

Hawaii Department of Transportation Research Project Number 68212 Research Project No. STP-1500(092)R – Phase III

CRASH TESTING AND EVALUATION OF THE HDOT 34-IN. TALL, AESTHETIC CONCRETE BRIDGE RAIL WITH PEDESTRIAN HANDRAIL AND SIDEWALK: MASH TEST DESIGNATION NOS. 3-10 AND 3-11

Submitted by

Brandon Perry, M.E.M.E. Research Associate Engineer Cody Stolle, Ph.D. Research Assistant Professor

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402)472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

Hawaii Department of Transportation Aliiaimoku Building 869 Punchbowl St. Honolulu, Hawaii 96813

MwRSF Research Report No. TRP-03-456-22

August 26, 2022

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
TRP-03-456-22				
4. Title and Subtitle		5. Report Date		
Crash Testing and Evaluation of the HDOT	34-in. Tall, Aesthetic Concrete	August 26, 2022		
Bridge Rail with Pedestrian Handrail and Sid	lewalk: MASH Test Designation	6 Parforming Organization Code		
Nos. 3-10 and 3-11		0. I errorning Organization Code		
7 Author(s)		8 Performing Organization Report No		
Derry DI Stelle CS Feller DK and Ur	honle E I	TDD 02 456 22		
Perry, B.J., Stolle, C.S., Faller, K.K., and Ur		1KP-05-430-22		
9. Performing Organization Name and Ad	ldress	10. Work Unit No.		
Midwest Roadside Safety Facility (MwRSF)				
Nebraska Transportation Center				
University of Nebraska-Lincoln				
Main Office:	Outdoor Test Site	11. Contract		
Prem S. Paul Research Center at	4630 N.W. 36th Street	Research Project No. 68212		
Whittier School	incoln, Nebraska 68524	Research Project No. STP-1500(092)R – Phase		
Room 130, 2200 Vine Street	,	III		
Lincoln, Nebraska 68583-0853				
12. Sponsoring Agency Name and Address	S	13. Type of Report and Period Covered		
Hawaii Department of Transportation	Final Report: 2021-2022			
Aliiaimoku Building				
869 Punchbowl St.		14. Sponsoring Agency Code		
Honolulu, Hawaii 96813				
15. Supplementary Notes				

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration

16. Abstract

This report documents two-full scale vehicle crash tests that were conducted to investigate the safety performance of the Hawaii Department of Transportation's (HDOT's) 34-in. Tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk. The barrier system was 88 ft long and consisted of three 21-ft 11½-in. long concrete parapets anchored to the concrete tarmac. Expansion joints between each adjacent segment consisted of 24½-in. long, No. 8 ASTM A615 Grade 60 steel bars cast into the existing concrete tarmac and inserted into PVC pipes on the upstream side of the expansion joint. The sidewalk was 88 ft long, 6 ft wide, and 6 in. tall. The pedestrian handrail was fabricated using 3-in. x 3-in. x ¼-in. steel square tube supported by 2½-in. x ½-in. x ¼-in. steel square tube posts mounted on the back side of the bridge rail at a height of 8½ in. above the top surface of the bridge rail. Test nos. HP34S-1 and HP34S-2 were conducted according to American Association of State Highway and Transportation Officials' *Manual for Assessing Safety Hardware 2016* (MASH 2016) criteria using Test Level 3 (TL-3) test designation nos. 3-11 and 3-10, respectively.

In test no. HP34S-1, a 2270P quad cab pickup truck impacted the sidewalk at a speed of 65.7 mph and an angle of 25.2 degrees and impacted the barrier at a speed of 63.6 mph and an angle of 23.7 degrees. Although the sidewalk impact speed nominally exceeded the MASH limits, MASH accepts values in excess of the criteria for longitudinal barriers impacted within the length-of-need. In test no. HP34S-2, a 1100C small car impacted the sidewalk at a speed of 62.0 mph and an angle of 25.0 degrees and impacted the barrier at a speed of 60.2 mph and an angle of 22.8 degrees. In both tests, the bridge rail successfully contained and redirected the vehicle. Thus, test nos. HP34S-1 and HP34S-2 successfully met the TL-3 safety performance criteria defined in MASH 2016.

17. Key Words		18. Distribution Statement		
Compliance Test, MASH 2016, As	esthetic, Barrier, Parapet, Bridge	No restrictions. This document is available through the		
Rail, Pedestrian, Handrail, Sidewa	lk, TL-3, Roadside Safety, Safety	National Technical Information Service.		
		5285 Port Royal Road	5285 Port Royal Road	
		Springfield, VA 22161		
19. Security Classification (of	20. Security Classification (of	21. No. of Pages	22. Price	
this report)	this page)	181		
Unclassified	Unclassified			
		.1 . 1		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation and the Hawaii Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Hawaii Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Dr. Joshua Steelman, P.E., Associate Professor in the Department of Civil and Environmental Engineering.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Hawaii Department of Transportation, and (2) MwRSF personnel for constructing the barriers and conducting the crash tests. Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., Research Engineer & Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., Research Engineer R.W. Bielenberg, M.S.M.E., Research Engineer S.K. Rosenbaugh, M.S.C.E., Research Engineer J.S. Steelman, Ph.D., P.E., Associate Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor C. Sim, Ph.D., Associate Professor C.R. Song, Ph.D., Associate Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Engineering Testing Technician II D.S. Charroin, Engineering Testing Technician II R.M. Novak, Engineering Testing Technician II S.M. Tighe, Engineering Testing Technician I T.C. Donahoo, Engineering Testing Technician I J.T. Jones, Engineering Testing Technician I T. Shapland, Engineering Testing Technician I C. Charroin, Engineering Testing Technician I Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

SI* (MODERN METRIC) CONVERSION FACTORS						
APPROXIMATE CONVERSIONS TO SI UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol		
		LENGTH				
in.	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
		AREA		2		
in ²	square inches	645.2	square millimeters	mm^2		
ft ²	square feet	0.093	square meters	m² 2		
yd-	square yard	0.850	square meters	m- ha		
mi ²	square miles	2 59	square kilometers	km ²		
	square miles	VOLUME	square knometers	KIII		
floz	fluid ounces	29.57	milliliters	mL		
gal	gallons	3.785	liters	L		
ft ³	cubic feet	0.028	cubic meters	m ³		
yd ³	cubic yards	0.765	cubic meters	m ³		
	NOTE:	volumes greater than 1,000 L shall b	be shown in m ³			
		MASS				
oz	ounces	28.35	grams	g		
lb	pounds	0.454	kilograms	kg		
Т	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")		
		TEMPERATURE (exact de	grees)			
°F	Fahrenheit	5(F-32)/9	Celsius	°C		
		or (F-32)/1.8		-		
		ILLUMINATION				
fc	foot-candles	10.76	lux	lx		
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²		
	ľ	ORCE & PRESSURE or S.	TRESS			
lbf	poundforce	4.45	newtons	N 1-D-		
101/111	poundrorce per square inch			KPa		
		TATE CONVERSIONS F		G 1 1		
Symbol	when You Know	Multiply By	10 Find	Symbol		
		LENGTH				
mm	millimeters	0.039	inches	1n.		
m	meters	5.28	varde	II vd		
km	kilometers	0.621	miles	mi		
mm ²	square millimeters	0.0016	square inches	in ²		
m ²	square meters	10.764	square feet	ft ²		
m ²	square meters	1.195	square yard	yd ²		
ha	hectares	2.47	acres	ac		
km ²	square kilometers	0.386	square miles	mi ²		
		VOLUME				
mL	milliliter	0.034	fluid ounces	fl oz		
L	liters	0.264	gallons	gal		
m ³	cubic meters	35.314	cubic feet	ft ³		
m	cubic meters	1.307	cubic yards	yd ³		
		MASS				
g	grams	0.035	ounces	OZ lb		
Kg Mg (or "t")	KHOGRAMS	2.202	short top (2 000 lb)	10 T		
Mg (OF C)	megagrams (or metric ton)	TEMPERATURE (avaat da	grass)	1		
°C	Celsing		Eshrenheit	°F		
C	Celsius		ranomon	1		
lv	huv		foot-candles	fc		
cd/m ²	candela per square meter	0.2919	foot-Lamberts	fl		
	F	ORCE & PRESSURE or S'	FRESS			
	_ ·	CASCE OF A HEUDOUTLE UI D.				
Ν	newtons	0.225	poundforce	lbf		

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
SI* (MODERN METRIC) CONVERSION FACTORS	iii
LIST OF FIGURES	vi
LIST OF TABLES	X
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	
3 DESIGN DETAILS	
 4 TEST CONDITIONS	
 5 FULL-SCALE CRASH TEST NO. HP34S-1 5.1 Weather Conditions 5.2 Test Description 5.3 Barrier Damage 5.4 Vehicle Damage 5.5 Occupant Risk 5.6 Barrier Loads 5.7 Discussion 	
6 FULL-SCALE CRASH TEST NO. HP34S-2	

6.1 Weather Conditions	
6.2 Test Description	
6.3 Barrier Damage	
6.4 Vehicle Damage	87
6.5 Occupant Risk	
6.6 Barrier Loads	
6.7 Discussion	
7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	
8 MASH EVALUATION	
9 REFERENCES	
10 APPENDICES	
Appendix A. Material Specifications	
Appendix B. Vehicle Center of Gravity Determination	129
Appendix C. Vehicle Deformation Records	
Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. HP3	4 S -1 147
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. HP34	4S-2 164

LIST OF FIGURES

Figure 1. HDOT Standard Detail for the 34-in. Tall, Aesthetic Concrete Bridge Rail with	
Sidewalk	3
Figure 2. HDOT Standard Detail for Transition to the 34-in. Tall, Aesthetic Concrete	
Bridge Rail	4
Figure 3. HDOT Standard Detail for the 34-in. Tall, Aesthetic Concrete Bridge Rail with	
Pedestrian Rail	5
Figure 4. HDOT Reinforcement Detail for the 34-in. Tall, Aesthetic Concrete Bridge Rail	6
Figure 5. Final Design Guidelines for Aesthetic Surface Treatments of Safety-Shape	
Concrete Barrier [3]	7
Figure 6. Test Installation Layout, Test Nos. HP34S-1 and HP34S-2	12
Figure 7. Pedestrian Handrail Details, Test Nos. HP34S-1 and HP34S-2	13
Figure 8. Reinforcement Details, Test Nos. HP34S-1 and HP34S-2	14
Figure 9. Reinforcement Details, Test Nos. HP34S-1 and HP34S-2	15
Figure 10. Expansion Joint Details, Test Nos. HP34S-1 and HP34S-2	16
Figure 11. 10-ft 11 ³ / ₄ -in. Concrete Parapet Details, Test Nos. HP34S-1 and HP34S-2	17
Figure 12. 21-ft 11 ¹ / ₂ -in. Concrete Parapet Details, Test Nos. HP34S-1 and HP34S-2	18
Figure 13. Sidewalk Details, Test Nos. HP34S-1 and HP34S-2	19
Figure 14. Sidewalk Reinforcement Details, Test Nos. HP34S-1 and HP34S-2	20
Figure 15. Rebar Details, Test Nos. HP34S-1 and HP34S-2	21
Figure 16. Pedestrian Handrail Assembly, Test Nos. HP34S-1 and HP34S-2	22
Figure 17. Pedestrian Handrail Assembly Details, Test Nos. HP34S-1 and HP34S-2	23
Figure 18. Pedestrian Handrail Assembly Details, Test Nos. HP34S-1 and HP34S-2	24
Figure 19. Pedestrian Handrail Components, Test Nos. HP34S-1 and HP34S-2	25
Figure 20. Expansion Joint Components, Test Nos. HP34S-1 and HP34S-2	26
Figure 21. Connection Hardware, Test Nos. HP34S-1 and HP34S-2	27
Figure 22. Bill of Materials, Test Nos. HP34S-1 and HP34S-2	28
Figure 23. Test Installation Photographs, Test Nos. HP34S-1 and HP34S-2	29
Figure 24. Test Installation Photographs, Test Nos. HP34S-1 and HP34S-2	30
Figure 25. Test Vehicle, Test No. HP34S-1	32
Figure 26. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HP34S-1	33
Figure 27. Vehicle Dimensions, Test No. HP34S-1	34
Figure 28. Test Vehicle, Test No. HP34S-2	35
Figure 29. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HP34S-2	36
Figure 30. Vehicle Dimensions, Test No. HP34S-2	37
Figure 31. Target Geometry, Test No. HP34S-1	38
Figure 32. Target Geometry, Test No. HP34S-2	39
Figure 33. Camera Locations, Speeds, and Lens Settings, Test No. HP34S-1	42
Figure 34. Camera Locations, Speeds, and Lens Settings, Test No. HP34S-2	43
Figure 35. Impact Location, Test No. HP34S-1	46
Figure 36. Sequential Photographs, Test No. HP34S-1	48
Figure 37. Additional Sequential Photographs, Test No. HP34S-1	49
Figure 38. Documentary Photographs, Test No. HP34S-1	50
Figure 39. Additional Documentary Photographs, Test No. HP34S-1	51
Figure 40. Additional Documentary Photographs, Test No. HP34S-1	52
Figure 41. Additional Documentary Photographs, Test No. HP34S-1	53

Figure 42.	. Vehicle Final Position and Trajectory Marks, Test No. HP34S-1	54
Figure 43.	. System Damage, Test No. HP34S-1	56
Figure 44.	. Barrier Damage at Expansion Joint No. 2, Test No. HP34S-1	57
Figure 45.	. Tire Contact Marks at Expansion Joint No. 2, Test No. HP34S-1	58
Figure 46.	. Contact Marks on Pedestrian Handrail and Post No. 7, Test No. HP34S-1	59
Figure 47.	. System Damage at Post No. 7, Test No. HP34S-1	60
Figure 48.	. System Damage at Post No. 8, Test No. HP34S-1	61
Figure 49.	Permanent Set, Dynamic Deflection, and Working Width, Test No. HP34S-1	62
Figure 50.	. Vehicle Damage, Test No. HP34S-1	64
Figure 51.	. Vehicle Damage, Test No. HP34S-1	65
Figure 52.	. Occupant Compartment Damage, Test No. HP34S-1	66
Figure 53.	. Undercarriage Damage, Test No. HP34S-1	67
Figure 54.	Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2),	
Те	st No. HP34S-1	70
Figure 55.	. Summary of Test Results and Sequential Photographs, Test No. HP34S-1	72
Figure 56.	Impact Location, Test No. HP34S-2	74
Figure 57.	. Sequential Photographs, Test No. HP34S-2	76
Figure 58.	. Sequential Photographs, Test No. HP34S-2	77
Figure 59.	Documentary Photographs, Test No. HP34S-2	78
Figure 60.	Documentary Photographs, Test No. HP34S-2	79
Figure 61.	Documentary Photographs, Test No. HP34S-2	80
Figure 62.	Documentary Photographs, Test No. HP34S-2	81
Figure 63.	Documentary Photographs, Test No. HP34S-2	82
Figure 64.	. Vehicle Final Position and Trajectory Marks, Test No. HP34S-2	83
Figure 65.	. System Damage, Test No. HP34S-2	85
Figure 66.	. Barrier Damage at Expansion Joint No. 3, Test No. HP34S-2	86
Figure 67.	Permanent Set, Dynamic Deflection, and Working Width, Test No. HP34S-2	87
Figure 68.	Vehicle Damage, Test No. HP34S-2	89
Figure 69.	Vehicle Damage, Test No. HP34S-2	90
Figure 70.	Vehicle Damage, Test No. HP34-2	91
Figure 71.	Vehicle Damage, Test No. HP34-2	92
Figure 72.	. Occupant Compartment Damage, Test No. HP34S-2	93
Figure 73.	. Undercarriage Damage, Test No. HP34S-2	94
Figure 74.	Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1),	
Te	st No. HP34S-2	98
Figure 75.	. Summary of Test Results and Sequential Photographs, Test No. HP34S-2	99
Figure A-	1. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)	.109
Figure A-	2. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)	.110
Figure A-	3. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)	.111
Figure A-4	4. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)	.112
Figure A-	5. #5 Rebar, Test Nos. HP34S-1 and HP34S-2 (Item Nos. b1, b2, b3, and b4)	.113
Figure A-	6. #4 Rebar, Test Nos. HP34S-1 and HP34S-2 (Item Nos. b5 and b6)	.114
Figure A-	7. #8 Smooth Rebar, Test Nos. HP34S-1 and HP34S-2 (Item No. c1)	.115
Figure A-	8. 1 ¹ / ₄ in. Diameter PVC Pipe and End Cap, Test Nos. HP34S-1 and HP34S-2	
(It	em Nos. c2 and c3)	.116
Figure A-	9. Epoxy Adhesive, Test Nos. HP34S-1 and HP34S-2 (Item No. c4)	.117
Figure A-	10. Expansion Joint Filler, Test Nos. HP34S-1 and HP34S-2 (Item No. c5)	.118

Figure A-11. Expansion Joint Sealant, Test Nos. HP34S-1 and HP34S-2 (Item No. c6)	119
Figure A-12. 8-in. x 5-in. x ³ / ₄ -in. Steel Plate, Test Nos. HP34S-1 and HP34S-2 (Item No.	
d1)	120
Figure A-13. HSS2 ¹ / ₂ x2 ¹ / ₂ x ¹ / ₄ Steel Square Tube, Test Nos. HP34S-1 and HP34S-2 (Item	
No. d2)	121
Figure A-14, HSS3x3x ¹ / ₄ Steel Square Tube, Test Nos, HP34S-1 and HP34S-2 (Item Nos,	
d3 and d4)	122
Figure A-15 HSS2x2x ¹ / ₄ Steel Square Tube. Test Nos. HP34S-1 and HP34S-2 (Item No.	
d5)	123
Figure A-16 2 ¹ / ₄ -in x 2 ¹ / ₄ -in x ¹ / ₄ -in Steel Plate Test Nos HP34S-1 and HP34S-2 (Item	120
No. d6)	124
Figure A_{-17} 5% in 11 UNC Threaded Rod Test Nos HP3/S-1 and HP3/S-2 (Item No	127
$\frac{110}{100}$	125
Eigure A 18 7 in x 11/2 in $x^{3/2}$ in Shim Test Nos UD24S 1 and UD24S 2 (Item No. d8)	125
Figure A 10. 7-III. X 1/2-III. X 76-III. Shiffi, Test Nos. $HF545-1$ and $HF545-2$ (item No. uo)	120
Figure A-19. $\%$ III. – 11 UNC neavy nex Nut, 1est Nos. $HP345-1$ and $HP345-2$ (item No.	107
$E_{\text{rescale}}^{\text{rescale}} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1$	12/
Figure A-20. $\%$ -in. Diameter Wasner, Test Nos. HP34S-1 and HP34S-2 (Item No. e2)	128
Figure B-1. Vehicle Mass Distribution, Test No. HP34S-1	130
Figure B-2. Vehicle Mass Distribution, Test No. HP34S-2	131
Figure C-1. Floor Pan Deformation Data – Set 1, Test No. HP34S-1	133
Figure C-2. Floor Pan Deformation Data – Set 2, Test No. HP34S-1	134
Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. HP34S-1	135
Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. HP34S-1	136
Figure C-5. Maximum Occupant Compartment Deformation by Location, Test No. HP34S-	
1	137
Figure C-6. Exterior Vehicle Crush (NASS) – Front, Test No. HP34S-1	138
Figure C-7. Exterior Vehicle Crush (NASS) – Side, Test No. HP34S-1	139
Figure C-8. Floor Pan Deformation Data – Set 1, Test No. HP34S-2	140
Figure C-9. Floor Pan Deformation Data – Set 2, Test No. HP34S-2	141
Figure C-10. Occupant Compartment Deformation Data – Set 1, Test No. HP34S-2	142
Figure C-11. Occupant Compartment Deformation Data – Set 2, Test No. HP34S-2	143
Figure C-12. Maximum Occupant Compartment Deformation by Location, Test No.	
HP34S-2	144
Figure C-13. Exterior Vehicle Crush (NASS) – Front, Test No. HP34S-2	145
Figure C-14. Exterior Vehicle Crush (NASS) – Side, Test No. HP34S-2.	146
Figure D-1 10-ms Average Longitudinal Deceleration (SLICE-2) Test No. HP34S-1	148
Figure D-2 Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HP34S-1	149
Figure D-3 Longitudinal Occupant Displacement (SLICE-2), Test No. HP34S-1	150
Figure D-4 10-ms Average Lateral Deceleration (SLICE-2), Test No. HP34S-1	151
Figure D 5. Lateral Occupant Impact Valacity (SLICE 2), Test No. HD24S 1	151
Figure D-5. Lateral Occupant Impact velocity (SLICE-2), Test No. HP 345-1	152
Figure D-6. Lateral Occupant Displacement (SLICE-2), Test No. HP34S-1	155
Figure D-7. Venicle Angular Displacements (SLICE-2), Test No. HP34S-1	154
Figure D-8. Acceleration Severity Index (SLICE-2), Test No. HP34S-1	155
Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HP34S-1	156
Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HP34S-1	157
Figure D-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HP34S-1	158
Figure D-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HP34S-1	159

Figure D-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HP34S-1	160
Figure D-14. Lateral Occupant Displacement (SLICE-1), Test No. HP34S-1	161
Figure D-15. Vehicle Angular Displacements (SLICE-1), Test No. HP34S-1	162
Figure D-16. Acceleration Severity Index (SLICE-1), Test No. HP34S-1	163
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HP34S-2	165
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HP34S-2	166
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HP34S-2	167
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HP34S-2	
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HP34S-2	169
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. HP34S-2	170
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. HP34S-2	171
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. HP34S-2	172
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HP34S-2	173
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HP34S-2	174
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HP34S-2	175
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HP34S-2	176
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HP34S-2	177
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. HP34S-2	178
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. HP34S-2	179
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. HP34S-2	

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	8
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers	9
Table 3. Weather Conditions, Test No. HP34S-1	44
Table 4. Sequential Description of Impact Events, Test No. HP34S-1	47
Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. HP34S-1	68
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HP34S-1	69
Table 7. OIV and ORA Values if t=0 sec Occurred at Curb Impact, Test No. HP34S-1	70
Table 8. Weather Conditions, Test No. HP34S-2	73
Table 9. Sequential Description of Impact Events, Test No. HP34S-2	75
Table 10. Maximum Occupant Compartment Intrusion by Location, Test No. HP34S-2	95
Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HP34S-2	96
Table 12. OIV and ORA Values if t=0 occurred at Curb Impact, Test No. HP34S-2	97
Table 13. Summary of Safety Performance Evaluation	101
Table A-1. Bill of Materials, Test Nos. HP34S-1 and HP34S-2	108

1 INTRODUCTION

1.1 Background

The Hawaii Department of Transportation (HDOT) utilizes several concrete bridge rails with aesthetic treatments. However, the crashworthiness of these bridge railings under current impact safety standards has recently begun and is currently ongoing. To date, the HDOT 34- and 42-in. Tall, Aesthetic Concrete Bridge Rails were successfully evaluated to MASH 2016 TL-3 standards [1, 2]. This report documents full-scale crash tests conducted with the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk with aesthetic recessed rectangular panels added to its traffic-side and back-side surfaces, as well as with a back-side mounted pedestrian handrail. The standard plans of the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail are shown in Figures 1 through 4. The recessed rectangular panels are 60 in. wide, 15 in. tall, and $\frac{1}{2}$ in. deep with an inclination angle of 30 degrees. The concrete bridge rail is anchored through the sidewalk and into a concrete bridge deck. End sections measuring 3 ft – 6 in. long are used at the ends of the bridge rail adjacent to an end buttress structure. However, only the length-of-need (LON) of the barrier was evaluated in this study.

Several years ago, researchers at the Texas A&M Transportation Institute (TTI) published National Cooperative Highway Research Program (NCHRP) Report No. 554 [3], which developed design guidelines for aesthetic treatments for safety shape concrete roadway barriers using a series of Finite Element Modeling (FEM) simulations in conjunction with physical crash testing. The computer simulation effort examined the effect of asperity width and depth as well as the inclination angle of the asperity surface. A parametric FEM analysis was performed for asperity angles of 30, 45, and 90 degrees, as measured from the front face of the barrier, and the simulation outcomes were categorized as acceptable, marginal/unknown, and unacceptable. NCHRP Report No. 554 provided final design guidelines for safety-shape barriers based on simulation and crash testing results, as shown in Figure 5.

NCHRP Report No. 554 also provided guidelines for single-sloped and vertical-face barriers that were developed by the California Department of Transportation (Caltrans) [4] in 2002 and approved by the Federal Highway Administration (FHWA) in acceptance letter B-110. Caltrans conducted crash testing on single-sloped barriers with various architectural treatments in order to develop guidelines for evaluating crashworthiness of barriers with wide-ranging patterns and textures. Six recommendations for single-sloped or vertical-face barriers were developed after full-scale crash testing in accordance with NCHRP Report No. 350 Test Level 3 (TL-3) [5] criteria. As reported in NCHRP Report No. 554, the following types of surface treatment are permitted:

- 1. Sandblasted textures with a maximum relief of 9.5 mm.
- 2. Images or geometric patterns cut into the face of the barrier 25 mm or less and having 45-degree or flatter chamfered or beveled edges to minimize vehicular sheet metal or wheel snagging.
- 3. Textures or patterns of any shape and length inset into the face of the barrier up to 13 mm deep and 25 mm wide.

- 4. Any pattern or texture with gradual undulation that has a maximum relief of 20 mm over a distance of 300 mm.
- 5. Gaps, slots, grooves, or joints of any depth with a maximum width of 20 mm and a maximum surface differential across these features of 5 mm.
- 6. Any pattern or texture with a maximum relief of 64 mm, if such a pattern begins 610 mm or more above the base of the barrier and if all leading edges are rounded or sloped to minimize any vehicle snagging potential.

After comparing the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail to the NCHRP Report No. 554 design guidelines, the research team anticipated that the existing bridge rail profile would likely provide acceptable safety performance under current impact safety standards for passenger vehicles. However, full-scale crash testing was needed to evaluate the bridge rail to the safety performance criteria published in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [6].

Figure 1. HDOT Standard Detail for the 34-in. Tall, Aesthetic Concrete Bridge Rail with Sidewalk

 $\boldsymbol{\omega}$

Figure 2. HDOT Standard Detail for Transition to the 34-in. Tall, Aesthetic Concrete Bridge Rail

4

Figure 3. HDOT Standard Detail for the 34-in. Tall, Aesthetic Concrete Bridge Rail with Pedestrian Rail

August 26, 2022 MwRSF Report No. TRP-03-456-22

 $\boldsymbol{\sigma}$

Figure 4. HDOT Reinforcement Detail for the 34-in. Tall, Aesthetic Concrete Bridge Rail

6

Figure 5. Final Design Guidelines for Aesthetic Surface Treatments of Safety-Shape Concrete Barrier [3]

1.2 Objective

The research objective of this study included a safety performance evaluation of the LON of the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk. The system was tested and evaluated according to the TL-3 criteria found in MASH 2016.

1.3 Scope

The research objective was achieved through the completion of several tasks. Two fullscale crash tests were conducted on the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk according to MASH 2016 test designation nos. 3-10 and 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk system. A final report was published, which discussed the results and findings from two full-scale crash tests that were conducted on the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Aesthetic concrete bridge rails must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [6]. Note that there is no difference between MASH 2009 [7] and MASH 2016 [6] for longitudinal barriers, such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

It should be noted that the test matrix detailed herein represents a practical worst-case condition with respect to the MASH 2016 safety requirements and a crashworthiness evaluation of the barrier system. According to MASH 2016, the HDOT 34-in. Tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk should be evaluated at a location that evaluates the greatest propensity for vehicle snag as well as a location that maximizes structural loading of the bridge rail at a critical section. For the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk, the critical impact point for both impact locations occur upstream from the expansion joint in the bridge rail. The HDOT 34-in. Tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk has a transition from the recessed panel to the main face of the bridge rail 2³/₄ in. upstream from the expansion joint in the rail. Thus, impacting upstream from this point provides an evaluation of vehicle snag on both the recessed panel edge and the expansion joint. Additionally, the critical structural section in the rail occurs at the expansion joint because the bridge rail design does not reduce the transverse reinforcement near the expansion joint, and smooth dowel bars are used to transfer shear loading across the opening. As such, the critical impact point distances that are specified for test designation nos. 3-10 and 3-11 for rigid barriers in Table 2.7 of MASH 2016 were applied upstream from the expansion joint. This selection was made to evaluate of vehicle snag and structural loading of the HDOT 34in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk.

Test	Test	Vehicle	Impact Conditions		Evaluation	
Article	Designation No.	Vehicle	Weight lb	Speed mph	Angle degrees	Criteria ¹
Longitudinal	3-10	1100C	2,420	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

The critical impact points for the 3-10 and 3-11 tests were also selected to maximize vehicle interaction with the downstream portion of the asperity. Handrail post positions were similarly selected to maximize vehicle interaction in the anticipated Zone of Intrusion, similar to other studies recently performed by MwRSF [8, 9]. However, the impact point with the parapet may occur downstream from the impact point on the sidewalk, because the sidewalk can apply a lateral change in momentum to the vehicle. Videos from previous tests completed with a sidewalk in front

of a rail system were evaluated to determine the change in trajectory. As such, this change in trajectory was used to select an initial impact point with the curb to maximize interactions with the downstream section of the exposed asperity and the pedestrian handrail support.

	A.	Test article should contain and redirect the vehicle or bring the					
Structural		vehicle to a controlled stop; the vehicle should not penetrate,					
Adequacy		underride, or override the inst	allation although con	ntrolled lateral			
		deflection of the test article is acceptable.					
	D.	Detached elements, fragments	s or other debris fron	n the test article			
		should not penetrate or show	potential for penetrat	ting the occupant			
		compartment, or present an un	ndue hazard to other	traffic,			
		pedestrians, or personnel in a	work zone. Deforma	ations of, or			
		intrusions into, the occupant of	compartment should	not exceed limits			
		set forth in Section 5.2.2 and	Appendix E of MAS	H 2016.			
	F.	The vehicle should remain up	right during and afte	r collision. The			
		maximum roll and pitch angle	es are not to exceed 7	75 degrees.			
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2					
Occupant		of MASH 2016 for calculation procedure) should satisfy the					
Risk		following limits:					
		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum			
		Longitudinal and Lateral 30 ft/s 40 ft/s					
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A,					
	Section A5.2.2 of MASH 2016 for calculation procedure) shoul						
		satisfy the following limits:					
		Occupant Rideo	lown Acceleration L	imits			
		Component	Preferred	Maximum			
	Longitudinal and Lateral 15.0 g's 20.4						

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three factors: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bridge railing to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016. In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3 DESIGN DETAILS

The barrier system test installation consisted of two 10-ft 11³/₄-in. long and three 21-ft 11¹/₂in. long concrete barrier segments with a pedestrian handrail and sidewalk, as shown in Figures 6 through 22. Photographs of the test installation are shown in Figures 23 and 24. Architectural inserts were slightly misaligned at a form break in the lower left image of Figure 24, creating a visual jog, but the effect was only cosmetic and not structurally significant. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

As noted previously, the HDOT 34-in. Tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk was fabricated for evaluation of the LON of the bridge rail. Thus, no end sections of the rail were constructed. The rail was constructed in five segments that were separated by four expansion joints to allow for evaluation of the critical rail section at the expansion joints. The spacing between the expansion joints was limited to 22 ft, which was the smallest rail segment length between joints noted by HDOT. Larger rail segment lengths between expansion joints were considered less critical. The HDOT 34-in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk was installed on the concrete tarmac at MwRSF's Outdoor Test Site rather than on a simulated bridge deck and cantilevered overhang. Previous testing of a MASH 2016 TL-4 bridge rail on similar 8-in. thick concrete bridge deck did not display significant deck damage [10]. This finding, along with historical results, indicated no potential for deck damage or deflection that would affect the test results of the HDOT 34-in. tall, Aesthetic Concrete Bridge Rail with Pedestrian Handrail and Sidewalk under MASH 2016 TL-3 impact conditions.

The bridge rail was 41¹/₂ in. tall relative to the back-side tarmac, 34 in. tall relative to the sidewalk, and 10 in. wide at the top and the bottom surfaces. The traffic-side and back-side edges of the top surface had ³/₄-in. chamfers. Aesthetic recessed V-shaped horizontal bevel cuts ¹/₂ in. deep and $\frac{1}{2}$ in. tall were located 7 in. below the top surface and 7 in. above the sidewalk surface on the traffic- and back-side faces. The main aesthetic features on this concrete bridge rail were 60-in. wide x 15-in. tall x $\frac{1}{2}$ -in. deep recessed panels on both the traffic-side and back-side faces. The edges of the panels transitioned to the face of the rail using 2H:1V slope. The concrete mix for the bridge rail sections required a minimum 28-day compressive strength of 4,000 psi. Two concrete cylinder compression tests were conducted, with 18-day compressive strength results of 4,410 psi and 4,270 psi. Steel reinforcement in the barrier consisted of ASTM A615 Grade 60 rebar. Each concrete bridge rail segment consisted of eight no. 5 longitudinal bars (four per face) that were vertically spaced 9¹/₂ in. apart. Vertical stirrups were also provided using no. 5 rebar, which were spaced on 12-in. centers on the back-side face and on 6-in. centers on the traffic-side face. Vertical reinforcement bars were anchored through the sidewalk to an existing concrete tarmac on both the traffic-side and back-side faces to a depth of 8 in. and epoxied with Hilti HIT RE-500 V3 in order to develop the full tensile strength of the bars. The minimum bond strength of the epoxy adhesive was 1,560 psi after a two-day cure.

The bridge rail system contained four expansion joints consisting of ¹/₂-in. gaps filled by expansion joint sealant. The expansion joint assembly consisted of three 24-in. long, no. 8 smooth rebar cast into the downstream side of the parapet, with PVC tubes and caps cast in the upstream side of the expansion joint. Vertical stirrups were spaced on 4-in. centers at the expansion joints.

The sidewalk was 82 in. wide including a 10-in. wide x $7\frac{1}{2}$ -in. tall flat surface beneath the bridge rail along with a downward slope of 1V:48H leading away from the bridge rail. Steel reinforcement in the sidewalk consisted of ASTM A615 Grade 60 rebar. There were seven longitudinal rebars spaced on 12-in. centers, while lateral rebars were spaced on 9-in. centers. Lateral rebars were embedded $9\frac{3}{8}$ in. into the bridge rail and 8 in. into the tarmac.

The pedestrian rail consisted of a welded tube, post, and base plate assembly. The rail consisted of HSS3x3x¹/4 by 21-ft 11-in. long steel tubes, which were welded using a ¹/4-in. fillet weld all around to HSS2¹/₂x2¹/₂x¹/₄ by 7-in. long tube posts. The spacing between posts was 66 in., and one post was installed 16¹/₂ in. downstream from the upstream end of each parapet. The tube posts were welded to 8-in. x 5-in. x ³/₄-in. thick, ASTM A36 steel base plates with a ³/₁₆-in. fillet weld on both sides of the post. At the bottom of the post, a 2¹/₄-in. x 2¹/₄-in. x ¹/₄-in. thick cap was welded to the bottom of the post with a ¹/₈-in. fillet weld all around. Two ¹/₄-in. diameter, semicircular weep holes were located at the top of the post and one ¹/₂-in. diameter weep hole was located in each of the lower post caps to allow air to escape through the post during hot-dip galvanization. The splices consisted of HSS2x2x¹/₄ by 7-in. long tube with 7-in. x 1¹/₂-in. x ³/₁₆-in. thick shims inserted 2 in. into the downstream side of the pedestrian handrail tube and welded on all sides with a ³/₁₆-in. fillet weld. As a result, approximately 1 in. of the splice tube assembly was exposed at the expansion joints and the remaining 4 in. of the splice tube assembly protruded into the adjacent pedestrian rail end.

The pedestrian rail was fastened to the back side of the parapet with four $\frac{5}{8}$ -in. diameter, 7%-in. long ASTM F1554-15 Grade 105 steel threaded rods located 4% and 7% in. from the top surface of the barrier. The top of the pedestrian rail was located at 50 in. above the MwRSF tarmac, which simulated a bridge deck surface, or 8½ in. above the top surface of the barrier.

Figure 6. Test Installation Layout, Test Nos. HP34S-1 and HP34S-2

Figure 7. Pedestrian Handrail Details, Test Nos. HP34S-1 and HP34S-2

Figure 8. Reinforcement Details, Test Nos. HP34S-1 and HP34S-2

Figure 9. Reinforcement Details, Test Nos. HP34S-1 and HP34S-2

Figure 10. Expansion Joint Details, Test Nos. HP34S-1 and HP34S-2

Figure 11. 10-ft 11³/₄-in. Concrete Parapet Details, Test Nos. HP34S-1 and HP34S-2

Figure 12. 21-ft 11¹/₂-in. Concrete Parapet Details, Test Nos. HP34S-1 and HP34S-2

Figure 13. Sidewalk Details, Test Nos. HP34S-1 and HP34S-2

Figure 14. Sidewalk Reinforcement Details, Test Nos. HP34S-1 and HP34S-2

20

Figure 15. Rebar Details, Test Nos. HP34S-1 and HP34S-2

Figure 16. Pedestrian Handrail Assembly, Test Nos. HP34S-1 and HP34S-2

Figure 17. Pedestrian Handrail Assembly Details, Test Nos. HP34S-1 and HP34S-2

Figure 18. Pedestrian Handrail Assembly Details, Test Nos. HP34S-1 and HP34S-2

Figure 19. Pedestrian Handrail Components, Test Nos. HP34S-1 and HP34S-2

Figure 20. Expansion Joint Components, Test Nos. HP34S-1 and HP34S-2

Figure 21. Connection Hardware, Test Nos. HP34S-1 and HP34S-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a 1	558	Concrete*	Min. f'c = 4,000 psi	20 50 50 50	12=
b1	264	#5 Rebar, 52 1/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	87
b2	24	#5 Rebar, 38 7/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
b3	24	#5 Rebar, 259 1/2" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	172 <u>-</u>
b4	16	#5 Rebar, 127 3/4" Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	.
b5	7	#4 Rebar, 1095 1/2" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	·-
b6	122	#4 Rebar, 99 9/16" Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775 or A934)	8 - 82 <u>-</u>
c1	12	#8 Smooth Rebar, 24 1/2" Long	ASTM A615 Gr. 60	Epoxy Coated (ASTM A775 or A934)	.
c2	12	1 1/4" Dia. PVC Pipe Schedule 80 PVC Gr. 12454			-
c3	12	1 1/4" Dia. PVC End Cap	Schedule 80 PVC Gr. 12454	-	:
c4	-	Epoxy Adhesive	Hilti HIT RE-500 V3		
c5		Expansion Joint Filler	AASHTO M33, M153, or M213	-	85
c6	<u> 22</u> 8	Expansion Joint Sealant	AASHTO M173, M282, M301, ASTM D3581, or ASTM D5893		82
d1	16	8"x5"x3/4" Steel Plate	ASTM A36	2 2	<u></u>
d2	16	HSS 2 1/2"x2 1/2"x1/4", 13 3/4" Long	ASTM A500 Gr. B		3
d3	2	HSS 3"x3"x1/4", 131 1/2" Long	ASTM A500 Gr. B		18 -3
d4	3	HSS 3"x3"x1/4", 263" Long	ASTM A500 Gr. B		07
d5	4	HSS 2"x2"x1/4", 7" Long	ASTM A500 Gr. B	<u>-</u>	77 <u>-</u>
d6	16	2 1/4"x2 1/4"x1/4" Steel Plate	ASTM A36		24 <u>0</u>
d7	64	5/8"-11 UNC, 7 7/8" Long Threaded Rod	ASTM F1554-15 Gr. 105	ASTM F2329	10 -
d8	16	7"x1 1/2"x3/16" Shim	ASTM A36		
e1	64	5/8"—11 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	ASTM F2329	FNX16b
e2	64	5/8" Dia. Hardened Washer	ASTM F436	ASTM F2329	FWC16b
* NE	. Mix	47BIS/1PF4000 HW was used for testing p	urposes.		
				Hawaii 34" Aesthetic Concrete Bridge Rail wit	SHEET: 17 of 17

MURSE	Hawaii 34" Aesthetic Concrete Bridge Rail Sidewalk Test Nos. HP34S-1-	with -2	SHEET: 17 of 17 DATE: 11/3/2021
Midwest Roadside	Bill of Materials		DRAWN BY: GHR/LIP/KA L/SBW
Safety Facility	DWG. NAME. SCA HP34S_R8 UNI	LE: None TS: in.	REV. BY: CSS/KAL

Figure 22. Bill of Materials, Test Nos. HP34S-1 and HP34S-2

28

August 26, 2022 MwRSF Report No. TRP-03-456-22

Figure 23. Test Installation Photographs, Test Nos. HP34S-1 and HP34S-2

Figure 24. Test Installation Photographs, Test Nos. HP34S-1 and HP34S-2

30

August 26, 2022 MwRSF Report No. TRP-03-456-22

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle ensured the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. HP34S-1, a 2016 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,323 lb, 5,045 lb, and 5,208 lb, respectively. The test vehicle is shown in Figures 25 and 26, and vehicle dimensions are shown in Figure 27.

For test no. HP34S-2, a 2016 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,461 lb, 2,413 lb, and 2,577 lb, respectively. The test vehicle is shown in Figures 28 and 29, and vehicle dimensions are shown in Figure 30.

The longitudinal component of the center of gravity (c.g.) was determined for both vehicles using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the 2270P vehicle, used in test no. HP34S-1. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle used in test no. HP34S-2 was determined utilizing a procedure published by SAE [13]. The final c.g. locations for HP34S-1 and HP34S-2 test vehicles are shown in Figures 31 and 32, respectively. Ballast information and data used to calculate the location of the c.g. are shown in Appendix B.

Square, black-and-white checkered targets were placed on the vehicles for reference, as shown in Figures 31 and 32, to serve as a reference in the high-speed digital video and aid in the video analysis. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

Figure 25. Test Vehicle, Test No. HP34S-1

Figure 26. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HP34S-1

			Test	Name:	HP3	45-1		VIN	No:		1C6F	R6L	.T80	G S2 69	861	
Model Year:	2016	3		Make:	Do	dge		Mo	del:			Ra	m 1	500		
Tire Size:	p275 60/	/R20	Tire Inflation Pres	ssure:	39	psi		Odome	ter:			2	118	69		
							V T	/ehicle G arget Rang	Geome es listed	etry - ii I below	n. (mm)				
11/	FIT					Ť	A:	77	l±2 (195	1955 0±50)	4/5	B:	75	3/4	1924	1/20
î 🕌	M			N		Ţ	c:_	229 1/-	4	5822 1 20+325)	9/20	D:	41	39+3	1041	2/5
ų į		17			h		E:	140 1/2	2	3568	7/10	F:	47	3/4	1212	17/20
<u>++</u> `						<u> </u>	G:	29 1/4	12 (37) 	742 1: (710)	9/20	H:_	59	11/16 53±4	1516	1/16
	احــــــــــــــــــــــــــــــــــــ		Test Inertial CG				l:	14 1/2		368	3/10	J:	25	5/8	650	7/8
P-+	+ -R-	5				B	к:_	21 1/2		546	1/10	L:_	29	1/2	749	3/10
		4	- ~ . ()	2	ļ		M:	68 5/8 67-	1.5 (17	1743	3/40	N:_	68	1/4 67+1.5	1733	11/20
	-(@)'	1	g s (۲.		Ŧ¦.	0:_	45 1/4		1149	7/20	P:_	4	1/2	114	3/10
	-	-н	-				Q:	32		812	4/5	R:	21	1/2	546	1/10
-	-01-	8	- C	- 17 V			S:	15		381		T:	77	1/8	1958	39/40
									U	(impa	nct wid	th):	36	1/2	927	1/10
Mass Distrib	ution - Ib (kg)									w	heel Ce	nter				
Gross Static	LF 1512	(686) RF	1491 (676)							Hei	ght (Fro	ont):	15	1/2	393	7/10
	LR 1113	(505) RR	1092 (495)							He	ight (Re	ar):	15	3/4	400	1/20
									3	Clearar	Wheel I	Well ont):	36	3/8	923	37/40
Weights										3	Wheel 1	Nell				
lb (kg)	Cı	irb	Test Inertial		Gross	Static				Cleara	nce (Re	ear):	39		990	3/5
W-front	2985	(1354)	2901 (1316)	<u> </u>	3003	(1362)				Hei	ght (Fro	ont):	19	1/2	495	3/10
W-rear	2338	(1060)	2144 (973)	2	205	(1000)				Bot	ttom Fra ight (Re	ame ear):	26	1/2	673	1/10
W-total	5323	(2414)	5045 (2288)	<u> </u>	5208	(2362)				Eng	jine Ty	pe:		Ga	soline	
			5000±110 (2270±50)	5	165±110	(2343±50)				En	gine S	ize:		4.	7L V8	
GVWR Ratin	gs - Ib		Surrogate Occup	ant Data					Trar	nsmiss	sion Ty	pe:		Aut	omati	6
Front	3700		Туре	e:	Hybric	11				D	rive Ty	pe:		F	RWD	
Rear	3900	Ф.	Mas	s:	163 I	b				(Cab St	yle:		Cre	ew Cal)
Total	6900		Seat Position	n: D	rivers/	Left				Be	d Leng	gth:	2	Û.	67"	
Note a	ny damage pri	or to test:			Sm	all dent/sc	rape	on right	rear o	loor.						

Figure 27. Vehicle Dimensions, Test No. HP34S-1

Figure 28. Test Vehicle, Test No. HP34S-2

Figure 29. Test Vehicle's Interior Floorboards and Undercarriage, Test No. HP34S-2

36

				Test Name:	HP3	45-2		VIN No	: KMI	HCT4	AE9	GU07	3507
Model Year:	201	6		Make:	Hyu	ndai		Mode	l:	1	Acce	ent	
Tire Size:	P175/7	0R14	Tire Infla	tion Pressure:	33	psi		Odometer	r:		1822	25	
+	18-			1212	7	•	1 T	/ehicle G arget Range	eometry - ir s listed below	n. (mi	n)		
	F		A market was a second s				A:_	66 3/4 65±3 (1	(1695) 1650±75)	B:	56	3/4	(1441)
			A			Ì	C:_	171 3/8 169±8 (4	(4353) (4300±200)	D:	31	3/8 35±4 (90	(797) 0±100)
<u>+ +</u>	WE -	- SE		DAL	I	•	E:_	98±5 (2	(2565) 500±125)	F:_	39		(991)
			Те	st Inertial CG			G:	21 7/8	(556)	H:_	38	39±4 (99	(965) 0±100)
	- Q-	-	A				l:	6 1/4	(159)	J:_	22	1/4	(565)
P	R				B	B	K:	11	(279)	L:_	25		(635)
							M:	59 5/8 59±2 (1	(1514) (498±50)	N:	59	3/8 59±2 (14	(1508) 25±50)
· · ·		_ <u>_</u>	Ť				0:	29 1/4	(743)	P:_	2	1/2	(64)
	- D	0 -1	—е—				Q:	22 7/8	(581)	R:	15	1/4	(387)
			0		3		s:	10 1/2	(267)	T:_	66	5/8	(1692)
								U	(impact wid	ith):_	31		(787)
lass Distribu	ition - Ib (kg)			10000				То	p of radiator	core		-2012	
iross Static	LF 843	(382)	RF 746	(338)					Sup Wheel Ce	port:_ enter	28	3/4	(730)
	LR 488	(221)	RR 500	(227)					Height (Fr	ont):	10	7/8	(276)
									Height (R	ear):	11	1/4	(286)
veignts o (kg)	С	urb	Test I	nertial	Gross	Static		c	Wheel Clearance (Fr	Well ont):_	24	7/8	(632)
V-front	1540	(699)	1505	(683)	1589	(721)	-		Wheel Clearance (R	Well ear):_	25	1/4	(641)
V-rear	921	(418)	908	(412)	988	(448)	_		Bottom Fr Height (Fr	ame ont):_	5	7/8	(149)
V-total	2461	(1116)	2413 2420±55	(1095)	2577 2585±55	(1169) (1175±50)	-		Bottom Fr Height (R	rame ear):_	16	}	(406)
				A 24					Engine Ty	ype:_		Gaso	line
WWR Rating	js Ib		Surrogate	e Occupant Data	1				Engine S	ize:		1.6L 4	4 cyl
Front	1874	-00		Type:	Hybrid	111		Trans	smission Ty	ype:_		Auton	natic
Rear	Rear1852			Mass:	Mass: 164 lb		-		Drive T	ype:_		FW	D
Total	3527	_20	Seat	Position:	Left/Dr	ver	2						
Note an	y damage pri	ior to test:				١	None						

Figure 30. Vehicle Dimensions, Test No. HP34S-2

Figure 31. Target Geometry, Test No. HP34S-1

Figure 32. Target Geometry, Test No. HP34S-2

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicles' left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

4.4 Simulated Occupant

For each test, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the left-front seat of the test vehicle with the seat belt fastened. The simulated occupant had a final weight of 163 lb and 164 lb for test nos. HP34S-1 and HP34S-2, respectively. As recommended by MASH 2016, the simulated occupant weight was not included in calculating the c.g. locations.

4.5 Data Acquisition Systems

4.5.1 Accelerometers and Rate Transducers

The accelerometer and rate transducer systems used in the full-scale crash testing were the SLICE-1 and SLICE-2 units described below. Units were positioned near the c.g. of the test vehicles. The SLICE-2 unit was designated as primary for test no. HP34S-1 whereas the SLICE-1 unit was designated as primary for test no. HP34S-2. Data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAEJ211/1 specifications [14].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. Triaxial acceleration and angular rate sensor modules were mounted inside the bodies of custom-built SLICE 6DX event data recorders equipped with 7 GB of non-volatile flash memory and recorded data at 10,000 Hz to the onboard microprocessor. The accelerometers had a range of ± 500 g's in each of three directions (longitudinal, lateral, and vertical) and a 1,650 Hz (CFC 1000) anti-aliasing filter. The SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of three directions (roll, pitch, and yaw). The raw angular rate measurements were downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot both the accelerometer and angular rate sensor data.

4.5.2 Retroreflective Optic Speed Trap

A retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at 18-in. intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the

electronic data. For test no. HP34S-1, the speed was not captured from the retroreflective optic speed trap or LED lights due to technical difficulties. Therefore, the vehicle speed was determined using video analysis.

4.5.3 Digital Photography

Five AOS high-speed digital video cameras, four GoPro digital video cameras, six Panasonic digital video cameras, and one SoloShot camera were utilized to film test no. HP34S-1. Six AOS high-speed digital video cameras, five GoPro digital video cameras, and six Panasonic digital video cameras were utilized to film test no. HP34S-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 33 and 34.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for both tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Kowa 25 mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 35 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12 mm Fixed	-
AOS-10	AOS TRI-VIT 2236	500	Kowa 16 mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		
	SoloShot	120		

Figure 33. Camera Locations, Speeds, and Lens Settings, Test No. HP34S-1

42

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Kowa 25 mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12 mm Fixed	-
AOS-10	AOS TRI-VIT 2236	500	Kowa 16 mm Fixed	-
AOS-11	AOS J-PRI	500	Sigma 28-70 mm	70
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

Figure 34. Camera Locations, Speeds, and Lens Settings, Test No. HP34S-2

43

5 FULL-SCALE CRASH TEST NO. HP34S-1

5.1 Weather Conditions

Test no. HP34S-1 was conducted on October 12, 2021 at approximately 2:30 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 3.

Temperature	80°F
Humidity	28%
Wind Speed	16 mph
Wind Direction	140° from True North
Sky Conditions	Sunny
Visibility	10.0 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.0 in.
Previous 7-Day Precipitation	0.0 in.

Table 3. Weather Conditions, Test No. HP34S-1

5.2 Test Description

Initial vehicle impact was to occur 85 in. upstream from the upstream face of post no. 7, as shown in Figure 35, which was selected using video analysis from previous tests with sidewalks to maximize the probability of wheel snag and vehicle interaction with the pedestrian handrail. The 5,045-lb crew cab pickup truck impacted the sidewalk at a speed of 65.7 mph and an angle of 25.2 degrees and impacted the barrier at a speed of 63.6 mph and an angle of 23.7 degrees. The impact speeds were determined via video analysis due to technical difficulties with the primary data source. Note that the sidewalk impact speed of 65.7 mph was above the MASH nominal impact speed of 62.0 mph \pm 2.5 mph. However, impact speeds exceeding the nominal criteria are acceptable for longitudinal barriers. The actual point of impact was 0.07 in. upstream from the targeted impact point. After brakes were applied, the vehicle came to rest 216.0 ft downstream from the point of impact with the sidewalk and 31.8 ft laterally in front of the sidewalk.

MASH 2016, Section 5.3 provides guidance for addressing geometric features. As the system tested in current research efforts included a geometric feature in the form of a sidewalk, criteria provided in MASH 2016 are outlined below and were addressed accordingly:

- (a) The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- (b) Compute average accelerations in the longitudinal and lateral directions for each consecutive 50-ms period for the duration of the event.
- (c) If the average longitudinal or lateral acceleration computed in Step b exceeds 2 g's during any 50-ms period, calculate the OIV and RA values at the beginning of the

period over which the average acceleration was computed, and evaluate the results according to Criteria H and I of Table 5-1 B.

The 2270P pickup truck interaction with the curb did not exceed 2.0 g's within a 50-ms period around the time of impact; therefore, event start time, t=0, occurred at the time of impact with the bridge rail. A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 36 and 37. Documentary photographs of the crash test are shown in Figures 38 through 41. The vehicle trajectory and final position are shown in Figure 42.

Figure 35. Impact Location, Test No. HP34S-1

Time (sec)	Event
-0.138	Vehicle's left-front tire contacted curb.
-0.104	Vehicle rolled away from system.
-0.017	Vehicle's right-front tire contacted curb.
-0.004	Vehicle's left-rear tire contacted curb.
0.000	Vehicle's bumper contacted concrete parapet and deformed. Impact occurred 11 ¹ / ₄ in. upstream from the targeted impact point.
0.006	Vehicle's left headlight and left fender contacted concrete parapet and deformed. Left headlight shattered.
0.018	Vehicle's bumper detached. Vehicle's grille contacted concrete parapet and deformed. Vehicle rolled toward system.
0.034	Vehicle's hood deformed. Vehicle's left-fender contacted hand rail.
0.044	Vehicle's left-front door contacted concrete parapet and deformed. Vehicle yawed away from system.
0.056	Top of vehicle's left-front door deformed such that the top was ajar.
0.070	Vehicle's grille disengaged.
0.082	Vehicle's windshield cracked.
0.094	Simulated occupant's head contacted left-front window and shattered it. Vehicle's right-front tire became airborne.
0.108	Vehicle's right-rear tire became airborne.
0.174	Vehicle's left-rear door contacted concrete parapet and deformed.
0.194	Vehicle pitched downward. Vehicle's left-front wheel disengaged. Vehicle's rear bumper and left taillight contacted concrete parapet. Vehicle's rear bumper deformed.
0.242	Vehicle's tailgate detached.
0.520	Vehicle rolled away from system.
0.782	Vehicle's right-front tire contacted ground.
0.880	Vehicle's right-rear tire contacted ground.
0.902	Vehicle's left-rear wheel rim fractured.
1.034	Vehicle exited system at a speed of 41.3 mph and an angle of 9.1 degrees.

Table 4. Sequential Description of Impact Events, Test No. HP34S-1

-0.138 sec

0.000 sec

0.062 sec

0.162 sec

0.262 sec

0.362 sec

0.000 sec

0.062 sec

0.162 sec

0.262 sec

0.362 sec

Figure 36. Sequential Photographs, Test No. HP34S-1

Figure 37. Additional Sequential Photographs, Test No. HP34S-1

Figure 38. Documentary Photographs, Test No. HP34S-1

Figure 39. Additional Documentary Photographs, Test No. HP34S-1

Figure 41. Additional Documentary Photographs, Test No. HP34S-1

Figure 42. Vehicle Final Position and Trajectory Marks, Test No. HP34S-1

5.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 43 through 48. Barrier damage consisted of contact marks on the front face of the concrete segments and minor concrete spalling and cracking. The length of vehicle contact along the barrier was approximately 14 ft - 11 in., which spanned across barrier segment nos. 2 and 3.

There was minor gouging in the concrete near the impact point and along the contact length and gouging at the expansion joint immediately downstream from the impact point. There was a 1¹/₄-in. deep, 20-in. tall gouge that initiated in the recessed window immediately upstream from expansion joint no. 2. There was also a gouge in barrier segment no. 3, initiating at the expansion joint that ended near the slope in the adjacent upstream window. There was a 10¹/₂-in. gouge in the sidewalk starting near expansion joint no. 3.

Barrier segment no. 2 had two cracks at expansion joint no. 2. The first crack was at the base that extended 67 in. upstream from the expansion joint, and a second $9\frac{1}{2}$ -in. crack originating near the bottom of the chamfer near the top of the barrier. There were two $\frac{1}{2}$ -in. cracks at the bottom of base plate no. 7 near the upstream bolt and three cracks ranging from $\frac{1}{2}$ in. to 4 in. at the bottom of base plate no. 8, also near the upstream bolt. There was a 60-in. long contact mark on the pedestrian handrail that initiated 20 $\frac{1}{4}$ in. downstream from post no. 6, and the handrail was displaced $\frac{1}{2}$ in. laterally between post nos. 7 and 8.

Figure 43. System Damage, Test No. HP34S-1

Figure 44. Barrier Damage at Expansion Joint No. 2, Test No. HP34S-1

Figure 45. Tire Contact Marks at Expansion Joint No. 2, Test No. HP34S-1

Figure 46. Contact Marks on Pedestrian Handrail and Post No. 7, Test No. HP34S-1

Figure 47. System Damage at Post No. 7, Test No. HP34S-1

Figure 48. System Damage at Post No. 8, Test No. HP34S-1
The maximum lateral permanent set of the barrier system was 0.6 in. at the downstream end of barrier segment no. 2, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 0.9 in. at the downstream end of barrier segment no. 2, as determined from high-speed digital video analysis. The working width of the system was found to be 14.4 in. measured from the front face of the barrier and 86.4 in. measured from the front face of the sidewalk, respectively, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 49.

Figure 49. Permanent Set, Dynamic Deflection, and Working Width, Test No. HP34S-1

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 50 through 53. The maximum occupant compartment intrusions are listed in Table 5, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant and are not evaluated by MASH 2016 criteria.

Majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The left side of the front bumper was crushed inward and backward. The left-front fender was crushed inward toward the centerline of the vehicle and engine compartment. The left-front wheel was disengaged from the vehicle, the tire was punctured and deflated, and the rim was fractured along three of the five spokes extending from the hub. The leftrear wheel rim was fractured and separated into multiple pieces. The tire remained engaged with the fractured pieces of the rim. The left-front and left-rear fenders, both left-side door panels, and the left-rear bumper were crushed inward and scraped. The grille and left headlight were disengaged from the vehicle. Both left-side doors, the truck bed, and the left side of the rear bumper were crushed inward. The right-front fender was displaced rearward, causing difficulty in opening the right-front door. The bottom of the right-front tire was angled away from the vehicle. The leftfront side window shattered, and the windshield was cracked across its entire length. The left-front side window damage was not due to contact with the test article.

The left-front lower control arm was fractured and disengaged from the vehicle. The leftfront shock and suspension spring were disengaged from the left-front lower control arm and displaced backwards. The Panhard bar was bent upward, and the left-front control arm was bent but remained engaged with the steering linkage. The anti-roll bar was bent into a "U"-shape and disengaged. The rear bearing joint of the right-front lower control arm was fractured, and the rightfront spring and suspension were displaced forward. The lateral engine cradle support beam was bent downward into a "U"-shape. The left-front frame horn was crushed inward. The gas tank was scraped and the oil pan was displaced slightly left and backward.

Figure 50. Vehicle Damage, Test No. HP34S-1

August 26, 2022 MwRSF Report No. TRP-03-456-22

Figure 51. Vehicle Damage, Test No. HP34S-1

Figure 52. Occupant Compartment Damage, Test No. HP34S-1

Figure 53. Undercarriage Damage, Test No. HP34S-1

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	5.2	≤ 9
Floor Pan & Transmission Tunnel	1.7	≤ 12
A-Pillar	0.0	<i>≤</i> 5
A-Pillar (Lateral)	0.0	<i>≤</i> 3
B-Pillar	0.2	≤ 5
B-Pillar (Lateral)	0.0	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	2.9	≤ 12
Side Door (Above Seat)	0.0*	≤ 9
Side Door (Below Seat)	0.0*	≤ 12
Roof	0.0*	<i>≤</i> 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to side door crush and contacting surrogate occupant's head	No shattering resulting from contact with structural member of test article
Dash	1.7	N/A

Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. HP34S-1

N/A – No MASH 2016 criteria exist for this location.

* Negative value reported as 0.0. See Appendix C for further information.

5.5 Occupant Risk

MASH evaluation of the vehicle accelerations experienced during an impact event uses the Flail-Space Model to calculate occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs). The time of initial vehicle impact (t=0 sec) is typically easy to determine as it corresponds to vehicle contact with the barrier, crash cushion, or breakaway feature. However, MASH Section 5.3 recognizes that vehicles interacting with roadway geometric features, such as ditches, driveways, embankments, and curbs, typically result in low magnitude accelerations and small vehicular velocity changes. Thus, MASH recommends using the 50-ms average acceleration data to determine if the Flail-Space Model is appropriate in the analysis. MASH Section 5.3 states that if the 50-ms average longitudinal or lateral acceleration data exceed 2 g's, the Flail-Space Model should be used, and the calculation of OIV and ORA values is to begin with contact with the geometric feature. If the 2-g limit is not exceeded, then OIV and ORA values should be calculated with t=0 sec beginning when the vehicle contacts the safety feature.

During test no. HP34S-1, the vehicle traversed over a 6-in. tall, elevated sidewalk prior to impacting the concrete bridge rail. Analysis of the acceleration data prior to vehicle impact with the bridge rail revealed maximum longitudinal and lateral 50-ms average accelerations of -0.88 g's and -0.59 g's, respectively. These values did not exceed the MASH recommended 2-g limit,

so the OIV and ORA values were computed with t=0 sec corresponding with the vehicle contacting the bridge rail.

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix D. Note that accelerometer traces are provided in Appendix D for three cases: (1) the primary impact (bridge rail), (2) the curb impact, and (3) the curb impact plus primary impact.

Evaluation Criteria		Transducer		MASH	
		SLICE-1	SLICE-2 (primary)	2016 Limits	
OIV	Longitudinal	-21.14	-21.03	±40	
ft/s	Lateral	25.75	28.21	±40	
ORA	Longitudinal	-4.97	6.55	±20.49	
g's	Lateral	10.57	9.58	±20.49	
Maximum	Roll	-27.19	-23.68	±75	
Angular	Pitch	-3.92	-5.79	±75	
degrees	Yaw	45.27	45.08	not required	
THIV –	ft/s	32.23	34.11	not required	
PHD – §	g's	11.09	10.49	not required	
ASI		1.67	1.81	not required	

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HP34S-1

The ORA and OIV values would have been different if the Flail-Space Model analysis had been initiated at the time of vehicle contact with the curb/elevated sidewalk. For transparency and to be complete in reporting of data analysis, these alternative ORA and OIV values are shown in Table 7. Note, these values are not compared against the MASH limits as they do not follow the MASH procedure for determining the beginning of the impact event, t=0 sec.

Evaluation Criteria		Transducer		
		SLICE-1	SLICE-2 (primary)	
OIV	Longitudinal	-22.04	-21.78	
ft/s	Lateral	25.44	27.87	
ORA	Longitudinal	-4.97	6.55	
g's	Lateral	10.57	9.58	

Table 7. OIV and ORA Values if t=0 sec Occurred at Curb Impact, Test No. HP34S-1

5.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 54. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 84.5 kips determined by the SLICE-2 (primary) unit.

Figure 54. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2), Test No. HP34S-1

5.7 Discussion

The analysis of the test results for test no. HP34S-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 55.

Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 9.1 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HP34S-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

-	2		· · ·		* E			
						7		1. 2. 1.
	1.1.1				- Cal		-	
		• [1]	0 0 1	0 0		di la como	• [:/	
	0.100	0.000	0.0.50		0.1.50			
	-0.138 sec	0.000 sec	0.062 sec		0.162 sec		0.362	2 sec
	F	216.0*		в	1/2" [2"			
<u>+</u>	RF HITTING	- Im						
1	Line I							
	EXIT BOX - 32.8 - 31.8	RR		6-	내			
	•	RF	- Ver					
_	T		MDCE	41 1/2"				
	Test Agency		МWКSF HP3/S_1	9 1/2"				
	Date		10/12/2021		J 5/8	Si	idewalk Ground	Line
•	MASH 2016 Test Designation No			7 1/2"				51
•	Test Article		idge Rail with		-			
		Pedestrian Handrail	and Sidewalk	8-				
•	Total Length				U			
•	Key Component – Concrete Parapet		•	VDS [15]				Exten
	Length		$21 \text{ ft} - 11\frac{1}{2} \text{ in.}$	CDC [16]				111 FF
	Height			Maximum Interi	or Deformation			
	Key Component Sidewalk		10 III. •	Test Article Damage				Mini
•	Length		88 ft •	Maximum Test Artic	cle Deflections			
	Width		6 ft	Permanent Set				
	Depth		6 ft – 7½ in.	Dynamic				0.9
•	Vehicle Make /Model		lge Ram 1500	Working Width	(without Sidewall	κ)		
	Curb		5,323 lb	Working Width	(with Sidewalk)			
	Test Inertial		$,000 \pm 110 \text{ lb})$			T		
_	Gross Static			Evaluation	Criteria	Trans	saucer	MASH 201
•	Speed	65.7 mph (MASH 2016 Limit)	$62 \pm 2.5 \text{ mph}$	Lvaluation	remena	SLICE-1	SLICE-2	Limits
	Angle	.25.2 degrees (MASH 2016 Limit 25 :	± 1.5 degrees)	0.11/	Longitudinal	21.14	(primary)	+40
•	Impact Conditions - Barrier			OIV ft/s	Longituulliai	-21.14	-21.03	±40
	Speed		63.6 mph	10/5	Lateral	25.75	28.21	±40
	Angle	07.071	23.7 degrees	ORA	Longitudinal	-4.97	6.55	±20.49
_	Impact Location	35.07 in. upstream fr	com post no. /	g's	Lateral	10.57	9.58	±20.49
	Impact Severity – Sidewalk	134.0 kip-it > 105.6 kip-ft MA	5п 2010 limit 110 2 kip_ft	Maximum	Roll	-27.19	-23.68	±75
•	Exit Conditions		110.2 kip-it	Angular	Pitch	-3.92	-5.79	+75
	Speed		41.3 mph	Displacement	Vow	45.27	45.08	not require
	Ângle		9.1 degrees	degrees	1 aw	43.27	43.00	not require
•	Exit Box Criterion		Pass	THIV	— It/S	32.23	34.11	not require
•	Vehicle Stability		Pass	PHD -	-g's	11.09	10.49	not require
•	Vehicle Stopping Distance		tt downstream	AS	I	1.67	1.81	not require

Figure 55. Summary of Test Results and Sequential Photographs, Test No. HP34S-1

6 FULL-SCALE CRASH TEST NO. HP34S-2

6.1 Weather Conditions

Test no. HP34S-2 was conducted on November 3, 2021 at approximately 3:00 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 8.

Temperature	49°F
Humidity	59%
Wind Speed	15 mph
Wind Direction	210° from True North
Sky Conditions	Overcast
Visibility	10.0 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.07 in.
Previous 7-Day Precipitation	1.7 in.

Table 8. Weather Conditions, Test No. HP34S-2

6.2 Test Description

Initial vehicle impact was to occur 43 in. upstream from the upstream face of post no. 11, as shown in Figure 56, which was selected using video analysis from previous tests with sidewalks to maximize the probability of wheel snag and vehicle interaction with the pedestrian handrail. The 2,413-lb small car impacted the sidewalk at a speed of 62.0 mph and at an angle of 25.0 degrees and impacted the barrier at a speed of 60.2 mph and an angle of 22.8 degrees. The actual point of impact was 2.43 in. downstream from the targeted impact point. After brakes were applied, the vehicle came to rest 183.8 ft downstream from impact and 11.0 ft laterally from the front of the sidewalk, as measured to the center of the right-front wheel.

As discussed in Section 5.2, the current system included a geometric feature in the form of a sidewalk. The 1100C small car interaction with the curb did not exceed 2 g's during any 50-ms period. Therefore, event start time, t=0 sec, occurred at the time of impact with the bridge rail. A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figures 57 and 58. Documentary photographs of the crash test are shown in Figures 59 through 63. The vehicle trajectory and final position are shown in Figure 64.

Figure 56. Impact Location, Test No. HP34S-2

Time (sec)	Event
-0.158	Vehicle's front bumper and left-front tire contacted curb.
-0.138	Vehicle's left-front tire deflated. Vehicle rolled away from system.
-0.062	Vehicle's left-rear tire contacted curb and deflated.
-0.036	Vehicle's right-front tire contacted curb.
-0.026	Vehicle's right-front tire deflated.
0.000	Vehicle's front bumper contacted the concrete barrier and the left side of front bumper cover was disconnected from the frame. Impact occurred 1.7 in. downstream from targeted impact point
0.010	Vehicle's left headlight contacted concrete barrier. Vehicle's left fender contacted concrete barrier and deformed. Vehicle's right fender deformed.
0.020	Vehicle's right headlight detached. Vehicle's hood contacted barrier and was crushed. Vehicle yawed away from system.
0.030	Vehicle's left headlight shattered. Top of vehicle's left-front door deformed such that the top was ajar. Vehicle's left-rear door and roof deformed.
0.048	Vehicle's left-front door contacted concrete barrier. Vehicle rolled toward system.
0.058	Vehicle's left A-pillar deformed. Vehicle's windshield cracked. Vehicle's right- rear tire airborne.
0.082	Simulated occupant's head contacted left-front window and shattered it.
0.098	Vehicle's right-rear tire contacted curb.
0.136	Vehicle's right-rear tire airborne.
0.158	Vehicle's left-rear door contacted concrete barrier.
0.168	Vehicle's left quarter panel and rear bumper contacted concrete barrier and deformed.
0.182	Vehicle's left taillight contacted concrete barrier and cracked.
0.234	Vehicle's right-front tire became airborne.
0.358	Vehicle rolled away from system.
0.500	Vehicle's left-front tire became airborne. Vehicle's right-front tire contacted ground.
0.598	Vehicle's left-front tire contacted ground.
0.616	Vehicle's left-rear tire became airborne. Vehicle exited system at a speed of 43.7 mph and angle of 2.5 degrees.
0.646	Vehicle rolled toward system. Vehicle's right-rear tire contacted ground.
0.668	Vehicle's left-rear tire contacted ground.
4.317	Vehicle came to rest.

Table 9. Sequential Description of Impact Events, Test No. HP34S-2

-0.158 sec

-0.058 sec

0.000 sec

0.092 sec

0.192 sec

0.292 sec

-0.158 sec

-0.058 sec

0.000 sec

0.092 sec

0.192 sec

0.292 sec

Figure 57. Sequential Photographs, Test No. HP34S-2

-0.060 sec

0.000 sec

0.090 sec

0.190 sec

0.290 sec

-0.158 sec

-0.058 sec

0.000 sec

0.092 sec

0.192 sec

0.292 sec

Figure 58. Sequential Photographs, Test No. HP34S-2

Figure 60. Documentary Photographs, Test No. HP34S-2

Figure 61. Documentary Photographs, Test No. HP34S-2

Figure 62. Documentary Photographs, Test No. HP34S-2

Figure 64. Vehicle Final Position and Trajectory Marks, Test No. HP34S-2

6.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 65 and 66. Barrier damage consisted of contact marks on the front face of the concrete segments and concrete gouging. The length of vehicle contact along the barrier was approximately 9 ft - 11 in. which spanned across barrier segment nos. 3 and 4.

There was minor gouging in the concrete near the impact point and along the contact length and larger gouging at the expansion joint immediately downstream from the impact point. There was a ¹/₂-in. deep, 15-in. tall gouge that initiated on the slope in the recessed window immediately upstream from expansion joint no. 3 where steel rebar was exposed. There was also a gouge in barrier segment no. 4, initiating at the expansion joint that ended near the slope in the adjacent downstream window. Concrete scraping and minor chipping were observed along the upstream, lower, upper, and downstream edges of the upstream aesthetic recess of barrier segment no. 3, as well as along the top, impact-side edge of the concrete barrier. No contact marks were observed on the pedestrian rail.

Figure 65. System Damage, Test No. HP34S-2

Figure 66. Barrier Damage at Expansion Joint No. 3, Test No. HP34S-2

The maximum lateral permanent set of the barrier system was 0.6 in. at the downstream end of barrier segment no. 3, as measured in the field. The maximum lateral dynamic barrier deflection measurement, including tipping of the barrier along the top surface, was 0.6 in as determined from high-speed digital video analysis. The working width of the system was found to be 14.1 in. measured from the front face of the barrier and 86.1 in. measured from the front face of the sidewalk, respectively, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 67.

Figure 67. Permanent Set, Dynamic Deflection, and Working Width, Test No. HP34S-2

6.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 68 through 73. The maximum occupant compartment intrusions are listed in Table 10, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant and are not evaluated by MASH 2016 criteria.

The majority of the damage was concentrated on the left-front corner and left side of the vehicle, where the impact had occurred. The left side of the bumper was crushed inward toward the center of the vehicle, and the bumper was disconnected from the frame. The front frame crossmember fractured, which allowed the radiator to hang downward, and both headlights were disengaged. The left side of the hood was crushed inwards with most crush occurring near the left

fender. The entire left fender and the front of the left-front door were crushed inward. There were multiple dents on the left quarter panel above the wheel well, and the area above the rear bumper connection was crushed inward. Both left-side wheel rims were deformed. The trunk hatch was bent to the left during impact causing the trunk to become wedged shut. The right-side fender was bent outward during impact. The left-front side window shattered, and the windshield was cracked across its entire length. The left-front side window damage was not due to contact with the test article.

The left-front frame horn was bent laterally and upward. The left-front shock was bent backward but remained engaged with the suspension. The anti-roll bar was bent upwards at the left side of the vehicle. The left-side steering connection to the wheel hub was rotated, and the entire steering linkage was warped. The left-front upper control arm was sheared at the connection to the wheel hub, and the lower control arm was bent with scrapes observed along the bottom surface. The left-side tie rod was partially disengaged at both ends. Much of the undercarriage was scraped, including the transmission tunnel, oil pan, floorpan, and gas tank.

Figure 68. Vehicle Damage, Test No. HP34S-2

Figure 69. Vehicle Damage, Test No. HP34S-2

Figure 70. Vehicle Damage, Test No. HP34-2

Figure 71. Vehicle Damage, Test No. HP34-2

Figure 72. Occupant Compartment Damage, Test No. HP34S-2

Figure 73. Undercarriage Damage, Test No. HP34S-2

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	1.3	≤ 9
Floor Pan & Transmission Tunnel	0.3	≤ 12
A-Pillar	0.1	≤ 5
A-Pillar (Lateral)	0.1	<i>≤</i> 3
B-Pillar	0.2	≤ 5
B-Pillar (Lateral)	0.1	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	1.2	≤ 12
Side Door (Above Seat)	0.0*	≤ 9
Side Door (Below Seat)	0.2	≤ 12
Roof	0.0*	≤ 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to side door crush	No shattering resulting from contact with structural member of test article
Dash	0.6	N/A

Table 10. Maximum Occupant Compartment Intrusion by Location, Test No. HP34S-2

N/A – No MASH 2016 criteria exist for this location.

* Negative value reported as 0.0. See Appendix C for further information.

6.5 Occupant Risk

MASH evaluation of the vehicle accelerations experienced during an impact event uses the Flail-Space Model to calculate occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs). The time of initial vehicle impact (t=0.0 sec) is typically easy to determine as it corresponds to vehicle contact with the barrier, crash cushion, or breakaway feature. However, MASH Section 5.3 recognizes that vehicles interacting with roadway geometric features, such as ditches, driveways, embankments, and curbs, typically result in low magnitude acceleration data to determine if the Flail-Space Model is appropriate in the analysis. MASH Section 5.3 states that if the 50-ms average longitudinal or lateral acceleration data exceed 2 g's, the Flail-Space Model should be used, and the calculation of OIV and ORA values is to begin with contact with the geometric feature. In other words, t=0 sec would correspond with vehicle contact with the curb. If the 2-g limit is not exceeded, then OIV and ORA values should be calculated with t=0 sec beginning with vehicle contact with the bridge railing.

During test no. HP34S-2, the vehicle traversed over a 6-in. tall, elevated sidewalk prior to impacting the concrete bridge rail. Analysis of the acceleration data prior to vehicle impact with the bridge rail show maximum longitudinal and lateral 50-ms average accelerations of -1.46 g's and 1.64 g's, respectively. These values did not exceed the MASH recommended 2-g limit, so the

OIV and ORA values were computed with t=0 sec corresponding with the vehicle contacting the bridge railing.

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 11. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. Although the SLICE-2 unit provided a lateral ORA that exceeded MASH 2016 limits, the SLICE-1 unit was the primary transducer and located closer to the vehicle c.g.; therefore, the lateral ORA was deemed acceptable. The calculated THIV, PHD, and ASI values are also shown in Table 11. The recorded data from the accelerometers and the rate transducers is shown graphically in Appendix E.

Evaluation Criteria		Trans	MASH	
		SLICE-1 (primary)	SLICE-2	2016 Limits
OIV	Longitudinal	-20.26	-19.72	±40
ft/s	Lateral	28.35	25.53	±40
ORA	Longitudinal	-5.05	-5.35	±20.49
g's	Lateral	16.67	22.64*	±20.49
Maximum	Roll	-18.90	-15.84	±75
Angular Displacement	Pitch	3.84	-3.21	±75
degrees	Yaw	42.18	41.67	not required
THIV –	ft/s	23.52	6.67	not required
PHD –	g's	33.15	34.84	not required
ASI		2.14	2.08	not required

Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HP34S-2

*Results were not from the primary data acquisition unit located at c.g.

The ORA and OIV values would have been different if the Flail-Space Model analysis had been initiated at the time of vehicle contact with the curb/elevated sidewalk. For transparency and to be complete in reporting of data analysis, these alternative ORA and OIV values are shown in Table 12. Note, these values are not compared against the MASH limits as they do not follow the MASH procedure for determining the beginning of the impact event, t=0 sec.

Evaluation Criteria		Transducer		
		SLICE-1 (primary)	SLICE-2	
OIV	Longitudinal	-21.64	-21.63	
ft/s	Lateral	27.73	24.66	
ORA	Longitudinal	-5.05	-5.35	
g's	Lateral	16.67	22.64*	

Table 12. OIV and ORA Values if t=0 occurred at Curb Impact, Test No. HP34S-2

*Results were not from the primary data acquisition unit located at c.g.

During test no. HP34S-2, processed accelerations from the secondary accelerometer system, SLICE-2, exceeded the MASH evaluation limits of 20 g's for ORA. The SLICE-1 system was designated as the primary accelerometer based on the installation position of the accelerometer to the vehicle's measured c.g., and the secondary accelerometer system, SLICE-2, was located farther from the c.g. location, Consistent with guidelines from the roadside safety community, only the primary accelerometer data were considered for the evaluation of crashworthiness of the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk.

6.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 74. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 48.4 kips determined by the SLICE-1 (primary) unit.

Figure 74. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1), Test No. HP34S-2

6.7 Discussion

The analysis of the test results for test no. HP34S-2 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 75.

Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 2.5 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. HP34S-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

							• • • • •
	* 3	*		* (P	19 F)	**	1
a di tana ang ang ang ang ang ang ang ang ang				- En			
-0.158 sec	0.000 sec	0.092 sec		0.192 sec		0.292	2 sec
	183.8'	11.0*					
Бит вох 15.0'-	U R ^F		6"—	•			
Test Agency		.MwRSF	41 /2"				
Test Number	I	HP34S-2	1	2"			
Date		1/3/2021	9 1/2	L ^{1 5/8"}		Sidewalk-	aund Line-
MASH 2016 Test Designation No							\
Test Article	Pedestrian Handrail and S	Rail with Sidewalk	7 1/2				
Total Length			8-				
Key Component - 21-ft 111/2-in. Con	crete Parapet	-		U			U
Length		– 11¾ in.	Vehicle Damage				Moderate
Height		34 in.	VDS [15]				
Thickness		10 in.	CDC [10]	on Deformation			
Key Component – 6-ft. Wide Sidewa	lk		Maximum men	or Deformation			
Length		88 ft	Animum Test Artic	la Daflactions			พากการส
Width		6 ft	Dormonont Sot	Defiections			0.6 in
Height	6 ft	$z - 7\frac{1}{2}$ in.	Dynamic Deflec	tion			0.0 lill.
Vehicle Make /Model		ai Accent	Working Width	(without Sidewall	k)		14.1 in
Curb	2 412 IL (MARTI 2016 L'	. 2,461 lb	Working Width	(with Sidewalk).			
Gross Statio		2577 lb	Fransducer Data	````			
Impact Conditions Sidewalk		. 2,377 10			Trans	ducer	
Speed	62.0 mph (MASH 2016 Limit 62 + 2	2.5 mph)	Evaluation	Criteria	SLICE 1		MASH 2016
Angle		1.5 deg.)			(primary)	SLICE-2	Limits
Impact Conditions - Barrier			OIV	Longitudinal	-20.26	-19 72	+40
Speed		50.2 mph	ft/s	Lataral	20.20	25.52	± 10
Angle		3 degrees	10.5	Lateral	28.35	25.55	±40
Impact Location		ost no. 11	ORA	Longitudinal	-5.05	-5.35	±20.49
Impact Severity – Sidewalk		U16 limit 3.9 kin ft	g's	Lateral	16.67	22.64*	±20.49
Fxit Conditions		5.7 кiр-н	Maximum	Roll	-18.90	-15.84	±75
Speed		43.7 mph	Angular	Pitch	3.84	-3.21	±75
Angle		5 degrees	Displacement	Vaw	42.18	41.67	not required
Exit Box Criterion		Pass	ueg.	Idw	42.10	41.07	not required
Vehicle Stability		Pass	THIV	– ft/s	23.52	6.67	not required
Vehicle Stopping Distance		vnstream	PHD -	- g's	33.15	34.84	not required
	11.0 laterally in front o	or system	AS	I	2.14	2.08	not required

*Results were not from the primary data acquisition unit located at c.g.

Figure 75. Summary of Test Results and Sequential Photographs, Test No. HP34S-2

66

August 26, 2022 MwRSF Report No. TRP-03-456-22

7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Test nos. HP34S-1 and HP34S-2 were conducted on the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk according to MASH 2016 test designation nos. 3-11 and 3-10, respectively. A summary of the test evaluation is shown in Table 13.

In test no. HP34S-1, the 5,045-lb pickup truck impacted the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk, impacting the sidewalk at a speed of 65.7 mph and an angle of 25.2 degrees and the barrier at a speed of 63.6 mph and an angle of 23.7 degrees 0.07 in. upstream from the targeted impact point. The impact severity with the sidewalk was 134.0 kip-ft, and the impact severity with the barrier was 110.2 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 41.3 mph and an angle of 9.1 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier system and moderate damage to the vehicle. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. HP34S-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

In test no. HP34S-2, the 2,413-lb small car impacted the HDOT 34-in. Tall Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk, impacting the sidewalk at a speed of 62.0 mph and an angle of 25.0 degrees and the barrier at a speed of 60.2 mph and an angle of 22.8 degrees 2.43 in. downstream from the targeted impact point. The impact severity with the sidewalk was 55.4 kip-ft, and the impact severity with the barrier was 43.9 kip-ft. After impacting the barrier system, the vehicle exited the system at a speed of 43.7 mph and an angle of 2.5 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier system and moderate damage to the vehicle. All primary system vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. HP34S-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

Evaluation Factors		Eva	Test No. HP34S-1	Test No. HP34S-2			
Structural Adequacy	А.	Test article should contain and r controlled stop; the vehicle shou installation although controlled 1	edirect the vehicle or bring and not penetrate, underride lateral deflection of the test	the vehicle to a , or override the t article is acceptable.	S	S	
	D.	1. Detached elements, fragments penetrate or show potential for p an undue hazard to other traffic.	s or other debris from the te penetrating the occupant co pedestrians, or personnel i	est article should not mpartment, or present n a work zone.	S	S	
		 Deformations of, or intrusions exceed limits set forth in Section 	s into, the occupant compared 5.2.2 and Appendix E of	rtment should not MASH 2016.	S	S	
	F.	The vehicle should remain uprig and pitch angles are not to excee	ht during and after collisio ed 75 degrees.	n. The maximum roll	S	S	
Querrant	H.	Occupant Impact Velocity (OIV for calculation procedure) should					
Risk		Occupa	S	S			
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s	40 ft/s			
	I.	The Occupant Ridedown Accele MASH 2016 for calculation pro-	eration (ORA) (see Append cedure) should satisfy the f	lix A, Section A5.2.2 of following limits:			
		Occupant H	Ridedown Acceleration Lin	nits	S	S	
		Component	Component Preferred Maximum				
		Longitudinal and Lateral					
	MASH 2016 Test Designation No.						
		Final Evaluation	(Pass or Fail)		Pass	Pass	
S-S	Satisfa	ctory U – Unsati	sfactory N/A	A – Not Applicable			

Table 13. Summary of Safety Performance Evaluation

8 MASH EVALUATION

The research objective of this study was to evaluate the safety performance of the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk. The barrier system test installation consisted of two 10-ft 11³/₄-in. long and three 21-ft 11¹/₂-in. long concrete barrier segments with a pedestrian handrail and sidewalk. According to TL-3 evaluation criteria in MASH 2016, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck.

In test no. HP34S-1, the HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk was successfully impacted by a pickup truck weighing 5,045 lb. The sidewalk was impacted at a speed of 65.7 mph and an angle of 25.2 degrees and the barrier was impacted at a speed of 63.6 mph and an angle of 23.7 degrees at a location 0.07 in. upstream from the targeted impact point. The impact severity with the sidewalk was 134.0 kip-ft, and the impact severity with the barrier was 110.2 kip-ft. At 1.034 sec, the vehicle exited the system at a speed of 41.3 mph and at an angle of 9.1 degrees. The vehicle was successfully contained and smoothly redirected. Based on guidance provided for MASH flail space method, the curb impact was not included in the determination of occupant risk or vehicle exit conditions because the 50-ms average accelerations in longitudinal and lateral directions did not exceed 2.0 g's prior to impact with the bridge rail.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 5.2 in., which did not violate the limits established in MASH 2016. Damage to the barrier was minimal, consisting of contact marks on the front face of the bridge rail as well as gouging concentrated near the aesthetic recessed windows adjacent to the expansion joint immediately downstream from the impact point. The maximum dynamic barrier deflection was 1.0 in., and the working width of the system was 14.5 in., as measured from the front face of the barrier system and 86.5 in. measured from the front face of the curb, respectively. All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk successfully met all the safety performance criteria of MASH 2016 test designation no. 3-11.

In addition, in test no. HP34S-2, the HDOT 34-in. Tall Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk was successfully impacted by a small car weighing 2,413 lb. The sidewalk was impacted at a speed of 62.0 mph and at an angle of 25.0 degrees and the barrier was impacted at a speed of 60.2 mph and an angle of 22.8 degrees, resulting in impact severities of 55.4 and 43.9 kip-ft, respectively. At 0.616 sec, the vehicle exited the system at a speed of 43.7 mph and at an angle of 2.5 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 2.2 in., which did not violate the limits established in MASH 2016. Damage to the barrier was minimal, consisting of contact marks on the front face of the bridge rail as well as gouging concentrated near the aesthetic recessed windows adjacent to the expansion joint immediately downstream from the impact point. The maximum dynamic barrier deflection was approximately 0.6 in., and the working width of the system was 14.1 in., as measured from the front face of the bridge railing and 86.1 in. measured from the front face of the sidewalk, respectively. All primary system occupant risk measures were within the recommended limits, and

the occupant compartment deformations were also deemed acceptable. Therefore, HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk successfully met all the safety performance criteria of MASH 2016 test designation no. 3-10.

During test no. HP34S-2, the occupant risk evaluation criteria from the secondary system were exceeded for ORAs, but the backup system results were not considered for evaluating the crashworthiness of the system, which was consistent with roadside safety community practice.

The HDOT 34-in. Tall, Aesthetic Bridge Rail with Pedestrian Handrail and Sidewalk was successfully crash tested and evaluated according to the AASHTO MASH 2016 TL-3 criteria. This barrier successfully met all the requirements of MASH 2016 test designation nos. 3-10 and 3-11.

9 REFERENCES

- Bielenberg R.W., Yoo S.H., Faller R.K., Urbank E.L., Crash Testing and Evaluation of the HDOT 34-in. Tall Aesthetic Concrete Bridge Rail: Mash Test Designation Nos. 3-10 and 3-11, Report No. TRP-03-420-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 21, 2019.
- Bielenberg R.W., Dowler N.T., Faller R.K., Urbank E.L., Crash Testing and Evaluation of the HDOT 42-in. Tall Aesthetic Concrete Bridge Rail: Mash Test Designation Nos. 3-10 and 3-11, Report No. TRP-03-424-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, January 9, 2020.
- 3. Bullard, L.D., Sheikh N.M., Bligh R.P., Haug, R.R., Schutt, J.R., Storey, B.J., *Aesthetic Concrete Barrier Design*, NCHRP Report No. 554, Texas Transportation Institute, Texas A&M University, College Station, Texas, 2006.
- 4. White, M., Jewell, J., and Peter, R., *Crash Testing of Various Textured Barriers*, Contact No. F2001TL17, California Department of Transportation, Sacramento, California, 2002.
- 5. Ross, H. E., Jr., Sicking, D. L., Zimmer, R. A., and Michie, J. D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, NCHRP Report No. 350, Transportation Research Board, National Research Council, Washington D. C., 1993.
- 6. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 7. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 8. *MASH 2016 Test Level 3 Evaluation of MnDOT Bicycle and Pedestrian Rail*, Report No. TRP-03-443-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 2020.
- 9. MASH 2016 Test Level 4 Evaluation of MnDOT Concrete Parapet with Brush Curb and Upper Beam and Post Rail with New Tapered End Section, Report No. TRP-03-403-21, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 2021.
- 10. Development of An Optimized Mash TL-4 Bridge Rail: MASH Test No. 4-12, Report No. TRP-03-415-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, Draft Report in Progress.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 14. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July, 2007.
- 15. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 16. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

10 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference	
al	Reinforced Concrete	Min. f [°] c = 4,000 psi NE Mix 47BD	Ticket#1267559 #1270201 Product Code#QL324504	
b1	#5 Rebar, 52¼" Total Unbent Length	ASTM A615 Gr. 60	H#3600014140	
b2	#5 Rebar, 38 ⁷ / ₈ " Total Unbent Length	ASTM A615 Gr. 60	H#3600014140	
b3	#5 Rebar, 259 ¹ /2" Total Length	ASTM A615 Gr. 60	H#3600014140	
b4	#5 Rebar, 127¾" Total Length	ASTM A615 Gr. 60	H#3600014140	
b5	#4 Rebar, 1095 ¹ /2" Total Length	ASTM A615 Gr. 60	H#3600014739	
b6	#4 Rebar, 99 ⁹ / ₁₆ " Unbent Length	ASTM A615 Gr. 60	H#3600014739	
c1	#8 Smooth Rebar, 24½" Total Length	ASTM A615 Gr. 60	H#256801	
c2	1¼" Dia. PVC Pipe	Schedule 80 PVC Gr. 12454	P#0472040 Inv#392987	
c3	1 ¹ ⁄4" Dia. PVC End Cap	Schedule 80 PVC Gr. 12454	P#0470592 Inv#392987	
c4	Epoxy Adhesive	Hilti HIT RE-500 V3	COC	
с5	Expansion Joint Filler	AASHTO M33, M153, or M213	W.R. Meadows Seal Tight Fiber Expansion Joint that meets M213 Data Product Sheet	
c6	Expansion Joint Sealant	AASHTO M173, M282, M301, ASTM D3581, or ASTM D5893	Carroll Invoice#LI061687 Item: "301NS"	
d1	8"x5"x¾" Steel Plate	ASTM A36	H#21B2688	
d2	HSS 2 ¹ / ₂ "x2 ¹ / ₂ "x ¹ / ₄ ", 13 ³ / ₄ " Long	ASTM A500 Gr. B	H#98987D	
d3	HSS 3"x3"x¼", 131½" Long	ASTM A500 Gr. B	H#A018142	
d4	HSS 3"x3"x ¼", 263" Long	ASTM A500 Gr. B	H#A018142	
d5	HSS 2"x2"x¼", 7" Long	ASTM A500 Gr. B	H#845858	
d6	2¼"x2¼"x¼" Steel Plate	ASTM A36	H#A0J157	
d7	5⁄8"-11 UNC, 7∕8" Long Threaded Rod	ASTM F1554-15 Gr. 105	H#10543730 Inv#138847	
d8	Shim	ASTM A36	H#21013251	
e1	⁵ / ₈ "-11 UNC Heavy Hex Nut	ASTM A563-15 Grade DH	H#J21908483 Ticket#138847 Portland Bolt sent 2H nuts instead of Gr. DH.	
e2	5/8" Dia. Hardened Washer	ASTM F436	H#107480 Inv#138847	

Table A-1. Bill of Materials, Test Nos. HP34S-1 and HP34S-2

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

A	A constraints	- 26-1	
6.21.250	Comport 1	C 201010	1.2010.1.000
100 100 100	Providence -		

PLANT	TRUCK	DRIVE	R CUSTO	MER PROJEC	T TAX	PO NUMBE	R D	ATE TIM	E TICKET
1	147	11014	6246	1	NO1	OCBR-H345	5 9/	6/21 10:30	AM 1270201
Customer UNL-MIDV	VEST RC	ADSID	E SAFETY	Delivery Address 4630 NW 36TH	ST		Special Ir NORTH	istructions OF OLD GOODYI	EAR HANGARS
LOAD	QUANT	TIVE	ORDERED	PRODUCT	PRODUCT	DESCRIPTION	UOM	UNIT PRICE	EXTENDED
8.00	8 4	00	24.00	QL324504	LNK47B1P	F4000HW	yd	\$132.50	\$1.060.0
Water Add Customer	ed On Job 's Reques	At	SLUMP 4.00 in	Notes:	_		TICKET SALES TICKET	SUBTOTAL TAX TOTAL	\$1.060.0 \$0.0 \$1.060.0
	5						PREVIO	US TOTAL	\$1,060.0
	1					Term	ns & Con	nditions	
Contains Por concrete or g contact with a Equipment (F thoroughly wi attention prov	KEEP tand ceme rout may cr skin. Always PE). In cas th water. If mptly.	CHILDF CHILDF nt. Freshl suse skin s wear ap se of cont irritation ;	H CONCRE REN AWAY y mixed cerne injury. Avoid propriate Pen act with eyes persists, seek	ITE with a second secon	This concrete is concrete. Stren the mix to exce acceptance of a thereof. Cylinde drawn by a lice Ready Mixed C unless expressi personal or pro The purchaser's within 3 days fin to investigate a price of the mail	a produced with the gifts are based on a ed this slump, exce my decrease in cott it tests must be han need testing lab and oncrete Company w y told to do so by ci perty damage that it is exceptions and cli om time of delivery, ny such claim. Sel	ASTM stand a 3" slump. I pt under the mpressive str died accord div certified will not delive ustomer and nay occur as aims shall be in such a ca er's liability s h any clams	and specifications for trivers are not permi- authorization of the ength and any risk in g to ACI/ASTM sp lechnician r any product beyon customer assumes a result of any suc- deemed waived un se, seller shall be g hall is no event exc are made.	or ready mix itted to add water to customer and their of loss as a result ecifications and id any curb lines all liability for any holinective. less made in writing iven full opportunity eed the purchase

Figure A-1. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)

Page 1 of 1

Concrete Sample Test Report

Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	029
Description:	H34S

Field Data (ASTM C172, C143, C173/C231, C138, C1084)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number.		Air Content (%):	
Truck Number:	1	Unit Weight (lb/ft ³):	
Load Volume (yd ³):		Air Temp (°F):	
Mold Date:	09/16/2021	Mix Temp (°F):	
Molded By:		Min Temp (°F):	
Initial Cure Method:		MaxTemp (°F):	

Laboratory Test Data (ASTM C39)

Sample Number:	029	029	(e	8	
Set Number:	001	002	8		
Specimen Number:	1	1			
Age:	18	18			
Length (in):	12	12			
Diameter (in):	5.97	5.98	~		
Area (in²):	27.99	28.09			
Test Date:	10/04/2021	10/04/2021	8	č.	
Break Type:	6	5			
Max Load (lbf):	123,471	120,017			
Strength (psi):	4,410	4,270			
Spec Strength (psi):					
Excl in Avg Strength:	1				

Remarks: Average 18-day Compressive Strength (psi):				4,34	40	Date received: 10/04/2021 Curing: Standard Field ASTM C511
						Submitted by: Mat Roculer
	贝似	11			\sim	Distribution:
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 10/4/21

Figure A-2. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Sec. 1		d			
C.1183	Inmei	- B. 34	anni	ALC: UNK	MAC
- C & A & A & A & A & A & A & A & A & A &	101110				Sec

PLANT	TRUCK	DRIVER	CUSTO	MER	PROJECT	TAX	PO NUMBE	RD	ATE TIM	E	TICKET
1	133	7142	6248	1		NTE	HW42	7/2	22/21 9:39 A	M	1267559
Customer UNL-MIDV	VEST RC	ADSIDE	SAFETY	Deliv 4630	ery Address NW 36TH S	iT	H32S	Special In NW 48TH EAST/NV GOODYE	Istructions HIST & WICUMIN V36TH ST SOUT EAR HANGERS	G ST H/NOI	RTH OF OLD
LOAD	QUAN			PR	CODE	PRODUCT	DESCRIPTION	UOM	UNIT PRICE	E)	PRICE
8.00	16	00	16.00		QL324504	LNK47B1P	F4000HW	yđ	\$132.50		\$1.060 00
Water Add Custome	led On Job r's Reques	At t:	SLUMP 4.00 in	Note	5:			TICKET SALES TICKET	SUBTOTAL TAX TOTAL		\$1 060 00 \$0.00 \$1,060.00
								PREVIO	US TOTAL		\$1.060.00 \$2,120.00
Contains Po concrete or contact with Equipment (i thoroughly w attention pro	CAUTION KEEP rtiand ceme grout may c skin. Alway PPE). In ca PPE). In ca mptly.	N FRESH CHILDR ent. Freshin ause skin i s wear app se of conta irritation p	EN AWAY mixed cem njury. Avoid propriate Per cct with eyes ersists, seel	ent, m prolor sonal or ski	ortar, ged Protective n, flush cal	This concrete it concrete. Stren the mix to exce acceptance of a thereof. Cylinde drawn by a lloe Ready Mixed C unless express personal or pro The purchaser' within 3 days fir to investigate a price of the min	Term produced with the gifts are based on ed this slump, exce iny decrease in cor- r tests must be han- teed testing lab and oncrete Company with y told to do so by o perty damage that is exceptions and co- tom time of delivery ny such claim. Sel	ASTM stance a 3" slump I pt under the npressive str holied accord di/or certified will not delive ustomer and may occur at isms shall but in such a ci ler's lability i	nditions lard specifications for privers are not perm authorization of the rength and any risk- ing to ACI/ASTM sp technician r any product beyon customer assumes is a result of any suc o deemed waived up ass, seller shall be g shall in no event even	or read itted to custor of loss ecifica to any all liat h direc tless n piven fi ced th	y mix add water to mer and their as a result tions and curb lines bility for any tive aide in writing all opportunity e purchase

Figure A-3. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)

Page 1 of 1

Concrete Sample Test Report

Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	026
Description:	H34S

Field Data (ASTM C172, C143, C173/C231, C138, C1084)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number:		Air Content (%):	8
Truck Number:		Unit Weight (lb/ft ³):	
Load Volume (yd3):		Air Temp (°F):	
Mold Date:	07/22/2021	Mix Temp (°F):	
Molded By:		Min Temp (°F):	
Initial Cure Method:		MaxTemp (°F):	

Laboratory Test Data (ASTM C39)

Sample Number:	026	026		ĺ. l		
Set Number:	001	002		l l		
Specimen Number:	1	1				
Age:	41	41		P		
Length (in):	12	12	6	14 A	8	
Diameter (in):	5.98	5.98	- 3	-5 X	5	8
Area (in²):	28.09	28.09		i i i i i i i i i i i i i i i i i i i		
Test Date:	09/01/2021	09/01/2021		A 6		
Break Type:	5	6	- a	8 8	6	
Max Load (lbf):	171,667	150,106	d-	a		
Strength (psi):	6,110	5,340				
Spec Strength (psi):			· · · · · · · · · · · · · · · · · · ·			-
Excl in Avg Strength:						

Remarks: Average 41-	day Compres	sive Streng	th (psi):	5,73	0	Date received: 09/01/2 Curing: X Standard ASTM C511	2021 Field
						Submitted by:	Mail Rocula
	辺辺	11			\sim	Distribution:	
Type 1	Type 2	Type 3	Type 4	Type 5	Type 6	Report Date: 9/1/21	

Figure A-4. Reinforced Concrete, Test Nos. HP34S-1 and HP34S-2 (Item No. a1)

Date: September 24, 2020

CERTIFICATE OF COMPLIANCE

To: Concrete Industries, Inc.

Re: PO# 143991

Project No: #3, #4, #5 & #6x 40'-0" Straight Bar

County:

Contractor:

To Whom It May Concern:

The representative samples of the coated bars have been coated and tested. They conform to the requirements of the State of *Nebraska* Department of Roads Specification.

Sincerely,

SIMCOTE, INC.

Adam Símmet President

1645 Red Rock Road, St. Paul, MN 55119 Phone: (651) 735-9660 Fax: (651) 735-9664

Figure A-5. #5 Rebar, Test Nos. HP34S-1 and HP34S-2 (Item Nos. b1, b2, b3, and b4)

Figure A-6. #4 Rebar, Test Nos. HP34S-1 and HP34S-2 (Item Nos. b5 and b6)

SECTIO	0.: 250 N: RD RD AS AS	3801 1x45'2" 25.4mn TM A61 TM A61	n x13.7 <mark>5-05a (</mark> 5M-05a	68 SRADE (GRADE	50 E 420	SOLD FO	A B C P O B TULS	COATIN 0X 9693 5, OK 7	IG - TUL 4157-	SA		S A E H 22 I TU P T O	B C COATIN 36 SOUTH ILSA, OK 7	NG CO YUKON AVE. '4107-		SHIP#: BOL #: INV #: CUST PO CUST PA	10203 46068 80007 #: 4;	28/60 84 705606	hi taki
HEMIC	AL AN	ALYSIS	1										PROPER	TIES					
		%		MECH	ANICAL				TE	STI				TEST				TES	r
S	0	.28					18	PERIA	L		METRIC		IMPE	ERIAL	METRIC		IMP	ERIAL	METRIC
Mn	1	.26	Yiel	d Strer	ngth	100	71	1.3 K	SI	5	39.9 M	IPA		1					
2	0	.018	Ten	sile Str	rength		111	.6 K	SI	7	69.5 M	IPA		1					
1	0	.031	Elor	gation	1		14	\$		1	18 %			1					
ii	0	.19	Gau	ige Ler	ngth		1	1	NS	2	03 M	M							
u	0	.49	Red	uction	of Area	a				1.000				1					
T	0	.16	Ben	d Test		1	OK					1							
18	0	.14	D	iamete	er.			.90 II	NS	2	00.41 M	24							
lo	0	.040	Cha	my Im	pact	- 1				1									
16	0	.011	T	est To	no	1													
1	0	020	i c	amala	Cizo									1					
		.020	0	ampie	0120	8 1								1					
NU	0	.015		riemat	ion	1				1		1				1		1	
	0	.0004	Han	iness		1													
	0	.001				1						1		1					
.Eq.	0	.54				· 1												1	
												- 1							
	JC	MINYB	ESULT	S - Roc	owell C h	ardness	at 1/16	trinch ir	cremen	its		GRA	AIN SIZE	T		INCLL	ISION R	ATING	
	2	3	4	5	6	7	8	9	10	11	12	ME	THOD	WETHOD					
1				1						1									
1					1 23	4 C					00	Dr	CULT	TYPE					
1				- 10		-	0.1	0.0		1	1 32 1	111	ESULI	1 (
1	14	15	16	18	20	22	24	26	28	30	- OE				T H	T	н	ТН	T

Figure A-7. #8 Smooth Rebar, Test Nos. HP34S-1 and HP34S-2 (Item No. c1)

Packing Slip

Cust. No. NELIN3402 Cust. P.O. E000833460 Job No.

Sold To UNL/ UNMC E-SHOP/ PUNCHOUT UNIVERSITY OF NEBRASKA 1700 Y ST LINCOLN, NE 68588-0646

Fastenal Company P.O Box 1286 WINONA, MN 55987-1286

The store serving you is

LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

3201 N. 23rd Street STE 1

Reference Date 3/16/21

Page NELIN392987 DUE DATE: 04/15/2021

1

Contract No: 2018.000208 Ship To UNL/UNMC E-SHOP/PUNCHOUT Shaun M Tighe MIDWEST ROADSIDE SAFETY FACILITY 4630 NW 36 ST TEST SITE LINCOLN, NE 68524 402-4720071

This Order and Document are subject to the "Terms of Purchase" posted on www.fastenal.com.

Line No.	Quantity Ordered	Quantity Shipped	Quantity Backorder	Description	Control No.	Part No.	Price / Hundred	Amount
1	12	12	0 1-	1/4 SOCK CAP PVC	llne48985	0470592	472.5000	56.70 G
2	1	1	0 1	1/4 S80PVC Pipe10	whoh15040	0472040	1,861.3000	18.61 G
3	1	1	0 1	1/4 S80PVC Pipe10	160180181	0472040	1,861.3000	18.61G

Received By

Comments Contact: University of Nebraska

t th

Tax Exemption Subtotal 93.92 Government Shipping & Handling 0.00 NE State Tax 0.00 0.00 County Tax City Tax 0.00 TOTAL USD 93.92

If you re-package or re-sell this product, you are required to maintain integrity of Country of Origin to the consumer of this product. Reasonable collection and attorneys fees will be assessed to all accounts placed for collection No materials accepted for return without our permission.

X indicates part is a hazardous material

* indicates part was sold at a promotional or special discount price

An electronic invoice will be available within two days. All discrepancies must be reported within 10 days.

Thank You !

FORM - IN13

Figure A-8. 1¼ in. Diameter PVC Pipe and End Cap, Test Nos. HP34S-1 and HP34S-2 (Item Nos. c2 and c3)

0

P.O. Box 21148 Tulsa, OK 74121 Phone 1918(252-6000 Fax No. (918) 252-6520

Environmental Systems

Date: 12/13/2016

Subject: Certificate of Conformance

Product: HIT RE-500 V3 Adhesive

To Whom it May Concern:

This is to certify that the HIT-RE 500 V3 is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,

Hilti, Inc.

5400 South 122 East Avenue

Tulsa, Oklahoma 74146

800-879-8000 800-879-7000 fax <u>US-Sales@hilti.com</u>

Figure A-9. Epoxy Adhesive, Test Nos. HP34S-1 and HP34S-2 (Item No. c4)

MasterFormat: 03 15 00

(Supersedes March 2016)

FIBRE EXPANSION JOINT

Multi-Purpose, Expansion-Contraction Joint Filler

DESCRIPTION

FIBRE EXPANSION JOINT is composed of cellular fibers securely bonded together and uniformly saturated with asphalt to assure longevity. Wherever a cost-effective joint filler is required, FIBRE EXPANSION JOINT meets the need. Manufactured and marketed by W. R. MEADOWS since the early 1930s, FIBRE EXPANSION JOINT is backed by over 80 years of proven application experience. FIBRE EXPANSION JOINT is versatile, resilient, flexible, and non-extruding. When compressed to half of its original thickness, it will recover to a minimum of 70% of its original thickness. FIBRE EXPANSION JOINT will not deform, twist, or break with normal on-the-job handling. Breakage, waste and functional failure resulting from the use of inferior, foreign fiber materials can cost you time and dollars and can result in a substandard finished job, generating costly callbacks and rework expenses. However, the purchase and installation of FIBRE EXPANSION JOINT (a small segment of the total project's cost) contributes to both the final cost efficiency and functional success, far greater in proportion than its original cost.

Representative United States patents: USPNs 7,815,722; 8,057,638; 8,038,845; and D558,305. (See also <u>www.wmmeadows.com/patents</u> for further patent/intellectual property information.)

USES

FIBRE EXPANSION JOINT is ideal for use on highways, streets, airport runways, sidewalks, driveways, flatwork, and scores of commercial and industrial applications subject to pedestrian and vehicular traffic.

FEATURES/BENEFITS

- Provides the ideal product for the majority of all expansion/contraction joint requirements.
- Non-extruding ... versatile ... offers a minimum 70% recovery after compression.
- This tough, lightweight, easy-to-use, semi-rigid joint filler is available in strips and shapes fabricated to your requirements.
- Easy to cut ... dimensionally stable ... not sticky in summer or brittle in winter.
- Provides neat, finished joints requiring no trimming.
- Often copied ... but never equaled.
- Remains the standard of the industry today ... with over 80 years of proven and satisfactory performance.
- Can be punched for dowel bars and laminated to thicknesses greater than 1" (25.4 mm).

Conforms to or meets:	Thickness	Slab Widths	Standard Lengths	Weight per ft. ³
AASHTO M 213 ASTM D1751 Corps of Engineers CRD-C 508 FAA Specification Item P-610-2.7 -HH-F-341 F, Type 1	3/8", 1/2" 3/4", 1" (9.5, 12.7, 19.1, 25.4 mm)	36", 48" (91,122 m)	10° (3.05 m) Also mulable 5°, 6°, 12° (1.5, 1.83, 3.66 m)	>19 Ib.

CONTINUED ON REVERSE SIDE ...

W. R. MEADOWS, INC. P.O. Box 338 • HAMPSHIRE, IL 60140-0338 Phone: 847/214-2100 • Fas: 847/683-4544 1-800-342-6976 www.wrmeadows.com

HAMPSHIRE, IL /CARTERSVILLE, GA /YORK, PA FORT WORTH, TX /BENICIA, CA /POMONA, CA GOODYEAR, AZ / MILTON, ON /ST. ALBERT, AB

Figure A-10. Expansion Joint Filler, Test Nos. HP34S-1 and HP34S-2 (Item No. c5)

Pecora 301 NS

Non-Sag Silicone Highway & Pavement Joint Sealant

I. BASIC USES

Sealing of transverse contraction and expansion joints, longitudinal, centerline and shoulder joints in Portland cement concrete (PCC) and asphalt.

2. MANUFACTURER

Pecora Corporation 165 Wambold Road Harleysville, PA 19438 Phone: 215-723-6051 800-523-6688 Fax: 215-721-0286 Website: www.pecora.com

3. PRODUCT DESCRIPTION

Pecora 301 NS Silicone Pavement Sealant is a one part, ultra low modulus product designed for sealing joints in concrete or asphalt pavement. It has excellent unprimed adhesion to concrete, metal and asphalt substrates, superior weather resistance and remains flexible at extremely low temperatures.

Pecora 301 NS Silicone Pavement Sealant is a non-sag product designed for applications on flat and sloped surfaces.

Advantages:

- Reduces pavement deterioration by restricting surface water penetration into underlying base and sub base layers.
- Convenient one component, neutral moisture curing system.
- Ultra low modulus resulting in high movement capability.
- Ease of application with standard automated bulk dispensing equipment such as Graco or Pyles.
- VOC compliant.
- Primerless adhesion to concrete and asphalt.
- Aids in elimination of non-compressables entering expansion joints.

Limitations:

1.0

Pecora 301 NS Silicone Pavement Sealant should not be used:

- for continuous water immersion conditions.
- when ambient temperatures is below 40°F (4°C) or above 120°F (49°C).
- flush with traffic surface. (Sealant must be recessed below surface.)
- for applications requiring support of hydrostatic pressures.
- with solvents for dilution purposes.

1/2

 with concrete that is cured less than 7 days.

Specification Data Sheet

- with newly applied asphalt until cooled to ambient temperature (usually 24-48 hours).
- as a structural component or in longitudinal joints greater than 3/4" in width that are intended to be used as a constant travelling surface.

2

38

PACKAGING

1 - 1/4

- + 30 fl. oz. (887ml) cartridges
- 20 fl. oz. (592ml) sausages
- 4.5 gallon pails (17.0L)
- 50 gallon drum (188.9L)
 Color: pavement gray

	SEALANT COVERAGE CHART RECESS GUIDELINES											
Joint Width (inches)	Sealant Depth (inches)	Recess (inches)	Backer Rod Diameter (in)	Minimum Joint Depth (in)	Linear ft./gal							
1/4	1/4	1/8	3/8	3/4	308							
3/8	1/4	1/8	1/2	7/8	205							
1/2	1/4	1/8	5/8	1-1/4	154							
3/4	3/8	1/4	7/8	1-1/4	68							

TABLE I: TYPICAL UNCURED PROPERTIES

1/4

lest Property	value	lest Procedure	
Cure Through (days)	7	0.5" cross section	
Extrusion Rate (grams/min)	90-250	Mil-S-8802	
Rheological Properties	non-sag		
Tack Free Time (mins)	60	ASTM C679	
VOC Content (g/L)	50	ASTM D3960	

TABLE 2: TYPICAL CURED PROPERTIES (After 7 days cure at 77°F (25°C), 50% RH)

Test Property	Value	Test Procedure
Adhesion, minimum elongation		ASTM D5329*
Asphalt	500	
Concrete	500	
Metal	500	
Elongation (%)	>1400	ASTMD412
Resilience (%)	>95	ASTM D5329
Stress @ 150% Elongation (psi) Hardness, maximum	22	ASTMD412
21 day cure (Shore 00) Joint Movement Capability	60	ASTM C661
+100/-50%; 10 cycles	Pass	ASTM C719

*modified section 14

Since Pecora architectural scalaritz are applied to varied substrates under diverse environmental conditions and construction situations it is recommended that substrate testing be conducted prior to application.

Figure A-11. Expansion Joint Sealant, Test Nos. HP34S-1 and HP34S-2 (Item No. c6)

MILL TEST CERTIFICATE Nucor Steel Tuscaloosa, Inc. 1700 HOLT RD N.E. Tuscaloosa, AL 35404-1000 800 800-8204 customerservice@nucortusk.com

Load Num	ber	Tally	Mi11	Order	Number	•	PO N	OLL	ine NO		Pa	rt Nur	mber	100	ale y	Certif	ficate	Number	r	Prepar	ed	64. Ja
R265880	0000	00009723	97 N-187	229-005			4500	357930	5							\$97239	701-1		(01/19/2	2021 0	7:56
Grade			18	and the	1.6.1	Sec. 19	and the second	1.14		C	stome	r:							-			22,3
Order De Hot Rol A36, 0.7 Quality A36/SA36	scription: 1 Plate Fro 500 IN x 72 Plan Descr /A70936: AS	m Coil .000 IN • iption : TM A36-1	x 120.000	0 IN A36-19/	ASTM A7	09-36-	18			Sc Sh Se	TEEL A TEEL A TIP TO TEEL &	ND PIPE	E SUPPI	LY CO 3 Gardne	INC GAR	DNER K	S					
Shipped	Heat/	/S1ab er	Certifie	d C	Mn	Р	s	Si	Cu	Ni	Cr	Mo	Сь	v	FA	Ti	NZ	В	Ca	Sn	CEV	ACI
1A14140	2182688	-03 ***	21B2688	0.18	0.88	0.009	0.004	0.06	0.20	0.06	0.07	0.016	0.001	0.005	0.028	0.001	0.006	0.0002	0.0021	0.006	0.36	
1A14140	2182688	-03 ***	21B2688	0.18	0.88	0.009	0.004	0.06	0.20	0.06	0.07	0.016	0.001	0.005	0.028	0.001	0.006	0.0002	0.0021	0.006	0.36	
Shipped	Certified	Heat	/Slab	Yield ksi	Tensil	e Y/	T EL	ONGATI	ON %	Bend OK7	Hard	Size	Charpy mm 1	Impact 2	ts (ft-	-1bs) Av	a	1	Shear %	3	lva l	Test
1A1414C	S1A1414FTT	218268	8-03 ***	52.5	71.9	73.	0 40	0.2	-						T		-	-	-	T		· carp
1A1414C	S1A1414MTT	218268	8-03 ***	51.3	68.8	74.	6 39	9.9														
1A1414D	S1A1414FTT	21B268	8-03 ***	52.5	71.9	73.	0 40	0.2														
1A1414D	S1A1414MTT	21B268	8-03 ***	51.3	68.8	74.	6 39	9.9														
Items:	2 PCS: 1	2 Weight	: 2205	53 LBS																		

Mercury has not come in contact with this product during the manufacturing process nor has any mercury been used by the manufacturing process. Certified in accordance with EN 10204 3.1. No weld repair has been performed on this material. Yield strength is determined by the 0.2% offset method unless otherwise noted. Manufactured to a fully killed fine grain practice. NUTEMPER TEMPER PASSED plate from coil ISO 9001:2015 Registered, PED Certified by the specifications. Dr. Qiulin Yu - Metallurgist

***** indicates Heats melted and Manufactured in the U.S.A.

Figure A-12. 8-in. x 5-in. x ³/₄-in. Steel Plate, Test Nos. HP34S-1 and HP34S-2 (Item No. d1)

Page:1 of 1

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Customer:	Size: 02.50X02.50	Customer Order No:	Customer Part No:
SPS - Tulsa	Gauge: 1/4	E450000492	6521625020
1020 Fort Gibson Road Catoosa OK 74015-3033	Date: 02/11/2021	Delivery No: 83922364 Load No: 7011501	Length: 20 FT
	Specification: ASTM A500-13 Gr.B/	c	

	KSI	KSI	% 2 Inch		
98987D	66.0	73.4	30.50		

Elongation

Heat No	С	MN	P	S	SI	CU	NI	CR	MO	V
98987D	0.1500	0.8300	0.0060	0.0080	0.0120	0.0300	0.0100	0.0300	0.0000	0.0000

This material was melted & manufactured in the U.S.A. This material meets the Buy America requirement of 23 CFR 635.410. Coil Producing Mill: UNITED STATES STEEL, Granite City, IL

We hereby certify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the scope of the specifications denoted in the specification and grade tiles above. This product was manufactured in accordance with your purchase order requirements.

This material has not come into direct contact with mercury, any of its compounds, or any mercury bearing devices during our manufacturing process, testing, or inspections.

This material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Tensile test completed using test specimen with 3/4" reduced area.

Viold

Toncilo

Heat No.

STEEL VENTURES, LLC dba EXLTUBE

foratterholp

Jonathan Wolfe Quality Assurance Manager

Figure A-13. HSS2¹/₂x2¹/₂x1⁴ Steel Square Tube, Test Nos. HP34S-1 and HP34S-2 (Item No. d2)

Atlas Tul 13101 E Plymoutl 48170 Tel: 73 Fax: 73	be Pl ckles h Mic 4-73	ymouth Road higan U 3-5600 3-5604	ISA						tla	IS 7 ZEKELM	TUDE	TRIES			REF.B/L: Date: Custome	8100 02/23 r: 179	2338 3/2021	
Sold To Steel & P PO Box 1 MANHAT USA	ipe S 688 TAN	upply C KS 66	Company 505					MATE	RIAL TE	EST RE	PORT				Shipped Steel & P 310 Smith JONESBI USA	<u>Iດ</u> ipe Supph າ Road URG MO	y Company 63351	r
Material:	:	3.0x3.0	x250x24'	0"0(6x5).			Mat	erial No	:	3003025	502400			Made i Melted	n: and Pou	red in:	USA USA	4 4
Sales Orde	er: 👌	161679	19				Pur	chase C	order:	C45500	5811			Cust M	aterial#:	6530	025024	
Heat No		С	Mn	P	S	Si	AI		Cu	Cb	Mo	Ni	Cr	V	Ti	в	N	Ca
A018142		0.210	0.460	0.005	0.004	0.020	0.0	025	0.090	0.001	0.010	0.040	0.060	0.001	0.001	0.0002	0.0086	0.0018
Bundle No MA00094312			PCs 30	Yield 063870 Psi	Tens 0824	<u>sile</u> BO Psi	Eln.2	in			Certi ASTM	ification MA500-21 (RADE B&	с	C	E: 0.31		
Heat	MILL		M	ill Location		Me	thod	Recycled	Content	Post	Consumer	Pre-Con:	sumer (Pos	t Industrial)	% Harves	sted W	ithin Miles o	of Location
A018142	SDI		C	olumbus,MS		EA	F	76.00%		95.00	%	5.00 %			75%	50	00	
Material No Sales Or. N	ote: lote:					2008-44	τ <u>Α</u>				pe yet				And and a second se	5.	- 423.04	

Page: 1 of 1

Figure A-14. HSS3x3x1/4 Steel Square Tube, Test Nos. HP34S-1 and HP34S-2 (Item Nos. d3 and d4)

Atlas Tul 171 Clea Birmingh 35217 Tel: Fax:	be Alaba Ige Dr Iam Alal	ama bama	USA					Atla DIVISION OF	ZEKELN	TUDE	STRIES			REF.B/L: Date: Custome	8099 02/12 r: 179	8064 2/2021	
<u>Sold To</u> Steel & Pi PO Box 1 MANHAT USA	ipe Sup 688 TAN KS	ply Co 665	ompany 605				M	ATERIAL TE	EST RE	PORT				Shipped Steel & P 401 New NEW CE USA	Io ipe Suppl Century F NTURY K	y Company arkway S 66031	1
Material:	2.0	x2.0>	(250x40'(0"0(10x3).			Materi	al No:	200202	504000			Made in Melted	n: and Pou	red in:	Can Can	ada ada
Sales Orde	a. 100	JI 24:	Mo	D	•	¢i	Purch	ase order.	C40000	3090 Mo	NI	Cr	V	Ti	6020 P	023040	6.2
845858	0	170	0.760	0.008	0.008	0.018	0.036	0.042	0.002	0.005	0.019	0.035	0.002	0.002	0.0002	0.0060	0.0002
Bundle No M102067416	U.		PCs 30	<u>Yield</u> 069176 Psi	Tens 0742	sile 25 Psi	Eln.2in 23.5 %	0.042	0.002	Cert ASTI	ification M A500-21	GRADE B&	C.002	0.002 C	E: 0.31	0.0000	0.0002
Heat	MILL		Mi	II Location		Me	thod Red	cycled_Content	Post	Consumer	Pre-Con	sumer (Pos	t Industrial)	% Harves	ted Wi	thin Miles o	of Location
845858	STELCO	C	Na	nticoke,ON		BO	F 36.9	90%	19.80	%	14.40%			100%	10	00	
Material No Sales Or. N	te: ote:																

Figure A-15. HSS2x2x¹/₄ Steel Square Tube, Test Nos. HP34S-1 and HP34S-2 (Item No. d5)

SPS Coil Proces 5275 Bird Creek Port of Catoosa,	L AND SUPPLY sing Tulsa Ave. OK 74015					MET/ TEST	REI	JRGI POR	CAL T		PAC DAT TIM USE	GE 1 of TE 02/11/2 E 11:33: ER 40CLE	1 2021 35 RK1	
S O L D T O							s 137 H Kan P 401 T Nev O	16 Isas City V New Cen V Century	Varehouse atury Parkwa KS 66031-	ay 1127				
Order N 40360461-0190 7.	laterial No. 2896240	Descrip 1/4 9	tion 96 X 240 A3	6 MILL PL	ATE	Qu	antity 2	Weigh 3,267.20(it Custome 0	er Part	c	ustomer PO	S 02	hip Date 2/10/2021
Heat No. A0J157	Vend	or SSAB - M	ONTPELIEF	WORKS		Chemical Ar DOMESTIC	nalysis	Mill SSAB	- MONTPELIE	R WORKS		Melted and Ma	nufactured i Produced	in the USA I from Coil
Carbon Manganese 0.1600 0.8400	Phosphorus 0.0080	Sulphur 0.0050	Silicon 0.0300	Nickel 0.1100	Chromium 0.1200	Molybdenum 0.0300	Boron 0.0000	Copper 0.3000	Aluminum 0.0250	Titanium 0.0070	Vanadium 0.0020	Columbium 0.0000	Nitrogen 0.0093	Tin 0.0000
					Mecha	nical / Physic	al Prope	erties						
Mill Coil No. A0J1570	311													
Tensile	Yield	Elong	(2 in)	Rckwl	(Grain	Charpy		Charpy Dr	C	harpy Sz	Temper	ature	Olsen
71000.000	50500.000		31.50				0		NA					
70100.000	62000.000		20.00				0		NA					
80200.000	61800.000		21.40				0		NA					
Batch 100008	4126 2 EA 3,26	7.200 LB												

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1 This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure A-16. 2¹/₄-in. x 2¹/₄-in. x ¹/₄-in. Steel Plate, Test Nos. HP34S-1 and HP34S-2 (Item No. d6)

H#10543730 R#21-805 5/8"-11 UNC, 7-7/8" Long Threaded Rod

For: MIDWEST	ROADSIDE	SAFETY	FACIL
PB Invoice#:	138847		
Cust PO#:	HP34S		
Date:	2/03/202	21	
Shipped:	2/03/202	21	

Phone: 800-547-6758 | Fax: 503-227-4634 3441 NW Guam Street, Portland, OR 97210 Web: www.portlandbolt.com | Email: sales@portlandbolt.com

+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- +	60
1		C	E	R	т	I	F	I	C	A	Т	E		0	F		C	0	N	F	0	R	M	A	N	C	Е	1	
+	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-+	

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Product: ASTM F1554G105 ALL THRD ROD

Nuts:

ASTM A194-2H HVY HEX

Washers:

ASTM F436-1 RND

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

By: Certification Department Quality Assurance Dane McKinnon

Figure A-17. ⁵/₈ in. – 11 UNC Threaded Rod, Test Nos. HP34S-1 and HP34S-2 (Item No. d7)

SPS C 5275 B Port of	STEEL PIPE S oil Process ird Creek A Catoosa, (AND SUPPLY ing Tulsa ive. DK 74015					MET/ TEST	REF	POR	CAL F		PAC DAT TIM USE	GE 1 of TE 03/19/2 E 08:14:1 ER 40CLE	1 2021 03 RK1	
S O L D T O								§ 137 ⁷ Н Кал: Р 401 ⊤ New 0	16 sas City V New Cen r Century	Varehouse tury Parkwa KS 66031-	ay 1127				
Order 4036378	Ma 3-0060 706	terial No. 372120TM	Descrip 3/16 7	tion 2 X 120 A3	6 TEMPER	PASS STPML	Qu PL	antity 9	Weigh 4,136.400	t Custome	r Part	c	ustomer PO	SI 03	nip Date 8/18/2021
							Chemical A	nalysis							
Heat No.	21013251		Vendor BI	G RIVER S	TEEL LLC		DOMESTIC		Mill	BIG RIVER S	TEEL LLC		Melted and Ma	nufactured in Droducod	the USA
Carbon	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.0600	0.8500	0.0110	0.0030	0.0200	0.0400	0.0500	0.0160	0.0001	0.1100	0.0250	0.0010	0.0040	0.0020	0.0093	0.0043
						Mecha	nical / Physic	cal Prope	rties						
Mill Coil	No. 21013251	-01													
1000	Tensile	Yield	Elong	(2 in)	Rckwl	(Grain	Charpy		Charpy Dr	C	narpy Sz	Tempera	ature	Olsen
665	00.000	50200.000		30.10				0		NA					
660	000.000	48900.000		30.70				0		NA					
658	000.000	48900.000		29.50				0		NA					
001 E	Batch 1000139	49500.000 270 9 EA 4,130	6.400 LB	51.50				U		NA					

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1 This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure A-18. 7-in. x 1¹/₂-in. x ³/₁₆-in. Shim, Test Nos. HP34S-1 and HP34S-2 (Item No. d8)

5

0

Certified Material Test Report to ISO16228 F3.1 (EN 10204-2004 3.1) FOR ASME SA194/ ASTM A194-16 GRADE 2H HVY HEX NUTS

FACTORY: ADDRESS:	<u>NINGBO</u> XIJINGT CHINA	HAIXIN ANG,LU	HARDI	WARE CO. IINGBO ZI	<u>,LTD.</u> HEЛANG	315205	COUNTR MF	DATE Y OF ORIGIN: G LOT NUMBER	: <u>MAR 13</u> <u>CHINA</u> 2: <u>5158130</u>	<u>2020</u> 002
CUSTOMER:	BRIGHT	ON-BEST	I INTER	NATIONA	L (TAIW)	AN) INC		PO NUMBER	C U71705	
QNTY SHIPP	ED:	64.8001	MPCS					PART NO): 313003	
SAMPLE SIZ	E :	ACC.	TO ASM	Œ B18.18	1.1-11		MANUFACTU	RER DATE: 2020/	2/17	10
SIZE & DESC	RIPTION:	5/8-11+	-0.020"(E	DG/WAX	BLUE D	YE)				
FINISH H.T.H	HOT DIP G	AL PER	ASTM A	A153-09/AS	TM F232	9-13				
STEEL PROP	ERTIES:							TEST FACILITY	S	
STEEL GRAI	DE:	SWRCI	H45K	SIZE:	26mm			HEAT NO): J21	908483
CHEMISTRY	COMPOS	ITION:							020 - 50 00 .00	
CHEMIST	C%	Mn %	P%	S%	Si %	Cr %	Ni %	Cu %	Mo %	OTHERS
SPE:	MIN	MAX	MAX	MAX	MAX	81.4650			900 - 0000-000	
	0.40	1.00	0.04	0.05	0.40					
TEST:	0.45	0.7	0.011	0.006	0.15				1	
DIMENSION	AT INSPEC	TIONS			SPECIFIC	ATTON- A	SMF (ANSI)	B18 2 2-2015	TEST F4	CTUTTY-M
CHARACTER	RISTICS		TEST N	THOD	SPEC	IFIED	ACTUAL	RESULT	ACC	REI
********	********		******	*******	******	******	*******	*******	******	*******
APPEARANC	E		ASTM	F812-12			1	PASSED	100	0
WIDTH A/F			1.031	"-1 062"			1.0	44"-1.059"	32	0
WIDTH A/C			1.175	"-1 227"			1.1	83"-1.215"	32	0
THREAD			ASM	E B1 1-03	3	2B	1	PASSED	8	0
HEIGHT			0.587	"-0 631"			0.5	94"-0 615"	32	0
MARK			2HZ	N LM			1	PASSED	100	0
HDG THICK	NISS	ASTM	A153-09	ASTM F2	329-13 mi	n:43um	57	UM-71UM	20	0
MECHANICA	AL PROPE	RTIES:	TO 1-1	/2" in	SPECIFIC	ATION:AS	STM/ASME	A194/SA194-16	TEST FA	CILITY: M
CHARACTER	RISTICS		TEST N	THOD	SPEC	IFIED	ACTUAL	RESULT	ACC.	REJ.
*********	********		******	*******	******	*******	*******	*****	******	*******
HARDNESS			ASTN	1E18-12	24-3	5HRC	Н	RC30-31	5	0
PROOF LOAD	D		ASTM	F606-11	MIN39	9550LBF	3	9550LBF	5	0
HARDNESS	AFTER 24	HAT 540	CAST	M A194 M	IN 89 HRI	в	I	IRB 95-98	5	0
TEMPERING	TEMPER	ATURE	Min455%	С			PAS	SED(520°C)	-	() ()

MACROETCH ASTM E381-12 S1/R1/C1~S4/R4/C4 S2/R2/C2 PARTS ARE MANUFACTURED AND TESTED IN ACCORDANCE WITH ASME SA194/ ASTM A194-16 PARTS MEET ASME SECTION II PART A

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

All parts meet the requirements of FQA and records of compliance are on file. Maker's ISO# ISO9001-0068481

Figure A-19. 5/8 in. – 11 UNC Heavy Hex Nut, Test Nos. HP34S-1 and HP34S-2 (Item No. e1)

H#107480 R#21-805 5/8" Dia. Hardened Washer

For: MIDWEST	ROADSIDE	SAFETY	FACIL
PB Invoice#:	138847		
Cust PO#:	HP34S		
Date:	2/03/202	21	
Shipped:	2/03/202	21	

Phone: 800-547-6758 | Fax: 503-227-4634 3441 NW Guam Street, Portland, OR 97210 Web: www.portlandbolt.com | Email: sales@portlandbolt.com

++	
CERTIFICATE OF CONFORMANCE	
++	

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Product: ASTM F1554G105 ALL THRD ROD Nuts: ASTM A194-2H HVY HEX Washers: ASTM F436-1 RND Coatings: ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C By: By: Certification Department Quality Assurance Dane McKinnon

Figure A-20. ⁵/₈-in. Diameter Washer, Test Nos. HP34S-1 and HP34S-2 (Item No. e2)

Appendix B. Vehicle Center of Gravity Determination

Model Yea		rest name.	HP345-1	VIN:	1C6R	ROLINGS	69861
moderret	ar: 2016	Make:	Dodge	Model:		Ram 1500	12
Vehicle Co	G Determinati	ion					
				Weight	Vertical CG	Vertical M	
Vehicle Equ	uipment			(lb)	(in.)	(lb-in.)	
+	Unballaste	d Truck (Curb)	1	5323	29.260655	155754.47	
+	Hub	<u>ie</u> 11		19	15.5	294.5	
+	Brake activ	ation cylinder	& frame	7	28 1/2	199.5	
+	Pneumatic	tank (Nitrogen)	22	28 1/2	627	
+	Strobe/Bra	ke Battery	0	10	27 1/4	272.5	
+	Brake Reco	eiver/Wires		5	53 1/2	267.5	
+	CG Plate in	ncluding DAQ		50	31	1550	
2	Battery			-39	40 1/2	-1579.5	
<u> </u>	Oil			-12	17	-204	er.
2	Interior			-118	44	-5192	27
8	Fuel			-171	18 1/4	-3120.75	10
2	Coolant			-2	34	-68	
2	Washer flu	id		-7	33	-231	
+	Water Balla	ast (In Fuel Tar	nk)	A		0	ic-
+	Onboard S	upplemental B	attery			0	
7	Spare Tire			-54	24 1/2	-1323	20
						0	83 ¹
Note: (+) is ad	lded equipment to	vehicle, (-) is rem Estimated To Vertical CG	oved equipment fr otal Weight (Ib) 6 Location (in.)	om vehicle 5033 29.25635]	147247.2	2
Note: (+) is ad	lded equipment to	vehicle, (-) is rem Estimated To Vertical CG	oved equipment fr otal Weight (Ib) & Location (in.)	om vehicle 5033 29.25635]	0 147247.22	2
Note: (+) is ad	Ided equipment to	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat	oved equipment fr otal Weight (Ib) 3 Location (in.) ions	om vehicle 5033 29.25635		0 147247.22	2
Note: (+) is ad Vehicle Dii Wheel Bas	Ided equipment to mensions for se: 140.5	vehicle, (-) is rem Estimated To Vertical CG <u>C.G. Calculat</u> _in.	oved equipment fr stal Weight (lb) 6 Location (in.) ions Front T	om vehicle 5033 29.25635 rack Width:	68.625	0 147247.23	-
Note: (+) is ad Vehicle Dir Wheel Bas	Ided equipment to mensions for se: 140.5	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat _in.	oved equipment fr otal Weight (lb) 6 Location (in.) ions Front T Rear T	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25	0 147247.22	-
Note: (+) is ad Vehicle Dir Wheel Bas	Ided equipment to mensions for se: <u>140.5</u>	vehicle, (-) is rem Estimated To Vertical CO <u>C.G. Calculat</u> _in.	oved equipment fr otal Weight (Ib) 6 Location (in.) ions Front T Rear T	om vehicle 5033 29.25635 rack Width: rack Width:	68.625 68.25	0 147247.23 in. in.	-
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Ided equipment to mensions for se: 140.5	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA	oved equipment fr otal Weight (Ib) 5 Location (in.) ions Front T Rear T SH Targets	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial	0 147247.2; in. in.	Difference
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia	Ided equipment to mensions for se: <u>140.5</u> Gravity I Weight (lb)	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat _in. 2270P MA 5000	oved equipment fr otal Weight (Ib) 5 Location (in.) ions Front T Rear T SH Targets ± 110	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045	0 147247.2; in. in.	Difference 45.
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina	Ided equipment to mensions for se: <u>140.5</u> Gravity I Weight (Ib) al CG (in.)	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63	oved equipment frontal Weight (lb) 6 Location (in.) ions Front T Rear T SH Targets 1 ± 110 5 ± 4	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019	0 147247.2; in. in.	Difference 45.0 -3.29090
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG	Ided equipment to mensions for se: <u>140.5</u> Gravity I Weight (Ib) al CG (in.) (in.)	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 NA	oved equipment fr otal Weight (lb) 6 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834	0 147247.23 in. in.	Difference 45.0 -3.29096
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG	Ided equipment to mensions for se: <u>140.5</u> Gravity I Weight (Ib) al CG (in.) (in.) 6 (in.)	vehicle, (-) is rem Estimated To Vertical CG <u>C.G. Calculat</u> in. 2270P MA 5000 63 NA 28	oved equipment fr otal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4	om vehicle 5033 29.25635 rack Width: rack Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834 29.26	0 147247.23	Difference 45.0 -3.29090 N/ 1.25635
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured for	vehicle, (-) is rem Estimated To Vertical CG <u>C.G. Calculat</u> _in. 2270P MA 5000 63 NA 28 om front axle of tes	oved equipment fr otal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets 1 ± 110 ± 4 or greater st vehicle	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834 29.26	0 147247.23	Difference 45.0 -3.29090 N/ 1.25633
Note: (+) is ad Vehicle Din Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 NA 28 om front axle of tes m centerline - posi	oved equipment fr btal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834 29.26 side	0 147247.2; in. in.	Difference 45.0 -3.29090 N/ 1.25630
Note: (+) is ad Vehicle Din Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) G is measured fro CG measured fro	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 63 00 00 63 00 00 63 00 00 63 00 00 63 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 00	oved equipment fr btal Weight (lb) 6 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834 29.26 side	0 147247.2; in. in.	Differenc: 45. -3.2909 N/ 1.2563
Note: (+) is ad Vehicle Din Wheel Bas Center of (Test Inertia Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib)	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 00 63 NA 28 om front axle of tee m centerline - posi	oved equipment fr btal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834 29.26 side TEST INER	0 147247.23 in. in. TIAL WEIG	Difference 45. -3.2909 N/ 1.2563
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG Note: Long. C Note: Lateral CURB WEI	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib)	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 NA 28 om front axle of tes m centerline - posi	oved equipment fr btal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 Test Inertial 5045 59.709019 0.3594834 29.26 side TEST INER	0 147247.23 in. in.	Difference 45. -3.2909 N/ 1.2563
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib) Left	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 NA 28 om front axle of tes m centerline - posi Right	oved equipment fr otal Weight (lb) 6 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045 59.709019 0.3594834 29.26 side TEST INER	U 147247.23 in. in. TIAL WEIG	Difference 45.0 -3.29090 N/ 1.25630 HT (Ib) Right
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib) Left 1508	vehicle, (-) is rem Estimated To Vertical CG <u>C.G. Calculat</u> _in. 2270P MA 5000 63 NA 28 om front axle of ter m centerline - posi Right 1477	oved equipment fr otal Weight (lb) 6 Location (in.) ions Front T Rear T SH Targets 1 ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045 59.709019 0.3594834 29.26 side TEST INER Front	0 147247.23 in. in. TIAL WEIG Left 1427	Differenc: 45. -3.2909 N/ 1.2563 HT (Ib) Right 1474
Note: (+) is ad Vehicle Din Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib) Left 1508 1174	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 NA 28 om front axle of tes m centerline - posi Right 1477 1164	oved equipment fr otal Weight (lb) 6 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045 59.709019 0.3594834 29.26 side TEST INER Front Rear	0 147247.23 in. in. in. TIAL WEIG Left 1427 1069	Difference 45.0 -3.29090 N/ 1.25630 HT (Ib) Right 1474 1075
Note: (+) is ad Vehicle Din Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear EDONT	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib) Left 1508 1174	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat 	oved equipment fr btal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045 59.709019 0.3594834 29.26 side TEST INER Front Rear	0 147247.23 in. in. in. TIAL WEIG Left 1427 1069 2001	Difference 45.0 -3.29090 N/ 1.25633 HT (Ib) Right 1474 1075
Note: (+) is ad Vehicle Din Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear FRONT PEAD	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib) Left 1508 1174 2985 2229	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat in. 2270P MA 5000 63 NA 28 om front axle of ter m centerline - posi Right 1477 1164	oved equipment fr otal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045 59.709019 0.3594834 29.26 side TEST INER Front Rear FRONT READ	0 147247.23 in. in. in. TIAL WEIG Left 1427 1069 2901 2444	Difference 45.0 -3.29090 N/ 1.25639 HT (Ib) Right 1474 1075 Ib
Note: (+) is ad Vehicle Dir Wheel Bas Center of (Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear FRONT REAR	Ided equipment to mensions for se: 140.5 Gravity I Weight (Ib) al CG (in.) (in.) CG is measured fro CG measured fro IGHT (Ib) Left 1508 1174 2985 2338	vehicle, (-) is rem Estimated To Vertical CG C.G. Calculat 	oved equipment fr otal Weight (lb) 5 Location (in.) ions Front T Rear T SH Targets ± 110 ± 4 or greater st vehicle itive to vehicle righ	om vehicle 5033 29.25635 Track Width: Track Width:	68.625 68.25 7est Inertial 5045 59.709019 0.3594834 29.26 side TEST INER Front Rear FRONT REAR	0 147247.23 in. in. TIAL WEIG Left 1427 1069 2901 2144	Difference 45.0 -3.29098 N/ 1.25638 HT (Ib) Right 1474 1075 Ib Ib

Figure B-1. Vehicle Mass Distribution, Test No. HP34S-1

		Test Name:	HP34S-2	VIN:	KMHC	CT4AE9GU	078507
Model Year:	2016	Make:	Hyundai	Model:		Accent	
Vehicle CG De	eterminat	ion			117.1.1.1		
V	/ehicle Ed	uipment			(lb)		
+	H	Unballasted C	ar (Curb)		2461	T ^{eo}	
+	E C	Hub		2	19	1	
+	E C	Brake activatio	on cylinder &	frame	7	1	
+	EC.	Pneumatic tan	k (Nitrogen)		30	1	
+	F)	Strobe/Brake	Battery		5	1	
+	47	Brake Receive	r/Wires	~	5	1	
+	F.	CG Plate inclu	dina DAQ		20	1	
-		Battery			-31	1	
-		Oil			-12	1	
-		Interior		0	-78		
-		Fuel		0	-7	1	
-	0	Coolant		2	-5	1	
8-	0	Washer fluid			0	1	
+	E	Water Ballast	(In Fuel Tank)	0	1	
+	Bi -	Onboard Supp	lemental Bat	tery	0	1	
_						1	
_							
		Esti	mated Total V	ved equipme	2414	I	
Vehicle Dimen	sions for	Esti C.G. Calculatio	mated Total V	ved equipme	2414	I	
Vehicle Dimen Wheel Base: _	sions for 101.0	Esti <u>C.G. Calculatic</u> _in.	mated Total V ons Front Tra	weight (Ib)	2414 59.625] _in.	
Vehicle Dimen Wheel Base: Roof Height:	sions for 101.0 56.75	Esti <u>C.G. Calculatic</u> _in. _in.	mated Total V ons Front Tra Rear Tra	weight (Ib)	2414 29.625 59.375	in. in.	-34
Vehicle Dimen Wheel Base: Roof Height:	sions for 101.0 56.75	Esti <u>C.G. Calculatio</u> _in. _in.	mated Total V ons Front Tra Rear Tra	weight (Ib)	2414 29.625 59.625 59.375	in. in.	- Difference
Vehicle Dimen Wheel Base: _ Roof Height: _ Center of Grav	sions for 101.0 56.75 vity	Esti <u>C.G. Calculatio</u> _in. _in. 1100C MAS 2420	mated Total V ons Front Tra Rear Tra 6H Targets	weight (Ib)	2414 59.625 59.375 Test Inertial 2413	in. in.	Difference
Vehicle Dimen Wheel Base: _ Roof Height: _ Center of Grav Test Inertial We	sions for 101.0 56.75 //ity eight (lb)	Esti <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> <u>2420</u> : 	mated Total V ons Front Tra Rear Tra H Targets ± 55	Weight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006	in. in. in.	Difference
Vehicle Dimen Wheel Base: _ Roof Height: _ Center of Grav Test Inertial We Longitudinal CG Lateral CG (in	sions for 101.0 56.75 /ity eight (lb) 3 (in.)	Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> <u>2420</u> : <u>39</u> : NA	mated Total V ons Front Tra Rear Tra 6H Targets ± 55 ± 4	weight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037	in. in.	Difference -7.(-0.994 N/
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in	sions for 101.0 56.75 vity eight (lb) 3 (in.))	Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> <u>2420 :</u> <u>39 :</u> <u>NA</u> NA	mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	weight (Ib)	2414 59.625 59.375 Test Inertia 2413 38.006 -0.037 21.89	[_in. _ I	– Difference -7.(-0.994 N/ N/
Vehicle Dimen Wheel Base: _ Roof Height: _ Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in.	sions for 101.0 56.75 //ity eight (lb) G (in.)) .) measured fin	Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA NA om front axle of test	mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	Weight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89	in. in.	– Difference -7.(-0.994 NA NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Note: Long. CG is n Note: Lateral CG m	sions for 101.0 56.75 (ity eight (lb) 3 (in.)) .) measured fro	Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA om front axle of test : m centerline - positiv	mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side	in. in.	Difference -7.(-0.994 N/
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG m	sions for 101.0 56.75 rity eight (Ib) G (in.)) .) measured fro neasured fro T (Ib)	Esti <u>c.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 - 39 - NA NA om front axle of test m centerline - positiv	mated Total V ms Front Tra Rear Tra 6H Targets ± 55 ± 4 vehicle re to vehicle right	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER	in. in. I	Difference -7.(-0.994 NA NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG m	sions for 101.0 56.75 (ity eight (lb) 3 (in.)) .) measured fro neasured fro T (lb)	Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA om front axle of test : m centerline - positiv Right	mated Total V ms Front Tra Rear Tra 6H Targets ± 55 ± 4 vehicle re to vehicle right	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER	in. in. I TIAL WEIG	Difference -7.(-0.994 N/ N/ HT (Ib) Right
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG m CURB WEIGHT	sions for 101.0 56.75 (ity eight (lb) 3 (in.)) .) measured from neasured from T (lb) Left 810	Esti C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA NA om front axle of test m centerline - positiv Right 730	mated Total V ms Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle re to vehicle right	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER Front	in. in. I TIAL WEIG Left 774	Difference -7.(-0.994 N/ N/ HT (Ib) Right 731
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG m CURB WEIGHT Front Rear	sions for 101.0 56.75 vity eight (lb) 3 (in.)) .) measured fro neasured fro T (lb) Left 810 453	Esti <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 : 39 : NA NA om front axle of test : m centerline - positiv Right 730 468	mated Total V ms Front Tra Rear Tra 6H Targets ± 55 ± 4 vehicle re to vehicle right	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER Front Rear	in. in. TIAL WEIG Left 774 434	Difference -7.(-0.994 N/ N/ HT (Ib) Right 731 474
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG m CURB WEIGHT Front Rear	sions for 101.0 56.75 (ity eight (lb) G (in.)) .) measured fro neasured fro T (lb) Left 810 453 1540	Esti C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA NA om front axle of test m centerline - positiv Right 730 468 Ib	mated Total V ms Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER Front Rear FRONT	in. in. TIAL WEIG Left 774 434 1505	
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG n CURB WEIGHT Front Rear FRONT REAR	sions for 101.0 56.75 (ity eight (lb) G (in.)) .) measured fro neasured fro T (lb) Left 810 453 1540 921	Esti C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA NA om front axle of test m centerline - positiv Right 730 468 Ib Ib Ib	mated Total V ms Front Tra Rear Tra BH Targets ± 55 ± 4	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER Front Rear FRONT REAR	in. in. TIAL WEIG Left 774 434 1505 908	- - - - - - - - - - - - - -
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is I Note: Lateral CG m CURB WEIGHT Front Rear FRONT REAR	sions for 101.0 56.75 ight (lb) 3 (in.)) .) measured fro t (lb) Left 810 453 1540 921	Esti C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA NA om front axle of test : m centerline - positiv Right 730 468 Ib Ib Ib	mated Total V ms Front Tra Rear Tra 6H Targets ± 55 ± 4 vehicle re to vehicle right	Veight (Ib)	2414 59.625 59.375 Test Inertial 2413 38.006 -0.037 21.89 side TEST INER Front Rear FRONT REAR	in. in. TIAL WEIG Left 774 434 1505 908	Differen

Figure B-2. Vehicle Mass Distribution, Test No. HP34S-2

Appendix C. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

Nodel Year:	2016		Test Name: HP34S-1 Make: Dodge							VIN: Model:	1C6RR6LT8GS269861 Ram 1500		
					DRIVE	HICLE DE R SIDE FL		ON - SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ⁸ (in.)	Direction for Crush ^C
TOE PAN - WHEEL WELL (X. Z)	1	63.8812	-43.0319	-5.4444	60.0584	-39.6832	-8.9856	3.8228	3.3487	3.5412	6.1942	5.2109	X, Z
	2	65.3495	-37.7819	-3.9518	63.4947	-36.4895	-5.7434	1.8548	1.2924	1.7916	2.8845	2.5788	X,Z
	3	62 94 94	-31.0882	-3.8033	04.440U 82.2485	-30.9877	-4.4/02	0.5010	0.5265	0.6208	0.0698	0.9072	X, Z
	5	61.9862	-23.3940	-7.1196	61.6294	-23.0029	-8.2832	0.3568	0.3911	1.1636	1.2784	1.2171	X. Z
	6	57.3995	-44.2021	0.2101	55.3409	-41.7734	-1.5650	2.0586	2.4287	1.7751	3.6452	2.7182	X, Z
	7	57.4502	-38.8644	0.1694	56.8516	-37.9366	-0.0400	0.5986	0.9278	0.2094	1.1238	0.6342	X, Z
	8	57.4613	-32.4327	0.1719	57.1389	-31.3778	-0.1739	0.3244	1.0549	0.3458	1.1566	0.4741	X, Z
	9	57.5356	-27.5586	0.1422	57.0709	-26.5809	-0.5819	0.4647	0.9777	0.7241	1.3024	0.8604	X,Z
	10	56.3689	-23.8946	-4.4379	56.0626	-23.7601	-5.7598	0.3063	0.1345	1.3219	1.3636	1.3569	X, Z
2	11	52.9223	-44.0010	1.0176	52.6987	-42.9799	1.7459	0.2236	1.0211	-0.7283	1.2740	-0.7283	Z
3	12	52,6980	-38.3200	1.0397	52.601/	-38.2486	0.7944	0.2803	0.0822	-0.3900	1.1848	-0.3905	
1	14	52,0010	-27 8323	1 1132	52 4538	-26 9174	0.2814	0.3320	0.8032	0.2512	1.3370	0.2842	7
	15	51.6964	-23.9911	-4.3081	51.3459	-24,1108	-5.6307	0.3505	-0.1197	1.3226	1.3735	1.3226	Z
FLOOR PAN (Z)	16	46.9857	-44.1234	0.9882	46.9341	-43.2665	1.5898	0.0516	0.8569	-0.6016	1.0483	-0.6016	Z
	17	46.9886	-38.9857	0.9950	46.7368	-38.1408	1.0236	0.2518	0.8449	-0.0286	0.8821	-0.0286	Z
	18	47.0844	-32.1471	1.0394	46.7424	-31.3913	0.2994	0.3420	0.7558	0.7400	1.1117	0.7400	Z
	19	47.1234	-27.8189	1.0775	46.6226	-27.0453	-0.0330	0.5008	0.7736	1.1105	1.4431	1.1105	Z
	20	46.3253	-24.4032	-3.3576	45.9536	-24.3361	-4.8143	0.3717	0.0671	1.4567	1.5049	1.4567	Z
	21	42.2400	-44.2011	0.9506	42.2435	-43.5///	0.8043	-0.0029	0.6520	0.0803	0.0789	0.0803	
	22	42 8027	-32,9507	1.0012	42 2508	-30.3087	-0.1037	0.3521	0.0028	1 1040	1 3492	1 1040	7
	24	42.8627	-27.7557	1.0500	42.3765	-27,1204	-0.1932	0.4862	0.6353	1.2432	1.4784	1.2432	ž
1	25	43.0395	-24.4034	-3.4571	42.6856	-24.7519	-5.1309	0.3539	-0.3485	1.6738	1.7459	1.6738	Z
	26	39.3722	-44.6915	-0.0880	39.3513	-44.1941	-0.2250	0.0209	0.4974	0.1370	0.5163	0.1370	Z
	27	39.2943	-38.6729	0.1727	39.0827	-38.1275	-0.4866	0.2116	0.5454	0.6593	0.8814	0.6593	Z
	28	39.3617	-33.2573	0.2146	38.9098	-32.7713	-0.8552	0.4519	0.4860	1.0698	1.2589	1.0698	Z
	29	39.3893	-28.1270	3 4090	38.8242	-21.00/2	-1.0133	0.3944	0.0088	1.2158	1.4030	1.2109	7
Crush calc eforming ir Direction f	ulations that ward towa or Crush co	at use multip rd the occup olumn denot	le directiona ant compart es which dire test Floor	I componer ment. ctions are Pan	nts will disre	gard compo he crush cal	nents that an	e negative a	and only ind to intrusion i Post	ude positive s recorded, ttest Floor	e values whe	vill be 0.	oonent is
Track Tool Fail													
			D	V		X				D.			

Figure C-1. Floor Pan Deformation Data – Set 1, Test No. HP34S-1
Model Year:	20	016	38		Test Name: Make:	HP3 Do	MS-1 dge			VIN: Model:	1C6F	R6LT8GS2 Ram 1500	69861
					VE DRIVE	HICLE DE R SIDE FL	FORMATIO	ON - SET 2					
[POINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔΖ ^Α (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for
-	FUINT	(ID.)	(IN.)	(ID.)	57 1500	20 7020	3 1000	2 7057	2 1710	2 0008	E 2217	4 2059	Crush
	2	62,4344	-18.6289	0.3314	60.5331	-17 5302	0.1666	1.9013	1.0987	0.1648	2.2021	1,9084	XZ
12.00	3	62.2167	-12.4340	0.4166	61.4899	-12.0337	1.4523	0.7268	0.4003	-1.0357	1.3271	0.7268	X
- W	4	60.9797	-7.9725	-0.7792	60.4526	-7.6429	0.2180	0.5271	0.3296	-0.9972	1.1751	0.5271	Х
PA N	5	59.1354	-4.2335	-2.8699	58.8287	-4.0340	-2.4342	0.3067	0.1995	-0.4357	0.5689	0.3067	Х
N II X	6	54.4533	-25.0063	4.4997	52.2373	-22.7520	4.1384	2.2160	2.2543	0.3613	3.1817	2.2453	X, Z
Ĕ₹	7	54.5268	-19.6690	4.4477	53.7349	-18.9241	5.6981	0.7919	0.7449	-1.2504	1.6569	0.7919	X
2	8	54,5654	-13.23/4	4.4367	54.0697	-12.36/5	5.5649	0.4957	0.8699	-1.1282	1.5084	0.4957	X
	10	53 5138	-0.3037	4.3807	53 1034	-7.0700	0.0547	0.0127	0.7929	-0.1375	0.3513	0.0127	X
	11	40.0782	.24 7942	5 3027	40 5024	-73 0281	7 3912	0.0202	0.8492	-2 0785	2 2044	-2 0795	7
	12	49,9719	-20,1082	5,3149	49,4464	-19,2048	7.0642	0.5255	0.9036	-1.7493	2.0378	-1,7493	Z
	13	49,9684	-13,7835	5.3404	49,4197	-12,9936	6.4041	0.5487	0.7899	-1.0637	1.4340	-1.0637	Z
	14	50.0510	-8.6157	5.3641	49.4083	-7.8741	5.8746	0.6427	0.7416	-0.5105	1.1082	-0.5105	Z
	15	48.8406	-4.7808	-0.0665	48.4726	-5.0669	-0.0471	0.3680	-0.2861	-0.0194	0.4665	-0.0194	Z
] [16	44.0392	-24.8815	5.2683	43.7416	-24.1825	7.0765	0.2976	0.6990	-1.8082	1.9613	-1.8082	Z
	17	44.0641	-19.7439	5.2642	43.5949	-19.0563	6.5002	0.4692	0.6876	-1.2360	1.4902	-1.2360	Z
z	18	44.1891	-12.9056	5.2941	43.6666	-12.3079	5.7695	0.5225	0.5977	-0.4754	0.9253	-0.4754	Z
A	19	44.2465	-8.5776	5.3232	43.5859	-7.9616	5.4298	0.6606	0.6160	-0.1066	0.9095	-0.1066	Z
K R	20	43.4669	-5.16/9	0.8800	43.0598	-5.2535	0.6300	0.40/3	-0.0856	0.2500	0.4855	0.2500	4
8	21	39.2930	-24.8890	5.2200	39.0092	-24.4018	6.2300	0.2244	0.5272	-1.0039	0.0100	-1.0039	4
E .	22	39,7040	-13.6902	5 2536	39 1807	-13 1466	5 2515	0.5787	0.5078	0.0021	0.0102	0.0021	7
	24	39,9861	-8 4962	5 2916	39 3450	-8.0072	5 1600	0.6411	0.4890	0.1316	0.8170	0.1316	7
	25	40.1812	-5.1543	0.7777	39.7980	-5.6468	0.2296	0.3832	-0.4925	0.5481	0.8305	0.5481	z
	26	36.4244	-25.4194	4.1864	36.2019	-25.0593	5.0675	0.2225	0.3601	-0.8811	0.9775	-0.8811	Z
[27	36.3719	-19.4000	4.4342	35.9826	-18.9914	4.7929	0.3893	0.4086	-0.3587	0.6687	-0.3587	Z
[28	36.4624	-13.9846	4.4648	35.8569	-13.6345	4.4145	0.6055	0.3501	0.0503	0.7012	0.0503	Z
	29	36.5120	-8.8545	4.4419	35.8120	-8.4301	4.2489	0.7000	0.4244	0.1930	0.8410	0.1930	Z
L	30	37.1300	-5.1861	0.8240	36.7182	-5.5957	0.1334	0.4118	-0.4096	0.6906	0.9024	0.6906	Z
^B Crush calc deforming ir ^C Direction f	culations that nward towa for Crush co	at use multip rd the occup olumn denote	le directiona oant compart es which dire	al compone ment. ections are	nts will disre included in t	gard compo he crush cal	nents that ar	e negative "NA" then r	and only inclusion i	lude positive s recorded,	and Crush v	ere the com will be 0.	ponent is
		FIE	lest FI001	Fall					PUS	liest Floor	Pan		
				Deres and the second		F AN				7			

Figure C-2. Floor Pan Deformation Data – Set 2, Test No. HP34S-1

Nodel Year:	20)16	2		Make:	HP3 Do	idge			Model:	1088	ReLTSGS2 Ram 1500	:69861
					VE DRIVER S	HICLE DE	FORMATIC	ON SH - SET 1	I.				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ⁸	Direction for
	POINT	(in.)	(in.)	(in.)	(ur)	(mc)	(m.)	(in.)	(in.)	(In.)	(nr)	(in.)	Crush ^C
	1	50.4538	-45.8999	-29.7889	50.2632	-45.4651	-31.1834	0.1906	0.4348	-1.3945	1.4731	1.4731	X, Y, Z
TN	2	48.7836	-33.5091	-33.9288	48.8091	-32.9991	-35.1157	-0.0255	0.5100	-1.1869	1.2921	1.2921	X, Y, Z
SX X	3	47.0747	-15.2397	-31.0139	47.1948	-14.7481	-31.7582	-0.1201	0.4916	-0.7443	0.9000	0.9000	X, Y, Z
ôx.	4	47.5646	-45.6117	-20.1531	47.0360	-45.14/8	-21.6952	0.5286	0.4639	-1.5421	1.6949	1.6949	X, Y, Z
100	5	45.5541	-34.0289	-19.2452	45.0703	-33.6952	-20.5807	0.4838	0.3337	-1.3355	1.4591	1.4591	X, Y, Z
100000		44.2000 E8.4440	-10.3127	-10.1003	43.8348	-10,1000	-19.0707	1.0000	0.1442	+080.04	0.8401	0.8401	A. 1. 2
HH C	0	56,1449	47.8025	-9.4948	54.7829	44.8/49	-10./062	1.3620	2./159	-1.2114	3.2/09	2./159	Y
IS AC	0	58,2282	47.5888	-0.1000	56 8302	-44 7278	-7.3400	1.3200	2,8004	-1.1040	3 3807	2,8004	V
-	10	22 1802	E0 2508	10.4748	21,8250	E2 1042	20.2208	0.6363	1 0227	0.7850	2 1472	1.0227	V
B	11	32 8002	-50.2000	-10 1019	21.0250	-02.1043	-20.2390	0.0303	-1.8557	-0.7000	3 0423	-1.8557	V
S R	12	44 3013	40 0008	-10.4916	43 3820	-51 3430	-20.0035	0.7082	-1 3434	-1.1823	2 0090	-1.3434	V
300	13	23 4831	-50 4750	-3 0853	22.9580	-51 5285	-4 8955	0.5251	-1.0515	-0.9102	1 4866	-1.0515	v
Ad	14	35 4884	-50 6254	-3.3310	34,9103	-51 3188	4 2556	0.5281	-0.6934	-0.9246	1.9000	-0.6934	Y
2	15	43.3013	-50.5937	-3.7066	42,6340	-50.6126	-4.8106	0.6673	-0.0189	-1.1040	1.2901	-0.0189	Ý
	16	39.5468	-38 1988	46 6699	39,5104	-38 1128	47 4049	0.0364	0.0858	-0.7350	0 7409	-0 7350	7
	17	42.2836	-27.6285	-46.8493	42.2607	-27.5506	-47.3692	0.0229	0.0779	-0.5199	0.5262	-0.5199	Z
	18	43.0341	-15,4702	-47.0418	42.9943	-15.3813	-47.3548	0.0398	0.0889	-0.3130	0.3278	-0.3130	Z
	19	20.5954	-38.6416	-50.7003	20.5333	-36.3704	-51.1878	0.0621	0.2712	-0.4875	0.5613	-0.4875	Z
	20	21.7208	-24.4329	-51.2617	21.7205	-24.2169	-51.6903	0.0003	0.2160	-0.4286	0.4800	-0.4286	Z
(Z) -	21	22.0567	-16.7988	-51.3433	22.0357	-16.5142	-51.6722	0.0210	0.2846	-0.3289	0.4354	-0.3289	Z
	22	3.2755	-38.7437	-51.1967	3.1504	-36.4035	-51.7035	0.1251	0.3402	-0.5068	0.6231	-0.5068	Z
4	23	2.3526	-23.9789	-51.7273	2.3965	-23.7571	-52.1090	-0.0439	0.2218	-0.3817	0.4436	-0.3817	Z
ğ	24	1.6937	-16.4896	-51.7789	1.6842	-16.1861	-52.0758	0.0095	0.3035	-0.2969	0.4247	-0.2969	Z
α.	25	-8.5913	-37.1145	-51.1273	-8.6720	-36.7626	-51.6011	0.0807	0.3519	-0.4738	0.5957	-0.4738	Z
	26	-9.0836	-24.8411	-51.5460	-9.1666	-24.4208	-51.8919	0.0830	0.4203	-0.3459	0.5506	-0.3459	Z
	27	-9.0008	-16.2082	-51.5896	-9.0321	-15.8562	-51.8426	0.0313	0.3520	-0.2530	0.4346	-0.2530	Z
	28	-20.6612	-38.2928	-50.6656	-20.6078	-37.9608	-51.1520	-0.0534	0.3320	-0.4864	0.5913	-0.4864	Z
	29	-20.5989	-26.0888	-51.0959	-20.5909	-25.7515	-51.4674	-0.0080	0.3373	-0.3715	0.5018	-0.3715	2
	30	-20.94/8	-10.3238	-01.1020	-20.4002	-10.1842	-01.4430	-0.0817	0.3410	-0.2811	0.4002	-0.2911	2
~ -	31	57.3/51	45,4838	-32.4390	57.3916	-46.6180	-33.4587	-0.0165	-0.1342	-1.019/	1.0286	0.0000	NA
A min	32	54.0351	45.8003	-30.2/00	51.1120	45.0004	-30.2800	-0.0377	-0.0581	-1.0100	0.0781	0.0000	NA
교통거	33	47 8522	40.2174	-37.3070	47 6600	40.2204	-30.3321	0.0420	-0.0110	-0.9/01	0.9/01	0.0420	-
d' a X	35	47.0032	_43.9993	-38.8372	45.0102	-43.0332	42 5000	-0.0008	0.0040	-0.9610	0.9610	0.0040	NA
	36	42 2980	43.3731	43 4584	42 2924	43 3689	-44 3621	0.0036	0.0042	-0.9037	0.8037	0.0055	XY
	31	57 3751	48 4838	-32 4300	57 3016	46 6180	-33 4587	-0.0165	-0.1342	-1 0107	1.0298	.0.1342	V
a c	32	54 0351	45 8083	-35 2700	54 0728	-45 8644	-36,2860	-0.0377	-0.0581	-1.0160	1 0184	-0.0581	Y
AS -	33	51.1549	-45.2174	-37.5570	51.1129	-45.2284	-38.5321	0.0420	-0.0110	-0.9751	0.9761	-0.0110	Y
E BI	34	47.6532	-44.4697	-39.9372	47.6600	-44.4657	-40.9188	-0.0068	0.0040	-0.9816	0.9816	0.0040	Y
A-I	35	44.9794	43.8883	-41.5759	45.0102	-43.9332	-42.5099	-0.0308	-0.0449	-0.9340	0.9356	-0.0449	Y
0.000	36	42.2960	-43.3731	-43.4584	42.2924	-43.3689	-44.3621	0.0036	0.0042	-0.9037	0.9037	0.0042	Y
4EC	37	12.1177	-43.3484	-44.1371	12.1443	-43.0990	-44.6916	-0.0266	0.2494	-0.5545	0.6086	0.2494	Y
A MUN	38	15.1361	44.4615	-41.0231	15.1658	-44.2519	-41.6066	-0.0297	0.2096	-0.5835	0.6207	0.2096	Y
PI	39	12.5693	-46.6199	-35.0141	12.5896	-46.3965	-35.6074	-0.0203	0.2234	-0.5933	0.6343	0.2234	Y
B N C	40	15.7022	-47.1224	-32.0069	15.7090	-46.9260	-32.6113	-0.0068	0.1964	-0.6044	0.6355	0.1964	Y
38	37	12.1177	-43.3484	-44.1371	12.1443	-43.0990	-44.6916	-0.0266	0.2494	-0.5545	0.6086	0.2494	Y
alle	38	15.1361	-44.4615	41.0231	15.1658	-44.2519	41.6066	-0.0297	0.2096	-0.5835	0.6207	0.2096	Y
Pat	39	12.5693	-46.6199	-35.0141	12.5896	-46.3965	-35.6074	-0.0203	0.2234	-0.5933	0.6343	0.2234	Y
E B	40	15.7022	47.1224	-32.0069	15.7090	-46.9260	-32.6113	-0.0068	0.1964	-0.6044	0.6355	0.1964	Y
Positive v compartme Crush calc leforming in Direction f	alues denot nt. culations tha ward towa for Crush co	te deformation at use multip rd the occup plumn denotion	on as inward le directiona pant compar es which dir	toward the al compone tment. ections are	e occupant o nts will disre included in t	ompartmen gard compo he crush ca	t, negative v onents that a aculations. If	alues denot re negative ["NA" then	e deformation and only inc	ons outward clude positive is recorded	away from e values wh and Crush	the occupa ere the con will be 0	nt nponent is

Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. HP34S-1

lodel Year:	20	016	2		Test Name: Make:	HP3 Do	34S-1 odge			Model:	1C6R	R6LT8GS2 Ram 1500	269861)
					VE DRIVER S	HICLE DE IDE INTER	EFORMATIO	ON SH - SET 2	2				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ⁸	Direction
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(In.)	(in.)	(In.)	Crush ^C
	1	47.5325	-26.7274	-25.4918	47.9172	-26.3782	-25.6428	-0.3847	0.3492	-0.1510	0.5411	0.5411	X, Y, Z
TN	2	45.9174	-14.3381	-29.6579	46.6423	-13.9041	-29.6113	-0.7249	0.4340	0.0466	0.8462	0.8462	X, Y, Z
Y.Y.	3	44.2794	3.9438	-26.7810	45.0557	4.3571	-26.2964	-0.7763	-0.4133	0.4846	1.0041	1.0041	X, Y, Z
0×	4	44.0330	-20.4085	-15.8599	44.4489	-20.0394	-10.2408	0.1847	0.3091	-0.3809	0.0010	0.0010	X, Y, Z
1.000	6	41.3905	3 9079	-13 9505	41.4879	3 9591	-13 7020	-0.0774	-0.0512	0.2002	0.2653	0.2653	X Y 7
	7	53 1038	-28 4014	-5 1870	51 9120	-25 8128	-5.0581	1.2818	2 5888	0.1318	2 8918	2.5888	V 1.2
SZE	8	53,1545	-28.4063	-1.8491	51.8281	-25.6395	-1.6910	1.3264	2.7668	0.1581	3.0724	2,7668	Ý
PA)	9	55.2711	-28.3784	-1.5533	53.8662	-25.6777	-1.3780	1.4049	2.7007	0.1753	3.0493	2.7007	Ý
141	10	19,2099	-30,9427	-15.2011	18,9656	-32,9175	-15.4395	0.2443	-1.9748	-0.2384	2.0041	-1.9748	Y
<u>a</u>	11	29.7477	-31.1342	-14.8160	29.2546	-33.9990	-14.9383	0.4931	-2.8648	-0.1223	2.9095	-2.8648	Y
OR	12	41.3517	-30.7817	-15.1835	40.7115	-32.2114	-15.2843	0.6402	-1.4297	-0.1008	1.5697	-1.4297	Y
285	13	20.5143	-31.1419	0.2901	19.9074	-32.2655	-0.0662	0.6069	-1.1236	-0.3563	1.3258	-1.1236	Y
ef l	14	32.5182	-31.3398	0.9584	31.8404	-32.1321	0.8810	0.6778	-0.7923	-0.0774	1.0455	-0.7923	Y
-	15	40.3316	-31.3406	0.5915	39.5800	-31.4740	0.5250	0.7516	-0.1334	-0.0665	0.7662	-0.1334	Y
	16	36.6760	-19.0151	-42.4003	37.6313	-18.9620	-42.1357	-0.9553	0.0531	0.2646	0.9927	0.2646	Z
	17	39.4559	-8.4567	-42.5974	40.4453	-8.4171	-42.0292	-0.9894	0.0396	0.5682	1.1416	0.5682	Z
	18	40.2560	3.6982	-42.8130	41.2540	3.7475	-41.9959	-0.9980	-0.0493	0.8171	1.2908	0.8171	Z
-	19	17.7356	-17.3891	-46.4553	18.7690	-17.1022	-46.4056	-1.0334	0.2869	0.0497	1.0736	0.0497	Z
	20	18.9113	-5.1863	47.1395	20.0443	-4.9564	40.8774	-1.1330	0.2299	0.1621	1.10/4	0.1621	4
N.	21	18.2/03	17 4010	48.0712	20.4000	47.0072	40.8013	-1.1200	-0.2878	0.2040	1.2013	0.2040	2
	22	-0.4544	-17.4218	47 5280	0.7407	-17.0275	47 7032	-0.8685	0.3840	-0.3873	1.1500	-0.3873	7
<u></u>	24	-1.0828	2.8373	-47.5951	0.0748	3.1988	47.7784	-1.1576	-0.3815	-0.1833	1.2265	-0.1833	Z
R	25	-11.4523	-17.7443	-46.9147	-10.4179	-17.3129	-47.5703	-1.0344	0.4314	-0.6556	1.2984	-0.6556	Z
t t	26	-11.8942	-5.4698	-47.3581	-10.8281	-4.9684	-47.8737	-1.0661	0.5014	-0.5156	1.2860	-0.5156	Z
ľ	27	-11.7762	3.1625	-47.4185	-10.6416	3.5953	-47.8210	-1.1346	-0.4328	-0.4025	1.2793	-0.4025	Z
	28	-23.5274	-18.8727	-46.4643	-22.3685	-18.4368	-47.4285	-1.1589	0.4359	-0.9642	1.5693	-0.9642	Z
[29	-23.4149	-6.6699	-46.9186	-22.2676	-6.2279	-47.7433	-1.1473	0.4420	-0.8247	1.4805	-0.8247	Z
	30	-23.3251	2.8927	-46.9940	-22.0840	3.3384	-47.7164	-1.2411	-0.4457	-0.7224	1.5036	-0.7224	Z
	31	54.4544	-27.3446	-28.1329	55.0944	-27.5758	-27.7339	-0.6400	-0.2312	0.3990	0.7888	0.3990	Z
HAN -	32	51.1204	-26.6591	-30.9690	51.8543	-26.8021	-30.6457	-0.7339	-0.1430	0.3233	0.8146	0.3233	Z
35%	33	48.2451	-26.0630	-33.2604	48.9572	-26.1481	-32.9672	-0.7121	-0.0851	0.2932	0.7748	0.2932	Z
4 QX	34	44.7493	-25.3058	-35.6461	45.5716	-25.3643	-35.4419	-0.8223	-0.0585	0.2042	0.8493	0.2042	Z
< <	35	42.0/96	-24.7168	-37.2889	42.96/0	-24.8157	-37.1007	-0.88/4	-0.0989	0.1882	0.9125	0.1882	4
	30	38.4000	-24.1944	-38.1/00	40.3012	-24.2347	-38.0223	-0.8007	-0.0403	0.1032	0.9140	0.1032	4
~C	31	51 1004	-27.3446	-28.1329	51.0542	-27.5/58	-21./339	-0.0400	-0.2312	0.3990	0.7888	-0.2312	Y
SC.	32	48 2451	-28.0830	-33 2804	48.9572	-20.0021	-32 0672	-0.7338	-0.0951	0.3233	0.7749	-0.1430	v
alL	34	44 7402	-25.3058	-35 6461	45.5718	-25 3642	-35 4410	-0.8223	-0.0585	0.2042	0.8403	-0.0585	v
A-F	35	42.0796	-24.7168	-37.2889	42.9670	-24.8157	-37,1007	-0.8874	-0.0989	0.1882	0.9125	-0.0989	Y
	36	39.4005	-24.1944	-39.1755	40.3012	-24.2347	-39.0223	-0.9007	-0.0403	0.1532	0.9145	-0.0403	Ý
E E C	37	9.2233	-24.0485	-39.8886	10,1739	-23,7775	-40.1274	-0.9506	0.2710	-0.2388	1.0169	0.2710	Y
A Int	38	12.2336	-25.1676	-36.7690	13.1078	-24.9486	-36.9656	-0.8742	0.2190	-0.1966	0.9224	0.2190	Y
C Y	39	9.6513	-27.3037	-30.7586	10.3649	-27.0762	-31.0348	-0.7136	0.2275	-0.2762	0.7983	0.2275	Y
S NB	40	12.7788	-27.8131	-27.7469	13.4027	-27.6246	-27.9593	-0.6239	0.1885	-0.2124	0.6855	0.1885	Y
58	37	9.2233	-24.0485	-39.8886	10.1739	-23.7775	-40.1274	-0.9506	0.2710	-0.2388	1.0169	0.2710	Y
al	38	12.2336	-25.1676	-36.7690	13.1078	-24.9486	-36.9656	-0.8742	0.2190	-0.1966	0.9224	0.2190	Y
E P	39	9.6513	-27.3037	-30.7586	10.3649	-27.0762	-31.0348	-0.7136	0.2275	-0.2762	0.7983	0.2275	Y
Ľ œ	40	12.7788	-27.8131	-27.7469	13.4027	-27.6246	-27.9593	-0.6239	0.1885	-0.2124	0.6855	0.1885	Y
¹ Positive v compartments ³ Crush calc deforming in ² Direction f	alues deno nt. culations th nward towa or Crush o	te deformation at use multip rd the occup	on as inward le directiona pant compar	l toward the al compone tment. ections are	e occupant o nts will disre	ompartmen gard compo	it, negative v. onents that a	alues denot re negative	e deformatio	ons outward	away from e values wh	the occupa ere the con	nt nponent is

model real.	2010	-22	Marto.	Dougo			1000
			Driver Side Maxi	mum Deformation			
	Reference Se	t 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	-0.7	<u>≤</u> 4	Z	Roof	0.8	≤ 4	Z
Vindshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
-Pillar Maximum	0.0	<mark>≤</mark> 5	Х	A-Pillar Maximum	0.4	≤ 5	Z
A-Pillar Lateral	0.0	<u>≤</u> 3	Y	A-Pillar Lateral	-0.2	<u>≤</u> 3	Y
3-Pillar Maximum	0.2	<mark>≤</mark> 5	Y	B-Pillar Maximum	0.3	≤ 5	Y
3-Pillar Lateral	0.0	≤ 3	Y	B-Pillar Lateral	0.3	≤ 3	Y
Foe Pan - Wheel Well	5.2	≤ 9	X, Z	Toe Pan - Wheel Well	4.3	≤ 9	X, Z
Side Front Panel	2.9	≤ 12	Y	Side Front Panel	2.8	≤ 12	Y
Side Door (above seat)	-2.8	≤ 9	Y	Side Door (above seat)	-2.9	≤ 9	Y
Side Door (below seat)	-1.1	≤ 12	Y	Side Door (below seat)	-1.1	<u>≤ 12</u>	Y
Floor Pan	1.7	<u>≤ 12</u>	Z	Floor Pan	0.7	≤ 12	Z
Dash - no MASH requirement	1.7	NA	X, Y, Z	Dash - no MASH requirement	1.7	NA	X. Y. Z
Positive values denote deformat For Toe Pan - Wheel Well the di lirections. The direction of deform occupant compartment. If direction	Ion as inward toward rection of defromation mation for Toe Panon on of deformation is	d the occupant comp on may include X and Wheel Well, A-Pillar "NA" then no intrusio	artment, negative val I Z direction. For A-F Maximum, and B-Pillan n is recorded and def	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0.	ay from the occupar the direction of def where the deforma	nt compartment. ormation may include ation is positive and in	X, Y, and Z truding into the

Figure C-5. Maximum Occupant Compartment Deformation by Location, Test No. HP34S-1

Figure C-6. Exterior Vehicle Crush (NASS) - Front, Test No. HP34S-1

Figure C-7. Exterior Vehicle Crush (NASS) - Side, Test No. HP34S-1

Model Year:	20)16	2		Test Name: Make:	НР3 Нуч	4S-2 Indai			VIN: Model:	KMHC	T4AE9GUC Accent	078507
					VEH DRIVER	ICLE DEF	ORMATIO	N SET 1					
	200000000	Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(m.)	furth	(m.)	(arc)	(ur.)	(m.)	(mr.)	(m.)	Crush
	1	74.6754	-18.0715	0.3092	73.5569	-16.8283	-0.4145	1.1185	0.2871	0.7237	1.8222	1.3322	X,Z X Z
1000	3	75.0946	-7 4528	4 9469	74.9208	-7.2818	4 7220	0.1740	0.2071	0.3000	0.3003	0.4232	X 7
- N	4	75.0089	-2.0222	4.4790	74.9149	-1.8897	4.3923	0.0940	0.1325	0.0867	0.1841	0.1279	X,Z
PAI N	5	73.5037	0.5796	2.2387	73.4306	0.6412	1.9958	0.0731	-0.0616	0.2429	0.2610	0.2537	X, Z
XEE	6	69.0663	-20.1072	7.6408	69.0159	-19.6337	7.5442	0.0504	0.4735	0.0966	0.4859	0.1090	X, Z
MI	7	69.5733	-13.3989	6.9898	69.4420	-13.1128	6.8980	0.1313	0.2861	0.0918	0.3279	0.1602	X, Z
	8	69.0038	-8.1/90	7.8080	69 0974	-8.0409	7.6632	0.0857	0.1287	0.1080	0.2047	0.2313	X 7
	10	68.3837	0.6516	4.2373	68.3037	0.6980	3.9927	0.0800	-0.0464	0.2446	0.2615	0.2574	XZ
	11	63.9533	-20.3707	8.7590	63.8869	-20.0622	8.7183	0.0664	0.3085	0.0407	0.3182	0.0407	Z
1	12	63.7720	-13.4808	8.0878	63.7497	-13.2295	8.0292	0.0223	0.2513	0.0586	0.2590	0.0586	Z
	13	63.1593	-7.6793	8.9208	63,1336	-7.4237	8.9946	0.0257	0.2556	-0.0738	0.2673	-0.0738	Z
	14	63.1151	-1.6411	8.6626	63.0556	-1.5028	8.5087	0.0595	0.1383	0.1539	0.2153	0.1539	Z
	15	62.9495	0.2231	4.9766	62.8607	0.2400	4.7615	0.0888	-0.0169	0.2151	0.2333	0.2151	Z
8	16	59.0224	-19.7610	8.4269	59.0069	-19.6260	8.4413	0.0155	0.1350	-0.0144	0.1366	-0.0144	Z
	1/	58.9887	-13.3/95	8.0611	58.9813	-13.1638	7.9916	0.02/4	0.215/	0.0695	0.2283	0.0695	4
AN N	19	59,0906	-1.9165	8 7968	58 9747	-1.8153	8.6277	0.1159	0.1012	0.0903	0.1200	0.0903	7
d	20	59.4379	0.2217	4,9032	59.3857	0.2773	4.6940	0.0522	-0.0556	0.2092	0.2227	0.2092	Z
OF (Z	21	54.3314	-19.7247	8.5270	54.3064	-19.5361	8.4641	0.0250	0.1886	0.0629	0.2004	0.0629	z
LC ILC	22	54.7216	-13.5221	8.1190	54.6046	-13.4010	8.0451	0.1170	0.1211	0.0739	0.1839	0.0739	Z
- <u>-</u>	23	54.1766	-6.8362	8.8551	54.1272	-6.7678	8.6849	0.0494	0.0684	0.1702	0.1900	0.1702	Z
	24	54.2483	-2.1563	8.8634	54.1732	-1.9864	8.6696	0.0751	0.1699	0.1938	0.2684	0.1938	Z
9	25	54.5832	0.3421	4.6770	54.5271	0.4167	4.4374	0.0561	-0.0746	0.2396	0.2571	0.2396	Z
	26	51.0952	-19.3565	8./991	51.0119	-19.1/82	8.7738	0.0833	0.1/83	0.0253	0.1984	0.0253	4
1	20	50.0847	-13.3802 - 8.0400	0.1407	50.0210	-13.2045 8.9100	0.0782	0.0429	0.1337	0.0080	0.1071	0.0095	7
3	20	50.8359	-2.2390	8.8866	50.7685	-2.0665	8.6994	0.0428	0.1725	0.1872	0.2633	0.1872	Z
	30	51.1506	0.4172	4.5344	51.0373	0.5079	4.2653	0.1133	-0.0907	0.2691	0.3057	0.2691	z
^B Crush calcula deforming inwo ^C Direction for	ations that u ard toward t Crush colun	the occupant the occupant nn denotes v	directional c t compartme which directi	omponents nt. ons are inc	will disregar	rd componer	ations. If "N	egative and	d only includ	e positive va	d Crush will	the compor	ent is
		Prete	est Floor P	an					Post	ttest Floor	Pan		
													and the second second

Figure C-8. Floor Pan Deformation Data – Set 1, Test No. HP34S-2

Model Year:	20)16	15	8	Test Name: Make:	HP3 Hyu	94S-2 undai			VIN: Model:	КМНС	CT4AE9GUC Accent	078507
					VE DRIVEI	HICLE DE R SIDE FL	FORMATIO	ON - SET 2					
	DOINT	Pretest X	Pretest Y	Pretest	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^Α (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for
1	POINT	(In.)	(In.)	(in.)	51 0018	20 1147	8 5552	0 2002	1.2257	1 7009	2 2824	0.2002	Crush
	2	54.8738	-16.4927	-5.3191	55.2264	-16.0160	-3.2662	-0.3526	0.4767	-2.0529	2.1368	0.0000	NA
 _	3	53.4108	-10.8210	-3.8062	53.7158	-10.3700	-1.8870	-0.3050	0.4510	-1.9192	1.9949	0.0000	NA
'N'	4	53.5284	-5.3944	-4.3104	53.8900	-5.0223	-2.4702	-0.3616	0.3721	-1.8402	1.9119	0.0000	NA
PA	5	52.0450	-2.7461	-6.5103	52.4714	-2.5572	-4.9727	-0.4264	0.1889	-1.5376	1.6068	0.0000	NA
U U U	6	46.9804	-23.2019	-0.7896	47.4188	-22.3850	1.5599	-0.4384	0.8169	-2.3495	2.5258	0.0000	NA
THE H	8	47.7348	-11 2701	-1.0009	47 7041	-10.8203	1 1710	-0.3258	0.0035	-2.1120	1.8027	0.0000	NA
2010	9	47.8034	-5.5601	-0.7563	48.0922	-5.0471	0.8573	-0.2888	0.5130	-1.6136	1.7176	0.0000	NA
· · · · · · · · · · · · · · · · · · ·	10	47.0133	-2.4528	-4.3170	47.3674	-2.2302	-2.9435	-0.3541	0.2224	-1.3735	1.4357	0.0000	NA
2	11	41.9080	-23.2489	0.5262	42.2887	-22.5811	2.7902	-0.3807	0.6678	-2.2640	2.3909	-2.2640	Z
	12	41.9819	-16.3614	-0.1883	42.3780	-15.7876	1.7799	-0.3961	0.5738	-1.9682	2.0881	-1.9682	Z
	13	41.6389	-10.5349	0.6250	41.9685	-9.9251	2.4742	-0.3296	0.6098	-1.8492	1.9749	-1.8492	Z
	14	41.8309	-4.5016	0.3242	42.0879	-4.0344	1.7096	-0.2570	0.4672	-1.3854	1.4845	-1.3854	Z
	15	41.5989	-2.6535	-3.3664	41.9190	-2.4640	-2.1144	-0.3201	0.1895	-1.2520	1.3061	-1.2520	Z
	10	30.9909	18.0843	0.0210	37.4242	-21.9907	1.7744	-0.4273	0.6052	-2.1491 1.00e0	2.2300	-2.1491 1.00e0	
	18	37.3114	-9.5190	0.6655	37 5989	-9.1363	2 1906	-0.2875	0.3827	-1.5251	1.5985	-1.5251	7
AN	19	37.8067	-4.6109	0.6150	37.9999	-4.2004	1.8729	-0.1932	0.4105	-1.2579	1.3372	-1.2579	Z
A P	20	38.0899	-2.5113	-3.3048	38.4469	-2.3103	-2.1583	-0.3570	0.2010	-1.1465	1.2175	-1.1465	Z
8 ^C	21	32.3186	-22.2101	0.6594	32.7298	-21.7381	2.5811	-0.4112	0.4720	-1.9217	2.0211	-1.9217	Z
F	22	32.9453	-16.0312	0.1911	33.2330	-15.6433	1.8704	-0.2877	0.3879	-1.6793	1.7474	-1.6793	Z
2007	23	32.7022	-9.3245	0.8983	32.9873	-8.9749	2.1994	-0.2851	0.3496	-1.3011	1.3771	-1.3011	Z
	24	32.9648	-4.0515	0.8693	33.1959	-4.2039	1.95/8	-0.2311	0.44/6	-1.0885	1.1994	-1.0885	7
	28	29 1131	-21 7080	1.0529	20 4523	-21 2528	2.3037	-0.3397	0.4552	-1.8447	1.0301	-1.8447	7
	27	29.1921	-15.7528	0.3645	29.5475	-15.3784	1.9249	-0.3554	0.3744	-1.5604	1.6436	-1.5604	Z
	28	29.4924	-9.2972	1.0576	29.7829	-8.9045	2.2715	-0.2905	0.3927	-1.2139	1.3085	-1.2139	Z
	29	29.5554	-4.5941	1.0243	29.7908	-4.1654	2.0161	-0.2354	0.4287	-0.9918	1.1058	-0.9918	Z
	30	29.8094	-1.9783	-3.3563	30.1076	-1.8129	-2.5365	-0.2982	0.1654	-0.8198	0.8879	-0.8198	Z
compartme ^B Crush cald deforming in ^C Direction f	nt. culations tha nward towa for Crush co	at use multip rd the occup olumn denote	e directiona ant compart s which dire	I componer ment. ections are i	nts will disre	gard compo he crush ca	nents that ar	re negative : "NA" then r	and only inc	lude positive is recorded,	and Crush v	ere the com will be 0.	ponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		

Figure C-9. Floor Pan Deformation Data – Set 2, Test No. HP34S-2

odel Year:	20	016	2		Make:	HP3 Hyu	IAS-2 Indai			Model:	KMHC	Accent	078507
					VE DRIVER S	HICLE DE	FORMATIC	ON SH - SET 1	ı				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ⁸	Direction for
	POINT	(in.)	(in.)	(in.)	(iiii)	(0)	(inc)	(inc)	(irc)	(In.)	(nr)	(irr)	Crush ^C
	1	63.2025	-20.3684	-19.2076	63.0956	-20.1935	-19.7110	0.1069	0.1749	-0.5034	0.5435	0.5435	X, Y, Z
IN	2	59.2057	-8.7096	-23.4369	59.1937	-8.5274	-23.8574	0.0120	0.1822	-0.4205	0.4584	0.4584	X, Y, Z
AS.	3	50 4931	4.043/	-20.3898	50 3487	-17 4980	-20.0972	0.0004	-0.1710	-0.2874	0.5674	0.5674	X V 7
-×	5	81.0515	-8.8966	-8.0383	60,9605	-8 6996	-8 4318	0.0910	0.1970	-0.3935	0.4494	0.4494	X Y 7
	6	56.8395	4.5419	-13.7289	56.9261	4.6956	-14.0322	-0.0866	-0.1537	-0.3033	0.3509	0.3509	X. Y. Z
w #	7	67.2311	-22.2469	-0.9889	66,9899	-21,6030	-1.4868	0.2412	0.6439	-0.4979	0.8489	0.6439	Y
Ske	8	65.9863	-22.3088	2.5801	65.7437	-21.5862	2.1198	0.2426	0.7226	-0.4603	0.8904	0.7226	Y
PA	9	70.0165	-22.2602	2.7546	69.7429	-21.0324	2.2941	0.2736	1.2278	-0.4605	1.3396	1.2278	Y
ш	10	32.9031	-24.3618	-14.4802	32.5235	-24.7058	-14.7433	0.3796	-0.3440	-0.2631	0.5759	-0.3440	Y
	11	45.9130	-24.4721	-12.8752	45.4945	-24.8759	-13.1797	0.4185	-0.4038	-0.3045	0.6564	-0.4038	Y
E O C	12	52.7177	-23.6698	-13.1587	52.2891	-24.3484	-13.3967	0.4286	-0.6786	-0.2380	0.8372	-0.6786	Y
A80	13	35.6502	-24.2479	-1.6846	35.3300	-24.0383	-1.9376	0.3202	0.2096	-0.2530	0.4588	0.2096	Y
MP	14	46.4854	-24.6981	1.8022	46.0639	-24.5032	1.4290	0.4215	0.1949	-0.3732	0.5958	0.1949	Y
-	15	56.9897	-23.9505	1.1223	56.7055	-23.8301	0.8602	0.2842	0.1204	-0.2621	0.4049	0.1204	Y
	16	48.9977	-15.1978	-35.1537	48.9926	-15.1062	-35.5330	0.0051	0.0916	-0.3793	0.3902	-0.3793	Z
	17	50.4324	-6.6577	-35.3805	50.4888	-6.5381	-35.6667	-0.0564	0.1196	-0.2862	0.3153	-0.2862	Z
-	18	50./189	1.5925	-35.35/8	50.9112	3.9/46	-35.5631	-0.1923	-2.3821	-0.2053	2.3987	-0.2053	4
ŀ	19	41.0401	-14.8803	-37.9084 20.4811	41.0002	-14./810	-38.2051	-0.0251	0.1048	-0.2907	0.315/	-0.2907	
F - (Z)	20	41.0018	1.2533	-38.4000	41.5588	1 4232	-38.66002	-0.0030	-0.1600	-0.2181	0.2770	-0.2191	7
	22	28 6694	-14 4710	-39 2870	28.6760	-14 3315	-39 4188	-0.0066	0.1395	-0.1318	0 1920	-0.1318	7
	23	28.3382	-5.9166	-39.8058	28.2275	-5.8072	-40.0151	0.1107	0.1094	-0.2093	0.2608	-0.2093	Z
8	24	27.9848	0.5175	-39.9721	27.9638	0.6595	-40.1412	0.0210	-0.1420	-0.1691	0.2218	-0.1691	Z
8	25	12.1299	-14.4872	-39.1317	12.0659	-14.2654	-39.2859	0.0640	0.2218	-0.1542	0.2776	-0.1542	Z
	26	11.9081	-5.9160	-39.6525	11.8624	-5.7743	-39.7835	0.0457	0.1417	-0.1310	0.1983	-0.1310	Z
	27	11.8404	6.2965	-39.7865	11.8237	6.4328	-39.8684	0.0167	-0.1363	-0.0819	0.1599	-0.0819	Z
	28	-0.3460	-15.7658	-37.3758	-0.4038	-15.5843	-37.5229	0.0578	0.1815	-0.1471	0.2407	-0.1471	Z
	29	-2.1776	-5.9604	-37.8066	-2.1596	-5.8152	-37.9165	-0.0180	0.1452	-0.1099	0.1830	-0.1099	Z
	30	-1./018	3.2011	-38.1185	-1.7291	3.4183	-38.1778	0.02/3	-0.21/2	-0.0593	0.2268	-0.0593	2
	31	70.6009	-21.5287	-22.6873	70.5899	-21.4669	-23.1789	0.0110	0.0618	-0.4916	0.4956	0.0628	X, Y
AR	32	65./4/2	-20.6/49	-25.8094	65.8065	-20.6401	-26.2688	-0.0593	0.0348	-0.4594	0.4645	0.0348	Y
L & X	24	50 0040	-19.9129	-20.1173 20.7848	50 0042	-19.0009	-20.02/1	0.0209	0.0520	-0.5096	0.5131	0.0559	X V
4 WX	35	55 0205	-18 5801	-28.7040	55 0203	-18 4032	-32 1219	-0.0088	0.0000	-0.4885	0.5024	0.0000	V
1000	36	49.8355	-17,7149	-34.0983	49.8731	-17.6054	-34.5527	-0.0376	0.1095	-0.4544	0.4689	0.1095	Ý
	31	70 6009	-21 5287	-22 6873	70 5899	-21 4669	-23 1789	0.0110	0.0618	-0.4916	0.4956	0.0618	Y
er S	32	65,7472	-20.6749	-25.8094	65,8065	-20.6401	-26.2688	-0.0593	0.0348	-0.4594	0.4645	0.0348	Ý
N m	33	61.7480	-19.9129	-28.1173	61.7221	-19.8609	-28.6271	0.0259	0.0520	-0.5098	0.5131	0.0520	Y
Pill ter	34	58.8048	-19.3345	-29.7646	58.8042	-19.2787	-30.2639	0.0006	0.0558	-0.4993	0.5024	0.0558	Y
La A	35	55.0205	-18.5801	-31.6250	55.0293	-18.4932	-32.1219	-0.0088	0.0869	-0.4969	0.5045	0.0869	Y
	36	49.8355	-17.7149	-34.0983	49.8731	-17.6054	-34.5527	-0.0376	0.1095	-0.4544	0.4689	0.1095	Y
SEN.	37	24.7143	-18.6089	-32.7266	24.6151	-18.4646	-32.9228	0.0992	0.1443	-0.1962	0.2630	0.1751	X, Y
352	38	27.7018	-19.5257	-30.4950	27.6591	-19.3719	-30.7208	0.0427	0.1538	-0.2258	0.2765	0.1596	X, Y
4 ax	39	25.4138	-21.6447	-24.6839	25.3113	-21.4750	-24.9021	0.1025	0.1697	-0.2182	0.2948	0.1983	X, Y
m 2 -	40	28.9273	-22.6954	-21.8540	28.8211	-22.5725	-22.0223	0.1062	0.1229	-0.1683	0.2339	0.1624	X, Y
SA.	37	24.7143	-18.6089	-32.7266	24.6151	-18.4646	-32.9228	0.0992	0.1443	-0.1962	0.2630	0.1443	Y
	38	27.7018	-19.5257	-30.4950	27.6591	-19.3719	-30.7208	0.0427	0.1538	-0.2258	0.2765	0.1538	Y
a ta	38	29.4138	-21.044/	-24.0839	29.3113	-21.4/50	-24.8021	0.1025	0.109/	-0.2182	0.2948	0.109/	T V
Desiliur	all and a set	20.0210	22.0004	21.0040	20.0211	22.0720	22.0220	o. 1002	0.1220	0.1000	0.2008	0.1220	
Ompartment Crush calc leforming in	nt. culations th nward towa	at use multip rd the occup	ole directiona pant compar	al componei tment.	nts will disre	gard compo	onents that a	nues denot	and only inc	lude positiv	away from e values wh	ere the con	nponent is

lodel Year:	20	016	2		Make:	Hyu	undai			Model:	NMHC	Accent	078507
					VE	HICLE DE	FORMATI	ON					
					DRIVER S	IDE INTER	RIOR CRU	SH - SET 2	2				
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ^{A}	Total ∆	Crush ⁸	Direction for
	POINT	(in.)	(in.)	(in.)	(ur)	(urc)	(m.)	(in.)	(in.)	(In.)	(nr)	(inc)	Crush ^C
	1	40.0538	-23.3731	-27.4519	41.3019	-24.0823	-25.5856	-1.2481	-0.7092	1.8663	2.3545	2.3545	X, Y, Z
IN	2	36.3655	-11.5871	-31.6085	37.7284	-12.5065	-30.2488	-1.3629	-0.9194	1.3597	2.1334	2.1334	X, Y, Z
AS.	3	38.8014	-20.4800	-28.7887	37 7105	-20.8033	-27.7030	-1.2140	-0.4243	1.0301	1.7793	1.7783	X, Y, Z
-×	5	38,8182	-11.7554	-16.2947	39.6288	-12.0096	-14.8461	-0.8106	-0.2542	1.4488	1.6793	1.6793	X. Y. Z
	6	34.9283	1.8086	-21.9164	35.9636	1.2285	-21.0423	-1.0353	0.5801	0.8741	1.4739	1.4739	X, Y, Z
шш	7	44.7306	-25.3031	-9.3942	45.3155	-24.7564	-7.3452	-0.5849	0.5467	2.0490	2.1999	0.5467	Y
3KB	8	43.6284	-25.2926	-5.7780	44.1031	-24.5308	-3.7341	-0.4747	0.7618	2.0439	2.2323	0.7618	Y
SA	9	47.6611	-25.4071	-5.7645	48.1191	-24.0961	-3.6165	-0.4580	1.3110	2.1480	2.5578	1.3110	Y
ш	10	9.8316	-26.1005	-21.4910	10.6502	-27.3882	-20.1784	-0.8186	-1.2877	1.3126	2.0128	-1.2877	Y
	11	22.8804	-26.7307	-20.4046	23.6233	-27.8944	-18.7070	-0.7429	-1.1637	1.6976	2.1881	-1.1637	Y
505	12	29.6951	-26.2079	-20.9650	30.4288	-27.5926	-19.0002	-0.7337	-1.3847	1.9648	2.5132	-1.3847	Y
AN C	13	13.0921	-26.0207	-8.8162	13.5922	-26.2088	-7.4402	-0.5001	-0.1881	1.3760	1.4761	-0.1881	Y
N I	14	24.0314	-20.8905	-5./603	24.3304	-20.8539 28.5440	4.1309	-0.3050	0.0300	2.0461	1.6522	0.0366	Y
	10	34.3210	47 7055	40.0504	07.0045	40.0011	41.5220	4 7700	4.5750	4.0000	2.0808	1.0000	1 7
ŀ	10	20.4417	0.2525	42.8091	27.2210	-19.3011	42.0725	-1.//98	-1.0/00	1.3303	2.7209	1.3303	7
ŀ	18	27 8310	-1.0207	43 2610	20.8030	-0.3128	42 4688	-1 0032	0 7070	0.7022	2.0102	0.7022	7
ŀ	19	17.3991	-17,1070	-45.2970	19.2842	-18.8519	-44,1470	-1.8851	-1.7449	1.1500	2.8144	1.1500	Z
	20	17.8013	-7.1630	-45.9269	19.6714	-8.8922	-45.0947	-1.8701	-1.7292	0.8322	2.6795	0.8322	Z
0	21	18.4244	-1.0008	-46.0283	20.2789	-2.7107	-45.3797	-1.8545	-1.7099	0.6486	2.6045	0.6486	Z
DF - (Z	22	5.0100	-16.1967	-46.1850	6.9046	-18.0683	-45.2865	-1.8946	-1.8716	0.8985	2.8106	0.8985	Z
	23	5.0045	-7.6392	-46.7561	6.7169	-9.5715	-46.2814	-1.7124	-1.9323	0.4747	2.6252	0.4747	Z
õ	24	4.9053	-1.1972	-46.9579	6.6539	-3.1128	-46.7109	-1.7486	-1.9156	0.2470	2.6054	0.2470	Z
-	25	-11.4971	-15.5384	-45.3711	-9.6935	-17.4714	-45.0308	-1.8036	-1.9330	0.3403	2.6656	0.3403	Z
-	26	-11.3927	-0.9686	-45.948/	-9.6365	-9.0108	-45.92/4	-1./562	-2.0422	0.0213	2.6936	0.0213	4
ŀ	2/	-10.9717	0.2300	-40.1740	-8.2800	-10 2112	-43.1120	-1.0/0/	2.0010	-0.414/	2.0880	-0.4147	7
	20	-25 3833	-8.4281	43 5420	-23 8354	-8 5210	43 0542	-1 7470	-2.0141	-0.4113	2.0007	.0.4113	7
ŀ	30	-24.5502	2,7043	43.9443	-22,9195	0.6719	-44.6548	-1.6307	2.0324	-0.7105	2,7009	-0.7105	z
	31	47,2537	-24,8549	-31,2145	48,7210	-25,7534	-29.0463	-1.4673	-0.8985	2,1682	2,7679	2,1682	Z
4 EG	32	42.3173	-23.8232	-34.1473	43.9379	-24.9220	-32.1354	-1.6206	-1.0988	2.0119	2.8074	2.0119	Z
A mer	33	38.2628	-22.9130	-36.2999	39.8586	-24.1258	-34.4968	-1.5958	-1.2128	1.8031	2.6960	1.8031	Z
A axi	34	35.2817	-22.2253	-37.8330	36.9456	-23.5293	-36.1371	-1.6639	-1.3040	1.6959	2.7102	1.6959	Z
AN C	35	31.4594	-21.3287	-39.5471	33.1803	-22.7130	-38.0014	-1.7209	-1.3843	1.5457	2.6957	1.5457	Z
	36	26.2187	-20.2681	-41.8185	28.0324	-21.7780	-40.4322	-1.8137	-1.5099	1.3863	2.7370	1.3863	Z
Constant Constant	31	47.2537	-24.8549	-31.2145	48.7210	-25.7534	-29.0463	-1.4673	-0.8985	2.1682	2.7679	-0.8985	Y
3AR	32	42.3173	-23.8232	-34.1473	43.9379	-24.9220	-32.1354	-1.6206	-1.0988	2.0119	2.8074	-1.0988	Y
and ILL	33	38.2028	-22.9130	-30.2999	39.8580	-24.1208	-34,4908	-1.0908	-1.2128	1.8031	2.0900	-1.2128	Y
ate -	34	30.2817	-22.2203	-37.8330	30.9400	-23.5283	-30.13/1	-1.0039	-1.3040	1.0909	2.7102	-1.3040	Y
~ -	36	26 2187	-20.2681	41.8185	28.0324	-21 7780	-40 4322	-1.8137	-1.5045	1 3963	2,0807	-1.5000	v
0 C	37	1 1571	-20 1301	-30 4406	2 7758	-21 7613	-38 5710	-1 6187	-1 6312	0.8687	2 4588	0.8687	7
Nun Z	38	4,1921	-21.1542	-37.3228	5.8098	-22.6598	-36.3527	-1.6177	-1.5056	0.9701	2.4135	0.9701	z
금청소	39	2.0552	-23.1428	-31.4090	3.4505	-24.4120	-30.4234	-1.3953	-1.2692	0.9856	2.1282	0.9856	Z
- WC	40	5.6340	-24.3185	-28.7132	6.9502	-25.4834	-27.5217	-1.3162	-1.1649	1.1915	2.1235	1.1915	Z
	37	1.1571	-20.1301	-39.4406	2.7758	-21.7613	-38.5719	-1.6187	-1.6312	0.8687	2.4568	-1.6312	Y
38	38	4.1921	-21.1542	-37.3228	5.8098	-22.6598	-36.3527	-1.6177	-1.5056	0.9701	2.4135	-1.5056	Y
al M		2.0552	-23.1428	-31.4090	3.4505	-24.4120	-30.4234	-1.3953	-1.2692	0.9856	2.1282	-1.2692	Y
-PILLAR ateral (M	39	E 0			I B U502	-25 4834	-27.5217	-1.3162	-1.1649	1.1915	2.1235	-1.1649	Y

Figure C-11. Occupant Compartment Deformation Data – Set 2, Test No. HP34S-2

Driver Side Maximum Deformations Reference Set 1 Maximum Deformation ^{A,B} MASH Allowable Deformation (in.) Directions of Deformation ^C Maximum Deformation ^{A,B} MASH Allowable Directions of Deformation ^C Roof -0.4 ≤ 4 Z Maximum Deformation ^{A,B} MASH Allowable Deformation ^C Deformation (in.) Deformation ^C Nindshield ⁰ -0.4 ≤ 4 Z Windshield ⁰ NA ≤ 3 X,Z A-Pillar Maximum 0.1 ≤ 5 Y A-Pillar Maximum 2.2 ≤ 5 Z 3-Pillar Lateral 0.1 ≤ 3 Y A-Pillar Maximum 2.2 ≤ 5 Z 3-Pillar Maximum 0.2 ≤ 5 X, Y B-Pillar Maximum 1.2 ≤ 5 Z 3-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Maximum 1.2 ≤ 5 Z Goe Pan - Wheel Well 1.3 ≤ 9 X,Z Toe Pan - Wheel Well 0.4 ≤ 9 X Side Dor (below seat) 0.2 ≤ 12 Y	Model Year:	2016	-	Make:	Hyundai	Model:	Acc	ent
Reference Set 1 Reference Set 2 Maximum Deformation ^{A,B} (in.) MASH Allowable Deformation (in.) Directions of Deformation ^C Maximum Deformation ^{A,B} MASH Allowable (in.) Directions of Deformation ^C Nindshield ⁰ 0.0 ≤3 X, Z A.Pillar Lateral 0.1 ≤5 Y A.Pillar Lateral 0.1 ≤3 Y 3-Pillar Dateral 0.1 ≤3 Y 3-Pillar Lateral 0.1 ≤3 Y 3-Pillar Dateral 0.1 ≤3 Y 3-Pillar Dateral 0.1 ≤3 Y 3-Dide Fornt Panel 1.2 ≤12 Y Side Door (below seat) 0.2 ≤12 Y Side Door (below seat) 0.0 ≤12 Y Side Door (below seat) 0.0				Driver Side Maxin	num Deformations			
Maximum Deformation ^{A,B} (in.)MASH Allowable Deformation (in.)Directions of DeformationMaximum DeformationDirections of DeformationRoof-0.4≤4ZWindshield ^D 0.0≤3X, ZA-Pillar Maximum0.1≤5YA-Pillar Maximum0.1≤3YB-Pillar Maximum0.2≤5X, YB-Pillar Maximum0.2≤5X, YB-Pillar Maximum0.1≤3YB-Pillar Lateral0.1≤3YB-Pillar Maximum0.2≤5X, YB-Pillar Maximum1.2≤5ZB-Pillar Lateral-1.6≤3YToe Pan - Wheel Well1.3≤9X, ZSide Door (above seat)0.2≤12YSide Door (above seat)0.2≤12YSide Door (below seat)0.2≤12YSide Door (below seat)0.3≤12ZDash - no MASH requirement0.6NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformation outward away from the occupant compartment.For Ope An - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z direction. For A-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the occupant compartment.Positive values denote deformation of t		Reference Se	t 1			Reference Set	t 2	
Roof-0.4 ≤ 4 ZWindshield0.0 ≤ 3 X, ZA-Pillar Maximum0.1 ≤ 5 YA-Pillar Lateral0.1 ≤ 3 YB-Pillar Maximum0.2 ≤ 5 X, YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Lateral1.2 ≤ 5 ZB-Pillar Lateral1.3 ≤ 9 X, ZSide Front Panel1.2 ≤ 12 YSide Door (above seat)0.2 ≤ 12 YSide Door (below seat)0.2 ≤ 12 YFloor Pan0.3 ≤ 12 ZDash - no MASH requirement0.6NAX, Y, ZNemshighlighted in red do not meet MASH allowable deformations. Y *Portive values denote deformation as inward toward the occupant compartment, negative values denote deformation of deformation may include X and Z direction.For ZA*Por De Pan - Wheel Well the direction of deformation may include X and Z direction.For APillar Maximum and B-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the companents.*Por toe Pan - Wheel Well the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.*If deformation is observered for the windshield then the windshield deformation is measured postest with an examplar vehicle, therefore only one set of ref	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Windshield0.0 ≤ 3 X, ZA.Pillar Maximum0.1 ≤ 5 YA.Pillar Lateral0.1 ≤ 3 YB.Pillar Maximum0.2 ≤ 5 X, YB.Pillar Lateral0.1 ≤ 3 YB.Pillar Lateral1.6 ≤ 3 YSide Front Panel1.2 ≤ 12 YSide Door (above seat)0.2 ≤ 12 YSide Door (below seat)0.2 ≤ 12 YPoor Pan0.3 ≤ 12 ZDash - no MASH requirement0.6NAX, Y, ZNems bighlighted in red do not meet MASH allowable deformations. P Poor Pan0.6NAX, Y, ZNems bighlighted in red do not meet MASH allowable deformations. P Poor Pan0.6NAX, Y, ZThere are all the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction. For A-Pillar Maximum only include components where the deformation is positive and intruding into the coupant compartment.Poor Pan - Wheel Well the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.Proor Pan - Wheel Well the direction of deformation	Roof	-0.4	≤ 4	Z	Roof	1.3	≤ 4	Z
A-Pillar Maximum0.1 ≤ 5 YA-Pillar Lateral0.1 ≤ 3 YB-Pillar Maximum0.2 ≤ 5 X, YB-Pillar Maximum0.2 ≤ 5 X, YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Lateral0.1 ≤ 3 YB-Pillar Lateral0.1 ≤ 3 YToe Pan - Wheel Well1.3 ≤ 9 X, ZSide Front Panel1.2 ≤ 12 YSide Door (above seat)-0.7 ≤ 9 YSide Door (below seat)0.2 ≤ 12 YSide Door (below seat)0.2 ≤ 12 YSide Door (below seat)0.3 ≤ 12 ZDash - no MASH requirement0.6NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z'Iteretions. The direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.Output the direction of deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is measured posttest with an examplar vehicle, therefore only one set of reference is measured and eccerded	Nindshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
A-Pillar Lateral0.1 ≤ 3 Y3-Pillar Maximum0.2 ≤ 5 X, Y3-Pillar Lateral0.1 ≤ 3 Y3-Pillar Lateral0.1 ≤ 3 Y5-Pillar Lateral0.1 ≤ 3 Y5-Pillar Lateral1.3 ≤ 9 X, ZSide Front Panel1.2 ≤ 12 YSide Door (above seat)-0.7 ≤ 9 YSide Door (below seat)0.2 ≤ 12 YSide Door (below seat)0.2 ≤ 12 YSide Door (below seat)0.3 ≤ 12 ZDoor Pan0.3 ≤ 12 ZDash - no MASH requirement0.6NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the occupant compartment.For Toe Pan - Wheel Well the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.I'f deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and ecordedI'f deformation is observered for the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and ecorded	A-Pillar Maximum	0.1	≤ 5	Y	A-Pillar Maximum	2.2	≤ 5	Z
B-Pillar Maximum 0.2 ≤ 5 X, Y B-Pillar Maximum 1.2 ≤ 5 Z B-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Maximum 1.2 ≤ 5 Z B-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Lateral -1.6 ≤ 3 Y Toe Pan - Wheel Well 1.3 ≤ 9 X, Z B-Pillar Lateral -1.6 ≤ 3 Y Side Front Panel 1.2 ≤ 12 Y Side Door (above seat) -0.7 ≤ 9 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Y Floor Pan 0.3 ≤ 12 Z Z Dash - no MASH requirement 0.6 NA X, Y, Z Thems highlighted in red do not meet MASH allowable deformations. * * Floor Pan -2.3 ≤ 12 Z * * * * * * * Side Door (below seat) 0.6 NA X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, Z Dash - no MASH requirement 0.6	A-Pillar Lateral	0.1	≤ 3	Y	A-Pillar Lateral	-1.5	≤ 3	Y
B-Pillar Lateral 0.1 ≤ 3 Y Toe Pan - Wheel Well 1.3 ≤ 9 X, Z Side Front Panel 1.2 ≤ 12 Y Side Door (above seat) -0.7 ≤ 9 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.3 ≤ 12 Y Side Door (below seat) 0.6 NA X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformation as inward toward the occupant compartment, negative values denote deformation of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction. For A-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. * For Toe Pan - Wheel Well the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. * * If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and deformation will be 0.	3-Pillar Maximum	0.2	≤ 5	X, Y	B-Pillar Maximum	1.2	≤ 5	Z
Toe Pan - Wheel Well1.3 ≤ 9 X, ZSide Front Panel1.2 ≤ 12 YSide Door (above seat)-0.7 ≤ 9 YSide Door (below seat)0.2 ≤ 12 YSide Door (below seat)0.3 ≤ 12 ZPloor Pan0.3 ≤ 12 ZDash - no MASH requirement0.6NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.Positive values denote deformation of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.Plate deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and deformation will be 0.	3-Pillar Lateral	0.1	≤ 3	Y	B-Pillar Lateral	-1.6	≤ 3	Y
Side Front Panel1.2 ≤ 12 YSide Front Panel1.3 ≤ 12 YSide Door (above seat)-0.7 ≤ 9 YSide Door (above seat)-1.4 ≤ 9 YSide Door (below seat)0.2 ≤ 12 YSide Door (below seat)0.0 ≤ 12 YFloor Pan0.3 ≤ 12 ZFloor Pan-2.3 ≤ 12 ZDash - no MASH requirement0.6NAX, Y, ZDash - no MASH requirement0.6NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.Positive values denote deformation of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0.If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and deformation will be 0.	Foe Pan - Wheel Well	1.3	≤ 9	X, Z	Toe Pan - Wheel Well	0.4	≤ 9	Х
Side Door (above seat) -0.7 ≤ 9 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.3 ≤ 12 Y Floor Pan 0.3 ≤ 12 Z Dash - no MASH requirement 0.6 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and deformation will be 0.	Side Front Panel	1.2	≤ 12	Y	Side Front Panel	1.3	≤ 12	Y
Side Door (below seat) 0.2 ≤ 12 YSide Door (below seat) 0.0 ≤ 12 YFloor Pan 0.3 ≤ 12 ZFloor Pan -2.3 ≤ 12 ZDash - no MASH requirement 0.6 NAX, Y, ZDash - no MASH requirement 0.6 NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. $Side Door (below seat)$ 0.0 ≤ 12 YPositive values denote deformation of deformation may include X and Z direction.For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. $O.0$ ≤ 12 YIf deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and accorded $O.0$ $Side Door (below seat)O.0Side Door (below seat)O.0O.0Side Door (below seat)$	Side Door (above seat)	-0.7	≤ 9	Y	Side Door (above seat)	-1.4	≤ 9	Y
Floor Pan 0.3 ≤ 12 Z Floor Pan -2.3 ≤ 12 Z Dash - no MASH requirement 0.6 NA X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, Z Items highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. Output If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and accorded Output	Side Door (below seat)	0.2	≤ 12	Y	Side Door (below seat)	0.0	≤ 12	Y
Dash - no MASH requirement 0.6 NA X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, Z ^A Items highlighted in red do not meet MASH allowable deformations. ^A Items highlighted in red do not meet MASH allowable deformations. ^A Items highlighted in red do not meet MASH allowable deformations. A X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, Z ^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ^A Items highlighted in red do not meet MASH allowable deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ^D If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and accorded	Floor Pan	0.3	≤ 12	Z	Floor Pan	-2.3	≤ 12	Z
¹ Items highlighted in red do not meet MASH allowable deformations. ³ Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ² For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ¹ If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and ecorded	Dash - no MASH requirement	0.6	NA	X, Y, Z	Dash - no MASH requirement	0.6	NA	X, Y, Z
	¹ Items highlighted in red do not m ² Positive values denote deformatio ² For Toe Pan - Wheel Well the dir directions. The direction of deform occupant compartment. If directio ² If deformation is observered for t ecorded.	eet MASH allowabl on as inward toward rection of defromation nation for Toe Pan - n of deformation is the windshield then	e deformations. d the occupant comp on may include X and Wheel Well, A-Pillar "NA" then no intrusio the windshield deforr	artment, negative val J Z direction. For A-F Maximum, and B-Pill n is recorded and def nation is measured p	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0. osttest with an examplar vehicle, there	ay from the occupar the direction of defor where the deformat efore only one set o	nt compartment. ormation may include tion is positive and in f reference is measur	X, Y, and Z truding into the red and

Figure C-12. Maximum Occupant Compartment Deformation by Location, Test No. HP34S-2

Figure C-13. Exterior Vehicle Crush (NASS) - Front, Test No. HP34S-2

Figure C-14. Exterior Vehicle Crush (NASS) – Side, Test No. HP34S-2

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. HP34S-1

Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HP34S-1

Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HP34S-1

Figure D-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HP34S-1

Figure D-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HP34S-1

Figure D-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HP34S-1

Figure D-6. Lateral Occupant Displacement (SLICE-2), Test No. HP34S-1

Figure D-7. Vehicle Angular Displacements (SLICE-2), Test No. HP34S-1

154

Figure D-8. Acceleration Severity Index (SLICE-2), Test No. HP34S-1

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HP34S-1

Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HP34S-1

Figure D-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HP34S-1

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HP34S-1

Figure D-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HP34S-1

Figure D-14. Lateral Occupant Displacement (SLICE-1), Test No. HP34S-1

Figure D-15. Vehicle Angular Displacements (SLICE-1), Test No. HP34S-1

Figure D-16. Acceleration Severity Index (SLICE-1), Test No. HP34S-1

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. HP34S-2

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HP34S-2

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HP34S-2

Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HP34S-2

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HP34S-2

Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HP34S-2

Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. HP34S-2

Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. HP34S-2

Figure E-8. Acceleration Severity Index (SLICE-1), Test No. HP34S-2

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HP34S-2

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HP34S-2

Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HP34S-2

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HP34S-2

Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HP34S-2

Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. HP34S-2

Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. HP34S-2

Figure E-16. Acceleration Severity Index (SLICE-2), Test No. HP34S-2

END OF DOCUMENT