

Midwest Pooled Fund Research Program Fiscal Year 2019 (Year 29) Research Project Number TPF-5(193) Supplement #140 NDOT Sponsoring Agency Code RPFP-19-MGS-3

MGS WITH CURB AND OMITTED POST: EVALUATION TO MASH 2016 TEST NO. 3-11

Submitted by

Scott K. Rosenbaugh, M.S.C.E. Research Engineer Samantha J. Corey Former Undergraduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-433-21

November 11, 2021

TECHNICAL REPORT DOCUMENTATION PAGE

-	2. Government Accession No.	3. Recipient's Catalog No.
TRP-03-433-21		
4. Title and Subtitle		5. Report Date
MGS with Curb and Omitted Post: Ev	valuation to MASH 2016 Test No. 3-11	November 11, 2021
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Rosenbaugh, S.K., and Corey, S.J.		TRP-03-433-21
9. Performing Organization Name a	and Address	10. Work Unit No.
Midwest Roadside Safety Facility (M Nebraska Transportation Center University of Nebraska-Lincoln	wRSF)	
Main Office:	Outdoor Test Site:	11. Contract
Prem S. Paul Research Center at Whit Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	ttier School 4630 N.W. 36th Street Lincoln, Nebraska 68524	TPF-5 (193) Supplement #140
12. Sponsoring Organization Name	and Address	13. Type of Report and Period Covered
Midwest Pooled Fund Program		Final Report: 2019-2021
Nebraska Department of Transportation 1500 Nebraska Highway 2	on	14. Sponsoring Agency Code
Lincoln, Nebraska 68502		RPFP-19-MGS-3
15. Supplementary Notes		
Prepared in cooperation with U.S. De	partment of Transportation Federal Highway A	dministration

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

Curbs are often required along roadways for functions such as drainage control, right-of-way reduction, and sidewalk separation. However, when placed near guardrail systems, curbs can adversely affect the interaction of errant vehicles with roadside barriers and increase the propensity for vehicle underride, override, and instability increases. Further, curbed roadsides with soil backfill result in increased system stiffnesses and rail loads, which may lead to rail ruptures. Additionally, the presence of drainage features often interferes with the placement of guardrail posts, requiring a post to be omitted. Therefore, the system evaluated herein consisted of the Midwest Guardrail System (MGS) in conjunction with a curb and with an omitted post.

The test article consisted of an MGS installation with the rail mounted 31 in. above the roadway and the front face of the guardrail located 6 in. behind a 6-in. tall AASHTO Type B curb. A single post was omitted near the middle of the system and 37 ft – 6 in. of nested rail was incorporated around the 150-in. elongated span created by the omitted post. In test no. MGSCO-4, a 2270P pickup truck impacted the system at a speed of 62.0 mph and at an angle of 25.1 degrees. The vehicle was successfully contained and redirected with no evidence of rail tearing. The vehicle remained stable, and all vehicle decelerations were within the allowable limits. Thus, test no. MGSCO-4 met the safety performance criteria of MASH test designation no. 3-11. The same system configuration was previously crash tested with the 1100C vehicle during test no. MGSCO-2 and met the safety performance criteria of MASH test designation no. 3-10. Therefore, the MGS with nested W-beam rail placed 6 in. behind a 6-in. tall AASHTO Type B curb and with an omitted post has been assessed as crashworthy to MASH TL-3. Recommendations and installation guidance for the MGS with omitted post placed adjacent to curbs were provided.

17. Key Words		18. Distribution Statement	
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Test Level 3, Curb, Guardrail, Omitted Post, Nested W-Beam, MGS		No restrictions. This document is available through the National Technical Information Services. 5285 Port Royal Road Springfield, Virginia 22161	
19. Security Classification (of this report)20. Security Classification (of this page)		21. No. of Pages	22. Price
Unclassified Unclassified		124	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program under TPF-5(193) Supplement #140. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, state highway departments participating in the Midwest Pooled Fund Program, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mojdeh Asadollahi Pajouh, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest Pooled Fund Program funded by the California Department of Transportation, Florida Department of Transportation, Georgia Department of Transportation, Hawaii Department of Transportation, Illinois Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Kentucky Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, New Jersey Department of Transportation, North Carolina Department of Transportation, Ohio Department of Transportation, South Carolina Department of Transportation, South Dakota Department of Transportation, Utah Department of Transportation, Virginia Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

R.K. Faller, Ph.D., P.E., Research Professor & MwRSF Director J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., Research Engineer & Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., Research Engineer R.W. Bielenberg, M.S.M.E., Research Engineer J.D. Rasmussen, Ph.D., P.E., Former Research Assistant Professor C.S. Stolle, Ph.D., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., Former CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician J.R. Revell, Research Communication Assistant Undergraduate and Graduate Research Assistants

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Georgia Department of Transportation

Christopher Rudd, P.E., State Design Policy Engineer Frank Flanders IV, P.E., Assistant State Design Policy Engineer

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

Illinois Department of Transportation

Filiberto Sotelo, P.E., Engineering Policy Unit Chief Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Katherine Smutzer, P.E., Standards Engineer Elizabeth Phillips, P.E., Highway Design Director

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design Elijah Gansen, P.E., Geometrics Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief

Thomas Rhoads, P.E., Road Design Leader, Bureau of Road Design

Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer Kevin Martin, P.E., Transportation Engineer Specialist Gary Newton, Engineering Tech III, Design Standards

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Sarah Kleinschmit, P.E., Policy and Innovations Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer Jim Knott, P.E., Construction Engineer Mick Syslo, P.E., State Roadway Design Engineer Brandon Varilek, P.E., Materials and Research Engineer & Division Head Mark Fischer, P.E., PMP, Research Program Manager Lieska Halsey, Research Project Manager

Angela Andersen, Research Coordinator David T. Hansen, Internal Research Coordinator Jodi Gibson, Former Research Coordinator

New Jersey Department of Transportation

Hung Tang, P.E., Principal Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development

D. D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer

Brian Mayhew, P.E., State Traffic Safety Engineer Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

J. Adam Hixon, P.E., Design Standards Associate Mark H. Anthony, P.E., Letting Preparation Engineer Henry Cross, P.E., Design Standards Engineer Jason Hall, P.E., Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Randy Brown, P.E., Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

Charles Patterson, P.E., Standards/Special Design Section Manager

Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

	SI* (MODERN	METRIC) CONVERS	ION FACTORS	
		IATE CONVERSIONS T		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE: vo	lumes greater than 1,000 L shall be s	hown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t"
	TF	MPERATURE (exact degree		
		5(F-32)/9	·	
°F	Fahrenheit	or (F-32)/1.8	Celsius	°C
		ILLUMINATION		
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
11				cu/m
11.0		RCE & PRESSURE or STR		
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
		TE CONVERSIONS FR		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in ²
m ²	square meters	10.764	square feet	ft ²
m^2	square meters	1.195	square yard	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
	square moneters	VOLUME	square miles	
mL	milliliter	0.034	fluid ounces	fl oz
ml L	liters	0.034 0.264	gallons	
L m ³	cubic meters	35.314	cubic feet	gal ft ³
m² m ³	cubic meters	55.514 1.307	cubic yards	yd ³
	cubic meters		cubic yalus	yu
		MASS		
g	grams	0.035	ounces	OZ
kg Ma (or "t")	kilograms	2.202	pounds short top (2,000 lb)	lb T
Mg (or "t")	megagrams (or "metric ton")		short ton (2,000 lb)	Т
		EMPERATURE (exact degree		
°C	Celsius	1.8C+32	Fahrenheit	°F
		ILLUMINATION		
	1	0.0929	foot-candles	fc
	lux			
	lux candela per square meter	0.2919	foot-Lamberts	fl
	candela per square meter			fl
lx cd/m ² N	candela per square meter	0.2919		fl lbf

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	viii
LIST OF TABLES	xi
1 INTRODUCTION	1
1.1 Background	
C C	
1.2 Objective 1.3 Scope	
	5
2 TEST REQUIREMENTS AND EVALUATION CRITERIA	4
2.1 Test Requirements	
2.2 Critical Impact Point	
2.3 Evaluation Criteria	
2.4 Soil Strength Requirements	
3 DESIGN DETAILS	8
4 TEST CONDITIONS	25
4.1 Test Facility	
4.2 Vehicle Tow and Guidance System	
4.3 Test Vehicle	
4.4 Simulated Occupant	
4.5 Data Acquisition Systems	
4.5.1 Accelerometers	
4.5.2 Rate Transducers	
4.5.3 Retroreflective Optic Speed Trap	
4.5.4 Digital Photography	
	22
5 FULL-SCALE CRASH TEST NO. MGSCO-4	
5.1 Static Soil Test	
5.2 Weather Conditions	
5.3 Test Description	
5.4 Barrier Damage	
5.5 Vehicle Damage	
5.6 Occupant Risk	
5.7 Discussion	50
6 SUMMARY AND CONCLUSIONS	52

7 RECOMMENDATIONS AND IMPLEMENTATION GUIDANCE	
7.1 Minimum Length of Nested Rail	54
7.2 Multiple Omitted Posts	55
7.3 MGS Stiffness Transition	
7.4 Guardrail Terminals and Anchorages	
8 MASH EVALUATION	57
9 REFERENCES	58
10 APPENDICES	60
Appendix A. Material Specifications	61
Appendix B. Vehicle Center of Gravity Determination	
Appendix C. Static Soil Tests	
Appendix D. Vehicle Deformation Records	107
Appendix E. Accelerometer and Rate Transducer Data Plots	115

LIST OF FIGURES

Figure 1. MGS Offset 6 in. from 6-in. AASHTO Type B Curb [1-3]	1
Figure 2. Rail Rupture Resulting from Test No. MGSCO-1	2
Figure 3. System Layout, Test No. MGSCO-4	9
Figure 4. System Profile, Curb Geometry, and Reinforcement Details, Test No. MGSCO-4	10
Figure 5. Splice and Post Details, Test No. MGSCO-4	
Figure 6. Blockout Attachment Details, Test No. MGSCO-4	
Figure 7. End Anchorage Details, Test No. MGSCO-4	
Figure 8. MGS End Anchorage Details, Test No. MGSCO-4	14
Figure 9. Post Nos. 3 through 26 Component Details, Test No. MGSCO-4	
Figure 10. Post Blockout Alternatives, Test No. MGSCO-4	
Figure 11. MGS BCT Timber Post and Foundation Tube Details, Test No. MGSCO-4	
Figure 12. MGS BCT Anchor Cable, Test No. MGSCO-4	
Figure 13. MGS BCT Post Components and Anchor Bracket, Test No. MGSCO-4	
Figure 14. Ground Line Strut Details, Test No. MGSCO-4	
Figure 15. Rail Details, Test No. MGSCO-4	
Figure 16. Attachment and Connection Hardware, Test No. MGSCO-4	22
Figure 17. Bill of Materials, Test No. MGSCO-4	
Figure 18. Test Installation Photographs, Test No. MGSCO-4	
Figure 19. Test Vehicle, Test No. MGSCO-4	
Figure 20. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MGSCO-4	
Figure 21. Vehicle Dimensions, Test No. MGSCO-4	
Figure 22. Target Geometry, Test No. MGSCO-4	
Figure 23. Camera Locations, Speeds, and Lens Settings, Test No. MGSCO-4	
Figure 24. Target Impact Location, Test No. MGSCO-4	
Figure 25. Sequential Photographs, Test No. MGSCO-4	
Figure 26. Sequential Photographs, Test No. MGSCO-4	
Figure 27. Documentary Photographs, Test No. MGSCO-4	
Figure 28. Vehicle Final Position and Trajectory Marks, Test No. MGSCO-4	
Figure 29. System Damage, Test No. MGSCO-4	
Figure 30. System Damage, Test No. MGSCO-4	
Figure 31. System Damage, Test No. MGSCO-4	
Figure 32. System Damage, Post Nos. 12 and 13, Test No. MGSCO-4	
Figure 33. System Damage, Post Nos. 14 and 15, Test No. MGSCO-4	
Figure 34. Permanent Set, Dynamic Deflection, and Working Width, Test No. MGSCO-4	45
Figure 35. Vehicle Damage, Test No. MGSCO-4	
Figure 36. Vehicle Damage, Test No. MGSCO-4	
Figure 37. Occupant Compartment and Undercarriage Damage, Test No. MGSCO-4	
Figure 38. Summary of Test Results and Sequential Photographs, Test No. MGSCO-4	
Figure 39. Minimum Length and Position for Nested Guardrail	
Figure 40. Minimum Recommended Distance between Omitted Posts	
Figure 41. Recommended Distance between Omitted Posts and MGS Stiffness Transition	
Figure A-1. 12-ft 6-in. 12-Gauge W-Beam, Test No. MGSCO-4 (Item Nos. a1 and a2)	64
Figure A-2. 12-ft 6-in. 12-Gauge W-Beam, Test No. MGSCO-4 (Item Nos. a1 and a2)	
Figure A-3. 6-ft 3-in. 12-Gauge W-Beam, Test No. MGSCO-4 (Item No. a3)	66
Figure A-4. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)	67

Figure A-5. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)	68
Figure A-6. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)	
Figure A-7. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)	70
Figure A-8. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)	71
Figure A-9. Timber Blockout, Test No. MGSCO-4 (Item No. a5)	
Figure A-10. Timber Blockout, Test No. MGSCO-4 (Item No. a5)	
Figure A-11. Timber Blockout, Test No. MGSCO-4 (Item No. a5)	
Figure A-12. 16D Double Head Nail, Test No. MGSCO-4 (Item No. a6)	
Figure A-13. BCT Timber Post, Test No. MGSCO-4 (Item No. b1)	
Figure A-14. Foundation Tube, Test No. MGSCO-4 (Item No. b2)	
Figure A-15. Ground Strut Assembly, Test No. MGSCO-4 (Item No. b3)	
Figure A-16. BCT Post Sleeve, Test No. MGSCO-4 (Item No. b4) [*]	
Figure A-17. Anchor Bearing Plate, Test No. MGSCO-4 (Item No. b5)	
Figure A-18. Anchor Bracket Assembly, Test No. MGSCO-4 (Item No. b6) Figure A-19. Anchor Bracket Assembly, Test No. MGSCO-4 (Item No. b6)	
Figure A-20. BCT Anchor Cable, Page 1 of 2, Test No. MGSCO-4 (Item No. c0)	
Figure A-20. BCT Anchor Cable, Page 2 of 2, Test No. MGSCO-4 (Item No. c1)	
Figure A-22. 14-in. Long Guardrail Bolt, Test No. MGSCO-4 (Item No. d1)	
Figure A-23. 10-in. Long Guardrail Bolt, Test No. MGSCO-4 (Item No. d1)	
Figure A-24. 1 ¹ / ₄ -in. Long Guardrail Bolt, Test No. MGSCO-4 (Item No. d2)	
Figure A-25. ⁵ / ₈ -in. Dia., 10-in. Long Hex Head Bolt, Test No. MGSCO-4 (Item No. d4)	
Figure A-26. ⁵ / ₈ -in. Dia., 1 ¹ / ₂ -in. Long Hex Head Bolt, Test No. MGSCO-4 (Item No. d5)	
Figure A-27. 7%-in. Dia. Hex Head Bolt, Test No. MGSCO-4 (Item No. d6)	
Figure A-28. Nut for ⁷ / ₈ -in. Dia. Hex Head Bolt, Test No. MGSCO-4 (Item No. d6)	90
Figure A-29. 5%-in. Dia. Plain USS Washer, Test No. MGSCO-4 (Item No. e1)	91
Figure A-30. 7/8-in. Dia. Plain USS Washer, Test No. MGSCO-4 (Item No. e2)	
Figure A-31. Concrete Mix, Curb, Test No. MGSCO-4 (Item No. f1)	
Figure A-32. Concrete Strength Test, Curb, Test No. MGSCO-4 (Item No. f1)	
Figure A-33. #4 Rebar, Test No. MGSCO-4 (Item No. f2)	
Figure A-34. #4 Rebar, Test No. MGSCO-4 (Item No. f3)	
Figure A-35. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)	
Figure A-36. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)	
Figure A-37. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)	
Figure A-38. ⁵ / ₈ -in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)	
Figure A-39. ⁵ / ₈ -in. Dia. Hex Nut, Test No. MGSCO-4 (Item No. g2)	
Figure A-40. ⁷ / ₈ -in. Dia. Hex Nut, Test No. MGSCO-4 (Item No. g3)	
Figure B-1. Vehicle Mass Distribution, Test No. MGSCO-4 Figure C-1. Soil Strength, Initial Calibration Test	
Figure C-2. Static Soil Test, Test No. MGSCO-4	
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSCO-4	
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSCO-4	
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. MGSCO-4	
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MGSCO-4	
Figure D-5. Maximum Occupant Compartment Deformation by Location, Test No.	
MGSCO-4	112
Figure D-6. Exterior Vehicle Crush (NASS) – Front, Test No. MGSCO-4	113
Figure D-7. Exterior Vehicle Crush (NASS) – Side, Test No. MGSCO-4	114

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSCO-4	116
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSCO-4	116
Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSCO-4	117
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSCO-4	117
Figure E-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSCO-4	118
Figure E-6. Lateral Occupant Displacement (SLICE-2), Test No. MGSCO-4	118
Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. MGSCO-4	119
Figure E-8. Acceleration Severity Index (SLICE-2), Test No. MGSCO-4	119
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSCO-4	120
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSCO-4	120
Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSCO-4	121
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSCO-4	121
Figure E-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSCO-4	122
Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. MGSCO-4	122
Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. MGSCO-4	123
Figure E-16. Acceleration Severity Index (SLICE-1), Test No. MGSCO-4	123

LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions for Longitudinal Barriers	4
Table 2. Barrier VII Critical Impact Point Study Results	5
Table 3. MASH Evaluation Criteria for Longitudinal Barriers	6
Table 4. Weather Conditions, Test No. MGSCO-4	33
Table 5. Sequential Description of Impact Events, Test No. MGSCO-4	35
Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. MGSCO-4	49
Table 7. Summary of Occupant Risk Values, Test No. MGSCO-4	49
Table 8. Summary of Safety Performance Evaluation	53
Table A-1. Bill of Materials, Test No. MGSCO-4	62
Table A-2. Bill of Materials, Test No. MGSCO-4, Cont	63

1 INTRODUCTION

1.1 Background

Curbs are often required along roadways for functions such as drainage control, right-ofway reduction, and sidewalk separation. However, when placed near guardrail systems, curbs can adversely affect the interaction of errant vehicles with roadside barriers and increase the propensity for vehicle underride, override, and instability. Further, curbed roadsides with soil backfill result in increased system stiffnesses and rail loads, which may lead to rail ruptures. Fortunately, the Midwest Guardrail System (MGS) has remained crashworthy when installed adjacent to curbs.

In early development, the MGS was crash tested in combination with a 6-in. tall, AASHTO Type B curb offset 6 in. from the front face of the guardrail, as shown in Figure 1 [1-3]. The test met the criteria of National Cooperative Highway Research Program (NCHRP) Report 350 test designation no. 3-11[4].

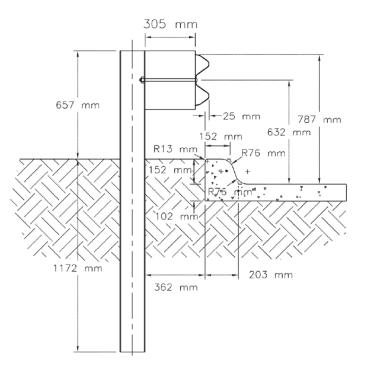


Figure 1. MGS Offset 6 in. from 6-in. AASHTO Type B Curb [1-3]

In 2020, the MGS placed 6 in. behind a 6-in. tall curb was crash tested to the Test Level 3 (TL-3) criteria found in the *Manual for Assessing Safety Hardware, Second Edition* (MASH) [5]. In full-scale crash testing, the MGS safely redirected both the small car and pickup truck and met the safety performance criteria of MASH test designation nos. 3-10 and 3-11 [6]. Thus, the MGS placed within 6 in. of a curb was deemed crashworthy to MASH TL-3.

The roadside features commonly used in combination with roadway curbs, such as drainage flumes or culverts, can prevent proper post placement within a run of guardrail. To avoid these obstructions, it is often desired to omit a post at the location of the obstruction. However, omitting a guardrail post can lead to increased deflections, high rail loads, barrier pocketing, and vehicle

instability. To evaluate the performance of the MGS with a single omitted post, a full-scale crash test was performed according to MASH test designation no. 3-11. During the test, the 2270P pickup truck was contained and smoothly redirected, and test no. MGSMP-1 met the MASH safety criteria [7].

Following the successful evaluation of the MGS with an omitted post and the MGS adjacent to a curb, it was desired to evaluate the MGS in combination with both a curb and an omitted post. In 2017, the Midwest Pooled Fund sponsored a research project to conduct full-scale crash testing on the MGS with a curb and an omitted post according to the evaluation criteria of MASH TL-3. As in the previous curb tests, the guardrail was located 6 in. behind a 6-in. tall curb. During the first full-scale test, test no. MGSCO-1, the front of the 1100C small car wedged under the W-beam rail causing combined lateral and vertical loading to the guardrail [8]. Ultimately, the rail ruptured at the splice located within the elongated span, and the vehicle penetrated behind the system, as shown in Figure 2.

Figure 2. Rail Rupture Resulting from Test No. MGSCO-1

Subsequently, the system design was modified, and 37 ft – 6 in. of nested W-beam was incorporated around the omitted post location to prevent rail rupture. The nested rail was positioned to extend at least one post spacing upstream and downstream from the elongated span created by the omitted post. During test no. MGSCO-2, the modified system captured and redirected the 1100C vehicle without any observed rail tearing [8]. The vehicle remained stable and the occupant risk measures were within the MASH limits. Thus, test no. MGSCO-2 passed the safety performance criteria of MASH test designation no. 3-10.

At the time test no. MGSCO-2 was completed, MASH test designation no. 3-11 with the 2270P pickup truck was still needed to complete the MASH TL-3 evaluation of the modified MGS. However, the original project budget only included funds for two full-scale crash tests. Thus, a continuation project was necessary to conduct the pickup truck test on the nested MGS in combination with a 6-in. tall curb and an omitted post.

1.2 Objective

The objective of this research project was to evaluate the performance of the nested MGS in combination with a curb and an omitted post according to MASH TL-3. Full-scale crash testing and evaluation were conducted according to MASH test designation no. 3-11 with the 2270P pickup truck. In prior full-scale crash testing, the system met the safety performance criteria of MASH test designation no. 3-10 [8], and the test documented herein completed the MASH TL-3 test matrix required for evaluation of the barrier system.

1.3 Scope

The research objective was achieved through the completion of several tasks. CAD details of the nested MGS with a curb and an omitted post were created. Barrier VII software was used to identify the critical impact point of the system based on the likelihood for rail rupture and rail pocketing. Full-scale crash testing was conducted according to MASH test designation no. 3-11. Next, the test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the nested MGS with a curb and an omitted post.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as W-beam guardrails, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration for use on the National Highway System. For new hardware, these safety standards consist of the guidelines and procedures published in MASH [5]. According to TL-3 of MASH, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

Test	Test	Teat	Vehicle	Impact C	onditions	Evoluction
Test Article	Designation No.	Test Vehicle	Weight lb	Speed mph	Angle deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 1. MASH TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria are explained in Table 3.

The nested MGS with a curb and an omitted post was crash tested in the previous phase of this study, and test no. MGSCO-2 met the safety performance criteria of MASH test designation no. 3-10 [8]. To complete the MASH TL-3 longitudinal barrier test matrix, MASH test designation no. 3-11 was required.

Test no. MGSCO-3 was conducted with a 2270P vehicle impacting the MGS with a curb and an omitted post. The pickup truck was safely contained and redirected. However, the soil around the test installation was later found to be below the minimum MASH requirements for strong soils. Subsequently, the test was deemed non-compliant to MASH testing conditions. Details on this non-compliance were discussed with the project sponsors in an email dated 9/11/2019 [9], and it was agreed to retest the system using MASH compliant soil. Test no. MGSCO-4 was then conducted as detailed herein. Details from the non-compliant test, test no. MGSCO-3, were not included in this report to save project funds and to focus on the MASH compliant test.

2.2 Critical Impact Point

The BARRIER VII computer program [10] was utilized to select the critical impact point, as recommended in Section 2.3.1 of MASH. An existing model of the MGS with a curb and an omitted post, created and validated as part of the previous small car testing and evaluation [8], was modified to include 37 ft – 6 in. of nested W-beam guardrail at the location of the omitted post. Impacts were then simulated on the model according to the impact conditions of MASH test 3-11, with a 2270P pickup truck impacting the system at 62 mph and a 25-degree angle.

Simulated impacts were conducted at 9.375-in. intervals along the length of the barrier system. For each simulated impact point, maximum dynamic deflections, maximum pocketing angles, and the extent of wheel snag on post no. 14 were documented. Note, similar to the test installation described in Chapter 3, post no.14 refers to the post at the downstream end of the

elongated span created by the omitted post. Deflections were measured at the center of the guardrail splice located within the elongated span, 37.5 in. upstream from post no. 14. Pocketing angles were measured at the downstream end of the elongated span, between the guardrail splice and post no. 14. Vehicle snag was measured as the lateral extent of the front tire beyond the face of the post at the time of tire-to-post contact. The analysis results are summarized in Table 2, where the impact points are identified as a distance upstream from post no. 14.

Impact Point Distance	Maximum	Maximum	Wheel Snag on
Upstream from Post No. 14	Deflection*	Pocketing Angle	Post No. 14
in.	in.	deg.	in.
300	18.28	14.73	-
290.625	20.56	15.55	-
281.25	22.79	16.5	0.60
271.875	25.49	17.54	2.35
262.5	28.8	17.07	3.46
253.125	30.24	17.14	5.46
243.75	27.08	16.83	4.02
234.375	29.32	16.6	5.05
225	31.16	16.5	5.61
215.625	32.94	16.52	5.92
206.25	34.15	16.45	6.51
196.875	35.09	16.53	6.47
187.5	35.7	16.51	6.57
178.125	35.73	16.62	6.31
168.75	32.3	15.61	6.12
159.375	32.34	15.54	6.25
150	32.06	15.44	6.31
140.625	31.57	15.2	5.93
131.25	30.98	14.79	5.89
121.875	30.24	14.35	5.37
112.5	29.26	13.79	4.87
103.125	28.18	12.89	4.07
93.75	27.3	12.28	2.61
84.375	26.23	11.28	1.39
75	25.25	9.63	0.08

Table 2. Barrier VII Critical Impact Point Study Results

*Deflections measured at the rail splice located within the elongated span length, 37.5 in. upstream from post no. 14.

The maximum wheel overlap on the post, i.e., vehicle snag, occurred in the simulation with the impact point located 187.5 in. upstream from post no. 14. This impact location also resulted in the second highest dynamic deflection at the guardrail splice, and a pocketing angle that was only 1 degree smaller than the highest pocketing angle of all the impact points. Therefore, the critical impact point for MASH test. 3-11 on the nested MGS with a curb and an omitted post was determined to be 187.5 in. upstream from the post at the downstream end of the elongated span.

Similar methods had been utilized to select the critical impact points for the previous small car tests on the system [8].

2.3 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three factors: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the longitudinal barrier to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 3 and defined in greater detail in MASH. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH.

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	t article should not partment, or present el in a work zone. It should not exceed					
	F. The vehicle should remain upright during and after collision. The maximum and pitch angles are not to exceed 75 degrees.					
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH for calculation procedure) should satisfy the following limits:				
INISK		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Se of MASH for calculation procedure) should satisfy the following lim						
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

Table 3. MASH Evaluation Criteria for Longitudinal Barriers

2.4 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. If dynamic testing near the system is not desired, MASH permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH.

3 DESIGN DETAILS

The barrier system consisted of an MGS with a curb and an omitted post, as shown in Figures 3 through 17. Photographs of the test installation are shown in Figure 18. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A. The test installation consisted of 12-gauge, AASHTO M180 standard W-beam guardrail, W6x8.5 steel posts with timber blockouts, and MGS end anchorages. The total system length was 182 ft $-3\frac{1}{2}$ in. The system was installed with the face of the guardrail located 6 in. behind a 6-in. tall, AASHTO Type B curb. A single post was omitted from the system near the middle of the test installation, and 37 ft -6 in. of nested rail was placed at the omitted post location.

The test installation was constructed using 28 guardrail posts. Post nos. 3 through 26 were standard, 72-in. long, W6x8.5, ASTM A992 steel guardrail posts. The posts were each embedded to a depth of 46 in., which corresponded to the nominal 40-in. embedment plus the soil fill depth of 6 in. behind the curb. Post nos. 1, 2, 27, and 28 were part of the MGS end anchorages. All posts were embedded in coarse, crushed limestone and were spaced 75 in. on center. The omitted post location was between post nos. 13 and 14, creating a 150-in. elongated span. Timber blockouts measuring 12 in. deep were used to block the rail away from the front flange of each steel post. The W-beam guardrail was mounted with a top-rail height of 31 in. measured from the surface of the roadway. Guardrail splices were located at the mid-span between posts and oriented to prevent vehicle snag, as shown in Figure 5.

The 37 ft - 6 in. of nested W-beam rail around the omitted post location was incorporated to increase the rail strength and prevent premature rail rupture. The rails were nested such that the two upstream rails were placed in front of the two downstream rails.

A 6-in. tall, AASHTO Type B curb spanned from post nos. 9 through 19. The curb was located 6 in. in front of the face of the rail, as measured from the face of curb at mid-height. Soil was backfilled behind the curb bringing the ground line flush with the top of the curb. The soil backfill extended a minimum of 5 ft behind the curb. A replica concrete gutter was created by casting a 4-in. deep by 48-in. wide concrete slab in front of the curb. The curb and gutter concrete had a minimum compressive strength of 4,000 psi and the curb was reinforced by a single longitudinal #4 rebar.

The upstream and downstream ends of the guardrail installation were configured with a non-proprietary end anchorage system [11-14]. The guardrail anchorage system had a comparable strength to other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts.

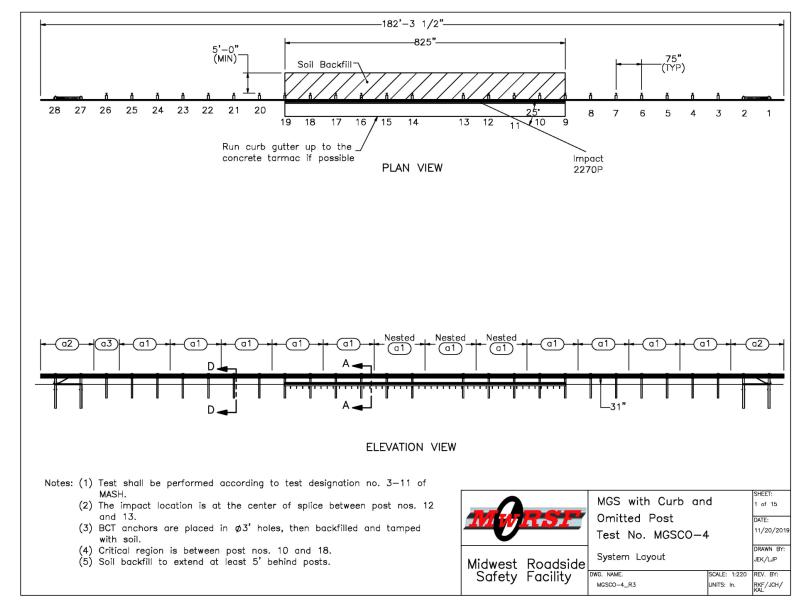


Figure 3. System Layout, Test No. MGSCO-4

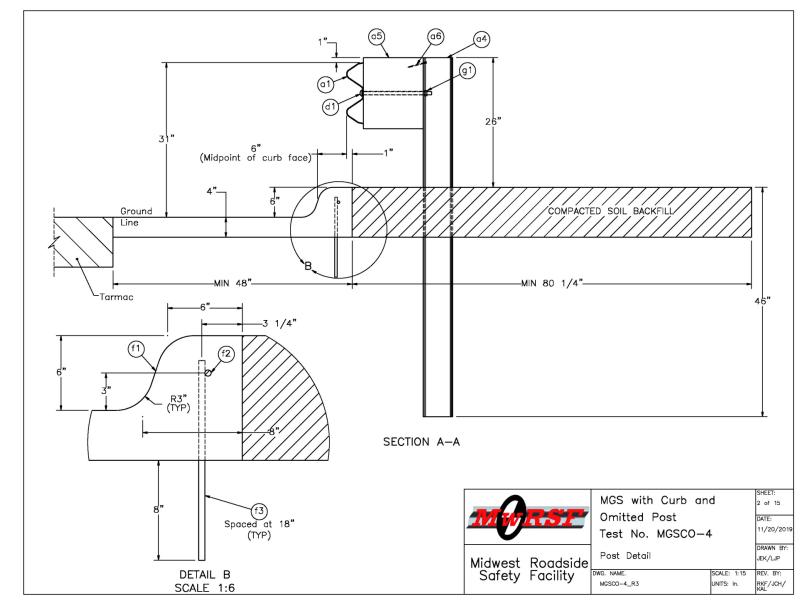


Figure 4. System Profile, Curb Geometry, and Reinforcement Details, Test No. MGSCO-4

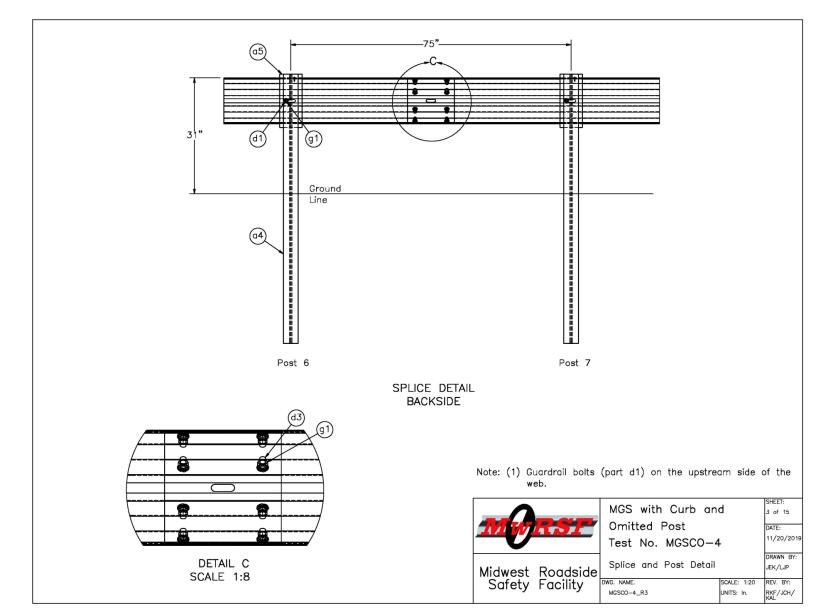


Figure 5. Splice and Post Details, Test No. MGSCO-4

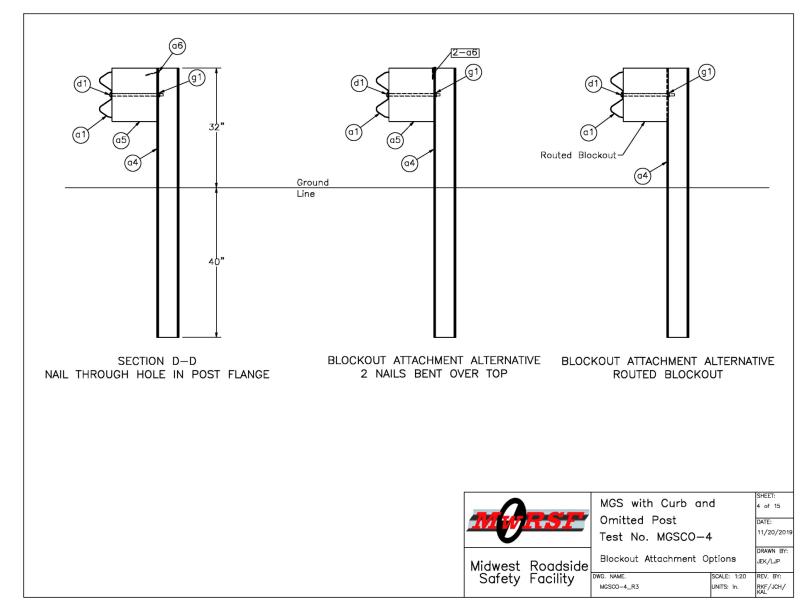


Figure 6. Blockout Attachment Details, Test No. MGSCO-4

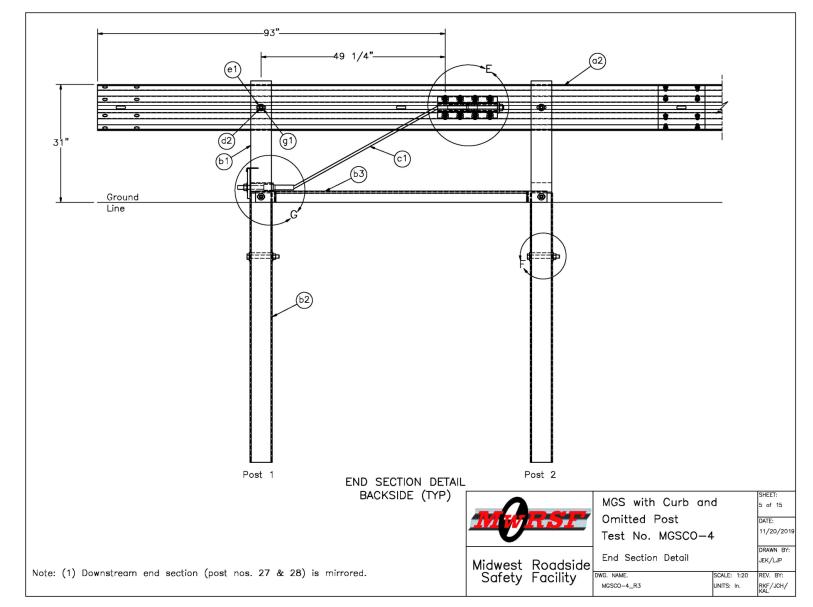


Figure 7. End Anchorage Details, Test No. MGSCO-4

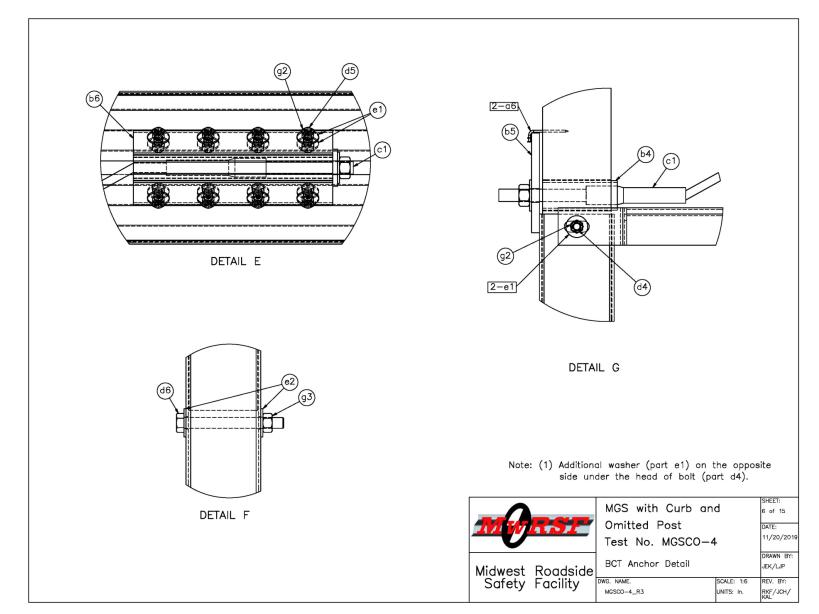


Figure 8. MGS End Anchorage Details, Test No. MGSCO-4

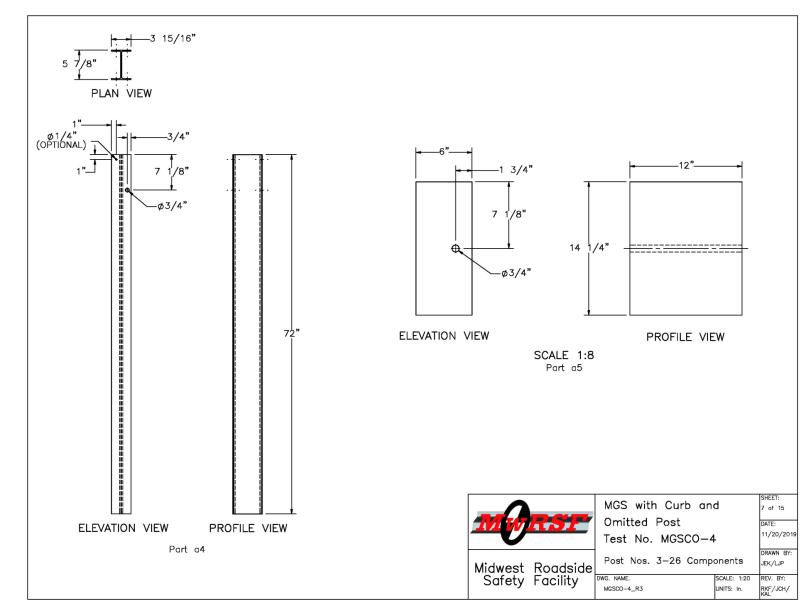


Figure 9. Post Nos. 3 through 26 Component Details, Test No. MGSCO-4

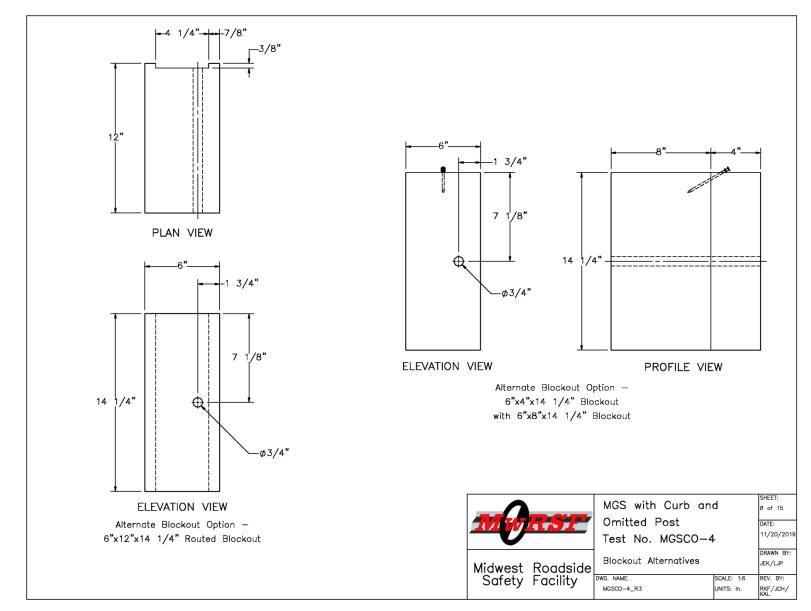


Figure 10. Post Blockout Alternatives, Test No. MGSCO-4

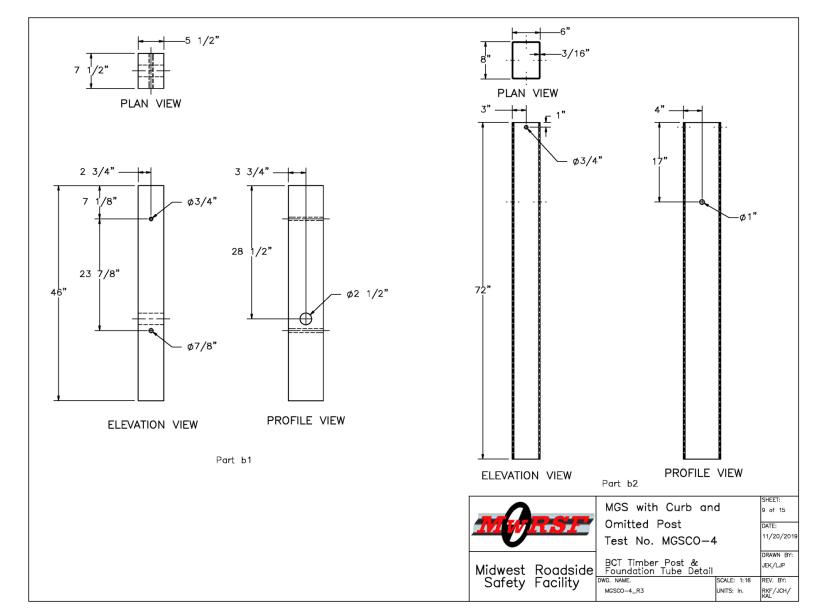


Figure 11. MGS BCT Timber Post and Foundation Tube Details, Test No. MGSCO-4

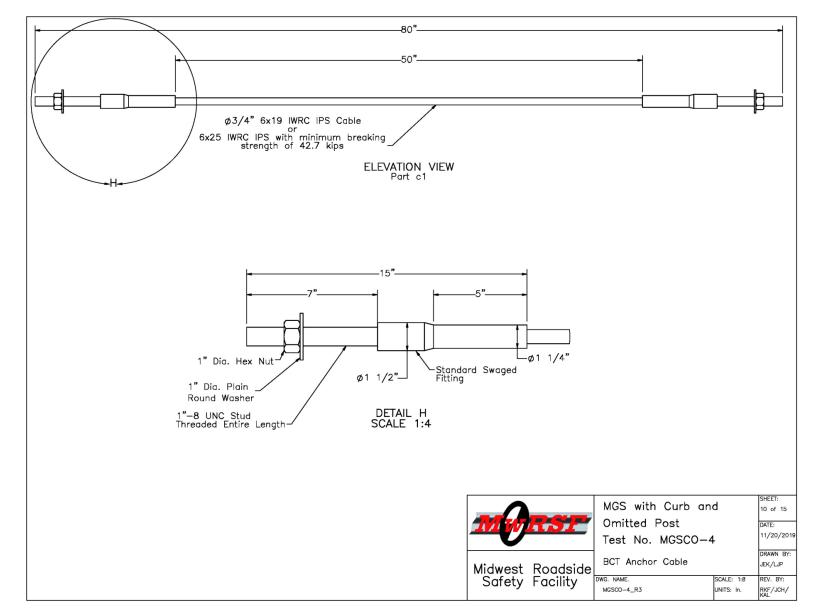


Figure 12. MGS BCT Anchor Cable, Test No. MGSCO-4

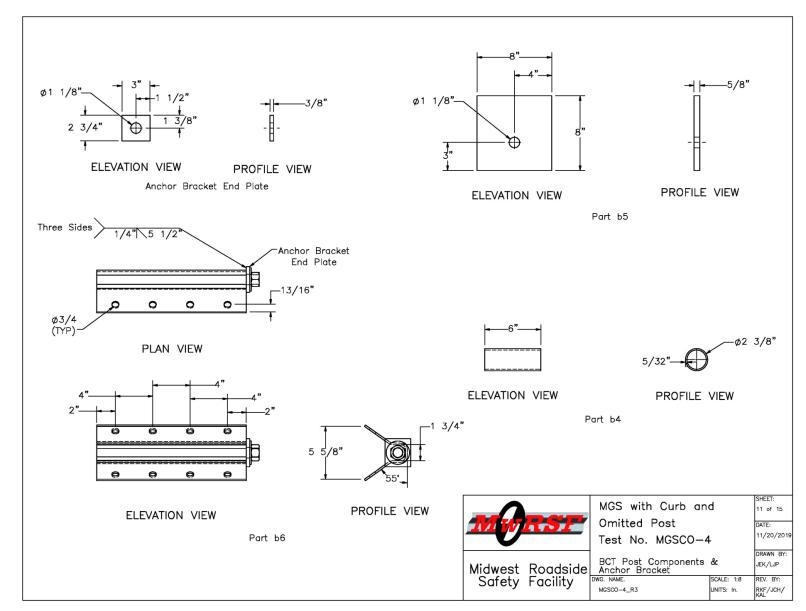


Figure 13. MGS BCT Post Components and Anchor Bracket, Test No. MGSCO-4

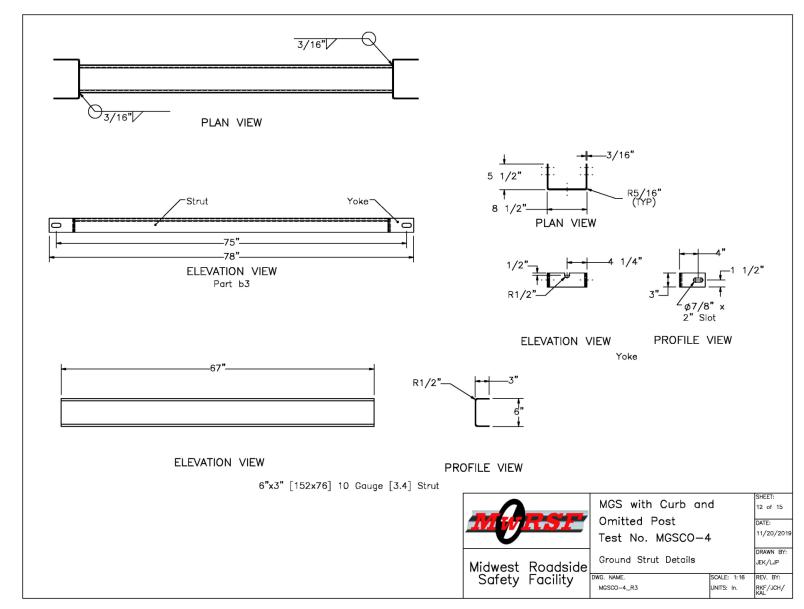


Figure 14. Ground Line Strut Details, Test No. MGSCO-4

20

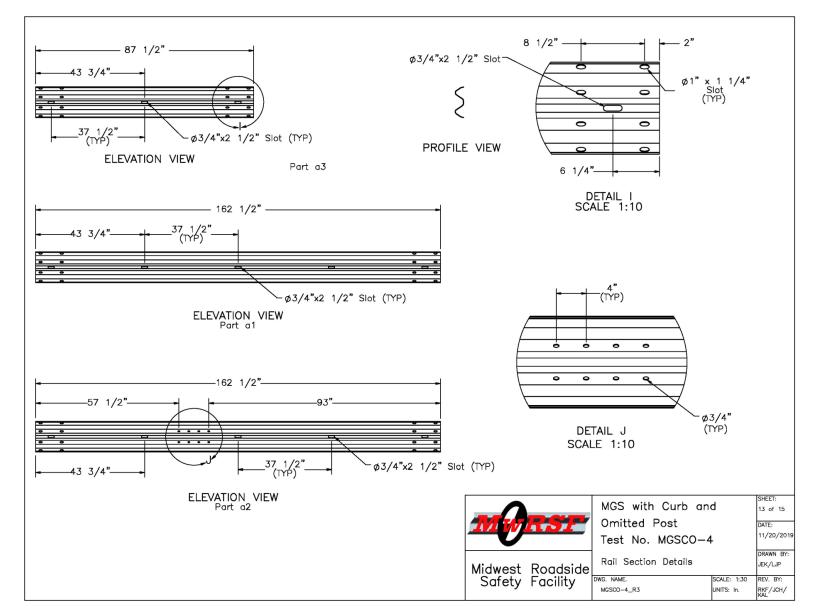


Figure 15. Rail Details, Test No. MGSCO-4

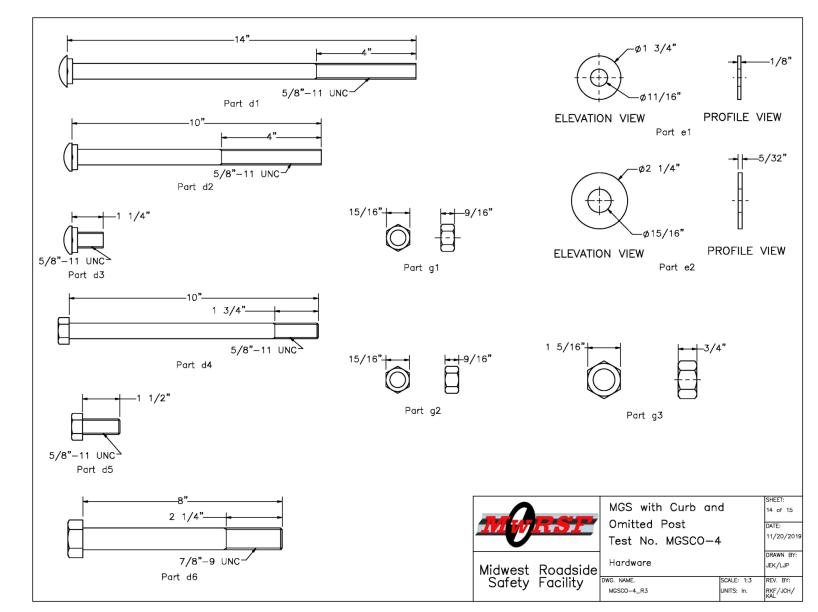


Figure 16. Attachment and Connection Hardware, Test No. MGSCO-4

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
-	-	Soil	-	-	-
a1	15	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'-3" 12-gauge W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	24	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Min. 50 ksi	ASTM A123	PWE06
α5		6"x12"x14 1/4" Timber Blockout for Steel Posts	AASHTO M168 or SYP Grade No.1 or better	AASHTO M133	PDB 10 a
a6	28	16D Double Head Nail	-	-	-
Ь1	4	BCT Timber Post — MGS Height	AASHTO M168 or SYP Grade No. 1 or better	AASHTO M133	PDF01
b2	4	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
b4	2	2 3/8" O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
b5	2	8"x8"x5/8" Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b6	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c1	2	BCT Anchor Cable	-	-	FCA01
d1	24	5/8" Dia. UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB06
d2		5/8" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB03
d3*	112	5/8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB01
d4	4	5/8" Dia. UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX16a
d5		5/8" Dia. UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX16a
d6	4	7/8" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	-
e1	44	5/8" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	-
f1		Curb	f'c = 4,000 psi	-	-
f2	1	#4 Rebar 819" Long	ASTM A615 Gr. 60	-	-
f3		#4 Rebar 16" Long	ASTM A615 Gr. 60	-	-
g1		5/8" Dia. Heavy Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F1941 or F2329	-
g2		5/8" Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F1941 or F2329	FNX16a
gЗ	4	7/8" Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F1941 or F2329	-
* 2"	Long	Guardrail Bolts (FBB02) may be used in place of	part d3 at nested splice locatio	ns.	
			-	MGS with Curb and Omitted Post	SHEET: 15 of 15 DATE:
				Test No. MGSCO-4	11/20/20

DRAWN BY:

JEK/LJP

REV. BY: RKF/JCH/ KAL

SCALE: None UNITS: In.

Bill of Materials

DWG. NAME. MGSCO-4_R3

Midwest Roadside Safety Facility

Figure 18. Test Installation Photographs, Test No. MGSCO-4

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [15] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. MGSCO-4, a 2013 Dodge RAM 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,146 lb, 5,000 lb, and 5,162 lb, respectively. The test vehicle is shown in Figures 19 and 20, and vehicle dimensions are shown in Figure 21.

Figure 19. Test Vehicle, Test No. MGSCO-4

Figure 20. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MGSCO-4

				Test Nam	e: MGS	CO-4	VIN No:	1C6RR	6KP7DS67	9213
Model Year:	2013			Mak	e: Do	dge	Model:	F	RAM 1500	
Tire Size:	P265/70R17	T	Tire Inflat	tion Pressu	re: 40	psi	Odometer:		238601	
						1	Target Range		. ,	
	M			 N		Ţ	A: 77 5/16 78±2 (19	50±50)	-	(1905)
U				(C: 229 3/8 237±13 (60			
	1 - F]				E: 140 1/4 148±12 (37		: <u>49 1/8</u>	(1248)
			> Test Inertia	al CG			G: 28 15/16 min: 28		H: 62 3/16 63±4 (15	(1580) 575±100)
			T			Ì	l: <u>13 1/2</u>	(343)	J: <u>55</u> 9/16	(1411)
		~				В	K: <u>20</u> 9/16	(522) l	.: 29	(737)
							M: <u>68 1/4</u> 67±1.5 (1		l: 67 1/2 67±1.5 (1	(1715) 1700±38)
	н-		1	s var	y)		O: 45 43±4 (11	<u>(1143)</u> F		(89)
-	- D	E			— F — -		Q: 31 1/2	(800) F	R: <u>18 1/2</u>	(470)
					-1		S: <u>16</u>	(406)	T: 77 1/4	(1962)
Mass Distribu	tion - Ib (ka)						U (in	npact width): <u>36 11/16 (</u>	(932)
Gross Static		42) RF	1463	(664)				Wheel Cente leight (Front		(387)
		21) RR		(514)				Wheel Cente Height (Rear	er	(394)
								Wheel We rance (Front	11	(902)
Weights Ib (kg)	Curb		Test I	nertial	Gross	Static		Wheel We Irance (Rear	-11	(965)
W-front	2866 (1;	300)	2783	(1262)	2879	(1306)	E	Bottom Fram leight (Front	e	(305)
W-rear)34)	2217	(1006)	2283	(1036)	E	Bottom Fram Height (Rear	е	
W-total		334)	5000	(2268)	5162	(2341)	_	Engine Type		
			5000±110	(2270±50)	5165±110	(2343±50)	-	Engine Size		l v8
GVWR Ratings	s - Ib	:	Surrogat	e Occupant	Data		Transm	ission Type	: Auto	matic
Front	3700			Type:	Hybrid	11	-	Drive Type	e: RV	VD
Rear _	3900			Mass:	162	b	-	Cab Style	e: Crew	/ Cab
Total _	6800		Seat	Position:	Passer	iger	-	Bed Length	n: <u>6</u>	7"
Note any	damage prior to	test:				No	one			

Figure 21. Vehicle Dimensions, Test No. MGSCO-4

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [16] was used to determine the vertical component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figure 21. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black-and-white checkered targets were placed on the vehicle, as shown in Figure 22, to serve as a reference in the high-speed digital video and aid in video analysis. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's right-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the front bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

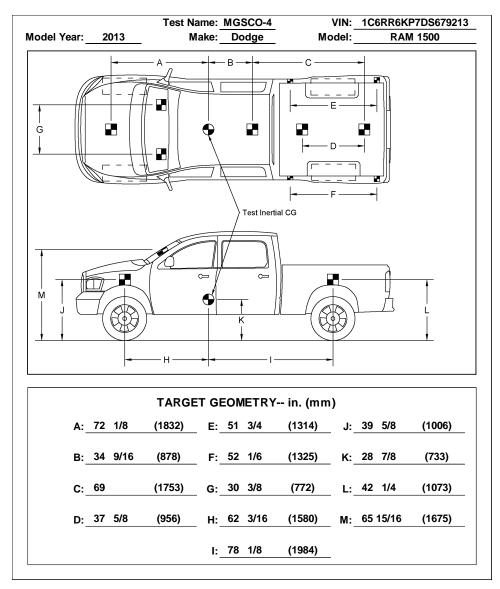


Figure 22. Target Geometry, Test No. MGSCO-4

4.4 Simulated Occupant

For test no. MGSCO-4, A Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front seat of the test vehicle with the seat belt fastened. The simulated occupant had a final weight of 162 lb. As recommended by MASH, the simulated occupant was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

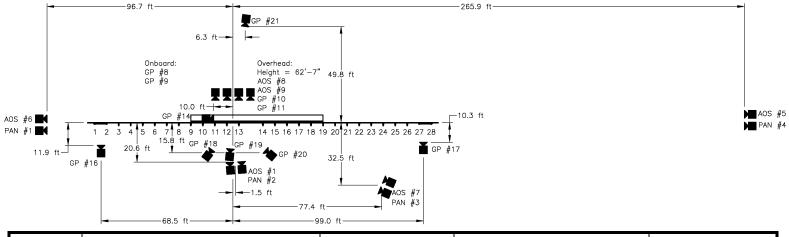
Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic

testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [17].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


4.5.3 Retroreflective Optic Speed Trap

A retroreflective optic speed trap was used to determine the speed of the vehicle before impact. Five retroreflective targets, spaced approximately at 18-in. intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras, 11 GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. MGSCO-4. Note that four of the GoPro cameras did not record the test due to technical difficulties. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 23

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for the test.

No.	Туре	Operating Speed frames/sec	Lens	Lens Setting
AOS-1	AOS Vitcam	500	KOWA 25mm	-
AOS-5	AOS X-PRI	500	100mm	-
AOS-6	rAOS X-PRI	500	Fujinon 50mm	-
AOS-7	AOS X-PRI	500	Fujinon 75mm	-
AOS-8	AOS S-VIT 1531	500	KOWA 16mm	-
AOS-9	AOS TRI-VIT 2236	500	KOWA 12mm	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	240		
GP-11	GoPro Hero 4	120		
GP-14	GoPro Hero 4	240		
GP-16	GoPro Hero 4	240		
GP-17	GoPro Hero 4	240		
GP-18*	GoPro Hero 6	240		
GP-19*	GoPro Hero 6	240		
GP-20*	GoPro Hero 6	240		
GP-21*	GoPro Hero 6	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		

* Camera did not record the impact event due to technical difficulties.

Figure 23. Camera Locations, Speeds, and Lens Settings, Test No. MGSCO-4

5 FULL-SCALE CRASH TEST NO. MGSCO-4

5.1 Static Soil Test

Before full-scale crash test no. MGSCO-4 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. MGSCO-4 was conducted on November 26, 2019 at approximately 10:00 a.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/KLNK) are shown in Table 4.

Temperature	35°F
Humidity	78%
Wind Speed	13 mph
Wind Direction	30° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.37 in.

Table 4. Weather Conditions, Test No. MGSCO-4

5.3 Test Description

Initial vehicle impact was to occur 187.5 in. upstream from post no. 14, as shown in Figure 24. The impact point was selected using BARRIER VII analysis software, as discussed in Section 2.2. The 5,000-lb pickup truck impacted the MGS with curb and omitted post at a speed of 62.0 mph and at an angle of 25.1 degrees. The actual point of impact was 1.2 in. downstream from the target location. After brakes were applied, the vehicle came to rest 189.4 ft downstream and 34.1 ft in front of the system and was angled slightly toward the system.

A detailed description of the sequential impact events is contained in Table 5. Sequential photographs are shown in Figures 25 and 26. Documentary photographs of the crash test are shown in Figure 27. The vehicle trajectory and final position are shown in Figure 28.

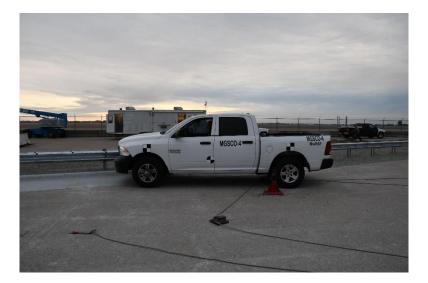


Figure 24. Target Impact Location, Test No. MGSCO-4

Time sec	Event					
	Vehicle's front bumper contacted rail between post nos. 12 and 13. Vehicle's					
0.000	right-front tire contacted curb.					
0.008	Post no. 12 deflected backward. Vehicle's right-front wheel contacted rail					
	between post nos. 12 and 13.					
0.016	Post no. 13 deflected backward.					
0.024	Post no. 12 twisted clockwise.					
0.044	Post no. 14 deflected backward.					
0.054	Post no. 13 twisted counterclockwise.					
0.058	Vehicle began yawing away from system.					
0.074	Vehicle began rolling toward system.					
0.082	Post no. 15 deflected backward.					
0.094	Rail disengaged from bolt at post no. 13.					
0.128	Post no. 14 twisted counterclockwise and bent backward.					
0.138	Vehicle's right-rear tire contacted curb.					
0.150	Vehicle's rear bumper contacted rail.					
0.164	Rail disengaged from bolt at post no. 14.					
0.168	Post no. 15 bent backward.					
0.176	Vehicle's right-rear wheel contacted rail.					
0.178	Vehicle's left-front tire became airborne.					
0.206	Post no. 11 deflected backward. Blockout disengaged from post no. 14.					
0.220	Vehicle's right-front tire impacted post 14.					
0.230	Vehicle's left-rear tire became airborne.					
0.238	Post no. 15 twisted counterclockwise.					
0.242	Vehicle was parallel to the system at a speed of 47.8 mph.					
0.256	Post no. 16 deflected backward.					
0.274	Rail disengaged from bolt at post no. 15.					
0.298	Vehicle pitched downward slightly.					
0.372	Vehicle's right-front tire became airborne.					
0.412	Post no. 16 bent downstream.					
0.626	Vehicle exited system at a speed of 44.0 mph and at an angle of -14.7 degrees.					
0.632	Vehicle's right-front tire regained contact with ground.					
	Vehicle reached maximum roll angle of 21 degrees and began to roll away from					
0.722	system.					
0.880	Vehicle's left-front tire regained contact with ground.					
0.926	System came to a rest.					
0.950	Vehicle's left-rear tire regained contact with ground.					

Table 5. Sequential Description of Impact Events, Test No. MGSCO-4

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 25. Sequential Photographs, Test No. MGSCO-4

0.000 sec

0.150 sec

0.300 sec

0.450 sec

0.600 sec

0.750 sec

Figure 26. Sequential Photographs, Test No. MGSCO-4

0.000 sec

0.150 sec

0.300 sec

0.450 sec

0.600 sec

0.750 sec

Figure 27. Documentary Photographs, Test No. MGSCO-4

Figure 28. Vehicle Final Position and Trajectory Marks, Test No. MGSCO-4

5.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 29 through 35. Barrier damage consisted of contact marks along with deformed W-beam rail, posts, post-to-rail attachment hardware, and timber blockouts. The length of vehicle contact along the rail was approximately 28 ft - 9 in., which spanned from 29 in. downstream from the center of post no. 12 to 4 in. downstream from the center of post no. 16.

At the upstream anchorage, post no. 2 had bolt pullout from the rail and the timber post fractured through the bottom hole. Post nos. 3 through 11 twisted clockwise. The guardrail was detached from post nos. 12 through 16 and the blockout detached from post no. 14. There were numerous kinks and dents on the W-beam rail between post nos. 12 and 16. Soil heaves and craters formed at the base of post nos. 12 through 16. Post nos. 12 and 13 rotated backward and twisted clockwise. Post no. 14 rotated downstream and twisted counterclockwise and the front flange buckled. Post no. 15 twisted counterclockwise and bent backward and downstream. Post no. 16 bent backward.

Figure 29. System Damage, Test No. MGSCO-4

Figure 30. System Damage, Test No. MGSCO-4

Figure 31. System Damage, Test No. MGSCO-4

Figure 32. System Damage, Post Nos. 12 and 13, Test No. MGSCO-4

44

November 11, 2021 MwRSF Report No. TRP-03-433-21 The permanent set of the barrier system was measured in the field using GPS. The maximum lateral permanent set, inclusive of both guardrail and post deflections, was 25.3 in. at the midspan between post nos. 13 and 14. The maximum lateral dynamic barrier deflection was 38.6 in. at the splice upstream from post no. 14. This was determined from high-speed digital video analysis and included deformation of the MGS along the top surface. The working width of the system was found to be 41.8 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 34.

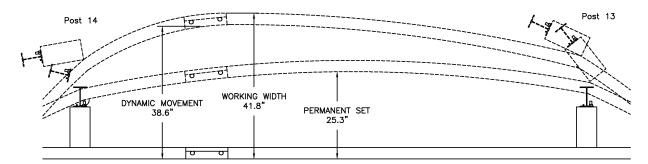
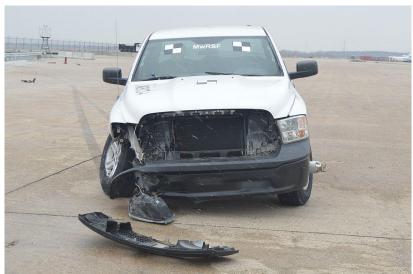


Figure 34. Permanent Set, Dynamic Deflection, and Working Width, Test No. MGSCO-4

5.5 Vehicle Damage


The damage to the vehicle was moderate, as shown in Figures 35 through 37. The maximum occupant compartment intrusions are listed in Table 6 along with the intrusion limits established in MASH for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and their corresponding locations are provided in Appendix D. MASH defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered crush toward the occupant.

The majority of damage was concentrated on the right-front corner where the impact occurred as well as the front of the vehicle. The grille and right headlight disengaged from the vehicle. The right-front bumper was dented inward, and the right-front corner of the bumper was deformed and partly disengaged. The right-front fender panel was deformed outward. Part of the right-front tire rim was chipped off. Contact marks and scratches were observed throughout the right side of the vehicle. Both right-side doors were deformed slightly. The right-rear corner of the truck was dented below the taillight and on the rear bumper. The roof, windshield, and window glass remained undamaged.

Undercarriage damage was minimal. The right-front shock was bent outward and toward the rear of the vehicle. The right-front sway bar linkage was disconnected. The right lower control arm was disconnected and broken at the cross member mounts. The right outer tie rod was bent. Additionally, the right side steering knuckle assembly and streering gear box had minor scraping.



November 11, 2021 MwRSF Report No. TRP-03-433-21

November 11, 2021 MwRSF Report No. TRP-03-433-21

47

Figure 37. Occupant Compartment and Undercarriage Damage, Test No. MGSCO-4

Location	Maximum Intrusion in.	MASH Allowable Intrusion in.	
Wheel Well & Toe Pan	0.0	≤ 9	
Floor Pan & Transmission Tunnel	0.1	≤ 12	
A-Pillar	0.2	≤ 5	
A-Pillar (Lateral)	0.0	<u>≤</u> 3	
B-Pillar	0.1	\leq 5	
B-Pillar (Lateral)	0.0	≤ 3	
Side Front Panel (in Front of A-Pillar)	0.1	≤ 12	
Side Door (Above Seat)	0.0*	<u>≤</u> 9	
Side Door (Below Seat)	0.2	≤ 12	
Roof	0.1	≤ 4	
Windshield	0.0	<i>≤</i> 3	
Side Window	Intact	No shattering resulting from contact with structural member of test article	
Dash	0.2	N/A	

Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. MGSCO-4

N/A – No MASH criteria exist for this location.

* Negative value reported as 0.0. See Appendix D for further information.

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from accelerometer data, are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix E.

Table 7. Summary of Occupant Risk Values, Test No. MGSCO-4

		Trans	Transducer	
Evaluation	Criteria	SLICE-1	SLICE-2 (primary)	MASH Limits
OIV	Longitudinal	-12.02	-11.18	±40
(ft/s)	Lateral	-14.96	-16.04	± 40
ORA	Longitudinal	-6.26	-6.72	±20.49
(g's)	Lateral	-9.10	-8.46	±20.49
Maximum Angular	Roll	25.0	20.9	±75
Displacement	Pitch	-2.2	-4.0	±75
deg.	Yaw	-46.0	-45.9	not required
THIV –	ft/s	18.36	19.03	not required
PHD –	g's	10.69	10.68	not required
ASI		0.87	0.81	not required

5.7 Discussion

The analysis of the test results for test no. MGSCO-4 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Sequential photographs and a summary of the test results are shown in Figure 38. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of -14.7 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSCO-4 was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-11.

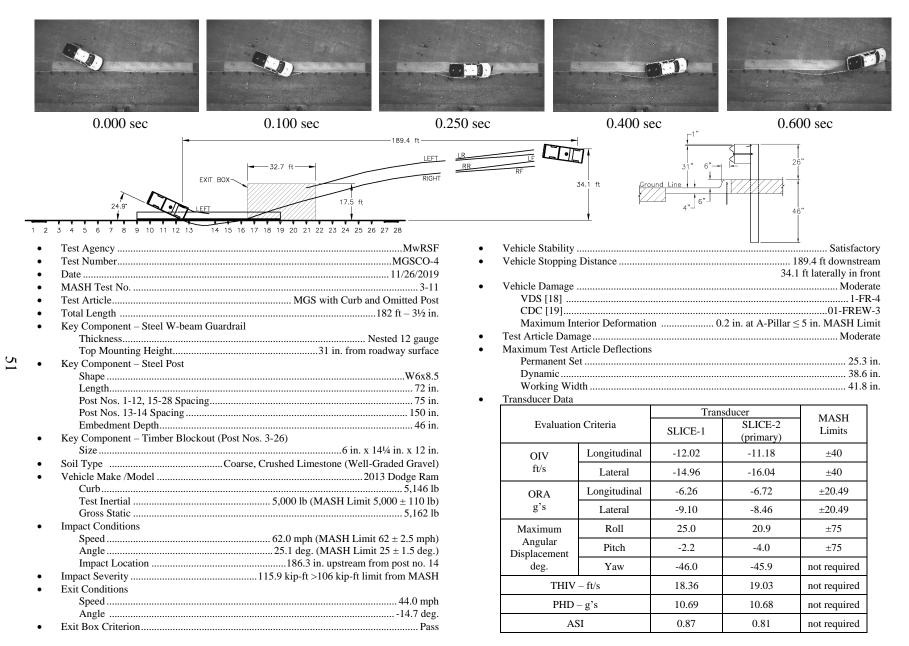


Figure 38. Summary of Test Results and Sequential Photographs, Test No. MGSCO-4

6 SUMMARY AND CONCLUSIONS

The objective of this project was to evaluate the nested MGS with an omitted post placed adjacent to a curb in accordance with MASH test 3-11 criteria. The test article utilized for full-scale crash testing consisted of the MGS placed with the face of the rail offset 6 in. behind a 6-in tall AASHTO Type B curb, an omitted post in the middle of the barrier system, and 37 ft – 6 in. of nested W-beam guardrail placed in the region of the 150-in. elongated span.

In test no. MGSCO-4, the 5,000-lb pickup truck impacted the MGS test installation at a speed of 62.0 mph and an angle of 25.1 degrees, resulting in an impact severity of 115.9 kip-ft. Initial impact occurred 186.3 in. upstream from post no. 14 in an attempt to maximize system deflections, rail loading, and the potential for vehicle snag on system posts. The vehicle was captured, safely redirected, and exited the system at a speed of 44.0 mph at an angle of -14.7 degrees. The vehicle remained upright and stable throughout the test, and all vehicle decelerations and occupant compartment deformations were within the allowable MASH limits. There was no evidence of rail tearing. Therefore, test no. MGSCO-4 satisfied the safety performance criteria for MASH test designation no. 3-11. A summary of the test evaluation is shown in Table 8.

Previously, this same MGS configuration was crash tested with the 1100C vehicle in test no. MGSCO-2, and the system met the safety performance criteria for MASH test 3-10 [8]. Test no. MGSCO-4 completed the MASH TL-3 longitudinal barrier test matrix. Therefore, the nested MGS with a curb and an omitted post has been assessed as crashworthy to MASH TL-3. Chapter 7 provides recommendations and installation guidance for the MGS with a curb and an omitted post.

Evaluation Factors		Evaluat	Test No. MGSCO-4			
Structural Adequacy	А.	Test article should contain a vehicle to a controlled stop underride, or override the in deflection of the test article i	S			
	D	1. Detached elements, fragme should not penetrate or show compartment, or present a pedestrians, or personnel in a	S			
		2. Deformations of, or intrus should not exceed limits set f of MASH.	S			
	F.	The vehicle should remain u maximum roll and pitch ang	S			
Occupant Risk	H.	Occupant Impact Velocity (C of MASH for calculation pro limits:				
		Occupant Ir	npact Velocit	ty Limits	S	
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Ad Section A5.2.2 of MASH for the following limits:	S			
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH Test Designation No.				3-11		
Final Evaluation (Pass or Fail)				Pass		
S – Satisfactory U – Unsatisfactory N/A – Not Applicable						

Table 8. Summary of Safety Performance Evaluation

S - Satisfactory U - Unsatisfactory N/A - Not Applicable

7 RECOMMENDATIONS AND IMPLEMENTATION GUIDANCE

The following sections provide implementation guidance and/or recommendations regarding the installation of the nested MGS in combination with a curb and an omitted post. These recommendations are intended to ensure consistent safety performance of guardrail installations and are based on the full-scale testing and associated research available at the conclusion of this project. Although some installation sites will require systems outside the bounds of these recommendations, the reasoning behind these recommendations should still be considered along with other roadside treatments when selecting the final site-specific design.

The system tested and evaluated herein is a combination of two special MGS applications: the MGS adjacent to a curb and the MGS with an omitted post. Although the combination of these two configurations necessitated nested guardrail in the omitted post region, the implementation recommendations previously provided for the MGS adjacent to a curb and the MGS with an omitted post still apply. In other words, the nested MGS adjacent to curb and with an omitted post system evaluated herein should be installed under the same conditions previously recommended for both individual systems. These recommendations were not repeated herein but can be found in the project reports for each individual MGS configuration [6-7].

7.1 Minimum Length of Nested Rail

The initial test of the MGS with a curb and omitted post used standard, single-ply W-beam rail throughout the system. Rail tearing occurred during test no. MGSCO-1 and the system failed to meet MASH criteria. The system was then modified to incorporate nested rail around the omitted post. Testing of the modified system, test nos. MGSCO-2 with the small car and test no. MGSCO-4 with the pickup truck, satisfied MASH safety performance criteria. Based on the previously reported results of test nos. MGSCO-1 and MGSCO-2 [8], and test no. MGSCO-4 documented herein, it is recommended to install a minimum of 37 ft – 6 in. of nested W-beam rail at any omitted post location within an installation of MGS placed adjacent to curb. The nested rail should be installed over the elongated 150-in. span resulting from the omitted post and should extend a minimum of $112\frac{1}{2}$ in. both upstream and downstream of the elongated span, which corresponds to at least two posts on each side of the omitted post, as shown in Figure 39. Note, unless 6-ft-3-in. long guardrail sections are utilized within the system, the nested rail section will not affect system performance. In fact, both test nos. MGSCO-2, and MGSCO-4 were conducted with the non-symmetrical layout shown in Figure 39.

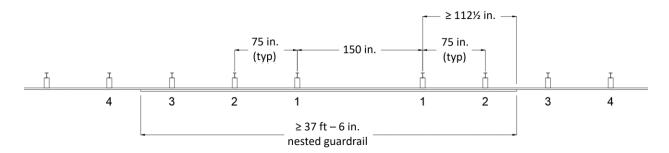


Figure 39. Minimum Length and Position for Nested Guardrail

7.2 Multiple Omitted Posts

The evaluation and conclusions provided herein relate to the omission of a single support post within the MGS adjacent to a curb. Omitting consecutive posts increases concerns for excessive pocketing, vehicle snag, and rail rupture. Although the MGS long-span system has been successfully crash tested to MASH TL-3 while omitting three consecutive posts, the long-span system has not been evaluated with a curb, and it is not currently recommended for use with a culvert headwall that extends more than 2 in. above the ground surface [20]. Thus, omitting two or more consecutive posts within the MGS adjacent to curb is not recommended until further evaluation is conducted.

Though not evaluated as part of this study, the omission of multiple non-consecutive posts within an MGS instillation may also lead to increased deflections, increased rail loads, and increased pocketing. Therefore, sufficient distance between omitted posts within an MGS instillation is necessary to ensure proper system performance. To conform with the recommendations provided for omitted posts within standard MGS [7], a minimum distance of 56 ft – 3 in. is recommended between omitted posts, as shown in Figure 40. This distance is equivalent to saying a single post may be omitted at every 9th post along an MGS installation.

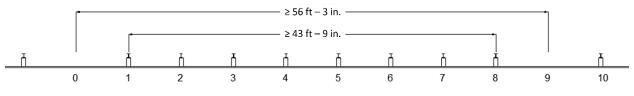


Figure 40. Minimum Recommended Distance between Omitted Posts

7.3 MGS Stiffness Transition

The MGS stiffness transition was previously developed to connect the MGS to various thrie beam, approach guardrail transitions. Both steel post and wood post versions of the MGS stiffness transition have been developed as well as a configuration for use adjacent to roadside curbs [21-23]. These previous studies recommended that 25 ft of guardrail be utilized between the upstream end of the asymmetrical W-to-thrie transition element and any guardrail flares, terminals, or variations in post spacing. Accounting for the $37\frac{1}{2}$ -in. post spacing required to transition between full- and half-post spacing, it is recommended to have a minimum distance of 28 ft – $1\frac{1}{2}$ in. between the asymmetrical rail element and the elongated span created by an omitted post. Thus, an omitted post should be at least 34 ft – $4\frac{1}{2}$ in. away from the upstream end of the W-to-thrie transition element, as shown in Figure 41.

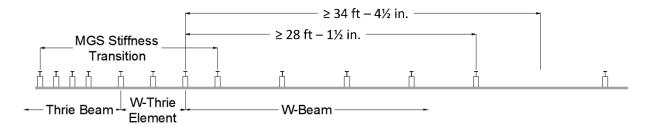


Figure 41. Recommended Distance between Omitted Posts and MGS Stiffness Transition

When the MGS upstream stiffness transition is installed adjacent to curb, 12 ft - 6 in. of nested W-beam rail is required on the upstream side of the W-to-thrie transition rail segment to strengthen the rail against premature failure [23]. Additionally, omitting a post within an MGS installation adjacent to curb requires at least 9 ft – $4\frac{1}{2}$ in. of nested rail on each side of the omitted post location. If a post is omitted near the MGS stiffness transition, it may be beneficial to extend nested guardrail from the W-to-thrie transition segment to beyond the omitted post location to prevent alternating between nested and single ply guardrail.

To date, the MGS upstream stiffness transition with curb has only been evaluated with a 4-in. tall, triangular shaped curb. Accordingly, the MGS stiffness transition is only recommended for use with curbs with a height of 4 in. or lower due to concerns that taller curbs may accentuate vehicle wedging below the rail and lead to premature rail failure. Curb shape and/or height transitions (e.g., from a 4-in. tall curb to a 6-in. tall AASHTO Type B curb) should occur at least 12 ft – 6 in. upstream from the W-to-thrie transition rail segment. Further, curb shape transitions are recommended to use transition lengths of at least 3 ft to mitigate vehicle wedging or instabilities. Two-inch curb height transitions near omitted post locations are not anticipated to negatively affect the safety performance of the system.

7.4 Guardrail Terminals and Anchorages

Multiple W-beam guardrail end terminals have been developed for use with the MGS. However, to date, no guardrail end terminations or anchorages have been evaluated to MASH criteria when placed adjacent to curbs. Additionally, no guardrail terminals or anchorages have been evaluated to MASH with one or more omitted posts within the terminal stroke length. Thus, it is recommended to extend guardrail systems an adequate distance beyond roadside curbs and the location of any omitted posts prior to terminating/anchoring the system to avoid negatively affecting the safety performance of the guardrail terminal. Further guidance may be found within the installation manual or guidance provided for each specific guardrail terminal.

8 MASH EVALUATION

The MGS with a curb and a single omitted post was evaluated in accordance with MASH TL-3 criteria. The test article utilized for full-scale crash testing consisted of the MGS placed with the face of the guardrail 6 in. behind the face of a 6-in tall AASHTO Type B curb. An omitted post in the middle of the barrier system created a single elongated rail span of 150 in., and 37 ft – 6 in. of nested W-beam guardrail was placed in the region of the elongated span. The MGS was given a nominal rail height of 31 in. measured from the roadway surface, and soil backfill was placed behind the curb to maintain a ground line even with the top of the curb. As such, the nominal post embedment depth was increased by 6 in. to 46 in.

The nested MGS with a curb and an omitted post was subjected to two crash tests in accordance with MASH TL-3 evaluation criteria. In test no. MGSCO-2, the 1100C small car was contained and safely redirected. All occupant risk criteria were satisfied, and the test satisfied MASH test designation no. 3-10 criteria. During test no. MGSCO-4, the 2270P pickup was captured and smoothly redirected, and all occupant risk values were below MASH limits. Thus, test no. MGSCO-4 satisfied MASH test designation no. 3-11 criteria.

With the successful completion of both crash tests within the TL-3 testing matrix, nested MGS offset 6 in. behind the face of a 6-in. tall AASHTO Type B curb in combination with a single omitted post was assessed as crashworthy to MASH TL-3 criteria. Note, the guardrail should be nested for a minimum length of 37 ft – 6 in., and the nested rail should be extended a minimum of 112.5 in. beyond each side of the elongated span. This ensures the nested rail extends across at least two posts upstream and downstream from the omitted post location.

A reduced offset between the barrier and the face of the curb is generally considered to improve system performance as it reduces the curb's effect on vehicle trajectory. Thus, the nested MGS with an omitted post should be considered crashworthy for curb-to-guardrail offsets between 0 in. and 6 in. Lower height curbs and curbs with sloped faces are also expected to reduce the vertical trajectory of impacting vehicles. Since the nested MGS with an omitted post was evaluated with a critical curb shape, the MGS is expected to remain crashworthy in combination with any standard AASHTO curb shape at or below a maximum height of 6 in.

9 REFERENCES

- 1. Sicking, D.L., Reid, J.D., and Rohde, J.R., *Development of the Midwest Guardrail System*, Journal of the Transportation Research Board, Transportation Research Record No. 1797, Presented in Washington, D.C., January 2002, pp. 44-52.
- 2. Faller, R.K., Polivka, K.A., Kuipers, B.D., Bielenberg, R.W., Reid, J.D., Rohde, J.R., and Sicking, D.L., *Midwest Guardrail System for Standard and Special Applications*, Journal of the Transportation Research Board, Transportation Research Record No. 1890, Washington, D.C., January 2004, pp. 19-33.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., Bielenberg, R.W., and Kuipers, B.D., *Development of the Midwest Guardrail System (MGS)* for Standard and Reduced Post Spacing and in Combination with Curbs, Report No. TRP-03-139-04, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 2004.
- 4. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, NCHRP Report No. 350, Transportation Research Board, Washington, D.C., 1993.
- 5. *Manual for Assessing Safety Hardware (MASH), Second Edition,* American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- Ronspies, K., Rosenbaugh, S.K., Bielenberg, R.W., and Faller, R.K., *Evaluation of the MGS Placed 6 in. Behind a 6-in. Tall AASHTO Type-B Curb to MASH TL-3*, Research Report No. TRP-03-390-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 27, 2020.
- Lingenfelter, J.L., Rosenbaugh, S.K., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., and Reid, J.D., *Midwest Guardrail System (MGS) with an Omitted Post*, Report No. TRP-03-326-16, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, 2016.
- 8. Rosenbaugh, S.K., Stolle, C.S., Ronspies, K.B., *MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-10*, Research Report No. TRP-03-393-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, April 12, 2019.
- 9. Bielenberg, R.W., email to Midwest Pooled Fund members, September 11, 2019.
- 10. Powell, G.H., Barrier VII: A Computer Program For Evaluation of Automobile Barrier Systems, Prepared for: Federal Highway Administration, Report No. FHWA RD-73-51, April 1973.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.

- 12. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and* Implementation *Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 14. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 15. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 16. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 17. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July 2007.
- 18. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 19. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Bielenberg, R.W., Faller, R.K., Rhode, J.R., Reid, J.D., Sicking, D.L., Holloway, J.C., Allison, E.A., and Polivka, K.A., *Midwest Guardrail System for Long Span Applications*, Report No. TRP-03-187-07, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 16, 2007.
- Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, December 21, 2010.
- Rosenbaugh, S.K., Schrum, K.D., Faller, R.K., Lechtenberg, K.A., Sicking, D.L., and Reid, J.D., *Development of Alternative Wood-Post MGS Approach Guardrail Transition*, Report No. TRP-03-243-11, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, November 28, 2011.
- Winkelbauer, B.J., Putjenter, J.G., Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Bielenberg, R.W., and Reid, J.D., *Dynamic Evaluation of MGS Stiffness Transition with Curb*, Report No. TRP-03-291-14, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, June 30, 2014.

10 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference No.
a1	12'-6" 12-gauge W-Beam MGS Section	AASHTO M180	H#C85187 H#9411949
a2	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	H#C85187 H#9411949
a3	6'-3" 12-gauge W-Beam MGS Section	AASHTO M180	H#31631800
a4	W6x8.5 or W6x9, 72" Long Steel Post	ASTM A992 Min. 50 ksi	Post Nos. 3-17: H#55062363 H#55062364 H#55062370 H#55059251 Post Nos.18-26: H#1702406
a5	6"x12"x14¼" Timber Blockout for Steel Posts	SYP Grade No.1 or better	Ch#18379 Ch#23888 Ch#23888 Ch#21327
аб	16D Double Head Nail	-	Certificate of Compliance for PO E000548963 McMaster Carr
b1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots 18" above or below ground tension face)	Ch# 269
b2	72" Long Foundation Tube	ASTM A500 Gr. B	H#811T08220
b3	Ground Strut Assembly	ASTM A36	H#195070
b4	2 ³ / ₈ " O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#B712810
b5	8"x8"x5%" Anchor Bearing Plate	ASTM A36	H#4181496
b6	Anchor Bracket Assembly	ASTM A36	H#A87581 H#JK16101488
c1	BCT Anchor Cable	-	Assembly Specialty Products Inc. Certificate of Conformance
d1	%" Dia. UNC, 14" Long Guardrail Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#DL17100590
d2	5∕%" Dia. UNC, 10" Long Guardrail Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#1721198
d3	5/8" Dia. UNC, 11/4" Long Guardrail Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#10553090
d4	⁵⁄8" Dia. UNC, 10" Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#JK18104124
d5	5⁄8" Dia. UNC, 1½" Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#5-010570

Table A-1. Bill of Materials, Test No. MGSCO-4

d6	⁷ / ₈ " Dia. UNC, 8" Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#489517
e1	⁵⁄8" Dia. Plain USS Washer	ASTM F844	P#1133185 L#1845511
e2	⁷ / ₈ " Dia. Plain USS Washer	ASTM F844	P#33187 L#1844804
f1	Curb	f'c = 4,000 psi	Ticket#1237834 Report#2147371499
f2	#4 Rebar 819" Long	ASTM A615 Gr. 60	H#58033918
f3	#4 Rebar 16" Long	ASTM A615 Gr. 60	H#602934
g1	⁵⁄s" Dia. Heavy Hex Nut	ASTM A563A	H#10508780 H#62144802 H#20479830 H#20550810
g2	⁵ / ₈ " Dia. Hex Nut	ASTM A563A	H#331608011
g3	7∕8" Dia. Hex Nut	ASTM A563A	H#18108473-3

Table A-2. Bill of Materials, Test No. MGSCO-4, Cont.

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	UNIVERSITY OF 401 CANFIELD A P O BOX 880439 LINCOLN,NE,685	DMIN BLDG					Test Report Ship Date: Customer P O: Shipped to: Project:	1/26/2018 36263 UNIVERSITY OF	NEBRASKA-LIN	ICOLN			
							GHP Order No .:	319AA					
HT # code 1207	Heat # C85187	C. 0.2	MN. 0.48	P. 0.008	S. 0.003	Si. 0.03	Tensile 80433	Yield 59371	Elong. 16.35	Quanity 150	Class A	Туре 2	Description 12GA 12FT6IN/3FT1 1/2IN WB T2

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. 333896 Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America OF All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4. STATE OF OHIO: COUNTY OF STARK & Gracver 0 Jeffery Grover this 29 day of January, 2018 By:______ Jeffery Grover, VP of Highway Products Sales & Marketing

James P Dehnke Notary Public - State of Ohio My Commission Expires October 19, 2019 October 19, 2019

Sworn to and subscribed before me, a Notary/Public, by Notary Public, State of Ohio

Figure A-1. 12-ft 6-in. 12-Gauge W-Beam, Test No. MGSCO-4 (Item Nos. a1 and a2)

Gregory Highway Products, Inc.

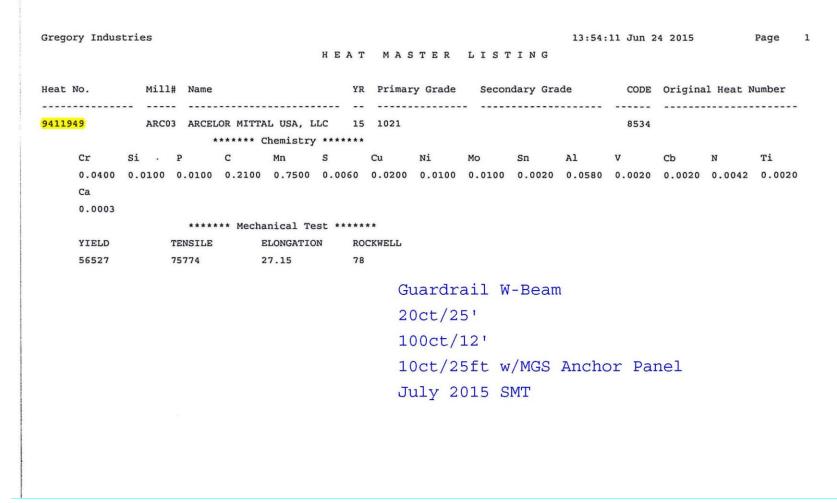


Figure A-2. 12-ft 6-in. 12-Gauge W-Beam, Test No. MGSCO-4 (Item Nos. a1 and a2)

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	GUARDRAIL SYS 8000 SERUM AVI RALSTON,NE,68	Ε.					Test Report Ship Date; Customer P O Shipped to: Project: GHP Order No.:	10/12/2016 EMAIL 6-21-2016 GUARDRAIL SYS STOCK 9386AJ					
HT # code	Heat #	C.	MN.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quanity	Class	Туре	Description
9760	31631800	0.2	0.85	0.01	0.001	0.04	79600	62100	25	6	A	1	12GA 15FT7.5IN WB T13FT1.5IN
9761	4152233	0.22	0.74	0.011	0.006	0.01	79057	59958	25.33	6	A	1	12 GA 12FT6IN WB T1 FLEAT-SKT COMBO PAN
9760	31631800	02	0.85	0.01	0.001	0.04	79600	62100	25	5	Α	1	12GA 25FT0IN 3FT1 1/2IN WB T1
9692	31629790	0.2	0.82	0.012	0.002	0.04	81442	58556	17.56	1	A	1	12GA 25FT0IN 3FT1 1/2IN WB T1
9760	31631800	0.2	0.85	0.01	0.001	0.04	79600	62100	25	40	A	1	12GA 6FT 3IN WB T1 HS@ 3FT 1.5IN

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"

All Steel used meets Title 23CFR 635.410 - Buy America

All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

All material fabricated in accordance with Nebraska & lowa Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4

- Lea By_

Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed bef Andrew Artar this 13 day of Notary Public, State of Ohio

famos P. Dehniko

Figure A-3. 6-ft 3-in. 12-Gauge W-Beam, Test No. MGSCO-4 (Item No. a3)

GÐ	GER	DAU	473 W FAIRC	AFETY CORP ROUND ST	C H	D MATERIAL TEST REPOR MER BILL TO WAY SAFETY CORP	GRAD	A709-36		SHAPE / SIZE Wide Flange Beam	CE MILLIONEDILLES	Page 1/1 DOCUMENT 0000262252
JS-ML-CART		12.41	MARION,OH USA	43302-1701	U	FONBURY,CT 06033-0358	42'00"		PCS 84	WEIGHT 29,988 LB		62363/02
	LE, GA 30121	NE	SALES ORD 8027537/0000			STOMER MATERIAL Nº	ASTM	IFICATION / D. A6-17 A709-17	ATE or RI	EVISION	1819010 IB-BOW	- 00D
CUSTOMER P 1819	URCHASE ORDER	NUMBER		BILL OF LADI 1323-000013984		DATE 08/16/2019		A992-11 (2015) 40.21-13 345WM		4	IB-POR	0400
CHEMICAL CO C 0,14	MPOSITION Mn % 0.88	P % 0.015	ş, 0.022	Si 0.19	Си 0.31	Ni Çr % 0.10 0.12	Мо % 0.021	Sn % 0.010	¥ 0.00	Ŋь %		
MECHANICAL YS F 60 60	PROPERTIES 0.2% SI 400 700	U1 PS 778 782		YS MPa 416 419		UTS MPa 536 539	۲/۲ % 0.78 0.78	10		Elong. 25.30 25.90		
OMMEN TS / N	otes					50. 7		and sets - to diabela				
OMMENTS / N	OTES											
OMMENTS / N	OTES					507						
COMMENTS / N	OTES											
OMMENTS / N						÷				6		
OMMENTS / N	The above f	figures are certi quirements. Wo	fied chemical a	nd physical test reco t been performed or	rås as cont	in the permanent records of co bis material, including the billo	npany. We certify is, was melted and	that these data manufactured i	sre correct	and in compliance , CMTR compliance	with with EN	
COMMENTS / N	The above f specified re 10204 3.1.	Ngures are certi quirements. We	eld repair has no	nd physical test reco t been performed or SKAR YALAMANCHILL LITY DIRECTOR	rds as cont 1 this mater	in the permanent records of co	mpany. We certify is, was melled and	that these data a manufactured i	n the USA	and in compliance , CMTR complies , AN WANG QUALITY ASSURANCE	with EN	

Figure A-4. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)

GÐ	D GERDAU			SHIP TO SAFETY CORP GROUND ST		CUSTOMER BILL TO HIGHWAY SAFETY CORP			DE A709-36	Wid	SHAPE / SIZE Wide Flange Beant / 6 % N 13.0		Page 1/1 DOCUMENT 1 0000262253
S-ML-CART	ERSVILLE			1 43302-1701	GLA USA	ASTONBURY,CT	05033-0358	LENG 42'00"		PCS 126	WEIGHT 44,982 LB		T/BATCH 2364/02
and a state of a sector of	SSDALE ROAI LE, GA 30121) NE	SALES ORI 8027537/000		c	CUSTOMER MAT	ERIAL Nº	SPECIFICATION / D ASTM A6-17 ASTM A709-17		DATE or REVI	SION	1819	008 -BOLDD8C
CUSTOMER P 1819	JRCHASE ORDI	IR NUMBER		BILL OF LA 1323-000013		DATE 08/16/20	19	ASTM	A992-11 (2015) 40.21-13 345WM	a		IB	-Boldost
CHEMICAL CON	APOSITION Mn 50 0.85	р 0.016	§ 0.027	Si 0.19	Cu % 0.33	Ni 0.10	Cg 0.14	Mo %	ន្ត្រ %0	× 0.002	전년 영 0.009		
MECHANICAL I YS (P 60 59	ROPERTIES),2% SI 100 700	UT PS 769 767	00	4	YS 1Pa 116 112	UT: MP 530 525)	¥/T: % 0.75 0.78	90		Elong. 25.60 27.70		
				a <u></u> a dag ⁻ -artic Internet									

The above figures are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with specified requirements. Weld repair has not been performed on this material. This material, including the billets, was melled and manufactured in the USA. CMTR compliance with EN 10204 3.1.

 Maching
 BHASKAR VALAMANCHILI
 YAN WANG

 QUALITY DIRECTOR
 QUALITY ASSURANCE MGR.

 Phone: (409) 267-1071 Email: Bhaskar, Yatamanchili@gerdau.com
 Phone: (770) 387 5718
 Email: yan.wang@gerdau.com

Figure A-5. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)

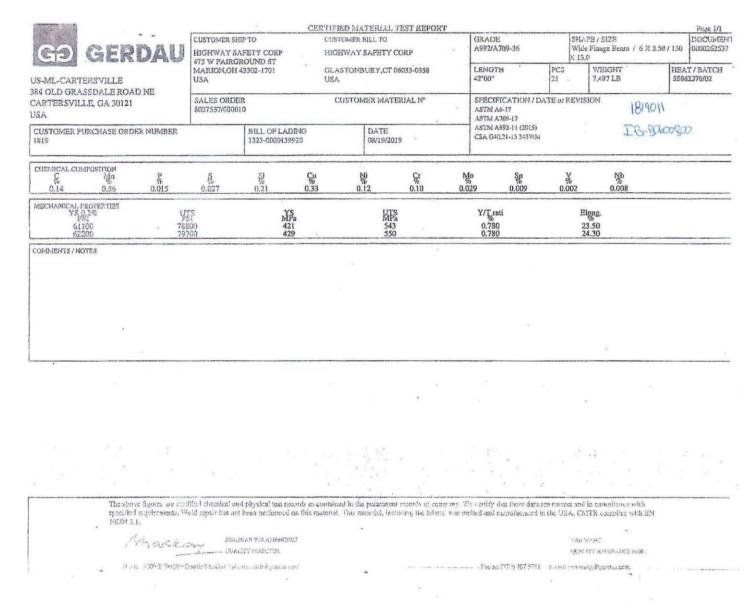


Figure A-6. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)

				CERTIFIED N	MATERIAL	TEST REPOR	r					Page 1/1
$(C \mid \mathfrak{D})$	GERDAU	CUSTOMER SHI HIGHWAY SA 473 W FAIRGE	FETY CORP		er bill to AY SAFETY	CORP		GRADE A992/A709-36		APE / SIZE le Flange Beam / 6 X 1.0	(8.5#7 150	DOCUMENT ID 0000230850
US-ML-CART	ERSVILLE	MARION,OH 4 USA		GLASTO USA	INBURY,CT	06033-0358		LENGTH 42'00"	PCS 105	WEIGHT 37,485 LB		.т/ватсн 59251/02
	SSDALE ROAD NE LE, GA 30121	SALES ORDER 7534878/00001		CUST	OMER MAT	ERIAL N*		SPECIFICATION / DA ASTM A6-17 ASTM A709-17	TE or REVI	sion	801010) 008a
CUSTOMER P 1801	URCHASE ORDER NUMBER	J	BILL OF LADIN 1323-0000130832		DA'I'E 03/25/20	19		ASTM A992-LI (2015) CSA G40.21-13,345WM		I	B-BOK	0080
CHEMICAL CO C 0.12	MPOSITION. Mn P 0.36 0.011	5 0.018	si 0.19	ີ Çູນ 0.32	Ni % 0.10	Çı % 0.05	M % 0.0	o Sn 22 0.009	¥ 0.000	N5 % 0.008		
MECHANICAL YS 59 59	PROPERTIES 0.2% UT 51 P3 800 775 600 777	'S 10 00	YS MPa 412 411		UT MP 534 533	S a 4		Y/E rati 0.770 0.770	1	Ilong. 23.40 24.70		•
		:		-1							~~~~	
	The above figures are cert	fied chemical and	physical test record	tis as contained in	the permane	nt records of com	pany. W	c certify that these data as	e correct and	I in compliance with		
	specified requirements. Th		fing the billets, was KAR YALAMANCHILI	metted and manu:	tactured in th	e USA. CMTR c	omplies	with EN 10204 3.1,		WANG		
	Macika	4.4	TY DRECTOR							WANG		
	Phone: (409) 267-1071 E	mail: Bhaşkar, Yulan	nanchili@gendau.com					Phone: (770) 387 5718	Email: yan.w	ang@gerdou.com		

Figure A-7. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)

NUCOR STEEL - P.O. Box 2259 Mt. Pleasant, Phone: (843)	5.C. 29464	H#	1702		<u>CERTIFI</u>	<u>ED MILL T</u> Mercu		H. ri	l beams p 11ed to a	broduced fully k	by Nucor-1 illed and	UFACIURED Berkeley & fine graj	(17 16:15:20 IN INE USA The cast and In practice, Is material,
<u>Sold Io</u> ı	BIGHWAY SAFETY Po Box 358 GlastonBury, (d "A"	<u>Shi</u>	473	HWAY SAF: West fa: Ion, dh	ETY CORP IRGROUND S: 43301	IREET			#.(352 ₽0: 1722(! 12559	07
AASHID A ASME SA- ASIM A99	IS: Tested in a 270-345M270-50 36 13 22-11(15:/A36-1 21-50W/G40.21	1_10 14/A529_1	4-50/R				6M-16a ai	ad A370. Qi	nality Mar	ual Rev		3-16), -B060080	0
Description Part #	Beat∦ Grade(s) Test/Heat JW	Yield/ Tensile Ratio	Yield (PSI) (MPa)	Tensile (PSI) (MPa)	Elong	Cr Cr XXXXXX	Mn Mo Ti	p Sn xxxxxx	S B XXXXXX	S1 V N	Cu ND XXXXXX	NI ****** CI	CE1 CE2 Pcm
W6X8,5 042/00.80 W150X12,6 012,8016m	1702434 A992-11(15 ANS	, 82 , 83	60300 416 59900 413	73200 505 72300	27.74 27.83 84 P	,07 ,05 c(s) 29,	.86 .01 .001 988 155	,007 ,0086	.015 .0002	.19 .003 .0042	,14 ,016	,05 3,66 Inv#	,24 ,2701 ,1288
<mark>W6X8,5</mark> 042'00,00' W150X12,6 012.8016m	* <mark>1702406</mark> A992-11(15 ANS	, 83 , 83	<mark>59000</mark> 407 58900 406	<mark>71200</mark> 491 71100 490	<mark>28,19</mark> 28,26 42 y	07 04 c(s) 14,	.85 .01 .001 994 155	.006 .0056	.022 .0002	.20 .003 .0056	,11 ,015	,03 3,07 InV#	,23 ,2652 ,126D

2 Heat(5) for this MTR,

Elongation based on 8' (20.32cm) gauge length. 'No Weld Repair' was peformed. CI = 26.01cu+3.88Ni+1.20Cr+1.49Si+17.28P-(7.29Cu*Ni)-(9.10Ni*P)-33.39(Cu*Cu) Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B

CE1 = C+(Mn/6)+((Cr+Mo+V)/5)+((Ni+Cu)/15) CE2 = C+((Mn+Si)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/15)

I hereby certify that the contents of this report are accurate and correct, All test results and operations performed by the material manufacturer are in compliance with material specifications, and when designated by the Purchaser, meet applicable specifications.

Bruce A. Work Metallurgist polle

Figure A-8. W6x8.5 Steel Post, Test No. MGSCO-4 (Item No. a4)

			CENTRAL NEERASKA WOOD PRESERV	VERS, INC.			
			Pone 4	 Sutton, NE 689 02-773-4319 02-773-4513 	979		2
						WNP Invoice Shipped To Customer PO	Swest-MilfRD
		C	entral Nebraska Certificati			s, Inc.	
	Date:		4/23/14			1820 -	
Specific		Highw	ray Construction Use	<u></u>			
	vative: _		CA - C 0.60 pcf				
Charge #	Date Treated	Grade	Material Size, Length & Dressing	# Pieces	White Moisture Readings	Penetration # of Borings & % Conforming	Actual Retentions % Conforming
18379	4/14/14	17	6×12-14" Blogs	756	19	60 95%	
18379	4/16/14	ski	6108-22" Mars	84	19	62 95%	.651 pet
							-
Stateme		ove refe	d and reason for reje		ected in acc	ordance with th	e above
-	mith	ral Man	ager	<u> </u>	3/14 Pate	-	
	dres, Géne	lock	outs 6x12x1	4" R#14	-0554		

Figure A-9. Timber Blockout, Test No. MGSCO-4 (Item No. a5)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>100588715</u> Customer PO# <u>3528</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
4075Ъ	6x8-14" Block	126	24683	.665
6120Ъ	6x12-14" Block	84	(23888)	.678
GS6806.5 PST	5.5x7.5-6.5' Rub Post	84	24604	.652
GS6806.5 PST	5.5x7.5-6.5' Rub Post	42	24603	.643
GS6814 BLK	5.5x7.5-14' Block	126	24194	.633

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards. VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Nick Sowl, General Counsel

<u>1/11/2018</u> Date

Figure A-10. Timber Blockout, Test No. MGSCO-4 (Item No. a5)

	CENTRAL NEBRASKA WOOD PRESERVER			
	P. O. Box 630 • St Pone 402- FAX 402-7	773-4319		
	2 6x12x14 Timber Blockou			
COC Ju	ne2016 SMT Black Paint T	ags		
			Date: _	10/29/15
	CERTIFICATE	OF COMPLI	ANCE	
Shipped TO:	Minwest Machindy.	BOL#	100529	37
Customer PC	D# <u>3161</u>	Preservative: <u>CC</u>	CA - C 0.60 pcf A	WPA UC4B_
Part #	Physical Description	# of Pieces	Charge #	Tested Retention
	6×12-14" and Block	84	21327	.658 pet
			2. k	
		1		
	88 <u>-</u> 1 - 21.8 A			· · •
	89 . T. 8.94			
	88 g. 7 . a.s.s.			
	** , * , , **			
produced, treated a	referenced material has been and tested in accordance with AWPA forms to AASHTO M133 & M168.	products listed above has standards, Section 236	Wood Preservers certifies t we been treated in accorda of the VDOT Road & Brid nimum penetration and ret	nce with AWPA ge Specifications and

Figure A-11. Timber Blockout, Test No. MGSCO-4 (Item No. a5)

McMASTER-CARR.

600 N County Line Rd Elmhurst IL 60126-2081 630-600-3600 chi.sales@mcmaster.com University of Nebraska Midwest Roadside Safety Facility M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802 Attention: Shaun M Tighe Midwest Roadside Safety Facility

Certificate of Compliance

Purchase Order E000548963 Order Placed By Shaun M Tighe McMaster-Carr Number 7204107-01 Page 1 of 1 08/02/2018

Lin	e	Product	Ordered Sh	ipped
1	97812A109	Raised-Head Removable Nails, 16D Penny Size, 3" Long, Packs of 5	5 Packs	5

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Weich Sarah Weinberg Compliance Manager

Figure A-12. 16D Double Head Nail, Test No. MGSCO-4 (Item No. a6)

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOI.# <u>N15759</u> Customer PO# <u>3769</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# Pieces	Charge #	Retention
GS6846 PST	5.5x7.5-46" BCT	42	269	.646
			24 24	
				1
1970 61 18-0		1 10 14		
			1	
	-14-			

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nick Sowl, General Counsel

VA: Jowe Wood Preservers certifies that the treated wood products listed above have been iteeled in accordance with AWPA standards, Section 236 of the VDOT Read & Builge Specifications and arees the applicable minimum penetration and retention requirements.

> <u>5/22/19</u> Date

BENERAL NOTARY - State of Nucraska-LINDA L. SCHROETLIN My Comm. Exp. May 20, 2020

Figure A-13. BCT Timber Post, Test No. MGSCO-4 (Item No. b1)

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MAG P. O. BOX 703 MILFORD,NE,6		UPPLY CO	L			Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	10/26/2017 3501 MIDWEST MAI STOCK 7044AA	CHINERY & SL	JPPLY CO.			
HT # code	LOT#	C.	Mn.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
616137		0.21	0.93	0.011	0.003	0.02	73148	58210	32	15		2	3/16IN X 6IN X 8IN X 5FT0IN TUBE SLEEVE
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	10		2	3/16IN X 6IN X 8IN X 6FT0IN TUBE SLEEVE
214482		0.04	0.83	0.014	0.005	0.02	75275	68023	28.6	25			10GA MGS TB TRAN APPROACH END-RIGHT
214143		0.04	0.81	0.015	0.006	0.02	75565	69618	29.7	18			10GA MGS TB TRAN DEPARTURE END-LEFT

James P. Dehnke Notary Public. State of Ohio All Galvanizing has occurred in the United States Commission Expires 10-19-2019 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4. STATE OF OHIO: COUNTY OF STAF A Notary Public, by Sworn to and subscribed before me, - Tu Andrew-Artar this 31 day of October 2017 the By: Notary Public, State of Ohlo

Figure A-14. Foundation Tube, Test No. MGSCO-4 (Item No. b2)

Certifiea Analysis

Trinity Highway Products, LLC			
550 East Robb Ave.	Order Number: 1275017	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3400		As of: 3/22/17
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 99202	Ship Date:	
P. O. BOX 703	Document #: 1		
	Shipped To: NE		
MILFORD, NE 68405	Use State: NE		
Project: RESALE			

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACW
400	3380G	5/8"X1.5" HEX BOLT A307	HW			0052429-113200													
600	3400G	5/8"X2" GR BOLT	HW			29221													
500	3480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550-В													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190	0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36			A82292	54,000	73,300	31.0	0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852.A.		HW			15056184													
20	12173G	T12/6'3/4@1'6.75"/S			2	L35216													
			M-180	A	2	209331	62,090	81,500	28.1	0.190	0.72	0 0.01	3 0.002	0.020	0.110	0.00	0 0.070	0.002	, 4
			M-180	A	2	209332	61,400	81,290	25.3	0.190	0.73	0 0.01	4 0.003	0.020	0.120	0.00	0 0.060	0.001	. 4
			M-180	A	2	209333	61,200	80,050	25.8	0.200	0.74	0 0.01	6 0.005	0.010	0.120	0.00	0 0.070	0.002	4
	1																2 0	of 4	

Figure A-15. Ground Strut Assembly, Test No. MGSCO-4 (Item No. b3)

171 CI	eage Dr	abama), Inc. abama, USA							TUI MAN II	be NDUSTRI	Date	.B/L: e: tomer:	80791 11.10 179	452 2017	
				N	IATE	RIAL	TEST	REF	PORT						
Sold PO B MAN USA		e Supply 88 AN KS 6	Comp 6505	an								oped to el & Pip New (V CENT	e Supp Century URY K	ly Cor Parkw S 660	npan /ay 031
Material: 3.0	x2.0x18	8x40'0"0(5	(4).		M	laterial N	No: 0300	2018840	000-В			Made in Melted	i: USA in: USA		
Sales order:	122697	76			P	urchase	Order: 4	5002966	56	Cust Ma	terial #:	663002			
Heat No	с	Mn	Р	S	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	В	N
B704212	0.200			0.004			0.000	0.000		0.000	0.000	0.000			
Bundle No 40867002	PCs 20	Yield 064649 P		nsile 7652 Psi	Eln.			~		ortification		·····	C	E: 0.28	5
Material Note Sales Or.Note	:	004043 F	si Uo	7032 731	24 70			4	511W AQ	00-13 Gh	ADE BQ	C			
Material: 2.3	1223		1).				lo: R023						in: USA		
Sales order:	12269. C	/6 Min	Р	S	Si	urchase Al	Order: 4	5002968 Cb	Мо	Cust Ma	terial #: Cr	642004 V	042 Ti		
Heat No B712810	0.210	******	0.012	0.002	0.020	0.024	Cu 0.100	0.002		Ni 0.030	0.060	0.004		B	N 0.008
Bundle No	PCs	Yield	Тө	nsile	Eln.	2in	Rb			rtification				E: 0.3	
MC00006947		063688 P		3220 Psi	25 %				_ STM A5	00-13 GR	ADE B&	С			
Material Note Sales Or.Note															
Material: 2.3			1).				lo: R023						in: USA	1	
Sales order:	122697 C		Р	s	Pi Sì	AI	Order: 4			Cust Ma		642004 V	042 Ti	B	
Heat No 17037261	0.210	Mn 0.810	0.005	0.004	0.020	0.000	Cu 0.000	Cb	Mo 0.000	Ni 0.000	Cr 0.000	0.000			N 0.000
Bundle No	PCs	Yield		nsile	Eln,			0.000		ortification	0.000	0.000		E: 0.3	
41532001	34	066144 P		2159 Psi	27 %			A		00-13 GR		1000			
Material Note Sales Or.Note															
			fre	mai	havel										

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. Streft Tube: Page : 3 Of 4 Page : 3 Of 4

Figure A-16. BCT Post Sleeve, Test No. MGSCO-4 (Item No. b4)`

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MAC P. O. BOX 703 MILFORD,NE,6		UPPLY CO				Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	11/17/2017 3515 MIDWEST MAG	CHINERY & SU	IPPLY CO.		ć	
HT # code	LOT#	c.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	А	2	12GA TB TRANS
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2	5/8IN X 8IN X 8IN BRG. PL.
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2	350 STRUT & YOKE
196828BM		0.04	0.84	0.014	0.003		76000	74000	25			2	350 STRUT & YOKE
E22985		0.17	0.51	0.013	0.008	0.008	72510	64310	29.5	4		2	2IN X 5 1/2IN PIPE SLEEVE
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	8		2	3/16IN X 6IN X 8IN X 6FTOIN TUBE SLEEVE

All Galvanizing has occurred in the United States lotary Public All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4. STATE OF OHIO: COUNTY OF STARK

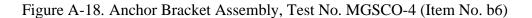
Sworn to and subscribed before me, a Notary Public, by Andrew Artar this 21 day of November, 2017 Notary Public, State of Ohio

State of Ohio Commission Expires 10-19-2019

November 11, 2021 MwRSF Report No. TRP-03-433-21

Figure A-17. Anchor Bearing Plate, Test No. MGSCO-4 (Item No. b5)

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710


Test Report

	MIDWEST MAC P. O. BOX 703 MILFORD,NE,6		UPPLY CO.	U .			Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	2/1/2019 3691 MIDWEST MACHI INVENTORY 2031AA	NERY & SUPPLY	Y CO.			
HT # code	LOT#	C.	Mn.	Р.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
C88984		0.2	0.47	0.007	0,003	0.03	79300	59900	25.6	25	в	2	10GA BRIDGE SHOE
C88986		0.19	D.47	0.009	0.02	0.03	76600	58500	24.6	45	в	2	10GA TB BRIDGE SHOE
DL18105747		0.15	0.68	0.008	0.026	0.2	72000	55000	26	14		2	5/8IN X BIN X BIN BRG. PL.
A87581		0.18	0.48	0.01	0.002	0.02	72900	53100	28.7	20		2	CABLE AB
1813614		0.07	0,83	0.005	0.027	0.21	69800	57400	26	14		2	SKT/FLEAT UNIVERSAL POST #2 UPPER
1813611		0.07	0.8	0.006	0.025	0.21	69900	57900	25			2	SKT/FLEAT UNIVERSAL POST #2 UPPER
13894		0.13	0.78	0.024	0.033	0.28	71000	49000	25,8			2	SKT/FLEAT UNIVERSAL POST #2 UPPER
1813618		0.07	0.8	0.009	0.03	0.16	69500	57800	-26	14		2	BOTTOM POST ASSEMBLY #2
A89297		0.08	0.35	0.007	0.003	0.03	59600	42060	38			2	BOTTOM POST ASSEMBLY #2
229860		0.04	0.83	0.01	0.004	0.02	75710	69618	28.5	25	в		10GA MGS TO TRAN APPROACH END-RIGHT
230751		0.2	0.73	0.013	0.002	0.02	84080	66730	25.7	15	в		10GA MGS TB TRAN DEPARTURE END-LEFT

All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

my & Genever 0

By:_____ Jeffery L Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

		- 19. 19.2 (Communication)					•••••••••••••••••••••••••••••••••••••••								*	<u>د</u>		
		roducts, LLC						9 6		27/	121							
50 East R							er Number: 1269485	6 8	Prod Ln Grp: 3-	Guard	rail (i	Dom)					10	
1.000		n(419) 227-1296				26363	stomer PO: 3346		(1) D					1	Asof:	1/7/10	1	
Dustomer:	0.00	EST MACH & SUPPLY (L Number: 97457 ocument #: 1		Ship Date:									
	P.O. E	IOX 703					hipped Te: NE											
	MILEO	RD, NE 68405					Use State: NE											
Project:	RESAL						or one ru											
											_			-				
Qty	Part#	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS			P	8			0			ACW
	SUL	A Nichot Bex	A-36			2556101488	36,172	75,460	25.8 0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.145	0.028	4
	701A		A-36			535133	43,300	68,500	33.0 0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	7290	TS 8X6X3/16X8-0" SLEEVE	A-500			349248	64,818	78,412	32.0 0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
20	738A	PTUBE SL. 188X6X8 14 /PL	A-36		2	4182184	45,000	67,900	31.0 0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A		A-500			A49248	64,818	78,412	32.0 0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	7490	TS 8X6X3/16X6-0" SLEEVE	A-500			849248	64,818	78,413	32.0 0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	7820	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,600	25.0 0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A	SWORKE BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0 0.160	0.740	0.012	0.041	0,190	0.370	0.000	0.220	0.002	4
	783A		A-36			DL15103543	58,000	74,000	25.0 0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 34X66/DBL	HW			619548												
7,000	33400	5/8* OR HEX NUT	RW			0055552-116146												
4,000	33600	5/8*X1.25* OR BOLT	HW			0053777-115516												
450	35000	5/8*X10* OR BOLT A307	10W			28971-B												
1,225	35400	5/8*X14* GR BOLT A307	HW			29053-B												

Figure A-19. Anchor Bracket Assembly, Test No. MGSCO-4 (Item No. b6)

82

ASSEMBLY 14700 Brookpark Rd PH 216.676.5600 Cleveland, OH 44135-5166 FX 216.676.6761 customerservice@assemblyspecialty.com ISO 9001:2008 www.assemblyspecialty.com Certificate of Conformance Date: October 10, 2017 To: Gregory Industries, Inc. Gregory Galv. & Metal Processing 4100 13th St. SW Canton, OH 44710 We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications and drawings. PURCHASE ORDER #: 38684 DATE SHIPPED: 10/09/17 ASPI SALES ORDER #: 119183 MANUFACTURER: ASSEMBLY SPECIALTY PRODUCTS, INC. DESCRIPTION ASPI P/N ASPI LOT# CUST P/N QTY 80626 6' 6" BCT Cable Assembly C-2028 250 3012G 6' 6" BCT Cable Assembly C-2028 80627 3012G 250 80828 6' 6" BCT Cable Assembly 3012G C-2028 250 6' 6" BCT Cable Assembly C-2028 80829 3012G 250 6' 6" BCT Cable Assembly 80830 3012G C-2028 250 6' 6" BCT Cable Assembly C-2028 80956 3012G 250 6' 6" BCT Cable Assembly 80957 3012G C-2028 250 80958 6' 6" BCT Cable Assembly C-2028 250 3012G 6' 6" BCT Cable Assembly 3012G C-2028 81129 250 6' 6" BCT Cable Assembly 81130 C-2028 3012G 250 continued on page 2 REMARKS: NOMINAL BREAKING STRENGTH: 46,000 lbs WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M30-02 and ASTM A741 TYPE 2, CLASS A FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A-153 CLASS C. STEEL USED TO MANUFACTURE THESE ITEMS WAS MELTED AND MANUFACTURED IN THE U.S.A ALL MANUFACTURING PROCESSES SUPPLIED OR PERFORMED BY ASSEMBLY SPECIALTY PRODUCTS, INC. TOOK PLACE IN THE U.S.A. KLD Ac Certification and Compliance Manager

Figure A-20. BCT Anchor Cable, Page 1 of 2, Test No. MGSCO-4 (Item No. c1)

PH 216.676 FX 216.676 www.assen			ASSEMBL SPECIALTY PRODUCTS	
Lote continu	und):			
Lots contine	ued):			
Lots contine	ued): CUST P/N	ASPI P/N	ASPI LOT#	DESCRIPTION
QTY		ASPI P/N C-2028	ASPI LOT# 81131	DESCRIPTION 6' 6* BCT Cable Assembly
QTY 250	CUST P/N			
QTY 250 250	CUST P/N 3012G	C-2028	81131	6' 6" BCT Cable Assembly
	CUST P/N 3012G 3012G	C-2028 C-2028	81131 81132	6' 6" BCT Cable Assembly 6' 6" BCT Cable Assembly

Figure A-21. BCT Anchor Cable, Page 2 of 2, Test No. MGSCO-4 (Item No. c1)

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 187087

SHIPPER #: 061972 DATE SHIPPED: 11/06/2017

LOT#: 30361-P

SPECIFICAT	ION:	ASTM A307, GRADE	E A MILD CARBON ST	reel Bolts
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	66,566
				66,832
HARDNESS:		100 max		82.60
				82.70

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 30361-P

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	C	Mn	Р	S	Si
NUCOR	1010	DL17100590	.10	.41	.005	.005	.05

QUANTITY AND DESCRIPTION:

4,825 PCS 5/8" X 14" GUARD RAIL BOLT P/N 3540G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

mer 20/7

ncionas VED SIGNATORY

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

Figure A-22. 14-in. Long Guardrail Bolt, Test No. MGSCO-4 (Item No. d1)

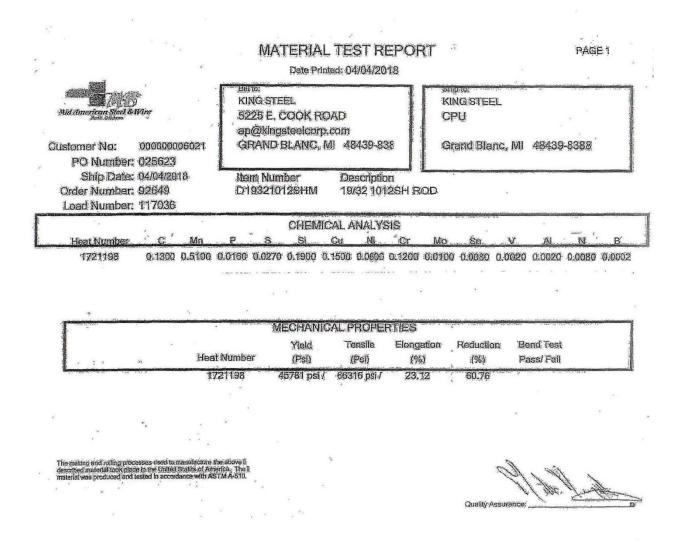


Figure A-23. 10-in. Long Guardrail Bolt, Test No. MGSCO-4 (Item No. d2)

Rockford Bolt & 126 Mill St. Rockford,IL-611 Kind Attn :Linda	Steel		E	Custo	Cust P.O.	-	1. 7			PS	8232-01
126 Mill St. Rockford,IL-611	Steel		· .E	Custo	D 1 1						
126 Mill St. Rockford,IL-611	Steel	2			mer Part#			-			100905
126 Mill St. Rockford,IL-611	Steel	1		Charter S	ales Order						0085746
126 Mill St. Rockford,IL-611	Steel		-		Heat # Ship Lot #						4532291
Rockford,IL-611					Grade			1010 A A	(FG RHC	-	NDCOIL
		2	-		Process						HRSA
And Attn : Linds			-	1	Finish Size		_			20	19/32
	McComas		L		Ship date				-	23	MAY-18
stify that the material inements. The record											
7388 C	6/16	P	s	SI	NI	CR	MO	CU	SN	. v	
80.	,,38	.005	.011	.090	.05	.07	.01	.08	.005	.001	
AL .031	.0080	.0001	.001	NB .001	1						
14			100								
		8									
											- 2
Chai	ter Steel cert	illies this p	roduct is ind	listinguisha	Date 05/12/1 able from bac	kground			ving proce	ss radiati	on
- Chai dote Moet	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi	kground in our pro	coss & pro	oducts.			
- Chai dote Moet	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	to measure a to measure apecificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	illies this p to measure specificatio	reduct is ind re for the pre- ns with any - 129/A29M	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
Chai dete Meet Cust	ter Steel cert ctors in place ts customer s	illies this p to measure specificatio	reduct is ind re for the pre ns with any	listinguish sence of n applicable	able from bac adiation withi Charter Steel	kground in our pro	coss & pro	oducts.			
2	7385 C .05 AL	7383 C MN .00 ,.38 AL N .031 .0080	7388 C MN P .08 ,36 ,005 AL N B	Test res C MN P S .08 ,.35 .005 .011 AL N B TI .031 .0080 .0001 .001	Test results of Heat C 55N P S SI .08 ,38 .005 .011 .090 AL N B 71 NB .031 .0080 .0001 .001 .001	Test results of Heat Lot # 105530 C MN P S SI NI .08 ,38 .005 .011 .090 .05 AL N B TI NB .031 .0080 .0001 .001 .001	7388	Test results of Heat Lot # 10553090 C BIN P S SI NI CR MO .08 ,.38 .005 .011 .090 .05 .07 .01 AL N B 71 NB .031 .0080 .0001 .001 .001	Test results of Heat Lot # 10553020 C MN P S SI NI CR MD CU .08 ,.38 .005 .011 .090 .05 .07 .01 .09 AL N B TI NB .031 .0080 .0001 .001	Test results of Heat Lot # 10553020 C BIN P S SI NI CR MO CU SN .08 ,.38 .005 .011 .050 .05 .07 .01 .09 .005 AL N B TI NB .031 .0080 .0001 .001 .001	7383 C MN P S SI NI CR MO CU SN V .08 ,38 .005 .011 .090 .05 .07 .01 .09 .005 .001 AL N B TI NB .031 .0080 .0001 .001 .001

Figure A-24. 1¹/₄-in. Long Guardrail Bolt, Test No. MGSCO-4 (Item No. d3)

Certificate of Compliance Birmingham Fastener Manufacturing

Birmingham Fastener Manufacturing PO Box 10323 Birmingham, AL 35202 (205) 595-3512

Customer	Midwest Ma	achinery & Supply	C	ate Shippe	ed _	11/28/2018		
Customer Ord	ler Number _	3664	E	FM Order	Number _	1553751		
		ltem	Descript	tion				
Description		5/8"-11 x 10"	Hex Bolt			Qty	298	
Lot #	81342	Specification	ASTM A307	14 Gr A	Finish _	ASTM	F2329	
		Raw Ma	terial An	alysis				
Heat#	JK	18104124						
Chemical Co C 0.18	omposition (w Mn 1.19	t% Heat Analysis) By P S 0.012 0.034	Material Su Si 0.20	ipplier Cu 0.29	Ni 0.13	Cr 0.11	Mo 0.04	
		Mechan	ical Prop	perties				
Sample # 1 2 3 4 5	Hardness 93 HRBW	Tensile Str 22,0	ength (Ibs))49	٢	⊺ensile Str 99,4	ength (psi 10)	
customer ord	er. The samp	the most recent analy les tested conform to t actured in the U.S.A.				stated		
Authorized Signature: _.		ian Hughes ity Assurance		Date: _	11/29/	/2018		

Figure A-25. ⁵/₈-in. Dia., 10-in. Long Hex Head Bolt, Test No. MGSCO-4 (Item No. d4)

CERTIFIED MATERIAL TEST REPORTFORASTM A307, GRADE A - MACHINE BOLTS

FACTORY: ADDRESS:		RGAN LTD.	orth Road, Wu	wan Town H	Jaiyan	REPORT DAT	E:2019/4	4/2	
ADDRESS.	Zhejiang, C		iorui Koad, wu	yuan rown, r	iaryan,	MANUFACTU	RE DA	ТЕ:2019/3/1	4
CUSTOMER: SAMPE SIZE MANU QTY: SIZE: 5/8-112 HEADMARK	: ACC. TO / 2450PCS X1 1/2 HD	ASME B18.1	8 CATEGORY	7 2-2011; AS	TM F1470-12	MFG LOT NUI TABLE 3 SHIPPED QTY PO NUMBER:	:2400PC	CS	38-5
11.57 (1510) 11(1)	5. 5071 II	505111				PART NO:119			
STEEL PROP	ERTIES:								
MATERIAL 1	YPE:Q1950	C				HEAT NUMBE	ER:5-01	570	
CHEMISTRY	SPEC:		C %*100	Mn%*100	P %*1000	S %*1000			
Grade A AST	M A307-12		0.29max	1.20 max	0.04max	0.15max			
TEST:			0.07	0.33	0.015	0.022			
DIMENSION.	AL INSPEC	TIONS	Unit:incl	h		SPECIFICATIO	DN: ASM	AE B18.2.1	- 2012
CHARACTEF	RISTICS		SPECIFI	ED		ACTUAL RE	SULT	ACC.	REJ.
*****	*****	*****	******	******	****	******	*****	*****	******
VISUAL			ASTM F788-2	2013		PASSED		18	0
THREAD			ASME B1.1-2	003, 3A GO,	2A NO GO	PASSED		13	0
WIDTH A/F			0.906-	0.938		0.916-0.9	28	3	0
WIDTH A/C			1.033-	1.083		1.048-1.0	57	3	0
HEAD HEIGH	IT		0.378-	0.444		0.394-0.4	28	3	0
BODY DIA.			0.605-	0.642		0.617-0.6	34	3	0
THREAD LEN	NGTH		1.420-	1.560		1.436-1.54	43	13	0
LENGTH			1.420-	1.560		1.436-1.54	43	13	0
MECHANICA	L PROPER	TIES:			SPECIFICA'	TION: ASTM A3	07 - 14e	1 GR.A	
CHARACTER	USTICS	TEST M	ETHOD	SPEC	IFIED	ACTUAL RE	SULT	ACC.	REJ.
****	*****	******	****	******	****	*****	*****	*****	******
CORE HARD	DRE HARDNESS : ASTM F606/F606M-2016 69-10					75-80 HR	В	3	0
WEDGE TEN	DGE TENSILE: ASTM F606/F606M-2016				0 KSI	65-69 KS	I	3	0
CHARACTER	ISTICS	TEST M	ETHOD	SPECI	IFIED	ACTUAL RE	SULT	ACC.	REJ.
COATINGS C	F ZINC:			SPECIFIAT	ION: ASTM I	F2329/F2329M-2	015		
HOT DIP GAL	VANIZED	ASTM B56	8-98(2014)	Min 0.0	0017"	0.0017" -0.0	018"	3	0
We hereby cer	tify that abo	ve products s	supplied are in	compliance w	vith all the req	uirements of the	order.		
We here by ce	rtify that this	MTR is in o	compliance to I	DIN EN 10204	4 3.1 content.				
ALL TESTS	IN ACCO	RDANCE	WITH THE	METHODS	PRESCRIBE	D IN THE APP	LICAB	LE	

ASTM SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. Maker's ISO 9001:2015 SGS Certificate # HK04/0105

Figure A-26. ⁵/₈-in. Dia., 1¹/₂-in. Long Hex Head Bolt, Test No. MGSCO-4 (Item No. d5)

+----+ | CERTIFICATE OF CONFORMANCE | +-----+

For: MIDWEST ROADSIDE SAFETY FACIL PB Invoice#: 119891 Cust PO#: 70ACCT Date: 4/17/2019 Shipped: 4/25/2019

Phone: 800-547-6758 | Fax: 503-227-4634 3441 NW Guam Street, Portland, OR 97210 Web: www.portlandbolt.com | Email: sales@portlandbolt.com

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

	ription:	0550 M 5053 100		ASTM A	A307A H	HEX	BOLT				
200 - Contra 1	at#: 4895			Base St	teel: A	A36		Diam:	7/8		
Sourc	ce: CASC	ADE SI	TEEL RLG	MILL			Proof Lo	ad:	0		
с:	.180	Mn:	.680	P :	.013		Hardness	••• 0			
s :	.015	Si:	.240	Ni:	.080		Tensile:	72,500	PSI	RA:	42.00%
Cr:	.130	Mo:	.028	Cu:	.240		Yield:	48,800	PSI	Elon:	24.00%
Pb:	.000	v :	.000	Cb:	.000		Sample I	ength:	8 INCI	н	
N:	.000			CE:	.3157		Charpy:			CVN Temj	p:

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

By: Certification Department Quality Assurance Dane McKinnon

Figure A-27. ⁷/₈-in. Dia. Hex Head Bolt, Test No. MGSCO-4 (Item No. d6)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR

ROAD, E. D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210167591 COMMODITY : FINISHED HEX NUT GR-A SIZE : 7/8-9 NC O/T 0.56MM LOT NO : 1N1880113 SHIP QUANTITY : 2,250 PCS LOT QUANTITY : 31,764 PCS HEADMARKS :

MANUFACTURE DATE : 2018/10/12

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE : 2019/04/23 PACKING NO : GEM181128011 INVOICE NO : GEM/FNL-181212ED-1 PART NO : 36717 SAMPLING PLAN : ASME B18.18-2017(Category.2)/ASTM F1470-2018 HEAT NO : 18108473-3 MATERIAL : X1008A FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTMF2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0300	0.0600	0.2800	0.0160	0.0060	0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

			SAMPLED	BY: WANGYAN		
INSPECTIONS ITEM	SAMPLE	SPEC	CIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	4PCS		1.4470-1.5160 inch	1.4650-1.4690 inch	4	0
FIM	15 PCS	ASME B18.2.2-2015	Max. 0.0250 inch	0.0040-0.0060 inch	15	0
THICKNESS	4PCS		0.7240-0.7760 inch	0.7430-0.7460 inch	4	0
WIDTH ACROSS FLATS	4PCS		1.2690-1.3120 inch	1.2830-1.2840 inch	4	0
SURFACE DISCONTINUITIES	29PCS		ASTM F812-2012	PASSED	29	0
THREAD	15PCS	G	AGING SYSTEM 21	PASSED	15	0
MINOR DIAMETER	15PCS		0.7890-0.7970 inch	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

					DBY: GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REP	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2014		116-302 HRB	81-82 HRB	13	0
PROOF LOAD	3 PCS	ASTM F606-2014	: :	Min. 90 KSI	OK	3	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998	1	>=53	72.03-95.08	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

Grin

page 1 of 1

Figure A-28. Nut for 7/8-in. Dia. Hex Head Bolt, Test No. MGSCO-4 (Item No. d6)

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: ADDRESS:	IFI & Morg Chang'an N	gan Ltd Iorth Road, Wuyuan Town, H	aiyan,Zhejia	REPORT DATE: 21/5/201 an,Zhejiang, China					
				MFG LOT NUMBER:	1845511				
SAMPLING F	PLAN PER AS	SME B18.18-11		PO NUMBER:	210167255				
SIZE: HEADMARK	USS 5/8 HD S: NO MARK		6000PCS	PART NO:	1133185				
DIMENSION	AL INSPECT	IONS	SPECIFIC	CATION: ASTM B18.21	.1-2011				
CHARACTER		SPECIFIED	******	ACTUAL RESULT	ACC.	REJ.			
APPEARANC		ASTM F844	****	PASSED	100	0			
OUTSIDE DL		1.743-1.780		1.746-1.754	10	0			
INSIDE DIA		0.681-0.718		0.707-0.715	10	0			
THICKNESS		0.108-0.160		0.108-0.126	10	0			
CHARACTER **********		TEST METHOD SF ************************************	PECIFIED	ACTUAL RESULT	ACC. ******	REJ. ******			
HOT DIP GAI	LVANIZED	ASTM F2329-13 Mi	n 0.0017"	0.0017-0.0020 in	8	0			
ASTM SPE INFORMATI	CIFICATION ION PROVI		HIS DAIA	IS A TRUE REPR MORGY TESTING 验专用章	PLICABLE ESENTATI G LABOR/ MGR.)	T. S. L			

Figure A-29. ⁵/₈-in. Dia. Plain USS Washer, Test No. MGSCO-4 (Item No. e1)

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morg ADDRESS: Chang'an N	an Ltd orth Road, Wuyuan Towi	n, Haiyan,Zhejia	REPORT DATE: ang, China	23/4/2019	
			MFG LOT NUMBER	1844804	
SAMPLING PLAN PER AS			PO NUMBER:	170089822	
SIZE: USS 7/8 HDC HEADMARKS: NO MARK	QNTY(Lot size):	7200PCS	PART NO:	33187	2
DIMENSIONAL INSPECTI	ONS	SPECIFIC	CATION: ASTM B18.2	21.1-2011	
CHARACTERISTICS ************************************	SPECIFIED ***************	****	ACTUAL RESULT		REJ. ******
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	2.243-2.280		2.246-2.254	10	0
INSIDE DIA	0.931-0.968		0.956-0.965	10	0
THICKNESS	0.136-0.192		0.136-0.157	10	0
CHARACTERISTICS	TEST METHOD ************************************	SPECIFIED ************	ACTUAL RESULT	ACC.	REJ. ******
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020 in	8	0
ALL TESTS IN ACCOR ASTM SPECIFICATION INFORMATION PROVII ISO 9001:2015 SGS Certif	. WE CERTIFY THA DED BY THE MATERI	T THIS DAIA	IS A TRUE REPI MORGAN TESTIN 验专用章 LTY CONTROL	PPLICABLE RESENTAT NG LABOR B MGR.)	'ION OF

Figure A-30. 7/8-in. Dia. Plain USS Washer, Test No. MGSCO-4 (Item No. e2)

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529

Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVER	CUSTO	MER PROJE	CT	TAX	PO NUMBER	R DA	TE	TIME	TICKET
01	250	9342	6246	1			H42BR	6/2	5/19 7	7:20 AM	1237834
Customer UNL-MID	WEST RC	ADSIDE	SAFETY	Delivery Addre 4630 NW 36T				Special In AIRPARK YEARHAI	/ NORTH C	DF OLD	GOOD
LOAD QUANTITY	QUANT	CARLES AND	RDERED	PRODUCT CODE	F	PRODUCT	ESCRIPTION	UOM	UNIT PRI	CE	EXTENDED PRICE
8.00	8	.00	8.00	1401300	10	SG4000	7	yd	\$11	8.50	\$948.00
	ded On Job er's Reques	+	SLUMP .00 in	Notes:	4	H		TICKET SALES T TICKET		L	\$948.00 \$0.00 \$948.00
								PREVIO GRAND	US TOTAL TOTAL	alar C	\$948.00
	CAUTION	N FRESH		(ET)			Term produced with the		ard specificat		

KEEP CHILDREN AWAY
Contains Portland cement. Freshly mixed cement, mortar,
concrete or grout may cause skin injury. Avoid prolonged
contact with skin. Always wear appropriate Personal Protective

Equipment (PPE). In case of contact with eyes or skin, flush

thoroughly with water. If irritation persists, seek medical

attention promptly.

This concrete is produced with the ASTM standard specifications for ready mix concrete. Strengths are based on a 3" slump. Drivers are not permitted to add water to the mix to exceed this slump, except under the authorization of the customer and their acceptance of any decrease in compressive strength and any risk of loss as a result thereof. Cylinder tests must be handled according to ACI/ASTM specifications and drawn by a licensed testing lab and/or certified technician. Ready Mixed Concrete Company will not deliver any product beyond any curb lines and the strength of the strength one device decrement on the strength of the strength of the strength of the strength of the strength one and the strength of the strengt

Ready Mixed Concrete Company will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

Figure A-31. Concrete Mix, Curb, Test No. MGSCO-4 (Item No. f1)

LINCOLN OFFICE 825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 20-Aug-19

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: MGSCO-3

Mix Designation:

Required Strength:

Laboratory Test Data															
L aboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Doys Cured in Field	Days Cured in Laboratory	Age of Test, Doy's	Length of Specimen, in	Diameter d Specimen, in.	Cross-Sectional Area,sq.in.	Moximum Lood, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTAI Practics for Copping Specimen
URR-129	A	6/25/2019	8/20/2019	8/20/2019	56	0	56	12	6.01	28.37	146,017	5,150	1919	5	C 1231
URR-130	B	6/25/2019	8/20/2019	8/20/2019	56	0	56	12	6.01	28.37	148,068	5,220		5	C 123

1 cα Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

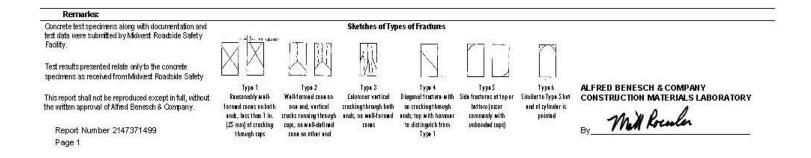


Figure A-32. Concrete Strength Test, Curb, Test No. MGSCO-4 (Item No. f1)

Ge GERDAU	CUSTOMER SI REGAL MET INC 207 SENTRY	ALS INTERNAT	FIONAL	CUSTOMER REGAL MI INC 207 SENTR	ETALS INT	ERNATIONAL		GRAD 60 (420	0)		APE / SIZE ar / #4 (13MM) WEIGHT	HE	DOCUMENT II 0000222439 T/BATCH
S-ML-MIDLOTHIAN 30 WARD ROAD 11DLOTHIAN, TX 76065	MANSFIELD USA	MANSFIELD, TX 76063-3609			609 MANSFIELD,TX 76063-3609 USA CUSTOMER MATERIAL N°				FICATION / DAT	TE or REVIS	47,094 LB 58033918/0		
SA	6551187/000	010						ASTM.	A615/A615M-16				
CUSTOMER PURCHASE ORDER NUMBER 352020		BILL OF LA 1327-000028			DATE 05/24/20	18							
HEMICAL COMPOSITION C. Mn P. 0.44 0.91 0.012	\$ 0.044	\$i 0.24	Çu 0.26		Ni).11	Çr 0.12	M 0.0	lo 025	Şn 0.008	% 0.002	Nb 0.009	Al 0.003	
CHEMICAL COMPOSITION CEqyA706 9.61													
MECHANICAL PROPERTIES PSI 70303	YS MPa 485	¥ 10	SI 8655		UT MP 749	S a)		G/I Inc 8.0(Ь БО	2	G/L nm 00.0		
%	ndTest OK												
COMMENTS / NOTES													
The above figures are or specified requirements.	ertified chemical a This material, inc	and physical test luding the billets	records as a , was melte	contained in t d and manuf	the permane actured in th	nt records of comp he USA, CMTR co	pany. V omplie	We certif s with El	ỳ thai these data a N 10204 3.1.	are correct and	in compliance with		
Mack	Carl	ASKAR YALAMANC ALITY DIRECTOR	HILI						Wale A.		E LUMPKINS ITY ASSURANCE MGR.		
	Fmail Rhocker Va	amanchili@gerdau.	com					Phor	ne: 972-779-3118	Email: Wade L	unpkins@gerdau.com		

Figure A-33. #4 Rebar, Test No. MGSCO-4 (Item No. f2)

MATERIAL TEST REPORT

Date Printed: 02-OCT-18

Date Shipped: 02-OCT-18	Product: DEF #4	(1/2") Specification: ASTN	1 A706/A615 GR 60
	FWIP: 52815348	Customer: CONCRETE INDUSTRIES INC	Cust. PO: 132759
		P O BOX 29529	
		LINCOLN, NE 68529	

Heat	CHE	MICA	LAN	ALYS	IS (I	n Weigh	t %, unc	ertainty	of measu	rement	0.005%)	(H	eat cast 09/2	7/18)	
Number	с	Mn	P	S	Si	Cu	Ni	Сг	Mo	AI	V	8	Cb	Sn	N	Ti
602934	0.27	1.23	0.014	0.018	0.25	0.23	0.07	0.16	0.015	0.003	0.038	0.0002	0.000	0.010	0.0086	0.001

		MEC	HANICAI	PROPERTIES	(Тел	siles test date 10/01	1/18)	
Heat Number	Sample No.		Yield (Psi)	Ultimate (Psi)	Elongation (%)	Reduction (%)	Bend	Wt/fi
602934	01	(MPa)	64366 443.8	96340 664.2	15.9	a na	ОК	0.648
502934	02	(MPa)	62315 429.6	95610 659.2	15.5		OK	0.645

All melting and manufacturing processes of the material subject to this test certificate occurred in the United States of America. ERMS also certifies this material to be free from Mercury contamination.

This material has been produced, tested and conforms to the requirements of the applicable specifications. We hereby certify that the above test results represent those contained in the records of the Company.

Methods used: ASTM A370, A510, A615, A706.

Material test report shall not be reproduced except in full, without approval of the company.

Figure A-34. #4 Rebar, Test No. MGSCO-4 (Item No. f3)

Bee July

Bryce Lakamp Process Control Engineer

CHARTER	STEE	RTER EL acturing Company	, Inc.	CHA	E RTER STE	MAIL EL TE	ST RE	PORT			658 Cold Springs kville, Wisconsin 5 [262] 268- 1-800-437- Fax [262] 268-
				â		10.0					
					Custome	r Part #					50366-1
					Charter Sale		1				1.125 1 30137
					the second se	Heat #					10508
					Sh	Grade				1	4486
Decke	r Manufa	cturing Co	rp,		F	rocess				1010 A J	AK FG RHQ 1- HR
703 N.	Clark St.					sh Size					1-
Albion	L	Sh	ip date					27-AUG			
I hereby certify that these requirements	t the materia s. The recon	al described he ding of false, fic	rein has bi clitious and	een manufact i fraudulent st	ured in accordantatements or entr	ce with th ies on this	a specific s docume	ations and s nt may be p	standards lis unishable a	sled below a	nd that it satisfie
Lab Code: 7388				Test re	sults of Heat Lot	# 105087	80				inder Jederal Stat
CHEM %WX	C .09	MN	P	S		NI	CR	MO	CU	SN	v
	AL	.47 N	,006 B	.008 TI		04	.08	.01	.08	.006	.001
	.022	.0070	.0001	.001	NB .001						
											3
ROCKWELL B (HRE ROD SIZE (Inch)	3W)	# of Tests 3		Test rest Min Value 59	ults of Rolling Lo M	ax Value	51	Mean 60	Value	881	LAB = 0358-02
		16 8		1.122 _003	1.	131 08		1.127			
rod out of roun Reduction R	ATIO=30:1 Man Char deter Meet	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9. Janual Rev Date istinguishable fi sence of cadiati	131 08 05/12/11 rom back	(ground)	1.127 .905	durate	ling proces	s radiation
ROD OUT OF ROUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per ter Steel certil ctora in place	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .0 danual Rev Date	131 08 05/12/11 rom back on within	(ground)	1.127 .905 radiation le cess & pror	durate	ling proces	s radiation
ROD OUT OF ROUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 08 05/12/11 rom back on within	ground) our pro exceptio	1.127 .905 radiation le cess & pror	durate	ling proces	s radiation
ROD OUT OF ROUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 08 05/12/11 rom back on within	ground) our pro exceptio	1.127 .905 radiation le cess & pror	durate	ling proces	s radiation
ROD OUT OF ROUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 08 05/12/11 rom back on within	ground) our pro exceptio	1.127 .905 radiation le cess & pror	durate	ling proces	s radiation
ROD OUT ÓF RÓUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 08 05/12/11 rom back on within	ground) our pro exceptio	1.127 .905 radiation le cess & pror	durate	ling proces	s radiation
ROD OUT ÓF RÓUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 08 05/12/11 rom back on within	ground) our pro exceptio	1.127 .905 radiation le cess & pror	durate	ling proces	s radiation
ROD OUT ÓF RÓUN REDUCTION R Specifications:	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 D3 Toom back on within ter Steel 6 Date	sground : • our pro- asceptio: d = 01-D	1.127 .905 radiation le cess & pro- na for the fi EC-16	ducts. ollowing ευ	ring process	s radiation cuments:
rod ovt óf róun	Mana Char deter Meet Custo	8 ufactured per i ter Steel certil ctora in place s customer sp	fies this p to measur recificatio	_003 teel Quality M roduct Is ind re for the pre ns with any a	1. .9 Janual Rev Date istingvishable fi sence of radiati applicable Charl	131 D3 Toom back on within ter Steel 6 Date	sground i our pro- acception d = 01-D	1.127 .905 radiation le cess & pro- na for the fi EC-16	allowing cu ollowing cu all previousi gravecularu	ring process istomer doc	s radiation cuments:

Figure A-35. ⁵/₈-in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)

GƏ GERDAU	325 CIVIC RO.	LASALLE PLAS	1 UNYT	niș Bilto Tis nc Tite dr	1	1	ZJFJZN		MRE/ SEZE ad Gyr / 1"	donno)	3175
S-ML-ST PAUL	LA SALLELL	1301 .	peru. Usa	R.61354-9710	•	LENGTI 25'01.5"		:	WEIGHT 47.3301.B	HEAT/BAT	
ste ried Rock Road AINT Pathl, MR 35119 Sa	SALES ODDE SALES ODDE			STONER MATER	HAL Nº	ASTM A	CATION/DAT	Ber REVIO	NON		
listomer purchass order minder 907133	•	BILL OF LAD		DATE 12052017							-
NEMICAL CONTONTON	2006	9 022	Gy alts		Cr 1	50 015	0.014	A	jje ovaj		
EFALUNCICAL CHARACTIVISTICS Hinto	15	6363 8	R .	EBIC T			•.			<u></u>	
ADENABULTY DI A235 MUS L59	• ' .	مر بر									
hen milling, jure here prilevant a Gastre St. Post Mil nd east hitten. Altern killed (demidlenik and, 110 mil	in the second second second second	mod. Intil an any	Hand to success of	in Barnetter Same		0					
ch is Nainil at antices any present datage proceeding to Section as provided by Contex-9, Data Hill without th report. This report and not be reproduced strates in the Anal Mill to an requestion for the intellity of this summ	r while in Caston 1 at proposited webber di, whiles the cast that to cannot specify	it (ini) Milita pani a nangan af Gertan annal uritan cena a nyakanlara.	sdan. Any blodij R. Past Mill rayst R of Geoles II. Pr	nay synchrony Renion to dit to the validity of this mi Mill, Canton		:		•			
ch is light of contrast contrast of a second	er wikten for Occordans angespressend werken dit, wikteren the cooperation data to communication data to communication	ik fini) Mižijih post i navsou of Canton navsi na Pina recent rapičeniom. : applicatiom.	nina. Any biadd R. Paul Mill augu R al Circles II: Pr	ng spenning Anton 10 Alt In the validity of Dis- ini MAT, Gerber	·· · ·	· .:		•			
ch de Hejeld et entidens entymenen desing genersting d Mystime as provident for Contas-Se, Fand fell without th report. "This report shall not be reportened charge in th year billit is an engewahlicher the institity of this enter	r while in Capton 5 a payment white it, white a the cap ind to cannot uptally	k, Finij Mižijin post i transmi til Gardini rand un bina come angli subon spyli subon.	nina. Aay hindif R. Part Hill regat n of Genina its Pr	n ay nyacang Kelon ta di La dia wildy of Als- ini kili, Garles -	·						
his is Najaki at contribute comparisons desing generating a disputient of provide the Contra-St. Data Hills without the report. This approximation was non-second and the Paul Mills in an expension of the test stability of this enter	n vehita ja Garatan 1 sengenandi antigan 1 da vehita eta ka nag 1 da teo omet geteli ji	R. One) Millin post orogan of Gordan and webser copylications.	nina. Any titolif R. Test Idill expet a al Gestar its Tri	n ay byschol Kielse to die La die velkty of Als- in die velkty of Als- in die velkty of Als-	·· · · ·	· ;	 				
a para manage, pays mon programma in characteriza, i you have and capa hallow. (Mitono Mitola de disolationa) qualitati. I ha veji khi da Hajaké na ostavo na nagramma da sing manasalag n digasino na parovisini by Cantan-Sa, Pana Mitol visikou pi digasino na parovisini bar Cana ba nagramba historia Gund Mitol a na nagrambih for the institity of this mana	n vehite in Garetan i a proposition di universi dati tele cana in ancienti dati teo canati typet (f)	k. Ond Mills post consta of Gordan sonal webser con coplications.	ndan. Any tihold R. Pest HAT regat n of Gendus ik Thi	n ay byschart Kerlie to di La tie veliky of Als in hill, Gantes							

Figure A-36. ⁵/₈-in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)

EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

Melted in USA Manufactured in USA

S

CHARTER

ring Company, Inc.

CHARTER STEEL TEST REPORT

	Cust P.O.	91693
	Customer Part #	AXA18CB-5/16
	Charter Sales Order	30124802
	Heat #	20479830
	Ship Lot #	2117839
	Grede	1018 X AK FG RHQ 5/16
Johnstown Wire Technologies	Process	HR
124 Laurel Ave.	Finish Size	5/16
Johnstown, PA-15906	Ship date	13-JAN-17

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under federal statute.

				1600110	some of thes	ILLIN # KUNI	3030				
Lab Code: 125544 CHEM	c	MN	Р	5	84	N	CR	MO	cu	SN	v
%Wt	.16	.64	.005	.004	.080	.03	.05	.01	.04	.003	.001
	AL	N	6	T	NB						
	.051	.0050	.9001	.001	.001						

CAT DI=.35

		Test results of	Rolling Lot # 2117839		
	# of Tests	Nin Value	Max Value	Mean Value	
TENSILE (KSI)	1	68.6	58.8	68.5	TENSILE LAB = 0355-0
REDUCTION OF AREA (%)	1	72	72	72	RA LAB = 0358-04
NUM DECARD=1 REDUCTION RATIO=637	·••		AVE DECARE (inch	500. =	

Specifications:

Manufactured per Charter Steel Quality Manual Rev Date 12/12/13 Charter Steel cartifies this product is indistinguishable from background radiation levels by having process radiation detectors in place to measure for the presence of rediation within our process & products. Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = RW007-RW100 Revision = Dated = 08-NOV-13

Additional Commenta:

Melt Source:		This MTR supersedes all previously dated MTRs for this order
Charter Steel		JanaBorney
Cuyahoga Heights, OH, USA		
		Janice Barnard Division Mgr. of Quality Assurance
		barnard.k@charteratael.com
Rem: Load 1, Fax0, Mail0	Teeling Laboratory	Printed Date : 01/13/2017
	Page 1 of 2	
	Faye I OI Z	

Figure A-37. ⁵/₈-in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)

CHARTER STEEL	STEE!	RTER L	n z .			EMAIL					58 Cold Springs Road ille, Wisconsin 53080 [262] 268-2400 1-800-137-8789 Fax (262] 268-2570
leited in USA				CHAR	TER S	TEEL TES	ST RE	PORT			
				-		A 150					0.1000
				H	Cust	Cust P.O.					94680 AXA18CA-1-5/32
					Charter S	Sales Order					30147392
				-		Heat # Ship Lot #					20550810
				t		Grade			1018 X AM	FGRHQ	1-5/32 RNDCOIL
		Technolog	gles	F		Process			and their		HF
	town,PA-1			-		Finish Size Ship date					1-5/32 01-MAR-18
ab Code: 125544 HEM Wt C/	C .18 AL .051 AT DI=.43	MIN .75 N .0039	P .008 B .0001	Test res S .003 TI .001	SI .060 NB .001	ni Ni .03	110 CR .05	MD .01	CU .06	SN .003	V .001
ENSILE (KSI) EDUCTION OF AF		# of Tests 1 1		Test reau Min Value 65.8 54	its of Roll	ing Löt # 2142 Max Yalue 85.8 54)	56.8 54	Value		ISILE LAB = 0358-04 LAB = 035 8-04
NUM DECARE REDUCTION						AVE DECAR	B (Inch)=	.000			
pecifications: dditional Comme	Char deter Meet Cust	ufactured per riar Steel certi ctors in place is customer s tomer Documer	to measu pecification	product is ind are for the pre- ons with any	istinguish sence of i	able from bar radiation with Charter Stee	ckground in our pro	ocess & pro	oducts.		
					¥1						

Figure A-38. ⁵/₈-in. Dia. Heavy Hex Nut, Test No. MGSCO-4 (Item No. g1)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110216407 COMMODITY : FINISHED HEX NUT GR-A SIZE : (5/8-11 NO 0/T 0.51MM LOT NO : (1N1680027 SHIP QUANTITY : 23,400 PCS LOT QUANTITY : 170,278 PCS HEADMARKS : Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE : 2017/03/23 PACKING NO : GEM160919007 INVOICE NO : GEM/FNL-160929WI PART NO : **36713** SAMPLING PLAN : ASME B18. 18-2011 (Category. 2)/ASTM F1470-2012 HEAT NO : **331608011** MATERIAL : ML08

FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

MANUFACTURE DATE : 2016/08/26 COUNTRY OF ORIGIN : CHINA R#17-507 H#331608011 BCT Cable Bracket Nuts

PERCENTA	GE COM	POSITION	OF CHE	MISTRY:A	CCORDIN	IG TO AST	M A563-2007
Chomietry	AI 0/	C0/	BANIO/	D0/	C0/	C10/	

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0350	0.0700	0.4100	0.0160	0.0060	0.0500

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2010

			SAMPLE	DBY: DWTING		
INSPECTIONS ITEM	SAMPLE	SP	ACTUAL RESULT	ACC.	REJ	
WIDTH ACROSS CORNERS	6 PCS		1.0510-1.0830 inch	1.0560-1.0690 inch	6	0
FIM	15 PCS	ASME B18. 2. 2-2010	Max. 0.0210 inch	0.0020-0.0040 inch	15	0
THICKNESS	6 PCS		0.5350-0.5590 inch	0.5390-0.5570 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.9220-0.9380 inch	0.9240-0.9340 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

	SAMPLED BY: GDAN LIAN									
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.			
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	79-81 HRB	15	0			
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	ОК	4	0			
PLATING THICKNESS (µ m)	5 PCS	ASTM B568-1998		>=53	70. 02-75. 81	5	0			

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure A-39. ⁵/₈-in. Dia. Hex Nut, Test No. MGSCO-4 (Item No. g2)

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210167591 COMMODITY : FINISHED HEX NUT GR-A SIZE : 7/8-9 NC O/T 0.56MM LOT NO : IN18BC001 SHIP QUANTITY : 2,250 PCS LOT QUANTITY : 3,910 PCS HEADMARKS :

MANUFACTURE DATE : 2018/11/05

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)94184488 84184567 DATE : 2019/04/23 PACKING NO : GEM181128011 INVOICE NO : GEM/FNL-181212ED-1 PART NO : 36717 SAMPLING PLAN : ASME B18.18-2017(Category.2)/ASTM F1470-2018 HEAT NO : 18108472-3 MATERIAL : X1008A FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

SAMPLED BY . VITOTAN

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0300	0.0700	0.2700	0.0080	0.0050	0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

		COMM LED DI . I OQIAIN							
INSPECTIONS ITEM	SAMPLE	SPECI	ACTUAL RESULT	ACC.	REJ.				
WIDTH ACROSS CORNERS	4PCS		1.4470-1.5160 inch	1.4730-1.4770 inch	4	0			
FIM	15PCS	ASME B18.2.2-2015	Max. 0.0250 inch	0.0010-0.0050 inch	15	0			
THICKNESS	4PCS		0.7240-0.7760 inch	0.7280-0.7480 inch	4	0			
WIDTH ACROSS FLATS	4PCS		1.2690-1.3120 inch	1.2840-1.2990 inch	4	0			
SURFACE DISCONTINUITIES	22PCS		ASTM F812-2012	PASSED	22	0			
THREAD	15PCS	G	AGING SYSTEM 21	PASSED	15	0			
MINOR DIAMETER	15PCS		0.7890-0.7970 inch	PASSED	15	0			

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

MECHANICAET TOT EITHES		ASIMI			DBY: GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2014		116-302 HRB	81-82 HRB	13	d
PROOF LOAD	3 PCS	ASTM F606-2014	:	Min. 90 KSI	OK	3	C
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998	i	>=53	70.22-75.66	\$ 5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

Grin

page l of l

Figure A-40. ⁷/₈-in. Dia. Hex Nut, Test No. MGSCO-4 (Item No. g3)

Appendix B. Vehicle Center of Gravity Determination

Model M	0040	Test Name:		VIN:	1001	R6KP7DS67	5210
Model Ye	ear: <u>2013</u>	Make:	Dodge	Model:		RAM 1500	
Vehicle	CG Determina	tion					
				Weight	Vertical	Vertical M	
Vehicle E	quipment			(lb)	CG (in.)	(lb-in.)	
+		d Truck (Curb)		5146	28.86011	148514.13	
+	Hub			19	15.25	289.75	
+	Brake activ	ation cylinder 8	k frame	8	30	240	
+		tank (Nitrogen)		30	28	840	
+	Strobe/Bra			5	24	120	
+	Brake Rec			6	53	318	
+		ncluding DAQ		38	32	1216	
-	Battery			-38	41 1/4	-1567.5	
-	Oil			-13	12	-156	
-	Interior			-93	30 1/2	-2836.5	
-	Fuel			-195	18	-3510	
-	Coolant			-10	37 1/4	-372.5	
-	Washer flu	id		-1	27	-27	
+		ast (In Fuel Tan	k)	90	14	1260	
+	*****	upplemental Ba		5	24	1200	
	Chibbard C		littory		<u> </u>	0	
						0	
Note: (+) is	added equipment t	o vehicle, (-) is rer Estimated Tota Vertical CG I	al Weight (Ib)	4997	le	0 144448.38	
		Estimated Tota Vertical CG	al Weight (lb) Location (in.)	4997	le		
Vehicle I	Dimensions for	Estimated Tota Vertical CG	al Weight (lb) Location (in.) t ions	4997 28.907			
	Dimensions for	Estimated Tota Vertical CG	al Weight (lb) Location (in.) t ions Front Tra	4997 28.907	68.25 67.5	in.	
Vehicle I	Dimensions for	Estimated Tota Vertical CG	al Weight (lb) Location (in.) t ions Front Tra	4997 28.907	68.25	144448.38	
Vehicle I	Dimensions for	Estimated Tota Vertical CG	al Weight (lb) Location (in.) t ions Front Tra	4997 28.907	68.25	in.	
Vehicle I	Dimensions for ase: 140.25	Estimated Tota Vertical CG	al Weight (lb) Location (in.) ti ons Front Tra Rear Tra	4997 28.907 ack Width: ack Width:	68.25	in.	Difference
Vehicle I Wheel Ba	Dimensions for ase: 140.25	Estimated Tota Vertical CG I <u>C.G. Calculat</u> in.	al Weight (Ib) Location (in.) tions Front Tra Rear Tra H Targets	4997 28.907 ack Width: ack Width:	<u>68.25</u> 67.5	in.	
Vehicle I Wheel Ba Center o Test Inert	Dimensions for ase: 140.25 f Gravity	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS	al Weight (lb) Location (in.) Front Tra Rear Tra 6H Targets ± 110	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia	in.	0.
Vehicle I Wheel Ba Center o Test Inert	Dimensions for ase: <u>140.25</u> f Gravity ial Weight (Ib) nal CG (in.)	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 :	al Weight (lb) Location (in.) Front Tra Rear Tra 6H Targets ± 110	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000	in.	0. -0.8131
Vehicle I Wheel Ba Center o Test Inert Longitudir	Dimensions for ase: <u>140.25</u> f Gravity ial Weight (Ib) nal CG (in.) G (in.)	Estimated Tota Vertical CG I <u>C.G. Calculat</u> in. <u>2270P MAS</u> 5000 : 63 : NA	al Weight (lb) Location (in.) tions Front Tra Rear Tra H Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685	in.	Differenc: 0. -0.8131 N/ 0.9070
Vehicle I Wheel Ba Center o Test Inert Lateral Co Vertical C	Dimensions for ase: <u>140.25</u> f Gravity ial Weight (Ib) nal CG (in.) G (in.)	Estimated Tota Vertical CG I <u>C.G. Calculat</u> in. <u>2270P MAS</u> 5000 = 63 = NA 28 0	al Weight (lb) Location (in.) Front Tra Rear Tra H Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155	in.	0. -0.8131 N/
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral Co Vertical C Note: Long	Dimensions for ase: 140.25 f Gravity ial Weight (Ib) nal CG (in.) G (in.) CG (in.)	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 = 63 = NA 28 0 rom front axle of t	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91	in.	0.0 -0.8131 N/
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral CO Vertical C Note: Long Note: Later	Dimensions for ase: 140.25 f Gravity ial Weight (lb) nal CG (in.) CG (in.) DG (in.) J. CG is measured f	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 = 63 = NA 28 0 rom front axle of t	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side	in.	0. -0.8131 N/ 0.9070
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral CO Vertical C Note: Long Note: Later	Dimensions for ase: 140.25 f Gravity ial Weight (Ib) nal CG (in.) G (in.) CG (in.) CG is measured fr ral CG measured fr	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 = 63 = NA 28 0 rom front axle of t	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side	_in. _in. _in.	0. -0.8131 N/ 0.9070
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral CO Vertical C Note: Long Note: Later	Dimensions for ase: 140.25 f Gravity ial Weight (Ib) nal CG (in.) G (in.) CG (in.) CG is measured fr ral CG measured fr	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 = 63 = NA 28 0 rom front axle of t	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side	_in. _in. _in.	0. -0.8131 N/ 0.9070
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral CO Vertical C Note: Long Note: Later	Dimensions for ase: 140.25 f Gravity ial Weight (Ib) nal CG (in.) G (in.) CG (in.) DCG (in.) DCG is measured fr ral CG measured fr EIGHT (Ib)	Estimated Tota Vertical CG I <u>C.G. Calculat</u> in. 2270P MAS 5000 : 63 : NA 28 0 rom front axle of t om centerline - por	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side		0. -0.8131 N/ 0.9070
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral CC Vertical C Note: Long Note: Later CURB WI	Dimensions for ase: 140.25 f Gravity ial Weight (Ib) nal CG (in.) G (in.) CG (in.) p. CG is measured fr ral CG measured fr EIGHT (Ib) Left	Estimated Tota Vertical CG I <u>C.G. Calculat</u> in. <u>2270P MAS</u> 5000 : 63 : NA 28 0 rom front axle of t om centerline - pos	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side TEST INER	144448.38	0. -0.8131 N/ 0.9070 -1T (Ib) Right
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral Co Vertical C Vertical C Note: Long Note: Later CURB WI Front	Dimensions for ase: 140.25 f Gravity ial Weight (lb) nal CG (in.) CG (in.) CG (in.) CG is measured fr ral CG measured fr EIGHT (lb) Left 1444	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 = 63 = NA 28 0 rom front axle of t om centerline - pos Right 1422	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side TEST INER Front	_in. _in. _in. I I ETIAL WEIGI Left 1404	0. -0.8131 N/ 0.9070 HT (Ib) Right 1379
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral Co Vertical C Vertical C Note: Long Note: Later CURB WI Front	Dimensions for ase: 140.25 f Gravity ial Weight (lb) nal CG (in.) CG (in.) CG (in.) CG is measured fr ral CG measured fr EIGHT (lb) Left 1444	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 = 63 = NA 28 0 rom front axle of t om centerline - pos Right 1422	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side TEST INER Front	_in. _in. _in. I I ETIAL WEIGI Left 1404	0. -0.8131 N/ 0.9070 HT (Ib) Right 1379
Vehicle I Wheel Ba Center o Test Inert Longitudir Lateral CC Vertical C Vertical C Note: Long Note: Later CURB W Front Rear	Dimensions for ase: 140.25 f Gravity ial Weight (Ib) nal CG (in.) G (in.) CG (in.) CG is measured fr al CG measured fr EIGHT (Ib) Left 1444 1180	Estimated Tota Vertical CG I C.G. Calculat in. 2270P MAS 5000 : 63 : NA 28 0 rom front axle of t om centerline - por Right 1422 1100	al Weight (lb) Location (in.) Front Tra Rear Tra EH Targets ± 110 ± 4	4997 28.907 ack Width: ack Width:	68.25 67.5 Fest Inertia 5000 62.18685 -0.46155 28.91 nger) side TEST INER Front Rear	_in. _in. _in. I ETIAL WEIGI Left _1404 _1130	0.0 -0.81313 N/ 0.90703 HT (Ib) Right 1379 1087

Figure B-1. Vehicle Mass Distribution, Test No. MGSCO-4

Appendix C. Static Soil Tests

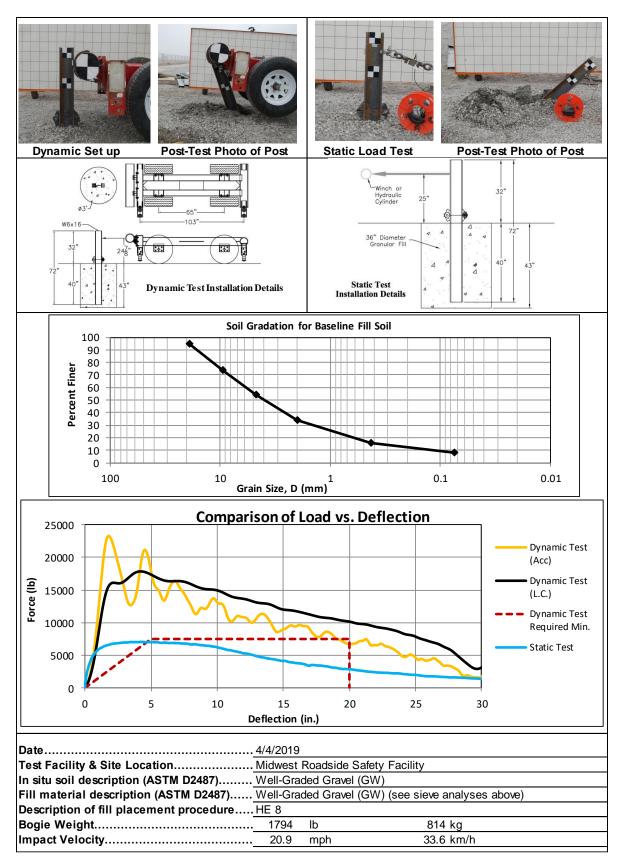


Figure C-1. Soil Strength, Initial Calibration Test

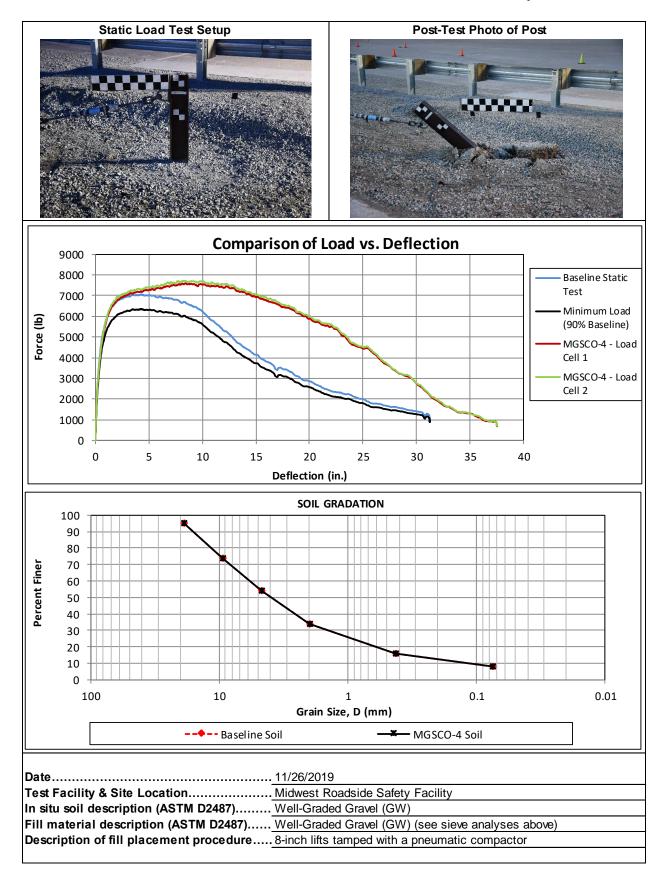


Figure C-2. Static Soil Test, Test No. MGSCO-4

Appendix D. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in the full-scale crash testing herein. MASH defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH criteria.

odel Year:	20	013			Test Name: Make:		SCO-4 dge			Model:		R6KP7DS6 RAM 1500	
				F			FORMATI		1				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX^{A}	ΔY ^A	ΔZ^{A}	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	57.1793	15.2717	-2.3243	57.1756	15.5216	-2.3603	0.0037	-0.2499	0.0360	0.2525	0.0362	X, Z
I	2	57.8326	18.2993	-0.5575	57.8195	18.5405	-0.5872	0.0131	-0.2412	0.0297	0.2434	0.0325	X, Z
	3	59.0335	21.8786	2.9780	59.0441	22.0805	2.9366	-0.0106	-0.2019	0.0414	0.2064	0.0414	Z
TOE PAN - WHEEL WELL (X, Z)	4	59.3253	26.0649	3.1675	59.3038	26.2354	3.1402	0.0215	-0.1705	0.0273	0.1740	0.0347	 X, Z
PAN L WEL	5	59.4803	31.1623	3.1193	59.4803	31.3676	3.0812	0.0000	-0.2053	0.0381	0.2088	0.0381	X, Z
т Ч	6	53.9579	14.7742	-0.4366	53.9481	14.9936	-0.4706	0.0098	-0.2194	0.0340	0.2222	0.0354	X, Z
HEEL XHEEL	7	54.8029	18.2908	1.9155	54.7833	18.5335	1.9259	0.0196	-0.2427	-0.0104	0.2437	0.0196	X
3	8	55.9203	22.0711	5.0270	55.8733	22.2869	5.0227	0.0470	-0.2158	0.0043	0.2209	0.0472	X, Z
l	9	55.9231	26.6334	5.0744	55.9189	26.8631	5.0381	0.0042	-0.2297	0.0363	0.2326	0.0365	X, Z
	10	56.1669	31.6464	4.9897	56.1664	31.8835	4.9538	0.0005	-0.2371	0.0359	0.2398	0.0359	X, Z
	11	50.8536	14.1332	1.4959	50.8423	14.3657	1.4893	0.0113	-0.2325	0.0066	0.2329	0.0066	Z
1	12	52.0219	18.0176	4.9970	52.0903	18.2289	4.9327	-0.0684	-0.2113	0.0643	0.2312	0.0643	Z
1	13	52.4075	21.7186	5.4538	52.4138	21.9447	5.4213	-0.0063	-0.2261	0.0325	0.2285	0.0325	
	14	52.4979	27.1739	5.4553	52.5089	27.2938	5.4274	-0.0110	-0.1199	0.0279	0.1236	0.0279	Z
	15	52.5938	32.1148	5.4793	52.6319	32.2646	5.4586	-0.0381	-0.1498	0.0207	0.1559	0.0207	
	16	47.3195	13.2460	2.2192	47.2678	13.4676	2.1833	0.0517	-0.2216	0.0359	0.2304	0.0359	Z
	17	47.8500	18.2551	5.4578	47.9235	18.5272	5.4279	-0.0735	-0.2721	0.0299	0.2834	0.0299	Z
	18	48.2125	23.0379	5.4647	48.2258	23.2990	5.4366	-0.0133	-0.2611	0.0281	0.2629	0.0281	Z
AN	19	48.8569	27.7996	5.4609	48.8697	28.0234	5.4498	-0.0128	-0.2238	0.0111	0.2244	0.0111	
Å C	20	49.1629	32.8538	5.4937	49.1872	33.0446	5.4859	-0.0243	-0.1908	0.0078	0.1925	0.0078	Z
(Z)	21	43.4472	13.3536	2.5960	43.4402	13.5853	2.5684	0.0070	-0.2317	0.0276	0.2334	0.0276	Z
FLOOR PAN (Z)	22	44.1518	17.5869	5.4568	44.1534	17.7594	5.4285	-0.0016	-0.1725	0.0283	0.1748	0.0283	Z
LL I	23	44.5119	23.2713	5.4543	44.4675	23.4774	5.4347	0.0444	-0.2061	0.0196	0.2117	0.0196	
	24	44.8140	28.3992	5.4692	44.7917	28.5930	5.4694	0.0223	-0.1938	-0.0002	0.1951	-0.0002	
	25	44.7773	33.1528	5.4911	44.7671	33.3287	5.4783	0.0102	-0.1759	0.0128	0.1767	0.0128	Z
	26	38.9549	13.3968	2.5868	38.9951	13.6272	2.5527	-0.0402	-0.2304	0.0341	0.2364	0.0341	Z
	27	39.0095	16.9181	4.6702	39.0282	17.1202	4.6527	-0.0187	-0.2021	0.0175	0.2037	0.0175	Z
	28	39.0875	22.6263	4.6669	39.0975	22.8814	4.6486	-0.0100	-0.2551	0.0183	0.2560	0.0183	Z
	29	39.0444	28.6038	4.6849	39.0333	28.8664	4.6694	0.0111	-0.2626	0.0155	0.2633	0.0155	Z
	30	38.7466	31.9290	4.6965	38.7821	32.1502	4.6803	-0.0355	-0.2212	0.0162	0.2246	0.0162	Z
Positive v ompartme		e deformatio	on as inward			compartme	nt, negative	values denc	te deformat	· · · · · · · · · · · · · · · · · · ·	d away fron	n the occup	ant

component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

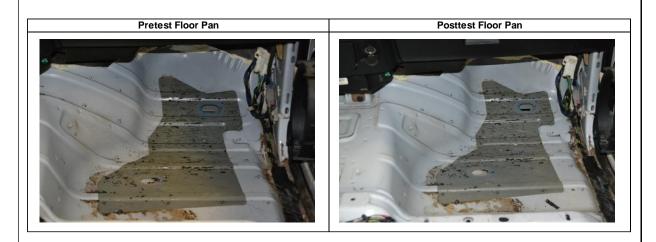


Figure D-1. Floor Pan Deformation Data - Set 1, Test No. MGSCO-4

odel Year:	20)13	-		Make:	Do	dge			Model:		RAM 1500	
					VEH	IICLE DE	FORMATI	ON					
				F	PASSENG	ER SIDE	FLOOR P	AN - SET	2				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	58.8722	-0.0228	-6.9858	58.8800	0.0222	-6.8525	-0.0078	0.0450	-0.1333	0.1409	0.0000	NA
	2	59.4626	3.0165	-5.2168	59.4529	3.0580	-5.0836	0.0097	-0.0415	-0.1332	0.1399	0.0097	X
_	3	60.5975	6.6173	-1.6814	60.5980	6.6307	-1.5662	-0.0005	-0.0134	-0.1152	0.1160	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	4	60.7892	10.8090	-1.4852	60.7545	10.7910	-1.3669	0.0347	0.0180	-0.1183	0.1246	0.0347	X
PAN L WEI (, Z)	5	60.8207	15.9087	-1.5242	60.8027	15.9259	-1.4307	0.0180	-0.0172	-0.0935	0.0968	0.0180	X
HEEL X	6	55.6749	-0.6014	-5.0803	55.6715	-0.5843	-4.9538	0.0034	0.0171	-0.1265	0.1277	0.0034	X
μų μ	7	56.4486	2.9303	-2.7262	56.4244	2.9775	-2.5626	0.0242	-0.0472	-0.1636	0.1720	0.0242	X
>	8	57.4926	6.7307	0.3862	57.4285	6.7598	0.5281	0.0641	-0.0291	-0.1419	0.1584	0.0641	X
	9	57.3855	11.2916	0.4427	57.3599	11.3358	0.5394	0.0256	-0.0442	-0.0967	0.1094	0.0256	X
	10	57.5076	16.3092	0.3665	57.4818	16.3607	0.4502	0.0258	-0.0515	-0.0837	0.1016	0.0258	X
	11	52.5985	-1.3208	-3.1310	52.5876	-1.2878	-2.9851	0.0109	0.0330	-0.1459	0.1500	-0.1459	Z
	12	53.6932	2.5843	0.3709	53.7478	2.6085	0.4516	-0.0546	-0.0242	-0.0807	0.1004	-0.0807	Z
	13	53.9920	6.2926	0.8328	53.9797	6.3317	0.9362	0.0123	-0.0391	-0.1034	0.1112	-0.1034	Z
	14	53.9505	11.7485	0.8446	53.9412	11.6815	0.9374	0.0093	0.0670	-0.0928	0.1148	-0.0928	Z
	15	53.9272	16.6902	0.8779	53.9402	16.6539	0.9640	-0.0130	0.0363	-0.0861	0.0943	-0.0861	Z
	16	49.0912	-2.2945	-2.3888	49.0384	-2.2741	-2.2808	0.0528	0.0204	-0.1080	0.1219	-0.1080	Z
	17	49.5195	2.7200	0.8566	49.5762	2.8033	0.9576	-0.0567	-0.0833	-0.1010	0.1427	-0.1010	Z
7	18	49.7664	7.5101	0.8708	49.7593	7.5811	0.9614	0.0071	-0.0710	-0.0906	0.1153	-0.0906	Z
A	19	50.2956	12.2860	0.8727	50.2850	12.3201	0.9688	0.0106	-0.0341	-0.0961	0.1025	-0.0961	Z
Z N	20	50.4797	17.3461	0.9138	50.4772	17.3477	0.9997	0.0025	-0.0016	-0.0859	0.0860	-0.0859	Z
FLOOR PAN (Z)	21	45.2196	-2.2812	-1.9892	45.2101	-2.2517	-1.8857	0.0095	0.0295	-0.1035	0.1080	-0.1035	Z
Ë.	22	45.8386	1.9626	0.8758	45.8264	1.9416	0.9689	0.0122	0.0210	-0.0931	0.0962	-0.0931	Z
	23	46.0613	7.6540	0.8824	45.9976	7.6656	0.9693	0.0637	-0.0116	-0.0869	0.1084	-0.0869	Z
	24	46.2395	12.7877	0.9058	46.1942	12.7878	0.9988	0.0453	-0.0001	-0.0930	0.1034	-0.0930	Z
	25	46.0881	17.5390	0.9373	46.0514	17.5214	1.0036	0.0367	0.0176	-0.0663	0.0778	-0.0663	Z
	26	40.7277	-2.3466	-1.9721	40.7653	-2.3207	-1.8897	-0.0376	0.0259	-0.0824	0.0942	-0.0824	
	27	40.7095	1.1712	0.1179	40.7167	1.1739	0.2071	-0.0072	-0.0027	-0.0892	0.0895	-0.0892	Z
	28	40.6496	6.8796	0.1255	40.6422	6.9350	0.1979	0.0074	-0.0554	-0.0724	0.0915	-0.0724	
	29	40.4621	12.8543	0.1556	40.4286	12.9166	0.2137	0.0335	-0.0623	-0.0581	0.0915	-0.0581	Z
	30	40.0842	16.1712	0.1756	40.0956	16.1931	0.2225 nt, negative	-0.0114	-0.0219	-0.0469	0.0530	-0.0469	Z

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

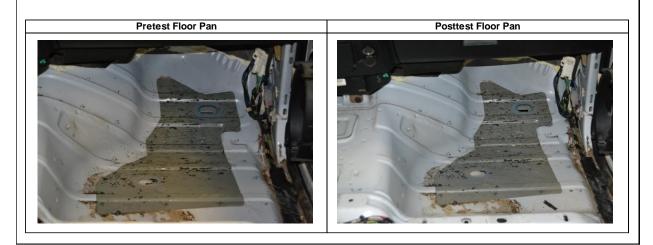


Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSCO-4

odel Year:	20	13			Test Name: Make:		CO-4 dge			VIN: Model:	1C6R	R6KP7DS6 RAM 1500	
					VEL		FORMATI						
				PAS			ERIOR CF		ET 1				
ſ		Pretest	Pretest	Pretest	Posttest X	Posttest	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directio for
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	Y (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	50.0244	3.9302	-27.7810	50.0686	3.9943	-27.6709	-0.0442	-0.0641	0.1101	0.1348	0.1348	X, Y, 2
_ N	2	50.0556	14.5867	-27.4470	50.1646	14.6743	-27.3829	-0.1090	-0.0876	0.0641	0.1538	0.1538	X, Y,
DASH (X, Y, Z)	3	51.0682	29.5388	-26.4482	51.1137	29.5634	-26.3321	-0.0455	-0.0246	0.1161	0.1271	0.1271	X, Y,
Δ×.	4	43.3119	3.7062	-16.6852	43.3741	3.7704	-16.5820	-0.0622	-0.0642	0.1032	0.1365	0.1365	X, Y,
<u> </u>	5	45.5774	15.0709	-16.5042	45.6505	15.1117	-16.3289	-0.0731	-0.0408	0.1753	0.1943	0.1943	X, Y, 1
	6	46.5256	30.5258	-16.8836	46.5870	30.5220	-16.8127	-0.0614	0.0038	0.0709	0.0939	0.0939	X, Y, I
SIDE PANEL (Y)	7	55.5843	36.1871	0.3136	55.5879	36.0994	0.3985	-0.0036	0.0877	0.0849	0.1221	0.0877	Y
US A S	8	58.3771	36.1309	-1.8631	58.3157	36.0738	-1.7763	0.0614	0.0571	0.0868	0.1207	0.0571	Y
<u>م</u> «	9	55.6205	36.2097	-3.0523	55.6792	36.0982	-2.9140	-0.0587	0.1115	0.1383	0.1871	0.1115	Y
Щ	10	24.6915	38.4473	-19.6006	24.6777	38.5349	-19.5705	0.0138	-0.0876	0.0301	0.0936	-0.0876	Y
IMPACT SIDE DOOR (Y)	11	30.6401	38.3924	-19.3629	30.5998	38.4399	-19.2469	0.0403	-0.0475	0.1160	0.1317	-0.0475	Y
DOOR (Y)	12	36.6361	38.3511	-19.5227	36.5529	38.3709	-19.5157	0.0832	-0.0198	0.0070	0.0858	-0.0198	Y
Å Å Å	13	24.7364	38.9405	-3.0494	24.5807	38.8745	-3.0572	0.1557	0.0660	-0.0078	0.1693	0.0660	Y
۲. W	14	33.6972	39.0063	-3.6246	33.6066	38.8699	-3.6058	0.0906	0.1364	0.0188	0.1648	0.1364	Y
	15	40.1099	39.5417	-3.2104	40.0425	39.3745	-3.1022	0.0674	0.1672	0.1082	0.2103	0.1672	Y
~	16	35.8250	4.3803	-45.4166	35.9833	4.4247	-45.3230	-0.1583	-0.0444	0.0936	0.1892	0.0936	Z
	17	35.5958	9.2895	-45.4145	35.7764	9.3276	-45.3199	-0.1806	-0.0381	0.0946	0.2074	0.0946	Z
	18	34.8377	14.8427	-45.3808	34.9929	14.8798	-45.2973	-0.1552	-0.0371	0.0835	0.1801	0.0835	Z
-	19	34.0135	20.1777	-45.2125	34.1433	20.2320	-45.1313	-0.1298	-0.0543	0.0812	0.1624	0.0812	Z
-	20	32.6067	25.2269	-45.0253	32.7262	25.2584	-44.9525	-0.1195	-0.0315	0.0728	0.1434	0.0728	Z
Ñ	21 22	31.4235 30.3911	4.5833	-46.1707	31.5696	4.5871	-46.0880	-0.1461	-0.0038	0.0827	0.1679	0.0827	Z
ROOF - (Z)	22	29.4286	9.1976 14.1254	-46.2435 -46.1355	30.5175 29.6018	9.1914 14.1964	-46.1665 -46.0534	-0.1264 -0.1732	0.0062	0.0770	0.1481	0.0770	Z
8	23	28.4958	19.8458	-46.0216	28.6439	19.8319	-45.9448	-0.1481	0.0139	0.0768	0.1674	0.0768	Z
Ъ. Х	24	26.9828	24.6637	-45.8049	27.1014	24.6975	-45.7289	-0.1481	-0.0338	0.0760	0.1449	0.0760	Z
-	26	27.0622	4.5148	-46.5820	27.2148	4.5489	-46.5142	-0.1526	-0.0341	0.0678	0.1704	0.0678	Z
	27	25.8177	8.6876	-46.6281	26.0258	8.6405	-46.5585	-0.2081	0.0471	0.0696	0.2244	0.0696	Z
-	28	23.7277	13.0516	-46.5716	23.9784	13.0211	-46.5037	-0.2507	0.0305	0.0679	0.2615	0.0679	Z
-	29	22.5232	18.4727	-46.4145	22.7089	18.4663	-46.3573	-0.1857	0.0064	0.0572	0.1944	0.0572	Z
	30	20.3786	23.9331	-46.2396	20.5484	23.9777	-46.1742	-0.1698	-0.0446	0.0654	0.1873	0.0654	Z
	31	53.8536	34.5856	-29.8914	53.9125	34.5688	-29.7256	-0.0589	0.0168	0.1658	0.1768	0.1666	Y, Z
Ψ E Ñ	32	50.9340	33.9154	-32.2840	50.9666	33.9013	-32.1582	-0.0326	0.0141	0.1258	0.1307	0.1266	Y, Z
∀ n γ	33	48.6821	33.5890	-34.1774	48.7735	33.5973	-34.0287	-0.0914	-0.0083	0.1487	0.1747	0.1487	Z
A-PILLAR Maximum (X, Y, Z)	34	45.9556	33.0237	-36.0823	46.0772	33.0491	-35.9522	-0.1216	-0.0254	0.1301	0.1799	0.1301	Z
¥ΣΥ	35	42.7501	32.3857	-38.3149	42.8882	32.4153	-38.1776	-0.1381	-0.0296	0.1373	0.1970	0.1373	Z
	36	39.1561	31.6432	-40.2973	39.2568	31.6638	-40.1669	-0.1007	-0.0206	0.1304	0.1660	0.1304	Z
	31	53.8536	34.5856	-29.8914	53.9125	34.5688	-29.7256	-0.0589	0.0168	0.1658	0.1768	0.0168	Y
Ч×Г	32	50.9340	33.9154	-32.2840	50.9666	33.9013	-32.1582	-0.0326	0.0141	0.1258	0.1307	0.0141	Y
A-PILLAR Lateral (Υ)	33	48.6821	33.5890	-34.1774	48.7735	33.5973	-34.0287	-0.0914	-0.0083	0.1487	0.1747	-0.0083	Y
l ⊈ -	34	45.9556	33.0237	-36.0823	46.0772	33.0491	-35.9522	-0.1216	-0.0254	0.1301	0.1799	-0.0254	Y
Ľ ۲	35	42.7501	32.3857	-38.3149	42.8882	32.4153	-38.1776	-0.1381	-0.0296	0.1373	0.1970	-0.0296	Y
	36	39.1561	31.6432	-40.2973	39.2568	31.6638	-40.1669	-0.1007	-0.0206	0.1304	0.1660	-0.0206	Y
A R (2	37	14.3698	31.7067	-40.6413	14.4424	31.7381	-40.5629	-0.0726	-0.0314	0.0784	0.1114	0.0784	Z
Ľ, ž, Ľ	38	11.7080	33.1053	-36.8938	11.7413	33.0871	-36.9371	-0.0333	0.0182	-0.0433	0.0576	0.0182	Y
B-PILLAR Maximum (X, Υ, Z)	39	14.9646	34.3782	-33.3939	15.0243	34.3837	-33.3784	-0.0597	-0.0055	0.0155	0.0619	0.0155	Z
	40	12.0660	35.6207	-29.2232	12.1635	35.6412	-29.1652	-0.0975	-0.0205	0.0580	0.1153	0.0580	Z
AR.	37	14.3698	31.7067	-40.6413	14.4424	31.7381	-40.5629	-0.0726	-0.0314	0.0784	0.1114	-0.0314	Y
B-PILLAR Lateral (Y)	38	11.7080	33.1053	-36.8938	11.7413	33.0871	-36.9371	-0.0333	0.0182	-0.0433	0.0576	0.0182	Y
atel PI	39	14.9646	34.3782	-33.3939	15.0243	34.3837	-33.3784	-0.0597	-0.0055	0.0155	0.0619	-0.0055	Y
шĭ	40	12.0660	35.6207	-29.2232	12.1635	35.6412	-29.1652	-0.0975	-0.0205	0.0580	0.1153	-0.0205	Y

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. MGSCO-4

odel Year:	20)13			Test Name: Make:		SCO-4			VIN: Model:	1C6R	R6KP7DS6 RAM 1500	
			•										
				PAS			FORMATI		FT 2				
-													
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔΥ ^Α	ΔZ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	51.9168	-11.7400	-32.3318	52.0022	-11.7148	-32.1360	-0.0854	0.0252	0.1958	0.2151	0.2151	X, Y, Z
- Ñ	2	51.6937	-1.0863	-31.9811	51.8302	-1.0353	-31.8644	-0.1365	0.0510	0.1167	0.1867	0.1867	X, Y, Z
DASH (X, Y, Z)	3	52.3509	13.8842	-30.9622	52.4067	13.8746	-30.8383	-0.0558	0.0096	0.1239	0.1362	0.1362	X, Y, Z
۵×	4	45.2492	-12.1414	-21.2139	45.3427	-12.0897	-21.0302	-0.0935	0.0517	0.1837	0.2125	0.2125	X, Y, Z
-	5	47.2423	-0.7260	-21.0226	47.3335	-0.6944	-20.7998	-0.0912	0.0316	0.2228	0.2428	0.2428	X, Y, Z
	6	47.8184	14.7477	-21.3809	47.8807	14.7339	-21.3091	-0.0623	0.0138	0.0718	0.0961	0.0961	X, Y, Z
SIDE PANEL (Y)	7	56.7970	20.5989	-4.2053	56.7805	20.5630	-4.1288	0.0165	0.0359	0.0765	0.0861	0.0359	Y
ANE ()	8	59.5830	20.6130	-6.3913	59.5026	20.6027	-6.3104	0.0804	0.0103	0.0809	0.1145	0.0103	Y
<u>п</u>	9	56.8212	20.6274	-7.5712	56.8636	20.5589	-7.4415	-0.0424	0.0685	0.1297	0.1527	0.0685	Y
Щ	10	25.7916	22.1476	-24.0122	25.7699	22.1885	-24.0245	0.0217	-0.0409	-0.0123	0.0479	-0.0409	Y
IMPACT SIDE DOOR (Y)	11	31.7406	22.2349	-23.7946	31.6933	22.2431	-23.7154	0.0473	-0.0082	0.0792	0.0926	-0.0082	Y
DOOR (Y)	12	37.7354	22.3376	-23.9746	37.6456	22.3235	-23.9990	0.0898	0.0141	-0.0244	0.0941	0.0141	Y
ADD.	13	25.8808	22.6170	-7.4605	25.7048	22.5515	-7.5115	0.1760	0.0655	-0.0510	0.1946	0.0655	Y
Ľ.	14	34.8354	22.8984	-8.0656	34.7267	22.7732	-8.0826	0.1087	0.1252	-0.0170	0.1667	0.1252	Y
-	15	41.2348	23.5868	-7.6721	41.1490	23.4404	-7.5957	0.0858	0.1464	0.0764	0.1861	0.1464	Y
	16	37.6510	-11.6041	-49.9190	37.8674	-11.6667	-49.7536	-0.2164	-0.0626	0.1654	0.2795	0.1654	Z
	17	37.3042	-6.7018	-49.9084	37.5372	-6.7706	-49.7575	-0.2330	-0.0688	0.1509	0.2860	0.1509	Z
	18	36.4133	-1.1685	-49.8634	36.6143	-1.2398	-49.7412	-0.2010	-0.0713	0.1222	0.2458	0.1222	Z
	19	35.4621	4.1450	-49.6840	35.6306	4.0896	-49.5811	-0.1685	0.0554	0.1029	0.2051	0.1029	Z
	20	33.9353	9.1588	-49.4841	34.0879	9.0790	-49.4064	-0.1526	0.0798	0.0777	0.1889	0.0777	Z
Ñ	21	33.2433	-11.5056	-50.6581	33.4491	-11.6166	-50.5079	-0.2058	-0.1110	0.1502	0.2779	0.1502	Z
	22	32.1004	-6.9172	-50.7201	32.2813	-7.0404	-50.5908	-0.1809	-0.1232	0.1293	0.2542	0.1293	Z
ЧU.	23	31.0205	-2.0141	-50.6011	31.2402	-2.0598	-50.4829	-0.2197	-0.0457	0.1182	0.2536	0.1182	Z
ROOF - (Z)	24	29.9512	3.6821	-50.4751	30.1411	3.5499	-50.3804	-0.1899	0.1322	0.0947	0.2500	0.0947	Z
_	25	28.3239	8.4620	-50.2458	28.4771	8.3755	-50.1679	-0.1532	0.0865	0.0779	0.1924	0.0779	Z
	26	28.8836	-11.6780	-51.0548	29.0956	-11.7651	-50.9233	-0.2120	-0.0871	0.1315	0.2642	0.1315	Z
	27	27.5393	-7.5361	-51.0902	27.8039	-7.7047	-50.9708	-0.2646	-0.1686	0.1194	0.3357	0.1194	Z
	28	25.3455	-3.2236	-51.0198	25.6471	-3.3769	-50.9174	-0.3016	-0.1533	0.1024	0.3535	0.1024	Z
e	29	24.0119	2.1668	-50.8501	24.2413	2.0348	-50.7761	-0.2294	0.1320	0.0740	0.2748	0.0740	Z
	30	21.7376	7.5740	-50.6594	21.9432	7.4904	-50.5959	-0.2056	0.0836	0.0635	0.2309	0.0635	Z
	31	55.0029	19.0015	-34.4067	55.0704	18.9435	-34.2463	-0.0675	0.0580	0.1604	0.1834	0.1706	Y, Z
AR UN	32	52.0921	18.2650	-36.7907	52.1362	18.1983	-36.6705	-0.0441	0.0667	0.1202	0.1444	0.1375	Y, Z
A-PILLAR Maximum (X, Y, Z)	33	49.8423	17.8876	-38.6769	49.9469	17.8362	-38.5352	-0.1046	0.0514	0.1417	0.1835	0.1507	Y, Z
- Υ aβ - Γ	34	47.1237	17.2599	-40.5737	47.2605	17.2173	-40.4511	-0.1368	0.0426	0.1226	0.1886	0.1298	Y, Z
~ ~	35	43.9268	16.5486	-42.7964	44.0831	16.5000	-42.6676	-0.1563	0.0486	0.1288	0.2083	0.1377	Y, Z
	36	40.3450	15.7231	-44.7680	40.4669	15.6542	-44.6467	-0.1219	0.0689	0.1213	0.1853	0.1395	Y, Z
	31	55.0029	19.0015	-34.4067	55.0704	18.9435	-34.2463	-0.0675	0.0580	0.1604	0.1834	0.0580	Y
A-PILLAR Lateral (Y)	32	52.0921	18.2650	-36.7907	52.1362	18.1983	-36.6705	-0.0441	0.0667	0.1202	0.1444	0.0667	Y
al ILL	33	49.8423	17.8876	-38.6769	49.9469	17.8362	-38.5352	-0.1046	0.0514	0.1417	0.1835	0.0514	Y
A-P ate	34	47.1237	17.2599	-40.5737	47.2605	17.2173	-40.4511	-0.1368	0.0426	0.1226	0.1886	0.0426	Y
~	35	43.9268	16.5486	-42.7964	44.0831	16.5000	-42.6676	-0.1563	0.0486	0.1288	0.2083	0.0486	Y
~ -	36	40.3450	15.7231	-44.7680	40.4669	15.6542	-44.6467	-0.1219	0.0689	0.1213	0.1853	0.0689	Y
B-PILLAR Maximum (X, Υ, Z)	37	15.5633	15.1929	-45.0288	15.6576	15.1034	-44.9811	-0.0943	0.0895	0.0477	0.1385	0.1014	Y, Z
∃.Ę,∽,	38	12.8815	16.5217	-41.2702	12.9322	16.3897	-41.3506	-0.0507	0.1320	-0.0804	0.1627	0.1320	Y
₽ Ša Y	39	16.1184	17.8670	-37.7793	16.1903	17.7741	-37.8021	-0.0719	0.0929	-0.0228	0.1197	0.0929	Y
	40	13.2050	19.0335	-33.5970	13.3091	18.9658	-33.5836	-0.1041	0.0677	0.0134	0.1249	0.0690	Y, Z
β ^A R	37	15.5633	15.1929	-45.0288	15.6576	15.1034	-44.9811	-0.0943	0.0895	0.0477	0.1385	0.0895	Y
B-PILLAR Lateral (Y)	38	12.8815	16.5217	-41.2702	12.9322	16.3897	-41.3506	-0.0507	0.1320	-0.0804	0.1627	0.1320	Y
3-P	39	16.1184	17.8670	-37.7793	16.1903	17.7741	-37.8021	-0.0719	0.0929	-0.0228	0.1197	0.0929	Y
шï	40	13.2050	19.0335	-33.5970	13.3091	18.9658	-33.5836	-0.1041	0.0677	0.0134	0.1249	0.0677	Y

^ Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. MGSCO-4

Model Year:	2013		Test Name: Make:	MGSCO-4 Dodge	7DS679213 1500		
		_				RAM	
		Pa	assenger Side Ma	ximum Deformation			
	Reference Se	et 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	0.1	≤ 4	Z	Roof	0.2	≤ 4	Z
Windshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
A-Pillar Maximum	0.2	≤ 5	Y, Z	A-Pillar Maximum	0.2	≤ 5	Y, Z
A-Pillar Lateral	0.0	≤ 3	Y	A-Pillar Lateral	0.1	≤ 3	Y
B-Pillar Maximum	0.1	≤ 5	Z	B-Pillar Maximum	0.1	≤ 5	Y
B-Pillar Lateral	0.0	≤ 3	Y	B-Pillar Lateral	0.1	≤ 3	Y
Toe Pan - Wheel Well	0.0	≤ 9	X, Z	Toe Pan - Wheel Well	0.1	≤ 9	х
Side Front Panel	0.1	≤ 12	Y	Side Front Panel	0.1	≤ 12	Y
Side Door (above seat)	-0.1	≤ 9	Y	Side Door (above seat)	0.0	≤ 9	Y
Side Door (below seat)	0.2	≤ 12	Y	Side Door (below seat)	0.1	≤ 12	Y
Floor Pan	0.1	≤ 12	Z	Floor Pan	-0.1	≤ 12	Z
Dash - no MASH requirement	0.2	NA	X, Y, Z	Dash - no MASH requirement	0.2	NA	X, Y, Z
² For Toe Pan - Wheel Well the 6 and Z directions. The direction intruding into the occupant com ⁵ If deformation is observered for and recorded.	direction of defrom of deformation for partment. If directi or the windshield th	ation may include > Toe Pan -Wheel We on of deformation is	(and Z direction. For ell, A-Pillar Maximum s "NA" then no intrusi	ve values denote deformations out r A-Pillar Maximum and B-Pillar Max , and B-Pillar Maximum only include ion is recorded and deformation wil ured posttest with an examplar veh	imum the directio components whe ll be 0.	n of deformation ma ere the deformation	ay include X, Y, is positive and
Notes on vehicle interior cr	usn:						

Figure D-5. Maximum Occupant Compartment Deformation by Location, Test No. MGSCO-4

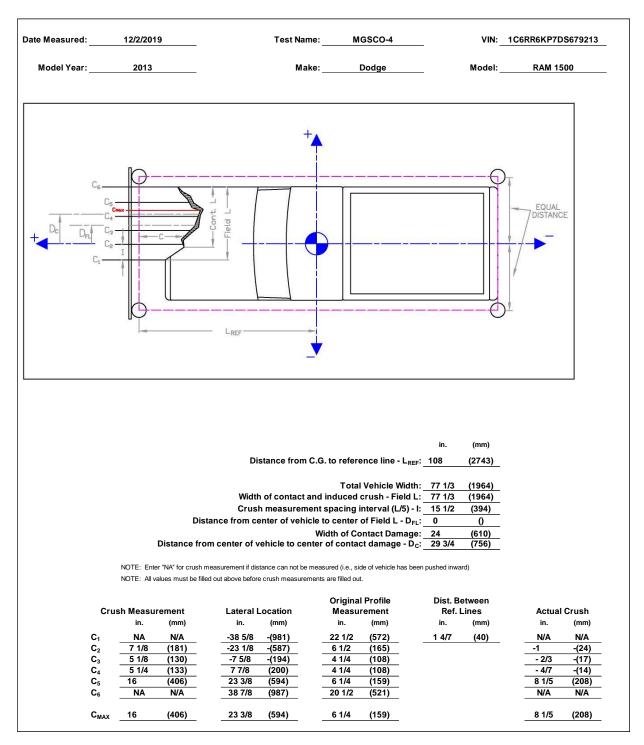


Figure D-6. Exterior Vehicle Crush (NASS) - Front, Test No. MGSCO-4

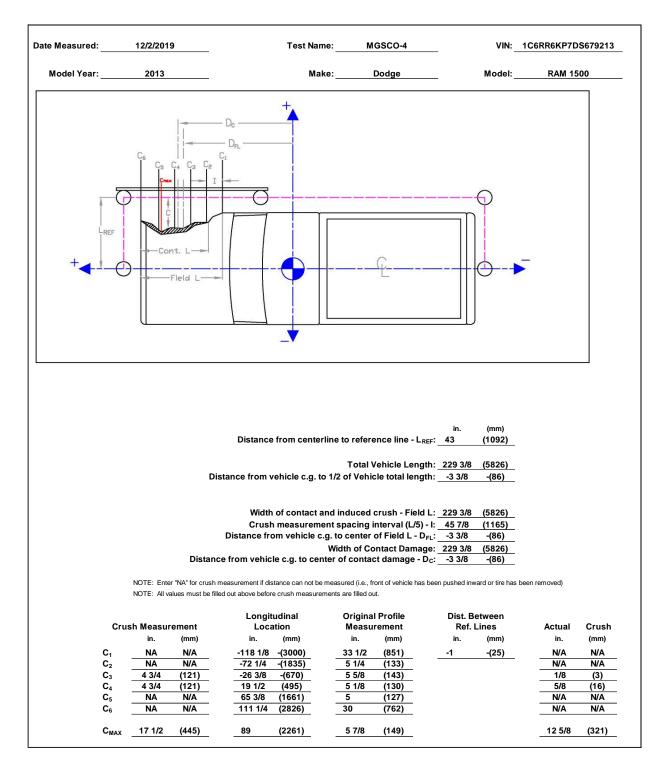


Figure D-7. Exterior Vehicle Crush (NASS) – Side, Test No. MGSCO-4

Appendix E. Accelerometer and Rate Transducer Data Plots

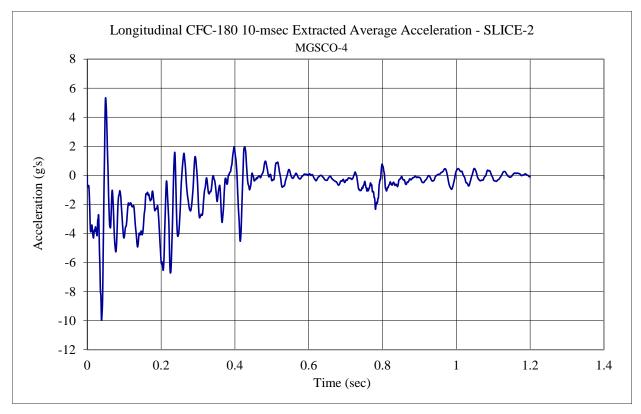


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSCO-4

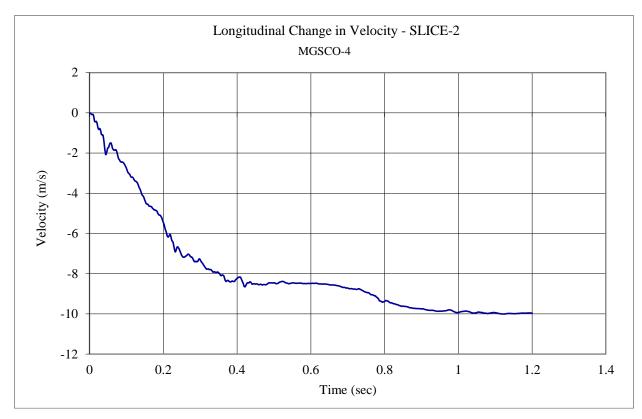


Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSCO-4

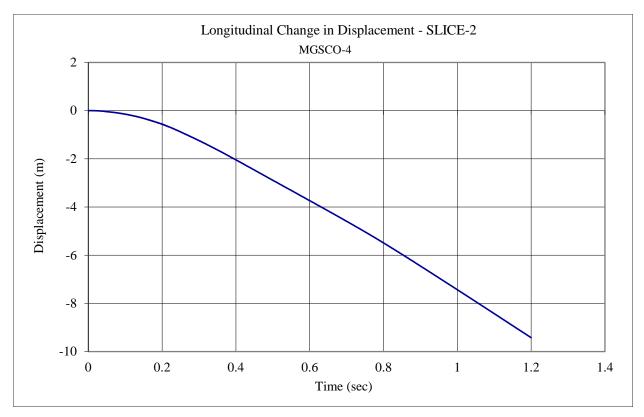


Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSCO-4

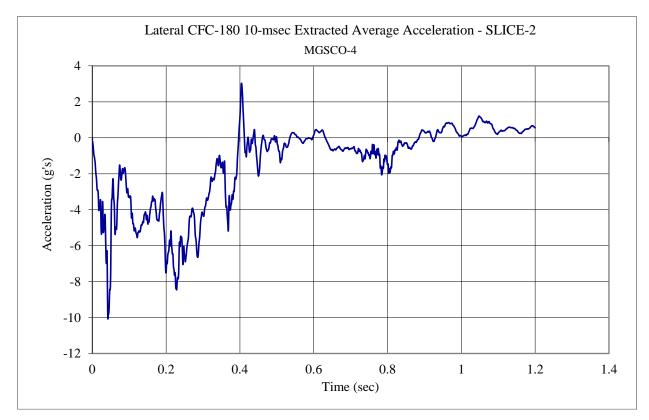


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSCO-4

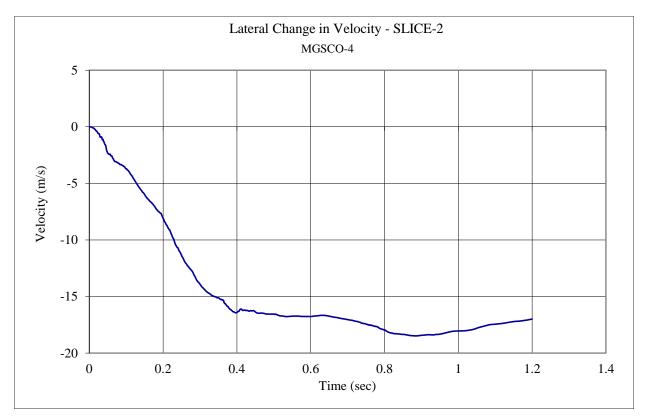


Figure E-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSCO-4

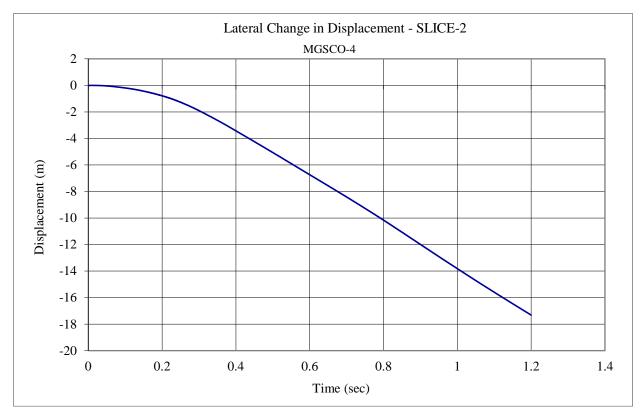


Figure E-6. Lateral Occupant Displacement (SLICE-2), Test No. MGSCO-4

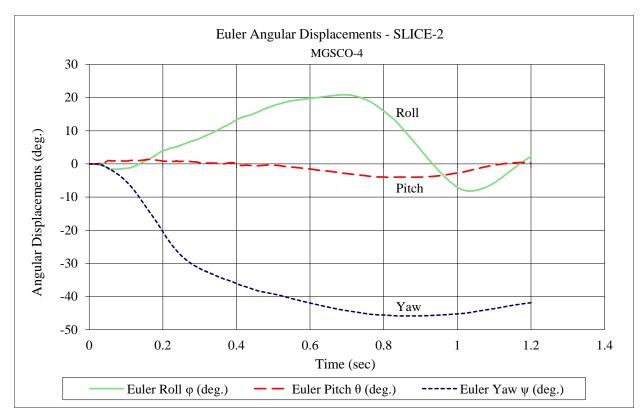


Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. MGSCO-4

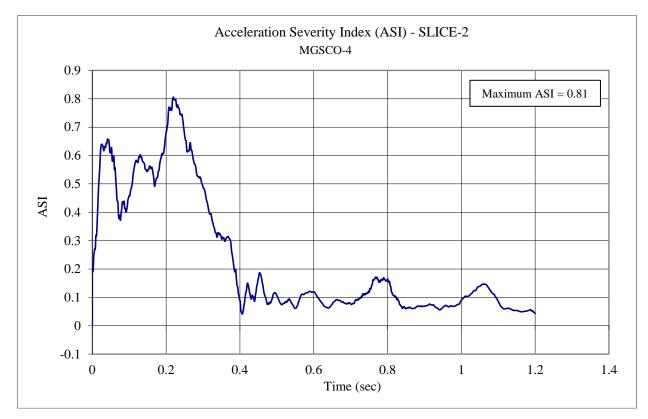


Figure E-8. Acceleration Severity Index (SLICE-2), Test No. MGSCO-4

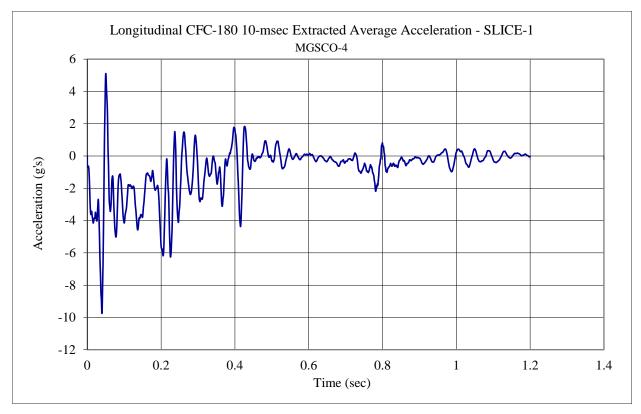


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSCO-4

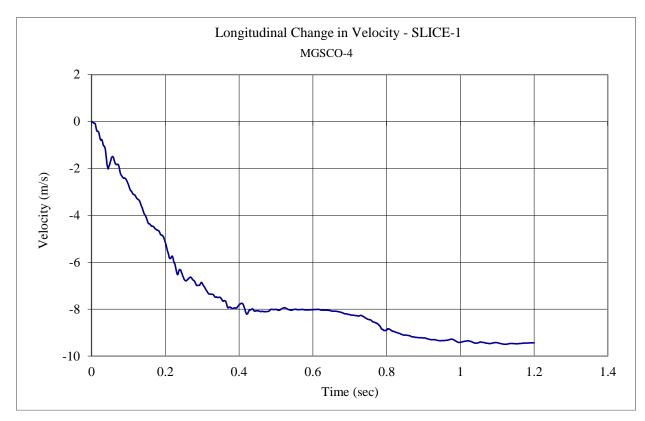


Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSCO-4

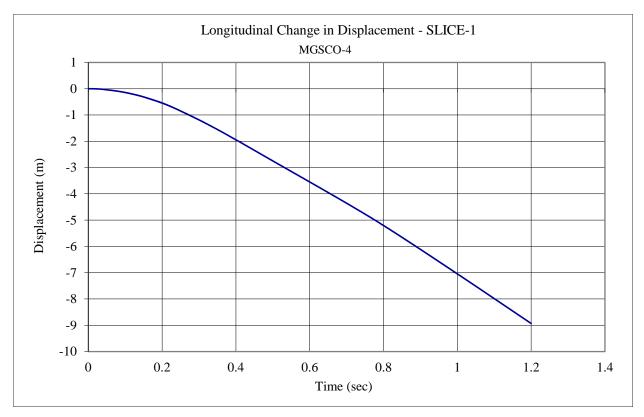


Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSCO-4

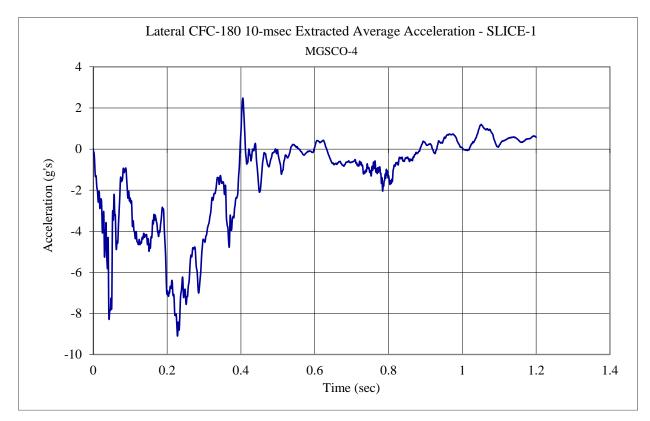


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSCO-4

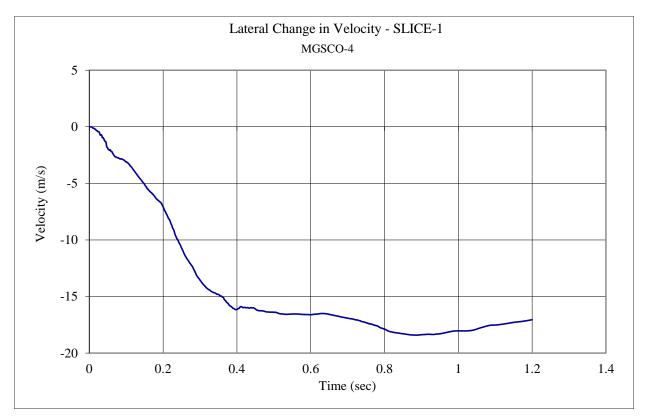


Figure E-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSCO-4

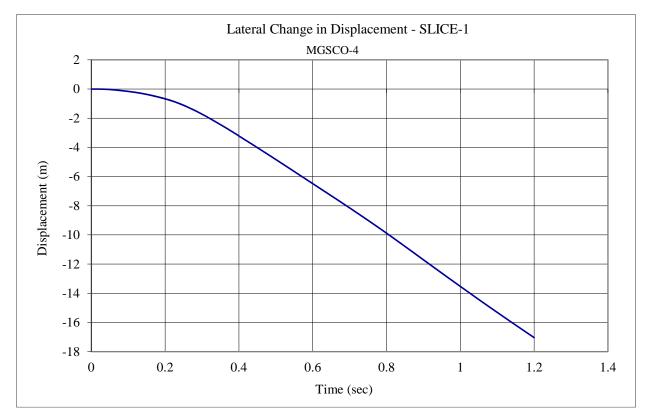


Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. MGSCO-4

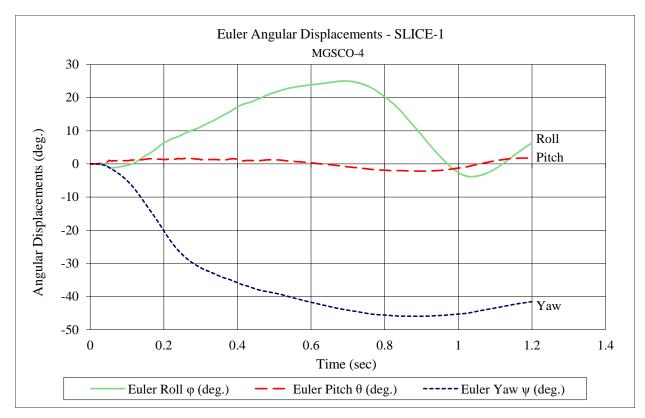


Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. MGSCO-4

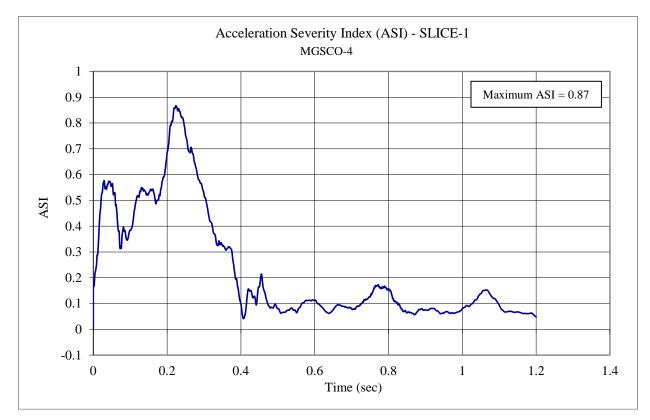


Figure E-16. Acceleration Severity Index (SLICE-1), Test No. MGSCO-4

END OF DOCUMENT