

Midwest Pooled Fund Research Program Fiscal Years 2017-2020 (Year 28) Research Project Number TPF-5(193) Supplement #123 NDOT Sponsoring Agency Code RPFP-18-BULLNOSE

MASH TESTING OF BULLNOSE WITH BREAKAWAY STEEL

POSTS (TEST NOS. MSPBN-4 THROUGH MSPBN-8)

Submitted by

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Trent J. Ahlers Former Undergraduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director James C. Holloway, M.S.M.E., E.I.T. Research Engineer & Assistant Director – Physical Testing Division

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-418-20

September 1, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-418-20	2.		3. Recipient	's Accession No.
4. Title and Subtitle MASH Testing of Bullnose with Breakaway Steel Posts (Test Nos. MSPBN-4 through MSPBN-8)		3. MSPBN-4	5. Report Da September 1	
			6.	
7. Author(s) Bielenberg, R.W., Ahlers, T.J., Faller, R.K., and Holloway, J.C.			8. Performin TRP-03-418	ng Organization Report No. 3-20
9. Performing Organization Name and Address Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln			10. Project/"	Fask/Work Unit No.
Main Office: Prem S. Paul Research Center at V Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853		est Site: . 36th Street ebraska 68524		t © or Grant (G) No. Supplement #123
 12. Sponsoring Organization Name and Address Midwest Pooled Fund Program Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502 				Report and Period Covered t: 2017 – 2020
		-	14. Sponsor RPFP-18-B	ing Agency Code ULLNOSE
15. Supplementary Notes Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.				on.
16. Abstract This research study was Phase II of the evaluation a thrie-beam bullnose system using Universal Breakaway Steel Posts (UBSPs) to <i>Manual for Assessing Safety Hardware</i> (MASH) 2016 Test Level 3 (TL-3) criteria. Three full-scale crash tests were successfully conducted in Phase I to evaluate the bullnose system. In Phase II, test no. MSPBN-4 was conducted according to test designation no. 3-30 with an 1100C vehicle impacting the barrier at a speed of 62.1 mph (99.9 km/h) and ar angle of 1.3 degrees. Test no. MSPBN-5 was conducted according to test designation no. 3-30 with an 1100C vehicle impacting the barrier at a speed of 62.1 mph (99.9 km/h) and ar angle of 1.3 degrees. Test no. MSPBN-5 was conducted according to test designation no. 3-30 with an 1100C vehicle impacting the barrier at a speed of 62.7 mph (100.9 km/h) and an angle of 0.3 degrees. Test no. MSPBN-6 was conducted according to test designation no. 3-31 with a 2270P vehicle impacting the barrier at a speed of 63.1 mph (101.6 km/h) and an angle of 15.1 degrees Test no. MSPBN-8 was conducted according to test designation no. 3-37b with an 1100C vehicle impacting the barrier at a speed of 63.2 mph (101.6 km/h) and an angle of 25 degrees. Test no. MSPBN-4 was unacceptable according to MASH 2016 for test designation no. 3-30 due to the system inadequately containing or capturing the vehicle, and one MASH 2016 for test designation no. 3-30 due to the system inadequately containing or capturing the vehicle, and one MASH 2016 deformation limit was violated for the windshield The bullnose system was modified by the use of an additional capture cable in the nose of the system for the remaining testing to address the failure observed in Test no. MSPBN-4. Test nos. MSPBN-5 through MSPBN-8 were deemed successful according to MASH 2016. The three successful full-scale crash tests from Phase I and the four successful crash tests from Phase II indicate that thrie-beam bullnose system meets the TL-3 test matrix for a MASH 2016-compliant crash cushion				
17. Document Analysis/Descripto Highway Safety, Crash Test, Road Breakaway Posts, Compliance Te Thrie Beam	dside Appurtenances,		Document av	vailable from: National ces, Springfield, Virginia
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 581	3	22. Price

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the state highway departments participating in the Midwest Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Mojdeh Asadollahi Pajouh, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: the Midwest Pooled Fund Program, managed by the Nebraska Department of Transportation and funded by the California Department of Transportation, Florida Department of Transportation, Georgia Department of Transportation, Hawaii Department of Transportation, Illinois Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Kentucky Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, North Carolina Department of Transportation, South Dakota Department of Transportation, Utah Department of Transportation, Virginia Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Assistant Professor C.S. Stolle, Ph.D., E.I.T., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Assistant Professor M. Asadollahi Pajouh, Ph.D., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistant

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Georgia Department of Transportation

Brent Story, P.E., State Design Policy Engineer Frank Flanders IV, P.E., Assistant Design Policy Engineer

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

Illinois Department of Transportation

Filiberto Sotelo, Safety Evaluation Engineer Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Katherine Smutzer, P.E., Standards Engineer Elizabeth Phillips, P.E., Standards and Policy Manager

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design Elijah Gansen, P.E., Geometrics Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Thomas Rhoads, P.E., Road Design Leader, Bureau of Road Design

Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer Kevin Martin, P.E., Transportation Engineer Specialist Gary Newton, Engineering Tech III, Design Standards

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Sarah Kleinschmit, P.E., Policy and Innovations Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer Jim Knott, P.E., Construction Engineer Mike Owen, P.E., State Roadway Design Engineer Matt Neemann, P.E., Traffic Control Engineer Mick Syslo, Materials and Research Engineer Mark Fischer, Research Engineer Lieska Halsey, Highway Program Specialist Angela Andersen, Federal Aid Administrator David Hansen, Engineer II

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development

D. D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer

Brian Mayhew, P.E., State Traffic Safety Engineer Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

Mark H. Anthony, P.E., Letting Preparation Engineer J. Adam Hixon, P.P., Design Standards Associate Hanry Cross, P.E., Design Standards Engineer Jason Hall, P.E., Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Bernie Clocksin, P.E., Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

Charles Patterson, P.E., Standards/Special Design Section Manager

Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

		METRIC) CONVE		
		IATE CONVERSION		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
n.	inches	25.4	millimeters	mm
ť	feet	0.305	meters	m
/d	yards	0.914	meters	m
ni	miles	1.61	kilometers	km
2		AREA		2
in ²	square inches	645.2	square millimeters	mm^2
ft ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
ni ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
/d ³	cubic yards	0.765	cubic meters	m ³
	NOTE: vo	lumes greater than 1,000 L shall	be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Г	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
		EMPERATURE (exact de		8(11)
		5(F-32)/9		
°F	Fahrenheit	or (F-32)/1.8	Celsius	°C
		ILLUMINATION		
c	6			
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
		RCE & PRESSURE or S	TRESS	
lbf	poundforce	4.45	newtons	Ν
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIMA	TE CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
v		LENGTH		v
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
XIII	kiloineters	AREA	miles	IIII
			ih	in ²
mm ²	square millimeters	0.0016	square inches	
m ² m ²	square meters	10.764	square feet	ft^2
	square meters	1.195	square yard	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
		VOLUME		
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
5	grams	0.035	ounces	oz
s (g	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short ton (2,000 lb)	T
		MPERATURE (exact de		
°C	Celsius	1.8C+32	Fahrenheit	°F
C	Celsius		ramemen	1
		ILLUMINATION		C.
X	lux	0.0929	foot-candles	fc
cd/m ²	candela per square meter	0.2919	foot-Lamberts	fl
	EO	RCE & PRESSURE or S	TRESS	
	FU			
N Pa	newtons	0.225 0.145	poundforce poundforce per square inch	lbf lbf/in ²

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
SI* (MODERN METRIC) CONVERSION FACTORS	v
LIST OF FIGURES	ix
LIST OF TABLES	xxii
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Background 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	
3 TEST CONDITIONS 3.1 Test Facility 3.2 Vehicle Tow and Guidance System 3.3 Test Vehicles 3.4 Simulated Occupant 3.5 Data Acquisition Systems 3.5.1 Accelerometers 3.5.2 Rate Transducers 3.5.3 Retroreflective Optic Speed Trap 3.5.4 Digital Photography	
4 DESIGN DETAILS, TEST NO. MSPBN-4	
 5 FULL-SCALE CRASH TEST NO. MSPBN-4	
5.7 Discussion	

6 DESIGN DETAILS, TEST NO. MSPBN-5 THROUGH MSPBN-7	
6.1 Bullnose Design Modification Following Test No. MSPBN-4	
6.2 System Details	102
7 FULL-SCALE CRASH TEST NO. MSPBN-5	143
7.1 Static Soil Test	
7.2 Weather Conditions	
7.3 Test Description	
7.4 Barrier Damage	
7.5 Vehicle Damage	
7.6 Occupant Risk	
7.7 Discussion	
8 FULL-SCALE CRASH TEST NO. MSPBN-6	169
8.1 Static Soil Test	169
8.2 Weather Conditions	
8.3 Test Description	
8.4 Barrier Damage	
8.5 Vehicle Damage	
8.6 Occupant Risk	
8.7 Discussion	
9 FULL-SCALE CRASH TEST NO. MSPBN-7	200
9.1 Static Soil Test	200
9.2 Weather Conditions	200
9.3 Test Description	
9.4 Barrier Damage	
9.5 Vehicle Damage	
9.6 Occupant Risk	
9.7 Discussion	
10 DESIGN DETAILS, TEST NO. MSPBN-8	232
11 FULL-SCALE CRASH TEST NO. MSPBN-8	262
11.1 Static Soil Test	
11.2 Weather Conditions	
11.3 Test Description	
11.4 Barrier Damage	
11.5 Vehicle Damage	
11.6 Occupant Risk	
11.7 Discussion	
12 MASH TEST DESIGNATION NO. 3-38 - 1500A ESTIMATION PROCEDURE	284
13 SUMMARY AND CONCLUSIONS	285
14 RECOMMENDATIONS	311
14.1 Breakaway Posts	311

14.2 Downstream End Anchorage
14.3 Increased Impact Speeds
14.4 Transitioning to MGS
14.5 Transitioning to Thrie-Beam AGTs
14.6 Working Width – Lateral and Longitudinal Offsets
14.7 Grading Requirements
14.8 Splice Lapping
14.9 Curbs
14.10 Wide Designs
14.11 Flaring
15 MASH EVALUATION
15 MASH EVALUATION
15.1 Fest Matrix
15.3 Bullnose Modification
15.4 1500A Estimation Procedure
15.5 MASH 2016 Evaluation
15.5 MASH 2010 Evaluation
16 REFERENCES
17 APPENDICES
Appendix A. Vehicle Center of Gravity Determination
Appendix B. Material Specifications
Appendix C. Static Soil Tests
Appendix D. Vehicle Deformation Records
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-4 496
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-5 513
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-6 530
Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-7 547
Appendix I. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-8 564

LIST OF FIGURES

Figure 1. Test Vehicle, Test No. MSPBN-4	8
Figure 2. Test Vehicle Floor Pan and Undercarriage, Test No. MSPBN-4	9
Figure 3. Vehicle Dimensions, Test No. MSPBN-4	
Figure 4. Test Vehicle, Test No. MSPBN-5	11
Figure 5. Test Vehicle Floor Pan and Undercarriage, Test No. MSPBN-5	12
Figure 6. Vehicle Dimensions, Test No. MSPBN-5	13
Figure 7. Test Vehicle, Test No. MSPBN-6	14
Figure 8. Test Vehicle Floor Pan and Undercarriage, Test No. MSPBN-6	15
Figure 9. Vehicle Dimensions, Test No. MSPBN-6	16
Figure 10. Test Vehicle, Test No. MSPBN-7	17
Figure 11. Vehicle Floor Pan and Undercarriage, Test No. MSPBN-7	18
Figure 12. Vehicle Dimensions, Test No. MSPBN-7	19
Figure 13. Test Vehicle, Test No. MSPBN-8	20
Figure 14. Vehicle Floor Pan and Undercarriage, Test No. MSPBN-8	21
Figure 15. Vehicle Dimensions, Test No. MSPBN-8	
Figure 16. Target Geometry, Test No. MSPBN-4	24
Figure 17. Target Geometry, Test No. MSPBN-5	
Figure 18. Target Geometry, Test No. MSPBN-6	26
Figure 19. Target Geometry, Test No. MSPBN-7	27
Figure 20. Target Geometry, Test No. MSPBN-8	28
Figure 21. Camera Locations, Speeds, and Lens Settings, Test No. MSPBN-4	31
Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. MSPBN-5	32
Figure 23. Camera Locations, Speeds, and Lens Settings, Test No. MSPBN-6	
Figure 24. Camera Locations, Test No. MSPBN-7	
Figure 25. Camera Locations, Test No. MSPBN-8	36
Figure 26. Test Installation Layout, Test No. MSPBN-4	40
Figure 27. Layout for Post Locations, Test No. MSPBN-4	41
Figure 28. Alternate Coordinate System for the Layout of Post Locations, Test Nos.	
MSPBN-4	42
Figure 29. Post Nos. 3 through 8, 9 through 12, and 13 Details, Tests No. MSPBN-4	43
Figure 30. Post Nos. 1 and 2 Details, Tests No. MSPBN-4	44
Figure 31. End Rail Splice Detail, Test No. MSPBN-4	
Figure 32. Nose Section Detail, Test No. MSPBN-4	46
Figure 33. Anchor Post Details, Test No. MSPBN-4	
Figure 34. UBSP Post and Component Details, Test No. MSPBN-4	
Figure 35. Upper and Lower Post Assembly Details, Test No. MSPBN-4	
Figure 36. UBSP Component Details, Test No. MSPBN-4	
Figure 37. W6x9 Post and Blockout Details, Test No. MSPBN-4	
Figure 38. BCT Timber Posts and Foundation Tube Details, Test No. MSPBN-4	
Figure 39. BCT Anchor Cable Detail, Test No. MSPBN-4	
Figure 40. Nose Cable Detail, Test No. MSPBN-4	
Figure 41. BCT Anchorage Detail, Test No. MSPBN-4	
Figure 42. Rail Section Details Section No. 1, Test No. MSPBN-4	
Figure 43. Rail Section Details Section No. 2, Test No. MSPBN-4	
Figure 44. Rail Section Details Section Nos. 3 and 4, Test No. MSPBN-4	58

Figure 45.	. Rail Section Details Section Nos. 5 and 6, Test No. MSPBN-4	59
Figure 46.	. System Hardware, Test No. MSPBN-4	60
Figure 47.	. System Hardware, Test No. MSPBN-4	61
Figure 48.	. Bill of Materials, Test No. MSPBN-4	62
Figure 49.	. Bill of Materials, Test No. MSPBN-4	63
Figure 50.	. Test Installation Photographs, System Overview, Test No. MSPBN-4	64
	. Test Installation Photographs, End Anchorages and Nose Cables, Test No.	
M	SPBN-4	65
Figure 52.	. Test Installation Photographs, Nose Details, Test No. MSPBN-4	66
Figure 53.	. Test Installation Photographs, Post Details, Test No. MSPBN-4	67
Figure 54.	. Test Installation Photographs, System Overview, Test No. MSPBN-4	68
	. Impact Location, Test No. MSPBN-4	
Figure 56.	. Sequential Photographs, Test No. MSPBN-4	74
Figure 57.	. Sequential Photographs, Test No. MSPBN-4	75
Figure 58.	. Documentary Photographs, Test No. MSPBN-4	76
Figure 59.	. Additional Documentary Photographs, Test No. MSPBN-4	77
Figure 60.	. Additional Documentary Photographs, Test No. MSPBN-4	78
U	. Vehicle Final Position and Trajectory Marks, Test No. MSPBN-4	
	. Overview of System Damage, Test No. MSPBN-4	
Figure 63.	. Impact Location Damage, Test No. MSPBN-4	83
0	. Close Up of Damage to Impact Area, Test No. MSPBN-4	
	. Damage to Post Nos. A1 and A2, Test No. MSPBN-4	
Figure 66.	. Damage to Post Nos. B1 and B2, Test No. MSPBN-4	86
Figure 67.	. Damage to Impact Location, Test No. MSPBN-4	87
	. Damage to Post Nos. A14 and A15, Test No. MSPBN-4	
0	. System Deformation, Test No. MSPBN-4	
	. Vehicle Damage, Test No. MSPBN-4	
	. Vehicle Damage, Test No. MSPBN-4	
	. Vehicle Interior Damage, Test No. MSPBN-4	
	. Undercarriage Damage, Test No. MSPBN-4	
	. Summary of Test Results and Sequential Photographs, Test No. MSPBN-4	96
0	. Vehicle Geometry and Barrier Alignment Comparison, Test Nos. USPBN-3	0.0
	pp) and MSPBN-4 (bottom)	
0	. Time Sequential Comparison, Test Nos. USPBN-3 (left) and MSPBN-4 (right)	
	. Time Sequential Comparison, Test Nos. USPBN-3 (left) MSPBN-4 (right)	
	. Test Installation Layout, Test No. MSPBN-5	
	. Test Installation Layout, Test No. MSPBN-6	
	. Test Installation Layout, Test No. MSPBN-7	
-	Layout for Post Locations, Test Nos. MSPBN-5 through MSPBN-7	106
	Alternate Coordinate System for the Layout of Post Locations, Test Nos.	107
	SPBN-5 through MSPBN-7	107
	. Post Nos. 3 through 8, 9 through 12, and 13 Details, Test Nos. MSPBN-5	100
	rough MSPBN-7	
-	. Post Nos. 1 and 2 Details, Test Nos. MSPBN-5 through MSPBN-7	
0	. End Rail Splice Detail, Test Nos. MSPBN-5 through MSPBN-7	
	Nose Section Detail, Test Nos. MSPBN-5 through MSPBN-7	
Figure 8/.	. Anchor Post Details, Test Nos. MSPBN-5 through MSPBN-7	112

Figure 88. UBSP Post and Component Details, Test Nos. MSPBN-5 through MSPBN-7	113
Figure 89. Upper and Lower Post Assembly Details, Test Nos. MSPBN-5 through	
MSPBN-7	114
Figure 90. UBSP Component Details, Test Nos. MSPBN-5 through MSPBN-7	115
Figure 91. W6x9 Post and Blockout Details, Test Nos. MSPBN-5 through MSPBN-7	116
Figure 92. BCT Timber Posts and Foundation Tube Details, Test Nos. MSPBN-5 through	
MSPBN-7	117
Figure 93. BCT Anchor Cable Detail, Test Nos. MSPBN-5 through MSPBN-7	118
Figure 94. Nose Cable Detail, Test Nos. MSPBN-5 through MSPBN-7	
Figure 95. BCT Anchorage Details, Test Nos. MSPBN-5 through MSPBN-7	120
Figure 96. Rail Section Details Section No. 1, Test Nos. MSPBN-5 through MSPBN-7	
Figure 97. Rail Section Details Section No. 2, Test Nos. MSPBN-5 through MSPBN-7	
Figure 98. Rail Section Details Nos. 3 and 4, Test Nos. MSPBN-5 through MSPBN-7	123
Figure 99. Rail Detail Section Nos. 5 and 6, Test Nos. MSPBN-5 through MSPBN-7	124
Figure 100. System Hardware, Test Nos. MSPBN-5 through MSPBN-7	125
Figure 101. System Hardware, Test Nos. MSPBN-5 through MSPBN-7	126
Figure 102. Bill of Materials, Test Nos. MSPBN-5 through MSPBN-7	127
Figure 103. Bill of Materials, Test Nos. MSPBN-5 through MSPBN-7	128
Figure 104. Test Installation Photos, System Overview, Test No. MSPBN-5	129
Figure 105. Test Installation Photographs, End Anchorages and Nose Cables, Test No.	
MSPBN-5	130
Figure 106. Test Installation Photographs, Post Details for Side A (top) and Side B	
(bottom), Test No. MSPBN-5	
Figure 107. Test Installation Photographs, System Nose Details, Test No. MSBPN-5	132
Figure 108. Test Installation Photographs, Post Details for Side A (top) and Side B	
(bottom), Test No. MSPBN-5	
Figure 109. Test Installation Photos, System Overview, Test No. MSPBN-6	134
Figure 110. Test Installation Photographs, End Anchorage and Nose Cables, Test No.	
MSPBN-6	
Figure 111. Test Installation Photographs, Nose Details, Test No. MSPBN-6	
Figure 112. Test Installation Photographs, Post Details, MSPBN-6	
Figure 113. Test Installation Photograph, System Overview, Test No. MSPBN-7	
Figure 114. Test Installation Photograph, System Overview, Test No. MSPBN-7	139
Figure 115. Test Installation Photographs, Nose Cable and End Anchorage Details, Test	
No. MSPBN-7	
Figure 116. Test Installation Photographs, Nose Details, Test No. MSPBN-7	
Figure 117. Test Installation Photographs, Post Details, Test No. MSPBN-7	
Figure 118. Impact Location, Test No. MSPBN-5	
Figure 119. Sequential Photographs, Test No. MSPBN-5	
Figure 120. Additional Sequential Photographs, Test No. MSPBN-5	
Figure 121. Documentary Photographs, Test No. MSPBN-5	
Figure 122. Vehicle Final Position, Test No. MSPBN-5	
Figure 123. Overview of System Damage, Test No. MSPBN-5	
Figure 124. Close-Up of Impacted Area, Test No. MSPBN-5	
Figure 125. Damage to System at Post Nos. A1 and A2, Test No. MSPBN-5	
Figure 126. Damage to System at Post Nos. A3 and A4, Test No. MSPBN-5	
Figure 127. Damage to System at Post Nos. A5 and A6, Test No. MSPBN-5	156

Figure 128. Damage to System at Post Nos. B1 and B2, Test No. MSPBN-5	157
Figure 129. Damage to Post Nos. B3 through B5, Test No. MSPBN-5	158
Figure 130. UBSP Bases, Test No. MSPBN-5	159
Figure 131. Working Width, Test No. MSPBN-5	160
Figure 132. Vehicle Damage, Test No. MSPBN-5	161
Figure 133. Vehicle Damage, Test No. MSPBN-5	
Figure 134. Vehicle Damage, Test No. MSPBN-5	
Figure 135. Interior Vehicle Damage, Test No. MSPBN-5	
Figure 136. Undercarriage Damage, Test No. MSPBN-5	
Figure 137. Summary of Test Results and Sequential Photographs, Test No. MSPBN-5	
Figure 138. Impact Location, Test No. MSPBN-6	
Figure 139. Sequential Photographs, Test No. MSPBN-6	
Figure 140. Additional Sequential Photographs, Test No. MSPBN-6	
Figure 141. Documentary Photographs, Test No. MSPBN-6	
Figure 142. Vehicle Final Position, Test No. MSPBN-6	
Figure 143. Overview of System Damage with Vehicle Present, Test No. MSPBN-6	
Figure 144. Overview of System Damage with Vehicle Removed, Test No. MSPBN-6	
Figure 145. Damage to Impact Location, Test No. MSPBN-6	
Figure 146. Damage to Post Nos. A1 (middle) and A2 (bottom), Test No. MSPBN-6	
Figure 147. Damage to Rail at Post Nos. A1 and A2, Test No. MSPBN-6	
Figure 148. Damage to Rail at Post Nos. A3 and A4, Test No. MSPBN-6	
Figure 149. Damage to Rail at Post Nos. A5 through A9, Test No. MSPBN-6	
Figure 150. Damage to Post Nos. B1 and B2, Test No. MSPBN-6	
Figure 151. Damage to Rail at Post Nos. B1 and B2, Test No. MSPBN-6	
Figure 152. Damage to Rail at Post Nos. B3 through B5, Test No. MSPBN-6	
Figure 153. Damage to Railing at Post Nos. B6 through B9, Test No. MSPBN-6 Figure 154. UBSP Post Bases, Test No. MSPBN-6	
Figure 154. UBSP Post Bases, Test No. MSPBN-6	
Figure 155. Working width, Test No. MSPBN-6	
Figure 150. Vehicle Damage, Test No. MSPBN-6	
Figure 157. Vehicle Damage, Test No. MSP BN-6	
Figure 158. Vehicle Interior Damage, Test No. MSPBN-6	
Figure 160. Summary of Test Results and Sequential Photographs, Test No. MSPBN-6	100
Figure 161. Impact Location, Test No. MSPBN-7	202
Figure 162. Sequential Photographs, Test No. MSPBN-7	
Figure 162. Sequential Photographs, Test No. MSPBN-7	
Figure 164. Documentary Photographs, Test No. MSPBN-7	
Figure 165. Additional Documentary Photographs, Test No. MSPBN-7	
Figure 166. Vehicle Final Position and Trajectory Marks, Test No. MSPBN-7	
Figure 167. Overview of System Damage with Vehicle Present, Test No. MSPBN-7	
Figure 168. Overview of System Damage without Vehicle Present, Test No. MSPBN-7	
Figure 169. Damage to Rail at Impact Location, Test No. MSPBN-7	
Figure 170. Damage to Post Nos. A1 and A2, Test No. MSPBN-7	
Figure 171. Damage to Rail at Post Nos. A1 through A3, Test No. MSPBN-7	
Figure 172. Damage to Rail at Post Nos. A4 through A6, Test No. MSPBN-7	
Figure 173. Damage to Rail at Post Nos. A6 through A8, Test No. MSPBN-7	
Figure 174. Overview of Damage to B Side of System, Test No. MSPBN-7	

Figure 175. Damage to Rail at Post Nos. B1 through B4, Test No. MSPBN-7	220
Figure 176. Damage to Rail at Post Nos. B5 through B8, Test No. MSPBN-7	221
Figure 177. Damage to Rail at Post Nos. B9 through B12, Test No. MSPBN-7	222
Figure 178. UBSP Post Bases, Test No. MSPBN-7	223
Figure 179. Working Width, Test No. MSPBN-7	224
Figure 180. Vehicle Damage, Test No. MSPBN-7	225
Figure 181. Additional Vehicle Damage, Test No. MSPBN-7	226
Figure 182. Vehicle Interior Damage, Test No. MSPBN-7	227
Figure 183. Vehicle Undercarriage Damage, Test No. MSPBN-7	228
Figure 184. Summary of Test Results and Sequential Photographs, Test No. MSPBN-7	231
Figure 185. System Layout, Test No. MSPBN-8	
Figure 186. Layout for Post Locations, Test No. MSPBN-8	234
Figure 187. Alternative Coordinate System for the Layout of Post Locations, Test No.	
MSPBN-8	235
Figure 188. Post Nos. 3 through 6, 7 through 12, Test No. MSPBN-8	236
Figure 189. Post Nos. 13 and 14 Details, Test No. MSPBN-8	
Figure 190. End Rail Splice Detail, Test No. MSPBN-8	
Figure 191. Nose Section Detail, Test No. MSPBN-8	
Figure 192. Anchor Post Details, Test No. MSPBN-8	
Figure 193. UBSP and Component Details, Test No. MSPBN-8	
Figure 194. Upper and Lower Post Assembly Details, Test No. MSPBN-8	
Figure 195. UBSP Component Details, Test No. MSPBN-8	
Figure 196. W6x9 Post and Blockout Details, Test No. MSPBN-8	
Figure 197. BCT Timber Posts and Foundation Tube Details, Test No. MSPBN-8	
Figure 198. BCT Anchor Details, Test No. MSPBN-8	
Figure 199. Nose Cable Detail, Test No. MSBPN-8	
Figure 200. BCT Anchorage Detail, Test No. MSPBN-8	
Figure 201. Rail Section Details, Section No. 1, Test No. MSPBN-8	
Figure 202. Rail Section Details, Section No. 2, Test No. MSPBN-8	
Figure 203. Rail Section Details, Section Nos. 3 and 4, Test No. MSPBN-8	
Figure 204. Rail Section Details, Section Nos. 5 and 6, Test No. MSPBN-8	
Figure 205. System Hardware, Test No. MSPBN-8	
Figure 206. System Hardware, Test No. MSPBN-8	
Figure 207. Bill of Materials, Test No. MSPBN-8	
Figure 208. Bill of Materials, Test No. MSPBN-8	
Figure 209. Test Installation Photograph, System Overview, Test No. MSPBN-8	
Figure 210. Test Installation Photograph, System Overview, Test No. MSPBN-8	258
Figure 211. Test Installation Photographs, End Anchorage and Nose Cable Details, Test	
No. MSPBN-8	
Figure 212. Test Installation Photographs, Post Details, Test No. MSPBN-8	
Figure 213. Test Installation Photographs, Nose Details, Test No. MSPBN-8	
Figure 214. Test Installation Photographs, System Overview, Test No. MSPBN-8	
Figure 215. Impact Location, Test No. MSPBN-8	
Figure 216. Sequential Photographs, Test No. MSPBN-8	
Figure 217. Additional Sequential Photographs, Test No. MSPBN-8	
Figure 218. Documentary Photographs, Test No. MSPBN-8	
Figure 219. Additional Documentary Photographs, Test No. MSPBN-8	270

Figure 220. Vehicle Final Position and Trajectory Marks, Test No. MSPBN-8	271
Figure 221. Overview of Damage to System, Test No. MSPBN-8	
Figure 222. Damage to Impacted Area, Test No. MSPBN-8	
Figure 223. Damage to System at Post Nos. A11 and A12, Test No. MSPBN-8	275
Figure 224. Damage to System at Post Nos. A13 and A14, Test No. MSPBN-8	
Figure 225. Initial and Final Positions, Test No. MSPBN-8	
Figure 226. Vehicle Damage, Test No. MSPBN-8	
Figure 227. Vehicle Damage, Test No. MSPBN-8	
Figure 228. Occupant Compartment and Undercarriage Damage, Test No. MSPBN-8	
Figure 229. Summary of Test Results and Sequential Photographs, Test No. MSPBN-8	
Figure 230. Test Installation Layout, Bullnose Final	
Figure 231. Layout for Post Locations, Bullnose Final	
Figure 232. Post Nos. 3 through 8 and 9 through 12 Details, Bullnose Final	
Figure 233. Post Nos. 1 and 2 Details, Bullnose Final	
Figure 234. End Rail Splice Detail, Bullnose Final	
Figure 235. Nose Section Detail, Bullnose Final	
Figure 236. Anchor Post Details, Bullnose Final	
Figure 237. UBSP and Component Details, Bullnose Final	
Figure 238. Upper and Lower Post Assembly Details, Bullnose Final	
Figure 239. UBSP Component Detail, Bullnose Final	
Figure 240. W6x9 Post and Blockout Details, Bullnose Final	
Figure 241. BCT Timber Post and Foundation Tube Details, Bullnose Final	
Figure 242. BCT Anchor Cable Detail, Bullnose Final	
Figure 243. Nose Cable Detail, Bullnose Final	
Figure 244. BCT Anchorage Detail, Bullnose Final.	
Figure 245. Rail Section Details, Section No. 1, Bullnose Final	
Figure 246. Rail Section Details, Section No. 2, Bullnose Final Figure 247. Rail Section Details, Section Nos. 3 and 4, Bullnose Final	
Figure 247. Rail Section Details, Section Nos. 5 and 4, Bullhose Final	
Figure 248. Kan Section Details, Section Nos. 5 and 6, Bunnose Final Figure 249. System Hardware, Bullnose Final	
Figure 249. System Hardware, Bullnose Final	
Figure 250. System Hardware, Bulliose Final	
Figure 251. Bill of Materials, Bullnose Final	
Figure 252. Bhi of Watchars, Burnose Final	
Figure 255. Thrie-Beam Bullnose Transition to Thrie-Beam AGTs	
Figure 255. Thrie-Beam Bullnose Ditch Grading Schematic, Option 1	
Figure 256. Thrie-Beam Bullnose Ditch Grading Schematic, Option 2	
Figure 257. Thrie-Beam Bullnose Ditch Grading Schematic, Option 3	
Figure 258. Thrie-Beam Bullnose Ditch Grading Schematic, Option 4	
Figure 259. Wide Thrie-Beam Bullnose, Option 1	
Figure 260. Wide Thrie-Beam Bullnose, Option 1	
Figure 261. Wide Thrie-Beam Bullnose, Option 1	
Figure 262. Wide Thrie-Beam Bullnose, Option 2	
Figure 263. Wide Thrie-Beam Bullnose, Option 2	
Figure 264. Wide Thrie-Beam Bullnose, Option 2	
Figure 265. Example of Flared Thrie-Beam Bullnose at Twin Bridge Installations	
Figure 266. MASH TL-3 Thrie-Beam Bullnose	
-	

Figure A-1. Vehicle Mass Distribution, Test No. MSPBN-4	
Figure A-2. Vehicle Mass Distribution, Test No. MSPBN-5	
Figure A-3. Vehicle Mass Distribution, Test No. MSPBN-6	
Figure A-4. Vehicle Mass Distribution, Test No. MSPBN-7	
Figure A-5. Vehicle Mass Distribution, Test No. MSPBN-8	
Figure B-1. Foundation Tube Material Specification, Test Nos. MSPBN-	4 through
MSPBN-8	
Figure B-2. Anchor Bearing Plate Material Specification, Test Nos. MSF	'BN-4 through
MSPBN-8	-
Figure B-3. Anchor Bearing Plate Material Specification, Test Nos. MSF	'BN-4 through
MSPBN-8	
Figure B-4. Lower Slip Post Tube Assembly Material Specification, Test	Nos. MSPBN-4
through MSPBN-8	
Figure B-5. Lower Slip Post Plate Assembly Material Specification, Test	
through MSPBN-8	
Figure B-6. Upper Slip Plate Assembly Material Specification, Test Nos.	
through MSPBN-7	
Figure B-7. Upper Slip Post Assembly Material Specification, Test Nos.	
through MSPBN-7	
Figure B-8. Timber Blockout and BCT Timber Post Certificate of Comp.	
MSPBN-4 through MSPBN-8	
Figure B-9. Tapered Timber Blockout and BCT Timber Post Certificate	
Test Nos. MSPBN-4 through MSPBN-7	-
Figure B-10. Tapered Timber Blockout and BCT Timber Post Certificate	
Test Nos. MSPBN-4 through MSPBN-7	
0	
Figure B-11. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-8	
Figure B-12. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-8	
Figure B-13. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-8	
Figure B-14. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 and MSPBN-5	
Figure B-15. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-8	
Figure B-16. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN 4, MSPBN-5, and MSPBN-8	
Figure B-17. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-8	
Figure B-18. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-7	
Figure B-19. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-7	
Figure B-20. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-7	
Figure B-21. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Ce	
Nos. MSPBN-4 through MSPBN-7	

 Figure B-23. ⁷/₁₆-in. (11-mm) Dia. 2½-in. (64-mm) Long Hex Tap Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7	Figure	B-22. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 and MSPBN-5	.381
 Figure B-24. ⁷/₁₆-in. (11-mm) Dia. Heavy Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-7	Figure		387
 Figure B-25. %-in. (16-mm) Dia., 10-in. (254-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-8	Figure	B-24. ⁷ / ₁₆ -in. (11-mm) Dia. Heavy Hex Nut Material Specification, Test Nos.	
through MSPBN-8	Figure	B-25. ⁵ / ₈ -in. (16-mm) Dia., 10-in. (254-mm) Long Hex Bolt Material Specification,	
Compliance, Test Nos. MSPBN-4 through MSPBN-7	Figure	-	.385
through MSPBN-7	Figure		.386
Specifications, Test Nos. MSPBN-4 through MSPBN-8	-	through MSPBN-7	.387
 4	Figure		.388
 Test Nos. MSPBN-4 through MSPBN-8	Figure		.389
 through MSPBN-8 391 Figure B-33. ⁷/₈-in. (22-mm) Dia., 8-in. (203-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7 392 Figure B-34. ⁷/₈-in. (22-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-7 393 Figure B-35. ⁵/₈-in. (16-mm) Dia., 10-in. (254-mm) Long Guardrail Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7 394 Figure B-36. 16D Double Head Nail Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8 395 Figure B-37. ⁷/₁₆-in. (11-mm) Dia. Plain Round Washer Material Specification, Test Nos. MSPBN-4 through MSPBN-8 396 Figure B-38. 5¹/₂-in. (140-mm) x 7¹/₂-in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8 397 Figure B-39. W6-in. x 8.5-in. (W152-mm x 216-mm), 78-in. (1,981-mm) Long Steel Post Material Specification, Test Nos. MSPBN-4 through MSPBN-8 398 Figure B-40. 2³/₈-in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material Specification, Test Nos. MSPBN-4, MSPBN-5, and MSPBN-8 399 Figure B-41. ⁵/₈-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Nose Cable, Test No. MSPBN-4 	Figure		.390
 Figure B-33. ⁷/₈-in. (22-mm) Dia., 8-in. (203-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7	Figure		.391
 Figure B-34. ⁷/₈-in. (22-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-7	Figure	B-33. 7/8-in. (22-mm) Dia., 8-in. (203-mm) Long Hex Bolt Material Specification,	.392
 Figure B-35. ⁵/₈-in. (16-mm) Dia., 10-in. (254-mm) Long Guardrail Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7	Figure	B-34. ⁷ / ₈ -in. (22-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4	
 Figure B-36. 16D Double Head Nail Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8 Figure B-37. ⁷/₁₆-in. (11-mm) Dia. Plain Round Washer Material Specification, Test Nos. MSPBN-4 through MSPBN-8 Figure B-38. 5¹/₂-in. (140-mm) x 7¹/₂-in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8 Figure B-39. W6-in. x 8.5-in. (W152-mm x 216-mm), 78-in. (1,981-mm) Long Steel Post Material Specification, Test Nos. MSPBN-4 through MSPBN-8 Figure B-40. 2³/₈-in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material Specification, Test Nos. MSPBN-4, MSPBN-5, and MSPBN-8 Figure B-41. ⁵/₈-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Nose Cable, Test No. MSPBN-4 	Figure	B-35. 5/8-in. (16-mm) Dia., 10-in. (254-mm) Long Guardrail Bolt Material	.394
 Figure B-37. ⁷/₁₆-in. (11-mm) Dia. Plain Round Washer Material Specification, Test Nos. MSPBN-4 through MSPBN-8	Figure	B-36. 16D Double Head Nail Certificate of Compliance, Test Nos. MSPBN-4	
 Figure B-38. 5¹/₂-in. (140-mm) x 7¹/₂-in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8	Figure	B-37. ⁷ / ₁₆ -in. (11-mm) Dia. Plain Round Washer Material Specification, Test Nos.	
 Figure B-39. W6-in. x 8.5-in. (W152-mm x 216-mm), 78-in. (1,981-mm) Long Steel Post Material Specification, Test Nos. MSPBN-4 through MSPBN-8	Figure	B-38. 5 ¹ / ₂ -in. (140-mm) x 7 ¹ / ₂ -in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post	
 Figure B-40. 2³/₈-in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material Specification, Test Nos. MSPBN-4, MSPBN-5, and MSPBN-8	Figure	B-39. W6-in. x 8.5-in. (W152-mm x 216-mm), 78-in. (1,981-mm) Long Steel Post	
Figure B-41. ⁵ / ₈ -in. (16-mm) Dia., 14.4-ft (4.3-m) Long Nose Cable, Test No. MSPBN-4400	Figure	B-40. 2 ³ / ₈ -in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material	
	0	B-41. 5%-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Nose Cable, Test No. MSPBN-4	
through MSPBN-8	-	through MSPBN-8	.401
through MSPBN-8	•	through MSPBN-8	
Figure B-45. 12 ⁵ / ₈ -in. x 5 ¹³ / ₁₆ -in. x ³ / ₁₆ -in. (321-mm x 148-mm x 5-mm) Nose Cable Anchor Plate Material Specification, Test Nos. MSPBN-4 through MSPBN-8		B-45. 12 ⁵ / ₈ -in. x 5 ¹³ / ₁₆ -in. x ³ / ₁₆ -in. (321-mm x 148-mm x 5-mm) Nose Cable	

Figure	B-46. 2 ¹ / ₄ -in. x ³ / ₄ -in. (57-mm x 19-mm), 11-gauge, U-Bolt Plate Washer Material	
	Specification, Test Nos. MSPBN-4 through MSPBN-8	.405
Figure	B-47. ¹ / ₄ -in. (6-mm) U-Bolt Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8	.406
Figure	B-48. ¹ / ₄ -in. (6-mm) Hex Nut Material Specification, Test Nos. MSPBN-4 through	.407
Figure	B-49. Ground Strut Certificate of Compliance, Test Nos. MSPBN-4 through	.408
Figure	B-50. Anchor Bracket Assembly Material Specification, Test Nos. MSPBN-4 through MSPBN-8	.409
Figure	B-51. ⁵ / ₈ -in. (16-mm) Dia., 10-in. (254-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-5 through MSPBN-8	
Figure	B-52. 5%-in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-5	
Figure	B-53. ⁵ / ₈ -in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-5 through MSPBN-7	
Figure	A-19. ⁵ / ₈ -in. (16-mm) Dia., 10-in. (254-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-5 through MSPBN-8	
Figure	B-54. ⁵ / ₈ -in. (16-mm) Dia., 14.4-ft (4.3-m) Long Cable and Swage Button Certificate of Compliance, Test Nos. MSPBN-5 through MSPBN-7	
Figure	B-55. 6-in. x 8-in. x 14-in. (152-mm x 203-mm x 362-mm) Timber Blockout Material Certification, Test Nos. MSPBN-6 and MSPBN-7	
Figure	B-56. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-6 and MSPBN-7	
Figure	B-57. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-6 and MSPBN-7	
Figure	B-58. 12-ft 6-in. (3.8-m) 12-ga (2.7 -mm) Thrie Beam Material Certification, Test Nos. MSPBN-6 and MSPBN-7	
Figure	B-59. 2 ³ / ₈ -in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material Specification, Test Nos. MSPBN-6 and MSPBN-7	
Figure	B-60. 8-in. x 6-in. x ³ / ₁₆ -in. (203-mm x 152-mm x 5-mm), 72-in. (1,829-mm) Long Foundation Tube, Test No. MSPBN-8	
Figure	B-61. 6x9 Wide Flange Beam for Upper Slip Post Assembly Material Certification, Test No. MSPBN-8	
Figure	B-62. ¾-in. (19-mm) Plate for Upper Slip Post Assembly Test Certificate, Test No. MSPBN-8	.422
Figure	B-63. Timber Blockout and BCT Timber Post Certificate of Compliance, Test No. MSPBN-8	.423
Figure	B-64. Tapered Timber Blockout and BCT Timber Post – Side A Certificate of Compliance, Test No. MSPBN-8	.424
Figure	B-65. Timber Blockout and BCT Timber Post Certificate of Compliance, Test No. MSPBN-8	
Figure	B-66. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test No. MSPBN-8	
Figure	B-67. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test No. MSPBN-8	

Figure B-68. ⁷ / ₁₆ -in14 UNC (11-mm x 1.5-mm), 2 ¹ / ₂ -in. (64-mm) Long Hex Tap Bolt	
Material, Test No. MSPBN-8	428
Figure B-69. 7/16-in. (11-mm) Hex Nut Material Certificate, Test No. MSPBN-8	429
Figure B-70. 7/16-in. (11-mm) Hex Nut Material Certificate, Test No. MSPBN-8	430
Figure B-71. ⁵ / ₈ -in. x 10-in. (16-mm x 254-mm) Bolt, Test No. MSPBN-8	431
Figure B-72. ⁵ / ₈ -in. (16-mm), 1 ¹ / ₄ -in. (32-mm) Long Guardrail Bolt Material Report, Test	
No. MSPBN-8	432
Figure B-73. ⁵ / ₈ -in. (16-mm) Dia. 1 ¹ / ₄ -in. (32-mm) Long Guardrail Bolt Test Report, Test	
No. MSPBN-8	433
Figure B-74. ⁵ / ₈ -in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt Test Report, Test	
	434
Figure B-75. ⁷ / ₈ -in. (22-mm) Dia. Hex Nut Material Specification, Test No. MSPBN-8	435
Figure B-76. 5 ¹ / ₂ -in. (140-mm) x 7 ¹ / ₂ -in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post	
Certificate of Compliance, Test No. MSPBN-8	436
Figure B-77. 5 ¹ / ₂ -in. (140-mm) x 7 ¹ / ₂ -in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post	
Certificate of Compliance, Test No. MSPBN-8	437
Figure B-78. W6-in. x 8.5-in. (W152-mm x 126-mm), 78-in. (1,981-mm) Long Steel Post	
Material Specification, Test No. MSPBN-8	438
Figure B-79. ⁵ / ₈ -in. (16-mm) Dia., 14.4-ft (4.3-m) Long Cable and Swage Button Certificate	
of Compliance, Test No. MSPBN-8	439
Figure B-80. Ground Strut and Yolk Assembly Material Certification, Test No. MSPBN-8	440
Figure C-1. Soil Strength, Initial Calibration, Test No. MSPBN-4 through MSPBN-8	442
Figure C-2. Static Soil Test, Test No. MSPBN-4	
Figure C-3. Static Soil Test, Test No. MSPBN-5	
Figure C-4. Static Soil Test, Test No. MSPBN-6	
Figure C-5. Static Soil Test, Test No. MSPBN-7	
Figure C-6. Static Soil Test, Test No. MSPBN-8	
Figure D-1. Floor Pan Deformation Data – Set 1 Left, Test No. MSPBN-4	
Figure D-2. Floor Pan Deformation Data – Set 1 Right, Test No. MSPBN-4	
Figure D-3. Floor Pan Deformation Data – Set 2 Left, Test No. MSPBN-4	
Figure D-4. Floor Pan Deformation Data – Set 2 Right, Test No. MSPBN-4	
Figure D-5. Occupant Compartment Deformation Data – Set 1 Left, Test No. MSPBN-4	
Figure D-6. Occupant Compartment Deformation Data – Set 1 Right, Test No. MSPBN-4	
Figure D-7. Occupant Compartment Deformation Data – Set 2 Left, Test No. MSPBN-4	
Figure D-8. Occupant Compartment Deformation Data – Set 2 Right, Test No. MSPBN-4	
Figure D-9. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-4	
Figure D-10. Exterior Vehicle Crush (NASS) – Left Side, Test No. MSPBN-4	
Figure D-11. Exterior Vehicle Crush (NASS) – Right Side, Test No. MSPBN-4	
Figure D-12. Floor Pan Deformation Data – Set 1 Left, Test No. MSPBN-5	
Figure D-13. Floor Pan Deformation Data – Set 1 Right, Test No. MSPBN-5	
Figure D-14. Floor Pan Deformation Data – Set 2 Left, Test No. MSPBN-5	
Figure D-15. Floor Pan Deformation Data – Set 2 Right, Test No. MSPBN-5	
Figure D-16. Occupant Compartment Deformation Data – Set 1 Left, Test No. MSPBN-5	
Figure D-17. Occupant Compartment Deformation Data – Set 1 Right, Test No. MSPBN-5	
Figure D-18. Occupant Compartment Deformation Data – Set 2 Left, Test No. MSPBN-5	
Figure D-19. Occupant Compartment Deformation Data – Set 2 Right, Test No. MSPBN-5	
Figure D-20. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-5	408

Figure D-21. Exterior Vehicle Crush (NASS) – Left Side, Test No. MSPBN-5469 Figure D-22. Exterior Vehicle Crush (NASS) - Right Side, Test No. MSPBN-5470 Figure D-23. Floor Pan Deformation Data – Set 1 Left, Test No. MSPBN-6......471 Figure D-24. Floor Pan Deformation Data – Set 1 Right, Test No. MSPBN-6......472 Figure D-26. Occupant Compartment Deformation Data - Set 1 Left, Test No. MSPBN-6474 Figure D-27. Occupant Compartment Deformation Data - Set 1 Right, Test No. MSPBN-6....475 Figure D-28. Occupant Compartment Deformation Data - Set 2 Left, Test No. MSPBN-6476 Figure D-29. Occupant Compartment Deformation Data - Set 2 Right, Test No. MSPBN-6....477 Figure D-31. Exterior Vehicle Crush (NASS) - Left Side, Test No. MSPBN-6479 Figure D-34. Floor Pan Deformation Data – Set 1 Right, Test No. MSPBN-7......482 Figure D-37. Occupant Compartment Deformation Data - Set 1 Left, Test No. MSPBN-7485 Figure D-38. Occupant Compartment Deformation Data - Set 1 Right, Test No. MSPBN-7....486 Figure D-39. Occupant Compartment Deformation Data - Set 2 Left, Test No. MSPBN-7487 Figure D-40. Occupant Compartment Deformation Data - Set 2 Right, Test No. MSPBN-7....488 Figure D-45. Occupant Compartment Deformation Data - Set 1 Left, Test No. MSPBN-8493 Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-4......497 Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-4......498 Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-4......499 Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-4500 Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-4......501 Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-4......502 Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-4503 Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-4......504 Figure E-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. MSPBN-4......505 Figure E-10. Longitudinal Occupant Impact Velocity (DTS), Test No. MSPBN-4......506 Figure E-11. Longitudinal Occupant Displacement (DTS), Test No. MSPBN-4507 Figure E-12. 10-ms Average Lateral Deceleration (DTS), Test No. MSPBN-4......508 Figure E-13. Lateral Occupant Impact Velocity (DTS), Test No. MSPBN-4......509 Figure E-14. Lateral Occupant Displacement (DTS), Test No. MSPBN-4......510 Figure E-16. Acceleration Severity Index (DTS), Test No. MSPBN-4......512 Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-5......515 Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-5......516 Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-5517

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-5	518
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-5	
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-5	
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-5	
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-5	
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-5	
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-5	
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-5	
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-5	
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-5	
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-5	
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-5	
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-6	
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-6	
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-6	
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-6	
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-6	
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-6	
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-6	
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-6	
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-6	
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-6	540
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-6	541
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-6	542
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-6	543
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-6	544
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-6	545
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-6	
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-7	
Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-7	
Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-7	
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-7	
Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-7	
Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-7	
Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-7	
Figure H-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-7	
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-7	
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-7	
Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-7	
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-7	
Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-7	
Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-7	
Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-7	
Figure H-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-7	
Figure I-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-8 Figure I-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-8	
Figure I-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-8	
rigure 1-3. Longnuumai Occupant Displacement (SLICE-1), Test NO. MISE DN-6	

Figure I-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-8	568
Figure I-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-8	569
Figure I-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-8	570
Figure I-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-8	571
Figure I-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-8	572
Figure I-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-8	573
Figure I-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-8	574
Figure I-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-8	575
Figure I-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-8	576
Figure I-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-8	577
Figure I-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-8	578
Figure I-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-8	579
Figure I-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-8	580

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Bullnose Guardrails	4
Table 2. MASH 2016 Evaluation Criteria for Bullnose Guardrails	5
Table 3. Camera Speeds and Lens Settings, Test No. MSPBN-7	35
Table 4. Camera Speeds and Lens Settings, Test No. MSPBN-8	37
Table 5. Weather Conditions, Test No. MSPBN-4	69
Table 6. Sequential Description of Impact Events, Test No. MSPBN-4	72
Table 7. Sequential Description of Impact Events, Test No. MSPBN-4, Cont.	
Table 8. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-4	94
Table 9. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-4	95
Table 10. Weather Conditions, Test No. MSPBN-5	
Table 11. Sequential Description of Impact Events, Test No. MSPBN-5	.145
Table 12. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-	
5	
Table 13. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-5	.167
Table 14. Weather Conditions, Test No. MSPBN-6	
Table 15. Sequential Description of Impact Events, Test No. MSPBN-6	.172
Table 16. Sequential Description of Impact Events, Test No. MSPBN-6, Cont	.173
Table 17. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-	
6	
Table 18. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-6	
Table 19. Weather Conditions, Test No. MSPBN-7	
Table 20. Sequential Description of Impact Events, Test No. MSPBN-7	
Table 21. Sequential Description of Impact Events, Test No. MSPBN-7, Cont	.204
Table 22. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-	
7	
Table 23. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-7	
Table 24. Weather Conditions, Test No. MSPBN-8	
Table 25. Sequential Description of Impact Events, Test No. MSPBN-8	.266
Table 26. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-	201
-	.281
	.282
Table 28. Longitudinal OIV and ORA Estimates for MASH 1500A Estimation Procedure for Thrie-Beam Bullnose Based on Test No. MSPBN-6	201
Table 29. Summary of Safety Performance Evaluation	
Table 29. Summary of Safety Performance Evaluation Table 30. MASH 2016 TL-3 Crash Test Conditions for Bullnose Guardrails	
Table 30. MASH 2010 TL-3 Crash Test Conditions for Burnose Guardians Table 31. MASH 2016 TL-3 Crash Test Summary for Thrie-Beam Bullnose	
Table 32. Longitudinal OIV and ORA Estimates for MASH 2016 1500A Estimation	.557
Procedure for Thrie-Beam Bullnose System Based on Test No. MSPBN-6	339
Table B-1. Bill of Materials, Test No. MSPBN-4	
Table B-2. Bill of Materials, Test No. MSPBN-4, Cont	
Table B-3. Bill of Materials, Test No. MSPBN-5	
Table B-4. Bill of Materials, Test No. MSPBN-5, Cont	
Table B-5. Bill of Materials, Test Nos. MSPBN-6 and MSPBN-7	
Table B-6. Bill of Materials, Test Nos. MSPBN-6 and MSPBN-7, Cont.	
Table B-7. Bill of Materials, Test No. MSPBN-8	

Table B-8. Bill of Materials, Test No. MSPBN-8, Cont	
--	--

1 INTRODUCTION

1.1 Background

In 2009, the American Association of State Highway and Transportation Officials (AASHTO) implemented an updated standard for the evaluation of roadside hardware. The new standard, entitled the *Manual for Assessing Safety Hardware* (MASH) [1], improved the criteria for evaluating roadside hardware beyond the previous National Cooperative Highway Research Program (NCHRP) Report No. 350 standard [2] through updates to test vehicles, test matrices, and impact conditions. In an effort to encourage state departments of transportation and hardware developers to advance hardware designs, the Federal Highway Administration (FHWA) and AASHTO collaborated to develop a MASH implementation policy that includes sunset dates for various roadside hardware categories. Further, the 2009 MASH safety criteria were updated in 2016, thus resulting in the MASH 2016 document [3]. The new policy requires that safety devices installed on federal-aid roadways after the sunset dates to be evaluated according to MASH 2016.

The Midwest Pooled Fund Program members currently use several roadside hardware systems that were originally developed and evaluated under the NCHRP Report No. 350 criteria. One of those systems is a non-proprietary, thrie-beam bullnose system that was successfully developed and crash tested for use in shielding hazards within divided highways and roadways [4-9]. The thrie-beam bullnose system provides a safe, cost effective, non-proprietary option for shielding median piers and other median hazards. An evaluation of the barrier system to the MASH 2016 criteria would allow state departments of transportation (DOTs) to continue its use along their roadways and remain crashworthy with respect to the current vehicle fleet. Thus, a need existed to evaluate the thrie-beam bullnose system to the MASH 2016 criteria.

The Midwest Pooled Fund Program previously funded a research project to begin the evaluation of the thrie-beam bullnose system to the MASH 2016 Test Level 3 (TL-3) criteria using three critical full-scale crash tests selected from the ten potential required tests [10]. The results from these tests were used to determine if the remaining MASH 2016 TL-3 crash tests would be conducted, or if redesign/modification of the system was necessary. The three critical tests were test designation nos. 3-32, 3-34, and 3-35 in the MASH test matrix for crash cushions.

The Midwest Roadside Safety Facility (MwRSF) conducted test no. MSPBN-1 according to MASH 2016 test designation no. 3-35. For non-gating crash cushions, this test is designed to evaluate a critical impact point (CIP) where the crash cushion behavior transitions from capture to redirection with the 2270P vehicle. The CIP for test designation no. 3-35 was selected at post no. 3, which is halfway between the cable anchor at post no. 1 and the assumed beginning of the length of need (LON)/redirection point at post no. 5. In test no. MSPBN-1, a 5,001-lb (2268-kg) Dodge Ram Quad Cab pickup truck impacted the thrie-beam bullnose at a speed of 62.9 mph (101.3 km/h) and an angle of 25.1 degrees. After initial impact, the vehicle was captured and safely redirected by the bullnose system. As the vehicle redirected, the universal breakaway steel posts (UBSP's) at post nos. 5 through 8 were fractured and disengaged. This behavior created some pocketing and snag at post nos. 9 and 10, which were the first two W6x8.5 posts in the system. However, this behavior did not compromise vehicle capture or stability and did not negatively affect the occupant risk values. Occupant risk values for the test were well below the MASH limits, and occupant compartment deformations were minimal. Based on these values and the safe capture and

redirection of the 2270P vehicle, this test was deemed acceptable under the MASH TL-3 criteria for test designation no. 3-35.

Test no. MSPBN-2 was conducted according to MASH 2016 test designation no. 3-34. This test is an impact of a 1100C small car at 15 degrees on the CIP where the crash cushion behavior transitions from capture to redirection. The CIP for test designation no. 3-34 was selected at post no. 2, which was upstream from the CIP for test designation no. 3-35 and was similar to previous MASH end terminal test CIPs, which used a similar anchorage system. In test no. MSPBN-2, a 2,448-lb (1,110-kg) Kia Rio small car impacted the thrie-beam bullnose system at a speed of 62.1 mph (100.0 km/h) and an angle of 14.7 degrees. After initial impact, the vehicle was captured and safely redirected by the bullnose system. As the vehicle redirected, Breakaway Cable Terminal (BCT) post no. 2 and UBSP post nos. 3 through 6 were deflected laterally, but none of the posts fractured and disengaged. The cable anchorage at post no. 1 remained engaged as well. Occupant risk values for the test were well below the MASH 2016 limits, and occupant compartment deformations were minimal. Based on these values and the safe capture and redirection of the 2270P vehicle, this test was deemed acceptable under the MASH 2016 TL-3 criteria for test designation no. 3-34.

Test no. MSPBN-3 was conducted according to MASH 2016 test designation no. 3-32. This test is an impact of an 1100C small car at an angle between 5 and 15 degrees on the center of the nose of the system and is meant to evaluate occupant risk and vehicle trajectory when a small car impacts the end of the system at an angle. Test designation no. 3-32 was conducted at an angle of 15 degrees as recommended in MASH 2016, as the width of the bullnose system made a lowerangle impact less critical. In test no. MSPBN-3, a 2,441-lb (1,107-kg) Kia Rio small car impacted the thrie-beam bullnose system at a speed of 62.7 mph (101.0 km/h) and an angle of 15.1 degrees. Following the initial impact, the nose of the bullnose system wrapped around the front of the small car. The lower hump of the thrie beam was pushed below the bumper and fractured, while the top two humps of the thrie beam engaged the vehicle above the bumper, capturing the vehicle. As the vehicle continued into the system, the thrie-beam rail was deformed and pulled downstream, and the breakaway posts in the system disengaged. These two actions dissipated the kinetic energy of the small car and decelerated it. The small car impacted the back side of post nos. 3 through 5 on the far side of the bullnose, which further decelerated the small car. The vehicle was brought to a controlled stop at approximately 800 ms after impact. Vehicle damage was moderate. Occupant risk values for the test were below the MASH 2016 limits, and occupant compartment deformations were minimal. Based on these values and the safe capture and deceleration of the 1100C vehicle, this test was deemed acceptable under the MASH 2016 TL-3 criteria for test designation no. 3-32.

Based on the successful completion of the first three critical MASH 2016 tests in the evaluation of the bullnose, it was believed that the remaining required MASH TL-3 test matrix should be completed to certify the MASH 2016 compliance of the thrie-beam bullnose system.

1.2 Objective

The research objective of the Phase II study contained herein was to conduct full scale crash testing on a thrie-beam bullnose median barrier system according to TL-3 of the MASH 2016 impact safety standards. Due to the extensive number of full-scale crash tests that are required to evaluate a thrie-beam bullnose system, the crash testing was phased in order to efficiently

determine if the thrie-beam bullnose system could meet the TL-3 criteria. Phase II, which is described within this report, evaluated the bullnose system according to four remaining MASH 2016 TL-3 full-scale crash tests on the thrie-beam bullnose system.

1.3 Scope

Five full-scale crash tests were conducted to complete the MASH 2016 TL-3 evaluation of the thrie-beam bullnose system. Test nos. MSPBN-4 and MSPBN-5 were conducted according to MASH 2016 test designation no. 3-30. These tests utilized a small car weighing approximately 2,425 lb (1,100 kg) with target impact conditions of 62 mph (100 km/h) and an angle of 0 degrees. These tests were completed to evaluate the impact performance of the thrie-beam bullnose system when impacted with a ¹/₄-vehicle offset from the center of the nose of the system. Test no. MSPBN-6 was conducted according to MASH 2016 test designation no. 3-31. This test utilized a pickup truck weighing approximately 5,000 lb (2,270 kg) with target impact conditions of 62 mph (100 km/h) and an angle of 0 degrees. This test was completed to evaluate the impact performance of the thrie-beam bullnose system when impacted at the center of the nose of the system. Test no. MPSBN-7 was conducted according to MASH 2016 test designation no. 3-33. This test utilized a pickup truck weighing approximately 5,000 lb (2,270 kg) with target impact conditions of 62 mph (100 km/h) and an angle of 15 degrees. This test was completed to evaluate the impact performance of the thrie-beam bullnose system when impacted at the center of the nose of the system at an angle. Finally, test no. MPSBN-8 was conducted according to MASH 2016 test designation no. 3-37b. This test utilized a small car weighing approximately 2,425 lb (1,100 kg) with target impact conditions of 62 mph (100 km/h) and an angle of 25 degrees. This test was completed to evaluate the impact performance of the thrie-beam bullnose system when impacted in the reverse direction.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Background

Thrie-beam bullnose systems must satisfy impact safety standards. For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. The thrie-beam bullnose system is classified as a non-gating, redirective, crash cushion for the purposes of evaluation. In MASH 2016, as many as ten full-scale crash tests are potentially required to evaluate this type of hardware, as shown in Table 1.

	Test	Test	Vehicle	Impact C	onditions		
Test	Designation		Weight,	Speed,	Angla	Evaluation	
Article	No.	Vehicle	lb	mph	Angle,	Criteria ¹	
	110.		(kg)	(km/h)	degrees		
	3-30	1100C	2,425	62	0	A,D,F,H,I	
	5-50	11000	(1,100)	(100)	0	(non-gating)	
	3-31	2270D	5,000	62	0	A,D,F,H,I	
	5-51	2270P	(2,270)	(100)	0	(non-gating)	
	3-32	1100C	2,425	62	5-15	A,D,F,H,I	
	5-52	11000	(1,100)	(100)	5-15	(non-gating)	
	3-33	2270P	5,000	62	5-15	A,D,F,H,I	
Terminals			(2,270)	(100)	5-15	(non-gating)	
and	3-34	1100C	2,425	62	15	A,D,F,H,I	
Redirective	5-54		(1,100)	(100)	15	(non-gating)	
Crash	3-35	2270P	5,000	62	25	A,D,F,H,I	
Cushions	5-55		(2,270)	(100)	23	A,D,F,11,1	
Cusilions	3-36	2270P	5,000	62	25	A,D,F,H,I	
	5-50		(2,270)	(100)	23	(non-gating)	
	3-37a	2270P	5,000	62	25	A,D,F,H,I	
	5-57a	2270P	(2,270)	(100)	23	(non-gating)	
	2 27h	1100C	2,425	62	25	A,D,F,H,I	
	3-37b		(1,100)	(100)	25	(non-gating)	
	3-38	1500A	3,300	62	0	A,D,F,H,I	
1	5-58	1300A	(1,500)	(100)	0	(non-gating)	

Table 1. MASH 2016 TL-3 Crash Test Conditions for Bullnose Guardrails

¹ Evaluation criteria explained in Table 2.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
	D.	should not penetrate or show compartment, or present an un or personnel in a work zone. I occupant compartment should	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.					
	F.	The vehicle should remain upright during and after collision. The naximum roll and pitch angles are not to exceed 75 degrees.						
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
Risk		Occupant Impact Velocity Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)				
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
		Occupant Ridedown Acceleration Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				

Out of the ten required crash tests, three tests have been completed (test designation nos. 3-32, 3-34, and 3-35) and three tests were deemed non-critical. Test designation no. 3-36, on the transition to a rigid structure, was not required as it was assumed that the bullnose system will use MASH 2016 TL-3 approved thrie-beam approach guardrail transitions for attachment to any rigid structures. Test designation no. 3-38 is intended to evaluate the performance of mid-sized sedan vehicles with terminals and crash cushions. However, MASH 2016 uses an analytical estimation of 1500A vehicle decelerations based on the results of test designation no. 3-31 to determine whether or not this test is required. Thus, test designation no. 3-38 was deemed non-critical until the results from analytical estimation of 1500A vehicle decelerations were known. The final non-critical test is test designation no. 3-37 for reverse-direction impacts, which includes test designation 3-37a with the 2270P vehicle and test designation 3-37b with the 1100C vehicle. For systems utilizing a breakaway cable system like end terminals and the thrie-beam bullnose system, MASH 2016 recommends test designation no. 3-37b as the critical test to evaluate snag of the 1100C vehicle on the cable anchorage system. Test designation no. 3-37a was deemed non-critical

as the thrie-beam bullnose system should perform similarly to a longitudinal guardrail when impacted in the reverse direction upstream from the cable anchorage. Vehicle capture, stability, and occupant risk were anticipated to be more critical for the 1100C vehicle similar to previous MASH TL-3 end terminal evaluations. Previous research regarding small car impacts on trailingend anchorages for the Midwest Guardrail System (MGS) determined a CIP using LS-DYNA computer simulations for wedging the 1100C vehicle underneath the rail and the cable anchor on the MGS [11-13]. This CIP was determined to be 112½ in. (2,876 mm) upstream from the end post in the system. Based on the similarity of the cable anchorage used in the MGS trailing-end anchorage system and the thrie-beam bullnose anchorage, the researchers elected to use the same CIP for test no. 3-37b to maximize the probability of vehicle and wheel snag on the cable anchor. This impact point corresponded to the center of third post upstream from the anchorage post on the bullnose system or the fourth post upstream of the end of the bullnose system.

Thus, four remaining required tests were conducted to complete the MASH 2016 TL-3 test matrix for evaluation of the thrie-beam bullnose system. It should be noted that any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bullnose guardrail to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 (W152x23.8) posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm). If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

3 TEST CONDITIONS

3.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [15] was used to steer the test vehicles. A guide flag, attached to the right-front wheel for all five tests and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

3.3 Test Vehicles

For test no. MSPBN-4, a 2009 Kia Rio four door sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,472 lb (1,121 kg), 2,429 lb (1,102 kg), and 2,593 lb (1,176 kg), respectively. The test vehicle is shown in Figures 1 and 2, and vehicle dimensions are shown in Figure 3.

For test no. MSPBN-5, a 2009 Hyundai Accent four door sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,461 lb (1,116 kg), 2,409 lb (1,093 kg), and 2,573 lb (1,167 kg), respectively. The test vehicle is shown in Figures 4 and 5, and vehicle dimensions are shown in Figure 6.

For test no. MSPBN-6, a 2012 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,210 lb (2,363 kg), 5,061 lb (2,296 kg), and 5,236 lb (2,375 kg), respectively. The test vehicle is shown in Figures 7 and 8, and vehicle dimensions are shown in Figure 9.

For test no. MSPBN-7, a 2012 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,271 lb (2,391 kg), 5,043 lb (2,287 kg), and 5,202 lb (2,360 kg), respectively. The test vehicle is shown in Figures 10 and 11, and vehicle dimensions are shown in Figure 12.

For test no. MSPBN-8, a 2011 Hyundai Accent sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,476 lb (1,123 kg), 2,394 lb (1,086 kg),

and 2,558 lb (1,160 kg), respectively. The test vehicle is shown in Figures 13 and 14, and vehicle dimensions are shown in Figure 15.

Figure 1. Test Vehicle, Test No. MSPBN-4

Figure 2. Test Vehicle Floor Pan and Undercarriage, Test No. MSPBN-4

Date:	4/18/20	018		Test Name	: MSF	'BN-4	VIN No:	KNADE2	23496469	9475
Year:	2009	9		Make	: <u> </u>	IA	Model:		RIO	,
Tire Size:	185/65F	R14	Tire I	nflation Pressure	:32	Psi	Odometer:	1	47278	
	M			N		T U	Target Range A: <u>64 7/8</u> 65±3 (16	(1648) B: (1648) B: (16474) D: (16474) D: (16474) D: (16474) D: (1648) F:	57 1/2 33	(1461) (838) 00±100) (914)
			/	> Test Inertial CG			G: 22 9/16	(573) H:	36 1/4 39±4 (9	(921) 90±100)
			$ \rightarrow $			ł	l: <u>7 1/4</u>		22 3/4	(578)
		G	5			 	K: <u>12 1/8</u> M: <u>57 3/4</u> 56±2 (14	(1467) N:	25 1/4 57 1/5 56±2 (1	(641) (1453) 425±50)
			s t				O: 28 24±4 (60		3	(76)
	- D	20 M	е с		- F		Q: 22 1/2	(572) R:	15 1/3	(389)
	-		C		-		S: <u>111/4</u>	(286) T:	65 1/8	(1654)
Mass Distrib	ution lb (kg)						U (ii	npact width):	56	(1422)
Gross Static		(383)	RF 77	2 (350)			Тор	of radiator core support:	28 1/4	(718)
	LR_498	(226)	RR 47					Wheel Center Height (Front):		(279)
								Wheel Center Height (Rear):	11 1/4	(286)
Weights Ib (kg)	Cu	urb	Те	est Inertial	Gross	Static	Cle	Wheel Well arance (Front):	25	(635)
W-front	1551	(704)	153	3 (695)	1617	(733)	CI	Wheel Well earance (Rear):	24 7/8	(632)
W-rear	921	(418)	89	6 (406)	976	(443)		Bottom Frame Height (Front):	6	(152)
W-total	2472	(1121)	242		2593	(1176)		Bottom Frame Height (Rear):	9 1/2	(241)
			242	0±55 (1100±25)	2585±55	(1175±50)		Engine Type:	G	AS
GVWR Ratings Ib		Surro	Surrogate Occupant Data			Engine Size:	1.6L	4 CYL		
Front	1918			Туре:	Hybrid	3 11	Transn	nission Type:	AUTO	MATIC
Rear	1874	74 Mass:		163 lb			Drive Type:	F۷	VD	
Total	3638		5	Seat Position:	Left	t				
Note any damage prior to test: None										

Figure 3. Vehicle Dimensions, Test No. MSPBN-4

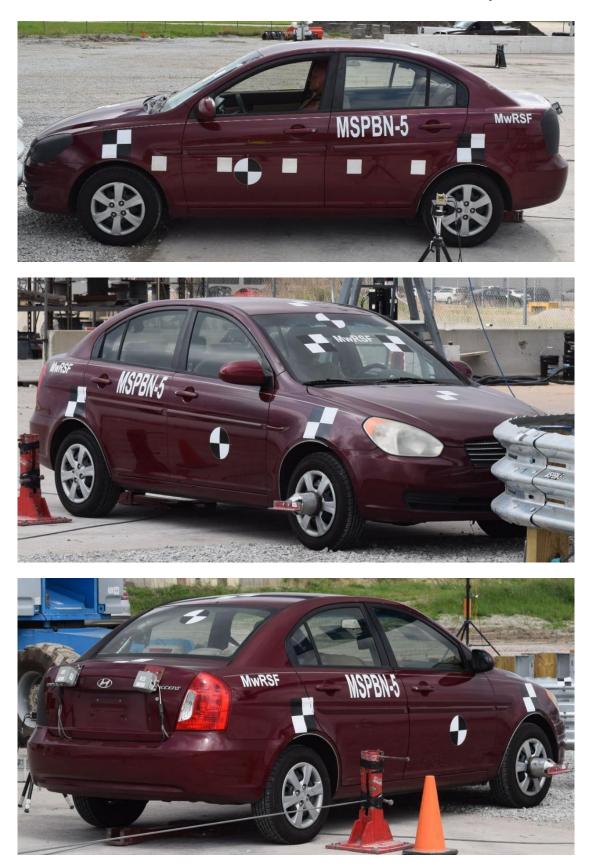


Figure 4. Test Vehicle, Test No. MSPBN-5

Figure 5. Test Vehicle Floor Pan and Undercarriage, Test No. MSPBN-5

Date:	5/15/2018	8	Test	Name:	MSPBN	-5	VIN No:	КМНС	N46C39U38	6700
Year:	2009			Make:	ACCEN	T	Model:		HYUNDAI	
Tire Size:	185/65R1	4 Т	Fire Inflation Pres	ssure:_	32 Psi	i	Odometer:		128728	
	M			N	T			eometry - in. isted below (1648) E (550±75) (4186) E 300±200)	B: <u>58 1/8</u> D: <u>30 11/16</u>	(1476) (779) 00±100) (902)
			\//				98±5 (250			(302)
			Test Inertial	CG			G: 22 7/8	(581) H	H: 36 1/4 39±4 (9	(921) 90±100)
	- Q -		4	al a		_	l: 8 3/4	(222)	J: 21 1/2	(546)
P					A		K: <u>11 7/8</u>	(302)	l: <u>27 5/8</u>	(702)
	CO		6	Ð	- K		M: 57 13/16 56±2 (14		N: 57 3/16 56±2 (14	(1453) 425±50)
		-н <u>+</u> +				<u>+ +</u>	0: 28 24±4 (60		P: <u>3</u>	(76)
	- D	-п — — — — Е — — — С					Q: 23 3/8	and a factor of the second	R: <u>15 3/8</u>	(391)
	-	(S: <u>11 5/8</u>	(295)	T: 65	(1649)
Mace Distrib	ution lb (kg)						U (ii	mpact width	ı): <u>32 1/2</u>	(824)
		(075) DE	704 (254)				Тор	of radiator co		(799)
Gross Static		(375) RF_	781 (354)	_				suppor Wheel Center	er	(733)
	LR497	<u>(225)</u> RR_	468 (212)	-				Height (Front Wheel Center	-	(297)
Weights								Height (Rear Wheel We		(296)
lb (kg)	Curb	b	Test Inertial		Gross Sta	atic	Cle	earance (Front Wheel We	t): 4 7/8	(124)
W-front	1582	(718)	1524 (691)		1608 ((729)	CI	learance (Real	r): 9 1/2	(241)
W-rear	879	(399)	885 (401)		965 ((438)		Bottom Fram Height (Front	100	(203)
W-total	2461	(1116)	2409 (1093)	<u> </u>		1167)		Bottom Fram Height (Rear		(432)
			2420±55 (1100±25)		2585±55 (117	5±50)		Engine Type	e: Gas	oline
GVWR Rating	gs Ib	s	Surrogate Occup	ant Data	a			Engine Size	e: 1.6L	. 4cyl
Front	1918		Тур	e:	Hybrid II		Transr	nission Type	e: autor	matic
Rear	1874		Mas	s:	164 lb			Drive Type	e: FV	VD
Total	3638		Seat Position	n:	LEFT					
Note ar	ny damage prior	to test:				No	one			

Figure 6. Vehicle Dimensions, Test No. MSPBN-5



Figure 7. Test Vehicle, Test No. MSPBN-6

Figure 8. Test Vehicle Floor Pan and Undercarriage, Test No. MSPBN-6

Date:	6/5/20	18		Test Nan	ne: MS	SPBN-6	VIN No:	1C6RD6	KT3CS268	3370
Year:	2012	2		Ма	ke:	odge	Model:	R	am 1500	e
Tire Size:	P275-60	R20	Tire Inflat	tion Pressu	re:	5 Psi	Odometer:		159054	
								Geometry - in. es listed below	(mm)	
			Test Inerti				78±2 (1 C: 229 1/2 237±13 (6 E: 140 1/4 148±12 (3 G: 29 7/16 min: 2	(3562) F: 3760±300) H: (748) H: 8 (710) H:	40 3/8 39±3 (1) 48 7/8 61 5/16 63±4 (15	575±100)
				s		B 	O: 48 1/8	(521) L: (1721) N: ^{1700±38)}	26 1/2 30 3/8 68 1/2 67±1.5 (7 5 1/2	(673) (772) (1740) (1700±38) (140)
	-	-H	_	ł	_		Q: 32	(813) R:	21 1/2	(546)
-	—D— ► -		—е— —с—	177 ₁ 2			S: 14 5/8	(371) T:	78 3/8	(1991)
Mass Distribu	ition lb (ka)						U (i	mpact width):	77 1/2	(1969)
Gross Static		(632)	RF <u>1549</u> RR <u>1149</u>	(703) (521)			CI	Wheel Center Height (Front): Wheel Center Height (Rear): Wheel Well earance (Front):	16 16	(406) (406) (143)
Weights Ib (kg)	CL	ırb	Test I	nertial	Gro	ss Static		Wheel Well learance (Rear):		(248)
W-front	2911	(1320)	2848	(1292)	2943	(1335)		Bottom Frame Height (Front):		(292)
W-rear	2299	(1043)	2213	(1004)	2293		-	Bottom Frame Height (Rear):		(610)
W-total	5210	(2363)	5061	(2296)	5236		_	Engine Type:	Gase	oline
			5000±110	(2270±50)	5165±′	10 (2343±50)		Engine Size:	5.7	V8
GVWR Rating	js Ib		Surrogate	e Occupant	Data		Transı	mission Type:	Αι	ıto
Front	3700			Type:	Hyb	rid II	2	Drive Type:	RV	VD
Rear	3900	-		Mass:	16) lb	-	Cab Style:	Crew	/ Cab
Total _	6800		Seat	Position:	RIGHT/PA	SSENGER	. .	Bed Length:	67	7''
Note an	Note any damage prior to test: None									

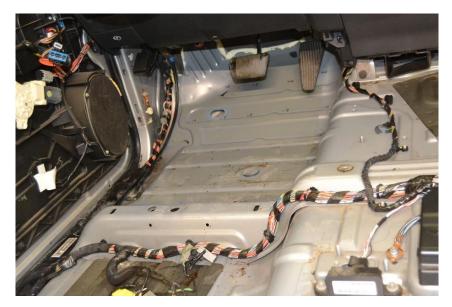

Figure 9. Vehicle Dimensions, Test No. MSPBN-6

Figure 10. Test Vehicle, Test No. MSPBN-7

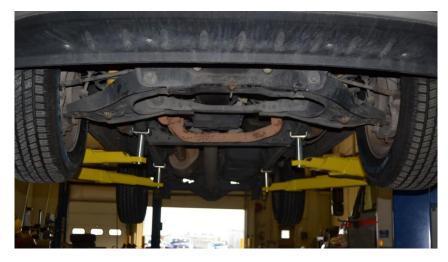


Figure 11. Vehicle Floor Pan and Undercarriage, Test No. MSPBN-7

Date:	6/5/20	18		Test Nam	ne: N	ISPBN7	E	VIN No:	106	RD6	KT4CS197	048
Year:	2012	2		Mak	ke:	Dodge		Model:		Ra	am 1500	
Tire Size:	P275/60	R20	Tire Inflation	on Pressu	re:	35 Psi		Odometer:		2	227374	
								/ehicle Geon arget Ranges list		(mm)		
			Test Inertial				C:_ E:_	77 78±2 (195 229 3/4 237±13 (602 140 1/2 148±12 (376 29 1/8 min: 28 ((5836) 20±325) (3569) 50±300) (740) 710)	D:_ F:_ H:_	36 1/4 39±3 (10) 47 61 9/16 63±4 (157	(1194) (1564) ^{75±100)}
				s I			к:_ м:_ о:_ q:_	67 7/8 67±1.5 (170	(1724) 00±38) (1175)	_ L:_ N:_ P:_ R:_	67±1.5 (17 5 21 1/2	(803) (759) (1727) 700±38) (127) (546) (1905)
			0				0		mpact wid	-		(1784)
Mass Distrib	ution lb (kg)							0 (1	Wheel Ce	_	70 114	(1104)
Gross Static	LF <u>1438</u>	<u>(652)</u> R	F 1492	(677)					Height (Fro Wheel Ce	ont):_	15 3/8	(391)
	LR_1110	(503) R	R1162	(527)					Height (Re	ear):_	15 3/4	(400)
								Cle	Wheel Nearance (Fro	ont):_	36	(914)
Weights Ib (kg)	Cu	ırb	Test Inc	ertial	Gro	oss Static		CI	Wheel Neel Neel Neel Neel Neel Neel Neel		38 1/4	(972)
W-front	2953	(1339)	2833	(1285)	2930) (1329)			Bottom Fr Height (Fro		10 3/4	(273)
W-rear	2318	(1051)	2210	(1002)	227	2 (1031)			Bottom Fr Height (Re		11	(279)
W-total	5271	(2391)	5043	(2287)	5202	2 (2360)			Engine Ty	pe:	Gaso	line
			5000±110 (2			110 (2343±50)			Engine S	_		
GVWR Rating	as Ib		Surrogate	Occupant	Data			Transi	mission Ty			
Front	3700			Type:		orid II			Drive Ty	-		
Rear	3900			Mass:		9 lb			Cab St	-		
Total	6800		Seat F						99963793899 - 16mañ			
Note a	Total 6800 Seat Position: Front Right Bed Length: 67" Note any damage prior to test: Left rear tail light lens is cracked, small dent by RAM logo on left front door.											

Figure 12. Vehicle Dimensions, Test No. MSPBN-7

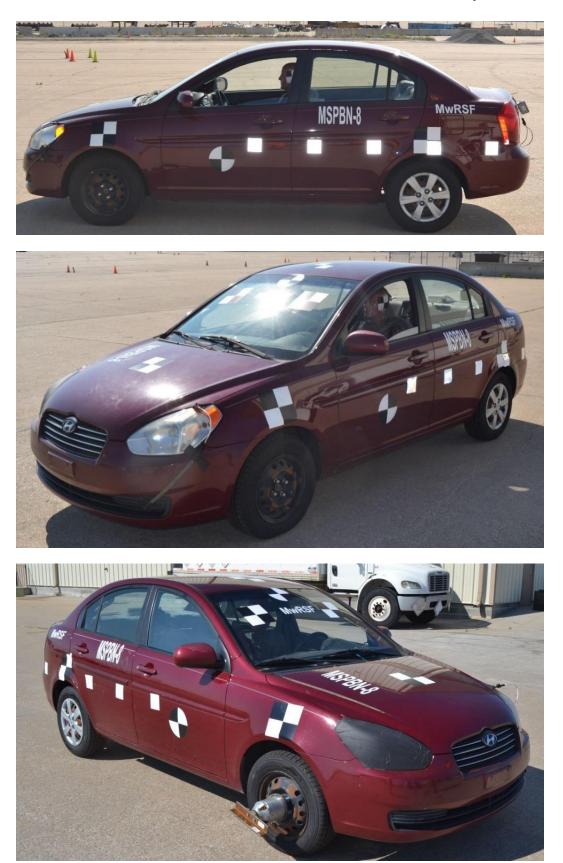


Figure 13. Test Vehicle, Test No. MSPBN-8

Figure 14. Vehicle Floor Pan and Undercarriage, Test No. MSPBN-8

Date:	8/29/20)18	-0		Test Name	: MSP	BN-8	_	VIN No:	kml	ncn4	ac3bu533	8692
Year:	2011		-8		Make	e: Hyu	ndai		Model:		A	ccent	
Tire Size:	185/65	r14		Tire Inflati	ion Pressure	e: <u>32</u>	Psi	_ 0	dometer:		1	53616	
				-11			+			eometry - es listed below		mm)	
	M		T		N		 T	A:_		(1664) 650±75)	B:_	57 7/8	(1470)
			X		ï		Ì	C:		(4274) 300±200)	D:_	33 1/2 35±4 (9	(851) 00±100)
<u> </u>		JE	10				.	E:		(2502)	F:_	36 1/4	(921)
		7						G:		(567)	Н:	36 7/16	(926)
	- Q -	-		Tes	t Inertial CG			1:	8	(203)	J:	39±4 (9 20 1/2	90±100) (521)
P — -	R		-		B	A	Ì	к:	12	(305)	-	25 1/8	(638)
	P		Ś,					M:	57 1/2	(1461) 425±50)	N:_	57 1/4	(1454) 425±50)
			S			1	< <u>;</u> ; †	0:	27 5/8	(702) 00±100)	P:_	2 1/2	(64)
	- D	— H — •	1 E			• F		Q:	24±4 (6 22 1/2		R:	15 3/8	(391)
	-			с ——		-		S:	11 3/8	(289)	Т:	65	(1651)
Maee Dietribu	ution lb. (kg)								U (i	mpact wid	ith):_	29 1/8	(740)
Gross Static		(354)	RF	812	(368)				Тор	of radiator		27 1/2	(699)
Gloss Static	LR 463	(210)		100-000 M	(228)					Wheel Ce	enter		
	LK 403	(210)	_ KK_	502	(220)					Height (Fr Wheel Ce	enter		(276)
Weights										Height (R Wheel	Well		(283)
lb (kg)		ırb		Test In			Static			earance (Fr Wh e el	Well	(38.17)	(673)
W-front	1573	(714)		1509	(684)	1593	(723)		с	learance (R Bottom Fi	1000000	25	(635)
W-rear	903	(410)	<u>.</u>	885	(401)	965	(438)	-		Height (Fr Bottom Fi		7 1/4	(184)
W-total	2476	(1123)		2394 2420±55 (1	(1086) 1100±25)	2558 2585+55	(1160) (1175±50)	_		Height (R		7 1/2	(191)
					,		(Engine T	/pe:_	gas	oline
GVWR Rating	gs Ib		1	Surrogate	Occupant D	ata				Engine S	ize:	1.4L	4 cyl
Front	1918				Туре:	Hybrid	111	_	Transı	mission T	/pe:_	Ма	nual
Rear	1874				Mass:	163 I	b	_		Drive T	/pe:_	FV	VD
Total	3638			Seat I	Position:	right pass	enger						
Note an	y damage pri	or to test:					N	one					

Figure 15. Vehicle Dimensions, Test No. MSPBN-8

It should be noted that the pickup truck test vehicles used were within 6 years of the research project contract date. MASH 2016 requires test vehicles used in crash testing to be no more than six model years old. For the small car tests, a 2009 model was used because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 of MASH 2016. The use of older test vehicles due to recent small car vehicle properties falling outside of MASH 2016 recommendations was allowed by FHWA and AASHTO in MASH implementation guidance dated May of 2018 [1414].

Additionally, it should be noted that the vehicle hood height denoted for the vehicle in test no. MSPBN-6 did not meet the hood height requirements in MASH. The hood height measurement has been an issue in recent years due to changes in the vehicle hood geometry that have altered the hood line but not the basic vehicle front end structure. As such, the hood height denoted herein was not considered an issue for full-scale testing. Recently, testing laboratories have agreed to measure hood height relative to the top of the radiator mount for consistency and improved compliance with MASH guidelines. However, that guidance was not available at the time of this testing.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [16] was used to determine the vertical component of the c.g. for the 2270P vehicles. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicles was determined utilizing a procedure published by SAE [17]. The location of the final c.g. is shown in Figures 3, 6, 9, 12, and 15. Data used to calculate the location of the c.g. and ballast information are shown in Appendix A.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 16 through 20. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards, except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicles' right-side windshield wiper for test nos. MSPBN-4, MSPBN-6, and MSPBN-7 and under the vehicle's left-side windshield wiper for test nos. MSPBN-5 and MSPBN-8. The bulb was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

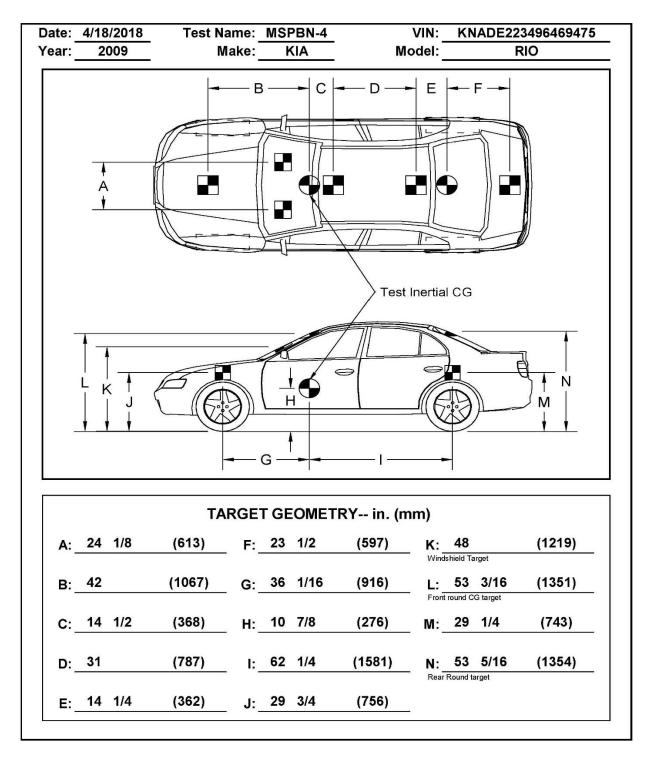


Figure 16. Target Geometry, Test No. MSPBN-4

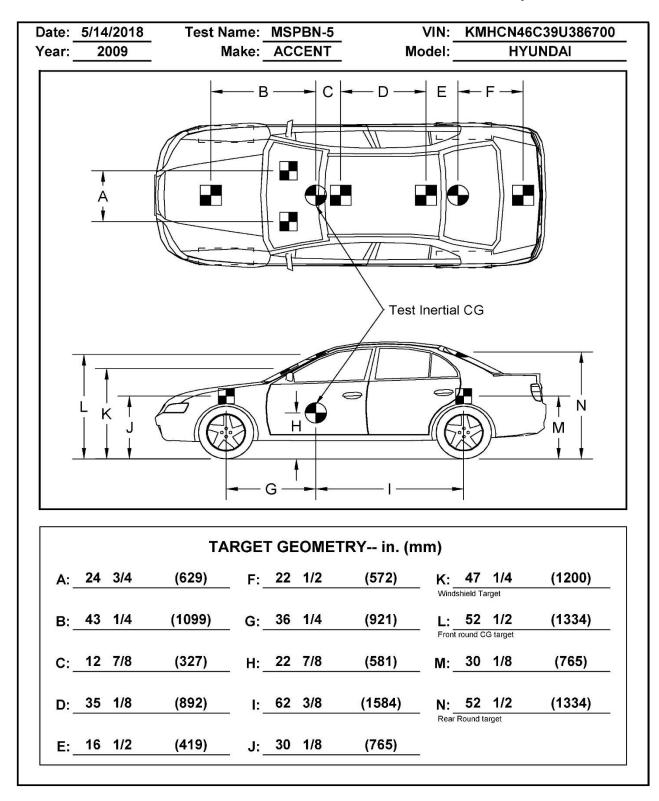


Figure 17. Target Geometry, Test No. MSPBN-5

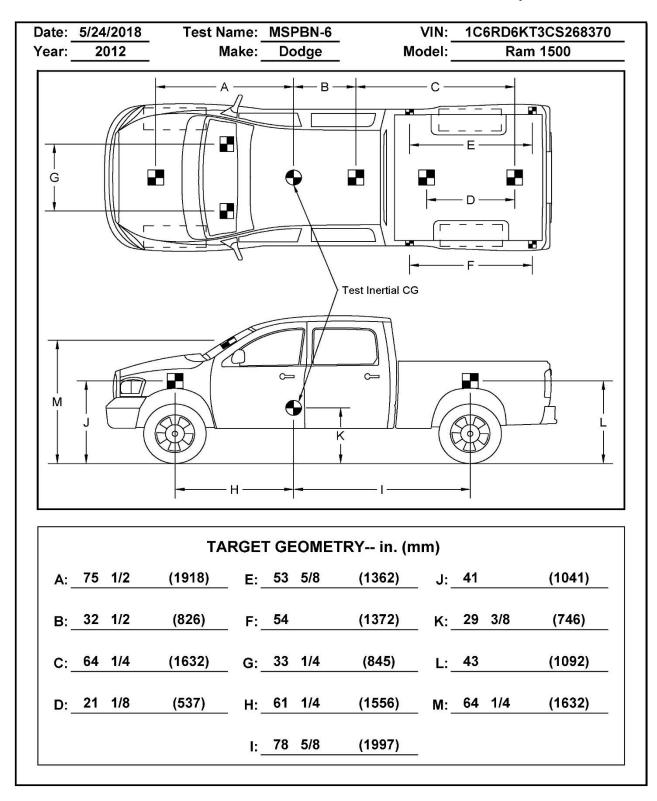


Figure 18. Target Geometry, Test No. MSPBN-6

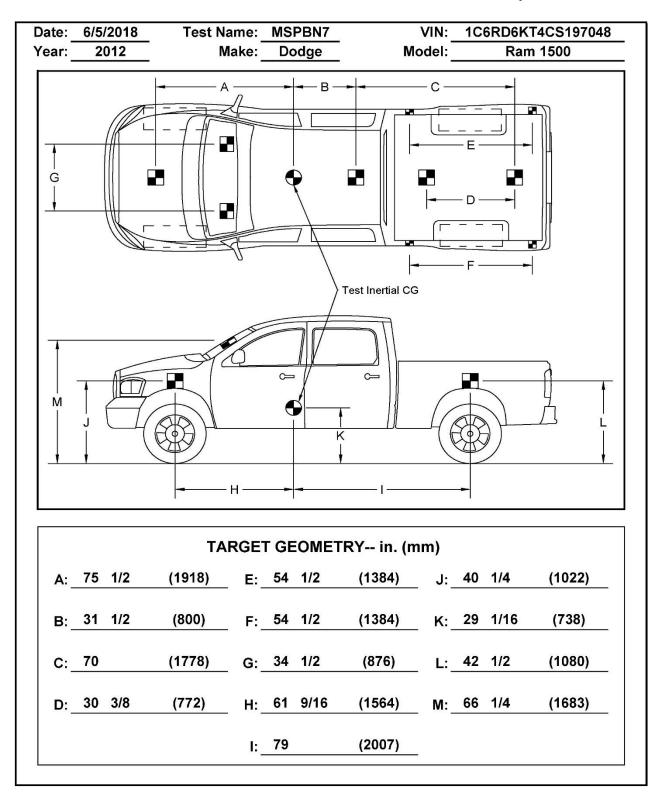


Figure 19. Target Geometry, Test No. MSPBN-7

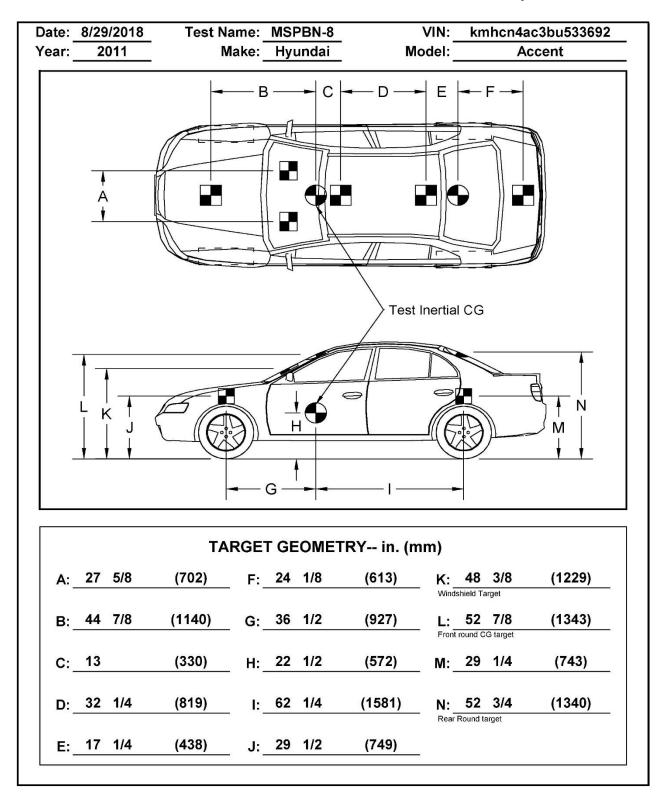


Figure 20. Target Geometry, Test No. MSPBN-8

3.4 Simulated Occupant

A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with footwear, was placed in the left-front seat of the test vehicle for test nos. MSPBN-4 and MSPBN-5 and the right-front seat for test nos. MSPBN-6, MSPBN-7, and MSPBN-8, with the seatbelt fastened. The simulated occupant had a final weight of 163 lb (73.9 kg), 164 lb (74.4 kg), 160 lb (72.6 kg), 159 lb (72.1 kg), and 163 lb (73.9 kg) for test nos. MSPBN-4, MSPBN-5, MSPBN-6, MSPBN-7, and MSPBN-8, respectively. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions in each of the five tests. All accelerometers systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [18]. Test no. MSPBN-4 used SLICE-1 and DTS units, while test nos. MSPBN-5 through MSPBN-8 used SLICE 1 and SLICE 2-units.

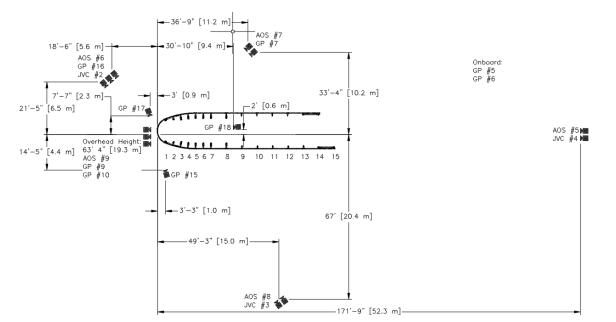
The first two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system for test nos. MSPBN-4, MSPBN-5, and MSPBN-8. SLICE-2 was the primary system for test nos. MSPBN-6 and MSPBN-7. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The third accelerometer system, DTS, was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by DTS of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

3.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

A third angular rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles in test no. MSPBN-4. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the c.g. and recorded data at 10,000 Hz to the DTS SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


3.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

3.5.4 Digital Photography

Five AOS high-speed digital video cameras, nine GoPro digital video cameras, and three JVC digital video cameras were utilized to film test no. MSPBN-4. Six AOS high-speed digital video cameras, eight GoPro digital video cameras, and four JVC digital video cameras were utilized to film test no. MSPBN-5. Six AOS high-speed digital video cameras, eleven GoPro digital video cameras, and one JVC digital video camera were utilized to film test no. MSPBN-6. Five AOS high-speed digital video cameras, twelve GoPro digital video cameras, and two JVC digital video cameras were utilized to film test no. MSPBN-6. Five AOS high-speed digital video cameras, twelve GoPro digital video cameras, and two JVC digital video cameras, thirteen GoPro digital video cameras, two Panasonic digital video cameras, and one SoloShot digital video camera were utilized to film test no. MSPBN-8. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the systems are shown in Figures 21 through 25 and Tables 3 and 4.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI	500	Cannon TV Zoom 17-102	102
AOS-6	AOS X-PRI	500	KOWA 25mm fixed	-
AOS-7	AOS X-PRI	500	SIGMA 28-70	28
AOS-8	AOS S-VIT 1531	500	SIGMA 28-70 DG	35
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm fixed	-
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-15	GoPro Hero 4	120		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	120		
GP-18	GoPro Hero 4	120		
JVC-2	JVC – GZ-MC500 (Everio)	29.97		
JVC-3	JVC – GZ-MG27u (Everio)	29.97		
JVC-4	JVC – GZ-MG27u (Everio)	29.97		

Figure 21. Camera Locations, Speeds, and Lens Settings, Test No. MSPBN-4

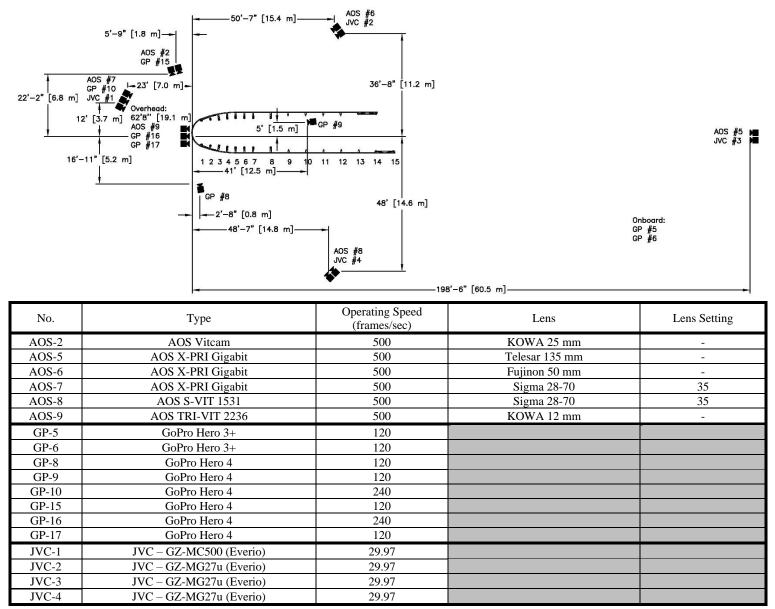
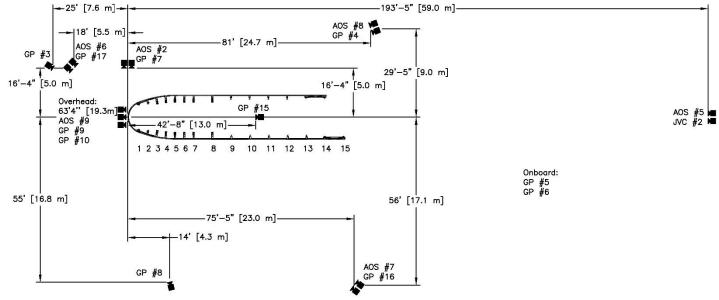
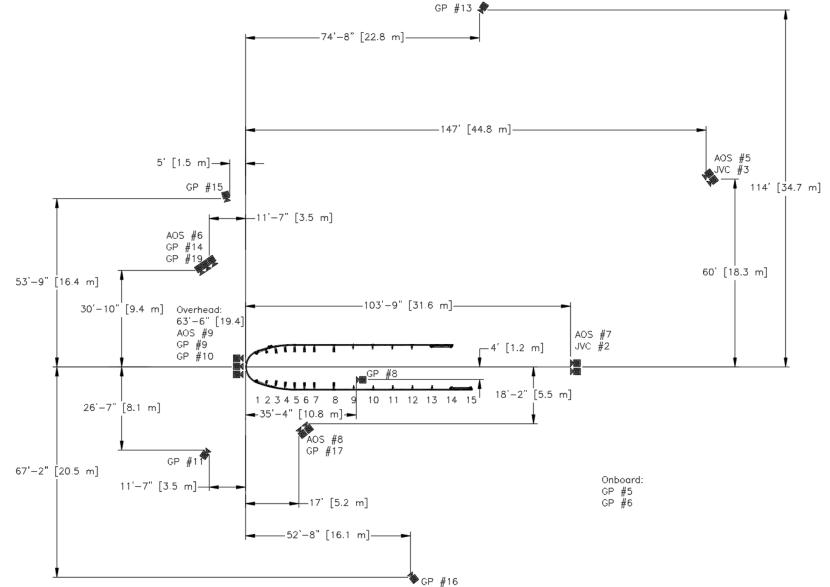




Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. MSPBN-5

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam	500	KOWA 16 mm	-
AOS-5	AOS X-PRI Gigabit	500	100 mm	-
AOS-6	AOS X-PRI Gigabit	500	KOWA 25 mm	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 35 mm	-
AOS-8	AOS S-VIT 1531	500	Fujinon 50 mm	-
AOS-9	AOS TRI-VIT 2236	500	KOWA 12 mm	-
GP-3	GoPro Hero 3+ w/ Computar 12.5 mm	120		
GP-4	GoPro Hero 3+ w/ Computar 12.5 mm	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	30		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	240		
GP-10	GoPro Hero 4	120		
GP-15	GoPro Hero 4	120		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	120		
JVC-2	JVC – GZ-MG27u (Everio)	29.97		

Figure 23. Camera Locations, Speeds, and Lens Settings, Test No. MSPBN-6

September 1, 2020 MwRSF Report No. TRP-03-418-20

Figure 24. Camera Locations, Test No. MSPBN-7

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI	500	100 mm fixed	-
AOS-6	AOS X-PRI	500	Fujinon 35 mm fixed	-
AOS-7	AOS X-PRI	500	Fujinon 50 mm fixed	-
AOS-8	AOS S-VIT 1531	500	KOWA 16 mm fixed	-
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm fixed	-
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-11	GoPro Hero 4	240		
GP-13	GoPro Hero 4	240		
GP-14	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	120		
GP-19	GoPro Hero 6	120		
JVC-2	JVC – GZ-MC500 (Everio)	30		
JVC-3	JVC – GZ-MG27u (Everio)	30		

Table 3. Camera Speeds and Lens Settings, Test No. MSPBN-7

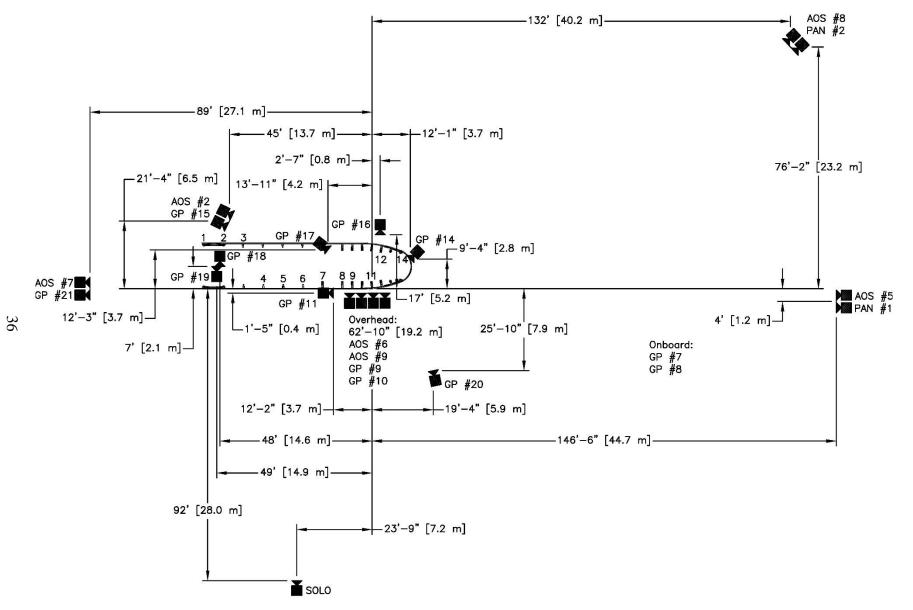


Figure 25. Camera Locations, Test No. MSPBN-8

September 1, 2020 MwRSF Report No. TRP-03-418-20

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam	500		-
AOS-2	AOS Vitcam	500	Sigma 28-70	50
AOS-3	AOS Vitcam	500		-
AOS-4	AOS Vitcam	500		-
AOS-5	AOS X-PRI	500	100 mm	-
AOS-6	AOS X-PRI	500	KOWA 16 mm	-
AOS-7	AOS X-PRI	500	Fujinon 50 mm	-
AOS-8	AOS S-VIT 1531	500	SIGMA 28-70	70
AOS-9	AOS TRI-VIT 2236	500	KOWA 12mm fixed	-
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-11	GoPro Hero 4	240		
GP-14	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	240		
GP-17	GoPro Hero 4	240		
GP-18	GoPro Hero 6	120		
GP-19	GoPro Hero 6	120		
GP-20	GoPro Hero 6	120		
GP-21	GoPro Hero 6	120		
PAN-1	Panisonic HC-V770	60		
PAN-2	Panisonic HC-V770	60		
SOLO	SoloShot	120		

Table 4. Camera	Speeds and	Lens Settings,	Test No.	MSPBN-8
-----------------	------------	----------------	----------	---------

4 DESIGN DETAILS, TEST NO. MSPBN-4

The barrier system for test no. MSPBN-4 consisted of a bullnose median barrier utilizing UBSPs, as shown in Figures 26 through 49. Photographs of the test installation are shown in Figure 50 through Figure 54. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

A one-half barrier system was utilized for the testing program in order to reduce costs and construction time. Note that a dual-cable end anchorage system was used on each free end of the bullnose system to provide tensile and compressive resistance at the end of the one-half barrier system, thus mimicking the behavior of a complete installation. The bullnose system was constructed with twenty-nine posts, which included fifteen posts on Side A and fourteen posts positioned on Side B. Side A of the system was slightly longer to span a below grade obstruction located at the test site that prevented installation of the BCT foundation tubes. Side A of the system contained two BCT posts, six UBSP posts, five W6x8.5 (W152x12.6) standard guardrail posts, and two BCT anchorage posts, respectively, from the nose of the system. Side B of the system contained two BCT posts, six UBSP posts, four W6x8.5 (W152x12.6) standard guardrail posts, and two BCT anchorage posts, respectively, from the nose of the system. The lower portion of the UBSP consisted of a foundation tube with the lower base plate. The upper portion of the UBSP were connected with a series of four bolts that were designed to allow the upper portion of the post to disengage at specific force levels when loaded in the lateral and longitudinal directions.

The bullnose system was constructed with the rail lap splices oriented based on the traffic flow on each side of the system, such that the upstream rail segment overlapped the downstream rail segment. All of the full-scale crash testing for the thrie-beam bullnose system detailed herein was conducted on a splice configuration for median installations. Thus, for a median installation, the thrie-beam bullnose lap splicing proceeded in a continuous manner all the way around the system in the direction of oncoming traffic.

Two minor modifications were made to the UBSP as compared to iterations of the post design evaluated in previous research efforts [7-9, 19]. First, several weld sizes were altered for the welds connecting the W-section to the upper base plate and the tube to the lower base plate. These welds were reduced in size as the original welds were specified too large for the thickness of the welded parts and the additional weld was unnecessary. Thus, the weld connecting the top of the W6x8.5 post to the upper baseplate was changed to a $\frac{1}{4}$ -in. (6-mm) fillet weld on the front and back of each post flange and to a $\frac{3}{16}$ -in. (5-mm) fillet weld on each side of the weld that goes all the way around.

The second minor modification to the UBSP was a slight increase to the thickness of the base plate on the lower section of the post. Previous full-scale crash testing of systems with the UBSP demonstrated a tendency for deformations of the lower base plate during impacts. A slight increase in the thickness of the base plate was not expected to degrade the performance of the UBSP. However, it was anticipated that the thickness increase could prevent damage to the lower section of the UBSP and allow the lower section to be reused in an installation. Reuse of the base of the post would provide a significant reduction in the repair costs of the system by eliminating

the need to dig up and replace the UBSP following an impact. Thus, the thickness of the base plate on the lower section of post was increased from $\frac{1}{2}$ in. (13 mm) to $\frac{5}{8}$ in. (16 mm).

All posts were embedded in coarse, crushed limestone, alternatively classified as well-graded gravel. The soil was compacted in 3-ft (914-mm) diameter augured holes using 8-in. (203-mm) lifts. The fracturing bolts in the breakaway posts were torqued to 60 to 75 ft-lbs (81.3 to 101.7 N-m) for the full-scale crash testing program.

Note that the downstream ends of the thrie-beam bullnose installation were configured with a bi-directional, trailing-end anchorage system. The guardrail anchorage system was utilized to simulate the anchorage tensile and compressive anchorage provided by continuous guardrail or attachment to an approach guardrail transition. The dual anchorage would not be required in a typical installation unless the bullnose system was configured with a free end similar to the test setup. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which were components from the hardware used in a crashworthy, downstream ,trailing-end terminal [11-13].

It should also be noted that the cable anchor plate on bi-directional, trailing-end anchorage system for the thrie-beam bullnose system evaluated herein utilized two nails bent over the anchor plate to secure it from rotation. The original thrie-beam bullnose system was evaluated with only a single bent nail to limit rotation of the plate.

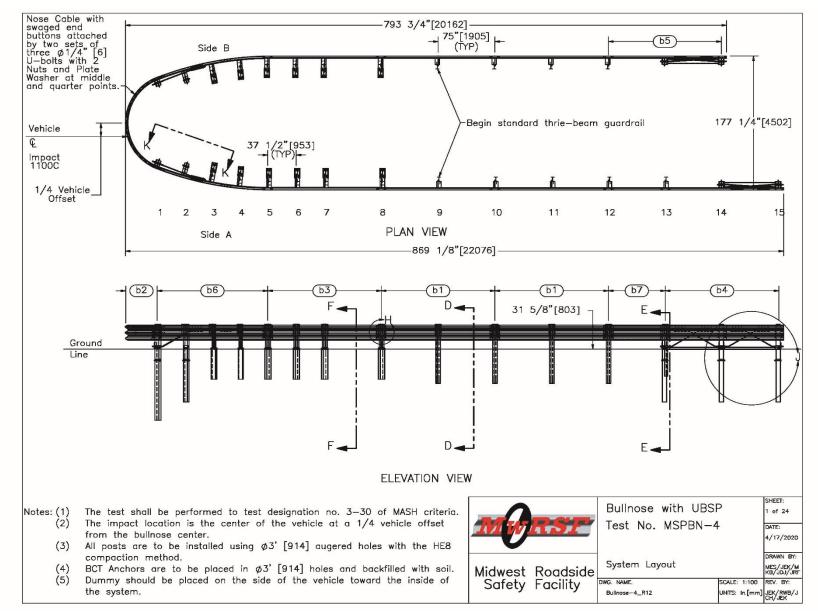


Figure 26. Test Installation Layout, Test No. MSPBN-4

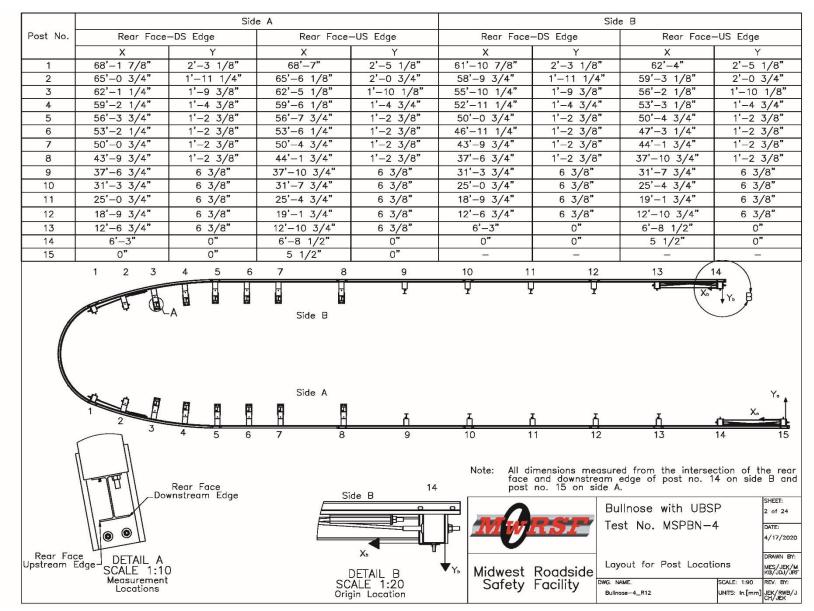


Figure 27. Layout for Post Locations, Test No. MSPBN-4

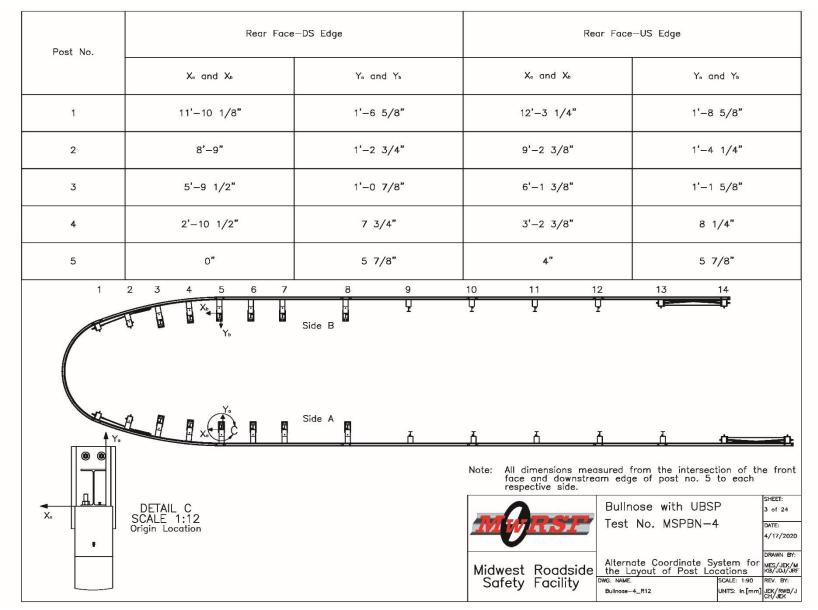


Figure 28. Alternate Coordinate System for the Layout of Post Locations, Test Nos. MSPBN-4

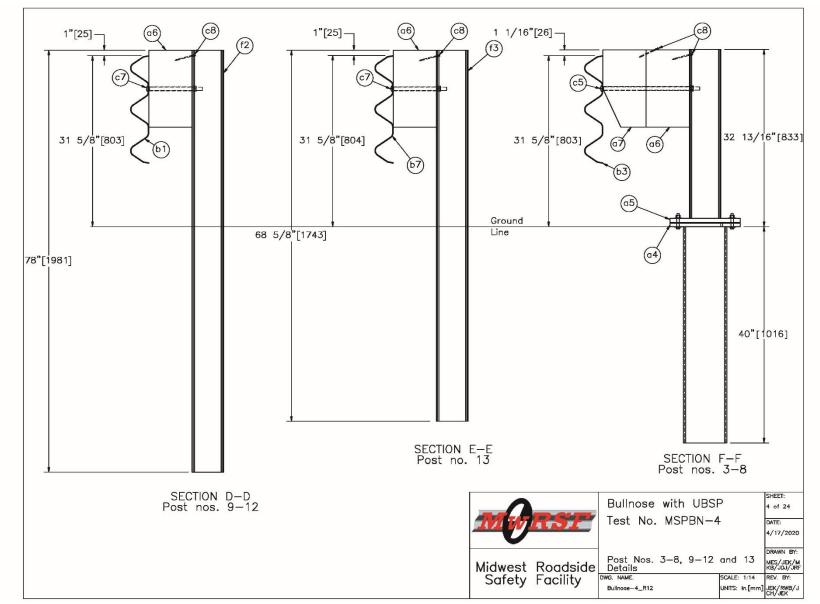


Figure 29. Post Nos. 3 through 8, 9 through 12, and 13 Details, Tests No. MSPBN-4

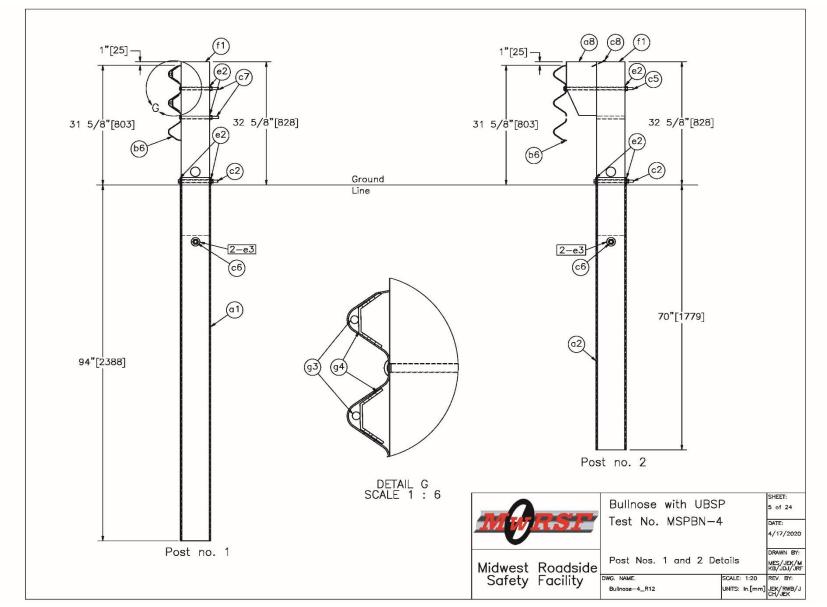


Figure 30. Post Nos. 1 and 2 Details, Tests No. MSPBN-4

Figure 31. End Rail Splice Detail, Test No. MSPBN-4

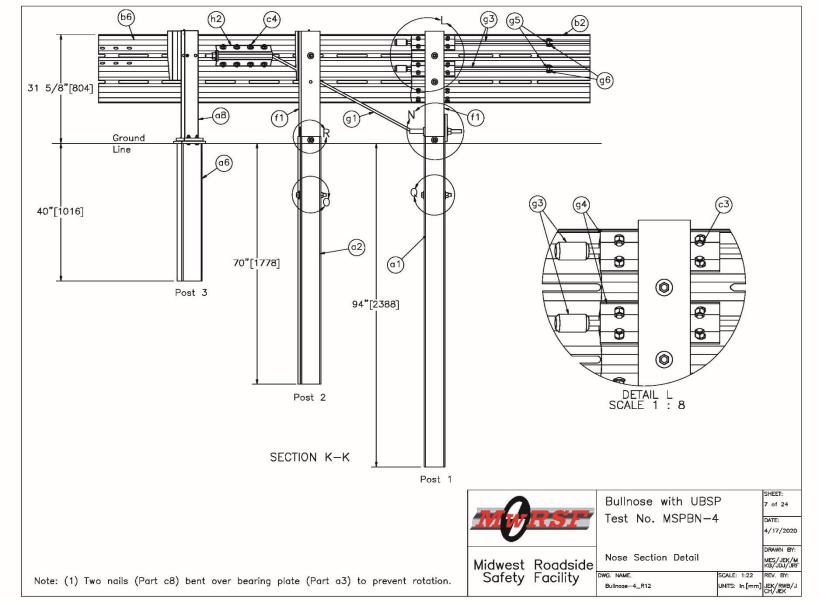


Figure 32. Nose Section Detail, Test No. MSPBN-4

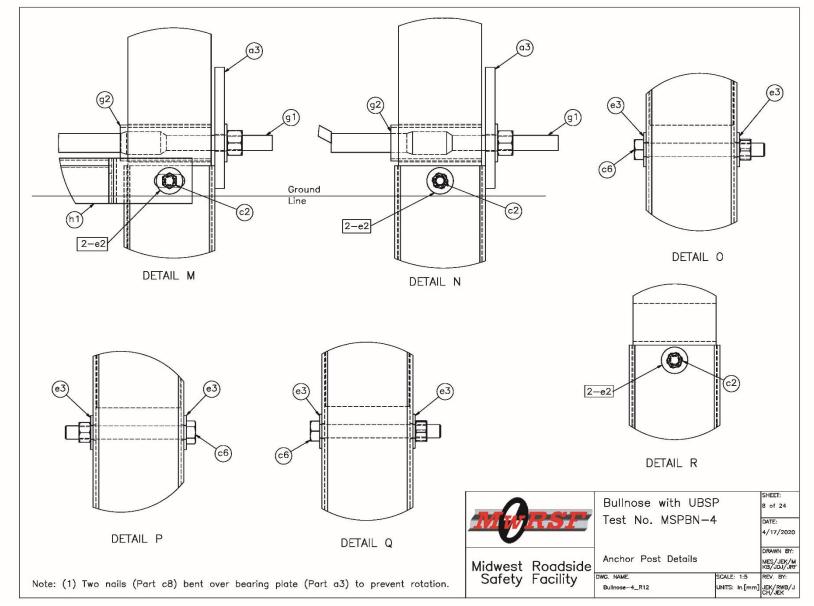


Figure 33. Anchor Post Details, Test No. MSPBN-4

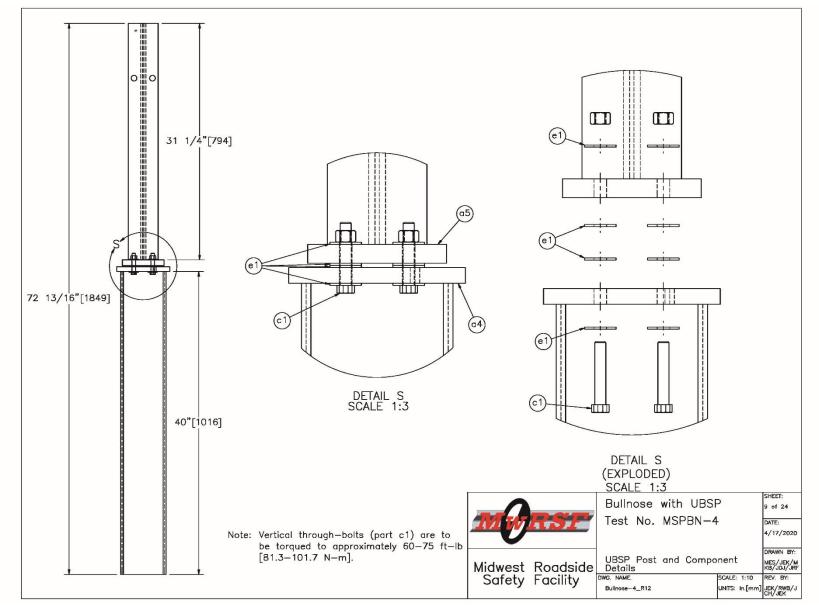


Figure 34. UBSP Post and Component Details, Test No. MSPBN-4

48

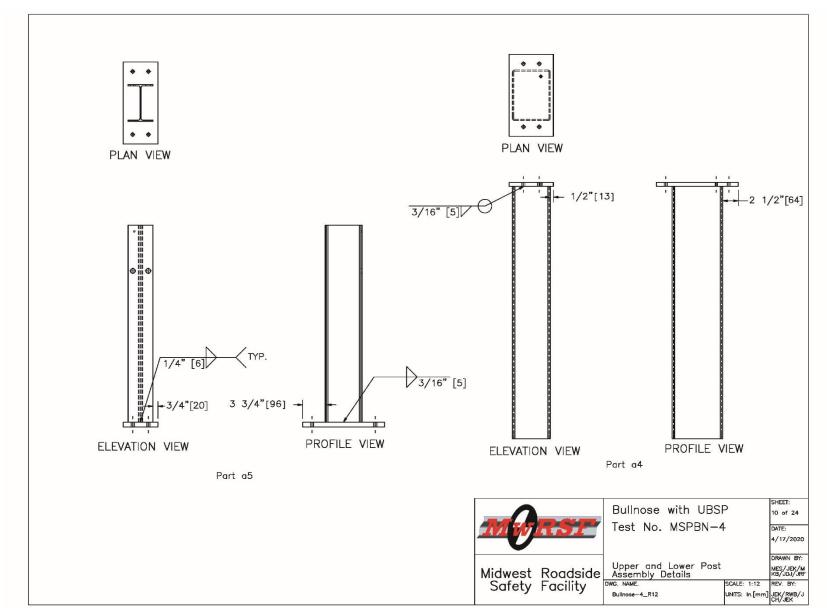


Figure 35. Upper and Lower Post Assembly Details, Test No. MSPBN-4

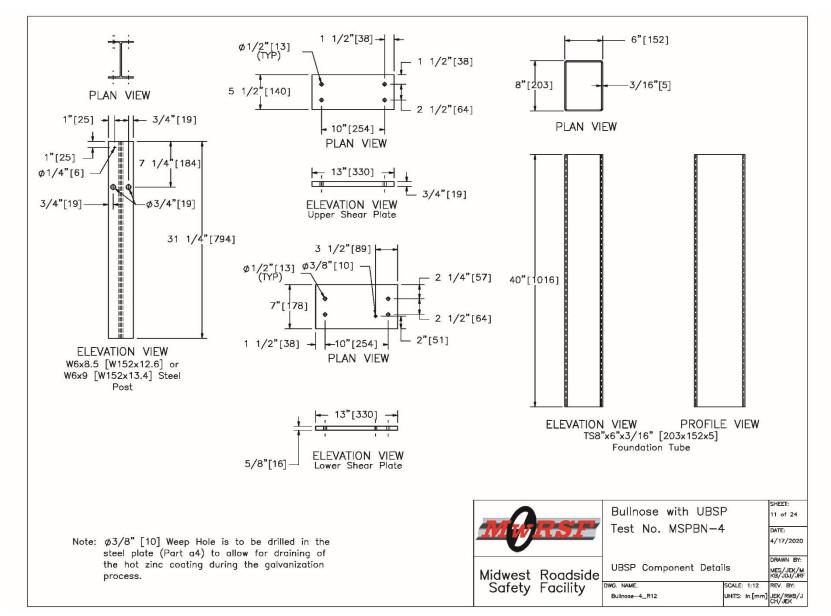


Figure 36. UBSP Component Details, Test No. MSPBN-4

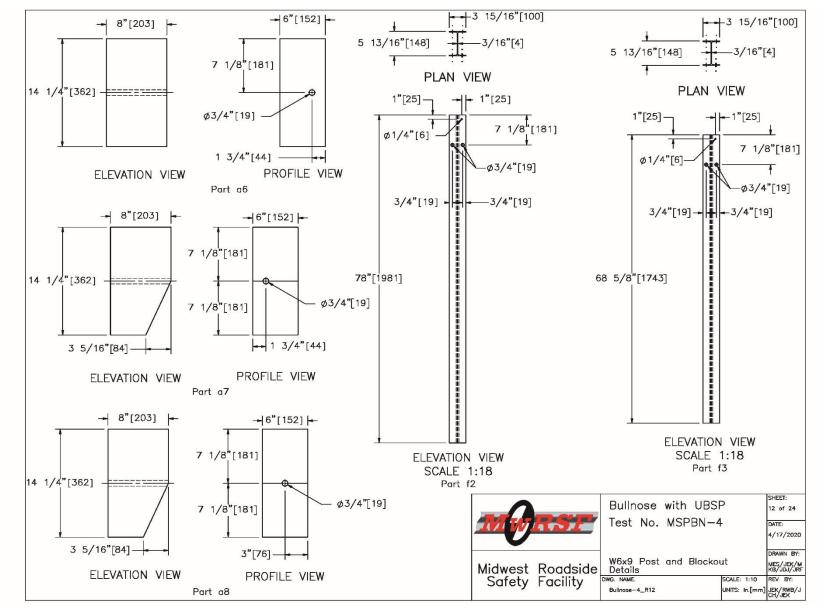


Figure 37. W6x9 Post and Blockout Details, Test No. MSPBN-4

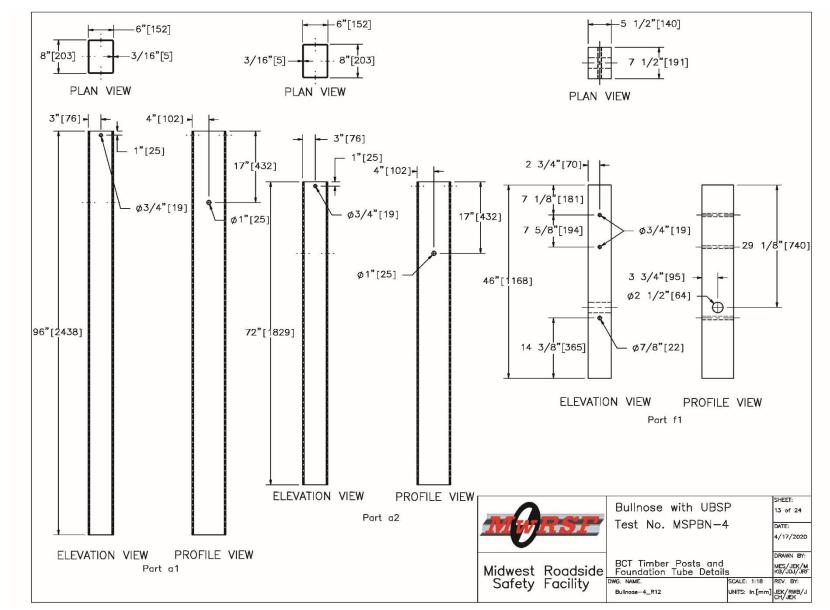


Figure 38. BCT Timber Posts and Foundation Tube Details, Test No. MSPBN-4

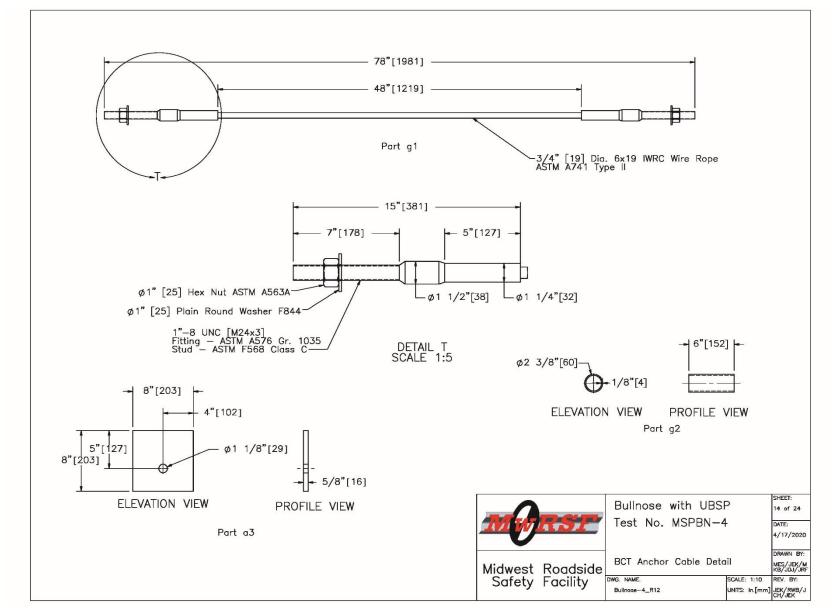


Figure 39. BCT Anchor Cable Detail, Test No. MSPBN-4

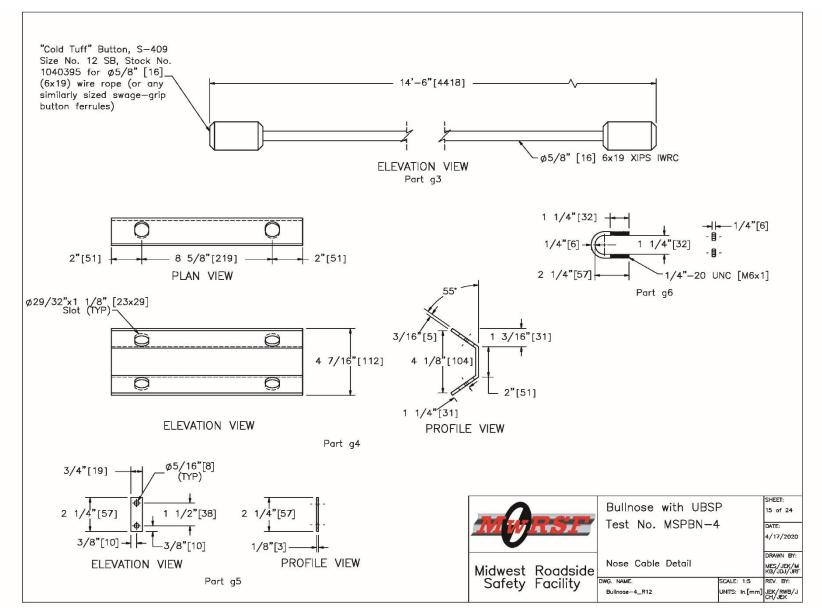


Figure 40. Nose Cable Detail, Test No. MSPBN-4

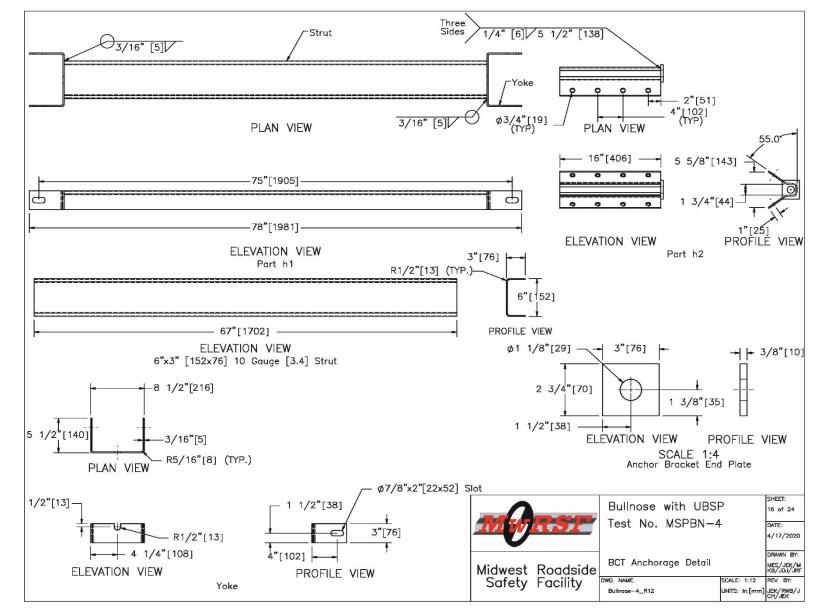


Figure 41. BCT Anchorage Detail, Test No. MSPBN-4

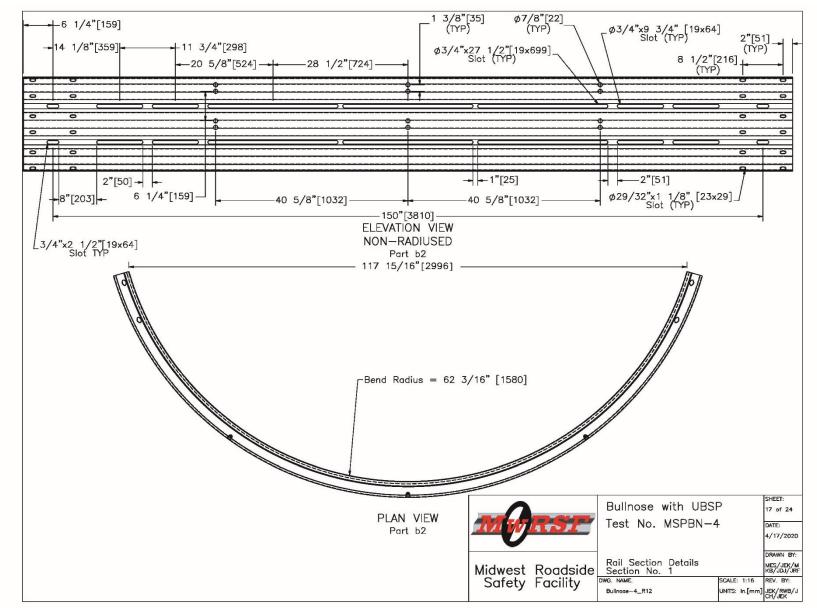


Figure 42. Rail Section Details Section No. 1, Test No. MSPBN-4

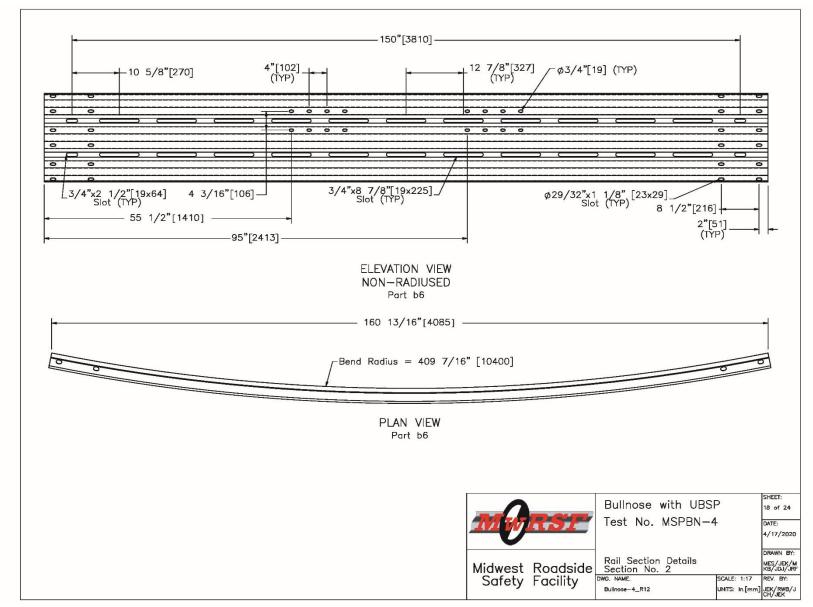


Figure 43. Rail Section Details Section No. 2, Test No. MSPBN-4

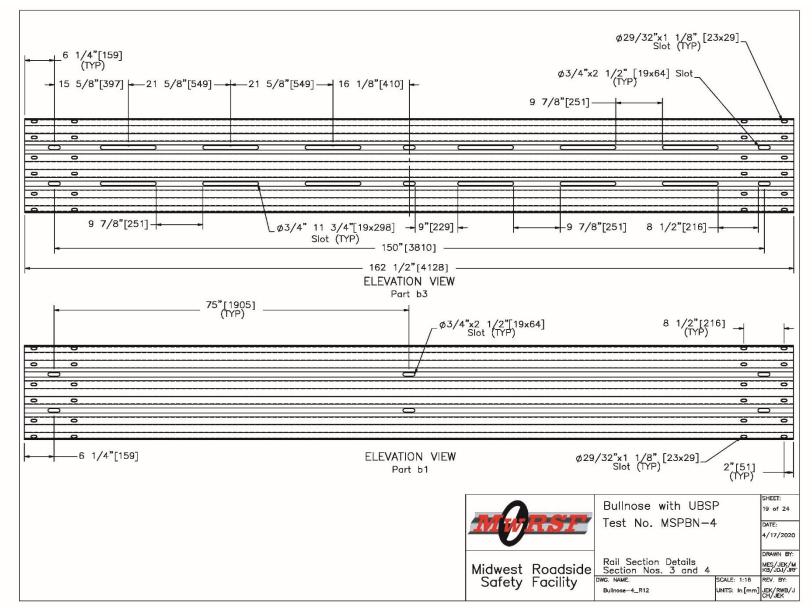


Figure 44. Rail Section Details Section Nos. 3 and 4, Test No. MSPBN-4

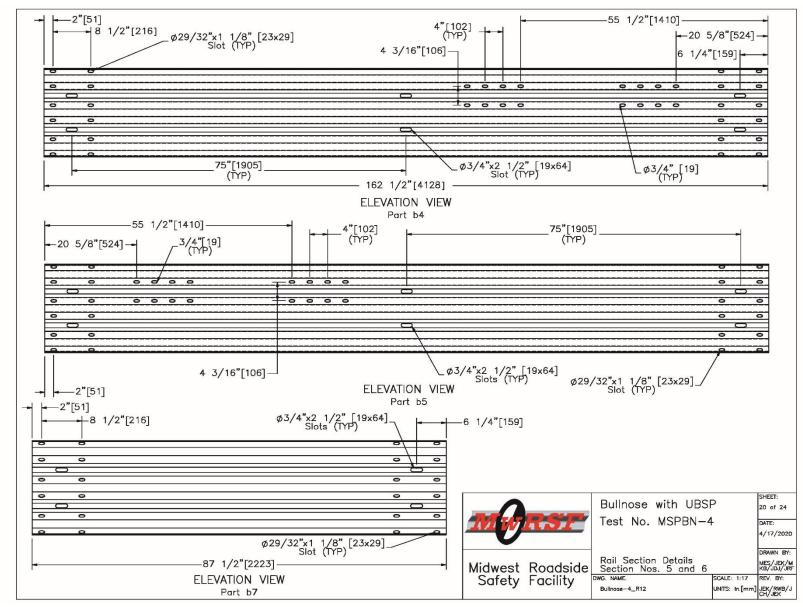


Figure 45. Rail Section Details Section Nos. 5 and 6, Test No. MSPBN-4

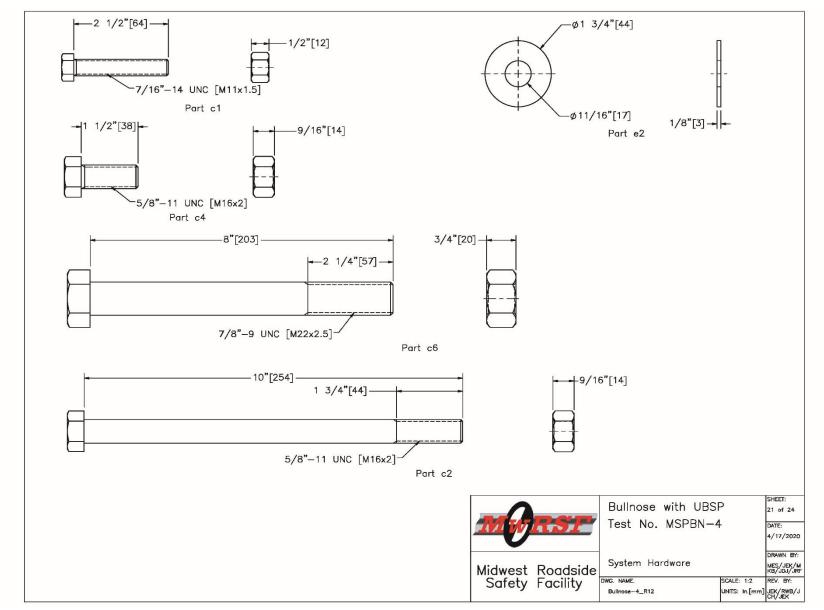


Figure 46. System Hardware, Test No. MSPBN-4

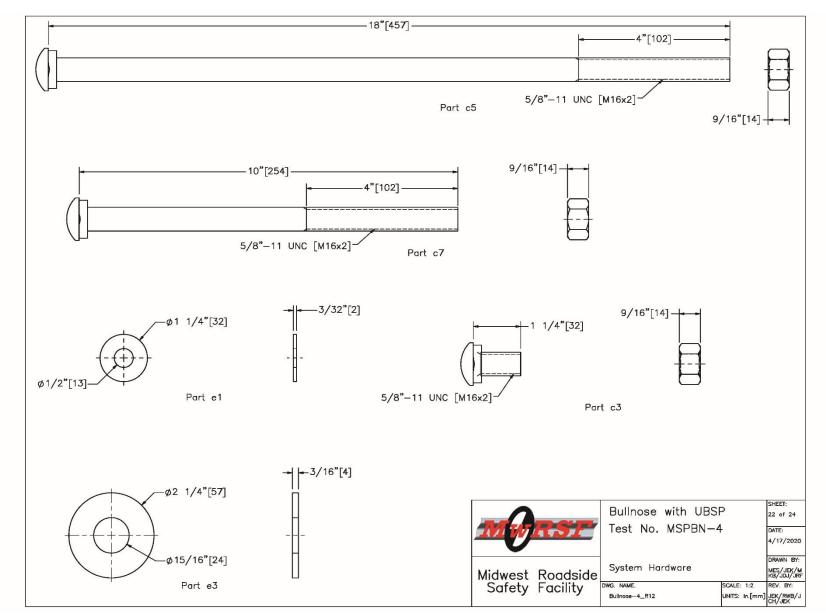


Figure 47. System Hardware, Test No. MSPBN-4

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	2	TS8"x6"x3/16" [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE07
a2	6	TS8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
a3	6	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
a4	12	Lower Slip Post Assembly	Plate—ASTM A36 Foundation Tube—ASTM A500 Gr. B	ASTM A123	PTE08
a5	12	Upper Slip Post Assembly	Plate-ASTM A36 Post-ASTM A992	ASTM A123	PWE11
a6	21	6"x8"x14 1/4" [152x203x362] Timber Blockout	SYP Grade No. 1 or better		PDB09
a7	12	6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout	SYP Grade No. 1 or better		PDB20
a8	2	6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout - Post 2	SYP Grade No. 1 or better		PDB12
b1	4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM02a
b2	1	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07a
b3	2	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07e
b4	1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side A	AASHTO M180	ASTM A123 or A653	-
b5	1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side B	AASHTO M180	ASTM A123 or A653	-
b6	2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07d
b7	1	6'-3" [1,905] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM18a
c1	48	7/16"—14 UNC [M11x1.5], 2 1/2" [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt – ASTM A449 or SAE J429 Gr. 5 Nut – ASTM A563DH or SAE J995 Gr. 5	ASTM A153 or B695 Class 55 or F2329	FBX12b
c2	8	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c3	132	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
c4	48	5/8"—11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c5	14	5/8"—11 UNC [M16x2], 18" [457] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB04
c6	8	7/8"—9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
c7	21	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
c8	46	16D Double Head Nail		_	
			MURSI	Bullnose with UBSP Test No. MSPBN-4	SHEET: 23 of 24 DATE: 4/17/2020
			Midwest Roadsid		DRAWN BY: MES/JEK/M KB/JDJ/JRF
			Safety Facility	DWG. NAME. SCALE: No Bulinose-4_R12 UNITS: In.[

Figure 48. Bill of Materials, Test No. MSPBN-4

		-		r	
ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	192	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC12a
e2	118	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC16a
e3	16	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	-
f1		BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	_	PDF04
f2	8	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	ASTM A123	-
f3	1	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 68 5/8" [1,743] Long Steel Post	ASTM A992	ASTM A123	_
g1	6	BCT Anchor Cable Assembly	-		FCA01
g2	6	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
gЗ	2	5/8" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB Stock No. 1040395 for 5/8" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	Wire Rope — Class A Coating	RCM02
g4	4	12 5/8"x5 13/16"x3/16" [321x148x5] Nose Cable Anchor Plate	ASTM A36	ASTM A123	FPA04
g5	6	2 1/4"x3/4" [57x19] 11 gauge [3] U—Bolt Plate Washer	ASTM A1011 CS Type B	ASTM A123	-
g6	6	1/4" [6] Dia. U—Bolt and Nut	U-Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	
h1	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
h2	6	Anchor Bracket Assmbely	ASTM A36	ASTM A123	FPA01

MURST	Bullnose with UBSP Test No. MSPBN-4	SHEET: 24 of 24 DATE: 4/17/2020
Midwest Roadside	Bill of Materials	DRAWN BY: MES/JEK/M KB/JDJ/JRF
	DWG. NAME. SCALE: None Bulinose-4_R12 UNITS: In.[mm]	REV. BY: JEK/RWB/J CH/JEK

Figure 49. Bill of Materials, Test No. MSPBN-4

Figure 50. Test Installation Photographs, System Overview, Test No. MSPBN-4

Figure 51. Test Installation Photographs, End Anchorages and Nose Cables, Test No. MSPBN-4

Figure 52. Test Installation Photographs, Nose Details, Test No. MSPBN-4

Figure 53. Test Installation Photographs, Post Details, Test No. MSPBN-4

Figure 54. Test Installation Photographs, System Overview, Test No. MSPBN-4

5 FULL-SCALE CRASH TEST NO. MSPBN-4

5.1 Static Soil Test

Before full-scale crash test no. MSPBN-4 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. MSPBN-4 was conducted on April 18, 2018 at approximately 1:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Temperature	45° F
Humidity	57%
Wind Speed	23 mph
Wind Direction	330° from True North
Sky Conditions	Cloudy/Windy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.01 in.
Previous 7-Day Precipitation	0.44 in.

Table 5. Weather Conditions, Test No. MSPBN-4

5.3 Test Description

Test no. MSPBN-4 was conducted under the MASH 2016 TL-3 guidelines for test designation no. 3-30. Test designation no. 3-30 is an impact of the 1100C vehicle at 62 mph (100 km/h) and 0 degrees into the nose of the system with a ¹/₄-vehicle offset. Initial vehicle impact was to occur with the vehicle traveling parallel to the longitudinal centerline of the system and offset 16¹/₄ in. (413 mm) laterally toward the A side, as shown in Figure 55. This distance represented one quarter of the vehicle's width.

In test no. MSPBN-4, the 2,429-lb (1,102-kg) small car impacted the thrie-beam bullnose system at a speed of 62.1 mph (99.9 km/h) and at an angle of 1.3 degrees. The actual impact occurred with the vehicle offset 14.9 in. (378 mm) from the centerline of the system. During the test, the vehicle was initially captured by the thrie-beam nose of the system. However, as the vehicle proceeded into the system, the slot between the upper two corrugations of thrie beam and the lowest corrugation opened. This behavior allowed the top two thrie-beam corrugations to move upward and the lower thrie-beam corrugation to move downward and rupture. This outcome compromised the capture of the vehicle's front end and allowed the vehicle to penetrate the system. The vehicle came to rest 95 ft - 8 in. (29.2 m) downstream from the impact point after brakes were applied.

A detailed description of the sequential impact events is contained in Table 6. Sequential photographs are shown in Figure 57. Documentary photographs of the crash test are shown in Figures 58 through 60. The vehicle trajectory and final position are shown in Figure 61.

Figure 55. Impact Location, Test No. MSPBN-4

TIME	EVENT	
(sec)	Vehicle's front bumper impacted rail 14.9 in. (378 mm) from the centerline	
0.000	of the system on the Side A.	
0.006 Vehicle's front bumper deformed, and vehicle's hood contacted rail.		
0.008	Post nos. A1 and B1 deflected forward, and vehicle's hood and left-front fender deformed.	
0.012	Post nos. A2 and B2 deflected forward.	
0.020	Slot tab tore between middle and bottom rail corrugations.	
0.022	Post no. B3 deflected forward.	
0.028	Post no. B1 deflected backward.	
0.034	Post no. A1 deflected backward.	
0.042	Vehicle's right fender contacted rail.	
0.044	Post no. A2 deflected backward, and vehicle's right fender deformed.	
0.056	Rail's bottom corrugation ruptured between post nos. A1 and B1.	
0.064	Post no. A1 deflected downstream.	
0.072	Rail disengaged from bolt at post no. A2.	
0.076	Post no. B1 rotated backward.	
0.082	Post no. A3 deflected downstream, vehicle's front bumper became disengaged, and post no. B1 fractured.	
0.088	Rail disengaged from bolt at post no. A3.	
0.102	Post no. B2 deflected backward.	
0.109	Vehicle's right-front door contacted rail.	
0.112	Rail's middle corrugation ruptured between post nos. A1 and B1.	
0.114	Post no. A1 fractured.	
0.115	Rail disengaged from bolt at post no. A4.	
0.140	Vehicle's left-front door contacted rail.	
0.148	Vehicle's hood contacted windshield.	
0.150	Post no. A1 contacted post no. A2.	
0.178	Vehicle's left-front door deformed.	
0.188	Vehicle's left A-pillar deformed.	
0.194	Vehicle's right A-pillar contacted rail.	
0.198	Vehicle's hood disengaged.	
0.200	Vehicle's windshield cracked.	
0.202	Vehicle's left A-pillar contacted rail, and post no. A2 fractured.	
0.206	Post no. B2 deflected downstream.	
0.224	Post no. B2 fractured.	
0.232	Post no. A3 deflected backward.	
0.238	Vehicle's hood contacted roof.	

Table 6. Sequential Description of Impact Events, Test No. MSPBN-4

TIME	EVENT	
(sec)		
0.262	Vehicle's windshield contacted rail.	
0.264	Ruptured thrie-beam punctured windshield near left A-pillar/roof junction.	
0.286	Vehicle's left quarter panel contacted rail, and vehicle underrode rail.	
0.322	Vehicle's roof contacted rail.	
1.134	Vehicle's right-front tire contacted post no. A13.	
1.136	Post no. A13 deflected downstream and forward, vehicle yawed clockwise after impacting post no. A13.	
1.142	Post no. A14 deflected forward and downstream.	
1.148	Post no. A15 deflected backward.	
1.226	Vehicle's front bumper contacted post no. A14, post no. A14 fractured.	
1.236	Rail disengaged from bolt at post no. A14.	
1.244	Post no. A15 deflected forward.	
1.302	Vehicle's front bumper contacted rail between post nos. A14 and A15, vehicle pitched downward.	
1.326	Rail disengaged from bolt at post no. A15.	
1.402	Vehicle's front bumper contacted post no. A15.	
1.408	Post no. A15 rotated forward.	
1.410	Vehicle's left-rear tire became airborne.	
1.414	Post no. A15 fractured.	
1.468	Vehicle pitched upward.	
1.474	Vehicle's right-rear tire became airborne.	
1.678	Vehicle's left-rear tire regained contact with ground.	
1.700	Vehicle's right-rear tire regained contact with ground.	
2.236	Vehicle rotated through 180 degrees to face upstream and continued to yaw.	
4.000	Vehicle came to rest 95 ft $- 8$ in. (29.2 m) downstream of impact	

Table 7. Sequential Description of Impact Events, Test No. MSPBN-4, Cont.

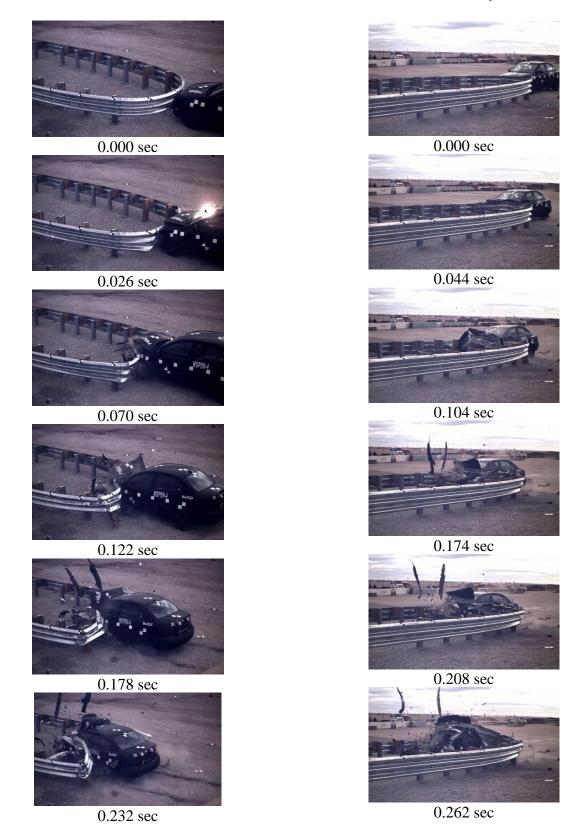


Figure 56. Sequential Photographs, Test No. MSPBN-4

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.200 sec

0.400 sec

0.600 sec

0.800 sec

1.000 sec

Figure 57. Sequential Photographs, Test No. MSPBN-4

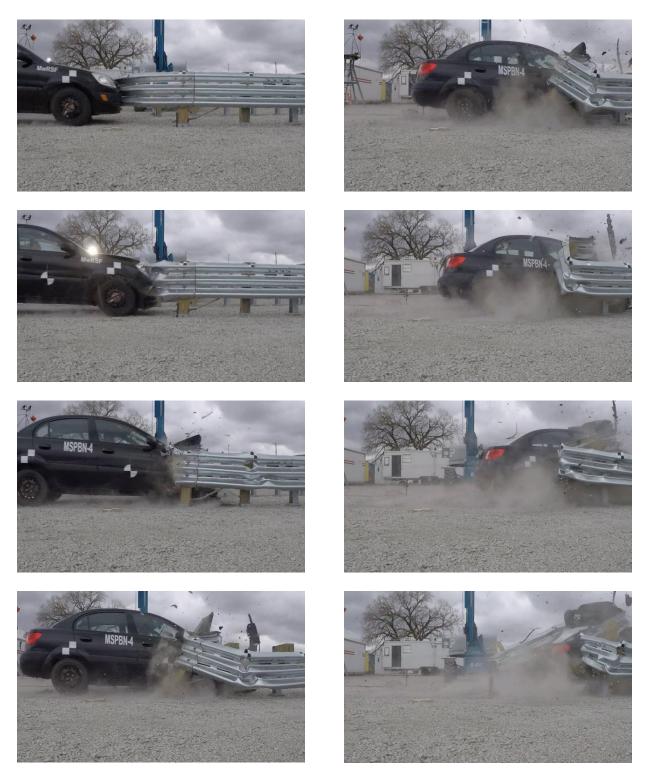


Figure 58. Documentary Photographs, Test No. MSPBN-4

Figure 59. Additional Documentary Photographs, Test No. MSPBN-4

Figure 60. Additional Documentary Photographs, Test No. MSPBN-4

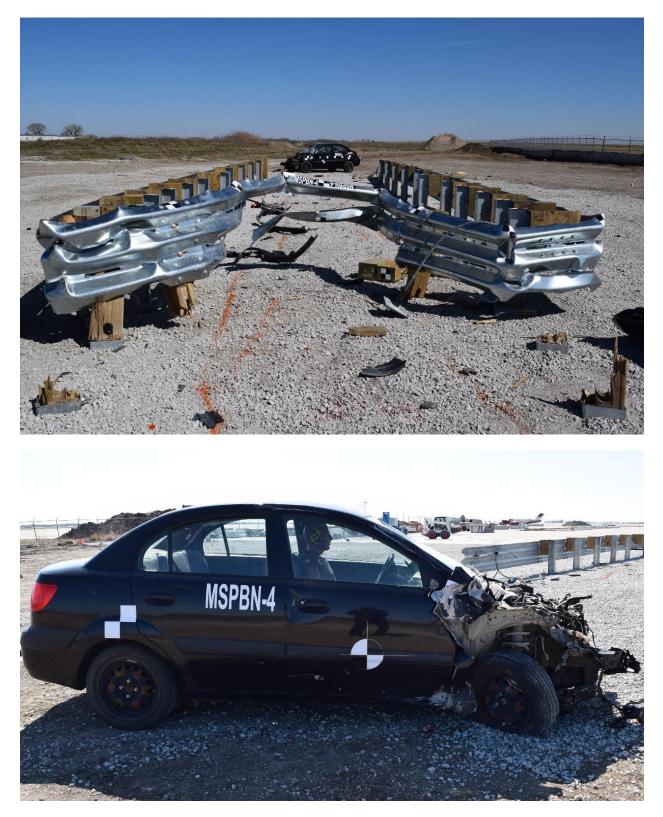


Figure 61. Vehicle Final Position and Trajectory Marks, Test No. MSPBN-4

5.4 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 62 through 68. Barrier damage primarily consisted of contact marks, deformation, bending, and tearing of the thrie-beam rail segments and disengagement of the breakaway posts. Additional damage was noted on the downstream end of the system after vehicle capture was compromised.

The thrie-beam nose section of the barrier and the adjacent rail sections on Side A and Side B were deformed backward and into the interior of the barrier as the vehicle entered the system. Rail tearing occurred at several locations in the nose of the system. The slot tabs connecting the top and middle rail corrugations located 75 in. (1,905 mm) upstream from post no. A1 were fractured. The slot tabs located 20 in. (508 mm) and 75 in. (1,905 mm) upstream from post no. A1 along the bottom corrugation were fractured, and a 65-in. (1,651-mm) long rupture of the bottom rail corrugation occurred 20 in. (508 mm) upstream from post no. A1. A tear was found 11½ in. (292 mm) upstream from post no. A1 along the bottom corrugation of the rail. Tearing also occurred 57 in. (1,448 mm) upstream from post no. A1 along the middle corrugation of the rail. A 58-in. (1,473-mm) long tear occurred 27½ in. (699 mm) upstream from post no. B1 along the bottom corrugation of the rail. The anchorage cables in the top two corrugations of the thrie-beam nose remained intact after impact.

Rail section no. 2 on Side A of the system was kinked, deformed, and bent inward toward the interior of the system at post no. A3. A second large kink and bend in the rail was observed at post no. A2. Additional deformations and kinks were observed on rail section no. 2 on Side A beginning at the upstream end of the rail section and extending to post no. A4. The bolt connecting post no. A6 to the rail pulled through the rail, leaving a tear 1¼ in. (32 mm) long by ¼ in. (6 mm) high.

Rail section no. 2 on Side B of the system was kinked, deformed, and bent inward toward the interior of the system a post no. B2. A second large kink and bend in the rail was observed at post no. B2. Additional deformations and kinks were observed on rail section no. 2 on Side B beginning at the upstream end of the rail section and extending slightly downstream of post no. B2.

Several of the breakaway posts in the bullnose were damaged and/or disengaged during the impact. On Side A of the system, post no. A1 was fractured through the BCT hole at the base of the post, and post no. A2 was fractured at its base and was also detached from the railing with the post bolt pulling away from the guardrail. The blockout of post no. A3 rotated downstream, and the bolt connecting post no. A4 pulled out of the rail. The UBSP posts on Side A of the system were undamaged. On Side B of the system, post no. B1 was fractured at its base, and post no. B2 was partially fractured at its base. The blockout attached to post no. B4 was rotated upstream. The UBSP posts on Side B of the system were undamaged. The BCT anchor cables were disengaged from post no. 1 on both sides of the system.

The downstream section of the A side of the system experienced significant damage. The test vehicle struck post nos. A13, A14, and A15. Post no. A13 had a 7-in. (178-mm) tall by 1-in. (25-mm) deep dent along the upstream back flange starting 17¹/₂ in. (445 mm) from the top of the post. Both post nos. A14 and A15 were fractured off at their bases. A 22³/₄-in. (578-mm) long by

 $1\frac{1}{2}$ -in. (38-mm) high contact mark was observed on the back side of the rail $11\frac{1}{2}$ in. (292 mm) downstream from post no. A14.

The maximum longitudinal permanent set of the barrier system was 12 ft - 7 in. (3.8 m) at the midspan of the nose rail section, as measured in the field. The maximum lateral permanent set deflection was internal to the bullnose system and is not shown. A maximum longitudinal dynamic barrier deflection of 13 ft – 9.6 in. (4.2 m) was noted at the quarter point of the nose on Side A, as determined from high-speed digital video analysis. The maximum lateral dynamic barrier deflection was internal to the bullnose system and is not shown. Working widths for the system were not shown because the system did not capture the impacting vehicle. A schematic of the permanent set deflection is shown in Figure 69.

Figure 62. Overview of System Damage, Test No. MSPBN-4

Figure 63. Impact Location Damage, Test No. MSPBN-4

Figure 64. Close Up of Damage to Impact Area, Test No. MSPBN-4

Figure 65. Damage to Post Nos. A1 and A2, Test No. MSPBN-4

September 1, 2020 MwRSF Report No. TRP-03-418-20

Figure 66. Damage to Post Nos. B1 and B2, Test No. MSPBN-4

Figure 67. Damage to Impact Location, Test No. MSPBN-4

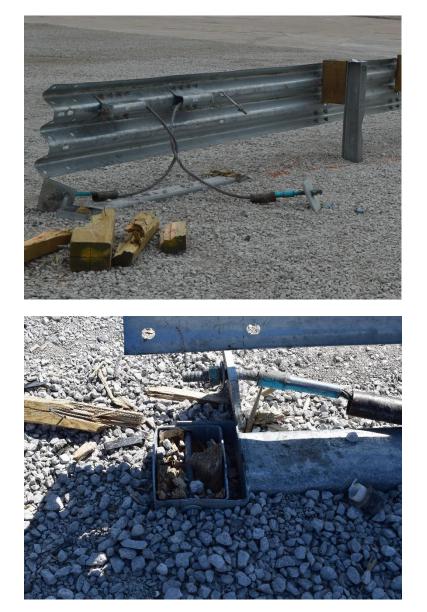


Figure 68. Damage to Post Nos. A14 and A15, Test No. MSPBN-4

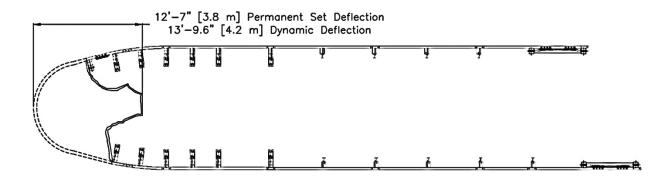


Figure 69. System Deformation, Test No. MSPBN-4

5.5 Vehicle Damage


The damage to the vehicle was extensive, as shown in Figures 70 through 73. The maximum occupant compartment deformations are listed in Table 8 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that the windshield deformed 4¹/₄ in. (108 mm), which violated the MASH 2016 deformation limits. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the front of the vehicle where the impact had occurred. The front grille and hood were disengaged from the vehicle. The right-front fender was peeled back, and the front portion of the left fender was crushed and pushed back. The center of the bumper was crushed inward toward the engine. The windshield was shattered and crushed inward due to contact with the thrie-beam and the vehicle hood as the vehicle underrode the rail. Additionally, a 6-in. (152-mm) long hole was torn in the upper left corner of the windshield. The right-front door was dented near the handle. The left-rear door and left-rear side panel had a large dent 56 in. (1,422 mm) long by 7 in. (178 mm) wide. The left-rear taillight was disengaged from its housing.

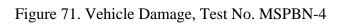


Figure 70. Vehicle Damage, Test No. MSPBN-4

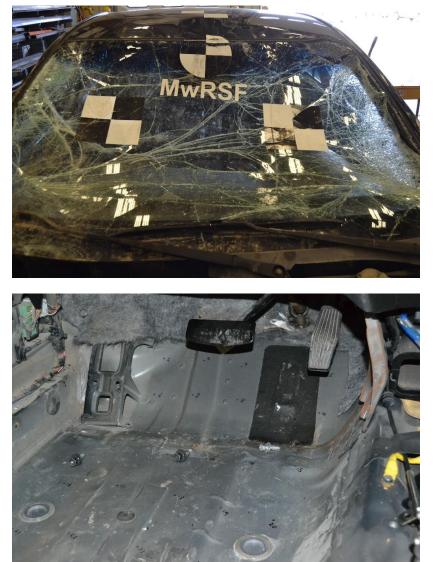


Figure 72. Vehicle Interior Damage, Test No. MSPBN-4

September 1, 2020 MwRSF Report No. TRP-03-418-20

92

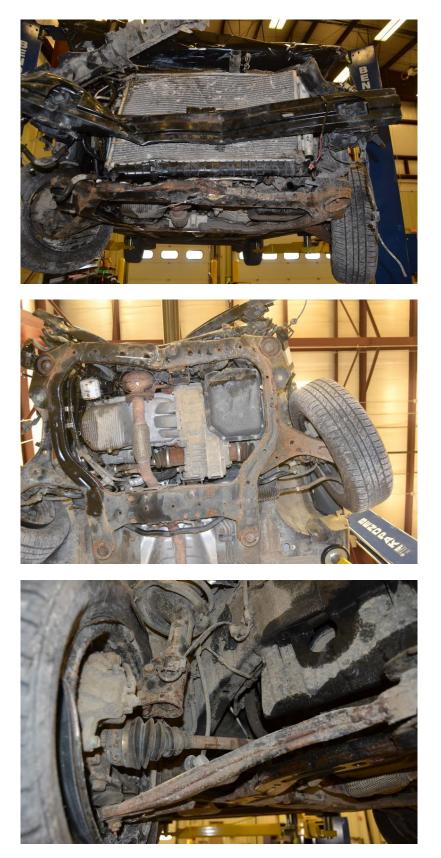


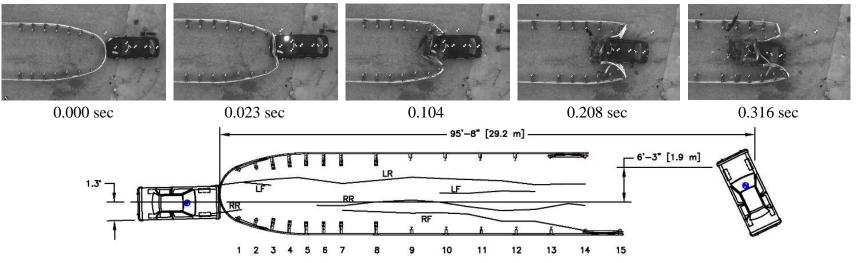
Figure 73. Undercarriage Damage, Test No. MSPBN-4

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	1/2 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	¹ ⁄4 (6)	≤ 12 (305)
A-Pillar	⁵ / ₈ (16)	≤ 5 (127)
A-Pillar (Lateral)	0 (0)	≤ 3 (76)
B-Pillar	³ / ₈ (10)	≤ 5 (127)
B-Pillar (Lateral)	1/8 (3)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	1/8 (3)	≤ 12 (305)
Side Door (Above Seat)	1/8 (3)	≤ 9 (229)
Side Door (Below Seat)	1/8 (3)	≤ 12 (305)
Roof	¹ ⁄4 (6)	≤4 (102)
Windshield	4¼ (108)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	³ / ₈ (10)	N/A

Table 8. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-4

N/A – Not applicable

5.6 Occupant Risk


The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 9. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 9. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

		Transducer		MASH 2016
Evaluation Criteria		SLICE-1 (primary)	DTS	Limits
ΟΙΥ	Longitudinal	-26.35 (-8.03)	-27.00 (-8.23)	±40 (12.2)
ft/s (m/s)	Lateral	-3.40 (-1.04)	-4.36 (-1.33)	±40 (12.2)
ORA	Longitudinal	-10.57	-12.32	±20.49
g's	Lateral	-5.66	-6.11	±20.49
MAX.	Roll	7.5	12.3	±75
ANGULAR DISPL. degrees	Pitch	5.9	9.2	±75
	Yaw	158.1	167.2	not required
THIV ft/s (m/s)		27.47 (8.37)	27.01 (8.23)	not required
PHD g's		5.76	4.73	not required
ASI		0.76	0.76	not required

Table 9. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-4

5.7 Discussion

The analysis of the results for test no. MSPBN-4 showed that the system did not adequately capture and contain the 1100C vehicle with controlled longitudinal displacements of the barrier. The test vehicle penetrated the system by underriding the thrie-beam but remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. Contact with the vehicle hood and thrie-beam rail elements caused excessive windshield deformation and created a tear in the upper left corner for the windshield. Therefore, test no. MSPBN-4 was determined to be unacceptable according to the MASH 2016 safety performance criteria for test designation no. 3-30. A summary of the results of test no. MSPBN-4 is shown in Figure 74.

.

Test Agency	MwRSF
Test Number	MSPBN-4
Date	
AASH 2016 Test Designation No	
e	Steel Post Bullnose with Breakaway Posts
Key Component – Thrie Beam	
7 1	
Key Component – Breakaway Steel Post	
•	
Soil Type	
51	
mpact Conditions	
1	
1	
	378 mm) from CL of the bullnose on the A side
mpact Severity 312.9 kip-ft (424.2 kJ	$() \ge 288$ kip-ft (390 kJ) limit from MASH 2016
Exit Conditions	· • • · · ·
Speed	
1	
/ehicle Stability	Satisfactory
5	Failed due to Underride

96

,	Vehicle Damage	Severe
	CDC [21]	
	Maximum Interior Deformation	
•	Test Article Damage	Extensive
•	Maximum Test Article Deflections	
	Permanent Set	
	Dynamic	
	Working Width	NA
•	Transducer Data	

		Transducer		MASH 2016
Evaluatio	on Criteria	SLICE-1 (primary)	TDAS-Pro	Limit
OIV ft/s	Longitudinal	-26.35 (-8.03)	-27.00 (-8.23)	±40 (12.2)
(m/s)	Lateral	-3.40 (-1.04)	-4.36 (1.33)	±40 (12.2)
ORA	Longitudinal	-10.57	-12.32	±20.49
g's	Lateral	-5.66	-6.11	±20.49
MAX	Roll	7.5	12.3	±75
ANGULAR DISP.	Pitch	5.9	9.2	±75
degrees	Yaw	158.1	167.2	Not required
THIV – ft/s (m/s) PHD – g's		27.47 (8.37)	27.01 (8.23)	Not required
		5.76	4.73	Not required
ASI		0.78	0.76	Not required

Figure 74. Summary of Test Results and Sequential Photographs, Test No. MSPBN-4

6 DESIGN DETAILS, TEST NO. MSPBN-5 THROUGH MSPBN-7

6.1 Bullnose Design Modification Following Test No. MSPBN-4

Following test no. MSPBN-4, the researchers reviewed the results from the test to determine the factors that influenced the failure of the system as well as to suggest potential modifications to the thrie-beam bullnose system to improve its performance. The performance of the system was also compared with previous NCHRP Report No. 350 test designation no. 3-30 testing on the same thrie-beam bullnose system in test no. USPBN-3 [9]. Three observations were made related to the failure of test no. MSPBN-4.

- 1. Prior evaluation of the thrie-beam bullnose system under NCHRP Report No. 350 test designation no. 3-30 impact conditions did not display the same capture issue as observed in test no. MSPBN-4. However, the mass of the small car and corresponding kinetic energy of MASH test 3-30 increased 25 percent as compared to previous NCHRP Report 350 testing. The increased kinetic energy imparted into the system may have contributed to the fracture of the lowest corrugation of the thrie beam in test no. MSPBN-4 and increased the potential for vehicle underride of the guardrail.
- 2. The 1100C front-end geometry and structure appears to be significantly different than that for the 820C vehicle tested previously in test no. USPBN-3. These geometric differences may have altered the vehicle engagement and interlock with the nose rail and changed the nose rail slot tab tearing and corrugation separation. Differences in the front-end geometry of the 820C vehicle used in test designation no. USPBN-3 and the 1100C vehicle used in test designation no. MSPBN-4 are shown in Figure 75. The center of the bumper was in a similar location for both tests, but the 1100C vehicle has a more vertical profile, which may have contributed to the more rapid slot tab tearing and rail opening as well the vertical motion of the upper two corrugations of the thrie beam up and over the front of the vehicle. Additionally, it was noted that the behavior of the vehicle's engine hood was different as the vehicle hood remained latched and in place in test no. USPBN-3, while the hood was opened, pushed back, and disengaged in test no. MSPBN-4.
- 3. The previous two factors led to more rapid rupture of the thrie-beam slot tabs in the nose section, opening of the thrie beam between the middle and lower rail corrugations, upward movement of the upper two rail corrugations, and rupture of the lower rail corrugation, which allowed the vehicle to penetrate the system. Sequential views comparing the 820C vehicle from test no. USPBN-3 and the 1100C vehicle in test no. MSPBN-4 are shown in Figure 76 and Figure 77. The two tests displayed differences in the rail tearing, rail corrugation separation, and capture of the front of the small car. The bullnose systems in these tests were identical. Note that fracture of the lowest rail corrugation was noted in the previous 820C testing as well, but it occurred later in the impact event, and the upper two rail corrugations were more effective in capturing the vehicle.

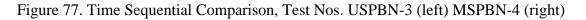

Based on this analysis, it was determined that the best option for improving the system performance would be to add a third nose cable behind the lowest thrie-beam corrugation. Recall that the current bullnose system has reinforcing cable elements behind the top two rail corrugations that are used to retain the vehicle when the thrie-beam rail in the nose section ruptures during impacts on the end of the system. Adding a third cable to the lowest corrugation could provide similar capture benefits for the 1100C vehicle now that it had also been observed to fracture the rail in the nose section. Additional modification of the slot tabs in the nose section and/or the use of additional capture elements were considered, but these would significantly modify the system and require additional analysis.

Figure 75. Vehicle Geometry and Barrier Alignment Comparison, Test Nos. USPBN-3 (top) and MSPBN-4 (bottom)

Time = 0.000 sec

Time = 0.030 sec

Time = 0.050 sec


Figure 76. Time Sequential Comparison, Test Nos. USPBN-3 (left) and MSPBN-4 (right)

Time = 0.080 sec

Time = 0.120 sec

It should be noted that the opening and separation of the lower corrugation from the upper two corrugations in test no. MSPBN-4 led to some concern that capture of the front end of the 1100C vehicle may not be optimal, even with the addition of a third nose cable. In test no. MSPBN-4, the lower corrugation was riding below the apex or middle of the vehicle's bumper prior to rupturing. The addition of the third nose cable would prevent loss of tension across the front of the vehicle, but the position of that capture element may not be as positive as observed in previous 820C testing. However, this was believed to be the best option moving forward. If the addition of the third nose cable was unsuccessful, additional research using LS-DYNA would likely be required to develop modifications necessary to improve the capture of the 1100C vehicle.

The addition of a third nose cable was not expected to affect the performance of the thriebeam bullnose system relative to the three previous, successful MASH 2016 crash tests (test designation nos. 3-32, 3-34, and 3-35). Test designation nos. 3-34 and 3-35 were conducted on the side of the system outside of the region where the nose cables are located. Thus, the addition of a third nose cable would have no effect on the outcome of those tests. Test designation no. 3-32 was conducted with the 1100C vehicle impacting the nose of the system at an angle of 15 degrees. This test demonstrated no capture issues with respect to the 1100C vehicle with only the original two nose cables. Thus, the additional of the third nose cable was not expected to negatively affect the outcome of that test either. As such, it was determined that these tests would not need to be rerun on the thrie-beam bullnose system if the proposed modification was successful.

6.2 System Details

The barrier system for test nos. MSPBN-5 through MSPBN-7 consisted of a bullnose median barrier utilizing UBSPs, as shown in Figure 78 through Figure 103. Photographs of the test installations for all three tests are shown in Figure 104 through Figure 117. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

In order to improve the system performance from test no. MSPBN-5, a third nose cable was added to the system behind the lowest thrie-beam corrugation. All other details for the system were identical to those used in test no. MSPBN-4.

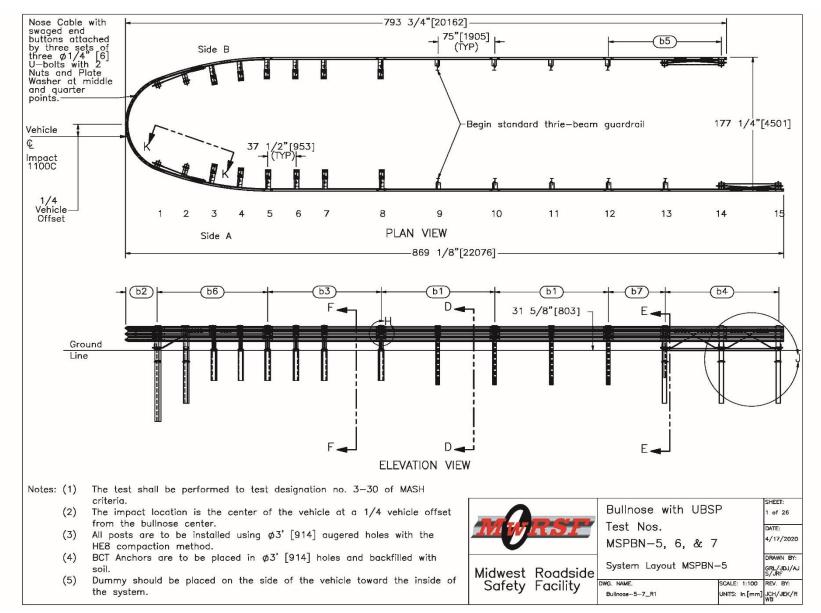


Figure 78. Test Installation Layout, Test No. MSPBN-5

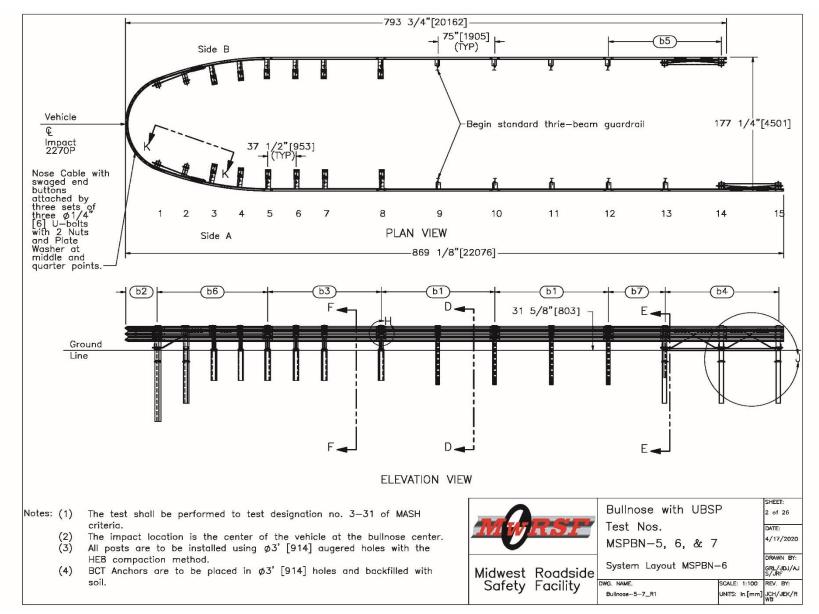


Figure 79. Test Installation Layout, Test No. MSPBN-6

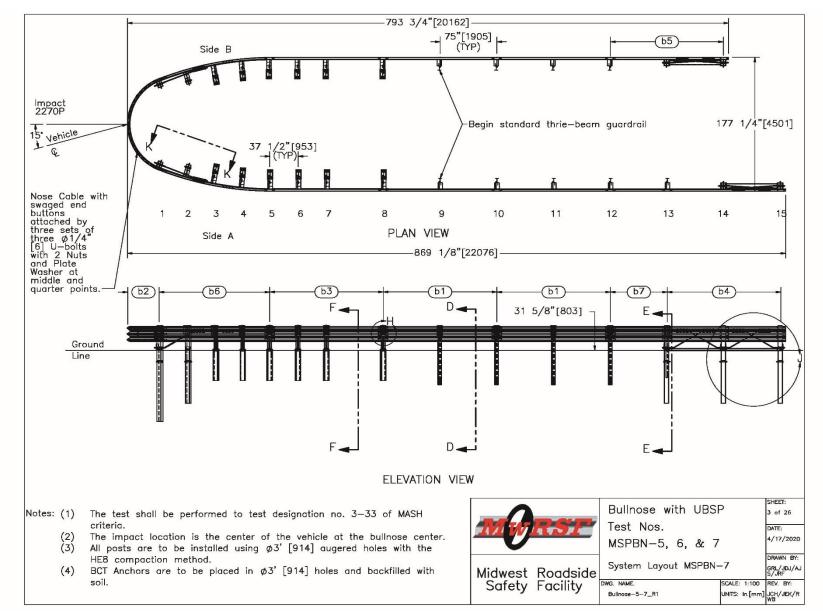


Figure 80. Test Installation Layout, Test No. MSPBN-7

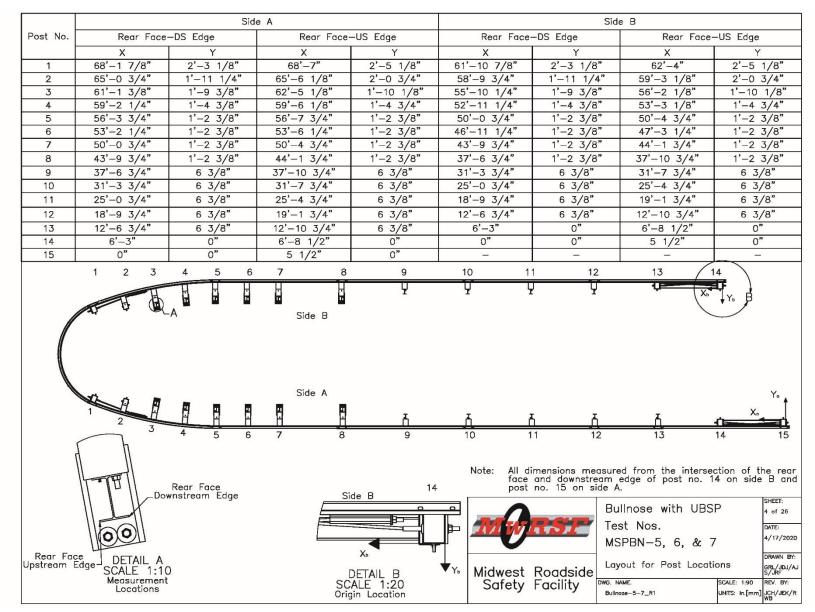


Figure 81. Layout for Post Locations, Test Nos. MSPBN-5 through MSPBN-7

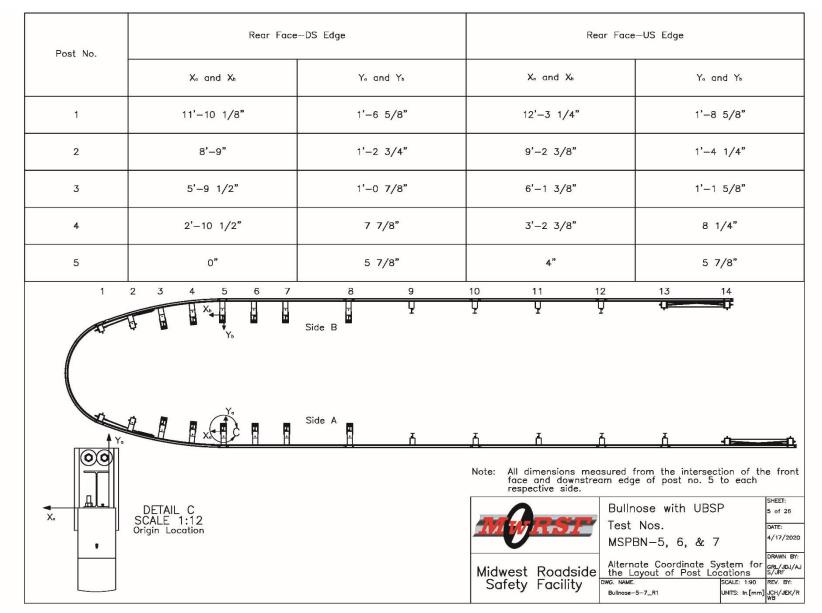


Figure 82. Alternate Coordinate System for the Layout of Post Locations, Test Nos. MSPBN-5 through MSPBN-7

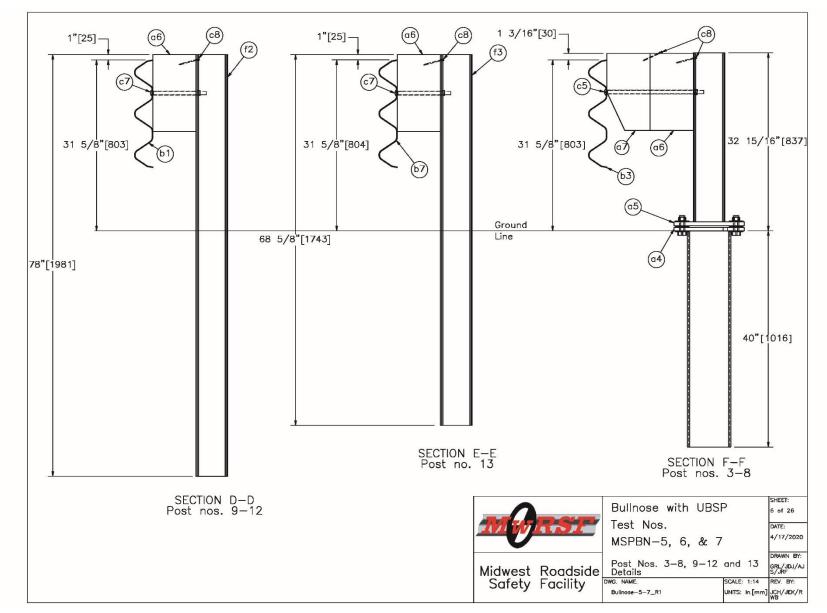


Figure 83. Post Nos. 3 through 8, 9 through 12, and 13 Details, Test Nos. MSPBN-5 through MSPBN-7

108

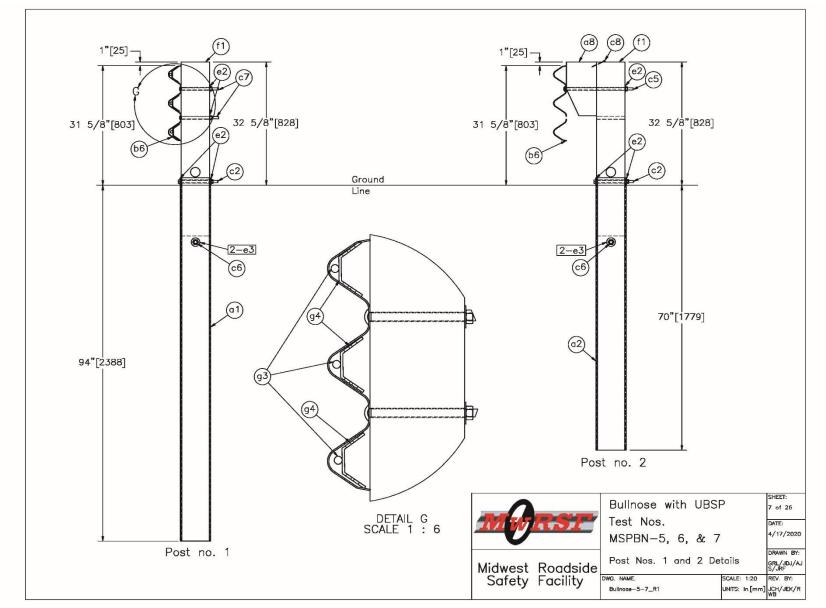


Figure 84. Post Nos. 1 and 2 Details, Test Nos. MSPBN-5 through MSPBN-7

109

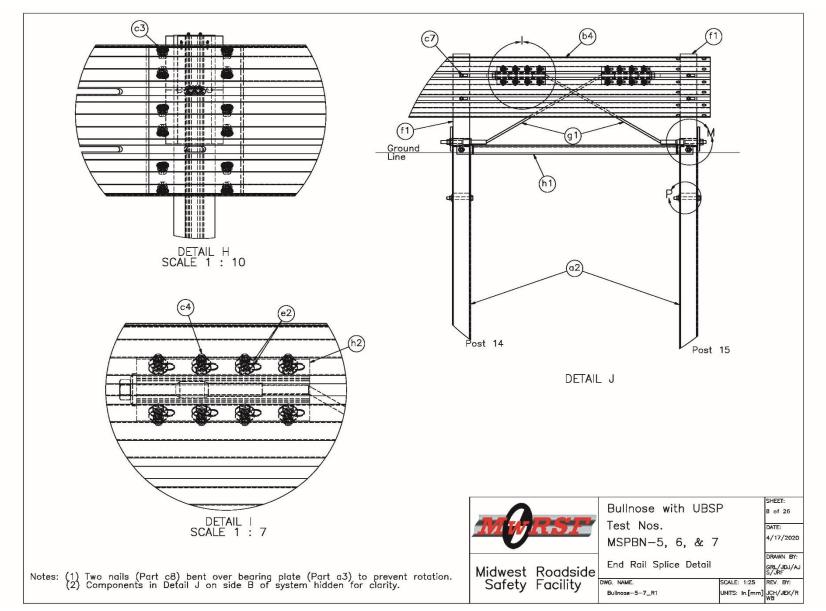


Figure 85. End Rail Splice Detail, Test Nos. MSPBN-5 through MSPBN-7

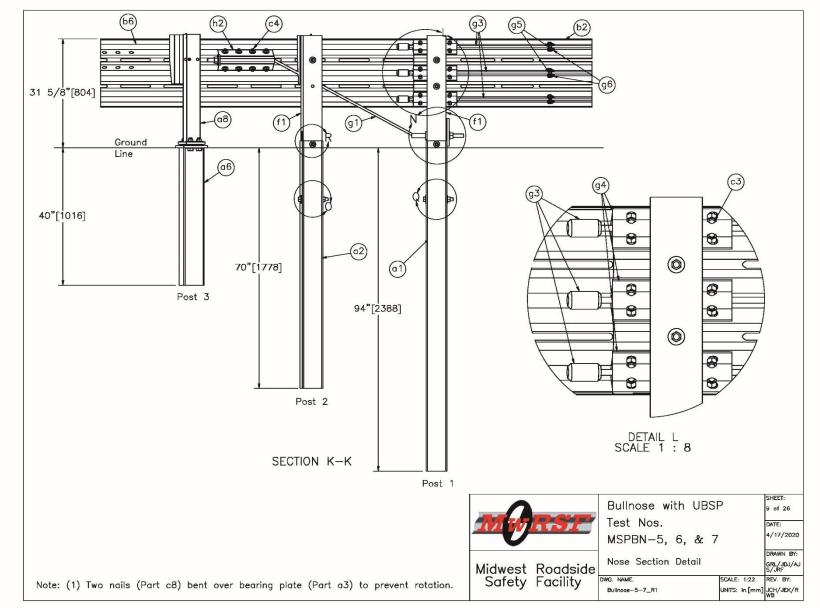


Figure 86. Nose Section Detail, Test Nos. MSPBN-5 through MSPBN-7

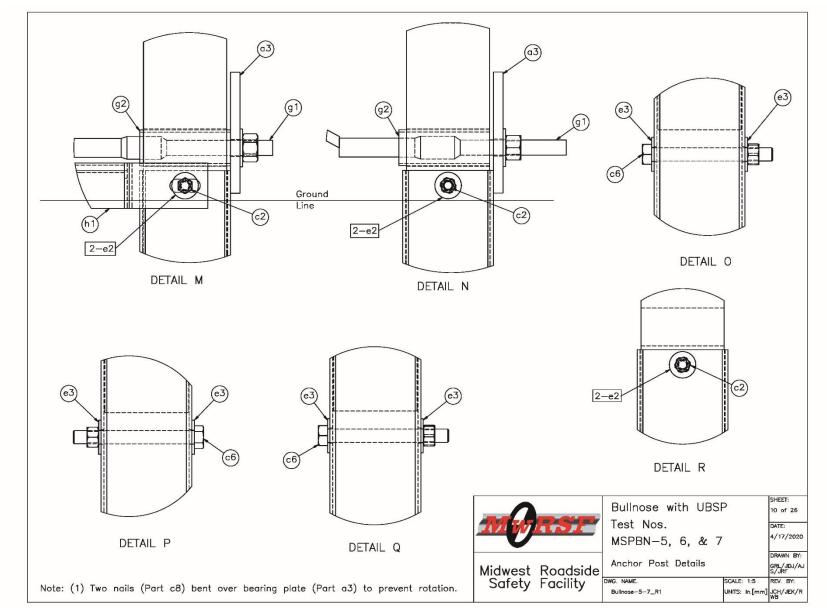


Figure 87. Anchor Post Details, Test Nos. MSPBN-5 through MSPBN-7

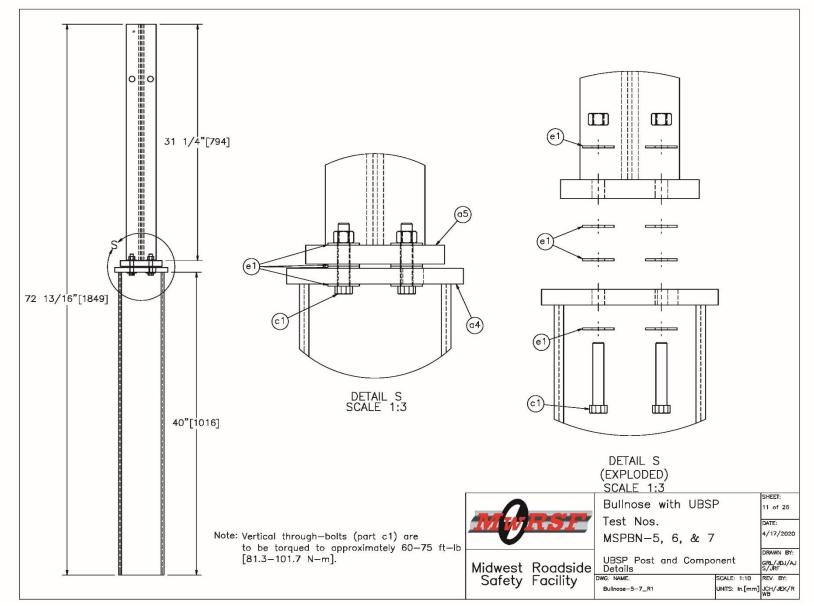


Figure 88. UBSP Post and Component Details, Test Nos. MSPBN-5 through MSPBN-7

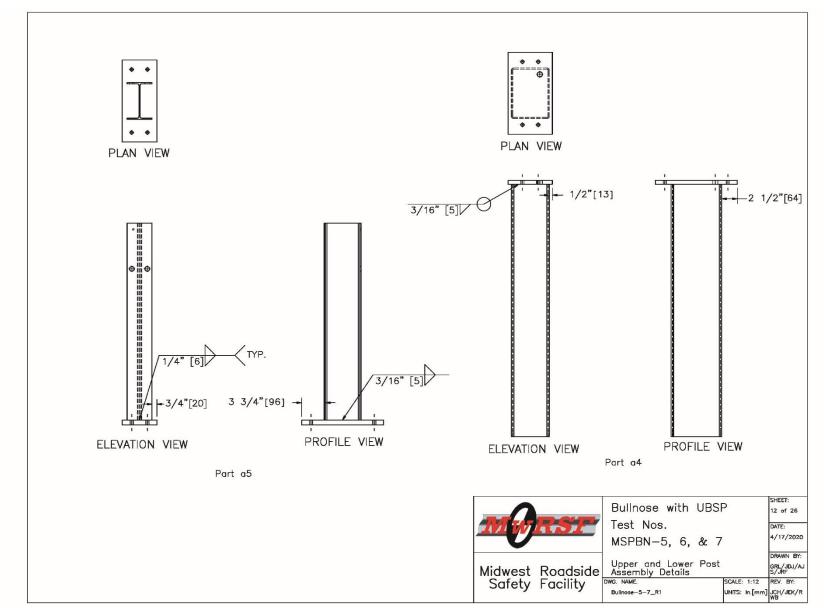


Figure 89. Upper and Lower Post Assembly Details, Test Nos. MSPBN-5 through MSPBN-7

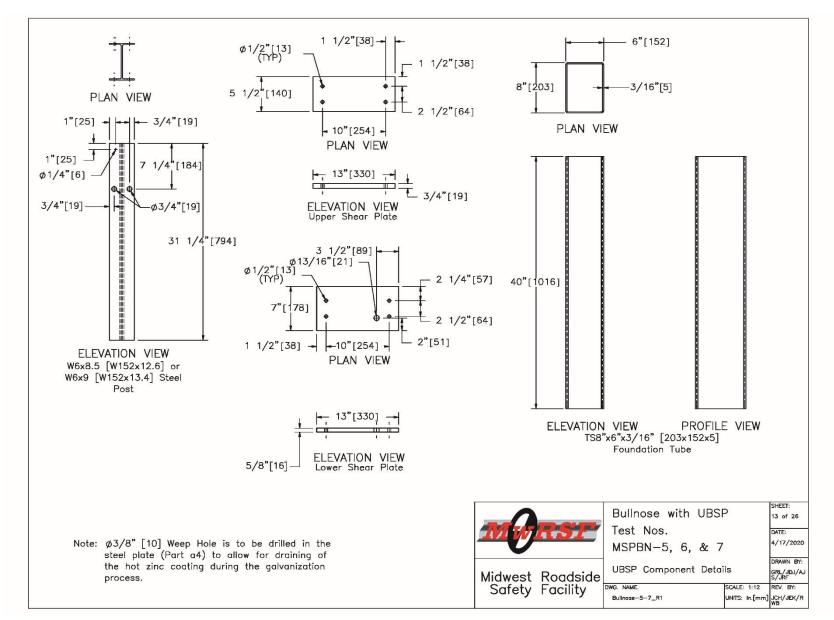


Figure 90. UBSP Component Details, Test Nos. MSPBN-5 through MSPBN-7

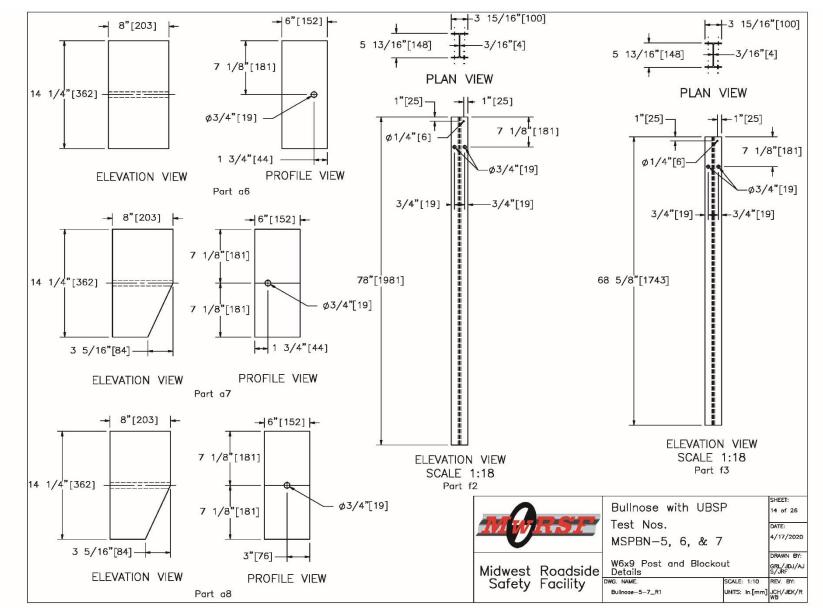


Figure 91. W6x9 Post and Blockout Details, Test Nos. MSPBN-5 through MSPBN-7

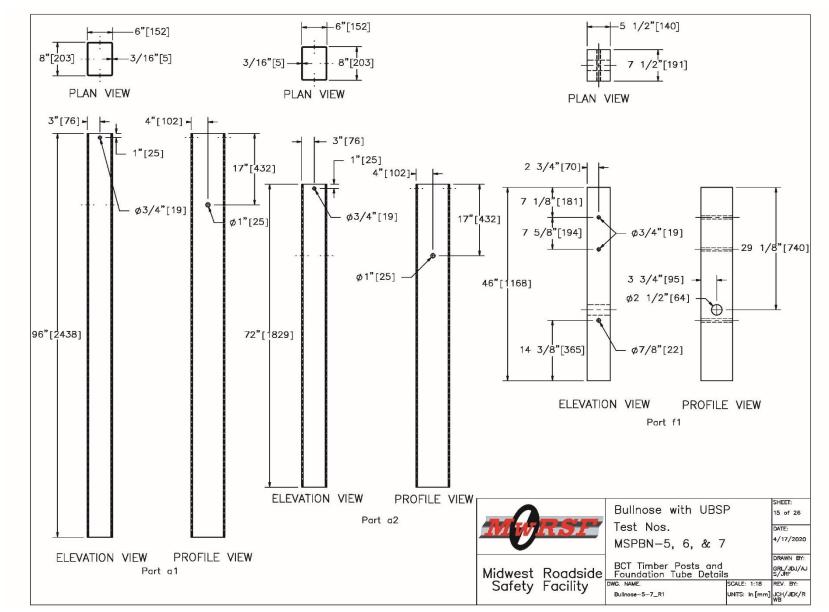


Figure 92. BCT Timber Posts and Foundation Tube Details, Test Nos. MSPBN-5 through MSPBN-7

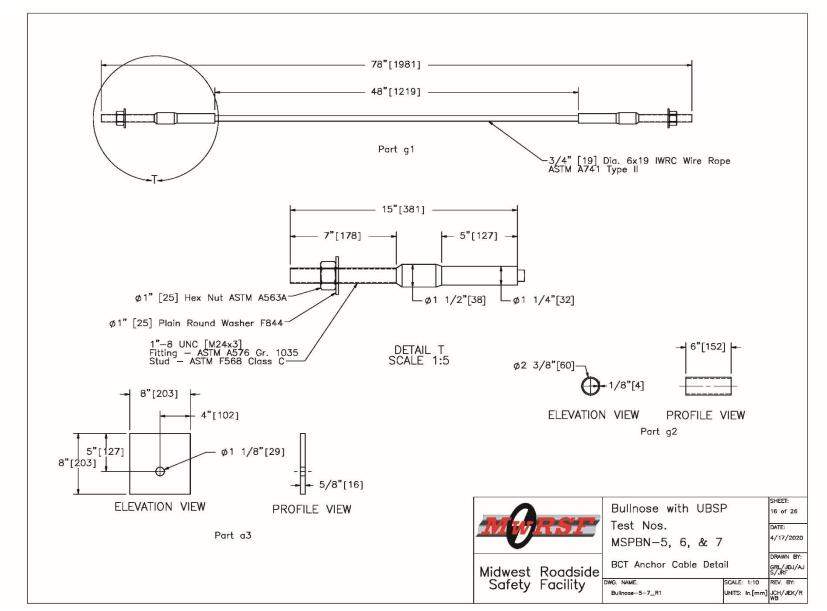


Figure 93. BCT Anchor Cable Detail, Test Nos. MSPBN-5 through MSPBN-7

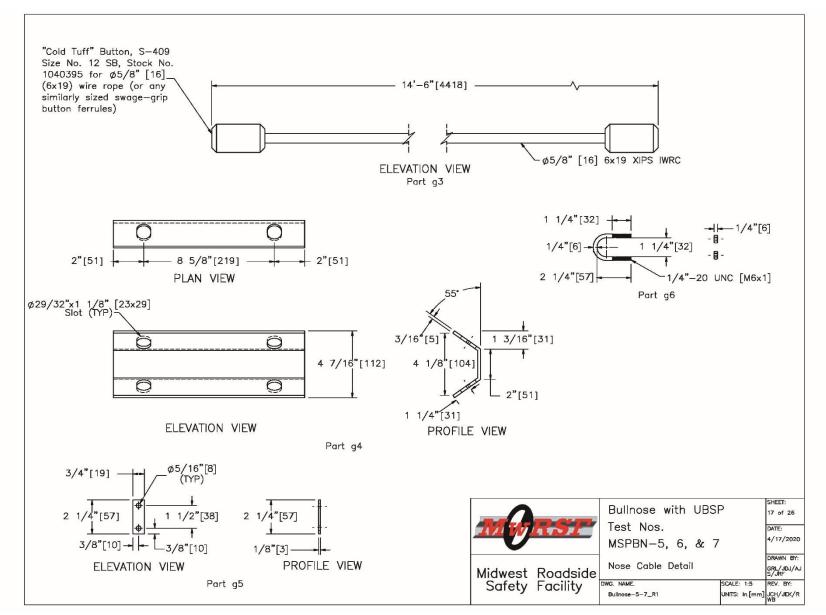


Figure 94. Nose Cable Detail, Test Nos. MSPBN-5 through MSPBN-7

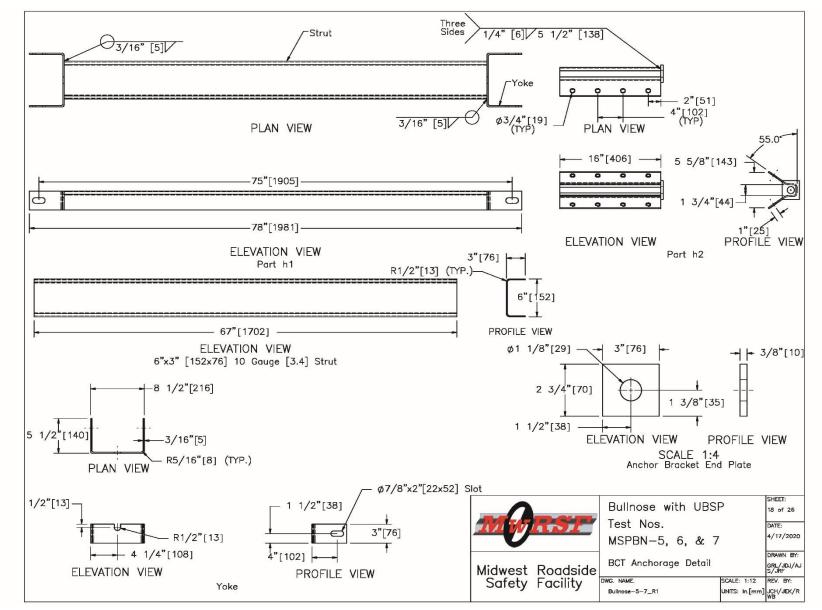


Figure 95. BCT Anchorage Details, Test Nos. MSPBN-5 through MSPBN-7

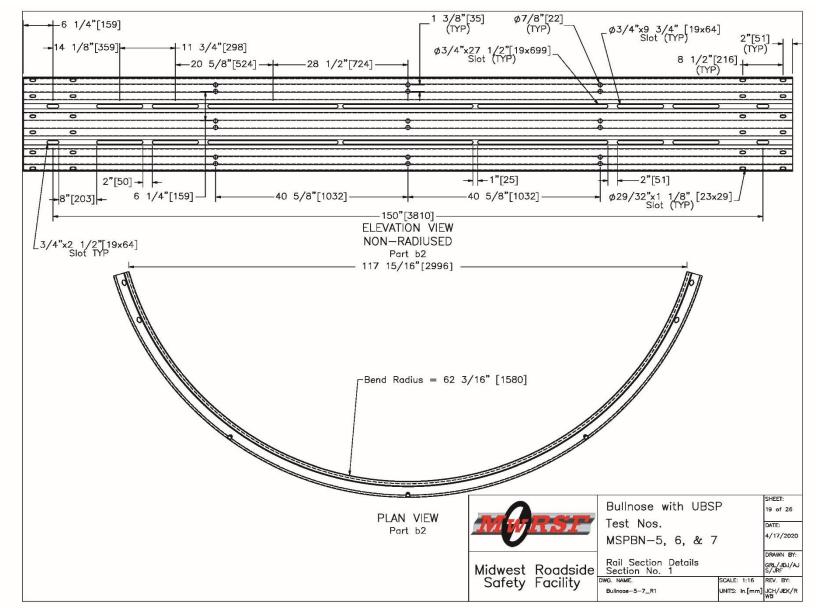


Figure 96. Rail Section Details Section No. 1, Test Nos. MSPBN-5 through MSPBN-7

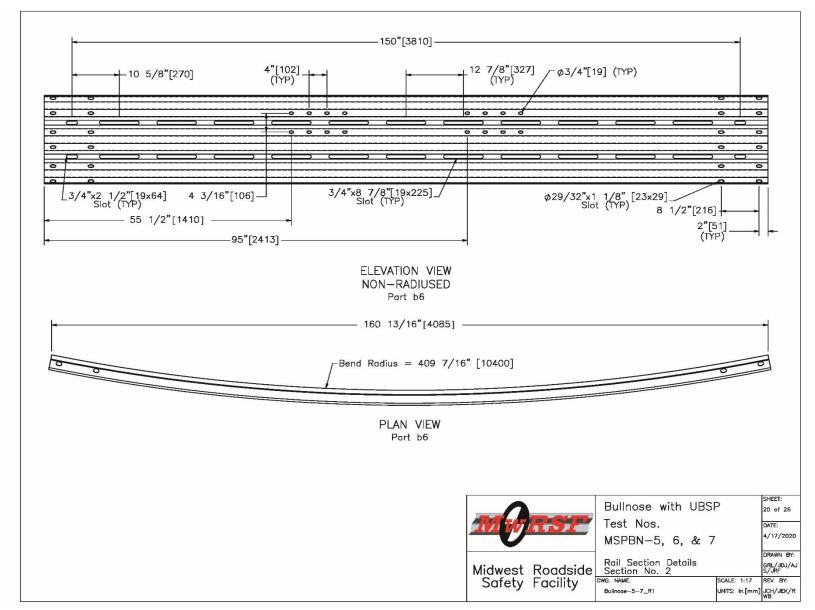


Figure 97. Rail Section Details Section No. 2, Test Nos. MSPBN-5 through MSPBN-7

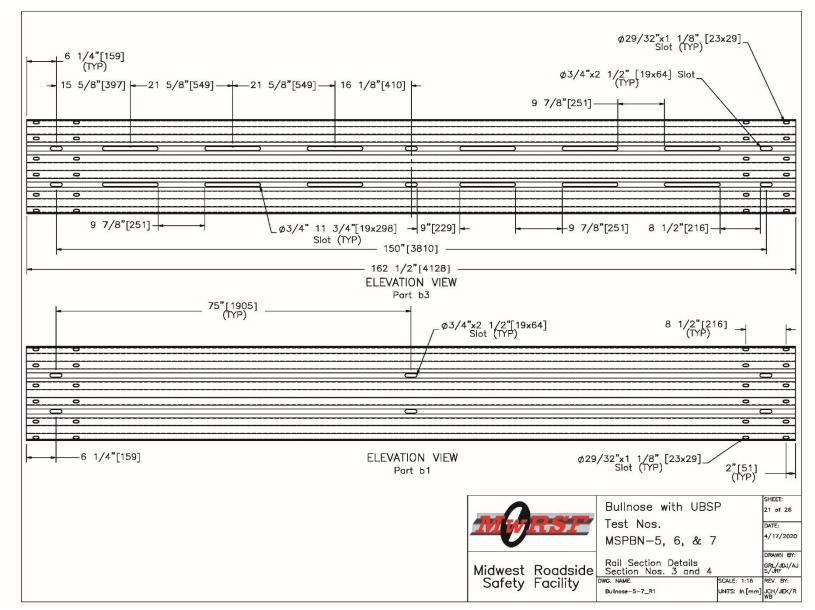


Figure 98. Rail Section Details Nos. 3 and 4, Test Nos. MSPBN-5 through MSPBN-7

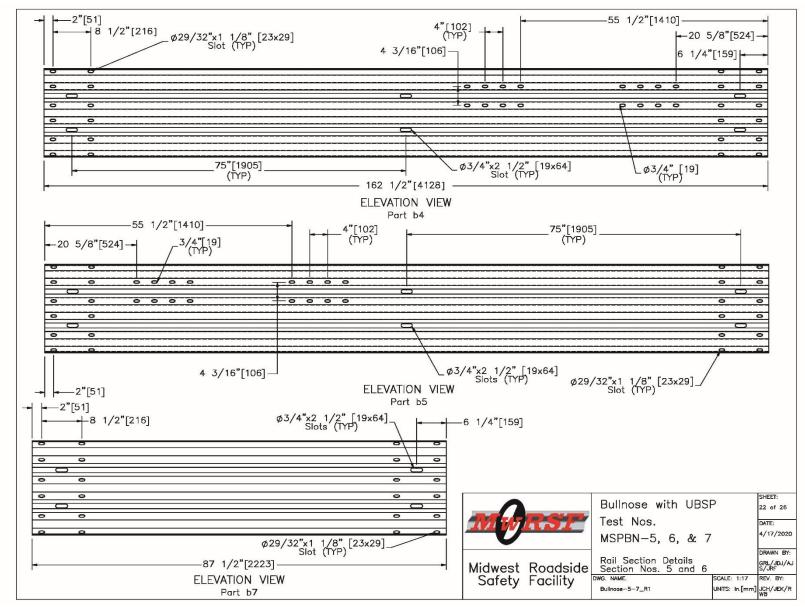


Figure 99. Rail Detail Section Nos. 5 and 6, Test Nos. MSPBN-5 through MSPBN-7

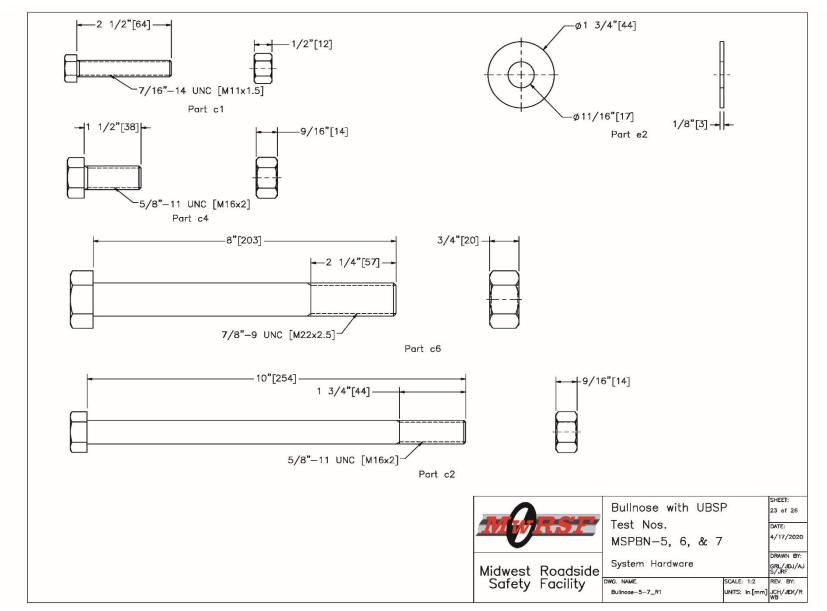


Figure 100. System Hardware, Test Nos. MSPBN-5 through MSPBN-7

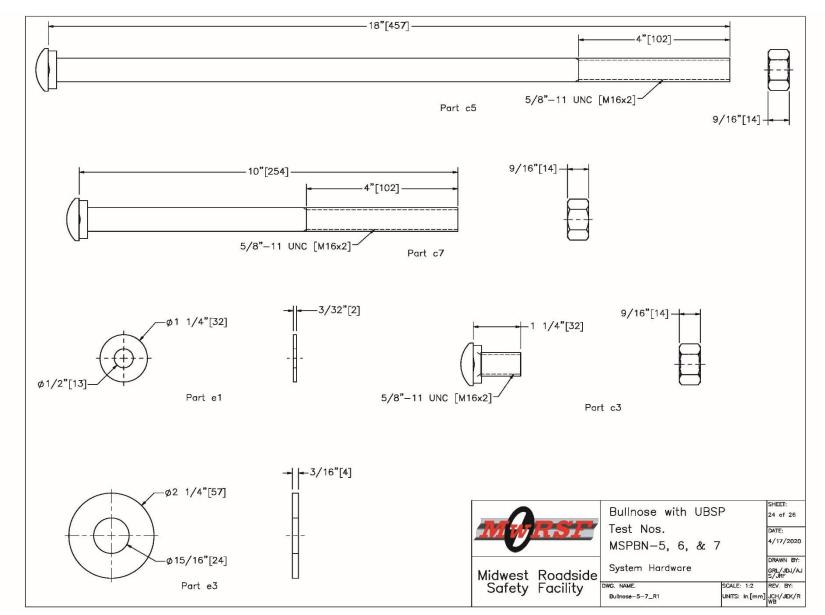


Figure 101. System Hardware, Test Nos. MSPBN-5 through MSPBN-7

No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	2	TS8"x6"x3/16" [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE07
a2	6	TS8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
a3	6	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
a4 -	12	Lower Slip Post Assembly	Plate—ASTM A36 Foundation Tube—ASTM A500 Gr. B	ASTM A123	PTE08
a5 ⁻	12	Upper Slip Post Assembly	Plate—ASTM A36 Post—ASTM A992	ASTM A123	PWE11
a6 2	21	6"x8"x14 1/4" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	-	PDB09
a7 '	12	6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout	SYP Grade No. 1 or better	-	PDB20
a8	2	6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout — Post 2	SYP Grade No. 1 or better	_	PDB12
b1	4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM02a
b2	1	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07a
b3	2	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07e
b4	1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side A	AASHTO M180	ASTM A123 or A653	<u> </u>
b5		12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side B	AASHTO M180	ASTM A123 or A653	-
b6	2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07d
b7	1	6'—3" [1,905] 12—gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM18a
c2	8	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
		5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
c4 4	48	5/8"—11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c5 ⁻	14	5/8"—11 UNC [M16x2], 18" [457] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB04
c6	8	7/8"—9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
c7 2	21	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
c8 4	46	16D Double Head Nail	-	-	

	Bullnose with UBSP	SHEET: 25 of 26
THE RESE	Test Nos.	DATE:
	MSPBN-5, 6, & 7	4/17/2020
Midwest Roadside	Bill of Materials	DRAWN BY: GRL/JDJ/AJ S/JRF
	DWG. NAME. SCALE: None Bulinose-5-7_R1 UNITS: In.[mm]	REV. BY: JCH/JEK/R WB

Figure 102. Bill of Materials, Test Nos. MSPBN-5 through MSPBN-7

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	192	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC12a
e2	118	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC16a
e3	16	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	-
f1	8	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	_	PDF04
f2	8	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	ASTM A123	-
f3	1	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 68 5/8" [1,743] Long Steel Post	ASTM A992	ASTM A123	
g1	6	BCT Anchor Cable Assembly	-		FCA01
g2	6	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
gЗ	3	5/8" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for 5/8" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	Wire Rope — Class A Coating	RCM02
g4	6	12 5/8"x5 13/16"x3/16" [321x148x5] Nose Cable Anchor Plate	ASTM A36	ASTM A123	FPA04
g5	9	2 1/4"x3/4" [57x19] 11 gauge [3] U-Bolt Plate Washer	ASTM A1011 CS Type B	ASTM A123	-
g6	9	1/4" [6] Dia. U—Bolt and Nut	U-Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
h1	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
h2	6	Anchor Bracket Assmbely	ASTM A36	ASTM A123	FPA01

		Bullnose with UBSP	SHEET: 26 of 26
111111	ROF	Test Nos.	DATE:
		MSPBN-5, 6, & 7	4/17/2020
Midwest	Roadside	Bill of Materials	DRAWN BY: GRL/JDJ/AJ S/JRF
Safety	Facility	DWG. NAME. SCALE: None Bullnose-5-7_R1 UNITS: In.[mm	REV. BY: JCH/JEK/R WB

Figure 103. Bill of Materials, Test Nos. MSPBN-5 through MSPBN-7

Figure 104. Test Installation Photos, System Overview, Test No. MSPBN-5

Figure 105. Test Installation Photographs, End Anchorages and Nose Cables, Test No. MSPBN-5

Figure 106. Test Installation Photographs, Post Details for Side A (top) and Side B (bottom), Test No. MSPBN-5

Figure 107. Test Installation Photographs, System Nose Details, Test No. MSBPN-5

Figure 108. Test Installation Photographs, Post Details for Side A (top) and Side B (bottom), Test No. MSPBN-5

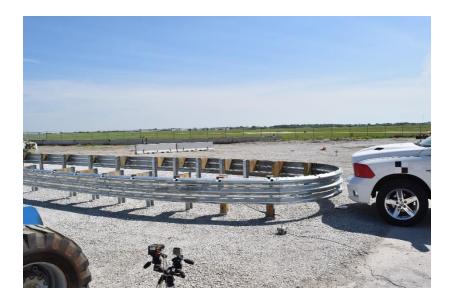


Figure 109. Test Installation Photos, System Overview, Test No. MSPBN-6

Figure 110. Test Installation Photographs, End Anchorage and Nose Cables, Test No. MSPBN-6

Figure 111. Test Installation Photographs, Nose Details, Test No. MSPBN-6

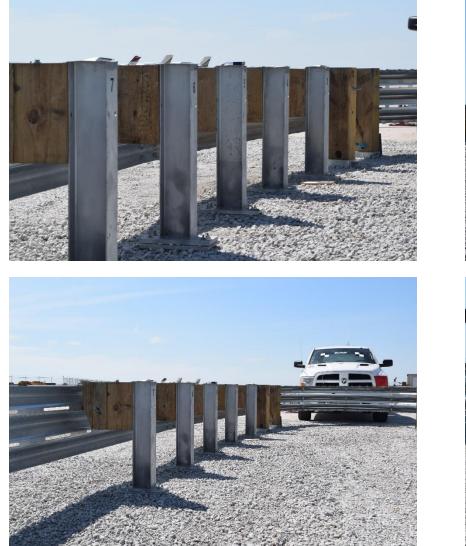


Figure 112. Test Installation Photographs, Post Details, MSPBN-6

Figure 113. Test Installation Photograph, System Overview, Test No. MSPBN-7

Figure 114. Test Installation Photograph, System Overview, Test No. MSPBN-7

Figure 115. Test Installation Photographs, Nose Cable and End Anchorage Details, Test No. MSPBN-7

Figure 116. Test Installation Photographs, Nose Details, Test No. MSPBN-7

Figure 117. Test Installation Photographs, Post Details, Test No. MSPBN-7

7 FULL-SCALE CRASH TEST NO. MSPBN-5

7.1 Static Soil Test

Before full-scale crash test no. MSPBN-5 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Weather Conditions

Test no. MSPBN-5 was conducted on May 15, 2018 at approximately 11:45 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 10.

Temperature	73° F
Humidity	59%
Wind Speed	6 mph
Wind Direction	50° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry / Wet / Icy
Previous 3-Day Precipitation	0.02 in.
Previous 7-Day Precipitation	0.49 in.

Table 10. Weather Conditions, Test No. MSPBN-5

7.3 Test Description

Test no. MSPBN-5 was conducted under the MASH 2016 TL-3 guidelines for test designation no. 3-30. Test designation no. 3-30 is an impact of the 1100C vehicle at 62 mph (100 km/h) and 0 degrees on the nose of the system with a ¹/₄-vehicle offset. Initial vehicle impact was with the vehicle traveling parallel to the longitudinal centerline of the system and offset by 16¹/₄ in. [413 mm] laterally or ¹/₄ of its width toward Side A of the system, as shown in Figure 118. The 2,409-lb (1,093-kg) small car impacted the modified bullnose barrier at a speed of 62.7 mph (100.9 km/h) and at an angle of 0.3 degrees. At impact, the vehicle was offset 16.3 in. (414 mm) from the centerline toward Side A of the system. During the test, the vehicle was captured by the thrie-beam nose of the system. As the vehicle proceeded into the system, the thrie-beam rail and nose cables remained wrapped around the front of the vehicle. The deformation of the thrie-beam panels and the disengagement of several breakaway posts on both sides of the system decelerated the vehicle to a safe and controlled stop. The vehicle came to rest in the interior of the system 30 ft – 2¹/₄ in. (9.2 m) downstream from the initial impact.

A detailed description of the sequential impact events is contained in Table 11. Sequential photographs are shown in Figures 119 and 120. Documentary photographs of the crash test are shown in Figure 121. The vehicle's final position is shown in Figure 122.

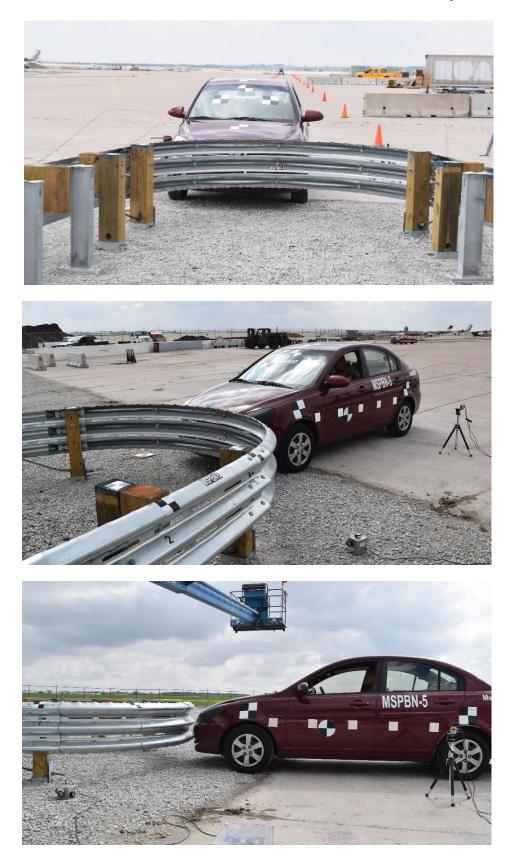


Figure 118. Impact Location, Test No. MSPBN-5

TIME	EVENT		
(sec)			
0.000	Vehicle's front bumper contacted rail between post nos. A1 and B1 on centerline of bullnose.		
0.020	Vehicle's left fender contacted rail.		
0.030	Vehicle's right fender contacted rail.		
0.032	Post no. B1 deflected backward.		
0.040	Vehicle pitched downward.		
0.044	Post no. A1 deflected backward, and vehicle's left-front tire contacted rail.		
0.060	Vehicle's right-front tire contacted rail.		
0.062	Vehicle's front bumper portion became disengaged, and vehicle yawed clockwise.		
0.064	Post no. A1 fractured.		
0.068	Rail disengaged from bolt at post no. A2.		
0.076	Rail disengaged from bolt at post no. A3.		
0.084	Post no. B1 fractured.		
0.088	Rail disengaged from bolt at post no. A4.		
0.092	Vehicle rolled slightly clockwise.		
0.106	Post no. A1 contacted post no. A2.		
0.114	Post no. A2 fractured.		
0.150	Vehicle yawed clockwise within system.		
0.152	Post no. A2 contacted post no. A3.		
0.180	Vehicle's right-front door contacted rail.		
0.182	Post no. B2 fractured.		
0.210	Post no. A5 deflected forward.		
0.216	Rail disengaged from bolt at post no. B2.		
0.222	Post no. A3 bent downstream, and vehicle's left-front door contacted rail.		
0.270	Post no. B3 twisted clockwise.		
0.286	Post no. B3 bent downstream.		
0.296	Post no. B3 detached.		
0.316	Rail disengaged from bolt at post no. B3.		
0.376	Post no. A4 detached, and post no. B3 contacted post no. B4.		
0.430	Rail disengaged from bolt at post no. B4.		
0.436	Post no. A4 contacted post no. A5.		
0.444	Post no. B4 detached.		
0.510	Post no. B4 contacted post no. B5.		
0.554	Rail disengaged from bolt at post no. A5.		
0.556	Post no. A5 detached.		
0.572	Vehicle's left-rear door contacted rail.		
1.202	Vehicle came to rest.		

Table 11. Sequential Description of Impact Events, Test No. MSPBN-5

0.000 sec

0.062 sec

0.150

0.216 sec

0.422 sec

0.714 sec

0.064 sec

0.114 sec

0.194 sec

0.376 sec

0.654 sec

Figure 119. Sequential Photographs, Test No. MSPBN-5

Figure 120. Additional Sequential Photographs, Test No. MSPBN-5

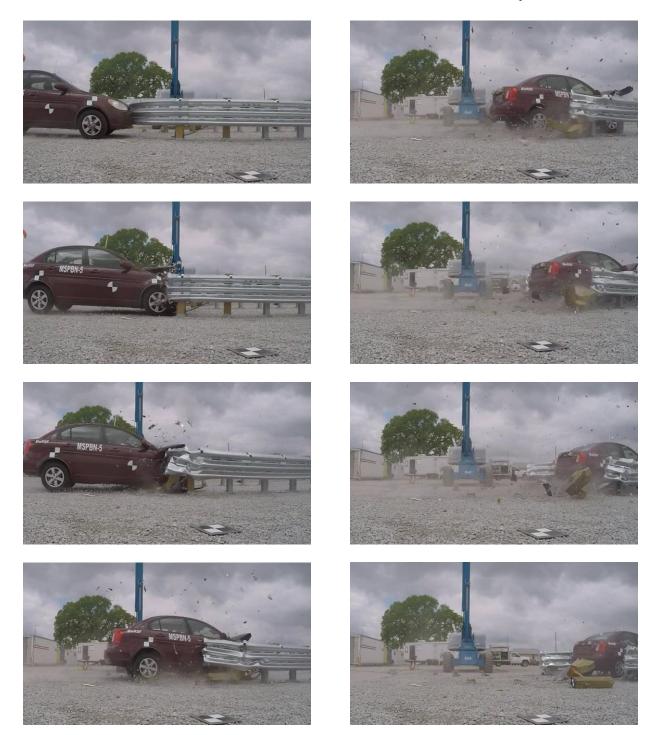


Figure 121. Documentary Photographs, Test No. MSPBN-5

Figure 122. Vehicle Final Position, Test No. MSPBN-5

7.4 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 123 through 130. Barrier damage primarily consisted of contact marks, deformation, bending, and tearing of the thrie-beam rail segments and disengagement of the breakaway posts. Damage occurred to both sides A and B of the barrier and was contained from the nose section of bullnose downstream to posts nos. A6 and B5, respectively.

The thrie-beam nose section of the barrier and the adjacent rail sections on Side A and Side B were deformed backward and into the interior of the barrier as the vehicle entered the system. Rail tearing occurred at several locations in the nose of the system. In the nose section, the bottom thrie-beam corrugation was completely fractured, the middle thrie-beam corrugation was partially fractured, and the top thrie-beam corrugation remained intact. The nose cables were all intact following the impact event. A 7-in. (178-mm) long by 8-in. (203-mm) high tear was observed 21 in. (533 mm) downstream from the impact target. A 1-in. (25-mm) wide, 1-in. high (25-mm), ¹/₂-in. (13-mm) deep tear was found 57 in. (1,448 mm) upstream from the centerline of post no. B1 on the top edge of the top slot. A 5-in. (127-mm) wide, 6-in. (152-mm) high, 3-in. (76-mm) deep tear was found 57 in. (1,448 mm) upstream from post no. B1 on the middle corrugation. Two tears were observed 57 in. (1,448 mm) upstream from post no. B1 in the middle of the corrugation and along the top edge of the top slot.

Rail section nos. 2 and 3 on Side A of the system were kinked, deformed, and bent inward toward the interior of the system just upstream of post no. A5. A 6-in. (152-mm) wide bend was observed 7 in. (178 mm) upstream from post no. A5 along the entire height of the rail. Minor kinking of the rail was also observed up to post no. A6.

Rail section nos. 2 and 3 on Side B of the system were kinked, deformed, and bent inward toward the interior of the system a post no. B5. Large kinks and bends occurred 5½ in. (140 mm) downstream from post no. B4 and 9 in. (229 mm) upstream from post no. B5 along the entire height of the rail.

All four of the BCT posts adjacent to the nose of the system were fractured and disengaged. Four UBSP posts were disengaged, while a fourth UBSP post yielded at the base as the thrie beam was pulled over the top of it. Post no. A1 was fractured and disconnected from its base, but it remained connected to the rail via the top bolt. Post no. A2 experienced bolt pullout, and the post was fractured at its base. Post no. A3 remained attached to its base with all four anchoring bolts also remaining intact. The post was bent downstream about its weak axis at an angle of approximately 60 degrees, and the blockout was still attached. Posts nos. A4 and A5 were disengaged at the base through complete fracture of the base plate bolts, and both posts were detached from the rail. Post no. A6 remained attached to the base, and its blockout remained attached to the post but was rotated clockwise. There was no damage found on post nos. 7A through 15A.

Post no. B1 was fractured at the base but remained attached to the rail. Post no. B2 was fractured off at its base and split into two pieces, with the blockout remaining attached to one of the pieces. Post nos. B3 and B4 were disconnected from its base through fracture of all four base plate bolts, and both posts were disconnected from the rail. Post no. B5 remained attached to its

base but was bent 5 degrees downstream and twisted counterclockwise. No damage was found on post nos. 6B through 15B.

Review of the disengaged UBSP posts revealed some damage to the upper sections of the posts. No permanent deformation was noted to the base plates on either the upper or lower section of the UBSP post, and displacement of the base of the post was minimal for all of the disengaged UBSP posts.

The maximum longitudinal permanent set of the barrier system was $30 \text{ ft} - 2\frac{1}{4}$ in. (9.2 m) in the rail at the centerline of the nose, as measured in the field. The maximum lateral permanent set deflection was internal to the bullnose system and is not shown. The maximum longitudinal dynamic barrier deflection was 30 ft - 4.3 in. (9.3 m) at the centerline target as determined from high-speed digital video analysis. The maximum lateral dynamic barrier deflection was found to the bullnose system and is not shown. The longitudinal working width of the system was found to be 30 ft - 9.0 in. (9.4 m), and the lateral working width was found to be 15 ft - 4 in. (4.7 m), also determined from high-speed digital video analysis. A schematic of the working width is shown in Figure 131.

Figure 123. Overview of System Damage, Test No. MSPBN-5

Figure 124. Close-Up of Impacted Area, Test No. MSPBN-5

Figure 125. Damage to System at Post Nos. A1 and A2, Test No. MSPBN-5

Figure 126. Damage to System at Post Nos. A3 and A4, Test No. MSPBN-5

Figure 127. Damage to System at Post Nos. A5 and A6, Test No. MSPBN-5

Figure 128. Damage to System at Post Nos. B1 and B2, Test No. MSPBN-5

Figure 129. Damage to Post Nos. B3 through B5, Test No. MSPBN-5

Figure 130. UBSP Bases, Test No. MSPBN-5

159

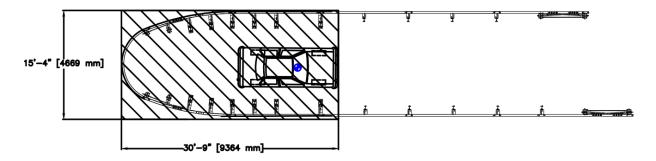


Figure 131. Working Width, Test No. MSPBN-5

7.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 132 through 136. The maximum occupant compartment deformations are listed in Table 12 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the front of the vehicle where the impact had occurred. The front bumper cover was fully disengaged from the vehicle, and the front bumper support was crushed inward. The radiator was pushed into the engine by the front bumper support. The hood buckled in the middle and was pushed into the engine bay. The left-front quarter panel was bent into the engine bay in front of the tire and flared outward behind the tire. The right-front quarter panel was pushed into the engine bay in front of the tire and was flared outward behind the tire. The left-front door was dented inward. The right-front door was dented near the right-front quarter panel. The roof, windshield, and side windows remained undamaged. The lower control arm on the right side was bent backward at the ball joint.

Figure 132. Vehicle Damage, Test No. MSPBN-5

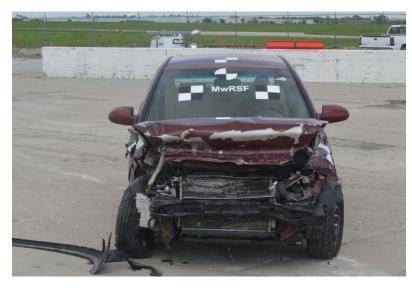


Figure 133. Vehicle Damage, Test No. MSPBN-5

Figure 134. Vehicle Damage, Test No. MSPBN-5 163

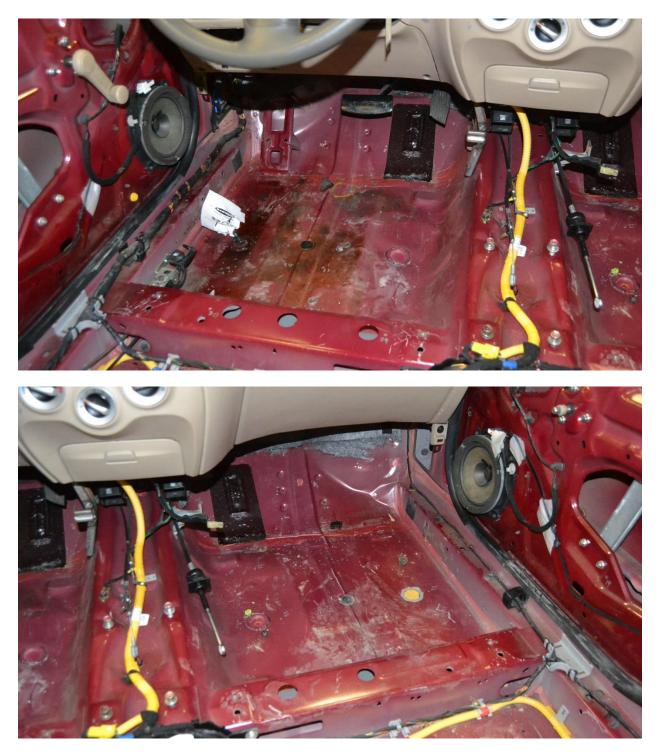


Figure 135. Interior Vehicle Damage, Test No. MSPBN-5

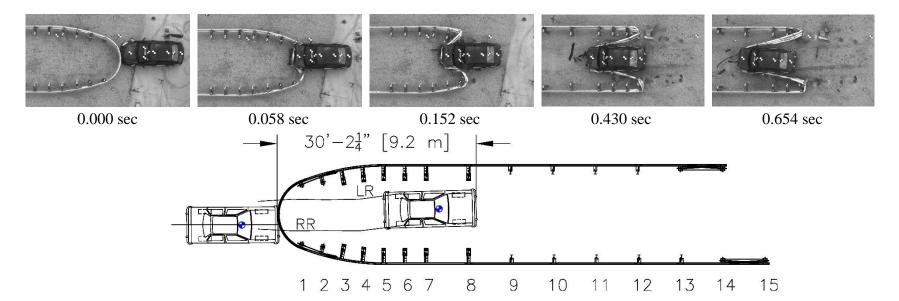
Figure 136. Undercarriage Damage, Test No. MSPBN-5

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	0.2 (5)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.1 (3)	≤ 12 (305)
A-Pillar	0.3 (8)	≤ 5 (127)
A-Pillar (Lateral)	0.1 (3)	≤ 3 (76)
B-Pillar	0.1 (3)	≤ 5 (127)
B-Pillar (Lateral)	0.0 (0)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	0.2 (5)	≤ 12 (305)
Side Door (Above Seat)	0.1 (3)	≤9 (229)
Side Door (Below Seat)	0.2 (5)	≤ 12 (305)
Roof	0.1 (3)	≤4 (102)
Windshield	0.0 (0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.3 (8)	N/A

Table 12. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-5

N/A - Not applicable

7.6 Occupant Risk


The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 13. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 13. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1 (primary)	SLICE-2	Limits
OIV	Longitudinal	-25.60 (-7.80)	-25.47 (-7.76)	±40 (12.2)
ft/s (m/s)	Lateral	-3.34 (-1.02)	-3.85 (-1.17)	±40 (12.2)
ORA	Longitudinal	-6.93	-6.65	±20.49
g's	Lateral	-4.24	-4.48	±20.49
MAX.	Roll	2.9	3.1	±75
ANGULAR DISPL.	Pitch	-3.1	-2.9	±75
degrees	Yaw	4.7	3.4	not required
	HIV (m/s)	25.72 (7.84)	25.66 (7.82)	not required
_	PHD g's	8.12	7.96	not required
	ASI	0.74	0.75	not required

Table 13. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-5

7.7 Discussion

The analysis of the results for test no. MSPBN-5 showed that the system adequately contained and decelerated the 1100C vehicle to a controlled stop within the system. A summary of the test results is shown in Figure 137. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. Therefore, test no. MSPBN-5 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-30.

Test Agency	
Test Number	MSPBN-
Date	
MASH 2016 Test Designation No	
e	Steel Post Bullnose with Breakaway Post
Key Component – Thrie Beam	(
7 1	
Key Component – Breakaway Steel Post	
Soil Type	X
51	
Test Inertial	
Gross Static	2,573 lb (1,167 k
Impact Conditions	
Speed	
Angle	
Impact Location	
Impact Severity 316.6 kip-ft (429.3 kJ	≥ 288 kip-ft (390 kJ) limit from MASH 202
Exit Conditions	
Speed	N/
Angle	
Vehicle Stability	Pa
Vehicle Capture and Containment	Acceptab
Vehicle Stopping Distance	

168

•	Vehicle Damage	
	CDC [21]	
	Maximum Interior Deformation	
•	Test Article Damage	Extensive
•	Maximum Test Article Deflections	
	Dermanent Set	30 ft $21/4 in (0.2 m) longitudinal$

Permanent Set	
Dynamic	
Working Width 30 ft -	-9.0 in. (9.4 m) longitudinal, 15 ft - 4 in. (4.7 m) lateral
Transducer Data	

|--|

		Transducer		MASH 2016
Evaluatio	n Criteria	SLICE-1 (primary)	SLICE-2	Limit
OIV ft/s	Longitudinal	-25.60 (-7.80)	-25.47 (-7.76)	±40 (12.2)
(m/s)	Lateral	-3.34 (-1.02)	-3.85 (-1.17)	±40 (12.2)
ORA	Longitudinal	-6.93	-6.65	±20.49
g's	Lateral	-4.24	-4.48	±20.49
MAX	Roll	2.9	3.1	±75
ANGULAR DISP.	Pitch	-3.1	-2.9	±75
degrees	Yaw	4.7	3.4	Not required
THIV –	ft/s (m/s)	25.72 (7.84)	25.66 (7.82)	Not required
PHD	– g's	8.12	7.96	Not required
А	SI	0.74	0.75	Not required

September 1, 2020 MwRSF Report No. TRP-03-418-20

Figure 137. Summary of Test Results and Sequential Photographs, Test No. MSPBN-5

8 FULL-SCALE CRASH TEST NO. MSPBN-6

8.1 Static Soil Test

Before full-scale crash test no. MSPBN-6 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

8.2 Weather Conditions

Test no. MSPBN-6 was conducted on May 24, 2018 at approximately 12:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 14.

Temperature	87° F
Humidity	42%
Wind Speed	13 mph
Wind Direction	150° from True North
Sky Conditions	Sunny
Visibility	9.9 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.63 in.

Table 14. Weather Conditions, Test No. MSPBN-6

8.3 Test Description

Test no. MSPBN-6 was conducted under the MASH 2016 TL-3 guidelines for test designation no. 3-31. Test designation no. 3-31 is an impact of the 2270P vehicle at 62 mph (100 km/h) and 0 degrees on the centerline of the nose of the system. Initial vehicle impact was to occur on the vehicle's centerline and the centerline of the bullnose system, as shown in Figure 138. During test no. MSPBN-6, the 5,061-lb (2,296-kg) pickup impacted the bullnose system at a speed of 63.4 mph (102.1 km/h) and at an angle of 0.3 degrees. The actual impact occurred with the centerline of the vehicle offset 0.1 in. (3 mm) left of the centerline of the bullnose. The vehicle was captured by the thrie-beam nose of the system as the thrie-beam rail and nose cables wrapped around the front of the vehicle. The deformation of the thrie-beam panels and the disengagement of several breakaway posts on both sides of the system decelerated the vehicle to a safe and controlled stop. The vehicle came to rest in the interior of the system 55 ft-7% in. (17.0 m) downstream from initial impact. During the test two of the UBSPs were disengaged and propelled downstream from the test vehicle. Post no. A3 was disengaged from its base early in the impact and was caught by the folding thrie beam as the vehicle proceeded into the system. Eventually, this post rotated and disengaged from its interlock with the thrie-beam rail and was ejected downstream in front of the vehicle. Post no. B7 was also disengaged from its base and was propelled laterally into the interior of the system. The top section of the post impacted a portion of thrie-beam rail behind the vehicle at approximately 1.206 sec after impact and was propelled over the top of the vehicle and landed downstream in front of the vehicle. Both posts re-contacted the ground in the interior of the bullnose system, and neither post contacted the vehicle.

A detailed description of the sequential impact events is contained in Table 15. Sequential photographs are shown in Figures 139 and 140. Documentary photographs of the crash test are shown in Figure 141. The vehicle's final position is shown in Figure 142.

Figure 138. Impact Location, Test No. MSPBN-6

TIME	EVENT
(sec)	
0.000	Vehicle's front bumper contacted rail between post nos. A1 and B1.
0.006	Vehicle's grille contacted rail and deformed.
0.048	Vehicle's left fender contacted rail.
0.056	Vehicle's right fender contacted rail.
0.058	Vehicle's left fender deformed, and vehicle's right-front tire contacted rail.
0.060	Vehicle's right fender deformed, and post no. A1 fractured.
0.062	Post no. B1 fractured.
0.076	Rail contacted vehicle's left-front tire.
0.078	Rail disengaged from bolt at post no. A2, vehicle pitched downward.
0.088	Rail disengaged from bolt at post no. A3.
0.098	Post no. A1 contacted post no. A2.
0.106	Rail disengaged from bolt at post no. B2.
0.112	Post no. A2 fractured.
0.120	Post no. B1 contacted post no. B2.
0.130	Post no. B2 fractured.
0.136	Vehicle's right-front door contacted rail.
0.140	Post no. A2 contacted blockout no. A3.
0.156	Post no. B1 contacted post no. B3.
0.164	Rail disengaged from bolt at post no. B3.
0.166	Rail disengaged from bolt at post no. A4.
0.168	Post no. B3 detached.
0.172	Fragment of post no. B1 contacted vehicle's left-front door.
0.194	Vehicle's left-front door contacted rail.
0.208	Post no. A3 detached.
0.238	Post no. A3 contacted post no. A4.
0.256	Vehicle's right-rear door deformed, A-side upstream anchor cable contacted vehicle's right-rear door.
0.266	Rail disengaged from bolt at post no. B4.
0.276	Post no. A4 detached.
0.288	Post no. B4 detached.
0.326	Post no. B4 contacted post no. B5.
0.340	Post no. A4 contacted post no. A5.
0.342	Rail disengaged from bolt at post no. B5.
0.346	Rail disengaged from bolt at post no. A5.
0.356	Post no. B5 detached.
0.404	Post no. A5 detached.
0.410	Vehicle's right-rear door contacted rail.

Table 15. Sequential Description of Impact Events, Test No. MSPBN-6

TIME	
(sec)	EVENT
0.424	Rail disengaged from bolt at post no. B6, post no. B5 contacted blockout no. B6.
0.432	Post no. A5 contacted post no. A6.
0.444	Vehicle's right quarter panel contacted rail.
0.460	Post no. B6 detached.
0.466	Post no. A6 detached.
0.508	A-side upstream anchor cable contacted vehicle's right-front door.
0.514	Vehicle's left-rear door contacted rail.
0.524	Post no. A6 contacted post no. A7.
0.564	Rail disengaged from bolt at post no. A7, post no. A7 detached.
0.600	Rail disengaged from bolt at post no. B7.
0.612	Post no. B7 detached.
0.670	Vehicle's left quarter panel contacted rail.
0.868	Vehicle's rear bumper contacted rail.
1.032	Post no. B8 detached.
1.050	Post no. A8 detached.
2.052	Vehicle came to rest.

Table 16. Sequential Description of Impact Events, Test No. MSPBN-6, Cont.

0.772 sec

Figure 139. Sequential Photographs, Test No. MSPBN-6

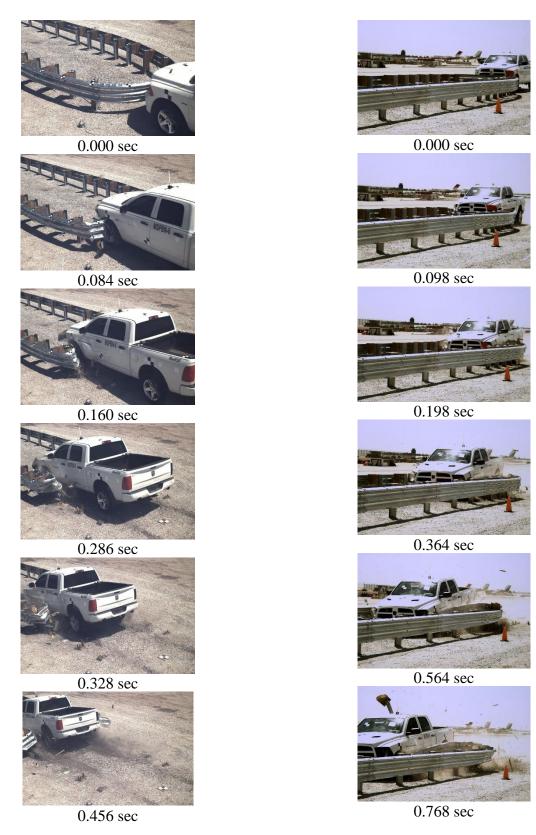


Figure 140. Additional Sequential Photographs, Test No. MSPBN-6

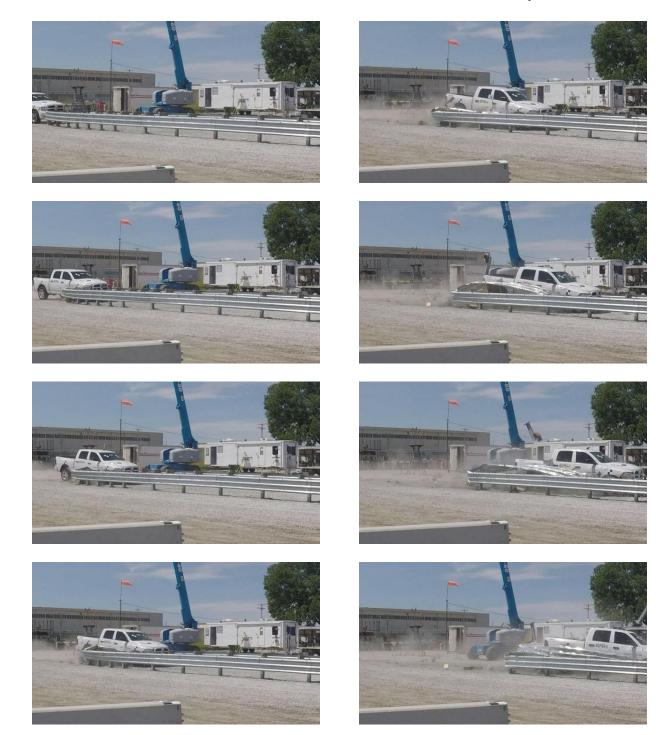


Figure 141. Documentary Photographs, Test No. MSPBN-6

Figure 142. Vehicle Final Position, Test No. MSPBN-6

8.4 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 143 through 154. Barrier damage primarily consisted of contact marks, deformation, bending, and tearing of the thrie-beam rail segments and disengagement of the breakaway posts. Damage occurred to both sides A and B of the barrier and was contained from the nose section of bullnose downstream to posts nos. A9 and B9 on each side of the system. Post nos. A1 through A8 and B1 through B8 were fractured or disengaged from their bases.

The thrie-beam nose section of the barrier and the adjacent rail sections on Side A and Side B were deformed backward and into the interior of the barrier as the vehicle entered the system. Rail tearing occurred at several locations in the nose of the system. The slot tabs on the bottom valley of the nose section were fractured, except for the two 2-in. (51-mm) wide slot tabs adjacent to post no. B1 and the first 2-in. (51-mm) wide slot tab adjacent to post no. A1. The 1-in. (25-mm) wide slot tab on the top valley of the nose section 60¹/₄ in. (1,530 mm) upstream of post no. B1 was fractured as well. The middle corrugation of the nose-section thrie beam was completely fractured approximately 9 in. (229 mm) upstream from post no. A1. Several additional partial rail tears were noted on the nose section of the bullnose system. The nose cables were all intact following the impact event.

Rail section nos. 2 through 4 on Side A of the system were kinked, deformed, and bent inward toward the interior of the system just upstream from post no. A9. The railing was kinked and hinged at 14 in. (356 mm) upstream from splice no. A8. The thrie beam just upstream from post no. A9 was kinked and hinged along its entire height. The thrie-beam rail on Side A was twisted 180 degrees beginning just upstream from post no. A1 and ending at post no. A3.

Rail section nos. 2 through 4 on Side B of the system were kinked, deformed, and bent inward toward the interior of the system beginning at post no. B9. A large kink and hinge occurred just upstream from the rail splice at post no. B8. A second full-section hinge occurred at post no. B9.

All four of the BCT posts adjacent to the nose of the system were fractured and disengaged. All twelve UBSP posts were disengaged from their bases, six on each side of the system, due to fracture of the base plate connection bolts. Post nos. A1 and A2 were fractured at the ground and were disengaged from the rail. Post nos. A3 through A8 were all disconnected from their respective bases with all four base plate bolts being fractured, and each post was disconnected from the railing. Post no. A9 was disengaged from the rail, and a ¹/₈-in. (3-mm) soil gap was observed in front of the post. Post nos. A10 through A15 received no visible damage.

Post nos. B1 and B2 were fractured at the ground. Post no. B1 remained attached to the rail, while post no. B2 was disengaged from the rail. Post nos. B3 through B8 were all disconnected from their respective bases with all four base plate bolts being fractured. Only post no. B8 remaining attached to the thrie beam. Post no. B9 was twisted about its vertical axis, and a ¹/₈-in. (3-mm) soil gap was observed behind the post. Post nos. B10 through B14 received no visible damage.

Review of the disengaged UBSP posts revealed some damage to the upper sections of the posts. No permanent deformation was noted to the base plates on either the upper or lower section

of the UBSP post, and displacement of the base of the post was minimal for all of the disengaged UBSP posts.

The maximum longitudinal permanent set of the barrier system was 55 ft -7% in. (17.0 m) at the centerline of the rail in the nose, as measured in the field. The maximum lateral permanent set of the barrier was interior to the system and was not reported. The maximum longitudinal dynamic barrier deflection was 55 ft -11 in. (17.0 m) at the centerline of the barrier, as determined from high-speed digital video analysis. The maximum lateral dynamic barrier deflection was not reported. The longitudinal working width of the system was found to be 56 ft -5 in. (17.2 m), and the lateral working width was found to be 15 ft -9 in. (4.8 m), as determined from high-speed digital video analysis. A schematic of the working width for test no, MSPBN-6 is shown in Figure 155.

Figure 143. Overview of System Damage with Vehicle Present, Test No. MSPBN-6

Figure 144. Overview of System Damage with Vehicle Removed, Test No. MSPBN-6.

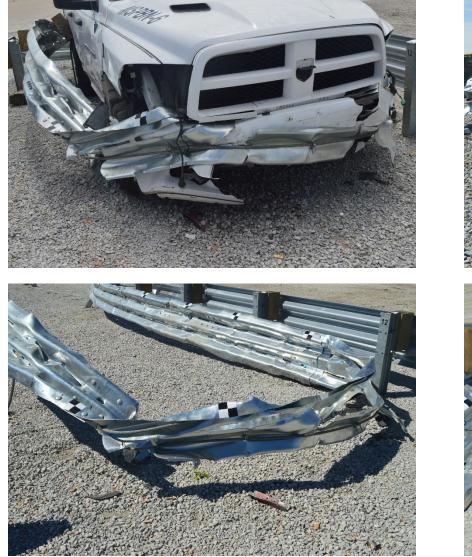


Figure 145. Damage to Impact Location, Test No. MSPBN-6

Figure 146. Damage to Post Nos. A1 (middle) and A2 (bottom), Test No. MSPBN-6 183

Figure 147. Damage to Rail at Post Nos. A1 and A2, Test No. MSPBN-6

Figure 148. Damage to Rail at Post Nos. A3 and A4, Test No. MSPBN-6

Figure 149. Damage to Rail at Post Nos. A5 through A9, Test No. MSPBN-6

Figure 150. Damage to Post Nos. B1 and B2, Test No. MSPBN-6

September 1, 2020 MwRSF Report No. TRP-03-418-20

187

Figure 151. Damage to Rail at Post Nos. B1 and B2, Test No. MSPBN-6

Figure 152. Damage to Rail at Post Nos. B3 through B5, Test No. MSPBN-6

Figure 153. Damage to Railing at Post Nos. B6 through B9, Test No. MSPBN-6

190

Figure 154. UBSP Post Bases, Test No. MSPBN-6

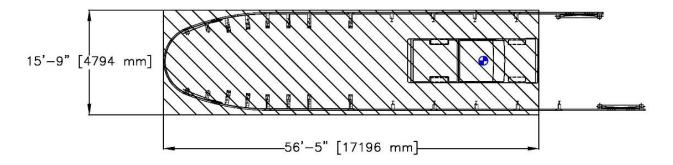


Figure 155. Working Width, Test No. MSPBN-6

8.5 Vehicle Damage

The damage to the vehicle was minimal, as shown in Figures 156 through 159. The maximum occupant compartment deformations are listed in Table 17 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The damage mainly occurred to the front and right side of the vehicle. The front bumper disengaged from the vehicle. An 8-in. (212-mm) long tear in the hood was observed. A 16-in. (406-mm) long by 5-in. (127-mm) deep dent was found in the right-front fender. The right-front door had a tear 6 in. (152 mm) long by 2¼ in. (57 mm) wide. A large dent 15 in. (381 mm) long by 11½ in. (292 mm) wide occurred on the right-front door. The right-rear door received a dent 38 in. (965 mm) long by 23 in. (584 mm) wide. Dents were also observed under the right-rear door and along the right side of the bed body. Damage to the suspension included a bent right-rear sway bar and damage due to rubbing of the front-right upper control arm. No damage was observed to the drivetrain or undercarriage. The windshield and side windows also remained undamaged.

Figure 156. Vehicle Damage, Test No. MSPBN-6

Figure 157. Vehicle Damage, Test No. MSPBN-6

Figure 158. Vehicle Interior Damage, Test No. MSPBN-6

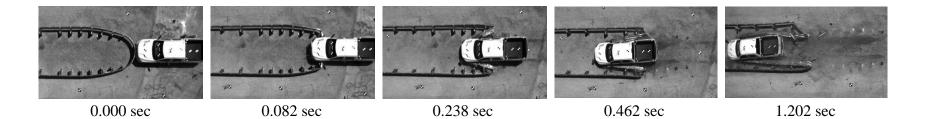
Figure 159. Vehicle Undercarriage Damage, Test No. MSPBN-6

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	0.5 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.0 (0)	≤ 12 (305)
A-Pillar	0.3 (8)	≤ 5 (127)
A-Pillar (Lateral)	0.3 (8)	≤ 3 (76)
B-Pillar	0.5 (13)	≤ 5 (127)
B-Pillar (Lateral)	0.4 (10)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	0.3 (8)	≤ 12 (305)
Side Door (Above Seat)	0.3 (8)	≤9 (229)
Side Door (Below Seat)	0.2 (5)	≤ 12 (305)
Roof	0.2 (5)	≤4 (102)
Windshield	0.0 (0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.3 (8)	N/A

Table 17. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-6

N/A – Not applicable

8.6 Occupant Risk


The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 18. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 18. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

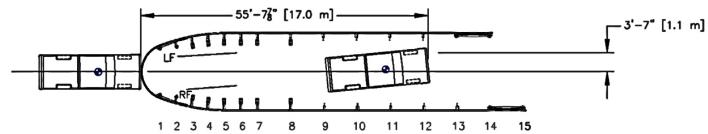

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-17.96 (-5.47)	-17.95 (-5.47)	±40 (12.2)
ft/s (m/s)	Lateral	-1.22 (-0.37)	-1.63 (-0.50)	±40 (12.2)
ORA	Longitudinal	-8.18	-8.13	±20.49
g's	Lateral	-3.99	-3.90	±20.49
MAX.	Roll	11.5	8.8	±75
ANGULAR DISPL. degrees	Pitch	-4.4	-4.0	±75
	Yaw	-6.6	-7.8	not required
	THIV ft/s (m/s)	18.0 (5.48)	18.0 (5.50)	not required
PHD g's		8.19	8.14	not required
	ASI	0.36	0.36	not required

Table 18. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-6

8.7 Discussion

The analysis of the results for test no. MSPBN-6 showed that the system adequately contained and decelerated the 2270P vehicle to a controlled stop within the system. A summary of the test results is shown in Figure 160. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. Therefore, test no. MSPBN-6 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-31.

Test Agency	MwRSF
Test Number	MSPBN-6
Date	
MASH 2016 Test Designation No	
Test Article	Steel Post Bullnose with Breakaway Posts
Total Length	
Key Component – Thrie Beam	
Thickness	
Mounting Height	
Key Component - Breakaway Steel Post	
Length	
Spacing	
Soil Type	
Vehicle Make /Model	
Curb	5,210 lb (2,363 kg)
Test Inertial	5,061 lb (2,296 kg)
Gross Static	5,236 lb (2,375 kg)
Impact Conditions	
Speed	
8	
Impact Location0.1	1 in. (3 mm) to the left of the CL of the bullnose
Impact Severity 680.7 kip-ft (922.9 k	$J \ge 594$ kip-ft (806 kJ) limit from MASH 2016
Exit Conditions	
Speed	
Angle	
Vehicle Stability	Satisfactory
	Acceptable
Vehicle Stopping Distance	

199

•	Vehicle Damage			Minimal
	VDS [20]			12-FD-1
	CDC [21]			12-FDMW-1
	Maximum Interior Deformation	tion		0.5 in. (13 mm)
•	Test Article Damage			Extensive
•	Maximum Test Article Deflection	ons		
	Permanent Set		. 55 ft - 71/8 in. (17	7.0 m) longitudinal
	Dynamic			7.0 m) longitudinal
	Working Width			
•	Transducer Data		-	
		Trans	ducer	MASH 2016
	Evaluation Criteria			MASH 2010

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1	SLICE-2 (primary)	Limit
OIV	Longitudinal	-17.96 (-5.47)	-17.95 (-5.47)	±40 (12.2)
ft/s (m/s)	Lateral	-1.22 (-0.37)	-1.63 (-0.50)	±40 (12.2)
ORA	Longitudinal	-8.18	-8.13	±20.49
g's	Lateral	-3.99	-3.90	±20.49
MAX	Roll	11.5	8.8	±75
ANGULAR DISP.	Pitch	-4.4	-4.0	±75
degrees	Yaw	-6.6	-7.8	Not required
THIV –	ft/s (m/s)	18.0 (5.48)	18.0 (5.50)	Not required
PHD	-g's	8.19	8.14	Not required
А	SI	0.36	0.36	Not required

September 1, 2020 MwRSF Report No. TRP-03-418-20

Figure 160. Summary of Test Results and Sequential Photographs, Test No. MSPBN-6

9 FULL-SCALE CRASH TEST NO. MSPBN-7

9.1 Static Soil Test

Before full-scale crash test no. MSPBN-7 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

9.2 Weather Conditions

Test no. MSPBN-7 was conducted on June 5, 2018 at approximately 11:30 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 19.

Temperature	83° F
Humidity	59 %
Wind Speed	9 mph
Wind Direction	200° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.48 in.
Previous 7-Day Precipitation	2.09 in.

Table 19. Weather Conditions, Test No. MSPBN-7

9.3 Test Description

Test no. MSPBN-7 was conducted under the MASH 2016 TL-3 guidelines for test designation no. 3-33. Test designation no. 3-33 involves the 2270P vehicle impacting the center of the nose of the system at 62 mph (100 km/h) and 15 degrees. Initial vehicle impact was to occur with the vehicle's centerline intersecting the centerline of the system's nose and at an angle of 15 degrees, as shown in Figure 161. During the test, the 5,043-lb (2,287-kg) crew cab pickup truck impacted the bullnose at a speed of 63.1 mph (101.6 km/h) and at an angle of 15.1 degrees. The actual point of impact was 0.9 in (22.6 mm) to the right of the impact target. During the test, the vehicle was captured by the system, and the thrie-beam rail and nose cables wrapped around the front of the vehicle. The deformation of the thrie-beam panels and the disengagement of breakaway posts on both sides of the system decelerated the vehicle to a safe and controlled stop. It was noted that late in the impact event, approximately 0.540 sec after impact, the vehicle engaged some of the buildup of breakaway post debris and the first non-breakaway post on the left side of the system, which caused the vehicle to climb up the posts and roll to the right slightly as it was brought to a stop. This behavior did not cause issues with vehicle capture or the overall stability of the vehicle, nor did the override of the post debris cause any contact or tearing of the floorboard. The vehicle came to rest 51 ft - 11¹/₄ in. downstream of initial impact.

A detailed description of the sequential impact events is contained in Table 20. Sequential photographs are shown in Figures 162 and 163. Documentary photographs of the crash test are shown in Figures 164 and 165. The vehicle trajectory and final position are shown in Figure 166.

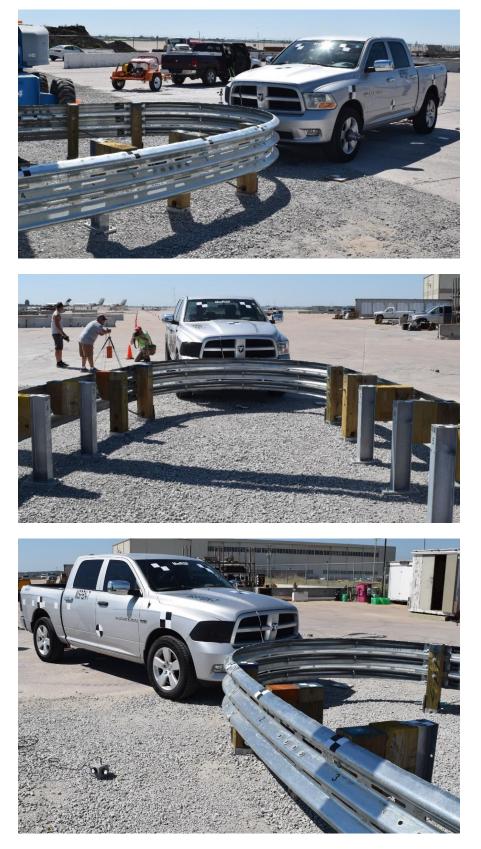


Figure 161. Impact Location, Test No. MSPBN-7

TIME	EVENT
(sec)	
0.000	Vehicle's front bumper contacted rail between post nos. A1 and B1.
0.004	Vehicle's grille contacted rail.
0.038	Rail disengaged from bolt at post no. B2.
0.046	Vehicle's right-front tire contacted rail, and post no. A1 fractured.
0.048	Vehicle's right fender contacted rail.
0.054	Vehicle's left-front tire contacted rail.
0.055	Post no. A1 rotated clockwise.
0.056	Vehicle yawed clockwise from system.
0.070	Vehicle's left fender contacted rail.
0.080	Post no. B1 fractured.
0.082	Vehicle pitched downward.
0.084	Vehicle's grille became disengaged.
0.094	Rail disengaged from bolt at post no. B3.
0.100	Rail disengaged from bolt at post no. B4.
0.110	Post no. B2 fractured.
0.118	Post no. A2 fractured.
0.142	Post no. B3 detached.
0.188	Post no. B4 detached.
0.192	Post no. A3 detached.
0.220	Vehicle's left-front door deformed, post no. B5 detached.
0.227	Rail disengaged from bolt at post no. B6.
0.258	Post no. B6 detached.
0.264	Rail disengaged from bolt at post no. B7.
0.280	Post no. A4 detached.
0.308	Post no. B7 detached.
0.331	Post no. A4 contacted post no. A5.
0.360	Post no. A5 detached.
0.408	Vehicle pitched upward.
0.412	Post no. B8 detached.
0.413	Rail disengaged from bolt at post no. B8.
0.438	Rail disengaged from bolt at post no. B9.
0.455	Post no. A3 contacted vehicle's right-rear door.
0.457	Vehicle's right-rear door deformed.
0.526	Vehicle rolled away to right.
0.538	Post no. A6 detached.

Table 20. Sequential Description of Impact Events, Test No. MSPBN-7

TIME (sec)	EVENT
0.570	Vehicle's left-front tire became airborne.
0.635	Rail disengaged from bolt at post no. B10.
0.772	Rail disengaged from bolt at post no. B11.
0.822	Blockout no. A3 contacted vehicle's right-rear door.
0.846	Post no. A4 contacted vehicle's right quarter panel.
0.850	Vehicle's right-front tire became airborne.
1.042	Vehicle's left-rear tire became airborne.
1.154	Vehicle's right-front tire regained contact with ground.
1.867	Vehicle came to rest.

Table 21. Sequential Description of Impact Events, Test No. MSPBN-7, Cont.

0.000 sec

0.056 sec

0.118 sec

0.188 sec

0.360 sec

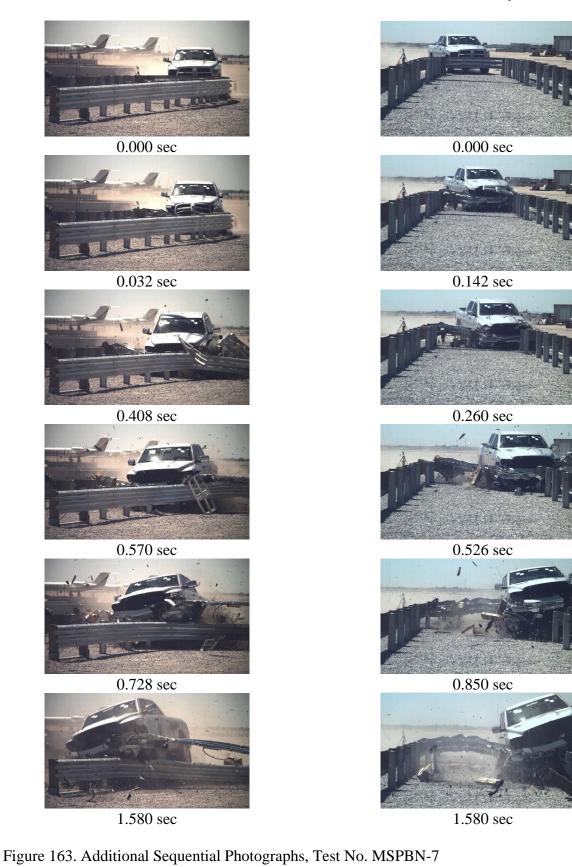
0.422 sec

0.000 sec

0.032 sec

0.070 sec

0.104 sec



0.118 sec

0.220 sec

Figure 162. Sequential Photographs, Test No. MSPBN-7

206

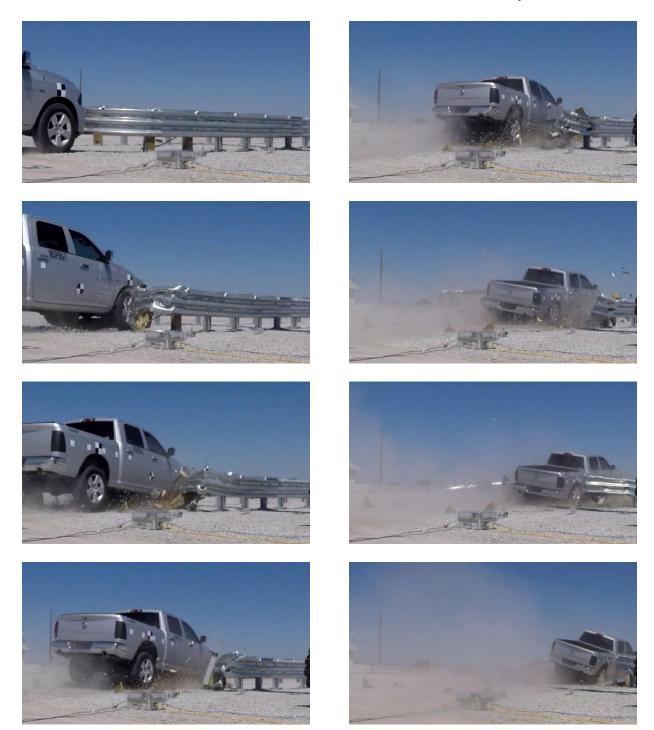


Figure 164. Documentary Photographs, Test No. MSPBN-7

Figure 165. Additional Documentary Photographs, Test No. MSPBN-7

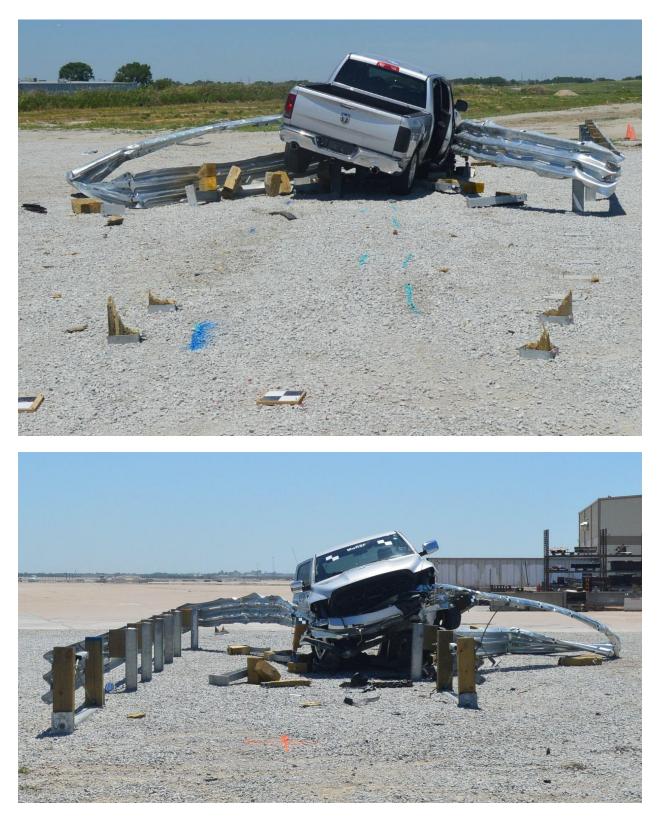


Figure 166. Vehicle Final Position and Trajectory Marks, Test No. MSPBN-7

9.4 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 167 through 178. Barrier damage primarily consisted of contact marks, deformation, bending, and tearing of the thrie-beam rail segments, disengagement of the breakaway posts, and deformation and displacement standard line posts. Damage occurred to both sides A and B of the barrier and was contained from the nose section of bullnose system downstream from posts nos. A8 and B12 on each side of the system. Post nos. A1 through A7 and B1 through B8 were fractured or disengaged from their bases.

The thrie-beam nose section of the barrier and the adjacent rail sections on Side A and Side B were deformed backward and into the interior of the barrier as the vehicle entered the system. Rail tearing occurred at several locations in the nose of the system. Rail tearing occurred at several locations in the nose of the system. Rail tearing occurred at several locations in the nose of the system. The slot tabs on the bottom valley of the nose section were fractured, except for the first 2-in. (51-mm) wide slot tab adjacent to post no. A1. On the top valley of the nose section, all of the slot tabs in the rail were torn, except for the two, 2-in. (51-mm) wide slot tabs adjacent to post nos. A1 and B1. The top and middle corrugations of the nose section thrie beam was completely fractured approximately 55 in. (1,397 mm) upstream of post no. B1. The middle corrugation of the nose section thrie beam was completely fractured approximately 9 in. (229 mm) upstream of post no. A1. Several additional partial rail tears were noted on the all three corrugations of the nose section thrie beam. The nose cables were all intact following the impact.

Rail section nos. 2 through 3 on Side A of the system were kinked, deformed, and bent inward toward the interior of the system just upstream of post no A8. The railing was kinked and hinged at 34½ in. (876 mm) upstream from post no. A8. The rail was bent also kinked and hinged inward 2 in. (51 mm) downstream from post no. A6 and 9 in. (229 mm) upstream from post no. A7. A 3-in. (76-mm) long tear was observed on the bottom corrugation approximately 6 in. (406 mm) downstream from post no. A4.

Rail section nos. 2 through 4 on Side B of the system were kinked, deformed, and bent inward toward the interior of the system beginning at post no. B12. The thrie-beam rail on Side B was bent downward beginning a post B12 due to the truck climbing posts on Side B of the system. A full-section hinge in the rail occurred just upstream of the splice at post no. B8. A large hinge and 90-degree twist of the thrie beam occurred between post nos. B6 and B7.

All four of the BCT posts adjacent to the nose of the system were fractured and disengaged. Eleven UBSP posts were disengaged from their bases, five on Side A and six on Side B of the system, due to fracture of the base plate connection bolts. Post nos. A1 and A2 were fractured at the ground and were disengaged from the rail. Post nos. A3 through A7 were all disconnected from their respective bases with all four base plate bolts being fractured, and each post was disconnected from the railing. No visible damage was observed in post nos. A9 through A15.

Post nos. B1 and B2 were fractured at the ground. Post no. B1 remained attached to the rail, while post no. B2 was disengaged from the rail. Post nos. B3 through B8 were all disconnected from their respective bases with all four base plate bolts being fractured, and all of the posts were detached from the rail. Post nos. B9 through B11 were bent and rotated downstream and were detached from the rail as the vehicle overrode them. Post no. B12 was rotated forward and twisted counterclockwise, while the railing remained attached to the post. No visible damage was observed in post nos. B13 through A14.

Review of the disengaged UBSP posts revealed some damage to the upper sections of the posts. No permanent deformation was noted to the base plates on either the upper or lower section of the UBSP post, and displacement of the base of the post was minimal for all of the disengaged UBSP posts.

The maximum longitudinal permanent set of the barrier system was 52 ft – 1 in. (15.9 m) at the centerline of the bullnose, as measured in the field. The maximum lateral permanent set of the barrier was 12 ft – $1\frac{1}{2}$ in (3.7 m) on the rail at post no. B6, as measured in the field. The maximum longitudinal dynamic deflection was 52 ft – 9 in. (16.1 m) on the rail near the center of the nose section, as determined from high-speed video analysis and post-test measurements. The maximum lateral dynamic barrier deflection was 14 ft – 6 in. (4.4 m) on the rail between post nos. B5 and B6, as determined from high-speed digital video analysis. The working width of the system was found to be 29 ft – 2 in. (8.9 m), also determined from high-speed digital video analysis. A schematic of the working width is shown in Figure 179.

Figure 167. Overview of System Damage with Vehicle Present, Test No. MSPBN-7

Figure 168. Overview of System Damage without Vehicle Present, Test No. MSPBN-7

Figure 169. Damage to Rail at Impact Location, Test No. MSPBN-7

Figure 170. Damage to Post Nos. A1 and A2, Test No. MSPBN-7

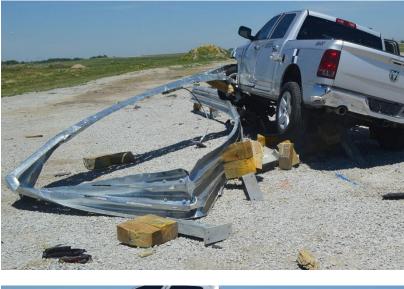

Figure 171. Damage to Rail at Post Nos. A1 through A3, Test No. MSPBN-7

Figure 172. Damage to Rail at Post Nos. A4 through A6, Test No. MSPBN-7

Figure 173. Damage to Rail at Post Nos. A6 through A8, Test No. MSPBN-7

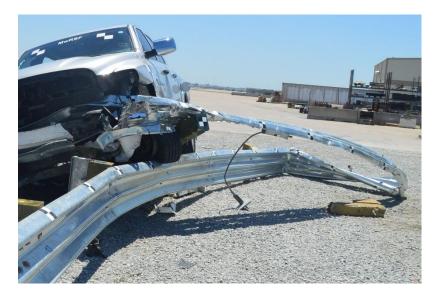


Figure 174. Overview of Damage to B Side of System, Test No. MSPBN-7 219

Figure 175. Damage to Rail at Post Nos. B1 through B4, Test No. MSPBN-7

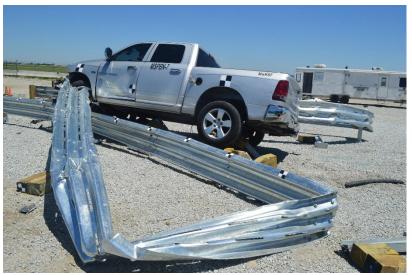


Figure 176. Damage to Rail at Post Nos. B5 through B8, Test No. MSPBN-7

Figure 177. Damage to Rail at Post Nos. B9 through B12, Test No. MSPBN-7

Figure 178. UBSP Post Bases, Test No. MSPBN-7

223

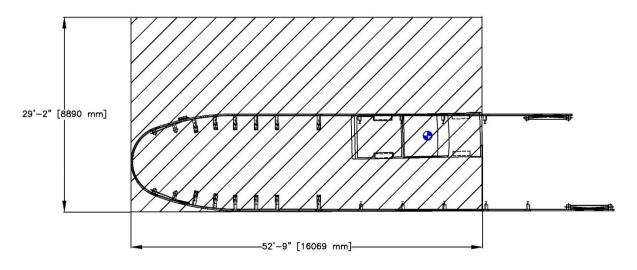


Figure 179. Working Width, Test No. MSPBN-7

9.5 Vehicle Damage

The damage to the vehicle was minimal, as shown in Figure 180 through Figure 183. The maximum occupant compartment deformations are listed in Table 22 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the front of the vehicle. The front bumper, headlight, and grille were all disengaged. The left-front quarter panel in front of the tire was folded inward. The left-front door was crushed inward below the door handle over an area 43½ in. (1,105 mm) wide by 23½ in. (597 mm) high. The right-front quarter panel was folded inward in front of the tire and had a dent 9 in. (229 mm) long by 8¼ in. (210 mm) wide behind the tire. The right-rear door had a 7-in. (178-mm) long by 5-in. (127-mm) wide dent at the bottom and an 11-in. (279-mm) long gouge in the center. A 12-in. (305-mm) by 18-in. (457-mm) dent and a 6¼-in (159-mm) long gouge were observed in the right-rear quarter panel in front of the rear tire. The side windows and windshield remained undamaged.

Figure 180. Vehicle Damage, Test No. MSPBN-7

Figure 181. Additional Vehicle Damage, Test No. MSPBN-7

Figure 182. Vehicle Interior Damage, Test No. MSPBN-7

Figure 183. Vehicle Undercarriage Damage, Test No. MSPBN-7

		1
LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	0.3 (8)	≤ 9 (229)
Floor Pan & Transmission Tunnel	-0.2 (-5)	≤ 12 (305)
A-Pillar	0.8 (20)	≤ 5 (127)
A-Pillar (Lateral)	0.7 (18)	≤ 3 (76)
B-Pillar	0.3 (8)	≤ 5 (127)
B-Pillar (Lateral)	-0.2 (-5)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	-0.3 (-8)	≤ 12 (305)
Side Door (Above Seat)	-0.2 (-5)	≤ 9 (229)
Side Door (Below Seat)	-0.2 (-5)	≤ 12 (305)
Roof	0.1 (3)	≤4 (102)
Windshield	0.0 (0.0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.4 (10)	N/A
Note: Negetive velues denote cutword deformatio		

Table 22. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-7

Note: Negative values denote outward deformation N/A - Not applicable

9.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 23. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 23. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix H.

		Trans	MASH 2016	
Evaluation Criteria		SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-20.18 (-6.15)	-20.20 (-6.16)	±40 (12.2)
ft/s (m/s)	Lateral	3.28 (1.00)	2.99 (0.91)	±40 (12.2)
ORA	Longitudinal	-6.92	-7.09	±20.49
g's	Lateral	6.37	7.03	±20.49
MAX.	Roll	22.7	22.4	±75
ANGULAR DISPL.	Pitch	6.1	5.5	±75
degrees	Yaw	16.3	13.8	not required
THIV ft/s (m/s)		20.51 (6.25)	20.44 (6.23)	not required
PHD g's ASI		7.64	7.96	not required
		0.41	0.41	not required

Table 23. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MSPBN-7

9.7 Discussion

The analysis of the results for test no. MSPBN-7 showed that the system adequately contained and decelerated the 2270P vehicle to a controlled stop within the system. A summary of the test results is shown in Figure 184. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. It should be noted that the impacting vehicle did ride up some of the debris in the system and climbed onto Side B of the system late in the event. The vehicle remained securely captured by the thrie beam at the front of the vehicle and did not contact the ground outside of the bullnose system. Additionally, it was noted that the vehicle climb did not adversely affect vehicle stability, and there was no damage observed to the to the occupant compartment due to override of the posts. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. Therefore, test no. MSPBN-7 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-33.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dung	and a	L	Z		in the second	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.000 sec	0.118 sec 0.260 se	2C. -1" [15.9 m]—	0.497	sec	1.0	54 sec
Date6405/201812	Test Agency	1 2 3 4 5 6 MwRSF	Vehicle Damag	;e			
MASH 2016 Test Designation No.3-33 3-33 Test Article3-33 3-33 Test ArticleMaximum Interior Deformation0.8 in (20 nmMASH 2016 Test Designation No							
Test Article Loanage							
Total Length			Waximum	Interior Deforma			0.8 III. (20 IIIII)
New Component - Thrie Beam Thickness12 gauge (2.7 mm) Mounting Height31% in. (803 mm)Key Component - Post Length31% in. (803 mm)Key Component - Post Length72½ is in. (1849 mm) SpacingSpacing37½ in. (953 mm)Soil Type2012 Dodge Ram 1500 CurbCurb5.271 lb (2.391 kg) Gross StaticTest Inertial5.043 lb (2.287 kg) Gross StaticGross Static5.202 lb (2.360 kg)Impact Conditions63.1 mph (101.6 km/h) AngleSpeed63.1 mph (101.6 km/h) AngleLingte63.1 mph (101.6 km/h) AngleSpeed63.1 mph (101.6 km/h) AngleSpeedN/A AngleSpeedN/A AngleSpeedN/A AngleSpeedN/A AngleSpeedN/A AngleVehicle StabilitySatisfactory Vehicle Capture and ContainmentVehicle Stopping Distance52 ft - 1 in. (15.9 m)	Test Article	Steel Post Bullhose with Breakaway Posts					
Rey Component Print Permanent Set in Thickess.12 gauge (2.7 mm) Mounting Height.Permanent Set $1 - 1$ in. (15.9 m) longitudinal, $12 \text{ ft} - 1$ //2 in (3.7 m) later.Key Component Post Length. 212 points in. (1849 mm) Spacing. $37/2$ in. (1953 mm) Soil Type Vehicle Make /Model $2012 \text{ Dodge Ram 1500}$ Curb. $5,271 \text{ lb}$ $(2,391 \text{ kg})$ Test Inertial $5,043 \text{ lb}$ $(2,287 \text{ kg})$ Gross Static $5,202 \text{ lb}$ $(2,360 \text{ kg})$ Impact Conditions Speed $5,202 \text{ lb}$ $(2,360 \text{ kg})$ 15.1 degress Impact Location -6.92 -7.09 ± 20.49 Impact Severity. -671.9 kip-ft $(911.0 \text{ kJ}) \ge 594 \text{ kip-ft}$ (806 kJ) limit from MASH 2016 15.1 degress N/A Angle N/A Angle N/A Angle N/A Angle N/A AngleVehicle Stability. -6.92 -7.09 ± 20.49 Wethicle Stapping Distance $S2 \text{ ft} - 1 \text{ in.} (15.9 \text{ m})$			Test Article Da	mage			Extensive
Mounting Height31% in (803 mm)Key Component - Post	Total Length			U			Extensive
Normalized for the formation of the formation	Total Length Key Component - Thrie Beam	•	Maximum Test	Article Deflectio	ons		
Transducer DataSpacing $72V_{16}$ in. (1,849 mm) SpacingSoli Type $72V_{16}$ in. (1,849 mm) SpacingVehicle Make /Model2012 Dodge Ram 1500 CurbCurb $5,271$ lb (2,391 kg) 	Total Length Key Component - Thrie Beam Thickness	•	Maximum Test Permanent	Article Deflection Set	ons - 1 in. (15.9 m) lon	ngitudinal, 12 ft – 1	1 ¹ /2 in (3.7 m) lateral
Spacing Soil TypeTransducerMASH 2016 LimitSoil Type2012 Dodge Ram 1500 Curb2012 Dodge Ram 1500 CurbSLICE-1SLICE-1SLICE-2 (primary)MASH 2016 LimitCurb5,043 lb (2,387 kg) Gross Static5,043 lb (2,287 kg) Gross StaticCongitudinal-20.18 (-6.15)-20.20 (-6.16) ± 40 (12.2)Impact Conditions5,202 lb (2,360 kg)Impact ConditionsSpeed63.1 mph (101.6 km/h) AngleLateral3.28 (1.00)2.99 (0.91) ± 40 (12.2)ORA AngleLongitudinal-6.92-7.09 ± 20.49 Birpact Severity	Total Length Key Component - Thrie Beam Thickness Mounting Height	•	Maximum Test Permanent Dynamic	Article Deflection Set52 ft – 	ons - 1 in. (15.9 m) lon – 9 in. (16.1 m) lo	ıgitudinal, 12 ft – 1 ongitudinal, 14 ft –	1½ in (3.7 m) latera 6 in. (4.4 m) latera
Soil TypeEvaluation CriteriaSLICE-1SLICE-2MinimizerVehicle Make /Model2012 Dodge Ram 1500Curb5,271 lb (2,391 kg)Test Inertial5,043 lb (2,287 kg)Gross Static5,202 lb (2,360 kg)Impact Conditions5,202 lb (2,360 kg)Speed63.1 mph (101.6 km/h)Angle15.1 degreesImpact Location0.9 in. (23 mm) downstream of CL of system's noseImpact Severity01Longitudinal-6.92-7.09 ± 20.49 g'sLateral6.377.0320.49MAXAngleN/AAngleN/AVehicle StabilitySatisfactoryVehicle StabilitySatisfactoryVehicle Stopping Distance52 ft - 1 in. (15.9 m)	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post	• 	Maximum Test Permanent Dynamic Working V	Article Deflection Set	ons - 1 in. (15.9 m) lon – 9 in. (16.1 m) lo	ıgitudinal, 12 ft – 1 ongitudinal, 14 ft –	1½ in (3.7 m) latera 6 in. (4.4 m) latera
Vehicle Make /Model2012 Dodge Ram 1500 CurbDifferenceDifferenceDifferenceDifferenceDifferenceCurb5,271 lb (2,391 kg) Test Inertial5,043 lb (2,287 kg) Gross Static5,0043 lb (2,287 kg) Gross StaticLongitudinal-20.18 (-6.15)-20.20 (-6.16) $\pm 40 (12.2)$ Impact Conditions Speed5,202 lb (2,360 kg)Lateral3.28 (1.00)2.99 (0.91) $\pm 40 (12.2)$ Impact Location.0.9 in. (23 mm) downstream of CL of system's noseClogitudinal-6.92-7.09 ± 20.49 Impact Severity671.9 kip-ft (911.0 kJ) \geq 594 kip-ft (806 kJ) limit from MASH 2016MAX AngleRoll22.722.4 ± 75 SpeedN/AN/APitch6.15.5 ± 75 Max AngleN/AN/APitch6.15.5 ± 75 Vehicle StabilitySatisfactory Vehicle Capture and ContainmentAcceptable Vehicle Stopping Distance20.51 (6.25)20.44 (6.23)Not RequiredPHD – g's7.647.96Not Required	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length	•	Maximum Test Permanent Dynamic Working V	Article Deflection Set	ons - 1 in. (15.9 m) lon – 9 in. (16.1 m) lo – 9 in. (16.1 m) lo	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft –	1½ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera
Curb5,271 lb (2,391 kg) Test InertialCurbLongitudinal-20.18 (-6.15)-20.20 (-6.16) $\pm 40 (12.2)$ Test Inertial5,043 lb (2,287 kg) Gross Static5,202 lb (2,360 kg)Lateral3.28 (1.00)2.99 (0.91) $\pm 40 (12.2)$ Impact ConditionsSpeed63.1 mph (101.6 km/h) AngleAngleLongitudinal-6.92-7.09 ± 20.49 Impact Location0.9 in. (23 mm) downstream of CL of system's noseInternal6.377.03 ± 20.49 Impact Severity671.9 kip-ft (911.0 kJ) \geq 594 kip-ft (806 kJ) limit from MASH 2016MAXRoll22.722.4 ± 75 SpeedN/A AngleN/ADISP.9itch6.15.5 ± 75 Uber ConditionsSatisfactory Vehicle StabilitySatisfactory Vehicle Stopping Distance20.51 (6.25)20.44 (6.23)Not RequiredPHD – g's7.647.96Not Required	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing	•	Maximum Test Permanent Dynamic Working W Transducer Dat	Article Deflectic Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016
Test InertialDeterminant determinantTest InertialDeterminantDeterminantGross StaticDeterminantImpact ConditionsSpeedColspan="2">Colspan="2">DeterminantMAXLateral3.28 (1.00)2.99 (0.91) $\pm 40 (12.2)$ MARLateral3.28 (1.00)2.99 (0.91) $\pm 40 (12.2)$ ORALongitudinal-6.92-7.09 ± 20.49 MARRoll 22.7 22.4 ± 75 Impact LocationN/AAngleMAXAngle MAX Angle MAX Angle MAX Angle MAX Angle MAX Angle MAX $AngleMAXAngleMAXAngleMAXAngleMAXAngleMAXAngleMAXAngleMAXAngleMAXAngle$	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type	•	Maximum Test Permanent Dynamic Working W Transducer Dat	Article Deflectic Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016
Gross StaticSize (1.00)2.39 (0.91) $\pm 40 (12.2)$ Impact ConditionsSpeedGal mph (101.6 km/h)LateralSize (1.00) $2.39 (0.91)$ $\pm 40 (12.2)$ MageMageGal mathematicSize (1.00) $2.39 (0.91)$ $\pm 40 (12.2)$ Impact SeverityORALateral 6.37 7.03 ± 20.49 Impact SeverityGal mathematicSize (1.00) $2.39 (0.91)$ $\pm 40 (12.2)$ MaxRoll 22.7 22.4 ± 75 Impact SeverityN/AN/APitch 6.1 5.5 ± 75 SpeedN/AN/APitch 6.1 5.5 ± 75 AngleN/AN/APitch 6.1 5.5 ± 75 Vehicle StabilitySatisfactoryYaw 16.3 13.8 Not RequiredVehicle Stopping Distance $52 \text{ ft} - 1 \text{ in. } (15.9 \text{ m})$ $PHD - g's$ 7.64 7.96 Not Required	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary)	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit
SpeedGordEngradminiStatisfactoryAngleN/AImpact Location0.9 in (23 mm) downstream of CL of system's noseImpact Severity671.9 kip-ft (911.0 kJ) \geq 594 kip-ft (806 kJ) limit from MASH 2016Exit ConditionsN/AAngleN/AAngleN/AVehicle StabilitySatisfactoryVehicle Stopping Distance52 ft - 1 in. (15.9 m)	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15)	ngitudinal, 12 ft – 1 ngitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16)	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2)
SpeedSpeed63.1 mpn (101.6 km/n)Angle15.1 degreesImpact Location0.9 in. (23 mm) downstream of CL of system's noseImpact Severity671.9 kip-ft (911.0 kJ) \geq 594 kip-ft (806 kJ) limit from MASH 2016Exit ConditionsN/AAngleN/AAngleN/AAngleN/AVehicle StabilitySatisfactoryVehicle Capture and ContainmentAcceptableVehicle Stopping Distance52 ft - 1 in. (15.9 m)	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15)	ngitudinal, 12 ft – 1 ngitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16)	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2)
AngleInstructionInstructionInstructionInstructionInstructionImpact Location	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s)	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00)	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91)	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2)
Impact Severity671.9 kip-ft (911.0 kJ) \geq 594 kip-ft (806 kJ) limit from MASH 2016MAXRoll22.722.4 ± 75 Exit ConditionsSpeedAngleVehicle StabilityVehicle StabilityVehicle Capture and Containment.Vehicle Stopping DistanceVehicle Stopping DistanceStatisfactoryVehicle Stopping DistanceStatisfactoryStatisfactoryStatisfactoryVehicle Stopping DistanceStatisfactoryStatis	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09	¹¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49
Exit ConditionsN/AN/APitch6.15.5 ± 75 SpeedN/AAngleN/AVehicle StabilitySatisfactoryVehicle Capture and ContainmentAcceptableVehicle Stopping Distance52 ft - 1 in. (15.9 m)	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09	¹¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49
SpeedN/AAngleN/AVehicle StabilitySatisfactoryVehicle StabilityAcceptableVehicle Stopping Distance52 ft - 1 in. (15.9 m)	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's	Article Deflection Set	ons - 1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49
AngleN/AdegreesYaw16.313.8Not RequiredVehicle StabilitySatisfactoryVehicle Capture and ContainmentAcceptableVehicle Stopping Distance $52 \text{ ft} - 1 \text{ in. (15.9 m)}$ PHD - g's7.647.96Not Required	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle	•	Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4	1½ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75
Vehicle StabilitySatisfactoryTHIV - ft/s (m/s) $20.51 (6.25)$ $20.44 (6.23)$ Not RequiredVehicle Capture and ContainmentAcceptableVehicle Stopping Distance $52 \text{ ft} - 1 \text{ in.} (15.9 \text{ m})$ PHD - g's 7.64 7.96 Not Required	Total Length		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4	1½ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75
Vehicle Capture and ContainmentAcceptable $PHD - g's$ 7.64 7.96 Not Required	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP.	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7 6.1	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4 5.5	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75 ±75
Vehicle Stopping Distance $52 \text{ ft} - 1 \text{ in.}$ 15.9 m PHD - g's 7.64 7.96 Not Required	Total Length Key Component - Thrie Beam Thickness Mounting Height Key Component - Post Length Spacing Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g`s MAX ANGULAR DISP. degrees	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7 6.1 16.3	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4 5.5 13.8	1½ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75 ±75 Not Required
	Total Length		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g`s MAX ANGULAR DISP. degrees	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7 6.1 16.3	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – sducer SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4 5.5 13.8	1½ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75 ±75 Not Required
	Total Length		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. degrees THIV –	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7 6.1 16.3 20.51 (6.25)	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4 5.5 13.8 20.44 (6.23)	1 ¹ / ₂ in (3.7 m) latera 6 in. (4.4 m) latera 2 in. (8.9 m) latera 1 MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75 ±75 Not Required Not Required
	Total Length		Maximum Test Permanent Dynamic Working W Transducer Dat Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. degrees THIV – PHD	Article Deflection Set	ons -1 in. (15.9 m) lon - 9 in. (16.1 m) lo - 9 in. (16.1 m) lo Trans SLICE-1 -20.18 (-6.15) 3.28 (1.00) -6.92 6.37 22.7 6.1 16.3 20.51 (6.25)	ngitudinal, 12 ft – 1 ongitudinal, 14 ft – ongitudinal, 29 ft – SLICE-2 (primary) -20.20 (-6.16) 2.99 (0.91) -7.09 7.03 22.4 5.5 13.8 20.44 (6.23)	$1\frac{1}{2}$ in (3.7 m) late 6 in. (4.4 m) late 2 in. (8.9 m) late MASH 2016 Limit ± 40 (12.2) ± 20.49 ± 20.49 ± 75 ± 75 Not Required Not Required

Figure 184. Summary of Test Results and Sequential Photographs, Test No. MSPBN-7

231

September 1, 2020 MwRSF Report No. TRP-03-418-20

10 DESIGN DETAILS, TEST NO. MSPBN-8

The barrier system for test no. MSPBN-8 consisted of a bullnose median barrier utilizing UBSPs, as shown in Figures 185 through 208. Photographs of the test installation are shown in Figures 209 through 214. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The system orientation for test no. MSPBN-8 was inverted for a reverse-direction impact event. Sides A and B were equivalent lengths due to the bullnose system being rebuilt with the new orientation. All other details for the system were identical to those used in test no. MSPBN-5 through MSPBN-7. Note that the post numbering for this test was reversed.

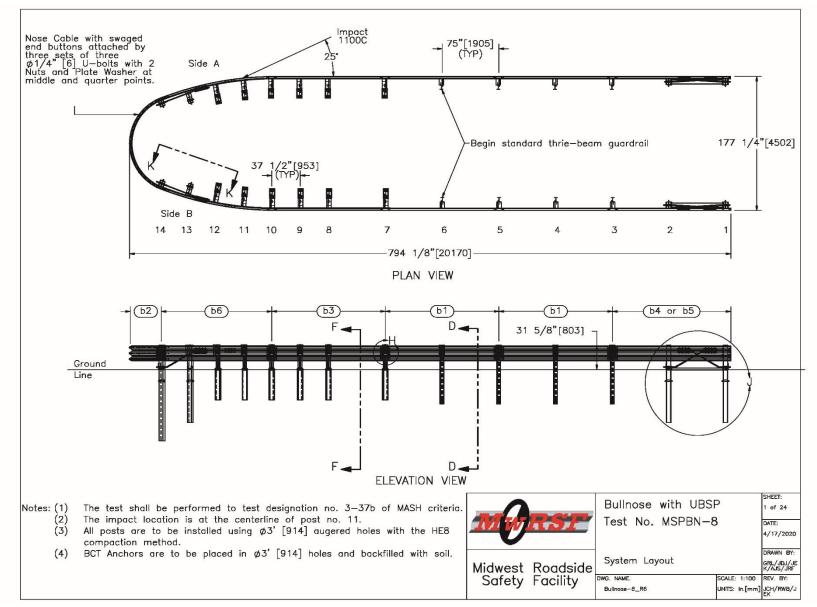


Figure 185. System Layout, Test No. MSPBN-8

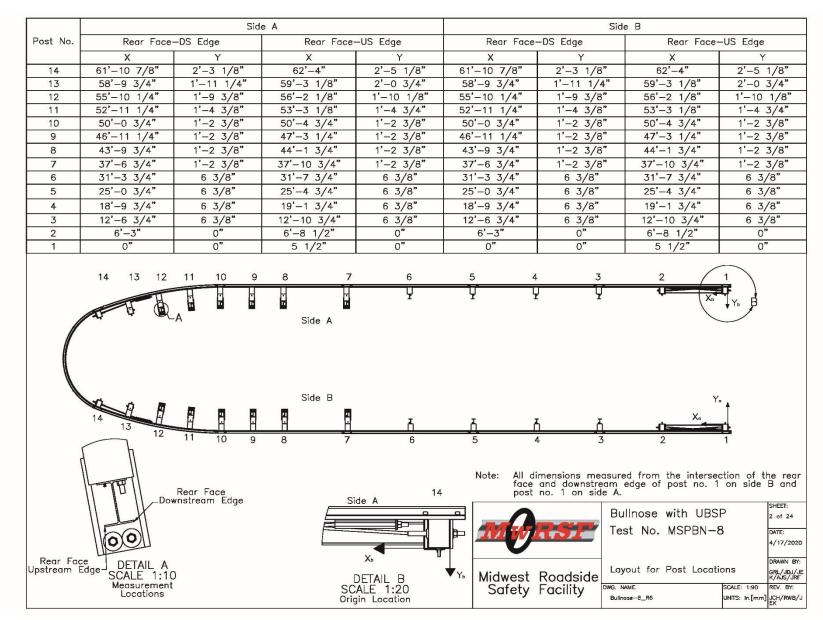


Figure 186. Layout for Post Locations, Test No. MSPBN-8

234

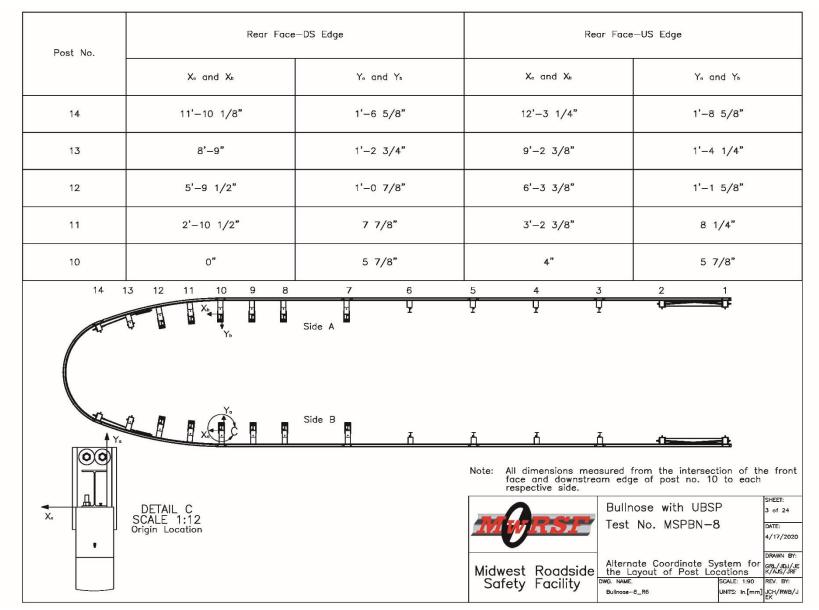


Figure 187. Alternative Coordinate System for the Layout of Post Locations, Test No. MSPBN-8

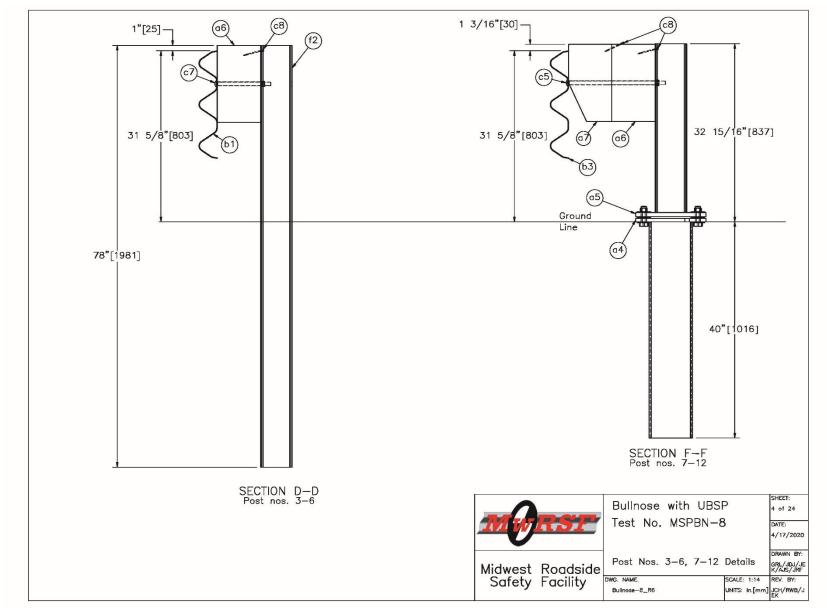


Figure 188. Post Nos. 3 through 6, 7 through 12, Test No. MSPBN-8

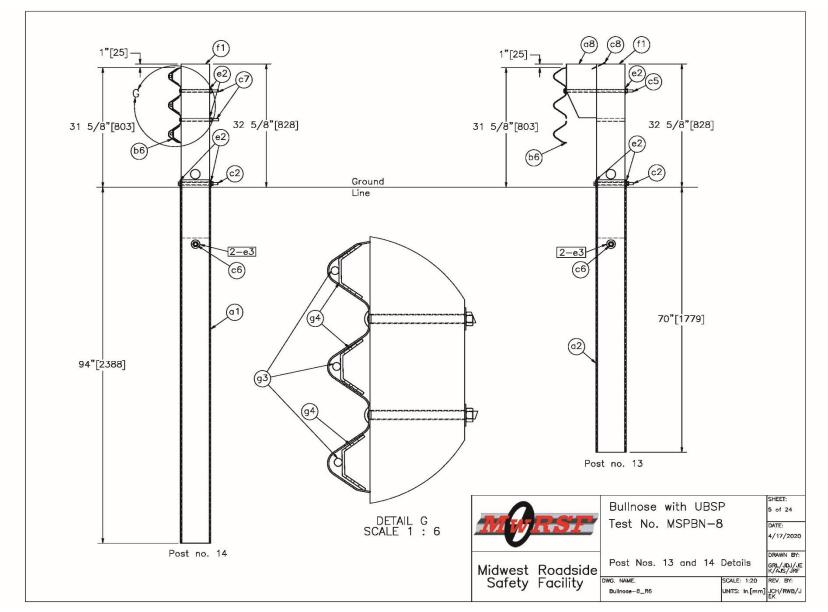


Figure 189. Post Nos. 13 and 14 Details, Test No. MSPBN-8

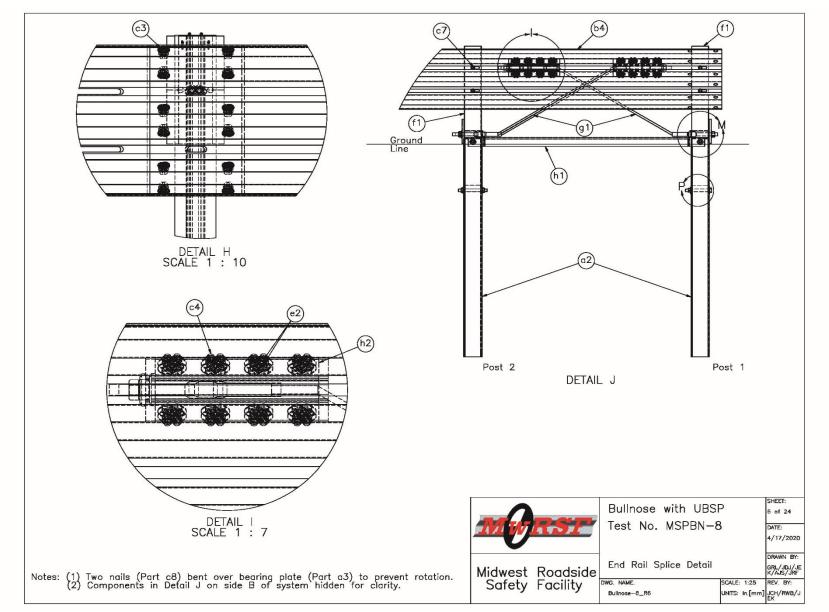


Figure 190. End Rail Splice Detail, Test No. MSPBN-8

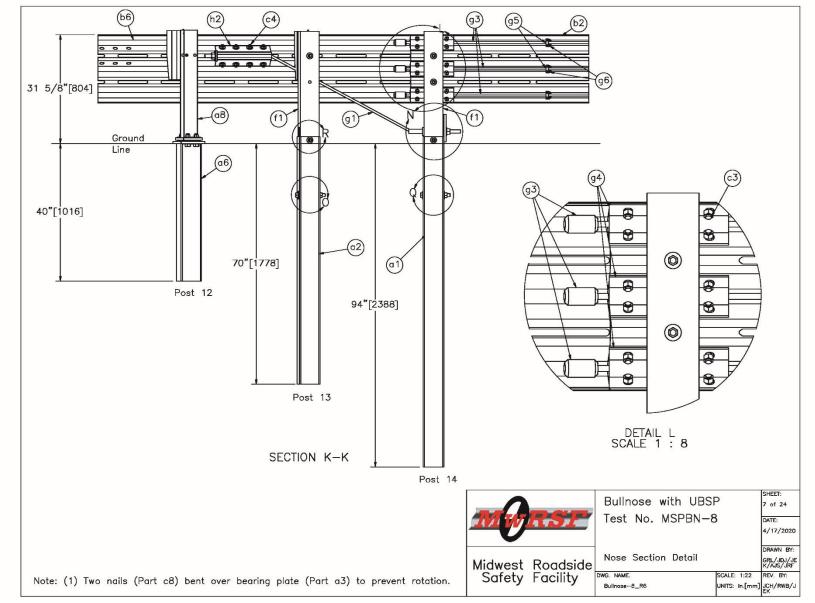


Figure 191. Nose Section Detail, Test No. MSPBN-8

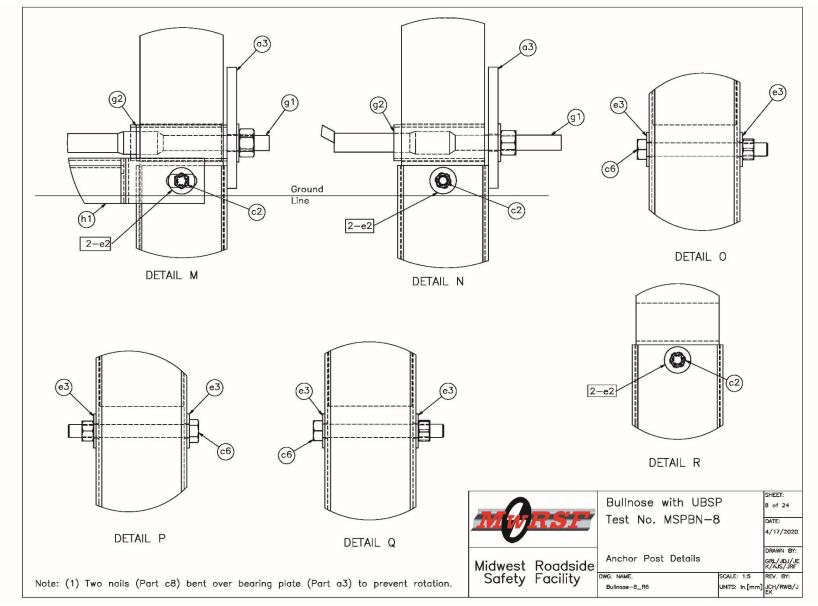
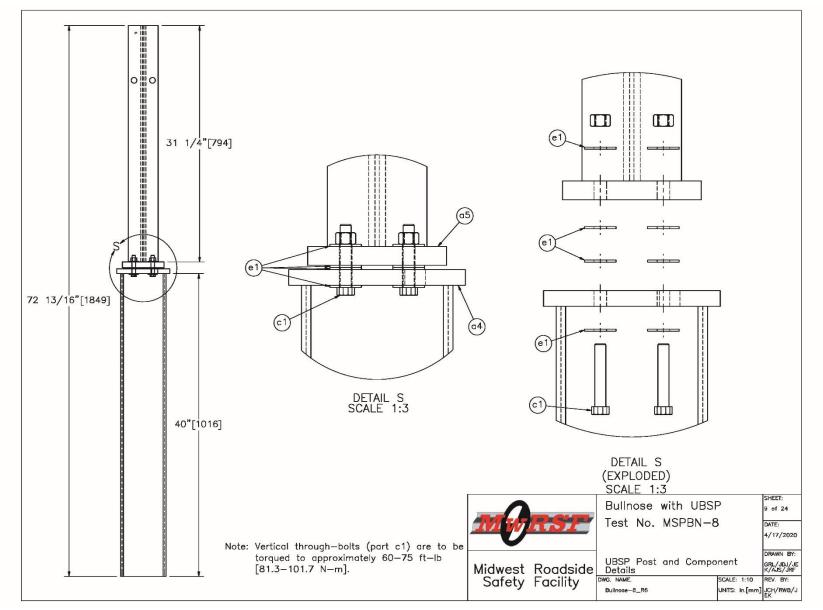



Figure 192. Anchor Post Details, Test No. MSPBN-8

241

Figure 193. UBSP and Component Details, Test No. MSPBN-8

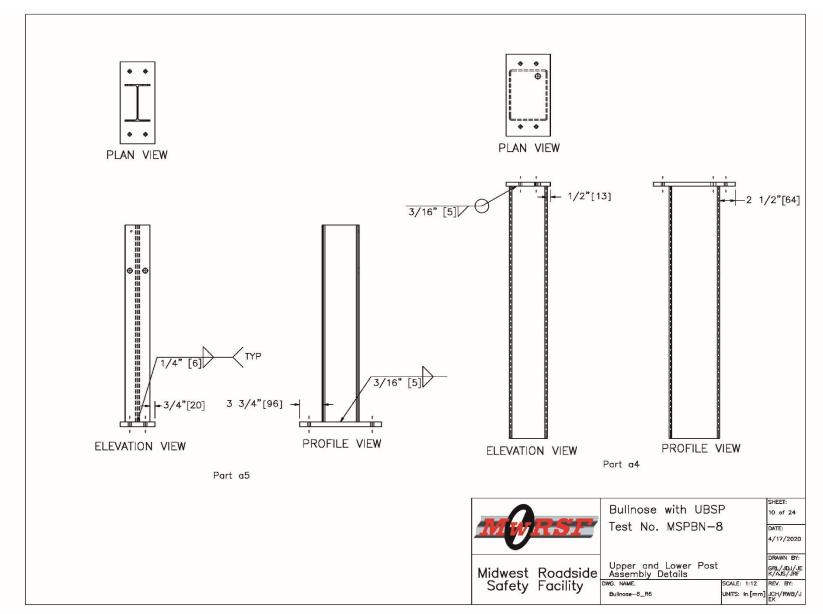


Figure 194. Upper and Lower Post Assembly Details, Test No. MSPBN-8

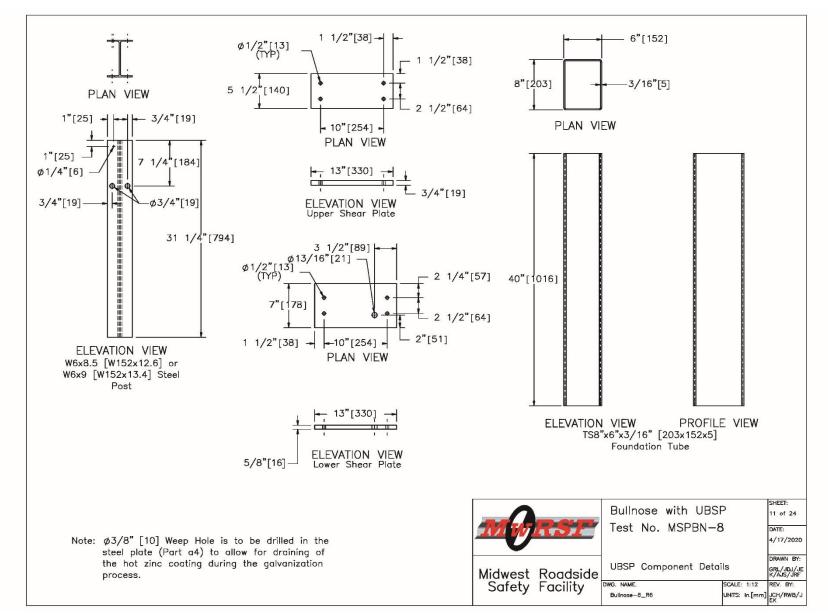


Figure 195. UBSP Component Details, Test No. MSPBN-8

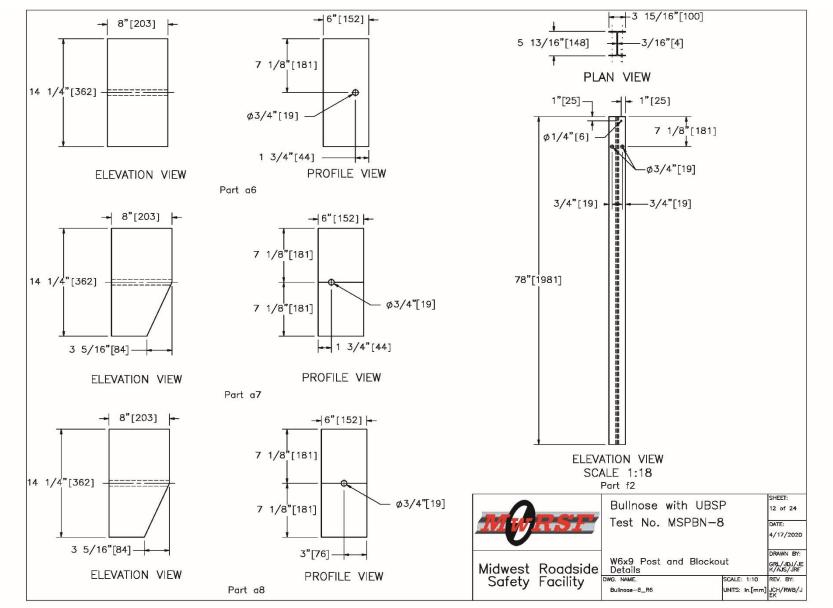


Figure 196. W6x9 Post and Blockout Details, Test No. MSPBN-8

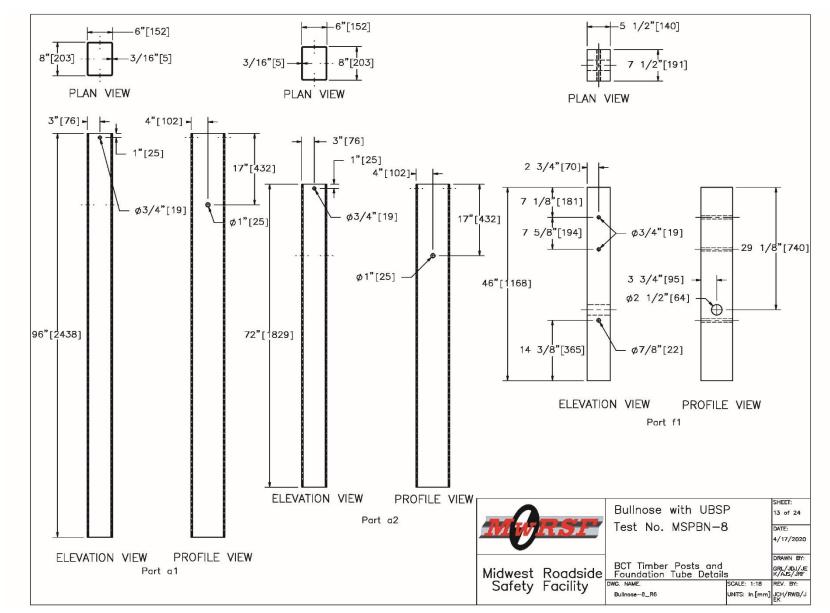


Figure 197. BCT Timber Posts and Foundation Tube Details, Test No. MSPBN-8

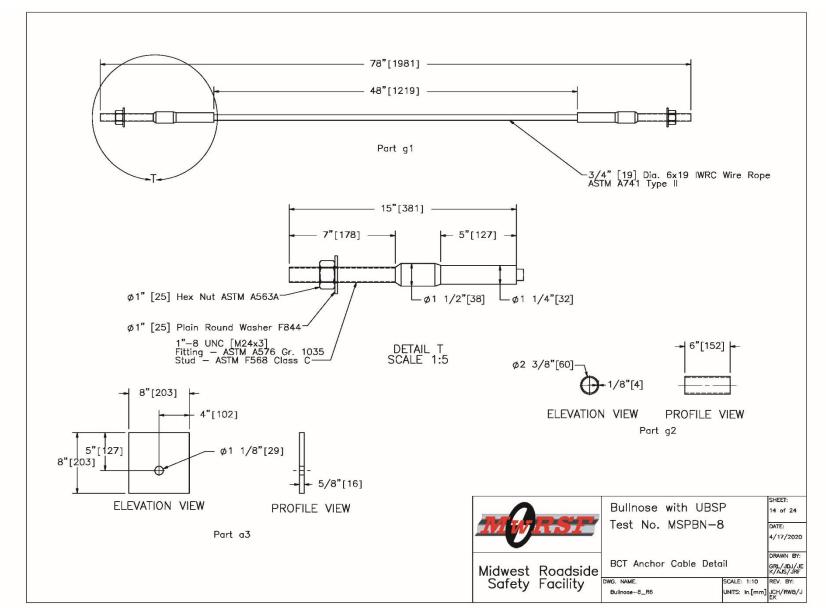


Figure 198. BCT Anchor Details, Test No. MSPBN-8

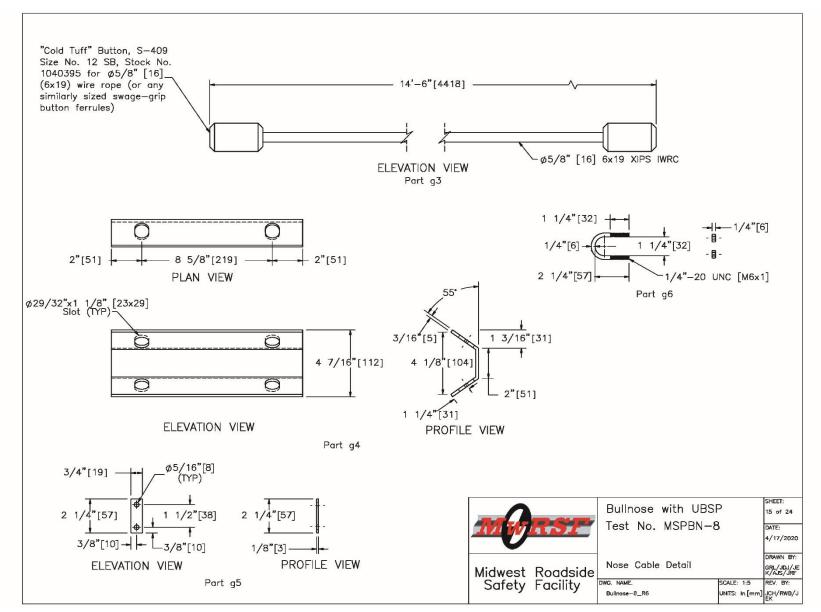


Figure 199. Nose Cable Detail, Test No. MSBPN-8

247

Figure 200. BCT Anchorage Detail, Test No. MSPBN-8

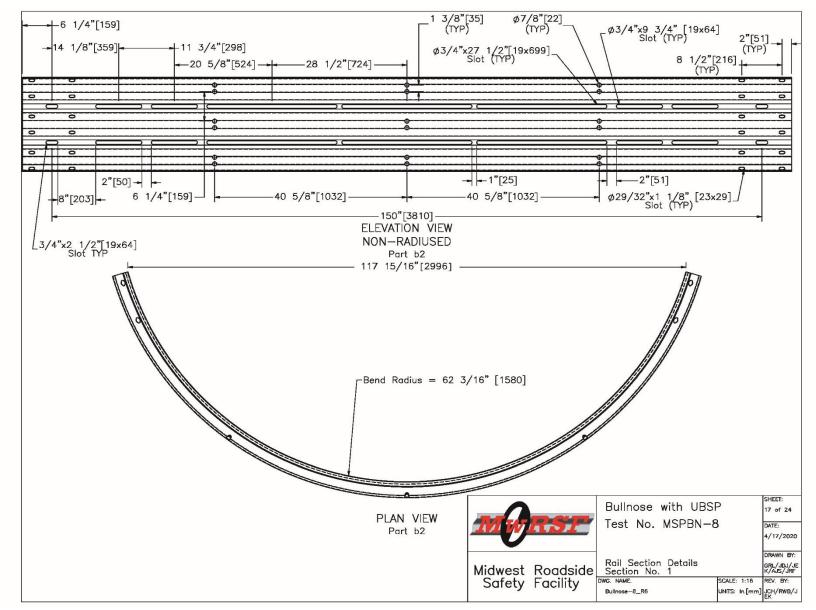


Figure 201. Rail Section Details, Section No. 1, Test No. MSPBN-8

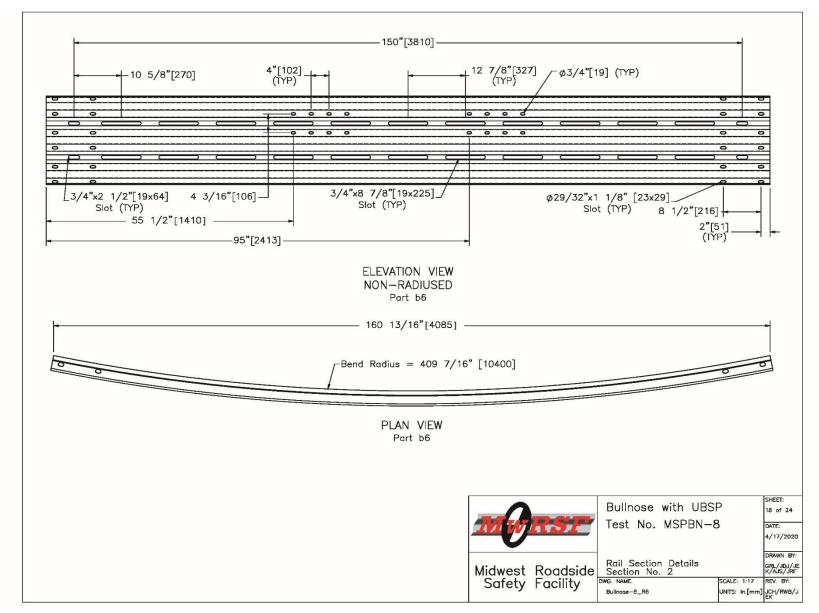


Figure 202. Rail Section Details, Section No. 2, Test No. MSPBN-8

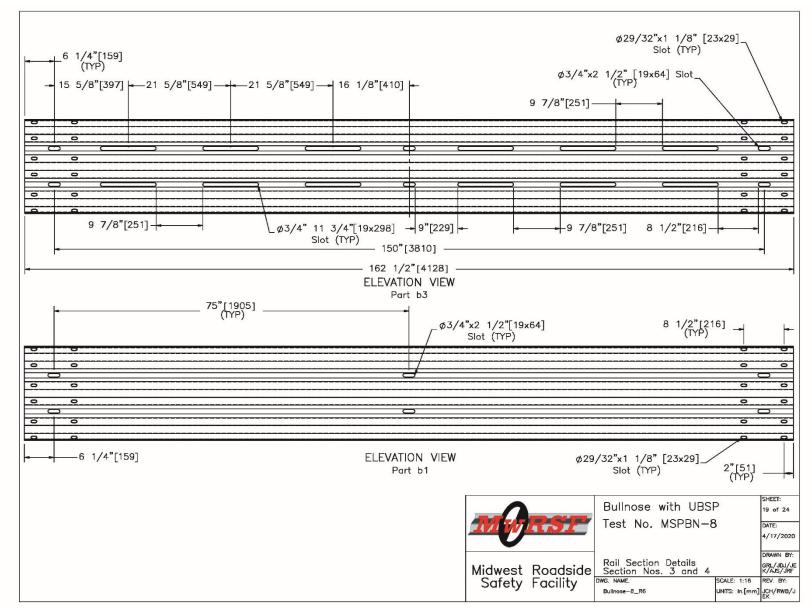


Figure 203. Rail Section Details, Section Nos. 3 and 4, Test No. MSPBN-8

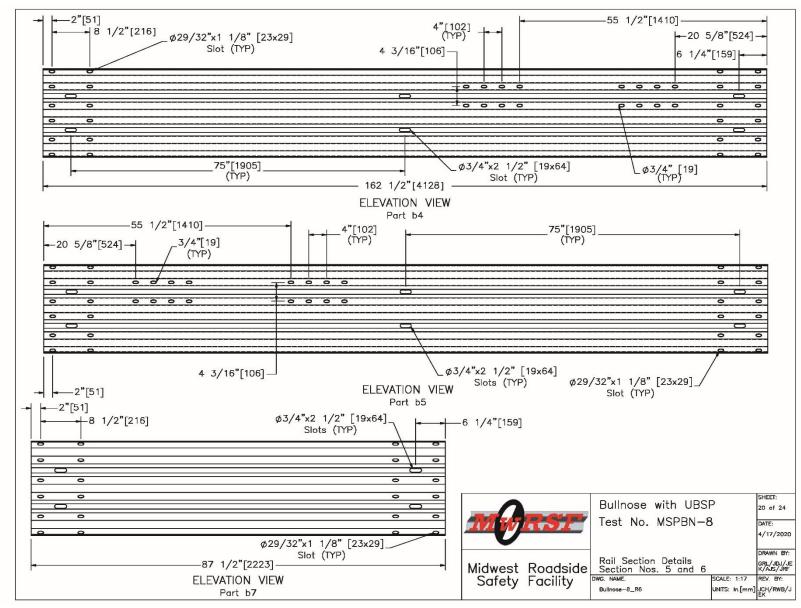


Figure 204. Rail Section Details, Section Nos. 5 and 6, Test No. MSPBN-8

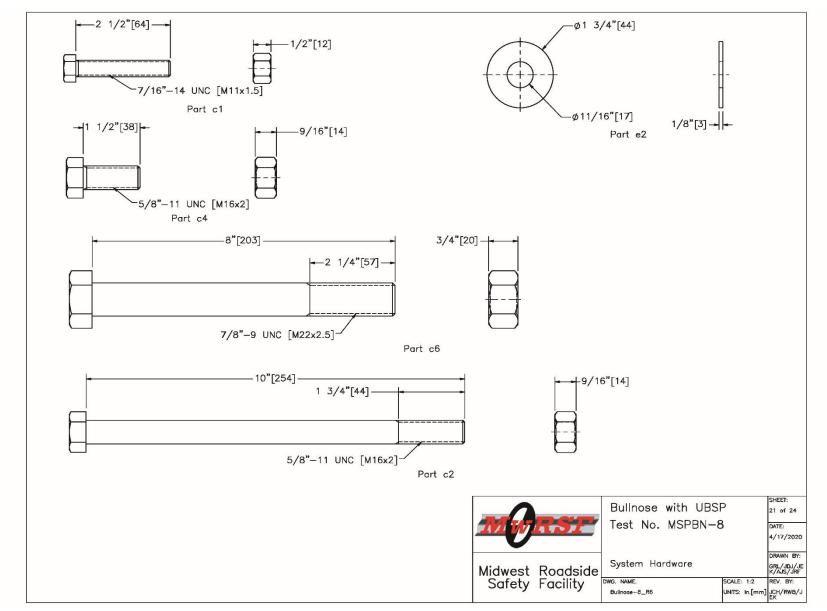


Figure 205. System Hardware, Test No. MSPBN-8

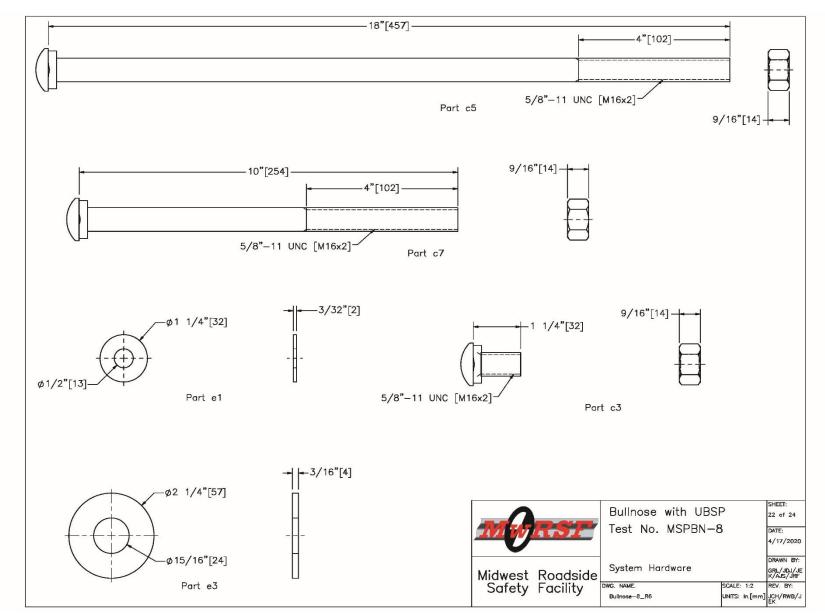


Figure 206. System Hardware, Test No. MSPBN-8

254

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	2	TS8"x6"x3/16" [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE07
a2	6	TS8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
aЗ	6	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
a4	12	Lower Slip Post Assembly	Plate—ASTM A36 Foundation Tube—ASTM A500 Gr. B	ASTM A123	PTE08
a5	12	Upper Slip Post Assembly	Plate—ASTM A36 Post—ASTM A992	ASTM A123	PWE11
a6	20	6"x8"x14 1/4" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	-	PDB09
۵7	12	6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout	SYP Grade No. 1 or better	-	PDB20
a8	2	6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout - Post 2	SYP Grade No. 1 or better		PDB12
b1	4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM02a
b2	1	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07a
b3	2	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07e
b4	1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side A	AASHTO M180	ASTM A123 or A653	
b5	1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side B	AASHTO M180	ASTM A123 or A653	
b6	2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07d
c1	48	7/16"—14 UNC [M11x1.5], 2 1/2" [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt – ASTM A449 or SAE J429 Gr. 5 Nut – ASTM A563DH or SAE J995 Gr. 5	ASTM A153 or B695 Class 55 or F2329	FBX12b
c2	8	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c3	1	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
c4	48	5/8"—11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c5	14	5/8"—11 UNC [M16x2], 18" [457] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB04
c6	8	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
c7	20	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
c8	46	16D Double Head Nail	-	.—	

M	RSF	Bullnose with UBSF Test No. MSPBN-8		SHEET: 23 of 24 DATE: 4/17/2020
Midwest	Roadside	Bill of Materials		DRAWN BY: GRL/JDJ/JE K/AJS/JRF
Safety	Facility		SCALE: None UNITS: In.[mm]	REV. BY: JCH/RWB/J EK

Figure 207. Bill of Materials, Test No. MSPBN-8

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	192	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC12a
e2	118	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC16a
e3	16	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	-
f1	8	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	_	PDF04
f2	8	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	ASTM A123	-
g1	6	BCT Anchor Cable Assembly	_		FCA01
g2	6	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
g3	3	5/8" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for 5/8" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	Wire Rope — Class A Coating	RCM02
g4	6	12 5/8"x5 13/16"x3/16" [321x148x5] Nose Cable Anchor Plate	ASTM A36	ASTM A123	FPA04
g5	9	2 1/4"x3/4" [57x19] 11 gauge [3] U—Bolt Plate Washer	ASTM A1011 CS Type B	ASTM A123	-
g6	9	1/4" [6] Dia. U—Bolt and Nut	U-Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
h1	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
h2	6	Anchor Bracket Assmbely	ASTM A36	ASTM A123	FPA01

MITEST	Bullnose with UBSP Test No. MSPBN-8	SHEET: 24 of 24 DATE: 4/17/2020
Midwest Roadside	Bill of Materials	DRAWN BY: GRL/JDJ/JE K/AJS/JRF
Safety Facility	DWG. NAME. SCALE: None Bulinose8_R6 UNITS: In.[mm]	REV. BY: JCH/RWB/J EK

Figure 208. Bill of Materials,	Test No. MSPBN-8
--------------------------------	------------------

Figure 209. Test Installation Photograph, System Overview, Test No. MSPBN-8

Figure 210. Test Installation Photograph, System Overview, Test No. MSPBN-8

Figure 211. Test Installation Photographs, End Anchorage and Nose Cable Details, Test No. MSPBN-8

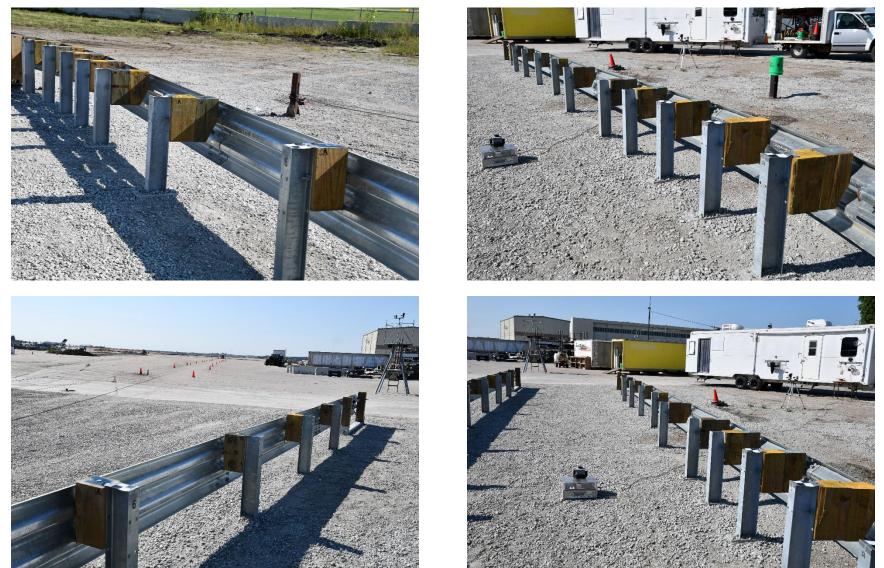


Figure 212. Test Installation Photographs, Post Details, Test No. MSPBN-8

Figure 213. Test Installation Photographs, Nose Details, Test No. MSPBN-8

Figure 214. Test Installation Photographs, System Overview, Test No. MSPBN-8

11 FULL-SCALE CRASH TEST NO. MSPBN-8

11.1 Static Soil Test

Before full-scale crash test no. MSPBN-8 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

11.2 Weather Conditions

Test no. MSPBN-8 was conducted on August 29, 2018 at approximately 1:40 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 24.

Temperature	76° F
Humidity	47 %
Wind Speed	6 mph
Wind Direction	60° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.65 in.
Previous 7-Day Precipitation	0.72 in.

Table 24. Weather Conditions, Test No. MSPBN-8

11.3 Test Description

Test no. MSPBN-8 was conducted under the MASH 2016 TL-3 guidelines for test designation no. 3-37b. Test designation no. 3-37b is an impact of the 1100C vehicle at 62 mph (100 km/h) and 25 degrees on the system in the reverse direction. The critical impact point for this test was selected to maximize the potential for vehicle interaction and snag on the cable anchorage near the upstream end of the bullnose system. Initial vehicle impact was to occur at the centerline of post no. A11, as shown in Figure 215. The 2,394-lb (1,086-kg) small car impacted the bullnose with breakaway posts at a speed of 63.2 mph (101.8 km/h) and at an angle of 25.0 degrees. The actual point of impact was 0.8 in. (20 mm) downstream from the target location at the centerline of post no. A11. The vehicle was captured and redirected by the thrie beam on the side of the bullnose system. During the redirection of the vehicle, deflection of the UBSP and BCT posts was noted, but none of the posts fractured. Additionally, the vehicle's left-front wheel clipped the final BCT post and disengaged a small piece of the post near the base. However, vehicle interaction with the cable anchorage was not observed, and the anchorage remained intact. Vehicle capture and stability of the vehicle were acceptable during redirection and while exiting the barrier system. After exiting the bullnose system, the small car impacted protective portable concrete barriers at the MwRSF test site and rolled onto its side. The stability and trajectory of the vehicle prior to the secondary impact were acceptable, and the roll experienced during the secondary impact was not

a concern with respect to the system's safety performance evaluation. The vehicle came to rest 156 ft - 6 in. (47.7 m) downstream from the impact location.

A detailed description of the sequential impact events is contained in Table 25. Sequential photographs are shown in Figures 216 and 217. Documentary photographs of the crash test are shown Figures 218 and 219. The vehicle trajectory and final position are shown in Figure 220.

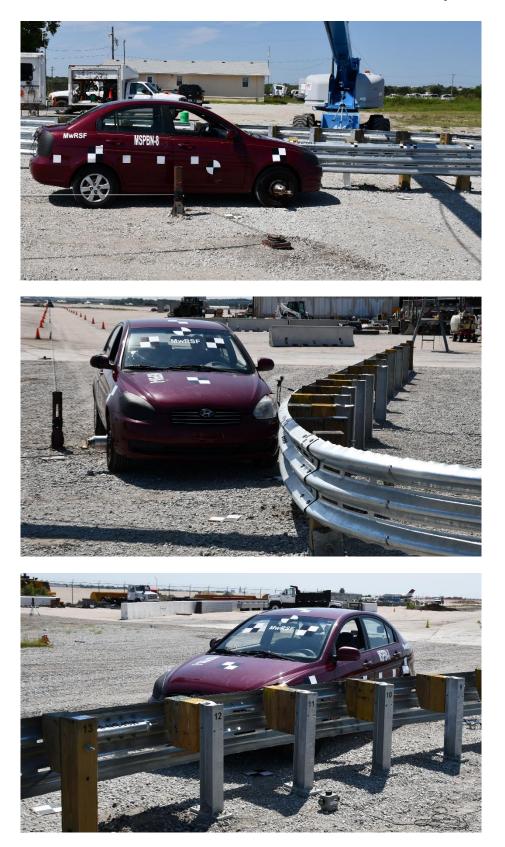


Figure 215. Impact Location, Test No. MSPBN-8

TIME	EVENT
(sec)	
0.000	Vehicle's front bumper contacted rail at post no. A11.
0.008	Vehicle's left-front tire contacted rail.
0.012	Post no. A11 deflected backward, vehicle's left-front fender deformed, vehicle's hood contacted rail, and vehicle's left-front fender contacted rail.
0.014	Vehicle yawed away from system.
0.016	Post no. A12 deflected backward, and post no. A10 deflected backward.
0.018	Post no. A13 deflected backward.
0.020	Post no. A14 deflected backward.
0.040	Vehicle's left-front door contacted rail, and vehicle's left-front door deformed.
0.042	Vehicle rolled away from system.
0.110	Vehicle's left-front tire contacted post no. A14.
0.116	Occupant's head contacted left-front window, and vehicle's left-front window shattered.
0.124	Vehicle's left-front tire ruptured.
0.148	Vehicle's left quarter panel contacted rail and deformed.
0.152	Vehicle rolled toward system.
0.236	Vehicle exited system.
0.334	Vehicle was parallel to system at a speed of 53.1 mph (85.4 km/h).
1.672	Vehicle pitched upward.
1.742	Vehicle's front bumper contacted secondary concrete barrier.
1.812	Vehicle's right-front tire became airborne.
1.832	Vehicle's right-rear tire became airborne.
2.390	Vehicle came to a rest on its side.

Table 25. Sequential Description of Impact Events, Test No. MSPBN-8

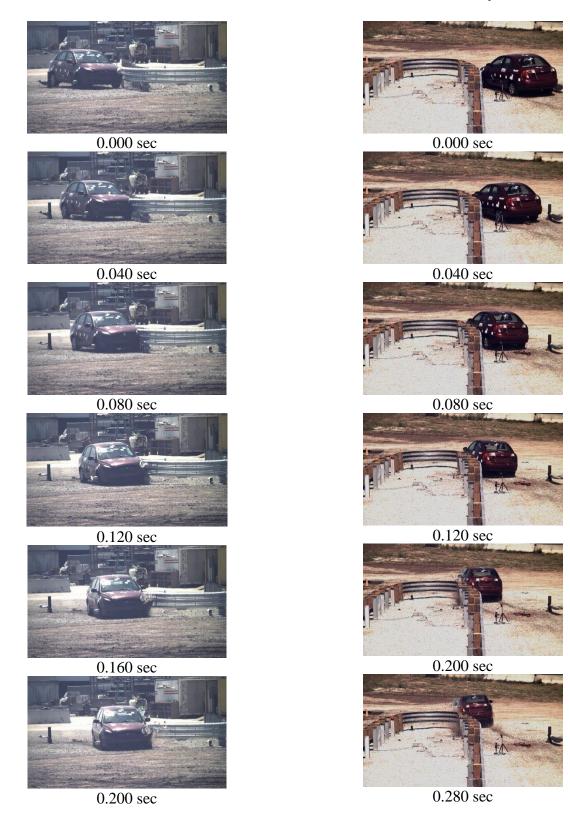


Figure 216. Sequential Photographs, Test No. MSPBN-8

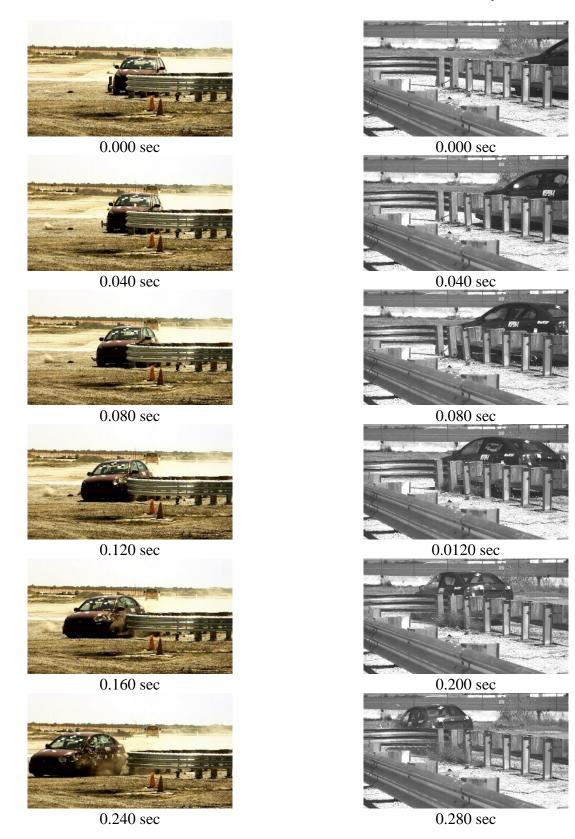


Figure 217. Additional Sequential Photographs, Test No. MSPBN-8

Figure 218. Documentary Photographs, Test No. MSPBN-8

Figure 219. Additional Documentary Photographs, Test No. MSPBN-8

Figure 220. Vehicle Final Position and Trajectory Marks, Test No. MSPBN-8

11.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 221 through 224. Barrier damage occurred primarily to Side A of the system where the impact had occurred. Damage consisted of rotation of posts in soil, contact marks on the rail, and deformation of the rail.

Rail damage was limited to rail section no. 2 on Side A where the impact had occurred. Contact marks were observed along all three of the rail corrugations. The overall length of these marks was 9 ft – $3\frac{3}{4}$ in. (2.8 m) and they were observed starting $32\frac{3}{4}$ in. (832 mm) downstream from post no. A10 and continued downstream. Two small kinks in the thrie-beam rail were observed 40 in. (1,016 mm) and $71\frac{1}{2}$ in. (1,816 mm) downstream from post no. A10 along the top and bottom edges, respectively. A $2\frac{1}{2}$ -in. (64-mm) long by $\frac{3}{4}$ -in. (19-mm) wide kink occurred 35 in. (889 mm) downstream from post no. A11 along the bottom corrugation. A $3\frac{1}{2}$ -in. (89-mm) long by $\frac{1}{2}$ -in. (13 mm) wide dent occurred in the thrie-beam rail 13 in. (330 mm) downstream from post no. A12 on the middle corrugation. A $7\frac{1}{2}$ -in. (191-mm) long kink occurred along the bottom edge of the thrie-beam rail 6 in. (152 mm) upstream from post no. A14. Deformation of the lower portion of the bottom corrugation of the thrie beam was observed from approximately midway between post nos. 11 and 12 to post no. 14.

None of the UBSP posts or the BCT posts in the impact region were disengaged. Post nos. A11 through A13 were deflected in the soil, but they did not display damage or deformation. Post no. A14 was rotated both backward and downstream. The upstream front corner of post no. A14, just above the post sleeve had a 2½-in. (64-mm) tall by 2-in. (51-mm) long by ½-in. (13-mm) deep gouge caused by wheel contact with the post. The cable anchorage did not show any signs of vehicle contact, and the anchorage remained intact following the impact.

The maximum lateral permanent set of the barrier system was $2\frac{3}{4}$ in. (70 mm), which occurred at post no. A12, as measured in the field. The maximum lateral dynamic barrier deflection was 5.2 in. (132 mm) on the rail at post no. A12 as determined from high-speed digital video analysis. The working width of the system was found to be $177\frac{1}{4}$ in. (4,502 mm). A schematic of the initial and final positions is shown in Figure 225.

Figure 221. Overview of Damage to System, Test No. MSPBN-8

Figure 222. Damage to Impacted Area, Test No. MSPBN-8

Figure 223. Damage to System at Post Nos. A11 and A12, Test No. MSPBN-8

Figure 224. Damage to System at Post Nos. A13 and A14, Test No. MSPBN-8

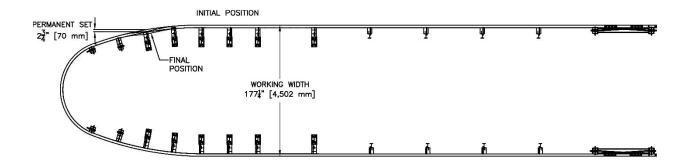


Figure 225. Initial and Final Positions, Test No. MSPBN-8

11.5 Vehicle Damage

Vehicle damage was minimal due to the primary impact and consisted mainly of crushing of the left-front vehicle structure and deformed sheet metal. Secondary impact damage was more extensive due to the impact with the concrete barrier and the subsequent roll onto the vehicle side. The damage to the vehicle is shown in Figure 226 through Figure 228. The maximum occupant compartment deformations are listed in Table 26 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

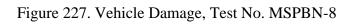


Figure 226. Vehicle Damage, Test No. MSPBN-8

September 1, 2020 MwRSF Report No. TRP-03-418-20

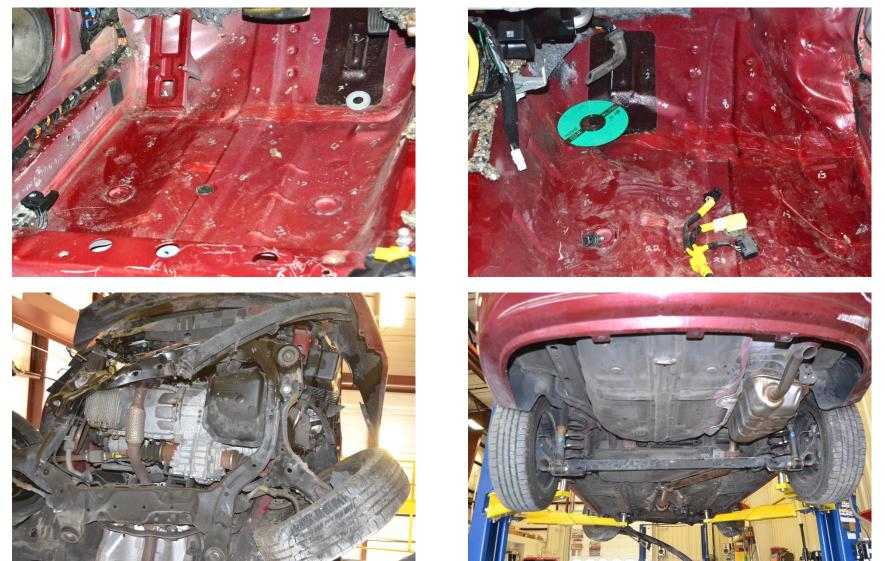


Figure 228. Occupant Compartment and Undercarriage Damage, Test No. MSPBN-8

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)		
Wheel Well & Toe Pan	0.2 (5)	≤ 9 (229)		
Floor Pan & Transmission Tunnel	0.2 (5)	≤ 12 (305)		
A-Pillar	0.0 (0)	≤ 5 (127)		
A-Pillar (Lateral)	0.0 (0)	≤3 (76)		
B-Pillar	0.1 (3)	≤ 5 (127)		
B-Pillar (Lateral)	0.1 (3)	≤ 3 (76)		
Side Front Panel (in Front of A-Pillar)	0.1 (3)	≤ 12 (305)		
Side Door (Above Seat)	0.6 (15)	≤9 (229)		
Side Door (Below Seat)	-0.1 (-3)	≤ 12 (305)		
Roof	0.0 (0)	≤4 (102)		
Windshield	0.0 (0)	≤3 (76)		
Side Window	Intact	No shattering resulting from contact with structural member of test article		
Dash	0.5 (13)	N/A		

Table 26. Maximum Occupant Compartment Deformations by Location, Test No. MSPBN-8

Note: Negative values denote outward deformation

N/A – Not applicable

The majority of the vehicle damage was caused by impact with the test article, which was concentrated on the left-front corner of the vehicle where impact had occurred. The front bumper was crushed inward toward the engine bay. The left-front quarter panel was crushed inward, dented, and was scraped along its length. The left-front door was crushed inward along its length. Scrapes and dents were also observed along the length of the door. The left-side mirror was partially disengaged but remained attached with wires. The left-rear door was also scraped and dented along its middle length. A dent was observed along the top frame above the left-rear door. The left-rear door. The left-rear door. The left-rear door.

The left-front window fractured due to contact with the simulated occupant's head during the initial impact and shattered when the vehicle was brought to a stop downstream from the test article. Damage that occurred to the right side of the vehicle was due to secondary impact with portable concrete barriers located downstream from the test article. The vehicle's engine hood was opened during the secondary impact event.

11.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 27. Note that the OIVs and ORAs

were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 27. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix I.

		Trans	MASH 2016		
Evaluati	on Criteria	SLICE-1 (primary)	SLICE-2	Limits	
OIV	Longitudinal	-11.98 (-3.65)	-11.11 (-3.39)	±40 (12.2)	
ft/s (m/s)	Lateral	20.45 (6.23)	19.43 (5.92)	±40 (12.2)	
ORA	Longitudinal	-0.92	0.68	±20.49	
g's	Lateral	8.80	8.07	±20.49	
MAX.	Roll	4.9	5.8	±75	
ANGULAR DISPL.	Pitch	-3.3	-4.8	±75	
degrees	Yaw	40.9	40.5	not required	
THIV ft/s (m/s)		21.19 (6.46)	21.72 (6.62)	not required	
_	PHD g's	5.08	5.46	not required	
	ASI	0.99	0.93	not required	

11.7 Discussion

The analysis of the results for test no. MSPBN-8 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results is shown in Figure 229. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix I, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 8.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MSPBN-8 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-37b.

CALLER CALL		S (B		Reev.	a A A A	Restore Co
0.000 sec $0.050 sec$	0.100	sec	0.150	sec	0.20	0 sec
		-156'-6" [47.7 m]—	RF	LF	₹ 111" [5.2 m] ŧ	
Exit Box 32	2'-10" [10.0 m]	1" [4.5 m]		Note: Vehicle over due to secondary impact.		
Test Agency		U U				
Test Number						-
Date				ion		
MASH 2016 Test Designation No						· ·
• Test Article Steel Bullnose	2		Article Deflectio			
• Total Length					234 in	(70 mm) lateral
• Key Component – Thrie Beam	10 (2.7)					· /
Thickness						
Mounting Height • Key Component – Breakaway Steel Post	5178 III. (805 IIIII)	Transducer Dat				. , (.,
Length	$72^{1/1}$ in (1.849 mm)			Trans	ducer	MAGUADA
Spacing		Evaluatio	on Criteria	SLICE-1	SLICE-2	MASH 2016 Limit
Soil Type	. ,			(primary)	SLICE-2	Lillin
Vehicle Make /Model	Hyundai Accent	OIV	Longitudinal	-11.98 (-3.65)	-11.11 (-3.39)	±40 (12.2)
Curb		ft/s (m/s)	Lateral	20.45 (6.23)	19.43 (5.92)	±40 (12.2)
Test Inertial			Longitudinal	-0.92	0.68	±20.49
Gross Static Impact Conditions	2,338 ID (1,160 Kg)	ORA g's				
Speed	53.2 mph (101.8 km/h)	g o	Lateral	8.80	8.07	±20.49
Angle	1	MAX	Roll	4.9	5.8	±75
Impact Location 0.8 in. (20 mm) downstream from	e	ANGULAR	Pitch	-3.3	-4.8	±75
Impact Severity 57.3 kip-ft (77.7 kJ) \geq 51 kip-ft (69.7 kJ) li	mit from MASH 2016	DISP.		40.9	40.5	
Exit Conditions		degrees	Yaw			Not required
Speed		THIV –	ft/s (m/s)	21.19 (6.46)	21.72 (6.62)	Not required
Angle		PHD – g's		5.08	5.46	Not required
Exit Box Criterion		А	SI	0.99	0.93	Not required
Vehicle Stopping Distance		L				

283

September 1, 2020 MwRSF Report No. TRP-03-418-20

12 MASH TEST DESIGNATION NO. 3-38 - 1500A ESTIMATION PROCEDURE

As noted previously in the discussion of required full-scale crash tests for the evaluation of the thrie-beam bullnose system, MASH 2016 test designation no. 3-38 is intended to evaluate the performance of mid-sized, sedan vehicles with terminals and crash cushions. MASH allows the use of an analytical estimation procedure of 1500A vehicle decelerations based on the results of test designation no. 3-31 to determine whether or not this test is required. The procedure consists of estimating the occupant risk values for the 1500A test based on the acceleration trace obtained from test designation no. 3-31. Test designation no. 3-31 consists of a 2270P vehicle impact with the vehicle's centerline aligned with the centerline of the test article. This test involves a heavier vehicle impacting under the same impact conditions as test designation no. 3-38. Thus, the acceleration traces from this test can be used to identify the need for the 1500A test. The acceleration traces can be integrated to obtain the force-deflection characteristics of the test article. The force-deflection data can then be applied to the smaller vehicle in order to obtain reasonable estimates of the Occupant Impact Velocity (OIV) and Occupant Ridedown Deceleration (ORD). Note that this analysis will be conservative, because the heavier mass of the 2270P vehicle and its higher crush stiffness will produce higher impact forces than will be experienced during a midsized vehicle impact. Therefore, if the force versus deflection analysis predicts that a terminal or crash cushion will meet OIV and ORD evaluation guidelines for a passenger vehicle with a mass of 3,307 lb (1,500 kg), then conducting test designation no. 3-38 is not recommended.

An analysis was performed using the acceleration versus time data from the primary accelerometer in test no. MSPBN-6 to estimate the occupant risk values for the 1500A sedan vehicle, as described in MASH 2016 Appendix G. The results are shown in Table 28. The estimated OIV and ORA values for the 1500A vehicle impact with the thrie-beam bullnose system were well below the MASH limits. As such, test designation no. 3-38 was deemed non-critical on the thrie-beam bullnose system and was not conducted as part of the system's crashworthiness evaluation.

Evalu	uation Criteria	1500A Estimation Procedure	MASH 2016 Limits	
OIV ft/s (m/s)	Longitudinal	-24.37 (-7.43)	±40 (12.2)	
ORA g's	Longitudinal	-13.75	±20.49	

Table 28. Longitudinal OIV and ORA Estimates for MASH 1500A Estimation Procedure for Thrie-Beam Bullnose Based on Test No. MSPBN-6

13 SUMMARY AND CONCLUSIONS

The research detailed in this report describes the continued full-scale crash testing and evaluation program for the thrie-beam bullnose system to the MASH 2016 TL-3 criteria. Ten full-scale crash tests are potentially required to evaluate a non-gating, redirective crash cushion such as the thrie-beam bullnose system. Review of the system design and test requirements led the researchers to determine that test designation nos. 3-36 and 3-37a were not critical for evaluating the system. Test designation no. 3-38 was deemed non-critical based on an analysis of a midsized sedan impact using the results from test designation no. 3-31. Thus, seven full-scale crash tests were selected for evaluation of the thrie-beam bullnose system: test designation nos. 3-34, and 3-35 in the MASH 2016 test matrix for crash cushions [10]. All three of these crash tests were successful and met the MASH 2016 TL-3 safety requirements.

In this research effort, four remaining crash tests were used to evaluate the thrie-beam bullnose system to the MASH 2016 TL-3 criteria. These tests consisted of test designation nos. 3-30, 3-31, 3-33, and 3-37b in the MASH 2016 test matrix for crash cushions. The first test, test no. MSPBN-4, was conducted according to MASH 2016 test designation no. 3-30 with a 1100C vehicle. In test no. MSPBN-4, a 2,429-lb (1,102-kg) small car impacted the barrier at a speed of 62.1 mph (99.9 km/h) and at an angle of 1.3 degrees. During the test, the vehicle was initially captured by the thrie-beam nose of the system. However, as the vehicle proceeded into the system, the slot tabs between the upper two rail corrugations of thrie beam and the lowest rail corrugation opened. This behavior allowed the top two thrie-beam rail corrugations to push upward and the lower thrie-beam rail corrugation to move downward and rupture. This outcome compromised the capture of the vehicle's front end and allowed the vehicle to penetrate the system. Thus, the system performance was unacceptable under the MASH 2016 TL-3 criteria.

Following test no. MSPBN-4, the researchers reviewed the results from the test to determine factors that influenced the failure of the system as well as to suggest potential modifications to the thrie-beam bullnose system to improve its performance. Based on this analysis, it was determined that the best option for improving system performance would be to add a third nose cable behind the lowest thrie-beam corrugation. The addition of a third nose cable was not expected to affect the performance of the thrie-beam bullnose system relative to the three previously successful MASH 2016 crash tests (test designation nos. 3-32, 3-34, and 3-35). It was determined that these three tests would not need to be rerun if the proposed modification was successful.

The second test, test no. MSPBN-5, was conducted as a repeat of MASH 2016 test designation no. 3-30 with a 1100C vehicle on the modified thrie-beam bullnose system. In test no. MSPBN-5, the 2,409-lb (1,093-kg) small car impacted the modified bullnose at a speed of 62.7 mph (100.9 km/h) and at an angle of 0.3 degrees. During the test, the vehicle was captured by the thrie-beam nose section with cables and the system decelerated the vehicle to a safe and controlled stop. Thus, the system was deemed acceptable under the MASH 2016 TL-3 criteria. Based on the successful testing of the modified thrie-beam bullnose system with three nose cables, the remaining testing on the system was conducted on the modified system.

The third test, test no. MSPBN-6, was conducted as MASH 2016 test designation no. 3-31 with a 2270P vehicle at a speed of 63.4 mph (102.1 km/h) and at an angle of 0.3 degrees. During

the test, the vehicle was captured by the thrie-beam bullnose system, and the system decelerated the vehicle to a safe and controlled stop. The fourth test, test no. MSPBN-7, was conducted as MASH 2016 test designation no. 3-33 with a 2270P vehicle at a speed of 63.1 mph (101.6 km/h) and at an angle of 15.1 degrees. During the test, the vehicle was captured by the thrie-beam bullnose system, and the system decelerated the vehicle to a safe and controlled stop. The final test, test no. MSPBN-8, was conducted as MASH 2016 test designation no. 3-37b with a 1100C vehicle at a speed of 63.2 mph (101.8 km/h) and at an angle of 25.0 degrees at a CIP determined to maximize the potential for vehicle snag on the cable anchorage when impacted in the reverse direction. During the test, the vehicle was captured and redirected by the thrie beam on the side of the bullnose system, vehicle interaction with the cable anchorage was not observed, and the anchorage remained intact. All three full-scale crash tests met the MASH 2016 TL-3 safety requirements. The results from the five crash tests performed in this Phase II study are summarized in Table 29.

Following the full-scale crash testing, an analysis procedure was performed using the accelerometer data from test no. MSPBN-6 to determine if test designation no. 3-38 was required for evaluating the thrie-beam bullnose system. The results of the analysis found that the estimated OIV and ORA values for the 1500A vehicle impact with the thrie-beam bullnose system were well below the MASH 2016 limits. As such, test designation no. 3-38 was deemed non-critical on the thrie-beam bullnose system.

As noted previously, the thrie-beam bullnose was modified to include a third retention cable behind the thrie beam in the nose of the barrier following the unsuccessful result observed in test no. MSPBN-4. Because the crash testing results observed prior to that modification were unaffected by the selected modification, it was believed that the modified thrie-beam bullnose system would perform acceptably in all of the full-scale crash tests. Based on the three successful full-scale crash tests conducted in the Phase I study, the four successful full-scale crash tests conducted in the Phase II study, and the results from the estimation procedure for test designation no. 3-38, the modified thrie-beam bullnose system with a third nose cable meets all of the safety requirements for MASH 2016 TL-3. Final design details for the MASH 2016 TL-3 thrie-beam bullnose are shown in Figure 230 through Figure 252.

Evaluation Factors		Evaluation Criteria				Test No. MSPBN-5	Test No. MSPBN-6	Test No. MSPBN-7	Test No. MSPBN-8
Structural Adequacy	А.	Test article should contair vehicle to a controlled st underride, or override the deflection of the test article	U	S	S	S	S		
Occupant Risk	D.	D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.			U	S	S	S	S
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				S	S	S	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S	S	S	S	S
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			S	S	S	S	S
		Occupant Impact Velocity Limits							
		Component	Preferred	Maximum					
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)					
	I.	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:		S	s	S	S	S	
		Occupant Ridedown Acceleration Limits							
		Component	Preferred	Maximum					
		Longitudinal and Lateral	15.0 g's	20.49 g's					
	MASH 2016 Test Designation No.				3-30	3-30	3-31	3-33	3-37b
		Final Evaluation (H	Pass or Fail)		Fail	Pass	Pass	Pass	Pass
S – 1	Satis	factory U – Unsatis	sfactory NA -]	Not Applicable				1	

 $S-Satisfactory \qquad U-Unsatisfactory \qquad NA-Not Applicable$

287

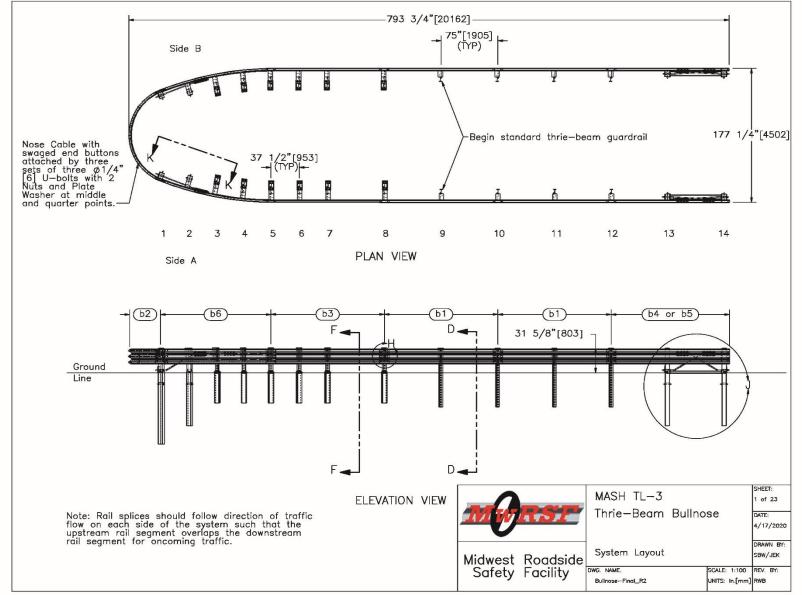


Figure 230. Test Installation Layout, Bullnose Final

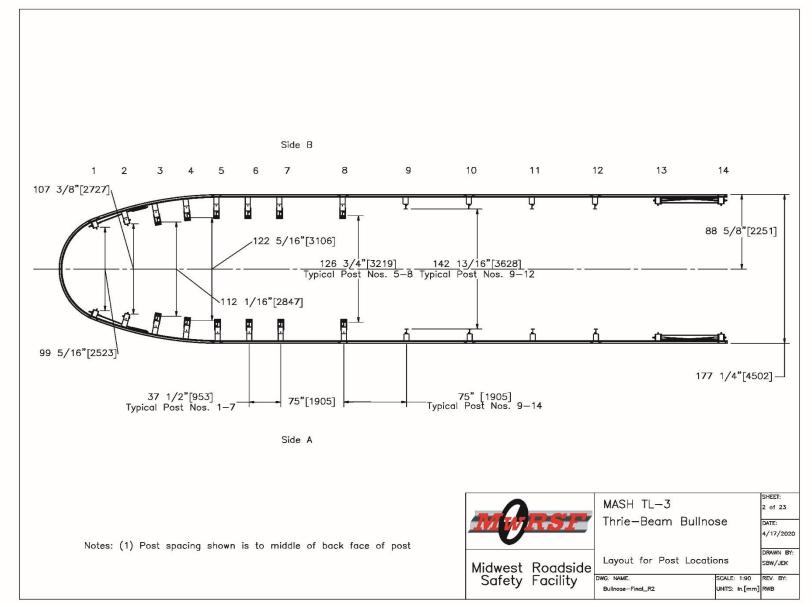


Figure 231. Layout for Post Locations, Bullnose Final

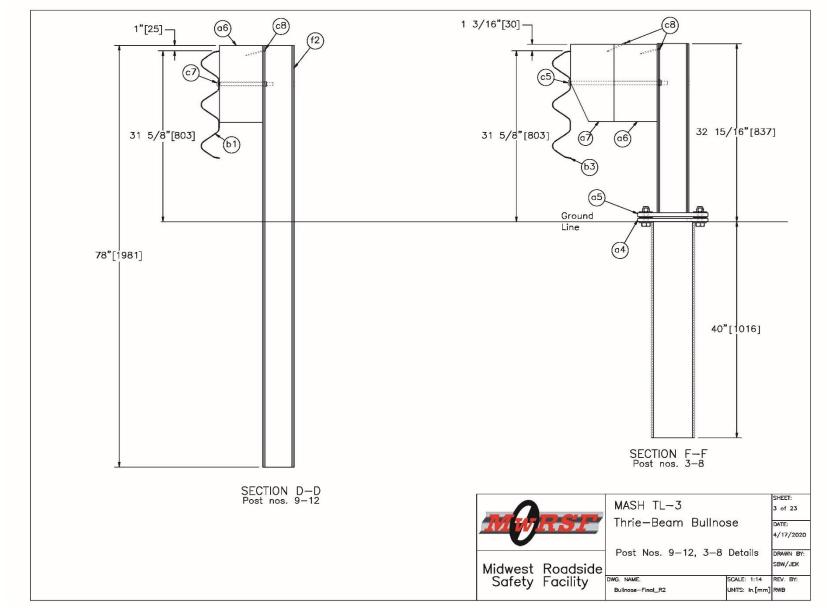


Figure 232. Post Nos. 3 through 8 and 9 through 12 Details, Bullnose Final

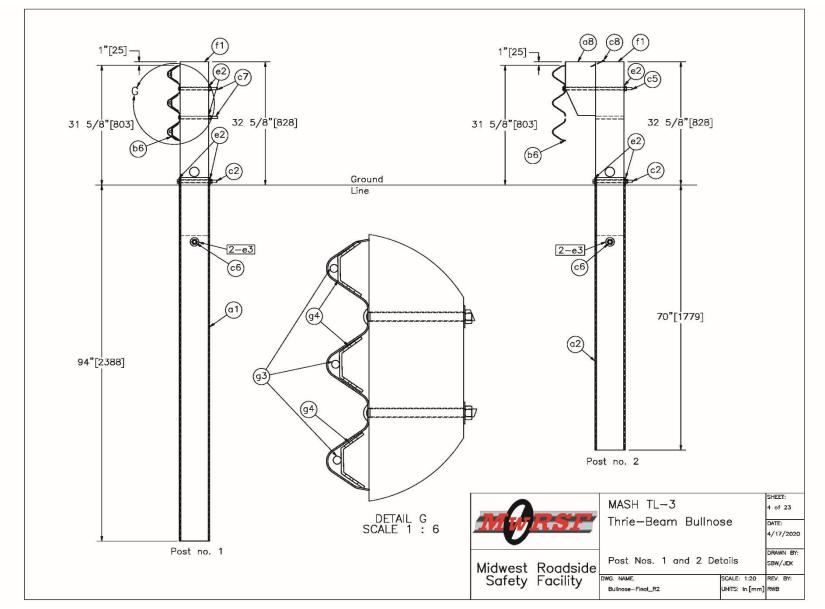


Figure 233. Post Nos. 1 and 2 Details, Bullnose Final

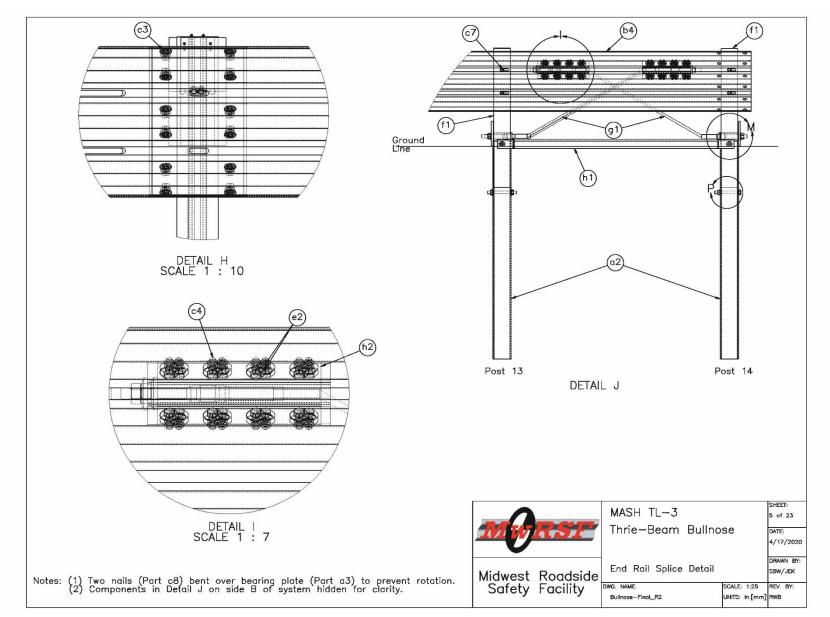


Figure 234. End Rail Splice Detail, Bullnose Final

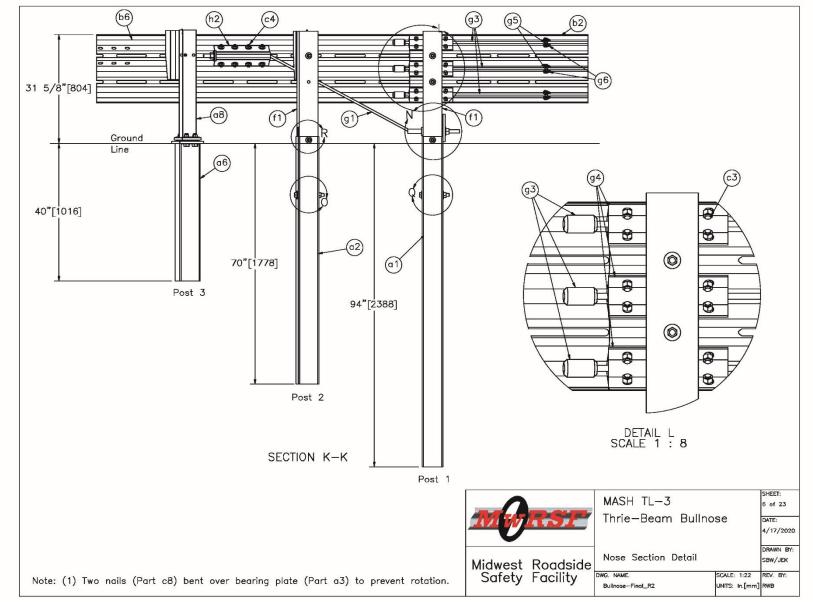


Figure 235. Nose Section Detail, Bullnose Final

293

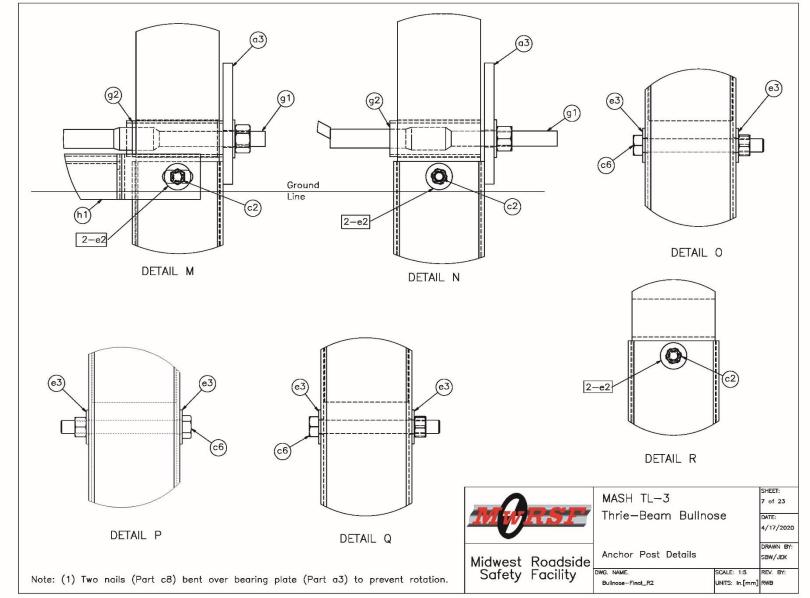


Figure 236. Anchor Post Details, Bullnose Final

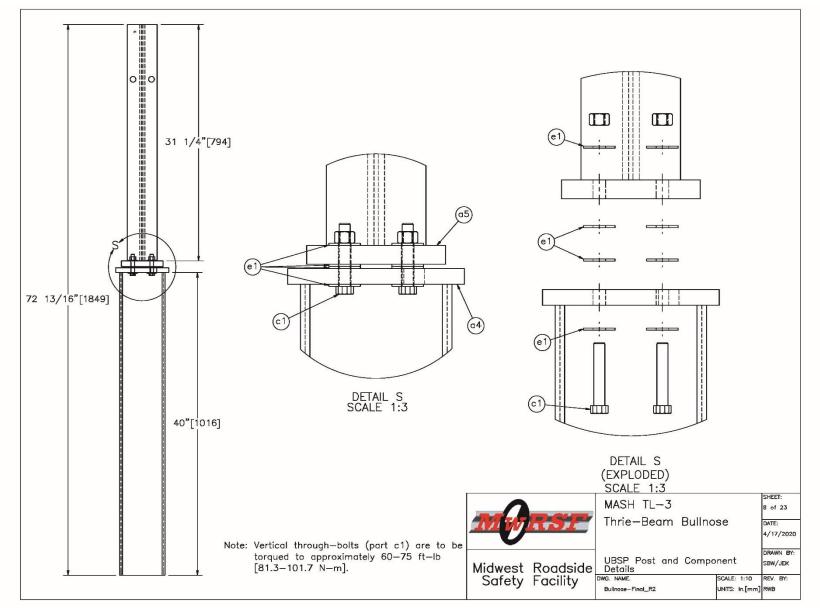


Figure 237. UBSP and Component Details, Bullnose Final

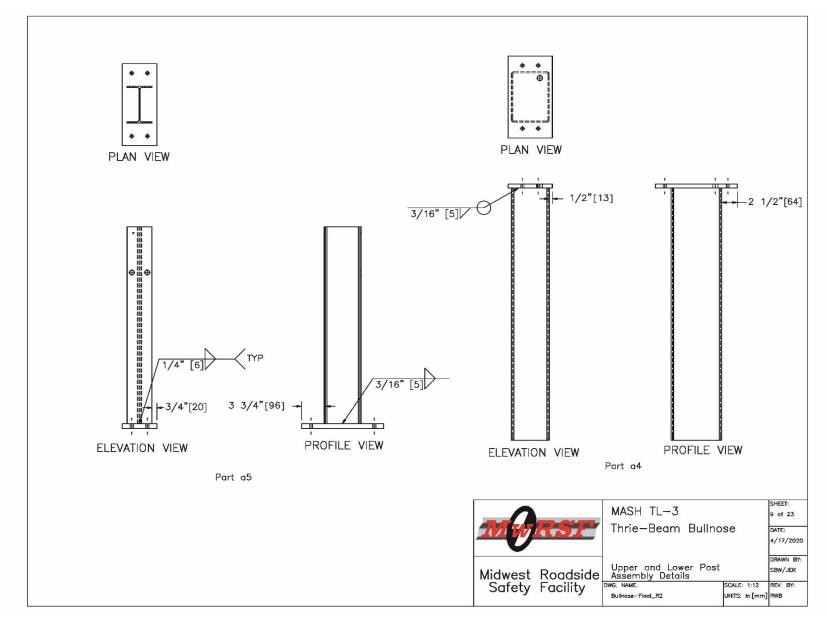


Figure 238. Upper and Lower Post Assembly Details, Bullnose Final

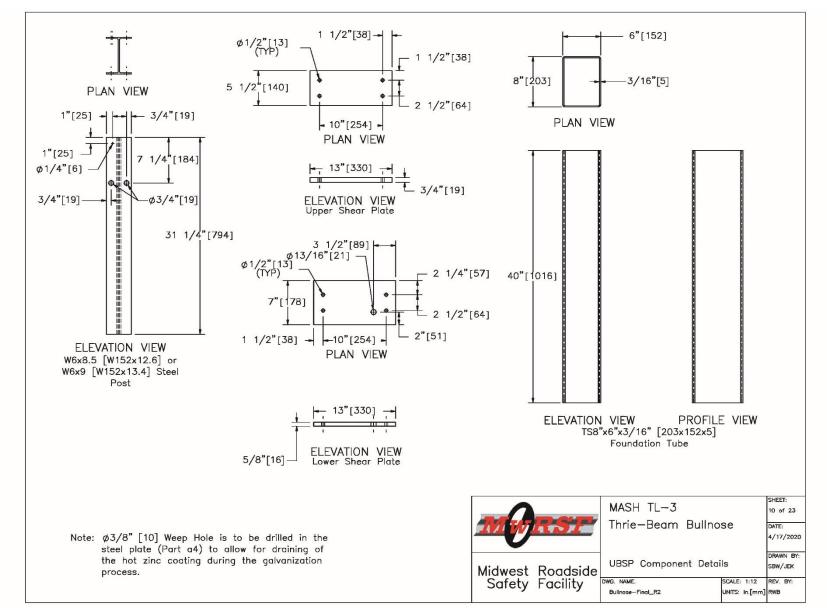


Figure 239. UBSP Component Detail, Bullnose Final

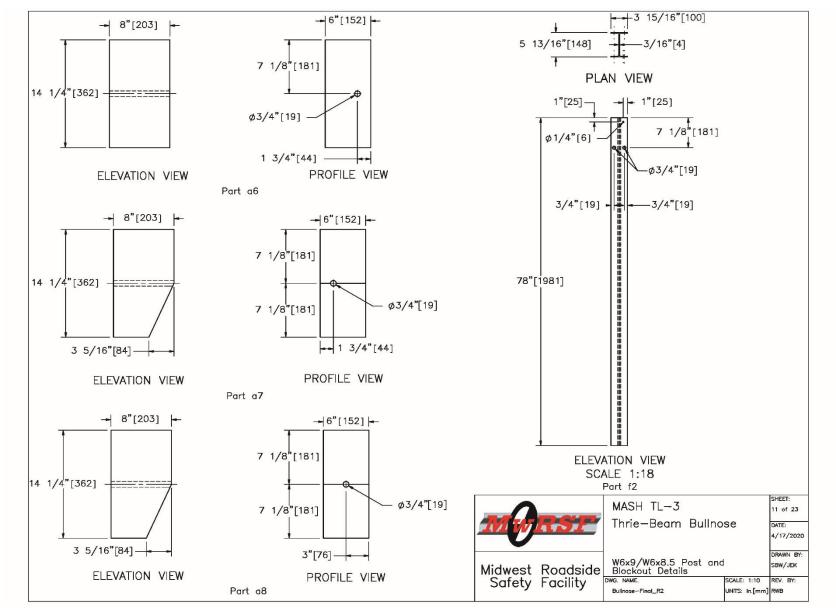


Figure 240. W6x9 Post and Blockout Details, Bullnose Final

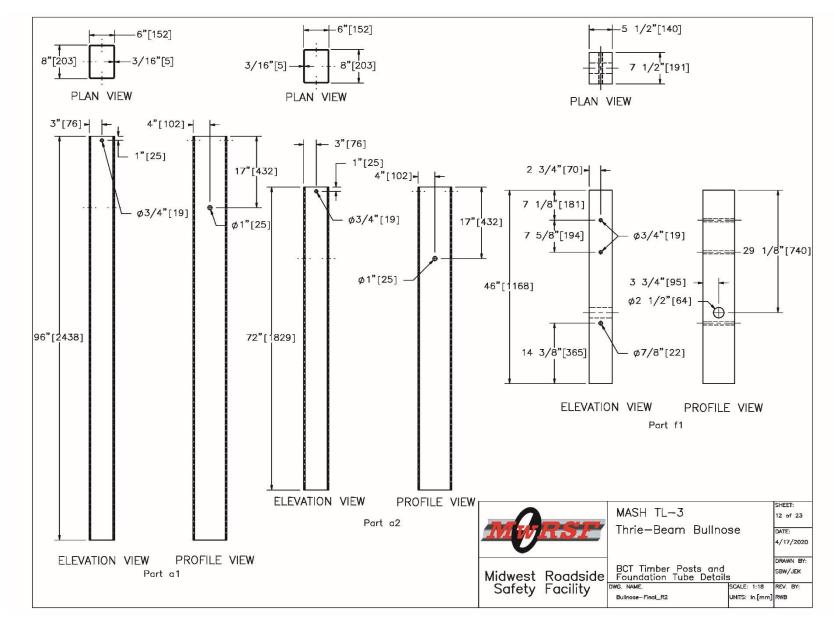


Figure 241. BCT Timber Post and Foundation Tube Details, Bullnose Final

299

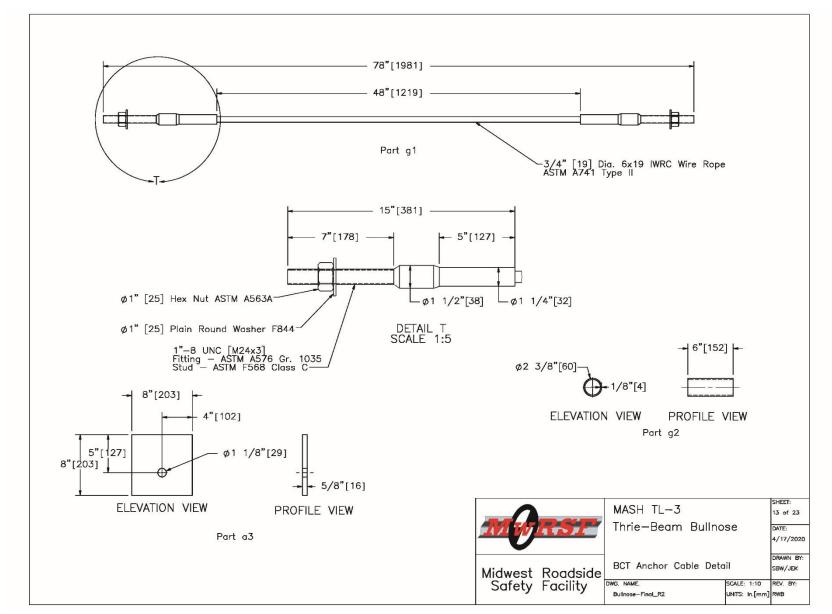


Figure 242. BCT Anchor Cable Detail, Bullnose Final

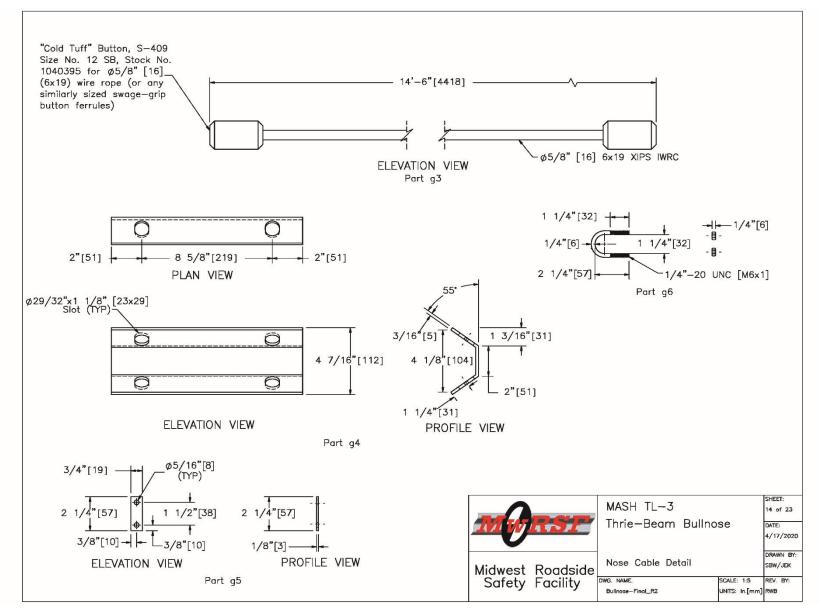


Figure 243. Nose Cable Detail, Bullnose Final

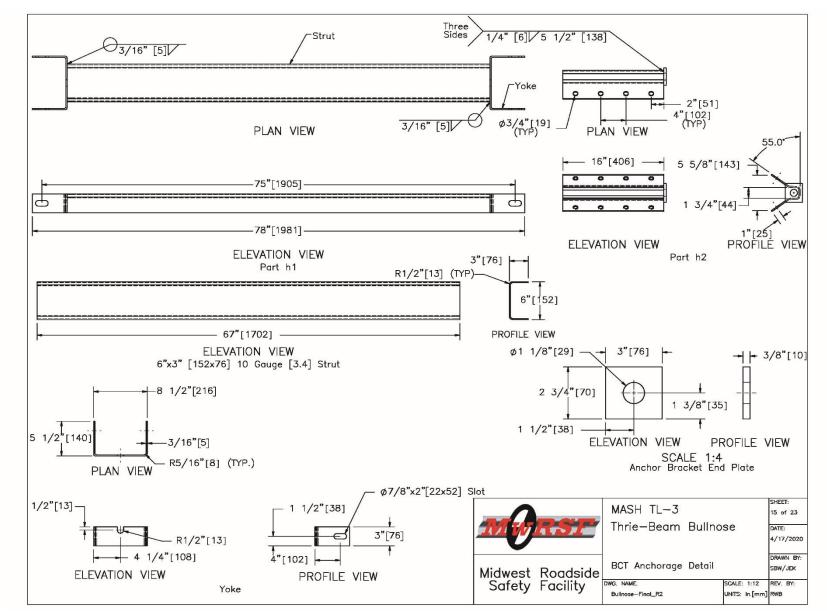


Figure 244. BCT Anchorage Detail, Bullnose Final

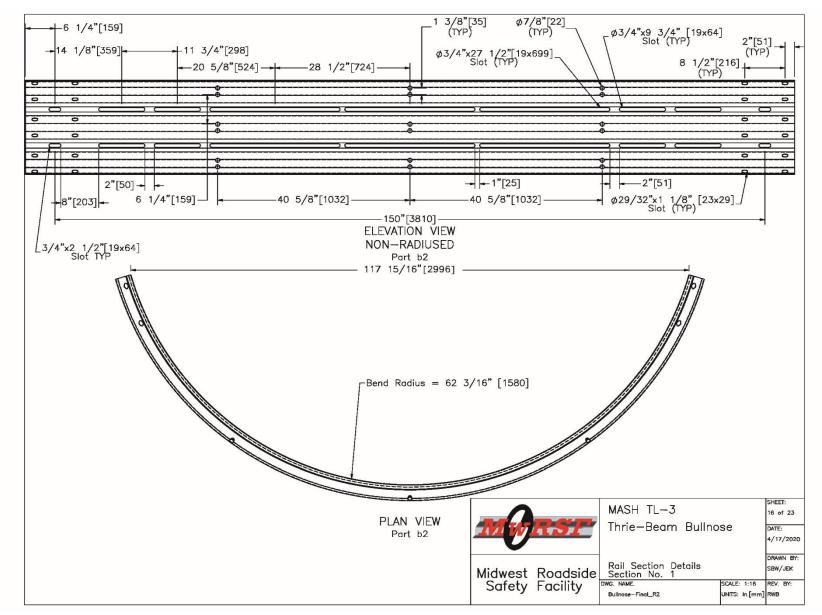


Figure 245. Rail Section Details, Section No. 1, Bullnose Final

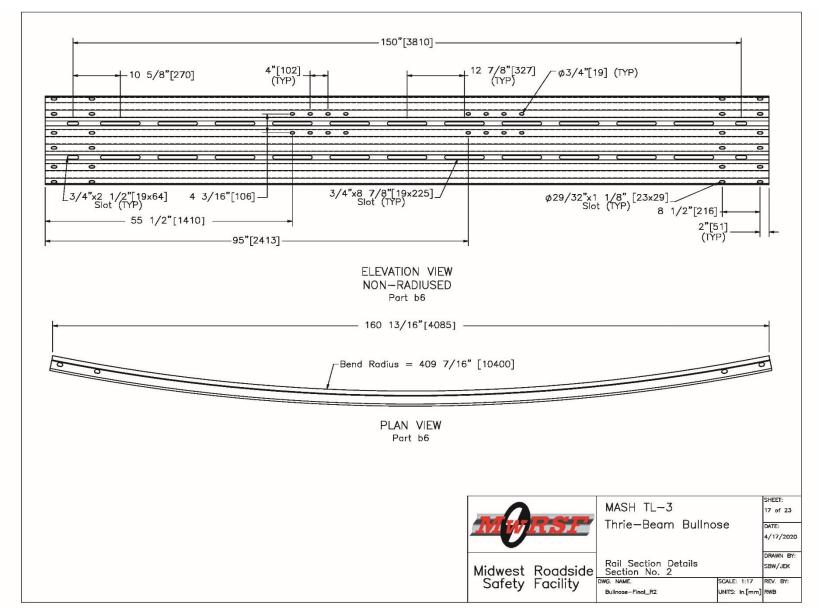


Figure 246. Rail Section Details, Section No. 2, Bullnose Final

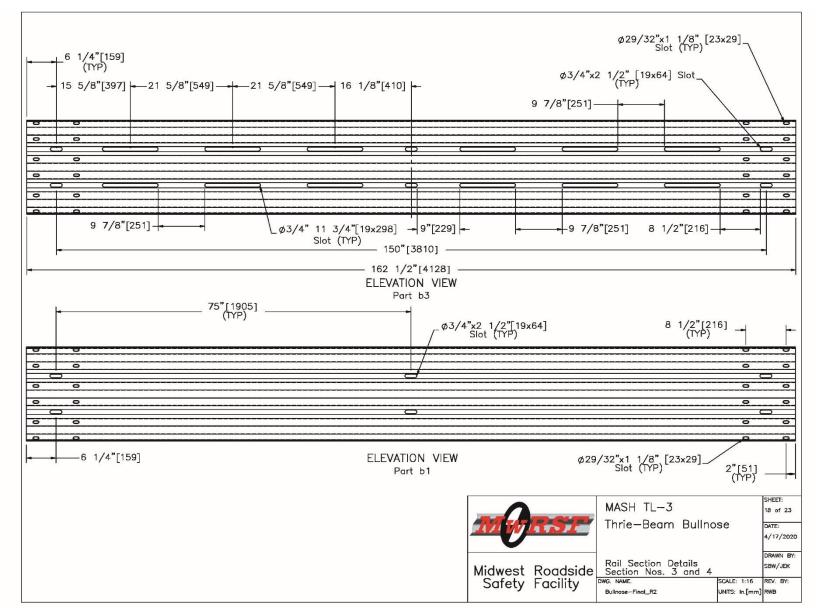


Figure 247. Rail Section Details, Section Nos. 3 and 4, Bullnose Final

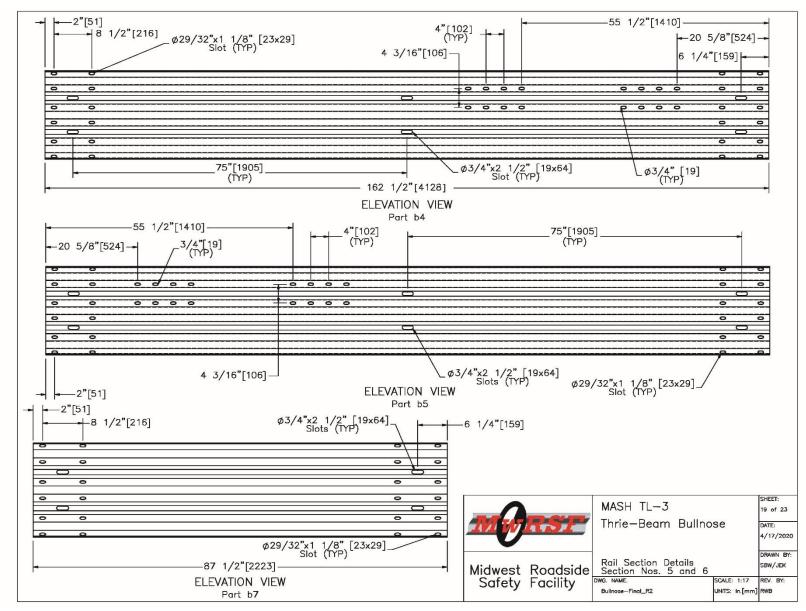


Figure 248. Rail Section Details, Section Nos. 5 and 6, Bullnose Final

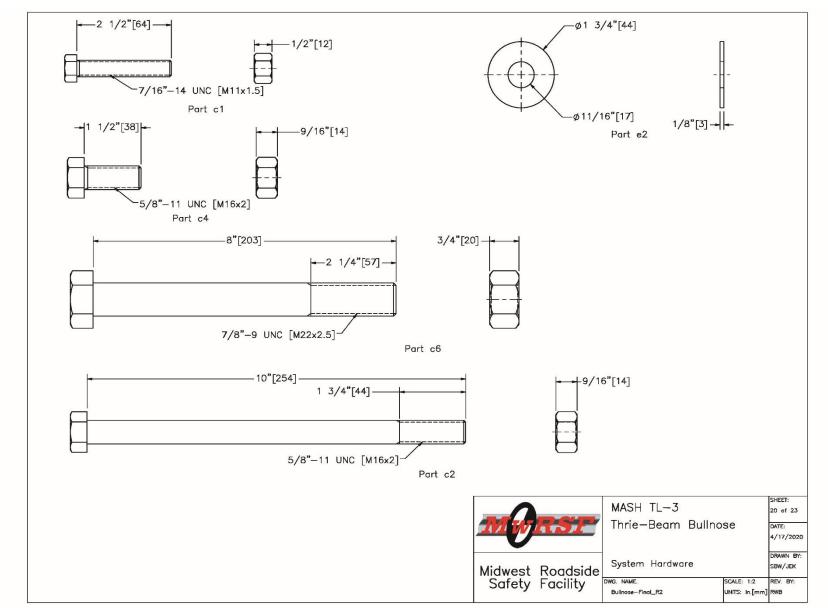


Figure 249. System Hardware, Bullnose Final

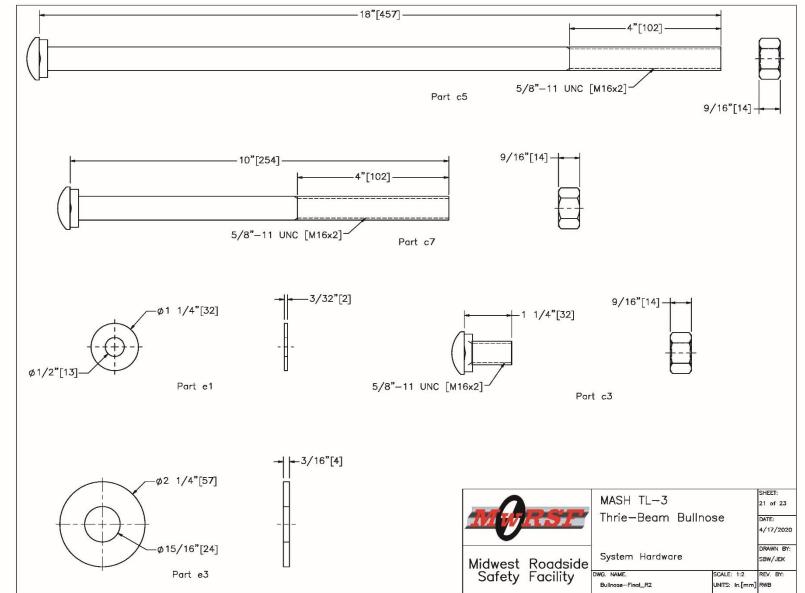


Figure 250. System Hardware, Bullnose Final

a2 6	2 TS8"x6"x3/16" [203x152x5], 96" [2,438] Long Foundation Tube 6 6 TS8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B ASTM A500 Gr. B	ASTM A123	PTE07
		ACTN AFOO OF D		
a3 6		ASTM ASUU Gr. D	ASTM A123	PTE06
	6 8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
a4 1:	12 Lower Slip Post Assembly	Plate-ASTM A36 Foundation Tube-ASTM A500 Gr. B	ASTM A123	PTE08
a5 1:	12 Upper Slip Post Assembly	Plate—ASTM A36 Post—ASTM A992	ASTM A123	PWE11
a6 20	20 6"x8"x14 1/4" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	-	PDB09
a7 1:	12 6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout	SYP Grade No. 1 or better	: <u></u> :	PDB20
a8 2	2 6"x8"x14 1/4" [152x203x362] Tapered Timber Blockout - Post 2	SYP Grade No. 1 or better -		PDB12
b1 4	4 12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM02a
b2 1	1 12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07a
b3 2	2 12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	R⊺M07e
b4 1	1 12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side A	AASHTO M180	ASTM A123 or A653	
b5 1	1 12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section - Side B	AASHTO M180	ASTM A123 or A653	
b6 2	2 12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM07d
c1 48	48 7/16"—14 UNC [M11x1.5], 2 1/2" [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt – ASTM A449 or SAE J429 Gr. 5 Nut – ASTM A563DH or SAE J995 Gr. 5	ASTM A153 or B695 Class 55 or F2329	FBX12b
c2 8	8 5/8"-11 UNC [M16x2], 10" [254] Long Hex Head Bolt	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
	20 5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt — ASTM A307 Gr. A Nut — ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
c4 48	48 5/8"-11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c5 14	14 5/8"—11 UNC [M16x2], 18" [457] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB04
c6 8	8 7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
c7 20	20 5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
c8 4	46 16D Double Head Nail	-	2-	
c6 8 c7 20	8 7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut 20 5/8"-11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt — ASTM A307 Gr. A Nut — ASTM A563A Bolt — ASTM A307 Gr. A Nut — ASTM A563A	ASTM A153 or B695 Class 55 F2329 ASTM A153 or B695 Class 55 F2329	

Figure 251. Bill of Materials, Bullnose Final

DRAWN BY

SBW/JEK

REV. BY:

SCALE: None REV. UNITS: In.[mm] RWB

Bill of Materials

DWG. NAME. Bullnose-Final_R2

Midwest Roadside Safety Facility

ltem No.	QTY.	Description Material Specification Treatment		Treatment Specification	Hardware Guide
e1	192	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC12a
e2	118	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	FWC16a
e3	16	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A153 or B695 Class 55 or F2329	-
f1	8	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	-	PDF04
f2	8	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	ASTM A123	-
g1	6	BCT Anchor Cable Assembly	-		FCA01
g2	6	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
g3	3	5/8" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for 5/8" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	Wire Rope — Class A Coating	RCM02
g4	6	12 5/8"x5 13/16"x3/16" [321x148x5] Nose Cable Anchor Plate	ASTM A36	ASTM A123	FPA04
g5	9	2 1/4"x3/4" [57x19] 11 gauge [3] U—Bolt Plate Washer	ASTM A1011 CS Type B	ASTM A123	
g6	9	1/4" [6] Dia. U—Bolt and Nut	U-Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	
h1	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
h2	6	Anchor Bracket Assmbely	ASTM A36	ASTM A123	FPA01

		MASH TL-3	SHEET: 23 of 23
	ANE.	Thrie-Beam Bullnose	DATE: 4/17/2020
Midwest Roadside			DRAWN BY:
Midwest	Roadside	Bill of Materials	SBW/JEK

14 RECOMMENDATIONS

The MASH 2016 TL-3 thrie-beam bullnose system detailed herein was evaluated using a basic test configuration on level terrain. Real-world installations will likely involve other design considerations. The following sections provide recommendations for use in the implementation of the thrie-beam bullnose system. Additionally, there are three foreseeable field applications for the bullnose barrier system: (1) the protection of the gap between twin bridges; (2) gore area protection; and (3) protection of narrow median hazards, such as bridge piers and overhead sign support structures. For each of the three bullnose applications, there are installation and design factors that should be addressed before the system can properly be used in these situations. These additional considerations will be addressed for each application.

14.1 Breakaway Posts

The thrie-beam bullnose system evaluated herein utilized UBSPs for the majority of the breakaway posts. The original NCHRP Report No. 350 TL-3 thrie-beam bullnose system was evaluated with both timber CRT posts and UBSPs. While it is believed that timber CRT posts would likely provide similar performance to the UBSPs used in this system, further evaluation of the thrie-beam bullnose system with the timber CRT posts would be required to confirm their performance under MASH 2016 TL-3 conditions. There may be potential to evaluate the CRT post variation using a smaller subset of critical tests similar to the method that was used to evaluate the UBSP under the NCHRP Report No. 350 criteria [7-9].

It should be noted that the foundation tube and lower base plate of the UBSP was typically undamaged in the full-scale crash tests and could potentially be reused. MwRSF believes that the UBSP foundation tube and lower base plate can be reused if it displays no plastic deformation. In addition, if the UBSP foundation tube and lower base plate have not deflected more than $\frac{1}{2}$ in. (13 mm) in the soil, it would be acceptable to re-compact the soil around the post base and mount a new top section (i.e., post and upper base plate) to the lower base plate to reset the post. Soil deflections greater than $\frac{1}{2}$ in. (13 mm) would require pulling the post base, checking for damage, and resetting the post.

A final note with respect to the UBSPs relates to the bolts used to hold the upper and lower sections of the post together. These bolts can potentially be difficult to install due to the lower base plate being flush with the ground. A potential solution to this issue had been proposed using welded nuts on the lower base plate that would eliminate the need for excavation. While this solution would make installation easier, removal of fractured bolts would tend to be quite difficult. Thus, it would be up to end users to determine whether or not to use the welded nut option.

14.2 Downstream End Anchorage

It should also be noted that the thrie-beam bullnose system constructed for use in this testing program had dual cable anchorages employed on each side of the downstream end of the system. The function of these cable anchorages was to develop the appropriate rail tension required to simulate a typical field installation of the bullnose, which would consist of a closed envelope or attachment of the sides of the bullnose to a concrete bridge rail. Thus, for a closed-envelope bullnose system, or a bullnose that is attached to a bridge rail on both sides, these anchorages are not required. However, some states install the bullnose system where only one of the two sides is

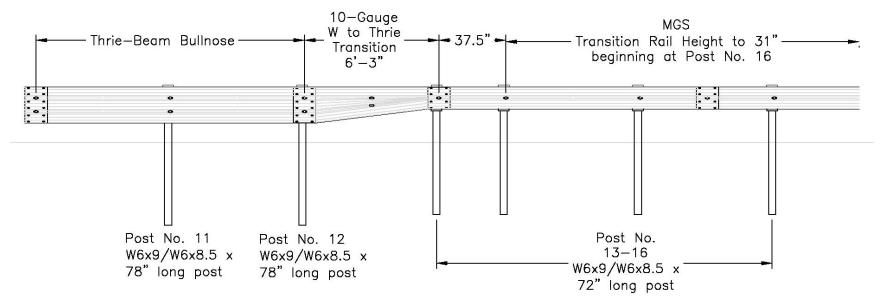
connected to other barrier systems. In this type of installation, the researchers would recommend that dual cable anchorages be employed on the unattached end similar to those observed in the full-scale testing program described herein.

14.3 Increased Impact Speeds

The thrie-beam bullnose system absorbs the kinetic energy of impacting vehicles through a combination of rail deformation and disengagement of breakaway posts. Due to these behaviors, there has been interest in potentially increasing the longitudinal length of the system as well as the number of slotted rail sections and breakaway posts to increase the capability to accommodate higher vehicle impact velocities. In terms of the impacts on the end or nose of the system, there may exist the potential to accommodate increased impact velocity with system modifications and further system evaluation. However, one must also account for impacts along the sides of the system where redirection of the impacting vehicle is required. The effect of higher impact velocities away from the nose of the system are not known with respect to vehicle redirection and capture, barrier capacity, and anchorage. Additionally, higher impact velocities may affect system performance with respect to test designation nos. 3-34 and 3-35. Thus, while the potential exists for the bullnose system to accommodate higher impact velocities, further research and evaluation would be required.

14.4 Transitioning to MGS

For many applications, end users may wish to transition the thrie-beam bullnose to the MGS system. It is recommended that the asymmetrical W-to-thrie transition segment be used to connect the bullnose to MGS. It is recommended that the asymmetrical W-to-thrie transition section not be added until the end of rail section no. 5 or post no. 12. This guidance is based on previous analysis of the length of the deformation of the thrie-beam rail and posts in the full-scale crash tests and a desire to maintain the post section and spacing and the rail section similar to the as-tested configuration.


If transitioning to the MGS, there is a need to transition the splices to the mid-span as well. It is recommended that this transition be accomplished by placing the first post downstream from the asymmetrical W-to-thrie transition piece at ½-post spacing and then using standard spacing from that point on. This layout would correspond to putting in a post at ½-post spacing after post no. 14 in the thrie-beam bullnose system and using standard post spacing afterwards. A schematic of the recommended transition is shown in Figure 253. As the top rail height of the thrie-beam bullnose is currently 31½ in. (803 mm), the height of the barrier system would need to be transitioned to match the 31-in. (787-mm) height of the MGS following the adjustment of the post spacing and splice location. Thus, the height transition should occur beginning at post no. 16.

It should be noted that the proposed transition design is based on the best currently available transition research and engineering judgment. Further analysis and full-scale crash testing would be required to actually verify the safety performance of the proposed transition.

It should be noted that there may be a desire to attach the thrie-beam bullnose system to the G9 thrie-beam guardrail system rather than the MGS. However, standard G9 thrie-beam guardrail has not met the MASH 2016 TL-3 safety requirements at this time and is currently not recommended for attachment to the thrie-beam bullnose system. A thrie-beam guardrail system

was crash tested to MASH 2009 TL-3 that consisted of a 12-gauge thrie-beam rail mounted on 6 ft – 6 in. (1,981-mm) long W6x8.5 steel posts spaced 6 ft – 3 in. (1,905 mm) apart with 6-in. x 8-in. x 22-in. (152-mm x 203-mm x 559-mm) long routed wood blockouts. The mounting height of the thrie-beam rail element was $31\frac{5}{8}$ in. (803 mm) to the top of the thrie-beam element. The thrie-beam guardrail did not perform acceptably when impacted by the 2270P vehicle. The thrie-beam guardrail contained and redirected the 2270P vehicle. However, the 2270P vehicle rolled after losing contact with the guardrail [22].

Previous testing of modified thrie-beam guardrail, the thrie-beam bullnose system, and various approach guardrail transitions have employed the use of shorter and/or tapered blockouts with thrie beam to improve the barriers' performance with respect to the 2270P vehicle. Previous tests of approach guardrail transitions have shown that full height blockouts can prevent the lower rail corrugation from folding back and allowing the wheel below the rail. In some tests, this behavior has induced roll in the vehicle toward the barrier that eventually led to vehicle rollover. It is believed that this behavior may have been a factor in the failed MASH 2009 TL-3 test of thriebeam guardrail. As such, it is recommended that further MASH evaluation of thriebeam guardrail consider the use of shortened blockouts to improve its safety performance.

314

Figure 253. Thrie-Beam Bullnose Transition to MGS

14.5 Transitioning to Thrie-Beam AGTs

Another application for the thrie-beam bullnose system involves its attachment directly to a thrie-beam approach guardrail transition (AGT) when used to shield twin-bridge median hazards. Attachment of the bullnose to an AGT should consider both the length of the bullnose system required upstream of the AGT as well as the configuration of the connection between the thriebeam bullnose system and the AGT. The results from test no. MSPBN-6 showed deformation of the thrie-beam guardrail as far as the end of rail section no. 5 or post no. 12. This deformation pattern was the farthest distance downstream from the nose of the barrier that guardrail deformation was observed in bullnose testing. Due to the importance of guardrail deformation in the proper performance of the bullnose system, it is believed that placement of any transition within the region where the thrie-beam guardrail deformed could degrade system behavior. Therefore, it is recommended that any transitions used in conjunction with the bullnose median barrier should be placed no closer than the end of rail section no. 5 or post no. 12. This guidance should allow for the necessary deformation of the thrie-beam guardrail in advance of any transition.

In addition to the location of the AGT connection, the thrie-beam bullnose system should be attached to a MASH-compliant, thrie-beam AGT that is crashworthy at both the upstream stiffness transition and the connection to the bridge rail, concrete buttress, or concrete parapet. MwRSF has previously developed an upstream stiffness transition for use in connecting the MGS to thrie-beam AGTs [23-24]. This upstream stiffness transition should be applicable to the thriebeam bullnose system, because the sides of the bullnose system would have similar to greater lateral stiffness and strength when compared to the MGS.

A schematic of the proposed transition from the thrie-beam bullnose system to a thrie-beam AGT alongside and the original MGS upstream stiffness transition is shown in Figure 254. In order to adopt the MGS upstream stiffness transition to the bullnose system, the 10-gauge W-thrie transition piece and adjacent 75-in. (1,905-mm) long, 12-gauge thrie-beam section were removed and replaced with a single 150-in. (3,810-mm) long, 12-gauge thrie-beam section. In addition, the first post at ½-post spacing on the upstream end of the stiffness transition was removed. The remainder of the MGS upstream stiffness transition was retained, including the ½-post spacing and the use of 12-in. (305-mm) long posts in the MGS upstream stiffness transition in order to minimize changes to the basic AGT configuration. However, there would be no safety performance concerns with switching to 6.5-ft (2.0-m) long posts in that region of the MGS upstream stiffness transition if end users desired to limit the number of post types. For the downstream connection to the bridge rail, any MASH TL-3, crashworthy, thrie-beam AGT could be applied as long as it is compatible with the bridge rail, parapet, or end buttress.

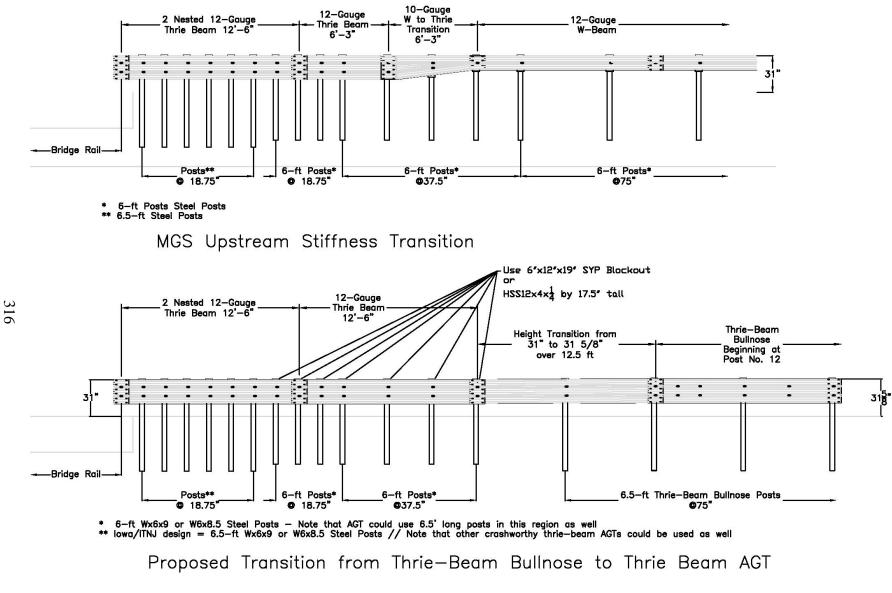


Figure 254. Thrie-Beam Bullnose Transition to Thrie-Beam AGTs

It should be noted that the proposed transition is based on the best, currently available, transition research and engineering judgment. Further analysis and full-scale crash testing would be required to verify the performance of the transition.

14.6 Working Width – Lateral and Longitudinal Offsets

During the crash testing program, the maximum longitudinal vehicle penetration and barrier deflection was approximately 56 ft – 5 in. (17.2 m) downstream from the nose of the system or 53 ft (16.1 m) downstream from post no. 1, as observed in test no. MSPBN-6. In the test, the front of the pickup truck came to rest about one quarter of the way down rail section no. 6 of the bullnose system. Based on this test deformation, a minimum of 66 ft – 1³/₄ in. (18.942 m) of guardrail, as measured longitudinally from the end of the nose, or five sections of guardrail downstream from post no. 1 of the system, is recommended in front of any hazard. The recommended distance is slightly higher than the maximum observed deflection in order to provide a factor of safety for the bullnose system, and it also allows for a whole number of guardrail sections in front of the hazard.

In test no. MSPBN-7, Side B of the bullnose system extended outward from the system for a distance of 14 ft – 6 in. (4.4 m) laterally, which resulted in a working width of 29 ft – 2 in. (8.9 m) relative to Side A of the system. This distance should serve as the lateral working width on one or both sides of the system depending on the direction of traffic flow. For example, if the bullnose system is installed in a median with opposing traffic, then the lateral working width would only be applied relative to the oncoming traffic side of the system. For a gore installation, the lateral working width would need to be considered relative to both sides of the system.

An additional consideration for the application of the bullnose barrier to a narrow median hazard situation is the lateral clearance between the tangent segments of the bullnose barrier system and the face of a hazard. For thrie-beam bullnose systems transitioning to the MGS or an approved thrie-beam transition, the working widths for those systems should be used to establish the lateral barrier offset to the hazard. As noted previously, the G9 thrie-beam guardrail system is not MASH TL-3 compliant. Thus, lateral offsets from thrie-beam guardrail to the hazard are not currently available.

14.7 Grading Requirements

As with any barrier system, grading of the terrain adjacent to the thrie-beam bullnose system is an important aspect of installation to ensure proper function of the system. The thriebeam bullnose system should be installed on a maximum grade of 10H:1V. This grade applies to cross slopes and V- and flat-bottomed ditches. It is also recommended that the 10H:1V slope area be applied for at least 60 ft (18.3 m) in front of the nose of the bullnose system to provide sufficient space to improve stable tracking of errant vehicles prior to impact. For the longitudinal slopes prior to the 10H:1V grading directly adjacent to the nose of the system, MwRSF previously developed several grading configurations in conjunction with the Minnesota DOT during the implementation of the NCHRP Report No. 350 bullnose system for 4H:1V ditch configurations. Those schematic details are shown in Figure 255 through Figure 258. These recommendations limited the transition from the ditch to the 10H:1V slope to an 8H:1V. However, a 10H:1V transition slope was preferred. Similar grading is recommended for the MASH 2016 TL-3 thrie-beam bullnose system. These grading recommendations would also be extended to sloped ditches shallower than 4H:1V.

14.8 Splice Lapping

The thrie-beam bullnose system detailed herein consists of an envelope of guardrail that shields a hazard. The system may be employed in median applications where traffic moves in opposing directions on each side of the system or in a gore application where traffic would move in the same direction on both sides of the system. In order to reduce the potential for vehicle snag on the lap splices between the rail segments, it is recommended that the laps splices always be oriented based on the traffic flow on each side of the system, such that the upstream rail segment overlaps the downstream rail segment. Thus, for a median installation, the thrie-beam bullnose lap splicing would proceed in a continuous manner all the way around the system in the direction of oncoming traffic. All of the full-scale crash tests detailed herein were conducted on a splice configuration for median installations. For a gore installation, the lap splicing would be reversed on one side to match the traffic direction.

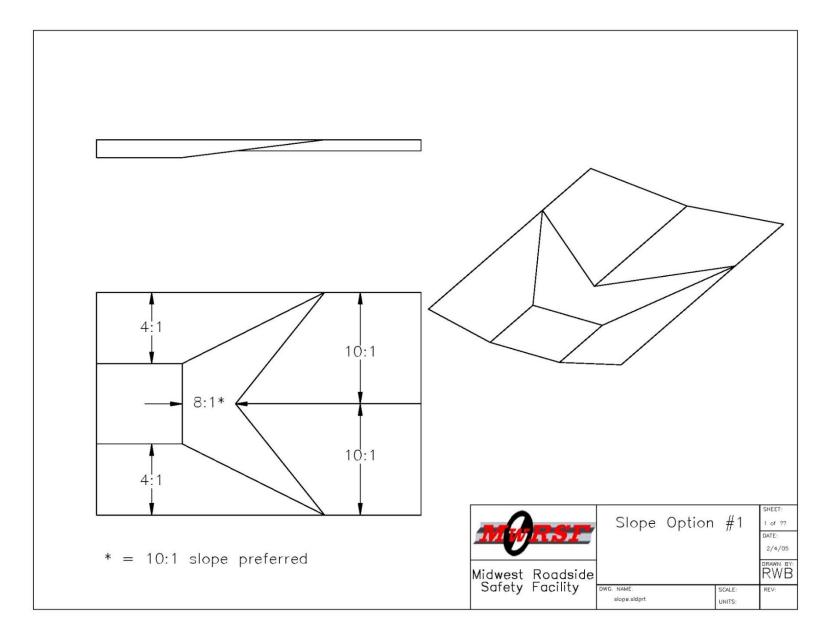


Figure 255. Thrie-Beam Bullnose Ditch Grading Schematic, Option 1

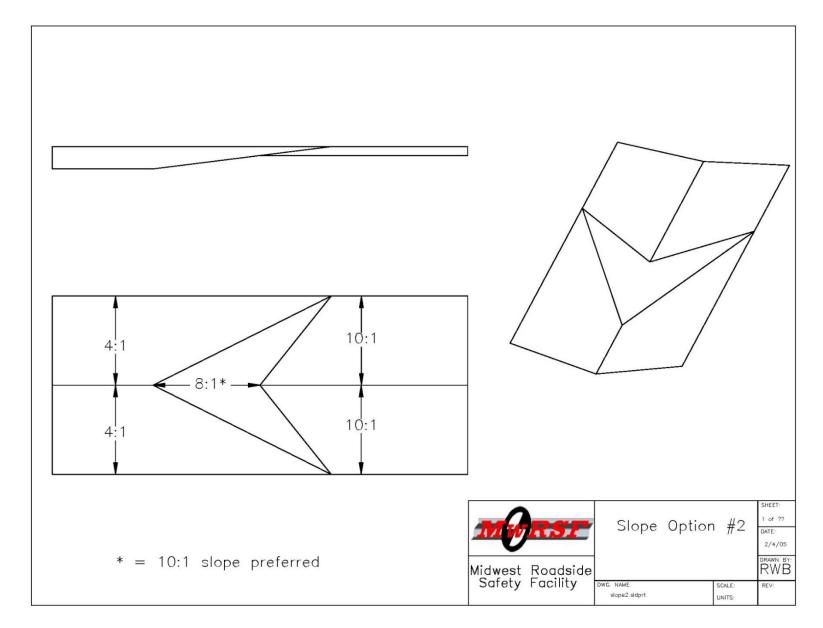


Figure 256. Thrie-Beam Bullnose Ditch Grading Schematic, Option 2

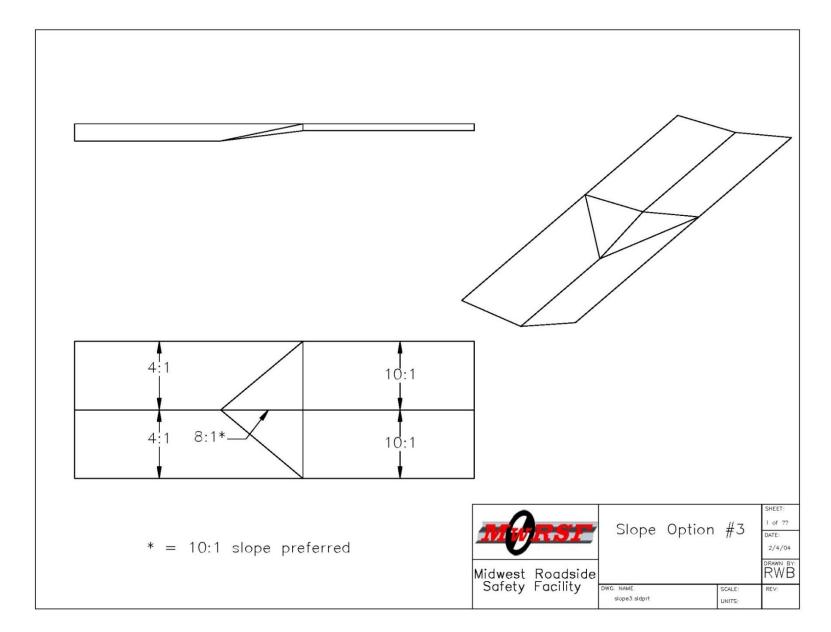


Figure 257. Thrie-Beam Bullnose Ditch Grading Schematic, Option 3

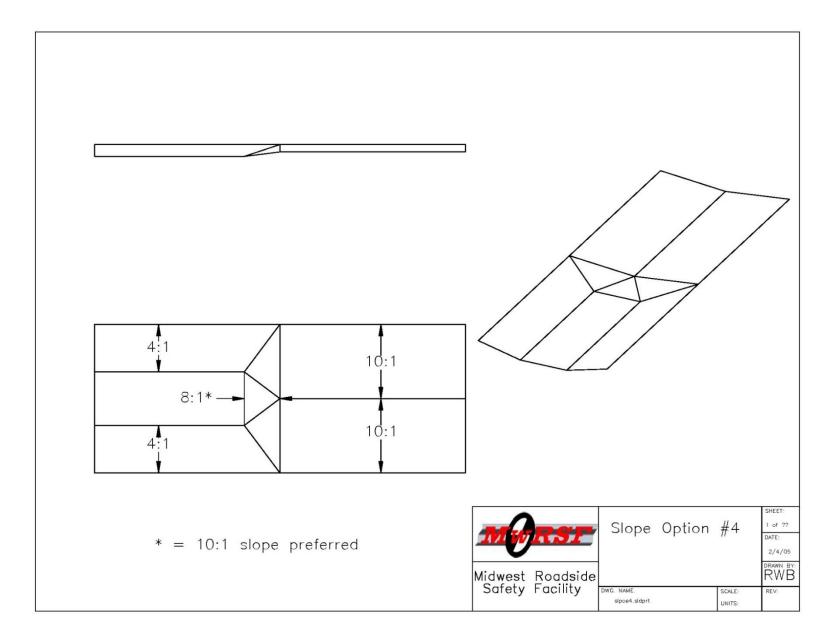


Figure 258. Thrie-Beam Bullnose Ditch Grading Schematic, Option 4

14.9 Curbs

There may be a desire to install the thrie-beam bullnose barrier adjacent to curbs and gutters to address water flow and drainage issues. No full-scale crash testing of the thrie-beam bullnose system, or any other crash cushion or end terminal, has been conducted in combination with curbs. Limited research regarding the simulation of end terminal impacts with curbs was conducted previously [25]. This research suggested that shorter curbs and wedge-shaped curbs would reduce the effect of the curb on the vehicle's trajectory. However, definitive guidance for the use of curbs and end terminals could not be developed without further research and testing.

It is known that vehicle traversal of curbs can affect vehicle trajectory, including vehicle pitch and the height of the vehicle's bumper and front-end structure. Thus, impacts near the nose of the system that include a curb traversal prior to impact with the nose may affect the vehicle's trajectory and capture. Along the parallel sides of the installation, the curbs may be less likely to create issues based on previous testing of the MGS with curbs if the curb offset is less than or equal to 6 in. (152 mm) in front of the face of rail [26-31]. However, no full-scale testing has been conducted on thrie-beam guardrail systems adjacent to a curb.

As such, further research would be required to determine the effect of curbs adjacent to the thrie-beam bullnose system. If the thrie-beam bullnose system were transitioned to a thrie-beam AGT or the MGS, curbs could be used within those regions in accordance with previous crash testing and guidance.

14.10 Wide Designs

The thrie-beam bullnose barrier system was tested with a 177¹/₄-in. (4,502-mm) width, which represented the minimum system width. A narrow bullnose installation requires tighter guardrail radii and induces greater stresses and strains in the guardrail when an impacting vehicle deforms the nose of the system. The tighter guardrail radii and higher stresses and strains would likely increase the propensity for rail rupture and impart higher decelerations on impacting vehicles. Therefore, the narrow design was selected for evaluation as it provided a worst-case test installation.

The median area used to separate divided highways is often 30 ft (9 m) or more wide. Therefore, this median width may not be easily protected by the 177¹/₄-in. (4,502-mm) wide, astested version of the thrie-beam bullnose median barrier. In order to better accommodate larger widths, two wider bullnose barrier configurations were previously developed during the original NCHRP Report No. 350 bullnose research and development, as shown in Figure 259 through Figure 264. Note that the designs shown in these figures are drawn with the original timber CRT post in the detail, which would not apply to the MASH 2016 TL-3 system tested herein. However, the overall layouts of the wide designs are still valid.

The two wider bullnose configurations were created by laterally pushing out the sides of the system and then modifying the size of the nose section. It is noted that the geometry and slot patterns of rail section nos. 2 and 3 remained unchanged. For the two new configurations, an 18.75-ft (5.7-m) long and 25-ft (7.6-m) long section of thrie-beam guardrail was bent to form the $93^{5/16-1}$ in. (2,370-mm) and $124^{3/8-1}$ in. (3,159-mm) radii, respectively. A 12.5-ft (3.8-m) long section of guardrail was used for the nose section of the system that was crash tested. While the size of the

nose section was increased, it was simply scaled upward to account for the longer section length and did not change in shape. The new widths for the widened bullnose configurations are $235^{5/16}$ in. (5,977 mm) and $293^{7/16}$ in. (7,453 mm). These widened systems may be used for shielding twin bridges on divided highways. The wider bullnose systems offer economy over the narrower, crashtested configuration as the potential exists for reduced lengths of flared guardrail between the bullnose barrier and the bridge rail and transition systems. It should be noted that the proposed wide designs are based on the best, currently available, engineering judgment. Further analysis and full-scale crash testing would be required to verify the performance of the wide designs.

The current configurations are as wide as the bullnose can be made without modifying any rail sections other than the nose or using a nose section of guardrail that is longer than 300 in. (7,620 mm). It is currently unknown how further system widening would affect the safety performance of the system. Modification of rail section no. 2 is not advisable due to the unforeseen effects this would have on the system. This curved section aids in the buckling of the guardrail and may require further testing if modified. Using an even longer section of guardrail in the nose potentially presents other problems, with the most obvious being the issue of the added cantilever weight from the additional guardrail. It is also believed that as the bullnose system is widened, the energy absorption of the system changes. The wider systems do not bend the guardrail through as severe an angle as a narrow system, and the rail loading imparted to the posts as the guardrail system deforms changes as well. These differences could be significant if the bullnose is widened further than the alternatives described above.

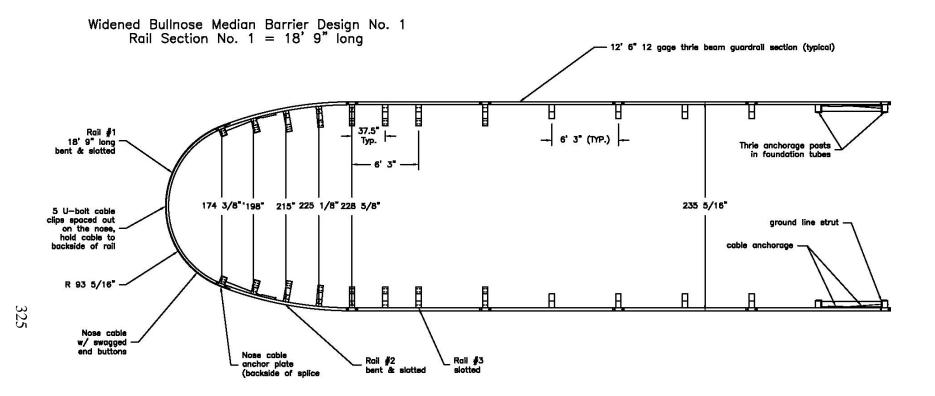
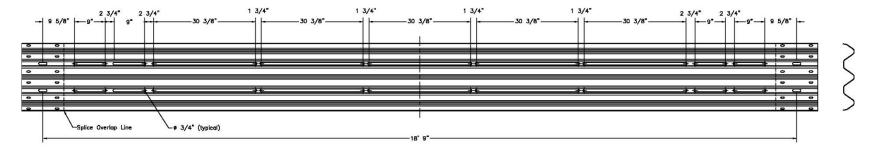
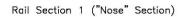
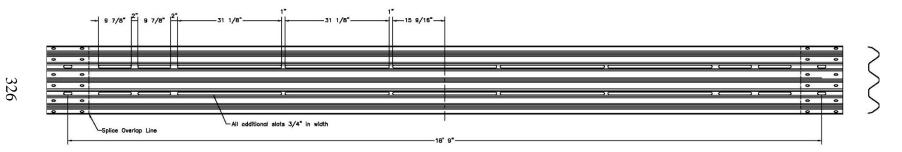





Figure 259. Wide Thrie-Beam Bullnose, Option 1

Rail Section 1 ("Nose" Section)

Figure 260. Wide Thrie-Beam Bullnose, Option 1

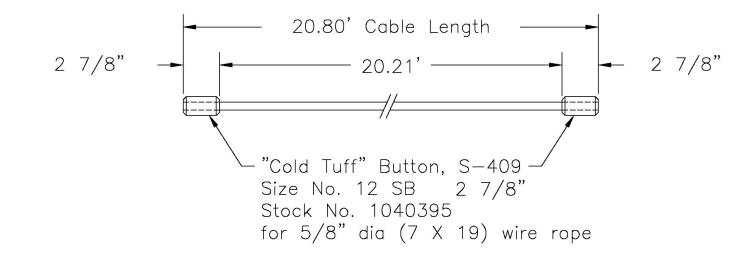


Figure 261. Wide Thrie-Beam Bullnose, Option 1

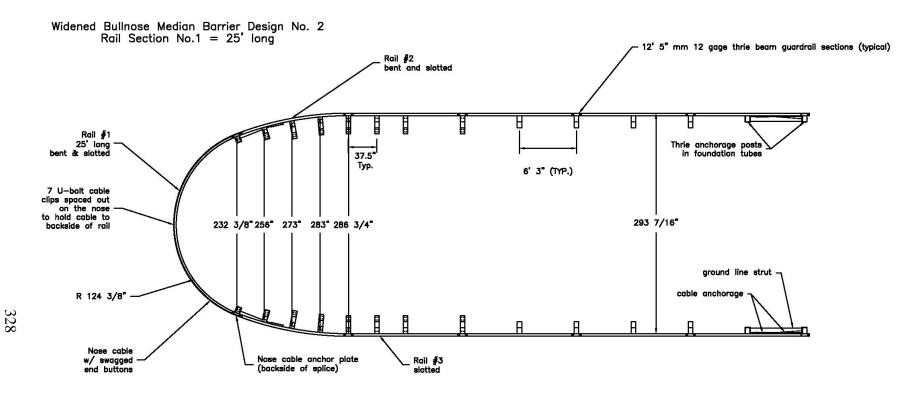
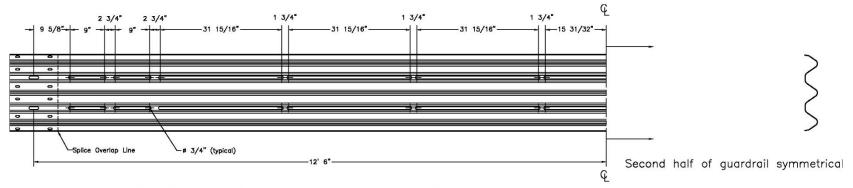
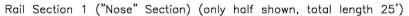
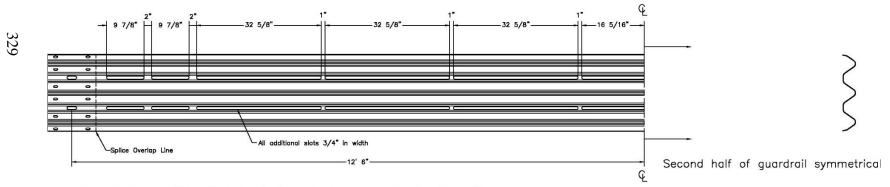





Figure 262. Wide Thrie-Beam Bullnose, Option 2

Rail Section 1 ("Nose" Section) (only half shown, total length 25')

Figure 263. Wide Thrie-Beam Bullnose, Option 2

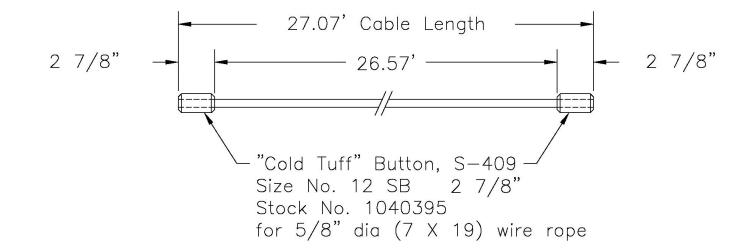


Figure 264. Wide Thrie-Beam Bullnose, Option 2

14.11 Flaring

Flaring the sides of the thrie-beam bullnose system may also be desired in certain applications. For example, while the widened bullnose median barrier may improve the adaptability of the system to applications across wide medians, an appropriate flare will likely be required in most installations in order to meet existing bridge rails. The flare rates used for the bullnose should be obtained based on guidelines set forth in the AASHTO *Roadside Design Guide* [34], or other applicable research. The use of slightly higher flare rates can greatly reduce the length of the bullnose system without creating a significantly higher impact angle on the flared sections. It is recommended that the flare begin no sooner than the start of rail section no. 3 or post no. 5. It is believed that flaring the bullnose system prior to this first straight section could adversely affect the performance of the barrier. While the shape of rail section no. 2 should not be changed, it should be allowable to straighten the end of the section to meet the specified flare rate. Such a configuration would facilitate a smooth transition from the curved guardrail to the flare. A schematic of the three bullnose designs applied to a 30-ft (9.1-m) wide median with twin bridges is shown in Figure 265.

Protection of dual bridges separated by a median

Allowable taper angle and the corresponding system length (15:1 taper allowable)
 Application of taper to existing design (beginning at start of section 3 as shown)

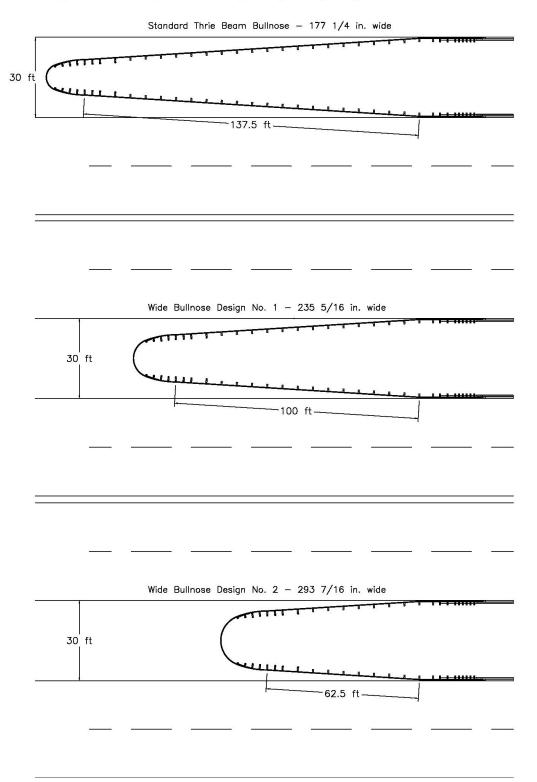


Figure 265. Example of Flared Thrie-Beam Bullnose at Twin Bridge Installations

15 MASH EVALUATION

The thrie-beam bullnose system was evaluated to determine its compliance with MASH 2016 TL-3 evaluation criteria. The thrie-beam bullnose system consists of a guardrail envelope comprising of thrie-beam panels mounted at a height of 31⁵/₈ in. (803 mm) and supported by UBSPs. The nose rail section and the first two adjacent rail sections are radiused and slotted, and the fourth and fifth rail sections are slotted. The combination of the radiused and slotted rail segments and the breakaway posts allows the system to safely capture and decelerate vehicles impacting near the end or nose of the system, while redirecting vehicles impacting along the side. The barrier system was originally developed and evaluated under NCHRP Report No. 350 [4-9].

15.1 Test Matrix

The thrie-beam bullnose system is classified as a non-gating, redirective crash cushion for the purposes of evaluation. In MASH 2016, as many as ten full-scale crash tests are potentially required to evaluate this type of hardware, as shown in Table 30.

As noted previously, Phase I of the research effort consisted of the evaluation of the thriebeam bullnose system with three critical tests from the recommended MASH test matrix. Based on the previous development and testing of the thrie-beam bullnose system, it was believed that test designation nos. 3-32, 3-34, and 3-35 would be the most critical for evaluation of the system. Test designation nos. 3-34 and 3-35 are conducted on the CIP of the non-gating, redirective crash cushions where it is unknown if the bullnose will capture or redirect the vehicle. It was also recommended that test designation no. 3-32 be conducted early in the research effort to evaluate the capture and safe deceleration of the 1100C small car vehicle when impacting the nose of the system.

Test designation nos. 3-34 and 3-35 are required to be conducted at a CIP where the behavior of the crash cushion transitions between capture and redirection of the impacting vehicle. In order to identify CIPs for these impacts, MwRSF reviewed previous testing of the thrie-beam bullnose system and end terminals and compared this data with the MASH impact conditions for test designation nos. 3-34 and 3-35. In NCHRP No. 350 testing of the steel and wood post bullnose, MwRSF conducted a test similar to MASH test designation no. 3-35 with the 2000P vehicle at post no. 2 in the system at an angle of 20 degrees, and it proved to be a very difficult test to pass. For MASH test designation no. 3-35, the impact angle increased to 25 degrees and the mass of the pickup truck increased. Thus, there was reason to expect that the behavior of the bullnose when impacted at post no. 2 would continue to be capture rather than redirection. One would also expect that the potential to redirect the vehicle becomes high while approaching post no. 5 in the system when the rail becomes parallel to the road and the impact is 12.5 ft (3.8 m) from the anchor. This finding would correlate with post no. 3 for a standard guardrail end terminal, which is typically used for the beginning of the length of need (LON) in terminal impacts. Thus, it was determined that the CIP for MASH test designation no. 3-35 be located at post no. 3, which is halfway between the cable anchor at post no. 1 and the assumed beginning of LON/redirection point at post no. 5.

	Test		Vehicle	Impact Conditions			
Test	Designation No.	Test Vehicle	Weight,	Speed,	Angle,	Evaluation	
Article			lb	mph		Criteria ¹	
			(kg)	(km/h)	degrees		
	3-30	1100C	2,420	62	0	A,D,F,H,I	
			(1,100)	(100)	0	(non-gating)	
	3-31	2270P	5,000	62	0	A,D,F,H,I	
			(2,270)	(100)		(non-gating)	
	3-32	1100C	2,425	62	5-15	A,D,F,H,I	
			(1,100)	(100)		(non-gating)	
	3-33 22	2270P	5,000	62	5-15	A,D,F,H,I	
		2270F	(2,270)	(100)		(non-gating)	
Terminals and	3-34 1100	1100C	2,425	62	15	A,D,F,H,I	
Redirective		11000	(1,100)	(100)		(non-gating)	
Crash	3-35 2270	2270P	5,000	62	25	A,D,F,H,I	
Cushions		22701	(2,270)	(100)		A,D,I',II,I	
	3-36 22	2270P	5,000	62	25	A,D,F,H,I	
		22701	(2,270)	(100)		(non-gating)	
	3-37a 2270P	2270D	5,000	62	25	A,D,F,H,I	
		(2,270)	(100)	23	(non-gating)		
	3-37b 1100C	2,425	62	25	A,D,F,H,I		
		(1,100)	(100)		(non-gating)		
	3-38 1500A	3,300	62	0	A,D,F,H,I		
		1300A	(1,500)	(100)	0	(non-gating)	

Table 30. MASH 2016 TL-3 Crash Test Conditions for Bullnose Guardrails

¹ Evaluation criteria explained in MASH 2016 Table 5-1A through 5-1C

A small car test of the CIP of the transition from capture to redirection was not conducted on the thrie-beam bullnose under NCHRP Report No. 350 as it was not required. Due to the lack of previous thrie-beam bullnose data related to this test, the researchers reviewed MASH terminal testing for the SoftStop and the MASH-Compliant Sequential Kinking Terminal (MSKT) [32-33]. Test designation no. 3-34 on the SoftStop impacted at post no. 1 in the system (at the impact head). Test designation no. 3-35 on the Softstop was conducted at the beginning of LON, and the impact point was at post no. 3. For the MSKT, test designation no. 3-34 was conducted with the impact point at post no. 2, and test designation no. 3-35 was conducted with the impact point at post no. 3. Thus, it appeared that test designation no. 3-34 has been typically conducted upstream from the system LON based on the test having a reduced impact angle of 15 degrees and a lighter vehicle mass than provided by test designation no. 3-35. Because the thrie-beam bullnose system uses as similar cable anchorage to existing end terminal designs near the nose, it was believed that test designation no. 3-34 should be conducted upstream from the LON for end terminals, which would correspond to the third post on a typical end terminal and the fifth post on the thrie-beam bullnose system. Additionally, it was noted previously that test designation no. 3-35 should be conducted on the thrie-beam bullnose system with the CIP located at post no. 3. Thus, the 1100C impact in test designation no. 3-34 should be located upstream from post no. 3 due to the lighter vehicle mass and reduced impact angle. Placement of the CIP at post no. 1 would eliminate the potential

for vehicle redirection as the cable anchorage is connected to that post. Thus, post no. 2 on the thrie-beam bullnose system was selected as the CIP for evaluation of the transition of the system's behavior from capture to redirection as this point was upstream from the CIP for test designation no. 3-35 and downstream from a predicted capture behavior at post no. 1 where the cable anchor is located.

MASH 2016 test designation no. 3-32 consists of an 1100C vehicle impacting the center of the nose of the system at an angle ranging from 5 to 15 degrees. The lower end of the angle range is typically recommended for evaluating gating end terminal systems. MASH 2016 recommends that non-gating redirective systems be impacted at a 15-degree angle for this test. Thus, the thrie-beam bullnose system was evaluated with at 15-degree impact angle in test designation no. 3-32.

Phase II of the MASH 2016 TL-3 evaluation of the thrie-beam bullnose system consisted of conducting the remaining full-scale crash tests. Out of the remaining crash tests, three tests were deemed non-critical. Test designation no. 3-36 on the transition to the rigid structure was not be required as it was assumed that the bullnose will use MASH 2016 TL-3 approved, thrie-beam, approach guardrail transitions when connecting to rigid structures. Test designation no. 3-38 is intended to evaluate the performance of mid-sized sedan vehicles with terminals and crash cushions. However, MASH 2016 uses an analytical estimation procedure for 1500A vehicle decelerations based on the results of test designation no. 3-31 to determine whether or not this test is required. Thus, test designation no. 3-38 was deemed non-critical after the analytical results for the 1500A vehicle decelerations were determined. The final non-critical test is test designation no. 3-37 for reverse-direction impacts, which includes test designation 3-37a with the 2270P vehicle and test designation 3-37b with the 1100C vehicle. For systems utilizing a breakaway cable system, such as in end terminals and the thrie-beam bullnose system, MASH 2016 recommends designation no. 3-37b as the critical test to evaluate snag of the 1100C vehicle on the cable anchorage system. Test designation no. 3-37a was deemed non-critical as the thrie-beam bullnose system should perform similar to a longitudinal guardrail when impacted in the reverse direction upstream from the cable anchorage. Further, vehicle capture, stability, and occupant risk were anticipated to be more critical for the 1100C vehicle, similar to previous MASH 2016 TL-3 end terminal evaluations. Previous research regarding small car impacts on trailing-end anchorages for the MGS determined a CIP using LS-DYNA for wedging the 1100C vehicle underneath the rail and the cable anchor on the MGS [11-13]. This CIP was determined to be 112¹/₂ in. (2,876 mm) upstream from the end post in the system. Based on the similarity of the cable anchorage used in the MGS trailing-end anchorage and the thrie-beam bullnose anchorage, the researchers elected to use the same CIP for test designation no. 3-37b to maximize the probability of vehicle and wheel snag on the cable anchor. This impact point corresponded to the center of the fourth post upstream from the anchorage post on the bullnose system.

Thus, a total of seven tests were conducted to complete the MASH 2016 TL-3 test matrix for evaluation of the thrie-beam bullnose system. These tests were test designation nos. 3-30, 3-31, 3-32, 3-33, 3-34, 3-35, and 3-37b.

15.2 Full-Scale Crash Test Results

The results of the MASH TL-3 full-scale crash testing of the thrie-beam bullnose system are summarized below. A summary of the full-scale crash testing is provided in Table 31. A plan and elevation view of the final system configuration and a system photo are provide in Figure 266.

- 1. Test no. MSPBN-1 Test no. MSPBN-1 was conducted on the thrie-beam bullnose system according to MASH 2016 test designation no. 3-35 with a 2270P vehicle at an impact speed of 62.9 mph (101.2 km/h) and an angle of 25.1 degrees. Test no. MSPBN-1 was conducted to examine the CIP of the bullnose system where its behavior transitioned from capture to redirection. During the test, the vehicle was captured and safely redirected by the bullnose system, and test no. MSPBN-1 met all the safety requirements for MASH 2016 TL-3.
- 2. Test no. MSPBN-2 Test no. MSPBN-2 was conducted on the thrie-beam bullnose system according to MASH 2016 test designation no. 3-34 with an 1100C vehicle at an impact speed of 62.1 mph (99.9 km/h) and an angle of 14.7 degrees. Test no. MSPBN-2 was conducted to evaluate the impact performance of the bullnose at the point where the device transitions from capture to redirection. During the test, the vehicle was captured and safely redirected by the bullnose system, and test no. MSPBN-2 met all the safety requirements for MASH 2016 TL-3.
- 3. Test no. MSPBN-3 Test no. MSPBN-3 was conducted on the thrie-beam bullnose system according to MASH 2016 test designation no. 3-32 with an 1100C vehicle at an impact speed of 62.7 mph (100.9 km/h) and an angle of 15.1 degrees. Test no. MPSNB-3 was conducted to evaluate the bullnose behavior during oblique impacts on the end or nose of the system. During the test, the vehicle was captured and safely decelerated to a controlled stop by the bullnose system, and test no. MSPBN-3 met all the safety requirements for MASH 2016 TL-3.
- 4. Test no. MSPBN-4 Test no. MSPBN-4 was conducted on the thrie-beam bullnose system according to MASH 2016 test designation no. 3-30 with an 1100C vehicle at an impact speed of 62.1 mph (99.9 km/h) and an angle of 1.3 degrees. During the test, the vehicle was initially captured by the thrie-beam nose of the system. However, as the vehicle proceeded into the system, the slot between the upper two corrugations of thrie beam and the lowest corrugation opened. This behavior allowed the top two thrie-beam corrugations to push upward and the lower thrie-beam corrugation to move downward and rupture. This separation compromised the capture of the vehicle front end and allowed the vehicle to penetrate the system. Thus, the system was not acceptable under the MASH 2016 TL-3 criteria. Following test no. MSPBN-4, the researchers reviewed the results from the test to determine factors that influenced the failure of the system as well as to suggest potential modifications to the thrie-beam bullnose system to improve its performance. Based on this analysis, it was determined that the best option for improving the system performance would be to add a third nose cable behind the lowest thrie-beam corrugation. All subsequent tests were conducted on a modified version of the bullnose system with a third nose cable.
- 5. Test no. MSPBN-5 Test no. MSPBN-5 was conducted on the modified thrie-beam bullnose system according to MASH 2016 test designation no. 3-30 with an 1100C vehicle

at an impact speed of 62.7 mph (100.9 km/h) and at an angle of 0.3 degrees. During the test, the vehicle was captured by the thrie-beam nose of the system, and the system decelerated the vehicle to a safe and controlled stop. Test no. MSPBN-5 met all the safety requirements for MASH 2016 TL-3.

- 6. Test no. MSPBN-6 Test no. MSPBN-6 was conducted on the modified thrie-beam bullnose system according to MASH 2016 test designation no. 3-31 with an 2270P vehicle at an impact speed of 63.4 mph (102.1 km/h) and at an angle of 0.3 degrees. During the test, the vehicle was captured by the thrie-beam bullnose system, and the system decelerated the vehicle to a safe and controlled stop. Test no. MSPBN-6 met all the safety requirements for MASH 2016 TL-3.
- 7. Test no. MSPBN-7 Test no. MSPBN-7 was conducted on the modified thrie-beam bullnose system according to MASH 2016 test designation no. 3-33 with an 2270P vehicle at an impact speed of 63.1 mph (101.6 km/h) and at an angle of 15.1 degrees. During the test, the vehicle was captured by the thrie-beam bullnose system, and the system decelerated the vehicle to a safe and controlled stop. Test no. MSPBN-7 met all the safety requirements for MASH 2016 TL-3.
- 8. Test no. MSPBN-8 Test no. MSPBN-8 was conducted on the modified thrie-beam bullnose system according to MASH 2016 test designation no. 3-37b with an 1100C vehicle at an impact speed of 63.2 mph (101.8 km/h) and at an angle of 25.0 degrees at a CIP determined to maximize the potential for vehicle snag on the cable anchorage when impacted in the reverse direction. During the test, the vehicle was captured and redirected by the thrie beam on the side of the bullnose system, vehicle interaction with the cable anchorage was not observed, and the anchorage remained intact. Test no. MSPBN-8 met all the safety requirements for MASH 2016 TL-3.

MwRSF Test No.	MASH Test Designation No.	MwRSF Report No.	Date of Test	Pass/Fail	System Version
MSPBN-1	3-35	TRP-03-389-20	03/03/17	Pass	1
MSPBN-2	3-34	TRP-03-389-20	03/22/17	Pass	1
MSPBN-3	3-32	TRP-03-389-20	04/11/17	Pass	1
MSPBN-4	3-30	TRP-03-418-20	04/18/185	Fail	1
MSPBN-5	3-30	TRP-03-418-20	05/15/18	Pass	2
MSPBN-6	3-31	TRP-03-418-20	05/24/18	Pass	2
MSPBN-7	3-33	TRP-03-418-20	06/05/18	Pass	2
MSPBN-8	3-37b	TRP-03-418-20	08/29/18	Pass	2

Table 31. MASH 2016 TL-3 Crash Test Summary for Thrie-Beam Bullnose

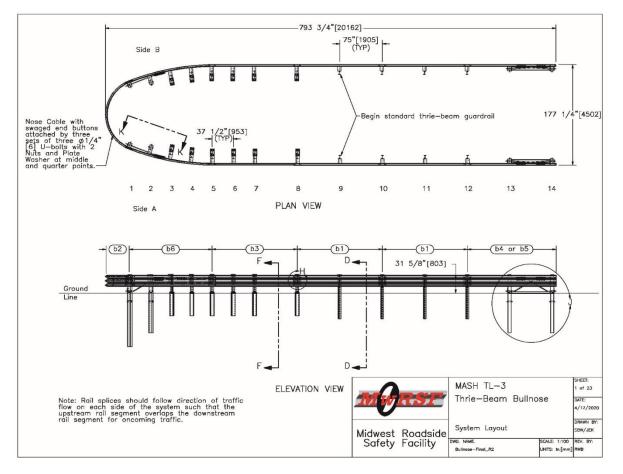


Figure 266. MASH TL-3 Thrie-Beam Bullnose

15.3 Bullnose Modification

Following the unsuccessful results from test no. MSPBN-4, the researchers reviewed the test to determine factors that influenced the failure of the system as well as to suggest potential modifications to the thrie-beam bullnose system to improve its performance. Based on this analysis, it was determined that the best option for improving system performance would be to add a third nose cable behind the lowest thrie-beam corrugation.

The addition of a third nose cable was not expected to affect the safety performance of the thrie-beam bullnose system relative to the three previous, successful MASH 2016 crash tests (test designation nos. 3-32, 3-34, and 3-35). Test designation nos. 3-34 and 3-35 were conducted on the side of the system outside of the region where the nose cables are located. Thus, the addition of a third nose cable would have no effect on the outcome of those tests. Test designation no. 3-32 was conducted with the 1100C vehicle impacting the nose of the system at an angle of 15 degrees. This test demonstrated no capture issues with respect to the 1100C vehicle with only the original two nose cables. Thus, the additional of the third nose cable was not expected to negatively affect the outcome of that test either. As such, it was determined that these tests would not need to be rerun on the thrie-beam bullnose system if the proposed modification was successful.

15.4 1500A Estimation Procedure

Following the full-scale crash testing, an analysis procedure was performed using the accelerometer data from test no. MSPBN-6 to determine if test designation no. 3-38 was required for evaluating of the thrie-beam bullnose system. MASH 2016 allows the use of an analytical estimation procedure for the 1500A vehicle based on the results from test designation no. 3-31 to determine whether or not this test is required. The procedure consists of estimating the occupant risk values for the 1500A test based on the acceleration trace obtained from test designation no. 3-31.

An analysis was performed using the acceleration versus time data from the primary accelerometer in test no. MSPBN-6 to estimate the occupant risk values for the 1500A sedan vehicle, as described in MASH 2016 Appendix G. The results are shown in Table 32. The estimated OIV and ORA values for the 1500A vehicle impact with the thrie-beam bullnose system were well below the MASH 2016 limits. As such, test designation no. 3-38 was deemed non-critical for the thrie-beam bullnose system and was not conducted.

Table 32. Longitudinal OIV and ORA Estimates for MASH 2016 1500A Estimation Procedure for Thrie-Beam Bullnose System Based on Test No. MSPBN-6

Evalu	uation Criteria	1500A Estimation Procedure	MASH 2016 Limits
OIV ft/s (m/s)	Longitudinal	-24.37 (-7.43)	±40 (12.2)
ORA g's	Longitudinal	-13.75	±20.49

15.5 MASH 2016 Evaluation

Based on the results of the three successful full-scale crash tests conducted in the previous study, the four successful full-scale crash tests conducted in this study, and the results of the estimation procedure for test designation no. 3-38, the modified thrie-beam bullnose system with a third nose cable meets all of the safety requirements for MASH 2016 TL-3.

16 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 3. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- Bielenberg, R.W., Faller, R.K., Reid, J.D., Rohde, J.R., Sicking, D.L., and Keller, E.A., *Concept Development of a Bullnose Guardrail System for Median Applications* Report No. TRP-03-73-98, Project No. SPR-3(017)-Year 7, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, May 22, 1998.
- Bielenberg, R.W., Reid, J.D., Faller, R.K., Rohde, J.R., Sicking, D.L., Keller, E.A., and Holloway, J.C., *Phase II Development of a Bullnose Guardrail System for Median Applications*, Report No. TRP-03-78-98, Project No. SPR-3(017)-Years 7 and 8, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 18, 1998.
- Bielenberg, R.W., Faller, R.K., Reid, J.D., Rohde, J.R., Sicking, D.L., Keller, E.A., Holloway, J.C., and Supencheck, L.L., *Phase III Development of a Bullnose Guardrail System for Median Applications*, Report No. TRP-03-95-00, Project No. SPR-3(017)-Years 7 and 8, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, June 1, 2000.
- Arens, S.W., Sicking, D.L., Faller, R.K., Reid, J.D., Bielenberg, R.W., Rohde, J.R., and Lectenberg, K.A., *Investigating the Use of a New Universal Breakaway Steel Post*, Report No. TRP-03-218-09, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 3, 2009.
- Schmidt, J.D., Sicking, D.L, Faller, R.K., Reid, J.D., Bielenberg, R.W., and Lechtenberg, K.A., *Investigating the Use of a New Universal Breakaway Steel Post – Phase 2*, Report No. TRP-03-230-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 9, 2010.
- Schmidt, J.D., Sicking, D.L, Faller, R.K., Reid, J.D., Bielenberg, R.W., and Lechtenberg, K.A., *Investigating the Use of a New Universal Breakaway Steel Post – Phase 3*, Report No. TRP-03-244-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 16, 2010.

- Bielenberg, R.W., Faller, R.K., Ammon, T.J., Holloway, J.C., and Lechtenberg, K.A., MASH Testing of Bullnose with Break Away Steel Posts (Test Nos. MSPBN-1-3), Final Report, Report No. 03-389-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 21, 2020.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- 13. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 14. Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, 2016, FHWA and AASHTO, <u>https://design.transportation.org/wp-content/uploads/sites/21/2019</u>/11/Clarifications-on-Implementing-MASH-2016-aka-MASH-QA-Updated-Nov-19-2019.pdf, November 2019.
- 15. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 16. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 17. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series – 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 18. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- Meyer, D.T., Reid, J.D., Lechtenberg, K.A., Bielenberg, R.W., and Faller, R.K., *Increased Span Length for the MGS Long-Span Guardrail System Part II: Full-Scale Crash Testing*, Research Report No. TRP-03-339-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, April 7, 2017.
- 20. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.

- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 22. Bullard, L.D., Bligh, R.P., Menges, W.L., and Haug, R.R., *NCHRP 157: Volume I: Evaluation of Existing Roadside Hardware Using Updated Criteria – Technical Report*, Final Report, for NCHRP Project 22-14(03), Texas Transportation Institute, College Station, TX, March, 2010.
- 23. Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D. *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, 2010.
- 24. Lechtenberg, K.A., Mongiardini, M., Rosenbaugh, S.K., Faller, R.K., Bielenberg, R.W., and Albuquerque, F.D.B. Development and Implementation of the Simplified MGS Stiffness Transition. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2309, 2012, pp. 1-11.
- 25. Schmidt, J.D., Bielenberg, R.W., Schroder, B.D., Faller, R.K., and Lechtenberg, K.A., *Safety Investigation and Design Guidance for Curbs Near Energy-Absorbing End Terminals*, Report No. TRP 03-358-17, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, July 10, 2017.
- Zhu, L., Faller, R.K., Reid, J.D., Sicking, D.L., Bielenberg, R.W., Lechtenberg, K.A., and Benner, C.D., *Performance Limits for 152-mm (6-In.) High Curbs Placed in Advance of the MGS Using MASH-08 Vehicles - Part I: Vehicle-Curb Testing and LS-DYNA Analysis*, Report No. TRP-03-205-09, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, May 6, 2009.
- Thiele, J.C., Lechtenberg, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., and Bielenberg, R.W., *Performance Limits for 6-In. (152-mm) High Curbs Placed in Advance of the MGS Using MASH-08 Vehicles - Part II: Full-Scale Crash Testing*, Report No. TRP-03-221-09, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 30, 2009.
- Thiele, J.C., Reid, J.D., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., and Bielenberg, R.W., *Performance Limits for 6-In. (152-mm) High Curbs Placed in Advance of the MGS Using MASH Vehicles - Part III: Full-Scale Crash Testing (TL-2)*, Report No. TRP-03-237-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 24, 2010.
- Rosenbaugh, S.K., Stolle, C.S., and Ronspies, K.B., MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-10, Research Report No. TRP-03-393-19, Project No.: TPF(193) Supplement #105, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 2, 2019.

- 30. Rosenbaugh, S.K., et al., *MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-11*, DRAFT Report No. TRP-03-433-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, **DRAFT IN PROGRESS**.
- Ronspies, K., Rosenbaugh, S.K., Bielenberg, R.W., Faller, R.K., and Stolle, C.S., *Evaluation* of the MGS Placed 6 in. behind a 6-in. tall AASHTO Type-B Curb to MASH TL-3, Report No. TRP-03-390-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 27, 2020.
- 32. Griffith, M.S., Federal Highway Administration. *Eligibility Letter No. HSST-1/CC-126 for MASH Sequentially Kinking Terminal (MSKT)*, to Kaddo Kothmann, Road Systems, Inc., June 10, 2016.
- 33. Griffith, M.S., Federal Highway Administration. *Eligibility Letter No. HSST/CC-115A for Trinity SOFT-STOP Terminal for line posts with 8" wood offset blocks*, to Brian Smith, Trinity Highway Products, LLC, September 7, 2012.
- 34. *Roadside Design Guide, 4th Edition, 2011,* American Association of State Highway and Transportation Official (AASHTO), Washington, DC, 2011.

17 APPENDICES

Appendix A. Vehicle Center of Gravity Determination

Date: 4/18/2018 Year: 2009	5 Test Name: MSPBN Make: KIA	-4 VIN: Model:	The Street and the Ly of	23496469475 RIO
Vehicle CG Determinat	ion			
			Weight	
Vehicle Ec			(lb.)	
+	Unballasted Car (Curb)		2472	
+	Hub	. 0. (19	
+ +	Brake activation cylinde		7 27	
+	Pneumatic tank (Nitroge Strobe/Brake Battery	en)	5	
+	Brake Receiver/Wires		6	
+	CG Plate including DAS		10	
-	Battery		-25	
-	Oil		-10	
-	Interior		-48	
-	Fuel		-23	
-	Coolant		-7	
-	Washer fluid			
+	Water Ballast (In Fuel T			
+	Onboard Supplemental	Battery	0	
-	Junk in the Trunk		10	
			47	
+ Note: (+) is a	DTS dded equipment to vehicle, (-) is Estimated Tot	removed equipme al Weight (lb.)		
Note: (+) is a	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations	al Weight (lb.)	nt from vehicle 2460	
Note: (+) is an Vehicle Dimensions for Wheel Base: 98 1/4	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations _ in. Fron	al Weight (lb.) t Track Width:	nt from vehicle 2460 57 3/4 in.	
Note: (+) is a	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations _ in. Fron	al Weight (lb.)	nt from vehicle 2460 57 3/4 in.	
Note: (+) is an Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations _ in. Fron _ in. Rea	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in.	
Note: (+) is an Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations in. Fron in. Rea 1100C MASH Target	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial	
Note: (+) is an Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.)	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations in. Fron in. Rea 1100C MASH Target 2420 ± 55	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429	ç
Note: (+) is an Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.)	dded equipment to vehicle, (-) is Estimated Tot <u>C.G. Calculations</u> in. Fron in. Rea <u>1100C MASH Target</u> 2420 ± 55 39 ± 4	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075	-2.757
Note: (+) is an Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.) Lateral CG (in.)	dded equipment to vehicle, (-) is Estimated Tot <u>C.G. Calculations</u> in. Fron in. Rea <u>1100C MASH Target</u> 2420 ± 55 39 ± 4 NA	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975	و 2.757- ۱
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.)	dded equipment to vehicle, (-) is Estimated Tot in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA NA	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075	و 2.757- ۱
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.) Vertical CG (in.) Note: Long. CG is measured fr	dded equipment to vehicle, (-) is Estimated Tot in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA NA	al Weight (lb.) t Track Width: r Track Width:	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 22.58	و 2.757- ۱
Note: (+) is an investment of seven in the image in	dded equipment to vehicle, (-) is Estimated Tot in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA Om front axle of test vehicle	al Weight (lb.) t Track Width: r Track Width: s s right (passenger)	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 22.58 side	<u>9</u> 2.757 ۲ ۲
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.) Vertical CG (in.) Note: Long. CG is measured fr	dded equipment to vehicle, (-) is Estimated Tot in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA Om front axle of test vehicle	al Weight (lb.) t Track Width: r Track Width: s s right (passenger)	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 22.58	<u>9</u> 2.757 ۲ ۲
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (Ib.) Longitudinal CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from CURB WEIGHT (Ib.) Left	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA NA NA Right	al Weight (lb.) t Track Width: r Track Width: :s	nt from vehicle 2460 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 22.58 side TEST INERTIAL	و 2.757 ۲ WEIGHT (Ib.) Left Right
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from CURB WEIGHT (lb.) Left Front 800	dded equipment to vehicle, (-) is Estimated Tot	al Weight (lb.) t Track Width: r Track Width: s	57 3/4 in. 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 -0.626975 22.58 side TEST INERTIAL Front	<u>و</u> -2.757 ۲ • • • • • • • • • • • • • • • • • • •
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (Ib.) Longitudinal CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from CURB WEIGHT (Ib.) Left	dded equipment to vehicle, (-) is Estimated Tot C.G. Calculations in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA NA NA Right	al Weight (lb.) t Track Width: r Track Width: s	57 3/4 in. 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 -0.626975 22.58 side TEST INERTIAL Front	Left Right
Vehicle Dimensions for Wheel Base: 98 1/4 Roof Height: 57 1/2 Center of Gravity Test Inertial Weight (lb.) Longitudinal CG (in.) Lateral CG (in.) Vertical CG (in.) Note: Long. CG is measured from Note: Lateral CG measured from CURB WEIGHT (lb.) Left Front 800	dded equipment to vehicle, (-) is Estimated Tot	al Weight (lb.) t Track Width: r Track Width: ss	57 3/4 in. 57 1/5 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 -22.58 side TEST INERTIAL Front Front Rear	<u>و</u> -2.757 ۲ • • • • • • • • • • • • • • • • • • •
Note: (+) is an	dded equipment to vehicle, (-) is Estimated Tot in. Fron in. Rea 1100C MASH Target 2420 ± 55 39 ± 4 NA NA om front axle of test vehicle m centerline - positive to vehicle Right 751 467	al Weight (lb.) t Track Width: r Track Width: ss	57 3/4 in. 57 3/4 in. 57 1/5 in. Test Inertial 2429 36.242075 -0.626975 -0.626975 22.58 side TEST INERTIAL Front Rear Rear 7	C-2.757

Figure A-1. Vehicle Mass Distribution, Test No. MSPBN-4

Date: <u>5</u> Year:	2009	_ Test Name: Make:		VIN: Model:		ICN46C39U HYUNDAI	
	2000		ACCENT	mouch.		mondra	-
Vehicle CG Det	erminati	on					
					Weight		
Ve	ehicle Equ				(lb.)	-	
+		Unballasted C	Car (Curb)		2461		
+		Hub			19	_	
+			on cylinder & f	rame	8	_	
+		Pneumatic tai			22	_	
+++++++++++++++++++++++++++++++++++++++		Strobe/Brake Brake Receiv			5 5	_	
+		CG Plate inclu			13	-	
-		Battery			-31	-	
		Oil			-13	1	
-		Interior			-55	1	
-		Fuel			-16	1	
-		Coolant			-6		
-		Washer fluid			-7		
+			(In Fuel Tank)		0		
+		Onboard Sup	plemental Batt	ery	0		
No	te: (+) is ad	ded equipment to v Esti	vehicle, (-) is remo mated Total W			•	
Vehicle Dimens	ions for	Esti	mated Total W ons	/eight (lb.)	2405		_
Vehicle Dimens Wheel Base:	ions for 98.625	Esti C.G. Calculatio _in.	mated Total W ons Front Tra	/eight (lb.) ick Width:	2405 57.813] _in.	_
Vehicle Dimens Wheel Base:	ions for	Esti C.G. Calculatio	mated Total W ons Front Tra	/eight (lb.)	2405 57.813]	_
Vehicle Dimens Wheel Base:	ions for 98.625	Esti C.G. Calculatio _in.	mated Total W ons Front Tra	/eight (lb.) ick Width:	2405 57.813] _in.	_
Vehicle Dimens Wheel Base:	ions for 98.625 58.125	Esti C.G. Calculati _in. _in.	mated Total W ons Front Tra	/eight (lb.) ack Width: ack Width:	2405 57.813	in. in.	– Differen
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig	ions for 98.625 58.125 ty ght (lb.)	Esti <u> C.G. Calculatio</u> _in. _ <u> 1100C MA3</u> 2420	mated Total W ons Front Tra Rear Tra SH Targets ± 55	/eight (lb.) ack Width: ack Width:	2405 57.813 57.188 Test Inertia 2409	in. in.	-11
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG	ions for 98.625 58.125 ty ght (lb.)	Esti <u> C.G. Calculatio</u> in. <u> 1100C MA3</u> 2420 39	mated Total W ons Front Tra Rear Tra SH Targets	/eight (lb.) ack Width: ack Width:	2405 57.813 57.188 Test Inertia 2409 36.232	in. in.	-11 -2.7
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.)	ions for 98.625 58.125 ty ght (lb.) (in.)	Esti <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> 2420 39 NA	mated Total W ons Front Tra Rear Tra SH Targets ± 55	/eight (lb.) ack Width: ack Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06	in. in.	-11 -2.7 N
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weit Longitudinal CG Lateral CG (in.) Vertical CG (in.)	tions for 98.625 58.125 ty ght (lb.) (in.)	Esti <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> 2420 <u>39</u> NA NA	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2405 57.813 57.188 Test Inertia 2409 36.232	in. in.	-11 -2.7 N
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m	ty (in.)	Esti in. in. 1100C MAS 2420 39 NA NA m front axle of test	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882	in. in.	-11 -2.70 N
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weit Longitudinal CG Lateral CG (in.) Vertical CG (in.)	ty (in.)	Esti in. in. 1100C MAS 2420 39 NA NA m front axle of test	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882	in. in.	-11 -2.70 N
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m	ty ght (lb.) (in.)	Esti in. in. 1100C MAS 2420 39 NA NA m front axle of test	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side	in. in.	-11 -2.70 N
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me	ty ght (lb.) (lb.)	Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA NA m front axle of test n centerline - positi	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side	in. in. al	-11 -2.7(N HT (Ib.)
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT	ty ght (lb.) (in.) (lb.) Left	Esti <u>c.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 39 NA NA m front axle of test n centerline - positi Right	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side TEST INEF	in. in. al RTIAL WEIG	-11 -2.7 N N HT (Ib.) Right
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT	ty ght (lb.) (in.) Left 808	Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA MA m front axle of test n centerline - positi Right 774	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side TEST INEF	in. in. al RTIAL WEIG Left 759	Right 765
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Wei Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT	ty ght (lb.) (in.) (lb.) Left	Esti <u>c.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 39 NA NA m front axle of test n centerline - positi Right	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side TEST INEF	in. in. al RTIAL WEIG	-11 -2.7(N M HT (Ib.) Right
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT	ty ght (lb.) (in.) Left 808	Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA MA m front axle of test n centerline - positi Right 774	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side TEST INEF	in. in. al RTIAL WEIG Left 759	-11 -2.7 N N N HT (Ib.) Right 765
Vehicle Dimens Wheel Base: Roof Height: Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is m Note: Lateral CG me CURB WEIGHT Front Rear	ty 98.625 58.125 ty ght (lb.) (in.) easured from assured from tlb.) Left 808 434	Esti C.G. Calculatio _in. _in. _in. 	mated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) nck Width: nck Width:	2405 57.813 57.188 Test Inertia 2409 36.232 0.06 22.882 side TEST INEF Front Rear] in. in. al 	-11 -2.7 N N N HT (Ib.) Right 765 442

Figure A-2. Vehicle Mass Distribution, Test No. MSPBN-5

	e: 6/5/2018 Test Name: MSPBN-6	20-10-10-10-10-10-10-10-10-10-10-10-10-10		D6KT3CS2683	67U
Yea	r: 2012 Make: Dodge	Model:		Ram 1500	
Vehicle CG	Determination				
		Weight	Vertical CG	Vertical M	
VEHICLE	Equipment	(lb.)	(in.)	(lbin.)	
+	Unballasted Truck (Curb)	5210	29.41824	153269.03	
+	Hub	19	16	304	
+	Brake activation cylinder & frame	7	30 1/2	213.5	
+	Pneumatic tank (Nitrogen)	30	26 3/4	802.5	
+	Strobe/Brake Battery	5	29 3/4	148.75	
+	Brake Receiver/Wires	6	55 1/4	331.5	
+	CG Plate including DAS	50	33 11/16	1684.375	
-	Battery	-37	44	-1628	
_	Oil	-14	19	-266	
-	Interior	-77	37 3/8	-2877.875	
-11	Fuel	-164	22 1/2	-3690	
-	Coolant	-6	36 1/4	-217.5	
-	Washer fluid	-2	40 3/4	-81.5	
+	Water Ballast (In Fuel Tank)	0	0	0	
+	Onboard Supplemental Battery	14	27	378	
inter-	Chiboard Cappionicital Battery	17	21	0	
				0	
Natas (1) in ada	led equipment to vehicle, (-) is removed equipment	fuene velsiele		148370.78	
Vehicle Din	nensions for C.G. Calculations				
		rack Width:	67.75	in.	
		rack Width:		in.	
Center of G	ravity 2270P MASH Targets		Test Inertial		ifferenc
Center of G Test Inertial	· · · · · · · · · · · · · · · · · · ·				
	Weight (lb.) 5000 ± 110		Test Inertial		61.
Test Inertial	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4		Test Inertial		61. -1.6735
Test Inertial Longitudinal	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA		Test Inertial 5061 61.326467		ifferenc 61. -1.6735 N. 1.4328
Test Inertial Longitudinal Lateral CG Vertical CG	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA		Test Inertial 5061 61.326467 0.275946		61. -1.6735 N
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater		Test Inertial 5061 61.326467 0.275946 29.43		61. -1.6735 N
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle		Test Inertial 5061 61.326467 0.275946 29.43		61. -1.6735 N
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right		Test Inertial 5061 61.326467 0.275946 29.43		61. -1.6735 N 1.4328
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral C	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right		Test Inertial 5061 61.326467 0.275946 29.43	D	61. -1.6735 N. 1.4328
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral C	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right		Test Inertial 5061 61.326467 0.275946 29.43	D	61. -1.6735 N. 1.4328
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. C Note: Lateral C	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle rip GHT (Ib.)		Test Inertial 5061 61.326467 0.275946 29.43	D	61. -1.6735 N. 1.4328 (Ib.)
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CG Note: Lateral C CURB WEIC	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right GHT (lb.) Left Right		Test Inertial 5061 61.326467 0.275946 29.43 r) side TEST INER	D TIAL WEIGHT Left	61. -1.6735 N. 1.4328 (Ib.) Right
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right GHT (lb.) Left Left Right 1463 1448		Test Inertial 5061 61.326467 0.275946 29.43 r) side TEST INER Front	D TIAL WEIGHT Left 1384	61. -1.6735 N. 1.4328 (Ib.) Right 1464
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right GHT (lb.) Left Left Right 1463 1448		Test Inertial 5061 61.326467 0.275946 29.43 r) side TEST INER Front	D TIAL WEIGHT Left 1384	61. -1.6735 N 1.4328 (Ib.) Right 1464 1087
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC Front Rear	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater 3 is measured from front axle of test vehicle 3 CG measured from centerline - positive to vehicle right 3 GHT (lb.) 1463 1146 1153		Test Inertial 5061 61.326467 0.275946 29.43 r) side TEST INER Front Rear	D TIAL WEIGHT Left 1384 1126	61. -1.6735 N 1.4328 (Ib.) Right 1464 1087
Test Inertial Longitudinal Lateral CG Vertical CG Note: Long. CC Note: Lateral C CURB WEIC Front Rear FRONT	Weight (lb.) 5000 ± 110 CG (in.) 63 ± 4 (in.) NA (in.) 28 or greater G is measured from front axle of test vehicle CG measured from centerline - positive to vehicle right GHT (Ib.) Left Left Right 1146 1153 2911 Ib.		Test Inertial 5061 61.326467 0.275946 29.43 r) side TEST INER Front Rear FRONT	D TIAL WEIGHT Left 1384 1126 2848 lb.	61. -1.6735 N. 1.4328 (Ib.) Right 1464 1087

Figure A-3. Vehicle Mass Distribution, Test No. MSPBN-6

Dat		Test Name:	Dl-	VIN:		Dar: 4500	7048
Yea	ar: <u>2012</u>	Make:	Dodge	Model:		Ram 1500	
Vehicle CC	G Determinatio	on					
				Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(lb.)	(in.)	(lbin.)	
+	Unballasted	Truck (Curb)		5271	29.563757	155830.56	
+	Hub			19	15.375	292.125	
+	Brake activa	ation cylinder &	frame	8	28 1/2	228	
+	Pneumatic t	tank (Nitrogen)		27	26 1/4	708.75	
+	Strobe/Brak	e Battery		5	27	135	
+	Brake Rece	iver/Wires		6	54 3/8	326.25	
+	CG Plate in	cluding DAS		50	32 1/8	1606.25	
-	Battery			-48	45	-2160	
-	Oil			-12	16	-192	
-	Interior			-106	55 1/2	-5883	
-0	Fuel			-159	20 3/4	-3299.25	
-	Coolant			-16	36	-576	
-	Washer fluid			0	0	0	
+		ist (In Fuel Tanl		0	0	0	
+		upplemental Bat		14	25 1/2	357	
+	Supplement	tal Test Equipm	nent	9	24 1/2	220.5	
						0	
Note: (+) is ad		vehicle, (-) is remo Estimated Tota Vertical CG		5068		0 147594.19	
		Estimated Tota	I Weight (lb.) Location (in.)	5068		1000	
	nensions for (Estimated Tota Vertical CG	I Weight (lb.) Location (in.) ons	5068	67.875	1000	
Vehicle Dir	nensions for (Estimated Tota Vertical CG C.G. Calculatic	I Weight (lb.) Location (in.) ons Front Tr	5068 29.1228		147594.19	
Vehicle Dir	nensions for (Estimated Tota Vertical CG C.G. Calculatic	I Weight (lb.) Location (in.) ons Front Tr	5068 29.1228		147594.19 in.	
Vehicle Dir Wheel Bas	mensions for (se: 140.5	Estimated Tota Vertical CG C.G. Calculatic in.	l Weight (lb.) Location (in.) ons Front Tr Rear Tr	5068 29.1228	68	147594.19 in. in.	
Vehicle Dir Wheel Bas Center of C	mensions for (se: 140.5 Gravity	Estimated Tota Vertical CG C.G. Calculatio _in. 2270P MAS	I Weight (Ib.) Location (in.) ons Front Tr Rear Tr GH Targets	5068 29.1228	68 Test Inertial	147594.19 in. in.	Differenc
Vehicle Dir Wheel Bas Center of C Test Inertial	nensions for (se: 140.5 Gravity I Weight (lb.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 :	Il Weight (lb.) Location (in.) ons Front Tr Rear Tr BH Targets ± 110	5068 29.1228	68 Test Inertial 5043	147594.19 in. in.	43.
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina	nensions for (se: 140.5 Gravity I Weight (lb.) I CG (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 :	Il Weight (lb.) Location (in.) ons Front Tr Rear Tr BH Targets ± 110	5068 29.1228	68 Test Inertia 5043 61.571485	147594.19 in. in.	43. -1.4285
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG	nensions for (se: 140.5 Gravity I Weight (lb.) I CG (in.) (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA	I Weight (Ib.) Location (in.) ons Front Tr Rear Tr 6H Targets ± 110 ± 4	5068 29.1228	68 Test Inertia 5043 61.571485 0.0875657	147594.19 in. in.	43. -1.4285 N
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG	Gravity I Weight (Ib.) I CG (in.) (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 (I Weight (Ib.) Location (in.) Ons Front Tr Rear Tr BH Targets ± 110 ± 4 or greater	5068 29.1228	68 Test Inertia 5043 61.571485	147594.19 in. in.	43. -1.4285
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C	Gravity I Weight (Ib.) I CG (in.) (in.) G is measured fro	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 o m front axle of test	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertia 5043 61.571485 0.0875657 29.12	147594.19 in. in.	43. -1.4285 N
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C	Gravity I Weight (Ib.) I CG (in.) (in.) G is measured fro	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 (I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertia 5043 61.571485 0.0875657 29.12	147594.19 in. in.	43. -1.4285 N
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C	Gravity I Weight (Ib.) I CG (in.) (in.) G is measured fron CG measured fron	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 o m front axle of test	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertial 5043 61.571485 0.0875657 29.12) side	147594.19 in. in.	43. -1.4285 N 1.1227
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	nensions for (se: 140.5 Gravity I Weight (lb.) I CG (in.) (in.) G is measured fro CG measured fron GHT (lb.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 o m front axle of test n centerline - positi	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertial 5043 61.571485 0.0875657 29.12) side	147594.19 in. in.	43. -1.4285 N. 1.1227
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	nensions for (se: 140.5 Gravity I Weight (lb.) I CG (in.) (in.) G is measured fron CG measured fron GHT (lb.) Left	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 0 m front axle of test m centerline - positi	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertial 5043 61.571485 0.0875657 29.12 r) side TEST INER	147594.19 in. in. TIAL WEIGH	43. -1.4285 N. 1.1227
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front	mensions for (ie: 140.5 Gravity I Weight (lb.) I CG (in.) (in.) G is measured from CG measured from GHT (lb.) Left 1489	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 (content m centerline - positi Right 1464	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertial 5043 61.571485 0.0875657 29.12 r) side TEST INER Front	147594.19 in. in. TIAL WEIGH Left 1424	43. -1.4285 N. 1.1227 T (Ib.) Right 1409
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	nensions for (se: 140.5 Gravity I Weight (lb.) I CG (in.) (in.) G is measured fron CG measured fron GHT (lb.) Left	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 0 m front axle of test m centerline - positi	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertial 5043 61.571485 0.0875657 29.12 r) side TEST INER	147594.19 in. in. TIAL WEIGH	43. -1.4285 N. 1.1227
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear	Gravity I Weight (lb.) I CG (in.) (in.) G is measured from GHT (lb.) Left 1489 1148	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 0 m front axle of test n centerline - positi Right 1464 1170	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertia 5043 61.571485 0.0875657 29.12) side TEST INER Front Rear	147594.19 in. in. TIAL WEIGH Left 1424 1091	43. -1.4285 N 1.1227 I T (Ib.) Right 1409 1119
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front	mensions for (ie: 140.5 Gravity I Weight (lb.) I CG (in.) (in.) G is measured from CG measured from GHT (lb.) Left 1489	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 : 63 : NA 28 (content m centerline - positi Right 1464	I Weight (Ib.) Location (in.) Front Tr Rear Tr BH Targets ± 110 ± 4 or greater : vehicle	ack Width:	68 Test Inertial 5043 61.571485 0.0875657 29.12 r) side TEST INER Front	147594.19 in. in. TIAL WEIGH Left 1424 1091 2833	43. -1.4285 N. 1.1227 T (Ib.) Right 1409

Figure A-4. Vehicle Mass Distribution, Test No. MSPBN-7

	8/28/2018 2011			VIN: Model:	KIIII	Accent	33692
Year:	2011	Make: _	Hyundai	moder:		Accent	
Vehicle CG [Dotorminat	ion					
venicie CG I	Jelenninal	1011			Weight		
	Vehicle Eq	uipment			(lb.)		
	+	Unballasted C	ar (Curb)		2476	1	
	+	Hub			19	1	
	+	Brake activation	on cylinder & f	rame	7	1	
	+	Pneumatic tan			22	1	
	+	Strobe/Brake I	Battery		5	1	
	+	Brake Receive	er/Wires		5		
	+	CG Plate inclu	iding DAS		13		
	-	Battery			-31		
	-	Oil			-9		
	-	Interior			-72	4	
	-	Fuel			-20	-	
	-	Coolant			-6	-	
	-	Washer fluid	(ha E. al T. 1)		-8	4	
	+	Water Ballast			0	-	
	+	Onboard Supp Smart	plemental Batt	ery	0	-	
		Sman			9		
		dded equipment to v	ehicle, (-) is remo nated Total W]	
	Note: (+) is ac	dded equipment to v Estir C.G. Calculatio	mated Total W	/eight (lb.)	2410]	_
Wheel Base:	Note: (+) is ac nsions for 98.5	dded equipment to v Estir <u>C.G. Calculatic</u> _in.	nated Total W ons Front Tra	/eight (lb.) ack Width:	2410 57.5] _in.	_
	Note: (+) is ac nsions for 98.5	dded equipment to v Estir C.G. Calculatio	nated Total W ons Front Tra	/eight (lb.)	2410 57.5]	_
Wheel Base: Roof Height:	Note: (+) is ac nsions for 98.5 57.875	dded equipment to v Estir <u>C.G. Calculatic</u> _in. _in.	nated Total W ons Front Tra Rear Tra	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25] _in. _in.	-
Wheel Base: Roof Height: Center of Gra	Note: (+) is an insions for 98.5 57.875 avity	dded equipment to v Estir <u>C.G. Calculatic</u> _in. _in. _1100C MAS	nated Total W ons Front Tra Rear Tra 6H Targets	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia] _in. _in.	
Wheel Base: Roof Height: Center of Gra Test Inertial V	Note: (+) is ac nsions for 98.5 57.875 avity Veight (lb.)	dded equipment to v Estir <u>C.G. Calculatic</u> in. in. 1100C MAS 2420 :	nated Total W ons Front Tra Rear Tra 6H Targets ± 55	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394] _in. _in.	-26
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C	Note: (+) is ac nsions for 98.5 57.875 avity Veight (Ib.) CG (in.)	dded equipment to v Estir <u>C.G. Calculatic</u> in. in. 1100C MAS 2420 : 39 :	nated Total W ons Front Tra Rear Tra 6H Targets ± 55	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413] _in. _in.	-26 -2.58
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ii	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (Ib.) CG (in.) n.)	dded equipment to v Estir C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA	nated Total W ons Front Tra Rear Tra 6H Targets ± 55	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072] _in. _in.	- Differend -26 -2.58 N
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (in Vertical CG (i	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (lb.) CG (in.) n.) in.)	dded equipment to v Estir <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA	nated Total W ons Front Tra Rear Tra 6H Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413] _in. _in.	-26 -2.58 N
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (lb.) CG (in.) n.) s measured from	dded equipment to v Estir <u>C.G. Calculatio</u> in. in. 1100C MAS 2420 : 39 : 	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332] _in. _in.	-26 -2.58 N
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG i Note: Lateral CG	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (lb.) CG (in.) n.) s measured fro measured fro	dded equipment to v Estir <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332 side] _in. _in.	-26 -2.58 N
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (lb.) CG (in.) n.) s measured fro measured fro	dded equipment to v Estir <u>C.G. Calculatio</u> in. in. 1100C MAS 2420 : 39 : 39 : NA NA pom front axle of test	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332] _in. _in.	-26 -2.58 N
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG i Note: Lateral CG	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (lb.) CG (in.) n.) s measured fro measured fro	dded equipment to v Estir <u>C.G. Calculatic</u> in.	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332 side] _in. _in.	-26 -2.58 N N
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG i Note: Lateral CG	Note: (+) is ac nsions for 98.5 57.875 avity Veight (lb.) CG (in.) n.) in.) s measured fro measured fro HT (lb.)	dded equipment to v Estir <u>C.G. Calculatio</u> in. in. 1100C MAS 2420 : 39 : 39 : NA NA pom front axle of test	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332 side	in. in. I RTIAL WEIG	-26 -2.58 N
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i Note: Lateral CG	Note: (+) is ac nsions for 98.5 57.875 avity Veight (lb.) CG (in.) n.) in.) s measured fro measured fro IT (lb.) Left	dded equipment to v Estir <u>C.G. Calculatic</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA om front axle of test m centerline - positiv Right	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332 side TEST INER] _in. _in. I	-26 -2.58 N N HT (Ib.) Right
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG i Note: Lateral CG CURB WEIGH Front Rear	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (Ib.) CG (in.) n.) s measured fro measured fro HT (Ib.) Left 798 447	dded equipment to v Estir C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA NA om front axle of test m centerline - positiv Right 775 456	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332 side TEST INER Front Rear] in. in. I 	-26 -2.58 N N HT (Ib.) Right 748 446
Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG i Note: Lateral CG CURB WEIGH	Note: (+) is ac nsions for 98.5 57.875 Avity Veight (Ib.) G (in.) n.) s measured fro measured fro HT (Ib.) Left 798	dded equipment to v Estir <u>C.G. Calculatio</u> in. in. 1100C MAS 2420 : 39 : NA NA om front axle of test m centerline - positiv Right 775	nated Total W ons Front Tra Rear Tra SH Targets ± 55 ± 4	/eight (lb.) ack Width: ack Width:	2410 57.5 57.25 Test Inertia 2394 36.413 -0.072 22.332 side TEST INER] _in. _in. I 	-26 -2.58 N N HT (Ib.) Right 748

Figure A-5. Vehicle Mass Distribution, Test No. MSPBN-8

Appendix B. Material Specifications

Item No.	Description	Material Spec	Material Cert Reference
al	TS8"x6"x ³ / ₁₆ " [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a2	TS8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a3	8"x8"x ⁵ / ₈ " [203x203x16] Anchor Bearing Plate	ASTM A36	H#DL15103543 H#4181496
a4	Lower Slip Post Assembly	Plate-ASTM A36 Foundation Tube-ASTM A500 Gr. B	Tube: H#17043541 Plate: H#7503198
a5	Upper Slip Post Assembly	Plate: ASTM A36 Post: ASTM A992	H#B7TS144-02 Post: H#58031555
a6	6"x8"x14¼" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	Charge#24195
a7	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side A	SYP Grade No. 1 or better	Charge#22927
a8	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side B	SYP Grade No. 1 or better	Charge#4844
b1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#219447 H#220022 H#220023
b2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	H#203662 H#206981
b3	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#L32817 H#206981 H#206982 H#A86939
b4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side A	AASHTO M180	H#130217
b5	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side B	AASHTO M180	H#208318 H#208674
b6	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section -Side A	AASHTO M180	H#L31917
c1	⁷ / ₁₆ " [11] Dia. UNC, 2 ¹ / ₂ " [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt - ASTM A449 or SAE J429 Gr. 5 Nut - ASTM A563DH or J995 Gr. 5	Bolts: H#4209984BB Nuts: H#360796
c2	%" [16] Dia. UNC, 10" [254] Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#DL15107048 Nuts: H#331608011
c3	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₄ " [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20460760 Nut: H#10470360
c4	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₂ " [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#816070039 Nut: H#331608011
c5	%" [16] Dia. UNC, 18" [457] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#29145-B Nut: H#10470360

Table B-1. Bill of Materials, Test No. MSPBN-4

Item No.	Description	Material Spec	Material Cert Reference
сб	⁷ / ₈ " [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	6" Bolt: H#2038622 Nut: H#NF12101054 8" Bolt: H#X51512089002 Nut: H#1XS51
c7	⁵ %" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20351510 Nut: H#10470360
c8	16D Double Head Nail	-	L# 97812A109
e1	⁷ / ₁₆ " [11] Dia. Plain Round Washer	ASTM F844	L#33183
e2	5/8" [16] Dia. Plain Round Washer	ASTM F844	n/a
e3	7/8" [22] Dia. Plain Round Washer	ASTM F844	n/a
f1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	Charge#24096
f2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	H#55044245
g1	BCT Anchor Cable Assembly	-	North End: R#18-642 South End: R#17-282
g2	2¾" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#A79999
g3	⁵ %" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for 5/8" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	Order#248853
g4	$\frac{125}{8} x5^{13}/_{16} x^{3}/_{16} [321x148x5]$ Nose Cable Anchor Plate	ASTM A36	H#B4M5475
g5	2¼"x¾" [57x19] 11 gauge [3] U- Bolt Plate Washer	ASTM A1011 CS Type B	H#B609769
g6	¹ /4" [6] Dia. U-Bolt and Nut	U-Bolt-ASTM A307 Gr.A Nut-ASTM A563A	Bolt: H#71067E Nut: H#184259
h1	Ground Strut Assembly	ASTM A36	PO#2030
h2	Anchor Bracket Assembly	ASTM A36	H#JK16101488

Table B-2. Bill of Materials, Test No. MSPBN-4, Cont.

Item No.	Description	Material Spec	Material Cert Reference
a1	TS8"x6"x ³ / ₁₆ " [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a2	TS8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a3	8"x8"x ⁵ / ₈ " [203x203x16] Anchor Bearing Plate	ASTM A36	H#DL15103543 H#4181496
a4	Lower Slip Post Assembly	Plate-ASTM A36 Foundation Tube-ASTM A500 Gr. B	Tube: H#17043541 Plate: H#7503198
a5	Upper Slip Post Assembly	Plate: ASTM A36 Post: ASTM A992	H#B7TS144-02 Post: H#58031555
a6	6"x8"x14¼" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	Charge#24195 Charge#4844
a7	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side A	SYP Grade No. 1 or better	Charge#22927
a8	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side B	SYP Grade No. 1 or better	Charge#22927
b1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#219447 H#220022 H#220023
b2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	H#203662 H#206981
b3	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#L32817 H#206981 H#206982 H#A86939
b4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side A	AASHTO M180	H#130217
b5	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side B	AASHTO M180	H#208318 H#208674
b6	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section -Side A	AASHTO M180	H#L31917
c1	⁷ / ₁₆ " [11] Dia. UNC, 2½" [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt - ASTM A449 or SAE J429 Gr. 5 Nut - ASTM A563DH or J995 Gr. 5	Bolts: H#4209984BB Nuts: H#360796
c2	%" [16] Dia. UNC, 10" [254] Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#DL15107048 H#JK17100352 Nuts: H#331608011
c3	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₄ " [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20460760 Nut: H#10470360
c4	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₂ " [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#816070039 Nut: H#331608011
c5	⁵ ⁄ ₈ " [16] Dia. UNC, 18" [457] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#NF16102734 H#100885399 Nut: H#10470360

Table B-3.	. Bill of Materials	s. Test No	MSPBN-5
Tuble D 5.	Diff of Material	, 1050110	$\frac{1}{2}$

Item No.	Description	Material Spec	Material Cert Reference
c6	⁷ 8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	6" Bolt: H#2038622 Nut: H#NF12101054 8" Bolt: H#X51512089002 Nut: H#1XS51
c7	[%] 8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20351510 H#DL16102715 Nut: H#10470360
c8	16D Double Head Nail	-	L# 97812A109
e1	⁷ / ₁₆ " [11] Dia. Plain Round Washer	ASTM F844	L#33183
e2	5/8" [16] Dia. Plain Round Washer	ASTM F844	n/a
e3	⁷ / ₈ " [22] Dia. Plain Round Washer	ASTM F844	n/a
f1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	Charge#24096
f2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	H#55044245
g1	BCT Anchor Cable Assembly	-	R#18-642
g2	2 ³ / ₈ " [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#A79999
g3	⁵ %" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for 5/8" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	H#590070
g4	125 "x5 ¹³ / ₁₆ " x ³ / ₁₆ " [321x148x5] Nose Cable Anchor Plate	ASTM A36	H#B4M5475
g5	2¼"x¾" [57x19] 11 gauge [3] U- Bolt Plate Washer	ASTM A1011 CS Type B	H#B609769
g6	¹ ⁄4" [6] Dia. U-Bolt and Nut	U-Bolt-ASTM A307 Gr.A Nut-ASTM A563A	Bolt: H#71067E Nut: H#184259
h1	Ground Strut Assembly	ASTM A36	PO#2030
h2	Anchor Bracket Assembly	ASTM A36	H#JK16101488

Item No.	Description	Material Spec	Material Cert Reference
a1	TS8"x6"x ³ / ₁₆ " [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a2	TS8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a3	8"x8"x ⁵ %" [203x203x16] Anchor Bearing Plate	ASTM A36	H#DL15103543 H#4181496
a4	Lower Slip Post Assembly	Plate-ASTM A36 Foundation Tube-ASTM A500 Gr. B	Tube: H#17043541 Plate: H#7503198
a5	Upper Slip Post Assembly	Plate: ASTM A36 Post: ASTM A992	H#B7TS144-02 Post: H#58031555
a6	6"x8"x14¼" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	Ch#24195 Ch#22927 Ch#24096
a7	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side A	SYP Grade No. 1 or better	Ch#24195 Ch#22927
a8	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side B	SYP Grade No. 1 or better	Ch#24195 Ch#22927
b1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#219447 H#220022 H#220023
b2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	H#203663 H#216682 H#216683
b3	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#208318 H#206981 H#206982
b4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side A	AASHTO M180	H#219447 H#220022 H#130217
b5	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side B	AASHTO M180	H#208318 H#208674
b6	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section -Side A	AASHTO M180	H#220023
b7	6'-3" [1,905] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	H#A86939
c1	⁷ / ₁₆ " [11] Dia. UNC, 2 ¹ / ₂ " [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt - ASTM A449 or SAE J429 Gr. 5 Nut - ASTM A563DH or J995 Gr. 5	Bolts: H#4209984BB Nuts: H#360796
c2	⁵ / ₈ " [16] Dia. UNC, 10" [254] Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#DL15107048 H#JK17100352
c3	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₄ " [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20460760 Nut: H#10470360
c4	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₂ " [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#816070039 Nut: H#331608011

Table B-5. Bill of Materials, Test Nos. MSPBN-6 and MSPBN-7

Item No.	Description	Material Spec	Material Cert Reference
c5	⁵ / ₈ " [16] Dia. UNC, 18" [457] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#100885399
сб	⁷ / ₈ " [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	6" Bolt: H#2038622 Nut: H#NF12101054 8" Bolt: H#X51512089002 Nut: H#1XS51
c7	%" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20351510 H#DL16102715 Nut: H#10470360
c8	16D Double Head Nail	-	L# 97812A109
e1	⁷ / ₁₆ " [11] Dia. Plain Round Washer	ASTM F844	L#33183
e2	5/8" [16] Dia. Plain Round Washer	ASTM F844	n/a
e3	⁷ / ₈ " [22] Dia. Plain Round Washer	ASTM F844	n/a
f1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	Charge#24096
f2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	H#55044245
f3	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 68 ⁵ / ₈ " [1,743]	ASTM A992	H#55044245
g1	BCT Anchor Cable Assembly	-	R#18-642
g2	2¾" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#B712810
g3	⁵ %" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for ⁵ / ₈ " [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	R#18-642 R#17-282
g4	$12\frac{5}{8}$ "x5 ¹³ / ₁₆ "x ³ / ₁₆ " [321x148x5] Nose Cable Anchor Plate	ASTM A36	H#B4M5475
g5	2¼"x¾" [57x19] 11 gauge [3] U- Bolt Plate Washer	ASTM A1011 CS Type B	H#B609769
g6	¹ ⁄4" [6] Dia. U-Bolt and Nut	U-Bolt-ASTM A307 Gr.A Nut-ASTM A563A	Bolt: H#71067E Nut: H#184259
h1	Ground Strut Assembly	ASTM A36	PO#2030
h2	Anchor Bracket Assembly	ASTM A36	H#JK16101488

Table B-6. Bill of Materials, Test Nos. MSPBN-6 and MSPBN-7, Cont.

Item No.	Description	Material Spec	Material Cert Reference
a1	TS8"x6"x ³ / ₁₆ " [203x152x5], 96" [2,438] Long Foundation Tube	ASTM A500 Gr. B	H#A49248
a2	TS8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#A49248 Post 13A H#811T08220
a3	8"x8"x ⁵ / ₈ " [203x203x16] Anchor Bearing Plate	ASTM A36	H#DL15103543 H#4181496
a4	Lower Slip Post Assembly	Plate-ASTM A36 Foundation Tube-ASTM A500 Gr. B	Tube: H#17043541 Plate: H#7503198
a5	Upper Slip Post Assembly	Plate: ASTM A36 Post: ASTM A992	Post: H#59072444/02 Plate: H#B6U5630
a6	6"x8"x14¼" [152x203x362] Timber Blockout	SYP Grade No. 1 or better	Ch#24195 Ch#24883
a7	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side A	SYP Grade No. 1 or better	Ch#22416 Ch#24195 Ch#24883
a8	6"x8"x14¼" [152x203x362] Tapered Timber Blockout -Side B	SYP Grade No. 1 or better	Ch#24683
b1	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#219447 H#220022 H#220023
b2	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section	AASHTO M180	H#L32118
b3	12'-6" [3,810] 12 gauge [2.7] Thrie Beam Section	AASHTO M180	H#L32817
b4	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side A	AASHTO M180	H#206981 H#206982
b5	12'-6" [3,810] 12 gauge [2.7] Thrie Beam End Section -Side B	AASHTO M180	H#219447 H#220022 H#220023
b6	12'-6" [3,810] 12 gauge [2.7] Bent Thrie Beam Section -Side A	AASHTO M180	HC#L31418
c1	⁷ / ₁₆ " [11] Dia. UNC, 2 ¹ ⁄ ₂ " [64] Long Hex Tap Bolt (Fully Threaded) and Nut	Bolt - ASTM A449 or SAE J429 Gr. 5 Nut - ASTM A563DH or J995 Gr. 5	Bolt: H#H1708007009 Nut: H#351607718 Nut: H#331509977
c2	⁵ / ₈ " [16] Dia. UNC, 10" [254] Long Hex Head Bolt	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#DL15107048 H#JK17100352 H#20297970
c3	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₄ " [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#20455760 Nuts: H#20479830
c4	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₂ " [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#816070039 Nut: H#331608011
c5	⁵ / ₈ " [16] Dia. UNC, 18" [457] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#DL17100591

Table B-7. Bill of Materials, Test No. MSPBN-8

Item No.	Description	Material Spec	Material Cert Reference
c6	⁷ / ₈ " [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	6" Bolt: H#2038622 Nut: H#NF12101054 H#331704677
c7	⁵ / ₈ " [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#DL16102715
c8	16D Double Head Nail	-	L# 97812A109
e1	⁷ / ₁₆ " [11] Dia. Plain Round Washer	ASTM F844	L#33183
e2	5/8" [16] Dia. Plain Round Washer	ASTM F844	n/a
e3	⁷ / ₈ " [22] Dia. Plain Round Washer	ASTM F844	n/a
f1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	Charge#24096 Ch#24233 Ch#25033
f2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 78" [1,981] Long Steel Post	ASTM A992	Side A: H#55044245 Side B: H#2714032
g1	BCT Anchor Cable Assembly	-	R#18-642
g2	2 [*] / ₈ " [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#A79999
g3	⁵ %" Dia. [15.9] x 14.4' [4,389] Long Cable and Swage Button	"Cold Tuff" Button, S-409 Size No. 12 SB, Stock No. 1040395 for ⅔" [16] Dia. (6x19) wire rope (or any similarly sized swage-grip button ferrules)	H#284559
g4	125%"x5 ¹³ / ₁₆ "x ³ / ₁₆ " [321x148x5] Nose Cable Anchor Plate	ASTM A36	H#B4M5475
g5	2¼"x¾" [57x19] 11 gauge [3] U- Bolt Plate Washer	ASTM A1011 CS Type B	H#B609769
g6	¹ ⁄4" [6] Dia. U-Bolt and Nut	U-Bolt-ASTM A307 Gr.A Nut-ASTM A563A	Bolt: H#71067E Nut: H#184259
h1	Ground Strut Assembly	ASTM A36	PO#2030 H#163375
h2	Anchor Bracket Assembly	ASTM A36	H#JK16101488

Table B-8. Bill of Materials, Test No. MSPBN-8, Cont.

1717 W 115TH ST CHICA MARUICHI LEAVITT PIPE SOUTH PLANT DIVISION	E & T GO IL E & TUBE	Arceloriv 13500 S Riverdali	Aittal Riverd South Perry Ie, IL 60827	ale LLC.	A LLC.	Pag	e 1 of 1
MARUICHI LEAVITT PIPE 1717 W 115TH ST CHICA MARUICHI LEAVITT PIPE SOUTH PLANT DIVISION CHICAGO IL	GO IL	13500 S Riverdal	outh Perry				
SOUTH PLANT DIVISION	Construction of the second statement of the second statement of the second statement of the second statement of						
a state of the late of the second state of the		PO#: SO#: Date Of Its Shipped	00490/10 859202 suance/ 8/	Carrier: 4/2016	LoadID # Steel Tr	025833 ransport,	
Heat Coil	Thickness (in)	Width (in)) Weic	ht (tons)	Re	duction	Ratio
A49248 11923		56.257		.7		% (13:1)	
Grade LEAVITT B15-106	Part Number		Product Do	escription		Comm	ents
LEAVITT B15-106	HB1705625-	er l Ho	Product Do tot Band Prin	escription ne		Comm	ents
LEAVITT B15-106	HB1705625- I in the USA. All products are strand car	er I Ho st and free of mercury o	Product Do bt Band Prin	escription ne ents Elangation	based on 2° g	Comm	
LEAVITT B15-106	HB1705625- I in the USA. All products are strand car	er l Ho	Product Do bt Band Prin	escription ne		Comm	
LEAVITT B15-106 This material was melled and manufactured Heat Coll Yield A49248 119239 58.0KSI A49248 58.9KSI	HB1705625- In the USA. All products are strand car	er I Ho st and free of mercury o	Product Do bt Band Prin	escription ne ents Elangation	based on 2° g	Comm	
LEAVITT B15-106 This material was melled and manufactured Heat Coll Yield A49248 119239 58.0KSI A49248 58.9KSI Material tested in accordance with ISO 1702	HB1705625- Lin the USA. All products are strand car Translie <u>El</u> <u>Dir</u> (ksi) <u>Cfs</u>) <u>Dir</u> 75.8 KSI 29.0 % L 76.0 KSI 29.0 % L 25 by an accredited lab.	HO HO st and free of morcury o N-Volue N-Range	Product Do bt Band Prin or radioactive elem • Hardness	escription ne ents Elangaton Ft-lbs	based on 2° g	Comm ngo length Size D	ir
LEAVITT B15-106 This material was melted and manufactured Heat Coll Yield A49248 119239 58.0KSI A49248 58.9KSI Material tested in accordance with ISO 1702 Heat C Mn F	HB1705625- In the USA. All products are strand car	er I Ho st and free of mercury o	Product Do bt Band Prin	escription ne ents Elangation	based on 2° g	Comm	
LEAVITT B15-106 This material was melted and manufactured Heat Coll Yield A49248 119239 58.0KSI A49248 58.9KSI Material tested in accordance with ISO 1702 Heat C Mn F	HB1705625- Lin Ihe USA. All products are strand car Tamstife El Dir (KsR) 29.0 % L 76.0 KSI 29.0 % L 76.0 KSI 29.0 % L 25 by an accredited lab. P S Si 014 .002 .04	er I Ho st and free of mercury o N-Volue N-Range Cu Ni	Product Do ot Band Prin or radioactive elem • Hardness • Hardness	escription ne ents Elongation Ft-bbs Mo	based on 2° g	Comm ngo length Size D	łł Al

Figure B-1. Foundation Tube Material Specification, Test Nos. MSPBN-4 through MSPBN-8

	PORATION	Mill Certification 7/30/2015		MTR #: 0000087890 300 Steel Mill Road DARLINGTON, SC 29540 643) 393-584
old To: TRINI ROLL	EL SOUTH CAROLINA TY INDUSTRIES INC FORM ACCOUNTING-4TH FLOC DX 568887 AS, TX 75355-8887 699-0847 214) 589-8535	PLAN	ITY INDUSTRIES LIMA ROBB AVENUE IT 55 .OH 45801-0000 589-8407 214) 589-8420	Fax: (843) 395-870
Customer P.O.	171075		Sales Order	229472.1
Product Group	Merchant Bar Quality		Part Number	5362580024010W0
Grade	NUCOR MULTIGRADE		Lot #	DL1510354303
Size	5/8x8" Flat		Heat #	DL15103543
Product	5/8x8" Flat 20' NUCOR MULTIC	RADE	B.L. Number	C1-668702
Description	NUCOR MULTIGRADE		Load Number	C1-347435
Customer Spec			Customer Part #	100395B
areby certify that the n	naterial described herein has been manufactu	ired in accordance with the specifications and standard	ds listed above and that it satisfies t	hose requirements.
Ti CE4 0.001% 0.3	5% 0.013% 0.025% 1020 4% A G4020, AASHTO M270	Si Cu Ni 0.20% 0.36% 0.09%	Cr Mo 0.09% 0.021%	V Cb Sn 0.0500% 0.003% 0.016%
eld 1: 58,000psi eld 2: 58,000psi		Tensile 1: 74,000psi Tensile 2: 74,000psi	Elong	gation: 25% in 8"(% in 203.3mm) gation 25% in 8"(% in 203.3mm)
ecification Comm 150(345), A572/5 150(350W) AA3	ients: NUCOR MULTIGRADE ME 72M-13A GR50(345), A709/709M HTO M270/M270M-10 GR36(270		Elong A36/A36M-12, A529/529M .21-04 GR44W(300W) & .QQ-S-741D, KILLED FG	ation 25% in 8"(% in 203.3mm) -05(2009) PRACTICE

Figure B-2. Anchor Bearing Plate Material Specification, Test Nos. MSPBN-4 through MSPBN-8

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Test Report

	MIDWEST MAD P. O. BOX 703 MILFORD,NE,6		UPPLY CO).			Ship Date: Customer P.O.: Shipped to: Project:	11/17/2017 3515 MIDWEST MA	CHINERY & SU	JPPLY CO.		×	
							GHP Order No:	128AA					
HT # code	LOT#	c.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	Α	2	12GA TB TRANS
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2	5/8IN X 8IN X 8IN BRG. PL,
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2	350 STRUT & YOKE
196828BM		0.04	0.84	0.014	0.003		76000	74000	25			2	350 STRUT & YOKE
E22985		0.17	0.51	0.013	0.008	0.008	72510	64310	29.5	4		2	2IN X 5 1/2IN PIPE SLEEVE
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	8		2	3/16IN X 6IN X 8IN X 6FTOIN TUBE SLEEVE

All Galvanizing has occurred in the United States Notary Public, State of Ohio All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America in Commission Expires 10-19-2019 All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4. STATE OF OHIO: COUNTY OF STARK, hul tate Sworn to and subscribed before me, a Notary Public

Andrew Artar this 21 day of November, 2017 Notary Public, State of Ohio

Figure B-3. Anchor Bearing Plate Material Specification, Test Nos. MSPBN-4 through MSPBN-8

September 1, 2020 MwRSF Report No. TRP-03-418-20

				IV	AIEF	RIAL	TEST	REPO	RT						
Sold (Steel) PO Bo MANH USA	– & Pipe ox 1688	Supply Co NKS 6650	mpany)5									ped to I & Pipe Smith R ESBUR	Supply load G MO (Comp 33351	any
Material: 6.0x	5.0x250x	20'0"0(3x3).			Ma	terial No	: 600602	502000				Made in			
Sales order:	1197957				Pu	rchase C)rder: 450	00291163		Cust Mate	erial #: 6	Melted 5600250			
Heat No	с	Mn	P	S	SI	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	в	N
V2543	0.180	0.680	0.013	0.008	0.020	0.029	0.150	0.009 0.0	20	0.060	0.100	0.002	0.001	0.000	0.007
Bundle No	PCs	Yield	Ten	sile	Eln.2in				ficatio	on			CE: 0.34		
M800713984 Material Note Sales Or.Note		069204 Psi	084	064 Psi	28 %			ASTI	M A50	0-13 GRAD	E B&C				
Material: 8.0x	4.0x313x	40'0"0(3x2).			Ma	iterial No	: 800403	134000				Made in Melted	: USA in: USA		17
Sales order:	1202413				Pu	rchase (Order: 45	00292047		Cust Mate	erial #: 6	56800400	31340		
Heat No	с	Mn	P	S	Si	AI	Cu	Cb	Mo	Ni	Cr	V	Ti	В	N
17049081	0.210	0.720	0.006	0.003	0.020	0.029	0.100	0.001 0.0	010	0.040	0.040	0.002	0.000	0.000	0.008
Bundle No	PCs	Yield	Ter	sile	Eln.2in				ificatio				CE: 0.35		
M800719620 Material Note Sales Or.Note		066696 Psi	082	026 Psi	30 %			AST	M A50	0-13 GRAD	E B&C				
Material: 8.0x	6.0x188	(40'0"0(3x2).					o: 800601						in: USA		
Sales order:			-					00291779	Na	Cust Mat				в	N
Heat No	C	Mn	P	S	\$i	AI 0.023	0.100	Cb 0.000 0.0	Mo	Ni 0.040	Cr 0.060	0.002	0.000	0.000	
17043541	0.190 PCs	0.360 Viold	0.006	0.002 nsile	0.030 Eln.2in	0.023	Q.100		ificati		0.000	0.001	CE: 0.28		
Bundle No M800715933	 6	Yield 058484 Ps		393 Psi	30 %					0-13 GRA	DE B&C				
Material Note Sales Or.Not	: :														

Figure B-4. Lower Slip Post Tube Assembly Material Specification, Test Nos. MSPBN-4 through MSPBN-8

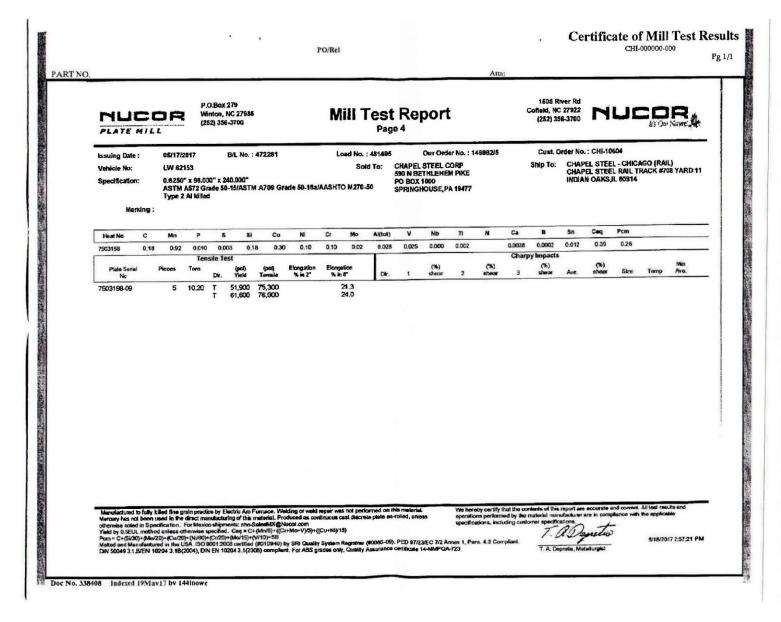


Figure B-5. Lower Slip Post Plate Assembly Material Specification, Test Nos. MSPBN-4 through MSPBN-8

MILL TEST CERTIFICATE

NUCOR STEEL TUSCALOOSA, INC.

1700 HOLT RD N.E. Tuscaloosa, AL 35404-1000 800 800-8204 customerservice@nucortusk.com

Load Number Tally Mill Order Number PO NO | Line NO Certificate Number Part Number Prepared T158924 00000000738119 N-157551-001 4500290442 1 573811901-1 07/28/2017 12:52 Grade Customer: Order Description: Sold TO: Hot Roll Plate From Coil STEEL AND PIPE SUPPLY CO INC GARDNER KS A36, 0.7500 IN x 72.000 IN x 120.000 IN Ship TO: Quality Plan Description: Kansas City Warehouse New Century KS A36/SA36/A70936: ASTM A36-14/A709-36-15/ASME SA36-13/M270-36 Sent TO: Shipped Certified Heat/Slab Yield ELONGATION % Tensile Y/T Bend Hard Charpy Impacts (ft-1bs) Shear % Test Item By Number ksi ksi 2" OK? Temp * 8" HB Size mm 1 2 3 Avg 1 2 3 Avg 7C0887M \$7G0887FTT B7T5144-01 *** 50.4 69.2 72.8 39.8 7G0887M \$7G0887MTT B7T5144-01 *** 49.8 65.7 75.8 37.9 7C0888E \$7G0887FTT B7T5144-02 *** 50.4 69.2 72.8 39.8 7G0888E S7C0889FTT 87T5144-02 *** 47.5 69.9 68.0 26.2 7G0888E \$7G0887MTT B7T5144-02 *** 49.8 65.7 75.8 37.9 7G0888E S7G0889MTT B7T5144-02 *** 45.0 64.0 70.3 26.5 7G0888F S7G0887FTT B7T5144-02 *** 50.4 69.2 72.8 39.8 7G0888F S7G0889FTT B7T5144-02 *** 47.5 68.0 69.9 26.2 \$7C0887MTT 7G0888F B7T5144-02 *** 49.8 65.7 75.8 37.9 7G0888F S7G0889MT1 B7T5144-02 *** 45.0 64.0 70.3 26.5 7G0888G S7G0887FTT B7T5144-02 *** 50.4 69.2 72.8 39.8 7G0888G S7G0889FTT B7T5144-02 *** 47.5 69.9 68.0 26.2 7608886 S7G0887MTT B7T5144-02 *** 49.8 65.7 75.8 37.9 7G0888G S7G0889MTT B7T5144-02 *** 45.0 64.0 70.3 26.5 7G0888H 57G0887FTT B7T5144-02 *** 50.4 69.2 72.8 39.8 7G0888H S7G0889FTT B7T5144-02 *** 47.5 69.9 68.0 26.2 7G0888H S7G0887MTT B7T5144-02 *** 49.8 65.7 75.8 37.9 7G0888H S7G0889MTT B7T5144-02 *** 45.0 64.0 70.3 26.5 Items: 5 PCS: 22 Weight: 40429 LBS Mercury has not come in contact with this product during the manufacturing process nor has any mercury been used by the We hereby certify that the product described above passed all of the tests required manufacturing process. Certified in accordance with EN 10204 3.1. No weld repair has been performed on this material by the specifications. Manufactured to a fully killed fine grain practice. NUTEMPER TEMPER PASSED plate from coil 1. 4. ISO 9001:2015 Registered, PED Certified Quilin Yu - Metallurgist "" indicates Heats melted and Manufactured in the U.S.A.

Figure B-6. Upper Slip Plate Assembly Material Specification, Test Nos. MSPBN-4 through MSPBN-7

Page:2 of 2

Steel & Pipe Supply Co. Midwest Steel Works, Inc. Customer PO: 49764

Heat: 7G0887M Shipment: 0017028822

JS-ML-MIDL	OTHIAN	DAU		PE SUPPLY CO ENTURY PKWY URY,KS 66031-		EL & PIPE SU NHATTAN,KS		LEN 40'0	IGTH 0"	13.5	WEIGHT 17,280 LB	HEAT / BATCH 58031555/02
00 WARD RO AIDLOTHIAN JSA			SALES ORI 5782497/00			CUSTOMER M 000000000376		AST	CIFICATION / DA M A6-14 M A709-15	ATE or REVIS	ION	
CUSTOMER P 4500297205	JRCHASE ORD	ER NUMBER		BILL OF LA 1327-00002		DAT 11/08	E 3/2017	ASTM A992-11 (2015), CSA G40.21-13 345WM		.572-15		
CHEMICAL CON	POSITION Mn 0.86	P 0.010	\$ 0.017	\$j 0.18	Си 0.27	Ni 0.13	۶ <u>ر</u> 0.23	Mo 0.041	\$% 0.007	¥ 0.001	Nb 0.013	۵. 0.003
CHEMICAL CON CEgyA6 0.30	IPOSITION											
MECHANICAL P YS (575 575	2% 63	75	TS SI 927 066	3	YS 4Pa 197 197		UTS MPa 524 531	0	T _r rati .760 .750	8	G/L Inch .000	
MECHANICAL P G/ mi 200 200	L n 0.0	Elç 24										
COMMENTS / NO	TES											
					(18-4)							
						Î						
	specified		his material, inc		, was melted and		anent records of co n the USA. CMTR		EN 10204 3.1.	are correct and	d in compliance wit	h
	1								wome di		JTY ASSURANCE MOR	

Figure B-7. Upper Slip Post Assembly Material Specification, Test Nos. MSPBN-4 through MSPBN-7

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>10057594</u> Customer PO# <u>3475</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Tested Retention
.636
.627
.638
.673
.648
)

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards. VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Nicholas Sowl, General Counsel

8/25/2017 Date

Figure B-8. Timber Blockout and BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8

	CENTRAL NEBRASKA WOOD PRESERVERS			
	P. O. Box 630 • Su Pone 402-7 FAX 402-77	73-4319		
R#17-28	2 BCT Posts 70 Acct AND V	Vood Blocks f	or Bullnose	
Nov2016	SMT Wood Blockouts are p	ainted Light I	Blue	
	*		Date: _	11/11/16
	CERTIFICATE (OF COMPLI	ANCE	
Shinned TC	: Midwest Machinery + Say	DOL#	100 5520-	7
Customer P	0# 333 9	Preservative: Co	CA - C 0.60 pcf A	WPA UC4B_
D-+#		# of Pieces		1
Part #	Physical Description	# OI I ICCCS	Charge #	Tested Retention
-	bx 8-6.5" PST	35	22973	Tested Retention
GR6806;587				
GR 6806;587 GR 6806.5CRT	bx8-6.5" PST	35	22973	:679
GR6806 <i>;587</i> GR6806 <i>;587</i> GR6806 <i>54</i> 87	6x8-6.5" PST 6x8-6.5" CRT	35 25	22973 82973	:679 .679
GR6806 <i>;587</i> GR6806 <i>;587</i> GR6806 <i>54</i> 87	6x8-6.5" PST bx8-6.5" CRT 5.5-7.5-46"BCT	35 25 42	22973 22973 22927	.679 .679 .638
GR6806 <i>;587</i> GR6806 <i>;587</i> GR6806 <i>54</i> 87	6x8-6.5" PST bx8-6.5" CRT 5.5-7.5-46"BCT	35 25 42	22973 22973 22927	.679 .679 .638
GR6806 <i>;587</i> GR6806 <i>;587</i> GR6806 <i>54</i> 87	6x8-6.5" PST bx8-6.5" CRT 5.5-7.5-46"BCT	35 25 42	22973 22973 22927	.679 .679 .638
GR 6806;587 GR 6806;5027 GR 6806;5027 GR 612 14800 I certify the abov	bx 8 - 6.5 " PST bx 8 - 6.5 " CRT 5.5 - 7.5 - 46 BCT 6x 12 - 14 ° ocD e referenced material has been	35 35 42 168 VA: Central Nebraska products listed above h	22973 22973 22927 22927 22927	.679 .679 .638 .638
GR 6806;587 GR 6806,5CPT GS 6846P5T GR 612 148CK	bx8-6.5" PST bx8-6.5" CRT 5.5-7.5-46'BCT 6x12-14" OCD	35 35 42 168 VA: Central Nebraska products listed above h standards, Section 236	22973 22973 22927 22927 Wood Preservers certifies U	.679 .679 .638 .638 .638
GR 6806;587 GR 6806,5CPT GS 6846P5T GR 612 148CK	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5.5 - 7.5 - 46.BCT 6x 12 - 14" ocD e referenced material has been and tested in accordance with AWPA	35 35 42 168 VA: Central Nebraska products listed above h standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638
GR 6806.587 GR 6806.5CET SS6846PST GR 612 JYBCE I certify the abov produced, treated standards and con	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5.5 - 7.5 - 46.BCT 6x 12 - 14" ocD e referenced material has been and tested in accordance with AWPA	35 35 42 168 VA: Central Nebraska products listed above h standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638
GR 6806.587 GR 6806.5CET SS6846PST GR 612 JYBCE I certify the abov produced, treated standards and con	bx 8 - 6.5" PST bx 8 - 6.5" CRT 5 .5-7.5-46. BCT bx 12 - 14" ocD bx 12 - 14" ocD construction accordance with AWPA aforms to AASHTO M133 & M168.	35 35 42 168 VA: Central Nebraska products listed above h standards, Section 236	22973 22973 22927 22927 22927	.679 .679 .638 .638 .638

Figure B-9. Tapered Timber Blockout and BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-7

PERMA-TREAT OF ILLINOIS, INC. 1800 PERMA-TREAT DRIVE, PO BOX 99 MARION, IL 62959 PH# 800.572.7384 FAX# 618,993,8680

This is to certify that the guardrail material has been treated and inspected according to the Iowa Department of Transportation Specification requirements and IM 462. Also, conforms to State of Illinois specification.

This material has been processed from Rough Sawn #1 Southern Yellow Pine.

Company:

Bill of Lading:

Quantity	Descripti	on	Charge #	Date of Treatment	Treatment	MC prior to Treatment
30	6×8×7	ан	4835	4.4.11	.60 CCA-C	20%
30	6×8×7'	AH	4800	12-6-10	.60 CCA-C	20%
30	GX8X7	3H	4843	4-8-11	.60 CCA-C	20%
60	6×8×6	CRT	4850	4-19-11	.60 CCA-C	20%
90	6×8×6	CRT	4845	4-15-11	.60 CCA-C	20%
252	6xIax14	IH	4844	4-12.11	.60 CCA-C	20%
288	6X8X18"	OHTRANS	4851	4-19-11	.60 CCA-C	20%
144	6×8×18"	all Trans	4844	4-12-11	.60 CCA-C	20%
					.60 CCA-C	20%
			-		.60 CCA-C	20%
		-			.60 CCA-C	20%
					.60 CCA-C	20%

Perma-Treat of Ilinois, Inc. By: Title:

Date: 5/10/11

NOTARIZED

Sworn to and described Before me this 10 day of 0 2011 BV: Mara OFFICIAL SEAL SARA BOND Notary Public, State of Illinois Official Seal ly Commission Expires 01-31-2015

Figure B-10. Tapered Timber Blockout and BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-7

767 Count Delta Ohio	ty Road 9		OPE STEE	LLLC														
Cust	omer:		Trinity	Highwa	y Produ	icts, LLC	C			Ordered	Width	(mm/	in) 14	47.8 / 5	7	Weig	ht(kg/	lb)
2525 5	Stemmo	ns Free	eway		0	rder #		387817		Ordered	Gauge	e (mm/	(in) 2.4	438 / 0.	096	2115	5 / 4663	39
Dallas.	, TX 752	207			Li	ne Iten	n #	1		Produce	d Date	/Time	9/2	21/17 13	3:16			
Custo	omer P	.0:	185910	-3	He	eat #		219447		Coil #			17	54757				
Cust.	Ref/P	art #	100012B	Pickle/Slit	M	aterial	Desc:	1018 CQ	Modified	d, Guardrail	Type 2							
							Ch	emical	Ana	lysis (w	/t%)							
Туре	С	Mn	Р	S	Si	AI	Cu	Cr	Ni	Мо	Sn	Ν	в	V	Nb	Ti	Ca	Pb
Heat	0.20	0.73	0.011	0.005	0.02	0.03	0.13	0.08	0.07	0.02	0.00	0.007	0.0001	0.001	0.000	0.000	0.001	0.001

Certified Test Report

Mechanical Test Report

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	61900 psi	80080 psi	25.4%

This hot rolled steel has been produced to conform to DIN EN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards:ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM 1370-14, JIS Z2201:1998, JIS Z2241:2011. Pressure Equipment Directive (PED) 2014/68/EU, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC is not responsible for the inability of this material to meet specific applications. Any modifications to this certification as provided negates the validity of this test report. All reproductions must have the written approval of North Star BlueScope Steel.This product was manufactured, melted, cast, and hot-rolled (min. 3:1 reduction ratio), entirely within the U.S.A at North Star BlueScope Steel LLC polta, Ohio. This material was not exposed to Mercury or any alloy which is liquid at ambient temperature during processing or while in North Star BlueScope Steel LLC poses. Thes. equipment calibration certificates are available upon request. NIST traceability is established through test equipment calibration certificates which are available upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at a 4:1 ratio in accordance with NIST standards. Uncertainty

Tim Mitchell

mathe

Date Issued: Oct 11, 2017 3:18 PM Revision#: 01

Manager Quality Assurance and Technology

Figure B-11. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 through MSPBN-8

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC

6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112

Customer: Trinity Highway Pro	ducts, LLC		
2525 Stemmons Freeway	Order #	389604	Ord Width (mm/in) 1504.950 / 59.250 Weight (kg/lb) 21019 / 46339
Dallas, TX 75207	Line Item #	1	Ord Gauge (mm/in) 2.438 / 0.096
Customer P.O.: 186321-3	Heat #	220022	Material Description 1018 CQ Modified, Guardrail Type 2
Cust. Ref/Part # 100212B	Coil #	1759633	Production Date/Time Oct 7 2017 11:41AM

Heat Chemical Analysis (wt%)

Туре	С	Mn	Р	S	Si	AI	Cu	Cr	Ni	Мо	Sn	N	В	v	Nb	Ti	Ca	Pb
Heat	0.18	0.72	0.012	0.002	0.02	0.02	0.09	0.06	0.04	0.02	0.00	0.005	0.0000	0.001	0.000	0.001	0.002	0.001

Mechanical Test Report

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	63,060 psi	80,170 psi	26.6%

This hot rolled steel has been produced to conform to DIN/EN 10204:2005 3.1 and has been mandfactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM A751-14, JS Z201:1998, JIS Z 2241:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex 1, Paragraph 4.3 Compliant. This report entities that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material identified this estimation as provided negates the validity of this test report. All reproductions must have the written approval of North Star BlueScope Steel LLC This product was manufactured, meterd, acid, and hot-following applicables Steel LLC. As at North Star BlueScope Steel LLC, Dots. This product and the requirements of the material was not exposed to Merculion ratio, antihely within the U.S. At North Star BlueScope Steel LLC, Dots. This material was not exposed to Merculion and the admitted in a contraint exposed to Merculion and the admitted in accordance with INST standards. Uncertainty data is available upon request. INST standards. Uncertainty calculated in accordance with INST standards. Uncertainty calculates and bus non request.

Tim Mitchell

Manager Quality Assurance and Technology

Date Issued: Nov 06, 2017 10:41:39 Revision#: 01

Figure B-12. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 through MSPBN-8

		C	ertified Test Report			
NORTH STAR BLU 6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112	JESCOPE STEEL LLC					
Customer: Trinity Hig 2525 Stemmons Freewa Dallas, TX 75207 Customer P.O.: 18632 Cust. Ref/Part # 10021	ay Order # Line Item # 1-3 Heat #	389604 1 220023 1759637	Ord Width (mm/in) 15 Ord Gauge (mm/in) 2 Material Description Production Date/Time	2.438 / 0.096 1018 CQ Mo	odified, Guardrail Type 2	22412 / 49410
		Heat	Chemical Analysis (wt	%)		
Type C Heat 0.19	Mn P S Si 0.73 0.011 0.005 0.01		Cr Ni Mo 0.07 0.04 0.01		N B V Nb 008 0.0000 0.001 0.000	Ti Ca
			lechanical Test Report	10		
						-
	Yield S	trength	Tensile Strength	• •/	Elongation in 2 inches	
This hot rolled steel has been proc standards: ASTM E1806-09. ASTI	Tail 61,25 duced to conform to DIN/EN 10204:2005 3	trength 50 psi 3.1 and has been manufactu 14, JIS Z2201:1998, JIS Z 2	Tensile Strength 79,890 psi irred to a fully killed fine grain practice. This 241:2011, Pressure Equipment Directive (F	hot rolled steel has	23.1% been produced and tested in accordance of Annex I, Paragraph 4.3 Compliant. This re	with each of the following
standards: ASTM E1806-09, ASTM results are representative of those is not responsible for the inability of This product was manufactured, or temperature during processing or	Tail 61,25 duced to conform to DIN/EN 10204-2005 3 M E415-14, ASTM A751-14, ASTM 1370- contained in the records of North Star Bil of this material to meet specific application of this material to meet specific application while in North Star Bile Spoce Steel LLC 7	50 psi 3.1 and has been manufactu 14, JIS 22201:1998, JIS 2 2 ueScope Steel LLC for the m is. Any modifications to this- ition ratio), entirely within the possession. Test equipment	79,890 psi	hot rolled steel has PED) 97/23/EC 7/2 tended to comply y of this test report , Delta, Ohio. This equest. NIST trac.	23.1% been produced and tested in accordance : Annex I, Paragraph 4.3 Compliant. This re tilth the requirements of the material descrip All reproductions must have the written ap material was not exposed to Mercury or an ability is established through trest equipment	port certifies that the ab otion. North Star BlueSc proval of North Star Blue y alloy which is liquid at nt calibration certificates
standards: ASTM E1806-09, ASTM results are representative of those is not responsible for the inability of This product was manufactured, or temperature during processing or	Tail 61,25 duced to conform to DIN/EN 10204-2005 3 M E415-14, ASTM A751-14, ASTM 1370- contained in the records of North Star Bil of this material to meet specific application of this material to meet specific application while in North Star Bile Spoce Steel LLC 7	50 psi 3.1 and has been manufactu 14, JIS Z2201:1998, JIS Z 2 ueScope Steel LLC for the m s. Any modifications to this ution ratio), entirely within the possession. Test equipment ce with NIST standards and	79,890 psi red to a fully killed fine grain practice. This 241:2011. Pressure Equipment Directive (F naterial identified in this test report and is in certification as provided negates the validity U.S.A at North Star BlueScope Steel LLC calibration certificates are available upon t	hot rolled steel has PED) 97/23/EC 7/2 tended to comply v of this test report Delta, Ohio. This equest. NIST trace with NIST standa	23.1% been produced and tested in accordance t Annex I, Paragraph 4.3 Compliant. This re ith the requirements of the material descrit All reproductions must have the written ap material was not exposed to Mercury or any ability is established through test equipme ds. Uncertainty data is available upon requ	port certifies that the ab otion. North Star BlueSc proval of North Star Blue y alloy which is liquid at nt calibration certificates
standards: ASTM E1806-09, ASTM results are representative of those is not responsible for the inability of This product was manufactured, m temperature during processing or available upon request. Uncertain	Tail 61,25 duced to conform to DIN/EN 10204-2005 3 M E415-14, ASTM A751-14, ASTM 1370-2 contained in the records of North Star Bill Of this material to meet specific application relied, cast, and hot-rolled (min. 3:1 reduc While in North Star Bill while in North Star Bill Open Steel LLC program	50 psi 3.1 and has been manufactu 14, JIS Z2201:1998, JIS Z 2 ueScope Steel LLC for the m s. Any modifications to this ution ratio), entirely within the possession. Test equipment ce with NIST standards and	79,890 psi red to a fully killed fine grain practice. This 241:2011, Pressure Equipment Directive (F naterial identified in this test report and is in cortification as provided negates the validity U.S.A at North Star BlueScope Steel LLC calibration certificates are available upon - are maintained at a 4:1 ratio in accordance	hot rolled steel has PED) 97/23/EC 7/2 tended to comply v of this test report Delta, Ohio. This equest. NIST trace with NIST standa	23.1% been produced and tested in accordance Annex I, Paragraph 43 Compliant. This re with the requirements of the material descrip All reproductions must have the written ap material was not exposed to Mercury or an ability is established through test equipment ds. Uncertainty data is available upon required Date Issued: Oct	port certifies that the ab tion. North Star Bluesco proval of North Star Bluesco y alloy which is liquid at in t calibration certificates uest.
standards: ASTM E1806-09, ASTM results are representative of those is not responsible for the inability of This product was manufactured, m temperature during processing or available upon request. Uncertain	Tail 61,25 duced to conform to DIN/EN 10204-2005 3 M E415-14, ASTM A751-14, ASTM 1370-2 contained in the records of North Star Bill Of this material to meet specific application relied, cast, and hot-rolled (min. 3:1 reduc While in North Star Bill while in North Star Bill Open Steel LLC program	50 psi 3.1 and has been manufactu 14, JIS Z2201:1998, JIS Z 2 ueScope Steel LLC for the m s. Any modifications to this ution ratio), entirely within the possession. Test equipment ce with NIST standards and	79,890 psi red to a fully killed fine grain practice. This 241:2011, Pressure Equipment Directive (F naterial identified in this test report and is in cortification as provided negates the validity U.S.A at North Star BlueScope Steel LLC calibration certificates are available upon - are maintained at a 4:1 ratio in accordance	hot rolled steel has PED) 97/23/EC 7/2 tended to comply v of this test report Delta, Ohio. This equest. NIST trace with NIST standa	23.1% been produced and tested in accordance Annex I, Paragraph 43 Compliant. This re with the requirements of the material descrip All reproductions must have the written ap material was not exposed to Mercury or an ability is established through test equipment ds. Uncertainty data is available upon required Date Issued: Oct	port certifies that the ab tion. North Star Bluesco proval of North Star Bluesco y alloy which is liquid at in t calibration certificates uest.
standards: ASTM E1806-09, ASTM results are representative of those is not responsible for the inability of This product was manufactured, m temperature during processing or available upon request. Uncertain	Tail 61,25 duced to conform to DIN/EN 10204-2005 3 M E415-14, ASTM A751-14, ASTM 1370-2 contained in the records of North Star Bill Of this material to meet specific application relied, cast, and hot-rolled (min. 3:1 reduc While in North Star Bill while in North Star Bill Open Steel LLC program	50 psi 3.1 and has been manufactu 14, JIS Z2201:1998, JIS Z 2 ueScope Steel LLC for the m s. Any modifications to this ution ratio), entirely within the possession. Test equipment ce with NIST standards and	79,890 psi red to a fully killed fine grain practice. This 241:2011, Pressure Equipment Directive (F naterial identified in this test report and is in cortification as provided negates the validity U.S.A at North Star BlueScope Steel LLC calibration certificates are available upon - are maintained at a 4:1 ratio in accordance	hot rolled steel has PED) 97/23/EC 7/2 tended to comply v of this test report Delta, Ohio. This equest. NIST trace with NIST standa	23.1% been produced and tested in accordance Annex I, Paragraph 43 Compliant. This re with the requirements of the material descrip All reproductions must have the written ap material was not exposed to Mercury or an ability is established through test equipment ds. Uncertainty data is available upon required Date Issued: Oct	port certifies that the ab tion. North Star Bluesco proval of North Star Bluesco y alloy which is liquid at in t calibration certificates uest.
standards: ASTM E1806-09, ASTM results are representative of those is not responsible for the inability of This product was manufactured, m temperature during processing or available upon request. Uncertain	Tail 61,25 duced to conform to DIN/EN 10204-2005 3 M E415-14, ASTM A751-14, ASTM 1370-2 contained in the records of North Star Bill Of this material to meet specific application relied, cast, and hot-rolled (min. 3:1 reduc While in North Star Bill while in North Star Bill Open Steel LLC program	50 psi 3.1 and has been manufactu 14, JIS Z2201:1998, JIS Z 2 ueScope Steel LLC for the m s. Any modifications to this ution ratio), entirely within the possession. Test equipment ce with NIST standards and	79,890 psi red to a fully killed fine grain practice. This 241:2011, Pressure Equipment Directive (F naterial identified in this test report and is in cortification as provided negates the validity U.S.A at North Star BlueScope Steel LLC calibration certificates are available upon - are maintained at a 4:1 ratio in accordance	hot rolled steel has PED) 97/23/EC 7/2 tended to comply v of this test report Delta, Ohio. This equest. NIST trace with NIST standa	23.1% been produced and tested in accordance Annex I, Paragraph 43 Compliant. This re with the requirements of the material descrip All reproductions must have the written ap material was not exposed to Mercury or an ability is established through test equipment ds. Uncertainty data is available upon required Date Issued: Oct	port certifies that the ab tion. North Star Bluesco proval of North Star Bluesco y alloy which is liquid at in t calibration certificates uest.

SubmeterSubmeterBy BingBy	NORTH STAR BLUESCOPE STEEL LLC S76 County Road 9 Delta, Dio 43515 Telephone: (888) 822-2112 Customer: Trinity Industries S252 Stemmons Freeway Order # 356803 Ord Gauge (mm/in) 2.438 / 0.096 Customer P.O.: 176195M-3 Heat # 203662 Material Description 1018 CQ Modified, Guardrail Type 2 Cust. Ref/Part # 200212B Coil # 1620558 Production Date/Time Jun 4 2016 4:26PM Meta Chemical Analysis (wt%) Type C Mn P Si Al Cu Cr Ni Mo So N B V Nb Ti Ca I Heat 1 Cu Cr Ni Mo So N B V Nb Ti Ca I Heat Chemical Analysis (wt%) District Colspan="2">Colspan="2" Colspan="2"	WORTH STAR SUBJECTION STREMENT With With With With With With With With								С	ertifie	d Test	Report								
2525 Stemmons Freeway Order # 356803 Ord Width (mm/in) 1504.950 / 59.250 Weight (kg/lb) 26526 / 58480 Dalas, TX 75207 Line Item # 1 Ord Gauge (mm/in) 2.438 / 0.096 Customer P.O.: 176195M-3 Heat # 2003662 Material Description 1018 CQ Modified, Guardrail Type 2 Cust. Ref/Part # 200212B Coil # 1620558 Production Date/Time Jun 4 2016 4:26PM Metat # 2003 0.13 0.06 0.08 0.01 0.001 0.000 0.01	2252 Stemmons Freeway Order # 356803 Ord Width (mm/in) 1504.950 / 59.250 Weight (kg/lb) 26526 / 58480 Dallas, TX 75207 Line Item # 1 Order 203662 Material Description 1018 CQ Modified, Guardrail Type 2 Cust, Ref/Part # 200212B Coll # 1620558 Production Date/Time Jun 4 2016 4/26PM Metat # 203662 Material Description 1018 CQ Modified, Guardrail Type 2 Colspan="2">Material Description 1018 CQ Modified, Guardrail Type 2 Metat # 203662 Material Description 1018 CQ Modified, Guardrail Type 2 Coll # 1620558 Production Date/Time Jun 4 2016 4/26PM Metat Colspan="2">Material Description 1018 CQ Modified, Guardrail Type 2 Metat Colspan="2">Metat Material Colspan="2">Material Description Metat Colspan="2">Coll # 1020558 Production Date/Time Jun 4 2016 4/26PM Metat Colspan="2">Colspan="2">Colspan="2">Si Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2">Material Colspan="2" Material Colspan="2" Material Colspan="2" Material Colsp	2525 Stemmons Freeway Dalas, TX 75207 Order # 356803 Ord Width (mm/in) 1504.950 / 59.250 Weight (kg/lb) 26526 / 58480 Customer P.O.: 176195M-3 Heat # 203662 Ord Science (mm/in) 2.4387 / 0.096 Customer P.O.: 176195M-3 Heat # 203662 Material Description 1018 CQ Modified, Guardrail Type 2 Cust, Ref/Part # 200212B Coil # 1620558 Production Date/Time Jun 4 2016 4.26PM Metat # 200212B Metat # 200212B Type C Mn P S Si Al Cu Cr Ni Mo Sn N S P V Nb Ti Ca P A No	6767 County Ro Delta, Ohio 435	ad 9 15	2	OPE S	TEEL L	LC													
Type C Mn P S Si Al Cu Cr Ni Mo Sn N B V Nb Ti Ca Heat 0.19 0.72 0.011 0.005 0.02 0.03 0.13 0.06 0.08 0.01 0.005 0.0001 0.000 0.00	Type C Mn P S Si Al Cu Cr Ni Mo Sn N B V Nb Ti Ca I Heat 0.19 0.72 0.011 0.005 0.02 0.03 0.13 0.06 0.08 0.01 0.01 0.005 0.000 0.000 0.000 0.000 0.000 0.002 0.03 0.03 0.06 0.08 0.01 0.01 0.005 0.000	Type C Mn P Si Al Cu Cr Ni Mo Sn N B V Nb Ti Ca P Heat 0.19 / 0.72 0.011 0.005 0.02 0.03 0.13 0.06 0.08 0.01 0.005 0.000 <	2525 Stemme Dallas, TX 7520 Customer P.	ons Freev 07 0.: 1761	way 95M-3		Line Ite Heat #		1 203	662	Or Ma	d Gauge aterial De	(mm/in) scription	2.438 / 1018 C	0.096 Q Modifie		-		26526	58480	
Heat 0.19 0.72 0.011 0.005 0.02 0.03 0.13 0.06 0.08 0.01 0.005 0.001 0.000 0.000 0.000 0.002 Mechanical Test Report Tail Yield Strength Tensile Strength % Elongation in 2 inches Tail G1,220 psi 78,610 psi 25.1% This hot rolled steel has been produced to conform to DINEN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following standards: ASTM E180-609, ASTM E1815-14, ASTM A751-14, JST 22201:1998, JIS Z 2241:2011. Pressure Equipment Dicetive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Complete A, ASTM A751-14, ASTM A751-14, JST 22201:1998, JIS Z 2241:201. Pressure Equipment Dicetive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Complete A and the steel is not responsible for the fnailing of this material loscordance with and the material discription. North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the worth on ratio, entirely within the U.S.A at North Star BlueScope Steel LLC, Dett. Ohio. This material was not exposed to Mercury or any alloy which is figuid at a temperature during processing or while in North Star BlueScope Steel LLC possession. Test equipment calibration certificates are available upon request. NIST traceability data is available upon request.	Heat 0.19 0.72 0.011 0.005 0.02 0.03 0.13 0.06 0.08 0.01 0.01 0.005 0.0001 0.000 0.000 0.000 0.002 0.000 Mechanical Test Report Tige Strength % Elongation in 2 inches Tige Strength % Elongation in 2 inches Tail 61,220 psi 78,610 psi 25.1% This hot rolled steel has been produced to conform to DINEN 10204/2005 3,1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applic standards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM 370-14, JIS Z2201:1989, JIS Z 2241:2011. Pressue Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material Identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material concertification as provide negates the validity of this material was not exposed to Mercury or any alloy which is flueScope Steel LLC for the material atom end theread uses not exposed to Mercury or any alloy which is flueScope Steel LLC, Detas, Ohio. This material was not exposed to Mercury or any alloy which is flueScope Steel LLC pressession. The stere quipment calibration certificates are available upon request. Uncertainty c	Heat 0.19 0.72 0.011 0.005 0.02 0.03 0.13 0.06 0.08 0.01 0.01 0.005 0.001 0.000 0.000 0.002 0.002 0.002 Mechanical Test Report Tail 61,220 psi 78,610 psi 25.1% "State and the steel has been produced to conform to DINEN 10204/2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applica tandards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, JIS Z2201:1998, JIS Z241:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test esults are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report. All reproductions must have the written approval of North Star BlueScope Steel LLC for the material description. North Star BlueScope Steel LLC, for the material description certificates are available upon request. North Star BlueScope Steel LLC, for the material description certificates are available upon request. North Star BlueScope Steel LLC, for the context certain and certain proval of Mercury or any allow which is figuid at ambient and restriction as provided negates the validity of this material was not exposed to thord through tested upment calibration certificates are available upon request. Date Issued: Jun 07, 2016 08:31:43 Tim Mitchall Wattername Manager Qual								Heat	Chemi	ical Ana	lysis (wt	:%)							
Mechanical Test Report Image: Strength in the strength interpretation of the strength is material base of the strength interpretation of the strength is material base of the strength interpretation of the strength is material base of the strength interpretation of the strength interpretation of the strength interpretation of the strength is called base of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength interpretation of the strength is strength interpretation of the strength is	Mechanical Test Report Image: Strength Test Strength Test Strength Colspan="2">% Elongation in 2 inches Tail 61,220 psi 78,610 psi 25.1% This hot rolled steel has been produced to conform to DIN/EN 10204-2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applic standards: ASTM £1806-09, ASTM £151-14, ASTM 4751-14, JIS 22011998, JIS 2 2241:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material identified in reporducing must have the written approval of North Star BlueScope Steel LLC for the material identified are usalidity of this material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Deta, Ohio. This material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Detas, Ohio. This material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Detas, Ohio. This material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Detas, Ohio. This material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Detas, Ohio. This material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Detas, Ohio. This material was not exposed to Mercury or any alloy which is flue/Scope Steel LLC, Dessession. The equipment calibration certificates are available upon request. Uncertainty calculations are explained at a 4:1 ratio in accordance with NIST standards. U	Mechanical Test Report <u>Yield Strength</u> <u>161,220 psi</u> <u>161,220 psi</u> <u>78,610 psi</u> <u>25.1%</u> This hot rolled steel has been produced to conform to DINEN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following application tandards: ASTM E1806-09, ASTM E1806-14, ASTM A751-14, ASTM 130-14, JIS 22201:1998, JIS 2221:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test esuits are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material dendified in rules report. Annex I, Paragraph 4.3 Compliant. North Star BlueScope Steel LLC for the material identified on approvaled regates the validity of this material description. North Star BlueScope Steel LLC, for the material dendified in this test report. All reproductions must have the witten approval of North Star BlueScope Steel LLC, for the material dendified in this test report. All reproductions must have the witten approval of North Star BlueScope Steel LLC, for the material dendified in this test report. All reproductions are not explored to the material was not exposed to Mercury or any allow which is includ at ambient invalidable upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at a 4:1 ratio in accordance with NIST standards. Uncertainty data is available upon request.	Туре	С	Mn	P	S	Si	Al	Cu		Ni	Мо	Sn	N	В	V	Nb	Ti	Ca	Pt
Yield Strength Tensile Strength % Elongation in 2 inches Tail 61,220 psi 78,610 psi 25.1% This hot rolled steel has been produced to conform to DINEN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following standards: ASTM E1806.09, ASTM E415-14.4, ASTM A751-14, ASTM A751-14, JSTM 2017-14, JSTZ 2017-1998, JJS 22471-2011. Pressure Equipment Dictive (PED) 97/23/EC 7/2, Annex 1, Paragraph 4.3 Compliant. This report carlings that the abor responsible for the inability of this material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC Detted form 20, and the start BlueScope Steel LLC Detted form 20, and the start BlueScope Steel LLC. Detted form 20, and the start BlueScope Steel LLC postession. Test equipment calibration certificates are available upon request. NIST traceability is established through test equipment calibration certificates are available upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at a 4:1 ratio in accordance with NIST standards. Uncertainty data is available upon request.	Yield Strength Tensile Strength % Elongation in 2 inches Tail 61,220 psi 78,610 psi 25.1% This hot rolled steel has been produced to conform to DINEN 10204:2005 3.1 and has been manufactured to a fully killed fine gracine. This hot rolled steel has been produced and tested in accordance with each of the following applic standards: ASTM E15164, ASTM ASTM ASTM ASTM ASTM ASTM ASTM ASTM	Yield Strength Tensile Strength % Elongation in 2 inches Tail 61,220 psi 78,610 psi 25.1% This hot rolled steel has been produced to conform to DINEN 10204-2005 3.1 and has been menufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following application to train the requirement of the material description. This report certifies that the above test esuits are representative of those contained in the records of North Star BlueScope Steel LLC for the material identifies in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material identifies in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC for the material description approval of North Star BlueScope Steel LLC for the material identifies in this test report. All reproductions must have the withen approval of North Star BlueScope Steel LLC for the material description of the actifications as provided negates the volucity or any alory which is figuid at ambient and reproductions must have the withen approval of North Star BlueScope Steel LLC, for the material was not exposed to Mercury or any alory which is figuid at ambient within approval of North Star BlueScope Steel LLC, beta, Ohio. This material was not exposed to Mercury or any alory which is figuid at ambient within a proval of North Star BlueScope Steel LLC, beta, Ohio. This material was not exposed to Mercury or any alory which is figuid at ambient wailable upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at a 4:1 ratio in accordance with NIST standards. Uncertainty data is available upon request.	Heat	0.19	0.72	0.011	0.005	0.02	0.03	0.13	0.06	0.08	0.01	0.01	0.005	0.0001	0.000	0.000	0.000	0.002	0.0
			standards: ASTM E results are represent is not responsible for	1806-09, AS ntative of the or the inability	roduced to c TM E415-1 se containe y of this mat	onform to D 4, ASTM A d in the rec erial to me	DIN/EN 10204 51-14, ASTM ords of North	61,220 4:2005 3.1 a // 1370-14, Star BlueS plications. /	pSi and has bee JIS Z2201:1 cope Steel L Any modifica	n manufactu 998, JIS Z 2 LC for the m tions to this	ured to a fully 1241:2011. Pr naterial identi certification a	Tensile S 78,610 killed fine grai ressure Equipt fied in this tes as provided ne	trength) psi n practice. This ment Directive (i report and is in gates the validit	PED) 97/23 Intended to d	teel has been /EC 7/2, Anne comply with the 1 report. All re	25.19 produced and x I, Paragraph requirements productions m	l tested in ac 4.3 Complia s of the mate ust have the	cordance w ant. This rep rial descript written app	ort certifies ion. North S roval of Nort	that the abo tar BlueSco h Star Blue	pe Steel Scope St

Figure B-14. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 and MSPBN-5

373

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC

6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112

ustomer: Trinity Industries			
525 Stemmons Freeway	Order #	363307	Ord Width (mm/in) 1504.950 / 59.250 Weight (kg/lb) 26462 / 58339
allas, TX 75207	Line Item #	1	Ord Gauge (mm/in) 2.438 / 0.096
ustomer P.O.: 179261M-3	Heat #	206981	Material Description 1018 CQ Modified, Guardrail Type 2
ust. Ref/Part # 200212B	Coil #	1648979	Production Date/Time Sep 16 2016 6:19PM

Heat Chemical Analysis (wt%)

Туре	С	Mn	P	S	Si	Al	Cu	Cr	Ni	Мо	Sn	N	В	V	Nb	Ti	Ca	Pb
Heat	0.19	0.74	0.014	0.003	0.02	0.03	0.15	0.07	0.09	0.01	0.01	0.007	0.0002	0.000	0.000	0.001	0.002	0.001

Mechanical Test Report

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	63,430 psi	80,850 psi	25.7%

This hot rolled steal has been produced to conform to DINEM 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steal has been produced and tested in accordance with each of the following applicable standards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, JSS 2201:1998, JIS Z 221:1998, JIS Z

Tim Mitchell

Sec.

12.000

ALC: NO. STATE

Manager Quality Assurance and Technology

Date Issued: Sep 19, 2016 23:30:27 Revision#: 01

Figure B-15. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 through MSPBN-8

Certified Analysis

Prod Ln Grp: 3-Guardrail (Dom) 550 East Robb Ave. Order Number: 1287937 Lima, OH 45801 Phn:(419) 227-1296 Customer PO: SIGNED QUOTE Asof: 12/13/17 Customer: UNIVERSITY OF NEBRASKA BOARD BOL Number: 102892 Ship Date: OF REGENTS Document #: 1 3835 HOLDREGE STREET Shipped To: NE Use State: NE LINCOLN, NE 68583-0745 Project: NDOR SPECS

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Vield	TS	Elg	С	Mn	P	S Si	Cu	Cb Cr	Vn	ACW
8	209G	T12/12'6/6'3/S			2	L34617											
			M-180	Α	2	220389	57,310	76,740	23.1	0.190	0.710	0.009 0.00	3 0.020	0.100	0.000 0.06	0.002	4
			M-180	Α	2	220390	59,530	79,920	23.0	0.190	0.730	0.009 0.00	3 0.020	0.110	0.000 0.05	0.002	4
			M-180	В	2	218080	57,310	74,880	28.1	0.190	0.720	0.010 0.00	4 0.010	0.120	0.000 0.07	0.002	4
			M-180	А	2	220389	57,310	76,740	23.1	0.190	0.710	0.009 0.00	3 0.020	0.100	0.000 0.06	0.002	4
			M-180	Α	2	220390	59,530	79,920	23.0	0.190	0.730	0.009 0.00	3 0.020	0.110	0.000 0.05	0.002	4
			M-180	В	2	218080	57,310	74,880	28.1	0.190	0.720	0.010 0.00	4 0.010	0.120	0.000 0.07	0.002	4
6	12379G	T12/12'6/SPEC/S 34'RCX			2	L31917											
			M-180	Α	2	208674	63,250	82,410	22.7	0.190	0.730	0.011 0.00	3 0.020	0.100	0.000 0.06	0.002	4
6	12383G	T12/12'6/6'3/SPEC SLOTS/S			2	L32817											
			M-180	Α	2	216682	60,950	80,100	24.8	0.190	0.710	0.011 0.00	3 0.020	0.130	0.000 0.07	0.002	4
			M-180	Α	2	216683	65,000	82,920	22.8	0.190	0.730	0.013 0.00	2 0.020	0.130	0.000 0.06	0.001	4
2	12385G	T12/12'6/SPEC/S 5'RCX			2	L32917											
			M-180	Α	2	216682	60,950	80,100	24.8	0.190	0.710	0.011 0.00	3 0.020	0.130	0.000 0.07	0.002	4
			M-180	A	2	216683	65,000	82,920	22.8	0.190	0.730	0.013 0.00	2 0.020	0.130	0.000 0.06	0.001	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

Trinity Highway Products, LLC

1 of 2

Figure B-16. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN 4, MSPBN-5, and MSPBN-8

							C	ertifie	d Test	Repor	[
NORTH ST 6767 County Ro Delta, Ohio 435 Telephone: (886	ad 9 15		OPE ST	TEEL L	LC													
Customer: 2525 Stemme				Order #		363	307	Or	d Width (I	mm/in) 1	504.950	/ 59.250	2	Weight	(kg/lb)	2645	3 / 583	19
Dallas, TX 752				Line Iter	n #	1			d Gauge									
Customer P. Cust. Ref/Pa				Heat # Coil #		206 164	982 8983		aterial Des oduction					iil Type :	2			
							Heat	t Chemi	ical Ana	lysis (w	t%)							
Туре	С	Mn	Р	S	Si	AI	Cu	Cr	Ni	Mo	Sn	N	В	V	Nb	T	i C	a
Heat	0.19	0.73	0.010	0.003	0.01	0.03	0.14	0.05	0.08	0.01	0.01	0.006	0.0000	0.000	0.00	0.0	00 0.0	001 0.
								lechani	ical resi	кероп						_		
This hot rolled stee			onform to Di	N/EN 10204		psi and has been	n manufactu	ured to a fully	Tensile St 79,150 killed fine grain	trength) psi n practice. This	s hot rolled st	eel has been p		ested in acc	cordance			
This hot rolled stee standards: ASTM results are represe is not responsible This product was n temperature during available upon req	1806-09, AST ntative of those or the inability nanufactured, r processing or	duced to co M E415-14 e contained of this mati- melted, cas while in No	onform to DI 4, ASTM A75 1 in the recor- erial to meet 51, and hot-ro- orth Star Blu	N/EN 10204 51-14, ASTM rds of North specific app biled (min. 3: eScope Ster	58,150 2005 3.1 a 1 1370-14, Star BlueS Dications. A 1 reduction el LLC pose	pSi JIS Z2201:11 cope Steel L Any modifical ratio), entire session. Tes	n manufactu 998, JIS Z 2 LC for the ri lions to this ely within th st equipment	ured to a fully 2241:2011. Pr naterial identi certification a e U.S.A at No t calibration c	Tensile St 79,150 killed fine grain ressure Equipm filed in this test as provided neg rth Star BlueS ertificates are a	trength psi n practice. This nent Directive report and is i gates the valid cope Steel LLC available upon	s hot rolled st (PED) 97/23/ ntended to c. (ty of this test C, Delta, Ohir request. NIS	eel has been p EC 7/2, Annex omply with the report. All rep 5. This material ST traceability i	26.2% roduced and to I, Paragraph 4 requirements roductions must was not expo s established to	ested in acc 4.3 Complia of the mater st have the sed to Mero through test	cordance nt. This re ial descrij written ap ury or an equipme	port certil ption. Nor proval of y alloy wh nt calibrat	ies that the th Star Blue North Star ich is liquid	above tes Scope St BlueScope
standards: ASTM E results are represe is not responsible f This product was n temperature during	1806-09, AST ntative of thoss or the inability nanufactured, r processing or uest. Uncertain	duced to co M E415-14 e contained of this mati- melted, cas while in No	onform to DI 4, ASTM A75 1 in the recor- erial to meet 51, and hot-ro- orth Star Blu	N/EN 10204 51-14, ASTM rds of North specific app biled (min. 3: eScope Ster	58,150 2005 3.1 a 1 1370-14, Star BlueS Dications. A 1 reduction el LLC pose	pSi JIS Z2201:11 cope Steel L Any modifical ratio), entire session. Tes	n manufactt 998, JIS Z Z LC for the n tions to this ely within th tequipment andards and	ured to a fully 12241:2011. Pr naterial identi certification a t calibration c t calibration c t are maintain	Tensile St 79,150 killed fine grain ressure Equipm filed in this test as provided neg rth Star BlueS ertificates are a	trength) psi n practice. This nent Directive report and is gates the valid cope Steel LL available upon io in accordance	s hot rolled st PED) 97/23/ ntended to c ty of this test c, Delta, Ohir request. NIST	eel has been p EC 7/2, Annex omply with the report. All rep 5. This material ST traceability i	26.2% roduced and t I, Paragraph 4 requirements (roductions mus was not expo s established i certainty data	ested in acc 4.3 Complia of the mater st have the sed to Mero through test	eordance o nt. This re- ial descrip written ap- sury or an- equipme upon req upon req	port certii ption. Nor proval of y alloy wh nt calibrat uest.	ies that the th Star Blue North Star ich is Ilquid ion certific:	a above tes Scope St BlueScope I at ambier ates which
standards: ASTM E results are represe is not responsible f This product was n temperature during available upon req	1806-09, AST ntative of thoss or the inability nanufactured, r processing or uest. Uncertain	duced to co M E415-14 e contained of this mati- melted, cas while in No	onform to DI 4, ASTM A75 1 in the recor- erial to meet 51, and hot-ro- orth Star Blu	N/EN 10204 51-14, ASTM rds of North specific app biled (min. 3: eScope Ster	58,150 2005 3.1 a 1 1370-14, Star BlueS Dications. A 1 reduction el LLC pose	pSi JIS Z2201:11 cope Steel L Any modifical ratio), entire session. Tes	n manufactt 998, JIS Z Z LC for the n tions to this ely within th tequipment andards and	ured to a fully 12241:2011. Pr naterial identi certification a t calibration c t calibration c t are maintain	Tensile St 79,150 killed fine grain ressure Equipn fied in this test is provided ney orth Star BlueS with Star BlueS are a dat a 4:1 ratio	trength) psi n practice. This nent Directive report and is gates the valid cope Steel LL available upon io in accordance	s hot rolled st PED) 97/23/ ntended to c ty of this test c, Delta, Ohir request. NIST	eel has been p EC 7/2, Annex omply with the report. All rep 5. This material ST traceability i	26.2% roduced and t I, Paragraph 4 requirements (roductions mus was not expo s established i certainty data	ested in acc 1.3 Complia of the mater shave the sed to Mero through test is available Date Issu	eordance o nt. This re- ial descrip written ap- sury or an- equipme upon req upon req	port certii ption. Nor proval of y alloy wh nt calibrat uest.	ies that the th Star Blue North Star ich is Ilquid ion certific:	a above tes Scope St BlueScope I at ambier ates which
standards: ASTM E results are represe is not responsible f This product was n temperature during available upon req	1806-09, AST ntative of thoss or the inability nanufactured, r processing or uest. Uncertain	duced to co M E415-14 e contained of this mati- melted, cas while in No	onform to DI 4, ASTM A75 1 in the recor- erial to meet 51, and hot-ro- orth Star Blu	N/EN 10204 51-14, ASTM rds of North specific app biled (min. 3: eScope Ster	58,150 2005 3.1 a 1 1370-14, Star BlueS Dications. A 1 reduction el LLC pose	pSi JIS Z2201:11 cope Steel L Any modifical ratio), entire session. Tes	n manufactt 998, JIS Z Z LC for the n tions to this ely within th tequipment andards and	ured to a fully 12241:2011. Pr naterial identi certification a t calibration c t calibration c t are maintain	Tensile St 79,150 killed fine grain ressure Equipn fied in this test is provided ney orth Star BlueS with Star BlueS are a dat a 4:1 ratio	trength) psi n practice. This nent Directive report and is gates the valid cope Steel LL available upon io in accordance	s hot rolled st PED) 97/23/ ntended to c ty of this test c, Delta, Ohir request. NIST	eel has been p EC 7/2, Annex omply with the report. All rep 5. This material ST traceability i	26.2% roduced and t I, Paragraph 4 requirements (roductions mus was not expo s established i certainty data	ested in acc 1.3 Complia of the mater shave the sed to Mero through test is available Date Issu	eordance o nt. This re- ial descrip written ap- sury or an- equipme upon req upon req	port certii ption. Nor proval of y alloy wh nt calibrat uest.	ies that the th Star Blue North Star ich is Ilquid ion certific:	a above tes Scope St BlueScope I at ambier ates which
standards: ASTM E results are represe is not responsible f This product was n temperature during available upon req	1806-09, AST ntative of thoss or the inability nanufactured, r processing or uest. Uncertain	duced to co M E415-14 e contained of this mati- melted, cas while in No	onform to DI 4, ASTM A75 1 in the recor- erial to meet 51, and hot-ro- orth Star Blu	N/EN 10204 51-14, ASTM rds of North specific app biled (min. 3: eScope Ster	58,150 2005 3.1 a 1 1370-14, Star BlueS Dications. A 1 reduction el LLC pose	pSi JIS Z2201:11 cope Steel L Any modifical ratio), entire session. Tes	n manufactt 998, JIS Z Z LC for the n tions to this ely within th tequipment andards and	ured to a fully 12241:2011. Pr naterial identi certification a t calibration c t calibration c t are maintain	Tensile St 79,150 killed fine grain ressure Equipn fied in this test is provided ney orth Star BlueS with Star BlueS are a dat a 4:1 ratio	trength) psi n practice. This nent Directive report and is gates the valid cope Steel LL available upon io in accordance	s hot rolled st PED) 97/23/ ntended to c ty of this test c, Delta, Ohir request. NIST	eel has been p EC 7/2, Annex omply with the report. All rep 5. This material ST traceability i	26.2% roduced and t I, Paragraph 4 requirements (roductions mus was not expo s established i certainty data	ested in acc 1.3 Complia of the mater shave the sed to Mero through test is available Date Issu	eordance o nt. This re- ial descrip written ap- sury or an- equipme upon req upon req	port certii ption. Nor proval of y alloy wh nt calibrat uest.	ies that the th Star Blue North Star ich is Ilquid ion certific:	a above tes Scope St BlueScope I at ambier ates which

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	MIDWEST MACH P. O. BOX 703 MILFORD,NE,88		PPLY CO.				Test Report Ship Date: Customer P O: Shipped to: Project: GHP Order No.:	11/27/2017 3523 MIDWEST MACH INVENTORY 217460	INERY & SUPP	LY CO.			
HT # code	Heat #	C.	MN.	P.	S.	SI.	Tensile	Yield	Elong.	Quanity	Class	Туре	Description
0903	9416522	0.2	0.74	0.011	0,005	0.02	79773	57921	25.4	60	A	2	12GA 25FT0IN 3FT1 1/2IN WB T2
0971	B6446	0.2	0.72	0.007	0.002	0.04	74504	54650	17-1	140	A	2	12GA 25FT0IN 3FT1 1/2IN WB T2
0684	A86939	0,19	0.46	0.006	0.002	0.02	73747	53839	27.58	20	A	2	12GA 6FT3IN/3FT1 1/2IN TB T2
0488	A85303	0.2	0.48	0.009	0.002	0.03	72478	56954	23,42	40	A	2	12GA 25FT TB T2

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-153 & ASTM-553 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Tille 23CFR 635.410 - Buy America All Guardrait and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Galardian and remining Sectors meas Aron of the provide the sector measurement of All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sectors meet ASTM A606, Type 4.

STATE OF DHIO: COUNTY OF STARK Sworn to and subscribed before-me, a No Andrew Arter this 28 day of Notary Public, State of Oh

James P. Dehnke Notary Public, State of Ohio

My Commission Expires 10-19-20'19

-2 By:_

Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

377

Figure B-18. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 through MSPBN-7

Certified A	Analysis
Order Number	r: 1121475

Customer PO: 2270

Document #: 1 Shipped To: NE

BOL Number: 55149

Use State: KS

As of: 4/26/10

Lima, OH Customer: MIDWEST MACH.& SUPPLY CO. P. O. BOX 81097 LINCOLN, NE 68501-1097

Project: RESALE

425 E. O'Connor

Trinity Highway Products, LLC

Qty Part # Description Spec CL TY Heat Code/ Heat # Yield TS Elg С Mn P S Si Cu Cb Cr Vn ACW 209G T12/12'6/6'3/S 130794 63,340 81,340 20 M-180 2 26.6 0.190 0.750 0.011 0.003 0.030 0.110 0.00 0.060 0.000 A M-180 A 2 128756 62,920 81,360 24.4 0.190 0.740 0.012 0.004 0.020 0.110 0.000 0.060 0.000 4 M-180 129161 63,450 81,140 0.730 0.010 0.003 0.020 0.150 0.000 0.050 0.000 Α 2 26.0 0.190 4 M-180 129162 78,740 A 2 62,160 25.4 0.190 0.740 0.014 0.004 0.020 0.150 0.000 0.070 0.000 4 M-180 130216 63,390 81,100 A 2 22.9 0.190 0.730 0.011 0.004 0.020 0.100 0.000 0.050 0.000 4 M-180 130217 64,020 83,600 A 2 21.8 0.190 0.760 0.013 0.005 0.020 0.150 0.000 0.060 0.000 4 M-180 2 130793 63,980 83,300 A 23.0 0.200 0.740 0.012 0.003 0.030 0.120 0.000 0.050 0.000 4 209G M-180 2 130217 64,020 83,600 0.190 0.760 0.013 0.005 0.020 0.150 0.00 0.060 0.000 21.8 4 M-180 A 2 129151 63,860 81,300 26.8 0.190 0.740 0.010 0.004 0.020 0.090 0.000 0.050 0.000 4 M-180 A 2 129154 61,190 79,690 24.8 0.180 0.730 0.012 0.006 0.020 0.150 0.000 0.060 0.000 4 M-180 A 2 129161 63,450 81,140 26.0 0 190 0.730 0.010 0.003 0.020 0.150 0.000 0.050 0.000 4 M-180 A 2 129162 62,160 78,740 25.4 0.190 0.740 0.014 0.004 0.020 0.150 0.000 0.070 0.000 4 M-180 A 2 130216 63,390 81,100 22.9 0.190 0.730 0.011 0.004 0.020 0.100 0.000 0.050 0.000 4 M-180 2 130218 57,750 82,130 22.2 0.130 0.750 0.011 0.005 0.020 0.130 A 0.000 0.050 0.000 4 M-180 A 2 130793 63,980 83,300 23.0 0.200 0.740 0.012 0.003 0.030 0.120 0.000.0.050 0.000 4 209G M-180 2 130216 63,390 81,100 22.9 0.190 0.730 0.011 0.004 0.020 0.100 0.00 0.050 0.000 4 M-180 A 2 129152 62,700 80,900 25.2 0.190 0.720 0.012 0.004 0.020 0.150 0.000 0.060 0.000 4 129154 61,190 24.8 0.180 0.730 0.012 0.006 0.020 0.150 M-180 2 79,690 A 0.000 0.060 0.000 4 M-180 A 2 130217 64,020 83,600 21.8 0.190 0.760 0.013 0.005 0.020 0.150 0.000 0.060 0.000 4 M-180 130793 63,980 83,300 23.0 0.200 0.740 0.012 0.003 0.030 0.120 0.000 0.050 0.000 Α 2 4 M-180 130794 63,340 81,340 26.6 0.190 0.750 0.011 0.003 0.030 0.110 0.000 0.060 0.000 A 2 4 20 729G TS 8X6X3/16X8'-0" SLEEVE A-500 N0266 54,007 72,010 29.0 0.057 0.645 0.008 0.008 0.014 0.000 0.00 0.000 0.000 4 TS 8X6X3/16X6'-0" SLEEVE A-500 N0266 54,007 72,010 29.0 0.057 0.645 0.008 0.008 0.014 0.000 0.00 0.000 0.000 4 20 749G 62,700 80,900 25.2 0.190 0.720 0.012 0.004 0.020 0.150 0.00 0.060 0.000 4 20 12379G T12/12'6/SPEC/S 34'RCX M-180 A 2 129152

Figure B-19. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 through MSPBN-7

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC 6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112

Customer: Trinity Highway Products, LLC Weight (kg/lb) 26448 / 58308 2525 Stemmons Freeway Order # 366172 Ord Width (mm/in) 1504.950 / 59.250 Dallas, TX 75207 Line Item # 1 Ord Gauge (mm/in) 2.438 / 0.096 Material Description 1018 CQ Modified, Guardrail Type 2 Customer P.O.: 179844M-2 Heat # 208318 1660481 Production Date/Time Oct 25 2016 11:08PM Cust. Ref/Part # 200212B Coil #

Heat Chemical Analysis (wt%)

Туре	С	Min	Р	S	Si	AI	Cu	Cr	Ni	Mo	Sn	N	В	V	Nb	Ti	Ca	Pb
Heat	0.19	0.72	0.011	0.003	0.02	0.02	0.11	0.06	0.04	0.01	0.00	0.008	0.0000	0.002	0.000	0.001	0.002	0.000

Mechanical Test Report

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	64,140 psi	81,540 psi	24.5%

This hot rolled steel has been produced to conform to DIN/EN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards: ASTM E1806-09, ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM 1370-14, JIS 22201:1998, JIS 22241:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report. All reproductions must have the written approval of North Star BlueScope Steel LLC. This product was manufactured, melted, cast, and hot-rolled (min. 3:1 reduction ratio), entriely with the U.S.A at North Star BlueScope Steel LLC, Delta, Ohio. This material was not exposed to Mercury or anyloy which is liquid at ambient temperature during processing or while in North Star BlueScope Steel LLC, Delta, Ohio. This material was not exposed to Mercury analoy which is liquid at ambient available upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at 4:1 ratio in accordance with NIST standards. Uncertainty data is available upon request.

Tim Mitchell

mathe

Manager Quality Assurance and Technology

Date Issued: Nov 02, 2016 08:30:59 Revision#: 01

PASSED	& CERTIFIED	
NOV	- 2 2016	-
Trinity Highw Dallas, Tex	vay Products, LLC Xas Plant 99	

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC

6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112

Customer: Trinity Highway Products, LLC

2525 Stemmons Freeway	Order #	367396	Ord Width (mm/in) 1504.950 / 59.250	Weight (kg/lb) 26712 / 58890
Dallas, TX 75207	Line Item #	1	Ord Gauge (mm/in) 2.438 / 0.096	
Customer P.O.: 179844M-4	Heat #	208674	Material Description 1018 CQ Modified, Guar	rdrail Type 2
Cust. Ref/Part # 200212B	Coil #	1663489	Production Date/Time Nov 5 2016 12:38PM	

Heat Chemical Analysis (wt%)

Туре	С	Mn	Р	S	Si	AI	Cu	Cr	Ni	Mo	Sn	N	В	V	Nb	Ti	Ca	Pb
Heat	0.19	0.73	0.011	0.003	0.02	0.02	0.10	0.06	0.04	0.01	0.01	0.007	0.0000	0.002	0.000	0.000	0.001	0.000
Coil Tail	0.19	0.73	0.011	0.003	0.02	0.02	0.10	0.06	0.04	0.01	0.01	0.007	0.0000	0.002	0.000	0.000	0.001	0.000
Coil Head	0.19	0.73	0.013	0.003	0.02	0.03	0.10	0.06	0.03	0.01	0.00	0.007	0.0000	0.000	0.001	0.001	0.001	0.000

Mechanical Test Report

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	63,250 psi	82,410 psi	22.7%

This hot rolled steel has been produced to conform to DIN/EN 10204-2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM 1370-14; JIS 22201:1998, JIS 2 2241:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test same uncover, Roth E toorks, Roth E toorks, Roth Rother, Rother Ro temperature during processing or while in North Star BlueScope Steel LLC possession. Test equipment calibration certificates are available upon request. NIST traceability is established through test equipment calibration certificates which are available upon request. Uncertainty calculations are calculated in accordance with NIST standards and are maintained at a 4:1 ratio in accordance with NIST standards. Uncertainty data is available upon request.

Manager Quality Assurance and Technology

Tim Mitchell

mAhre

PASSED & CERTIFIED NOV 1 1 2016

Date Issued: Nov 11, 2016 14:30:17 Revision#: 01

Trinity Highway Products, LLC

Figure B-21. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 through MSPBN-7

Certified Analysis

	•				
550 East R	obb Ave.	Order Number:	1287937	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 4	5801 Phn:(419) 227-1296	Customer PO:	SIGNED QU	OTE	Asof: 12/13/17
Customer:	UNIVERSITY OF NEBRASKA BOARD	BOL Number:	102892	Ship Date:	
	OF REGENTS	Document #:	1		
	3835 HOLDREGE STREET	Shipped To:	NE		
	LINCOLN, NE 68583-0745	Use State:	NE		
Project:	NDOR SPECS				

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Vield	TS	Elg	С	Mn	P S	Si	Cu	Cb C	· Vn	ACW
 8	209G	T12/12'6/6'3/S			2	L34617											
			M-180	Α	2	220389	57,310	76,740	23.1	0.190	0.710	0.009 0.00	3 0.020	0.100	0.000 0.00	0 0.002	4
			M-180	Α	2	220390	59,530	79,920	23.0	0.190	0.730	0.009 0.00	3 0.020	0.110	0.000 0.05	0 0.002	4
			M-180	в	2	218080	57,310	74,880	28.1	0.190	0.720	0.010 0.00	4 0.010	0.120	0.000 0.07	0 0.002	4
			M-180	А	2	220389	57,310	76,740	23.1	0.190	0.710	0.009 0.00	3 0.020	0.100	0.000 0.06	0 0.002	4
			M-180	Α	2	220390	59,530	79,920	23.0	0.190	0.730	0.009 0.00	3 0.020	0.110	0.000 0.05	0 0.002	4
			M-180	в	2	218080	57,310	74,880	28.1	0.190	0.720	0.010 0.00	4 0.010	0.120	0.000 0.07	0 0.002	4
6	12379G	T12/12'6/SPEC/S 34'RCX			2	L31917											
			M-180	Α	2	208674	63,250	82,410	22.7	0.190	0.730	0.011 0.00	3 0.020	0.100	0.000 0.06	0 0.002	4
6	12383G	T12/12'6/6'3/SPEC SLOTS/S			2	L32817											
			M-180	Α	2	216682	60,950	80,100	24.8	0.190	0.710	0.011 0.00	3 0.020	0.130	0.000 0.07	0 0.002	4
			M-180	А	2	216683	65,000	82,920	22.8	0.190	0.730	0.013 0.00	2 0.020	0.130	0.000 0.06	0 0.001	4
2	12385G	T12/12'6/SPEC/S 5'RCX			2	L32917											
			M-180	A	2	216682	60,950	80,100	24.8	0.190	0.710	0.011 0.00	3 0.020	0.130	0.000 0.07	0 0.002	4
			M-180	A	2	216683	65,000	82,920	22.8	0.190	0.730	0.013 0.00	2 0.020	0.130	0.000 0.06	0 0.001	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

Figure B-22. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-4 and MSPBN-5

Trinity Highway Products, LLC

QUALITY CERTIFICATE NINGBO JINDING FASTENING PIECE CO., LTD

	XIJINGTANG J				EL:+86-57		colors entrestances	86-574-	-86530858	3	
Customer:	FASTENAL CO	MPANY P	URCHASING	IMPORT	Date	:		2015	09 21		
Product:	HEX TAP BOL					ract No:			F907T		
Class:	5					ice No:			0997648		
Size:	7/16-14X2-1	19			Lot I				950007		
Marking:	JDF three r				Orde				19926		
572		aurus									
Quantity:	3.600 mpcs				Part			01672			
D	DD4					uction Da			-01-26		
Dimensions Of S					Cert.	ificate N			02130052		
13	tion Items		Sta	andard		Resul	l t.		Sample	_	Pass
Visual Appeara	nce	-			OK				22		22
Body Diameter		1	/		1				4		4
Thread	Go		2A		OK				15		15
	No Go		2A		OK				15		15
Width Across F). 625-0. 61	14 (18)	1801-140704	5-0. 617			4		4
Width Across C). 722-0. 69			3-0.705			4		4
Major Diameter). 426-0. 43	110007		9-0. 430			15		15
Head Height). 291-0. 27			3-0.285			4		4
Total Length			2. 500-2. 44	10		9-2.474			15	_	15
Thread Length		I	in 2.321		2.373	7-2.416			15		15
Mechanical Pro	0.000000000000000000000000000000000000										
CharacTeristic			Standard		Resu						
Surface Hardne			IAX 54		43-46				15		15
Core Hardness	[HRC]		25-34		27-29	298			15		15
Wedge Strength	[psi]	1	in 119880)	13134	45-136134	ł		4		4
Yield Strength	[psi]	I	in 91869		10202	28-115816	i		4		4
Elongation	[%]		nin 14		15.8-	-18.9			4		4
Reduction Of a	rea [%]	r	in 35		41. 5-	-56. 2			4		4
Proof Load	[Ib]	ę	0050		9050				4		4
Decarburizatio	1997,0	١	(≥1/2H1 H	IVO. 3	306. 0	00 306.00	0 302.00		4		4
HV2>=HV1-30, HV		(G 0. 000	O6max							
CHEMICAL COMPOS	ITION (%)										
Heat No		С	Si	Mn	Р	S	Cr	Ni	Cu	Mo	В
	9984BB	0.35	0.16	0.65	0.020	0.007					
Surface Coating	:	PLAIN									
There is the second second	Less ACMP D1 1	0000 11	TRUES INCO	L CODEW TH	DEADS (UN AN	TN LINID THUS	PAD POIN				
Thread Specificat Sampling Dimensio	CIPACIACO III II II APTINCI AMPRILA MA	Composition (Composition)		a 200700.00000000000000000000000000000000		or or musely on the second		hi de		hine	omh 1
Sampling Dimensio fasteners	an opecification	. ASME I	oro, 16, 2–20	ni inspec	tion and qu	willy ass	arance to	nign-v	rorume mai	arme ass	enin ty
Dimension Specifi	cation: ASME B1	8.2.1 20	12, HEX CAP	° SCREWS							
Sampling mechanic Properties and Pe			tion: ASTM	F1470 20	12 Standard	l Guide fo	r Fastener	• Sampli	ing for Sp	pecified	Mechan
Mechanical Proper	ties: SAE J429	2014, MEC	HANICAL AN	D MATERIA	L REQUIREME	ENTS FOR E	XTERNALLY	THREAD	ED FASTEN	ERS	
Surface Defect: A											
Quality Control S					,		*(*****)	Quali	ty Contro	1 Manage	r
57								Intouri	c, condic	1 JIGHGGO	-
「Sathing Plea 子波金鼎紧	13						-	Ŧ	-	S.	

Figure B-23. ⁷/₁₆-in. (11-mm) Dia. 2¹/₂-in. (64-mm) Long Hex Tap Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7

SUPER CHENG INDUSTRIAL CO., LTD.

NO. 18 BEN-GONG 2nd ROAD., BEN CHOU INDUSTRIAL PARK, KAOHSIUNG COUNTY 820, TAIWAN R.O.C. TEL : 886-7-6225326-30(5 LINES) FAX : 886-7-6215377/6212335/6235829

CERTIFICATE OF INSPECTION

CERT. # : S321'	70505	ISSUED DATE : 20	017/6/22	PAGE 1 OF 1
		STRIAL CO., LTD.		
ADDRESS : NO.	18 BEN-GONG 2nd	ROAD., BEN CHOU INDUSTF	RIAL PARK, KAOHSIUNG CO	OUNTY 820, TAIWAN R.O.C.
PURCHASER :		IPANY PURCHASING	PO # : 220025396	
	PART# 36307		QTY SHIPPED : 20	,400 PCS
COMMODITY :	GRADE 5 FIN H	EX NUT	FINISH : PLN	
SIZE: 7/16-14	LOT	#: S32170505 SAN	IPLING PLAN : ASME B	18.18-11 / ASTM F1470-12
		ERIAL : SWRCH10A	HEAT NO. : 360796	5
MANUFACTUR	ER : SUPER CHE	NG IND. CO., LTD.	MANU. DATE :	2017/6/15
DIMENSIONAL I	NSPECTION	SPEC. : ANSI/ASME B	18.2.2-15 SAMPLED	BY: SU YUN CHUANG
<u>ITEM</u>	SAMPLE SIZE	SPECIFIED 1	ACTUAL RESULT	JUDGMENT
APPEARANCE	29	ASTM F812-12	GOOD	ОК
THREAD	15	ASME B1.1-03	PASS	OK
W.A.F.	4	0.688 ~ 0.675 in	$0.677 \sim 0.676$	in. OK
W.A.C.	4	0.794 ~ 0.768 in	$0.776 \sim 0.774$	in. OK
THICKNESS	4	0.385 ~ 0.365 in	0.380 ~ 0.378	in. OK
-				
MECHANICAL P	ROPERTIES	SPEC. : SAE J995-12	SAMPLED	BY: SU YUN CHUANG
ITEM	SAMPLE SIZE			RESULT JUDGMENT
HARDNESS	4	ASTM F606/F606M-16 M	AX HRC32 97 ~ 96	HRBW PASS
PROOF LOAD	3	ASTM F606/F606M-16 M	IN 12800 LB 12915~	12915 LB PASS

REMARK : 1 • THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LAB.

2 - THIS INSPECTION CERTIFICATE IS FOR RESPONSIBILITY UNDER SAMPLE ONLY

3 • ABOVE SAMPLES TESTED CONFORM TO THE FASTENER SPECIFICATION OR STANDARDS

LAB. DIRECTOR(SIGNATORY)

表單編號:LQC 10E Rev.0

Figure B-24. ⁷/₁₆-in. (11-mm) Dia. Heavy Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-7

Certificate of Compliance Birmingham Fastener Manufacturing

Birmingham Fastener Manufacturing PO Box 10323 Birmingham, AL 35202 (205) 595-3512

Customer _	Midw	est Machir	iery		Date Shipp	bed _	06/16	/2016
Customer Orde	er Number	32	75		BFM Orde	r Number	133	8859
			ltem	Descrip	otion			
Description		5	/ <mark>8"-11 x 10</mark> "	Hex Bolt			Qty	157
Lot # _	208977	Sp	ecification	ASTM A3	07-14 Gr A	Finish	ASTM	F2329
			Raw Ma	terial A	nalysis			
Heat#	D	L15107048	3					
Chemical Co	mposition (v	wt% Heat A	Analysis) By	Material	Supplier			
С	Mn	Р	s	Si	Cu	Ni	Cr	Мо
0.22	0.82	0.007	0.010	0.27	0.20	0.06	0.10	0.015
			Mechan	ical Pro	operties			
Sample # 1 2 3 4	Hardness 91 HRBW		Tensile Str 21,7		5)	Tensile Str 97,0		i)
5								
This informati customer orde All steel melte	er. The sam	ples tested	conform to t	rsis of the p the ASTM s	product supp standard list	blied on the sed above.	stated	
Authorized Signature:	C	131	e		_ Date:	6/16/	2016	
	E	Brian Hugh	es ance					

Figure B-25. ⁵/₈-in. (16-mm) Dia., 10-in. (254-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-8

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110216407 COMMODITY : FINISHED HEX NUT GR-A SIZE : 6/8-11 NO 0/T 0.51MM LOT NO : 1N1680027 SHIP QUANTITY : 23, 400 PCS LOT QUANTITY : 170, 278 PCS HEADMARKS : Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/03/23 PACKING NO: GEMI60919007 INVOICE NO: GEM/FNL-160929WI PART NO: GETI3 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2)/ASTM F1470-2012 HEAT NO: G31608011 MATERIAL: ML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-

R#17-507 H#331608011 2009/ASTM F2329-2013

MANUFACTURE DATE : 2016/08/26 COUNTRY OF ORIGIN : CHINA

BCT Cable Bracket Nuts

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2007

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN. MAX.		0. 5800		0. 1300	0. 2300	
Test Value	0. 0350	0.0700	0. 4100	0.0160	0. 0060	0. 0500

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2010

			SAMPLE	DBY: DWTING		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ
WIDTH ACROSS CORNERS	6 PCS		1.0510-1.0830 inch	1.0560-1.0690 inch	6	0
FIM	15 PCS	ASME B18. 2. 2-2010	Max. 0.0210 inch	0.0020-0.0040 inch	15	0
THICKNESS	6 PCS		0.5350-0.5590 inch	0.5390-0.5570 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.9220-0.9380 inch	0.9240-0.9340 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

				SAMPLE	DBY: GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	79-81 HRE	15	0
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	OK	4	0
PLATING THICKNESS(µ m)	5 PCS	ASTM B568-1998		>=53	70.02-75.81	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

griv

page 1 of 1

Figure B-26. ⁵/₈-in. (16-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-8

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

				.09	.33	.006	.003	.06	
VILL		GRADE	HEAT#	C	Mn	Ρ	S	Si	
		С	HEMICAL CO	OMPOSITION	4		e).		
COATING:		PECIFICATIO 29256-G	N F-2329 HC	T DIP GALV	ANIZE				
Pounds Per S	autra laab			•					
						70.30			
HARDNES	5:	100 max				67,960 70.40			
FENSILE:	SPEC:	60,000 psi*i	min	RESULTS:		66,593			
SPECIFICA	TION:	ASTM A307	, GRẠDE A M	MILD CARBO	N STEE	L BOLTS			
_OT#:	29256-G								
								IPPED: 04	
USTOME	R PO:	37464					SHIF	PER#: 06	0204
			INDUSTRIE	2					
USTOME	NAME-	GREGORY	INDUSTRIES						

QUANTITY AND DESCRIPTION:

105,000 PCS 5/8" X 1.25" GUARD RAIL BOLT P/N 1001G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F: SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

VED SIGNATORY

4/10/17

Figure B-27. ⁵/₈-in. (16-mm) Dia., 1¹/₄-in. (32-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-7

STEEL 3	TEEL										48e. W/613ersin 53088 (262) 268-2408 1-808 437-8789
Chu	ומא אישרעאבטואן			CHAF	RTER ST	TEEL TES	ST REI	PORT			Fax (262) 268-2570
Metted in USA	Manufacti	ired in US	SA								
				la la	Orte	Cust P.O.				-	50365-1704
						iales Order					30127572
				+		Heat # Ship Lot #					10470360 3257182
				damak		Grade				1010 A A	K FG RHQ 1-1/8
703 N. C	Manufactu Ilark St.	ning Cor	p.	ł		Process Finish Size					HRCC 1-1/8
Albion,						Ship date]
I hereby certify that the											
these requirements.	The recording	OI Haise, tic	plous and			t Lot # 104703		ni may be p	unishabie a	s a texony un	der lederal stadire.
Lab Code: 7388 CHEM	C	MN	p	5	Si	NI	CR	80	cu	SN	v
761VI	,09 AL	.44 N	.008 B	.009 TT	.090 NB	.04	.07	.02	.05	.004	.001
	.025	.0070	1000.	.001	100.						
REDUCTION RA		clused Der (Charter St	eel Quality	Manual Rev	Date 12/12/1	3	an a			
synthin and the	Charler	Steel certif	fies this pr	roduct is ind	listinguish	ble from bac diation withi	kground			ving proces	s radiation
				ns with any		Charter Steel				ustomer doc	cuments:
	Meets c	er Documen	t = ASTMA	29/4294	Revisi	on = 15 Dat	ed = 01-	VOV.15			
Additional Comments	Custom	er Documen	t≈ ASTM A	29/A29 M	Revisi	on = 15 Dat	ed = 01-)	VOV-15			
Additional Comments	Custom	er Documen	t ≈ Astm A	129/A29 M	Revisi	ən ≈ 15 Dət	ed = 01-	VOV-15			
Additional Comments	Custom	er Documen	t≈ ASTM A	129/A29M	Revisio	on≃15 Dət	ed = 01-)	VOV.45			
Additional Comments	Custom	er Documen	t ≈ ASTM A	\29! A29 ₩	Revisi	οπ ≃ 15 Dəł	ed = 01-	VOV-15			
Additional Comments	Custom	er Doctmen	t ≈ Astm 4	129¦A29₩	Revisio	əπ ≕ 15 Dəł	ed = 01-	VOV-15			
Additional Comments	Custom	er Documen	t ≈ Astm A	29/A29 M	Revisi	on ≈ 15 Dał	ed ≈ 61-)	VOV-15			
Additional Cemments	Custom	er Documen	t≈ astm 4	29/A29 M	Revisi	on ≈ 15 Dał	ed = 01-)	NOV-45			
Additional Cemments	Custom	er Documen	t = ASTM A	29/A29 M	Revisi	on ≈ 15 Dat	ed = 01-)	NOV-15			
Additional Comments	Custom	er Dootmen	t = ASTM A	29/A29M	Revisi	on ≈ 15 Dat	ed = 01-	NOV-15			
Additional Camments	Custom	er Doctman	t = ASTM A	1291A29M	Reviai	on ≕ 15 Oat	ed≈ 01-)	NOV-15			
Additional Cammenta	Custom	er Doctman	t = ASTM A	1291A29M	Reviai	on ≈ 15 Dał	ed≈ 01-)	vov.45			
Additionei Cemmenta	Custom	er Doctman	t = ASTM A	1291A29M	Reviai	on ≈ 15 Dał	ed ≈ 61-)	4QV-45			
	Custom	er Doctman	t = ASTM A	1291A29M	Reviai	9 n ≈ 15 Dat	ed≈ 01-≯	NOV-15			
Weir Source: Charter Steet	Custom	er Doctman	t = ASTM A	129/A29M	Reviate	9 n ≈ 15 Dat	ed≈ 01-≯	supersedes	; all previou		Rs for this order
Aleir Source:	Custom	er Doctman	t = ASTM A	129/A29M	Reviate	9 n ≈ 15 Dat	Ωns MTR	supersedes	Division Mg		

Figure B-28. ⁵/₈-in. (16-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-7

CERTIFIED MATERIAL TEST REPORTFORASTM A307, GRADE A - MACHINE BOLTS

FACTORY: NINGBO ECONOMIC & TECHNICAL DEVELOPMENT REPORT DATE:2016/12/29 ZONE YONGGANG FASTENERS CO., LTD. R#17-507 H#816070039 ADDRESS: FuShan South Road No.17, BeiLun NingBo China BCT Cable Bracket Bolts MANUFACTURE DATE:2016/12/2 TEL#(852)25423366 CUSTOMER: FASTENAL MFG LOT NUMBER:M-2016HT927-9 SAMPE SIZE: ACC.TO Dimension:ASME B18.18-11;Mechanical Properties:ASTM F1470-12 SHIPPED QTY: 4800PCS MANU QTY: 4800PCS SIZE: 5/8-11X1 1/2 HDG HEADMARKS: 307A PLUS NY PO NUMBER:220023115 PART NO:1191919 STEEL PROPERTIES: MATERIAL TYPE:Q195 HEAT NUMBER: 816070039 CHEMISTRY SPEC: Mn%*100 C %*100 P %*1000 S %*1000 Grade A ASTM A307-1 0.29max 1.20 max 0.04max 0.15max 0.07 0.28 0.016 TEST: 0.003 DIMENSIONAL INSPECTIONS Unit:inch SPECIFICATION: ASME B18.2.1 - 2012 CHARACTERISTICS SPECIFIED ACTUAL RESULT ACC. REJ. ****** ****** ***** ******* 22 0 VISUAL ASTM F788-2013 PASSED 15 0 ASME B1.1-2003,3A GO,2A NOGO PASSED THREAD 0 WIDTH FLATS 0.906-0.938 0.915-0.928 4 WIDTH A/C 1.033-1.083 1.048-1.057 4 0 HEAD HEIGHT 0.378-0.444 0.394-0.424 4 0 THREAD LENGTH 1.420-1.560 1.435-1.541 15 0 1.435-1.541 0 LENGTH 1.420-1.560 15 MECHANICAL PROPERTIES: SPECIFICATION: ASTM A307-2012 GR-A CHARACTERISTICS TEST METHOD SPECIFIED ACTUAL RESULT ACC. REJ. **** ***** **** ***** ******* ****** 69-100 HRB 76-79 HRB 4 0 CORE HARDNESS : ASTM F606-2014 4 0 WEDGE TENSILE: ASTM F606-2014 Min 60 KSI 65-69 KSI ACC. CHARACTERISTICS TEST METHOD SPECIFIED ACTUAL RESULT REJ. COATINGS OF ZINC: SPECIFIATION: ASTM F2329-2013 0 HOT DIP GALVANIZED ASTM B568-98(2104) Min 0.0017" 0.0017" -0.0018" 4 ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF ZOHE YORGANG FASTLERING CO., LTD

(SIGNATURE 1940.A.) HAB MGR.) (NAME OF MANUFACTURER)

Figure B-29. ⁵/₈-in. (16-mm) Dia., 1¹/₂-in. (38-mm) Long Guardrail Bolt Material Specifications, Test Nos. MSPBN-4 through MSPBN-8

Certified Analysis Trinity Highway Products, LLC 550 East Robb Ave. Order Number: 1269489 Prod Ln Grp: 3-Guardrail (Dom) Lima, OH 45801 Phn:(419) 227-1296 Customer PO: 3346 As of: 11/7/16 Customer: MIDWEST MACH.& SUPPLY CO. BOL Number: 97457 Ship Date: P. O. BOX 703 Document #: 1 Shipped To: NE MILFORD, NE 68405 Use State: NE RESALE Project: TY Heat Code/ Heat Qty Part# Description Spec CL Yield TS Elg C Mn P S Si Cu Cb Cr Vn ACW 175 3580G 5/8"X18" GR BOLT A307 HW 248853 6 6696G CBL 5/8"X14'4.75/DBL BTN HW 27950 400 6740B PLYMR BLK 6X12X14 MT 4 9852A STRUT & YOKE ASSY A-36 195070 52,940 69,970 31.1 0.190 0.520 0.014 0.004 0.020 0.110 0.000 0.050 0.000 4 7 12379G T12/12'6/SPEC/S 34'RCX RHC 2 L34713 M-180 172876 A 2 55,930 72,020 31.4 0.190 0.720 0.014 0.002 0.020 0.130 0.000 0.080 0.000 4 M-180 172876 55,930 Α 2 72,020 31.4 0.190 0.720 0.014 0.002 0.020 0.130 0.000 0.080 0.000 6 12383G T12/12'6/6'3/SPEC SLOTS/S L33814 RHC M-180 A 182997 58,340 76,890 26.9 0.180 0.730 0.014 0.004 0.010 0.130 0.000 0.060 0.001 M-180 A 182998 60,310 78,910 0.730 0.012 0.006 0.010 0.140 0.000 0.050 0.001 25.4 0.200 M-180 A 182997 58,340 76,890 26.9 0.180 0.730 0.014 0.004 0.010 0.130 0.000 0.060 0.001 M-180 A 182998 60,310 78,910 25.4 0.200 0.730 0.012 0.006 0.010 0.140 0.000 0.050 0.001 3 12385G T12/12'6/SPEC/S 5'RCX 2 L34416 M-180 2 208318 64,140 A 81,540 24.5 0.190 0.720 0.011 0.003 0.020 0.110 0.000 0.060 0.000 4 24 19361G BNT PL 3/16X12-5/8X5-1/2 A-36 46,800 70,400 29.1 0.180 0.840 0.007 0.008 0.060 0.170 0.000 0.070 0.001 4

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

Figure B-30. ⁵/₈-in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt, Test No. MSPBN-4

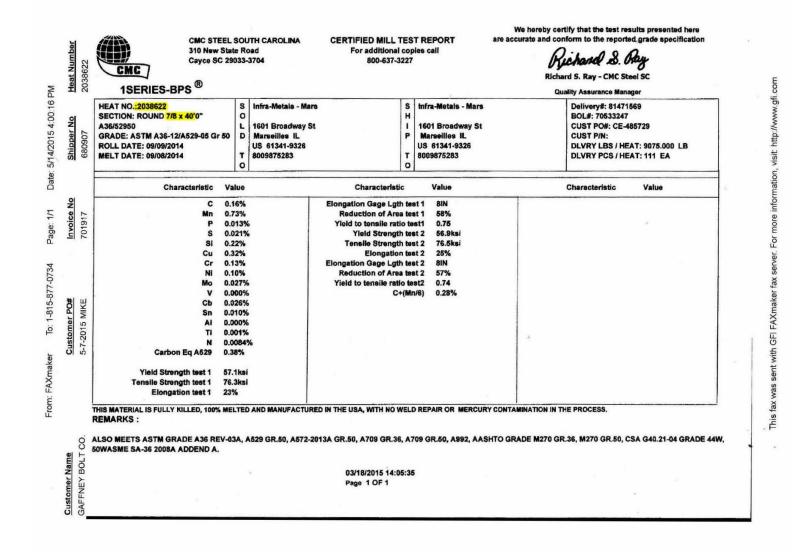


Figure B-31. 7/8-in. (22-mm) Dia., 8-in. (203-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-8

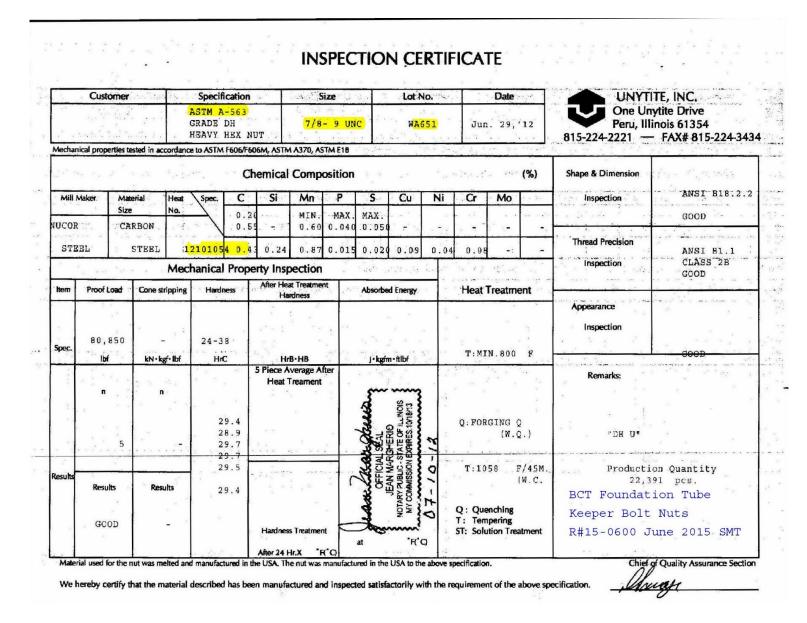


Figure B-32. 7/8-in. (22-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-8

1 N. 11	۳ ۴۶		, I	NSPE	CTION	I CER	TIFICA	ATE(A	ccordi	ng to l	EN10204	Type 3.1)			
VIN	IA .											KPF VINA				
С	Certificate No	: KPF VINA QC	-20160504 - 5	86	Customer :	FASTENAL						Marketing : 601	Yongtan-dong,	Chungju-ci	ty.	
	P/O No	: 160119236			Description :	H C/SCW G	R.5 ZN						inghcheongbuk-d			
	Part No	. : 13429			Grade :	GR.5						TE	: +82) (0) 43 - 84	49 - 1217		
	Date Issue	1 : 2016/05/04			Size :	7/8 - 9UNC	8					FA	(: +82) (0) 43 - 8	49 - 1230		
		: 2016/05/18			Marking :	LOGO, 3LIN	IES(120°)					FACTORY : Plot 2	(N2, Dai An Expa	nsion IZ,Lai	Cach Town, Can	n Giang Dist,
		1 : 2016/05/04		Surfa	ce Condition :							Hai	Duong Province,	Vietnam		
		1 : 2016/05/03				V2G04769 -	00						. : +84) (0) 320 - 3			
S	Specification	3 : SAE J429 - 20)14		Q'ty Shipped :	450 PCS						FA	(: +84) (0) 320 - :	3555 - 125 ~		
Chemical	I Compositi	on (%)							2. Macro	etch Meet					PAGE	1/2
Heat No.	C	Si Mn	PS	Cr Mo	Ni B	Cu Ti	V AI			ision	Surface Condition	Random Conditio	Center Se	orenation	Spec of T	est Method
	x100 Min. 15	x100 x100 :	<1000 x1000	x100 x100 x	100 ×10000	x100 x1000	x100 x1000)			Guildee Contailert			grogaton	opec. or r	Cat Wethod
Snec.	Max. 40		25 25	\rightarrow	30	-				pec. sults					ł .	
515120890		16 77	23 25 13 9	12 0.4 0	0.6 20	1 65	0.6 38		1007.85	ed By						
	al Properties	10 17	10 9	12 0.4	20	1 05	0.0 50		Tea	ed by					L	
lechanica	-	Hardness	1	Specime	en Tensile		Pro	of Load	Wedge		1	Baking Treatment	1		· · ·	
Division		1	Yield	Tensile		Reduction			Tensile	Plate Thickness	Salt Spray	Daking Treatment	Thread go	Impact Test	Complete Decarburization	Decarburized Ihread
	Surface	core	Strength	Strength	Elongation	of Area	Load	Elongation	Load			Temperature Time	Ring Gauge 2A & 3A		the thread	zone
nple Size	e 3.	3		J		12		2	2	. 9	3		9			2
Unit	HR 30N	HRC	psi	psi	%	%	lbf	inch	lbf	inch	Hour					HV
Min	n. ´-	25		8			39,300	1947 93	55,400	0.0001	6 (No White rust) 12 (No Red rust)					1/2 H
Max	x. 54	34				***	8 5 8 99461 9 5 8 99462 /8	0.0005	1999 1999 1998							-
Min	n. 46	30	-		120		39,465	0.0000394	65,307	0.0003625	Pass		Pass		4	Pass
esult Avg	g. 47	30			•	in . Ka	39,471	0.0000788	65,756	0.0003743			2			Pass
Max	ux. 47	31			6		39,450	0.0000788	66,116	0.0003861	×					Pass
rested By	Vu Van Quy	n Nguyen Van Manh					Nguyer	Huu Minh	Nguyen Van Dung	Vu Chi Pha	Vu Chi Pha		Vu Chi Pha			Vu Van Quyer
Spec, of st Method	ASTM E18 - 14	ASTM F608 - 14						STM 06 - 14	ASTM F606 - 14	ASTM F1941 - 10	ASTM F1941/F1941M - 15		ASME B1.3M - 2007	4		ASTM F2328 - 14

본 문서의 소유권은 송편그룹에 있으므로 유출시 징계 및 법적 처벌을 받을 수 있습니다.

SUPER CHENG INDUSTRIAL CO., LTD.

NO. 18 BEN-GONG 2nd ROAD., BEN CHOU INDUSTRIAL PARK, KAOHSIUNG COUNTY 820, TAIWAN R.O.C. TEL : 886-7-6225326-30(5 LINES) FAX : 886-7-6215377/6212335/6235829

<u>CERTIFICATE OF INSPECTION</u>

CERT. #: S01-121	2-02FT	ISSUED DATE :	2013/1/14		PAGE 1 OF 1
CLIENT : SUPER	CHENG INDUST	RIAL CO., LTD.			2.
ADDRESS : NO. 18	BEN-GONG 2nd RO	DAD., BEN CHOU INDU	STRIAL PARK,	KAOHSIUNG COUNTY 82	20, TAIWAN R.O.C.
PURCHASER :	RAPIDFIX INDU	STRIAL(ASIA)LIMI	TED P	O #:41200014	
	PART # <mark>36318</mark>	1100 18	Q	TY SHIPPED : 12,00	00 PCS
COMMODITY : G	RADE 5 FIN HE	X NUT	F	INISH : TRIVALEN	T ZINC
SIZE: <mark>7/8-9</mark>	LOT#	S01-1212-02F	SAMPLING	PLAN : ANSI/ASMI	E B18.18.2M-93
QTY: 50477 1	PCS MATE	RIAL: 10B21	н	EAT NO. : <mark>1XS51</mark>	
MANUFACTURER	R: SUPER CHEN	G IND. CO., LTD.	MANU, DA'	ГЕ: 2012/12/10	
DIMENSIONAL INS	PECTION	SPEC. : ANSI/ASM	E B18.2.2-10	SAMPLED BY :]	HSUAN HUI WENG
<u>ITEM</u>	SAMPLE SIZE	SPECIFIED	A A	CTUAL RESULT	JUDGMENT
APPEARANCE	100	ASTM F812-07		GOOD	ОК
W.A.F.	32	1.312 ~ 1.269	in. 🔣	1.276 ~ 1.272 in.	ОК
W.A.C.	8	$1.516 \sim 1.447$	in.	1.467 ~ 1.456 in.	ОК
THICKNESS	8	$0.776 \sim 0.724$	in.	0.746 ~ 0.740 in.	OK
THREAD	32	ANSI/ASME B1	.1	PASS	ОК
10					
MECHANICAL PRO	PERTIES	SPEC. : SAE J995-1	2	SAMPLED BY : 1	HSUAN HUI WENG
ITEM S	SAMPLE SIZE	TEST METHOD	SPECIFIED	ACTUAL RESU	LT JUDGMENT
HARDNESS	8	ASTM F606-11	MAX HRC32	18.0~16.0 HI	RC PASS
PROOF LOAD	4	ASTM F606-11	MIN 55400LI	B 55991 ~ 55704	LB PASS
PLATING THICKNESS	4	ASTM B568-98	MIN 0.0001	in 0.00027 ~ 0.0002	0 in PASS

REMARK : 1 \ THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LAB.

 $\mathbf{2} \mathrel{\scriptstyle \times}$ THIS INSPECTION CERTIFICATE IS FOR RESPONSIBILITY UNDER SAMPLE ONLY

3 • ABOVE SAMPLES TESTED CONFORM TO THE FASTENER SPECIFICATION OR STANDARDS

LAB. DIRECTOR(SIGNATORY)

表單編號:LQC 10E Rev.0

Figure B-34. ⁷/₈-in. (22-mm) Dia. Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-7

					F	MAIL				350	de
		RTER								Saukviije, '	old Springs Road Wisconsin 53080 (262) 268-2400 (-800-437-8785
Cipa	ter Morn for	ccurring Ostapany, .	Inc	CHAR	TER STE	EL TES	TREP	ORT		Fai	< (262) 268-2570
Melted in USA I	Manufa	ctured in U	SA				1				
				F		ust P.O.					160532M-11
					Charter Sale		-				1009418
~				E	St	Heat #					20351510 2073852
	mmons	s Frwy, 4th	Floor			Grade Process			10	NURAKE	G RHQ 41/64 HR
Dallas,T Kind Attr		7 erial Certific	ations D	ept.		ish Size hip date					41/64 27-OCT-14
l hereby certify that the these requirements, T	e maleria	described her	ein has beer	manufactu	red in accorda	nce with the	specificati	ions and slan	dards listed	below and th	al It satisfies
Lab Code: 125544	ne recerc	any or mise, no		Tost res	ults of Heat Lo	1 # 2035151	D	may be point		ciony ondar	
CHEM %Wt	C .09	MN ,33	P .007	S .002	SI . .050	N1 .04	CR .05	MO .01	CU .05	5N .004	.001
	AL ,028	N .0070	,0001	TJ .001	NB .001						
							•				
	1										
				Test resul	its of Rolling L	ol # 207385	2				
				Test resul	lts of Rolling L	ol # 207385	2				
REDUCTION RAT	10=152 1			Test rosul	lts of Rolling L	ol # 207385	2				
REDUCTION RAT	Manu Meet	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	for the follo	wing custo	mer docum	ents:
	Manı Meet Custo	ufactured per (acifications	d Quality M	anual Rev Da	le 9/12/12 Infer Steel e		s for the follo AY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	for the follo AY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	s for the follo AY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	s for the follo AY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	s for the follo VY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	o for the folio VY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	; for the folio YY-12	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	s for the follo	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	for the follo	wing custo	mer docum	ents:
Specifications:	Manı Meet Custo	ulactured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	for the folio YY-12	wing custo	mër docum	ents:
Specifications:	Manı Meet Custo	ulaclured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 Infer Steel e	xceptions	; for the folia XY-12	wing custo	mer docum	ents:
Specifications; Additional Comments:	Manı Meet Custo	ulaclured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 wfer Sleol d n = Dale	xceptions d = 01-MA	¥¥-12			
Specifications:	Maçu Meet Gust	ulaclured per (acifications	d Quality M	anual Rev Da pplicable Cha	le 9/12/12 wfer Sleol d n = Dale	xceptions d = 01-MA	paraedaa alli ji	reviously di	ated MTRs fc	
Specifications; Additional Comments; Additional Comments; Charter Steel Cuyahoga Heights, OH,	Mapu Meet Coste	ulaclured per (acifications	9) Quality M s with any a 9/A29M-12	anual Rev Da ppficable Char Revisio	le 9/12/12 Irfer Sleof d n = Dale Th	xceptions d = 01-MA	porsedes all p crucian porsedes all p crucian Jan Managero	rreviously di a 1 constant	oled MTRs fc	
Specifications; Additional Comments;	Mapu Meet Coste	ulaclured per (acifications	9) Quality M s with any a 9/A29M-12	anual Rev Da pplicable Cha Revisio	le 9/12/12 Infer Steel d n = Date Th Th	xceptions d = 01-MA	porsedes all p crucian porsedes all p crucian Jan Managero	sreviously di	oled MTRs fc	
Specifications; Additional Comments; Additional Comments; Charter Steel Cuyahoga Heights, OH,	Mapu Meet Coste	ulaclured per (acifications	9) Quality M s with any a 9/A29M-12	anual Rev Da pplicable Char Revisio	le 9/12/12 Infer Steel d n = Date Th Th	xceptions d = 01-MA	porsedes all p crucian porsedes all p crucian Jan Managero	rreviously di a 1 constant	oled MTRs fc	

Figure B-35. ⁵/₈-in. (16-mm) Dia., 10-in. (254-mm) Long Guardrail Bolt Material Specification, Test Nos. MSPBN-4 through MSPBN-7

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Weich Sarah Weinberg Compliance Manager

Figure B-36. 16D Double Head Nail Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8

TEST REPORT

USS FLAT WASHER, HDG

		DATE: 2017-04-05	i	
2	MFG LO	T NUMBER: 33183		
		PART NO: M-SWE041	1885-18	
		QNTY:	24,600	PCS
IONS	SPEC	IFICATION: ASME B18	.21.1(2009))
SPE	CIFIED	ACTUAL RESULT	ACC.	REJ.
********	******	********	******	******
ASTM	F788-07	PASSED	100	0
1.24	3-1.280	1.249-1.252	8	0
0.49	5-0.515	0.506-0.508	8	0
0.06	4-0.104	0.068-0.072	8	0
ASTM A153 class C. RoHS Compliant	Min 0.0017"	Min 0.0019 In	8	0
	ESENTATION OF INFO	RMATION PROVIDED BY 後 NORGA/ 检验专用章 QUANLITY CONTROL ATURE OF Q.A LAB	THE MATE	
	IONS SPEC ASTM 1.24 0.49 0.06 ASTM A153 class C. RoHS Compliant CE WITH THE METHO AIA IS A TRUE REPRE ING LABORATORY.	IONS SPEC SPECIFIED ASTM F788-07 1.243-1.280 0.495-0.515 0.064-0.104 ASTM A153 class C. RoHS Min 0.0017" Compliant CE WITH THE METHODS PRESCRIBED IN TH AIA IS A TRUE REPRESENTATION OF INFO ING LABORATORY. ortificate # HK04/0105	MFG LOT NUMBER: 33183 PART NO: M-SWE041 QNTY: IONS SPECIFICATION: ASME B18 SPECIFIED ACTUAL RESULT 	PART NO: M-SWE0411885-18 QNTY: 24,600 ONS SPECIFICATION: ASME B18.21.1(2009 SPECIFIED ACTUAL RESULT ACC. ASTM F788-07 PASSED 100 1.243-1.280 1.249-1.252 8 0.495-0.515 0.506-0.508 8 0.064-0.104 0.068-0.072 8 ASTM A153 class C. RoHS Min 0.0017" Min 0.0019 In 8 Compliant 8

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure B-37. ⁷/₁₆-in. (11-mm) Dia. Plain Round Washer Material Specification, Test Nos. MSPBN-4 through MSPBN-8

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: BOL# Customer PO# Preservative:

<u>10057336</u> <u>3460</u> <u>CCA - C 0.60D pcf AWPA UC4B</u>

Midwest Machinery and Supply

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GR6806.5CRT	6x8-6.5' CRT	105	24080	.603
GR61222BLK	6x12-22″ Block	56	24003	.700
GR6822CH	6x8-22" Block	84	24108	.666
GS6846PST	5.5x7.5-46" BCT	42	24096	.661
GS6806.5PST	5.5x7.5-6.5′ Rub Post	126	24080	.603
GS6823BLK	5.5x7.5-23" Rub Block	84	24075	.654
GR61219BLK	6x12-19" Routered Blk	168	24074	.676

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nicholas Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

> 7/24/2017 Date

Figure B-38. 5¹/₂-in. (140-mm) x 7¹/₂-in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8

CONTRACTOR DECK			-		CERTIF	IED MATERIA	L TEST REPORT						Page 1/1
GÐ	GER	DAU	CUSTOMER SH HIGHWAY SJ 473 W FAIRG	FETY CORP		TOMER BILL TO HWAY SAFETY	CORP		GRADE A992/A709-36		APE / SIZE le Flange Beam / 6) 1.0	K 8.5#/150	DOCUMENT 1 0000000000
JS-ML-CART	ERSVILLE		MARION,OH USA		GLA USA	STONBURY,C	06033-0358		LENGTH 3900"		WEIGHT 41,766 LB		T/BATCH 4245/05
	SSDALE ROA LE, GA 30121	U NE	SALES ORDE 3399484/0000		C	CUSTOMER MA	TERIAL Nº		SPECIFICATION / D. ASTM A6-14 ASTM A709-13A	ATE or REVIS	SION		
CUSTOMER P 001677110	URCHASE ORD IB-B060			BILL OF LA 1323-000006		DATE 04/13/			ASTM A992-11 CSA G40.21-13 345WM				
CHEMICAL COM	MPOSITION Mn 0.92	0.015	\$ 0.027	Sj 0.20	Су 0,30	Ni 0.09	Ç7 0,12	Mc 0.02	5 Sn 7 0,015	0.017	Nb 0.001		
52	ROPERTIES 0.2% SI 500 200	U 93 710 724	500	3	'S 1Pa 62 67	4	TS Pa 94 99		G/L Inch 8,000 8,000	E	lopg. 21.90 22.60		
OMMENTS / NO	ITES		<u></u>										

The above figures are certified chemical and physical test records as contained in the perma specified requirements. This material, including the billets, was melted and manufactured in	
Maskay Ouality Director	Danie VAN WANG OUALITY ASSURANCE MOR.

Figure B-39. W6-in. x 8.5-in. (W152-mm x 216-mm), 78-in. (1,981-mm) Long Steel Post Material Specification, Test Nos. MSPBN-4 through MSPBN-8

1000 BURLINGTON STREET	NORTH KANSAS CITY, MA	C 64116 1-816-474-5210 LLC dba EXLTUBE Test Report) TOLL FREE 1-8	00-892-TUBE
Custome: SPS - New Century	Sec. 02.375	Customer Order No 4500269918		07/25/2016
401 New Century Parkway NEW CENTURY K\$ 66031-1127	Gauge. .154	Delivery No:82791 Lond No:377468		
$e^{i} = e^{i} = e^{i} + \frac{i}{2}e^{i}$	Specification: ASTM A500-1	3 Gr.B/C, ASTM A53-12	JT.B BNT1, ASME	SA53 Gr.B BNT*
	- Argenta			- Alle water halfs
Heat No. Yield Tensils KSI KSI A79999 63.2 67.3	Elongation % 2 Inch 31.00	R#17-	175 H#A	79999
		BCT P	ost Sle	eves QTY 8
		Oct 2	016 SM1	1
Heat No C MN A79999 0.0700 0.8400	P 0.0110 0.0040		NI CR 0,0500 0.060	MO V 0.0200 0.0010
This material was metted & manufactured We hereby certify that all test results show manufacturing is in accordance to A.S.T.N prade tiles above. This product was manu NT «Grade B not pressure tasted - meets	wh in this report are correct I, parameters encompassed o ifactured in accordance with	within the scope of the sp your purchase order requ	ecifications denote	y. All testing and of in the specification and
his material has not come into direct con rocess, testing, or inspections.	tact with mercury, any of it	s compounds, or any men	cury bearing devic	es during our manufacturing
his material is in compliance with EN 102	204 Section 4.1 Inspection (Certificate Type 3.1		
his material has passed NDE leddy currer ensile test completed using test specimen		×	tests. RES, LLC dba	EXITURE
		Jorathan	Wolf	array Firthin
		V		

Figure B-40. 2³/₈-in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material Specification, Test Nos. MSPBN-4, MSPBN-5, and MSPBN-8

COMMERCIAL GROUP

AUGUST 19th, 2016

SOLD TO: TRINITY HIGHWAY PRODUCTS, ELC PO BOX 566028, MAILSTOP 7115 DALLAS, TX 75356-6028 SHIP TO: TRINITY HIGHWAY PRODUCTS, LLC PLT-550 EAST ROBB AVE ATTN: KEITH HAMBURG LIMA, OH 45801-3037

CERTIFICATON

CGLP ORDER# 248853 TRINITY PO# 178817

THIS LETTER AND THE ENCLOSED ATTACHMENTS ARE TO CERTIFY THAT THE FOLLOWING ITEMS WERE 100% MANUFACTURED IN THE UNITED STATES OF AMERICA.

50 PCS, PART#6696G, 5/8IN X 14FT 4.75IN, DOUBLE SWAGE GUARD RAIL ASSEMBLYS.

THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, 100% MELTED & MANUFACTURED IN THE USA. THESE ITEMS ARE HOT DIPPED GALVANIZED TO ASTM-153 SPECIFICATIONS AND STANDARDS, GALV PROCESS ALSO TOOK PLACE IN THE U.S.A.

ATTACHMENTS:

NUMBERS USED IN PRODUCTION OF THESE ASSEMBLYS ARE AS FOLLOWS:

(WIRE ROPE) WIRECO WORLD GROUP REEL# 428-660971-1 / HEAT #S 585464, 567595, 581839, 582607, 578851, 578342, 576237, 552215. (EVRAZ / ROCKY MOUNTAIN STEEL) ***** BUTTONS #12, MUNCY: HEAT# 5171023 (REPUBLIC STEEL)

** KORNS GALVANIZING CO JOHNSTOWN, PA. (GALVANIZING

VERY TRULY YOURS lat

MAT GLYNN GENERAL MGR FLINT OFFICE

HEADQUARTERS

12801 UNIVERSAL DRIVE TAYLOR, MI 48180 NEW PH# (734) 947-4000 NEW FAX# (734) 947-4004 FLINT BRANCH CLEVELAND

BRANCH

G2427 E. JUDD ROAD BURTON, MI 48529 PH# (810) 744-4540 FAX# (810) 744-1588 5213 GRANT AVE CLEVELAND, OH 44105 PH# (216) 641-4100 FAX# (216) 641-1814

Figure B-41. ⁵/₈-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Nose Cable, Test No. MSPBN-4

September 1, 2020 MwRSF Report No. TRP-03-418-20

66966

MILL TEST CERTIFICATE

This form meets the requirements of the U.S. Department of Labor, Occupational Safety and Health Administration Form No. 4

Product Description: 28213 5/8" 8X25F-IWRC DGXIP 8 SZ (RR) US 100% Meted & Manufactured in the United States

Certificate No: 660971 Reel No: 428-660971-1 Distributor: Conuncrcial Group Lifting Products- Burton PO#: 068618 Order No: 181279

Total Length: 1 X 3500 ft

Manufacturer or Supplier of the rope: UNION, WIRECO WORLD GROUP SEDALIA, MO

Nominal diameter: 5/8*

Number of strands: 25

Lay: RIGHT REGULAR

Date of qualifying rope test: 7/25/16

Load at which sample broke (Ib): 45,000 lbs.

Minimum breaking force (Ib): 41,200 lbs.

Grade of rope: DGXIP

Measured diameter (in): .850 (measured under no load)

Number of wires per strand: 25

If the design factor is 5, the safe working load is 8,240 b	If the	design	factor is	5,	the	safe	working	loadis	8,240 b
---	--------	--------	-----------	----	-----	------	---------	--------	---------

Organization carrying out the examination and test: SAME AS ABOVE

Organization issuing this certificate: WireCoWorldGroup, Sedalia, Missouri 65301.

This rope was manufactured to conform to the current ASTM A 1023 unless otherwise indicated in the product description.

I certify that the above particulars are correct and that the examination and test were carried out by a competent person in compliance with the applicable specification.

Position of Signatory: Quality Process Administrative Assistant Natary Public - Notary Occurry State of Massouri, Petits County Commission Number 00464267 My Commission Expires Jun 6, 2020	Signature: Mic	nete Johnson	(Date)	7/25/16	SHEIL A DOWDY
Ritanded and Closed https://www.communication.com/ https://www	Position of Signator		Bomostic Wire Rope and Cable		Notary Public - Notary Soundary State of Missouri, Pattls County

Figure B-42. ⁵/₈-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Nose Cable, Test No. MSPBN-5 through MSPBN-8

-961-

P.O. Box 205 Muncy, PA 17756 Phone: 570-649-5188 Fax: 570-649-5850 www.muncy-upson.com

Certificate of Conformance

January 8, 2016

 $\frac{\partial (1)}{\partial x} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial (1)}{\partial x} = \int_{-\infty}^{\infty} \frac{\partial$

Customer Name:

Matt Glynn Commerical Group Lifting Products 2427 East Judd Street Burton, Mich. 48529

CGLP Purchase Order # 065570 Muncy Industries Order # 29342

This letter is to certify that the following items were 100% manufactured in the United States of America.

Quantity: 500 Pieces #12 Cold Tuff (SB/NB-20) Hot Dipped Galvanized Buttons.

Steel Heat Number: 5171023 (Republic Steel)

Country of Melt: 5171023 (Republic Steel)

Steel Heat Number: 590070 (Niagara Lasalle)

Country of Melt: 590070 (Niagara Lasalle)

Hot Dipped Galvanizing: (Korns Galvanizing)

This is to certify that the above mentioned order was manufactured per the specifications as per the above mentioned purchase order and the referenced drawing (s).

Sincerely, nalay) Donald Murray Q.A.Manager

Serving the Wire Rope Industry Since 1949

Figure B-43. Nose Cable Swage Button Certificate of Compliance, Test No. MSPBN-4 through MSPBN-8

September 1, 2020 MwRSF Report No. TRP-03-418-20

30006

Wirerope Works, Inc 100 Maynard St Williamsport, PA 17701 Manufacturer of Bethlehem Wire Rope * "Our Quality Management Systems are registered to ISO 9001: 2008 and API-Q1"

CERTIFICATE OF COMPLIANCE

CUSTOMER: ASSEMBLY SPECIALTY

Assembly Specialty Products, Inc. PO#: 37094 REF#: W-24-DG INSP: Quade DATE: 8/1/2016 ASPI REEL(S): 10503, 10504

CUST. PO #37094

WW FILE NAME 209013

REEL# 6209013

DESCRIPTION: 3/4" 06:19 W GA IPS RR SAC GALVANIZED WIRE ROPE IN ACCORDANCE WITH AASHTO DESIGNATION M30-02

ACTUAL TEST RESULTS ACTUAL BREAKING STRENGTH: 61,300 LBS REQUIRED BREAKING STRENGTH: 42,800 LBS

MINIMUM MASS OF COATING: WIRE DIAMETER MAINWIRES .054" MINIMUM CLASS A COATING .40- ACTUAL RANGE .60/.71 oz/fi2 .040" MINIMUM CLASS A COATING .40- ACTUAL RANGE .59/.69 oz/fi2

STEEL CERTIFICATES FOR ROD MANUFACTURER ARE ATTACHED The following are heat numbers and wire diameters as shown on the Steel Certificates

.054" HEAT #	20424780
.040" HEAT #	20407870
.061" HEAT #	20405020
.046" HEAT #	20407870

ALL MATERIALS "MELTED AND MANUFACTURED IN THE USA"

PATTI WATKINS, Inv. Control/QA Customer Coordinator Per the authority of, ROGER GILLILAND, DIRECTOR OF ENGINEERING

Figure B-44. BCT Cable Assembly Cable, Test No. MSPBN-4 through MSPBN-8

						Cer	tified	Ana	IYSIS							1	Hig.	ay Prod	CAS. L.
rinity I	lighway F	roducts, LLC														-	V		
50 East	Robb Ave	Э.					Order Nur	mber: 1269	489 Pro	d Ln G	p: 3-4	Guardr	ail (Doi	n)					
lima, OH	45801 Pł	un:(419) 227-1296					Custome	r PO: 3346											
Custome	: MIDW	EST MACH.& SUPPLY (BOL Nu	mber: 9745	7	Ship	Date:					As of: 1	1/7/16	5	
	P. O. F	3OX 703					Docum	ent #: 1		I									
								d To: NE											
	MITEC	RD, NE 68405						State: NE											
							Use a	state. NE											
Project:	RESA	LE																	
Qty			Care	CTT	1111	Heat Code/H	ant	\$71.1.3	700		~		122		201 211				
175		Description 5/8"X18" GR BOLT A307	Spec HW	CL	TY	Heat Code/ H 29145-B	eat	Yield	TS	Elg	С	Mn	Р	S	Si Cu	СЪ	Cr	Vn	ACW
	3580G			CL	TY		eat	Yield	TS	Elg	С	Mn	P	S	Si Cu	. СЪ	Cr	Vn	ACW
175	3580G 6696G	5/8"X18" GR BOLT A307	HW	CL	TY	29145-B	eat	Yield	TS	Elg	С	Mn	Р	S	Si Cu	СЪ	Cr	Vn	ACW
175	3580G 6696G	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN	HW HW	CL	TY	29145-B 248853	eat	Vield 52,940	TS 69,970							• Cb			
175 6 400 4	3580G 6696G 6740B	5/8"X18" GR BOLT A307 CBL 5/8"X144.75/DBL BTN PLYMR BLK 6X12X14 MT	HW HW HW	CL	TY 2	29145-B 248853 27950	eat												
175 6 400 4	3580G 6696G 6740B 9852A	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN PLYMR BLK 6X12X14 MT STRUT & YOKE ASSY	HW HW HW A-36	CL		29145-B 248853 27950 195070	eat			31.1		0.520		004 0.0	20 0.110	0.000	0.050		4
175 6 400 4	3580G 6696G 6740B 9852A 12379G	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN PLYMR BLK 6X12X14 MT STRUT & YOKE ASSY	HW HW HW A-36 RHC		2	29145-B 248853 27950 195070 L34713	eat	52,940	69,970	31.1 31.4	0.190	0.520	0.014 0.	004 0.0 002 0.	20 0.110	0.000	0.050	0.000	4 4 4
175 6 400 4 7	3580G 6696G 6740B 9852A 12379G	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN PLYMR BLK 6X12X14 MT STRUT & YOKE ASSY T12/12'6/SPEC/S 34'RCX	HW HW HW A-36 RHC M-180 M-180	A	2 2	29145-B 248853 27950 195070 L34713 172876 172876	eat	52,940 55,930	69,970 72,020	31.1 31.4 31.4	0.190	0.520 0.720 0.720	0.014 0.	004 0.0 002 0. 002 0.	20 0.110 020 0.13 020 0.13	0.000 0 0.000 0 0.000	0.050 0.080 0.080	0.000	4 4 4 4 4
175 6 400 4 7	3580G 6696G 6740B 9852A 12379G	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN PLYMR BLK 6X12X14 MT STRUT & YOKE ASSY T12/12'6/SPEC/S 34'RCX	HW HW HW A-36 RHC M-180 RHC M-180 M-180 M-180	A A	2 2	22145-B 248853 27950 195070 L34713 172876 172876 L33814 182997 182998	eat	52,940 55,930 55,930	69,970 72,020 72,020	31.1 31.4 31.4 26.9	0.190 0.190 0.190	0.520 0.720 0.720 0.730	0.014 0. 0.014 0 0.014 0	004 0.0 002 0. 002 0. 002 0.	20 0.110 020 0.13 020 0.13 010 0.13	0.000 0 0.000 0 0.000 0 0.000	0.050 0.080 0.080 0.080	0.000 0.000 0.000	4 4 4 4 4 4
175 6 400 4 7	3580G 6696G 6740B 9852A 12379G	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN PLYMR BLK 6X12X14 MT STRUT & YOKE ASSY T12/12'6/SPEC/S 34'RCX	HW HW HW A-36 RHC M-180 RHC M-180 M-180 M-180 M-180	A A A A A	2 2	29145-B 248853 27950 195070 L34713 172876 L33814 182997 182998 182997	eat	52,940 55,930 55,930 58,340 60,310 58,340	69,970 72,020 72,020 76,890	31.1 31.4 31.4 26.9 25.4	0.190 0.190 0.190 0.190	0.520 0.720 0.720 0.730 0.730	0.014 0. 0.014 0 0.014 0 0.014 0	004 0.0 002 0. 002 0. 004 0. 006 0.	20 0.110 020 0.13 020 0.13 010 0.13 010 0.14	0.000 0.000 0.000 0.000 0.000	0.050 0.080 0.080 0.060 0.050	0.000 0.000 0.000 0.001	4 4 4 4 4 4 4
175 6 400 4 7 6	3580G 6696G 6740B 9852A 12379G	5/8"X18" GR BOLT A307 CBL 5/8"X14'4.75/DBL BTN PLYMR BLK 6X12X14 MT STRUT & YOKE ASSY T12/12'6/SPEC/S 34'RCX	HW HW HW A-36 RHC M-180 RHC M-180 M-180 M-180	A A A A	2 2	22145-B 248853 27950 195070 L34713 172876 172876 L33814 182997 182998	eat	52,940 55,930 55,930 58,340 60,310	69,970 72,020 72,020 76,890 78,910	31.1 31.4 31.4 26.9 25.4 26.9	0.190 0.190 0.190 0.180 0.200	0.520 0.720 0.720 0.730 0.730 0.730	0.014 0. 0.014 0 0.014 0 0.014 0 0.014 0 0.012 0	004 0.0 002 0. 002 0. 004 0. 006 0. 004 0.	20 0.110 020 0.13 020 0.13 010 0.13 010 0.14 010 0.13	0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000	0.050 0.080 0.080 0.060 0.050 0.060	0.000 0.000 0.000 0.001 0.001	4 4 4 4 4 4 4 4 4

64,140

46,800

81,540

70,400

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

M-180

A-36

24 19361G BNT PL 3/16X12-5/8X5-1/2

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

208318

2

A of 5

24.5 0.190 0.720 0.011 0.003 0.020 0.110 0.000 0.060 0.000 4

29.1 0.180 0.840 0.007 0.008 0.060 0.170 0.000 0.070 0.001 4

Figure B-45. 12⁵/₈-in. x 5¹³/₁₆-in. x ³/₁₆-in. (321-mm x 148-mm x 5-mm) Nose Cable Anchor Plate Material Specification, Test Nos. MSPBN-4 through MSPBN-8

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015			Allurgic Report	AL	PAGE DATE TIME USER	1 of 1 08/02/2016 10:25:48 WILLIAMR	<
s 0 L D 66031-1127			 S 13716 H Kansas City V P 401 New Cer NEW CENTUF O 	ntury Parkway RY KS			
Order Material No.	-393 U-Bolt Galvanize			Customer Part	Custom	80	Ship Date
40267215-0010 801148120TM	11GA 48 X 120 A1011-		25 5,000	Customer Part	Custom	ar PO	08/02/2016
Heat No. B609769 Vendor Batch 0004412124	STEEL DYNAMICS COLUMBUS	Chemical An DOMESTIC		NAMICS COLUMBUS	Melted a	and Manufactured	in the USA
Carbon Manganese Phosphorus 0.0700 0.3500 0.0110	25 EA . 5,000 LB Sulphur Silicon Nickel 0.0030 0.0200 0.0300	Chromium Molybdenum 0.0600 0.0100	Boron Copper /	Aluminum Titanium 0.0260 0.0000		umbium Nitroger 0.0010 0.0036	
Mill Coil No. 168647053	14	Mechanical/ Physica	al Properties	ž			
Tensile Yield	Elong Rckwl	Grain	Charpy Ch	arpy Dr Ch	arpy Sz	Temperature	Olser
Heat No. B609769 Vendor	STEEL DYNAMICS COLUMBUS	Chemical An DOMESTIC		NAMICS COLUMBUS	Melted	and Manufactured	in the USA
Batch 0004412121	50 EA 10,000 LB	DOWLOTIC	Will STEEL DT	VANNES COLOMBOS	incited i		
Carbon Manganese Phosphorus 0.0700 0.3500 0.0110	Sulphur Silicon Nickel 0.0030 0.0200 0.0300	Chromium Molybdenum 0.0600 0.0100	Boron Copper 2 0.0001 0.0900	Aluminum Titanium 0.0260 0.0000		0.0010 0.0036	
a a a a a a a a a a a a a a a a a a a		Mechanical/ Physica	al Properties				
Mill Coil No. 16B647053 Tensile Yield	Elong Bckwl	Grain	Charpy Ch	arpy Dr Ch	arpy Sz	Temperature	Olser
		J. J	onarpy on	aip, 51 - 61		remportatore	0.001

Figure B-46. 2¼-in. x ¾-in. (57-mm x 19-mm), 11-gauge, U-Bolt Plate Washer Material Specification, Test Nos. MSPBN-4 through MSPBN-8

American Owned American Made American Quality

DROP FORGED PRODUCTS Turnbuckles Shackles Wire Rope Clips (also malleable) Machinery Eye Bolts Eye Bolts regular & shoulder Eye Nuts Rod Ends blank & machined Ring Bolls Hooks Swivels Pad Eyes Yoke Ends

WIRE PRODUCTS "S" Hooks U Boils (galv. & zinc) rd., sq. & long tangent Turned Eye Boils (threaded) lag, mach. or welded Threaded Rod

OTHER PRODUCTS Allay Steel Hoist Rings Wire Rope Thimbles Bevel Washers Clevis Pins Coupling Nuts Plated Steel Shapes Brass rounds, Rats & anales

STAINLESS & METRIC (check availability) Eya Bolts & Eya Nuis U-Bolts "5" Hooks Wire Rope Clips Blank Rod Ends Threaded Rods

SPECIAL PRODUCTS Manufactured to Specifications

WAREHOUSE LOCATIONS: Chino, CA (909) 591-1099 Monroe, GA (770) 266-5600 Houston, TX (713) 664-7722 Chicago Hardware & Fixture Company 9100 Parklane Avenue Franklin Park, Illinois 60131 (847) 455-6609 Fax (847) 455-0012 www.chicagohardware.com

JANUARY 4, 2017

THE STRUCTURAL BOLT CO. 2140 CORNHUSKER HWY. LINCOLN, NE 68521

R#17-250 H#71067E Bullnose U-Bolts (Different Nuts Used)

CERTIFICATION

THIS IS TO CERTIFY THAT OUR PART NO. 536264, STOCK #6HG, THE ¼ X 1-1/4 X 2-1/4" GALVANIZED U-BOLTS AND PLATES FURNISHED AGAINST YOUR PURCHASE ORDER NO. 19624 HAVE BEEN MADE IN THE U.S.A. FROM DOMESTIC ASTM-307, C-1010 STEEL AND ARE HOT DIP GALVANIZED TO ASTM-153 SPECIFI-CATIONS.

U-BOLT: HEAT # 71067E C .11 Mn .42 P .004 S .013

PLATE: HEAT#2507326 C .08 Mn .34 P .009 S .003

CHICAGO HARDWARE & FIXTURE CO.

Michaerzerber Michaerzerber Sence 1920

Figure B-47. ¹/₄-in. (6-mm) U-Bolt Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8

R#17-297 Bullnose U-Bolt NUts

December 2016 SMT

Certified Material Test Report to BS EN 10204-2004 3.1 FOR ASTM A563, GRADE A HEX FIN NUTS

FACTORY: IFI & Morg ADDRESS: Haiyan, Zh	REPORT DATE:05 JULY,2016				
CUSTOMER:			MFG LOT NUMBER:	GL16187-1	
SAMPLE SIZE: ACC. TO SIZE: 1/4-20 HDG		F1470-12 75000 PCS	PO NUMBER:22002207		
			PART NO: 1136701		
STEEL PROPERTIES STEEL GRADE: Q195			HEAT NUMBER: 1842.	59	
CHEMISTRY SPEC:	C %*100	Mn%*100 P %*1000	S %*1000		
ASTM A563 GRADE A	0.55max	min 0.12max	0.15max		
TEST:	0.08				
12011					
	L	1	11		
DIMENSIONAL INSPECT	FIONS	SPECIFICA	TION: ASME-B18.2.2-20	10	
CHARACTERISTICS	TEST METHOD ******	SPECIFIED ******	ACTUAL RESULT	ACC. *******	REJ. *******
APPEARANCE	ASTM F812-2013		PASSED	29	0
THREAD ASME B1.3-2003 2B			PASSED	15	0
WIDTH A/F 0.438-0.428			0.432-0.430	5	0
WIDTH A/C 0.505-0.488			0.499-0.495	3	0
HEIGHT 0.226-0.212			0.219-0.217	4	0
MECHANICAL PROPERT	FIES: 1/4" to 1 1/2"		SPECIFICATION: AST	M A 563-07a	GR-A
CHARACTERISTICS TEST METHOD		SPECIFIED	ACTUAL RESULT	ACC.	REJ.
***************		*****	*****	******	*****
HARDNESS : ASTM F606-2014		B68-C32 Max(107HRB)	C25-27	15	0
PROOF LOAD : ASTM F606-2014		Min 68 Ksi	72 Ksi 5		0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
**********		****	*****	*****	*****
HOT DIP GALVANIZED	ASTM F2329-05	MIN 2.10miu	2.50miu	4	00
ALL TESTS IN ACCO ASTM OR SAE SPECIFIC INFORMATION PROVID	ATION. WE CERTIFY TH	HAT THIS DATA IS A TH	RUE REPRESENTATION	OF	
		~			

(SIGNATURE OF Q.A. LAB MGR.) (NAME OF MANUFACTURER)

Figure B-48. ¹/₄-in. (6-mm) Hex Nut Material Specification, Test Nos. MSPBN-4 through MSPBN-8

¥25 E. O'O Lima, OH									
Customer:	MIDWEST MACH & SUPPLY CO. P. O. BOX 81097 LINCOLN, NE 68501-1097	Sales Order: Customer PO: BOL # Document #	2030 43073		Print Date: Project: Shipped To: Use State:	RESALE NE			
		Tri	nity Highway P	roducts. LLC					
	Certificate (Of Compliance For T	rinity Industries,	hc. ** SLOTI	ED RAIL TH	ERMINAL **			
			HRP Report 3			1	s .		
Pieces	Description								
64	5/8"X10" GR BOLT A307			any management of the second	nin an	an an that the state of the sta	a an	iony and and provident for the provident state of the second state of t	la a da yaya a ta ƙasar Indonesia (ina a 1986) I
:92	5/8"X18" GR BOLT A307		*						
32	1" ROUND WASHER F844 1" HEX NUT A563								
; 192	WD 6'0 POST 6X8 CRT						MGS	BR	
192	WD BLK 6X8X14 DR						1100	LIN	
64	NAIL 16d SRT								
- 64	WD 3'9 POST 5.5X7.5 BAND								
132	STRUT & YOKE ASSY					<i>c</i> .			
128 32	SLOT GUARD '98 3/8 X 3 X 4 PL WASHER					Gr	ound Si	irut	
								A ALLEN M	0
							C	90453-	° 8
Jpon deliv	very, all materials subject to Trinity Highway	Products , LLC Stora	ge Stain Policy No	o. LG-002.					
2-761-3288									
-19									
S.LL STEE	EL USED WAS MELTED AND MANUFA	CTURED IN USA AN	D COMPLIES W	ATH THE BUY	MERICA AC	т			
	RDRAIL MEETS AASHTO M-180, ALL S					-			
LLOTH	ER GALVANIZED MATERIAL CONFOR	MS WITH ASTM-123	l.						
	OMPLY WITH ASTM A-307 SPECIFICAT								
	MPLY WITH ASTM A-563 SPECIFICATI							STATED.	
4" DIA C/	ABLE 6X19 ZINC COATED SWAGED END . H - 49100 LB	AISI C-1035 STEEL AN	INEALED STUD I	"DIA ASIM449	AASHIO M30	, TYPE II BRE	KING .		
State of Ohi	o, County of Allen. Swom and Subscribed befo	converting 10th day of h				1/	11	6	
3		(IA)	au, 2000	Trinity High	way Products.)	uch C	NY. WA	1. X	
Ö.,	. Allow Man	1th)		Certified By:		1 110	all	m r r	
ig ctary Pub	Slic: Cheford C	i				f			2 of 4
A-MANINE SAV	manage but h Wal all	+							2 OI 4

Figure B-49. Ground Strut Certificate of Compliance, Test Nos. MSPBN-4 through MSPBN-8

	IR EL JACKSON, II	NG.	ŗ	7/27/20				NUC	OR STEEL	#: M1-15090 JACKSON, IN 30 Fourth Stre wood, MS 3923
									Fax	30 Fourth Stre wood, MS 392 (601) 939-16 (601) 936-620
	AL STEEL INC ACCOUNTS PAYABL DX 98 INGHAM, AL 35202-00 599-8000 205) 599-8052			S	hip To: O'Ni 453i BIRI (205 Fax:	EAL STEEL D MESSER- MINGHAM -) 599-8000 -(205) 599-8	INC NRPORT HWY NL 35222 052	¢.		
Customer P.O.	00771356					- T	Sales Order	343125.5		
Product Group	Merchant Bar Quality	v		* <u>1,1,2,7,7,7,7,7,7,7,7</u> ,1	1		Part Number	53500300	2401000	
Grade	NUCOR MULTIGRA		Berners i filini selatan				Lot#	JK161014		
Size	1/2x3" Flat		1.1 C		1999 (N. 1997)		Heat#	JK161014		tali and a second second second
Product	1/2x3" Flat 20" NUCO	OR MULTIG	RADE				8.L. Number	M1-42989	8	194 9 - 1949 - 1949 - 1949 - 19 49 - 1940 - 1949 -
Description	NUCOR MULTIGRA						Load Number	M1-15090		····
Customer Spec				· · · · · · · · · · · · · · · · · · ·			stomer Part #	00777557		
the second second	nalérial describso herein has l	been manifarite	red in accordance	e with the snorth	ations and stand		in the second	il with the second	ls.	<u></u>
Roll Date: 4/5/201			hlpped LBS		y Shipped P			- av is fromiton	and the second second	
0.35% 0.3	39%									
	GA G4020, AASHTO M RBON EQUIVALENT	270			1997 - S. a. a. a. 1997 - S. a.					
Roll Date: 4/5/201 Yield 1: 56,172psi	6	270	A. 4 . 4 . 4	1: 75,460psi 2: 76,500psi	na da serie de la constante de			igation: 25% Igation 25%		
Roll Date: 4/5/201 Yield 1: 56,172psi Yield 2: 56,126psi Specification Com A572/572M GR50 SA36/SA36M MEE	6	IGRADE ME S/GR50 CSA I REPORTIN	Tensile 2 ETS THE RI G40.21 GR IG REQUIRE	2: 76,500psi EQUIREMEN 44W(300W)/C MENTS			Elor ASTM AS29/52 M270/M270M (M270/M270M (MELTING, HA MELTING, HA	gation 25% 29M GR50 AS CR36/GR50 A CR36/GR50 A	in 8°(% in 2) STM ASME)3.3mm)
Roll Date: 4/5/201 Yield 1: 56,172psi Yield 2: 56,126psi Specification Com A572/572M GR50 SA36/SA36M MEE	nenis: NUCOR MULT ASTMT09/709M GR36 TS EN 16204 SEC 3.1	IGRADE ME S/GR50 CSA I REPORTIN	Tensile 2 ETS THE RI G40.21 GR IG REQUIRE	2: 76,500psi EQUIREMEN 44W(300W)/C MENTS			Elor ASTM A529/5 M270/M270M 0	gation 25% 29M GR50 AS GR36/GR50 A AVE OCCURF EEN USED IN Droved	in 8°(% in 2) STM ASME)3.3mm)
Roll Date: 4/5/201 Yield 1: 56,172psi Yield 2: 56,126psi Specification Com A572/572M GR50 SA36/SA36M MEE	nenis: NUCOR MULT ASTMT09/709M GR36 TS EN 16204 SEC 3.1	IGRADE ME S/GR50 CSA I REPORTIN	Tensile 2 ETS THE RI G40.21 GR IG REQUIRE	2: 76,500psi EQUIREMEN 44W(300W)/C MENTS			Elor ASTM A529/57 M270/M270M MELTING, HA I, HAS NOT BE QA App	gation 25% 29M GR50 AS GR36/GR50 A AVE OCCURF EEN USED IN Droved	in 8°(% in 2) STM ASME)3.3mm)
Roll Date: 4/5/201 Yield 1: 56,172psi Yield 2: 56,126psi Specification Com A572/572M GR50 SA36/SA36M MEE	nenis: NUCOR MULT ASTMT09/709M GR36 TS EN 16204 SEC 3.1	IGRADE ME S/GR50 CSA I REPORTIN	Tensile 2 ETS THE RI G40.21 GR IG REQUIRE	2: 76,500psi EQUIREMEN Adw(3000W)/C IMENTS	PRODUCT: ERCURY, IN	INCLUDING ANY FORM	Elor ASTM A529/57 M270/M270/M MELTING, HA NAS NOT BE QA APF SI# 7775	gation 25% 29M GR50 AS GR36/GR50 A AVE OCCURF EEN USED IN Droved	in 8°(% in 2) STM ASME)3.3mm)
Roll Date: 4/5/201 Yield 1: 56,172psi Yield 2: 56,126psi Specification Com A572/572M GR50 SA36/SA36M MEE	nenis: NUCOR MULT ASTMT09/709M GR36 TS EN 16204 SEC 3.1	IGRADE ME S/GR50 CSA I REPORTIN	Tensile 2 ETS THE RI G40.21 GR IG REQUIRE	2: 76,500psi EQUIREMEN Adwig0000/0 MENTS ALS IN THIS LD FREE. ME		INCLUDING	Elor ASTM A529/57 M270/M270/M MELTING, HA NAS NOT BE QA APF SI# 7775	gation 25% 29M GR50 AS GR36/GR50 A AVE OCCURF EEN USED IN Droved	in 8°(% in 2) STM ASME)3.3mm)

Figure B-50. Anchor Bracket Assembly Material Specification, Test Nos. MSPBN-4 through MSPBN-8

P.O. Box 10323 Birmingham, Alabama 35202 (205) 595-3512

Pg 1 of 1

Cantificato	of	Compliance
Certificate	IJ	Compliance

Cust	omer:	Midwest Machinery & Supply	-		BFM # :	425884
P.O .	#:	3443		Date	Shipped : 6	/26/2017
	Quantity	Description	Lot#	Heat #	Specification	Finish
1	201	5/8"-11 x 19" Hex Bolt	213830	JK17100352	ASTM 307A	HDG
2	523	7/8"-9 x 16" Hex Bolt	213831	58024495	ASTM 307A	HDG
3	180	5/8"-11 x 8" Hex Bolt	213832	JK17100352	ASTM 307A	HDG
4	157	5/8"-11 x 10" Hex BOLT	213833	JK17100352	ASTM 307A	HDG
	furnished i	m Fastener Manufacturing. h n reference to the above purch ssigned specifications.				
	Signed: _	Brian Hug	ghes		Date:0	7/07/2017

Figure B-51. ⁵/₈-in. (16-mm) Dia., 10-in. (254-mm) Long Hex Bolt Material Specification, Test Nos. MSPBN-5 through MSPBN-8

3580(+

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

180129

CUSTOMER PO:

					R #: 058945 ED: 10/20/2016
LOT#:	29145-B				
SPECIFIC	ATION:	ASTM A307, GRADE	E A MILD CARBON ST	EEL BOLTS	
TENSILE:	SPEC:	60,000 psi*min	RESULTS;	78,212	
				77,960	
HARDNES	SS:	100 max		85.30	

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 29145-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Мn	Р	S	Si
NUCOR	1010	NF16102734	.10	.54	.012	.017	15

QUANTITY AND DESCRIPTION:

4.500 PCS 5/8" X 18" GUARD RAIL BOLT P/N 3580G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA, THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA, WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY FUBLIC – STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

lomas ROVED SIGNATOR

84.60

120/16 DATI

Figure B-52. ⁵/₈-in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-5

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 184469

SHIPPER #: 060902 DATE SHIPPED: 06/30/2017

LOT#: 29882

SPECIFICATION:		ASTM A307, GRADE	A MILD CARBON	STEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS;	77,389
HARDNESS				77,362
TARDNES:	5:	100 max		88.30
				88.10

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 29882

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Ρ	S	Si
NUCOR	1010	100885399	.12	.51	.018	.029	.16

QUANTITY AND DESCRIPTION:

7,200 PCS 5/8" X 18" GUARD RAIL BOLT P/N 3580G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA, THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS NY COMMISSION EXPIRES OCTOBER 3, 2018

de Mclomas OVED SIGNATORY

Figure B-53. ⁵/₈-in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-5 through MSPBN-7

ROCKFORD B	OLT & STEEL CO.
126 MILL	
	d, IL 61101
815-968-0514	FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 183621

SHIPPER #: 060458 DATE SHIPPED: 05/11/2017

Si .13

LOT#: 29783-B

SPECIFICATION: ASTM A307, GRADE A MILD CARBON STEEL BOLTS

TENSILE:	SPEC:	60,000 psi*min		RESULTS:	72,977 72,530	
HARDNESS:	10	100 max	N° a		84.70 85.00	

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 29783-B

		, a 1	CHEMICAL COMP	OSITION	4		· · ·
MILL -		GRADE	HEAT#	С	Mn	P	S
NUCOR		1010	DL16102715	.11	.45	.004	.018

7,875 PCS 5/8" X 10" GUARD RAIL BOLT P/N 3500G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

	STATE OF ILLINOIS COUNTY OF WINNEBAGO			
	SIGNED BEFORE ME ON THIS	20 17 Sinda	Melomas	siuli
	Merry Hallene	APPROVED SIG		DATE
	OFFICIAL SEAL MERRY F. SHANE			
21	NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018			1

Figure A-19. ⁵/₈-in. (16-mm) Dia., 10-in. (254-mm) Long Guardrail Bolt Certificate of Compliance, Test Nos. MSPBN-5 through MSPBN-8

-	-	
- a -		1.1
	-	-1
5		F

2			χ ⁽¹⁾ γ ⁽¹⁾ 141 1 π81 1 π81	12 150th S mmond IN	lreet 45327-1799			CER	TIFIC	ATION	CERTIFICA H161 DATE 05/ PAGE 2	
" 5820 SU " TURBOT " USA " o	SQUEH.	NE & TOOL ANNA TRA PA 17772	IL		CUSTOME	RDER TITEM RADE SIZE	856770 1018 1.5620 17' 0"	/ 24' 0"	LEN	IYEM 111 SHAPE RO SIZE MM 39. GTH MM 518	1562204 und 6748 MM 81.6 / 73	И
1618 A) /FG ASTM A29/A: HEAT 590070 CHEMISTRY	COLD DI 29M-12e	GRAIN PRACTI		SOL	RB 83) MAX			CA	ST	REDUCTION 23.6:1	RATIO	Di
c 0.160	NIN 0.650	P .009	.017	51 0.210	0.09		CR 0.110	.03		CU	AL	V
N	1	TE	AS		PB	_	SE SE	03		.250	.031	.002 NB
N/A		NIA	N/A		NIA	-	N/A		/A	N/A		.00800.
MECHANICAL	1	MENON E										
JOB h752160		PSI	2% YIELD		ELONG	_	OFA	HARO	NESS	.02% YIEL	D	SR TEMP
.ot	_	P 51	PSI	-	0.00	0	.00			1	-	
LOT	1	JOB	WEIGHT (LBS)	PIEC	ES	-1-	LOT		JOB	WEI	GHT (LBS)	PIECES
4917599	h752	160	4.436	4	04	F	4917639	h	752160		,580	42
4917688 4917836	h752 h752		4,625		14		4917765		752160	4	,540	41
4917943	h752		4,550		12		4917850	h	752160	4	,815	43
		8										
		4										
W.J. Dereby ce as ameneded a or any metal a	ning that i and all reg flow that is	mese goods w adations and o sliquid at prid	ete produced in con rifers of the United ient temerature dur	npliance v States De ing proces	sing or while i	ble req abev iss m our j	unements and finder Jussession	of sections of section 14 i No weld re	b. 7, and 1 hereof Ma pairs perfe	2 of the l'au L sterral was not ormed on the a	abor Stand, exposed to bove mater	nds Act. merciaX rd
CERTIFIC	ATE O	FTEST	By:		- t-	IA	lalter P	Kretzler	- Direct	or of Q.A.I	Chief M	atallurnist

Figure B-54. ⁵/₈-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Cable and Swage Button Certificate of Compliance, Test Nos. MSPBN-5 through MSPBN-7

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: BOL# Customer PO# Preservative:

<u>3460</u> <u>CCA - C 0.60D pcf AWPA UC4B</u>

10057336

Midwest Machinery and Supply

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GR6806.5CRT	6x8-6.5' CRT	105	24080	.603
GR61222BLK	6x12-22" Block	56	24003	.700
GR6822CH	6x8-22" Block	84	24108	.666
GS6846PST	5.5x7.5-46" BCT	42	24096	.661
GS6806.5PST	5.5x7.5-6.5′ Rub Post	126	24080	.603
GS6823BLK	5.5x7.5-23" Rub Block	84	24075	.654
GR61219BLK	6x12-19" Routered Blk	168	24074	.676

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nicholas Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

7/24/2017 Date

Figure B-55. 6-in. x 8-in. x 14-in. (152-mm x 203-mm x 362-mm) Timber Blockout Material Certification, Test Nos. MSPBN-6 and MSPBN-7

																			2	
									С	ertifie	d Test	t Repo	ort							
٨	IORTH	STAR	BL	JESCO	OPE S	TEEL L	LC												2	
67 D		Road 9 3515		11.1						~ .	97 (, 199.	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -			· · · · · · · ·			(* 1947) (* 1949) 1970 - 1970 1970 - 1970		
С	ustomer:	: Trin	ity Inc	dustries																
2	525 Stem	mons I	reew	ay		Order #		356	470	0	rd Width	(mm/in)	1447.800	/ 57.000		Weight	(kg/lb)	21119/	46559	
	allas, TX 7					Line Ite	m #	1			•		2.438 /							
	ustomer					Heat #			663				n 1018 (ail Type :	2			
C	ust. Ref/	Part #	20001	12B		Coil #		162	0567	P	roductior	n Date/Ti	me Jun	4 2016 5:2	23PM					
									Heat	Chem	ical An	alysis (wt%)							
-	Туре		C	Mn	P	S	Si	AI	Cu	Cr	NI	Mo	Sn	N	В	V	Nb	Ti	Ca	Pb
	Heat		.19	0.72	0.012	0.004	0.02	0.02	0.12	0.08	0.04	0.01	0.01	0.007	0.0000	0.000	0.000	0.001	0.001	0.000

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	63,290 psi	81,680 psi	25.6%

This hot rolled steel has been produced to conform to DIN/EN 10204:2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards: ASTM E1806-09, ASTM E415-14, ASTM A751-14, ASTM 1370-14, JIS 22201:1998, JIS 2241:2011. Pressure Equipment Directive (PED) 97/23/EC 7/2, Annex I, Paragraph 4.3 Compliant. This report certifies that the above test results are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this test report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLC is not responsible for the inability of this material to meet specific applications. Any modifications to this certification as provided negates the validity of this test report. All reproductions must have the written approval of North Star BlueScope Steel LLC, Delta, Ohio. This material was not excosed to Mercury or any alloy which is liquid at ambient temperature during processing or while in North Star BlueScope Steel LLC, Dester are available upon request. Uncertainty calculations are calculated in accordance with NIST standards. Uncertainty data is available upon request.

Tim Mitchell

mathe

Manager Quality Assurance and Technology

nology Date Issued: Jun 15, 2016 09:31:16 Revision#: 01

Figure B-56. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-6 and MSPBN-7

1							C	Certifi	ed Te	st R	eport										
NORTH ST 6767 County Roa Delta, Ohio 4351 Telephone: (888)	ad 9 15	ESCO	PE ST	EEL LL	C		¢.														
Customer: 2525 Stemmo Dallas, TX 7520 Customer P.C Cust. Ref/Par	ons Freewa 7 0.: 184242	ay 2-3		, LLC Order # Line Iten Heat # Coil #	า #	1 21€	308 682 1308	C N	Ord Widt Ord Gaug Aaterial Producti	ge (mi Descr	n/in) iption	2.438 / 1018 (0.09 CQ N	6				g/lb)	22470	/ 4953	В
							Hea	at Cher	nical A	nalys	is (wi	:%)									
Type Heat	C 0.19	Mn 0.71	P 0.011	S 0.003	Si 0.02	AI 0.02	Cu 0.13	Cr 0.07	Ni 0.04		Mo 0.01	Sn 0.01		N 0.008	B	_	V 002	Nb 0.000	Ti 0.001	Ca 0.00	_
								Mecha	nical T	est R	eport										
		_																			
				Yie	d Stre	nath			Tensile	e Stre	nath			% Eloi	gation	in 2 in	nches				
This hot rolled steel standards: ASTM E results are represen	1806-09, ASTA	/ E415-14 contained	nform to DI ASTM A75 in the record	N/EN 10204: 51-14, ASTM ds of North S	1370-14, J Star BlueSc	nd has bee IS Z2201:1 ope Steel I	998, JIS Z LC for the	2241:2011. material ide	lly killed fine Pressure Ec ntified in this	grain pra guipment s test rep	i ctice. This Directive (ort and is in	PED) 97/2: ntended to	steel h 3/EC 7	as been p 2, Annex with the	I, Paragraph equirement	d tested i n 4.3 Cor s of the r	in accor mpliant. material	dance wit This repo descripti	ort certifies on. North S	that the a Star BlueS	bove tes cope Ste
standards: ASTM E	1806-09, ASTM tative of those or the inability o anufactured, m processing or v est. Uncertain	luced to co A E415-14 contained of this mate relted, cast while in No	nform to DI ASTM A75 in the recor rial to meet , and hot-ro rth Star Blu	N/EN 10204: 51-14, ASTM rds of North S specific appl led (min. 3:1 eScope Stee	2005 3.1 a 1370-14, J Star BlueSc ications. A reduction	nd has bee IS Z2201:1 ope Steel I ny modifica ratio), entir ession. Ter	998, JIS Z LC for the tions to thi ely within t st equipme andards ar	2241:2011, material ide s certificatio he U.S.A at nt calibration ad are maint	80, Ily killed fine Pressure Ec ntified in this n as provider North Star B n certificates	grain pra quipment s test rep d negate lueScope are avail 1 ratio in	j Directive (ort and is in the validi Steel LLC able upon accordance	PED) 97/2: htended to ty of this te C, Delta, Of request. N e with NIS	steel h 3/EC 7 compl est repo hio. Th NIST tra	as been p 2, Annex with the rt. All rep s materia ceability i	24.89 roduced and I, Paragraph equirement oductions m was not exp s establishe	d tested in h 4.3 Con h 4.3 Con hust have posed to d through a is avai	in accor mpliant. material e the wri Mercur h test ec ilable up	dance wit This repo descripti itten appr y or any a quipment oon reque	ort certifies on. North & oval of No. alloy which calibration	that the a Star BlueS rth Star Bl is liquid a certificate	bove tes cope Ste ueScope t ambien
standards: ASTM E: results are represen is not responsible fo This product was m temperature during available upon requi	1806-09, ASTM tative of those or the inability o anufactured, m processing or v est. Uncertain	luced to co A E415-14 contained of this mate relted, cast while in No	nform to DI ASTM A75 in the recor rial to meet , and hot-ro rth Star Blu	N/EN 10204: 51-14, ASTM rds of North S specific appl led (min. 3:1 eScope Stee	2005 3.1 a 1370-14, J Star BlueSc ications. A reduction	nd has bee IS Z2201:1 ope Steel I ny modifica ratio), entir ession. Ter	998, JIS Z LC for the tions to thi ely within t st equipme andards ar	2241:2011, material ide s certificatio he U.S.A at nt calibration ad are maint	80, lly killed fine Pressure Ec nitified in this n as provide. North Star B o certificates ained at a 4:	grain pra quipment s test rep d negate lueScope are avail 1 ratio in	j Directive (ort and is in the validi Steel LLC able upon accordance	PED) 97/2: htended to ty of this te C, Delta, Of request. N e with NIS	steel h 3/EC 7 compl est repo hio. Th NIST tra	as been p 2, Annex with the rt. All rep s materia ceability i	24.89 roduced and I, Paragraph equirement oductions m was not exp s establishe	d tested in h 4.3 Con h 4.3 Con hust have posed to d through a is avai	in accor mpliant. material e the wri Mercur h test ec ilable up	dance wit This repo descripti itten appr y or any a quipment oon reque	ort certifies on. North 5 oval of No. alloy which calibration st.	that the a Star BlueS rth Star Bl is liquid a certificate	bove tes cope Ste ueScope t ambien
standards: ASTM E: results are represen is not responsible fo This product was m temperature during available upon requi	1806-09, ASTM tative of those or the inability o anufactured, m processing or v est. Uncertain	luced to co A E415-14 contained of this mate relted, cast while in No	nform to DI ASTM A75 in the recor rial to meet , and hot-ro rth Star Blu	N/EN 10204: 51-14, ASTM rds of North S specific appl led (min. 3:1 eScope Stee	2005 3.1 a 1370-14, J Star BlueSc ications. A reduction	nd has bee IS Z2201:1 ope Steel I ny modifica ratio), entir ession. Ter	998, JIS Z LC for the tions to thi ely within t st equipme andards ar	2241:2011, material ide s certificatio he U.S.A at nt calibration ad are maint	80, lly killed fine Pressure Ec nitified in this n as provide. North Star B o certificates ained at a 4:	grain pra quipment s test rep d negate lueScope are avail 1 ratio in	j Directive (ort and is in the validi Steel LLC able upon accordance	PED) 97/2: htended to ty of this te C, Delta, Of request. N e with NIS	steel h 3/EC 7 compl est repo hio. Th NIST tra	as been p 2, Annex with the rt. All rep s materia ceability i	24.89 roduced and I, Paragraph equirement oductions m was not exp s establishe	d tested in h 4.3 Con h 4.3 Con hust have posed to d through a is avai	in accor mpliant. material e the wri Mercur h test ec ilable up	dance wit This repo descripti itten appr y or any a quipment oon reque	ort certifies on. North 5 oval of No. alloy which calibration st.	that the a Star BlueS rth Star Bl is liquid a certificate	bove tes cope Ste ueScope t ambien
standards: ASTM E: results are represen is not responsible fo This product was m temperature during available upon requi	1806-09, ASTM tative of those or the inability o anufactured, m processing or v est. Uncertain	luced to co A E415-14 contained of this mate relted, cast while in No	nform to DI ASTM A75 in the recor rial to meet , and hot-ro rth Star Blu	N/EN 10204: 51-14, ASTM rds of North S specific appl led (min. 3:1 eScope Stee	2005 3.1 a 1370-14, J Star BlueSc ications. A reduction	nd has bee IS Z2201:1 ope Steel I ny modifica ratio), entir ession. Ter	998, JIS Z LC for the tions to thi ely within t st equipme andards ar	2241:2011, material ide s certificatio he U.S.A at nt calibration ad are maint	80, lly killed fine Pressure Ec nitified in this n as provide. North Star B o certificates ained at a 4:	grain pra quipment s test rep d negate lueScope are avail 1 ratio in	j Directive (ort and is in the validi Steel LLC able upon accordance	PED) 97/2: htended to ty of this te C, Delta, Of request. N e with NIS	steel h 3/EC 7 compl est repo hio. Th NIST tra	as been p 2, Annex with the rt. All rep s materia ceability i	24.89 roduced and I, Paragraph equirement oductions m was not exp s establishe	d tested in h 4.3 Con h 4.3 Con hust have posed to d through a is avai	in accor mpliant. material e the wri Mercur h test ec ilable up	dance wit This repo descripti itten appr y or any a quipment oon reque	ort certifies on. North 5 oval of No. alloy which calibration st.	that the a Star BlueS rth Star Bl is liquid a certificate	bove tes cope Ste ueScope t ambien
standards: ASTM E: results are represen is not responsible fo This product was m temperature during available upon requi	1806-09, ASTM tative of those or the inability o anufactured, m processing or v est. Uncertain	luced to co A E415-14 contained of this mate relted, cast while in No	nform to DI ASTM A75 in the recor rial to meet , and hot-ro rth Star Blu	N/EN 10204: 51-14, ASTM rds of North S specific appl led (min. 3:1 eScope Stee	2005 3.1 a 1370-14, J Star BlueSc ications. A reduction	nd has bee IS Z2201:1 ope Steel I ny modifica ratio), entir ession. Ter	998, JIS Z LC for the tions to thi ely within t st equipme andards ar	2241:2011, material ide s certificatio he U.S.A at nt calibration ad are maint	80, lly killed fine Pressure Ec nitified in this n as provide. North Star B o certificates ained at a 4:	grain pra quipment s test rep d negate lueScope are avail 1 ratio in	j Directive (ort and is in the validi Steel LLC able upon accordance	PED) 97/2: htended to ty of this te C, Delta, Of request. N e with NIS	steel h 3/EC 7 compl est repo hio. Th NIST tra	as been p 2, Annex with the rt. All rep s materia ceability i	24.89 roduced and I, Paragraph equirement oductions m was not exp s establishe	d tested in h 4.3 Con h 4.3 Con hust have posed to d through a is avai	in accor mpliant. material e the wri Mercur h test ec ilable up	dance wit This repo descripti itten appr y or any a quipment oon reque	ort certifies on. North 5 oval of No. alloy which calibration st.	that the a Star BlueS rth Star Bl is liquid a certificate	bove tes cope Ste ueScope t ambien
standards: ASTM E: results are represen is not responsible fo This product was m temperature during available upon requi	1806-09, ASTM tative of those or the inability o anufactured, m processing or v est. Uncertain	luced to co A E415-14 contained of this mate relted, cast while in No	nform to DI ASTM A75 in the recor rial to meet , and hot-ro rth Star Blu	N/EN 10204: 51-14, ASTM rds of North S specific appl led (min. 3:1 eScope Stee	2005 3.1 a 1370-14, J Star BlueSc ications. A reduction	nd has bee IS Z2201:1 ope Steel I ny modifica ratio), entir ession. Ter	998, JIS Z LC for the tions to thi ely within t st equipme andards ar	2241:2011, material ide s certificatio he U.S.A at nt calibration ad are maint	80, lly killed fine Pressure Ec nitified in this n as provide. North Star B o certificates ained at a 4:	grain pra quipment s test rep d negate lueScope are avail 1 ratio in	j Directive (ort and is in the validi Steel LLC able upon accordance	PED) 97/2: htended to ty of this te C, Delta, Of request. N e with NIS	steel h 3/EC 7 compl est repo hio. Th NIST tra	as been p 2, Annex with the rt. All rep s materia ceability i	24.89 roduced and I, Paragraph equirement oductions m was not exp s establishe	d tested in h 4.3 Con h 4.3 Con hust have posed to d through a is avai	in accor mpliant. material e the wri Mercur h test ec ilable up	dance wit This repo descripti itten appr y or any a quipment oon reque	ort certifies on. North 5 oval of No. alloy which calibration st.	that the a Star BlueS rth Star Bl is liquid a certificate	bove tes cope Ste ueScope t ambien

Figure B-57. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test Nos. MSPBN-6 and MSPBN-7

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC

6767 County Road 9 Delta, Ohio 43515 Telephone: (888) 822-2112

Customer: Trinity Highway Pro	oducts, LLC		
2525 Stemmons Freeway	Order #	383308	Ord Width (mm/in) 1504.950 / 59.250 Weight (kg/lb) 22398 / 49379
Dallas, TX 75207	Line Item #	1	Ord Gauge (mm/in) 2.438 / 0.096
Customer P.O.: 184242-3	Heat #	216683	Material Description 1018 CQ Modified, Guardrail Type 2
Cust. Ref/Part # 100212B	Coil #	1731312	Production Date/Time Jul 3 2017 5:39AM

Heat Chemical Analysis (wt%)

Туре	С	Mn	Р	S	Si	Al	Cu	Cr	Ni	Мо	Sn	N	В	V	Nb	Ti	Ca	Pb
Heat	0.19	0.73	0.013	0.002	0.02	0.03	0.13	0.06	0.08	0.01	0.00	0.007	0.0001	0.001	0.000	0.001	0.001	0.000

Mechanical Test Report

	Yield Strength	Tensile Strength	% Elongation in 2 inches
Tail	65,000 psi	82,920 psi	22.8%

This hot rolled steel has been produced to conform to DIN/EN 10204/2005 3.1 and has been manufactured to a fully killed fine grain practice. This hot rolled steel has been produced and tested in accordance with each of the following applicable standards: ASTM E1060-09, ASTM 4215-14, ASTM A751-14, ASTM 1370-14, JIS Z2201:1998, JIS Z201:1998, JIS

Tim Mitchell

TRACT AND A REAL PROPERTY AND A REAL PROPERTY.

Manager Quality Assurance and Technology

Date Issued: Jul 12, 2017 16:33:15 Revision#: 01

12 21

Figure B-58. 12-ft 6-in. (3.8-m) 12-ga (2.7 -mm) Thrie Beam Material Certification, Test Nos. MSPBN-6 and MSPBN-7

A 135 S

171 Cle	eage Dr	bama), Inc. bama, USA							TUL MAN IN	be NDUSTRI	Date Cus	.B/L: ə: tomər:	80791 11.10. 179	452 2017	
				N		RIAL	TEST	r Rep	ORT						
PO B	& Pipe ox 168	Supply 8 N KS 6		an								oped to el & Pip New C V CENT	e Supp Century URY KS	ly Cor Parkw S 660	npan ′ay)31
Material: 3.0>	(2.0x188	x40'0"0(5	k4) .		м	aterial N	o: 0300	2018840	000-B			Made in			
Sales order:	122697	6			Pu	rchase (Order: 4	5002966	56	Cust Ma	terial #:		in: USA 0018840		
Heat No	С	Mn	Ρ	S	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	В	N
B704212	0.200	0.450	0.010	0.004	0.020	0.000				0.000	0.000	0.000	0.000	0.000	0.000
Bundle No	PCs	Yield		nsilo	Eln.					rtification			C	E: 0.28	1
40867002	20	064649 P		7652 Psi	24 %					00-13 GR					
Material Note Sales Or.Note															
Material: 2.37			.1).					37515442				Made in Melted i		<u></u>	
Sales order:	122697	6			Ρι	irchase (Order: 4	5002966	56	Cust Ma	terial #:	6420040)42		
Heat No	C	Mn	Р	S	Si	AI	Cu	СЬ	Mo	Ni	Cr	v	Ti	В	N
B712810	0.210	0.460				0.024		0.002		0.030	0.060	0.004			
Bundle No	PCs	Yield		sile	Eln.:		Rb			rtification			C	E: 0.32	2
MC00006947	34	063688 P	si 083	3220 Psi	25 %	91		 A:		00-13 GR	ADE B&	с			
Material Note Sales Or.Note															
Material: 2.37	'5x154x4	42'0"0(34x	:1).		M	eterial N	o: R023	7515442	200			Made in	: USA		
Sales order:	100007	e			п.		Dedau 4	5002966	EC	Cust Ma		Melted i 6420040			
Heat No	C	Mn	Р	S	Si	AI	Cu	Cb	Mo	Ni	Cr	042004(V	J42 Ti	в	N
17037261	0.210		0.005	0.004	0.020	0.000		0.000		0.000	0.000	0.000	0.000		
	PCs			nsile			0.000	0.000			0.000	0.000		0.000 E: 0.35	10.000.0000 V
Bundle No 41532001	34	Yield 066144 P		2159 Psi	Eln.					rtification		 C	C	L. U.J.	
		000144 1	si 004	2133 131	21 70			A.	STW AD	00-13 GA	ADE DO	C C			
Material Note Sales Or.Note															
			d.	ali	land										
Authorized by												P			
The results re specification a		ract require	ments.		actual a	ttributes	or the n	naterial fu	irnished	and indic	ate full c	ompliance	with al	applica	DIE
150	eel°T	ube ^{s D}	1.7 met	nod.					1	D H - t -	la Card	In Cont	an In a bla		
	stitu	te				Page : 3	3 Of 4		9	S Meta	112 9.61A	ICE GENTI	er instit	ule	

Figure B-59. 2³/₈-in. (60-mm), 6-in. (152-mm) Long BCT Post Sleeve Material Specification, Test Nos. MSPBN-6 and MSPBN-7

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MAN P. O. BOX 703 MILFORD,NE,6		SUPPLY CO				Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	10/26/2017 3501 MIDWEST MAG STOCK 7044AA	CHINERY & SL	JPPLY CO.			
HT # code	LOT#	C.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
616137		0.21	0.93	0.011	0.003	0.02	73148	58210	32	15		2	3/16IN X 6IN X 8IN X 5FT0IN TUBE SLEEVE
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	10		2	3/16IN X 6IN X 8IN X 6FT0IN TUBE SLEEVE
214482		0.04	0.83	0.014	0.005	0.02	75275	68023	28.6	25			10GA MGS TB TRAN APPROACH END-RIGHT
214143		0.04	0.81	0.015	0.006	0.02	75565	69618	29.7	18			10GA MGS TB TRAN DEPARTURE END-LEFT

420

	Ē.	3 m 42
	1 See	James P. Dehnke
All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"		Notary Public, State of Ohio
All Steel used meets Title 23CFR 635.410 - Buy America All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M27	0	
All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation		
All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.	STATE OF OHIO: COUNTY OF STA Swom to and subscribed before me.	Notary Public, by
By_ Much Unter	Andrew-Arter this 31 day of October	2017
	Notary Public, State of Ohlo	

Figure B-60. 8-in. x 6-in. x ³/₁₆-in. (203-mm x 152-mm x 5-mm), 72-in. (1,829-mm) Long Foundation Tube, Test No. MSPBN-8

GÐ	GER	DAU	CUSTOMER S STEEL & PII	HIP TO PE SUPPLY CO I G INDUSTRIAL I		CUSTOMER STEEL & P		LY CO INC		ADE 92/A572-50	W	HAPE / St Vide Flange 3.5		X 9# / 150 X DOCUM
US-ML-MIDL			JONESBURG USA			MANHATT USA	AN,KS 66	5505-1688	LE 40	NGTH 00"		WEIG 8,640		HEAT / BATCH 59072444/02
MIDLOTHIAN JSA			SALES ORE 4481119/000				MER MA 00037690	TERIAL Nº 0040	AS	ECIFICATION / 1 TM A6-14 TM A709-15	DATE or REV	ISION		I
CUSTOMER F 4500277171	URCHASE ORD	ER NUMBER		BILL OF LA 1327-00002			DATE 11/28/2	016		TM A992-11 (2015) A G40.21-13 345W]				
CHEMICAL CO C % 0.07	MPOSITION Mn 0.92	Р 0.013	\$% 0.035	Şi 0.21	Си 0.24	0	vi .09	۶۲ 0.13	Mo % 0.018	\$n 0.005	% 0.002		Nb 0.011	A1 0.003
CHEMICAL CO CEgyA6 0.28	MPOSITION													
55	PROPERTIES 0.2% SI 973 818	69	NTS 2803 2847	3	YS 1Pa 186 192		U1 M1 48 48	1		/ Trati 0.802 0.802		G/L Inch 8.000 8.000		
20	PROPERTIES //L 0.0 0.0	23	ong. 3.90 4.00											
OMMENTS / N	DTES													
	The abor specified	ve figures are ce requirements.	'his material, ine	cluding the billets	, was melter	ontained in the dama and manufa	c perman ctured in	ent records of con the USA. CMTR	npany. We co complies wit	rtify that these da n EN 10204 3.1.				1
	1	hask	on	ASKAR YALAMANC	HILL				ĺ	Jonikida	And the second	M HARRING	TON RANCE MGR.	
	Phon	e: (409) 769-1014	Email: Bhaskar, Ya	lamanchili@gerdau.	com					Phone: 972-779-1873	Email: Tom	my Harringto	n@eerdau.co	m

Figure B-61. 6x9 Wide Flange Beam for Upper Slip Post Assembly Material Certification, Test No. MSPBN-8

MILL TEST CERTIFICATE 1700 HOLT RD N.E. Tuscaloosa, AL 35404-1000 800 800-8204 customerservice@nucortusk.com

NUCOR STEEL TUSCALOOSA, INC.

Load Num		Tall	-		Number		PO N	IO I L	ine N	0	Pa	art Nu	mber			Certificate Number				Prepared		
T132130	00000	0000685	654 N-149	191-001			4500	271472	2 1							\$68565	401-1		0	8/25/3	2016 0	9:5
Grade										0	Custome	r:										
Hot Rol A36, 0.7 Quality	scription: Plate From 500 IN x 72. Plan Descr (A70936: AST	000 IN	:		ME SA36-	-13/M27	70-36			5	Sold TO STEEL A Ship TO Longvie Sent TO	ND PIP : w Ware				IGVIEW	тх					
Shipped Item	Heat/S		Certified By	d C	Mn	Р	S	Si	Cu	Ni	Cr	Mo	Сь	v	Al	Ti	N2	В	Ca	Sn	CEV	1
6H1808B	B6U5630-	04 ***	B6U5630	0.18	0.86	0.008	0.005	0.03	0.11	0.04	4 0.05	0.016	0.001	0.003	0.025	0.001	0.007	0.0001	0.0021			T
6H1808C	B6U5630-	04 ***	B6U5630	0.18	0.86	0.008	0.005	0.03	0.11	0.04	4 0.05	0.016	0.001	0.003	0.025	0.001	0.007	0.0001	0.0021			T
6H1808D	B6U5630-	04 ***	B6U5630	0.18	0.86	0.008	0.005	0.03	0.11	0.04	4 0.05	0.016	0.001	0.003	0.025	0.001	0.007	0.0001	0.0021			
Shipped	Certified	н	eat	Yield	Tensile	1 Y/T	EL	ONGATI		Bend	Hard	1	Charpy	Tenaci	te (ft.	lbs)	T		Shear %		- 1	Tes
Item	By	10.0	mber	ksi	ksi	×		2"	8"	OK?	HB	Size			3	Av	g	1	2 3		vg	Ter
6H1808B	S6H1808FTT	B6U56	30 ***	51.9	68.2	76.	1 39	0.6			-			T	T	1	-			T	-	
6H1808B	S6H1808MTT	B6U56	30 ***	51.8	65.1	79.	6 40).3														
6H1808C	S6H1808FTT	B6U56	30 ***	51.9	68.2	76.	1 39	9.6														_
6H1808C	S6H1808MTT	B6U56	30 ***	51.8	65.1	79.	6 40).3														-
6H1808D	S6H1808FTT	B6U56	30 ***	51.9	68.2	76.	1 39	0.6														
6H1808D	S6H1808MTT	B6U56	30 ***	51.8	65.1	79.	6 40).3														
tems: 3	PCS: 25	Weight	: 4594	3 LBS																		
nanulacturing Manufactured SO 9001:200	not come in con process. Cert to a fully killed 8 Registered, P Heats melted a	ified in ac fine grain ED Certi	practice. NL fied	th EN 10 JTEMPE	204 3.1. M	vo weld	repair h	as been	perform				We h	ereby ce	rtify that	/	by the s	cribed abo specification - - 	1/4	all of the	e tests r	equ

Figure B-62. ¾-in. (19-mm) Plate for Upper Slip Post Assembly Test Certificate, Test No. MSPBN-8

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: Midwest Machinery and Supply BOL# N01210

R#18-763 Painted Yellow

Customer PO# 3560

Purchased for Bullnose

Preservative: CCA - C 0.60D pcf AWPA UC4B

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
4075b	6x8-14" Block	126	24833	.604
GR6814 BLK	6x8-14" OCD Block	252	24883	.669
6120b	6x12-14" Block	84	24861	.661

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168

standards.

Nick Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

3/26/18 Date

Figure B-63. Timber Blockout and BCT Timber Post Certificate of Compliance, Test No. MSPBN-8

	CENTRAL NEBRASKA WOOD PRESERVERS,	INC.		
	P. O. Box 630 • Sut Pone 402-77 FAX 402-77	/3-4319		
÷			Date: _	7/18/16
Shipped TC	CERTIFICATE C 			P
			700 >4 52	
Part #	Physical Description	# of Pieces	Charge #	Tested Retentio
GE6814BLK	628-14" BLK	126	22416	. 623
6R6819BL	- 6x8-19" BLK	84	22402	.676
GR.61219BL	= 6x12-19" BLK	168	22402	.676
GR.612 HBLK	6×12-19" BLK	· 168	22416	.623
GR61219BLK	6x12-19" BLK	56	12397	.607
	6x12-19" BLK Trag	56	22402	. 676
produced, treated	e referenced material has been and tested in accordance with AWPA aforms to AASHTO M133 & M168.	products listed above has standards, Section 236	Wood Preservers certifies ave been treated in accords of the VDOT Road & Brid nimum penetration and re	ance with AWPA lge Specifications and

Figure B-64. Tapered Timber Blockout and BCT Timber Post – Side A Certificate of Compliance, Test No. MSPBN-8

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>100588715</u> Customer PO# <u>3528</u> Preservative: <u>CCA ~ C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
4075b	¥ 6x8-14″ Block	126	24683	.665
6120b	6x12-14" Block	84	23888	.678
GS6806.5 PST	5.5x7.5-6.5' Rub Post	84	24604	.652
GS6806.5 PST	5.5x7.5-6.5' Rub Post	42	24603	.643
GS6814 BLK	5.5x7.5-14' Block	126	24194	.633
	ove referenced material has been			

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nick Sowl, General Counsel

Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

> <u>1/11/2018</u> Date

Figure B-65. Timber Blockout and BCT Timber Post Certificate of Compliance, Test No. MSPBN-8

						Cert	ified Analy	sis							the second	Highw	ay Prod	lucis Ito
Trinity H	lighway P	roducts, LLC																
550 East	Robb Ave	ð.				(Order Number: 129571	9 Pro	od Ln G	rp: 0-	OE2.0							
Lima, OH	45801 Ph	n:(419) 227-1296					Customer PO: 3597							,	As of: 6	/1 1 /1 0	,	
Customer	: MIDW	EST MACH & SUPPLY (CO				BOL Number: 104805		Ship	Date:				7	15 01. 0.	/11/10	,	
	P. O. B	OX 703					Document #: 1											
							Shipped To: NE											
	MUEO	RD, NE 68405					Use State: NE											
Ducients	STOCE						Ose state. IVE											
Project:	31001																	
<i>•</i>																		
Qty	Part #	Description	Spec	CL		Heat Code/Hea		TS	Elg	С	Mn		S Si	Cu	Cb	Cr		ACW
Qty 4	Part #	Description T12/12'6/SPEC/S 5'RCX	Spec M-180	CL A	TY 2 2	Heat Code/ Hea 224112 L32917	at Yield 63,490	TS 81,930	0	C 0.190		P 0.014 0.00	2		_		Vn 0.010	
					2	224112			25.0		0.730		0.020	0.130	0.000	0.060		4
			M-180	A	2 2	224112 L32917 216682 216683	63,490	81,930	25.0	0.190	0.730	0.014 0.00	0.020 03 0.020	0.130	0.000	0.060	0.010	4
			M-180 M-180 M-180 M-180	A A A A	2 2 2 2 2 2	224112 L32917 216682 216683 216682	63,490 60,950 65,000 60,950	81,930 80,100 82,920 80,100	25.0 24.8 22.8 24.8	0.190 0.190 0.190 0.190	0.730 0.710 0.730 0.710	0.014 0.00 0.011 0.00 0.013 0.00 0.011 0.00	0.020 0.020 0.020 0.020 0.020 0.020	0.130 0.130 0.130 0.130	0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070	0.010 0.002 0.001 0.002	4 4 4 4
			M-180 M-180 M-180	A A A	2 2 2 2 2	224112 L32917 216682 216683 216682 216682 216683	63,490 60,950 65,000	81,930 80,100 82,920	25.0 24.8 22.8 24.8	0.190 0.190 0.190	0.730 0.710 0.730 0.710	0.014 0.00	0.020 0.020 0.020 0.020 0.020 0.020	0.130 0.130 0.130 0.130	0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070	0.010 0.002 0.001	4 4 4 4
	12385G		M-180 M-180 M-180 M-180	A A A A	2 2 2 2 2 2 2 2 2 2	224112 L32917 216682 216683 216682	63,490 60,950 65,000 60,950	81,930 80,100 82,920 80,100	25.0 24.8 22.8 24.8	0.190 0.190 0.190 0.190 0.190	0.730 0.710 0.730 0.710 0.730	0.014 0.00 0.011 0.00 0.013 0.00 0.011 0.00	05 0.020 03 0.020 02 0.020 03 0.020 02 0.020	0.130 0.130 0.130 0.130 0.130	0.000 0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070 0.060	0.010 0.002 0.001 0.002	4 4 4 4 4
	12385G		M-180 M-180 M-180 M-180 M-180	A A A A	2 2 2 2 2 2 2 2 2 2	224112 L32917 216682 216683 216682 216683 L32118	63,490 60,950 65,000 60,950 65,000	81,930 80,100 82,920 80,100 82,920	25.0 24.8 22.8 24.8 22.8	0.190 0.190 0.190 0.190 0.190	0.730 0.710 0.730 0.710 0.730 0.730	0.014 0.00 0.011 0.00 0.013 0.00 0.011 0.00 0.013 0.00	05 0.020 03 0.020 02 0.020 03 0.020 03 0.020 02 0.020 04 0.010	0.130 0.130 0.130 0.130 0.130 0.130	0.000 0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070 0.060 0.070	0.010 0.002 0.001 0.002 0.001	4 4 4 4 4
4	12385G		M-180 M-180 M-180 M-180 M-180 M-180	A A A A A	2 2 2 2 2 2 2 2 2 2 2 2 2 2	224112 L32917 216682 216683 216683 216683 L32118 226511	63,490 60,950 65,000 60,950 65,000 61,110	81,930 80,100 82,920 80,100 82,920 79,440	25.0 24.8 22.8 24.8 22.8 22.8 27.4 20.7	0.190 0.190 0.190 0.190 0.190 0.190 0.180	0.730 0.710 0.730 0.710 0.730 0.720 0.720	0.014 0.00 0.011 0.00 0.013 0.00 0.011 0.00 0.013 0.00 0.009 0.00	 0.020 	0.130 0.130 0.130 0.130 0.130 0.130 0.110	0.000 0.000 0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070 0.060 0.070 0.070 0.080	0.010 0.002 0.001 0.002 0.001 0.002 0.001	4 4 4 4 4 4 4
4	12385G 12385G	T12/12'6/SPEC/S 5'RCX	M-180 M-180 M-180 M-180 M-180 M-180 M-180	A A A A A	2 2 2 2 2 2 2 2 2 2 2 2 2 2	224112 L32917 216682 216683 216683 L32118 226511 226512	63,490 60,950 65,000 60,950 65,000 61,110 61,440	81,930 80,100 82,920 80,100 82,920 79,440 81,340	25.0 24.8 22.8 24.8 22.8 22.8 27.4 20.7 29.1	0.190 0.190 0.190 0.190 0.190 0.190 0.180 0.180	0.730 0.710 0.730 0.710 0.730 0.720 0.720 0.840	0.014 0.00 0.011 0.00 0.013 0.00 0.011 0.00 0.013 0.00 0.009 0.00 0.011 0.00	 0.020 	0.130 0.130 0.130 0.130 0.130 0.110 0.110 0.110	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070 0.060 0.070 0.080 0.070	0.010 0.002 0.001 0.002 0.001 0.002 0.001 0.001	4 4 4 4 4 4 4
4	12385G 12385G 19361G	T12/12'6/SPEC/S 5'RCX BNT PL 3/16X12-5/8X5-1/2	M-180 M-180 M-180 M-180 M-180 M-180 A-36 M-180	A A A A A A	2 2 2 2 2 2 2 2 2 2 2 2 2 2	224112 L32917 216682 216683 216683 L32118 226511 226512 B4M5475	63,490 60,950 65,000 60,950 65,000 61,110 61,440 46,800	81,930 80,100 82,920 80,100 82,920 79,440 81,340 70,400	25.0 24.8 22.8 24.8 22.8 27.4 20.7 29.1 21.7	0.190 0.190 0.190 0.190 0.190 0.180 0.180 0.180 0.200	0.730 0.710 0.730 0.710 0.730 0.720 0.720 0.840 (0.480 (0.014 0.00 0.011 0.00 0.013 0.00 0.011 0.00 0.013 0.00 0.013 0.00 0.009 0.00 0.011 0.00 0.007 0.003	15 0.020 13 0.020 12 0.020 13 0.020 14 0.010 14 0.010 13 0.060 14 0.010 15 0.040	0.130 0.130 0.130 0.130 0.130 0.110 0.110 0.110 0.170 0.140	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.060 0.070 0.060 0.070 0.060 0.070 0.080 0.070 0.080 0.070	0.010 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001	4 4 4 4 4 4 4 4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410.

ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

426

3 of 4

Figure B-66. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test No. MSPBN-8

						Certifie	d Analy	ysis		Highway Products
Trinity H	lighway I	Products, LLC								
550 East 1	Robb Av	e.				Order N	lumber: 129571	19	Prod Ln Grp: 0-OE2.0	
Lima, OH	45801 Pl	nn:(419) 227-1296				Custon	ner PO: 3597			As of: 6/11/18
Customer	: MIDW	EST MACH & SUPPLY	CO			BOL N	lumber: 104805	5	Ship Date:	
	P. O. I	30X 703				Docu	ment #: 1			
						Shipp	ped To: NE			
	MILFO)RD, NE 68405				Use	e State: NE			
Project:	STOC	K								
Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg C Mn P S	Si Cu Cb Cr Vn ACW
6	974G	T12/TRANS RAIL/6'3"/3'1.5	M-180	А	2	208675	62,100	81,170	22.7 0.190 0.730 0.012 0.004 0.0	020 0.090 0.000 0.050 0.001 4
600	3320G	3/16"X1:75"X3" WASHER	HW			P37836				
13,000	3340G	5/8" GR HEX NUT	HW			17-35-042				
7,000	3360G	5/8"X1.25" GR BOLT	HW			20180212811				
150	3448G	1/4"X4"X4" SNOW LOAD	HW			61423				
200	3480G	5/8"X8" GR BOLT A307	HW			30459-B				
450	3500G	5/8"X10" GR BOLT A307	HW			30928-В				
875	3540G	5/8"X14" GR BOLT A307	HW			30869-Р				
600	3560G	5/8"X16" GR BOLT A307	HW			30861-B				
50	3660G	5/8"X26" GR BOLT A307	HW			30994				
10	6696G	CBL 5/8"X14'4.75/DBL BTN	HW			284559				
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1 0.190 0.520 0.014 0.004 0.0	20 0.110 0.000 0.050 0.000 4
9	12379G	T12/12'6/SPEC/S 34'RCX				L31418				
			M-180	A	2	222038	63,780	82,280		
			M-180	A	2	222878	64,680	81,820	25.2 0.180 0.740 0.012 0.003 0.	020 0.130 0.000 0.070 0.002 4

Figure B-67. 12-ft 6-in. (3.8-m) 12-ga (2.7-mm) Thrie Beam Material Certification, Test No. MSPBN-8

CERTIFIED MATERIAL TEST REPORTFORSAE J429 GRADE 5 HEX TAP BOLTS

SUPPLIER'S NAME:ZHEJIA ADDRESS: XITANGQ CONTACT INFORMATIC CUSTOMER: FASTENA	IAO HAIYA) DN: JACK /(8	N ZHEJI.4 86)-0573-8	ANG CHINA 36862565	MANUFAC		ETE DATE:	2018-1-18 2017-12-25	
SAMPLING PLAN PER A DESCRIPTION: HEX TA	AP BOLTS C	RADE 5	ZINC PLA	TED		R:	171223SM0 220026125	
SIZE: 7/16-14X2- HEADMARKS: NDF+TH		QTY: L LINE	16450	PCS	PART NO:	0144506		
STEEL PROPERTIES:								
STEEL GRADE:1035					HEAT NUM	BER:	11170800700)9)
CHEMISTRY SPEC:	C % 0.25~0.55	Mn% min	P % 0.025max	S % 0.025max]			
TEST:	0.33	0.78	0.025111ax	0.0251110X	1			
DIMENSIONAL INSPEC	LIONS				SPECIFICAT		B18 2 1 201	2
CHARACTERISTICS	110115	SPE	CIFIED		ACTUAL		ACC.	REJ.
*****	******			*******	*****		*****	*****
APPEARANCE	ASTM F	788/F788	M-13		PASSED		100	0
THREAD	ASME B	1.1-08 2/	7		PASSED		32	0
WIDTH FLATS	0.625 " -	0.603 "			0.615 " -	0.621 "	8	0
WIDTH A/C	0.722 " -	0.687 "			0.699 " -	0.715 "	8	0
HEAD HEIGHT	0.316 " -	0.272 "			0.279 " -	0.303 "	8	0
MAJOR DIA	0.436 " -	0.426 "			0.433 " -	0,435 "	8	0
LENGTH	2.54 "-	2.44 "			2.48 " -	2.51 "	8	0
MECHANICAL PROPER	TIES: 1/4"thn	u1"			SPECIFICAT	TION: SAE J4	429-2014 GF	-5
CHARACTERISTICS	TEST ME			CIFIED	ACTUALI		ACC.	REJ.
*****	*******				*******		******	******
CORE HARDNESS:	ASTM F60			-34 HRC	28 -	31 HRC		0
SURFACE HARDNESS :				154 MAX	48 -	50	8	0
WEDGE TENSILE:	ASTM F60				132563 - 1	33441 PSI	4	0
PROOF LOAD	ASTM F60		MIN	85000 PSI	PASS		1	0
DECARBURIZATION CHARACTERISTICS	ASTM F23 TEST M		CDL	TELED	PASSE ACTUAL RES		ACC.	0 REL
*****					AUTUAL NEO ******		*****	NEJ. ****
ZINC PLATED	ASTM F19	41-15	Clear Zin	c FE/Zn 3A	N			
Thickness	ASTM B56		Min3		4.8-5.5 µm		8	0
Salt Spray Corrosion	ASTM B11	7-11 С	hours NO W orrosion 2 hours NO		PASS		8	0
ALL TESTS IN ACCO SAE SPECIFICATION, INFORMATION PROVID All parts meet the require: Maker's ISO#CN11/20818	WE CERT DED BY TH ments of FQA	WITH ' IFY 'TH E MATH	THE METH AT THIS D ERIAL SUPF ords of comp	HODS PRES AIA IS A PLIER AND liance are or (SIGNATU	OUR TECH	RESENTATION LABOR	ON OF AATORY.	
			(2011					

Figure B-68. ⁷/₁₆-in.-14 UNC (11-mm x 1.5-mm), 2¹/₂-in. (64-mm) Long Hex Tap Bolt Material, Test No. MSPBN-8

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210110355 COMMODITY : FINISHED HEX NUT GR-5 SIZE : 7/16-14 NC LOT NO : 1N1640142 SHIP QUANTITY : 3,000 PCS LOT QUANTITY : 115,012 PCS HEADMARKS : GENIUS SYMBOL & 2 ARC LINES (120 DEGREE) MANUFACTURE DATE : 2016/04/11

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2016/06/27 PACKING NO: GEM160606004 INVOICE NO: GEM/FNL-160628ED-1 PART NO: 1136308 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) / ASTM F1470-2012 HEAT NO: 331509977 MATERIAL: 1015A FINISH: Fe/Zn 3AN ASTM F1941/F1941M-2015

 PERCENTAGE COMPOSITION OF CHEMISTRY:ACCORDING TO SAE J995-2012

 Chemistry
 AL%
 C%
 MN%
 P%
 S%
 SI%

 Spec. : MIN.
 0. 3000
 0. 0500
 0. 1500
 0. 1500

MAX.		0.5500		0.0500	0.1500	
Test Value	0.0480	0.1500	0.4100	0.0160	0.0110	0.0300

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2010

			SAMPLE	DBY: FCHUN		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	5 PCS		0.7680-0.7940 inch	0.7710-0.7770 inch	5	0
FIM	15 PCS	ASME B18. 2. 2-2010	Max. 0.0180 inch	0.0150-0.0170 inch	15	0
THICKNESS	5 PCS		0.3650-0.3850 inch	0.3680-0.3720 inch	5	0
WIDTH ACROSS FLATS	5 PCS		0.6750-0.6880 inch	0.6770-0.6860 inch	5	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO SAE J 995-2012

	SAMPLED BY: REN PING									
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.			
CORE HARDNESS	15 PCS	ASTM F606-2014		Max. 32 HRC	8-10 HRC	15	0			
PROOF LOAD	5 PCS	ASTM F606-2014		Min. 120,000 PSI	OK	5	0			
PLATING THICKNESS(µm)	29 PCS	ASTM B568-1998		>=3	3. 57-4. 92	29	0			
SALT SPRAY TEST	15 PCS	ASTM B117-11		6 HOURS NO WHITE RUST, 12 HOURS NO RED RUST	OK	15	0			

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

grin

page 1 of 1

Figure B-69. 7/16-in. (11-mm) Hex Nut Material Certificate, Test No. MSPBN-8

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210131208 COMMODITY : FINISHED HEX NUT GR-5 SIZE : 7/16-14 NC LOT NO : 1N1730528 SHIP QUANTITY : 22, 500 PCS LOT QUANTITY : 22, 500 PCS HEADMARKS : GENIUS SYMBOL & 2 ARC LINES (120 DEGREE) MANUFACTURE DATE : 2017/04/06

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/05/15 PACKING NO: GEM170505002 INVOICE NO: GEM/FNL-170517ED PART NO: 1136308 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) / ASTM F1470-2012 HEAT NO: 351607718 MATERIAL: 1015A FINISH: Fe/Zn 3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO SAE J995-2012 Chemistry MN% SI% AL% C% P% **S%** Spec. : MIN. 0.3000 MAX. 0.1500 0.5500 0.0500 **Test Value** 0.0050 0.0470 0.1600 0.5300 0.0150 0.0400

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

			SAMPLE	DBY: LXHUA		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6 PCS		0.7680-0.7940 inch	0.7800-0.7800 inch	6	0
FIM	15 PCS	ASME B18. 2. 2-2015	Max. 0.0180 inch	0.0150-0.0170 inch	15	0
THICKNESS	6 PCS		0.3650-0.3850 inch	0.3710-0.3720 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.6750-0.6880 inch	0.6810-0.6830 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO SAE J 995-2012

				SAWFLEI	JOI. TANGHAU		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		Max. 32 HRC	28-29 HRC	15	0
PROOF LOAD	6 PCS	ASTM F606-2014		Min. 120,000 PSI	OK	6	0
PLATING THICKNESS (µ m)	29 PCS	ASTM B568-1998		>=3	3. 21-4. 89	29	0
SALT SPRAY TEST	15 PCS	ASTM B117-16		6 HOURS NO WHITE RUST, 12 HOURS NO RED RUST	ОК	15	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

griv

SAMPLED BY . TANCUAO

page 1 of 1

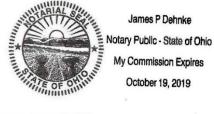
Figure B-70. 7/16-in. (11-mm) Hex Nut Material Certificate, Test No. MSPBN-8

)627)" Gi								
1.100		÷. 45		1		ť.	0.54		2015					F			int.
							Uu	ne z	.015	SPIT	WIII	.Le .	carn		~	350	206
			מידי	TATT	VIII	(10)(3)	A 37 D	non	UCTS	. TT.	~				· .	 A 	
			- Aller		Sec. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	States and a	D'Com	St. 100.000 (1.1	Alterna Second	بالدال وه	Contract of the					-	
					1		Ohio 4						5	N. A.			
						, 419-	227-12	296							g (g.		
						MA	TERI	TAL C	ERT	IFIC	ATIO	N	£.			1	1311
C	usto	mer:	-	Stock		5				Date		ine 25,2	2014			/	10
				3				Invoi	ce Nu	mber:	(-			
5						2		1	ot Nu	mber:	(Capited	14053	OL.	(News			
Pari	Nuŋ	ber:	• •••••	35000	2	7/				intity:	1.44	17,17	3	Pcs.			
De	scrip	tion:	5/8 [#]	x 10"	G.R.		eat		202	97970	17	,173				17	
		1.	å	Bolt		Num	ibers:		-				1				
	Spe	office	ition:	ASTA	A A 301	AIA	153 /	F2320)								
	- 3-7-																
								1201	CHE				é.				
He	T	.09	.33	P	.001	.06	.03	CR .04	.01	.08	SN	.001	AL	N	B	TI	NB
2029		.09	133	,006	.001	100	.00	.04	.01	.08	.002	.001	.026	.008	.0001	.001	,002
	1																
					10		NCO	DDDO	TECT	WF	TAO	MO	2				
13		0.041	1/4 107	ED (Lo					ILCI				Minimu				
	01 01	- 11-11-11		,				0.11					•.				
									D IN TI				1			2	
									S MEL NOWLI								IN IS
WE	ALLING	100	1999040 1999040	Section 200	s Stab	2007 - 200 -	name in provi		RECT.		1	//	/	1	1	/	
WE						2				0	V	1	11		/		
WE									0	A	TRIN	NITYHI	GHWA	YPRO	DUCTS	SLLC	
WE						ALLEN				~				1			-
×	STAT	EOE	OHO.	COUNT	YOF			11	th a	ay c	70	ily	2014	Ļ			2
ł	STAT	e of 1 Land	ohio, SUBS	COUNT	BEFC	REME	THIS	-1-1				11	1				17
ł	STAT NORN	AND	SUBS	CRIBED	BEFC	REME	NOTA		BLIC	0	U		i.				2
ł	STAT NORN	AND	subs Bra	CRIBEI) BEFC	DRE ME	NOTA	RY PUI	BLIC MA, OH	0 10 458	01	v	419-22	7-1296	.		*
ł	STAT NORN	AND		E. O'C RRI BR	ONNOI AUN	RE ME	NOTAI	RY PUI		0 10 458			419-22 . & ביי רו				.2
ł	STAT NORN	AND		E. O'C RRI BR ary Publ	ONNOI AUN ic, State	RE ME	NOTAI	RY PUI		0 10 458	ь ОО		Ellin i	C.I.D			
ł	STAT NORN	AND		E. O'C RRI BR	ONNOI AUN ic, State	RE ME	NOTAI	RY PUI		10 458 10 - 458	ь ОО			C.I.D	- alter a state of the state of		
ł	STAT NORN	AND		E. O'C RRI BR ary Publ	ONNOI AUN ic, State sion Ex 19	RE ME	NOTAI	RY PUI		Ŭ.	kan B	INE 1	1 20 1 20	сл.Э 4	LC		

Figure B-71. ⁵/₈-in. x 10-in. (16-mm x 254-mm) Bolt, Test No. MSPBN-8

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MAC P. O. BOX 703 MILFORD,NE,68		UPPLY CO				Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	1/30/2018 3532-REPL MIDWEST MA INVENTORY 220607	CHINERY & SU	IPPLY CO.			
HT # code 20455760	LOT#	C. 0.14	Mn. 0.34	P. 0.005	S. 0.003	Si. 0.09	Tensile	Yield	Elong.	Quantity 4000	Class	Туре	Description 5/8IN X 1 1/4IN SPL. BOLT


All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635-140 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation

All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

toy & Gracoer 0

432

By: Jeffery L Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed belger me, a NothryPublic, by defifery Grover this 5 day of February 2018 NotaryPublic, State of Ohio

10 7	CHAI STEE	L	Inc			EMAIL					558 Gold Springs Ros ville, Wisconsin 5308 (262) 268-240 1-800-437-878
Meited in US				CHAP	RTER S	TEEL TE	ST RE	PORT			Fax (262) 268-257
				r		Cust P.O.		•			9189
				t t		omer Part #					AXA18CB-5/1
				ŀ	Charter :	Sales Order Heat #					3012480
				-		Ship Lot # Grade				1018 V	211783
	stown Wire	Technolog	gies			Process				1010	HF
	aurel Ave. stown.PA-1	5006		ł		Finish Size Ship date					5/1
				L	-						13-JAN-17
hereby centry th hese requirement	nat the material nts. The recordi	described her ng of faise, fic	titious and	fraudulent st	atements of	rdance with the rentries on this t Lot # 204798	s docume	ations and a int may be p	standards Ba unishable a	s a feiony un	nd that it satisfies ider federal statute
ab Code: 12554 CHEM	C	MN	P	8	84	NI	CR	MO	cu	SN	¥.
6Wt	.16 AL	.64 N	.008 B	.004 Tl	.060 NB	.03	.05	.01	.04	.003	.001
	.051 CAT DI=.35	.0050	.9001	.001	.001						
	ADEA ML	1		68.6		77		73			
NUM DECA	AREA (%) RB=1 N RATIO=637:1	1		72		72 AVE DECAR	B (inch)=	72 .000		RAI	LAB = 0358-04
NUN DECA	RB=1 N RATIO=637:1 Manto Chart detec Meet	1 factured per ter Steel carti tors in place s customer s mer Documei	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from be- ediation with	is Reround in our pri i exception	radiation k	ducts.	ving proces	ss radiation
NUN DECA REDUCTION	RB=1 N RATIO=637:1 Manu Chari datec Meeb Custo	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from ber ediation with Charter Stee	is Reround in our pri i exception	radiation k	ducts.	ving proces	ss radiation
NUM DECA REDUCTION Specifications:	RB=1 N RATIO=637:1 Manu Chari datec Meeb Custo	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from ber ediation with Charter Stee	is Reround in our pri i exception	radiation k	ducts.	ving proces	ss radiation
NUN DECA	RB=1 N RATIO=637:1 Manu Chari datec Meeb Custo	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from ber ediation with Charter Stee	is Reround in our pri i exception	radiation k	ducts.	ving proces	ss radiation
NUM DECA REDUCTION Specifications:	RB=1 N RATIO=637:1 Manu Chari datec Meeb Custo	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from ber ediation with Charter Stee	is Reround in our pri i exception	radiation k	ducts.	ving proces	ss radiation
NUM DECA REDUCTION Specifications: Additional Comm	RB=1 N RATIO=637:1 Manu Chari datec Meeb Custo	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from ber ediation with Charter Stee	13 Koround In our pri 1 accept	I radiation le coses & pro- one for the /-13	sducts. following c	wing process ustomer do	ss radiation
NUM DECAL REDUCTION	RB=1 NRATIO=637:1 Ghari detac Mette Custo custo	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR v Date 12/12/ able from ber ediation with Charter Stee	3 Kground in our prr exception 08-NOV	I radiation le cose & pro nos for the f-13	st sil previou	ustomer do	se radiation coments:
NUM DECA REDUCTION specifications: Additional Comm	RB=1 Manto Chari detec Metto Custo senta:	factured per ter Steel carti tors in place a customer s	to measu pecificatio	72 teel Quality roduct is inter the for the pr	distinguish seance of r applicable	AVE DECAR	3 Kground in our prr exception 08-NOV	I radiation le cess & pro- one for the f-13	ss all previou Seace Standard and Search	wing process ustomer do	irRa for this order

Figure B-73. ⁵/₈-in. (16-mm) Dia. 1¹/₄-in. (32-mm) Long Guardrail Bolt Test Report, Test No. MSPBN-8

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 185896

SHIPPER #: 061432 DATE SHIPPED: 09/06/2017

LOT#: 30213-B

SPECIFICATION: ASTM A307, GRADE A MILD CARBON STEEL BOLTS

TENSILE:	SPEC:	60,000 psi*min	RESULTS:	67,070
				67,354
HARDNESS	:	100 max		80.10
				80.30

*Pounds Per Square Inch.

T

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 30213-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Мп	Р	S	Si
NUCOR	1010	DL17100591	.09	.41	.004	.002	.05

QUANTITY AND DESCRIPTION:

1,500 PCS 5/8" X 18" GUARD RAIL BOLT P/N 3580G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINDIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

SEPTEMBER 2017 YOF Bann 0 mmmm Official Seal Lisa A Berg Notary Public State of Illinois My Commission Expires 06/08/2020

Melomas 9/7/17 da) DATE OVED SIGNATORY

Figure B-74. ⁵/₈-in. (16-mm) Dia., 18-in. (457-mm) Long Guardrail Bolt Test Report, Test No. MSPBN-8

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR

ROAD, E. D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110254885 COMMODITY : FINISHED HEX NUT GR-A SIZE : 7/8-9 NC 0/T 0.56MM LOT NO : 1N1810005 SHIP QUANTITY : 9,000 PCS LOT QUANTITY : 55,748 PCS HEADMARKS :

MANUFACTURE DATE: 2018/01/05

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/03/28 PACKING NO: GEM180115010 INVOICE NO: GEM/FNL-180201WI-1 PART NO: 36717 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) / ASTM F1470-2012 HEAT NO: 331704677 MATERIAL: XGML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN. MAX.		0. 5800		0. 1300	0. 2300	
Test Value	0.0360	0.0600	0.4500	0.0140	0.0030	0.0300

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

			SAMPLED	DBY: WDANDAN		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ
WIDTH ACROSS CORNERS	5 PCS		1.4470-1.5160 inch	1.4850-1.4930 inch	5	0
FIM	15 PCS	ASME B18. 2. 2-2015	Max. 0.0250 inch	0.0110-0.0200 inch	15	0
THICKNESS	5 PCS		0.7240-0.7760 inch	0.7460-0.7570 inch	5	0
WIDTH ACROSS FLATS	5 PCS		1.2690-1.3120 inch	1.2930-1.2980 inch	5	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

				SAMPLE	DBY: TANGHAO		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68–107 HRB	86-90 HRE	15	0
PROOF LOAD	5 PCS	ASTM F606-2014		Min. 31,416 LBF	OK	5	0
PLATING THICKNESS(µm)	29 PCS	ASTM B568-1998		>=53	62. 38-62. 57	29	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

griv

page 1 of 1

Figure B-75. 7/8-in. (22-mm) Dia. Hex Nut Material Specification, Test No. MSPBN-8

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>10057594</u> Customer PO# <u>3475</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

GR6806PS				
L	6x8-6' Thrie Beam Post	70	24232	.636
GS6846PS T	5.5x7.5-46' BCT	42	24233	.627
GR61219B LK	6x12-19" Thrie OCD Block	168	24230	.638
GR61222B LK	6x12-22" Thrie OCD Block	56	24089	.673
GR6814BL K	6x8-14" OCD Block	126	24195	.648

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nicholas Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

> <u>8/25/2017</u> Date

Figure B-76. 5½-in. (140-mm) x 7½-in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post Certificate of Compliance, Test No. MSPBN-8

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>N02529</u> Customer PO# <u>3560</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

# Tested Retention	Charge #	# of Pieces	Physical Description	Part #
				GR6806.5
3 .740	25008	70	6x8-6.5 CRT	CRT
				GS6846
.864	25033	84	5.5x7.5-46" BCT	PST
				GR6814
.892	25041	90	6x8-14" Tapered Block	BLKTAP
				GR668
.864	25033	56	6x6-8" 3 Hole Block	3HB
				GR6819
.941	25024	168	6x8-19" OCD Block	BLK
				GR61219
.864	25033	168	6x12-19" Thrie Block	BLK
				GR61219
.733	25042	56	6x12-19" Trans Block	BLK
				GR61222
.733	25042	112	6x12-22" Block	BLK
	25042	112	6x12-22" Block	BLK

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

standards L

Nick Sowl, General Counsel

4/18/18 Date

Figure B-77. 5¹/₂-in. (140-mm) x 7¹/₂-in. (191-mm) x 46-in. (1,168-mm) BCT Timber Post Certificate of Compliance, Test No. MSPBN-8

HIGHWAY SAFETY CORP

P.O. BOX 358 GLASTONBURY, CT 06033 CERTIFICATE OF COMPLIANCE/ANALYSIS REPORT

SOLD TO: MIDWEST MACHINERY & SUPPLY 974-238th Road SHIP TO: MIDWEST MACHINERY & SUPPLY 974 238TH ROAD MILFORD,

Milford, NE, USA

QTY:		ITEM NUMBER:	CC:	DESCRIPTION:						91
	HEAT/LOT	NO: YIELD:	TENSILE: %ELONG:	C: Mn:	P:	S:	Si:	CI:	Type	ACW
50	2714032	T-POG060080606B	IB-B0600800	THRIE POST WO	06 x 008	,5# x 06'0	06 F/ RTC	WOOD .	THRIE BLO	DC

ALL STEEL USED IN MANUFACTURING IS MADE AND MELTED IN THE USA, INCLUDING HARDWARE FASTENERS, AND COMPLIES WITH THE BUY AMERICA ACT. ALL COATINGS PROCESSES ARE PERFORMED IN THE USA AND COMPLY WITH THE BUY AMERICA ACT. BOLTS COMPLY WITH ASTMA-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTMA-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTMA-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTMA-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. ALL GURADRAIL MEETS AASHTO M-180 AND ALL STRUCTURAL STEEL MEETS AASHTO M-270. ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTMA-533, ALL OTHER ITEMS COMPLY WITH ASHTO M-111, M-165, M-133, M-265, ASTMA-509, ASTMA-509, ASTMA-530, ASTMA-509, ASTMA-509, ASTMA-509, ASTMA-509, ASTMA-509, ASTMA-509, ASTMA-500, ASTMA-509, ASTMA-500, ASTMA-509, ASTMA-500, ASTMA-500,

HIGHWAY SAFETY CORPORATION

JALITY ASSURANCE MANAGER NOTARIZED UPON REQUEST: STATE OF CONNECTICUT COUNTY OF HARTFORD DAY OF DEBRA M. THOMPSON NOTARY PUBLIC MY COMMISSION EXPIRES NOV. 30, 2018

Page 1 - 0148588

Figure B-78. W6-in. x 8.5-in. (W152-mm x 126-mm), 78-in. (1,981-mm) Long Steel Post Material Specification, Test No. MSPBN-8

						Certifie	d Analy	sis		Highway Products
Trinity H	ighway I	Products, LLC								
550 East I	Robb Av	e.				Order N	Number: 129571	9	Prod Ln Grp: 0-OE2.0	
Lima, OH	45801 Pl	hn:(419) 227-1296				Custor	ner PO: 3597			As of: 6/11/18
Customer:	MIDW	EST MACH & SUPPLY	CO			BOLN	Jumber: 104805		Ship Date:	
	P. O. I	3OX 703				Docu	ment #: 1			
						Ship	ped To: NE			
	MILFO	DRD, NE 68405				Use	e State: NE			
Project:	STOC	K								
Qty	Part #	Description	Spec	CL	ТУ	Heat Code/ Heat	Yield	TS	Elg C Mn P S	Si Cu Cb Cr Vn ACW
6	974G	T12/TRANS RAIL/6'3"/3'1.5	M-180	Α	2	208675	62,100	81,170) 22.7 0.190 0.730 0.012 0.004 0.	020 0.090 0.000 0.050 0.001 4
600	3320G	3/16"X1:75"X3" WASHER	HW			P37836				
13,000	3340G	5/8" GR HEX NUT	HW			17-35-042				
7,000	3360G	5/8"X1.25" GR BOLT	HW			20180212811				
150	3448G	1/4"X4"X4" SNOW LOAD	HW			61423				
200	3480G	5/8"X8" GR BOLT A307	HW			30459-В				
450	3500G	5/8"X10" GR BOLT A307	HW			30928-В				
875	3540G	5/8"X14" GR BOLT A307	HW			30869-Р				
600	3560G	5/8"X16" GR BOLT A307	HW			30861-B				
50	3660G	5/8"X26" GR BOLT A307	HW			30994				
10	6696G	CBL 5/8"X14'4.75/DBL BTN	HW			284559				
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1 0.190 0.520 0.014 0.004 0.	020 0.110 0.000 0.050 0.000 4
9	12379G	T12/12'6/SPEC/S 34'RCX				L31418				
			M-180	Α	2	222038	63,780	82,280		
			M-180	A	2	222878	64,680	81,820	25.2 0.180 0.740 0.012 0.003 0.	020 0.130 0.000 0.070 0.002 4

Figure B-79. 5%-in. (16-mm) Dia., 14.4-ft (4.3-m) Long Cable and Swage Button Certificate of Compliance, Test No. MSPBN-8

				Certified Analysis					
rinity H	ighway P	roducts, LLC							
550 East Robb Ave.				Order Number: 1214903 Prod Ln Grp: 9-End Terminals (Dom)					
Lima, OH 45801				Customer PO: 2878 As of: 3/7/14					
Customer: MIDWEST MACH.& SUPPLY CO.				BOL Number: 80278 Ship Date: Document #: 1					
P. O. BOX 703									
				Shi	pped To: NE				
MILFORD, NE 68405			Use State: KS						
Project:	STOCI	ζ							
Qty	Part #	Description		TY Heat Code/ Heat	Yield	TS	Elg C Mn	P S Si Cu Cb C	
36	749G	TS 8X6X3/16X6'-0" SLEEV	VE A-500	0173175	55,871	74,495	31.0 0.160 0.610 (0.012 0.009 0.010 0.030 0.000 0.030	0 0.000 4
20	3000G	CBL 3/4X6'6/DBL	HW	98790					
22	9852A	STRUT & YOKE ASSY	A-1011-SS	.163375	48,380	64,020	32.9 0.190 0.520 (0.011 0.003 0.030 0.110 0.000 0.050	0 0.000 4
	9852A		A-36	11237730	45,500	70,000	30.0 0.170 0.500 (0.010 0.008 0.020 0.080 0.000 0.070	0 0.001 4
		Ground Strut	Green Pain	t `					
		R#15-0157 Sej	ptember 201	4 SMT					
Unon del	ivery, all	materials subject to Trini	ity Highway Products	. LLC Storage Stain Po	licy No. LG-002				
100	•	WAS MELTED AND MAY							
	1	L MEETS AASHTO M-1							
		ROCESSES OF THE STEE D MATERIAL CONFORM				H THE "BUY	AMERICA ACT"		
ALL GAL	VANIZEI	D MATERIAL CONFORM	S WITH ASTM A123	& ISO 1461 (INTERNAI	TIONAL SHIPME	NTS)			
and the second sec	n1.	PART NUMBERS ENI				1100 1100			
								LESS OTHERWISE STATED.	
		Y WITH ASTM A-563 SPE						ESS OTHERWISE STATED. 9.	
		X19 ZINC COATED SWA	GED END AISI C-103	5 STEEL ANNEALED S	TUD 1" DIA AS	TM 449 AAS	HTO M30, TYPE II BI	REAKING	
3/4" DIA (n – 4000	0 10							
							여기에서 가슴에는 성		
3/4" DIA (
3/4" DIA (

Figure B-80. Ground Strut and Yolk Assembly Material Certification, Test No. MSPBN-8

Appendix C. Static Soil Tests

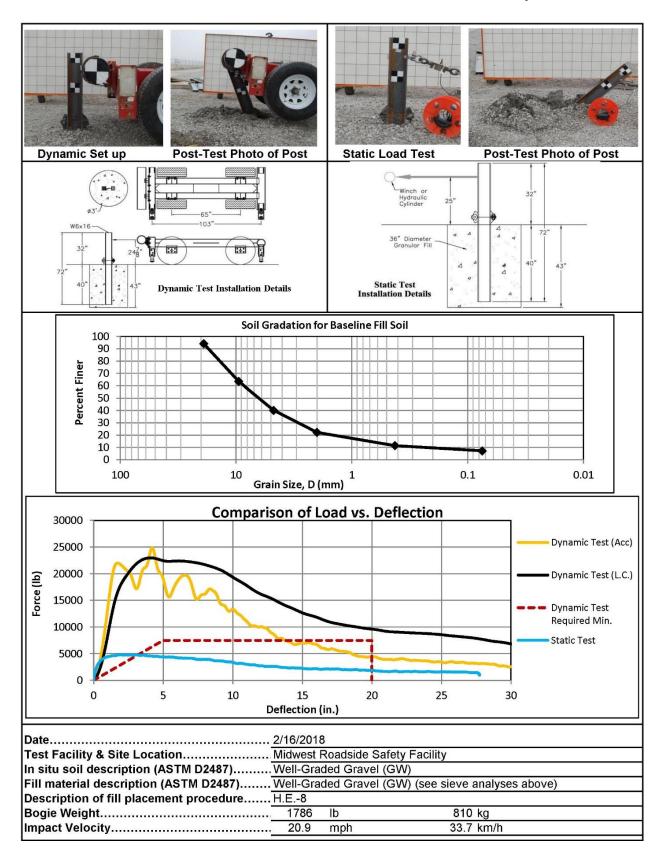


Figure C-1. Soil Strength, Initial Calibration, Test No. MSPBN-4 through MSPBN-8

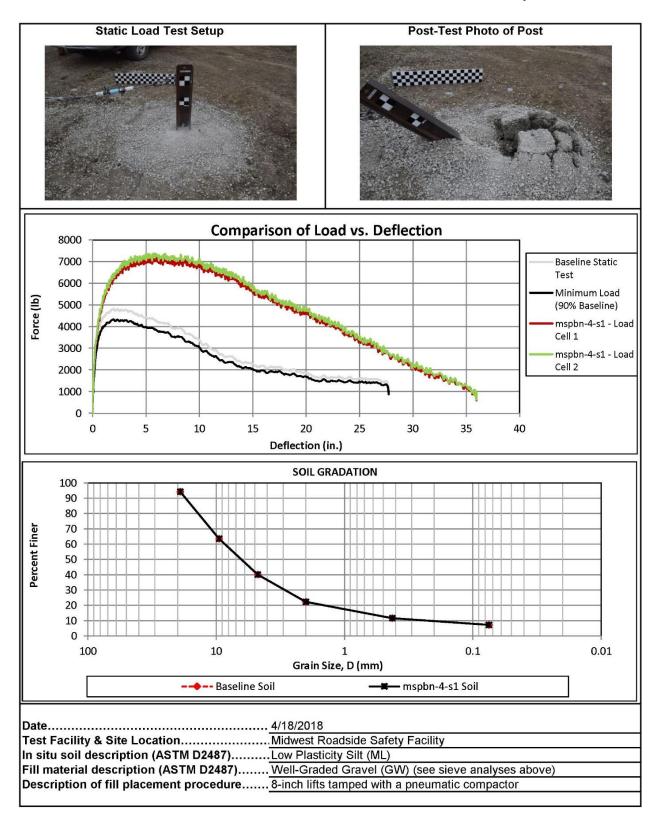


Figure C-2. Static Soil Test, Test No. MSPBN-4

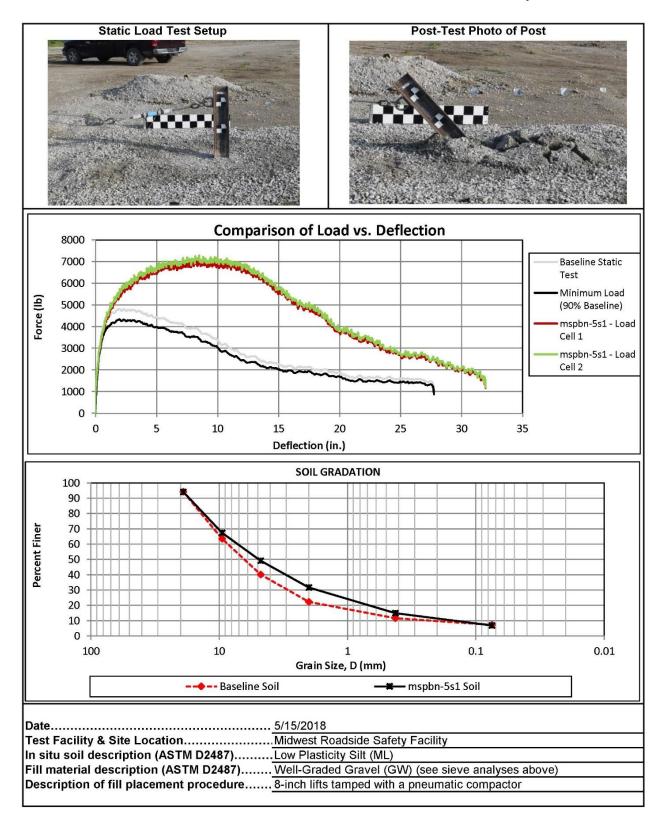


Figure C-3. Static Soil Test, Test No. MSPBN-5

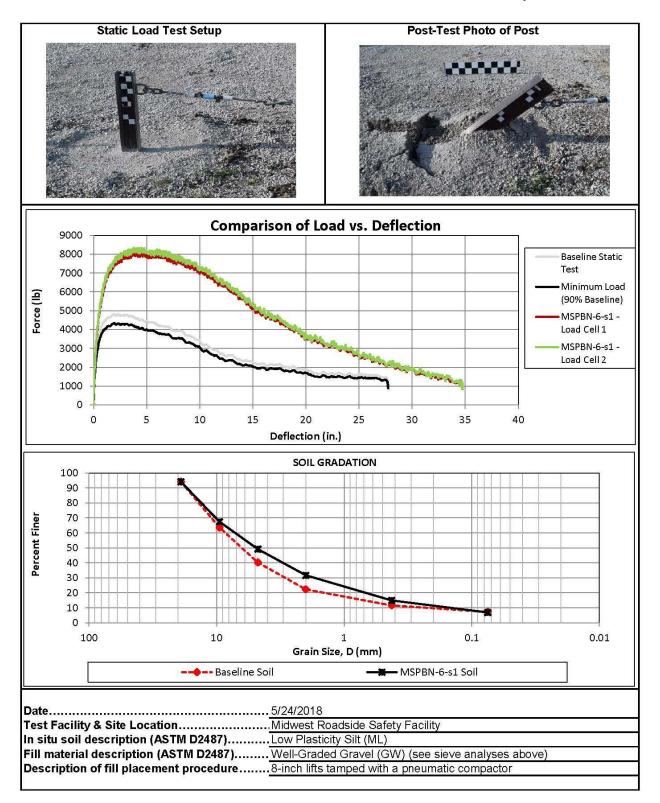


Figure C-4. Static Soil Test, Test No. MSPBN-6

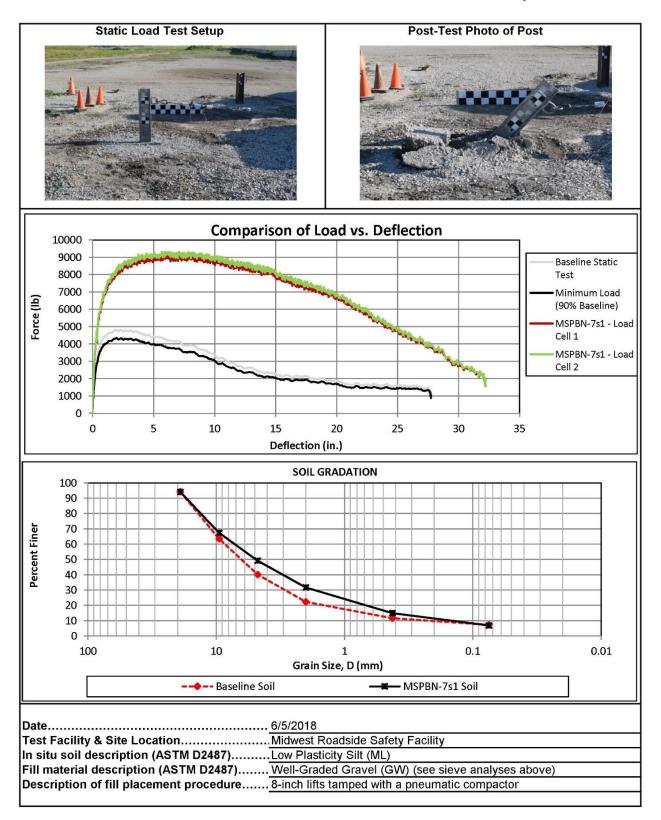


Figure C-5. Static Soil Test, Test No. MSPBN-7

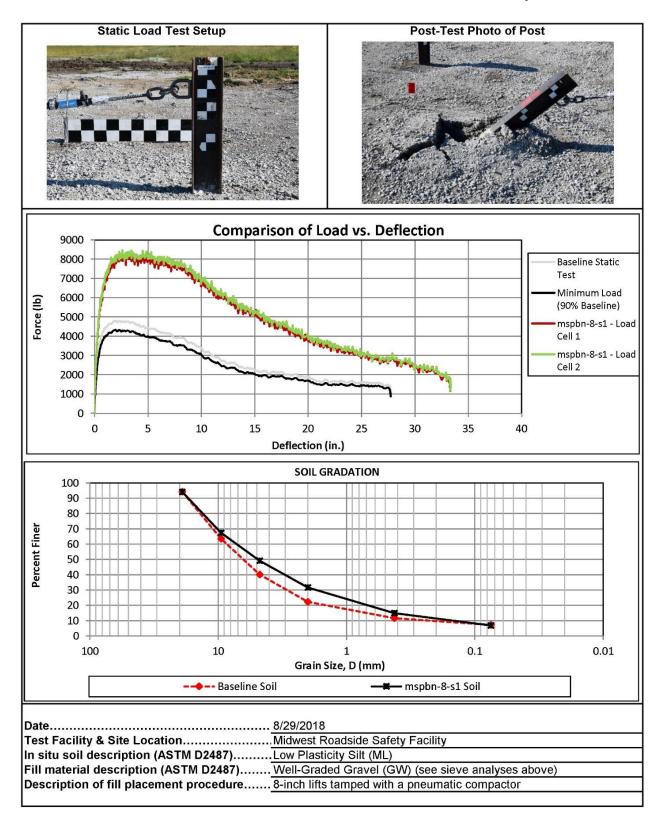


Figure C-6. Static Soil Test, Test No. MSPBN-8

Appendix D. Vehicle Deformation Records

Date: Year:	11. 1	2018 09			Test Name: Make:		BN-4 IA			VIN: Model:	KNA	DE2234964 RIO	69475
							/POST CRI N - SET 1 le						
		Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for
	POINT	(in.)	(in.)	(in.)	8 8		3 8				<u> </u>	363 (6)	Crush ^c
	1	54.490	-13.888	1.312	54.438	-13.857	1.324	0.052	0.030	0.011	0.061	0.053	X, Z
	2	54.453	-10.624	1.284	54.410	-10.613	1.367	0.043	0.011	0.083	0.094	0.094	X, Z
TOE PAN - WHEEL WELL (X, Z)	3	54.338	-7.642	1.010	54.309	-7.629	1.055	0.029	0.013	0.045	0.055	0.054	X, Z
ZZ~	4	54.319	-4.341	1.403	54.308	-4.355	1.442	0.012	-0.013	0.039	0.042	0.040	X, Z
A V V	5	54.010	-1.115	0.909	53.948	-1.172	0.906	0.063	-0.057	-0.003	0.085	0.063	X
近距区	6	51.866	-14.044	-0.697	51.848	-14.027	-0.636	0.018	0.017	0.061	0.066	0.064	X, Z
Y H	7	51.626	-10.878	-0.425	51.613	-10.922	-0.391	0.013	-0.044	0.035	0.058	0.037	X, Z
>	8	51.673	-7.438	-0.618	51.650	-7.453	-0.601	0.023	-0.015	0.017	0.032	0.028	X, Z
	9	51.246	-4.428	-0.500	51.215	-4.422	-0.491	0.032	0.007	0.009	0.034	0.033	X, Z
	10	51.026	-1.371	-0.919	50.986	-1.403	-0.926	0.040	-0.031	-0.006	0.051	0.040	Х
	11	46.008	-15.414	-2.066	45.959	-15.399	-2.003	0.049	0.015	0.063	0.081	0.063	Z
	12	45.364	-11.077	-2.023	45.420	-11.089	-1.997	-0.056	-0.012	0.025	0.062	0.025	Z
	13	45.454	-8.363	-2.045	45.432	-8.329	-2.036	0.022	0.034	0.009	0.042	0.009	Z
	14	45.426	-5.735	-2.108	45.452	-5.671	-2.054	-0.026	0.064	0.054	0.088	0.054	Z
	15	45.083	-2.421	-1.896	45.027	-2.467	-1.873	0.056	-0.046	0.023	0.076	0.023	Z
3	16	41.618	-16.974	-2.658	41.624	-16.968	-2.585	-0.006	0.006	0.073	0.073	0.073	Z
	17	41.236	-13.063	-2.044	41.221	-13.009	-1.993	0.015	0.054	0.050	0.075	0.050	Z
7	18	40.904	-9.230	-2.091	40.863	-9.255	-2.072	0.041	-0.026	0.019	0.052	0.019	Z
AI	19	40.413	-6.218	-2.382	40.409	-6.270	-2.308	0.004	-0.052	0.073	0.090	0.073	Z
Z)	20	40.384	-3.194	-2.811	40.383	-3.146	-2.792	0.001	0.048	0.020	0.052	0.020	Z
FLOOR PAN (Z)	21	36.746	-17.904	-2.730	36.748	-17.854	-2.663	-0.002	0.050	0.067	0.083	0.067	Z
Ľ	22	36.224	-13.906	-2.082	36.209	-13.877	-2.045	0.016	0.028	0.037	0.049	0.037	Z
1.00	23	35.934	-9.835	-2.139	35.905	-9.808	-2.127	0.029	0.027	0.012	0.042	0.012	Z
	24	35.746	-6.393	-2.506	35.713	-6.339	-2.543	0.034	0.054	-0.036	0.073	-0.036	Z
	25	35.650	-3.413	-2.863	35.655	-3.318	-2.853	-0.006	0.095	0.010	0.096	0.010	Z
	26	32.679	-18.217	-2.351	32.645	-18.175	-2.289	0.034	0.041	0.062	0.082	0.062	Z
	27	32.859	-14.076	-2.110	32.883	-14.101	-2.071	-0.024	-0.025	0.039	0.053	0.039	Z
	28	32.495	-10.134	-2.163	32.463	-10.093	-2.131	0.033	0.041	0.032	0.062	0.032	Z
	29	32.541	-7.576	-2.192	32.572	-7.544	-2.200	-0.031	0.032	-0.008	0.045	-0.008	Z
	30	32.104	-5.086	-2.527	32.089	-5.093	-2.527	0.015	-0.007	0.001	0.017	0.001	Z

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations.



Figure D-1. Floor Pan Deformation Data - Set 1 Left, Test No. MSPBN-4

Date: Year:	4/18/ 20				Test Name: Make:		BN-4 IA			VIN: Model:	KNAI	DE2234964 RIO	69475
							/POST CRI I - SET 1 rig						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^c
	1	54,309	12.399	1.515	54.246	12.146	1.532	0.063	0.252	0.017	0.261	0.066	X, Z
1	2	54.479	15.388	1.711	54.355	15.071	1.668	0.124	0.317	-0.043	0.343	0.124	X
	3	54.538	18.462	1.707	54.422	18.189	1.716	0.116	0.273	0.009	0.297	0.116	X, Z
TOE PAN - WHEEL WELL (X, Z)	4	54.422	21.826	2.023	54.315	21.583	2.104	0.107	0.243	0.081	0.278	0.134	X, Z
AND	5	53.579	24.901	2.939	53.430	24.687	3.099	0.149	0.214	0.160	0.306	0.218	X, Z
ШЩ×	6	50.391	12.419	-0.881	50.354	12.222	-0.921	0.037	0.198	-0.040	0.205	0.037	X
ēΨ)	7	50.310	15.785	-0.794	50.227	15.564	-0.767	0.083	0.221	0.026	0.237	0.087	X, Z
~	8	50,477	18.772	-0.686	50.437	18.561	-0.685	0.040	0.211	0.001	0.215	0.040	X, Z
	9	50.446	22.564	-0.592	50.385	22.381	-0.580	0.062	0.183	0.011	0.193	0.063	X, Z
	10	50.370	27.136	0.037	50.240	26.866	0.048	0.130	0.270	0.011	0.300	0.131	X, Z
	11	44,953	11.646	-2.051	44,978	11.429	-2.095	-0.025	0.217	-0.044	0.223	-0.044	Z
	12	44.746	15.269	-2.254	44.754	15.092	-2.233	-0.008	0.177	0.022	0.178	0.022	Z
	13	45.079	19.516	-2.038	45.084	19.300	-2.129	-0.006	0.216	-0.091	0.235	-0.091	Z
	14	44.728	22.861	-2.299	44.764	22.707	-2.367	-0.035	0.154	-0.068	0.172	-0.068	Z
1	15	44.618	26.973	-2.280	44.656	26.865	-2.322	-0.038	0.109	-0.042	0.123	-0.042	Z
	16	41.169	11.222	-2.664	41.129	11.008	-2.732	0.040	0.214	-0.068	0.228	-0.068	Z
	17	40.897	14.666	-2.758	40.911	14.411	-2.746	-0.014	0.256	0.012	0.257	0.012	Z
-	18	40.968	19.010	-2.339	40.945	18.759	-2.439	0.023	0.251	-0.100	0.271	-0.100	Z
AN	19	40.777	22.932	-2.395	40.815	22.764	-2.483	-0.038	0.168	-0.088	0.193	-0.088	Z
Z)	20	40.864	27.386	-2.872	40.831	27.132	-2.943	0.033	0.254	-0.071	0.266	-0.071	Z
0	21	37.312	11.095	-2.890	37.271	10.842	-2.945	0.041	0.253	-0.055	0.262	-0.055	Z
FLOOR PAN (Z)	22	37.058	14.654	-2.933	37.031	14.402	-2.954	0.028	0.252	-0.021	0.255	-0.021	Z
-	23	36.869	18.594	-2.393	36.866	18.377	-2.522	0.003	0.217	-0.129	0.253	-0.129	Z
	24	36.557	22.928	-2.430	36.562	22.670	-2.524	-0.005	0.258	-0.094	0.274	-0.094	Z
	25	36.049	28.040	-2.981	36.057	27.778	-3.023	-0.008	0.261	-0.042	0.265	-0.042	Z
	26	32.355	10.836	-2.702	32.441	10.585	-2.794	-0.087	0.251	-0.092	0.281	-0.092	Z
]	27	32.324	14.448	-2.760	32.356	14.254	-2.868	-0.032	0.194	-0.108	0.224	-0.108	Z
]	28	31.997	18.381	-2.435	31.991	18.096	-2.538	0.005	0.285	-0.103	0.303	-0.103	Z
	29	31.917	22.546	-2.447	31.792	22.299	-2.553	0.125	0.247	-0.106	0.297	-0.106	Z
	30	31.036	28.195	-2.682	30.907	27.934	-2.724	0.129	0.261	-0.042	0.295	-0.042	Z

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations.

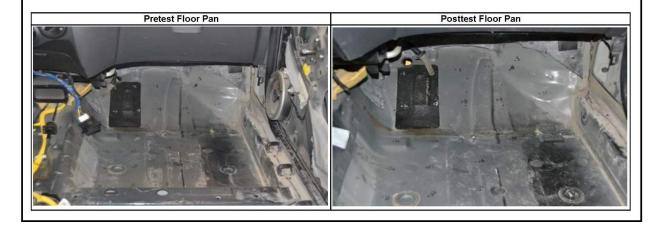


Figure D-2. Floor Pan Deformation Data - Set 1 Right, Test No. MSPBN-4

Date: Year:		2018 09			Test Name: Make:	MSP K	BN-4 IA			VIN: Model:	KNA	DE2234964 RIO	69475
							/POST CRI N - SET 2 le						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	64.088	-22.925	-4.200	64.236	-22.680	-4.336	-0.148	0.245	-0.136	0.317	0.000	
5	2	64.060	-19.661	-4.218	64.164	-19.427	-4.293	-0.104	0.234	-0.076	0.267	0.000	
	3	63.957	-16.678	-4.482	64.133	-16.387	-4.581	-0.176	0.291	-0.100	0.354	0.000	
TOE PAN - WHEEL WELL (X, Z)	4	63.945	-13.379	-4.077	64.152	-13.147	-4.155	-0.207	0.231	-0.078	0.320	0.000	
A > Q	5	63.650	-10.150	-4.563	63.859	-9.993	-4.678	-0.209	0.157	-0.115	0.285	0.000	
ы Ш Ц Х Ш	6	61.479	-23.066	-6.231	61.624	-22.828	-6.326	-0.144	0.238	-0.095	0.294	0.000	
C H	7	61.247	-19.900	-5.950	61.373	-19.668	-6.090	-0.127	0.232	-0.140	0.299	0.000	
~ >	8	61.306	-16.460	-6.130	61.479	-16.296	-6.259	-0.173	0.164	-0.128	0.271	0.000	
	9	60.887	-13.449	-6.005	61.045	-13.250	-6.146	-0.157	0.199	-0.141	0.290	0.000	
	10	60.680	-10.390	-6.415	60.880	-10.195	-6.550	-0.200	0.195	-0.135	0.311	0.000	
	11	55.629	-24,413	-7.652	55,864	-24,198	-7.706	-0.235	0.215	-0.054	0.323	-0.054	Z
	12	54.997	-20.074	-7.598	55.170	-19.895	-7.707	-0.173	0.179	-0.109	0.271	-0.109	Z
	13	55.096	-17.361	-7.610	55.242	-17.126	-7.738	-0.147	0.235	-0.128	0.305	-0.128	Z
	14	55.077	-14.732	-7.664	55.271	-14.484	-7.753	-0.195	0.248	-0.089	0.328	-0.089	Z
	15	54.742	-11.418	-7.443	54.931	-11.197	-7.553	-0.189	0.221	-0.110	0.312	-0.110	Z
	16	51.239	-25.958	-8.284	51.467	-25.777	-8.338	-0.228	0.181	-0.054	0.296	-0.054	Z
	17	50.863	-22.048	-7.659	51.060	-21.836	-7.743	-0.197	0.212	-0.084	0.301	-0.084	Z
-	18	50.544	-18.213	-7.696	50.701	-18.012	-7.817	-0.157	0.201	-0.122	0.282	-0.122	Z
FLOOR PAN (Z)	19	50.064	-15.199	-7.979	50.265	-14.989	-8.110	-0.201	0.210	-0.131	0.319	-0.131	Z
Z) R F	20	50.048	-12.173	-8.399	50.260	-11.976	-8.520	-0.213	0.197	-0.121	0.315	-0.121	Z
٥Ľ	21	46.365	-26.872	-8.398	46.574	-26.599	-8.455	-0.209	0.273	-0.057	0.349	-0.057	Z
LC LC	22	45.850	-22.875	-7.740	46.036	-22.694	-7.815	-0.187	0.181	-0.075	0.270	-0.075	Z
	23	45.573	-18.803	-7.786	45.728	-18.610	-7.891	-0.156	0.194	-0.106	0.270	-0.106	Z
	24	45.398	-15.359	-8.142	45.623	-15.132	-8.287	-0.225	0.227	-0.145	0.351	-0.145	Z
	25	45.313	-12.378	-8.489	45.588	-12.127	-8.605	-0.274	0.251	-0.116	0.389	-0.116	Z
	26	42.293	-27.174	-8.053	42.479	-27.004	-8.063	-0.186	0.170	-0.010	0.252	-0.010	Z
]	27	42.484	-23.034	-7.796	42.771	-22.863	-7.834	-0.287	0.171	-0.038	0.336	-0.038	Z
]	28	42.133	-19.091	-7.838	42.241	-18.873	-7.917	-0.108	0.219	-0.078	0.256	-0.078	Z
	29	42.186	-16.533	-7.858	42.386	-16.323	-7.952	-0.200	0.210	-0.095	0.305	-0.095	Z
	30	41.760	-14.040	-8.187	41.998	-13.841	-8.283	-0.238	0.200	-0.096	0.325	-0.096	Z

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations.

Figure D-3. Floor Pan Deformation Data - Set 2 Left, Test No. MSPBN-4

Date: Year:	4/18/ 20				Test Name: Make:		'BN-4 IA			VIN: Model:	KNA	DE2234964 RIO	69475
					(T-1)		/POST CRI I - SET 2 rig						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^c
	1	64.170	3.519	-4.368	64,148	3.528	-4.028	0.022	-0.009	0.340	0.341	0.341	X, Z
3	2	64.352	6.507	-4.172	64.267	6.451	-3.882	0.085	0.056	0.291	0.308	0.303	X, Z
	3	64.425	9.581	-4.177	64.347	9.569	-3.824	0.078	0.012	0.353	0.362	0.362	X, Z
TOE PAN - WHEEL WELL (X, Z)	4	64.322	12.946	-3.861	64.251	12.962	-3.425	0.072	-0.017	0.436	0.442	0.442	X, Z
NAN	5	63.491	16.024	-2.946	63.372	16.066	-2.426	0.120	-0.042	0.520	0.535	0.534	X, Z
ШЦ×	6	60.253	3.555	-6.765	60.271	3.626	-6.503	-0.018	-0.071	0.262	0.272	0.262	Z
0 H _	7	60.186	6.921	-6.678	60.156	6.968	-6.340	0.030	-0.048	0.339	0.343	0.340	X, Z
3	8	60.366	9.907	-6.572	60.377	9.964	-6.247	-0.011	-0.056	0.325	0.330	0.325	Z
	9	60.351	13.700	-6.478	60.339	13.784	-6.130	0.012	-0.085	0.348	0.358	0.348	X, Z
	10	60.293	18.271	-5.850	60.208	18.267	-5.488	0.085	0.004	0.362	0.372	0.372	X, Z
	11	54.813	2.804	-7.937	54,899	2.858	-7.711	-0.087	-0.054	0.226	0.248	0.226	Z
	12	54.620	6.428	-8.141	54.690	6.522	-7.838	-0.069	-0.094	0.303	0.325	0.303	Z
	13	54,971	10.674	-7.925	55.036	10.728	-7.719	-0.065	-0.054	0.206	0.223	0.206	Z
	14	54.635	14.020	-8.188	54,730	14.137	-7.949	-0.095	-0.117	0.239	0.283	0.239	Z
	15	54.541	18.133	-8.169	54.638	18.295	-7.891	-0.097	-0.163	0.279	0.337	0.279	Z
1	16	51.026	2.396	-8.551	51.052	2.454	-8.371	-0.025	-0.058	0.180	0.191	0.180	Z
	17	50.770	5.841	-8.646	50.847	5.857	-8.376	-0.078	-0.016	0.270	0.282	0.270	Z
-	18	50.858	10.184	-8.228	50.896	10.204	-8.055	-0.038	-0.020	0.173	0.179	0.173	Z
AP	19	50.684	14.107	-8.285	50.782	14.210	-8.087	-0.098	-0.103	0.198	0.244	0.198	Z
FLOOR PAN (Z)	20	50.789	18.561	-8.763	50.817	18.580	-8.534	-0.028	-0.018	0.229	0.232	0.229	Z
0 N	21	47.169	2.285	-8.779	47.194	2.304	-8.607	-0.025	-0.018	0.172	0.175	0.172	Z
LC LC	22	46.931	5.845	-8.823	46.968	5.864	-8.607	-0.038	-0.019	0.216	0.220	0.216	Z
"	23	46.758	9.786	-8.284	46.816	9.839	-8.163	-0.059	-0.053	0.121	0.144	0.121	Z
]	24	46.464	14.121	-8.322	46.529	14.133	-8.153	-0.066	-0.012	0.168	0.181	0.168	Z
	25	45.977	19.235	-8.874	46.047	19.245	-8.639	-0.070	-0.010	0.235	0.246	0.235	Z
	26	42.211	2.047	-8.593	42.363	2.065	-8.486	-0.152	-0.018	0.108	0.187	0.108	Z
]	27	42.195	5.659	-8.652	42.292	5.735	-8.548	-0.097	-0.076	0.104	0.161	0.104	Z
]	28	41.885	9.593	-8.328	41.941	9.577	-8.208	-0.056	0.016	0.120	0.133	0.120	Z
	29	41.823	13.759	-8.341	41.758	13.781	-8.211	0.064	-0.022	0.130	0.146	0.130	Z
	30	40.965	19.411	-8.577	40.896	19.420	-8.370	0.069	-0.008	0.208	0.219	0.208	Z

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations.

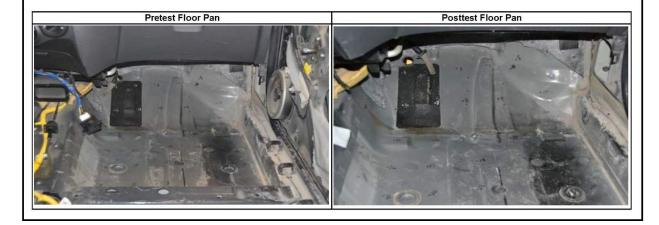
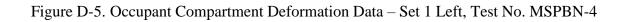
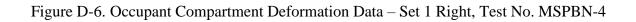
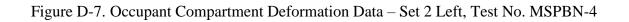
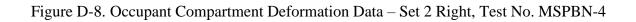




Figure D-4. Floor Pan Deformation Data - Set 2 Right, Test No. MSPBN-4


Date: Year:		/2018)09			Test Name: Make:		BN-4 IA			VIN: Model:	KNAL	DE2234964 RIO	69475
					VEF	ICLE PRE	POST CR	USH					
							JSH - SET						
[Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction: for
	POINT	36.42	1877 SP		. 8 .0			10 00 1	1 10 P 1	20 . 92	10 De 10	a a a	Crush ^c
123.2	1	39.970 40.146	5.749 -8.465	26.476 29.121	39.758 40.092	-1.178 -8.780	27.840 29.208	0.212 0.053	6.927 -0.316	1.364 0.087	7.063 0.332	7.063 0.332	X, Y, Z X, Y, Z
DASH (X, Y, Z)	3	41.889	-19.543	25.820	41.961	-19.714	25.919	-0.072	-0.171	0.099	0.210	0.210	X, Y, Z
NOX I	4	34.785	4.828	18.896	34.767	4.604	18.916	0.019	0.224	0.020	0.226	0.226	X, Y, Z
9	5	37.737	-1.740	18.407	37.852	-2.254	18.592	-0.115	-0.514	0.185	0.558	0.558	X, Y, Z
	6	38.845 45.182	-19.791 -21.649	18.472 4.509	38.867 45.177	-20.031	18.542 4.590	-0.022	-0.240 -0.211	0.070	0.251	0.251	X, Y, Z Y
SIDE (3)	8	45.182	-21.583	6.518	46.158	-21.000	6.564	-0.075	-0.211	0.081	0.220	-0.202	Y
RA)	9	50.660	-21.251	9.185	50.567	-21.456	9.137	0.092	-0.205	-0.048	0.230	-0.205	Ŷ
	10	41.422	-22.700	24.155	41.426	-22.885	24.284	-0.004	-0.186	0.129	0.226	-0.186	Y
IMPACT SIDE DOOR (Y)	11	27.655	-23.348	25.170	27.681	-23.540	25.240	-0.026	-0.192	0.070	0.206	-0.192	Y
582	12 13	12.921 42.917	-24.424 -23.049	25.493 15.961	12.879 42.934	-24.634 -23.241	25.582	0.042	-0.210 -0.192	0.088	0.232	-0.210 -0.192	Y
A D	13	42.917	-23.049	15.961	27.349	-23.241	16.049 14.617	-0.017	-0.192	0.087	0.211	-0.192	Y
≦ -	15	14.933	-24.441	15.161	14.883	-24.661	15.285	0.050	-0.220	0.124	0.210	-0.220	Y
	16	25.356	2.882	41.479	25.056	2.632	40.754	0.300	0.250	-0.724	0.823	-0.724	Z
	17	25.402	-5.878	41.586	25.117	-6.085	40.919	0.285	-0.207	-0.667	0.754	-0.667	Z
	18	24.907	-12.216	41.396	24.771	-12.558	40.900	0.137	-0.341	-0.496	0.617	-0.496	Z
-	19 20	20.670	2.537	44.170	20.546	2.234	44.028	0.124	0.303	-0.142	0.357	-0.142	Z
-	20	21.022 20.688	-6.169 -12.990	43.984 43.644	20.974 20.769	-6.342 -13.163	43.985 43.670	0.048	-0.173 -0.173	0.001	0.180	0.001	Z
N	22	18.381	2.244	44.590	18.385	2.042	44.649	-0.004	0.203	0.058	0.211	0.058	Z
ц́ Г	23	19.060	-2.715	44.451	19.066	-2.982	44.459	-0.007	-0.267	0.008	0.267	0.008	Z
ROOF - (Z)	24	19.116	-7.212	44.301	19.022	-7.378	44.347	0.094	-0.166	0.046	0.196	0.046	Z
<u> </u>	25	19.103	-12.399	43.991	19.143	-12.532	44.031	-0.040	-0.133	0.040	0.144	0.040	Z
ŀ	26 27	15.944 17.003	1.690 -3.143	44.944 44.763	15.793 16.931	1.540 -3.306	44.942 44.815	0.151	0.150	-0.002 0.052	0.213	-0.002 0.052	Z
	28	17.279	-7.182	44.593	17.289	-7.451	44.620	-0.009	-0.269	0.002	0.271	0.027	Z
1	29	17.621	-12.612	44.216	17.506	-12.736	44.285	0.115	-0.125	0.069	0.183	0.069	Z
	30	15.566	-5.836	44.869	15.584	-6.113	44.901	-0.018	-0.277	0.032	0.279	0.032	Z
A-PILLAR Lateral (Y)	31	45.126	-20.219	28.840	45.168	-20.380	28.933	-0.042	-0.161	0.093	0.191	-0.161	Y
eral	32 33	40.653 35.863	-19.585 -18.808	31.858 34.735	40.673 36.764	-19.784 -19.020	31.919 34.684	-0.019 -0.900	-0.199 -0.212	0.061	0.209	-0.199 -0.212	Y Y
A-P Late	34	31.527	-18.163	36.898	31.530	-18.414	36.921	-0.003	-0.251	0.023	0.320	-0.251	Y
	35	4.220	-18.288	40.280	4.353	-18.508	40.420	-0.133	-0.220	0.140	0.293	-0.220	Y
¥€ [36	7.442	-20.367	36.330	7.488	-20.609	36.428	-0.047	-0.242	0.098	0.265	-0.242	Y
al ILL	37	4.955	-21.867	32.909	4.990	-22.136	32.959	-0.035	-0.269	0.050	0.275	-0.269	Y
B-PILLAR Lateral (Y)	38 39	8.860 5.707	-22.951 -23.389	29.338 26.562	8.904 5.756	-23.201 -23.654	29.445 26.618	-0.043 -0.049	-0.250 -0.265	0.107	0.275	-0.250 -0.265	Y
	40	10.080	-23.309	23.230	10.156	-23.653	23.323	-0.049	-0.265	0.093	0.276	-0.261	Y
ΨEΩ	31	45.126	-20.219	28.840	45.168	-20.380	28.933	-0.042	-0.161	0.093	0.191	0.305	Z
A-PILLAR Maximum (X, Y, Z)	32	40.653	-19.585	31.858	40.673	-19.784	31.919	-0.019	-0.199	0.061	0.209	0.247	Z
Aaxi Xaxi	33	35.863	-18.808	34.735	36.764	-19.020	34.684	-0.900	-0.212	-0.051	0.926	0.000	-
₹ Z Ŭ	34	31.527	-18.163	36.898	31.530	-18.414	36.921	-0.003	-0.251	0.023	0.252	0.152	Z
m =	35 36	4.220 7.442	-18.288 -20.367	40.280 36.330	4.353 7.488	-18.508 -20.609	40.420 36.428	-0.133 -0.047	-0.220 -0.242	0.140	0.293	0.374 0.313	Z
B-PILLAR Maximum (X, Y, Z)	37	4.955	-20.367	32.909	4.990	-20.609	32.959	-0.047	-0.242	0.098	0.265	0.313	Z
PIL Saxin	38	8.860	-22.951	29.338	8.904	-23.201	29.445	-0.043	-0.250	0.107	0.275	0.327	Z
₽ ₹ Ç	39	5.707	-23.389	26.562	5.756	-23.654	26.618	-0.049	-0.265	0.057	0.276	0.238	Z
	40	10.080	-23.392	23.230	10.156	-23.653	23.323	-0.075	-0.261	0.093	0.287	0.305	Z
ompartme		te deformationation at use multip	on as inward	I toward the	occupant c	ompartment	;, negative va	alues denot	e deformatio	ons outward	away from	the occupar	nt


Date: Year:		/2018)09	•		Test Name: Make:		BN-4			VIN: Model:		DE2234964 RIO	
					VEH	ICLE PRE	POST CR	USH					
					INTER	RIOR CRU	ISH - SET 1	l right					
		Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	POINT	34 8	89.2	201 28	. 6.5	1 A A		NA 62 1		3. 2.			Crush ^c
989.0	1	39.784 39.438	6.621 14.261	26.438	39.831 39.473	6.610 14.296	26.518 26.317	-0.047 -0.036	0.012	0.080 0.066	0.093	0.093	X, Y, Z X, Y, Z
DASH (X, Y, Z)	3	39.438	14.261 25.550	26.250 25.575	39.473	25.547	25.617	-0.036	-0.035	0.066	0.083	0.083	X, Y, Z X, Y, Z
AS Y	4	34.610	5.715	18.797	34.611	5.790	18.967	0.000	-0.075	0.169	0.046	0.046	X, Y, Z
1 × 1	5	36.415	13.605	19.005	36.421	13.654	19.116	-0.006	-0.049	0.111	0.121	0.121	X, Y, Z
	6	36.740	24.890	19.565	36.695	24.882	19.567	0.045	0.008	0.002	0.046	0.046	X, Y, Z
wЩ	7	43.539	31.558	3.960	43.501	31.412	3.988	0.038	0.147	0.029	0.154	0.147	Y
SIDE (3)	8	47.738	31.678	3.859	47.692	31.495	3.802	0.046	0.183	-0.057	0.197	0.183	Y
	9	44.723	31.490	7.885	44.639	31.336	7.990	0.084	0.154	0.106	0.205	0.154	Y
IMPACT SIDE DOOR (Y)	10	39.546	32.841	22.280	39.411	32.750	22.276	0.135	0.090	-0.004	0.162	0.090	Y
ы М К	11	27.119	31.897	23.748	26.989	31.882	23.777	0.130	0.015	0.029	0.134	0.015	Y
582	12 13	14.278 40.519	31.128 32.465	24.767 11.986	14.030 40.330	31.183 32.352	24.793 11.985	0.249 0.189	-0.055 0.113	0.027	0.256	-0.055 0.113	Y
A O	13	25.494	32.403	14.041	25.346	32.332	14.084	0.189	0.037	0.043	0.220	0.037	Y
≦	15	14.194	31.512	13.845	14.011	31.526	13.893	0.140	-0.014	0.048	0.190	-0.014	Y
	16	25.236	5.302	41.444	24.986	5.290	40.682	0.250	0.012	-0.763	0.803	-0.763	Z
1	17	24.440	14.006	41.331	24.189	13.981	40.896	0.251	0.025	-0.435	0.503	-0.435	Z
1	18	22.636	22.670	40.747	22.617	22.784	40.668	0.019	-0.113	-0.079	0.140	-0.079	Z
	19	20.350	5.198	44.174	20.140	5.199	43.995	0.210	-0.001	-0.180	0.276	-0.180	Z
	20	19.749	12.773	43.929	19.644	12.840	43.888	0.105	-0.068	-0.042	0.131	-0.042	Z
Ñ	21	18.291	21.060	43.400	18.234	21.108	43.418	0.058	-0.047	0.018	0.077	0.018	Z
ROOF - (Z)	22 23	17.955 17.970	4.878 9.845	44.610 44.425	17.846 17.917	4.883 9.791	44.721 44.451	0.109	-0.005 0.054	0.111 0.026	0.156	0.111 0.026	Z
Ö	23	17.744	14.609	44.423	17.697	14.674	44.451	0.034	-0.065	0.020	0.080	0.020	Z
R I	25	17.072	20.183	43.714	17.049	20.200	43.732	0.040	-0.017	0.002	0.033	0.018	Z
	26	15.061	4.612	45.006	14.923	4.559	45.044	0.138	0.054	0.037	0.153	0.037	Z
	27	15.096	9.044	44.863	14.965	9.084	44.887	0.131	-0.040	0.025	0.140	0.025	Z
	28	15.505	13.889	44.531	15.390	13.909	44.557	0.114	-0.020	0.026	0.119	0.026	Z
	29	15.065	19.526	44.079	14.991	19.564	44.108	0.073	-0.038	0.029	0.088	0.029	Z
	30	13.013	11.559	44.958	12.965	11.522	45.001	0.048	0.037	0.043	0.075	0.043	Z
AR	31	42.815	30.673	27.641	42.855	30.668	27.765	-0.040	0.005	0.124	0.131	0.005	Y
eral	32 33	38.063 33.657	29.400 28.258	31.513 34.047	38.085 33.571	29.443 28.275	31.568 34.211	-0.022 0.086	-0.043 -0.017	0.056	0.074	-0.043	Y Y
A-PILLAR Lateral (Y)	34	29.195	27.066	36.493	29.212	27.128	36.557	-0.017	-0.062	0.064	0.091	-0.062	Y
<u>, 1</u>	35	4.526	24.968	39.473	4.484	24.988	39.481	0.042	-0.020	0.008	0.048	-0.020	Y
25	36	2.065	25.871	37.368	1.978	25.889	37.339	0.042	-0.018	-0.029	0.094	-0.018	Y
B-PILLAR Lateral (γ)	37	5.494	27.237	34.558	5.429	27.238	34.590	0.065	0.000	0.032	0.073	0.000	Y
PIL	38	2.509	27.998	31.751	2.462	27.987	31.794	0.047	0.011	0.043	0.065	0.011	Y
Ľ 'n	39	6.376	28.737	29.874	6.336	28.736	29.900	0.041	0.001	0.025	0.048	0.001	Y
	40	3.471	29.526	24.134	3.434	29.513	24.152	0.037	0.012	0.018	0.043	0.012	Y
A-PILLAR Maximum (X, Y, Z)	31	42.815	30.673	27.641	42.855	30.668	27.765	-0.040	0.005	0.124	0.131	0.353	Y, Z
Ľ, ž	32 33	38.063 33.657	29.400 28.258	31.513 34.047	38.085 33.571	29.443 28.275	31.568 34.211	-0.022 0.086	-0.043	0.056	0.074	0.236	Z XZ
A Mai	34	29.195	27.066	36.493	29.212	27.128	36.557	-0.017	-0.017	0.164	0.180	0.414	Z
~ -	35	4.526	24.968	39.473	4.484	24.988	39.481	0.042	-0.022	0.004	0.031	0.200	XZ
2 FO	36	2.065	25.871	37.368	1.978	25.889	37.339	0.042	-0.020	-0.029	0.040	0.087	X
I A	37	5.494	27.237	34.558	5.429	27.238	34.590	0.065	0.000	0.032	0.073	0.190	XZ
B-PILLAR Maximum (X, Y, Z)	38	2.509	27.998	31.751	2.462	27.987	31.794	0.047	0.011	0.043	0.065	0.214	X, Y, Z
M N C	39	6.376	28.737	29.874	6.336	28.736	29.900	0.041	0.001	0.025	0.048	0.165	X, Y, Z
	40	3.471	29.526	24.134	3.434	29.513	24.152	0.037	0.012	0.018	0.043	0.141	X, Y, Z
Positive va		te deformati	on as inward	i toward the	occupant c	ompartment	t, negative va	alues denote	e deformatio	ons outward	away from	the occupar	nt

Year	20	009	•		Make:	K	IA			Model:		RIO	
							/POST CRI JSH - SET						
		Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	POINT	1997 - AR	187 A	20 X	. 8 .0	S 2		14 95 14	2 10 P 3	8 2 1	10 C		Crush C
5904 J	1	49.426 49.540	-3.324 -17.547	20.917 23.513	49.476 49.772	-10.056 -17.663	22.142 23.490	-0.050 -0.231	-6.732 -0.117	1.225 -0.023	6.843 0.260	6.843 0.260	X, Y, Z X, Y, Z
DASH (X, Y, Z)	3	51.278	-28.618	20.186	51.614	-17.665	20.179	-0.336	0.023	-0.023	0.280	0.337	X, Y, Z
AS Y	4	44.300	-4.203	13.292	44.559	-4.228	13.207	-0.259	-0.025	-0.085	0.274	0.274	X, Y, Z
Ч×	5	47.237	-10.777	12.803	47.618	-11.097	12.880	-0.382	-0.320	0.077	0.504	0.504	X, Y, Z
	6	48.293	-28.832	12.813	48.560	-28.878	12.784	-0.268	-0.046	-0.029	0.273	0.273	X, Y, Z
wЩ	7	54.736	-30.659	-1.105	54.940	-30.693	-1.138	-0.204	-0.034	-0.033	0.210	-0.034	Y
SIDE PANEL (Y)	8	55.620	-30.603	0.911	55.911	-30.628	0.843	-0.290	-0.025	-0.068	0.299	-0.025	Y
	9	60.177	-30.293	3.616	60.307	-30.324	3.440	-0.130	-0.031	-0.175	0.221	-0.031	Y
IMPACT SIDE DOOR (Y)	10 11	50.816 37.039	-31.768 -32.380	18.506 19.409	51.075 37.322	-31.759 -32.360	18.532 19.409	-0.259 -0.283	0.008	0.026	0.260	0.008	Y
S R C	12	22.300	-32.300	19.409	22.514	-32.300	19.409	-0.203	0.020	0.000	0.264	0.020	Y
SQE	13	52.375	-32.093	10.324	52.628	-32.098	10.304	-0.252	-0.005	-0.020	0.253	-0.005	Y
	14	36.722	-33.056	8.792	37.047	-33.035	8.782	-0.325	0.021	-0.009	0.326	0.021	Y
≤	15	24.395	-33.401	9.295	24.575	-33.399	9.379	-0.181	0.002	0.084	0.199	0.002	Y
	16	34.685	-6.201	35.792	34.718	-6.222	34.985	-0.034	-0.021	-0.807	0.808	-0.807	Z
	17	34.705	-14.961	35.868	34.743	-14.940	35.124	-0.038	0.021	-0.744	0.745	-0.744	Z
	18	34.194	-21.298	35.652	34.369	-21.411	35.084	-0.176	-0.113	-0.567	0.605	-0.567	Z
	19 20	29.976 30.305	-6.542 -15.248	38.444 38.230	30.188 30.581	-6.611	38.232 38.167	-0.212 -0.276	-0.069 0.059	-0.212 -0.063	0.308	-0.212 -0.063	Z
-	20	29.954	-13.246	37.864	30.350	-15.189 -22.008	37.830	-0.396	0.059	-0.033	0.289	-0.083	Z
Ø	22	27.683	-6.829	38.845	28.022	-6.796	38.840	-0.339	0.033	-0.005	0.341	-0.005	Z
ROOF - (Z)	23	28.349	-11.790	38.694	28.685	-11.822	38.640	-0.336	-0.032	-0.054	0.341	-0.054	Z
^o	24	28.394	-16.287	38.529	28.622	-16.217	38.515	-0.229	0.070	-0.014	0.240	-0.014	Z
Ľ.	25	28.368	-21.472	38.200	28.724	-21.371	38.184	-0.356	0.102	-0.016	0.371	-0.016	Z
	26	25.242	-7.378	39.177	25.427	-7.288	39.117	-0.185	0.090	-0.060	0.215	-0.060	Z
	27 28	26.288 26.554	-12.213 -16.252	38.987 38.805	26.545 26.887	-12.138 -16.284	38.982 38.778	-0.257 -0.333	0.075 -0.032	-0.005 -0.028	0.268	-0.005 -0.028	Z
	29	26.883	-21.682	38.412	27.085	-21.569	38.428	-0.201	0.113	0.016	0.231	0.016	Z
	30	24.843	-14.902	39.072	25.187	-14.939	39.052	-0.344	-0.037	-0.020	0.346	-0.020	Z
35	31	54.489	-29.314	23.230	54.801	-29.284	23.210	-0.312	0.031	-0.020	0.314	0.031	Y
A-PILLAR Lateral (Y)	32	49.994	-28.678	26.214	50.291	-28.677	26.172	-0.297	0.001	-0.042	0.300	0.001	Y
-PII	33	45.184	-27.897	29.055	46.370	-27.905	28.917	-1.186	-0.008	-0.139	1.195	-0.008	Y
L, A	34	40.832	-27.247	31.186	41.127	-27.284	31.127	-0.295	-0.036	-0.059	0.303	-0.036	Y
~ ~	35 36	13.498 16.746	-27.306 -29.379	34.349 30.418	13.930 17.079	-27.276 -29.377	34.473 30.492	-0.432 -0.333	0.030	0.124	0.450	0.030	Y Y
B-PILLAR Lateral (Y)	36	16.746	-29.379	26.972	17.079	-29.377	27.005	-0.333	-0.023	0.074	0.342	-0.023	Y
PILI	38	18.213	-31.944	23.428	18.523	-31.955	23.510	-0.310	-0.023	0.082	0.321	-0.023	Y
B-f	39	15.080	-32.362	20.625	15.389	-32.387	20.664	-0.309	-0.025	0.039	0.312	-0.025	Ŷ
	40	19.480	-32.366	17.329	19.808	-32.395	17.394	-0.327	-0.029	0.065	0.335	-0.029	Y
A H L	31	54.489	-29.314	23.230	54.801	-29.284	23.210	-0.312	0.031	-0.020	0.314	0.031	Y
A-PILLAR Maximum (X, Y, Z)	32	49.994	-28.678	26.214	50.291	-28.677	26.172	-0.297	0.001	-0.042	0.300	0.001	Y
A Max	33 34	45.184 40.832	-27.897 -27.247	29.055 31.186	46.370 41.127	-27.905 -27.284	28.917 31.127	-1.186 -0.295	-0.008 -0.036	-0.139 -0.059	1.195 0.303	0.000	
~ ~	34	13.498	-27.306	31.180	13.930	-27.284	31.127	-0.295	0.030	0.124	0.303	0.353	Y, Z
m E =	35	16.746	-27.306	34.349	17.079	-27.276	34.473	-0.432	0.030	0.124	0.450	0.353	
B-PILLAR Maximum (X, Y, Z)	37	14.282	-30.861	26.972	14.594	-30.884	27.005	-0.333	-0.023	0.074	0.342	0.272	Y, Z Z
PIL C, Y	38	18.213	-31.944	23.428	18.523	-31.955	23.510	-0.310	-0.012	0.082	0.321	0.286	Z
ЧЯÇ	39	15.080	-32.362	20.625	15.389	-32.387	20.664	-0.309	-0.025	0.039	0.312	0.197	Z
	40	19.480	-32.366	17.329	19.808	-32.395	17.394	-0.327	-0.029	0.065	0.335	0.255	Z
Positive v ompartme		te deformation	on as inward	I toward the	occupant c	ompartment	, negative va	alues denot	e deformatio	ons outward	away from	the occupar	nt

Pretest X (in.) 49,595 49,279 49,688 44,425 46,260 46,631 53,472 57,671 54,652 49,466 37,035 24,190 50,447 35,419 24,118 35,027 34,267 34,267 34,267 32,498 30,137 29,568 28,144 27,741 27,747 27,570 26,921	Pretest Y (in.) -2.200 5.441 16.729 -3.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874 11.451	Pretest Z (in.) 20.577 20.390 19.718 12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 8.877 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	INTE	RIOR CRU Posttest Y (in.) -2.254 5.434 16.687 -3.028 16.054 22.618 22.618 22.618 22.618 22.618 22.618 22.618 22.524 23.903 23.072 22.413 23.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	Post cR SH - SET 2 Posttest Z (in.) 20.865 20.689 20.032 13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928 38.676		ΔΥ ^A (in.) -0.054 0.007 0.043 0.055 -0.029 0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 -0.114	ΔZ ^A (in.) 0.287 0.299 0.314 0.326 0.326 0.342 0.258 0.342 0.277 0.424 0.292 0.258 0.424 0.292 0.258 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Total Δ (in.) 0.295 0.304 0.326 0.355 0.330 0.280 0.359 0.313 0.452 0.382 0.342 0.382 0.342 0.382 0.342 0.383 0.342 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297 0.367	Crush ^B (in.) 0.295 0.304 0.355 0.330 0.280 0.109 0.142 0.129 0.142 0.129 0.142 0.129 0.148 0.056 0.003 0.105 0.004 0.001 -0.636 0.001 -0.682 0.097 -0.078 0.084 0.166 0.201	Direction for Crush C X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z
(in.) 49.595 49.279 49.688 44.425 46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.770 26.921	(in.) -2.200 5.441 16.729 -3.083 4.799 16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	(in.) 20.577 20.390 19.718 12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 18.886 6.130 18.886 6.130 35.569 35.569 35.569 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	INTE Posttest X (in.) 49.557 49.226 49.614 44.379 46.215 53.447 57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 23.898 34.621 33.852 29.286 27.906 27.906 27.456 27.544	RIOR CRU Posttest Y (in.) -2.254 5.434 16.687 -3.028 16.054 22.618 22.618 22.618 22.618 22.618 22.618 22.618 22.524 23.903 23.072 22.413 23.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	SH - SET 2 Posttest Z (in.) 20.865 20.689 20.032 13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	2 right △X ^A (in.) 0.038 0.053 0.074 0.045 0.045 0.045 0.045 0.045 0.045 0.032 0.032 0.032 0.091 0.216 0.218 0.217 0.186 0.220 0.414 0.217 0.186 0.220 0.414 0.186 0.382 0.282 0.282 0.285	(in.) -0.054 0.007 0.043 0.055 -0.029 0.109 0.109 0.142 0.129 0.118 0.056 -0.003 0.005 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.047 0.067 -0.114	(in.) 0.287 0.299 0.314 0.348 0.326 0.258 0.342 0.277 0.424 0.292 0.265 0.288 0.288 0.298 0.265 0.265 0.211 -0.636 0.292 0.265 0.211 -0.636 0.097 -0.778 0.084 0.097	(in.) 0.295 0.304 0.326 0.325 0.330 0.280 0.359 0.313 0.452 0.382 0.382 0.382 0.383 0.328 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	(in.) 0.295 0.304 0.326 0.355 0.330 0.280 0.109 0.142 0.129 0.118 0.056 0.003 0.105 0.004 0.001 -0.636 0.001 -0.282 0.097 -0.078 0.844 0.166 0.201	for Crush c X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
(in.) 49.595 49.279 49.688 44.425 46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.770 26.921	(in.) -2.200 5.441 16.729 -3.083 4.799 16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	(in.) 20.577 20.390 19.718 12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 18.886 6.130 18.886 6.130 35.569 35.569 35.569 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	(in.) 49.557 49.226 49.614 44.379 46.215 46.525 53.447 57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 29.286 27.906 27.906 27.456 27.544	(in.) -2.254 5.434 16.687 -3.028 4.829 16.054 22.618 22.628 22.524 23.903 23.072 22.413 23.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	(in.) 20.865 20.689 20.032 13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	(in.) 0.038 0.053 0.074 0.045 0.045 0.045 0.032 0.032 0.031 0.216 0.218 0.217 0.186 0.220 0.414 0.186 0.382 0.282 0.382 0.282 0.285	(in.) -0.054 0.007 0.043 0.055 -0.029 0.109 0.109 0.142 0.129 0.118 0.056 -0.003 0.005 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.047 0.067 -0.114	(in.) 0.287 0.299 0.314 0.348 0.326 0.258 0.342 0.277 0.424 0.292 0.265 0.288 0.288 0.298 0.265 0.265 0.211 -0.636 0.292 0.265 0.211 -0.636 0.097 -0.778 0.084 0.097	(in.) 0.295 0.304 0.326 0.325 0.330 0.280 0.359 0.313 0.452 0.382 0.382 0.382 0.383 0.328 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	(in.) 0.295 0.304 0.326 0.355 0.330 0.280 0.109 0.142 0.129 0.118 0.056 0.003 0.105 0.004 0.001 -0.636 0.001 -0.282 0.097 -0.078 0.844 0.166 0.201	for Crush c X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
49.595 49.279 49.688 44.425 46.260 46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.570 26.921	-2.200 5.441 16.729 -3.083 4.799 16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	20.577 20.390 19.718 12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.544 38.271	49,557 49,226 49,614 44,379 46,215 53,447 57,639 54,560 49,251 36,817 23,849 50,230 35,233 23,898 34,621 33,852 32,311 29,755 29,286 27,906 27,456 27,544	-2.254 5.434 16.687 -3.028 4.829 16.054 22.618 22.688 22.5243 23.072 22.413 23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.2572 0.937	20.865 20.689 20.032 13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.038 0.053 0.074 0.045 0.045 0.045 0.025 0.032 0.091 0.216 0.218 0.217 0.218 0.217 0.186 0.220 0.414 0.186 0.382 0.382 0.282 0.238	-0.054 0.007 0.043 0.055 -0.029 0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 -0.047 -0.114	0.287 0.299 0.314 0.348 0.326 0.258 0.342 0.277 0.424 0.292 0.258 0.188 0.298 0.265 0.211 0.636 -0.636 -0.822 0.097 -0.078 0.084 0.166	0.295 0.304 0.326 0.355 0.330 0.280 0.359 0.313 0.452 0.382 0.382 0.382 0.383 0.383 0.383 0.383 0.383 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.295 0.304 0.326 0.355 0.330 0.280 0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.636 -0.028 0.097 -0.078 0.084 0.166	X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z
49.279 49.688 44.425 46.260 46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	5.441 16.729 -3.083 4.799 16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	20.390 19.718 12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 18.886 6.130 18.886 6.130 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	49.226 49.614 44.379 46.215 53.447 57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	5.434 16.687 -3.028 4.829 16.054 22.618 22.628 23.903 23.072 22.413 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	20.689 20.032 13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.053 0.074 0.045 0.045 0.045 0.025 0.032 0.091 0.216 0.218 0.218 0.218 0.217 0.217 0.217 0.217 0.217 0.218 0.220 0.414 0.186 0.382 0.382 0.382 0.282	0.007 0.043 0.055 -0.029 0.109 0.142 0.142 0.142 0.142 0.142 0.142 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 -0.047 -0.114	0.299 0.314 0.326 0.258 0.342 0.277 0.424 0.292 0.258 0.188 0.298 0.298 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.304 0.326 0.355 0.330 0.280 0.359 0.313 0.452 0.342 0.342 0.342 0.389 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.304 0.326 0.355 0.330 0.280 0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166	X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z
49.688 44.425 46.260 46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	16.729 -3.083 4.799 16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	19.718 12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	49,614 44,379 46,215 53,447 57,639 54,560 49,251 36,817 23,849 50,230 35,233 23,898 34,621 33,852 32,311 29,755 29,286 27,906 27,456 27,544	16.687 -3.028 4.829 16.054 22.618 22.688 22.524 23.903 23.072 22.413 23.072 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.977	20.032 13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0 074 0 045 0 045 0 106 0 025 0 032 0 091 0 216 0 218 0 218 0 217 0 186 0 220 0 406 0 414 0 186 0 382 0 282 0 382 0 238	0.043 0.055 -0.029 0.109 0.142 0.129 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.314 0.348 0.326 0.258 0.342 0.277 0.424 0.292 0.258 0.258 0.258 0.258 0.288 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.084	0.326 0.355 0.330 0.280 0.359 0.313 0.452 0.382 0.382 0.383 0.383 0.388 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.326 0.355 0.330 0.280 0.109 0.142 0.129 0.142 0.129 0.142 0.056 0.056 0.056 0.056 0.063 0.105 0.046 0.004 0.004 0.097 -0.078 0.084 0.166 0.201	X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
44.425 46.260 46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	-3.083 4.799 16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	12.931 13.142 13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	44.379 46.215 46.525 53.447 57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.906 27.456 27.544	-3.028 4.829 16.054 22.618 22.628 22.524 23.903 23.072 22.413 23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.266 13.972 0.937	13.279 13.468 13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.045 0.045 0.025 0.032 0.091 0.216 0.218 0.341 0.217 0.186 0.220 0.406 0.414 0.4186 0.382 0.414 0.4186 0.382 0.282 0.285	0.055 -0.029 0.029 0.142 0.129 0.142 0.129 0.148 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.348 0.326 0.258 0.342 0.277 0.424 0.292 0.258 0.188 0.298 0.265 0.218 0.265 0.216 0.636 -0.636 -0.636 0.097 -0.078 0.084 0.084	0.355 0.330 0.280 0.359 0.313 0.452 0.382 0.382 0.383 0.328 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.355 0.330 0.109 0.142 0.142 0.142 0.142 0.142 0.142 0.003 0.105 0.046 0.001 -0.636 0.046 0.001 -0.636 0.0282 0.097 -0.078 0.084 0.166 0.201	X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z
46.631 53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	16.083 22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	13.704 -1.893 -1.989 2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	46.525 53.447 57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	16.054 22.618 22.628 22.524 23.903 23.072 22.413 23.303 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	13.962 -1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.106 0.025 0.032 0.091 0.216 0.218 0.217 0.217 0.217 0.186 0.220 0.414 0.186 0.382 0.382 0.282 0.238	0.029 0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 -0.113 0.047 0.047 0.067 -0.114	0.258 0.342 0.277 0.292 0.258 0.188 0.298 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.084	0.280 0.359 0.313 0.452 0.342 0.389 0.383 0.383 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.280 0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166	X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z
53.472 57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	22.727 22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	-1.893 -1.989 2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	53.447 57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	22 618 22 688 22 524 23 903 23 072 22 413 23 343 22 796 -3 575 5 118 13 927 -3 661 3 982 12 256 -3 972 0.937	-1.552 -1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.025 0.032 0.091 0.216 0.218 0.341 0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.414 0.186 0.382 0.282 0.238	0.109 0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.342 0.277 0.424 0.292 0.258 0.188 0.298 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.078 0.084 0.166	0.359 0.313 0.452 0.382 0.389 0.383 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.109 0.142 0.129 0.156 -0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z
57.671 54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	22.829 22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	-1.989 2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	57.639 54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	22 688 22 524 23 903 23 072 22 413 23 539 23 343 22 796 -3 575 5 118 13 927 -3 661 3.982 12 266 12 3661 2.3972 0.937	-1.712 2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.032 0.091 0.216 0.218 0.341 0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.282 0.285	0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.277 0.424 0.292 0.258 0.188 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.313 0.452 0.382 0.389 0.389 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.142 0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z
54.652 49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	22.653 24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	2.033 16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	54.560 49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	22.524 23.903 23.072 22.413 23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	2.457 16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.091 0.216 0.218 0.341 0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.282	0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.424 0.292 0.258 0.188 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.452 0.382 0.342 0.389 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.129 0.118 0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 -0.078 0.084 0.166 0.201	Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z
49.466 37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	24.021 23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	16.424 17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	49.251 36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	23.903 23.072 22.413 23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	16.716 18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.216 0.218 0.341 0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.238 0.285	0.118 0.056 -0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.292 0.258 0.188 0.298 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.382 0.342 0.389 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.118 0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Y Y Z Z Z Z Z Z Z Z Z
37.035 24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	23.128 22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	17.880 18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	36.817 23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	23.072 22.413 23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	18.138 19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.218 0.341 0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.238 0.285	0.056 -0.003 0.105 0.046 0.001 -0.111 -0.113 0.047 0.067 -0.114	0.258 0.188 0.298 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.342 0.389 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.056 -0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Y Y Z Z Z Z Z Z Z
24.190 50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.741 27.570 26.921	22.410 23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	18.886 6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	23.849 50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	22.413 23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	19.073 6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.341 0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.238 0.285	-0.003 0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.188 0.298 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.389 0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	-0.003 0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Y Z Z Z Z Z Z Z
50.447 35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.741 27.570 26.921	23.644 23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	6.130 8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	50.230 35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	23.539 23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	6.429 8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.217 0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.238 0.285	0.105 0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.298 0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.383 0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.105 0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Z Z Z Z Z Z Z Z
35.419 24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	23.389 22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	8.171 7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	35.233 23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	23.343 22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	8.436 8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.186 0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.238 0.285	0.046 0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.265 0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.328 0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.046 0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Y Z Z Z Z Z Z Z Z
24.118 35.027 34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	22.797 -3.463 5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	7.964 35.569 35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	23.898 34.621 33.852 32.311 29.755 29.286 27.906 27.456 27.544	22.796 -3.575 5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	8.175 34.933 35.174 34.969 38.216 38.134 37.686 38.928	0.220 0.406 0.414 0.186 0.382 0.282 0.282 0.238 0.285	0.001 -0.111 0.126 -0.011 -0.113 0.047 0.067 -0.114	0.211 -0.636 -0.282 0.097 -0.078 0.084 0.166	0.305 0.762 0.517 0.210 0.406 0.298 0.297	0.001 -0.636 -0.282 0.097 -0.078 0.084 0.166 0.201	Y Z Z Z Z Z Z Z
34.267 32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	5.244 13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	35.457 34.873 38.294 38.050 37.521 38.727 38.544 38.271	33.852 32.311 29.755 29.286 27.906 27.456 27.544	5.118 13.927 -3.661 3.982 12.256 -3.972 0.937	35.174 34.969 38.216 38.134 37.686 38.928	0.414 0.186 0.382 0.282 0.238 0.238	0.126 -0.011 -0.113 0.047 0.067 -0.114	-0.282 0.097 -0.078 0.084 0.166	0.517 0.210 0.406 0.298 0.297	-0.282 0.097 -0.078 0.084 0.166 0.201	Z Z Z Z Z Z
32.498 30.137 29.568 28.144 27.741 27.777 27.570 26.921	13.916 -3.548 4.029 12.323 -3.859 1.109 5.874	34.873 38.294 38.050 37.521 38.727 38.544 38.271	32.311 29.755 29.286 27.906 27.456 27.544	13.927 -3.661 3.982 12.256 -3.972 0.937	34.969 38.216 38.134 37.686 38.928	0.186 0.382 0.282 0.238 0.285	-0.011 -0.113 0.047 0.067 -0.114	0.097 -0.078 0.084 0.166	0.210 0.406 0.298 0.297	0.097 -0.078 0.084 0.166 0.201	Z Z Z Z Z Z
30.137 29.568 28.144 27.741 27.777 27.570 26.921	-3.548 4.029 12.323 -3.859 1.109 5.874	38.294 38.050 37.521 38.727 38.544 38.271	29.755 29.286 27.906 27.456 27.544	-3.661 3.982 12.256 -3.972 0.937	38.216 38.134 37.686 38.928	0.382 0.282 0.238 0.285	-0.113 0.047 0.067 -0.114	-0.078 0.084 0.166	0.406 0.298 0.297	-0.078 0.084 0.166 0.201	Z Z Z Z
29.568 28.144 27.741 27.777 27.570 26.921	4.029 12.323 -3.859 1.109 5.874	38.050 37.521 38.727 38.544 38.271	29.286 27.906 27.456 27.544	3.982 12.256 -3.972 0.937	38.134 37.686 38.928	0.282 0.238 0.285	0.047 0.067 -0.114	0.084 0.166	0.298 0.297	0.084 0.166 0.201	Z Z Z
28.144 27.741 27.777 27.570 26.921	12.323 -3.859 1.109 5.874	37.521 38.727 38.544 38.271	27.906 27.456 27.544	12.256 -3.972 0.937	37.686 38.928	0.238 0.285	0.067 -0.114	0.166	0.297	0.166 0.201	Z
27.741 27.777 27.570 26.921	-3.859 1.109 5.874	38.727 38.544 38.271	27.456 27.544	-3.972 0.937	38.928	0.285	-0.114			0.201	Z
27.777 27.570 26.921	1.109 5.874	38.544 38.271	27.544	0.937				0.201	0.307		
27.570 26.921	5.874	38.271			00.010		0.172	0.133	0.318	0.133	Z
26.921			21.040	5.822	38.396	0.232	0.053	0.133	0.265	0.133	Z
		37.834	26.717	11.351	37.990	0.204	0.100	0.156	0.275	0.156	Z
24.846	-4.113	39.121	24.530	-4.288	39.231	0.316	-0.175	0.111	0.378	0.111	Z
24.899	0.319	38.978	24.588	0.238	39.092	0.311	0.081	0.114	0.341	0.114	Z
25.327	5.163	38.648	25.032	5.063	38.782	0.296	0.100	0.134	0.340	0.134	Z
24.911	10.802	38.196	24.654	10.721	38.351	0.256	0.081	0.155	0.310	0.155	Z
22.826	2.843 21.839	39.072 21.788	22.595	2.682	39.202 22.218	0.231	0.161	0.130	0.310	0.130	Y
47.960	21.839	25.654	52.654 47.857	21.790	22.218 25.987	0.067	0.050	0.431	0.439	0.050	Y
43.548	19.460	28.184	43.323	19.405	28.599	0.225	0.010	0.415	0.475	0.055	Y
39.079	18.286	30.626	38.946	18.264	30.914	0.133	0.022	0.288	0.318	0.022	Ý
14.399	16.287	33.582	14.193	16.197	33.681	0.205	0.090	0.099	0.245	0.090	Y
11.943	17.201	31.474	11.704	17.115	31.526	0.240	0.086	0.052	0.260	0.086	Y
15.380		28.668	15.176	18.462	28.804	0.205	0.092	0.135	0.262	0.092	Y
											Y
											Y
											Y
											X, Y, Z X, Y, Z
											X, Y, Z
											X, Y, Z
											X, Y, Z
											X, Y, Z
15.380	18.554	28.668	15.176	18.462	28.804	0.205	0.092	0.135	0.262	0.431	X, Y, Z
12.401	19.327	25.858	12.228	19.231	25.992	0.173	0.096	0.134	0.239	0.416	X, Y, Z
16.273		23.986	16.116							0.411	X, Y, Z
13.377											X, Y, Z
	15.380 12.401 16.273 13.377 52.721 47.960 43.548 39.079 14.399 11.943 15.380 11.943 15.380 12.401 16.273 13.377	15.380 18.554 12.401 19.327 16.273 20.051 13.377 20.852 52.721 21.839 47.960 20.585 43.548 19.460 39.079 18.266 14.399 16.287 11.943 17.201 15.380 18.554 12.401 19.327 16.273 20.051 13.377 20.852	15.380 18.554 28.668 12.401 19.327 25.858 16.273 20.051 23.986 13.377 20.852 18.242 52.721 21.839 21.788 47.960 20.585 25.654 43.548 19.460 28.184 39.079 18.266 30.626 14.399 16.287 33.582 11.943 17.201 31.474 15.380 18.554 28.668 12.401 19.327 25.858 16.273 20.051 23.986 13.377 20.852 18.242	15.380 18.554 28.668 15.176 12.401 19.327 25.858 12.228 16.273 20.051 23.986 16.116 13.377 20.852 18.242 13.252 52.721 21.839 21.788 52.654 47.960 20.585 25.654 47.857 33.548 19.460 28.184 43.323 39.079 18.266 30.626 38.946 14.399 16.287 33.582 14.193 11.943 17.201 31.474 11.704 15.380 18.554 28.668 15.176 12.401 19.327 25.858 12.228 16.273 20.051 23.986 16.116 13.377 20.852 18.242 13.252	15.380 18.554 28.668 15.176 18.462 12.401 19.327 25.858 12.228 19.231 16.273 20.051 23.986 16.116 19.974 13.377 20.852 18.242 13.252 20.782 52.721 21.839 21.788 52.654 21.790 47.960 20.585 25.654 47.857 20.567 33.548 19.460 28.184 43.323 19.405 39.079 18.266 30.626 38.946 18.264 14.399 16.287 33.582 14.193 16.197 11.943 17.201 31.474 11.704 17.115 15.380 18.554 28.668 15.176 18.462 12.401 19.327 25.858 12.228 19.231 16.273 20.051 23.966 16.116 19.974 13.377 20.852 18.242 13.252 20.782	15.380 18.554 28.668 15.176 18.462 28.804 12.401 19.327 25.858 12.228 19.231 25.992 16.273 20.051 23.986 16.116 19.974 24.124 13.377 20.852 18.242 13.252 20.782 18.362 52.721 21.839 21.788 52.654 21.790 22.218 47.960 20.685 25.654 47.857 20.667 25.987 43.548 19.460 28.184 43.323 19.405 28.599 39.079 18.266 30.626 38.946 18.264 30.914 14.399 16.287 33.582 14.193 16.197 33.681 11.943 17.201 31.474 11.704 17.115 31.526 15.380 18.554 28.668 15.176 18.462 28.804 12.401 19.327 25.858 12.228 19.231 25.992 16.273 20.051 23.966	15.380 18.554 28.668 15.176 18.462 28.804 0.205 12.401 19.327 25.858 12.228 19.231 25.992 0.173 16.273 20.051 23.986 16.116 19.974 24.124 0.157 13.377 20.855 18.242 13.252 20.782 18.362 0.125 52.721 21.839 21.788 52.654 21.790 22.218 0.067 47.960 20.585 25.654 47.857 20.567 25.987 0.103 43.548 19.460 28.184 43.323 19.405 28.599 0.225 39.079 18.266 30.626 38.946 18.264 30.914 0.133 14.399 16.287 33.582 14.193 16.197 33.681 0.205 11.943 17.201 31.474 11.704 17.115 31.526 0.240 15.380 18.554 28.668 15.176 18.462 28.804 0.205 <td>15.380 18.554 28.668 15.176 18.462 28.804 0.205 0.092 12.401 19.327 25.858 12.228 19.231 25.992 0.173 0.096 16.273 20.051 23.986 16.116 19.974 24.124 0.157 0.070 13.377 20.855 18.242 13.252 20.782 18.362 0.125 0.070 52.721 21.839 21.788 52.654 21.790 22.218 0.067 0.050 47.960 20.585 25.654 47.857 20.567 25.987 0.103 0.018 43.548 19.460 28.184 43.323 19.405 28.599 0.225 0.055 39.079 18.266 30.626 38.946 18.264 30.914 0.133 0.022 14.399 16.287 33.582 14.193 16.197 33.681 0.205 0.090 11.943 17.201 31.474 11.704 17.115 31.526 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<></td>	15.380 18.554 28.668 15.176 18.462 28.804 0.205 0.092 12.401 19.327 25.858 12.228 19.231 25.992 0.173 0.096 16.273 20.051 23.986 16.116 19.974 24.124 0.157 0.070 13.377 20.855 18.242 13.252 20.782 18.362 0.125 0.070 52.721 21.839 21.788 52.654 21.790 22.218 0.067 0.050 47.960 20.585 25.654 47.857 20.567 25.987 0.103 0.018 43.548 19.460 28.184 43.323 19.405 28.599 0.225 0.055 39.079 18.266 30.626 38.946 18.264 30.914 0.133 0.022 14.399 16.287 33.582 14.193 16.197 33.681 0.205 0.090 11.943 17.201 31.474 11.704 17.115 31.526 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

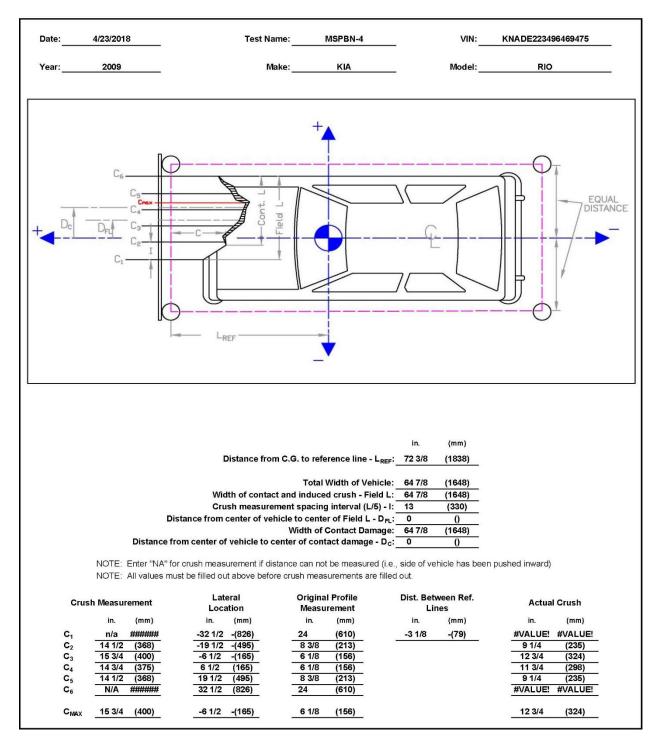


Figure D-9. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-4

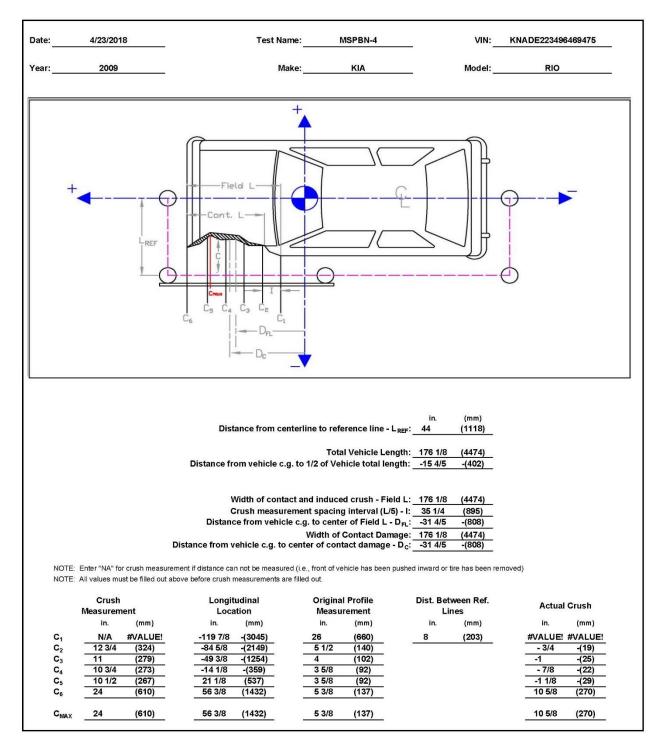


Figure D-10. Exterior Vehicle Crush (NASS) - Left Side, Test No. MSPBN-4

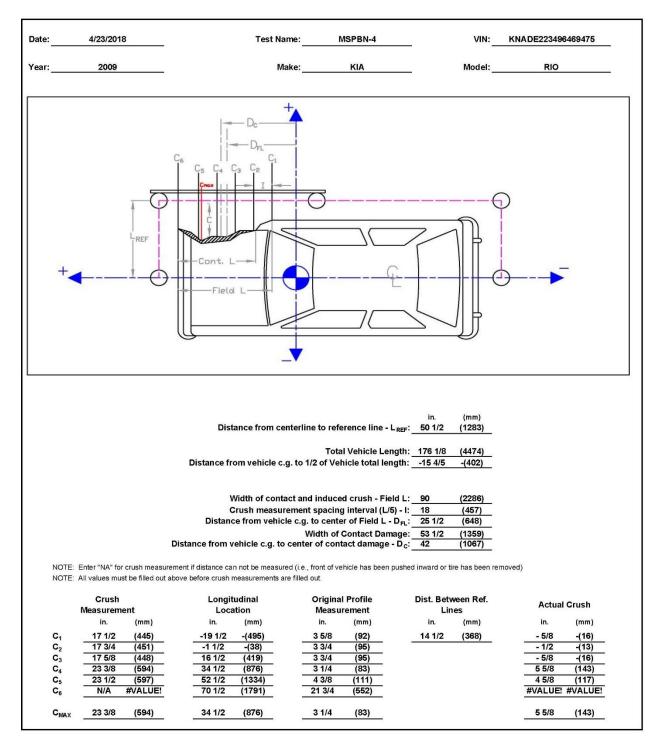


Figure D-11. Exterior Vehicle Crush (NASS) - Right Side, Test No. MSPBN-4

Date: Year:	5/15/ 20				Test Name: Make:		BN-5 ENT			VIN: Model:	KMHC	N46C39U3 HYUNDAI	86700
						HICLE DE	FORMATIO AN - SET 1						
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	۵۸ (in.)	۵۴ (in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	63.3636	-1.4316	3.3773	63.2485	-1.3780	3.8805	0.1151	0.0536	0.5032	0.5190	0.5162	X, Z
	2	62.9156	-3.9758	3.2822	62.7905	-3.9849	3.7589	0.1251	-0.0091	0.4767	0.4929	0.4928	X, Z
	3	62.6106	-6.6326	3.4960	62.6073	-6.6124	3.8767	0.0033	0.0202	0.3807	0.3812	0.3807	X, Z
누쿄	4	62.4469	-9.3478	3.4216	62.3334	-9.3460	3.8480	0.1135	0.0018	0.4264	0.4413	0.4412	X, Z
L WE	5	62.2193	-12.8374	3.3759	62.0906	-12.9103	3.7683	0.1287	-0.0729	0.3924	0.4194	0.4130	X, Z
TOE PAN - WHEEL WELL (X, Z)	6	60.3870	-0.8993	5.2765	60.3633	-0.8664	5.7068	0.0237	0.0329	0.4303	0.4322	0.4310	X, Z
HEEL X	7	59.8319	-3.6231	5.2174	59.7730	-3.6357	5.6584	0.0589	-0.0126	0.4410	0.4451	0.4449	X, Z
3	8	59.3761	-6.2554	5.5378	59.2770	-6.2277	5.9686	0.0991	0.0277	0.4308	0.4429	0.4421	X, Z
	9	59.1345	-8.9663	5.4639	59.0524	-8.9755	5.8623	0.0821	-0.0092	0.3984	0.4069	0.4068	X, Z
	10	58.9030	-12.4804	5.4633	58.8154	-12.4384	5.8228	0.0876	0.0420	0.3595	0.3724	0.3700	X, Z
	11	56.5484	0.6292	6.3291	56.4122	0.6898	6.6580	0.1362	-0.0606	0.3289	0.3611	0.3289	Z
	12	55,6656	-3.6199	7.0385	55.6779	-3.7387	7.3864	-0.0123	-0.1188	0.3479	0.3678	0.3479	Z
	13	55.0864	-6.4663	7.1308	55.1029	-6.5374	7.4898	-0.0165	-0.0711	0.3590	0.3663	0.3590	Z
	14	54.7669	-9.8595	6.9772	54.7524	-9.9129	7.3424	0.0145	-0.0534	0.3652	0.3694	0.3652	Z
	15	54.6700	-13.4616	7.1791	54.5748	-13.5268	7.5182	0.0952	-0.0652	0.3391	0.3582	0.3391	Z
	16	51.3071	1.2902	6.3906	51.2895	1.2475	6.8383	0.0176	0.0427	0.4477	0.4501	0.4477	Z
	17	50.7121	-2.9968	7.8520	50.6248	-3.0084	7.4841	0.0873	-0.0116	-0.3679	0.3783	-0.3679	Z
	18	49.2547	-7.5246	7.4148	49.2030	-7.4924	7.7499	0.0517	0.0322	0.3351	0.3406	0.3351	Z
AN	19	49.1077	-10.5930	7.4063	49.0014	-10.5671	7.7297	0.1063	0.0259	0.3234	0.3414	0.3234	Z
4	20	48.5413	-15.2206	7.9801	48.5611	-15.2874	8.2487	-0.0198	-0.0668	0.2686	0.2775	0.2686	Z
FLOOR PAN (Z)	21	43.8947	1.9579	6.5809	43.8267	1.9149	6.9865	0.0680	0.0430	0.4056	0.4135	0.4056	Z
2	22	43.6526	-2.0817	8.2951	43.5817	-2.1155	8.1943	0.0709	-0.0338	-0.1008	0.1278	-0.1008	Z
щ	23	43.0635	-7.0700	7.6248	43.0470	-6.9824	7.9013	0.0165	0.0876	0.2765	0.2905	0.2765	Z
	24	43.0261	-10.2907	7.5878	42.9309	-10.2957	7.8663	0.0952	-0.0050	0.2785	0.2944	0.2785	Z
	25	42.8909	-14.6330	8.2417	42.8402	-14.6465	8.4887	0.0507	-0.0135	0.2470	0.2525	0.2470	Z
	26	39.3714	-1.8441	7.9707	39.2237	-1.8862	8.1402	0.1477	-0.0421	0.1695	0.2287	0.1695	Z
	27	39.0570	-6.8652	7.7352	39.0034	-6.8870	8.0055	0.0536	-0.0218	0.2703	0.2764	0.2703	Z
	28	38.6643	-11.0502	7.6838	38.5972	-11.1181	7.9200	0.0671	-0.0679	0.2362	0.2548	0.2362	Z
	29	35.0052	0.0835	4.3728	34.9609	0.1107	4.6548	0.0443	-0.0272	0.2820	0.2868	0.2820	Z
	30	34.0311	-11.0081	4.3007	34.0607	-10.9236	4.4978	-0.0296	0.0845	0.1971	0.2165	0.1971	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

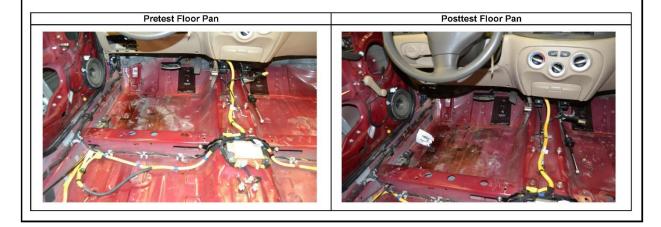


Figure D-12. Floor Pan Deformation Data - Set 1 Left, Test No. MSPBN-5

Date: Year:	5/15/				Test Name: Make:	ACC	BN-5			VIN: Model:	KIVIHU	HYUNDAI	00700
Teal.	20	09			Wake.					wouer.		HIONDAI	
								211					
						HICLE DE		JN					
						FLOOR PA	AN - SET 1						
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
		х	Y	Z	(in.)	(in.)	(in.)		and the second second		(in.)		for
	POINT	(in.)	(in.)	(in.)	1.000			(in.)	(in.)	(in.)		(in.)	Crush
	1	62.1243	10.7857	4.7168	62.1230	10.5583	4.9238	0.0013	0.2274	0.2070	0.3075	0.2070	X, Z
	2	62.2558	14.5961	4.4961	62.2345	14.4405	4.6452	0.0213	0.1556	0.1491	0.2166	0.1506	X, Z
4	3	62.8798	18.7988	4.5376	62.8433	18.6308	4.7135	0.0365	0.1680	0.1759	0.2460	0.1796	X, Z
MHEEL WELL (X, Z)	4	63.3257	22.3854	4.4091	63.2925	22.2334	4.6027	0.0332	0.1520	0.1936	0.2484	0.1964	X, Z
L WE	5	63.0840	26.8467	3.0125	62.9368	26.7068	3.2514	0.1472	0.1399	0.2389	0.3135	0.2806	X, Z
ыщ×	6	58.9163	10.6601	6.0149	58.9423	10.5251	6.2349	-0.0260	0.1350	0.2200	0.2594	0.2200	Z
HEE X	7	59.4618	14.6323	6.4888	59.4757	14.5531	6.6882	-0.0139	0.0792	0.1994	0.2150	0.1994	Z
3	8	59.9013	18.8598	6.4054	59.8545	18.6728	6.6586	0.0468	0.1870	0.2532	0.3182	0.2575	X, Z
	9	60.7107	23.2277	6.1203	60.7181	23.1090	6.3547	-0.0074	0.1187	0.2344	0.2628	0.2344	Z
	10	61.7738	28.3283	5.5979	61.8070	28.2231	5.8266	-0.0332	0.1052	0.2287	0.2539	0.2287	Z
	11	55.6466	10.7602	5.9302	55.6774	10.6251	6.1462	-0.0308	0.1351	0.2160	0.2566	0.2160	Z
	12	56.3482	15.4330	7.1835	56.3276	15.3093	7.3914	0.0206	0.1237	0.2079	0.2428	0.2079	Z
	13	56.2901	18.6048	7.1837	56.3120	18.4073	7.4088	-0.0219	0.1975	0.2251	0.3003	0.2251	Z
	14	56.3397	22.8864	7.1749	56.3396	22.7688	7.3904	0.0001	0.1176	0.2155	0.2455	0.2155	Z
	15	56.8726	27.7616	7.1204	56.9275	27.6611	7.3149	-0.0549	0.1005	0.1945	0.2257	0.1945	Z
	16	53.0858	12.9033	7.5186	53.0923	12.8462	7.6605	-0.0065	0.0571	0.1419	0.1531	0.1419	Z
	17	53.1958	15.4499	7.5162	53.1454	15.2967	7.4523	0.0504	0.1532	-0.0639	0.1735	-0.0639	Z
	18	53.2696	18.6428	7.3168	53.2979	18.5465	7.5434	-0.0283	0.0963	0.2266	0.2478	0.2266	Z
AN	19	53,1922	22.8819	7.3195	53.2494	22.7968	7.5393	-0.0572	0.0851	0.2198	0.2425	0.2198	Z
4	20	53.5438	28.7275	7.8042	53.5472	28.6651	8.0084	-0.0034	0.0624	0.2042	0.2135	0.2042	Z
FLOOR PAN (Z)	21	46.8695	13.3394	8.1148	46.9028	13.2661	8.2862	-0.0333	0.0733	0.1714	0.1894	0.1714	Z
P	22	47.0390	16.8461	8.0642	47.0423	16.7140	8.1693	-0.0033	0.1321	0.1051	0.1688	0.1051	Z
ш	23	47.3934	20.7666	7.5931	47.4528	20.6221	7.8281	-0.0594	0.1445	0.2350	0.2822	0.2350	Z
	24	48.1245	24.7626	7.5159	48.2262	24.6779	7.7380	-0.1017	0.0847	0.2221	0.2585	0.2221	Z
	25	48.2789	29.8019	8.1661	48.4118	29.7653	8.3377	-0.1329	0.0366	0.1716	0.2201	0.1716	Z
	26	41.0036	13.8639	7.7944	41.0440	13.7900	8.0040	-0.0404	0.0739	0.2096	0.2259	0.2096	z
	27	40.7227	16.9638	7.9343	40.7159	16.8901	8.1558	0.0068	0.0737	0.2215	0.2335	0.2215	Z
	28	40.9199	21.1181	7.7683	40.9858	21.0020	7.9910	-0.0659	0.1161	0.2227	0.2596	0.2227	Z
	29	41.0923	24.5704	7.7253	41.0935	24.4918	7.9452	-0.0012	0.0786	0.2199	0.2335	0.2199	Z
	30	41.1283	29.4703	7.9042	41.1273	29.4062	8.0942	0.0012	0.0641	0.1900	0.2005	0.1900	Z

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

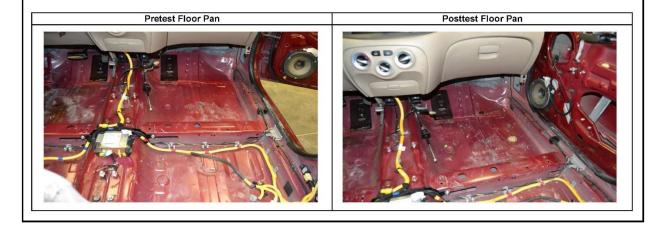


Figure D-13. Floor Pan Deformation Data – Set 1 Right, Test No. MSPBN-5

Date: Year:		2018 09			Test Name: Make:		BN-5 ENT			VIN: Model:	KMHC	HYUNDAI	86700
						HICLE DE							
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	63.6832	-10.6615	2.5752	63.5700	-10.6143	2.8788	0.1132	0.0472	0.3036	0.3274	0.3240	X, Z
	2	63.5701	-13.2426	2.4847	63.4545	-13.2592	2.7698	0.1156	-0.0166	0.2851	0.3081	0.3076	X, Z
<u> </u>	3	63.6174	-15.9162	2.7013	63.6179	-15.8876	2.8958	-0.0005	0.0286	0.1945	0.1966	0.1945	Z
μ	4	63.8087	-18.6296	2.6278	63.7030	-18.6337	2.8770	0.1057	-0.0041	0.2492	0.2707	0.2707	X, Z
L WE	5	64.0381	-22.1191	2.5836	63.9265	-22.1994	2.8083	0.1116	-0.0803	0.2247	0.2634	0.2509	X, Z
MHEEL WELL (X, Z)	6	60.6874	-10.5201	4.5130	60.6718	-10.4763	4.7505	0.0156	0.0438	0.2375	0.2420	0.2380	X, Z
HEEL (X,	7	60.4920	-13.2931	4.4600	60.4475	-13.2992	4.7171	0.0445	-0.0061	0.2571	0.2610	0.2609	X, Z
3	8	60.3879	-15.9619	4.7850	60.2993	-15.9325	5.0405	0.0886	0.0294	0.2555	0.2720	0.2704	X, Z
	9	60.5014	-18.6813	4.7131	60.4338	-18.6865	4.9432	0.0676	-0.0052	0.2301	0.2399	0.2398	X, Z
	10	60.7308	-22.1956	4.7140	60.6505	-22.1508	4.9145	0.0803	0.0448	0.2005	0.2206	0.2160	X, Z
	11	56.6960	-9.5044	5.6159	56.5668	-9.4454	5.7622	0.1292	0.0590	0.1463	0.2039	0.1463	Z
	12	56.3848	-13.8315	6.3349	56.4287	-13.9289	6.5112	-0.0439	-0.0974	0.1763	0.2061	0.1763	Z
	13	56.1835	-16.7291	6.4335	56.2258	-16.7783	6.6295	-0.0423	-0.0492	0.1960	0.2065	0.1960	Z
	14	56.3078	-20.1351	6.2826	56.3169	-20.1712	6.4945	-0.0091	-0.0361	0.2119	0.2151	0.2119	Z
	15	56.6846	-23.7188	6.4841	56.6156	-23.7766	6.6803	0.0690	-0.0578	0.1962	0.2159	0.1962	Z
	16	51.4145	-9.5334	5.7457	51.4186	-9.5605	6.0242	-0.0041	-0.0271	0.2785	0.2798	0.2785	Z
	17	51.4033	-13.8595	7.2129	51.3257	-13.8641	6.6890	0.0776	-0.0046	-0.5239	0.5296	-0.5239	Z
_	18	50.5440	-18.5394	6.7926	50.5061	-18.4943	6.9867	0.0379	0.0451	0.1941	0.2028	0.1941	Z
AA	19	50,7989	-21.6007	6.7847	50.7075	-21.5690	6.9759	0.0914	0.0317	0.1912	0.2143	0.1912	Z
20	20	50.8489	-26.2619	7.3639	50.8956	-26.3043	7.5113	-0.0467	-0.0424	0.1474	0.1603	0.1474	Z
FLOOR PAN (Z)	21	43.9815	-9.8389	6.0324	43.9357	-9.8727	6.2914	0.0458	-0.0338	0.2590	0.2652	0.2590	Z
LC	22	44.2911	-13.8733	7.7479	44.2383	-13.8956	7.5111	0.0528	-0.0223	-0.2368	0.2436	-0.2368	Z
щ	23	44.3497	-18.8967	7.0832	44.3393	-18.7918	7.2364	0.0104	0.1049	0.1532	0.1860	0.1532	Z
	24	44.7327	-22.0948	7.0452	44.6564	-22.0919	7.2099	0.0763	0.0029	0.1647	0.1815	0.1647	Z
	25	45.1740	-26.4167	7.6990	45.1445	-26.4148	7.8423	0.0295	0.0019	0.1433	0.1463	0.1433	Z
	26	40.0116	-14.1972	7.4791	39.8874	-14.2374	7.5269	0.1242	-0.0402	0.0478	0.1390	0.0478	Z
	27	40.3525	-19.2166	7.2456	40.3201	-19.2247	7.4057	0.0324	-0.0081	0.1601	0.1635	0.1601	Z
	28	40.5090	-23.4172	7.1974	40.4686	-23.4730	7.3352	0.0404	-0.0558	0.1378	0.1541	0.1378	Z
	29	35.3850	-12.8606	3.9390	35.3459	-12.8284	4.1067	0.0391	0.0322	0.1677	0.1752	0.1677	Z
	30	35.8666	-23.9846	3.8747	35.8923	-23.8863	3.9863	-0.0257	0.0983	0.1116	0.1509	0.1116	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

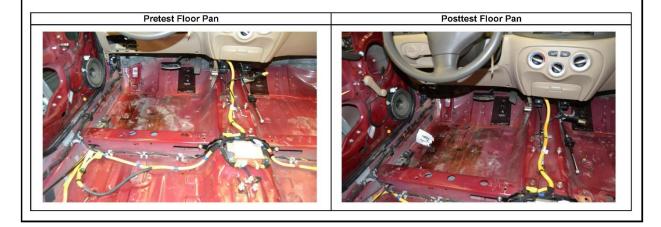
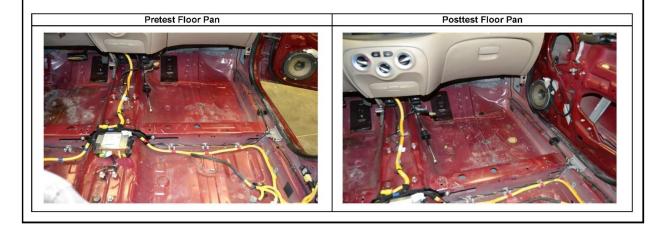
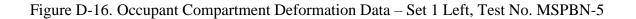


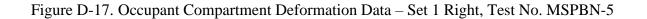
Figure D-14. Floor Pan Deformation Data - Set 2 Left, Test No. MSPBN-5

Date: Year:		2018 09			Test Name: Make:	MSP ACC	BN-5 ENT			VIN: Model:		N46C39U3 HYUNDAI	386700
						HICLE DE							
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	۵۸ (in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^c
	1	60.8980	1.2877	3.9175	60.8765	1.1209	4.1847	0.0215	0.1668	0.2672	0.3157	0.2681	X, Z
	2	60.5286	5.0822	3.6916	60.4747	4.9826	3.8887	0.0539	0.0996	0.1971	0.2273	0.2043	X, Z
	3	60.5997	9.3305	3.7211	60.5290	9.2169	3.9329	0.0707	0.1136	0.2118	0.2505	0.2233	X, Z
- 1	4	60.5724	12.9442	3.5835	60.5004	12.8465	3.8021	0.0720	0.0977	0.2186	0.2500	0.2302	X, Z
A S R	5	59.7333	17.3323	2.1861	59.5469	17.2271	2.4361	0.1864	0.1052	0.2500	0.3291	0.3118	X, Z
TOE PAN - WHEEL WELL (X, Z)	6	57.7507	0.7484	5.2574	57.7413	0.6781	5.5306	0.0094	0.0703	0.2732	0.2823	0.2734	X, Z
일 뿐	7	57.7794	4.7590	5.7205	57.7461	4.7437	5.9612	0.0333	0.0153	0.2407	0.2435	0.2430	X, Z
3	8	57.6629	9.0075	5.6274	57.5807	8.8772	5.9103	0.0822	0.1303	0.2829	0.3221	0.2946	X, Z
	9	57.8921	13.4429	5.3279	57.8516	13.3867	5.5785	0.0405	0.0562	0.2506	0.2600	0.2539	X, Z
	10	58.2741	18.6372	4.7869	58.2545	18.5963	5.0172	0.0196	0.0409	0.2303	0.2347	0.2311	X, Z
	11	54.4950	0.4211	5.2150	54.4907	0.3485	5.4772	0.0043	0.0726	0.2622	0.2721	0.2622	Z
	12	54.5972	5.1487	6.4548	54.5335	5.0843	6.6956	0.0637	0.0644	0.2408	0.2573	0.2408	Z
	13	54.1259	8.2858	6.4529	54.1116	8.1535	6.7002	0.0143	0.1323	0.2473	0.2808	0.2473	Z
	14	53.6167	12.5374	6.4395	53.5665	12.4809	6.6634	0.0502	0.0565	0.2239	0.2363	0.2239	Z
	15	53.5086	17.4402	6.3736	53.5065	17.4074	6.5611	0.0021	0.0328	0.1875	0.1904	0.1875	Z
	16	51.6971	2.2161	6.8347	51.6523	2.2197	7.0104	0.0448	-0.0036	0.1757	0.1814	0.1757	Z
	17	51.4740	4.7553	6.8285	51.3812	4.6547	6.7914	0.0928	0.1006	-0.0371	0.1418	-0.0371	Z
-	18	51.1282	7.9301	6.6252	51.1068	7.8969	6.8673	0.0214	0.0332	0.2421	0.2453	0.2421	Z
AP	19	50.4988	12.1228	6.6250	50.5011	12.1040	6.8459	-0.0023	0.0188	0.2209	0.2217	0.2209	Z
20	20	50.0912	17.9656	7.0998	50.0309	17.9632	7.2873	0.0603	0.0024	0.1875	0.1970	0.1875	Z
0 U	21	45.4852	1.8396	7.5113	45.4679	1.8275	7.7019	0.0173	0.0121	0.1906	0.1918	0.1906	Z
FLOOR PAN (Z)	22	45.1953	5.3383	7.4553	45.1526	5.2632	7.5692	0.0427	0.0751	0.1139	0.1430	0.1139	Z
-	23	45.0293	9.2703	6.9760	45.0432	9.1895	7.2072	-0.0139	0.0808	0.2312	0.2453	0.2312	Z
	24	45.2320	13.3272	6.8857	45.2767	13.3111	7.0917	-0.0447	0.0161	0.2060	0.2114	0.2060	Z
	25	44.7363	18.3453	7.5291	44.7993	18.3821	7.6681	-0.0630	-0.0368	0.1390	0.1570	0.1390	Z
	26	39.5973	1.5940	7.2667	39.5885	1.5769	7.4816	0.0088	0.0171	0.2149	0.2158	0.2149	Z
	27	38.9163	4.6311	7.4074	38.8580	4.6079	7.6241	0.0583	0.0232	0.2167	0.2256	0.2167	Z
	28	38.5680	8.7752	7.2350	38.5843	8.7187	7.4392	-0.0163	0.0565	0.2042	0.2125	0.2042	Z
	29	38.2882	12.2204	7.1866	38.2326	12.1921	7.3777	0.0556	0.0283	0.1911	0.2010	0.1911	Z
	30	37.6871	17.0836	7.3606	37.6228	17.0693	7.5058	0.0643	0.0143	0.1452	0.1594	0.1452	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

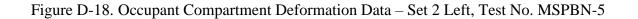
^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

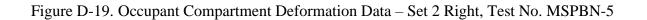

Figure D-15. Floor Pan Deformation Data – Set 2 Right, Test No. MSPBN-5

Date: Year:		2018 109	а 1		Test Name: Make:		BN-5 ENT			VIN: Model:		N46C39U3 HYUNDAI	
					VF		FORMATIO	ON					
							RUSH - SE						
[Pretest X	Pretest Y	Pretest Z		Posttest Y		ΔX ^A	ΔΥ ^Α	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	46.6809	-16.4088	-20.2169	46.9536	-16.2635	-20.0020	-0.2727	0.1453	0.2149	0.3764	0.3764	X, Y, Z
тÑ	2	43.7276	-6.5327	-23.4971	44.1534	-6.3791	-23.3461	-0.4258	0.1536	0.1510	0.4772	0.4772	X, Y, Z
DASH (X, Y, Z)	3	46.9351 46.0712	6.7684 -15.0659	-21.0460 -9.8356	47.3457 46.3205	6.8483	-20.8334 -9.6547	-0.4106 -0.2493	-0.0799 0.1103	0.2126	0.4692	0.4692	X, Y, Z
ц×	4 5	45.7634	-15.0659 -5.8947	-9.8356	46.3205	-14.9556	-9.6547 -9.3178	-0.2493	0.0558	0.1809	0.3272	0.3272	X, Y, Z X, Y, Z
	6	44.0471	2.6396	-11.3530	44.3782	2.7060	-11.1919	-0.3311	-0.0664	0.1611	0.3742	0.3742	X, Y, Z
	7	50.7721	-21.4519	2.5288	50.9279	-21.3976	2.7922	-0.1558	0.0543	0.2634	0.3108	0.0543	Y
SIDE PANEL	8	55.3206	-21.5276	2.3953	55.4229	-21.5177	2.6255	-0.1023	0.0099	0.2302	0.2521	0.0099	Y
o za	9	51.0907	-20.6030	-1.1694	51.2057	-20.5409	-0.9858	-0.1150	0.0621	0.1836	0.2254	0.0621	Y
Щ	10	18.8110	-19.5184	-17.1996	19.1641	-19.1891	-17.1852	-0.3531	0.3293	0.0144	0.4830	0.3293	Y
IMPACT SIDE DOOR (Y)	11	30.2899	-20.2639	-17.7167	30.6312	-19.9208	-17.6166	-0.3413	0.3431	0.1001	0.4942	0.3431	Y
ACT SI DOOR	12 13	42.8463 24.5066	-21.4470 -20.0665	-16.9201 0.0927	43.1166 24.7194	-21.1851	-16.6310 0.2459	-0.2703 -0.2128	0.2619	0.2891 0.1532	0.4746	0.2619	Y Y
A Q	13	34.8662	-20.0665	0.0927	35.1204	-19.9431	1.0291	-0.2542	0.1234	0.1932	0.2696	0.1234	Y
≥	15	42.0574	-20.9691	0.4171	42.2718	-20.8602	0.6371	-0.2144	0.1089	0.2200	0.3259	0.1089	Ý
	16	28.7921	-10.6763	-35.8320	29.2537	-10.4281	-35.7408	-0.4616	0.2482	0.0912	0.5320	0.0912	Z
[17	29.3485	-7.7016	-36.0898	29.8183	-7.4776	-35.9862	-0.4698	0.2240	0.1036	0.5307	0.1036	Z
	18	29.8442	-4.7097	-36.3173	30.2898	-4.4773	-36.2196	-0.4456	0.2324	0.0977	0.5120	0.0977	Z
	19	30.3990	-1.5727	-36.4594	30.9496	-1.3999	-36.3104	-0.5506	0.1728	0.1490	0.5960	0.1490	Z
	20	30.8991	1.4655	-36.5260	31.3565	1.6629	-36.4110	-0.4574	-0.1974	0.1150	0.5113	0.1150	Z
Ø	21 22	25.7003 25.8455	-9.9967 -6.4160	-37.8372 -38.2147	26.1905 26.2576	-9.7327 -6.2214	-37.7564 -38.1332	-0.4902 -0.4121	0.2640	0.0808	0.5626	0.0808	Z
ROOF - (Z)	22	25.8483	-2.0401	-38.5853	26.2576	-1.7983	-38.4811	-0.4121	0.1940	0.1042	0.4830	0.1042	Z
8	24	26.0472	0.7493	-38.7264	26.5343	1.0671	-38.6263	-0.4871	-0.3178	0.1001	0.5902	0.1001	Z
Ř	25	26.3531	3.8002	-38.8166	26.8191	4.1114	-38.7127	-0.4660	-0.3112	0.1039	0.5699	0.1039	Z
[26	20.9483	-8.1065	-38.5722	21.4182	-7.7946	-38.5202	-0.4699	0.3119	0.0520	0.5664	0.0520	Z
	27	21.3952	-6.1147	-38.7339	21.8103	-5.8351	-38.6773	-0.4151	0.2796	0.0566	0.5037	0.0566	Z
ŀ	28	21.8082	-3.5602	-38.9185	22.2265	-3.3854	-38.8426	-0.4183	0.1748	0.0759	0.4597	0.0759	Z
ŀ	29 30	22.1943 22.5194	-0.8909 2.1337	-39.0711 -39.1955	22.5883 22.9616	-0.6123 2.4050	-38.9965 -39.1153	-0.3940 -0.4422	0.2786	0.0746	0.4883	0.0746	Z
	30	34.9525	-14.9941	-39.1955	35.3147	-14.7899	-39.1153	-0.4422	0.2042	0.0802	0.5250	0.2664	¥, Z
"FO	32	37.4672	-14.9941	-31.4818	37.9156	-15.5602	-32.5269	-0.3622	0.2042	0.1348	0.4496	0.2864	Y, Z
A-PILLAR Maximum (X, Y, Z)	33	40.6064	-16.7133	-29.8769	41.0534	-16.5450	-29.6950	-0.4470	0.1683	0.1819	0.5111	0.2478	Y, Z
A-PILLAR Maximum (X, Y, Z)	34	44.4412	-17.8832	-27.5583	44.8309	-17.7256	-27.3432	-0.3897	0.1576	0.2151	0.4722	0.2667	Y, Z
4Σ°	35	47.6775	-18.8121	-25.5767	48.0193	-18.6599	-25.4122	-0.3418	0.1522	0.1645	0.4087	0.2241	Y, Z
	36	49.6240	-19.3547	-24.1425	49.9735	-19.2116	-24.0342	-0.3495	0.1431	0.1083	0.3929	0.1795	Y, Z
~ ~	31	34.9525	-14.9941	-32.7000	35.3147	-14.7899	-32.5289	-0.3622	0.2042	0.1711	0.4496	0.2042	Y
A-PILLAR Lateral (Y)	32 33	37.4672 40.6064	-15.7477 -16.7133	-31.4818 -29.8769	37.9156 41.0534	-15.5602 -16.5450	-31.3470 -29.6950	-0.4484	0.1875	0.1348	0.5044	0.1875 0.1683	Y Y
era	34	44.4412	-17.8832	-27.5583	44.8309	-17.7256	-27.3432	-0.3897	0.1576	0.2151	0.4722	0.1576	Y
A-F Lat	35	47.6775	-18.8121	-25.5767	48.0193	-18.6599	-25.4122	-0.3418	0.1522	0.1645	0.4087	0.1522	Ý
	36	49.6240	-19.3547	-24.1425	49.9735	-19.2116	-24.0342	-0.3495	0.1431	0.1083	0.3929	0.1431	Y
AR num Z)	37	10.3413	-12.0019	-34.0940	10.7924	-11.6505	-34.1652	-0.4511	0.3514	-0.0712	0.5762	0.3514	Y
B-PILLAR Maximum (X, Y, Z)	38	10.7783	-16.5676	-24.3110	11.1305	-16.2352	-24.3456	-0.3522	0.3324	-0.0346	0.4855	0.3324	Y
B-PILLAR Maximum (X, Y, Z)	39	14.1844	-16.3478	-24.0521	14.4954	-16.0233	-24.0856	-0.3110	0.3245	-0.0335	0.4507	0.3245	Y Y
	40	13.2573	-17.7356	-17.8892	13.5966 10.7924	-17.4344	-17.8606	-0.3393	0.3012	0.0286	0.4546	0.3026	Y, Z
RAF A	37 38	10.3413 10.7783	-12.0019	-34.0940	11.1305	-11.6505 -16.2352	-34.1652	-0.4511 -0.3522	0.3514 0.3324	-0.0712 -0.0346	0.5762 0.4855	0.3514	Y
era	39	14.1844	-16.3478	-24.0521	14.4954	-16.0233	-24.0856	-0.3322	0.3245	-0.0335	0.4507	0.3245	Y
B-PILLAR Lateral (Y)	40	13.2573	-17.7356	-17.8892	13.5966	-17.4344	-17.8606	-0.3393	0.3012	0.0286	0.4546	0.3012	Ý
							, negative va						

deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.



Year:	20	09			Make:	ACC	ENT			Model:		HYUNDAI	
					VE	HICLE DE	FORMATIO	NC					
							RUSH - SE						
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction: for
	POINT	(in.)	(in.)	ے (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	50.5454	26.4606	-20.0208	50.7579	26.4000	-19.7827	-0.2125	0.0606	0.2381	0.3248	0.3248	X, Y, Z
тÑ	2	50.1575	21.3777	-20.0646	50.3695	21.3002	-19.8494	-0.2120	0.0775	0.2152	0.3119	0.3119	X, Y, Z
DASH (X, Y, Z)	3 4	49.2298 47.2207	16.9589 17.4588	-20.3628 -14.3372	49.4257 47.3309	16.9178 17.4190	-20.1470 -14.1662	-0.1959 -0.1102	0.0411 0.0398	0.2158	0.2943	0.2943	X, Y, Z X, Y, Z
Δ×	5	48.1914	21.6922	-14.5650	48.3102	21.6487	-14.3507	-0.1188	0.0435	0.2143	0.2489	0.2489	X, Y, Z
	6	48.3498	27.1296	-14.4527	48.4764	27.0242	-14.2189	-0.1266	0.1054	0.2338	0.2860	0.2860	X, Y, Z
ыЩ –	7	59.9027	32.7462	2.9443	59.9557	32.5619	3.2496	-0.0530	0.1843	0.3053	0.3605	0.1843	Y
SIDE PANEL	8	55.8245	32.5715	-0.8112	55.8746	32.3426	-0.4569	-0.0501	0.2289	0.3543	0.4248	0.2289	Y
	9 10	55.5590 47.8250	33.3389 34.8135	3.0641	55.6067 47.8741	33.1581 34.6820	3.2893 -16.1709	-0.0477 -0.0491	0.1808	0.2252	0.2927	0.1808	Y
Ë	11	35.0671	36.0648	-16.4635	35.1555	36.0288	-16.2704	-0.0884	0.0360	0.1931	0.2323	0.0360	Ý
IMPACT SIDE DOOR (Y)	12	22.6626	36.9156	-16.3702	22.7721	36.9728	-16.2983	-0.1095	-0.0572	0.0719	0.1429	-0.0572	Y
DO DO	13	45.4022	35.0861	-2.1582	45.3931	34.8475	-1.9408	0.0091	0.2386	0.2174	0.3229	0.2386	Y
۲ ۲	14 15	36.5791 27.5953	36.1277 36.5448	-0.8878 -1.0099	36.6025 27.6345	35.9458 36.4410	-0.7204 -0.8501	-0.0234 -0.0392	0.1819 0.1038	0.1674 0.1598	0.2483	0.1819 0.1038	Y Y
	15	32.3481	26.7020	-35.6145	32.5910	26.6773	-35.5020	-0.0392	0.1038	0.1598	0.1945	0.1038	Z
	17	32.1700	22.2638	-36.1544	32.3925	22.2874	-36.0536	-0.2225	-0.0236	0.1008	0.2454	0.1008	Z
	18	32.1165	19.3473	-36.3181	32.3369	19.3702	-36.2170	-0.2204	-0.0229	0.1011	0.2436	0.1011	Z
	19	32.0939	16.0280	-36.4710	32.3813	16.0914	-36.3476	-0.2874	-0.0634	0.1234	0.3191	0.1234	Z
	20	32.0073	13.3309	-36.5564	32.2393	13.3784	-36.4592	-0.2320	-0.0475	0.0972	0.2560	0.0972	Z
Ø	21 22	26.1086 26.4589	24.9875 22.5795	-38.2327 -38.4001	26.4819 26.6463	25.0066 22.7098	-38.1189 -38.3011	-0.3733 -0.1874	-0.0191 -0.1303	0.1138	0.3907	0.1138	Z
ROOF - (Z)	23	26.7863	19.8900	-38.5423	27.0285	19.9719	-38.4439	-0.2422	-0.0819	0.0984	0.2740	0.0984	Z
8	24	27.2889	16.3487	-38.6490	27.6045	16.4189	-38.5422	-0.3156	-0.0702	0.1068	0.3405	0.1068	Z
Ω.	25	27.3592	13.8992	-38.7152	27.6122	13.9992	-38.6227	-0.2530	-0.1000	0.0925	0.2873	0.0925	Z
	26 27	22.4198 22.4410	25.1003 22.6872	-38.5942 -38.8079	22.6978 22.6439	25.0974 22.7784	-38.5101 -38.7240	-0.2780	0.0029	0.0841	0.2905	0.0841	Z
	28	22.4410	19.8501	-39.0041	22.6439	19.8605	-38.9288	-0.2029	-0.0912	0.0839	0.2659	0.0753	z
	29	22.4788	16.4401	-39.1856	22.7356	16.4390	-39.1162	-0.2568	0.0011	0.0694	0.2660	0.0694	Z
	30	22.5657	14.0904	-39.2590	22.7962	14.1657	-39.1856	-0.2305	-0.0753	0.0734	0.2534	0.0734	Z
	31	39.5441	29.8165	-32.4431	39.8696	29.8039	-32.2704	-0.3255	0.0126	0.1727	0.3687	0.1732	Y, Z
A-PILLAR Maximum (X, Y, Z)	32	42.5592	30.1834	-31.2372	42.7969	30.1595	-31.0887	-0.2377	0.0239	0.1485	0.2813	0.1504	Y, Z
Ľ, Xi Ľ	33 34	45.3951 49.0973	30.5766 31.0691	-29.5294 -27.2607	45.5797 49.3348	30.5333 31.0208	-29.3964 -27.0091	-0.1846 -0.2375	0.0433	0.1330	0.2316	0.1399	Y, Z Y, Z
A-A-Ma	35	52.2534	31.4489	-25.3650	52.4350	31.3801	-25.1420	-0.1816	0.0688	0.2230	0.2957	0.2334	Y, Z
	36	54.1514	31.6760	-23.9872	54.3343	31.5919	-23.7719	-0.1829	0.0841	0.2153	0.2948	0.2311	Y, Z
	31	39.5441	29.8165	-32.4431	39.8696	29.8039	-32.2704	-0.3255	0.0126	0.1727	0.3687	0.0126	Y
A-PILLAR Lateral (Υ)	32	42.5592	30.1834	-31.2372	42.7969	30.1595	-31.0887	-0.2377	0.0239	0.1485	0.2813	0.0239	Y
eral	33 34	45.3951 49.0973	30.5766 31.0691	-29.5294 -27.2607	45.5797 49.3348	30.5333 31.0208	-29.3964 -27.0091	-0.1846 -0.2375	0.0433 0.0483	0.1330 0.2516	0.2316 0.3493	0.0433	Y Y
A-P Late	35	52.2534	31.4489	-25.3650	52.4350	31.3801	-25.1420	-0.1816	0.0688	0.2230	0.3453	0.0403	Y
	36	54.1514	31.6760	-23.9872	54.3343	31.5919	-23.7719	-0.1829	0.0841	0.2153	0.2948	0.0841	Y
¥≞Ω	37	16.3125	31.6733	-31.7541	16.5775	31.6963	-31.7002	-0.2650	-0.0230	0.0539	0.2714	0.0539	Z
B-PILLAR Maximum (X, Y, Z)	38	17.1137	32.7785	-29.2195	17.3169	32.8120	-29.1124	-0.2032	-0.0335	0.1071	0.2321	0.1071	Z
Aax X,	39	17.9150	33.7770	-26.3301	18.2049	33.7966	-26.2405	-0.2899	-0.0196	0.0896	0.3041	0.0896	Z
	40 37	18.8613 16.3125	34.5748 31.6733	-23.1572 -31.7541	19.0387 16.5775	34.6105 31.6963	-23.0142	-0.1774 -0.2650	-0.0357 -0.0230	0.1430	0.2306	0.1430	Z
B-PILLAR Lateral (γ)	38	17.1137	32.7785	-29.2195	17.3169	32.8120	-29.1124	-0.2650	-0.0230	0.1071	0.2321	-0.0230	Y
B-PILL	39	17.9150	33.7770	-26.3301	18.2049	33.7966	-26.2405	-0.2899	-0.0196	0.0896	0.3041	-0.0196	Ý
ца.	40	18.8613	34.5748	-23.1572	19.0387	34.6105	-23.0142	-0.1774	-0.0357	0.1430	0.2306	-0.0357	Y
Positive v compartme Crush calo	nt.	e deformatio	on as inward	l toward the	occupant c	ompartment	, negative va	alues denote	e deformatio	ons outward	away from t	he occupa	nt



Date: Year:		/2018)09			Test Name: Make:		BN-5 ENT			VIN: Model:		N46C39U HYUNDAI	
					VE		FORMATIO						
							RUSH - SE						
[Pretest X	Pretest Y	Pretest Z		Posttest Y		ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	49.0790	-27.5423	-20.6159	48.8717	-27.6729	-20.8480	0.2073	-0.1306	-0.2321	0.3375	0.3375	X, Y, Z
тÑ	2	44.8509	-18.1333	-23.8739	44.7229	-18.2755	-24.1951	0.1280	-0.1422	-0.3212	0.3739	0.3739	X, Y, Z
DASH (X, Y, Z)	3 4	46.3370 48.3854	-4.5266 -26.2759	-21.4520	46.1997 48.2959	-4.7193 -26.3584	-21.8464 -10.4982	0.1373	-0.1927 -0.0825	-0.3944 -0.2680	0.4599	0.4599	X, Y, Z X, Y, Z
^с х	5	46.9007	-17.2205	-9.9084	46.8268	-17.3546	-10.2174	0.0739	-0.1341	-0.3090	0.3449	0.3449	X, Y, Z
	6	44.0839	-8.9809	-11.7348	44.0125	-9.1213	-12.1118	0.0714	-0.1404	-0.3770	0.4086	0.4086	X, Y, Z
шЩ	7	53.9702	-31.9870	2.0966	53.9795	-32.0167	1.8846	-0.0093	-0.0297	-0.2120	0.2143	-0.0297	Y
SIDE PANEL	8	58.4892	-31.4761	1.9259	58.4465	-31.5464	1.6166	0.0427	-0.0703	-0.3093	0.3200	-0.0703	Y Y
1000	9 10	54.1467 21.8677	-31.1088	-1.6043 -17.3695	54.0603 21.7768	-31.1678 -34.1987	-1.9045	0.0864	-0.0590 0.0153	-0.3002	0.3179	-0.0590	Y
IMPACT SIDE DOOR (Y)	10	33.3424	-34.2140	-17.9805	33.2284	-33.4207	-18.0672	0.0909	0.0153	-0.0867	0.0928	0.0538	Y
ACT SI DOOR	12	45.9525	-33.0285	-17.2866	45.7899	-33.0230	-17.3570	0.1626	0.0055	-0.0704	0.1773	0.0055	Ý
3 Do Act	13	27.7263	-34.0014	-0.1244	27.7587	-34.0453	-0.0752	-0.0324	-0.0439	0.0492	0.0735	-0.0439	Y
₽ N	14	38.1189	-33.5404	0.5296	38.1988	-33.5375	0.4774	-0.0799	0.0029	-0.0522	0.0955	0.0029	Y
-	15 16	45.2491 30.4746	-32.6341	0.0564	45.2833 30.2214	-32.6430 -24.3692	-0.0768	-0.0342 0.2532	-0.0089	-0.1332	0.1378	-0.0089	Y
	16	30.4746	-24.1830	-36.0850	30.2214	-24.3692	-36.4984	0.2532	-0.1862 -0.2110	-0.1349 -0.1504	0.3420	-0.1349 -0.1504	Z
	18	30.7450	-18.1311	-36.5803	30.4544	-18.3389	-36.7630	0.2906	-0.2078	-0.1827	0.4013	-0.1827	Z
	19	30.8897	-14.9490	-36.7276	30.7012	-15.2025	-36.8898	0.1885	-0.2535	-0.1622	0.3551	-0.1622	Z
	20	30.9934	-11.8718	-36.7989	30.6991	-12.1139	-37.0206	0.2943	-0.2421	-0.2217	0.4409	-0.2217	Z
Ñ	21	27.3049	-23.9101	-38.0649	27.0504	-24.1023	-38.1702	0.2545	-0.1922	-0.1053	0.3359	-0.1053	Z
ROOF - (Z)	22 23	26.9843 26.4200	-20.3410 -16.0017	-38.4445 -38.8160	26.6465 26.1680	-20.6165 -16.2207	-38.5724 -38.9531	0.3378 0.2520	-0.2755 -0.2190	-0.1279 -0.1371	0.4543	-0.1279 -0.1371	Z
8	24	26.2566	-13.2101	-38.9594	25.9505	-13.3601	-39.1216	0.3061	-0.1500	-0.1622	0.3775	-0.1622	Z
ř	25	26.1660	-10.1454	-39.0527	25.8301	-10.3058	-39.2353	0.3359	-0.1604	-0.1826	0.4146	-0.1826	Z
	26	22.3431	-22.6490	-38.7615	22.0492	-22.8160	-38.8385	0.2939	-0.1670	-0.0770	0.3467	-0.0770	Z
	27 28	22.5282 22.6070	-20.6164 -18.0302	-38.9272 -39.1158	22.1764 22.2627	-20.8236 -18.3422	-39.0179 -39.2094	0.3518 0.3443	-0.2072 -0.3120	-0.0907 -0.0936	0.4182 0.4740	-0.0907 -0.0936	Z
	20	22.6070	-15.3337	-39.1156	22.2529	-15.5472	-39.2094	0.3443	-0.2135	-0.1186	0.4616	-0.1186	Z
	30	22.5762	-12.2925	-39.3998	22.2231	-12.5083	-39.5384	0.3531	-0.2158	-0.1386	0.4364	-0.1386	Z
	31	37.1653	-27.6668	-33.0027	36.8719	-27.8648	-33.1169	0.2934	-0.1980	-0.1142	0.3719	0.2934	X
AR H	32	39.7660	-28.0885	-31.8050	39.5765	-28.2749	-31.9892	0.1895	-0.1864	-0.1842	0.3234	0.1895	X
Ľ, Ř	33 34	43.0163	-28.6393	-30.2256	42.8516	-28.8224	-30.4021	0.1647	-0.1831	-0.1765	0.3030	0.1647	X
A-PILLAR Maximum (X, Y, Z)	34	46.9886 50.3335	-29.3023 -29.8038	-27.9383 -25.9832	46.8017 50.1263	-29.4731 -29.9612	-28.1288 -26.2644	0.1869	-0.1708 -0.1574	-0.1905 -0.2812	0.3169	0.1869	X X
	36	52.3453	-30.0893	-24.5648	52.1655	-30.2377	-24.9275	0.1798	-0.1484	-0.3627	0.4312	0.1798	X
	31	37.1653	-27.6668	-33.0027	36.8719	-27.8648	-33.1169	0.2934	-0.1980	-0.1142	0.3719	-0.1980	Y
A-PILLAR Lateral (Y)	32	39.7660	-28.0885	-31.8050	39.5765	-28.2749	-31.9892	0.1895	-0.1864	-0.1842	0.3234	-0.1864	Y
ILL	33	43.0163	-28.6393	-30.2256	42.8516	-28.8224	-30.4021	0.1647	-0.1831	-0.1765	0.3030	-0.1831	Y
A-P -ate	34 35	46.9886 50.3335	-29.3023 -29.8038	-27.9383 -25.9832	46.8017 50.1263	-29.4731 -29.9612	-28.1288 -26.2644	0.1869	-0.1708 -0.1574	-0.1905 -0.2812	0.3169	-0.1708	Y Y
· -	36	52.3453	-30.0893	-24.5648	52.1655	-30.2377	-24.9275	0.1798	-0.1484	-0.3627	0.4312	-0.1484	Y
ц E O	37	12.3632	-27.8733	-34.1955	12.1201	-27.9925	-34.2168	0.2431	-0.1192	-0.0213	0.2716	0.2431	X
PILLAR laximum X, Y, Z)	38	13.4643	-32.3321	-24.4154	13.2712	-32.3968	-24.3763	0.1931	-0.0647	0.0391	0.2074	0.1970	X, Z
B-PILLAR Maximum (X, Y, Z)	39	16.8157	-31.6749	-24.1846	16.5837	-31.7418	-24.1942	0.2320	-0.0669	-0.0096	0.2416	0.2320	X
_	40	16.1251	-33.1627 -27.8733	-18.0139 -34.1955	15.9512	-33.1972 -27.9925	-17.9874 -34.2168	0.1739	-0.0345	0.0265	0.1793	0.1759	X, Z
B-PILLAR _ateral (Y)	37 38	12.3632 13.4643	-27.8733	-34.1955	12.1201 13.2712	-27.9925	-34.2168	0.2431	-0.1192 -0.0647	-0.0213 0.0391	0.2716	-0.1192	Y
PILI	39	16.8157	-31.6749	-24.1846	16.5837	-31.7418	-24.1942	0.2320	-0.0669	-0.0096	0.2416	-0.0669	Y
Lat Lat	40	16.1251	-33.1627	-18.0139	15.9512	-33.1972	-17.9874	0.1739	-0.0345	0.0265	0.1793	-0.0345	Y
Positive v	alues denot	e deformation	on as inward	toward the	occupant c	ompartment	i, negative va	alues denote	e deformatio	ons outward	away from	he occupat	nt

deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Date: Year:		/2018 009			Test Name: Make:		BN-5 ENT			VIN: Model:	NIVITO	N46C39U: HYUNDAI	
					VE		FORMATI						
							RUSH - SE						
		Pretest X	Pretest Y	Pretest Z		Posttest Y		ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	47.1023	15.2712	-20.5394	47.1968	15.2498	-20.5668	-0.0945	0.0214	-0.0274	0.1007	0.1007	X, Y, Z
тÑ	2	47.3795	10.1810	-20.5788	47.4827	10.1430	-20.6171	-0.1032	0.0380	-0.0383	0.1165	0.1165	X, Y, Z
DASH (X, Y, Z)	3	47.0325 45.0364	5.6786 5.9208	-20.8673	47.1204 45.0601	5.6733 5.9182	-20.8919 -14.8832	-0.0879	0.0053	-0.0246 -0.0616	0.0914	0.0914	X, Y, Z X, Y, Z
ЪХ́	5	45.4449	10.2443	-14.0210	45.4711	10.2393	-14.0032	-0.0237	0.0020	-0.0312	0.0410	0.0410	X, Y, Z
	6	44.8946	15.6562	-14.9492	44.9295	15.5903	-14.9727	-0.0349	0.0659	-0.0235	0.0782	0.0782	X, Y, Z
ш Ш	7	55.7923	22.7544	2.3287	55.8179	22.6611	2.3200	-0.0256	0.0933	-0.0087	0.0971	0.0933	Y
SIDE PANEL	8	51.7339	22.0446	-1.3850	51.7508	21.8915	-1.3281	-0.0169	0.1531	0.0569	0.1642	0.1531	Y
<u>а</u>	9	51.4099	22.7763	2.4927	51.4292	22.6796	2.4198	-0.0193	0.0967	-0.0729	0.1226	0.0967	Y
H	10 11	43.3536 30.5413	23.2035 22.7818	-16.8721 -16.8251	43.2970 30.5117	23.0943 22.7541	-16.9325 -16.8552	0.0566	0.1092 0.0277	-0.0604 -0.0301	0.1370	0.1092	Y
IMPACT SIDE DOOR (^)	12	18.1332	22.0094	-16.6054	18.1127	22.0591	-16.7103	0.0205	-0.0497	-0.1049	0.1179	-0.0497	Y
505	13	41.0598	23.1780	-2.6259	41.0113	22.9884	-2.6691	0.0485	0.1896	-0.0432	0.2004	0.1896	Ý
AN I	14	32.1894	23.0630	-1.2657	32.1702	22.9244	-1.3271	0.0192	0.1386	-0.0614	0.1528	0.1386	Y
=	15	23.2272	22.3058	-1.2961	23.2141	22.2339	-1.3312	0.0131	0.0719	-0.0351	0.0811	0.0719	Y
	16	28.8721	13.1178	-35.9468	28.9378	13.0696	-36.0285	-0.0657	0.0482	-0.0817	0.1154	-0.0817	Z
	17 18	29.2684 29.5936	8.6936 5.7947	-36.4845 -36.6474	29.3117 29.6386	8.6896 5.7899	-36.5678 -36.7242	-0.0433 -0.0450	0.0040	-0.0833 -0.0768	0.0940 0.0891	-0.0833 -0.0768	Z
	19	30.0022	2.5005	-36.7999	30.1127	2.5450	-36.8483	-0.1105	-0.0445	-0.0484	0.1286	-0.0484	Z
	20	30.2668	-0.1850	-36.8843	30.3278	-0.1635	-36.9520	-0.0610	0.0215	-0.0677	0.0936	-0.0677	Z
Ñ	21	22.8831	10.6014	-38.5011	23.0667	10.5986	-38.5553	-0.1836	0.0028	-0.0542	0.1915	-0.0542	Z
	22	23.5424	8.2593	-38.6718	23.5297	8.3427	-38.7349	0.0127	-0.0834	-0.0631	0.1053	-0.0631	Z
ROOF - (Z)	23 24	24.2160 25.1746	5.6353 2.1894	-38.8172 -38.9288	24.2672 25.3047	5.6785 2.2318	-38.8771 -38.9759	-0.0512 -0.1301	-0.0432 -0.0424	-0.0599 -0.0471	0.0899	-0.0599	Z
R	25	25.5628	-0.2301	-38.9955	25.6300	-0.1660	-39.0513	-0.0672	0.0641	-0.0558	0.1083	-0.0558	Z
	26	19.2076	10.2321	-38.8249	19.2985	10.1887	-38.8932	-0.0909	0.0434	-0.0683	0.1217	-0.0683	Z
	27	19.5408	7.8420	-39.0387	19.5477	7.8820	-39.1013	-0.0069	-0.0400	-0.0626	0.0746	-0.0626	Z
	28	19.9737	5.0374	-39.2354	20.0458	5.0042	-39.3014	-0.0721	0.0332	-0.0660	0.1032	-0.0660	Z
	29 30	20.3885 20.7801	1.6526	-39.4164 -39.4904	20.4682 20.8268	1.6084	-39.4811 -39.5465	-0.0797	0.0442	-0.0647 -0.0561	0.1118	-0.0647	Z
	31	35.6326	17.1478	-32.8491	35.7847	17.1403	-32.9068	-0.1521	0.0075	-0.0577	0.1628	0.0075	Y
[₩] E Ω	32	38.5863	17.9061	-31.6741	38.6556	17.8830	-31.7673	-0.0693	0.0231	-0.0932	0.1184	0.0231	Y
A-PILLAR Maximum (X, Y, Z)	33	41.3639	18.6678	-29.9953	41.3878	18.6267	-30.1153	-0.0239	0.0411	-0.1200	0.1291	0.0411	Y
Aax (X, PI	34	44.9931	19.6416	-27.7645	45.0785	19.6141	-27.7824	-0.0854	0.0275	-0.0179	0.0915	0.0275	Y
4 4	35 36	48.0917 49.9578	20.4320 20.9064	-25.9011	48.1296 50.0031	20.3859 20.8514	-25.9600 -24.6173	-0.0379	0.0461 0.0550	-0.0589 -0.0746	0.0839	0.0461	Y
	31	35.6326	17.1478	-32.8491	35.7847	17.1403	-32.9068	-0.1521	0.0075	-0.0740	0.1628	0.0075	Y
ч£	32	38.5863	17.9061	-31.6741	38.6556	17.8830	-31.7673	-0.0693	0.0231	-0.0932	0.1184	0.0231	Y
A-PILLAR Lateral (Y)	33	41.3639	18.6678	-29.9953	41.3878	18.6267	-30.1153	-0.0239	0.0411	-0.1200	0.1291	0.0411	Y
A-PI atei	34	44.9931	19.6416	-27.7645	45.0785	19.6141	-27.7824	-0.0854	0.0275	-0.0179	0.0915	0.0275	Y
< _	35 36	48.0917 49.9578	20.4320 20.9064	-25.9011 -24.5427	48.1296 50.0031	20.3859 20.8514	-25.9600 -24.6173	-0.0379 -0.0453	0.0461	-0.0589 -0.0746	0.0839	0.0461	Y
ſГΕ	37	12.3653	15.9629	-31.9234	12.4564	15.9513	-32.0117	-0.0911	0.0116	-0.0883	0.1274	0.0116	Y
	38	13.0412	17.1666	-29.3972	13.0777	17.1650	-29.4370	-0.0365	0.0016	-0.0398	0.0540	0.0016	Ý
B-PILLAR Maximum (X, Y, Z)	39	13.7347	18.2651	-26.5161	13.8676	18.2694	-26.5800	-0.1329	-0.0043	-0.0639	0.1475	0.0000	NA
	40	14.6011	19.1838	-23.3531	14.6167	19.1767	-23.3469	-0.0156	0.0071	0.0062	0.0182	0.0094	Y, Z
B-PILLAR Lateral (Y)	37	12.3653	15.9629	-31.9234	12.4564	15.9513	-32.0117	-0.0911	0.0116	-0.0883	0.1274	0.0116	Y
eral	38 39	13.0412 13.7347	17.1666 18.2651	-29.3972 -26.5161	13.0777 13.8676	17.1650 18.2694	-29.4370 -26.5800	-0.0365 -0.1329	0.0016	-0.0398 -0.0639	0.0540	0.0016	Y
B-F Late	40	14.6011	19.1838	-23.3531	14.6167	19.1767	-23.3469	-0.0156	0.0071	0.0062	0.0182	0.0043	Y
		te deformatio											

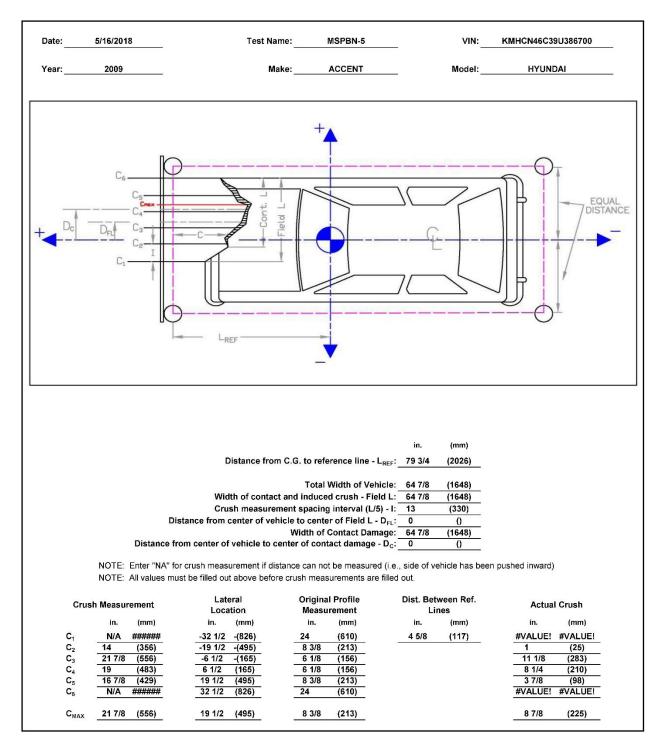


Figure D-20. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-5

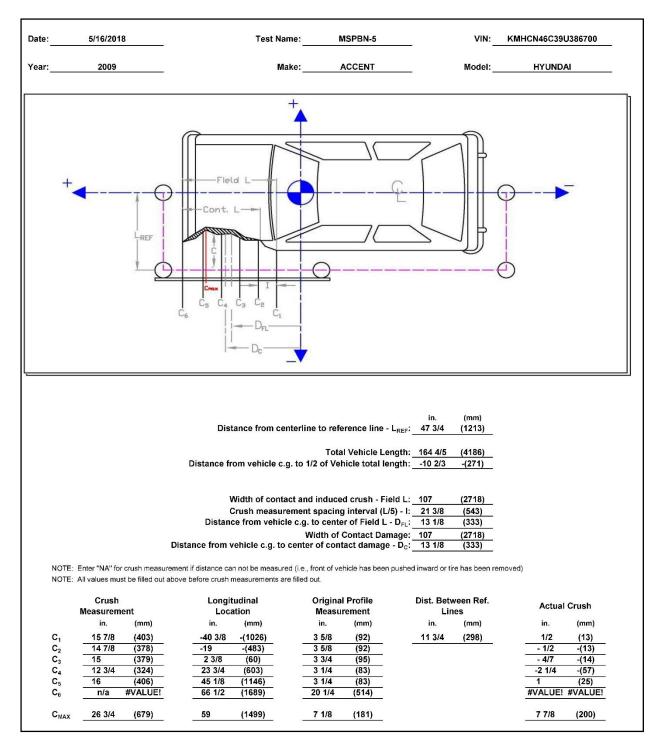


Figure D-21. Exterior Vehicle Crush (NASS) - Left Side, Test No. MSPBN-5

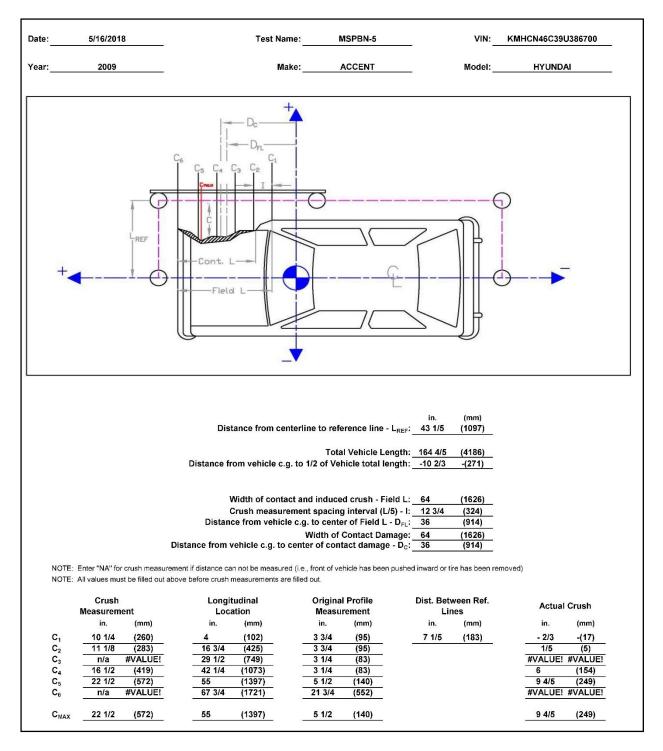


Figure D-22. Exterior Vehicle Crush (NASS) - Right Side, Test No. MSPBN-5

Year:)12			Make:		dge			Model:		Ram 1500	
					VE		FORMATIC	N					
	~	Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directior for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	62.8023	-23.4119	-1.9933	62.8655	-23.1384	-1.9779	-0.0632	0.2735	-0.0154	0.2811	0.0000	NA
	2	63.7393	-20.5724	-0.6174	63.7763	-20.3287	-0.6065	-0.0370	0.2437	-0.0109	0.2467	0.0000	NA
. –	3	63.9464	-17.9997	0.0051	64.0283	-17.6811	0.0368	-0.0819	0.3186	-0.0317	0.3305	0.0000	NA
żų _	4	63.7434	-13.7516	0.1440	63.7380	-13.4439	0.2163	0.0054	0.3077	-0.0723	0.3161	0.0054	Х
A > C	5	63.3149	-11.1714	0.1738	63.3747	-11.0230	0.2749	-0.0598	0.1484	-0.1011	0.1893	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	6	62.0472	-8.2613	-0.4376	62.0478	-7.9498	-0.3350	-0.0006	0.3115	-0.1026	0.3280	0.0000	NA
μř	7	60.0160	-24.6843	1.7317	60.1251	-24.3627	1.7405	-0.1091	0.3216	-0.0088	0.3397	0.0000	NA
>	8	60.2405	-20.9468	1.6884	60.2996	-20.6655	1.7321	-0.0591	0.2813	-0.0437	0.2907	0.0000	NA
	9 10	60.2598 60.3181	-17.2400 -14.0548	1.7072	60.2974 60.3100	-16.8272 -13.6331	1.7540 1.7801	-0.0376 0.0081	0.4128	-0.0468 -0.0714	0.4171	0.0000	NA X
	11	60.3491	-11.0356	1.7342	60.5688	-10.6294	1.6773	-0.2197	0.4062	0.0569	0.4653	0.0569	Z
	12 13	57.0316 57.1241	-24.6008 -20.0946	3.3662 3.3458	57.0913 57.1972	-24.3712	3.4011 3.3672	-0.0597	0.2296	-0.0349	0.2398	-0.0349	Z
	13	57.1651	-20.0946	3.3624	57.2320	-19.8090	3.3886	-0.0669	0.2858	-0.0214	0.2958	-0.0214	Z
	14	57.2484	-13.4997	3.3501	57.3015	-13.2282	3.3823	-0.0531	0.2948	-0.0262	0.3034	-0.0282	Z
	16	57.2404	-11.2750	3.3751	57.2822	-10.9456	3.4107	-0.0377	0.3294	-0.0356	0.3335	-0.0356	Z
	17	57.2861	-9.6959	3.3671	57.2682	-9.5261	3.4264	0.0179	0.1698	-0.0593	0.1807	-0.0593	Z
	18	53.9081	-24.1312	4.8677	53.9101	-23.8266	4.9111	-0.0020	0.3046	-0.0434	0.3077	-0.0434	Z
AN	19	53.9043	-20.9168	4.8885	53.9568	-20.5758	4.9177	-0.0525	0.3410	-0.0292	0.3463	-0.0292	Z
FLOOR PAN (Z)	20	53.9208	-17.9132	4.8938	53,8885	-17.6477	4,9428	0.0323	0.2655	-0.0490	0.2719	-0.0490	Z
(Z)	21	53.9546	-14.0183	4.9144	53.9570	-13.6912	4.9576	-0.0024	0.3271	-0.0432	0.3299	-0.0432	Z
LO LO	22	53.9038	-11.4175	4.9449	53.9313	-11.2130	4.9766	-0.0275	0.2045	-0.0317	0.2088	-0.0317	Z
LL.	23	54.0258	-8.3642	4.9567	54.0534	-8.0139	4.9929	-0.0276	0.3503	-0.0362	0.3532	-0.0362	Z
	24	50.1930	-24.6794	4.9814	50.2473	-24.3633	5.0065	-0.0543	0.3161	-0.0251	0.3217	-0.0251	Z
	25	50.1833	-21.2473	4.9942	50.2716	-20.9507	5.0199	-0.0883	0.2966	-0.0257	0.3105	-0.0257	Z
	26	50.1857	-18.2968	5.0017	50.2534	-17.9392	5.0290	-0.0677	0.3576	-0.0273	0.3650	-0.0273	Z
	27	50.3182	-15.3182	5.0183	50.3582	-15.0367	5.0486	-0.0400	0.2815	-0.0303	0.2859	-0.0303	Z
	28	50.3264	-12.7803	5.0301	50.3388	-12.4468	5.0623	-0.0124	0.3335	-0.0322	0.3353	-0.0322	Z
	29	50.2399	-10.4885	5.0457	50.2428	-10.1361	5.0806	-0.0029	0.3524	-0.0349	0.3541	-0.0349	Z
	30	50.2138	-8.5165	5.0633	50.2513	-8.1787	5.0983	-0.0375	0.3378	-0.0350	0.3417	-0.0350	Z
ompartme Crush calc eforming ir	nt. culations tha nward towar	at use multipl d the occupa	le directional ant compartr	componen nent.	ts will disreg	ard compon	negative val ents that are culations. If "	negative ar	nd only inclu	ide positive v	alues wher	e the compo	onent is
		Pre	test Floor I	Pan					Pos	ttest Floor	Pan		
	No. 1								1				4

Figure D-23. Floor Pan Deformation Data – Set 1 Left, Test No. MSPBN-6

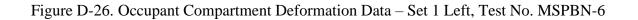

Date: Year:		2018 012			Test Name: Make:		BN-6 dge			VIN: Model:		Ram 1500	
					VE		FORMATIC						
	POINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	1	(in.) 58.8335	(in.) 17.4465	(in.) -3.0817	58.5775	17.7615	-3.0298	0.2560	-0.3150	-0.0519	0.4092	0.2560	Crush ^c X
	2	59.2032	19.3088	-1.8476	58.9208	19.5867	-1.8027	0.2824	-0.2779	-0.0449	0.3987	0.2824	X
_	3	59.9929	21.2740	0.4727	59.6959	21.5831	0.5836	0.2970	-0.3091	-0.1109	0.4428	0.2970	X
TOE PAN - WHEEL WELL (X, Z)	4	60.4397	24.1166	1.5775	60.1172	24.3898	1.6732	0.3225	-0.2732	-0.0957	0.4334	0.3225	Х
TOE PAN HEEL WE (X, Z)	5	60.4530	27.8037	1.5785	60.1478	28.1430	1.6463	0.3052	-0.3393	-0.0678	0.4614	0.3052	X
ыщ х	6	60.5757 55.1317	30.0116 14.3588	1.5219	60.2173 54.8289	30.2645 14.6539	1.6176	0.3584	-0.2529 -0.2951	-0.0957 -0.0822	0.4490	0.3584	X
Γ₹	8	55.6237	17.1129	-2.6464	55.3375	17.3989	-2.5662	0.3028	-0.2951	-0.0822	0.4307	0.3028	X
100000	9	56.2758	19.5419	0.4146	56.0216	19.8728	0.5064	0.2542	-0.3309	-0.0918	0.4100	0.2542	x
	10	57.1609	21.7464	2.9592	56.6782	22.1096	3.3975	0.4827	-0.3632	-0.4383	0.7463	0.4827	X
	11	57.2777	25.0694	3.3649	56.9907	25.3571	3.4231	0.2870	-0.2877	-0.0582	0.4105	-0.0582	Z
	12	57.3914	29.2253	3.3250	57.1031	29.5238	3.3589	0.2883	-0.2985	-0.0339	0.4164	-0.0339	Z
	13	51.8183	13.5611	-0.9589	51.5483	13.8523	-0.9147	0.2700	-0.2912	-0.0442	0.3996	-0.0442	Z
	14	52.5909	16.7468	1.1346	52.3168	17.0519	1.2148	0.2741	-0.3051	-0.0802	0.4179	-0.0802	Z
	15 16	53.4336 54.0737	19.5081 22.0689	3.2753 4.9591	53.1958 53.8456	19.8161 22.4156	3.3673 5.0012	0.2378	-0.3080 -0.3467	-0.0920 -0.0421	0.3998	-0.0920	Z
	17	54.1855	26.7285	4.9591	53.9257	26.9797	4.9849	0.2598	-0.3467	-0.0421	0.3621	-0.0421	Z
_	18	54.1404	30.5691	4.9711	53.8971	30.8653	5.0169	0.2433	-0.2962	-0.0458	0.3860	-0.0458	Z
FLOOR PAN (Z)	19	48.7982	13.5632	0.8640	48.5062	13.8574	0.9365	0.2920	-0.2942	-0.0725	0.4208	-0.0725	Z
Υ.Υ.	20	49.9577	16.3333	4.2977	49.6910	16.6026	4.3535	0.2667	-0.2693	-0.0558	0.3831	-0.0558	Z
8	21	50.3130	20.8760	5.0507	50.0548	21.1104	5.1105	0.2582	-0.2344	-0.0598	0.3538	-0.0598	Z
님	22 23	50.4016 50.4650	25.8604 29.2698	5.0469 5.0541	50.1209 50.1905	26.1351 29.6089	5.0963 5.1021	0.2807	-0.2747 -0.3391	-0.0494 -0.0480	0.3958	-0.0494 -0.0480	Z
	23	50.4743	31.6192	5.0647	50.1337	31.9077	5.1021	0.2745	-0.2885	-0.0480	0.4389	-0.0480	Z
	25	44.3937	14.8415	4.6619	44.1448	15.1645	4.7386	0.2489	-0.3230	-0.0767	0.4149	-0.0767	Z
	26	44.5100	18.2010	5.0659	44.2716	18.5343	5.1134	0.2384	-0.3333	-0.0475	0.4125	-0.0475	Z
	27	44.4914	23.0109	5.0635	44.1833	23.3699	5.1039	0.3081	-0.3590	-0.0404	0.4748	-0.0404	Z
	28	44.4933	26.6596	5.0661	44.1812	26.9001	5.1079	0.3121	-0.2405	-0.0418	0.3962	-0.0418	Z
	29 30	44.6393 44.6260	29.4410 31.8439	5.0687 5.0802	44.3759 44.2983	29.6994 32.1844	5.1100 5.1250	0.2634	-0.2584 -0.3405	-0.0413	0.3713	-0.0413	Z
eforming in	culations that	rd the occup	ant compart	ment.			nents that an culations. If						ponent is
		Pre	test Floor	Pan					Post	ttest Floor	Pan		
								0					
		and the second second		10					A A			Contraction of the local division of the loc	

Figure D-24. Floor Pan Deformation Data - Set 1 Right, Test No. MSPBN-6

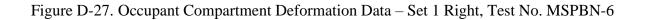
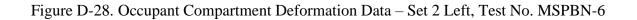
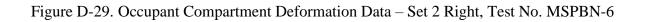

Date: Year:		/2018 012			Test Name: Make:		BN-6 dge			VIN: Model:	1C6R	D6KT3CS2 Ram 1500	68370
							FORMATIC						
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^c
	1	65.9615	8.4294	6.2097	66.0161	8.2647	5.7204	-0.0546	0.1647	0.4893	0.5192	0.4893	Z
	2	66.9119	5.6027	4.8168	66.9303	5.4671	4.3269	-0.0184	0.1356	0.4899	0.5087	0.4899	Z
. =	3	67.1331	3.0344	4.1807	67.1897	2.8244	3.6666	-0.0566	0.2100	0.5141	0.5582	0.5141	Z
TOE PAN - WHEEL WELL (X, Z)	4	66.9560	-1.2141	4.0212	66.9168	-1.4130	3.4643	0.0392	-0.1989	0.5569	0.5927	0.5583	X, Z
L/Z	5	66.5436 65.2959	-3.7967 -6.7178	3.9798 4.5805	66.5637 65.2544	-3.8351 -6.9176	3.3940 3.9947	-0.0201 0.0415	-0.0384 -0.1998	0.5858	0.5874	0.5858	Z X, Z
ВЩС	7	63.1557	9.7029	2.4998	63.2461	9.4983	2.0272	-0.0904	0.2046	0.3838	0.5229	0.3873	Z 7, 2
	8	63.4036	5.9668	2.5237	63.4368	5.8020	2.0129	-0.0332	0.1648	0.5108	0.5378	0.5108	Z
	9	63.4459	2.2603	2.4863	63.4514	1.9639	1.9688	-0.0055	0.2964	0.5175	0.5964	0.5175	Z
	10	63.5240	-0.9245	2.4687	63.4778	-1.2299	1.9241	0.0462	-0.3054	0.5446	0.6261	0.5466	X, Z
	11	63.5738	-3.9433	2.4280	63.7505	-4.2330	2.0078	-0.1767	-0.2897	0.4202	0.5401	0.4202	Z
	12	60.1668	9.6089	0.8741	60.2015	9.5030	0.3864	-0.0347	0.1059	0.4877	0.5003	0.4877	Z
	13	60.2875	5.1034	0.8717	60.3276	4.9412	0.3932	-0.0401	0.1622	0.4785	0.5068	0.4785	Z
	14	60.3551	0.7989	0.8334	60.3812	0.6275	0.3465	-0.0261	0.1714	0.4869	0.5168	0.4869	Z
	15	60.4528	-1.4905	0.8340	60.4607	-1.6389	0.3392	-0.0079	-0.1484	0.4948	0.5166	0.4948	Z
	16	60.4626	-3.7151	0.7979	60.4512	-3.9214	0.2977	0.0114	-0.2063	0.5002	0.5412	0.5002	Z
(m)	17 18	60.5141	-5.2939 9.1274	0.7978	60.4434 57.0129	-5.3408 8.9531	0.2738	0.0707	-0.0469	0.5240	0.5308	0.5240	Z
NA	18	57.0416 57.0578	5.9131	-0.6200 -0.6569	57.0129	5.7026	-1.1059	-0.0161	0.1743	0.4859	0.5170	0.4859	Z
()	20	57.0929	2.9097	-0.6773	57.0182	2.7744	-1.1733	0.0747	0.1353	0.4960	0.5195	0.4960	Z
NOR (Z)	21	57.1509	-0.9847	-0.7175	57.1040	-1.1816	-1.2115	0.0469	-0.1969	0.4940	0.5339	0.4940	Z
FLOOR PAN (Z)	22	57.1162	-3.5856	-0.7608	57.0890	-3.6597	-1.2448	0.0272	-0.0741	0.4840	0.4904	0.4840	Z
ш	23	57.2571	-6.6379	-0.7883	57.2250	-6.8580	-1.2805	0.0321	-0.2201	0.4922	0.5401	0.4922	Z
	24	53.3229	9.6529	-0.7195	53.3472	9.4741	-1.1743	-0.0243	0.1788	0.4548	0.4893	0.4548	Z
	25	53.3345	6.2210	-0.7495	53.3864	6.0618	-1.2076	-0.0519	0.1592	0.4581	0.4877	0.4581	Z
	26	53.3552	3.2705	-0.7717	53.3814	3.0503	-1.2341	-0.0262	0.2202	0.4624	0.5128	0.4624	Z
	27	53.5062	0.2929	-0.8036	53.4988	0.1485	-1.2713	0.0074	0.1444	0.4677	0.4895	0.4677	Z
	28 29	53.5302 53.4579	-2.2447 -4.5369	-0.8282	53.4907 53.4047	-2.4414 -4.7523	-1.2999 -1.3310	0.0395	-0.1967 -0.2154	0.4717	0.5126	0.4717	Z
	30	53.4579	-4.5369	-0.8550	53.4047	-4.7523	-1.3601	0.0532	-0.2154	0.4760	0.5252	0.4760	Z
eforming i	culations the nward towa	at use multip Ird the occup Dlumn denote	ant compart es which dire	ment. ections are i				_	o intrusion i	s recorded,	and Crush v		ponent is
		Pret	test Floor	Pan					Post	test Floor	Pan		
							1						

Figure D-25. Floor Pan Deformation Data – Set 2 Left, Test No. MSPBN-6


(Z) - JOOU -	50.1664 46.4709 45.5779 46.8633 43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	Pretest Y (in.) -26.2128 -15.3566 4.3890 -25.9677 -15.2048 3.9407 -28.4020 -28.4243 -28.3249 -30.9889 -30.9889 -30.9889 -30.9889 -30.9889 -31.2875 -30.6468 -31.0190 -31.3468 -31.0190 -31.3468 -14.4613 -10.2957 -6.0369 -1.4449 -1.4449 -1.4.2128 -8.9951 -5.6676 -1.4440	Pretest Z (in.) -26.7216 -29.3155 -26.5907 -15.6520 -11.6440 -20.2394 -5.0978 -5.8973 0.3950 -17.5383 -17.6368 -15.3936 -17.6368 -15.3936 -17.6368 -15.3936 -17.6368 -15.3936 -17.6368 -42.4575 -42.6706 -42.4575 -42.5500 -42.6706 -42.6706 -42.925 -45.2222 -45.2834 -45.6545		TERIOR C	(in.) -26.6381 -29.2715 -26.5304 -15.5291 -4.9799 -5.8537 0.4105 -17.5584 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4085 -42.4085 -42.5583 -44.9183 -45.1720 -45.222 -45.5176	T 1 ΔX ^A (in.) 0.2164 0.1376 0.0390 0.2136 0.1044 0.2019 0.1994 0.2681 0.2992 0.2862 0.2389 0.2862 0.2389 0.2862 0.2389 0.2862 0.2389 0.2862 0.2389 0.2862 0.2389 0.2862 0.2389 0.2411 0.1991 0.2022 0.1111 0.100716 0.1682 0.1682 0.0916	ΔΥ ^Α (in.) 0.0718 0.0278 0.0449 0.0554 0.0554 0.0554 0.0538 0.2430 0.2062 0.1760 0.2035 0.1762 0.1760 0.2035 0.1762 0.1467 0.1491 0.2098 0.1277 0.2216 0.1235 0.1235 0.1235	ΔZ ^A (in.) 0.0835 0.0440 0.0603 0.1229 0.1448 -0.0118 0.1179 0.0436 0.0155 0.0255 0.1632 -0.0353 0.0372 0.0025 0.00372 0.0025 0.00372 0.00353 0.0372 0.00831 0.0644 0.0644 0.0685 0.1123 0.0685 0.1123 0.0742 0.0502	Total Δ (in.) 0.2428 0.1471 0.1137 0.2505 0.2124 0.20382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3631 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2632 0.1816 0.2136 0.3539 0.3151	Crush ^B (in.) 0.2428 0.1471 0.137 0.2505 0.2124 0.0554 0.0554 0.0558 0.2430 0.0558 0.2430 0.0558 0.2430 0.2082 0.1702 0.1467 0.0644 0.0662 0.1123 0.0762 0.0885 0.1123 0.0762 0.0502	Direction for Crush ^c X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z
HPACT SIDE HPACT SIDE PANEL PANEL PANEL PANEL PAST PANEL PAST P	X (in.) 50.1664 46.4709 45.4130 45.5779 46.8633 43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.4258 33.91592 40.1256 33.19812 32.6122 33.2660 33.7338 34.1249	Y (in.) -26.2128 -15.3566 4.3890 -25.9677 -15.2048 3.9407 -28.4020 -28.4243 -28.3249 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -31.3468	Z (in.) -26.7216 -29.3155 -26.5907 -15.6520 -11.6440 -20.2394 -5.0978 -5.8973 0.3950 -17.5839 -17.6388 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	Posttest X (in.) 49.9500 46.3333 45.3740 45.3643 46.7589 43.0890 54.2223 59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 33.6427 33.6427 40.3377 41.2847 31.8130 32.4269 33.1744 33.5799	Posttest Y (in.) -26.1410 -15.3288 4.4772 -25.9228 -15.0897 4.1011 -28.3466 -28.3925 -28.2711 -30.7459 -30.6703 -31.1085 -30.4433 -30.8448 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026	Posttest Z (in.) -26.6381 -29.2715 -26.5304 -15.5291 -11.4992 -20.2512 -4.9799 -5.8537 0.4105 -17.5584 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4005 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	ΔX ^A (in.) 0.2164 0.1376 0.0390 0.2136 0.1044 0.0219 0.1994 0.2617 0.1924 0.2681 0.2992 0.2862 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.10111 0.1093 0.10111 0.10716 0.1682 0.1853	(in.) 0.0718 0.0278 -0.0882 0.0449 0.1151 -0.1604 0.0554 0.0318 0.2430 0.2082 0.1790 0.2082 0.1702 0.1467 0.2085 0.1702 0.1491 0.2088 0.2216 0.1227 0.2216 0.1235 0.1027 0.2973	(in.) 0.0835 0.0440 0.0603 0.1229 0.1448 -0.0118 0.1179 0.0436 0.0435 0.0255 0.0255 0.0255 0.0255 0.0372 0.0037 0.0023 0.0484 0.0485 0.1062 0.0885 0.1123 0.0742 0.0742 0.0742 0.0742 0.0742 0.0502	(in.) 0.2428 0.1471 0.1137 0.2505 0.2124 0.2672 0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1940 0.2633	(in.) 0.2428 0.1471 0.1137 0.2506 0.2124 0.1623 0.0554 0.0318 0.2430 0.2062 0.1790 0.2055 0.1702 0.1467 0.0644 0.0494 0.0628 0.1062 0.0885 0.1123 0.0742 0.0742 0.0502	for Crush ^c X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
HPACT SIDE HPACT SIDE PANEL PANEL PANEL PANEL PAST PANEL PAST P	X (in.) 50.1664 46.4709 45.4130 45.5779 46.8633 43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.4258 33.91592 40.1256 33.19812 32.6122 33.2660 33.7338 34.1249	Y (in.) -26.2128 -15.3566 4.3890 -25.9677 -15.2048 3.9407 -28.4020 -28.4243 -28.3249 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -31.3468	Z (in.) -26.7216 -29.3155 -26.5907 -15.6520 -11.6440 -20.2394 -5.0978 -5.8973 0.3950 -17.5839 -17.6388 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	(in.) 49.9500 46.3333 45.3740 45.3643 46.7589 43.0890 54.2223 59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.5570 40.0253 40.0253 40.0253 40.0253 40.255 40.253 40.255 40	(in.) -26.1410 -15.3288 4.4772 -25.9228 -15.0897 4.1011 -28.3466 -28.3925 -28.2711 -30.7459 -30.6703 -31.1085 -30.4433 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -8.7026 -5.4522	(in.) -26.6381 -29.2715 -26.5304 -15.5291 -4.9799 -5.8537 0.4105 -17.5584 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4085 -42.4085 -42.5583 -44.9183 -45.1720 -45.222 -45.5176	(in.) 0.2164 0.1376 0.0390 0.2136 0.1044 0.0219 0.1994 0.2617 0.1924 0.2681 0.2992 0.2862 0.2389 0.2862 0.2389 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.1853	(in.) 0.0718 0.0278 -0.0882 0.0449 0.1151 -0.1604 0.0554 0.0318 0.2430 0.2082 0.1790 0.2082 0.1702 0.1467 0.2085 0.1702 0.1491 0.2088 0.2216 0.1227 0.2216 0.1235 0.1027 0.2973	(in.) 0.0835 0.0440 0.0603 0.1229 0.1448 -0.0118 0.1179 0.0436 0.0435 0.0255 0.0255 0.0255 0.0255 0.0372 0.0037 0.0023 0.0484 0.0485 0.1062 0.0885 0.1123 0.0742 0.0742 0.0742 0.0742 0.0742 0.0502	(in.) 0.2428 0.1471 0.1137 0.2505 0.2124 0.2672 0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1940 0.2633	(in.) 0.2428 0.1471 0.1137 0.2506 0.2124 0.1623 0.0554 0.0318 0.2430 0.2062 0.1790 0.2055 0.1702 0.1467 0.0644 0.0494 0.0628 0.1062 0.0885 0.1123 0.0742 0.0742 0.0502	for Crush ^c X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
A constraints of the second se	50.1664 46.4709 45.5779 46.8633 43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-26.2128 -15.3566 4.3890 -25.9677 -15.2048 3.9407 -28.4020 -28.4243 -28.3249 -30.9889 -30.9889 -30.9889 -30.9889 -31.2875 -30.6468 -31.0190 -31.3468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.44440	-26.7216 -29.3155 -26.5907 -15.6520 -11.6440 -20.2394 -5.0978 -5.8973 0.3950 -17.5839 -17.6368 -15.3936 -17.5839 -17.6368 -15.3936 -17.934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.2225	49,9500 46,3333 45,3740 45,3643 46,7589 54,2223 59,0380 55,562 22,9223 30,2166 38,4252 23,7692 33,642 40,3377 40,3377 40,3377 40,253 40,8292 41,2847 31,8130 32,4269 33,1744 33,5799	-26.1410 -15.3288 4.4772 -25.9228 -15.0897 -4.1011 -28.3466 -28.3925 -28.2711 -30.76703 -30.6703 -30.6703 -30.6433 -30.8488 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026	-26.6381 -29.2715 -26.5304 -15.5291 -11.4992 -20.2512 -4.9799 -5.8537 0.4105 -17.5584 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4408 -42.4438 -42.4438 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0 2164 0 1376 0 0390 0 2136 0 0219 0 1994 0 2617 0 1924 0 2617 0 2992 0 2389 0 2862 0 2399 0 2862 0 3189 0 1411 0 1981 0 2022 0 1041 0 1981 0 2022 0 1041 0 104 0	0.0718 0.0278 -0.0882 0.0449 0.1151 -0.1604 0.0554 0.0538 0.2430 0.2062 0.1702 0.1467 0.1491 0.2095 0.1702 0.1497 0.2216 0.1227 0.2216 0.1235 0.1277 0.2273	0.0835 0.0440 0.0603 0.1229 0.1448 -0.0118 0.1179 0.0436 0.0155 0.0255 0.1632 -0.0353 0.0372 0.2002 0.0353 0.2002 0.0363 0.0052 0.0484 0.0685 0.1123 0.0742 0.0742 0.0742	0.2428 0.1471 0.1137 0.2505 0.2124 0.1623 0.2382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3631 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1940 0.2632	0.2428 0.1471 0.1137 0.2505 0.2124 0.0554 0.0554 0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.2035 0.1702 0.1467 0.0644 0.1062 0.0885 0.1123 0.0742 0.0742 0.0762	X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z
Impact sine Deck sine Impact sine Participation	46.4709 45.4730 45.5779 46.8633 43.1109 54.4217 59.2997 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 40.1256 40.1256 40.1256 40.9403 31.9812 32.6122 33.2660 33.7388 34.1249	-15.3566 4.3890 -25.9677 -15.2048 3.9407 -28.4220 -28.4243 -30.9889 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -18.7148 -18.7148 -18.7148 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-29.3155 -26.5907 -15.6520 -11.6440 -20.2394 -5.0978 -5.8973 0.3950 -17.5839 -17.6368 -15.3936 1.7.934 0.9409 -0.6618 -42.4166 -42.4575 -42.6500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	46.3333 45.3740 45.3643 46.7589 43.0890 54.2223 59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 40.0253 40.0253 40.0253 40.0253 40.0253 41.2847 31.8130 32.4269 33.1744 33.5799	-15.3288 4.4772 -25.9228 -15.0897 4.1011 -28.3466 -28.3925 -28.2711 -30.7459 -30.6703 -31.1085 -30.4433 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-29.2715 -26.5304 -15.5291 -11.4992 -20.2512 -4.9799 -5.8537 0.4105 -17.5584 -17.4736 -15.4289 1.8306 -15.4289 1.8306 -1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4095 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.1376 0.0390 0.2136 0.1044 0.0219 0.1994 0.2617 0.1924 0.2681 0.2992 0.2862 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1852 0.1852	0.0278 -0.0882 0.0449 0.1151 -0.1604 0.0554 0.0538 0.2430 0.2062 0.1790 0.2055 0.1702 0.1467 0.1491 0.2088 0.2276 0.1277 0.2216 0.1235 0.1087 0.2973	0.0440 0.0603 0.1229 0.1448 -0.0118 0.1779 0.0436 0.0155 0.0255 0.1632 -0.0353 0.0372 0.2002 0.0371 0.0444 0.0484 0.0484 0.0484 0.0622 0.0742 0.0742 0.0742 0.0742 0.0742 0.0502	0.1471 0.1137 0.2505 0.2124 0.1623 0.2382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1816 0.2136 0.2136	0.1471 0.1137 0.2505 0.2124 0.1623 0.0554 0.0538 0.2430 0.2062 0.1790 0.2062 0.1790 0.2035 0.1702 0.444 0.0644 0.0624 0.0685 0.1123 0.0742 0.0742 0.0742 0.0502	X, Y, Z X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z
HSPAT A HSPAT A A A A A A A A A A A A A	45.4130 45.5779 46.8633 43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	4.3890 -25.9677 -15.2048 3.9407 -28.4020 -28.4243 -28.3249 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-26.5907 -15.6520 -11.6400 -20.2394 -5.0978 -5.8973 0.3950 -17.6389 -17.6389 -17.6388 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	45.3740 45.3643 46.7589 43.0890 54.2223 59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.6292 41.2847 31.8130 32.4269 33.1744 33.5799	4.4772 -25 9228 -15.0897 -4.1011 -28.3466 -28.3925 -28.2711 -30.7653 -30.6703 -31.1085 -30.6703 -30.8488 -30.8488 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026	-26.5304 -15.5291 -11.4992 -20.2512 -4.9799 -5.8537 0.4105 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.0390 0.2136 0.1044 0.0219 0.1994 0.2617 0.2992 0.2369 0.2661 0.2992 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1652 0.1652 0.0916	-0.0882 0.0449 0.1151 -0.1604 0.0554 0.0538 0.2062 0.1790 0.2062 0.1790 0.2035 0.1702 0.1467 0.2038 0.1277 0.2216 0.1227 0.22216 0.1087 0.2093	0.0603 0.1229 0.1448 0.0118 0.01179 0.0436 0.0155 0.0255 0.0372 0.00353 0.0372 0.2002 0.0831 0.0644 0.0495 0.0495 0.050500000000	0.1137 0.2505 0.2124 0.1623 0.2382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3631 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1816 0.2136	0.1137 0.2505 0.2124 0.0554 0.0554 0.0538 0.2062 0.1750 0.2062 0.1750 0.2035 0.1702 0.1760 0.2035 0.1702 0.0644 0.0454 0.0454 0.0454 0.0454 0.0742 0.0742 0.0762	X, Y, Z X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
(Z) - ↓ 200 200 200 200 200 200 200 20	45.5779 46.8633 43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	-25.9677 -15.2048 3.9407 -28.4020 -28.4243 -28.3249 -30.8765 -31.2875 -30.6468 -31.2875 -30.6468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-15.6520 -11.6440 -20.2394 -5.0978 -5.8973 0.3950 -17.6368 -15.3936 -17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	45.3643 46.7589 43.0890 54.2223 59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.2253 41.2847 31.8130 32.4269 33.31744 33.5799	-25 9228 -15.0897 4.1011 -28.3466 -28.3925 -28.2711 -30.7459 -30.6703 -31.1085 -30.4433 -30.4433 -30.4433 -30.4433 -30.4433 -30.4433 -30.4435 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -1.75227 -13.9155 -8.7026	-15.5291 -11.4992 -20.2512 -4.9799 -5.8537 0.4105 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.2136 0.1044 0.0219 0.1994 0.2617 0.26217 0.2992 0.2992 0.2399 0.2862 0.3189 0.2411 0.1981 0.2022 0.1031 0.1411 0.00316 0.1682 0.0916	0.0449 0.1151 -0.1604 0.0554 0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.1491 0.2038 0.1277 0.2216 0.12276 0.1087 0.2093	0.1229 0.1448 -0.0118 0.0436 0.0436 0.0155 0.0255 0.0353 0.0372 0.2002 0.0353 0.0372 0.2002 0.0631 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0742 0.0742	0.2505 0.2124 0.1623 0.2382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1816 0.2136 0.3539	0.2505 0.2124 0.1623 0.0554 0.0554 0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1790 0.2035 0.1702 0.0644 0.0494 0.0494 0.1062 0.0885 0.1123 0.0742 0.0702	X, Y, Z X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z
(Z) - ↓ 200 200 200 200 200 200 200 20	43.1109 54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	3.9407 -28.4020 -28.4243 -28.3249 -30.9889 -30.8765 -31.2875 -31.6468 -31.0190 -31.3468 -18.7148 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -1.7.6314 -14.2128 -8.9951 -5.6676 -1.44440	-20.2394 -5.0978 -5.8973 0.3950 -17.5839 -17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.6500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	43.0890 54.2223 59.0380 55.5682 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 40.03377 40.0253 40.0253 40.0253 40.0253 40.0253 41.2847 31.8130 32.4269 33.1744 33.5799	4.1011 -28.3466 -28.3925 -28.2711 -30.7459 -30.6703 -31.1085 -30.4433 -30.8448 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-20.2512 -4.9799 -5.8537 0.4105 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4081 -42.4085 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.0219 0.1994 0.2617 0.1924 0.2681 0.2992 0.2862 0.2389 0.2862 0.3189 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.1853	-0.1604 0.0554 0.0318 0.2430 0.2062 0.1790 0.2052 0.1702 0.1467 0.1491 0.2098 0.2035 0.1702 0.1497 0.2098 0.2098 0.2276 0.12276 0.1235 0.1087 0.2973	-0.0118 0.1179 0.0436 0.0155 0.0255 0.1632 -0.0353 0.0372 0.2002 0.0372 0.2002 0.0372 0.2002 0.03831 0.0644 0.0664 0.0464 0.06885 0.1123 0.0742 0.0742 0.0762	0.1623 0.2382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1940 0.2633 0.1816 0.2136 0.3539	0.1623 0.0554 0.0318 0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.0644 0.0494 0.0494 0.062 0.1062 0.0885 0.1123 0.0742 0.0742 0.0502	X, Y, Z X, Y, Z Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z
A 200 A	54.4217 59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	-28.4020 -28.4243 -28.3249 -30.9889 -30.8765 -31.2875 -30.6468 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-5.0978 -5.8973 0.3950 -17.5839 -17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	54.2223 59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.6292 41.2847 31.8130 32.4269 33.1744 33.5799	-28.3466 -28.3925 -28.2711 -30.7659 -30.7659 -30.4433 -30.8488 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -8.7026 -5.4522	-4.9799 -5.8537 0.4105 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.1994 0.2617 0.2924 0.2962 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1101 0.1003 0.1111 0.0716 0.1682 0.362	0.0554 0.0318 0.238 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.1491 0.2038 0.1277 0.2216 0.12276 0.1235 0.1087 0.2973	0.1179 0.0436 0.0155 0.0255 0.0353 0.0372 0.0033 0.0372 0.0831 0.0644 0.0644 0.0494 0.0494 0.0494 0.0494 0.0494 0.0494 0.0494 0.0494 0.0494 0.0502	0.2382 0.2672 0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.0554 0.0318 0.2638 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.0644 0.0624 0.0644 0.1062 0.0885 0.1123 0.0742 0.0742	Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z
8 9 9 10 10 11 12 13 14 14 15 16 17 18 18 20 20 21 15 16 17 22 000 24 25 26 27 28 29 29 20 24 25 26 27 28 29 30 31 31	59.2997 55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	-28.4243 -28.3249 -30.9889 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-5.8973 0.3950 -17.5839 -17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	59.0380 55.5685 22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-28 3925 -28 2711 -30 7459 -30 6703 -31 1085 -30 4433 -30 8488 -30 4433 -30 8488 -31 2001 -18 5657 -14 2515 -10 1680 -5 81551 -1.3214 -1.3215 -8.7026 -8.7026	-5.8537 0.4105 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.2617 0.1924 0.2681 0.2992 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.0318 0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.1491 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.0436 0.0155 0.0255 0.1632 -0.0353 0.0372 0.2002 0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.2672 0.2004 0.3627 0.3983 0.3014 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.2136	0.0318 0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	55.7609 23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	-28.3249 -30.9889 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	0.3950 -17.5839 -17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	555685 22.9223 30.2166 38.4252 33.6427 40.3377 37.4113 38.9570 40.0253 40.0253 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-28.2711 -30.7459 -30.6703 -31.1085 -30.4438 -31.2001 -18.5657 -14.2515 -13.214 -17.5227 -13.9155 -8.7026 -5.4522	0.4105 -17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4438 -42.4438 -42.4438 -42.5583 -44.9183 -45.1720 -45.5176	0.1924 0.2681 0.2992 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.1491 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.0155 0.0255 0.1632 -0.0353 0.0372 0.2002 0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.2004 0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1940 0.2632 0.1816 0.2136	0.0538 0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Y Y Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	23.1904 30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-30.9889 -30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-17.5839 -17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5750 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	22.9223 30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-30.7459 -30.6703 -31.1085 -30.4433 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -1.3214 -1.3214 -1.3214 -1.39155 -8.7026 -5.4522	-17.5584 -17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4081 -42.4085 -42.4095 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.2681 0.2992 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.1491 0.2098 0.1277 0.2216 0.2216 0.1235 0.1087 0.2973	0.0255 0.1632 -0.0353 0.0372 0.2002 0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.3627 0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.2430 0.2062 0.1790 0.2035 0.1702 0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
CD 8 C 11 12 13 13 14 15 16 17 18 19 20 21 17 20 21 22 23 00 24 25 26 27 28 29 30 31 31	30.5158 38.6651 24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-30.8765 -31.2875 -30.6468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-17.6368 -15.3936 1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	30.2166 38.4252 23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-30.6703 -31.1085 -30.4433 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-17.4736 -15.4289 1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4081 -42.4085 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.2992 0.2399 0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.2062 0.1790 0.2035 0.1702 0.1467 0.1491 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.1632 -0.0353 0.0372 0.2002 0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.3983 0.3014 0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.2062 0.1790 0.2035 0.1702 0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Y Y Y Z Z Z Z Z Z Z Z Z Z Z Z Z
16 17 18 19 20 21 22 23 20 24 25 26 27 28 29 30 31	24.0554 33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 31.9812 32.6122 33.2660 33.7338 34.1249	-30.6468 -31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	1.7934 0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	23.7692 33.6427 40.3377 37.4113 38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-30.4433 -30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	1.8306 1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -44.9183 -45.1720 -45.4222 -45.5176	0.2862 0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.2035 0.1702 0.1467 0.1491 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.0372 0.2002 0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.3531 0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.2035 0.1702 0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Y Z Z Z Z Z Z Z Z Z
16 17 18 19 20 21 22 23 20 24 25 26 27 28 29 30 31	33.9616 40.4788 37.6094 39.1592 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-31.0190 -31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	0.9409 -0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	33.6427 40.3377 37.4113 38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-30.8488 -31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	1.1411 -0.5787 -42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -44.9183 -45.1720 -45.4222 -45.5176	0.3189 0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.1702 0.1467 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.2002 0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.4132 0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.1702 0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Y Z Z Z Z Z Z Z Z Z
16 17 18 19 20 21 22 23 20 24 25 26 27 28 29 30 31	40.4788 37.6094 39.1592 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-31.3468 -18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-0.6618 -42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	40.3377 37.4113 38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-31.2001 -18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-0.5787 -42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.1411 0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.1467 0.1491 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.0831 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.2199 0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.1467 0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Y Z Z Z Z Z Z Z Z Z
16 17 18 19 20 21 22 23 20 24 25 26 27 28 29 30 31	37.6094 39.1592 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-18.7148 -14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-42.4166 -42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	37.4113 38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-18.5657 -14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-42.3522 -42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.1981 0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.1491 0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.2562 0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.0644 0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Z Z Z Z Z Z Z Z
17 18 19 20 21 22 23 24 23 24 25 26 27 28 29 30 31	39.1592 40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-14.4613 -10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-42.4575 -42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	38.9570 40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-14.2515 -10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-42.4081 -42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.2022 0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.2098 0.1277 0.2216 0.1235 0.1087 0.2973	0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	0.2955 0.1940 0.2632 0.1816 0.2136 0.3539	0.0494 0.1062 0.0885 0.1123 0.0742 0.0502	Z Z Z Z Z Z Z
18 19 20 21 22 23 24 25 26 27 28 29 30 31	40.1256 40.9403 41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-10.2957 -6.0369 -1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-42.5500 -42.5790 -42.6706 -44.9925 -45.2222 -45.4953 -45.5834	40.0253 40.8292 41.2847 31.8130 32.4269 33.1744 33.5799	-10.1680 -5.8153 -1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-42.4438 -42.4905 -42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.1003 0.1111 0.0716 0.1682 0.1853 0.0916	0.1277 0.2216 0.1235 0.1087 0.2973	0.1062 0.0885 0.1123 0.0742 0.0502	0.1940 0.2632 0.1816 0.2136 0.3539	0.1062 0.0885 0.1123 0.0742 0.0502	Z Z Z Z Z Z
N 20 21 22 23 23 02 24 25 26 27 28 29 30 30 31	41.3563 31.9812 32.6122 33.2660 33.7338 34.1249	-1.4449 -17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-42.6706 -44.9925 -45.2222 -45.4953 -45.5834	41.2847 31.8130 32.4269 33.1744 33.5799	-1.3214 -17.5227 -13.9155 -8.7026 -5.4522	-42.5583 -44.9183 -45.1720 -45.4222 -45.5176	0.0716 0.1682 0.1853 0.0916	0.1235 0.1087 0.2973	0.1123 0.0742 0.0502	0.1816 0.2136 0.3539	0.1123 0.0742 0.0502	Z Z Z Z
Image: Constraint of the second sec	31.9812 32.6122 33.2660 33.7338 34.1249	-17.6314 -14.2128 -8.9951 -5.6676 -1.4440	-44.9925 -45.2222 -45.4953 -45.5834	31.8130 32.4269 33.1744 33.5799	-17.5227 -13.9155 -8.7026 -5.4522	-44.9183 -45.1720 -45.4222 -45.5176	0.1682 0.1853 0.0916	0.1087 0.2973	0.0742	0.2136 0.3539	0.0742	Z Z Z
N- 22 23 24 25 26 27 28 29 29 30 30	32.6122 33.2660 33.7338 34.1249	-14.2128 -8.9951 -5.6676 -1.4440	-45.2222 -45.4953 -45.5834	32.4269 33.1744 33.5799	-13.9155 -8.7026 -5.4522	-45.1720 -45.4222 -45.5176	0.1853 0.0916	0.2973	0.0502	0.3539	0.0502	ZZ
23 26 27 28 29 30 31	33.2660 33.7338 34.1249	-8.9951 -5.6676 -1.4440	-45.4953 -45.5834	33.1744 33.5799	-8.7026 -5.4522	-45.4222 -45.5176	0.0916					Z
23 26 27 28 29 30 31	33.7338 34.1249	-5.6676 -1.4440	-45.5834	33.5799	-5.4522	-45.5176					0.0/01	
23 26 27 28 29 30 31			-45.6545	34 0593	-1 2687		0.1539	0.2154	0.0658	0.2728	0.0658	Z
27 28 29 30 31	20.0501					-45.5728	0.0656	0.1753	0.0817	0.2042	0.0817	Z
28 29 30 31	28.8504	-16.8761	-45.5752	28.7161	-16.6545	-45.5206	0.1343	0.2216	0.0546	0.2648	0.0546	Z
29 30 31	29.3269	-12.8795 -8.9482	-45.8534	29.1984 29.9735	-12.6461 -8.7619	-45.7937 -45.9439	0.1285	0.2334	0.0597	0.2730	0.0597	Z
30 31	30.6957	-5.6453	-46.0841	30.5040	-5.3683	-45.9439	0.1917	0.1863	0.0528	0.3412	0.0541	Z
	30.9552	-1.6000	-46.1703	30.8675	-1.3672	-46.0994	0.0877	0.2328	0.0709	0.2587	0.0709	Z
Mum (2 32 33	53.4911	-26.8699	-28.3841	53.2473	-26.8811	-28.3219	0.2438	-0.0112	0.0622	0.2519	0.2516	X, Z
그 흔 _ 33	49.9771	-26.3621	-30.7002	49.7786	-26.3062	-30.6592	0.1985	0.0559	0.0410	0.2103	0.2103	X, Y, Z
=	45.0000	-24.8457	-34.0422	44.7066	-24.7656	-34.0483	0.2934	0.0801	-0.0061	0.3042	0.3041	X, Y
Waxing 34 35	42.2335 39.6479	-23.9652 -23.0264	-36.0796 -37.1361	41.9559 39.4279	-23.8728 -22.9656	-36.0980 -37.0746	0.2776	0.0924	-0.0184 0.0615	0.2932	0.2926	X, Y X, Y, Z
36	35.6589	-22.8706	-40.2562	35.3969	-22.7425	-40.2570	0.2200	0.1281	-0.0008	0.2916	0.2916	X, Y
31	53.4911	-26.8699	-28.3841	53.2473	-26.8811	-28.3219	0.2438	-0.0112	0.0622	0.2519	-0.0112	Y
¥£ 32	49.9771	-26.3621	-30.7002	49.7786	-26.3062	-30.6592	0.1985	0.0559	0.0410	0.2103	0.0559	Y
33 ILLA	45.0000	-24.8457	-34.0422	44.7066	-24.7656	-34.0483	0.2934	0.0801	-0.0061	0.3042	0.0801	Y
34 PII	42.2335	-23.9652	-36.0796	41.9559	-23.8728	-36.0980	0.2776	0.0924	-0.0184	0.2932	0.0924	Y
< [™] 35 36	39.6479 35.6589	-23.0264 -22.8706	-37.1361 -40.2562	39.4279 35.3969	-22.9656	-37.0746 -40.2570	0.2200	0.0608	0.0615	0.2364	0.0608	Y
	10.2333	-24.4327	-37.1787	10.0068	-24.2375	-37.1173	0.2265	0.1952	0.0614	0.3052	0.3052	X, Y, Z
B-PILLAR Maximum (X, Y, Z) (X, Y, Z) (X, Y, Z) (X, Y, Z)	10.4289	-27.5983	-25.3760	10.2025	-27.3723	-25.2472	0.2264	0.2260	0.1288	0.3449	0.3449	X, Y, Z
B-PILLAR Maximum (X, Y, Z) 30 40 40	12.8509	-24.3611	-37.3897	12.6219	-24.1688	-37.3195	0.2290	0.1923	0.0702	0.3072	0.3072	X, Y, Z
	13.8151	-27.5000	-26.1686	13.5212	-27.2891	-26.1304	0.2939	0.2109	0.0382	0.3638	0.3638	X, Y, Z
AR 31	10.2333	-24.4327	-37.1787	10.0068	-24.2375	-37.1173	0.2265	0.1952	0.0614	0.3052	0.1952	Y
3-PILLAR ateral (Y) 86 87 87 87 87 87 87 87 87 87 87 87 87 87	10.4289 12.8509	-27.5983 -24.3611	-25.3760 -37.3897	10.2025 12.6219	-27.3723 -24.1688	-25.2472 -37.3195	0.2264	0.2260	0.1288	0.3449	0.2260	Y
40 Late	13.8151	-27.5000	-26.1686	13.5212	-27.2891	-26.1304	0.2290	0.1923	0.0702	0.3638	0.1923	Y
Positive values de												


Date: Year:	6/5/2 20	2018 112			Test Name: Make:		PBN-6 Idge			VIN: Model:	106R	D6KT3CS2 Ram 1500	68370
					VE		FORMATI	ON					
							RUSH - SE						
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^c
	1	49.1927	27.6338	-25.7351	49.1183	27.3825	-25.7298	0.0744	0.2513	0.0053	0.2621	0.2621	X, Y, Z
ΞÑ	2 3	48.5383	18.1351 4.3748	-26.1445	48.4384	17.9215	-26.0700	0.0999	0.2136	0.0745	0.2473	0.2473	X, Y, Z
DASH (X, Y, Z)	4	45.4530 46.9688	29.5953	-26.6157 -18.9897	45.2979 46.9141	4.2389 29.3769	-26.5779 -19.0789	0.1551	0.1359 0.2184	-0.0892	0.2097	0.2097	X, Y, Z X, Y, Z
L R	5	46.4723	21.7852	-18.9781	46.4134	21.6461	-18.9745	0.0589	0.1391	0.0036	0.1511	0.1511	X, Y, Z
	6	43.1363	3.9153	-20.2593	42.9933	3.7524	-20.2605	0.1430	0.1629	-0.0012	0.2168	0.2168	X, Y, Z
ч ш	7	59.4946	36.2103	-5.2707	59.5385	35.9060	-5.2820	-0.0439	0.3043	-0.0113	0.3077	0.3043	Y
SIDE (Y)	8	54.8068	36.0074	-4.7586	54.8567	35.7216	-4.7518	-0.0499	0.2858	0.0068	0.2902	0.2858	Y
	9	54.8576	35.8812	2.3901	54.8789	35.6098	2.3122	-0.0213	0.2714	-0.0779	0.2832	0.2714	Y
出	10 11	46.0779 36.8540	38.4557 39.2905	-15.9908 -15.3136	46.0147 36.7585	38.1167 39.3427	-16.1900 -15.2546	0.0632	0.3390	-0.1992 0.0590	0.3982	0.3390	Y Y
IMPACT SIDE DOOR (Y)	12	26.1090	39.2903	-15.8382	25.9394	39.3427	-15.2346	0.0955	-0.0322	0.0090	0.2161	-0.0322	Y
300	13	40.9237	38.8993	0.9640	40.7930	38.7276	0.9594	0.1307	0.1717	-0.0046	0.2158	0.1717	Ý
A I	14	34.8274	38.9072	1.4802	34.7094	38.7730	1.5131	0.1180	0.1342	0.0329	0.1817	0.1342	Y
<u> </u>	15	24.9229	38.4762	0.0689	24.8124	38.3779	0.1198	0.1105	0.0983	0.0509	0.1564	0.0983	Y
	16	38.1609	26.3289	-42.2514	38.3609	26.1034	-42.1001	-0.2000	0.2255	0.1513	0.3373	0.1513	Z
-	17 18	39.1794 39.9483	23.5018 20.6201	-42.3336 -42.4376	39.3962 40.0753	23.2672 20.3756	-42.1545 -42.2850	-0.2168	0.2346	0.1791 0.1526	0.3662	0.1791 0.1526	Z
	19	40.6466	16.8587	-42.4576	40.0733	16.5630	-42.3582	-0.1270	0.2443	0.1986	0.3932	0.1986	Z
	20	41.3237	13.0847	-42.5567	41.3597	12.9105	-42.4327	-0.0360	0.1742	0.1240	0.2168	0.1240	Z
RT I	21	32.5443	25.1635	-44.9133	32.6054	25.2351	-44.8304	-0.0611	-0.0716	0.0829	0.1254	0.0829	Z
(Z)	22	33.3684	22.3439	-45.0321	33.4274	22.3943	-44.9519	-0.0590	-0.0504	0.0802	0.1116	0.0802	Z
ROOF - (Z)	23	33.8542	20.0801	-45.1299	33.8482	20.0623	-45.0738	0.0060	0.0178	0.0561	0.0592	0.0561	Z
SR 1	24 25	34.6841 35.1133	16.0916 13.3956	-45.2320 -45.2781	34.7211 35.1183	16.0917 13.3360	-45.1549 -45.2059	-0.0370 -0.0050	-0.0001 0.0596	0.0771	0.0855	0.0771	Z
	26	30.4295	24.5802	-45.3704	30.4463	24.6764	-45.2930	-0.0168	-0.0962	0.0774	0.1246	0.0722	Z
l l	27	31.3486	21.9564	-45.4621	31.2634	22.0042	-45.4100	0.0852	-0.0478	0.0521	0.1107	0.0521	Z
[28	32.0437	19.7762	-45.5144	31.9706	19.8164	-45.4639	0.0731	-0.0402	0.0505	0.0975	0.0505	Z
	29	32.9879	15.9642	-45.5828	32.9160	15.9856	-45.5232	0.0719	-0.0214	0.0596	0.0958	0.0596	Z
	30	33.4384	13.4612	-45.6117	33.3751	13.4809	-45.5469	0.0633	-0.0197	0.0648	0.0927	0.0648	Z
m E a	31 32	53.6210 51.0199	34.6295 34.1032	-28.1990 -30.2716	53.6502 51.0492	34.3316 33.7702	-28.1644	-0.0292 -0.0293	0.2979	0.0346	0.3013	0.2999	Y, Z Y
A-PILLAR Maximum (X, Y, Z)	33	46.0899	32.5127	-33.6999	46.1497	32.2881	-33.6563	-0.0598	0.2246	0.0436	0.2365	0.2288	Y, Z
A-PILLAR Maximum (X, Y, Z)	34	42.9961	31.7825	-35.7633	43.0288	31.5388	-35.7725	-0.0327	0.2437	-0.0092	0.2461	0.2437	Y
Ϋ́ς Α΄	35	39.9591	30.6312	-37.3421	39.9648	30.4483	-37.3045	-0.0057	0.1829	0.0376	0.1868	0.1867	Y, Z
	36	36.3188	30.7156	-40.1278	36.2801	30.6325	-40.0342	0.0387	0.0831	0.0936	0.1310	0.1310	X, Y, Z
~ ~	31	53.6210	34.6295	-28.1990	53.6502	34.3316	-28.1644	-0.0292	0.2979	0.0346	0.3013	0.2979	Y
A-PILLAR Lateral (Y)	32 33	51.0199 46.0899	34.1032 32.5127	-30.2716 -33.6999	51.0492 46.1497	33.7702 32.2881	-30.3416 -33.6563	-0.0293 -0.0598	0.3330	-0.0700 0.0436	0.3415	0.3330	Y Y
PILI	34	42.9961	31.7825	-35.7633	43.0288	31.5388	-35.7725	-0.03327	0.2437	-0.0092	0.2461	0.2240	Y
A-f Lat	35	39.9591	30.6312	-37.3421	39.9648	30.4483	-37.3045	-0.0057	0.1829	0.0376	0.1868	0.1829	Y
	36	36.3188	30.7156	-40.1278	36.2801	30.6325	-40.0342	0.0387	0.0831	0.0936	0.1310	0.0831	Y
AR HO	37	13.4583	32.0432	-38.7020	13.5554	32.0611	-38.6196	-0.0971	-0.0179	0.0824	0.1286	0.0824	Z
B-PILLAR Maximum (X, Y, Z)	38	10.5472	32.1019	-38.6767	10.7376	32.1192	-38.5586	-0.1904	-0.0173	0.1181	0.2247	0.1181	Z
X Ma h	39 40	15.7025 11.8508	36.0850 36.1564	-20.6329 -20.1789	15.8685 11.8133	36.0404 35.9564	-20.5826 -20.4556	-0.1660 0.0375	0.0446	0.0503	0.1791 0.3435	0.0672	Y, Z X, Y
	37	13.4583	32.0432	-38.7020	13.5554	32.0611	-38.6196	-0.0971	-0.0179	0.0824	0.1286	-0.0179	A, I Y
B-PILLAR _ateral (Y)	38	10.5472	32.1019	-38.6767	10.7376	32.1192	-38.5586	-0.1904	-0.0173	0.1181	0.2247	-0.0173	Y
PIL	39	15.7025	36.0850	-20.6329	15.8685	36.0404	-20.5826	-0.1660	0.0446	0.0503	0.1791	0.0446	Y
Ľa	40	11.8508	36.1564	-20.1789	11.8133	35.9564	-20.4556	0.0375	0.2000	-0.2767	0.3435	0.2000	Y
Positive va		e deformatio	on as inward	I toward the	occupant c	ompartmen	t, negative v	alues denot	e deformatio	ons outward	away from	the occupar	nt

Date: Year:		2018 12			Test Name: Make:		BN-6 dge			VIN: Model:	1001	D6KT3CS2 Ram 1500	
					VE	HICLE DE	FORMATIO	ON					
							RUSH - SE						
[Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A	ΔY ^A	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	. 8 8			(in.)	(in.)			(in.)	Crush ^c
	1	53.4150	-10.8837	-30.7655	53.2009	-10.9725	-30.6890	0.2141	-0.0888	0.0765	0.2441	0.2441	X, Y, Z
DASH (X, Y, Z)	2	49.7594 48.7545	-0.0042 19.7315	-33.3180 -30.5033	49.5655 48.5145	-0.0989 19.4877	-33.2671 -30.5080	0.1939	-0.0947 0.2438	0.0509	0.2217	0.2217	X, Y, Z X, Y, Z
SAC .	4	48.7985	-10.6764	-19.7068	48.7217	-10.6734	-19.5365	0.0768	0.0030	0.1703	0.1868	0.1868	X, Y, Z
L R	5	50.1062	0.0637	-15.6450	50.0632	0.0747	-15.4958	0.0430	-0.0110	0.1492	0.1557	0.1557	X, Y, Z
	6	46.4345	19.2606	-24.1602	46.3071	19.2296	-24.0947	0.1274	0.0310	0.0655	0.1466	0.1466	X, Y, Z
ш Ш Д	7	57.6073	-13.1871	-9.1412	57.5232	-13.1341	-8.9936	0.0841	0.0530	0.1476	0.1780	0.0530	Y
SIDE (Y)	8	62.4873	-13.2206	-9.9283	62.3671	-13.1691	-9.8670	0.1202	0.0515	0.0613	0.1444	0.0515	Y
	9	58.9324	-13.1399	-3.6447	58.9047	-13.0571	-3.5018	0.0277	0.0828	0.1429	0.1675	0.0828	Y Y
IMPACT SIDE DOOR (Y)	10 11	26.4009 33.7267	-15.6200 -15.5298	-21.7202 -21.7536	26.4089 33.6136	-15.6077 -15.4946	-21.6549 -21.5802	-0.0080 0.1131	0.0123	0.0653	0.0669	0.0123	Y
NC C	12	41.8688	-15.9762	-19.4913	41.7400	-15.9119	-19.4080	0.1288	0.0643	0.0833	0.1663	0.0532	Y
Şğ≿	13	27.2165	-15.3713	-2.3393	27.1666	-15.3564	-2.2603	0.0499	0.0149	0.0790	0.0946	0.0149	Ý
AP	14	37.1237	-15.7698	-3.1679	36.9684	-15.7040	-2.9834	0.1553	0.0658	0.1845	0.2500	0.0658	Y
=	15	43.6440	-16.1100	-4.7552	43.6592	-16.0292	-4.6533	-0.0152	0.0808	0.1019	0.1309	0.0808	Y
	16	40.9218	-3.2739	-46.4576	40.8582	-3.2103	-46.4059	0.0636	0.0636	0.0517	0.1037	0.0517	Z
	17 18	42.4846 43.4639	0.9750 5.1379	-46.4745 -46.5450	42.4480 43.4343	1.0086 5.1494	-46.3949 -46.4551	0.0366	-0.0336 -0.0115	0.0796	0.0938	0.0796	Z
	19	43.4039	9.3944	-46.5519	43.4343	9.4361	-46.4950	0.0290	-0.0417	0.0569	0.1319	0.0569	Z
	20	44.7219	13.9854	-46.6209	44.2577	13.5762	-46.5289	0.4642	0.4092	0.0920	0.6256	0.0920	Z
Ñ	21	35.3037	-2.1613	-49.0429	34.9979	-2.5395	-48.8326	0.3058	-0.3782	0.2103	0.5299	0.2103	Z
	22	35.9457	1.2564	-49.2550	35.5979	1.0298	-49.0879	0.3478	0.2266	0.1671	0.4475	0.1671	Z
ROOF - (Z)	23	36.6161	6.4733	-49.5019	36.2698	6.2382	-49.3635	0.3463	0.2351	0.1384	0.4409	0.1384	Z
S S	24 25	37.0942 37.4983	9.7998 14.0224	-49.5732 -49.6235	36.6917 37.1947	9.5823 13.6749	-49.4624 -49.5024	0.4025	0.2175	0.1108	0.4707	0.1108	Z
	26	32.1767	-1.3936	-49.6302	31.8095	-1.6483	-49.4397	0.3672	-0.2547	0.1905	0.4858	0.1211	Z
İ	27	32.6661	2.6027	-49.8884	32.2709	2.3488	-49.7202	0.3952	0.2539	0.1682	0.4989	0.1682	Z
[28	33.4632	6.5322	-50.0212	33.3664	6.4943	-49.9596	0.0968	0.0379	0.0616	0.1208	0.0616	Z
	29	34.0575	9.8337	-50.0816	33.9906	9.8248	-50.0223	0.0669	0.0089	0.0593	0.0898	0.0593	Z
	30	34.3295	13.8785	-50.1482	34.3013	13.8277	-50.0821	0.0282	0.0508	0.0661	0.0880	0.0661	Z
W E -	31 32	56.7419 53.2356	-11.5432	-32.4225 -34.7453	56.4199 52.8628	-11.8224	-32.2735 -34.6137	0.3220	-0.2792 -0.2733	0.1490	0.4515	0.3548	X, Z X, Z
In In	33	48.2719	-9.4665	-38.0930	47.9350	-9.6734	-37.9922	0.3369	-0.2069	0.1008	0.4080	0.3517	X, Z
A-PILLAR Maximum (X, Y, Z)	34	45.5134	-8.5680	-40.1334	45.1790	-8.7911	-40.0303	0.3344	-0.2231	0.1031	0.4150	0.3499	X, Z
4ãο [35	42.9333	-7.6164	-41.1921	42.6142	-7.8962	-41.0384	0.3191	-0.2798	0.1537	0.4514	0.3542	X, Z
	36	38.9530	-7.4338	-44.3218	38.6078	-7.6206	-44.2663	0.3452	-0.1868	0.0555	0.3964	0.3496	X, Z
~ ~	31	56.7419	-11.5432	-32.4225	56.4199	-11.8224	-32.2735	0.3220	-0.2792	0.1490	0.4515	-0.2792	Y
A-PILLAR Lateral (Y)	32 33	53.2356 48.2719	-11.0137 -9.4665	-34.7453 -38.0930	52.8628 47.9350	-11.2870 -9.6734	-34.6137 -37.9922	0.3728	-0.2733 -0.2069	0.1316	0.4806	-0.2733 -0.2069	Y
era	34	45.5134	-8.5680	-40.1334	45.1790	-8.7911	-40.0303	0.3344	-0.22009	0.1000	0.4150	-0.2231	Y
A-F Lat	35	42.9333	-7.6164	-41.1921	42.6142	-7.8962	-41.0384	0.3191	-0.2798	0.1537	0.4514	-0.2798	Y
	36	38.9530	-7.4338	-44.3218	38.6078	-7.6206	-44.2663	0.3452	-0.1868	0.0555	0.3964	-0.1868	Y
B-PILLAR Maximum (X, Y, Z)	37	13.5148	-8.9326	-41.3174	13.2057	-9.1013	-41.2239	0.3091	-0.1687	0.0935	0.3643	0.3229	X, Z
, X di L	38	13.6700	-12.1539	-29.5293	13.3703	-12.2560	-29.4106	0.2997	-0.1021	0.1187	0.3381	0.3224	X, Z
Xay	39 40	16.1331 17.0586	-8.8680 -12.0623	-41.5214 -30.3127	15.8095 16.7123	-9.0509	-41.3874 -30.2563	0.3236	-0.1829 -0.1154	0.1340	0.3951	0.3502	X, Z X, Z
	37	13.5148	-8.9326	-41.3174	13.2057	-9.1013	-41.2239	0.3403	-0.1687	0.0935	0.3643	-0.1687	Λ, Ζ Υ
LA LA	38	13.6700	-12.1539	-29.5293	13.3703	-12.2560	-29.4106	0.2997	-0.1007	0.1187	0.3381	-0.1007	Y
B-PILLAR Lateral (γ)	39	16.1331	-8.8680	-41.5214	15.8095	-9.0509	-41.3874	0.3236	-0.1829	0.1340	0.3951	-0.1829	Y
Гa	40	17.0586	-12.0623	-30.3127	16.7123	-12.1777	-30.2563	0.3463	-0.1154	0.0564	0.3694	-0.1154	Y
Positive va		e deformatio	on as inward	I toward the	occupant c	ompartment	, negative va	alues denot	e deformatio	ons outward	away from	the occupar	nt

Date: Year:		2018 112			Test Name: Make:		'BN-6 dge			VIN: Model:		D6KT3CS2 Ram 1500	
					VE		FORMATI	ON					
							RUSH - SE						
ſ		Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)		∆X ^A	ΔY ^A	ΔZ^{A}	Total ∆ (in.)	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	. <u>8 8</u>	. 8 8 .	(in.)	(in.)	(in.)	(in.)		(in.)	Crush ^c
-	1	52.5860	43.0028	-29.4979	52.3247	42.9684	-29.5932	0.2613	0.0344	-0.0953	0.2803	0.2803	X, Y, Z
DASH (X, Y, Z)	2 3	51.9065 48.7845	33.5082 19.7594	-29.9607 -30.5152	51.7218 48.6928	33.5027 19.7961	-29.9477 -30.4853	0.1847	0.0055	0.0130	0.1852	0.1852 0.1032	X, Y, Z X, Y, Z
AS.	4	50.3494	44.9337	-22.7479	50.0770	44.9369	-22.9491	0.2724	-0.00307	-0.2012	0.3387	0.3387	X, Y, Z
^D ×	5	49.8312	37.1251	-22.7802	49.6376	37.2022	-22.8562	0.1936	-0.0771	-0.0760	0.2218	0.2218	X, Y, Z
	6	46.4493	19.2718	-24.1676	46.3659	19.2834	-24.1782	0.0834	-0.0116	-0.0106	0.0849	0.0849	X, Y, Z
	7	62.8561	51.4393	-8.9594	62.5911	51.5493	-9.0916	0.2650	-0.1100	-0.1322	0.3159	-0.1100	Y
PANEL (3)	8	58.1664	51.2466	-8.4610	57.9087	51.3269	-8.5812	0.2577	-0.0803	-0.1202	0.2955	-0.0803	Y
0 4	9	58.1975	51.0814	-1.3130	57.9023	51.2064	-1.5173	0.2952	-0.1250	-0.2043	0.3801	-0.1250	Y
ш	10	49.4748	53.7802	-19.7032	49.0957	53.6656	-20.0534	0.3791	0.1146	-0.3502	0.5287	0.1146	Y
IMPACT SIDE DOOR (Y)	11	40.2514	54.6368	-19.0463	39.8262	54.8165	-19.1553	0.4252	-0.1797	-0.1090	0.4743	-0.1797	Y
ACT SII	12	29.5072	54.4164	-19.6013	29.0116	54.4688	-19.6579	0.4956	-0.0524	-0.0566	0.5016	-0.0524	Y
XA V	13	44.2760	54.1459	-2.7602	43.7977	54.2134	-2.9253	0.4783	-0.0675	-0.1651	0.5105	-0.0675	Y Y
¥ I	14 15	38.1782 28.2765	54.1679 53.7721	-2.2604 -3.7007	37.7117 27.8241	54.2096 53.7373	-2.3970 -3.8322	0.4665	-0.0417 0.0348	-0.1366 -0.1315	0.4879	-0.0417 0.0348	Y
	16	41.5955	41.8183	-46.0507	41.6463	41.6239	-46.0099	-0.0508	0.1944	0.0408	0.2050	0.0408	Z
-	17	42.6064	38.9889	-46.1456	42.7045	38.7961	-46.0633	-0.0981	0.1944	0.0823	0.2000	0.0400	Z
-	18	43.3676	36.1057	-46.2631	43.4072	35.9102	-46.1946	-0.0396	0.1955	0.0685	0.2109	0.0685	Z
	19	44.0558	32.3430	-46.4010	44.1757	32.1037	-46.2693	-0.1199	0.2393	0.1317	0.2983	0.1317	Z
ľ	20	44.7225	28.5673	-46.4196	44.7518	28.4558	-46.3459	-0.0293	0.1115	0.0737	0.1368	0.0737	Z
Ñ	21	35.9829	40.6830	-48.7340	35.9094	40.7131	-48.7653	0.0735	-0.0301	-0.0313	0.0854	-0.0313	Z
	22	36.7995	37.8619	-48.8659	36.7546	37.8792	-48.8868	0.0449	-0.0173	-0.0209	0.0525	-0.0209	Z
ROOF - (Z)	23	37.2793	35.5972	-48.9747	37.1945	35.5507	-49.0098	0.0848	0.0465	-0.0351	0.1029	-0.0351	Z
8	24 25	38.0984 38.5204	31.6071 28.9102	-49.0963 -49.1559	38.0994 38.5188	31.5873 28.8350	-49.0920 -49.1447	-0.0010 0.0016	0.0198	0.0043	0.0203	0.0043	ZZ
	26	33.8678	40.1081	-49.2000	33.7568	40.1378	-49.2376	0.1110	-0.0297	-0.0376	0.1209	-0.0376	Z
	27	34.7798	37.4822	-49.3035	34.5957	37.4723	-49.3544	0.1841	0.0099	-0.0509	0.1913	-0.0509	Z
	28	35.4690	35.3005	-49.3658	35.3206	35.2903	-49.4081	0.1484	0.0102	-0.0423	0.1546	-0.0423	Z
[29	36.4029	31.4863	-49.4524	36.2968	31.4672	-49.4680	0.1061	0.0191	-0.0156	0.1089	-0.0156	Z
	30	36.8465	28.9822	-49.4937	36.7759	28.9663	-49.4928	0.0706	0.0159	0.0009	0.0724	0.0009	Z
	31	57.0404	49.9994	-31.9118	56.8111	49.9565	-32.0003	0.2293	0.0429	-0.0885	0.2495	0.2333	X, Y
A-PILLAR Maximum (X, Y, Z)	32	54.4434	49.4917	-33.9941	54.2238	49.3771	-34.1891	0.2196	0.1146	-0.1950	0.3152	0.2477	X, Y
∃.Ē≻	33 34	49.5183	47.9335	-37.4444	49.3502	47.8600	-37.5261	0.1681	0.0735	-0.0817	0.2008	0.1835	X, Y
A la	34	46.4281 43.3922	47.2231 46.0889	-39.5200 -41.1132	46.2442 43.1954	47.0885 45.9755	-39.6562 -41.2023	0.1839 0.1968	0.1346	-0.1362 -0.0891	0.2655	0.2279	X, Y X, Y
~ -	36	39.7598	46.1985	-43.9082	39.5209	46.1337	-43.9472	0.2389	0.0648	-0.0390	0.2440	0.2271	X, Y
	31	57.0404	49.9994	-31.9118	56.8111	49.9565	-32.0003	0.2293	0.0429	-0.0885	0.2495	0.0429	Y
22	32	54.4434	49.4917	-33.9941	54.2238	49.3771	-34.1891	0.2196	0.1146	-0.1950	0.3152	0.1146	Ý
A-PILLAR Lateral (Y)	33	49.5183	47.9335	-37.4444	49.3502	47.8600	-37.5261	0.1681	0.0735	-0.0817	0.2008	0.0735	Y
ter	34	46.4281	47.2231	-39.5200	46.2442	47.0885	-39.6562	0.1839	0.1346	-0.1362	0.2655	0.1346	Y
- P	35	43.3922	46.0889	-41.1132	43.1954	45.9755	-41.2023	0.1968	0.1134	-0.0891	0.2440	0.1134	Y
	36	39.7598	46.1985	-43.9082	39.5209	46.1337	-43.9472	0.2389	0.0648	-0.0390	0.2506	0.0648	Y
AA HIN	37	16.8992	47.5818	-42.5367	16.7798	47.3791	-42.6260	0.1194	0.2027	-0.0893	0.2516	0.2353	X, Y
B-PILLAR Maximum (X, Y, Z)	38	13.9882	47.6484	-42.5190	13.9614	47.4147	-42.5767	0.0268	0.2337	-0.0577	0.2422	0.2352	X, Y
A â y	39 40	19.1057 15.2529	51.5191	-24.4399 -23.9960	18.9857 14.9308	51.3543 51.2377	-24.5747 -24.4647	0.1200	0.1648	-0.1348 -0.4687	0.2444	0.2039	X, Y X, Y
	37		51.5987			47.3791	-24.4647				0.6736		
PILLAR teral (Y)	3/	16.8992 13.9882	47.5818 47.6484	-42.5367 -42.5190	16.7798 13.9614	47.3791	-42.6260	0.1194	0.2027 0.2337	-0.0893 -0.0577	0.2516	0.2027	Y Y
era	39	19.1057	51.5191	-24.4399	18.9857	51.3543	-42.5767	0.0208	0.2337	-0.1348	0.2422	0.2337	Y
B-PILLAR Lateral (Υ)	40	15.2529	51.5987	-23.9960	14.9308	51.2377	-24.4647	0.3221	0.3610	-0.4687	0.6736	0.3610	Y
		e deformatio											

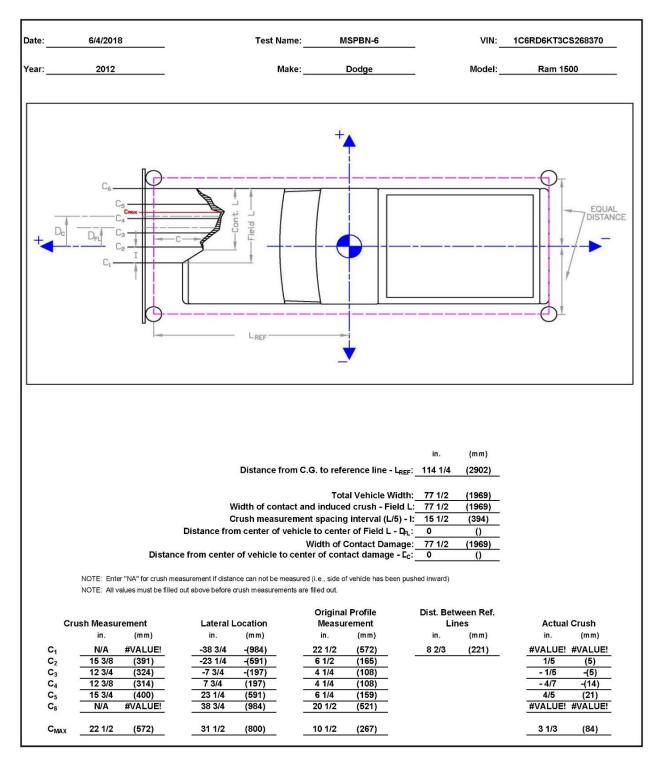


Figure D-30. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-6

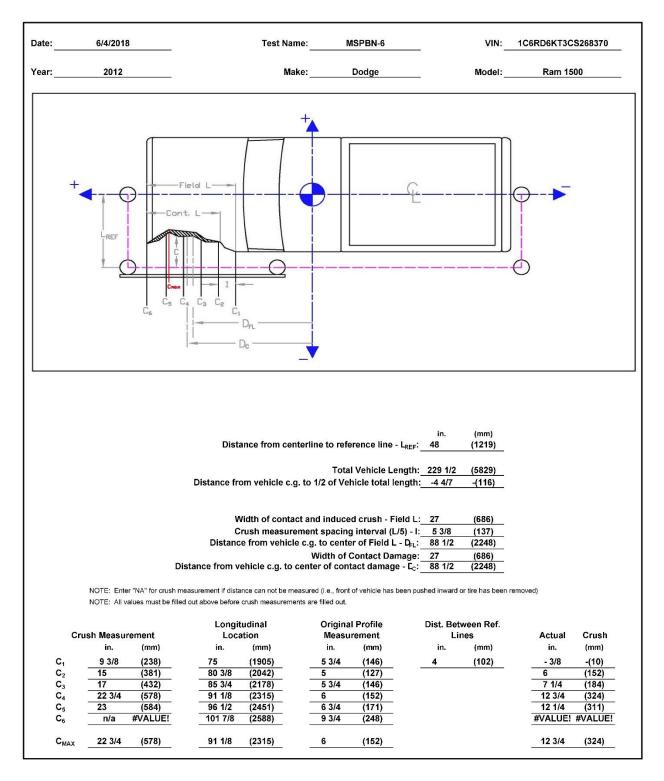


Figure D-31. Exterior Vehicle Crush (NASS) – Left Side, Test No. MSPBN-6

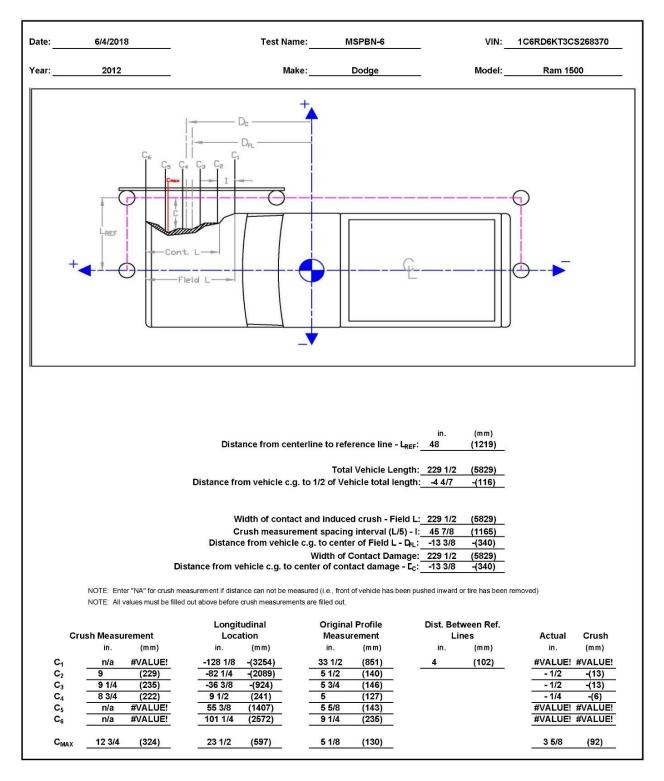


Figure D-32. Exterior Vehicle Crush (NASS) - Right Side, Test No. MSPBN-6

Date: Year:		2018 012	-		Test Name: Make:		PBN-7 e Ram			VIN: Model:		RD6KT4CS1 Ram 1500	
						EHICLE DE FLOOR PA							
[POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
ł	1	61,1514	-24.1341	-0.4119	61,1477	-23,9087	-0.4677	0.0037	0.2254	0.0558	0.2322	0.0559	X, Z
1	2	62.3793	-20.2369	0.6057	62.3808	-20.0260	0.5534	-0.0015	0.2204	0.0523	0.2322	0.0523	7, Z
1 . 1	3	62.3346	-16.4992	0.7675	62.3662	-16.2338	0.7259	-0.0316	0.2654	0.0323	0.2705	0.0416	Z
	4	62.1911	-11.9349	0.8477	62.2120	-11.7648	0.8086	-0.0209	0.1701	0.0391	0.1758	0.0391	Z
AND	5	61.4312	-7.4431	-0.0247	61.4316	-7.2037	-0.0535	-0.0004	0.2394	0.0381	0.1730	0.0288	Z
	6	58.0183	-24.1339	3.0556	57.9916	-23.8668	3.0109	0.0267	0.2671	0.0200	0.2721	0.0521	X, Z
1 ë 🖓 🖓 h	7	57.8702	-20.1740	3.1059	57.8451	-19.8511	3.1069	0.0251	0.3229	-0.0010	0.3239	0.0251	X
TOE PAN - WHEEL WELL (X, Z)	8	57.9804	-16.5164	3.0770	57.9006	-16.3302	3.0923	0.0231	0.1862	-0.0153	0.2032	0.0798	X
	9	58.0844	-12.0844	3.0398	58.0854	-11.8948	3.0135	-0.0010	0.1896	0.0263	0.2032	0.0263	Z
1 1	10	58.0778	-7.3657	3.0673	58.0846	-7.1439	3.0396	-0.0068	0.2218	0.0200	0.2236	0.0277	Z
+ i	11	53.0306	-24.1075	5.2257	53.0498	-23.8757	5.2057	-0.0192	0.2318	0.0200	0.2335	0.0200	Z
1 1	12	52.9676	-20.5753	5.2371	52.9634	-20.3722	5.2108	0.0042	0.2031	0.0263	0.2048	0.0263	Z
1 1	13	52.8463	-17.3266	5.2490	52.8593	-17.0998	5.2201	-0.0130	0.2001	0.0289	0.2290	0.0289	Z
1 1	14	52.9201	-12.6956	5.2679	52.8701	-12.3894	5.2376	0.0500	0.3062	0.0303	0.3117	0.0303	Z
1 1	15	53.0423	-7.6201	5.3030	53.0358	-7.4042	5.2699	0.0065	0.2159	0.0331	0.2185	0.0331	Z
1 1	16	49.1753	-23.9744	5.2625	49.1852	-23.8205	5.2427	-0.0099	0.1539	0.0198	0.1555	0.0198	Z
1 1	17	49.1906	-21.0772	5.2713	49.1949	-20.8311	5.2482	-0.0043	0.2461	0.0231	0.2472	0.0231	Z
	18	49.1063	-17.3353	5.2720	49.1463	-17.0752	5.2474	-0.0400	0.2601	0.0246	0.2643	0.0246	Z
FLOOR PAN (Z)	19	49.2076	-13.0781	5.2874	49.2397	-12.7857	5.2619	-0.0321	0.2924	0.0255	0.2953	0.0255	Z
1 2 2	20	49.1472	-7.6850	5.3200	49.1365	-7.4319	5.2984	0.0107	0.2531	0.0216	0.2542	0.0216	Z
j ŭ ⊡	21	44.9364	-24.3654	5.2703	44.9264	-24.1533	5.2216	0.0100	0.2121	0.0487	0.2178	0.0487	Z
	22	44.9358	-21.5493	5.2590	44.9618	-21.3436	5.2474	-0.0260	0.2057	0.0116	0.2077	0.0116	Z
1 ^m [23	44.9756	-17.3717	5.2686	44.9556	-17.1001	5.2528	0.0200	0.2716	0.0158	0.2728	0.0158	Z
I I	24	44.9955	-12.8678	5.2969	45.0761	-12.6373	5.2821	-0.0806	0.2305	0.0148	0.2446	0.0148	Z
l ſ	25	45.1927	-7.5153	5.3039	45.2366	-7.3139	5.2901	-0.0439	0.2014	0.0138	0.2066	0.0138	Z
1 [26	40.5602	-24.4533	5.2681	40.6562	-24.2433	5.2526	-0.0960	0.2100	0.0155	0.2314	0.0155	Z
1 [27	40.6470	-21.2828	5.2744	40.6242	-21.0541	5.2659	0.0228	0.2287	0.0085	0.2300	0.0085	Z
l ſ	28	40.6348	-17.4157	5.2606	40.6561	-17.1898	5.2532	-0.0213	0.2259	0.0074	0.2270	0.0074	Z
l ſ	29	40.6831	-12.8694	5.2875	40.6794	-12.6421	5.2754	0.0037	0.2273	0.0121	0.2277	0.0121	Z
	30	40.8836	-7.3101	5.2354	40.9128	-7.0518	5.2216	-0.0292	0.2583	0.0138	0.2603	0.0138	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

⁶ Drush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ⁶ Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

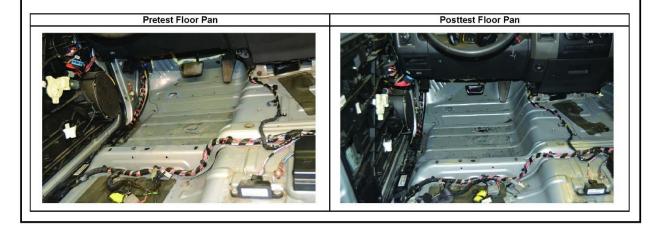


Figure D-33. Floor Pan Deformation Data - Set 1 Left, Test No. MSPBN-7

Pretest					FORMATIC	N					
- 10 (10 (10 (10 (10 (10 (10 (10 (10 (10					4N - SET T						Disastias
	Pretest Y	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directior for
NT (in.)	۲ (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	20.5795	-3.3578	62.2965	20.6160	-3.3728	-0.0107	-0.0365	0.0150	0.0409	0.0150	Z
	22.5526	-2.2597	63.5059	22.5703	-2.2968	0.0014	-0.0305	0.0150	0.0409	0.0150	X, Z
	25.5298	-1.3812	64.6503	25.5481	-1.3786	0.0014	-0.0177	-0.0026	0.0411	0.0128	X, Z
	28.7562	-1.5187	64.0797	28.8029	-1.4968	0.0483	-0.0103	-0.0219	0.0223	0.0483	X
	31.7697	-2.5620	62.8608	31.7982	-2.6074	-0.0201	-0.0285	0.0454	0.0572	0.0403	Z
	17.9298	-1.9242	56.5555	17.9175	-1.9246	0.0539	0.0123	0.0004	0.0553	0.0539	X, Z
	21.5077	0.7921	57.5985	21.5228	0.8189	0.0401	-0.0151	-0.0268	0.0505	0.0401	X
	23.5694	2.5542	58.4490	23.5773	2.5352	-0.0324	-0.0079	0.0190	0.0384	0.0190	Z
	26.4476	2.7685	58.1267	26.4543	2.7577	-0.0204	-0.0067	0.0108	0.0240	0.0108	Z
	31.6476	2.7937	58.0372	31.6728	2.8111	0.0234	-0.0252	-0.0174	0.0385	0.0234	X
1 53.3481	16.4107	-0.6646	53.3547	16.4304	-0.6793	-0.0066	-0.0197	0.0147	0.0255	0.0147	Z
	20.3754	2.1334	54.0824	20.3560	2.1126	0.0212	0.0194	0.0208	0.0355	0.0208	Z
	23.2082	4.5683	54.9112	23.2619	4.5759	0.0065	-0.0537	-0.0076	0.0546	-0.0076	Z
	27.8453	4.5990	54.8840	27.7974	4.5926	-0.0133	0.0479	0.0064	0.0501	0.0064	Z
	31.6974	4.4866	54.5611	31.7368	4.5147	0.0479	-0.0394	-0.0281	0.0681	-0.0281	Z
	15.6792	1.4280	50.2138	15.6665	1.4172	0.0270	0.0127	0.0108	0.0317	0.0108	Z
	18.0137	3.4462	51.0155	18.0375	3.4981	0.0162	-0.0238	-0.0519	0.0594	-0.0519	Z
	21.2862	5.2573	51.3513	21.3386	5.2659	-0.0071	-0.0524	-0.0086	0.0536	-0.0086	Z
	25.6364	5.3174	51.1961	25.6021	5.3249	0.0117	0.0343	-0.0075	0.0370	-0.0075	Z
	30.4290	5.3252	50.9991	30.4200	5.3342	0.0609	0.0090	-0.0090	0.0622	-0.0090	Z
	14.1858	2.2075	46.4882	14.1876	2.2111	0.0330	-0.0018	-0.0036	0.0332	-0.0036	Z
	16.8449	5.2597	47.1214	16.8694	5.2688	0.0282	-0.0245	-0.0091	0.0384	-0.0091	Z
	24.4241	5.3489	46.8644	24.4398	5.3628	0.0579	-0.0157	-0.0139	0.0616	-0.0139	Z
	28.4278	5.3339	47.2794	28.4533	5.3440	0.0408	-0.0255	-0.0101	0.0492	-0.0101	Z
											Z
											Z
											Z
											Z
											Z
5 47. 5 42. 7 43. 3 43. 9 43.	1715 4702 8181 8224 8375	171532.2016470213.9918818116.8874822422.1266837527.1694	1715 32.2016 5.3449 4702 13.9918 1.5756 8181 16.8874 5.1100 8224 22.1266 5.1021 8375 27.1694 5.1070	1715 32.2016 5.3449 47.1471 4702 13.9918 1.5756 42.5083 8181 16.8874 5.1100 43.8103 8224 22.1266 5.1021 43.8371 8375 27.1694 5.1070 43.7657	1715 32.2016 5.3449 47.1471 32.2313 4702 13.9918 1.5756 42.5083 14.2892 8181 16.8874 5.1100 43.8103 16.9704 8224 22.1266 5.1021 43.8371 22.1630 8375 27.1694 5.1070 43.7657 27.1902	1715 32.2016 5.3449 47.1471 32.2313 5.3539 4702 13.9918 1.5756 42.5083 14.2892 2.5284 8181 16.8874 5.1100 43.8103 16.9704 5.1107 8224 22.1266 5.1021 43.8371 22.1630 5.1050 8375 27.1694 5.1070 43.7657 27.1902 5.1139	1715 32.2016 5.3449 47.1471 32.2313 5.3539 0.0244 4702 13.9918 1.5756 42.5083 14.2892 2.5284 -0.0381 8181 16.8874 5.1100 43.8103 16.9704 5.1107 0.0078 8224 22.1266 5.1021 43.8371 22.1630 5.1050 -0.0147 8375 27.1694 5.1070 43.7657 27.1902 5.1139 0.0718	1715 32.2016 5.3449 47.1471 32.2313 5.3539 0.0244 -0.0297 4702 13.9918 1.5756 42.5083 14.2892 2.5284 -0.0381 -0.2974 8181 16.8874 5.1100 43.8103 16.9704 5.1107 0.0078 -0.0384 8224 22.1266 5.1021 43.8371 22.1630 5.1050 -0.0147 -0.0364 8375 27.1694 5.1070 43.7657 27.1902 5.1139 0.0718 -0.0284	1715 32.2016 5.3449 47.1471 32.2313 5.3539 0.0244 -0.0297 -0.0090 4702 13.9918 1.5756 42.5083 14.2892 2.5284 -0.0381 -0.2974 -0.9528 8181 16.8874 5.1100 43.8103 16.9704 5.1107 0.0078 -0.0380 -0.0029 8224 22.1266 5.1021 43.8371 22.1630 5.1050 -0.0147 -0.0364 -0.0298 8375 27.1694 5.1070 43.7657 27.1902 5.1139 0.0718 -0.0264 -0.0069	1715 32.2016 5.3449 47.1471 32.2313 5.3539 0.0244 -0.0297 -0.0090 0.0395 4702 13.9918 1.5756 42.5083 14.2892 2.5284 -0.0381 -0.2974 -0.9528 0.9989 8181 16.8874 5.1100 43.8103 16.9704 5.1107 0.0078 -0.0830 -0.0007 0.0834 8224 22.1266 5.1021 43.8371 22.1630 5.1050 -0.0147 -0.0364 -0.0029 0.0394 8375 27.1694 5.1070 43.7657 27.1902 5.1139 0.0718 -0.0208 -0.0069 0.0751	1715 32.2016 5.3449 47.1471 32.2313 5.3539 0.0244 -0.0297 -0.0090 0.0395 -0.0090 4702 13.9918 1.5756 42.5083 14.2892 2.5284 -0.0381 -0.2974 -0.9528 0.9889 -0.9528 8181 16.8874 5.1100 43.8103 16.9704 5.1107 0.0078 -0.0830 -0.0007 0.0834 -0.0007 8224 22.1266 5.1021 43.8371 22.1630 5.1050 -0.0147 -0.0364 -0.0029 0.0394 -0.0029 8375 27.1694 5.1070 43.7657 27.1902 5.1139 0.0718 -0.0268 -0.0069 0.0751 -0.0069

Figure D-34. Floor Pan Deformation Data – Set 1 Right, Test No. MSPBN-7

		012			Test Name: Make:		PBN-7 e Ram			VIN: Model:		D6KT4CS1 Ram 1500	37040
					VE		FORMATIC						
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	∠ (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^c
	1	63.0297	-8.1096	-4.5702	63.0761	-8.1264	-4.5531	-0.0464	-0.0168	-0.0171	0.0522	0.0000	NA
	2	64.2948	-4.2299	-3.5318	64.3446 64.3692	-4.2615	-3.5080	-0.0498	-0.0316	-0.0238	0.0636	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	3	64.2887 64.1926	-0.4927 4.0725	-3.3541 -3.2548	64.3692	-0.4701 3.9999	-3.3186 -3.2165	-0.0805	0.0226	-0.0355 -0.0383	0.0908	0.0000	NA NA
N N N	5	63.4826	8.5757	-4.1104	63.5341	8.5728	-4.0621	-0.0515	0.0029	-0.0483	0.0707	0.0000	NA
ы Ш Ц Х	6	59.8850	-8.0914	-1.1133	59.9022	-8.0665	-1.0909	-0.0172	0.0249	-0.0224	0.0377	0.0000	NA
P불	7	59.7782	-4.1304	-1.0464	59.7977	-4.0499	-0.9775	-0.0195	0.0805	-0.0689	0.1077	0.0000	NA
>	8	59.9267 60.0772	-0.4741 3.9567	-1.0592	59.8904 60.1224	-0.5298 3.9037	-0.9760 -1.0338	0.0363	-0.0557 0.0530	-0.0832 -0.0433	0.1065	0.0363	X NA
	10	60.1197	8.6750	-1.0294	60.1717	8.6541	-0.9864	-0.0520	0.0209	-0.0430	0.0706	0.0000	NA
	11	54.8905	-8.0221	1.0402	54.9491	-8.0330	1.0779	-0.0586	-0.0109	-0.0377	0.0705	-0.0377	Z
	12	54.8644	-4.4895	1.0666	54.8997	-4.5287	1.0984	-0.0353	-0.0392	-0.0318	0.0616	-0.0318	Z
	13	54.7771	-1.2398	1.0920	54.8301	-1.2555	1.1219	-0.0530	-0.0157	-0.0299	0.0628	-0.0299	Z
	14 15	54.8992 55.0744	3.3901 8.4638	1.1311 1.1883	54.8905 55.1087	3.4544 8.4373	1.1607 1.2163	0.0087	-0.0643 0.0265	-0.0296 -0.0280	0.0713	-0.0296 -0.0280	Z
	16	51.0367	-7.8488	1.0646	51.0851	-7.9370	1.0950	-0.0343	-0.0882	-0.0280	0.1051	-0.0280	Z
	17	51.0822	-4.9520	1.0859	51.1264	-4.9479	1.1140	-0.0442	0.0041	-0.0281	0.0525	-0.0281	Z
z	18	51.0371	-1.2094	1.1024	51.1174	-1.1917	1.1299	-0.0803	0.0177	-0.0275	0.0867	-0.0275	Z
FLOOR PAN (Z)	19	51.1828	3.0464	1.1365	51.2561	3.0964	1.1642	-0.0733	-0.0500	-0.0277	0.0930	-0.0277	Z
R (Z)	20 21	51.1787 46.7940	8.4397 -8.1955	1.1921	51.2092 46.8232	8.4508 -8.2246	1.2243	-0.0305	-0.0111 -0.0291	-0.0322 0.0065	0.0457	-0.0322 0.0065	Z
ŏ	22	46.8228	-5.3794	1.0574	46.8882	-5.4156	1.0888	-0.0292	-0.0291	-0.0314	0.0417	-0.0314	Z
Ē	23	46.9063	-1.2026	1.0851	46.9268	-1.1723	1.1133	-0.0205	0.0303	-0.0282	0.0462	-0.0282	Z
	24	46.9731	3.3008	1.1328	47.0942	3.2888	1.1633	-0.1211	0.0120	-0.0305	0.1255	-0.0305	Z
	25	47.2263	8.6507	1.1634	47.3109	8.6101	1.1962	-0.0846	0.0406	-0.0328	0.0994	-0.0328	Z
	26 27	42.4172 42.5371	-8.2374 -5.0682	1.0394	42.5522 42.5538	-8.2695 -5.0803	1.0583 1.0858	-0.1350	-0.0321 -0.0121	-0.0189 -0.0262	0.1400	-0.0189 -0.0262	Z
	28	42.5654	-1.2011	1.0623	42.6266	-1.2165	1.0907	-0.0612	-0.0121	-0.0202	0.0692	-0.0284	Z
	29	42.6611	3.3443	1.1089	42.6978	3.3306	1.1335	-0.0367	0.0137	-0.0246	0.0463	-0.0246	Z
	30	42.9198	8.9014	1.0814	42.9905	8.9183	1.1062	-0.0707	-0.0169	-0.0248	0.0768	-0.0248	Z
eforming	inward towa	rd the occup blumn denote	ant compart	ment. ections are i			nents that an culations. If		o intrusion i		and Crush v		ponent is
113	Lo				1			211.0				-	a con
				FU								and a start	

Figure D-35. Floor Pan Deformation Data – Set 2 Left, Test No. MSPBN-7

							FORMATIC AN - SET 2						
I		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
		Х	Y	Z	(in.)	(in.)	(in.)	∆X (in.)	(in.)	(in.)	(in.)	(in.)	for
	POINT	(in.)	(in.)	(in.)	2 12		3. 5	0.82 500		• •			Crush
	1	64.6460	36.3491	-7.5100	64.4399	36.3970	-7.2481	0.2061	-0.0479	-0.2619	0.3367	0.2061	Х
	2	65.8841	38.3037	-6.3974	65.6641	38.3333	-6.1565	0.2200	-0.0296	-0.2409	0.3276	0.2200	Х
	3	67.0683	41.2639	-5.4999	66.8350	41.2945	-5.2182	0.2333	-0.0306	-0.2817	0.3670	0.2333	Х
żΨ_	4	66.5687	44.4966	-5.6240	66.2993	44.5556	-5.3237	0.2694	-0.0590	-0.3003	0.4077	0.2694	Х
A > Q	5	65.3183	47.5288	-6.6579	65.1177	47.5688	-6.4262	0.2006	-0.0400	-0.2317	0.3091	0.2006	Х
TOE PAN - WHEEL WELL (X, Z)	6	58.9354	33.7542	-6.1124	58.6633	33.7522	-5.8422	0.2721	0.0020	-0.2702	0.3835	0.2721	Х
2 Å	7	59.9917	37.3077	-3.3747	59.7300	37.3333	-3.0762	0.2617	-0.0256	-0.2985	0.3978	0.2617	Х
5	8	60.7846	39.3524	-1.5995	60.5931	39.3707	-1.3457	0.1915	-0.0183	-0.2538	0.3185	0.1915	Х
	9	60.5044	42.2328	-1.3726	60.2999	42.2498	-1.1111	0.2045	-0.0170	-0.2615	0.3324	0.2045	Х
	10	60.5148	47.4328	-1.3224	60.2650	47.4687	-1.0333	0.2498	-0.0359	-0.2891	0.3838	0.2498	Х
	11	55.6526	32.2645	-4.8734	55.4406	32.2931	-4.6204	0.2120	-0.0286	-0.2530	0.3313	-0.2530	Z
	12	56.4391	36.2073	-2.0532	56.1951	36.1976	-1.8061	0.2440	0.0097	-0.2471	0.3474	-0.2471	Z
	13	57.2735	39.0194	0.3986	57.0416	39.0829	0.6752	0.2319	-0.0635	-0.2766	0.3665	-0.2766	Z
	14	57.2765	43.6566	0.4515	57.0621	43.6183	0.7135	0.2144	0.0383	-0.2620	0.3407	-0.2620	Z
	15	57.0569	47.5117	0.3567	56.7810	47.5612	0.6528	0.2759	-0.0495	-0.2961	0.4077	-0.2961	Z
	16	52.5288	31.5567	-2.7971	52.2811	31.5524	-2.5438	0.2477	0.0043	-0.2533	0.3543	-0.2533	Z
	17	53.3364	33.8727	-0.7644	53.0968	33.9050	-0.4475	0.2396	-0.0323	-0.3169	0.3986	-0.3169	Z
~	18	53.6766	37.1330	1.0637	53.4582	37.1940	1.3378	0.2184	-0.0610	-0.2741	0.3557	-0.2741	Z
AL V	19	53.5870	41.4840	1.1443	53.3475	41.4585	1.4164	0.2395	0.0255	-0.2721	0.3634	-0.2721	Z
NA F	20	53.4909	46.2778	1.1746	53.2012	46.2782	1.4477	0.2897	-0.0004	-0.2731	0.3981	-0.2731	Z
Q C	21	48.7901	30.0998	-2.0400	48.5360	30.1091	-1.7761	0.2541	-0.0093	-0.2639	0.3665	-0.2639	Z
FLOOR PAN (Z)	22	49.4343	32.7374	1.0276	49.1816	32.7697	1.2976	0.2527	-0.0323	-0.2700	0.3712	-0.2700	Z
۳ I	23	49.2885	40.3181	1.1525	49.0037	40.3418	1.4265	0.2848	-0.0237	-0.2740	0.3959	-0.2740	Z
	24	49.7297	44.3172	1.1584	49.4610	44.3507	1.4290	0.2687	-0.0335	-0.2706	0.3828	-0.2706	Z
	25	49.6217	48.0923	1.1870	49.3683	48.1298	1.4563	0.2534	-0.0375	-0.2693	0.3717	-0.2693	Z
	26	44.7399	29.9526	-2.6893	44.5558	30.2512	-1.4787	0.1841	-0.2986	-1.2106	1.2604	-1.2106	Z
	27	46.1042	32.8166	0.8645	45.8726	32.9063	1.1230	0.2316	-0.0897	-0.2585	0.3585	-0.2585	Z
	28	46.1651	38.0554	0.8820	45.9540	38.0982	1.1423	0.2111	-0.0428	-0.2603	0.3379	-0.2603	Z
	29	46.2346	43.0977	0.9113	45.9354	43.1258	1.1748	0.2992	-0.0281	-0.2635	0.3997	-0.2635	Z
	30	46.2521	47.7381	0.9497	45.9907	47.7475	1.2117	0.2614	-0.0094	-0.2620	0.3702	-0.2620	Z

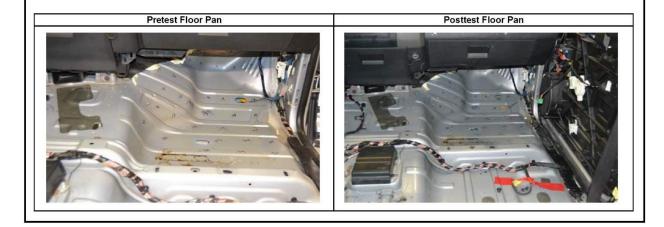
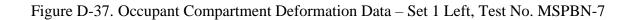
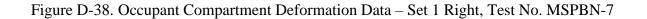
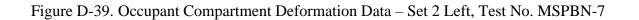
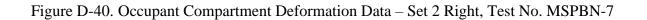




Figure D-36. Floor Pan Deformation Data – Set 2 Right, Test No. MSPBN-7


Date: Year:	6/5/2 20	12			Test Name: Make:		BN-7 e Ram			VIN: Model:	1C6R	D6KT4CS1 Ram 1500	
					VE	HICLE DE	FORMATI	ON					
							RUSH - SE						
[· ••••••••••••••••••••••••••••••••••••	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	POINT	(in.)	(in.)	(in.)		(1.6)(1100-00	100000	1.2.1.1.1.2				Crush ^C
	1	44.9831	5.5266	-26.5238	45.0258	5.7871	-26.5660	-0.0427	-0.2605	-0.0422	0.2673	0.2673	X, Y, Z
цÑ	2	46.6154 46.9769	-9.3183 -19.4522	-28.7516 -28.5658	46.6123 46.9987	-9.0450 -19.2020	-28.7283 -28.6026	0.0031	0.2733	0.0233	0.2743	0.2743	X, Y, Z X, Y, Z
DASH (X, Y, Z)	4	44.6216	-7.8615	-14.3818	44.6581	-7.6467	-14.3299	-0.0365	0.2148	0.0519	0.2240	0.2240	X, Y, Z
1 × 1	5	44.0494	-14.1556	-14.0511	44.0079	-13.9249	-14.1141	0.0415	0.2307	-0.0630	0.2427	0.2427	X, Y, Z
	6	46.0060	-20.7610	-13.5103	46.0450	-20.5706	-13.4308	-0.0390	0.1904	0.0795	0.2100	0.2100	X, Y, Z
ч ц	7	54.2184	-27.8335	-5.9384	54.2972	-27.5717	-5.8686	-0.0788	0.2618	0.0698	0.2822	0.2618	Y
SIDE PANEL ()	8	58.7627	-27.7161	-3.1266	58.7556	-27.4587	-3.0956	0.0071	0.2574	0.0310	0.2594	0.2574	Y
	9 10	54.2708 23.4286	-27.8329	-1.5579 -19.5828	54.2554 23.4207	-27.5677	-1.5689 -19.5903	0.0154	0.2652	-0.0110 -0.0075	0.2659	0.2652	Y
IMPACT SIDE DOOR (Y)	10	33.5914	-29.9422	-19.5626	33.6375	-29.6311	-19.5903	-0.0461	0.0845	-0.0128	0.0652	0.0645	Y
OR	12	43.5261	-29.8027	-19.7519	43.5276	-29.5693	-19.8434	-0.0015	0.2334	-0.0915	0.2507	0.2334	Ý
JOG	13	23.5246	-30.2343	-0.9106	23.5349	-29.8611	-0.8476	-0.0103	0.3732	0.0630	0.3786	0.3732	Y
AP.	14	33.2524	-30.6321	-0.4932	33.2924	-30.2284	-0.4121	-0.0400	0.4037	0.0811	0.4137	0.4037	Y
=	15	39.9405	-30.9244	-0.7490	39.9501	-30.5197	-0.7336	-0.0096	0.4047	0.0154	0.4051	0.4047	Y
	16	38.0400	-17.2324	-42.2507	38.1502	-17.0286	-42.1767	-0.1102	0.2038	0.0740	0.2432	0.0740	Z
-	17 18	39.2694 40.2936	-12.8553 -7.1262	-42.3911 -42.5303	39.3564 40.3600	-12.6946 -6.9588	-42.3222 -42.4720	-0.0870 -0.0664	0.1607	0.0689	0.1953 0.1893	0.0689	Z
	19	40.2330	-2.1702	-42.5759	40.8333	-1.9003	-42.5541	-0.0035	0.2699	0.0218	0.2708	0.0303	Z
	20	41.0165	2.7674	-42.6146	41.0052	3.0354	-42.6028	0.0113	-0.2680	0.0118	0.2685	0.0118	z
ត	21	34.0904	-16.5230	-42.9703	34.1371	-16.2761	-42.9390	-0.0467	0.2469	0.0313	0.2532	0.0313	Z
	22	34.9987	-12.5682	-43.2236	35.0704	-12.4152	-43.1716	-0.0717	0.1530	0.0520	0.1768	0.0520	Z
R00F - (Z)	23	36.1832	-7.1838	-43.3469	36.1952	-6.9078	-43.3233	-0.0120	0.2760	0.0236	0.2773	0.0236	Z
S S	24 25	36.7250 36.8509	-2.0878 2.5116	-43.4207 -43.4850	36.7632 36.8512	-1.8861 2.7570	-43.3886 -43.4703	-0.0382 -0.0003	0.2017	0.0321 0.0147	0.2078 0.2458	0.0321	Z
	26	31.5900	-16.0166	-45.1181	31.6416	-15.8152	-45.0862	-0.0516	0.2014	0.0319	0.2103	0.0319	Z
	27	31.9692	-11.8469	-45.4042	32.0562	-11.6066	-45.3703	-0.0870	0.2403	0.0339	0.2578	0.0339	Z
	28	32.7881	-6.9448	-45.5496	32.8383	-6.6654	-45.5246	-0.0502	0.2794	0.0250	0.2850	0.0250	Z
	29	33.1773	-1.9541	-45.6587	33.2213	-1.6543	-45.6340	-0.0440	0.2998	0.0247	0.3040	0.0247	Z
	30	33.4977	2.5682	-45.6611	33.5484	2.8746	-45.6367	-0.0507	-0.3064	0.0244	0.3115	0.0244	Z
~	31 32	51.3103 49.6893	-26.1356 -25.7440	-29.5199 -30.8540	51.2953 49.6854	-25.8871 -25.5201	-29.5691 -30.8642	0.0150 0.0039	0.2485	-0.0492 -0.0102	0.2538	0.2490	X, Y X, Y
LAF	33	46.5848	-24.0664	-32.4533	46.5935	-23.8251	-32.4813	-0.0087	0.2413	-0.0280	0.2431	0.2413	Y
A-PILLAR Maximum (X, Y, Z)	34	42.8569	-23.4668	-35.6711	42.9290	-23.1839	-35.7199	-0.0721	0.2829	-0.0488	0.2960	0.2829	Y
₹₹°	35	39.7680	-22.5235	-37.0366	39.8191	-22.2207	-37.1039	-0.0511	0.3028	-0.0673	0.3144	0.3028	Y
	36	35.5165	-22.5125	-40.1937	35.5570	-22.2640	-40.2054	-0.0405	0.2485	-0.0117	0.2521	0.2485	Y
	31	51.3103	-26.1356	-29.5199	51.2953	-25.8871	-29.5691	0.0150	0.2485	-0.0492	0.2538	0.2485	Y
A-PILLAR Lateral (Y)	32 33	49.6893 46.5848	-25.7440 -24.0664	-30.8540 -32.4533	49.6854 46.5935	-25.5201 -23.8251	-30.8642 -32.4813	0.0039	0.2239 0.2413	-0.0102 -0.0280	0.2242 0.2431	0.2239 0.2413	Y
era	34	42.8569	-23.4668	-35.6711	42.9290	-23.1839	-35.7199	-0.0721	0.2413	-0.0288	0.2960	0.2413	Y
Lat	35	39.7680	-22.5235	-37.0366	39.8191	-22.2207	-37.1039	-0.0511	0.3028	-0.0673	0.3144	0.3028	Ý
	36	35.5165	-22.5125	-40.1937	35.5570	-22.2640	-40.2054	-0.0405	0.2485	-0.0117	0.2521	0.2485	Y
um Z)	37	9.8420	-23.4450	-39.7915	9.9195	-23.2081	-39.7694	-0.0775	0.2369	0.0221	0.2502	0.2379	Y, Z
1.5 .	38	12.6827	-23.3341	-40.0089	12.6858	-23.0897	-40.0173	-0.0031	0.2444	-0.0084	0.2446	0.2444	Y
Aax Max	39 40	10.4134	-27.0269	-29.2968	10.5387	-26.7727	-29.3489	-0.1253	0.2542	-0.0521	0.2882	0.2542	Y
	37	13.5797 9.8420	-26.8974 -23.4450	-29.6897 -39.7915	13.5962 9.9195	-26.6514	-29.7133 -39.7694	-0.0165	0.2460	-0.0236	0.2477	0.2460	Y
B-PILLAR Lateral (Υ)	37	9.6420	-23.3341	-40.0089	12.6858	-23.0897	-39.7694	-0.0031	0.2369	-0.0084	0.2502	0.2369	Y
tera	39	10.4134	-27.0269	-29.2968	10.5387	-26.7727	-29.3489	-0.1253	0.2542	-0.0521	0.2882	0.2542	Y
Lat Lat	40	13.5797	-26.8974	-29.6897	13.5962	-26.6514	-29.7133	-0.0165	0.2460	-0.0236	0.2477	0.2460	Y
Positive va		e deformatio	on as inward	toward the	occupant c	ompartment	, negative v	alues denot	e deformatio	ons outward	away from	the occupa	nt


Date: Year:	6/5/2 20	12		19	Make:	Dodg	e Ram			Model:		Ram 1500	
					VE	HICLE DE	FORMATI	ON					
					IN	TERIOR CI	RUSH - SE	Т1					
	· 2002210052940	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction: for
	POINT	(in.)	(in.)	(in.)		· · ·	11000-000-		1.5.00				Crush ^C
	1	44.9375 47.5943	5.5485 14.4140	-26.4978 -25.9241	45.0291 47.6403	5.7733 14.7643	-26.5435 -25.9380	-0.0916 -0.0460	-0.2248 -0.3503	-0.0457 -0.0139	0.2470 0.3536	0.2470 0.3536	X, Y, Z X, Y, Z
DASH (X, Y, Z)	3	48.3278	25.8330	-25.8906	48.3199	26.1207	-25.8672	0.0079	-0.3303	0.0234	0.2888	0.3338	X, Y, Z
Z, ≺	4	42.2441	4.7982	-16.9774	42.2777	5.0041	-16.9673	-0.0336	-0.2059	0.0101	0.2089	0.2089	X, Y, Z
- 0	5	44.0565	14.6686	-15.9760	44.0727	14.8596	-15.9146	-0.0162	-0.1910	0.0614	0.2013	0.2013	X, Y, Z
	6	44.5504	25.6461	-16.0622	44.5488	25.9112	-15.9883	0.0016	-0.2651	0.0739	0.2752	0.2752	X, Y, Z
SIDE PANEL	7	58.6838 54.1841	36.8466 36.6212	-6.0891 -6.0202	58.7104 54.1628	37.1151 36.8938	-6.0840 -5.9580	-0.0266 0.0213	-0.2685 -0.2726	0.0051	0.2699 0.2804	-0.2685 -0.2726	Y
PAI	9	55.2543	36.5037	1.4510	55.2002	36.7658	1.5155	0.0541	-0.2621	0.0645	0.2753	-0.2621	Ý
	10	45.0572	38.6192	-19.7583	45.0268	38.8375	-19.7022	0.0304	-0.2183	0.0561	0.2274	-0.2183	Y
IMPACT SIDE DOOR (Y)	11	34.1834	38.4837	-18.7495	34.2021	38.7075	-18.7524	-0.0187	-0.2238	-0.0029	0.2246	-0.2238	Y
385	12	24.1068	38.4802	-19.5554	24.1397	38.6838	-19.4948	-0.0329	-0.2036	0.0606	0.2150	-0.2036	Y
A D O	13 14	38.3443 33.7403	39.7429 39.2512	-3.1773 0.7313	38.3565 33.6992	39.9757 39.4934	-3.0960 0.8543	-0.0122 0.0411	-0.2328 -0.2422	0.0813	0.2469 0.2747	-0.2328	Y Y
ž I	15	25.8772	38.6866	-0.6293	25.9917	38.9251	-0.5046	-0.1145	-0.2385	0.1230	0.2925	-0.2385	Ý
	16	41.0383	6.1361	-42.6750	41.1121	6.3079	-42.5472	-0.0738	-0.1718	0.1278	0.2265	0.1278	Z
	17	40.7537	12.6244	-42.5969	40.7367	12.7856	-42.5234	0.0170	-0.1612	0.0735	0.1780	0.0735	Z
	18	40.1163	17.0071	-42.5106	40.1816	17.1857	-42.4071	-0.0653	-0.1786	0.1035	0.2165	0.1035	Z
	19	39.2385	21.3792	-42.3598	39.2192	21.5594	-42.3055	0.0193	-0.1802	0.0543	0.1892	0.0543	Z
	20 21	38.3668 36.7417	24.8673 7.3150	-42.1449 -43.5399	38.3640 36.7928	25.0457 7.4428	-42.0919 -43.4296	0.0028	-0.1784 -0.1278	0.0530	0.1861 0.1764	0.0530	Z
R00F - (Z)	22	36.5466	12.5417	-43.3768	36.5665	12.7547	-43.2897	-0.0199	-0.2130	0.0871	0.2310	0.0871	Z
Ľ.	23	35.7312	16.7993	-43.3293	35.7461	17.0370	-43.2471	-0.0149	-0.2377	0.0822	0.2520	0.0822	Z
õ [24	34.9309	21.0342	-43.1365	34.9615	21.2365	-43.0641	-0.0306	-0.2023	0.0724	0.2170	0.0724	Z
	25 26	34.0046	24.6578 6.7670	-42.9066 -45.4805	34.0113 34.5721	24.8750	-42.8437 -45.3756	-0.0067	-0.2172	0.0629	0.2262	0.0629	Z
	26	34.5102 33.8205	11.9247	-45.4805	33.8272	6.8911 12.1016	-45.3756	-0.0019	-0.1241	0.1049	0.1739	0.1049	Z
	28	33.5282	16.2493	-45.3337	33.5712	16.4955	-45.2471	-0.0430	-0.2462	0.0866	0.2645	0.0866	Z
	29	32.6139	20.7093	-45.1914	32.6420	20.8552	-45.1243	-0.0281	-0.1459	0.0671	0.1630	0.0671	Z
	30	31.8984	24.5077	-44.9599	31.9253	24.7202	-44.8935	-0.0269	-0.2125	0.0664	0.2243	0.0664	Z
	31	52.2090	35.1726	-28.5567	52.3087	35.3542	-28.4719	-0.0997	-0.1816	0.0848	0.2239	0.0848	Z
A-PILLAR Maximum (X, Y, Z)	32 33	50.1895 46.8016	34.7098 33.1225	-30.2017 -31.9023	50.2751 46.8490	34.9111 33.2933	-30.0807 -31.8246	-0.0856 -0.0474	-0.2013 -0.1708	0.1210 0.0777	0.2500	0.1210 0.0777	Z Z
	33	44.0363	32.8412	-34.3499	44.0672	33.0277	-31.0240	-0.0309	-0.1865	0.0785	0.1933	0.0777	Z
A N N	35	40.0802	31.5647	-36.4148	40.1417	31.7451	-36.3293	-0.0615	-0.1804	0.0855	0.2089	0.0855	Z
	36	12.7163	31.8196	-39.6627	35.8895	31.6035	-39.5966	-23.1732	0.2161	0.0661	23.1743	0.2260	Y, Z
	31	52.2090	35.1726	-28.5567	52.3087	35.3542	-28.4719	-0.0997	-0.1816	0.0848	0.2239	-0.1816	Y
A-PILLAR Lateral (Υ)	32 33	50.1895 46.8016	34.7098 33.1225	-30.2017 -31.9023	50.2751 46.8490	34.9111 33.2933	-30.0807 -31.8246	-0.0856	-0.2013	0.1210	0.2500	-0.2013	Y
eral	33	46.8016	33.1225	-31.9023	46.8490	33.2933	-31.8246	-0.0474	-0.1708	0.0777	0.1935	-0.1708	Y
A-F Lat	35	40.0802	31.5647	-36.4148	40.1417	31.7451	-36.3293	-0.0615	-0.1804	0.0855	0.2089	-0.1804	Y
	36	12.7163	31.8196	-39.6627	35.8895	31.6035	-39.5966	-23.1732	0.2161	0.0661	23.1743	0.2161	Y
B-PILLAR Maximum (X, Y, Z)	37	12.7049	31.8159	-39.6734	12.7289	32.0516	-39.6393	-0.0240	-0.2357	0.0341	0.2394	0.0341	Z
B-PILLAR Maximum (X, Y, Z)	38	10.3654	32.1261	-39.5726	10.3638	32.3650	-39.5061	0.0016	-0.2389	0.0665	0.2480	0.0665	X, Z
S AB B	39 40	13.7533 10.6999	34.8662 35.3309	-31.2791 -29.5463	13.7506 10.6490	35.1084 35.5510	-31.1920 -29.4971	0.0027	-0.2422 -0.2201	0.0871	0.2574 0.2312	0.0871	X, Z X, Z
	37	12.7049	31.8159	-39.6734	12.7289	32.0516	-39.6393	-0.0240	-0.2357	0.0492	0.2312	-0.2357	7, Z
PILLAR teral (Y)	38	10.3654	32.1261	-39.5726	10.3638	32.3650	-39.5061	0.0016	-0.2389	0.0665	0.2480	-0.2389	Y
B-PILLAR Lateral (Y)	39	13.7533	34.8662	-31.2791	13.7506	35.1084	-31.1920	0.0027	-0.2422	0.0871	0.2574	-0.2422	Y
Ľа	40	10.6999	35.3309	-29.5463	10.6490	35.5510	-29.4971	0.0509	-0.2201	0.0492	0.2312	-0.2201	Y
Positive v ompartme		e deformatio	on as inward	I toward the	occupant c	ompartment	t, negative v	alues denote	e deformatio	ons outward	away from f	he occupar	nt

Γ													
Γ					VE		FORMATI	ON					
Γ							RUSH - SE						
		Pretest X	Pretest Y	Pretest Z	Posttest X		99 - 1923) (1933) (1933) (193	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	47.2746	21.8226	-30.6149	47.3465	22.0676	-30.6437	-0.0719	-0.2450	-0.0288	0.2570	0.2570	X, Y, Z
тŴ	2	48.7564 49.0092	6.9710 -3.1669	-32.9023 -32.7598	48.7821 49.0583	7.2282	-32.8605 -32.7751	-0.0257 -0.0491	-0.2572 0.2340	0.0418	0.2618	0.2618	X, Y, Z X, Y, Z
DASH (X, Y, Z)	4	46.7278	8.3862	-18.5332	46.7822	8.5888	-18.4647	-0.0544	-0.2026	0.0685	0.2207	0.2390	X, Y, Z
<u> </u>	5	46.0874	2.0972	-18.2322	46.0634	2.3171	-18.2775	0.0240	-0.2199	-0.0453	0.2258	0.2258	X, Y, Z
	6	47.9716	-4.5310	-17.7137	48.0258	-4.3530	-17.6132	-0.0542	0.1780	0.1005	0.2115	0.2115	X, Y, Z
빌린~-	7	56.0814	-11.7237	-10.1446	56.1699	-11.4736	-10.0454	-0.0885	0.2501	0.0992	0.2832	0.2501	Y
SIDE PANEL	8	60.6169 56.1184	-11.6671 -11.7428	-7.3166 -5.7639	60.6175 56.1100	-11.4201 -11.4866	-7.2533 -5.7460	-0.0006 0.0084	0.2470	0.0633	0.2550	0.2470	Y Y
	10	25.3191	-13.4441	-23.9048	25.3289	-13.3698	-23.9054	-0.0098	0.0743	-0.0006	0.0749	0.0743	Y
	11	35.4830	-13.3897	-23.8888	35.5475	-13.2535	-23.8871	-0.0645	0.1362	0.0017	0.1507	0.1362	Ý
IMPACT SIDE DOOR (Y)	12	45.4174	-13.5184	-24.0036	45.4386	-13.2977	-24.0733	-0.0212	0.2207	-0.0697	0.2324	0.2207	Y
Sec -	13	25.3463	-13.8187	-5.2339	25.3638	-13.4508	-5.1626	-0.0175	0.3679	0.0713	0.3752	0.3679	Y
MA I	14 15	35.0678 41.7533	-14.3221 -14.6847	-4.7844 -5.0184	35.1147 41.7702	-13.9254 -14.2872	-4.6878 -4.9827	-0.0469 -0.0169	0.3967 0.3975	0.0966	0.4110 0.3995	0.3967	Y Y
	16	40.1447	-0.7922	-46.4658	40.2912	-0.6087	-46.3769	-0.1465	0.3975	0.0337	0.3993	0.0889	Z
	17	41.4211	3.5721	-46.5826	41.5447	3.7126	-46.4996	-0.1236	-0.1405	0.0830	0.2047	0.0830	Z
	18	42.5068	9.2905	-46.6931	42.6108	9.4378	-46.6215	-0.1040	-0.1473	0.0716	0.1940	0.0716	Z
	19	43.0959	14.2407	-46.7150	43.1389	14.4912	-46.6808	-0.0430	-0.2505	0.0342	0.2565	0.0342	Z
_	20	43.3354	19.1761	-46.7313	43.3643	19.4249	-46.7084	-0.0289	-0.2488	0.0229	0.2515	0.0229	Z
Ñ	21 22	36.2054 37.1567	-0.0375 3.9084	-47.1959 -47.4286	36.2898 37.2656	0.1903	-47.1530 -47.3657	-0.0844 -0.1089	0.2278	0.0429	0.2467 0.1833	0.0429	Z
ROOF - (Z)	23	38.3989	9.2803	-47.5242	38.4504	9.5373	-47.4900	-0.0515	-0.2570	0.0342	0.2643	0.0342	Z
o L	24	38.9953	14.3705	-47.5737	39.0728	14.5528	-47.5322	-0.0775	-0.1823	0.0415	0.2024	0.0415	Z
<u>س</u>	25	39.1703	18.9686	-47.6173	39.2112	19.1950	-47.5944	-0.0409	-0.2264	0.0229	0.2312	0.0229	Z
-	26 27	33.7181 34.1427	0.5048 4.6715	-49.3501 -49.6166	33.8084 34.2696	0.6869 4.8919	-49.3086 -49.5737	-0.0903 -0.1269	-0.1821	0.0415	0.2075	0.0415	Z
	28	35.0143	9.5651	-49.7375	35.1057	9.8249	-49.7043	-0.0914	-0.2598	0.0332	0.2774	0.0332	Z
	29	35.4571	14.5519	-49.8233	35.5432	14.8320	-49.7915	-0.0861	-0.2801	0.0318	0.2948	0.0318	Z
	30	35.8256	19.0705	-49.8047	35.9191	19.3571	-49.7741	-0.0935	-0.2866	0.0306	0.3030	0.0306	Z
-	31	53.2745	-9.8919	-33.7283	53.2866	-9.6601	-33.7511	-0.0121	0.2318	-0.0228	0.2332	0.2318	Y
A-PILLAR Maximum (X, Y, Z)	32 33	51.6625 48.5816	-9.4773 -7.7597	-35.0663 -36.6689	51.6862 48.6197	-9.2704 -7.5355	-35.0514 -36.6744	-0.0237 -0.0381	0.2069	0.0149	0.2088	0.2074 0.2242	Y, Z Y
	34	44.8717	-7.1063	-39.8970	44.9760	-6.8415	-39.9257	-0.1043	0.2648	-0.0287	0.2860	0.2242	Y
4 N N	35	41.7978	-6.1241	-41.2690	41.8825	-5.8392	-41.3187	-0.0847	0.2849	-0.0497	0.3014	0.2849	Y
	36	37.5577	-6.0540	-44.4408	37.6334	-5.8237	-44.4382	-0.0757	0.2303	0.0026	0.2424	0.2303	Y, Z
III T	31	53.2745	-9.8919	-33.7283	53.2866	-9.6601	-33.7511	-0.0121	0.2318	-0.0228	0.2332	0.2318	Y
A-PILLAR Lateral (Y)	32 33	51.6625 48.5816	-9.4773 -7.7597	-35.0663 -36.6689	51.6862 48.6197	-9.2704 -7.5355	-35.0514 -36.6744	-0.0237	0.2069	0.0149	0.2088	0.2069	Y Y
era	33	46.5616	-7.1063	-30.0009	44.9760	-7.5355	-30.0744	-0.1043	0.2242	-0.0055	0.2275	0.2242	Y
A-F Lat	35	41.7978	-6.1241	-41.2690	41.8825	-5.8392	-41.3187	-0.0847	0.2849	-0.0497	0.3014	0.2849	Ý
	36	37.5577	-6.0540	-44.4408	37.6334	-5.8237	-44.4382	-0.0757	0.2303	0.0026	0.2424	0.2303	Y
AR HOL	37	11.8735	-6.7141	-44.1317	11.9855	-6.4925	-44.1133	-0.1120	0.2216	0.0184	0.2490	0.2224	Y, Z
그 흔 거	38	14.7160 12.3699	-6.6326 -10.3477	-44.3388 -33.6510	14.7540 12.5223	-6.4030 -10.1061	-44.3491 -33.7051	-0.0380	0.2296	-0.0103	0.2330	0.2296	Y Y
B-PILLAR Maximum (X, Y, Z)	39 40	12.3699	-10.3477	-33.6510	12.5223	-10.1061	-33.7051	-0.1524 -0.0436	0.2416	-0.0541	0.2907	0.2416	Y
	37	11.8735	-6.7141	-44.1317	11.9855	-6.4925	-44.1133	-0.1120	0.2216	0.0184	0.2490	0.2216	Y
PILLAR teral (Y)	38	14.7160	-6.6326	-44.3388	14.7540	-6.4030	-44.3491	-0.0380	0.2296	-0.0103	0.2330	0.2296	Y
	39	12.3699	-10.3477	-33.6510	12.5223	-10.1061	-33.7051	-0.1524	0.2416	-0.0541	0.2907	0.2416	Y
	40	15.5387	-10.2503	-34.0323	15.5823	-10.0163	-34.0561 t, negative v	-0.0436	0.2340	-0.0238	0.2392	0.2340	Y

Date: Year:	6/5/2 20	12			Test Name: Make:		BN-7 e Ram			VIN: Model:	106R	D6KT4CS1 Ram 1500	
					VE	HICLE DE	FORMATI	ON					
							RUSH - SE						
		Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A	ΔY ^A	ΔZ^{A}	Total ∆ (in.)	Crush ^B	Direction: for
	POINT	(in.)	(in.)	(in.)		(20)		(in.)	(in.)	(in.)		(in.)	Crush ^C
	1	47.2388	21.8758	-30.5602	47.0826	21.8210	-30.6103	0.1562	0.0548	-0.0501	0.1729	0.1729	X, Y, Z
тŃ	2	49.9888 50.8453	30.7085 42.1185	-29.9246 -29.8219	49.7962 50.6084	30.7776 42.1248	-29.9492 -29.8189	0.1926	-0.0691 -0.0063	-0.0246 0.0030	0.2061 0.2370	0.2061 0.2370	X, Y, Z X, Y, Z
DASH (X, Y, Z)	4	44.4998	21.0998	-21.0548	44.2820	21.0369	-21.0496	0.2178	0.0629	0.0052	0.2268	0.2268	X, Y, Z
L R	5	46.4146	30.9440	-19.9891	46.1879	30.8653	-19.9403	0.2267	0.0787	0.0488	0.2449	0.2449	X, Y, Z
	6	47.0273	41.9159	-20.0096	46.7936	41.9108	-19.9569	0.2337	0.0051	0.0527	0.2396	0.2396	X, Y, Z
ш Ц	7	61.2411	52.9052	-9.9166	61.0436	52.8989	-9.9382	0.1975	0.0063	-0.0216	0.1988	0.0063	Y
side PANEL (?)	8	56.7390	52.7281	-9.8666	56.4932	52.7303	-9.8322	0.2458	-0.0022	0.0344	0.2482	-0.0022	Y
	9 10	57.7782 47.6886	52.5559 54.9038	-2.3920 -23.6283	57.4976 47.4384	52.5532 54.8488	-2.3552 -23.6042	0.2806	0.0027	0.0368	0.2830	0.0027	Y
IMPACT SIDE DOOR (Y)	10	36.8101	54.9038	-23.6263	36.6091	54.8409	-23.6042	0.2502	0.0392	-0.0373	0.2082	0.0392	Y
IS RO	12	26.7373	54.9902	-23.5079	26.5502	54.9389	-23.4842	0.1871	0.0513	0.0237	0.1954	0.0513	Y
3 of t	13	40.9226	56.0045	-7.0674	40.7121	55.9831	-7.0204	0.2105	0.0214	0.0470	0.2167	0.0214	Ŷ
AP/	14	36.2982	55.5400	-3.1797	36.0330	55.5359	-3.0919	0.2652	0.0041	0.0878	0.2794	0.0041	Y
≤	15	28.4349	55.0683	-4.5742	28.3251	55.0647	-4.4856	0.1098	0.0036	0.0886	0.1411	0.0036	Y
	16	43.4103	22.5987	-46.7488	43.2394	22.4805	-46.6272	0.1709	0.1182	0.1216	0.2408	0.1216	Z
	17	43.1954	29.0892	-46.6341	42.9397	28.9620	-46.5727	0.2557	0.1272	0.0614	0.2921	0.0614	Z
	18	42.6050	33.4779	-46.5249	42.4357	33.3677	-46.4368	0.1693	0.1102	0.0881	0.2204	0.0881	Z
	19 20	41.7739 40.9391	37.8584 41.3543	-46.3521 -46.1203	41.5241 40.7088	37.7517 41.2468	-46.3174 -46.0899	0.2498	0.1067	0.0347	0.2738	0.0347	Z
	20	39.1301	23.8289	-47.6235	38.9374	23.6703	-47.5219	0.2303	0.1586	0.1016	0.2695	0.1016	Z
Ŋ	22	38.9908	29.0565	-47.4309	38.7727	28.9838	-47.3564	0.2181	0.0727	0.0745	0.2417	0.0745	Z
ц,	23	38.2212	33.3223	-47.3618	38.0023	33.2751	-47.2959	0.2189	0.0472	0.0659	0.2334	0.0659	Z
ROOF - (Z)	24	37.4659	37.5644	-47.1475	37.2661	37.4825	-47.0951	0.1998	0.0819	0.0524	0.2222	0.0524	Z
œ	25	36.5778	41.1964	-46.9003	36.3576	41.1308	-46.8606	0.2202	0.0656	0.0397	0.2332	0.0397	Z
	26	36.9006	23.3163	-49.5760	36.7186	23.1543	-49.4798	0.1820	0.1620	0.0962	0.2620	0.0962	Z
	27 28	36.2666 36.0204	28.4811 32.8077	-49.5516 -49.3779	36.0348 35.8296	28.3732 32.7690	-49.4832 -49.3076	0.2318	0.1079 0.0387	0.0684	0.2647 0.2070	0.0684	Z
	20	35.1537	37.2765	-49.2133	34.9510	37.1387	-49.1669	0.2027	0.0307	0.0464	0.2495	0.0464	Z
	30	34.4784	41.0809	-48.9626	34.2786	41.0105	-48.9197	0.1998	0.0704	0.0429	0.2161	0.0429	Z
	31	54.8377	51.4308	-32.4186	54.7159	51.3237	-32.3610	0.1218	0.1071	0.0576	0.1721	0.1721	X, Y, Z
K E Ω	32	52.8198	50.9994	-34.0741	52.6840	50.9124	-33.9804	0.1358	0.0870	0.0937	0.1865	0.1865	X, Y, Z
A-PILLAR Maximum (X, Y, Z)	33	49.4218	49.4587	-35.7971	49.2466	49.3435	-35.7465	0.1752	0.1152	0.0506	0.2157	0.2157	X, Y, Z
A laxi	34	46.6633	49.2214	-38.2571	46.4722	49.1226	-38.2061	0.1911	0.0988	0.0510	0.2211	0.2211	X, Y, Z
₹2-	35	42.7019	47.9997	-40.3448	42.5406	47.8963	-40.2867	0.1613	0.1034	0.0581	0.2002	0.2002	X, Y, Z
	36 31	15.3554 54.8377	48.5692 51.4308	-43.6978 -32.4186	38.3007 54.7159	47.8207 51.3237	-43.5723 -32.3610	-22.9453 0.1218	0.7485	0.1255	22.9578 0.1721	0.7589	Y, Z
мС	32	52.8198	50.9994	-34.0741	52.6840	50.9124	-32.3010	0.1218	0.0870	0.0937	0.1721	0.0870	Y
A-PILLAR Lateral (Y)	33	49.4218	49.4587	-35.7971	49.2466	49.3435	-35.7465	0.1752	0.1152	0.0506	0.2157	0.1152	Y
PIL	34	46.6633	49.2214	-38.2571	46.4722	49.1226	-38.2061	0.1911	0.0988	0.0510	0.2211	0.0988	Y
La ⁻	35	42.7019	47.9997	-40.3448	42.5406	47.8963	-40.2867	0.1613	0.1034	0.0581	0.2002	0.1034	Y
	36	15.3554	48.5692	-43.6978	38.3007	47.8207	-43.5723	-22.9453	0.7485	0.1255	22.9578	0.7485	Y
B-PILLAR Maximum (X, Y, Z)	37	15.3440	48.5657	-43.7086	15.1474	48.5405	-43.7087	0.1966	0.0252	-0.0001	0.1982	0.1982	X, Y
B-PILLAR Maximum (X, Y, Z)	38	13.0076	48.9006	-43.6152	12.7856	48.8810	-43.5837	0.2220	0.0196	0.0315	0.2251	0.2251	X, Y, Z
X and	39 40	16.3920 13.3370	51.5560 52.0438	-35.2927 -33.5692	16.1693 13.0660	51.5434 52.0139	-35.2421 -33.5579	0.2227	0.0126	0.0506	0.2287	0.2287	X, Y, Z X, Y, Z
	37	15.3440	48.5657	-33.5692	15.1474	48.5405	-33.5579	0.2710	0.0299	-0.0001	0.2729	0.0252	Α, Υ, Ζ
LAF LAF	37	15.3440	48.9006	-43.7086	15.1474	48.5405	-43.7087	0.1966	0.0252	0.0315	0.1982	0.0252	Y
B-PILLAR _ateral (γ)	39	16.3920	51.5560	-35.2927	16.1693	51.5434	-35.2421	0.2220	0.0130	0.0506	0.2287	0.0130	Y
B-F Lat	40	13.3370	52.0438	-33.5692	13.0660	52.0139	-33.5579	0.2710	0.0299	0.0113	0.2729	0.0299	Ý
Positive v							t, negative v						
ompartme	nt.												
		at use multip	le directiona	al componer	nts will disre	gard compo	nents that a	re negative :	and only inc	lude nositiv	e values whe	ere the con	nonent is

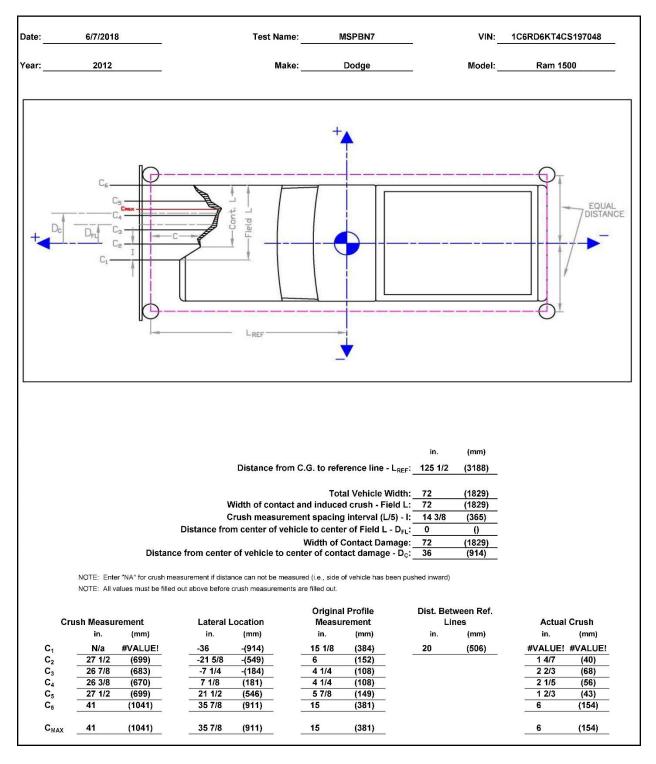


Figure D-41. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-7

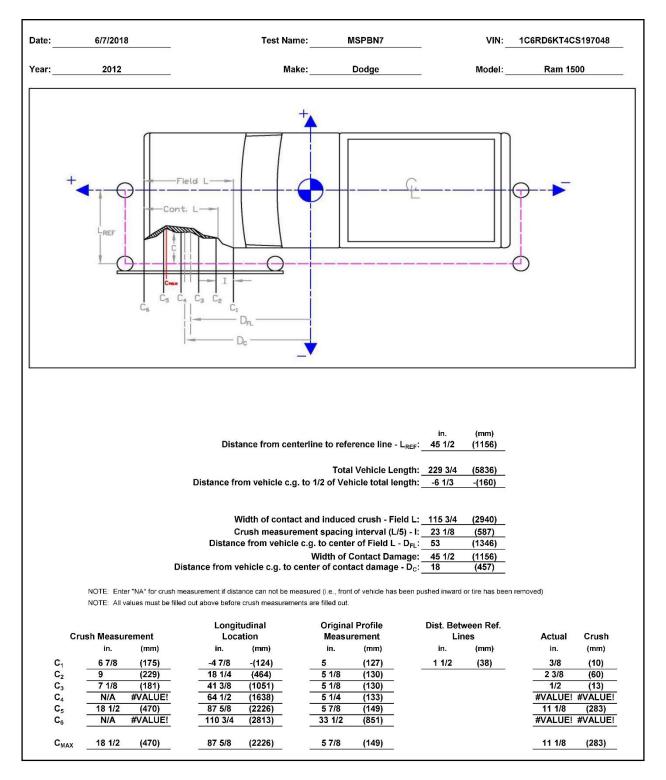


Figure D-42. Exterior Vehicle Crush (NASS) – Left Side, Test No. MSPBN-7

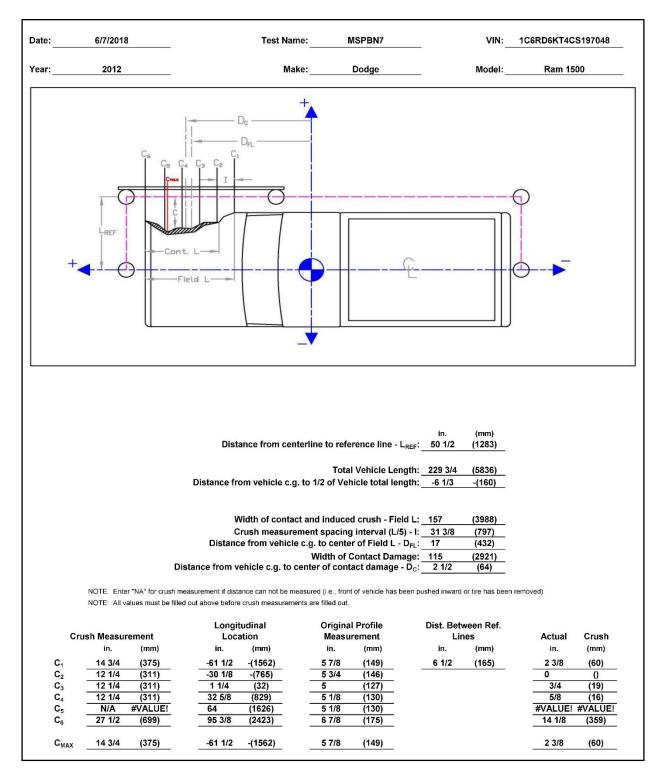
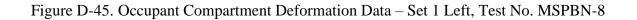



Figure D-43. Exterior Vehicle Crush (NASS) - Right Side, Test No. MSPBN-7

Date: Year:		/2018 011			Test Name: Make:		BN-8 ndai			VIN: Model:	kmho	cn4ac3bu53 Accent	33692
							FORMATIO						
1		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^c
	1	61.6958	-15.2448	5.7122	61.8209	-15.5074	5.6127	-0.1251	-0.2626	0.0995	0.3074	0.0995	Z
	2	61.9355	-18.1844	5.1426	62.0792	-18.2811	4.9892	-0.1437	-0.0967	0.1534	0.2314	0.1534	Z
TOE PAN - WHEEL WELL (X, Z)	3	62.0256	-21.2641	5.2284	62.2735	-21.3781	5.0767	-0.2479	-0.1140	0.1517	0.3122	0.1517	Z
TOE PAN HEEL WE (X, Z)	4	61.8469 62.0327	-23.9119 -27.4894	5.0500 5.0658	61.9805 62.1832	-24.0387 -27.5989	4.9181 4.9019	-0.1336 -0.1505	-0.1268 -0.1095	0.1319 0.1639	0.2265	0.1319	Z
X D	6	58,7967	-15.0416	7.3984	58.9580	-15.2313	7.3132	-0.1613	-0.1093	0.0852	0.2460	0.0852	Z
ЩЩ С ЦЩ С	7	58.5842	-18.2065	7.3803	58.7592	-18.3095	7.2470	-0.1750	-0.1037	0.1333	0.2429	0.1333	Z
5	8	58.2943	-21.8170	7.4637	58.4117	-21.9240	7.3472	-0.1174	-0.1070	0.1165	0.1970	0.1165	Z
	9	57.7521	-24.7580	7.4071	57.8532	-24.8889	7.2362	-0.1011	-0.1309	0.1709	0.2378	0.1709	Z
	10	57.7783	-27.5765	7.6407	57.9352	-27.6243	7.4405	-0.1569	-0.0478	0.2002	0.2588	0.2002	Z
	11	52.8999	-14.8118	8.3198	53.0436	-14.9373	8.2570	-0.1437	-0.1255	0.0628	0.2009	0.0628	Z
	12	52.7739	-17.2691	8.4588	52.9669	-17.3208	8.4639	-0.1930	-0.0517	-0.0051	0.1999	-0.0051	Z
	13	52.2937	-21.1600	8.2434	52.3899	-21.2993	8.0958	-0.0962	-0.1393	0.1476	0.2246	0.1476	Z
	14	51.8295	-25.9273	8.2429	52.0150	-26.1221	8.0706	-0.1855	-0.1948	0.1723	0.3194	0.1723	Z
3	15	52.0030	-30.2236	8.4919	52.0653	-30.3150	8.2955	-0.0623	-0.0914	0.1964	0.2254	0.1964	Z
2	16 17	48.0598 47.7905	-14.8993	8.8603 8.5146	48.2710 47.9546	-14.9763	8.7691 8.3609	-0.2112 -0.1641	-0.0770 -0.1742	0.0912	0.2426	0.0912	Z
	18	47.6383	-19.1211	8.3802	47.8210	-19.3019	8.2119	-0.1827	-0.1742	0.1683	0.2844	0.1683	Z
AN	19	47.4865	-25.9398	8.3013	47.6046	-26.0449	8.1263	-0.1027	-0.1403	0.1750	0.2358	0.1005	Z
FLOOR PAN (Z)	20	47.5751	-29.8525	8.9567	47.6937	-30.0253	8.7426	-0.1186	-0.1728	0.2141	0.2996	0.2141	Z
Z)	21	43.3160	-14.7396	8.8541	43.5054	-14.8782	8.7803	-0.1894	-0.1386	0.0738	0.2460	0.0738	Z
LC LC	22	43.1457	-18.3493	8.8117	43.2576	-18.5221	8.6652	-0.1119	-0.1728	0.1465	0.2527	0.1465	Z
ш.	23	42.8826	-22.4357	8.4289	42.9756	-22.5673	8.2608	-0.0930	-0.1316	0.1681	0.2329	0.1681	Z
	24	42.9185	-26.2165	8.3263	42.9378	-26.3256	8.1451	-0.0193	-0.1091	0.1812	0.2124	0.1812	Z
	25	43.0224	-30.3998	8.8938	43.1601	-30.4331	8.6610	-0.1377	-0.0333	0.2328	0.2725	0.2328	Z
	26	39.4916	-14.6307	8.2553	39.6171	-14.7948	8.1685	-0.1255	-0.1641	0.0868	0.2241	0.0868	Z
	27 28	39.3076 39.1217	-18.5902 -22.4583	8.4829 8.3762	39.4702 39.2689	-18.7359 -22.6125	8.3133 8.1959	-0.1626 -0.1472	-0.1457 -0.1542	0.1696	0.2765	0.1696	Z
	29	39.2287	-26.6735	8.3501	39.4319	-26.7866	8.2080	-0.2032	-0.1342	0.1421	0.2732	0.1421	Z
	30	39.4451	-29.9764	8.5523	39.5830	-30.0656	8.3766	-0.1379	-0.0892	0.1757	0.2405	0.1757	Z
eforming in	culations the nward towa	rd the occup	ant compart	ment.			nents that ar culations. If						ponent is
	100 201 100	Pre	test Floor	Pan	40.00				Post	ttest Floor	Pan		4040000
				and a first							Y you have	0	

Figure D-44. Floor Pan Deformation Data – Set 1 Left, Test No. MSPBN-8

					Make:		Indai			Model:		Accent	
					VE	HICLE DE	FORMATIO	NC					
					INT		RUSH - SE	Т 1					
Γ		Pretest X	Pretest Y	Pretest Z	Posttest X			ΔX^{A}	ΔY ^A	ΔZ^{A}	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^c
-	1	49.2420	-30.0432	-19.8175	49.3485	-30.1581	-19.9139	-0.1065	-0.1149	-0.0964	0.1839	0.1839	X, Y, Z
DASH (X, Y, Z)	2 3	47.6039 50.3644	-19.3682 -6.6919	-22.9497 -20.8146	47.8582 50.6084	-19.2224 -6.5540	-23.2228 -21.0583	-0.2543 -0.2440	0.1458 0.1379	-0.2731 -0.2437	0.4006	0.4006 0.3714	X, Y, Z X, Y, Z
SAC -	4	47.9293	-32.6169	-20.0140	47.8731	-32.4825	-8.2343	0.0562	0.1379	-0.2437	0.2611	0.3714	X, Y, Z
	5	49.0716	-17.7171	-7.4492	49.1917	-17.6882	-7.6156	-0.1201	0.0289	-0.1664	0.2072	0.2072	X, Y, Z
	6	45.1094	-7.6814	-8.0445	44.9400	-7.7226	-8.4844	0.1694	-0.0412	-0.4399	0.4732	0.4732	X, Y, Z
	7	52.8602	-34.9446	0.0386	52.8153	-34.8114	-0.1371	0.0449	0.1332	-0.1757	0.2250	0.1332	Y
SIDE PANEL	8	52.9538	-35.7018	3.9618	52.8697	-35.7703	3.8236	0.0841	-0.0685	-0.1382	0.1757	-0.0685	Y
	9	56.5270	-35.8089	3.4579	56.4383	-35.8793	3.2752	0.0887	-0.0704	-0.1827	0.2149	-0.0704	Y
IMPACT SIDE DOOR (Y)	10 11	46.1632 34.5752	-35.9383 -35.6265	-16.0245 -16.3660	45.9493 34.3771	-35.3081 -35.3076	-16.1609 -16.5924	0.2139	0.6302	-0.1364 -0.2264	0.6793	0.6302	Y Y
IS K (12	20.9642	-35.1546	-17.1668	20.6956	-35.3076	-17.4375	0.1981	0.0252	-0.2204	0.3822	0.0252	Y
₽XΣ	13	42.7570	-35.9596	-0.3628	42.3920	-36.0891	-0.6612	0.3650	-0.1295	-0.2984	0.4889	-0.1295	Y
	14	35.1984	-35.8791	0.2440	34.9056	-36.0806	0.0174	0.2928	-0.2015	-0.2266	0.4215	-0.2015	Y
≤	15	26.8278	-35.5688	0.2851	26.4298	-35.7501	-0.0675	0.3980	-0.1813	-0.3526	0.5618	-0.1813	Y
-	16	30.9242	-24.6323	-35.5124	31.2296	-24.6975	-35.6275	-0.3054	-0.0652	-0.1151	0.3328	-0.1151	Z
ŀ	17 18	31.5071 32.0825	-21.6371 -18.6987	-35.7681 -35.7726	31.7632 32.2752	-21.6307 -18.7095	-35.8885 -35.8996	-0.2561 -0.1927	0.0064	-0.1204 -0.1270	0.2831	-0.1204 -0.1270	Z
	18	32.0825	-18.6987	-35.8741	32.2752	-18.7095	-35.8996	-0.1927 -0.2974	0.0108	-0.1270	0.3031	-0.1270	Z
F	20	32.9453	-9.5763	-36.2830	33.2079	-9.5436	-36.3290	-0.2626	0.0327	-0.0302	0.2686	-0.0302	Z
Ω.	21	26.3846	-24.1050	-37.8254	26.6488	-23.9900	-37.9864	-0.2642	0.1150	-0.1610	0.3301	-0.1610	Z
. (2	22	26.8203	-20.4528	-38.1003	27.1629	-20.4338	-38.2259	-0.3426	0.0190	-0.1256	0.3654	-0.1256	Z
ROOF - (Z)	23	27.3908	-17.3953	-38.2244	27.7720	-17.3854	-38.2957	-0.3812	0.0099	-0.0713	0.3879	-0.0713	Z
8	24 25	28.1027 28.8298	-13.1945 -8.5343	-38.3063 -38.2820	28.5426 29.3535	-13.1480 -8.4280	-38.3601 -38.3094	-0.4399 -0.5237	0.0465	-0.0538 -0.0274	0.4456	-0.0538 -0.0274	Z
F	25	21.9525	-23.1964	-38.4610	29.3333	-23.1885	-38.6030	-0.3918	0.0079	-0.1420	0.4168	-0.1420	Z
t	27	22.5962	-18.6350	-38.7668	23.0379	-18.5066	-38.8890	-0.4417	0.1284	-0.1222	0.4759	-0.1222	Z
F	28	23.1134	-13.9350	-38.9656	23.6558	-13.8439	-39.0188	-0.5424	0.0911	-0.0532	0.5526	-0.0532	Z
ŀ	29	23.6735	-10.6130	-38.9995	24.2054	-10.5107	-39.0329	-0.5319	0.1023	-0.0334	0.5427	-0.0334	Z
+	30	24.2643	-7.0319	-38.9602	24.8152	-6.9334	-38.9699	-0.5509	0.0985	-0.0097	0.5597	-0.0097	Z
~	31 32	51.4560 48.0129	-33.5550 -32.7288	-23.6506 -25.7938	51.5331 48.1033	-33.5685 -32.7449	-23.6725 -25.8681	-0.0771	-0.0135	-0.0219 -0.0743	0.0813	0.0000	NA NA
Han Z	33	44.5086	-32.7200	-27.9181	44.6149	-32.7449	-28.0346	-0.0904	-0.0093	-0.0743	0.1580	0.0000	NA
A-PILLAR Maximum (X, Y, Z)	34	41.9764	-31.1736	-29.3825	42.1176	-31.1786	-29.4532	-0.1412	-0.0050	-0.0707	0.1580	0.0000	NA
4ª°C[35	39.7947	-30.6160	-30.4832	40.0439	-30.6277	-30.6237	-0.2492	-0.0117	-0.1405	0.2863	0.0000	NA
	36	37.8441	-30.0934	-31.5817	38.0599	-30.1104	-31.6913	-0.2158	-0.0170	-0.1096	0.2426	0.0000	NA
	31	51.4560	-33.5550	-23.6506	51.5331	-33.5685	-23.6725	-0.0771	-0.0135	-0.0219	0.0813	-0.0135	Y
AR	32	48.0129	-32.7288	-25.7938	48.1033	-32.7449	-25.8681	-0.0904	-0.0161	-0.0743	0.1181	-0.0161	Y
A-PILLAR Lateral (Y)	33 34	44.5086 41.9764	-31.8352 -31.1736	-27.9181 -29.3825	44.6149 42.1176	-31.8445 -31.1786	-28.0346 -29.4532	-0.1063	-0.0093	-0.1165 -0.0707	0.1580	-0.0093 -0.0050	Y
A-P Latr	35	39.7947	-30.6160	-30.4832	40.0439	-30.6277	-30.6237	-0.2492	-0.0030	-0.1405	0.2863	-0.0000	Y
	36	37.8441	-30.0934	-31.5817	38.0599	-30.1104	-31.6913	-0.2158	-0.0170	-0.1096	0.2426	-0.0170	Ý
K E R	37	13.7909	-27.7554	-34.5223	14.1873	-27.6263	-34.8311	-0.3964	0.1291	-0.3088	0.5188	0.1291	Y
B-PILLAR Maximum (X, Y, Z)	38	12.0007	-30.7466	-28.1923	12.3064	-30.6408	-28.4741	-0.3057	0.1058	-0.2818	0.4290	0.1058	Y
Aax Aax	39	15.7413	-32.7059	-23.3404	15.9324	-32.6577	-23.6344	-0.1911	0.0482	-0.2940	0.3539	0.0482	Y
	40 37	13.2280 13.7909	-33.0422 -27.7554	-17.6982 -34.5223	13.4843 14.1873	-32.9827 -27.6263	-18.0172 -34.8311	-0.2563 -0.3964	0.0595	-0.3190 -0.3088	0.4135	0.0595	Y
-PILLAR ateral (Y)	37	13.7909	-27.7554	-34.5223	14.1873	-27.6263	-34.8311	-0.3964	0.1291 0.1058	-0.3088	0.5188	0.1291 0.1058	Y
B-PILL	39	15.7413	-32.7059	-23.3404	15.9324	-32.6577	-23.6344	-0.1911	0.0482	-0.2940	0.3539	0.0482	Y
Lat B-1	40	13.2280	-33.0422	-17.6982	13.4843	-32.9827	-18.0172	-0.2563	0.0595	-0.3190	0.4135	0.0595	Y
Positive va	lues denot	e deformatio	on as inward	toward the	occupant c	ompartment	t, negative va	alues denote	e deformatio	ons outward	away from	the occupar	nt

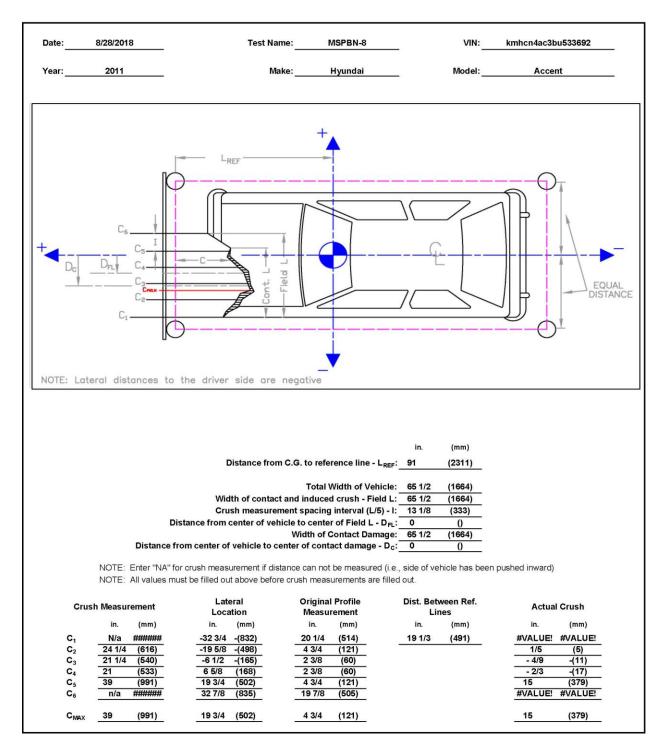


Figure D-46. Exterior Vehicle Crush (NASS) - Front, Test No. MSPBN-8

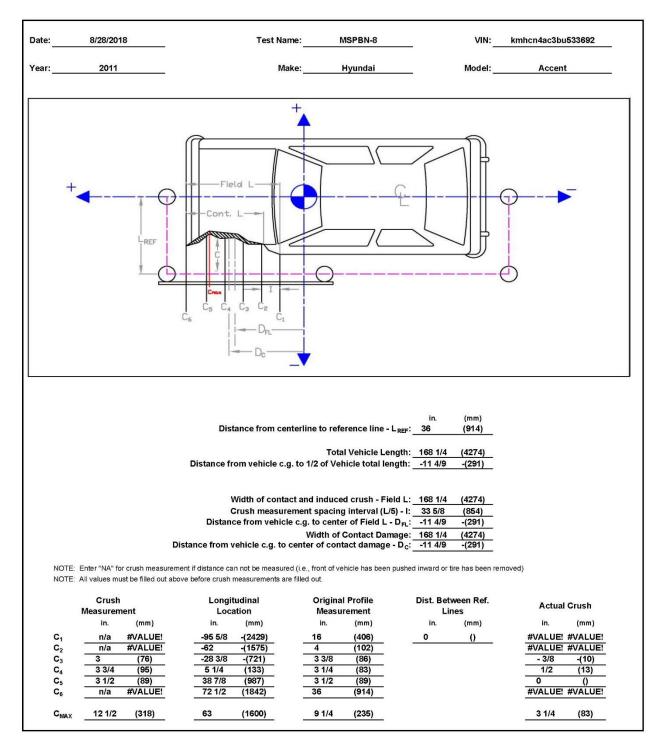


Figure D-47. Exterior Vehicle Crush (NASS) - Left Side, Test No. MSPBN-8

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-4

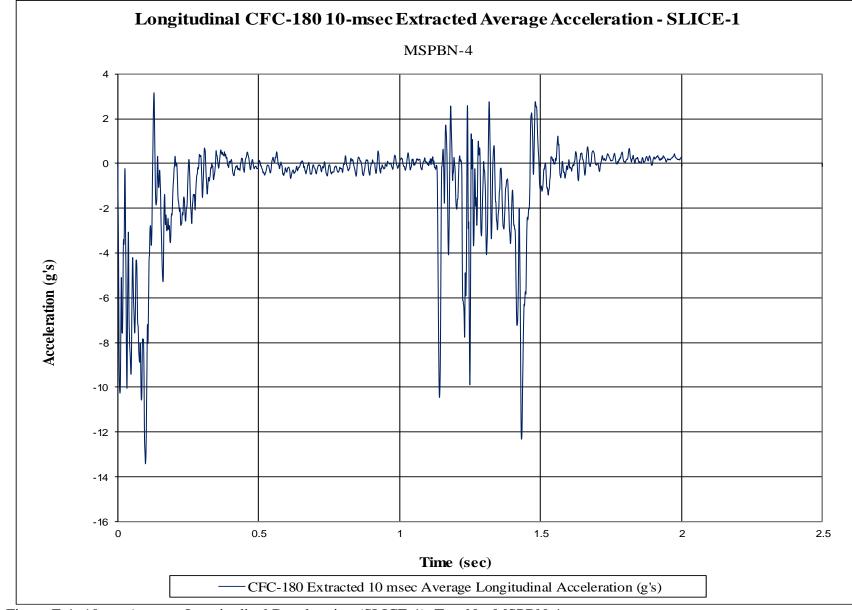


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-4

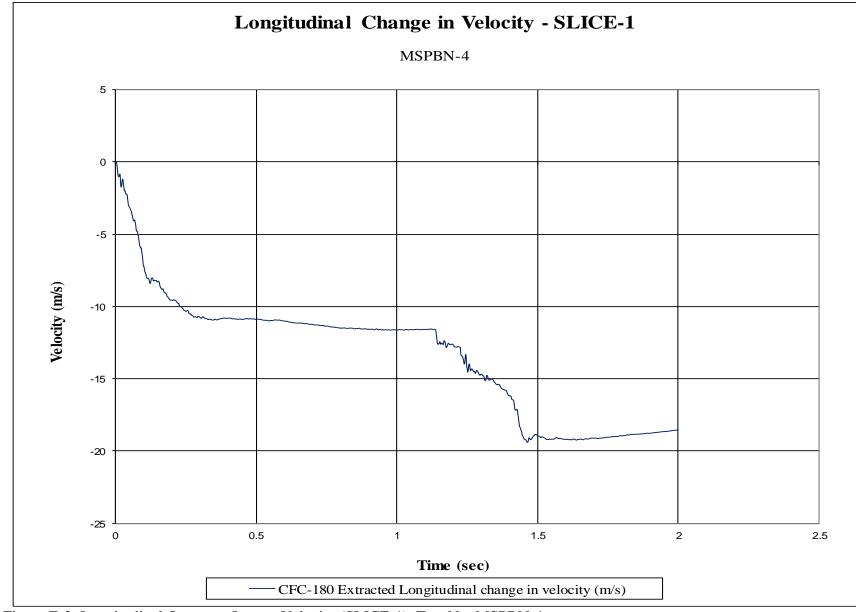


Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-4

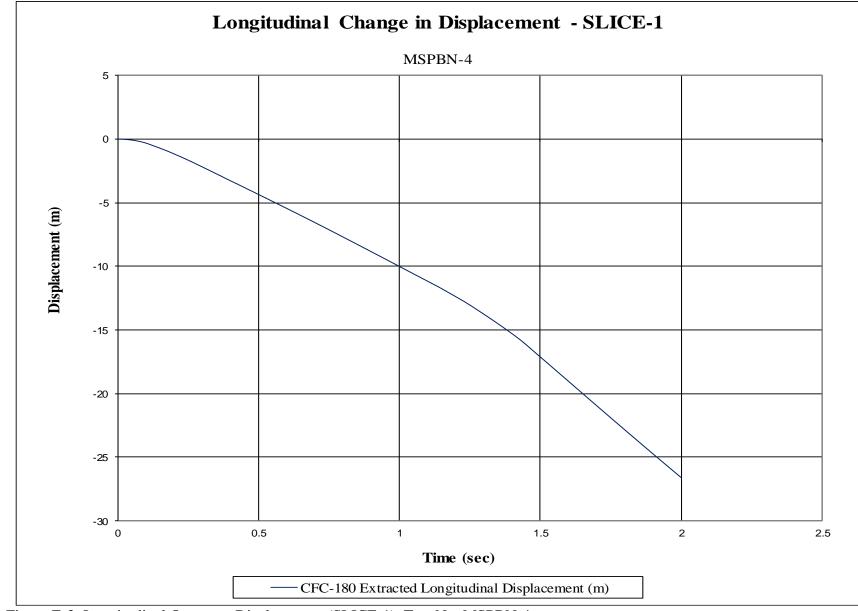


Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-4

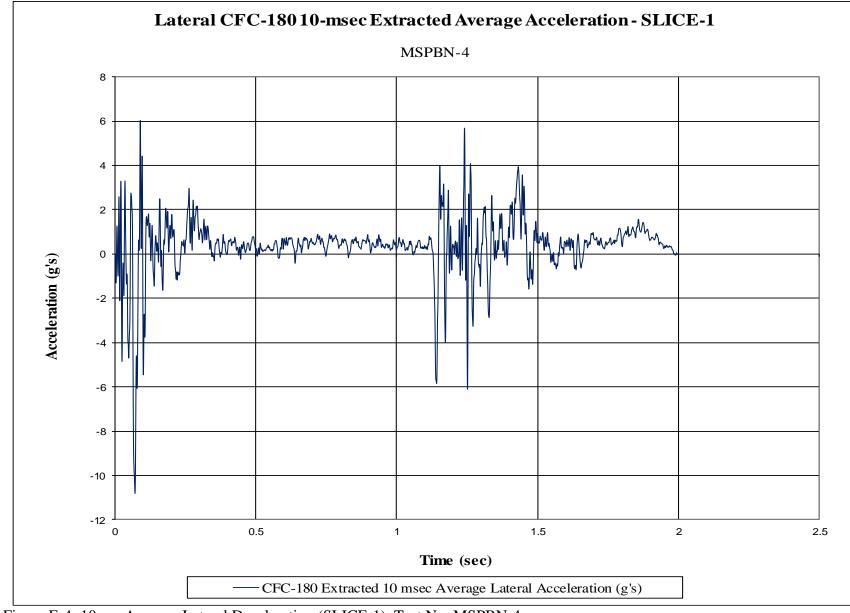


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-4

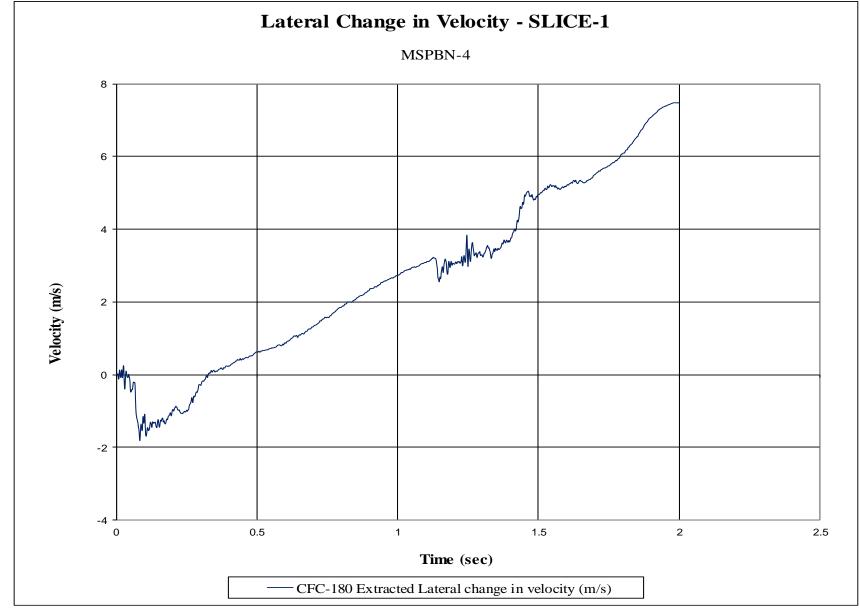


Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-4

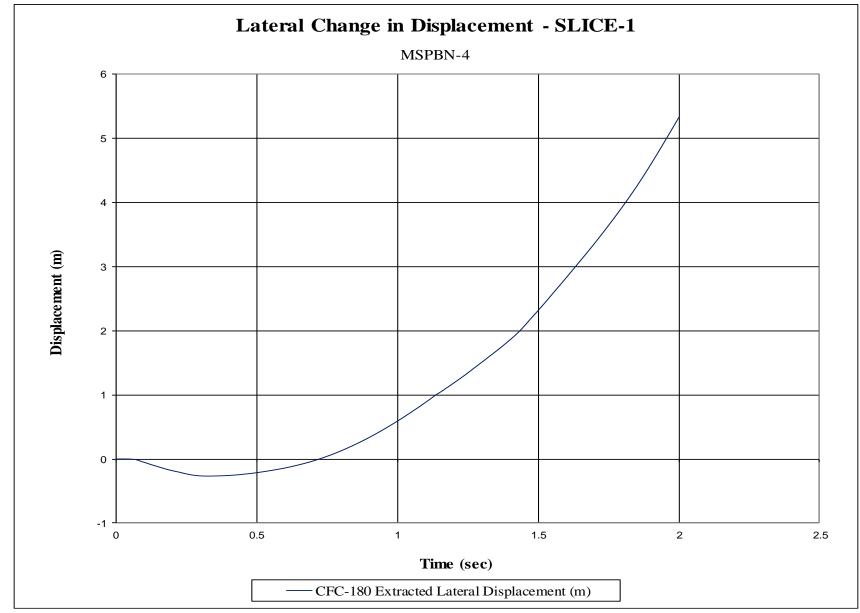


Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-4

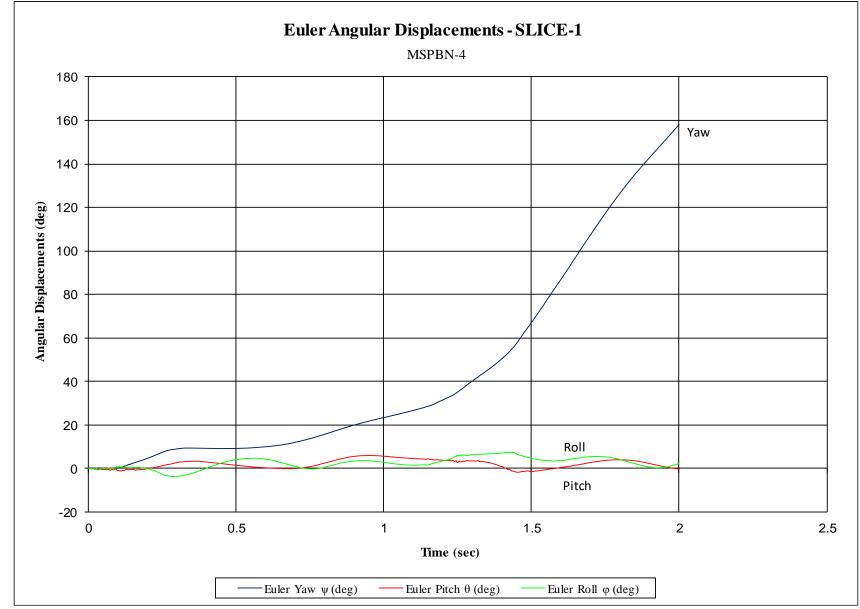


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-4

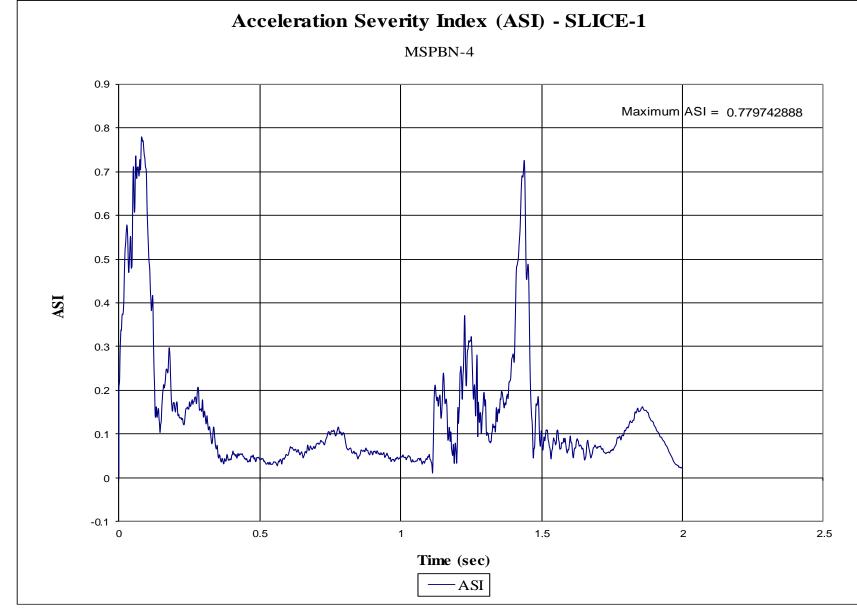


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-4

September 1, 2020 MwRSF Report No. TRP-03-418-20

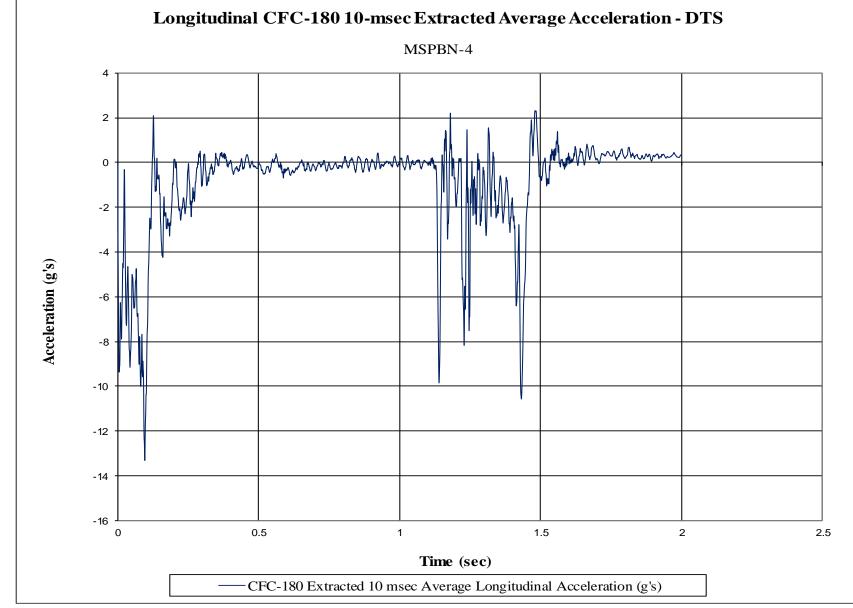


Figure E-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. MSPBN-4

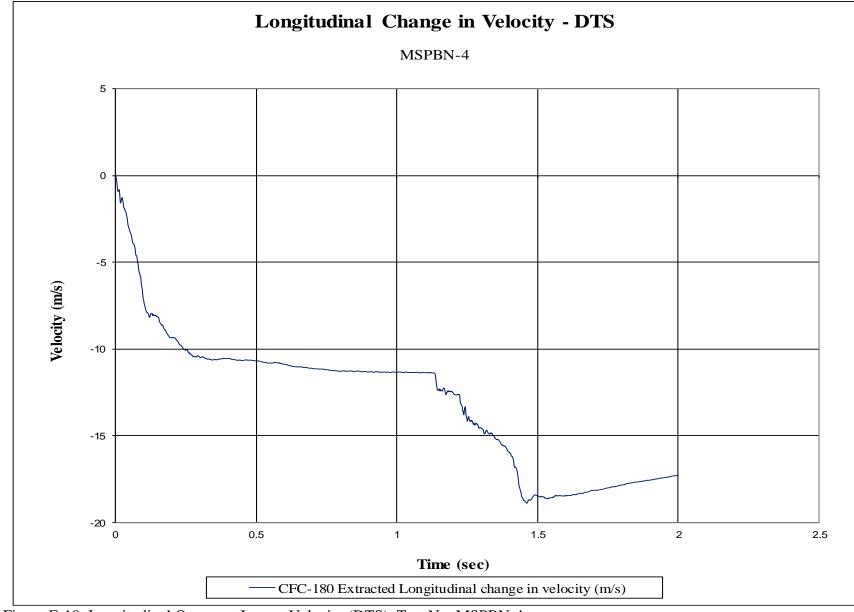


Figure E-10. Longitudinal Occupant Impact Velocity (DTS), Test No. MSPBN-4

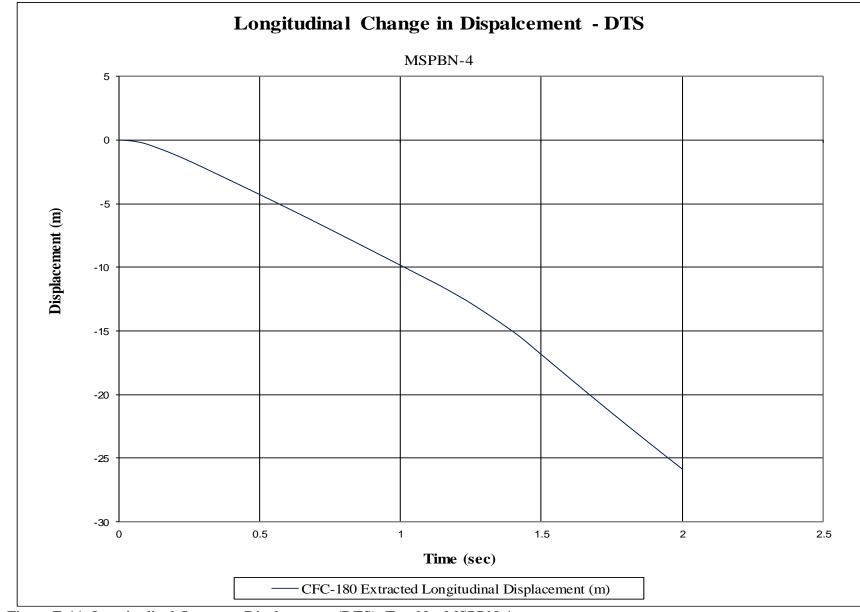


Figure E-11. Longitudinal Occupant Displacement (DTS), Test No. MSPBN-4

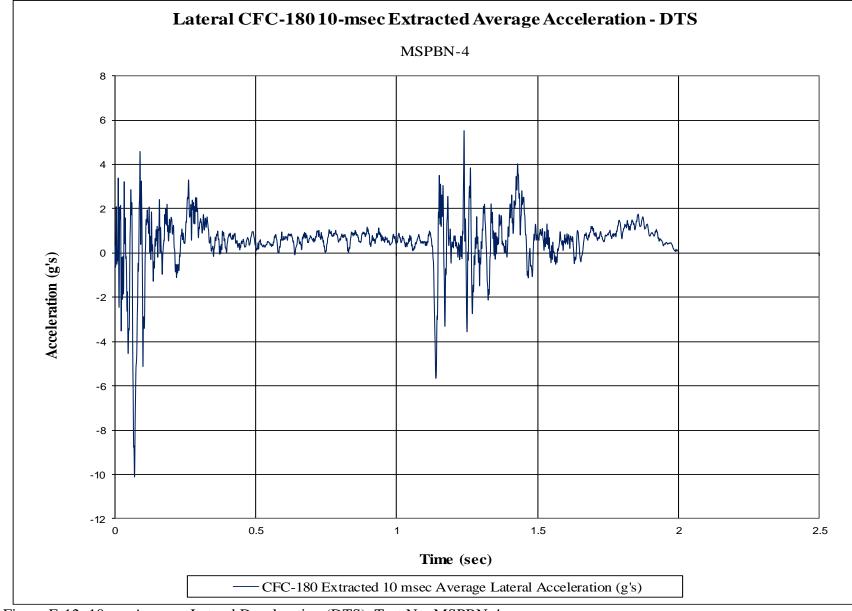


Figure E-12. 10-ms Average Lateral Deceleration (DTS), Test No. MSPBN-4

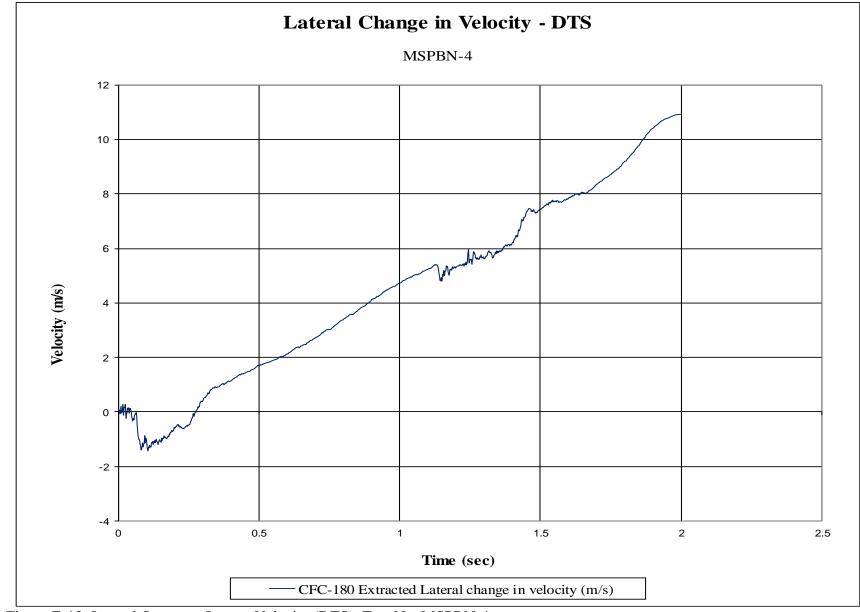


Figure E-13. Lateral Occupant Impact Velocity (DTS), Test No. MSPBN-4

September 1, 2020 MwRSF Report No. TRP-03-418-20

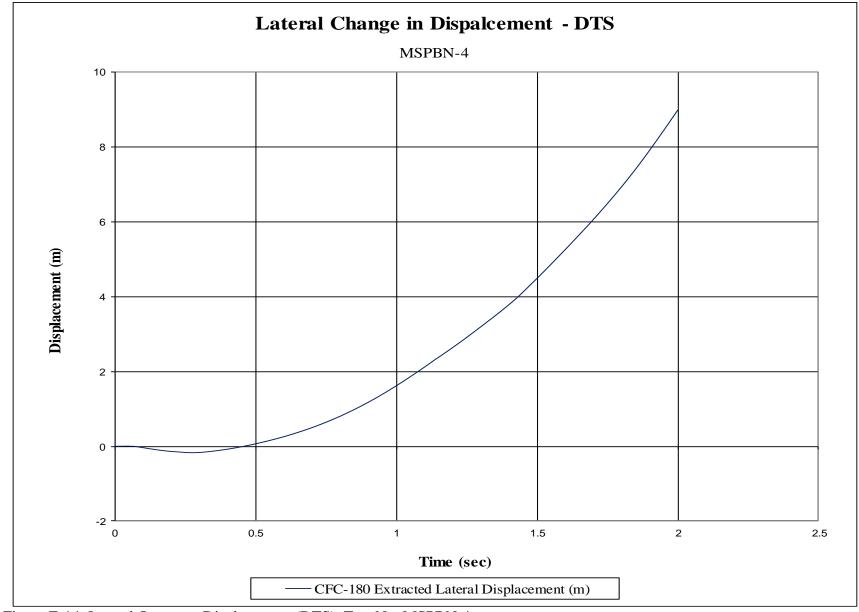


Figure E-14. Lateral Occupant Displacement (DTS), Test No. MSPBN-4

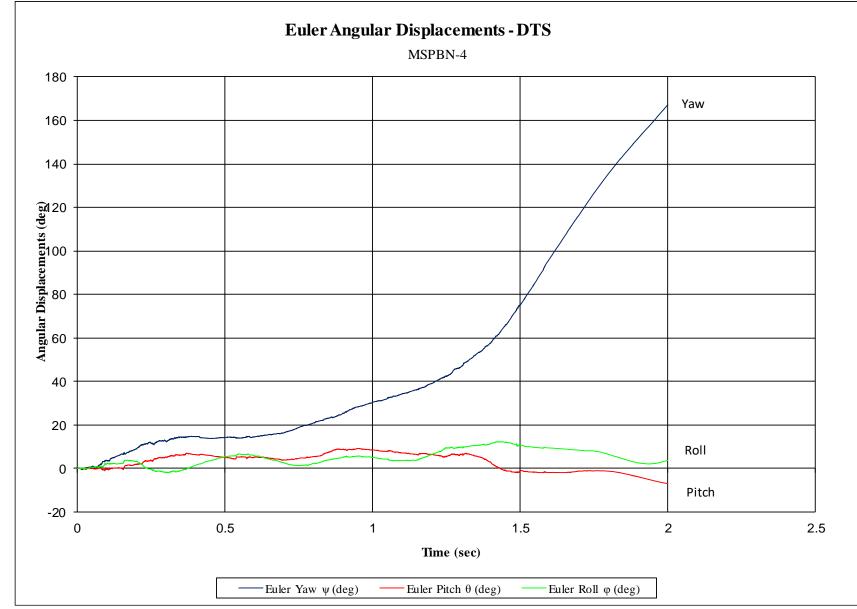


Figure E-15. Vehicle Angular Displacements (DTS), Test No. MSPBN-4

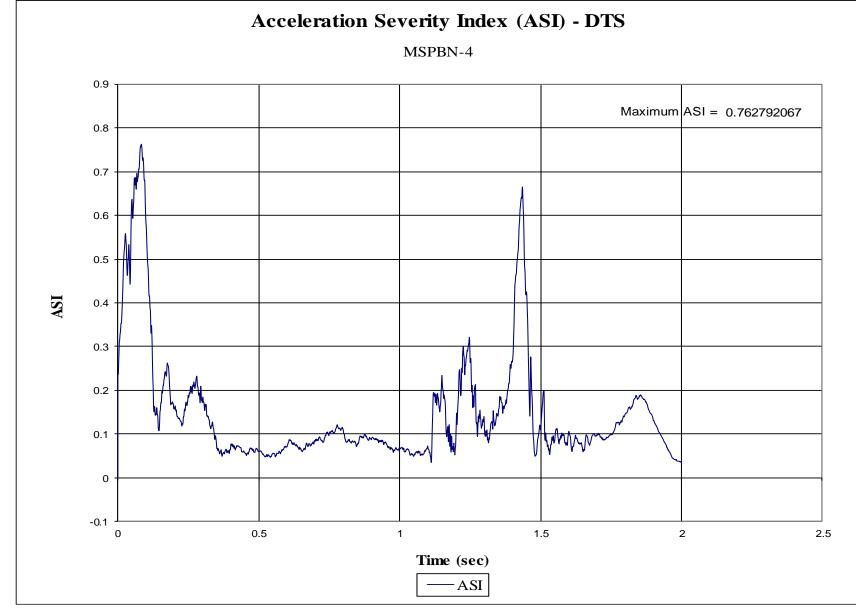


Figure E-16. Acceleration Severity Index (DTS), Test No. MSPBN-4

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-5

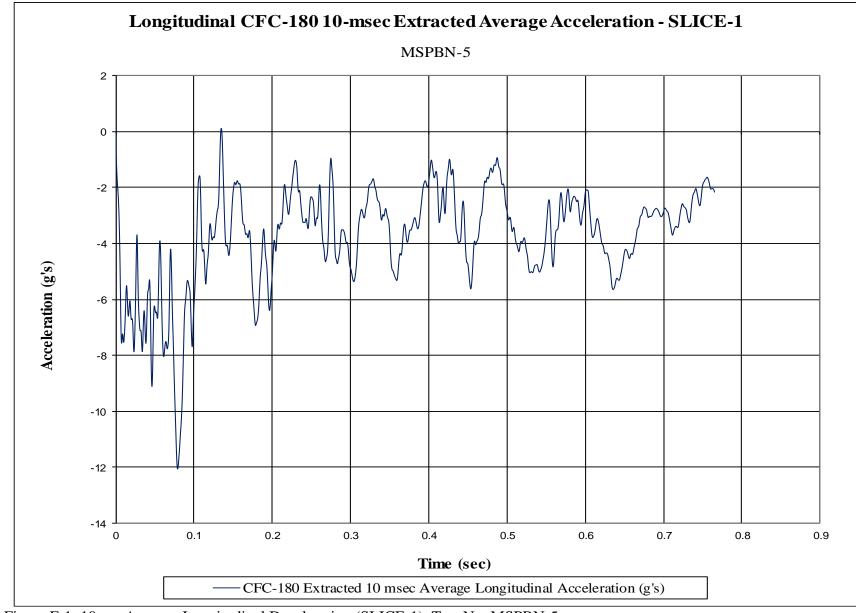


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-5



Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-5

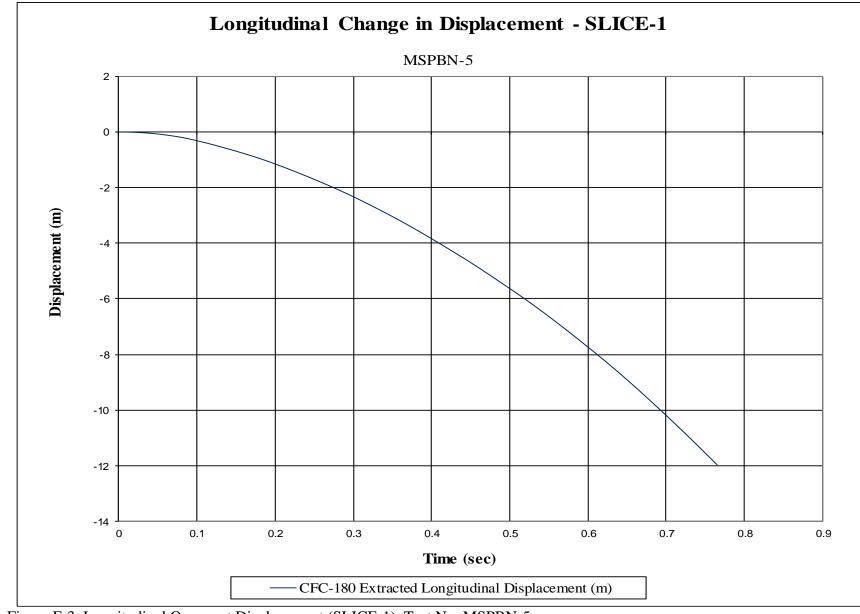


Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-5

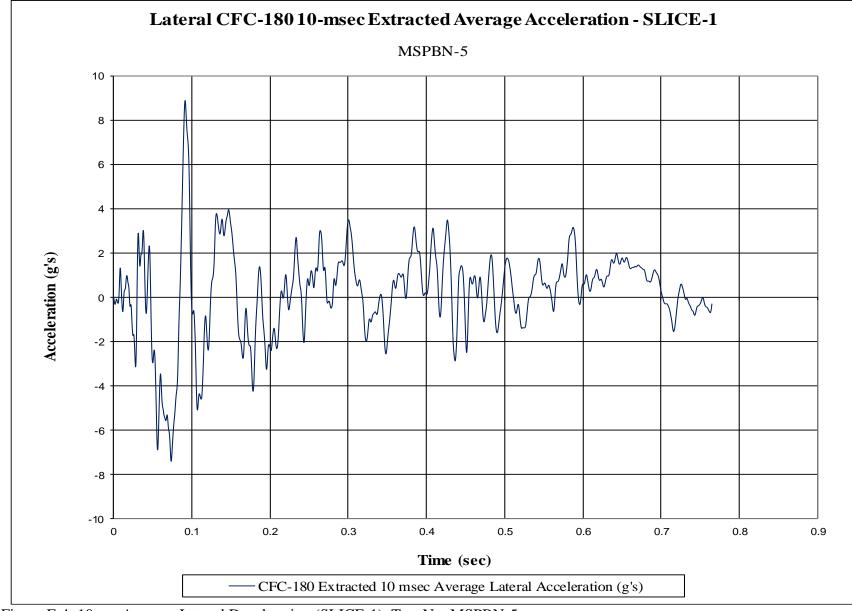


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-5

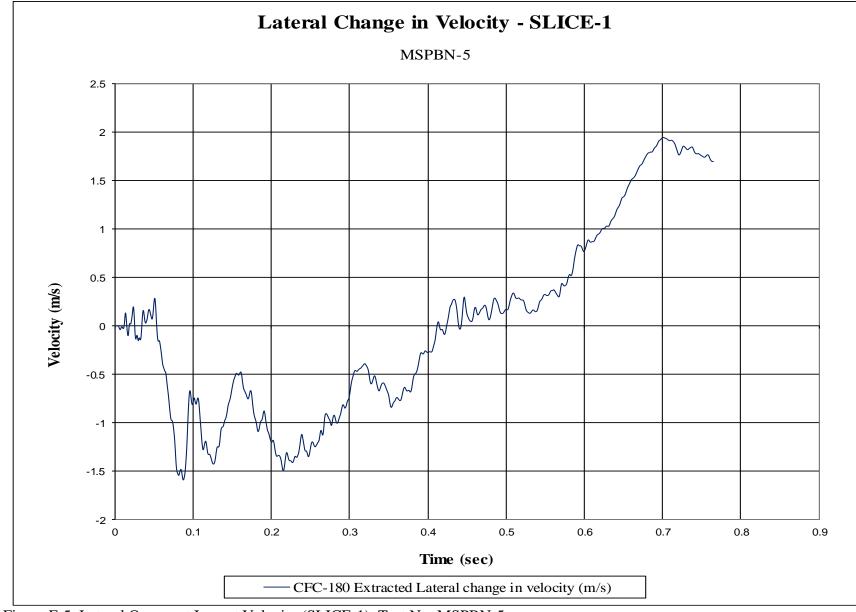


Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-5

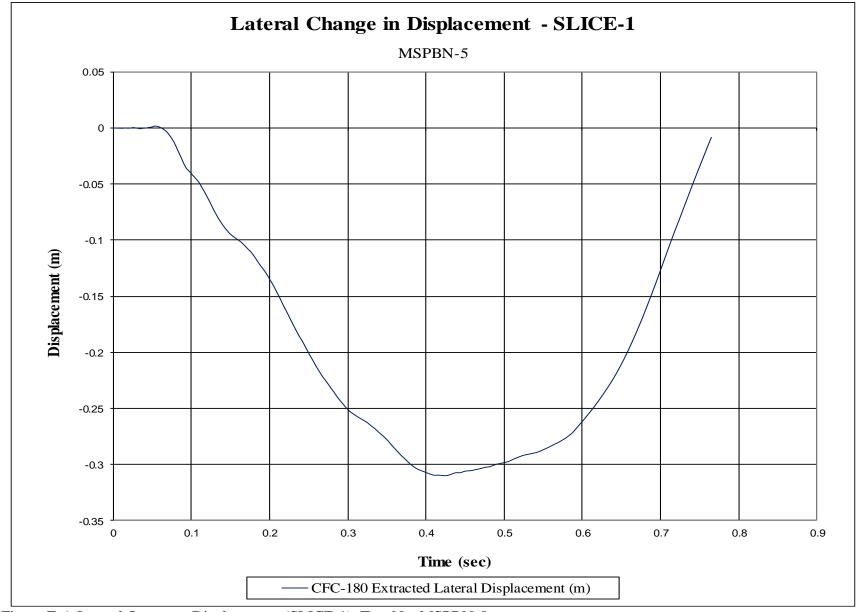


Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-5

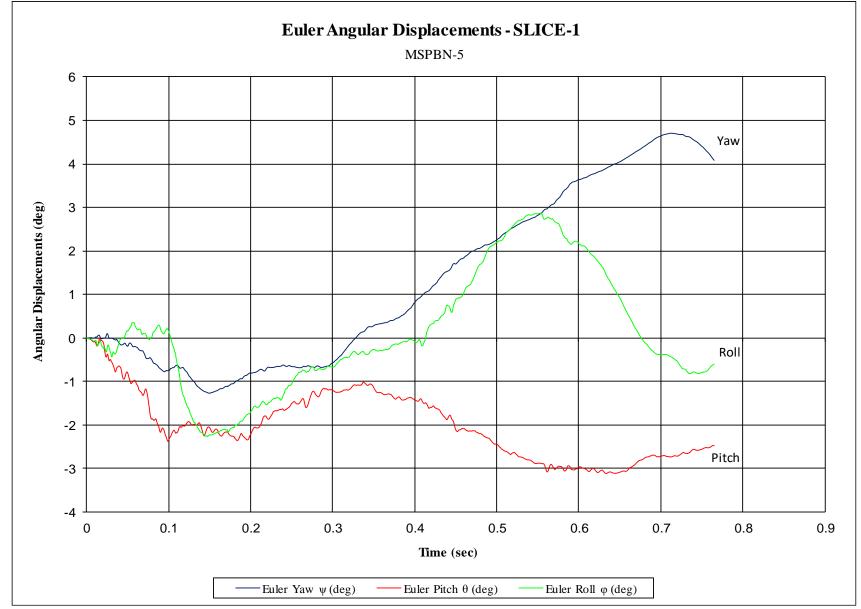


Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-5

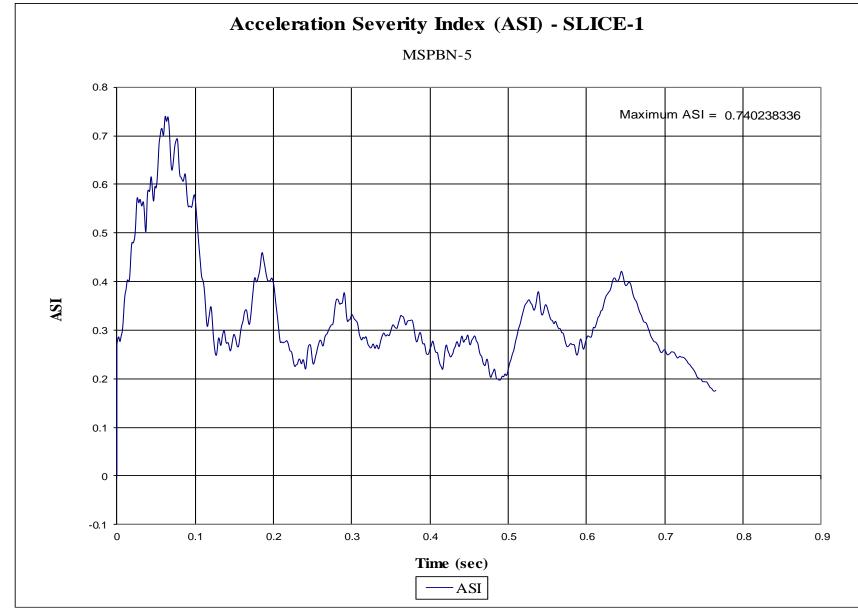


Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-5

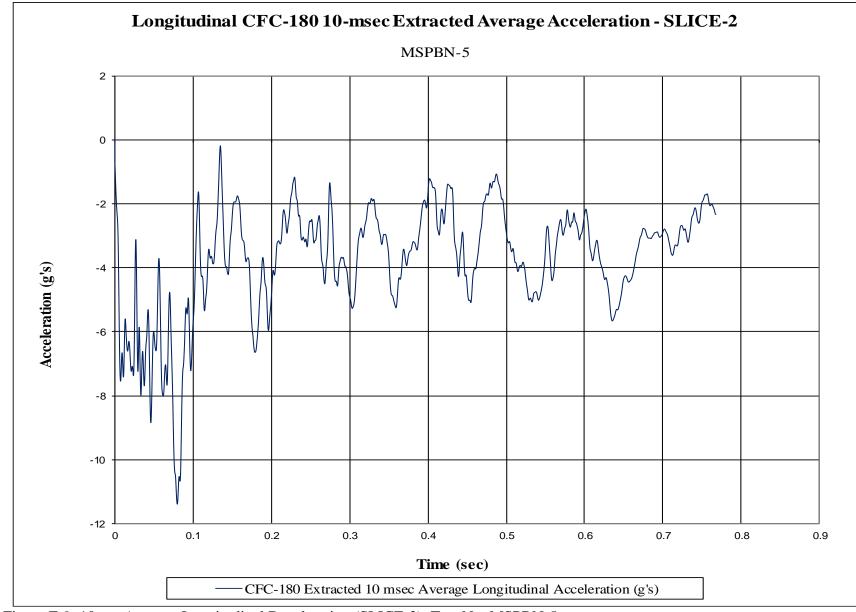


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-5



Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-5

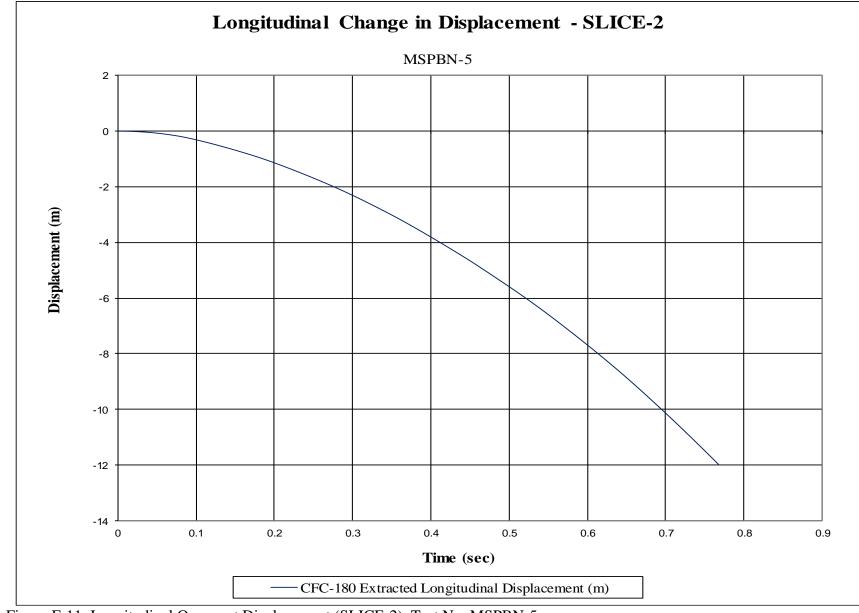


Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-5

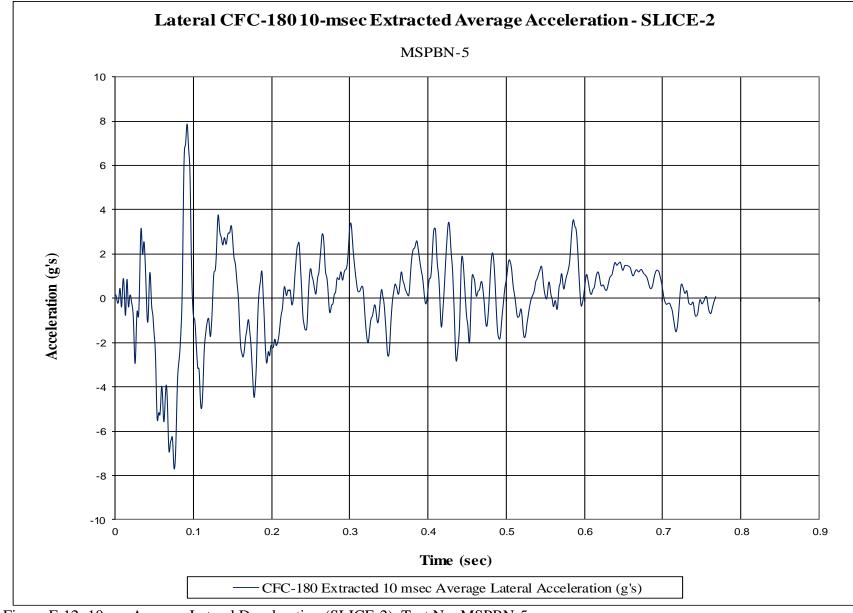


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-5

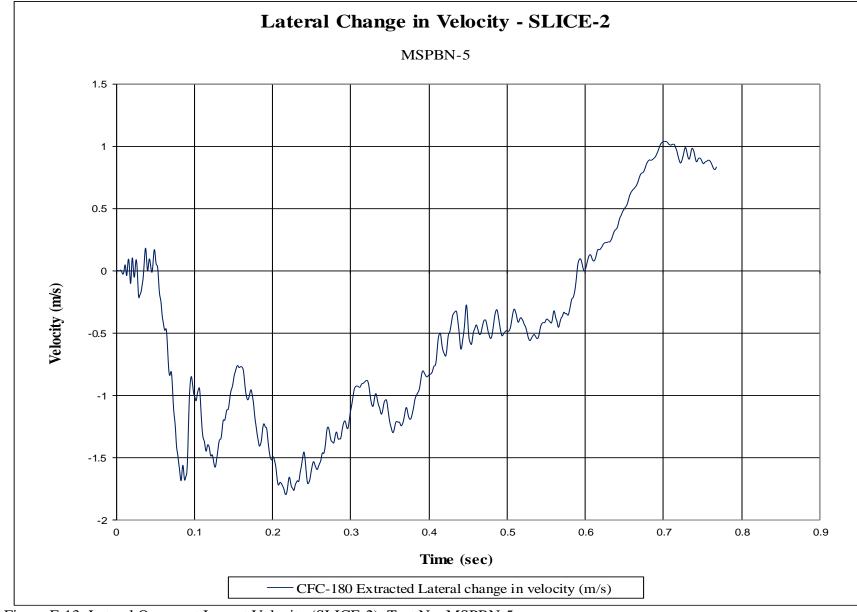


Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-5

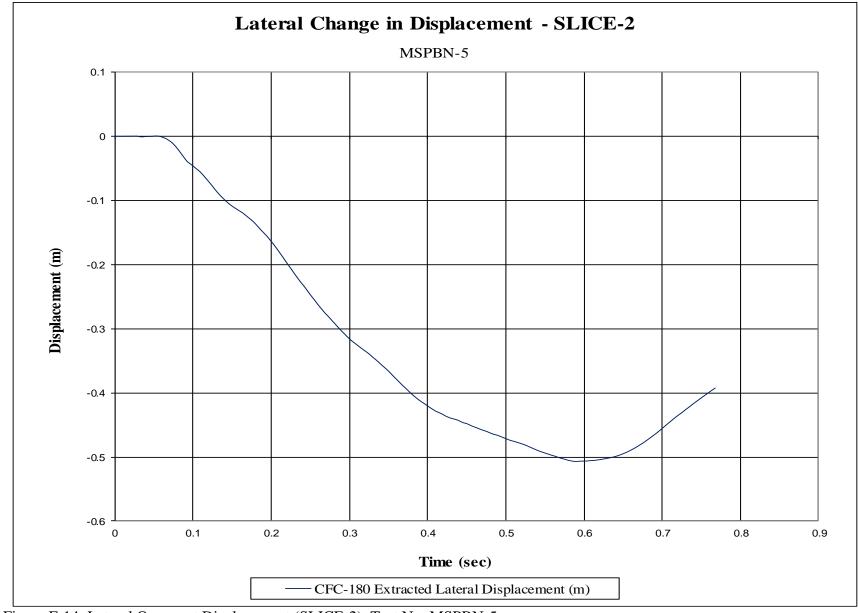


Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-5

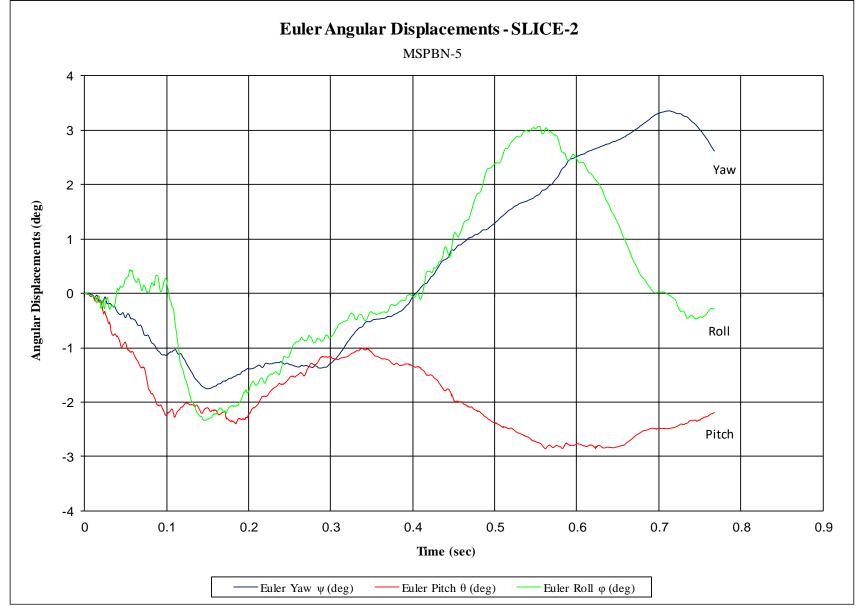


Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-5

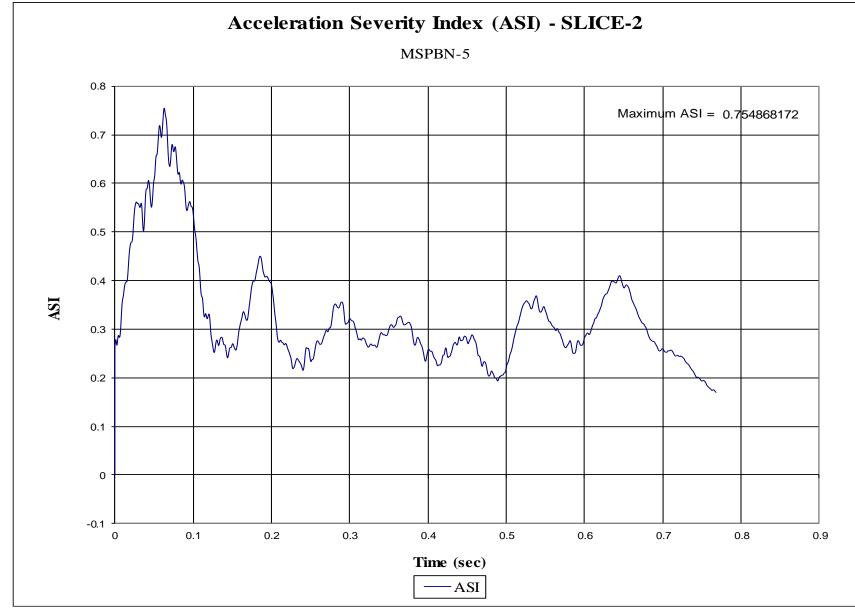


Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-5

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-6

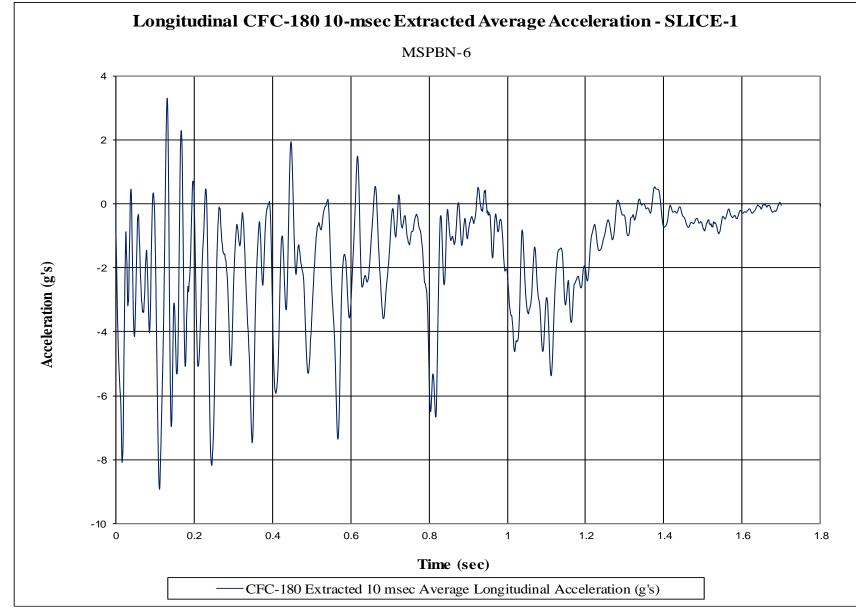


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-6

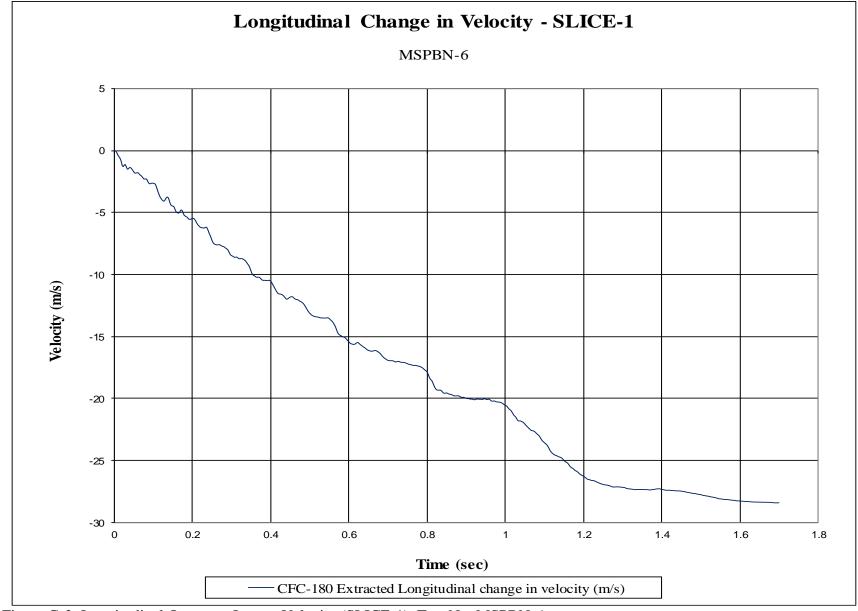


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-6

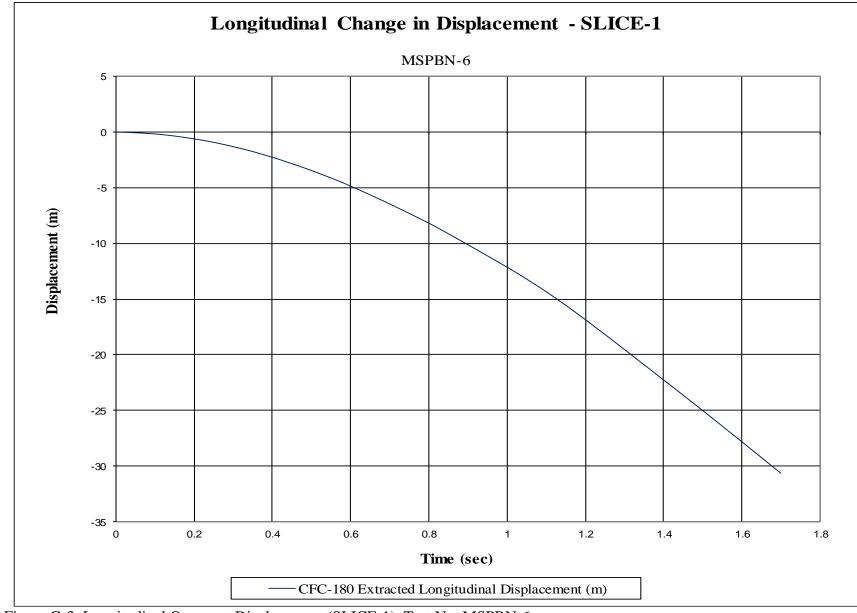


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-6

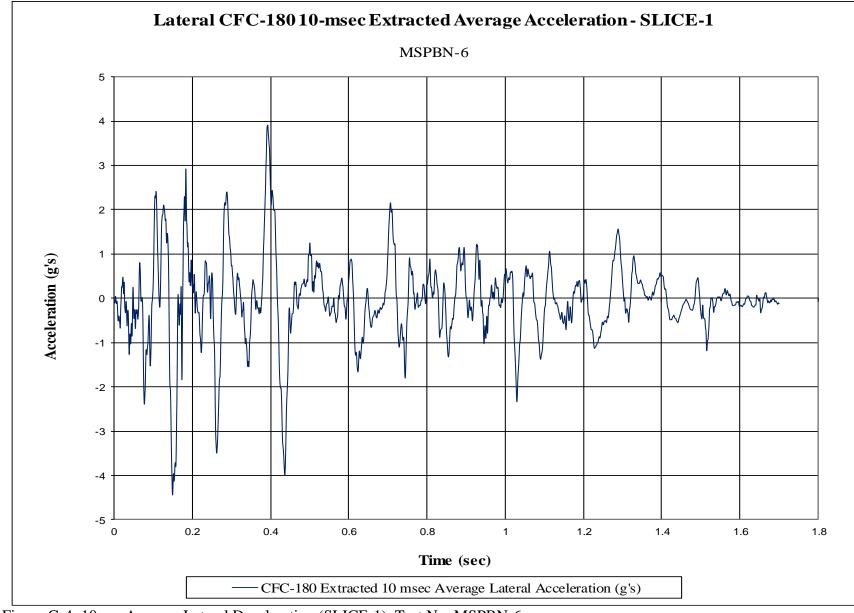


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-6

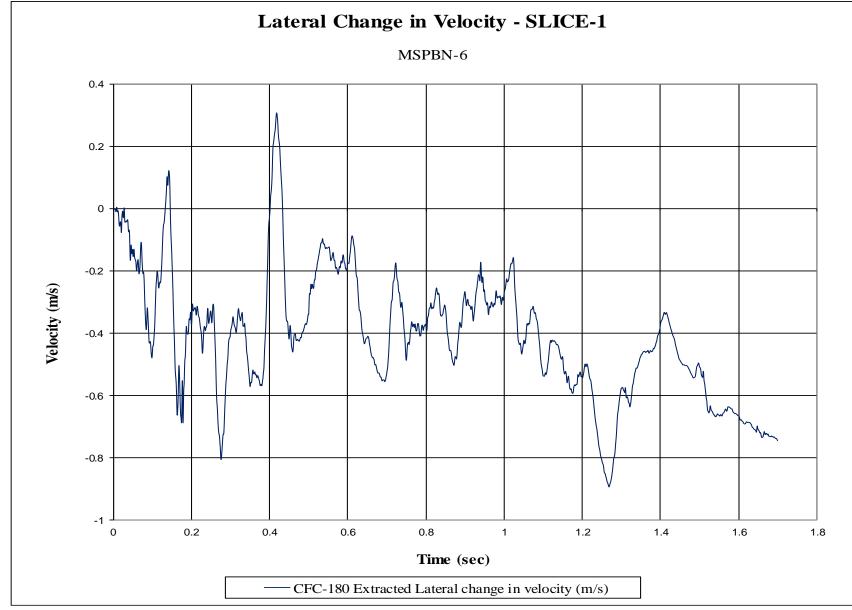


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-6

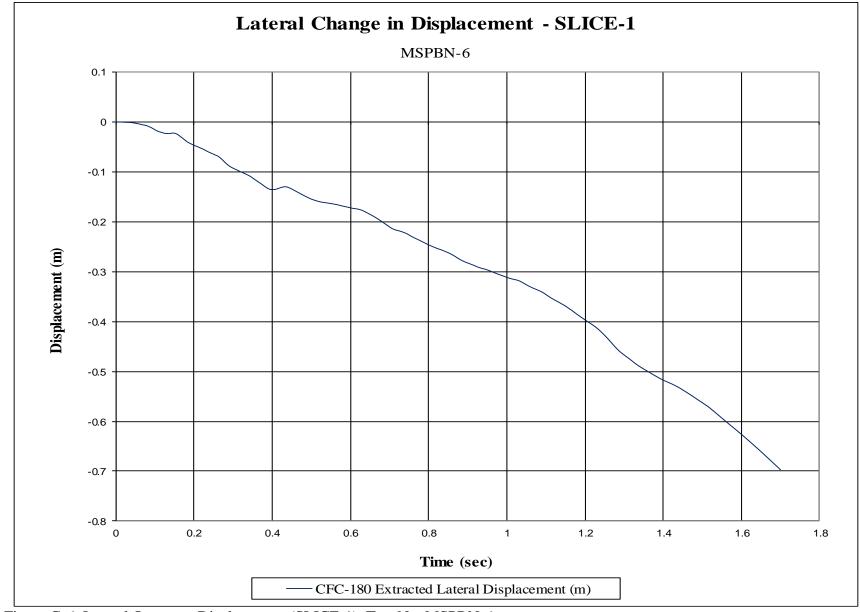


Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-6

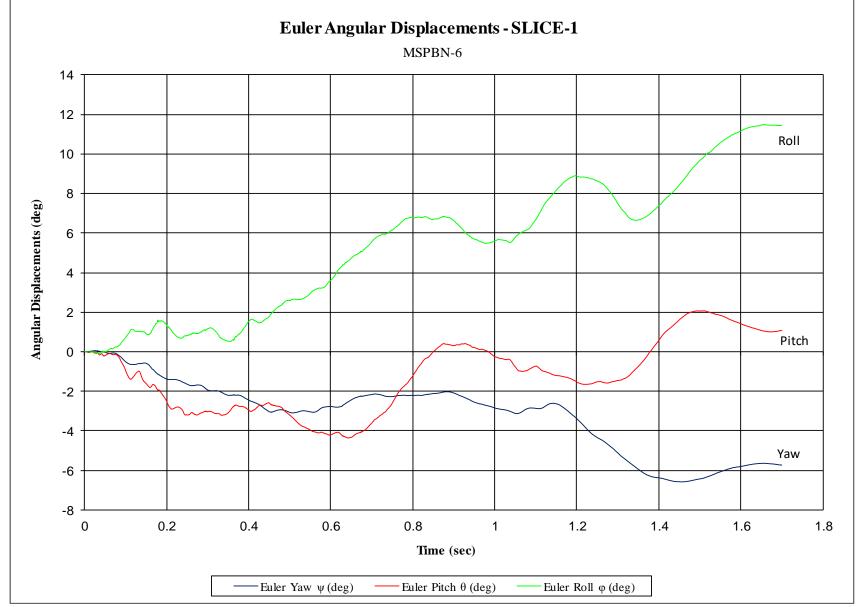


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-6

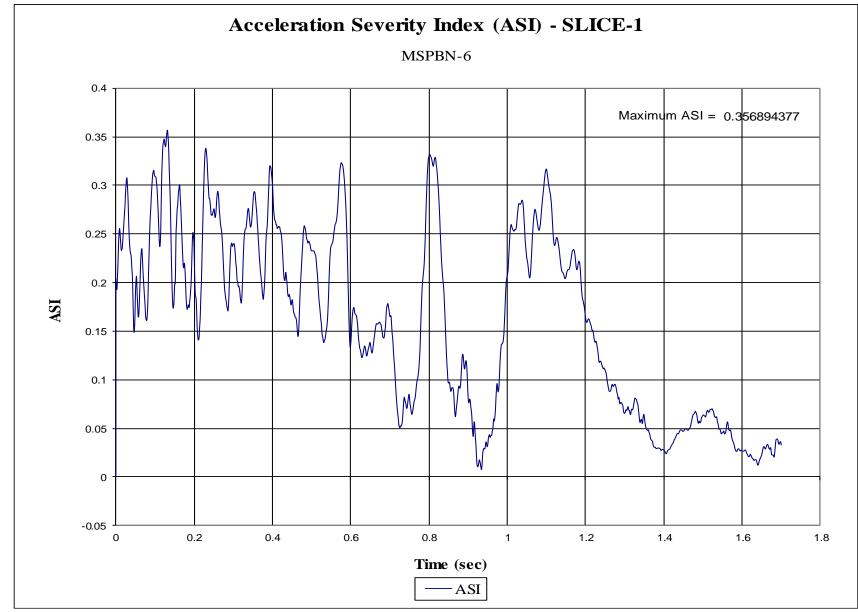


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-6

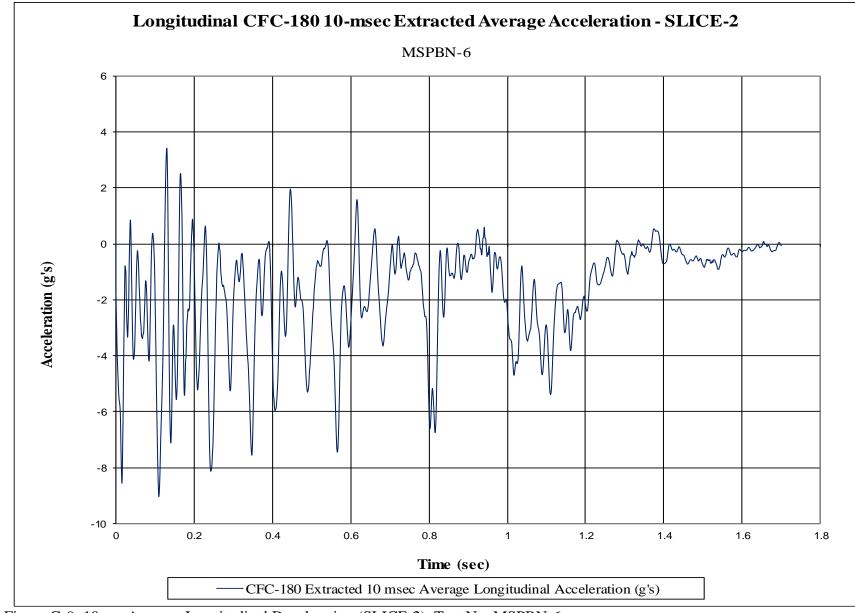


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-6

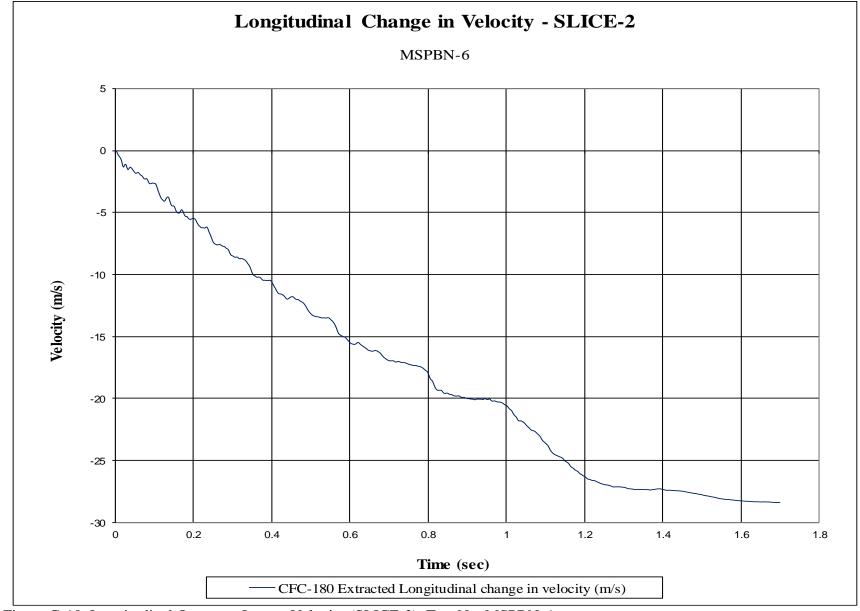


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-6

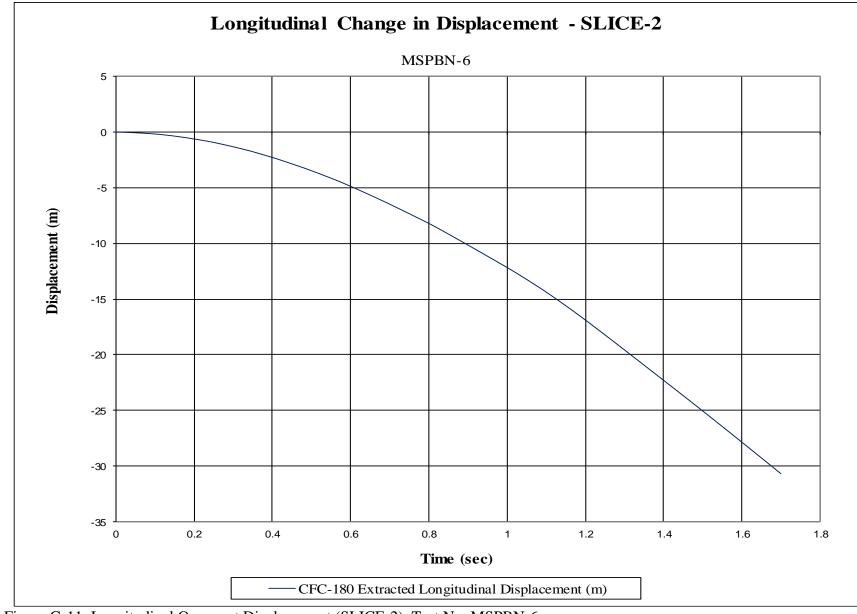


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-6

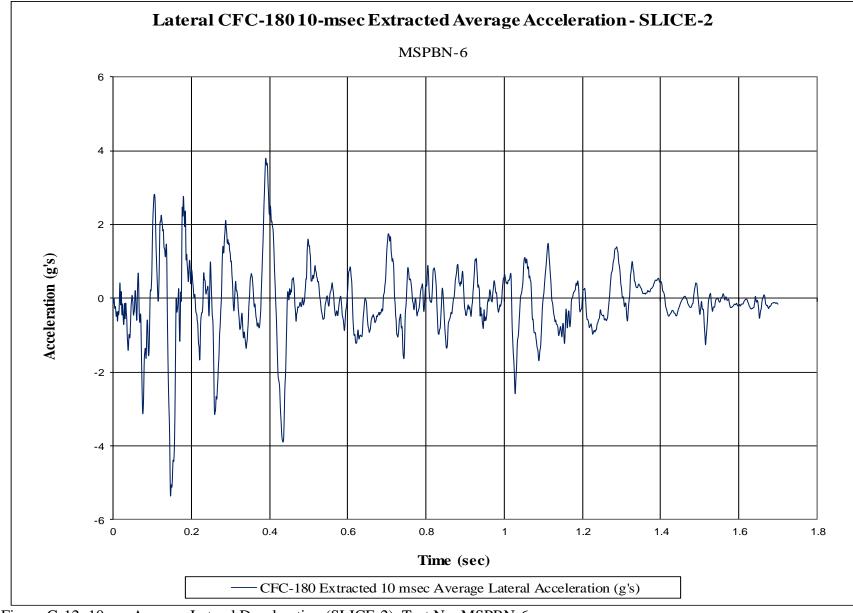


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-6

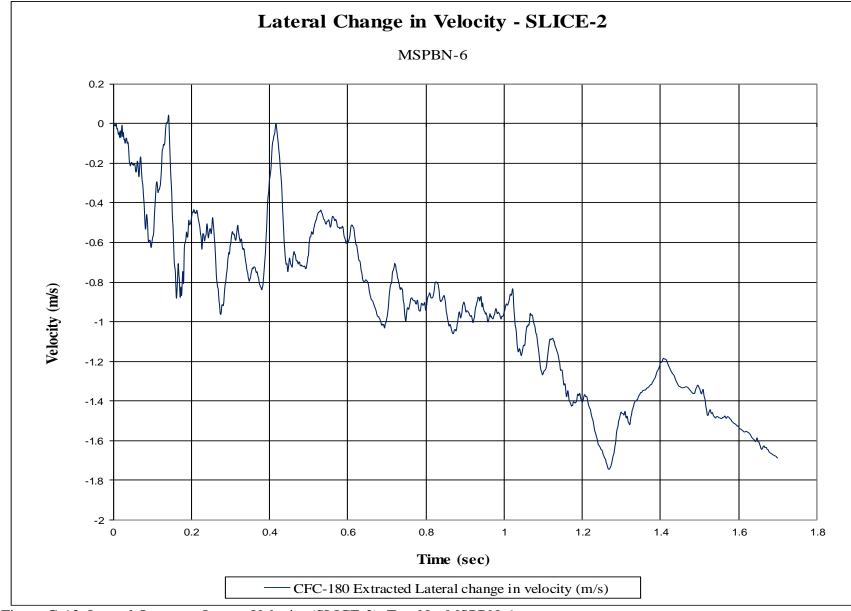


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-6

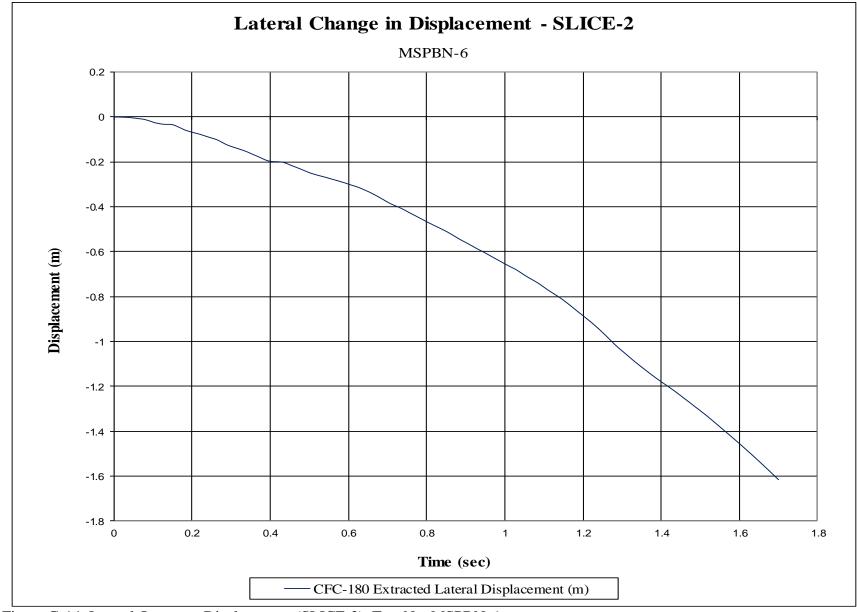


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-6

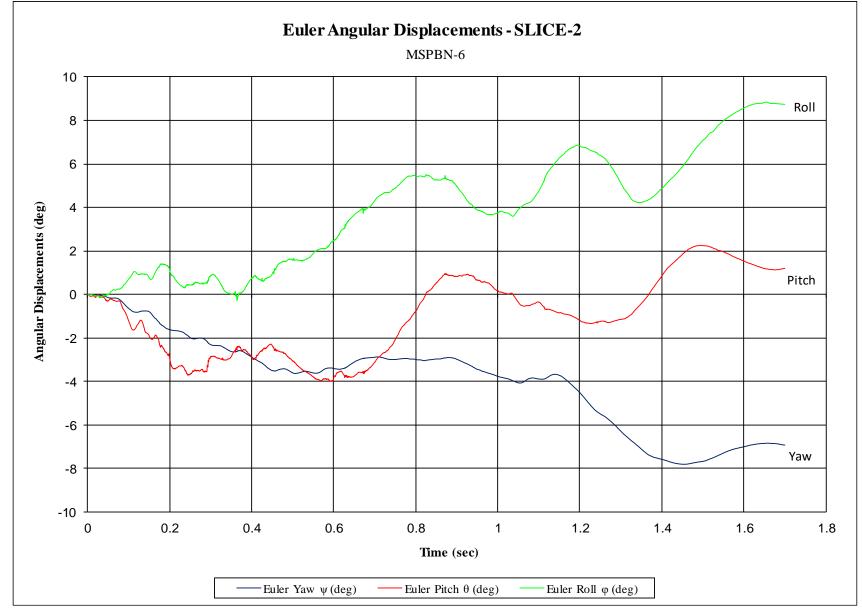


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-6

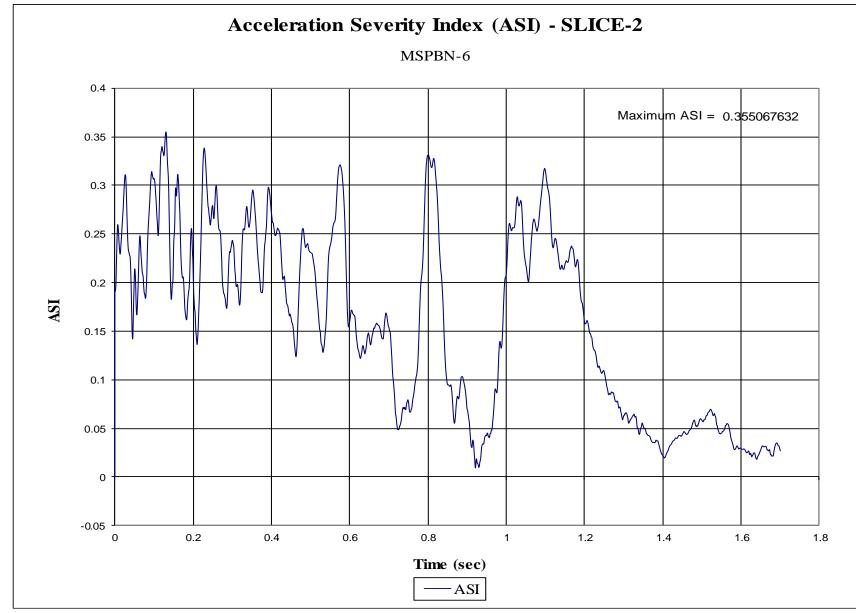


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-6

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-7

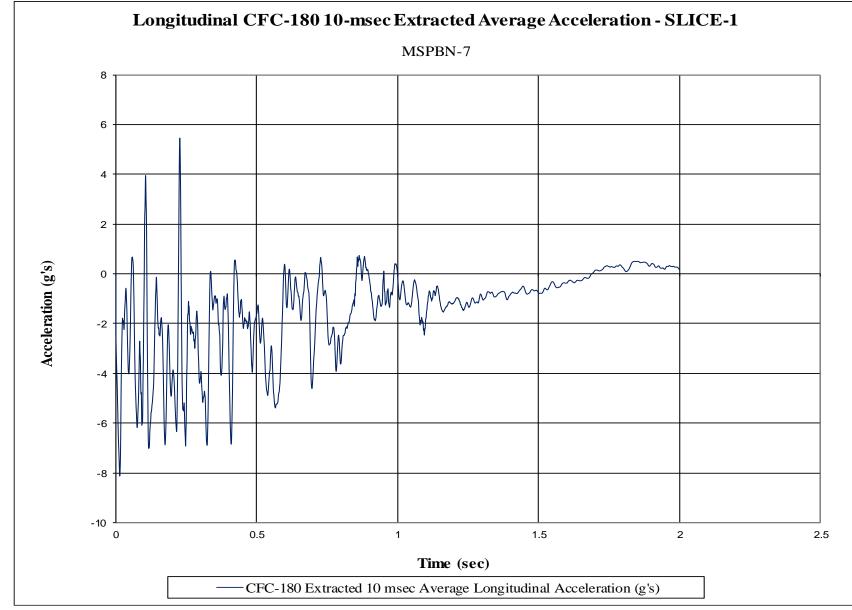


Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-7

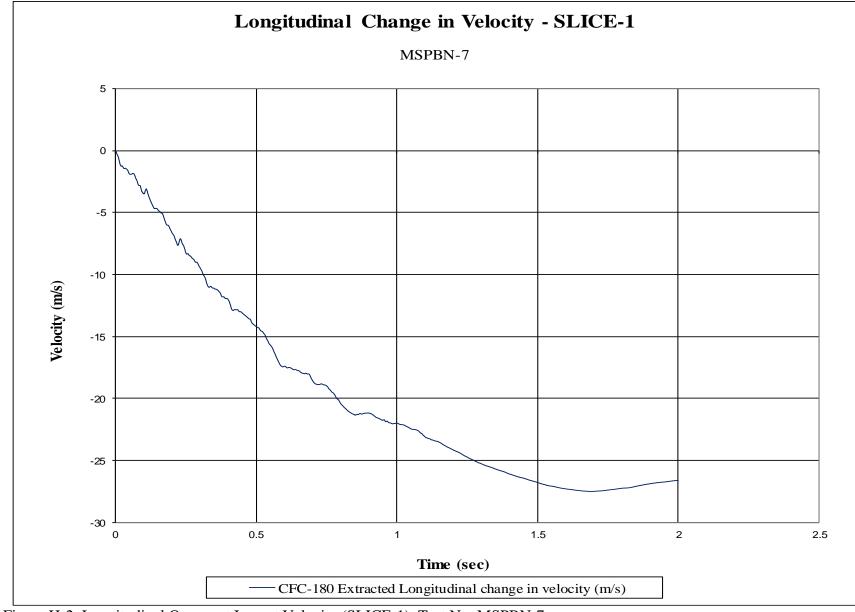


Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-7

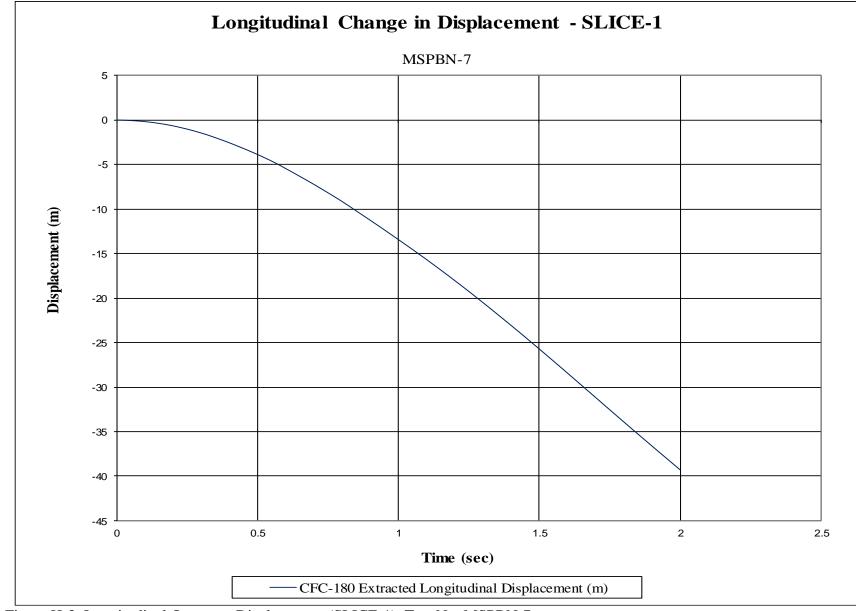


Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-7

September 1, 2020 MwRSF Report No. TRP-03-418-20

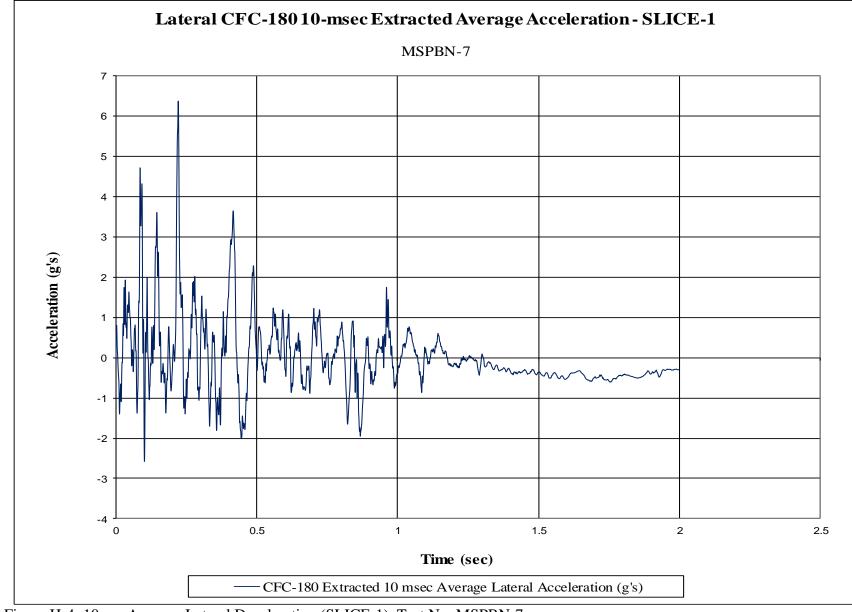


Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-7

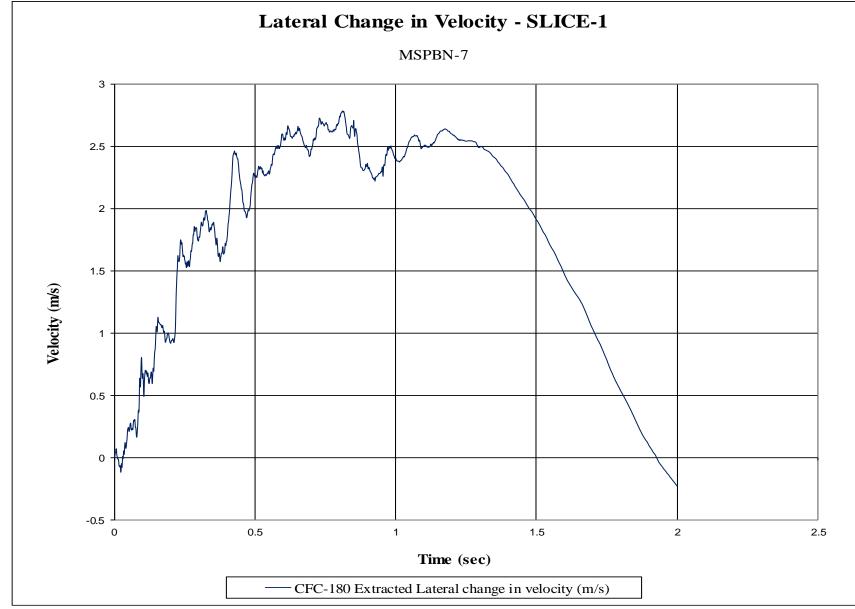


Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-7

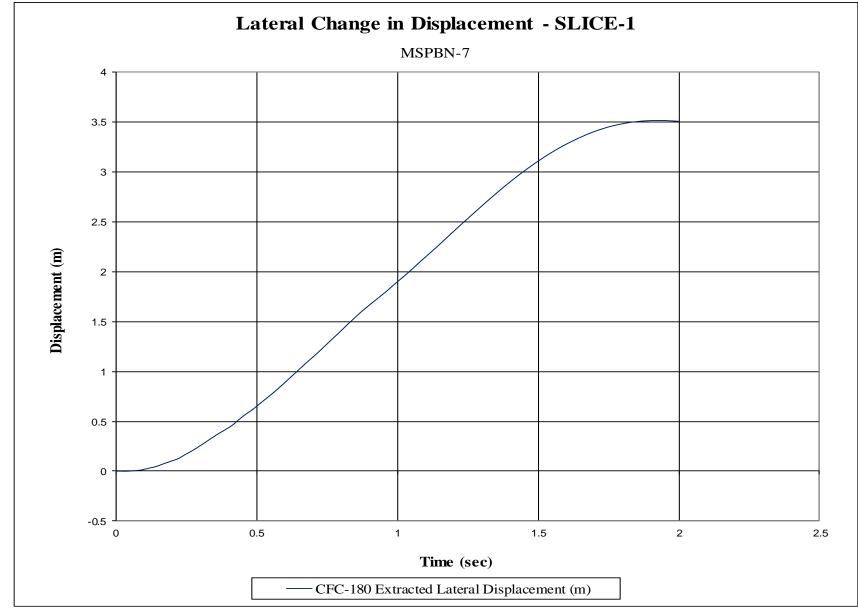


Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-7

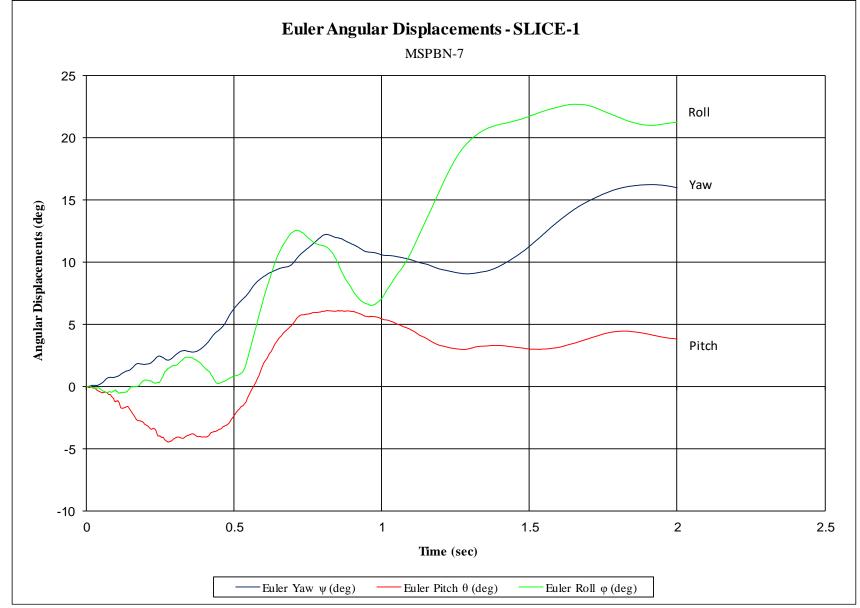


Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-7

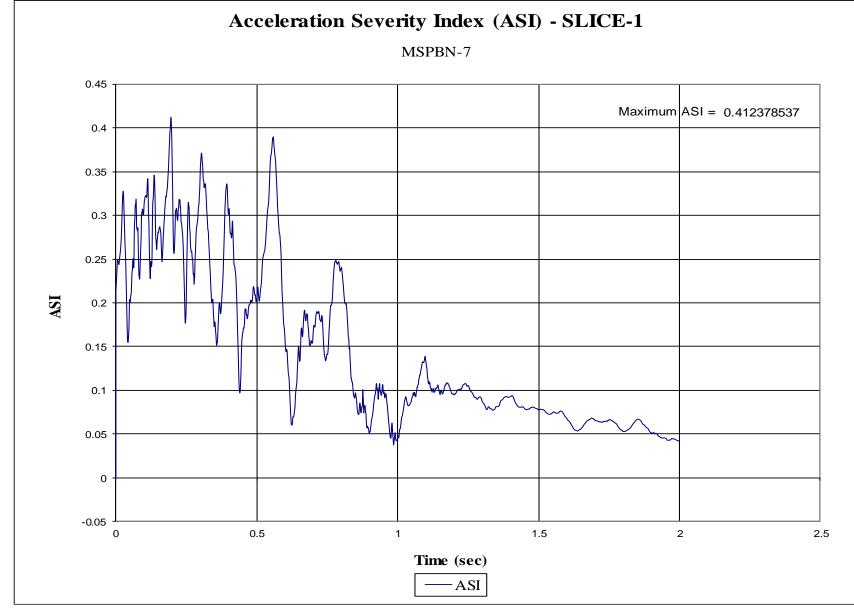


Figure H-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-7

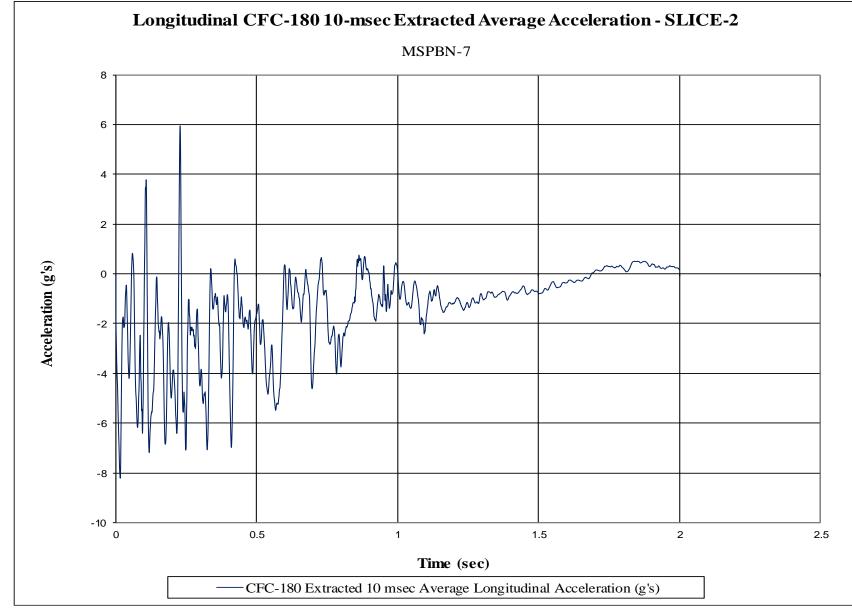


Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-7

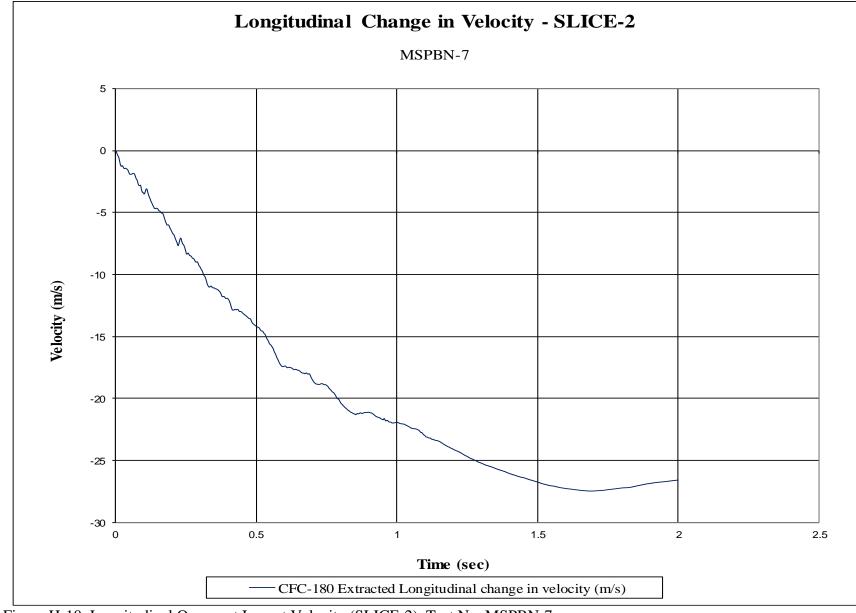


Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-7

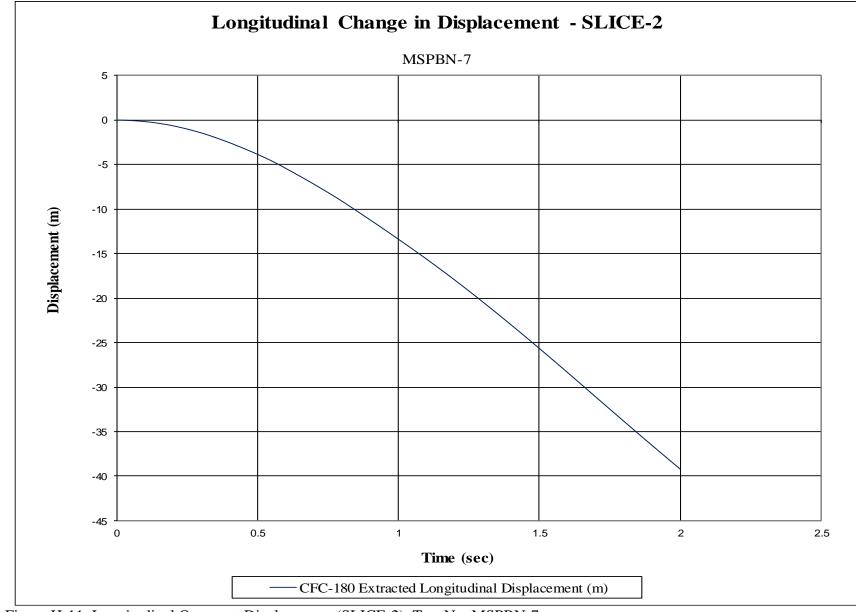


Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-7

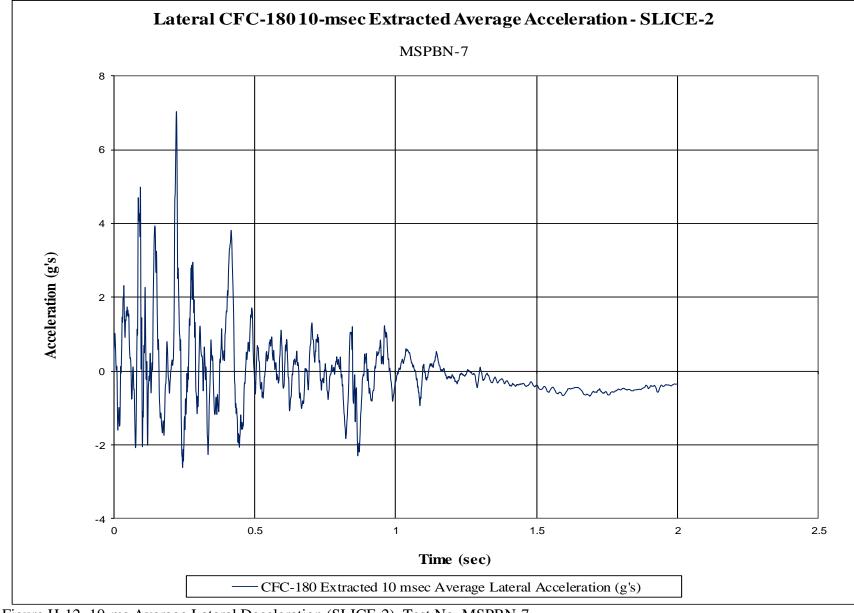


Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-7

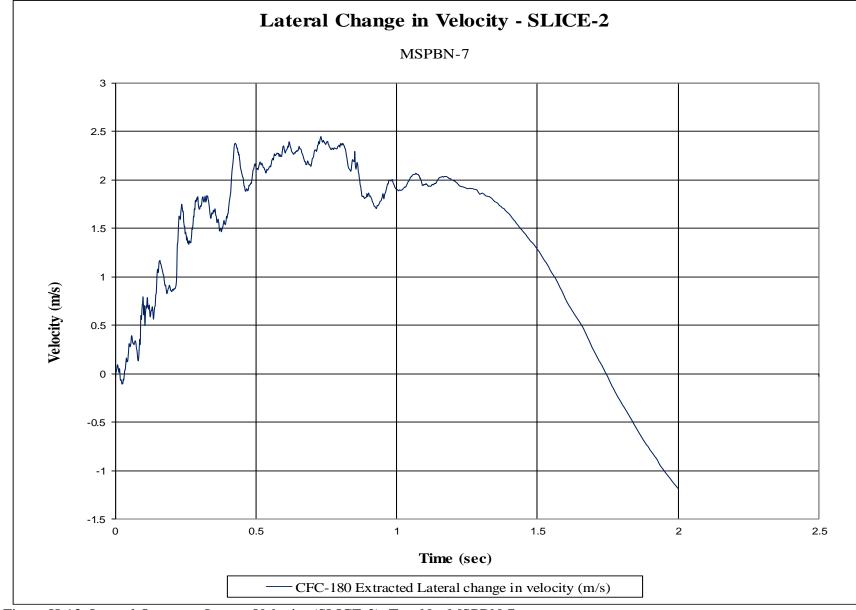


Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-7

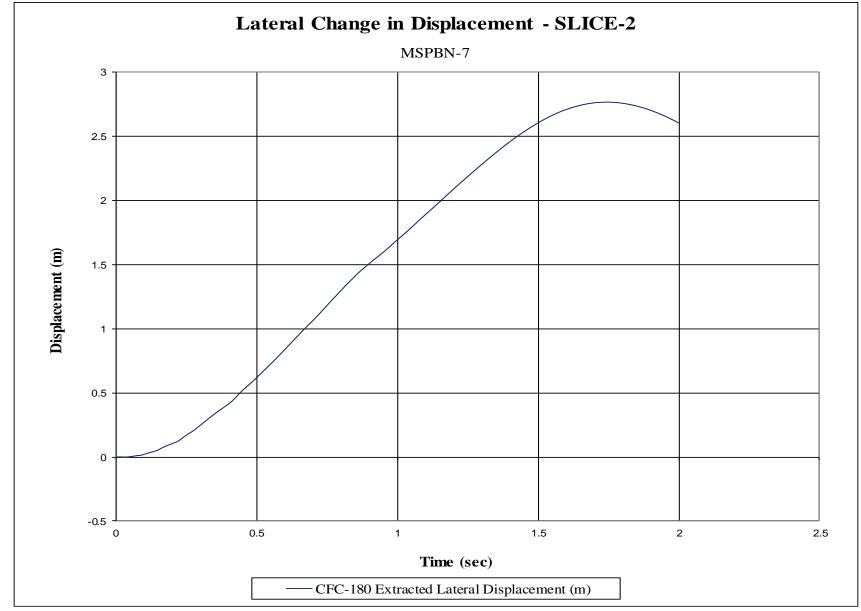


Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-7

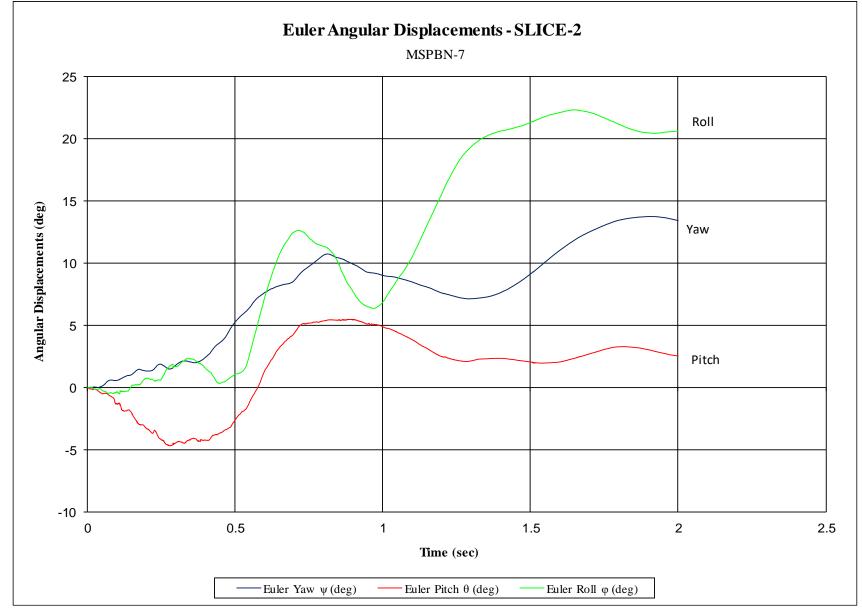


Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-7

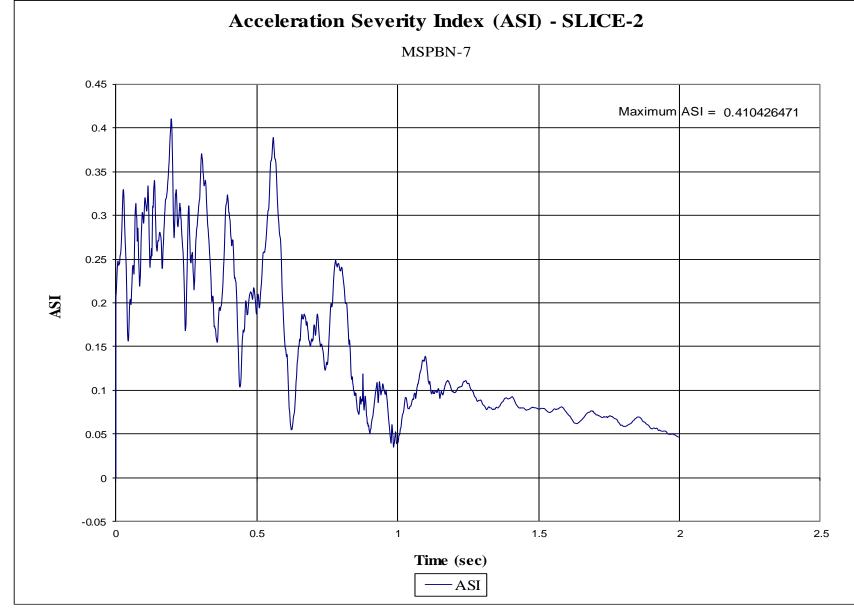


Figure H-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-7

Appendix I. Accelerometer and Rate Transducer Data Plots, Test No. MSPBN-8

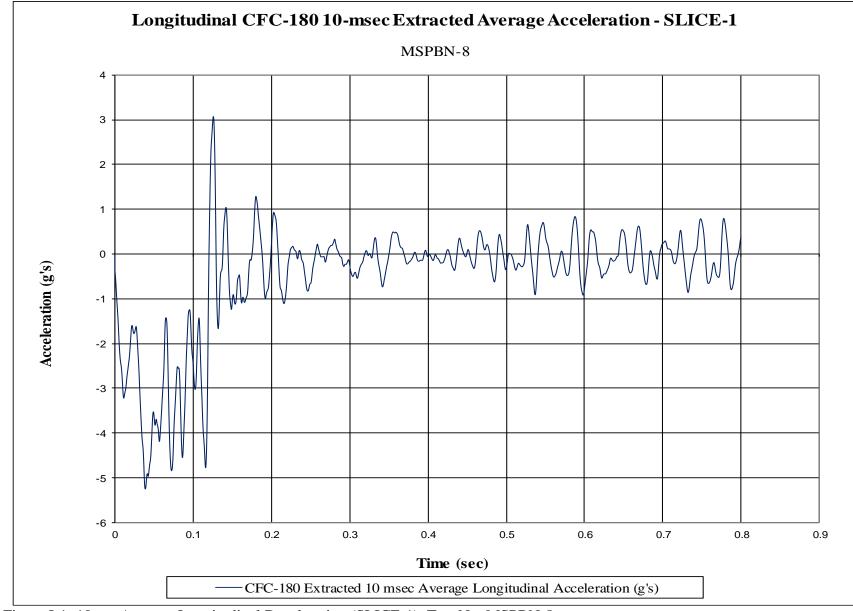


Figure I-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MSPBN-8

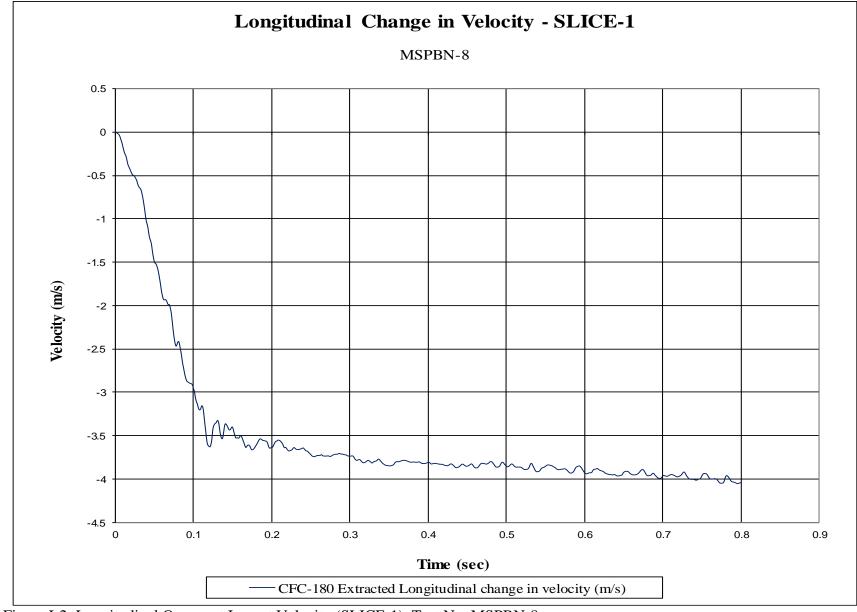


Figure I-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MSPBN-8

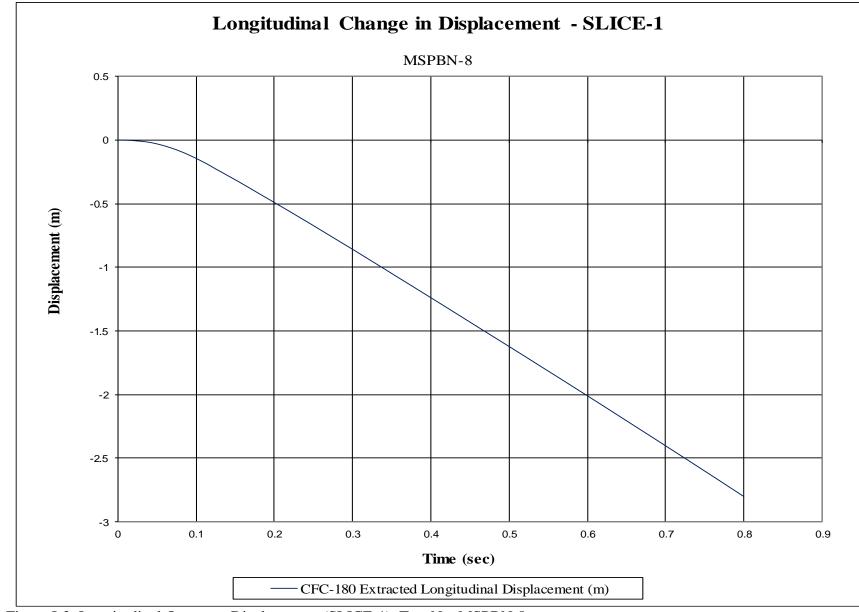


Figure I-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MSPBN-8

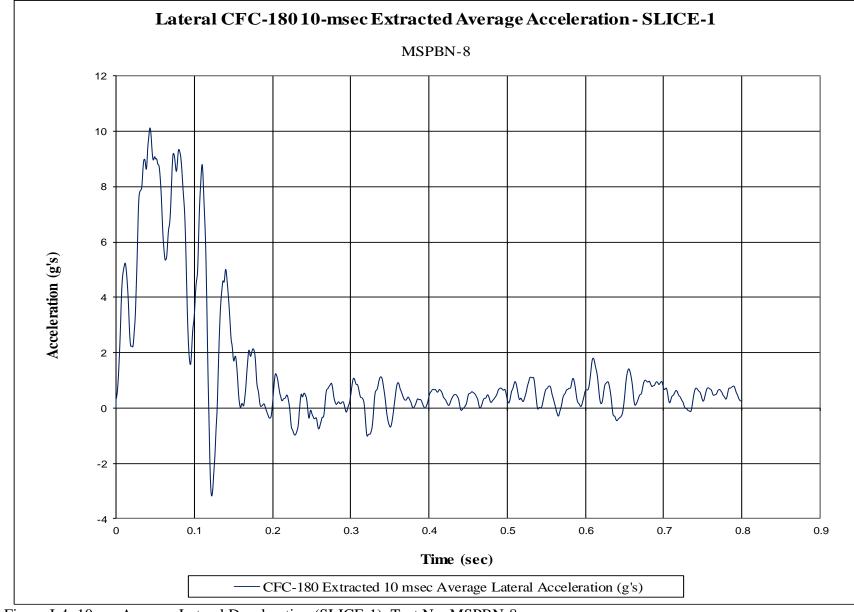


Figure I-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MSPBN-8

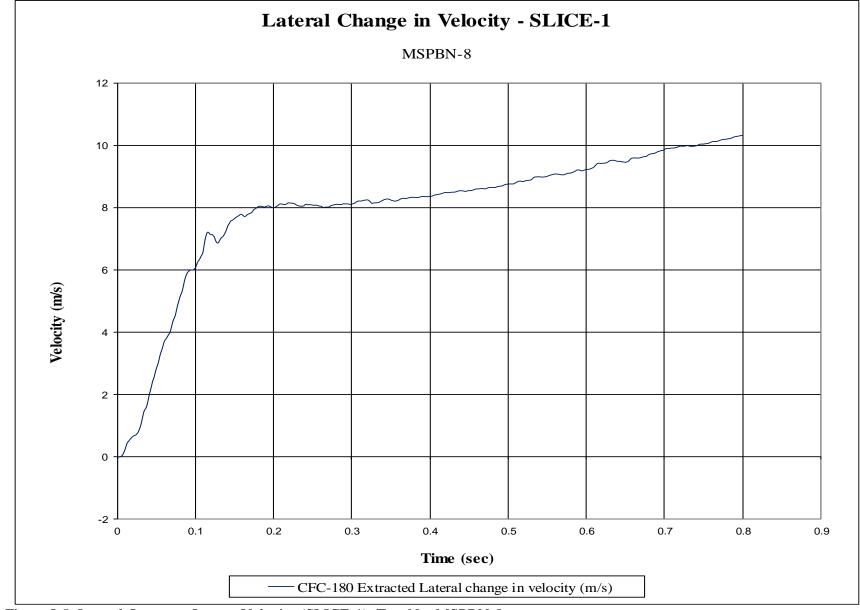


Figure I-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MSPBN-8

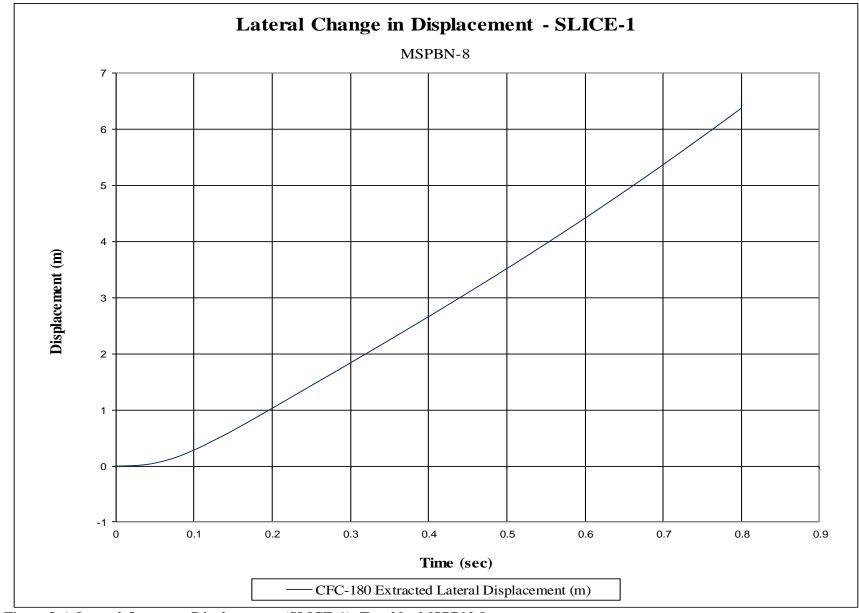


Figure I-6. Lateral Occupant Displacement (SLICE-1), Test No. MSPBN-8

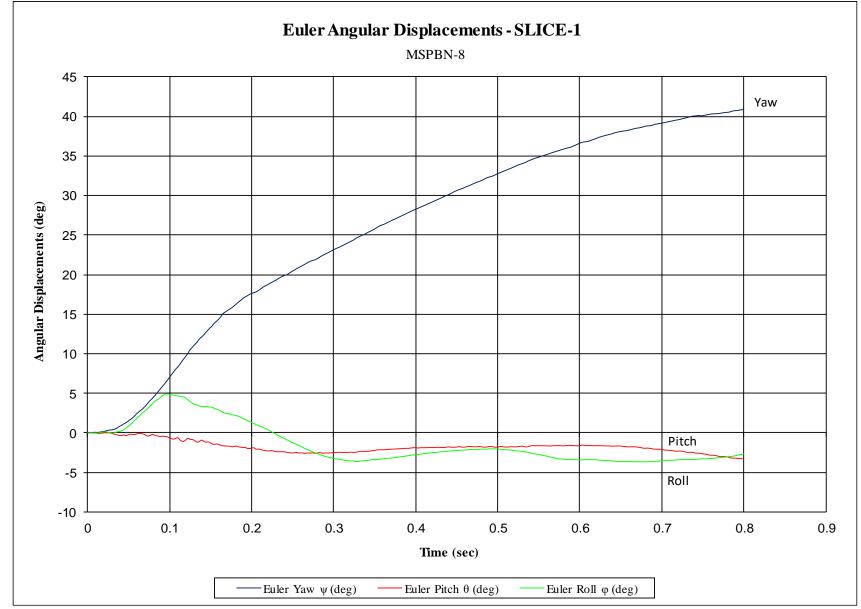


Figure I-7. Vehicle Angular Displacements (SLICE-1), Test No. MSPBN-8

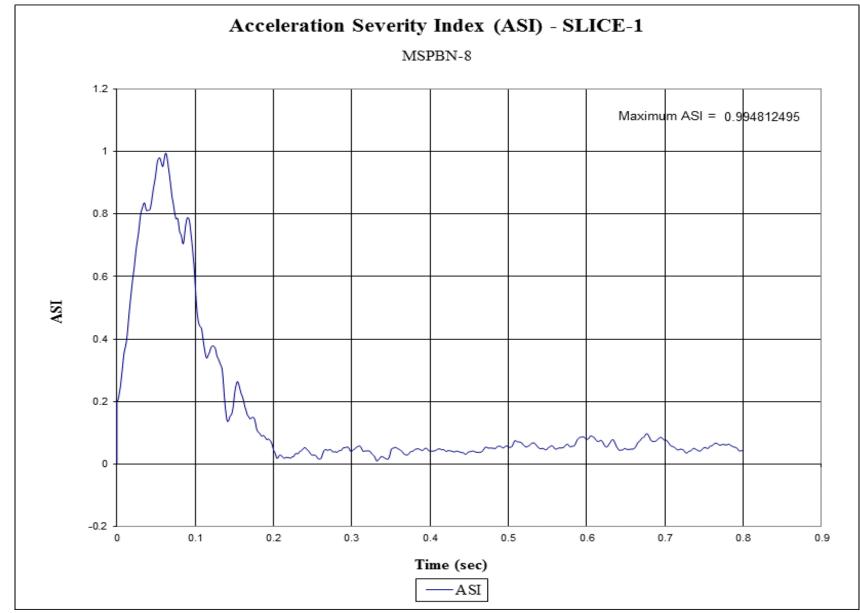


Figure I-8. Acceleration Severity Index (SLICE-1), Test No. MSPBN-8

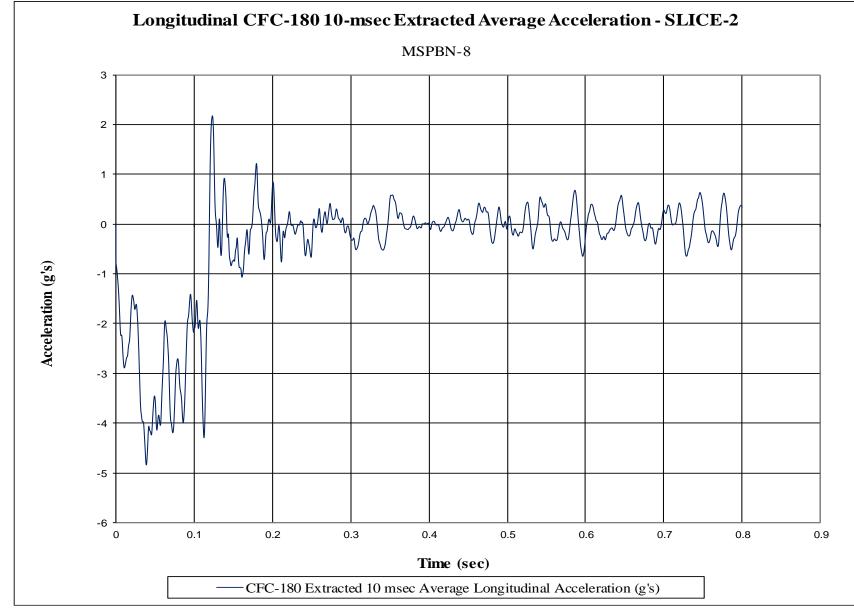


Figure I-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MSPBN-8

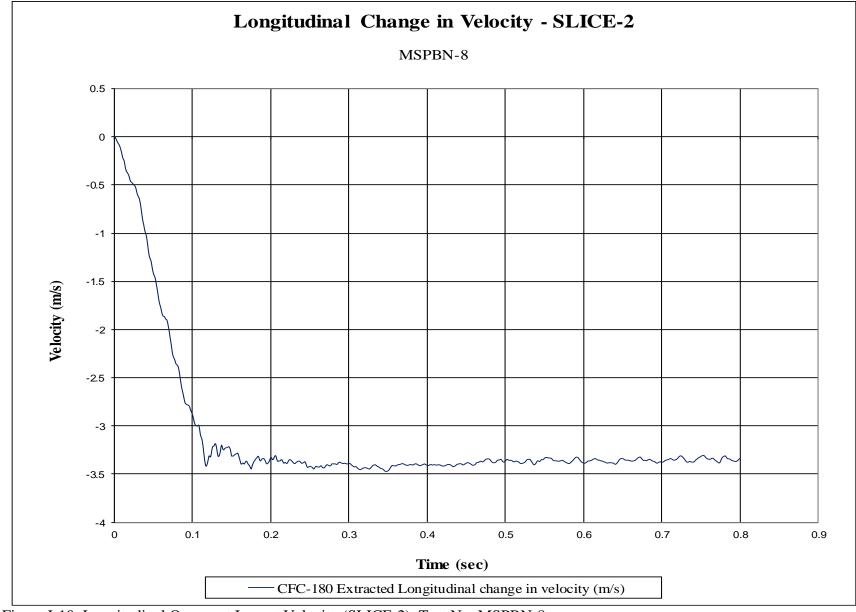


Figure I-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MSPBN-8

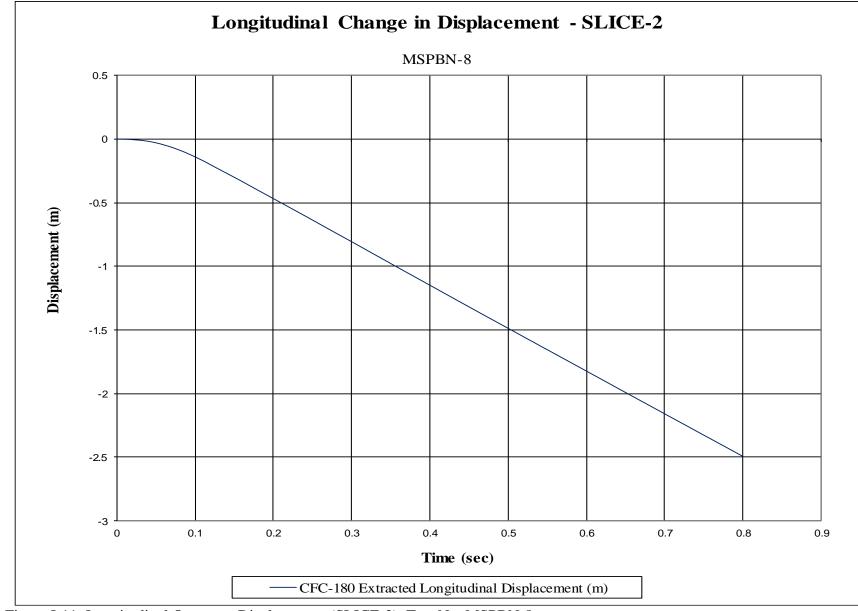


Figure I-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MSPBN-8

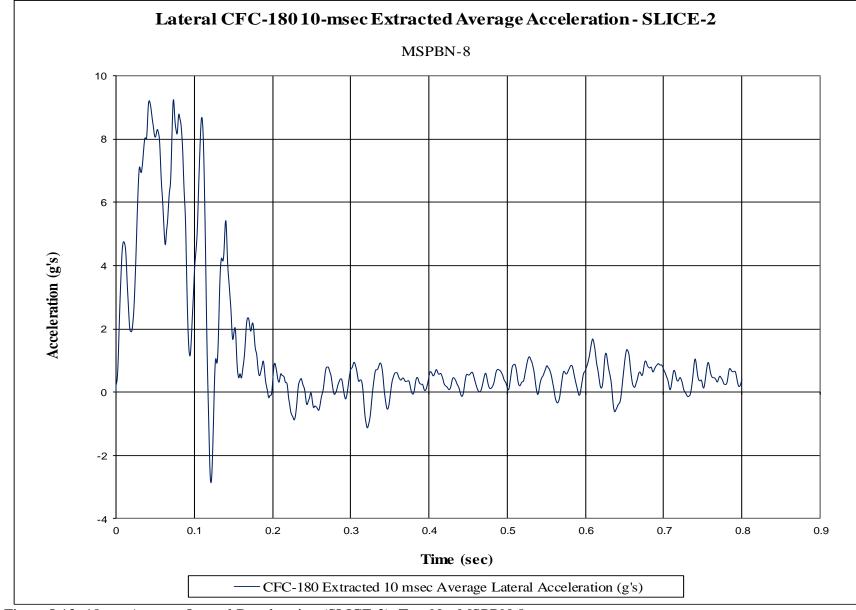


Figure I-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MSPBN-8

Figure I-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MSPBN-8

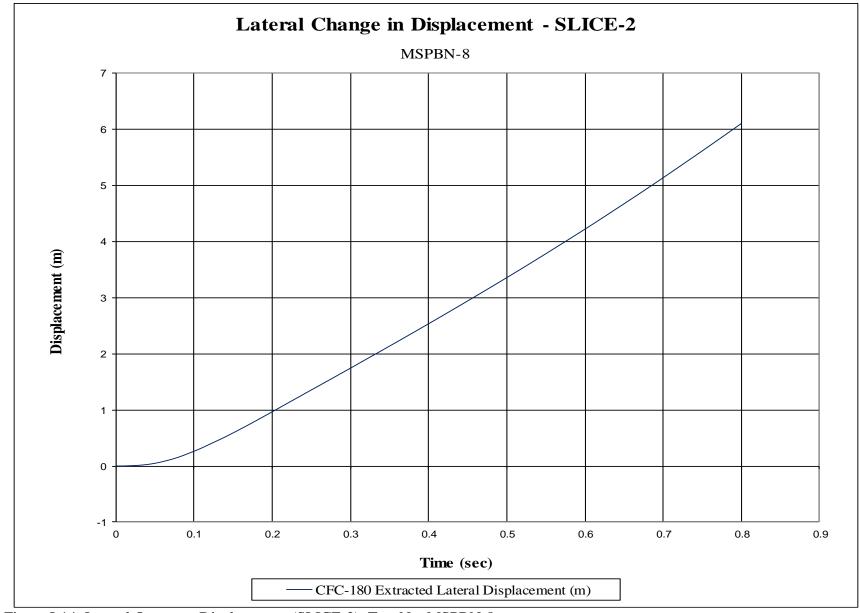


Figure I-14. Lateral Occupant Displacement (SLICE-2), Test No. MSPBN-8

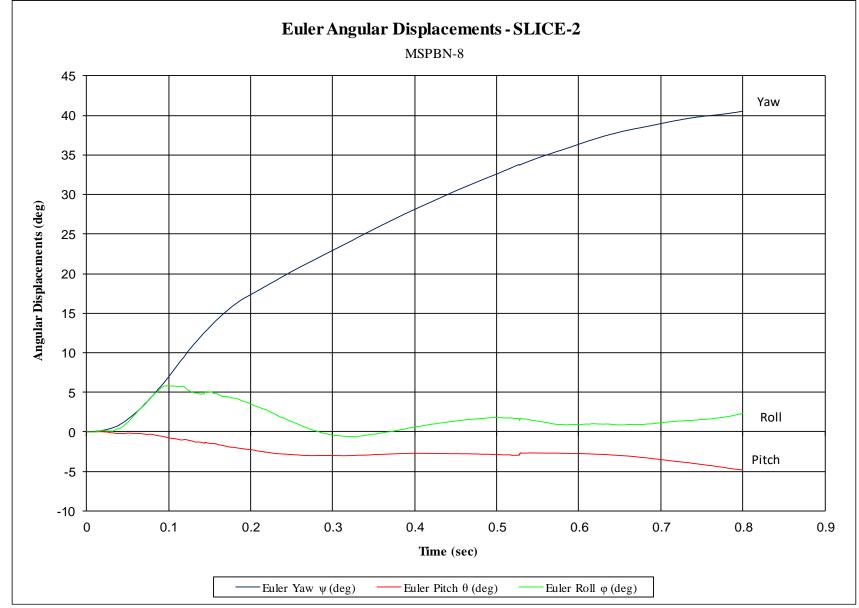


Figure I-15. Vehicle Angular Displacements (SLICE-2), Test No. MSPBN-8

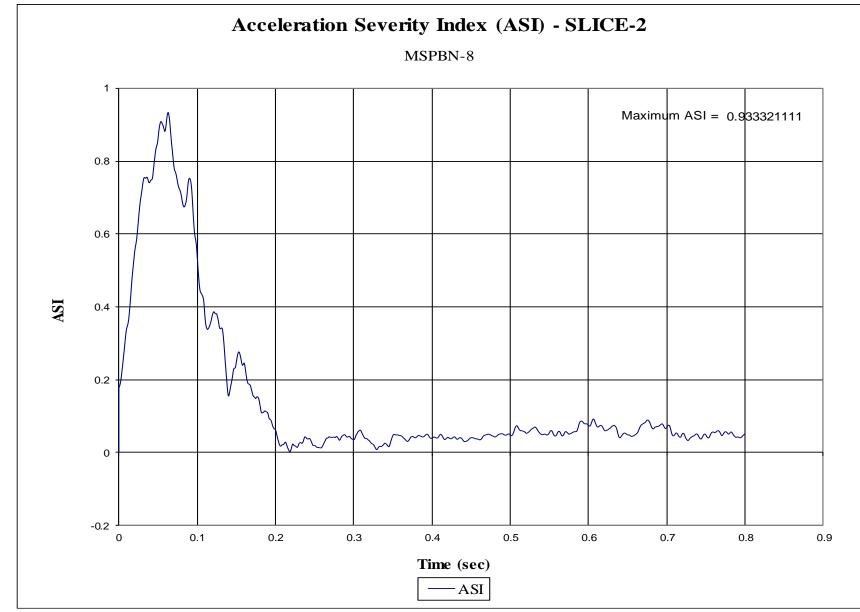


Figure I-16. Acceleration Severity Index (SLICE-2), Test No. MSPBN-8

580

END OF DOCUMENT