumper was pushed downward. The right side of the bumper was crushed inward. The right-front fender was dented, torn front to back, and pushed upward near the
right-front door, as shown in Figures 61 and 62. The right-front cast aluminum rim was severely deformed, fractured, and crushed, as shown in Figure 62. The grille was pushed backward and fractured around the right-side headlight assembly. The right-side headlight was disengaged from the vehicle, as shown in Figure 62. The right-side, upper control arm was fractured. The right side of the radiator was pushed backward. Denting and scraping were observed across the entire right side. The right-front door was slightly ajar, and creases were found in the door's sheet metal. The right-side window glass shattered, as shown in Figures 61, 62, and 63. The right-rear door was dented and ajar. The right side of the truck bed was dented, and the fuel hatch was ajar. The rightrear wheel detached, as shown in Figure 63. The right side of the rear bumper was torn and pushed downward. The right side of the windshield had a hairline crack, as shown in Figure 67. The roof and remaining window glass remained undamaged.

Figure 60. Vehicle Damage, Test No. MNPD-3

Figure 61. Vehicle Damage, Test No. MNPD-3

$\stackrel{\rightharpoonup}{\infty}$

Figure 62. Vehicle Damage, Test No. MNPD-3

\checkmark

Figure 63. Vehicle Damage, Test No. MNPD-3

∞

Figure 64. Vehicle Floor Pan, Test No. MNPD-3

N

Figure 66. Undercarriage Damage, Test No. MNPD-3

Figure 67. Windshield Damage (Post-Test), Test No. MNPD-3

Table 5. Maximum Occupant Compartment Deformations by Location, Test No. MNPD-3

LOCATION	MAXIMUM INTRUSION in.	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well \& Toe Pan	2.4	≤ 9
Floor Pan \& Transmission Tunnel	0.1	≤ 12
A-Pillar	1.7	≤ 5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.9	≤ 5
B-Pillar (Lateral)	0.5	≤ 3
Side Front Panel (in Front of A-		
Pillar)	2.9	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.5	≤ 12
Roof	1.1	≤ 4
Windshield	0.0	≤ 3
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	1.6	N/A

N/A - Not applicable

5.5 Head Ejection

It is noted in MASH 2016 under the occupant risk evaluation criteria that no shattering of a side window from direct contact with a structural member of the test article should occur. This requirement is believed to extend to direct contact between a test article and the side window as an occupant's head would be considered to be at elevated risk of contacting the test article, thus increasing the potential for serious injury, even if an impact does not violate any other MASH 2016 evaluation criteria. Thus, occupant head ejection out of the occupant compartment should be tracked for tall longitudinal barriers and considered a pass/fail test evaluation criterion.

Onboard high-speed footage with camera views of the occupant's head movement for test no. MNPD-3 are shown in Figures 68 and 69. Video analysis of the positioning of the dummy's head during test no. MNPD-3 showed that head contact with the bridge railing system did not occur, as shown in Figures 70 through 73. Therefore, test no. MNPD-3 was deemed to have successfully passed the MASH 2016 evaluation criteria using a stringent interpretation of the occupant risk criteria.

Figure 68. Documentary Photographs, Test No. MNPD-3

Figure 69. Documentary Photographs, Test No. MNPD-3

Figure 70. Overhead View of Head Ejection, Test No. MNPD-3

Figure 71. Upstream View of Head Ejection, Test No. MNPD-3

Figure 72. Downstream View of Head Ejection, Test No. MNPD-3

\&

Figure 73. Angled Downstream View of Head Ejection, Test No. MNPD-3

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum $0.010-\mathrm{sec}$ average occupant ride down accelerations (ORAs) in both the longitudinal and lateral directions, as determined from accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix D.

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNPD-3

Evaluation Criteria		Transducer		MASH 2016 Limits
		SLICE-1	SLICE-2 (primary)	
$\begin{gathered} \text { OIV } \\ \text { ft/s } \end{gathered}$	Longitudinal	-14.77	-14.37	± 40
	Lateral	-23.36	-24.87	± 40
$\begin{gathered} \text { ORA } \\ \text { g's } \end{gathered}$	Longitudinal	-5.90	-5.87	± 20.49
	Lateral	-11.21	-10.53	± 20.49
Maximum Angular Displacement degrees	Roll	22.9	22.8	± 75
	Pitch	-9.2	-10.3	± 75
	Yaw	-43.7	-43.9	not required
$\begin{aligned} & \text { THIV } \\ & \text { ft/s } \end{aligned}$		28.31	29.26	not required
$\begin{gathered} \text { PHD } \\ \text { g's } \end{gathered}$		11.51	10.87	not required
ASI		1.41	1.51	not required

5.7 Discussion

The analysis of the results for test no. MNPD-3 showed that the system adequately contained and redirected the 2270P vehicle with negligible displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 74. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. All occupant risk measures were within limits. After impact, the vehicle exited the barrier at an angle of 6.6 degrees, and its trajectory did not violate the bounds of the exit box. During the test, the simulated occupant's head protruded out of the right-side window and extended into the ZOI but did not contact the metal railing system. Therefore, test no. MNPD3 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

It should be noted that the top barrier width should have been 9 in . versus $91 / 4 \mathrm{in}$., as discussed in Section 3. Although the top barrier width was $1 / 4 \mathrm{in}$. wider than used in MnDOT's standard J-barrier, vehicle contact between the 2200P pickup truck and the upper metal railing would likely provide similar barrier performance.

0.000 sec

0.250 sec

.MwRSF

- Test Agency

MNPD-3

- Test N \qquad 6/4/2020
- MASH 2016 Test Designation No.
..3-1
- Test ArticleMinnesota Bicycle and Pedestrian Bridge Railing System
- Test Article
- Total Length
Length. \qquad $.31 \frac{1}{2} \mathrm{in}$. Width. idth
Spacing .. 2 in.
- Key Component - Concrete Barrier

Length.. $120 \mathrm{ft}-2$ in.
Width .. 32 in.
Height...............
. 2014 Dodge Ram icle Make /Model ... 2014 Dodge Ram
Curb .. 1 lb Test Inertial. $.5,001 \mathrm{lb}$ Gross Static
act Conditions
\qquad .. 5,182 lb

- Impact Conditions

Speed
 Angle

 63.4 mph Impact Location ... $2511 / 4 \mathrm{in}$. upstream from post no. 4- Impact Severity 122.7 kip-ft > 52 kip-ft limit from MASH 2016
- Exit Conditions
Speed53 .0 mph rion ... Vehicle Stability \qquad
Exit Box Criterion ..Pass ..Satisfactory
- Vehicle Stopping Distance $204 \mathrm{ft}-6 \mathrm{in}$. downstream and $16 \mathrm{ft}-5 \mathrm{in}$. laterally in front
- Vehicle Damage
\qquad ..ModerateVDS [12] $.01-R F Q-5$
CDC [13]
1-RYEW-5

0.350 sec

0.450 sec
- Test Article Damage .
..minimal
- Maximum Test Article Deflections

Permanent Set.. 0.4 in.
Dynamic...
Working Width... 23.2 in
ZOI.......
.23 .2 in
Transducer Data

Evaluation Criteria		Transducer		MASH 2016 Limit
		SLICE-1	SLICE-2	
OIV	Longitudinal	-14.77	-14.37	± 40 (12.2)
ft / s	Lateral	-23.36	-24.87	± 40 (12.2)
ORA	Longitudinal	-5.90	-5.87	± 20.49
g's	Lateral	-11.21	-10.53	± 20.49
Maximum	Roll	22.9	22.8	± 75
	Pitch	-9.2	-10.3	± 75
degrees	Yaw	-43.7	-43.9	Not required
THIV	- ft/s	28.31	29.26	Not required
PHD	g's	11.51	10.87	Not required
		1.41	1.51	Not required

Figure 74. Summary of Test Results and Sequential Photographs, Test No. MNPD-3

6 SUMMARY AND CONCLUSIONS

6.1 Summary

The objective of this study was to crash test and evaluate a J-shape concrete traffic barrier with an attached metal bicycle and pedestrian railing according to the MASH 2016 TL-3 safety performance criteria. The combination bridge railing system could be used when pedestrians and bicycles are present on vehicular bridges. An early variation of the MnDOT bicycle and pedestrian railing system was previously crash tested by MwRSF according to NCHRP Report No. 350 safety standards [1,4]. Thus, it was desired to have the currently-used bridge rail system meet the MASH 2016 TL-3 standards [2,5]. The combination bridge railing system was evaluated through fullscale vehicle crash testing using only MASH 2016 test designation no. 3-11, which involves a 2270P pickup truck impacting the combination railing system at a speed of 62 mph at an angle of 25 degrees. Test designation no. 3-11 was deemed critical on the $32-\mathrm{in}$. tall, J-shape concrete barrier due to the anticipated vehicle-to-rail contact, vehicle snag on metal railing components, potential for vehicle instabilities, occupant risk, and peak lateral loading to the barrier system.

Test designation no. 3-10, which involves the 1100C vehicle, was not deemed necessary or critical for two reasons. First, the 1100C small car vehicle has already impacted this concrete barrier in NCHRP Project No. 22-14(2) with test no. $2214 \mathrm{NJ}-1$ at the TL-3 impact conditions and with acceptable results [7]. The 1100C small car vehicle impacted $18 \mathrm{ft}-6 \mathrm{in}$. downstream from the upstream end of the New Jersey-shape concrete barrier at a speed of 60.8 mph at an angle of 26.1 degrees. For test no. $2214 \mathrm{NJ}-1$ with an 1100 C small car vehicle, the NJ-shape concrete barrier did not sustain any permanent set deflection or dynamic deflection, and the working width was approximately 16 in . [7]. Note that the barrier's top width and base width were 6 in . and 15 in ., respectively [7]. The 1100C small car vehicle exited the concrete barrier at a speed of 49.3 mph with an angle of 6.6 degrees. For test no. 2214NJ-1, the longitudinal and lateral OIV were 16.47 ft / s and $35 \mathrm{ft} / \mathrm{s}$, respectively. The longitudinal and lateral ORA were 5.49 g 's and 8.08 g 's, respectively. Second, the ZOI for test no. 2214 NJ -1 was approximately 7 in . when the top barrier width was 6 in . In the current system, the MnDOT J-shape concrete barrier has a top width of $91 / 4$ in., and the nearest metal railing component is positioned $93 / 4 \mathrm{in}$. away from the top-front corner of the concrete barrier. Therefore, no 1100 C small car contact would occur with the bicycle and pedestrian railing system. Thus, the prior 1100 C small car crash test would also serve as the successful test and evaluation for the NJ -shape or J -shape concrete barrier with an attached bicycle and pedestrian railing system.

As noted in Section 3, the top width of the MnDOT's J-barrier was to be 9 in . versus $91 / 4$ in. Although the J-barrier was $1 / 4 \mathrm{in}$. wider than intended, no small car contact with the metal railing would occur with a 9 in. top width.

Test no. MNPD-3 was conducted to evaluate a 32 -in. tall, J-shape concrete barrier with an attached crashworthy bicycle and pedestrian metal railing. The critical impact point for test no. MNPD-3 was selected as $733 / 16 \mathrm{in}$. upstream from the centerline of post no. 4 to maximize vehicle snag on the bicycle and pedestrian railing system. The 5,001-lb crew cab pickup truck impacted the combination concrete barrier with bicycle and pedestrian rail at a speed of 63.4 mph and at an angle of 25.3 degrees. The vehicle was captured and redirected by the 32-in. tall, New Jerseyshape concrete barrier with upper metal railing.

During the redirection of the pickup truck vehicle, the right-front fender and right-front corner of the engine hood contacted the upstream side of the post downstream from the impact point. This contact resulted in sufficient snag to peel back the right-front fender and deform the engine hood. However, the vehicle snag did not penetrate the occupant compartment, violate crush limits, or result in elevated occupant risk measures. The vehicle exited the barrier in a stable manner and came to rest $204 \mathrm{ft}-6 \mathrm{in}$. downstream from and $16 \mathrm{ft}-5 \mathrm{in}$. laterally in front of the barrier. The dynamic barrier deflection was 0.6 in . The combination bridge railing system's working width was 23.2 in ., and the ZOI value was $123 / 4 \mathrm{in}$. Again, all occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. MNPD-3 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11. A summary of the test evaluation is shown in Table 7.

It should be noted that the top barrier width should have been 9 in . versus $91 / 4 \mathrm{in}$., as discussed in Section 3. Although the top barrier width was $1 / 4 \mathrm{in}$. wider than used in MnDOT's standard J-barrier, vehicle contact between the 2270P pickup truck and the upper metal railing would likely provide similar barrier performance.

6.2 Conclusions

MnDOT's bicycle and pedestrian railing attached to a $32-\mathrm{in}$. tall, reinforced, concrete barrier was evaluated through a full-scale vehicle crash test, test designation no. 3-11, according to the MASH 2016 TL-3 safety criteria. The 32-in. tall, reinforced-concrete, combination system was found to satisfy all evaluation criteria for MASH 2016 test designation no. 3-11.

Table 7. Summary of Safety Performance Evaluation

Evaluation Factors	Evaluation Criteria			Test No. MNPD-3
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			S
Occupant Risk	D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			S S
	F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S
	H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			S
	Occupant Impact Velocity Limits			
	Component	Preferred	Maximum	
	Longitudinal and Lateral	$30 \mathrm{ft} / \mathrm{s}$	$40 \mathrm{ft} / \mathrm{s}$	
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
	Occupant Ridedown Acceleration Limits			S
	Component	Preferred	Maximum	
	Longitudinal and Lateral	15.0 g's	20.49 g 's	
MASH 2016 Test Designation No.				3-11
Final Evaluation (Pass or Fail)				Pass
S - Satisfactory U- Unsatisfactory NA - N				

7 REFERENCES

1. Ross, H.E., Sicking, D.1., and Zimmer, R.A., Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances, National Cooperative Highway Research Program (NCHRP) Report No. 350, National Cooperative Highway Research Program, Washington, D.C., 1993.
2. Manual for Assessing Safety Hardware (MASH), Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
3. AASHTO/FHWA Joint Implementation Agreement for the AASHTO Manual for Assessing Safety Hardware, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2015.
4. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Holloway, J.C., Design and Evaluation of the TL-4 Minnesota Combination Traffic/Bicycle Bridge Rail, Research Report No. TRP-03-74-98, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 30, 1998.
5. Minnesota Department of Transportation (DOT), Design - Structural Tube Railing (Design T2), Fig. 5-397.158e(A), https://www.dot.state.mn.us/bridge/bridgedetails2.html, October 15, 2020.
6. Stolle, C.J., Reid, J.D., and Faller, R.K., Zone of Intrusion for Permanent 9.1-Degree SingleSlope Concrete Barriers, Research Report No. TRP-03-292-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 14, 2014.
7. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., Reid, J.D., and Coon, B.A., Performance Evaluation of the Permanent New Jersey Safety Shape Barrier Update to NCHRP 350 Test No. 3-10 (2214NJ-1), Research Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
8. Manual for Assessing Safety Hardware, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
9. Hinch, J., Yang, T.L., and Owings, R., Guidance Systems for Vehicle Testing, ENSCO, Inc., Springfield, Virginia, 1986.
10. Center of Gravity Test Code - SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
11. Society of Automotive Engineers (SAE), Instrumentation for Impact Test - Part 1 - Electronic Instrumentation, SAE J211/1 MAR95, New York City, NY, July 2007.
12. Vehicle Damage Scale for Traffic Investigators, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
13. Collision Deformation Classification - Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

8 APPENDICES

Appendix A. Material Specifications

Table A-1. Bill of Materials, Test No. MNPD-3

Table A-2. Bill of Materials, Test No. MNPD-3, Cont.

Item No.	Description	Material Specification	Material Specification used for Test No. MNPD-3	Reference
c11	3 1/2"x4 9/16"x¹/4" Post Attachment Bent PlateExpansion End	ASTM A709 Gr. 36		H\#813L65970
c12	$31 / 2 " x 49 / 16 " x^{1 / 4} 4$ Post Attachment Bent PlateFixed End	ASTM A709 Gr. 36		H\#813L65970
c13	16"x5/8"x5/8" Long Rail Spindle	ASTM A709 Gr. 36		H\#54171852/02
c14	12 7/8"x5/8"x5/8" Long Spindle	ASTM A709 Gr. 36		H\#54171852/02
c15	99/16"x5/8"x5/8" Long Spindle	ASTM A709 Gr. 36		H\#54171852/02
c16	3"x2 1/2"x1/2" Cable Anchor Plate Flange	ASTM A709 Gr. 36		H\#Y0665
d1	7/8"-9 UNC, 9" Long Threaded Rod	ASTM F1554 Gr. 36		PB\#129843
d2	5/8"-11 UNC, 71/4" Long Threaded Rod	ASTM F1554 Gr. 36		PB\#130009
d3	7/8" Dia. Hardened SAE Washer	ASTM F436		$\begin{aligned} & \text { H\#B54780 } \\ & \text { PB\#129843 } \end{aligned}$
d4	1/2" Dia. Hardened SAE Washer	ASTM F436	$\begin{gathered} \hline \text { ZINC Plated ASTM } \\ \text { F2329 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P} \# 0156022 \\ \mathrm{~T} \# 120395440 \end{gathered}$
d5	5/8" Dia. Hardened SAE Washer	ASTM F436		PB\#130009
d6	7/8"-9 UNC Hex Nut	ASTM A563A		PB\#129843
d7	1/2"-13 Jam Nut	ASTM F1941	ZINC Plated ASTM F1941	$\begin{gathered} \text { COC H\#369406Z } \\ \text { H\#SF92856 } \end{gathered}$
d8	5/8"-9 UNC Hex Nut	ASTM A563A		P\#36713 T\#110315120
d9	1/2"-13 UNC, 1 1/2" Long Round Head Bolt	ASTM F1941	SAE J2484 MACHINE SCREW, ROUND HEAD SLOTTED, ZINC F1941	H\#19B501513 L\#U69581-583947 P\#583947

Table A-3. Bill of Materials, Test No. MNPD-3, Cont.

Item No.	Description	Material Specification	Material Specification used for Test No. MNPD-3	Reference
d10	Clevis and Socket Turnbuckle Electroline XD-4031-BX Forged Series Open Body	ASTM F1145 Type 1 Gr. 1 Min. Breaking Strength 9,160 lbs		COC O\#0109760
d11	5/16" DIA. 7x19 Wire Rope	ASTM A1023 Table 7 EIP Min. Breaking Strength 9,800 lbs	Applied Specification: RR-W-410	COC P\#45507 T\#210175509
f1	Chemical Adhesive	Min. Bond Strength (1.5 ksi)		Hilti

$\stackrel{\rightharpoonup}{3}$

Figure A-1. Retrofit Concrete, Test No. MNPD-3 [b1]

We hereby certify that the test results presented here

CMC STEEL OKLAHOMA 584 Old Highway 70 Durant OK 74701-0000

CERTIFIED MILL TEST REPORT
For additional copies call 830-372-8771
are accurate and conform to the reported grade specification

Quality Assurance Manager

REMARKS : ALSO MEETS AASHTO M31

Figure A-2. 301⁄-in. Long No. 4 Reinforcement Bar, Test No. MNPD-3 [b2]
CMC STEEL OKLAHOMA
EME
584 OId Highway 70
Durant OK 74701-0000

CERTIFIED MILL TEST REPORT
For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Quality Assurance Manager

REMARKS : ALSO MEETS AASHTO M31

Figure A-4. 1,196½-in. Long No. 4 Reinforcement Bar, Test No. MNPD-3 [b4, b5]

TPA - Transverse Pipe Axis 180° of Weld LPA - Longitudinal Pipe Axis 90° of Weld TWA - Transverse Weld Axis FST - Full Section Testing FBN - Full Body Normalized Q\&T - Quenched and Temper

Melted and Manufactured in the US EN 10204:2004 TYPE 3.1 CERT-
No Weld Repair Perforned On This Product
Monday, March 2, 20200, 11:49:50 AM

```
Ws cerify inat ne procuucdescrived above ins been manuracured, sampled
Ws cerify inat ne procuucdescrived above ins been manuracured, sampled
produch has been found to be in complianco with an requiremenis.
produch has been found to be in complianco with an requiremenis.
                                80+ClCOSN
                                80+ClCOSN
                                josen A Casey
                                josen A Casey
                                    QA Ccordinator
                                    QA Ccordinator

MILL ADDRESS - 1201-R ST., GENEVA, NE 68361 | PHONE: (402) 759-4401

Figure A-5. HSS3x2x¹/8 ASTM A500 Grade B Rail Tube, Test No. MNPD-3 [c1, c2, c4, c5, c6]

> TPA - Transverse Pipe Axis \(180^{\circ}\) of Weld LPA - Longitudinal Pipe Axis ... 900 of Weld TWA - Transverse Weld Axis FFT - Full Section Testing FBN - Full Body Normalized QRT. -uenched and Tempered SR - Stress Relieved form CRTR3001

Melted and Manufactured in the USA
EN 10204:2004 TYPE 3.1 CERT
No Weld Repair Performed On This Product - - . inspected, and tested in accordance to the referenoed specification. product has been found to be in compliance with all requuriemients.
gind CCasyy QA Coordinator

MILL ADDRESS -1201-R ST., GENEVA, NE 68361 | PHONE: (402) 759-4401

Figure A-6. HSS4x2x¹/8 31½-in. Long ASTM A500 Grade B Post, Test No. MNPD-3 [c3]


Test Certificate
Product Information
25872 - PLATE \(1 / 4\) A36 COLD REDUCED
Thickness: . 2500 Width: 48.0000 Length: 96.0000
Mill Coil: 363757 ARC BH
Heat: 813L65970 Supplier: ARCELORMITTAL
Specification(s):
ASTM A709 GR36, PLATE-18

Norfolk Iron \& Metal Co.
3001 North Victory Road
Norfolk, NE 68701
PH: (402) 371-1810

Chemistry Data
\begin{tabular}{llllllllll}
C & MN & P & S & SI & AL & CB & V & CU & CR \\
.16 & .87 & .011 & .004 & .009 & .039 & .002 & .001 & .014 & .02 \\
NI & MO & SN & TI & N & B & ZR & PB & MG & ZN \\
.01 & .002 & .003 & .002 & .004 & .0002 & .00 & .00 & .00 & .00
\end{tabular}

Mechanical Data
\(\left.\begin{array}{lccccc} & \begin{array}{c}\text { Yield } \\ \text { (PSI) }\end{array} & \begin{array}{c}\text { Tensile } \\ \text { (PSI) }\end{array} & \text { Elongation } & \begin{array}{c}\text { Reduction } \\ \text { Of Area }\end{array} & \begin{array}{c}\text { Sample } \\ \text { Taken From }\end{array} \\ 1 & 41580 & 64129 & 40.15 & 2^{\prime \prime} & 53.4500\end{array}\right]\) Head

The Mechanical Data for the product described above reflect the results of tests made by us in accordance with applicable ASTM or ASME standards and our testing procedures, and we certify that the information included in this Test Certificate with respect to such Mechanical Data is accurate to the best of our knowledge.

Product Information
01707 - PLATE 1/2 A36 COLD REDUCED
Thickness: . 5000 Width: 48.0000 Length: 96.0000
Mill Coil: 5289162 NLMK IN

Heat: Y0665 Supplier: NLMK INDIANA
Specification(s):
ASTM A709 GR36, PLATE-18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Chemistry Data} \\
\hline \[
\mathrm{C}_{.05}
\] & \[
\begin{aligned}
& \mathrm{MN} \\
& .93
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P} \\
& .014
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& .006
\end{aligned}
\] & \[
\begin{aligned}
& \text { SI } \\
& .02
\end{aligned}
\] & \[
\begin{aligned}
& \text { AL } \\
& .031
\end{aligned}
\] & \[
\begin{aligned}
& \text { CB } \\
& .002
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& .003
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CU} \\
& .15
\end{aligned}
\] & \[
\begin{aligned}
& C R \\
& .07
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{NI} \\
& .05
\end{aligned}
\] & \[
\begin{aligned}
& \text { MO } \\
& .01
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{SN} \\
& .03
\end{aligned}
\] & \[
\begin{aligned}
& \text { TI } \\
& .002
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} \\
& .008
\end{aligned}
\] & \[
\begin{aligned}
& \text { B } \\
& .0001
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ZR} \\
& .00
\end{aligned}
\] & \[
\begin{aligned}
& \text { PB } \\
& .00
\end{aligned}
\] & \[
\begin{aligned}
& \text { MG } \\
& .00
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{ZN} \\
& .00
\end{aligned}
\] \\
\hline
\end{tabular}

Mechanical 0ata
\begin{tabular}{lccccc} 
& \begin{tabular}{c} 
Yield \\
(PSI)
\end{tabular} & \begin{tabular}{c} 
Tensile \\
\((\) PSI \()\)
\end{tabular} & Elongation & \begin{tabular}{c} 
Reduction \\
Of Area
\end{tabular} & \begin{tabular}{c} 
Sample \\
1
\end{tabular} \\
47661 & 60322 & 52.82 & \(2^{\prime \prime}\) & 69.2100 & Taken From \\
2 & 48301 & 60667 & 51.78 & \(2^{\prime \prime}\) & 68.9500
\end{tabular}

The Mechanical Data for the product described above reflect the results of tests made by us in accordance with applicable ASTM or ASME standards and our testing procedures, and we certify that the information included in this Test Certificate with respect to such Mechanical Data is accurate to the best of our knowledge.

The Chemistry Data shown above was reported to us by nLmi Indiana
and have been included in this
Test Certificate solely for your information.

Figure A-8. \(1 / 2\)-in. Plate, Test No. MNPD-3 [c8, c9, c16]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
GERDAU \\
US-ML-CHARLOTTE \\
6601 LAKEVIEW ROAD \\
CHARLOTTE, NC 28269 USA
\end{tabular}}} & \multicolumn{7}{|c|}{CERTIFIED MATERIAL TEST REPORT} & \multirow[t]{2}{*}{Page 1/1 DOCUMEN 0000086479} \\
\hline & & & \multirow[t]{2}{*}{\begin{tabular}{l}
CUSTOMI:R SHIP TO \\
NORFOLK IRON \& METAL CO INC. \\
3001 N VICTORY RD \\
NORFOLK,NE 68701-08.33 \\
USA
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CUSTOMER BLLL TO NORFOLK IRON \& METAL CO INC NORFOLK.NE 68702-1129 USA}} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
GRADE \\
GGMULTI
\end{tabular} \\
\hline \begin{tabular}{l} 
LENGTH \\
20'00'
\end{tabular} \\
\hline
\end{tabular}}} & \multicolumn{2}{|r|}{Shape/size Square Bar \(15 / 8^{\prime \prime}\)} & \\
\hline & & & & & & & & & \[
\begin{aligned}
& \text { WEIGHT } \\
& 9,562 \mathrm{LB}
\end{aligned}
\] & \[
\begin{aligned}
& \text { HEAT/BATCH } \\
& 54171852 / 02
\end{aligned}
\] \\
\hline & & & SALES ORDFR
\(8619907 / 000020\) & \multicolumn{2}{|l|}{CUSTOMER MATERIAL \({ }^{\circ}\) 01479\#\#\#\#\#\#\#\#\#\#\#} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SPECIFICATION / DATE or REVISION \\
ASME: SA36, ASTM A529-14 \\
ASTM A6-17. A36-14, AS72-15 \\
ASTM A709-17. AASHTO M270-15 \\
\(\operatorname{CsA}\) G40.20-13/G40.21-13
\end{tabular}}} & \\
\hline & \multicolumn{2}{|l|}{CUSTOMER PURCHASE ORIDER NUMBER 01030331} & \[
\begin{array}{|l|l|}
\hline \text { BILL OF LADING } \\
1321-0000073829
\end{array}
\] & & & & & & & \\
\hline &  & \[
\begin{array}{cc}
P_{\%} & S_{\%}^{\%} \\
0.012 \\
0.022
\end{array}
\] & \[
\begin{array}{cc}
\mathrm{Si}_{\%} & \mathrm{Cu}_{4} \\
0.18 & 0.37 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Niver } \\
0.11
\end{gathered}
\] & \[
\begin{gathered}
C_{0}^{r} \\
0.13
\end{gathered}
\] & \[
\begin{gathered}
\text { Mo } \\
0.030
\end{gathered}
\] & \[
\begin{gathered}
\stackrel{\rightharpoonup}{\%} \\
0.002
\end{gathered}
\] & \[
\begin{gathered}
\text { Nb } \\
0.007 \\
\hline 0
\end{gathered}
\] & & \\
\hline &  & \[
\begin{gathered}
\text { G/d. } \\
8.000
\end{gathered}
\] & \[
\begin{aligned}
& \text { YRS } \\
& 73715 \\
& \hline
\end{aligned}
\] & & & & & & & \\
\hline &  & & & & & & & & & \\
\hline \[
\stackrel{\rightharpoonup}{N}
\] & \begin{tabular}{l}
COMMENTS/NOTES \\
This grade meets the requireme ASTM Grades: A36; A529-50; CSA Grades: 44 W ; 50W AASHTO Grades: M270-36; M ASME Grades: SA36
\end{tabular} & the following grades: 50; A709-36; A 709-50 & & & & & & & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { The above figures are certified chemical and physical test records as contained in the permanent records of company. We cerify that thesc data are correct and in compliance with } \\
& \text { specified requirements. Weld repair has not been performed on this material. This material, including the billets. was melted and manufactured in the USA. CMTR complies with EN } \\
& 10204 \text { 3.1. }
\end{aligned}
\]

Figure A-9. 16-in. x \(5 / 8\)-in. x \(5 / 8\)-in. Long Rail Spindle, Test No. MNPD-3 [c13, c14, c15]

Phone: 800-547-6758 | Fax: 503-227-4634
3441 NW Guam Street, Portland, OR 97210
Web: www.portlandbolt.com | Email: sales@portlandbolt.com
```

For: MIDWEST ROADSIDE SAFETY FACIL
PB Invoice\#: 129843
Cust PO\#: CHAT
Date: 3/18/2020
Shipped: 3/19/2020

```


We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Product:
ASTM F1554G36 ALL THRD ROD
Nuts:
ASTM A563A HEX
Washers:
ASTM F436-1 RND

Coatings:
ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C


Figure A-10. \(7 / 8\)-in. Diameter - 9 UNC, 9 -in. Long Threaded Rod, Washer, and Hex Nut, Test No. MNPD-3 [d1, d3, d6]

Phone: 800-547-6758 | Fax: 503-227-4634
3441 NW Guam Street, Portland, OR 97210
Web: www.portlandbolt.com | Email: sales@portlandbolt.com
```

For: MIDWEST ROADSIDE SAFETY FACIL
PB Invoice\#: 130009
Cust PO\#: 6926
Date: 3/31/2020
Shipped: 3/27/2020

```


We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.


Figure A-11. \(5 / 8\)-in. Diameter - 11 UNC \(71 / 4\)-in. Long Threaded Rod and Washer, Test No. MNPD-3 [d2, d5]

\section*{Certificate of Compliance}
\begin{tabular}{lll} 
Sold To: & Purchase Order: & MNPD-3 2020 \\
UNL TRANSPORTATIONMidwest Roadside Safe & Job: & Item" d4 \\
& Invoice Date: & \(04 / 102020\)
\end{tabular}

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. TITESE PARTS WIERT: PIRCIIASFD TO TIIT FOLIOWING SPECIFICATIONS.

40 PCS \(1 / 2^{\prime \prime}\) ASTM F436 Type 1 Hot Dipped Galvanized Steel Structural Flat Washer Made in USA SUPPLIED UNDER OUR TRACE NIJMBFR 120395440 AND UNDER PART NIJMRER 0156022
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{This is to certify that the above document is true and aceurate to the best or my knowledge.} & Please check current revision to avoid using obsolete copies. \\
\hline & This document was printed on 04/10:2020 and was current at that time. \\
\hline \multirow[t]{3}{*}{Fastenal Account Representative Signature} & Fastenal Store Location/Address \\
\hline & 3201 N. 23 rd Street STE 1 \\
\hline & LINCOLN, NE 68521 \\
\hline \multirow[t]{2}{*}{Printed Name} & Phone \#;: (402) \(476-7900\) \\
\hline & Fax \#: 402/476-7958 \\
\hline \multicolumn{2}{|l|}{Date} \\
\hline & \\
\hline
\end{tabular}

\title{
SUPER CHENG INDUSTRIAL CO., LTD. CERTIFICATE OF INSPECTION \\ ISO 9001-2015 IATF 16949-2016
}

NO. 18 BEN-GONG 2nd ROAD., BEN CHOU INDUSTRIAL PARK, KAOHSIUNG CITY 820, TAIWAN TEL:(886-7)6225326-30(5 LINES) FAX:(886-7)6215377/6225829
CERT NO: SC-S21180905
ISSUE DATE : 2018/11/08
CUSTOMER: FASTENAL COMPANY PURCHASING
P.O. NO : 120339166

PART NO. : 1136210
COMMODITY: FIN HEX JAM NUT
SIZE : 1/2-13
FINISH : TRIVALENT ZINC
QTY SHIPPED : 11250 PCS

LOT NO : \$21180905
HEAT NO. : 369406 Z
SAMPLING PLAN : ASME B18.18-17
DIMENSION SPEC : ASME B18.2.2-15
MECHANICAL SPEC : ASTM A563 GRADE A FINISH : AS TM F1941/F1941M-16
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ITEM & \multicolumn{3}{|l|}{SPECIFICATION} & A CTUAL RESULT & ACC. & REJ. \\
\hline APPEARANCE & \multicolumn{3}{|l|}{ASTM F812-12(R17)} & GOOD & V & \\
\hline THREAD & \multicolumn{3}{|l|}{ASME B1.1-03(R18)} & GO/NOT GOGAUGEPASS & V & \\
\hline W.A.F. & \(0.750 \sim\) & 0.736 & in & \(0.743 \sim 0.741\) in & V & \\
\hline W.A.C. & \(0.866 \sim\) & 0.840 & in & \(0.848 \sim 0.846\) in & V & \\
\hline THICKNESS & \(0.323 \sim\) & 0.302 & in & \(0.315 \sim 0.310\) in & V & \\
\hline HARDNESS & \multicolumn{3}{|l|}{MAX 32 HRC} & \(94.0 \sim 90.0\) HRB & V & \\
\hline PROOF LOAD & \multicolumn{3}{|l|}{MIN 54000 PSI} & PASS & V & \\
\hline PLATING THICKNESS & \multicolumn{3}{|l|}{MIN 0.0001 in} & \(0.00016 \sim 0.00012\) in & V & \\
\hline
\end{tabular}

TEST METHOD :
CORE HARDNESS/ SURFACE HARDNESS: ASTM F606/F606M-16
PROOF LOAD : ASTM F606/F606M-16
PLATING THICKNESS: ASTM B568-98(R14)/ASTM F \(1941 / \mathrm{F} 1941 \mathrm{M}-16\)
SALT SPRAY TEST : ASTM B117-18

ALL TESTS ARE IN ACCORDANCE WITH THE METHODS PRESCRIBED IN APPLICABLE FAS TENER SPECIFICATION. WE CERTIFY THAT THIS DATAIS THE TRUE REPRESENTATION OF INFORMATION PROVIDED BY MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THE ABOVE PARTS ARE RoHS COMPLIANT.


AUTHORIZED SIGNATURE

Figure A-13. ½-in. Diameter -13 Threads Jam Nut, Test No. MNPD-3 [d7]

\section*{SUPER CHENG INDUSTRIAL CO., LTD. CERTIFICATE OF INSPECTION \\ ISO 9001-2015 IATF 16949-2016}

NO. 18 BEN-GONG 2nd ROAD., BEN CHOU INDUSTRIAL PARK, KAOHSIUNG CITY 820, TAIWAN TEL:(886-7)6225326-30(5 LINES) FAX:(886-7)6215377/6225829
CERT NO: SC-S22180706
ISSUE DATE : 2018/08/16
CUSTOMER: FASTENAL COMPANY PURCHASING
P.O. NO : 210165866

PART NO. : 36210
COMMODITY : FIN HEX JAM NUT
SIZE : 1/2-13
FINISH : TRIVALENT ZINC
QTY SHIPPED : 18000 PCS

LOT NO: S22180706
HEAT NO. : SF92856
SAMPLING PLAN : ASME B18.18-17
DIMENSION SPEC : ASME B18.2.2-15
MECHANICAL SPEC : ASTM A563 GRADE A
FINISH : AS TM F1941/F1941M-16
\begin{tabular}{|c|c|c|c|c|}
\hline ITEM & SPECIFICATION & ACTUAL RESULT & ACC. & REJ. \\
\hline APPEARANCE & ASTM F812-12(R17) & GOOD & V & \\
\hline THREAD & ASME B1.1-03(R18) & GO/NOT GO GAUGEPASS & V & \\
\hline W.A.F. & \(0.750 \sim 0.736 \quad\) in & \(0.743 \sim 0.741\) in & V & \\
\hline W.A.C. & \(0.866 \sim 0.840\) & in & \(0.848 \sim 0.845\) in & V \\
\hline THICKNESS & \(0.323 \sim 0.302\) & in & \(0.314 \sim 0.311\) in & V \\
\hline HARDNESS & MAX 32 HRC & \(94.0 \sim 90.0\) HRB & V & \\
\hline PROOFLOAD & MIN 54000 PSI & PASS & V & \\
\hline PLATING & MIN 0.0001 in & \(0.00016 \sim 0.00014\) in & V & \\
THICKNESS
\end{tabular}

ALL TESTS ARE IN ACCORDANCE WITH THE METHODS PRESCRIBED IN APPLICABLE FAS TENER SPECIFICATION. WE CERTIFY THAT THIS DATA IS THE TRUE REPRESENTATION OF INFORMATION PROVIDED BY MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THE ABOVE PARTS ARE RoHS COMPLIANT.


AUTHORIZED SIGNATURE

Figure A-14. ½-in. Diameter -13 Threads Jam Nut, Test No. MNPD-3 [d7]

\section*{Certificate of Compliance}
\begin{tabular}{|c|c|c|}
\hline Sold To: & Purchase Order: & MNPD-3 2020 \\
\hline UNL TRANSPORTATION/Midwest Roadside Safe & Job: & \(\mathrm{Itm} \mathrm{m}^{4} \mathrm{~d} 8\) \\
\hline & Invoice Date: & 04102020 \\
\hline \multicolumn{3}{|r|}{THIS IS TO CERTIFY THAT WF HAVF SUPPI, IFID YOU WITH THF: FOI. IOWING PARTS. THFSF PARTS WFRF PURCHASFID TO THF FOII OWING SPFCIFICATIONS.} \\
\hline
\end{tabular}

12 PCS 5/8"-11 Hot Dip Galvanized Finish Grade \(\wedge\) Finished Hex Nut SUPPI, (FI) UNIDFR (OUR TRACF: NUMBER 110315120 ANI) UNDER PARI' NUMBER 36713

This is to certify that the above document is true
and aceurate to the best of my knowledge.
\(\qquad\)
Fastenal Account Representative Signature
\(\qquad\)

\section*{Printed Name}

Date

Please check current revision to avoid using obsolete copics.

This doemment was printed on 04/10/2020 and was current at that time.

Fastenal Store Location/Address
3201 N. 23 md Street STE 1
LINCOLN: NE 68521
Phone I: (402)476-7900
Fax:ㅍ: 402/476-7958

Figure A-15. \(5 / 8\)-in. Diameter -9 UNC Hex Nut, Test No. MNPD-3 [d8]

\section*{CERTIFIED MATERIAL TEST REPORT FOR MACHINE SCREWS}


Figure A-16. ½-in. Diameter -13 UNC, 1½-in. Long Round Head Bolt, Test No. MNPD-3 [d9]

\section*{CERTIFICATE OF COMPLIANCE}

DATE: 04/01/2020
CERTIFICATION OF ORDER NUNHBER: MNPD
ESMET FACTORY ORDER NUMBER: 0109760

\section*{PART NUMBER}

XD 4031 BX TURNBUCKLE W/MB731

QUANTITY
8

\section*{Attn: Quality Control}

This is to certify that the parts shipped on this order were inspected by First Piece, Patrol and Final Inspection procedures and conform to the requirements of Esmet's appropriate engineering drawings and/or customer requirements and specifications. The material is free from mercurial contamination.

These items are manufactured and inspected to meet the requirements of
MILL-S-21433A. Esmet operates a Quality Management
System which complies with the requirements of ISO 9001:2015


Figure A-17. Forged Series Open Body Clevis and Socket Turnbuckle, Test No. MNPD-3 [d10]

\section*{FASTEMAL}

\section*{Certificate of Compliance}
\begin{tabular}{|c|c|c|}
\hline Sold To: & Purchase Order: & MNPD-3 2020 \\
\hline \multirow[t]{2}{*}{UNL TRANSPORTATION/Midwest Roadside Safe} & Job: & Item\#d13 \\
\hline & Invoice Date: & 03/31/2020 \\
\hline \multicolumn{3}{|l|}{THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.} \\
\hline 500 PCS \(5 / 16^{\prime \prime}\) (7x19) Minimum Break Strength 980 UNDER PART NUMBER 45507 & UPPLIED UNDER & TRACE NUMB \\
\hline
\end{tabular}

This is to certify that the above document is true and accurate to the best of my knowledge.


Fasteral Account Representative Signature


Printed Name


Please check current revision to avoid using obsolete copies.

This document was printed on \(03 / 31 / 2020\) and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1
LINCOLN, NE 68521
Phone \#: (402)476-7900
Fax \#: 402/476-7958

Page 1 of 1

Figure A-18. 5/16-in. Diameter by 7 x 19 Wire Rope, Test No. MNPD-3 [d11]


Date:
12/13/2016

Subject: Certificate of Conformance
Product: HIT RE-500 V3 Adhesive

To Whom it May Concern:
This is to certify that the HIT-RE 500 V 3 is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,
Hilti, Inc.
5400 South 122 East Avenue
Tulsa, Oklahoma 74146

800-879-8000
800-879-7000 fax
US-Sales@hilti.com

Figure A-19. Hilti Chemical Epoxy, Test No. MNPD-3 [f1]

\section*{Appendix B. Vehicle Center of Gravity Determination}


Figure B-1. Vehicle Mass Distribution, Test No. MNPD-3

\section*{Appendix C. Vehicle Deformation Records}

The following figures and tables describe all occupant compartment measurements taken on the test vehicle used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Model Year:} & \multicolumn{5}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{lr} 
& \text { Test Name } \\
2014 & \text { Make }
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { MNPD-3 }}{\text { Dodge }}
\]}} & & & \multirow[t]{3}{*}{\begin{tabular}{l}
VIN: \\
Model:
\end{tabular}} & \multicolumn{3}{|r|}{1C6RR6LG9ES236433} \\
\hline & & & & & & & & & & & \multicolumn{3}{|c|}{RAM 1500} \\
\hline & \multicolumn{12}{|c|}{VEHICLE DEFORMATION PASSENGER SIDE FLOOR PAN - SET 1} & \\
\hline & POINT & \begin{tabular}{l}
Pretest \\
X \\
(in.)
\end{tabular} & ```
Pretest
    Y
    (in.)
``` & \begin{tabular}{c} 
Pretest \\
\(Z\) \\
(in.) \\
\hline
\end{tabular} & \begin{tabular}{l}
Posttest \(\times\) \\
(in.)
\end{tabular} & \begin{tabular}{l}
Posttest Y \\
(in.)
\end{tabular} & \begin{tabular}{l}
Posttest Z \\
(in.)
\end{tabular} & \[
\begin{aligned}
& \Delta X^{A} \\
& \text { (in.) }
\end{aligned}
\] & \begin{tabular}{l}
\(\Delta Y^{A}\) \\
(in.)
\end{tabular} & \[
\frac{\Delta Z^{A}}{(\text { in. })}
\] & Total \(\Delta\) (in.) & \begin{tabular}{l}
Crush \({ }^{\text {B }}\) \\
(in.)
\end{tabular} & \[
\begin{gathered}
\text { Directions } \\
\text { for } \\
\text { Crush }^{\mathrm{c}} \\
\hline \hline
\end{gathered}
\] \\
\hline \multirow{10}{*}{} & 1 & 58.9351 & 34.1185 & -5.8313 & 58.1830 & 34.2585 & -5.7644 & 0.7521 & -0.1400 & -0.0669 & 0.7679 & 0.7521 & X \\
\hline & 2 & 59.9849 & 36.6720 & -4.2603 & 59.1576 & 36.7046 & -4.2558 & 0.8273 & -0.0326 & -0.0045 & 0.8280 & 0.8273 & X \\
\hline & 3 & 60.9922 & 39.2517 & -1.6133 & 60.5880 & 38.2847 & -1.3345 & 0.4042 & 0.9670 & -0.2788 & 1.0845 & 0.4042 & \(\times\) \\
\hline & 4 & 60.9574 & 43.4980 & -1.5548 & 59.3202 & 42.1549 & -2.6329 & 1.6372 & 1.3431 & 1.0781 & 2.3763 & 1.9603 & X, Z \\
\hline & 5 & 61.0104 & 47.7897 & -1.4919 & 58.8717 & 45.8982 & -2.5712 & 2.1387 & 1.8915 & 1.0793 & 3.0523 & 2.3956 & X, Z \\
\hline & 6 & 55.8834 & 32.9858 & -4.5308 & 55.3209 & 32.7521 & -4.4596 & 0.5625 & 0.2337 & -0.0712 & 0.6133 & 0.5625 & X \\
\hline & 7 & 56.9867 & 36.3976 & -2.3899 & 56.4446 & 35.9441 & -2.0511 & 0.5421 & 0.4535 & -0.3388 & 0.7838 & 0.5421 & X \\
\hline & 8 & 57.7961 & 39.7322 & 0.1513 & 57.5709 & 38.7235 & 0.8103 & 0.2252 & 1.0087 & -0.6590 & 1.2258 & 0.2252 & \(\times\) \\
\hline & 9 & 57.8868 & 44.0840 & 0.1726 & 56.9225 & 42.7919 & -0.1747 & 0.9643 & 1.2921 & 0.3473 & 1.6492 & 1.0249 & X, Z \\
\hline & 10 & 58.0881 & 48.2085 & -0.1166 & 56.3036 & 46.6754 & -1.2061 & 1.7845 & 1.5331 & 1.0895 & 2.5927 & 2.0908 & X, Z \\
\hline \multirow{20}{*}{} & 11 & 52.4659 & 31.8660 & -2.5295 & 52.1489 & 31.1587 & -2.2163 & 0.3170 & 0.7073 & -0.3132 & 0.8360 & -0.3132 & Z \\
\hline & 12 & 53.5790 & 34.9635 & 0.0699 & 53.3021 & 34.1517 & 0.5058 & 0.2769 & 0.8118 & -0.4359 & 0.9621 & -0.4359 & Z \\
\hline & 13 & 53.8913 & 39.2692 & 1.4555 & 53.6408 & 38.2798 & 2.0504 & 0.2505 & 0.9894 & -0.5949 & 1.1813 & -0.5949 & Z \\
\hline & 14 & 53.9649 & 44.1545 & 1.5391 & 53.6903 & 43.2257 & 2.0555 & 0.2746 & 0.9288 & -0.5164 & 1.0976 & -0.5164 & Z \\
\hline & 15 & 54.4075 & 48.5849 & 1.6986 & 54.1244 & 47.6008 & 1.7725 & 0.2831 & 0.9841 & -0.0739 & 1.0267 & -0.0739 & Z \\
\hline & 16 & 49.7320 & 30.9387 & -0.7591 & 49.4665 & 30.0576 & -0.5041 & 0.2655 & 0.8811 & -0.2550 & 0.9549 & -0.2550 & Z \\
\hline & 17 & 50.1446 & 34.6524 & 1.4038 & 49.8528 & 33.8358 & 1.7940 & 0.2918 & 0.8166 & -0.3902 & 0.9509 & -0.3902 & Z \\
\hline & 18 & 50.5894 & 38.7844 & 1.4696 & 50.3842 & 37.9415 & 2.1253 & 0.2052 & 0.8429 & -0.6557 & 1.0874 & -0.6557 & Z \\
\hline & 19 & 50.6425 & 43.4283 & 1.5332 & 50.5212 & 42.5210 & 2.2788 & 0.1213 & 0.9073 & -0.7456 & 1.1806 & -0.7456 & Z \\
\hline & 20 & 50.7931 & 48.6073 & 1.7113 & 50.6154 & 47.7165 & 1.8940 & 0.1777 & 0.8908 & -0.1827 & 0.9265 & -0.1827 & Z \\
\hline & 21 & 46.1589 & 30.5396 & 0.1618 & 45.8683 & 29.8517 & 0.2380 & 0.2906 & 0.6879 & -0.0762 & 0.7506 & -0.0762 & Z \\
\hline & 22 & 46.7083 & 34.5716 & 1.4096 & 46.4116 & 33.7565 & 1.7205 & 0.2967 & 0.8151 & -0.3109 & 0.9215 & -0.3109 & Z \\
\hline & 23 & 46.8844 & 39.1015 & 1.4514 & 46.6895 & 38.3224 & 2.0894 & 0.1949 & 0.7791 & -0.6380 & 1.0257 & -0.6380 & Z \\
\hline & 24 & 46.9552 & 43.5791 & 1.5504 & 46.8011 & 42.6916 & 2.5180 & 0.1541 & 0.8875 & -0.9676 & 1.3220 & -0.9676 & Z \\
\hline & 25 & 47.0968 & 48.7451 & 1.7185 & 46.8488 & 47.8671 & 2.1930 & 0.2480 & 0.8780 & -0.4745 & 1.0284 & -0.4745 & Z \\
\hline & 26 & 42.5812 & 30.5399 & 0.1203 & 42.2941 & 30.0127 & 0.0358 & 0.2871 & 0.5272 & 0.0845 & 0.6062 & 0.0845 & Z \\
\hline & 27 & 42.6988 & 34.4391 & 1.4991 & 42.4110 & 33.7326 & 1.7197 & 0.2878 & 0.7065 & -0.2206 & 0.7941 & -0.2206 & Z \\
\hline & 28 & 42.8244 & 38.8507 & 1.5589 & 42.6110 & 38.0809 & 2.1162 & 0.2134 & 0.7698 & -0.5573 & 0.9740 & -0.5573 & Z \\
\hline & 29 & 43.2671 & 43.0450 & 1.6139 & 43.1442 & 42.2809 & 2.6117 & 0.1229 & 0.7641 & -0.9978 & 1.2628 & -0.9978 & Z \\
\hline & 30 & 43.6311 & 48.3288 & 1.7132 & 43.5449 & 47.5483 & 3.0668 & 0.0862 & 0.7805 & -1.3536 & 1.5649 & -1.3536 & Z \\
\hline \multicolumn{14}{|l|}{\begin{tabular}{l}
A Positive values denote deformation as irward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. \\
\({ }^{\theta}\) Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. \\
\({ }^{c}\) Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0 .
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{Pretest Floor Pan} & \multicolumn{7}{|c|}{Posttest Floor Pan} \\
\hline \multicolumn{7}{|l|}{} & \multicolumn{7}{|l|}{} \\
\hline
\end{tabular}

Figure C-1. Floor Pan Deformation Data - Set 1, Test No. MNPD-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Model Year:} & \multicolumn{5}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{lr}
& \text { Test Name: } \\
2014 & \text { Make: }
\end{array}
\]}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(\frac{\text { MNPD-3 }}{\text { Dodge }}\)}} & & & \multirow[t]{3}{*}{\begin{tabular}{l}
VIN \\
Model
\end{tabular}} & \multicolumn{3}{|r|}{1C6RR6LG9ES236433} \\
\hline & & & & & & & & & & & & AM 1500 & \\
\hline & \multicolumn{12}{|c|}{VEHICLE DEFORMA TION ENGER SIDE FLOOR PAN - SET 2} & \\
\hline & POINT & \begin{tabular}{l}
Pretest X \\
(in.)
\end{tabular} & \begin{tabular}{l}
Pretest Y \\
(in.)
\end{tabular} & \begin{tabular}{c}
Pretest \\
\(Z\) \\
(in.) \\
\hline
\end{tabular} & \[
\begin{gathered}
\text { Posttest } \times \\
\text { (in.) }
\end{gathered}
\] & \begin{tabular}{l}
Posttest \(Y\) \\
(in.)
\end{tabular} & \[
\begin{aligned}
& \text { Posttest } Z \\
& \text { (in.) }
\end{aligned}
\] & \[
\begin{aligned}
& \Delta X^{A} \\
& \text { (in.) }
\end{aligned}
\] & \[
\begin{aligned}
& \Delta Y^{A} \\
& \text { (in.) }
\end{aligned}
\] & \[
\frac{\Delta \nabla^{A}}{\text { (in.) }}
\] & \begin{tabular}{l}
Total \(\Delta\) \\
(in.)
\end{tabular} & Crush \({ }^{\text {B }}\) (in.) & \[
\begin{gathered}
\text { Directions } \\
\text { for } \\
\text { Crush }^{\mathrm{C}} \\
\hline \hline
\end{gathered}
\] \\
\hline \multirow{10}{*}{} & 1 & 53.8938 & 18.3224 & -2.3460 & 53.2148 & 18.5882 & -1.4066 & 0.6790 & -0.2658 & -0.9394 & 1.1892 & 0.6790 & X \\
\hline & 2 & 54.9330 & 20.9073 & -0.8198 & 54.1651 & 21.0410 & 0.1067 & 0.7679 & -0.1337 & -0.9265 & 1.2108 & 0.7679 & X \\
\hline & 3 & 55.9383 & 23.5332 & 1.7821 & 55.5768 & 22.6299 & 3.0324 & 0.3615 & 0.9033 & -1.2503 & 1.5843 & 0.3615 & \(\times\) \\
\hline & 4 & 55.8649 & 27.7794 & 1.7812 & 54.2765 & 26.4904 & 1.7370 & 1.5884 & 1.2890 & 0.0442 & 2.0461 & 1.5890 & X, Z \\
\hline & 5 & 55.8789 & 32.0718 & 1.7832 & 53.7946 & 30.2294 & 1.8028 & 2.0843 & 1.8424 & -0.0196 & 2.7819 & 2.0843 & X \\
\hline & 6 & 50.8635 & 17.1805 & -1.0042 & 50.3642 & 17.0547 & -0.1083 & 0.4993 & 0.1258 & -0.8959 & 1.0333 & 0.4993 & X \\
\hline & 7 & 51.9530 & 20.6321 & 1.0792 & 51.4555 & 20.2534 & 2.3061 & 0.4975 & 0.3787 & -1.2269 & 1.3770 & 0.4975 & \(\times\) \\
\hline & 8 & 52.7525 & 24.0095 & 3.5664 & 52.5525 & 23.0390 & 5.1729 & 0.2000 & 0.9705 & -1.6065 & 1.8875 & 0.2000 & X \\
\hline & 9 & 52.8033 & 28.3618 & 3.5257 & 51.8693 & 27.1028 & 4.1921 & 0.9340 & 1.2590 & -0.6664 & 1.7034 & 0.9340 & \(\times\) \\
\hline & 10 & 52.9643 & 32.4834 & 3.1769 & 51.2175 & 30.9819 & 3.1648 & 1.7468 & 1.5015 & 0.0121 & 2.3035 & 1.7468 & X, Z \\
\hline \multirow{20}{*}{} & 11 & 47.4730 & 16.0581 & 1.0411 & 47.2030 & 15.4301 & 2.1278 & 0.2700 & 0.6280 & -1.0867 & 1.2838 & -1.0867 & Z \\
\hline & 12 & 48.5789 & 19.2020 & 3.5873 & 48.3251 & 18.4297 & 4.8556 & 0.2538 & 0.7723 & -1.2683 & 1.5065 & -1.2683 & Z \\
\hline & 13 & 48.8630 & 23.5295 & 4.9095 & 48.6245 & 22.5586 & 6.4061 & 0.2385 & 0.9709 & -1.4966 & 1.7998 & -1.4966 & Z \\
\hline & 14 & 48.8923 & 28.4160 & 4.9239 & 48.6299 & 27.5047 & 6.4177 & 0.2624 & 0.9113 & -1.4938 & 1.7694 & -1.4938 & Z \\
\hline & 15 & 49.2954 & 32.8521 & 5.0173 & 49.0254 & 31.8839 & 6.1411 & 0.2700 & 0.9682 & -1.1238 & 1.5077 & -1.1238 & Z \\
\hline & 16 & 44.7624 & 15.1311 & 2.8472 & 44.5278 & 14.3028 & 3.8342 & 0.2346 & 0.8283 & -0.9870 & 1.3097 & -0.9870 & Z \\
\hline & 17 & 45.1586 & 18.8786 & 4.9541 & 44.8767 & 18.0814 & 6.1378 & 0.2819 & 0.7972 & -1.1837 & 1.4547 & -1.1837 & Z \\
\hline & 18 & 45.5659 & 23.0150 & 4.9580 & 45.3710 & 22.1911 & 6.4753 & 0.1949 & 0.8239 & -1.5173 & 1.7375 & -1.5173 & Z \\
\hline & 19 & 45.5768 & 27.6596 & 4.9559 & 45.4668 & 26.7715 & 6.6350 & 0.1100 & 0.8881 & -1.6791 & 1.9027 & -1.6791 & Z \\
\hline & 20 & 45.6812 & 32.8418 & 5.0600 & 45.5152 & 31.9682 & 6.2571 & 0.1660 & 0.8736 & -1.1971 & 1.4912 & -1.1971 & Z \\
\hline & 21 & 41.2008 & 14.7126 & 3.8034 & 40.9304 & 14.0639 & 4.5702 & 0.2704 & 0.6487 & -0.7668 & 1.0401 & -0.7668 & Z \\
\hline & 22 & 41.7234 & 18.7666 & 4.9897 & 41.4364 & 17.9715 & 6.0587 & 0.2870 & 0.7951 & -1.0690 & 1.3628 & -1.0690 & Z \\
\hline & 23 & 41.8581 & 23.2982 & 4.9664 & 41.6730 & 22.5391 & 6.4340 & 0.1851 & 0.7591 & -1.4676 & 1.6626 & -1.4676 & Z \\
\hline & 24 & 41.8885 & 27.7771 & 5.0018 & 41.7449 & 26.9086 & 6.8684 & 0.1436 & 0.8685 & -1.8666 & 2.0638 & -1.8666 & Z \\
\hline & 25 & 41.9839 & 32.9461 & 5.0961 & 41.7470 & 32.0848 & 6.5502 & 0.2369 & 0.8613 & -1.4541 & 1.7066 & -1.4541 & Z \\
\hline & 26 & 37.6231 & 14.6798 & 3.7918 & 37.3552 & 14.1933 & 4.3625 & 0.2679 & 0.4865 & -0.5707 & 0.7963 & -0.5707 & Z \\
\hline & 27 & 37.7162 & 18.5991 & 5.1146 & 37.4362 & 17.9119 & 6.0514 & 0.2800 & 0.6872 & -0.9368 & 1.1951 & -0.9368 & Z \\
\hline & 28 & 37.8016 & 23.0120 & 5.1113 & 37.5968 & 22.2613 & 6.4539 & 0.2048 & 0.7507 & -1.3426 & 1.5518 & -1.3426 & Z \\
\hline & 29 & 38.2061 & 27.2105 & 5.1037 & 38.0917 & 26.4652 & 6.9557 & 0.1144 & 0.7453 & -1.8520 & 1.9996 & -1.8520 & Z \\
\hline & 30 & 38.5223 & 32.4983 & 5.1256 & 38.4447 & 31.7353 & 7.4182 & 0.0776 & 0.7630 & -2.2926 & 2.4175 & -2.2926 & Z \\
\hline \multicolumn{14}{|l|}{\begin{tabular}{l}
A Positive values denote deformation as irward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. \\
\({ }^{日}\) Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. \\
\({ }^{c}\) Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0 .
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{Pretest Floor Pan} & \multicolumn{7}{|c|}{Posttest Floor Pan} \\
\hline \multicolumn{7}{|l|}{} & \multicolumn{7}{|l|}{} \\
\hline
\end{tabular}

Figure C-2. Floor Pan Deformation Data - Set 2, Test No. MNPD-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Model Year：} & \multicolumn{2}{|c|}{2014} & \multicolumn{3}{|r|}{Test Name： Make：} & \multicolumn{2}{|r|}{\[
\frac{\text { MNPD-3 }}{\text { Dodae }}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \begin{tabular}{l}
VIN： \\
Model
\end{tabular} & \multicolumn{3}{|l|}{1C6RR6LG9ES236433} \\
\hline & \multicolumn{11}{|c|}{PASSENGER SIDE INTERIOR CRUSH－SET 1} & & \\
\hline & POINT & \begin{tabular}{c}
Pretest \\
X \\
（in．） \\
\hline
\end{tabular} & \begin{tabular}{c}
Pretest \\
\(Y\) \\
（in．） \\
\hline
\end{tabular} & \[
\begin{gathered}
\text { Pretest } \\
Z \\
\text { (in.) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Posttest X } \\
\text { (in.) }
\end{gathered}
\] & \begin{tabular}{l}
Posttest Y \\
（in．）
\end{tabular} & \begin{tabular}{l}
Posttest Z \\
（in．）
\end{tabular} & \begin{tabular}{l}
\(\Delta X^{A}\) \\
（in．）
\end{tabular} & \begin{tabular}{l}
\(\Delta Y^{A}\) \\
（in．）
\end{tabular} & \begin{tabular}{l}
\(\Delta Z^{A}\) \\
（in．）
\end{tabular} & \begin{tabular}{l}
Total \(\Delta\) \\
（in．）
\end{tabular} & \begin{tabular}{l}
Crush \({ }^{\text {日 }}\) \\
（in．）
\end{tabular} & Directions for Crush \(^{C}\) \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& \text { ェ } \\
& \mathscr{N} \\
& \underset{\sim}{x}
\end{aligned}
\]} & 1 & 50.7013 & 20.4112 & －31．9909 & 51.0955 & 20.5391 & －31．7729 & －0．3942 & －0．1279 & 0.2180 & 0.4683 & 0.4683 & X，Y，Z \\
\hline & 2 & 50.5199 & 32.0349 & －31．4011 & 50.8462 & 32.2230 & －31．2255 & －0．3263 & －0．1881 & 0.1756 & 0.4156 & 0.4156 & X，Y，Z \\
\hline & 3 & 51.7625 & 49.1369 & －30．3938 & 52.0437 & 49.3057 & －30．0708 & －0．2812 & －0．1688 & 0.3230 & 0.4603 & 0.4603 & X，Y，Z \\
\hline & 4 & 44.0617 & 20.7837 & －24．1830 & 44.2939 & 20.9275 & －24．0932 & －0．2322 & －0．1438 & 0.0898 & 0.2875 & 0.2875 & \(X, Y, Z\) \\
\hline & 5 & 46.6182 & 32.6896 & －21．7784 & 46.7418 & 32.8215 & －21．7214 & －0．1236 & －0．1319 & 0.0570 & 0.1895 & 0.1895 & X，Y，Z \\
\hline & 6 & 47.1664 & 49.4321 & －21．9042 & 47.2414 & 49.5552 & －21．7349 & －0．0750 & －0．1231 & 0.1693 & 0.2224 & 0.2224 & X，Y，Z \\
\hline \multirow[t]{3}{*}{} & 7 & 56.5139 & 52.6382 & －3．1469 & 56.1060 & 49.7864 & －2．8410 & 0.4079 & 2.8518 & 0.3059 & 2.8970 & 2.8518 & Y \\
\hline & 8 & 61.4364 & 52.3245 & －6．7823 & 60.9378 & 49.4977 & －6．7174 & 0.4986 & 2.8268 & 0.0649 & 2.8712 & 2.8268 & \(Y\) \\
\hline & 9 & 55.9040 & 52.7797 & －9．7128 & 55.4892 & 50.2465 & －9．5928 & 0.4148 & 2.5332 & 0.1200 & 2.5697 & 2.5332 & Y \\
\hline \multirow[t]{6}{*}{} & 10 & 47.4860 & 55.1383 & －23．5798 & 46.7430 & 56.0018 & －23．2019 & 0.7430 & －0．8635 & 0.3779 & 1.2002 & －0．8635 & Y \\
\hline & 11 & 35.7905 & 55.1002 & －23．2382 & 35.1518 & 56.7703 & －22．8863 & 0.6387 & －1．6701 & 0.3519 & 1.8224 & －1．6701 & Y \\
\hline & 12 & 24.9666 & 55.1254 & －23．0932 & 24.3664 & 56.8946 & －22．9194 & 0.6002 & －1．7692 & 0.1738 & 1.8763 & －1．7692 & Y \\
\hline & 13 & 47.6508 & 54.6385 & －14．2605 & 46.4565 & 54.1705 & －14．0009 & 1.1943 & 0.4680 & 0.2596 & 1.3087 & 0.4680 & Y \\
\hline & 14 & 34.7456 & 56.2025 & －12．6230 & 33.9877 & 57.0574 & －12．3120 & 0.7579 & －0．8549 & 0.3110 & 1.1841 & －0．8549 & Y \\
\hline & 15 & 25.2967 & 55.6159 & －12．5215 & 24.5192 & 56.2830 & －12．9811 & 0.7775 & －0．6671 & －0．4596 & 1.1228 & －0．6671 & Y \\
\hline \multirow{15}{*}{©
1
\(\stackrel{1}{0}\)
0
\(\boxed{1}\)} & 16 & 41.4298 & 21.2919 & －46．6809 & 41.9312 & 21.5189 & －46．3176 & －0．5014 & －0．2270 & 0.3633 & 0.6595 & 0.3633 & Z \\
\hline & 17 & 41.6247 & 28.4731 & －46．7680 & 42.0331 & 28.6740 & －46．4135 & －0．4084 & －0．2009 & 0.3545 & 0.5769 & 0.3545 & Z \\
\hline & 18 & 40.7554 & 34.7499 & －46．6777 & 41.2404 & 35.0957 & －46．3178 & －0．4850 & －0．3458 & 0.3599 & 0.6959 & 0.3599 & Z \\
\hline & 19 & 39.5007 & 39.7604 & －46．0344 & 40.0361 & 40.0065 & －45．6810 & －0．5354 & －0．2461 & 0.3534 & 0.6871 & 0.3534 & Z \\
\hline & 20 & 38.7607 & 44.9428 & －45．7151 & 39.2593 & 45.1203 & －45．4018 & －0．4986 & －0．1775 & 0.3133 & 0.6150 & 0.3133 & Z \\
\hline & 21 & 36.7208 & 20.8871 & －49．3451 & 37.1959 & 21.1397 & －49．0452 & －0．4751 & －0．2526 & 0.2999 & 0.6160 & 0.2999 & Z \\
\hline & 22 & 36.5764 & 26.4721 & －49．2419 & 37.1258 & 26.6764 & －48．9311 & －0．5494 & －0．2043 & 0.3108 & 0.6635 & 0.3108 & Z \\
\hline & 23 & 35.9328 & 32.8137 & －49．0427 & 36.4495 & 33.0435 & －48．7507 & －0．5167 & －0．2298 & 0.2920 & 0.6364 & 0.2920 & Z \\
\hline & 24 & 35.0791 & 37.5811 & －48．8340 & 35.6743 & 37.7825 & －48．5338 & －0．5952 & －0．2014 & 0.3002 & 0.6964 & 0.3002 & Z \\
\hline & 25 & 33.4840 & 42.7291 & －48．5924 & 34.0837 & 42.9181 & －48．3196 & －0．5997 & －0．1890 & 0.2728 & 0.6854 & 0.2728 & Z \\
\hline & 26 & 32.1147 & 21.3774 & －50．1776 & 32.6443 & 21.5137 & －49．9074 & －0．5296 & －0．1363 & 0.2702 & 0.6100 & 0.2702 & Z \\
\hline & 27 & 31.3874 & 26.1626 & －50．1524 & 31.9217 & 26.2710 & －49．8970 & －0．5343 & －0．1084 & 0.2554 & 0.6020 & 0.2554 & Z \\
\hline & 28 & 30.3166 & 31.7857 & －50．0272 & 30.8675 & 31.9817 & －49．7888 & －0．5509 & －0．1960 & 0.2384 & 0.6315 & 0.2384 & Z \\
\hline & 29 & 29.5260 & 36.2676 & －49．8209 & 29.9884 & 36.3422 & －49．6158 & －0．4624 & －0．0746 & 0.2051 & 0.5113 & 0.2051 & Z \\
\hline & 30 & 28.1529 & 41.5337 & －49．4954 & 28.6117 & 41.6440 & －49．3144 & －0．4588 & －0．1103 & 0.1810 & 0.5054 & 0.1810 & Z \\
\hline \multirow{6}{*}{} & 31 & 55.4964 & 51.7180 & －31．7127 & 55.6971 & 52.0616 & －31．0946 & －0．2007 & －0．3436 & 0.6181 & 0.7351 & 0.6181 & Z \\
\hline & 32 & 52.4084 & 51.1212 & －33．9405 & 52.6184 & 51.3500 & －33．5413 & －0．2100 & －0．2288 & 0.3992 & 0.5058 & 0.3992 & Z \\
\hline & 33 & 48.7819 & 49.3606 & －35．9901 & 49.0367 & 49.5623 & －35．6147 & －0．2548 & －0．2017 & 0.3754 & 0.4965 & 0.3754 & Z \\
\hline & 34 & 45.7332 & 49.1482 & －38．4518 & 46.0609 & 49.3672 & －38．0520 & －0．3277 & －0．2190 & 0.3998 & 0.5614 & 0.3998 & Z \\
\hline & 35 & 41.8038 & 47.8785 & －40．6060 & 42.1386 & 48.0440 & －40．3122 & －0．3348 & －0．1655 & 0.2938 & 0.4752 & 0.2938 & Z \\
\hline & 36 & 38.7000 & 48.3793 & －44．0203 & 39.0857 & 48.5516 & －43．7326 & －0．3857 & －0．1723 & 0.2877 & 0.5111 & 0.2877 & Z \\
\hline \multirow{6}{*}{} & 31 & 55.4964 & 51.7180 & －31．7127 & 55.6971 & 52.0616 & －31．0946 & －0．2007 & －0．3436 & 0.6181 & 0.7351 & －0．3436 & Y \\
\hline & 32 & 52.4084 & 51.1212 & －33．9405 & 52.6184 & 51.3500 & －33．5413 & －0．2100 & －0．2288 & 0.3992 & 0.5058 & －0．2288 & Y \\
\hline & 33 & 48.7819 & 49.3606 & －35．9901 & 49.0367 & 49.5623 & －35．6147 & －0．2548 & －0．2017 & 0.3754 & 0.4965 & －0．2017 & Y \\
\hline & 34 & 45.7332 & 49.1482 & －38．4518 & 46.0609 & 49.3672 & －38．0520 & －0．3277 & －0．2190 & 0.3998 & 0.5614 & －0．2190 & Y \\
\hline & 35 & 41.8038 & 47.8785 & －40．6060 & 42.1386 & 48.0440 & －40．3122 & －0．3348 & －0．1655 & 0.2938 & 0.4752 & －0．1655 & Y \\
\hline & 36 & 38.7000 & 48.3793 & －44．0203 & 39.0857 & 48.5516 & －43．7326 & －0．3857 & －0．1723 & 0.2877 & 0.5111 & －0．1723 & Y \\
\hline \multirow[t]{4}{*}{} & 37 & 14.5842 & 48.4538 & －44．7390 & 14.9981 & 48.5768 & －44．6902 & －0．4139 & －0．1230 & 0.0488 & 0.4345 & 0.0488 & Z \\
\hline & 38 & 15.5233 & 51.9305 & －34．3868 & 15.7576 & 51.7984 & －34．2595 & －0．2343 & 0.1321 & 0.1273 & 0.2976 & 0.1835 & Y，Z \\
\hline & 39 & 16.6986 & 52.9847 & －24．0437 & 16.8706 & 52.6086 & －23．8978 & －0．1720 & 0.3761 & 0.1459 & 0.4385 & 0.4034 & Y，Z \\
\hline & 40 & 17.6303 & 52.9604 & －12．1803 & 17.8672 & 52.4194 & －12．0799 & －0．2369 & 0.5410 & 0.1004 & 0.5991 & 0.5502 & Y，Z \\
\hline \multirow[t]{4}{*}{} & 37 & 14.5842 & 48.4538 & －44．7390 & 14.9981 & 48.5768 & －44．6902 & －0．4139 & －0．1230 & 0.0488 & 0.4345 & －0．1230 & Y \\
\hline & 38 & 15.5233 & 51.9305 & －34．3868 & 15.7576 & 51.7984 & －34．2595 & －0．2343 & 0.1321 & 0.1273 & 0.2976 & 0.1321 & \(Y\) \\
\hline & 39 & 16.6986 & 52.9847 & －24．0437 & 16.8706 & 52.6086 & －23．8978 & －0．1720 & 0.3761 & 0.1459 & 0.4385 & 0.3761 & Y \\
\hline & 40 & 17.6303 & 52.9604 & －12．1803 & 17.8672 & 52.4194 & －12．0799 & －0．2369 & 0.5410 & 0.1004 & 0.5991 & 0.5410 & Y \\
\hline \multicolumn{14}{|l|}{\begin{tabular}{l}
\({ }^{A}\) Positive values denote deformation as inward toward the occupant compartment，negative values denote deformations outward away from the occupant compartment． \\
\({ }^{日}\) Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment． \\
\({ }^{C}\) Direction for Crush column denotes which directions are included in the crush calculations．If＂NA＂then no intrusion is recorded，and Crush will be 0 ．
\end{tabular}} \\
\hline
\end{tabular}

Figure C－3．Occupant Compartment Deformation Data－Set 1，Test No．MNPD－3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Model Year:} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{2014}} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Test Name: Make:}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MNPD-3}} & & & \multirow[t]{2}{*}{\begin{tabular}{l}
VIN: \\
Model:
\end{tabular}} & \multicolumn{3}{|l|}{1C6RR6LG9ES236433} \\
\hline & & & & & & & & & & & \multicolumn{3}{|c|}{RAM 1500} \\
\hline & \multicolumn{13}{|c|}{VEHICLE DEFORMATION PASSENGER SIDE INTERIOR CRUSH -SET 2} \\
\hline & POINT & Pretest X (in.) & Pretest Y (in.) & Pretest Z (in.) & \[
\left|\begin{array}{c}
\text { Posttest } X \\
\text { (in.) }
\end{array}\right|
\] & \[
\left|\begin{array}{c}
\text { Posttest } Y \\
\text { (in.) }
\end{array}\right|
\] & \begin{tabular}{l}
Posttest Z \\
(in.)
\end{tabular} & \begin{tabular}{l}
\(\Delta X^{A}\) \\
(in.)
\end{tabular} & \begin{tabular}{l}
\(\Delta Y^{A}\) \\
(in.)
\end{tabular} & \[
\begin{aligned}
& \Delta Z^{A} \\
& \text { (in.) }
\end{aligned}
\] & Total \(\Delta\) (in.) & \begin{tabular}{l}
Crush \({ }^{\text {® }}\) \\
(in.)
\end{tabular} & \begin{tabular}{|c|}
\hline Directions \\
for \\
Crush \({ }^{\text {c }}\) \\
\hline
\end{tabular} \\
\hline \multirow{6}{*}{} & & 45.5740 & 4.1813 & -28.2393 & 46.2570 & 4.8461 & -27.4653 & -0.6830 & -0.6648 & 0.7740 & 1.2278 & 1.2278 & X, Y, Z \\
\hline & 2 & 45.2921 & 15.8099 & -27.8065 & 45.9024 & 16.5265 & -26.9007 & -0.6103 & -0.7166 & 0.9058 & 1.3063 & 1.3063 & X, Y, Z \\
\hline & 3 & 46.3879 & 32.9345 & -27.0429 & 46.9459 & 33.6176 & -25.7201 & -0.5580 & -0.6831 & 1.3228 & 1.5899 & 1.5899 & X, Y, Z \\
\hline & 4 & 38.9961 & 4.6012 & -20.3819 & 39.4486 & 5.1620 & -19.7882 & -0.4525 & -0.5608 & 0.5937 & 0.9337 & 0.9337 & \(X, Y, Z\) \\
\hline & 5 & 41.4643 & 16.5614 & -18.1613 & 41.7885 & 17.0740 & -17.3976 & -0.3242 & -0.5126 & 0.7637 & 0.9752 & 0.9752 & X, Y, Z \\
\hline & 6 & 41.8596 & 33.3048 & -18.5198 & 42.1378 & 33.8115 & -17.3861 & -0.2782 & -0.5067 & 1.1337 & 1.2726 & 1.2726 & \(X, Y, Z\) \\
\hline \multirow[t]{3}{*}{} & 7 & 51.3322 & 36.8513 & 0.1130 & 50.9913 & 34.0942 & 1.5123 & 0.3409 & 2.7571 & 1.3993 & 3.1106 & 2.7571 & Y \\
\hline & 8 & 56.2271 & 36.5318 & -3.5589 & 55.8273 & 33.8547 & -2.3623 & 0.3998 & 2.6771 & 1.1966 & 2.9595 & 2.6771 & Y \\
\hline & 9 & 50.6668 & 36.8973 & -6.4488 & 50.3735 & 34.5588 & -5.2391 & 0.2933 & 2.3385 & 1.2097 & 2.6491 & 2.3385 & Y \\
\hline \multirow[t]{6}{*}{} & 10 & 42.1136 & 38.9902 & -20.2756 & 41.5821 & 40.2556 & -18.8438 & 0.5315 & -1.2654 & 1.4318 & 1.9834 & -1.2654 & Y \\
\hline & 11 & 30.4221 & 38.8521 & -19.8355 & 29.9844 & 40.9194 & -18.5324 & 0.4377 & -2.0673 & 1.3031 & 2.4826 & -2.0673 & Y \\
\hline & 12 & 19.6000 & 38.7824 & -19.6002 & 19.1983 & 40.9469 & -18.5704 & 0.4017 & -2.1645 & 1.0298 & 2.4304 & -2.1645 & Y \\
\hline & 13 & 42.3598 & 38.6197 & -10.9521 & 41.3079 & 38.4080 & -9.6457 & 1.0519 & 0.2117 & 1.3064 & 1.6906 & 0.2117 & Y \\
\hline & 14 & 29.4549 & 40.0904 & -9.2280 & 28.8130 & 41.1803 & -7.9583 & 0.6419 & -1.0899 & 1.2697 & 1.7922 & -1.0899 & Y \\
\hline & 15 & 20.0129 & 39.4206 & -9.0393 & 19.3520 & 40.3219 & -8.6329 & 0.6609 & -0.9013 & 0.4064 & 1.1892 & -0.9013 & Y \\
\hline \multirow{15}{*}{} & 16 & 36.1739 & 4.7775 & -42.8618 & 37.0908 & 5.7652 & -42.0128 & -0.9169 & -0.9877 & 0.8490 & 1.5928 & 0.8490 & Z \\
\hline & 17 & 36.3030 & 11.9583 & -43.0483 & 37.1284 & 12.9211 & -42.0981 & -0.8254 & -0.9628 & 0.9502 & 1.5847 & 0.9502 & Z \\
\hline & 18 & 35.3775 & 18.2277 & -43.0363 & 36.2780 & 19.3353 & -41.9932 & -0.9005 & -1.1076 & 1.0431 & 1.7680 & 1.0431 & Z \\
\hline & 19 & 34.0828 & 23.2351 & -42.4508 & 35.0294 & 24.2340 & -41.3497 & -0.9466 & -0.9989 & 1.1011 & 1.7625 & 1.1011 & Z \\
\hline & 20 & 33.2985 & 28.4146 & -42.1960 & 34.2066 & 29.3402 & -41.0632 & -0.9081 & -0.9256 & 1.1328 & 1.7218 & 1.1328 & Z \\
\hline & 21 & 31.4470 & 4.2941 & -45.4806 & 32.3604 & 5.3476 & -44.7432 & -0.9134 & -1.0535 & 0.7374 & 1.5773 & 0.7374 & Z \\
\hline & 22 & 31.2528 & 9.8785 & -45.4523 & 32.2404 & 10.8832 & -44.6209 & -0.9876 & -1.0047 & 0.8314 & 1.6358 & 0.8314 & Z \\
\hline & 23 & 30.5534 & 16.2161 & -45.3342 & 31.5069 & 17.2437 & -44.4314 & -0.9535 & -1.0276 & 0.9028 & 1.6674 & 0.9028 & Z \\
\hline & 24 & 29.6582 & 20.9782 & -45.1833 & 30.6891 & 21.9753 & -44.2078 & -1.0309 & -0.9971 & 0.9755 & 1.7345 & 0.9755 & Z \\
\hline & 25 & 28.0185 & 26.1145 & -44.9986 & 29.0523 & 27.0960 & -43.9867 & -1.0338 & -0.9815 & 1.0119 & 1.7481 & 1.0119 & Z \\
\hline & 26 & 26.8299 & 4.7317 & -46.2811 & 27.8060 & 5.6820 & -45.6070 & -0.9761 & -0.9503 & 0.6741 & 1.5200 & 0.6741 & Z \\
\hline & 27 & 26.0594 & 9.5101 & -46.3149 & 27.0406 & 10.4325 & -45.5898 & -0.9812 & -0.9224 & 0.7251 & 1.5295 & 0.7251 & Z \\
\hline & 28 & 24.9388 & 15.1245 & -46.2574 & 25.9351 & 16.1334 & -45.4737 & -0.9963 & -1.0089 & 0.7837 & 1.6201 & 0.7837 & Z \\
\hline & 29 & 24.1093 & 19.6016 & -46.1056 & 25.0169 & 20.4856 & -45.2946 & -0.9076 & -0.8840 & 0.8110 & 1.5043 & 0.8110 & Z \\
\hline & 30 & 22.6913 & 24.8591 & -45.8404 & 23.5924 & 25.7743 & -44.9860 & -0.9011 & -0.9152 & 0.8544 & 1.5426 & 0.8544 & Z \\
\hline \multirow{6}{*}{} & 31 & 50.0872 & 35.5306 & -28.4280 & 50.5748 & 36.4077 & -26.7381 & -0.4876 & -0.8771 & 1.6899 & 1.9654 & 1.6899 & Z \\
\hline & 32 & 46.9865 & 34.8758 & -30.6215 & 47.5038 & 35.6720 & -29.1873 & -0.5173 & -0.7962 & 1.4342 & 1.7200 & 1.4342 & Z \\
\hline & 33 & 43.3593 & 33.0548 & -32.6165 & 43.9392 & 33.8554 & -31.2650 & -0.5799 & -0.8006 & 1.3515 & 1.6745 & 1.3515 & Z \\
\hline & 34 & 40.2923 & 32.7814 & -35.0494 & 40.9664 & 33.6372 & -33.7040 & -0.6741 & -0.8558 & 1.3454 & 1.7312 & 1.3454 & Z \\
\hline & 35 & 36.3570 & 31.4472 & -37.1531 & 37.0572 & 32.2822 & -35.9680 & -0.7002 & -0.8350 & 1.1851 & 1.6100 & 1.1851 & Z \\
\hline & 36 & 33.2207 & 31.8734 & -40.5477 & 34.0014 & 32.7674 & -39.3891 & -0.7807 & -0.8940 & 1.1586 & 1.6586 & 1.1586 & Z \\
\hline \multirow{6}{*}{} & 31 & 50.0872 & 35.5306 & -28.4280 & 50.5748 & 36.4077 & -26.7381 & -0.4876 & -0.8771 & 1.6899 & 1.9654 & -0.8771 & Y \\
\hline & 32 & 46.9865 & 34.8758 & -30.6215 & 47.5038 & 35.6720 & -29.1873 & -0.5173 & -0.7962 & 1.4342 & 1.7200 & -0.7962 & Y \\
\hline & 33 & 43.3593 & 33.0548 & -32.6165 & 43.9392 & 33.8554 & -31.2650 & -0.5799 & -0.8006 & 1.3515 & 1.6745 & -0.8006 & Y \\
\hline & 34 & 40.2923 & 32.7814 & -35.0494 & 40.9664 & 33.6372 & -33.7040 & -0.6741 & -0.8558 & 1.3454 & 1.7312 & -0.8558 & Y \\
\hline & 35 & 36.3570 & 31.4472 & -37.1531 & 37.0572 & 32.2822 & -35.9680 & -0.7002 & -0.8350 & 1.1851 & 1.6100 & -0.8350 & Y \\
\hline & 36 & 33.2207 & 31.8734 & -40.5477 & 34.0014 & 32.7674 & -39.3891 & -0.7807 & -0.8940 & 1.1586 & 1.6586 & -0.8940 & Y \\
\hline \multirow[t]{4}{*}{} & 37 & 9.1001 & 31.7221 & -41.0652 & 9.9149 & 32.5776 & -40.3578 & -0.8148 & -0.8555 & 0.7074 & 1.3770 & 0.7074 & Z \\
\hline & 38 & 10.0931 & 35.3485 & -30.7696 & 10.6408 & 35.7904 & -29.9220 & -0.5477 & -0.4419 & 0.8476 & 1.1017 & 0.8476 & Z \\
\hline & 39 & 11.3442 & 36.5549 & -20.4521 & 11.7417 & 36.5951 & -19.5586 & -0.3975 & -0.0402 & 0.8935 & 0.9788 & 0.8935 & Z \\
\hline & 40 & 12.3740 & 36.7015 & -8.5976 & 12.7346 & 36.3973 & -7.7405 & -0.3606 & 0.3042 & 0.8571 & 0.9784 & 0.9095 & Y, Z \\
\hline \multirow[t]{4}{*}{} & 37 & 9.1001 & 31.7221 & -41.0652 & 9.9149 & 32.5776 & -40.3578 & -0.8148 & -0.8555 & 0.7074 & 1.3770 & -0.8555 & Y \\
\hline & 38 & 10.0931 & 35.3485 & -30.7696 & 10.6408 & 35.7904 & -29.9220 & -0.5477 & -0.4419 & 0.8476 & 1.1017 & -0.4419 & Y \\
\hline & 39 & 11.3442 & 36.5549 & -20.4521 & 11.7417 & 36.5951 & -19.5586 & -0.3975 & -0.0402 & 0.8935 & 0.9788 & -0.0402 & Y \\
\hline & 40 & 12.3740 & 36.7015 & -8.5976 & 12.7346 & 36.3973 & -7.7405 & -0.3606 & 0.3042 & 0.8571 & 0.9784 & 0.3042 & Y \\
\hline \multicolumn{14}{|l|}{\begin{tabular}{l}
\({ }^{\wedge}\) Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. \\
\({ }^{\text {日 }}\) Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. \\
\({ }^{c}\) Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0 .
\end{tabular}} \\
\hline
\end{tabular}

Figure C-4. Occupant Compartment Deformation Data - Set 2, Test No. MNPD-3

\begin{tabular}{|c|c|c|}
\hline Distance from C.G. to reference line - \(L_{\text {REF }}\) : & \[
\begin{gathered}
\text { in. } \\
123 \text { 1/2 }
\end{gathered}
\] & \[
\begin{gathered}
(\mathrm{mm}) \\
(3137) \\
\hline
\end{gathered}
\] \\
\hline Total Vehicle Width: & 77 5/8 & (1972) \\
\hline Width of contact and induced crush - Field L: & 77518 & (1972) \\
\hline Crush measurement spacing interval (L/5) - I: & \(151 / 2\) & (394) \\
\hline Distance from center of vehicle to center of Field \(L\) - \(\mathrm{D}_{\mathrm{FL}}\) : & 0 & () \\
\hline Width of Contact Damage: & \(231 / 3\) & (592) \\
\hline Distance from center of vehicle to center of contact damage - \(\mathrm{D}_{\mathrm{C}}\) : & \(384 / 5\) & (986) \\
\hline
\end{tabular}
NOTE: Enter "NA" for crush measurement if distance can not be measured (i.e., side of vehicle has been pushed inward) NOTE: All values must be filled out above before crush measurements are filled out.

Figure C-5. Exterior Vehicle Crush (NASS) - Front, Test No. MNPD-3

Figure C-6. Exterior Vehicle Crush (NASS) - Side, Test No. MNPD-3

Figure C-7. Maximum Occupant Compartment Deformations by Location, Test No. MNPD-3

\section*{Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. MNPD-3}

Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNPD-3

Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNPD-3

Figure D-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MNPD-3

Figure D-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNPD-3

Figure D-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNPD-3

Figure D-6. Lateral Occupant Displacement (SLICE-2), Test No. MNPD-3

Figure D-7. Vehicle Angular Displacements (SLICE-2), Test No. MNPD-3

Figure D-8. Acceleration Severity Index (SLICE-2), Test No. MNPD-3

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNPD-3

Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNPD-3

Figure D-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MNPD-3

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNPD-3

Figure D-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNPD-3

Figure D-14. Lateral Occupant Displacement (SLICE-1), Test No. MNPD-3

Figure D-15. Vehicle Angular Displacements (SLICE-1), Test No. MNPD-3

Figure D-16. Acceleration Severity Index (SLICE-1), Test No. MNPD-3

\section*{END OF DOCUMENT}```

[^0]: *SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

