

Midwest States Regional Pooled Fund Research Program Fiscal Years 2012-2013 (Years 23 and 24) Research Project Number TPF-5(193) Supplement #58 and 63 NDOR Sponsoring Agency Code RPFP-13-AGT-1 and RPFP-14-AGT-1

DYNAMIC EVALUATION OF MGS

STIFFNESS TRANSITION WITH CURB

Submitted by

Bradley J. Winkelbauer, B.S.C.E. Graduate Research Assistant

Scott K. Rosenbaugh, M.S.C.E. E.I.T. Research Associate Engineer

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer Joseph G. Putjenter, B.S.M.E., E.I.T. Graduate Research Assistant

Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Associate Engineer

> Ronald K. Faller, Ph.D., P.E. Research Associate Professor MwRSF Director

John D. Reid, Ph.D. Professor

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

MIDWEST STATES REGIONAL POOLED FUND PROGRAM

Nebraska Department of Roads 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-291-14

June 30, 2014

TECHNICAL REPORT DOCUMENTATION PAGE

	-				
1. Report No. TRP-03-291-14	2.	3. Recipient's Accession No.			
4. Title and Subtitle		5. Report Date			
Dynamic Evaluation of MGS	Stiffness Transition with	June 30, 2014			
Curb		6.			
^{7. Author(s)} Winkelbauer, B.J., Putjenter, Lechtenberg, K.A., Bielenber Reid, J.D.		8. Performing Organization Report No. TRP-03-291-14			
9. Performing Organization Name and Addr Midwest Roadside Safety Fac		10. Project/Task/Work Unit No.			
Nebraska Transportation Cent University of Nebraska-Linco 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-083	oln	11. Contract (C) or Grant (G) No. TPF-5 (193) Supplement # 58 and 63			
12. Sponsoring Organization Name and Add Midwest States Regional Poo	led Fund Program	13. Type of Report and Period Covered Final Report: 2012 – 2014			
Nebraska Department of Road	ds	14. Sponsoring Agency Code			
1500 Nebraska Highway 2		RPFP-13-AGT-1			
Lincoln, Nebraska 68502		RPFP-14-AGT-1			
15. Supplementary Notes Prepared in cooperation with	U.S. Department of Transpo	ortation, Federal Highw	ay Administration.		
16. Abstract (Limit: 200 words) A W-beam to thrie beam stiffness transition with a 4-in. (102-mm) tall concrete curb was developed to connect the 31-in. (787-mm) Midwest Guardrail System (MGS) to a previously-approved thrie beam approach guardrail bridge transition system. This stiffness transition was configured with standard steel posts that are commonly used by several State Departments of Transportation. The toe of a 4-in. (102-mm) tall sloped concrete curb was placed flush with the backside face of the guardrail and extended the length of the transition region. Three full-scale crash tests were conducted according to the Test Level 3 (TL-3) safety standards provided in AASHTO's <i>Manual</i> <i>for Assessing Safety Hardware</i> (MASH). During the first test, MASH test no. 3-20, the 1100C small car extended and wedged under the rail and contacted posts while traversing the curb. Subsequently, the W-beam rail ruptured at a splice location. A repeat of MASH test no. 3-20 was performed on an updated design which used a 12-ft 6-in. (3.81-m) long, nested W-beam rail segment upstream from the W- beam to thrie beam transition element. The 1100C small car was successfully contained and redirected. During MASH test no. 3-21, a 2270P pickup truck was successfully contained and redirected. Following the crash testing program, the system was deemed acceptable according to the Test Level 3 (TL-3) safety performance criteria specified in MASH.					
17. Document Analysis/Descriptors	Poadside Annurtananaes	18. Availability Statement			
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH, Curb, Asymmetric W-Beam No restrictions. Document available from:					
to Thrie Beam Transition, Lon		Notional Technical Ir			
Approach Guardrail Transitio	-	Springfield, Virginia			
Midwest Guardrail System, M					
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price		
Unclassified	Unclassified	281			

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation as well as the Midwest States Pooled Fund Program. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the state highway departments participating in the Midwest States Regional Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Cody Stolle, Post-Doctoral Research Assistant.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest States Regional Pooled Fund Program funded by the Illinois Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Roads, Ohio Department of Transportation, South Dakota Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; (2) MwRSF personnel for constructing the barriers and conducting the crash tests; and (3) IMH Products, Inc. for assistance with the asymmetric Wbeam to thrie beam section.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager
J.D. Schmidt, Ph.D., P.E., Post-Doctoral Research Assistant
C.S. Stolle, Ph.D., Post-Doctoral Research Assistant
A.T. Russell, B.S.B.A., Shop Manager
K.L. Krenk, B.S.M.A., Maintenance Mechanic
S.M. Tighe, Laboratory Mechanic
D.S. Charroin, Laboratory Mechanic
Undergraduate and Graduate Research Assistants

Illinois Department of Transportation

David Piper, P.E., Safety Implementation Engineer Priscilla Tobias, P.E., State Safety Engineer/Bureau Chief Tim Sheehan, P.E., Safety Design Engineer

Iowa Department of Transportation

Chris Poole, P.E., Litigation/Roadside Safety Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Bureau Chief Rod Lacy, P.E., Metro Engineer Scott King, P.E., Road Design Leader

Minnesota Department of Transportation

Michael Elle, P.E., Design Standard Engineer

Missouri Department of Transportation

Joseph G. Jones, P.E., Engineering Policy Administrator

Nebraska Department of Roads

James Knott, P.E., Roadway Design Division Manager Phil TenHulzen, P.E., Design Standards Engineer Jodi Gibson, Research Coordinator

Ohio Department of Transportation

Michael Bline, P.E., Standards and Geometrics Engineer Maria Ruppe, P.E., Roadway Standards Engineer

South Dakota Department of Transportation

David Huft, Research Engineer Bernie Clocksin, Lead Project Engineer

Wisconsin Department of Transportation

Jerry Zogg, P.E., Chief Roadway Standards Engineer Erik Emerson, P.E., Standards Development Engineer

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

John Perry, P.E., Nebraska Division Office Danny Briggs, Nebraska Division Office

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLES	xii
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	
3 TEST CONDITIONS. 3.1 Test Facility	
4 DESIGN DETAILS	
5 FULL-SCALE CRASH TEST NO. MWTC-1 5.1 Static Soil Test 5.2 Test No. MWTC-1 5.3 Weather Conditions 5.4 Test Description 5.5 System Damage 5.6 Vehicle Damage	
5.7 Occupant Risk	

5.8 Discussion	
5 DESIGN DETAILS AND MODIFICATIONS AND DETAILS	
7 FULL-SCALE CRASH TEST NO. MWTC-2	
7.1 Static Soil Test	
7.2 Test No. MWTC-2	
7.3 Weather Conditions	
7.4 Test Description	105
7.5 System Damage	
7.6 Vehicle Damage	
7.7 Occupant Risk	108
7.8 Discussion	109
8 FULL-SCALE CRASH TEST NO. MWTC-3	
8.1 Static Soil Test	
8.2 Test No. MWTC-3	
8.3 Weather Conditions	
8.4 Test Description	
8.5 System Damage	
8.6 Vehicle Damage	
8.7 Occupant Risk	
8.8 Discussion	
9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	
10 REFERENCES	
11 APPENDICES	
Appendix A. Vehicle Center of Gravity Determination	
Appendix B. Material Specifications	
Appendix C. Static Soil Tests	
Appendix D. Vehicle Deformation Records	
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MW	
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MW	
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MW	TC-3 257

LIST OF FIGURES

Figure 1. Test Vehicle, Test No. MWTC-1	8
Figure 2. Vehicle Dimensions, Test No. MWTC-1	9
Figure 3. Test Vehicle, Test No. MWTC-2	10
Figure 4. Vehicle Dimensions, Test No. MWTC-2	11
Figure 5. Test Vehicle, Test No. MWTC-3	
Figure 6. Vehicle Dimensions, Test No. MWTC-3	
Figure 7. Target Geometry, Test No. MWTC-1	14
Figure 8. Target Geometry, Test No. MWTC-2	
Figure 9. Target Geometry, Test No. MWTC-3	16
Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. MWTC-1	21
Figure 11. Camera Locations, Speeds, and Lens Settings, Test No. MWTC-2	
Figure 12. Camera Locations, Speeds, and Lens Settings, Test No. MWTC-3	
Figure 13. System Layout, Test No. MWTC-1	
Figure 14. Downstream End System Layout, Test No. MWTC-1	26
Figure 15. Cap Rail Hardware Details, Test No. MWTC-1	27
Figure 16. Post Nos. 18 through 21 Details with Rail, Test No. MWTC-1	28
Figure 17. Post Nos. 16 through 17 Details with Rail, Test No. MWTC-1	29
Figure 18. Post Nos. 3 through 15 Details with Rail, Test No. MWTC-1	30
Figure 19. Splice Detail, Test No. MWTC-1	31
Figure 20. Upstream End Rail Details, Test No. MWTC-1	32
Figure 21. BCT Timber Posts and Foundation Tube Detail, Test No. MWTC-1	33
Figure 22. Post No. 18 Detail, Test No. MWTC-1	34
Figure 23. Post Nos. 16 through 17 Details, Test No. MWTC-1	35
Figure 24. Post Nos. 3 through 15 Details, Test No. MWTC-1	36
Figure 25. Post Nos. 3 through 17 Blockout Details, Test No. MWTC-1	
Figure 26. Curb Detail, Test No. MWTC-1	38
Figure 27. Rebar Details, Test No. MWTC-1	39
Figure 28. BCT Timber Posts and Foundation Tube Detail, Test No. MWTC-1	40
Figure 29. BCT Anchor Cable Detail, Test No. MWTC-1	41
Figure 30. Ground Strut and Anchor Bracket Details, Test No. MWTC-1	42
Figure 31. Bridge Post and Steel Blockout Details, Test No. MWTC-1	
Figure 32. Bridge Rail Post Weld Details, Test No. MWTC-1	
Figure 33. Bridge Rail Details, Test No. MWTC-1	
Figure 34. Bridge Cap Rail Terminator Details, Test No. MWTC-1	46
Figure 35. Bridge Rail Details, Test No. MWTC-1	47
Figure 36. Asymmetrical W-Beam to Thrie Beam Transition Rail Section Detail, Test No.	
MWTC-1	
Figure 37. Rail Section Details, Test No. MWTC-1	
Figure 38. Rail Section Details, Test No. MWTC-1	
Figure 39. Bill of Materials, Test No. MWTC-1	
Figure 40. Bill of Materials Continued, Test No. MWTC-1	52
Figure 41. System Photographs, Test No. MWTC-1	
Figure 42. Simulated Anchor and Bridge Rail Photographs, Test No. MWTC-1	
Figure 43. Posts in Impact Region, Test No. MWTC-1	
Figure 44. Transition Element Photographs, Test No. MWTC-1	56

Figure 45.	Summary of Test Results and Sequential Photographs, Test No. MWTC-1	64
Figure 46.	Sequential Photographs, Test No. MWTC-1	65
Figure 47.	Additional Sequential Photographs, Test No. MWTC-1	66
Figure 48.	Impact Location, Test No. MWTC-1	67
Figure 49.	Vehicle Final Position, Test No. MWTC-1	68
Figure 50.	System Damage, Test No. MWTC-1	69
Figure 51.	Rail Pocketing and Rupture, Test No. MWTC-1	70
Figure 52.	Post Deflection, Test No. MWTC-1	71
Figure 53.	Vehicle Damage, Test No. MWTC-1	72
Figure 54.	System Layout, Test No. MWTC-2	74
Figure 55.	System Layout, Test No. MWTC-3	75
Figure 56.	Downstream End System Layout, Test Nos. MWTC-2 and MWTC-3	76
Figure 57.	Cap Rail Hardware Details, Test Nos. MWTC-2 and MWTC-3	77
Figure 58.	Post Nos. 18 through 21 Details with Rail, Test Nos. MWTC-2 and MWTC-3	78
Figure 59.	Post Nos. 16 through 17 Details with Rail, Test Nos. MWTC-2 and MWTC-3	79
Figure 60.	Post Nos. 3 through 15 Details with Rail, Test Nos. MWTC-2 and MWTC-3	80
	Splice Detail, Test Nos. MWTC-2 and MWTC-3	
Figure 62.	Upstream End Rail Details, Test Nos. MWTC-2 and MWTC-3	82
Figure 63.	BCT Timber Posts and Foundation Tube Detail, Test Nos. MWTC-2 and MWTC-3	83
	Post No. 18 Detail, Test Nos. MWTC-2 and MWTC-3	
	Post Nos. 16 through 17 Details, Test Nos. MWTC-2 and MWTC-3	
	Post Nos. 3 through 15 Details, Test Nos. MWTC-2 and MWTC-3	
	Post Nos. 3 through 17 Blockout Details, Test Nos. MWTC-2 and MWTC-3	
	Curb Detail, Test Nos. MWTC-2 and MWTC-3	
	Rebar Details, Test Nos. MWTC-2 and MWTC-3	
	BCT Timber Posts and Foundation Tube Detail, Test Nos. MWTC-2 and MWTC-3	
	BCT Anchor Cable Detail, Test Nos. MWTC-2 and MWTC-3	
0	Ground Strut and Anchor Bracket Details, Test Nos. MWTC-2 and MWTC-3	
0	Bridge Post and Steel Blockout Details, Test Nos. MWTC-2 and MWTC-3	
	Bridge Rail Post Weld Details, Test Nos. MWTC-2 and MWTC-3	
	Bridge Rail Details, Test Nos. MWTC-2 and MWTC-3	
	Bridge Cap Rail Terminator Details, Test Nos. MWTC-2 and MWTC-3	
0	Bridge Rail Details, Test Nos. MWTC-2 and MWTC-3	97
Figure 78.	Asymmetrical W-Beam to Thrie Beam Transition Rail Section Detail, Test Nos.	00
F ' 7 0	MWTC-2 and MWTC-3	
	Rail Section Details, Test Nos. MWTC-2 and MWTC-3	
-	Rail Section Details, Test Nos. MWTC-2 and MWTC-3	
	Bill of Materials, Test Nos. MWTC-2 and MWTC-3	
U	Bill of Materials Continued, Test Nos. MWTC-2 and MWTC-3	
	System Photographs, Test Nos. MWTC-2 and MWTC-3	
	Summary of Test Results and Sequential Photographs, Test No. MWTC-2	
	Sequential Photographs, Test No. MWTC-2	
Figure 86.	Additional Sequential Photographs, Test No. MWTC-2	12
	Impact Location, Test No. MWTC-2	
	Vehicle Final Position, Test No. MWTC-2	
0	Impact Region Damage, Test No. MWTC-2	
Figure 90.	Rail System Damage, Test No. MWTC-2 1	10

Figure 91. Post and Blockout System Damage, Test No. MWTC-2	. 117
Figure 92. Vehicle Damage, Test No. MWTC-2	
Figure 93. Summary of Test Results and Sequential Photographs, Test No. MWTC-3	
Figure 94. Sequential Photographs, Test No. MWTC-3	
Figure 95. Additional Sequential Photographs, Test No. MWTC-3	
Figure 96. Impact Location, Test No. MWTC-3	
Figure 97. Vehicle Final Position, Test No. MWTC-3	
Figure 98. System Damage Overview, Test No. MWTC-3	. 130
Figure 99. System Damage, Test No. MWTC-3	
Figure 100. System Damage, Test No. MWTC-3	
Figure 101. Vehicle Damage, Test No. MWTC-3	
Figure A-1. Vehicle Mass Distribution, Test No. MWTC-1	. 143
Figure A-2. Vehicle Mass Distribution, Test No. MWTC-2	. 144
Figure A-3. Vehicle Mass Distribution, Test No. MWTC-3	
Figure B-2. Wood Blockouts for Test Nos. MWTC-1 through MWTC-3	
Figure B-3. Wood Blockouts for Test No. MWTC-1	. 155
Figure B-4. Wood Blockouts for Test Nos. MWTC-2 and MWTC-3	. 156
Figure B-5. BCT Posts for Test Nos. MWTC-1 through MWTC-3	
Figure B-6. Bridge Cap Assembly for Test Nos. MWTC-1 through MWTC-3	
Figure B-7. Steel Blockout for Test No. MWTC-1	. 159
Figure B-8. Transition Section for Test No. MWTC-1, Steel Blockout for Test Nos. MWTC-	
and MWTC-3, and Post Nos. 16 through 18 for Test Nos. MWTC-1 through	
MWTC-3	. 160
Figure B-9. Post Nos. 19 through 21 for Test Nos. MWTC-1 through MWTC-3	
Figure B-10. Foundation Tube for Test Nos. MWTC-1 through MWTC-3	
Figure B-11. Strut and Yoke Assembly for Test Nos. MWTC-1 through MWTC-3	
Figure B-12. Anchor Bracket and Bearing Plate for Test Nos. MWTC-1 through MWTC-3	
Figure B-13. Anchor Cable Assembly for Test Nos. MWTC-1 through MWTC-3	
Figure B-14. BCT Hole Insert for Test Nos. MWTC-1 through MWTC-3	
Figure B-15. 12'-6" Thrie Beam Section for Test No. MWTC-1	. 167
Figure B-16. 12'-6" Thrie Beam Section and 6'-3" Transition Section for Test Nos. MWTC-	
and MWTC-3	. 168
Figure B-17. 6'-3" Thrie Beam Section for Test Nos. MWTC-1 through MWTC-3	. 169
Figure B-18. 12'-6" W-Beam MGS Sections for Test Nos. MWTC-1 through MWTC-3	. 170
Figure B-19. Heavy Hex Nut for Test Nos. MWTC-1 through MWTC-3	. 171
Figure B-20. 1" Dia. Hardened Round Washer for Test Nos. MWTC-1 through MWTC-3	. 172
Figure B-21. 7/2" Long Hex Bolt for Test Nos. MWTC-1 through MWTC-3	. 173
Figure B-22. 5%" Dia., 11/2" Long Hex Bolt for Test Nos. MWTC-1 through MWTC-3	. 174
Figure B-23. 5%" Dia, 2" Long Hex Bolt for Test Nos. MWTC-1 through MWTC-3 and 5%" D	
5" Long Hex Bolt for Test Nos. MWTC-2 and MWTC-3	. 175
Figure B-24. 5%" Dia., 11/2" Long Guardrail Bolt for Test Nos. MWTC-1 through MWTC-3	. 176
Figure B-25. 5/8" Dia., 10" Long Hex Bolt for Test No. MWTC-1	. 177
Figure B-26. 5/8" Dia., 2" Long Guardrail Bolt for Test Nos. MWTC-1 through MWTC-3	. 178
Figure B-27. 5/8" Dia., 10" Long and 14" Long Guardrail Bolt for Test Nos. MWTC-1 throug	jh
MWTC-3	
Figure B-28. #4 Rebar for Test Nos. MWTC-1 through MWTC-3	
Figure B-29. W6x8.5 72" Long Posts for MWTC-1 through MWTC-3	. 181

Figure B-30. W6x8.5 72" Long Posts for Test Nos. MWTC-2 and MWTC-3	. 182
Figure B-31. Concrete Curb for Test Nos. MWTC-1 and MWTC-2	
Figure B-32. Concrete Curb for Test No. MWTC-3	
Figure C-1. Soil Strength, Initial Calibration Tests	
Figure C-2. Static Soil Test, Test No. MWTC-1	
Figure C-3. Static Soil Test, Test No. MWTC-2	
Figure C-4. Static Soil Test, Test No. MWTC-3	. 189
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MWTC-1	
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MWTC-1	
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. MWTC-1	
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MWTC-1 Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-1	
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-1	
Figure D-0. Exterior vehicle Crush (NASS) - Side, Test No. MWTC-1	
Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MWTC-2	
Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. MWTC-2	
Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. MWTC-2	
Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-2	
Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MWTC-2	
Figure D-13. Floor Pan Deformation Data – Set 1, Test No. MWTC-3	
Figure D-14. Floor Pan Deformation Data – Set 2, Test No. MWTC-3	
Figure D-15. Occupant Compartment Deformation Data – Set 1, Test No. MWTC-3	. 205
Figure D-16. Occupant Compartment Deformation Data – Set 2, Test No. MWTC-3	. 206
Figure D-17. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-3	
Figure D-18. Exterior Vehicle Crush (NASS) - Side, Test No. MWTC-3	
Figure E-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MWTC-1	
Figure E-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MWTC-1	
Figure E-3. Longitudinal Occupant Displacement (DTS), Test No. MWTC-1	
Figure E-4. 10-ms Average Lateral Deceleration (DTS), Test No. MWTC-1	
Figure E-5. Lateral Occupant Impact Velocity (DTS), Test No. MWTC-1	
Figure E-6. Lateral Occupant Displacement (DTS), Test No. MWTC-1 Figure E-7. Vehicle Angular Displacements (DTS), Test No. MWTC-1	
Figure E-7. Venicle Angular Displacements (DTS), Test No. MWTC-1	
Figure E-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. MWTC-1	
Figure E-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. MWTC-1	
Figure E-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. MWTC-1	
Figure E-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. MWTC-1	
Figure E-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. MWTC-1	
Figure E-14. Lateral Occupant Displacement (DTS SLICE), Test No. MWTC-1	
Figure E-15. Vehicle Angular Displacements (DTS SLICE), Test No. MWTC-1	. 224
Figure E-16. Acceleration Severity Index (DTS SLICE), Test No. MWTC-1	. 225
Figure E-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MWTC-1	. 226
Figure E-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MWTC-1	
Figure E-19. Longitudinal Occupant Displacement (EDR-3), Test No. MWTC-1	
Figure E-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MWTC-1	
Figure E-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MWTC-1	
Figure E-22. Lateral Occupant Displacement (EDR-3), Test No. MWTC-1	. 231

Figure E-23. Acceleration Severity Index (EDR-3), Test No. MWTC-1	222
Figure E-25: Acceleration Severity index (EDR-5), Test No. MWTC-1	
Figure F-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MWTC-2	
Figure F-3. Longitudinal Occupant Displacement (DTS), Test No. MWTC-2	
Figure F-4. 10-ms Average Lateral Deceleration (DTS), Test No. MWTC-2	
Figure F-5. Lateral Occupant Impact Velocity (DTS), Test No. MWTC-2	238
Figure F-6. Lateral Occupant Displacement (DTS), Test No. MWTC-2	239
Figure F-7. Vehicle Angular Displacements (DTS), Test No. MWTC-2	
Figure F-8. Acceleration Severity Index (DTS), Test No. MWTC-2	
Figure F-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. MWTC-2	
Figure F-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. MWTC-2	
Figure F-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. MWTC-2	
Figure F-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. MWTC-2	
Figure F-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. MWTC-2	
Figure F-14. Lateral Occupant Displacement (DTS SLICE), Test No. MWTC-2	
Figure F-15. Vehicle Angular Displacements (DTS SLICE), Test No. MWTC-2	
Figure F-16. Acceleration Severity Index (DTS SLICE), Test No. MWTC-2	
Figure F-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MWTC-2	
Figure F-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MWTC-2	
Figure F-19. Longitudinal Occupant Displacement (EDR-3), Test No. MWTC-2	
Figure F-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MWTC-2 Figure F-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MWTC-2	
Figure F-21. Lateral Occupant Impact Velocity (EDR-5), Test No. MWTC-2 Figure F-22. Lateral Occupant Displacement (EDR-3), Test No. MWTC-2	
Figure F-22. Eateral Occupant Displacement (EDR-3), Test No. MWTC-2	
Figure G-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MWTC-3	
Figure G-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MWTC-3	
Figure G-3. Longitudinal Occupant Displacement (DTS), Test No. MWTC-3	
Figure G-4. 10-ms Average Lateral Deceleration (DTS), Test No. MWTC-3	
Figure G-5. Lateral Occupant Impact Velocity (DTS), Test No. MWTC-3	
Figure G-6. Lateral Occupant Displacement (DTS), Test No. MWTC-3	
Figure G-7. Vehicle Angular Displacements (DTS), Test No. MWTC-3	264
Figure G-8. Acceleration Severity Index (DTS), Test No. MWTC-3	
Figure G-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. MWTC-3	266
Figure G-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. MWTC-3	267
Figure G-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. MWTC-3	
Figure G-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. MWTC-3	
Figure G-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. MWTC-3	
Figure G-14. Lateral Occupant Displacement (DTS SLICE), Test No. MWTC-3	
Figure G-15. Figure 102. Vehicle Angular Displacements (DTS SLICE), Test No. MWTC-3	
Figure G-16. Acceleration Severity Index (DTS SLICE), Test No. MWTC-3	
Figure G-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MWTC-3	
Figure G-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MWTC-3	
Figure G-19. Longitudinal Occupant Displacement (EDR-3), Test No. MWTC-3	
Figure G-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MWTC-3	
Figure G-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MWTC-3	
Figure G-22. Lateral Occupant Displacement (EDR-3), Test No. MWTC-3 Figure G-23. Acceleration Severity Index (EDR-3), Test No. MWTC-3	
Figure $0-23$. Acceleration beventy index (EDK-3), Test NO. WIW TC-3	∠00

LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions	3
Table 2. MASH Evaluation Criteria for Longitudinal Barrier	5
Table 3. Weather Conditions, Test No. MWTC-1	57
Table 4. Sequential Description of Impact Events, Test No. MWTC-1	58
Table 5. Maximum Occupant Compartment Deformations by Location	61
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MWTC-1	62
Table 7. Weather Conditions, Test No. MWTC-2	. 104
Table 8. Sequential Description of Impact Events, Test No. MWTC-2	. 105
Table 9. Maximum Occupant Compartment Deformations by Location	. 107
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MWTC-2	. 108
Table 11. Weather Conditions, Test No. MWTC-3	. 119
Table 12. Sequential Description of Impact Events, Test No. MWTC-3	. 120
Table 13. Maximum Occupant Compartment Deformations by Location	. 122
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MWTC-3	. 123
Table 15. Summary of Safety Performance Evaluation Results	. 139
Table B-1. Bill of Materials for Test No. MWTC-1	. 147
Table B-2. Bill of Materials for Test No. MWTC-2	. 149
Table B-3. Bill of Materials for Test No. MWTC-3	. 151
Table B-4. Post Bolt Specifications for Test No. MWTC-3	. 153

1 INTRODUCTION

1.1 Background

In 2010, Midwest Roadside Safety Facility (MwRSF) researchers successfully developed and crash tested a simplified, upstream stiffness transition for connecting 31-in. (787-mm) tall Midwest Guardrail System (MGS) to existing, thrie beam approach guardrail transition systems [1-2]. The approach guardrail transition consisted of standard 12-gauge (2.66-mm thick) Wbeam guardrail, an asymmetrical 10-gauge (3.42-mm thick) W-beam to thrie beam transition element, standard 12-gauge (2.66-mm thick) thrie beam guardrail, and nested 12-gauge (2.66 mm thick) thrie beam guardrail. The approach guardrail transition was supported by two post types - W6x8.5 (W152x12.6) steel sections and W6x15 (W152x22.3) steel sections - using various spacing. Crash testing was successfully performed in accordance with the Test Level 3 (TL-3) impact safety standards published in the American Association and State Highway Officials (AASHTOs) *Manual for Assessing Safety Hardware* (MASH) [3].

However, this barrier system was not evaluated with a lower concrete curb. The addition of a curb may negatively affect the performance of the system in a number of ways. For example, a curb may cause vehicle instabilities and/or rollovers during redirections in this stiffness-sensitive region. Additionally, small car front ends may become wedged between the curb and the bottom of the W-to-thrie transition segment which can lead to excessive snagging. Therefore, the performance of the MGS stiffness transition installed with curb needed to be evaluated through full-scale testing.

1.2 Objective

The objective of the research project was to evaluate the safety performance of the MGS stiffness transition to three beam approach transitions configured with a lower concrete curb. The

safety performance evaluation was conducted according to the TL-3 impact safety standards published in MASH.

1.3 Scope

The research objective was achieved through the completion of several tasks. First, an actual test installation was constructed for the MGS stiffness transition attached to a stiff thrie beam approach guardrail transition, including a lower 4-in. (102-mm) concrete curb. Next, three full-scale vehicle crash tests were performed in accordance with TL-3 impact conditions of MASH. The test results were analyzed, evaluated, and documented. Finally, conclusions and recommendations were made that pertain to the safety performance of the stiffness transition between the MGS and a crashworthy thrie beam approach guardrail transition system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as guardrail transitions, must satisfy impact safety standards

in order to be accepted by the Federal Highway Administration (FHWA) for use on the National

Highway System (NHS). For new hardware, these safety standards consist of the guidelines and

procedures published in MASH. According to TL-3 of MASH, longitudinal barrier systems must

be subjected to two full-scale vehicle crash tests. The two full-scale crash tests are noted below:

- 1. Test Designation No. 3-20 consists of a 2,425-lb (1,100-kg) passenger car impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.
- 2. Test Designation No. 3-21 consists of a 5,000-lb (2,268-kg) pickup truck impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.

The test conditions of TL-3 longitudinal barriers are summarized in Table 1.

	Test Article	Test	Test Vehicle	Impact Conditions			
		Designation No.		Speed		Angle	Evaluation Criteria ¹
				mph	km/h	(deg)	Cinteria
	Longitudinal	3-20	1100C	62	100	25	A,D,F,H,I
	Barrier	3-21	2270P	62	100	25	A,D,F,H,I

¹ Evaluation criteria explained in Table 2.

Table 1. MASH TL-3 Crash Test Conditions

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the guardrail to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported on the test summary sheet. Additional discussion on PHD, THIV and ASI is provided in MASH.

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, additional W6x16 (W152x23.8) posts are to be installed near the impact region utilizing the same installation procedures as used for the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm), as measured at a height of 25 in. (635 mm). If dynamic testing near the system is not desired, MASH permits a static test to be conducted instead of and compared against the results of a previously-established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH.

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:				
Risk		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:				
		Occupant Rideo	imits			
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

3 TEST CONDITIONS

3.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [4] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. (10-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

3.3 Test Vehicles

For test no. MWTC-1, a 2007 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,468 lb (1,119 kg), 2,457 lb (1,114 kg), and 2,623 lb (1,190 kg), respectively. The test vehicle is shown in Figure 1, and vehicle dimensions are shown in Figure 2.

For test no. MWTC-2, a 2007 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,390 lb (1,084 kg), 2,410 lb (1,093 kg), and 2,575 lb

(1,168 kg), respectively. The test vehicle is shown in Figure 3, and vehicle dimensions are shown in Figure 4.

For test no. MWTC-3, a 2006 Dodge Ram 1500 Quad Cab was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,134 lb (2,329 kg), 4,969 lb (2,254 kg), and 5,135 lb (2,329 kg), respectively. The test vehicle is shown in Figure 5, and vehicle dimensions are shown in Figure 6.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [5] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was estimated based on historical c.g. height measurements. The location of the final c.g. is shown in Figures 2, 4, and 6. Data used to calculate the location of the c.g. and ballast information are shown in Appendix A.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 7 through 9. Round, checkered targets were placed on the center of gravity on the left-side door, the right-side door, and the roof of the vehicle. The remaining targets were located so that they could be viewed from the high-speed cameras and used as reference points for video analysis.

Figure 1. Test Vehicle, Test No. MWTC-1

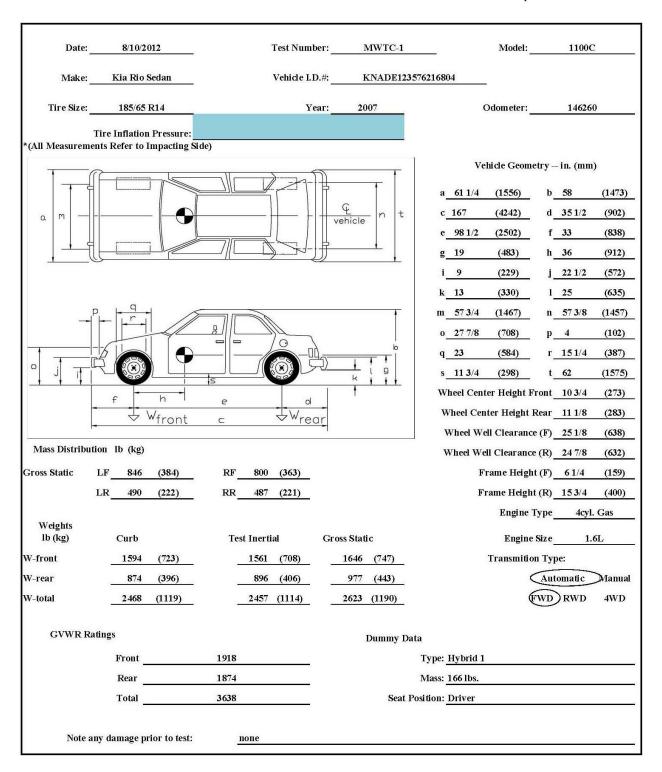


Figure 2. Vehicle Dimensions, Test No. MWTC-1

Figure 3. Test Vehicle, Test No. MWTC-2

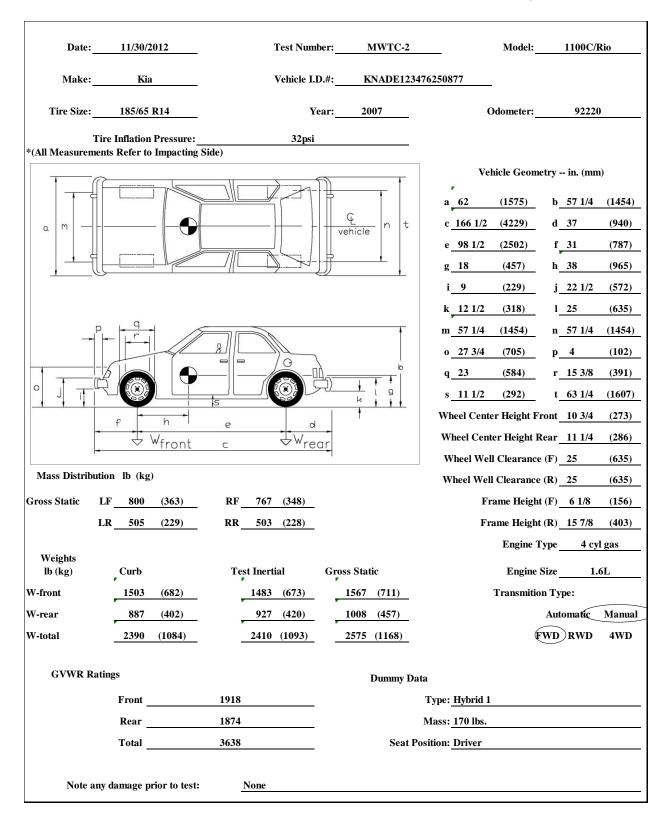


Figure 4. Vehicle Dimensions, Test No. MWTC-2

Figure 5. Test Vehicle, Test No. MWTC-3

Date:	5/16/20	13		Test Num	iber: N	IWTC-3		Model:	2270P		
Make:	Dodge Ram 1	1500 QC	Vehicle I.D.#: 1D7HA18N96J103433								
Tire Size: 265/70 R17			Year: 2006			0	dometer:	164687			
	Fire Inflation			35psi							
*(All Measurements Refer to Impacting Side)											
							Vehicle Geometry in. (mm)				
n t Wheel			Ð		m Whee		a 78 1/4	(1988)	b 74 3/4 (1899)		
Track					Trac	:k	c 227 1/2	(5779)	d 47 1/4 (1200)		
<u> </u>			<u> </u>				e 140 1/2	(3569)	f 39 3/4 (1010)		
	Test Inertia	аі с.м.—	/				g 28 1/2	(723)	h 62 (1576)		
		\	\backslash	q	TIRE DIA		i 15 1/4	(387)	j 27 (686)		
1			T			A	k 20	(508)	l 28 1/2 (724)		
	6				P P	+	m <u>68 5/8</u>	(1743)	n 67 1/2 (1715)		
ю _							o <u>45 1/2</u>	(1156)	p_4 (102)		
		$\int_{s_1}^{t}$		Ξ '(Φ)		Ĭ	q <u>31</u>	(787)	r <u>18 1/4</u> (464)		
					t t		s <u>15 1/2</u>	(394)	t 75 1/2 (1918)		
			1-				Wheel Cente	r Height F	ront 14 3/4 (375)		
		Wrear	—— е —	Wfront	-+		Wheel Cente	er Height F	Rear 14 3/4 (375)		
	-	V "rear	— c —	"fronty			Wheel Well	Clearance	e (F) <u>35 1/2 (902)</u>		
Mass Distribut	ion lb (kg)						Wheel Well	Clearance	(R) <u>37 3/4 (959)</u>		
Gross Static	LF <u>1476</u>	(670)	RF	1401 (635)			Fra	ame Height	t (F) <u>18 1/2 (470)</u>		
1	LR <u>1122</u>	(509)	RR	1136 (515)			Fra	ame Height	(R) <u>24 3/4 (629)</u>		
								Engine T	ype 8 cyl.		
Weights lb (kg)	Curb		Tes	t Inertial	Gross Stat	tic		Engine	Size 4.7 Liter		
W-front	2854	(1295)		2774 (1258)	2877	(1305)		Transmitio	on Type:		
W-rear	2280	(1034)		2195 (996)	2258	(1024)		(Automatic Manual		
W-total	5134	(2329)		4969 (2254)	5135	(2329)		F	WD RWD 4WD		
GVWR Ra	tings					Dum	Data				
_			Dummy I								
Front Rear						Type: <u>Hybrid II</u> Mass: 166 lbs					
Rear Total						Seat Position: Driver					
	i otai	0700									
Note any damage prior to test: Lower, right side dent in box quarter panel											

Figure 6. Vehicle Dimensions, Test No. MWTC-3

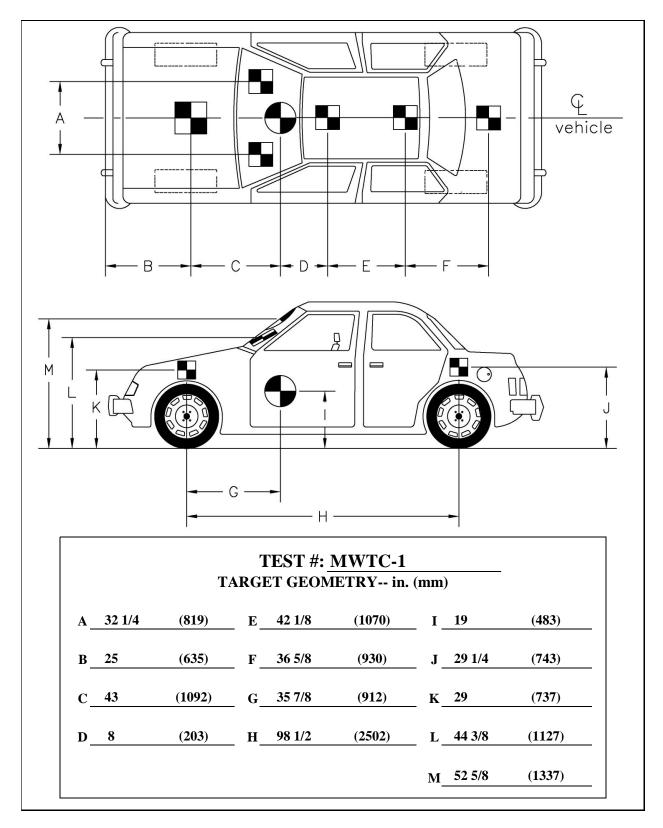


Figure 7. Target Geometry, Test No. MWTC-1

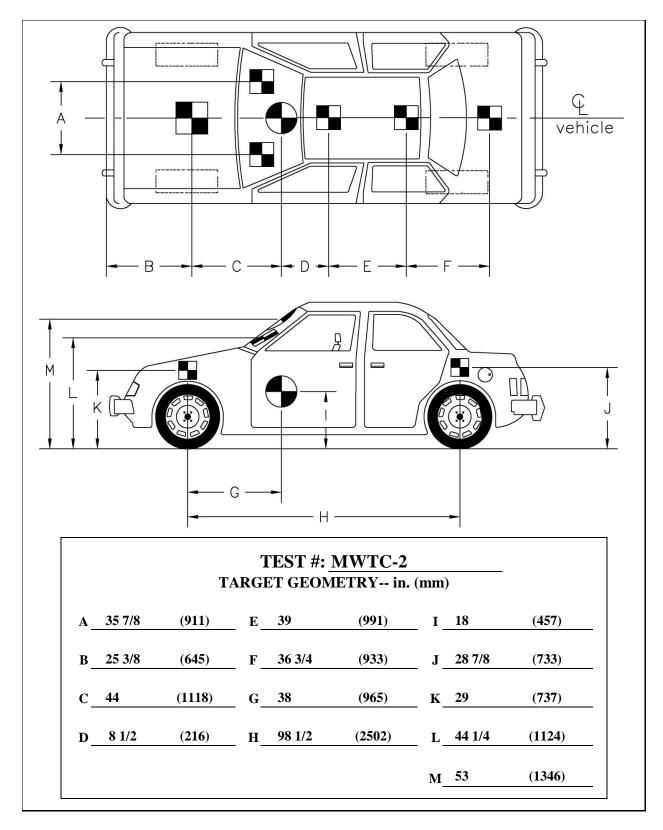


Figure 8. Target Geometry, Test No. MWTC-2

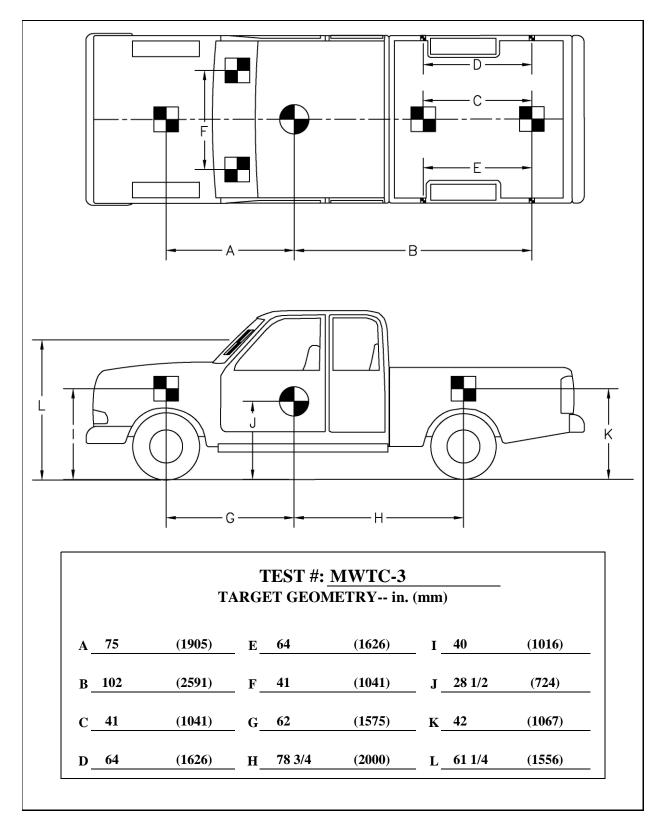


Figure 9. Target Geometry, Test No. MWTC-3

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the right side of each vehicle's dash and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

3.4 Simulated Occupant

For test nos. MWTC-1, MWTC-2, and MWTC-3, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 170 lb (77 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH, the dummy was not included in calculating the c.g location.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Three environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the center of gravity of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [6].

The first accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample

rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

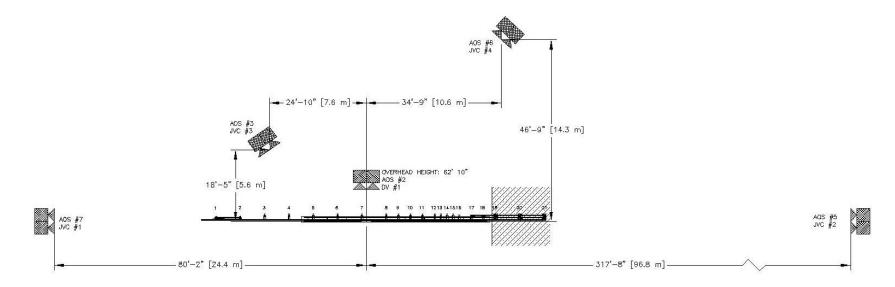
The second accelerometer system, SLICE 6DX, was a modular data acquisition system manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The acceleration sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ±500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The third system, Model EDR-3, was a triaxial piezoresistive accelerometer system manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM, a range of ± 200 g's, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The "DynaMax 1 (DM-1)" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

3.5.2 Rate Transducers

An angle rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the center of gravity and recorded data at 10,000 Hz to the SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

A second angle rate sensor system, the SLICE MICRO Triax ARS, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


3.5.3 Retro-reflective Optic Speed Trap

The retro-reflective optic speed trap was used to determine the speed of the bogie vehicle before impact. Three retro-reflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the bogie vehicle which reflects the beam of light. When the emitted beam of light was returned to the Emitter/Receiver, a signal was sent to the Optic Control Box, which in turn sent a signal to the data computer as well as activated the External LED box. The computer recorded the signals and the time each occurred. The speed was then calculated using the spacing between the retro-reflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

3.5.4 Digital Photography

Two AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, four JVC digital video cameras, and one Canon digital video cameras were utilized to film test nos. MWTC-1 and MWTC-2. For test no. MWTC-3, two AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, four JVC digital video cameras, one Canon digital video camera, and two GoPro Hero 3 digital video cameras were used. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 10 through 12.

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon D50 digital still camera was also used to document pre- and post-test conditions for all tests.

	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
u	2	AOS Vitcam CTM	500	Cosmicar 12.5 mm Fixed	-
-Speed deo	3	AOS Vitcam CTM	500	Sigma 24-70	35
gh-Spe Video	5	AOS X-PRI Gigabit	500	Canon 17-102	102
High- Vi	6	AOS X-PRI Gigabit	500	Fujinon 50 mm Fixed	-
μ.	7	AOS X-PRI Gigabit	500	Sigma 50 mm Fixed	-
	1	JVC – GZ-MC500 (Everio)	29.97		
Video	2	JVC – GZ-MG27u (Everio)	29.97		
Digital Vi	3	JVC – GZ-MG27u (Everio)	29.97		
	4	JVC – GZ-MG27u (Everio)	29.97		
	1	Canon ZR90	29.97		
	2	Canon ZR10	29.97		

Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. MWTC-1

21

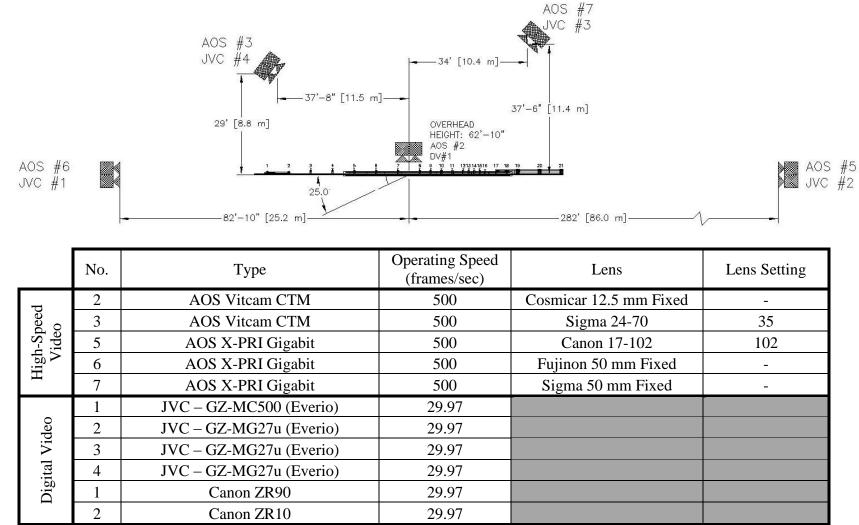


Figure 11. Camera Locations, Speeds, and Lens Settings, Test No. MWTC-2

June 30, 2014 MwRSF Report No. TRP-03-291-14

22

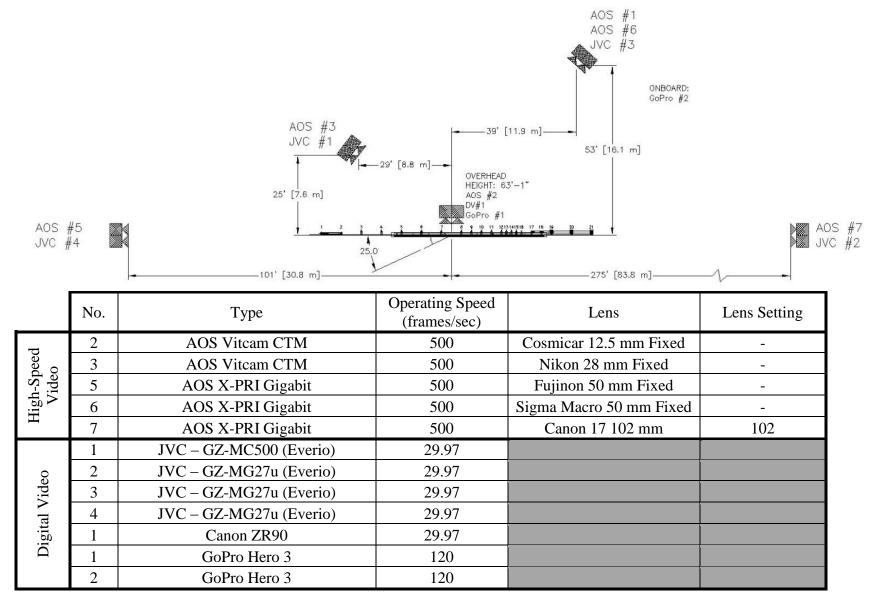


Figure 12. Camera Locations, Speeds, and Lens Settings, Test No. MWTC-3

4 DESIGN DETAILS

The 87.5 ft (26.7-m) long test installation was constructed for use in test no. MWTC-1, as shown in Figure 13, which consisted of five major structural components: (1) a 12-ft 6-in. (3.8-m) long thrie beam and channel bridge railing system; (2) 12 ft – 6 in. (3.8 m) of nested 12-gauge (2.66 mm thick) thrie beam guardrail; (3) 6 ft – 3 in. (1.9 m) of standard 12-gauge (2.66-mm thick) thrie beam guardrail; (4) a 6-ft - 3-in. (1.9-m) long, asymmetrical 10-gauge (3.42-mm thick) W-beam to thrie beam transition element; and (5) 50 ft (15.2 m) of standard 12-gauge (2.66-mm thick) W-beam rail attached to a simulated anchorage device. All rails had a top rail height of 31 in. (787 mm). Lap-splice connections between the rail sections were configured to reduce vehicle snag at the splices. Design details are shown in Figures 13 through 40. Photographs of the test installation are shown in Figures 41 through 44. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The guardrail components were supported by two BCT timber posts, 16 steel guardrail posts, and three steel bridge posts. Post nos. 1 and 2 were BCT posts placed in 6-ft (1.8-m) long steel foundation tubes to anchor the system. Post nos. 3 through 15 were galvanized ASTM A36 W6x8.5 (W152x12.6) steel sections measuring 6 ft (1.8 m) long. Post nos. 16 through 18 were galvanized ASTM A36 W6x15 (W152x22.3) steel sections measuring 7 ft (2.1 m) long. The steel posts were placed at various spacings, as shown in Figure 13, in a compacted crushed limestone material that met AASHTO Grade B soil specifications, as recommended in MASH. Bridge post nos. 19 through 21 were galvanized ASTM A36 W6x20 (W152x29.8) steel sections measuring 29% in. (752 mm) long. The thrie beam channel bridge railing system was rigidly attached to the concrete tarmac located at the MwRSF's outdoor proving grounds.

24

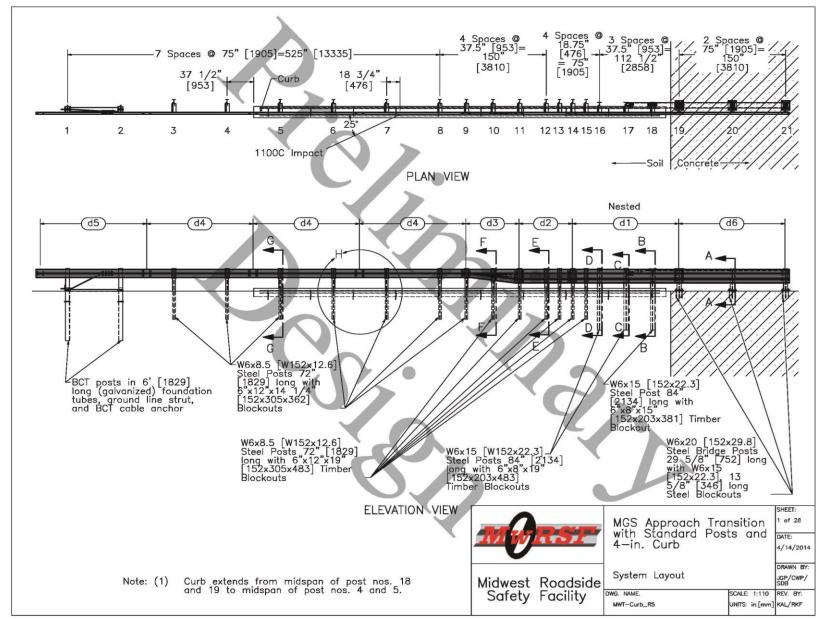


Figure 13. System Layout, Test No. MWTC-1

25

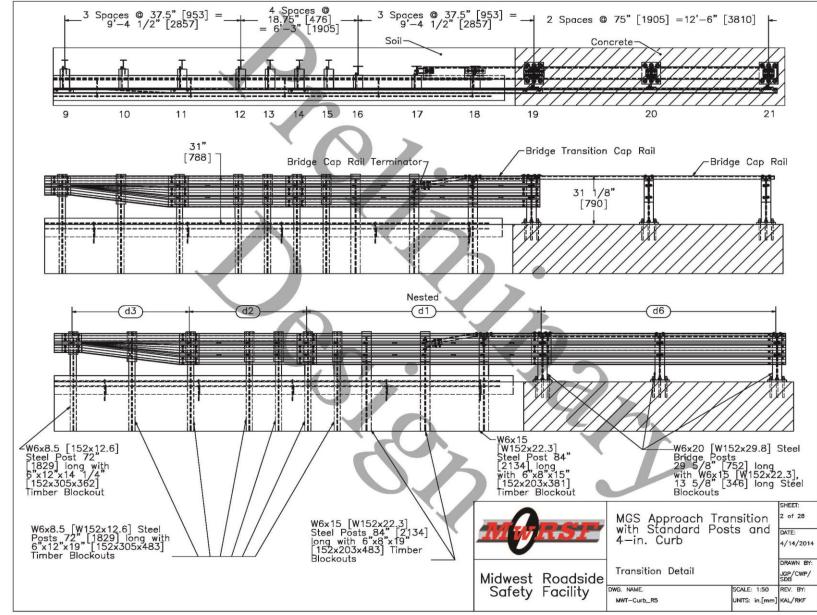


Figure 14. Downstream End System Layout, Test No. MWTC-1

26

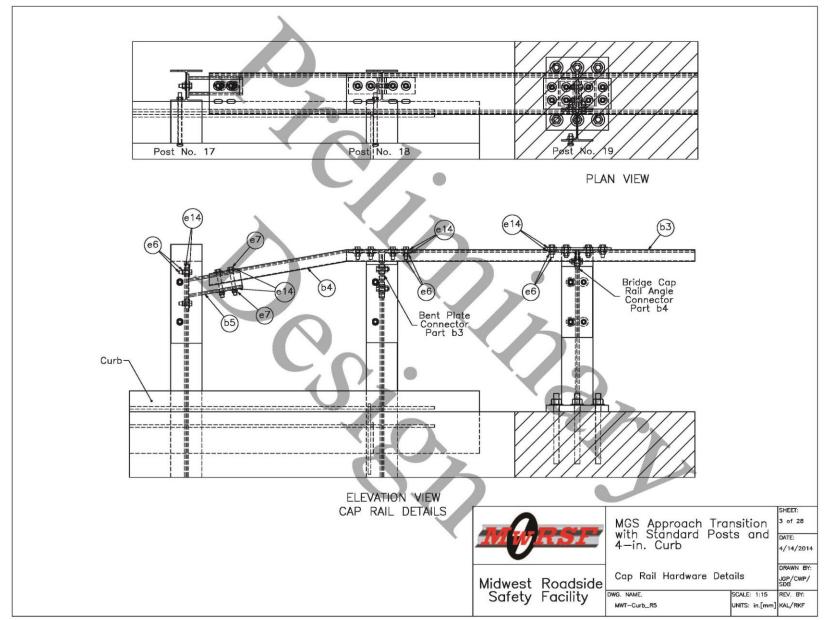


Figure 15. Cap Rail Hardware Details, Test No. MWTC-1

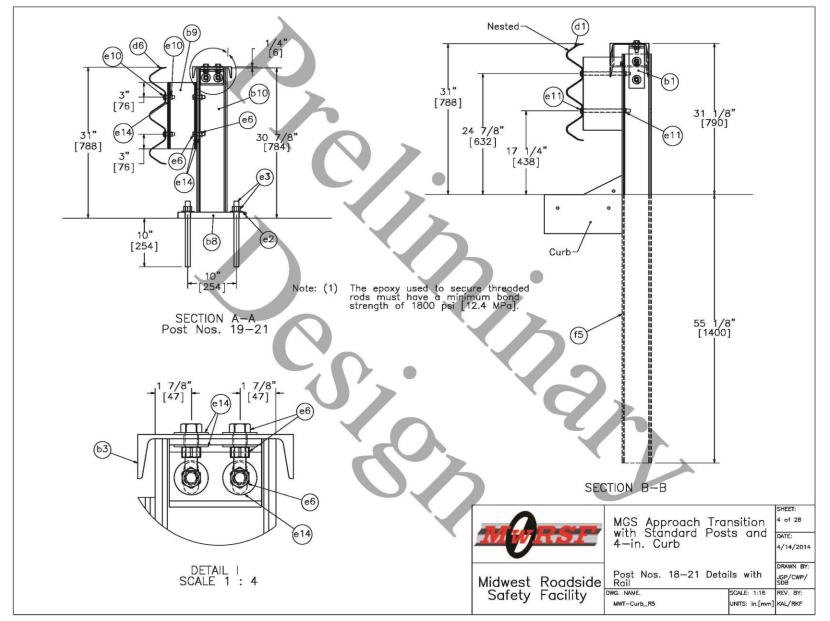


Figure 16. Post Nos. 18 through 21 Details with Rail, Test No. MWTC-1

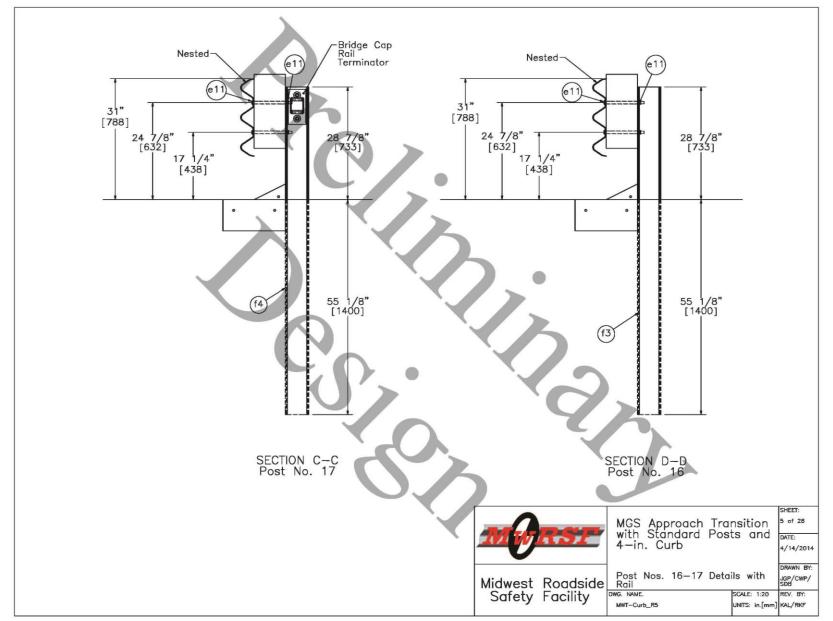


Figure 17. Post Nos. 16 through 17 Details with Rail, Test No. MWTC-1

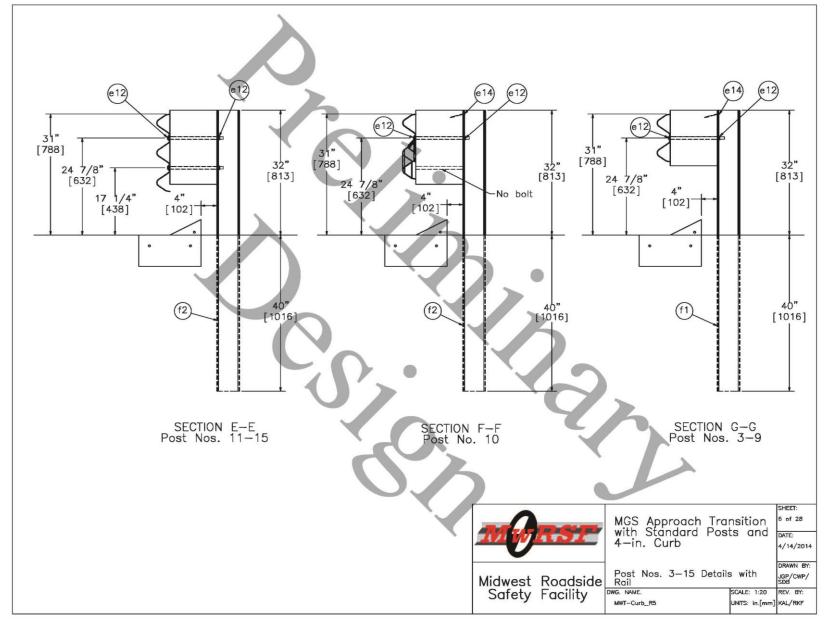


Figure 18. Post Nos. 3 through 15 Details with Rail, Test No. MWTC-1

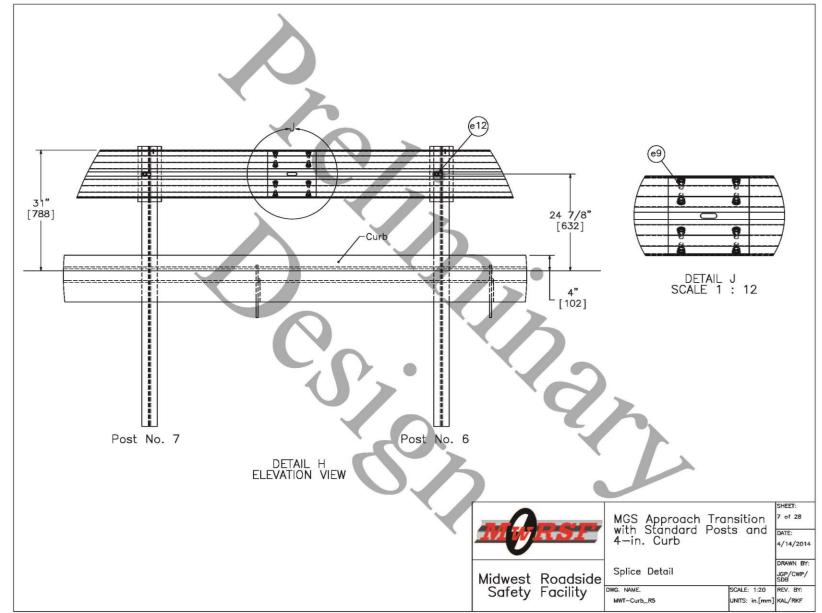


Figure 19. Splice Detail, Test No. MWTC-1

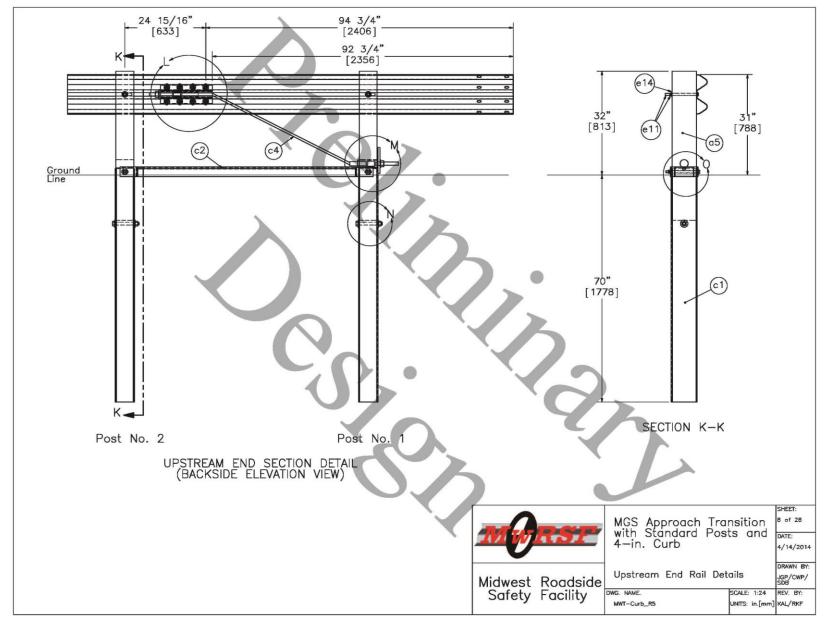


Figure 20. Upstream End Rail Details, Test No. MWTC-1

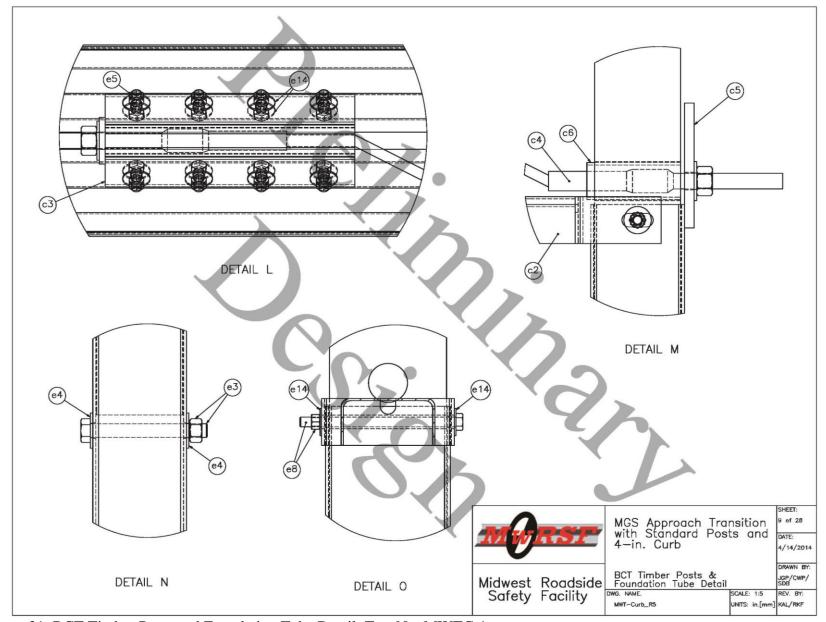


Figure 21. BCT Timber Posts and Foundation Tube Detail, Test No. MWTC-1

33

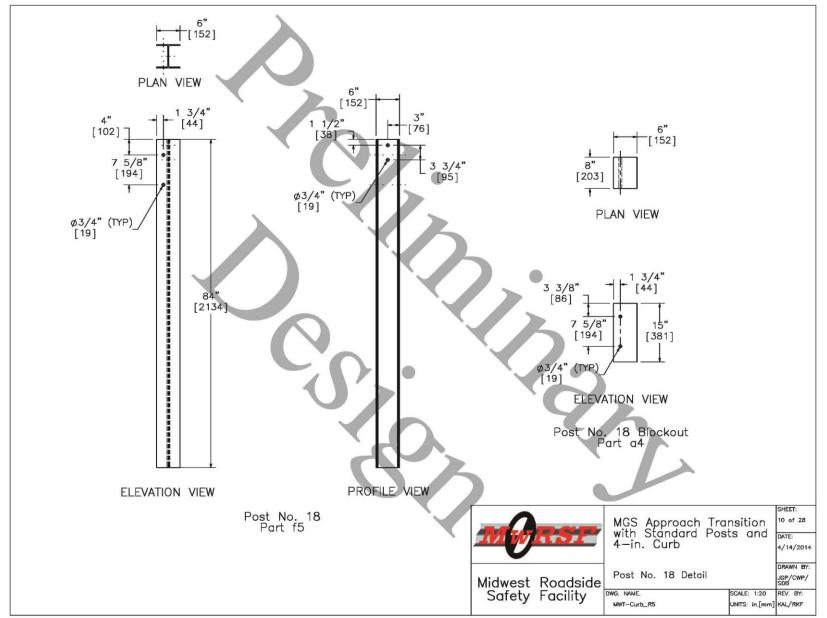


Figure 22. Post No. 18 Detail, Test No. MWTC-1

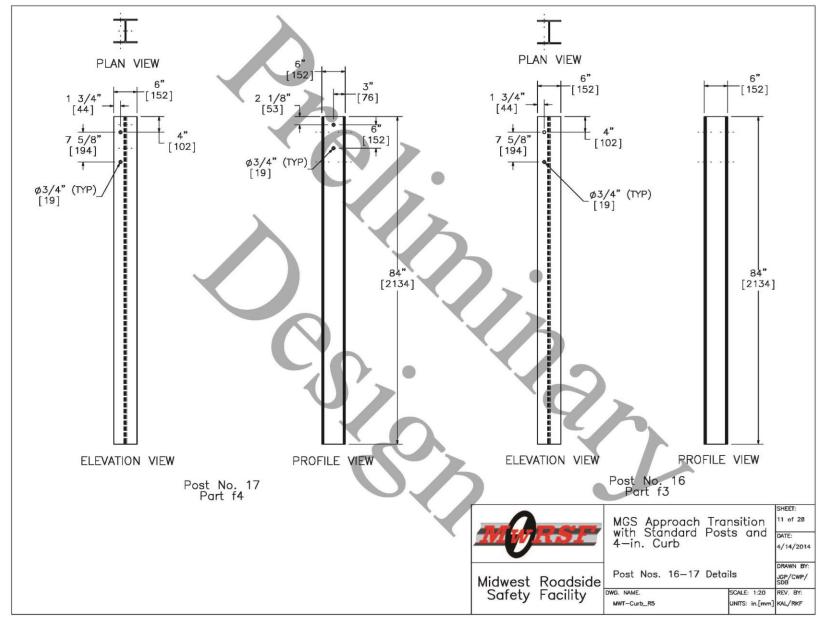


Figure 23. Post Nos. 16 through 17 Details, Test No. MWTC-1

Figure 24. Post Nos. 3 through 15 Details, Test No. MWTC-1

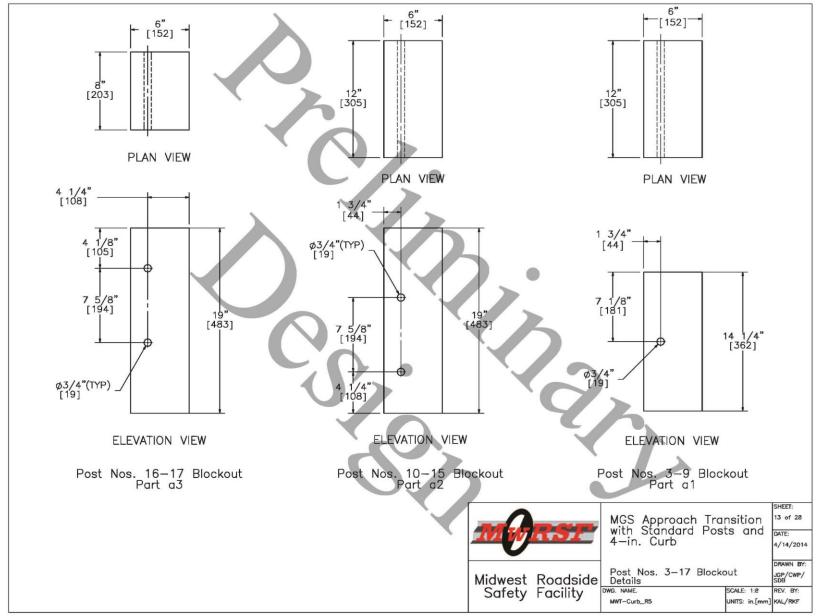


Figure 25. Post Nos. 3 through 17 Blockout Details, Test No. MWTC-1

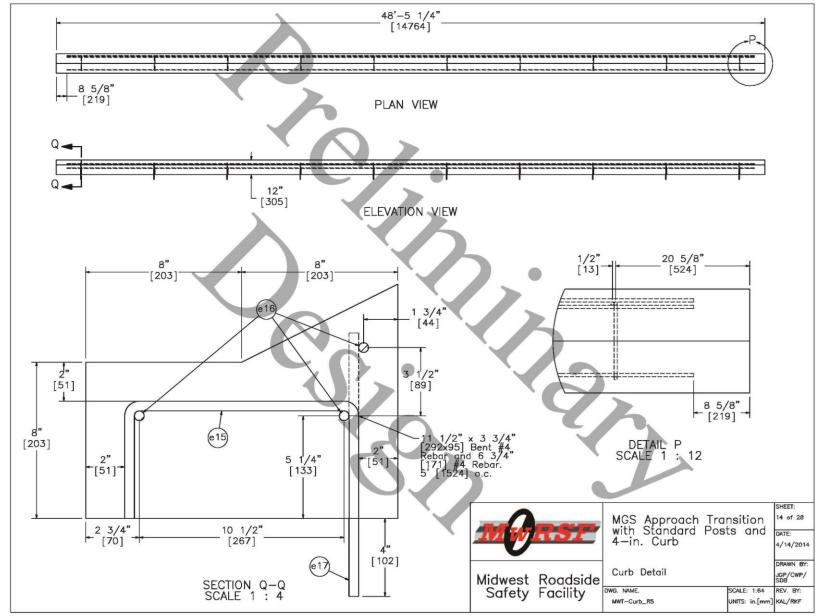


Figure 26. Curb Detail, Test No. MWTC-1

38

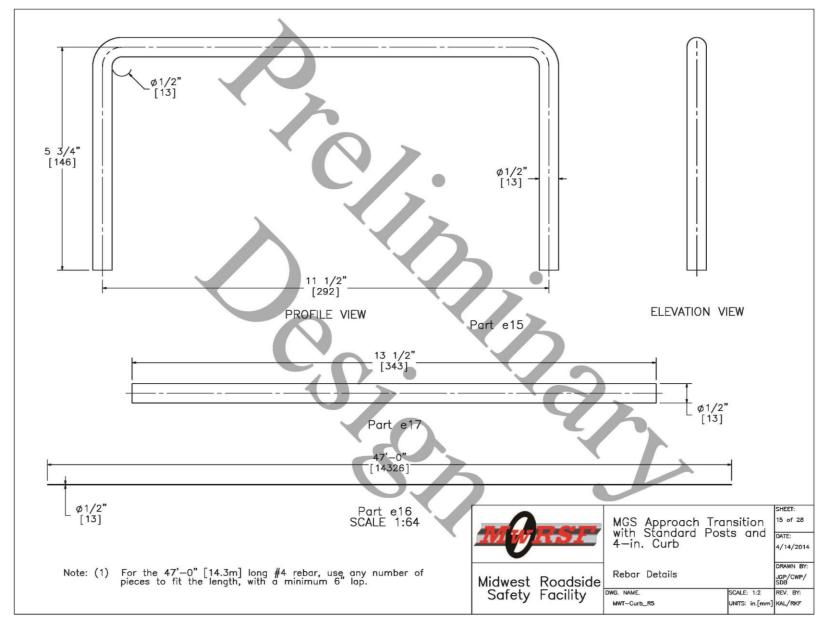


Figure 27. Rebar Details, Test No. MWTC-1

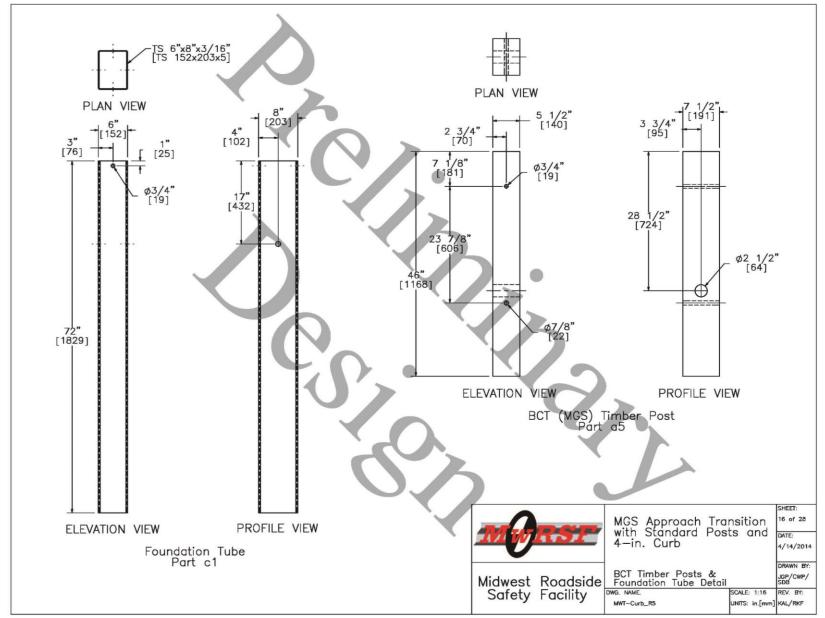


Figure 28. BCT Timber Posts and Foundation Tube Detail, Test No. MWTC-1

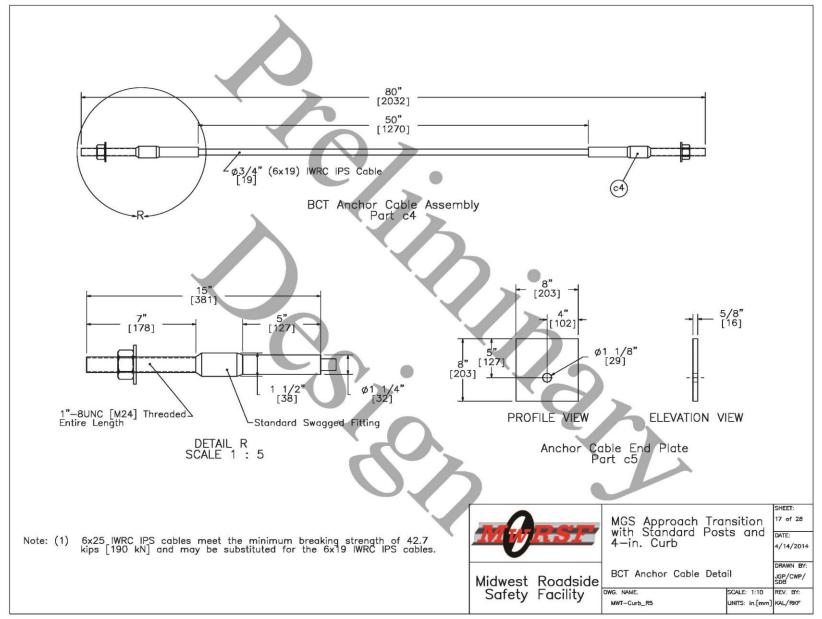


Figure 29. BCT Anchor Cable Detail, Test No. MWTC-1



Figure 30. Ground Strut and Anchor Bracket Details, Test No. MWTC-1

42

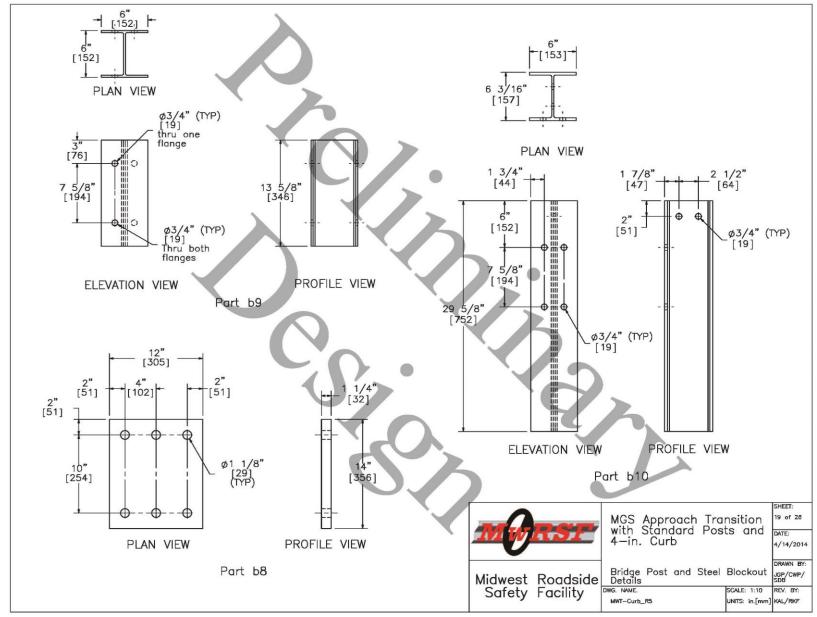


Figure 31. Bridge Post and Steel Blockout Details, Test No. MWTC-1

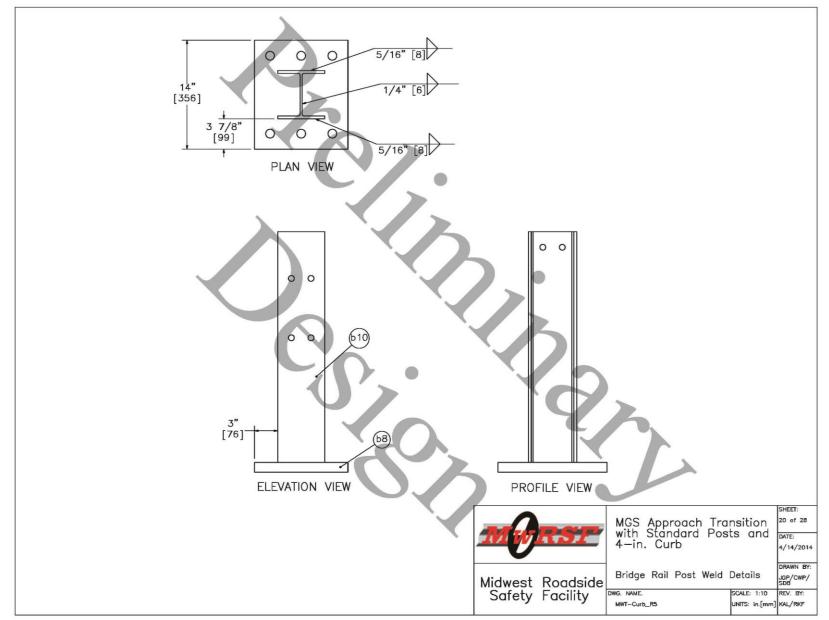


Figure 32. Bridge Rail Post Weld Details, Test No. MWTC-1

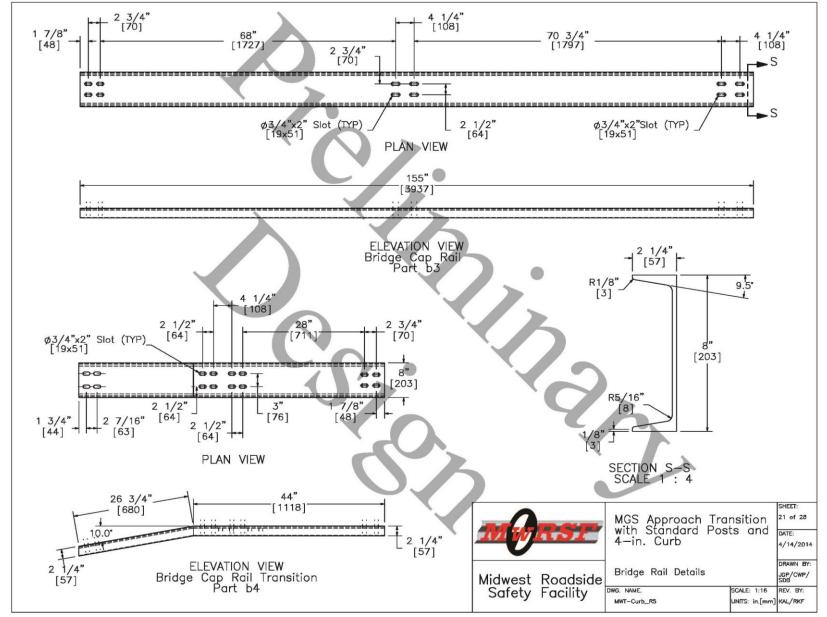


Figure 33. Bridge Rail Details, Test No. MWTC-1

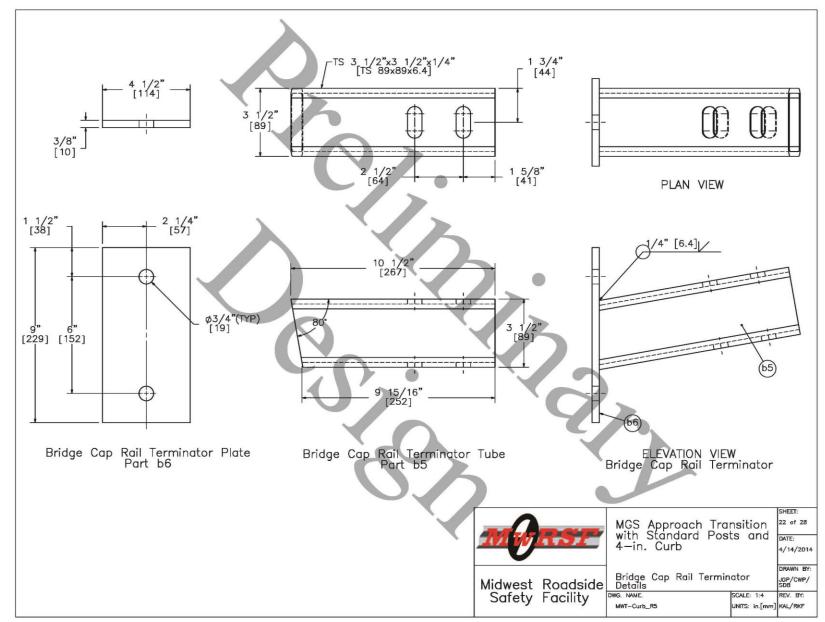
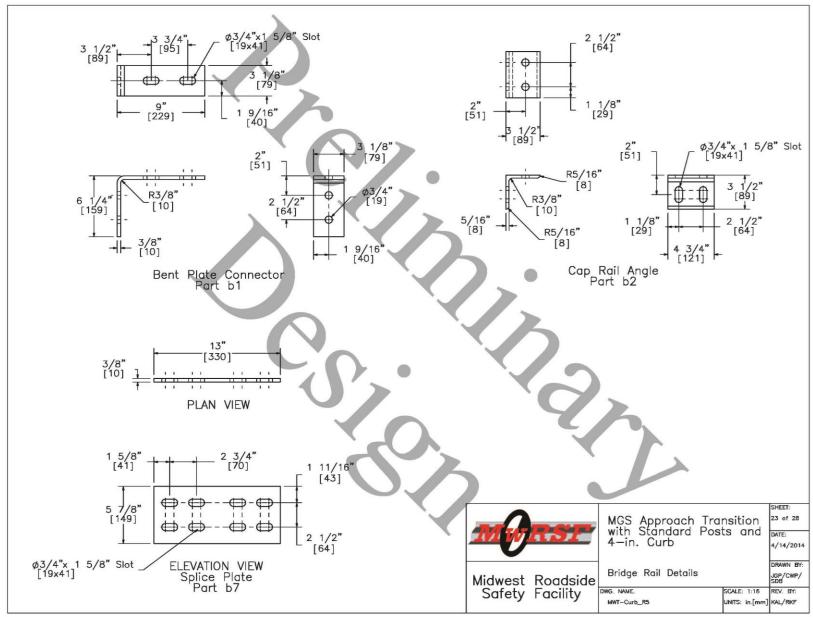



Figure 34. Bridge Cap Rail Terminator Details, Test No. MWTC-1

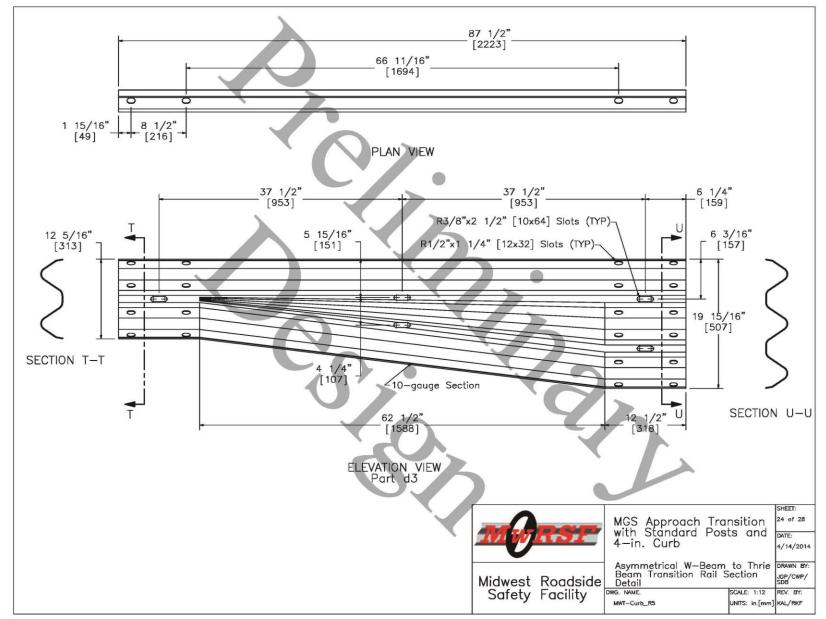


Figure 36. Asymmetrical W-Beam to Thrie Beam Transition Rail Section Detail, Test No. MWTC-1

Figure 37. Rail Section Details, Test No. MWTC-1

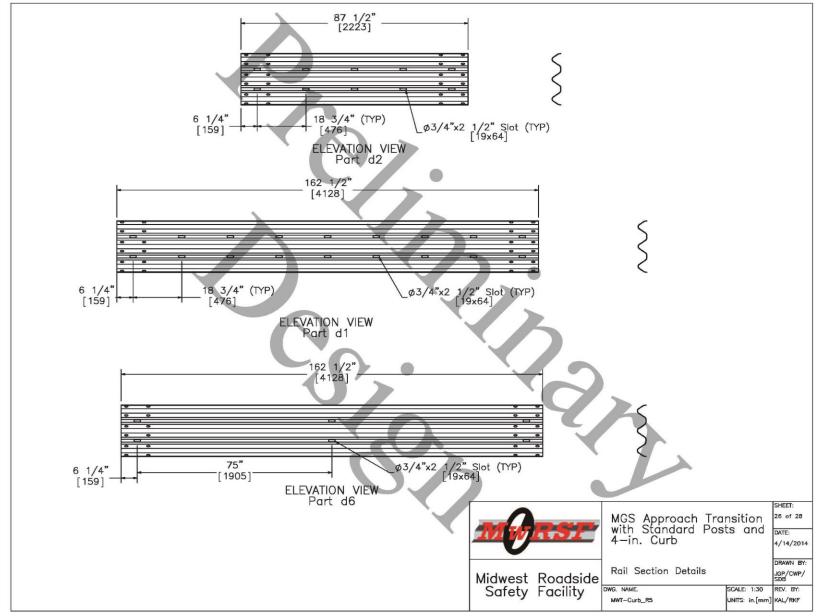


Figure 38. Rail Section Details, Test No. MWTC-1

Item No.	QTY.	Description	Material Spec	Hardware Guid
a1	7	6"x12"x14 1/4" [152x305x362] Blockout - Post 3-9	SYP Grade No.1 or better	PDB10a
a2	6	6"x12"x19" [152x305x483] Blockout - Post 10-15	SYP Grade No.1 or better	-
a3	2	6"x8"x19" [152x305x483] Blockout - Post 16-17	SYP Grade No.1 or better	-
a4	1	6"x8"x15" [152x305x381] Blockout - Post 18	SYP Grade No.1 or better	—
a5	2	BCT Timber Post -MGS Height	SYP Grade No.1 or better	PDF01
b1	2	6 1/4"x9"x3/8" [159x229x9.5] Bridge Cap Rail Bent Plate Connector	ASTM A36	-
b2	6	3 1/2"x3 1/2"x5/16" [89x89x7.9] Bridge Cap Rail Angle	ASTM A36	-
b3	1	C8x11.5 [C203x17.1] Bridge Cap Rail	ASTM A36	
b4	1	C8x11.5 [C203x17.1] Bridge Cap Rail Transition	ASTM A36	-
b5	1	3 1/2"x3 1/2"x1/4" [89x89x6.4] Bridge Cap Rail Terminator Tube	ASTM A36	-
b6	1	9"x4 1/2"x3/8" [229x114x9.5] Terminator Plate	ASTM A36	-
b7	1	5 7/8"x13"x3/8" [149x330x9.5] Bridge Cap Rdil Splice Plate	ASTM A36	-
b8	3	12"x14"x1 1/4" [305x356x32] Bridge Cap Connector Plate	ASTM A36	-
b9	3	W6x15 [W152x22.3] Steel Bridge Blockout	ASTM A992	-
b10	3	W6x20 [W152x29.8] Steel Bridge Post - Post Nos. 19-21	ASTM A992	
c1	2	6"x8"x3/16" [152x203x5],72" [1829] Long Foundation Tube	ASTM A500 Grade B	PTE06
c2	1	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	-
c3	1	Anchor Bracket	ASTM A36	FPA01-02
c4	1	6' [1829] Long BCT Anchor Cable Assembly	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope	FCA01
c5	1	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36	FPB01
c6	1	2 3/8" [60] O.D., 6" [152] Long BCT Hole Insert	ASTM A53 Grade B Schedule 40	FMM02
d1	2	12'-6" [3810] Thrie Beam Section	12 gauge AASHTO M180	
d2	1	6'-3" [1905] Thrie Beam Section	12 gauge AASHTO M180	-
d3	1	6'-3" [1905] W-Beam to Thrie-Beam Transition Section	10 gauge AASHTO M180	RWT02a
d4	3	12'-6" [3810] W-Beam MGS Section	12 gauge AASHTO M180	RWM04a
d5	1	12'-6" [3810] W-Beam MGS End Section	12 gauge AASHTO M180	RWM14a
d6	1	12'-6" [3810] Thrie Beam Section	12 gauge AASHTO M180	RTM02a
			MGS Approach Tran with Standard Post 4—in. Curb	s and DATE: 15 Canad
				JGP/CWI SDB SCALE: NONE REV. BY: JNITS: in.[mm] KAL/RKF

Figure 39. Bill of Materials, Test No. MWTC-1

Item No.	QTY.	Description	Material Spec	Hardware Guide
e1	18	1" [25] Dia. UNC, 13 1/2" [343] Long Threaded Rod and Heavy Hex Nut	Bolt B7 or ASTM A449 Type 1, Nut ASTM A563 Gr. C	-
e2	18	1" [25] Dia. Hardened Round Washer	ASTM F436 Type 1	FWC24a
e3	2	7/8" [22] Dia. UNC, 7 1/2" [191] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX22a
e4	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	FWC22a
e5	8	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a
e6	42	5/8" [16] Dia. UNC, 2" [51] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a
e7	2	5/8" [16] Dia. UNC, 5" [127] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a
e8	2	5/8" Dia. x 10" [M16x254] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBX16a
e9	68	5/8" [16] Dia. UNC, 1 1/2" [38] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB01
e10	6	5/8" [16] Dia. UNC, 2" [51] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB02
e11	8	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB03
e12	18	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB06
e13	116	5/8" [16] Dia. Plain Round Washer	ASTM F844	FWC16a
e14	8	16D Double Head Nail	-	-
e15	10	11 1/2" x 5 3/4" [292x146] Bent #4 Rebor	ASTM A615 Grade 60	-
e16	3	47' [14.3 m] Long #4 Rebar	ASTM A615 Grade 60	-
e17	10	13 1/2" [343] Long #4 Rebar	ASTM A615 Grade 60	-
f1	7	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 3-9	ASTM A992	-
f2	6	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 10-15	ASTM A992	-
f3	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 16	ASTM A992	-
f4	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 17	ASTM A992	-
f5	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 18	ASTM A992	-
			Roadside Facility	DATE: 4/14/2014 DRAWN BY:

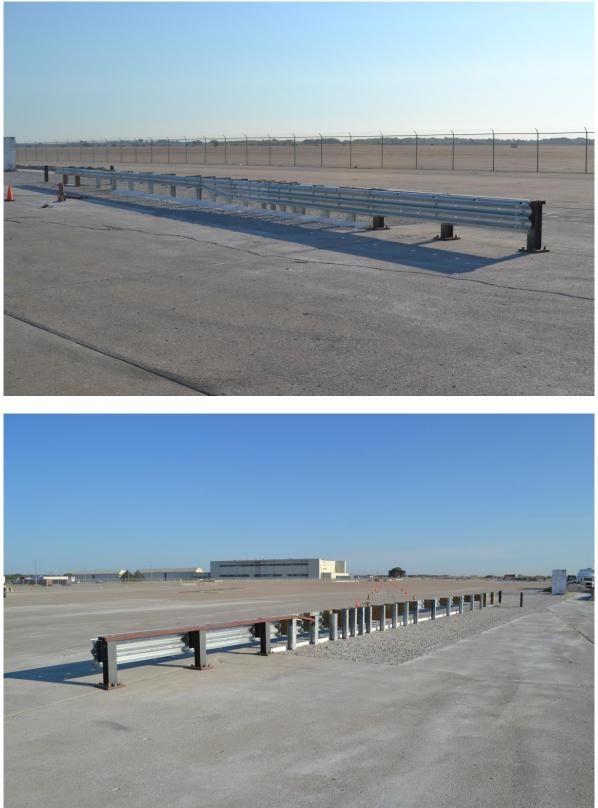


Figure 41. System Photographs, Test No. MWTC-1

Figure 42. Simulated Anchor and Bridge Rail Photographs, Test No. MWTC-1

Figure 43. Posts in Impact Region, Test No. MWTC-1

Figure 44. Transition Element Photographs, Test No. MWTC-1

5 FULL-SCALE CRASH TEST NO. MWTC-1

5.1 Static Soil Test

Before full-scale crash test no. MWTC-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Test No. MWTC-1

The 2,457-lb (1,114-kg) small passenger car impacted the MGS to three beam transition system with curb at a speed of 62.9 mph (101.2 km/h) and at an angle of 25.0 degrees. A summary of the test results and sequential photographs are shown in Figure 45. Additional sequential photographs are shown in Figures 46 and 47.

5.3 Weather Conditions

Test no. MWTC-1 was conducted on August 10, 2012 at approximately 12:00 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	77° F
Humidity	40%
Wind Speed	7 mph
Wind Direction	Variable
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

Table 3. Weather Conditions, Test No. MWTC-1

5.4 Test Description

Initial vehicle impact was to occur 18³/₄ in. (476 mm) downstream of post no. 7, as shown in Figure 48, which was selected based on previous testing [1-2]. The actual point of impact was 4 in. (102 mm) upstream of the target impact location. A sequential description of the impact events is contained in Table 4. The vehicle came to rest in front of post no. 11 and was facing the barrier. This location was 15.8 ft (4.8 m) downstream of impact and 4.3 ft (1.3 m) laterally in front of the system. The vehicle trajectory and final position are shown in Figures 45 and 49.

Table 4. Sequential Description of Impact Events, Test No. MWTC-1

TIME	EVENT	
(sec)	EVENT	
0.000	The vehicle impacted system 14 ³ / ₄ in. (375 mm) downstream from post no. 7.	
0.010	The vehicle's left-front bumper underrode guardrail.	
0.012	Rail between post nos. 7 and 8 began to kink, and post no. 7 deflected backward.	
0.015	Post no. 8 deflected backward and slightly upstream; post no. 9 deflected backward.	
0.018	The vehicle's left-front tire overrode curb.	
0.020	The guardrail between post nos. 7 and 8 began to flatten.	
0.022	Post no. 10 began to deflect upstream.	
0.032	The blockout at post no. 8 began to twist.	
0.044	Blockout no. 8 began to detach from post no. 8.	
0.052	Post no. 9 twisted upstream.	
0.060	The blockout at post no. 8 detached from post.	
0.068	Vehicle began to pitch downward; guardrail between post nos. 10 and 11 began to deflect upward; vehicle's left-front tire contacted post no. 8.	
0.072	The vehicle's front bumper contacted post no. 9.	
0.076	The guardrail between post nos. 11 and 12 deflected backwards.	
0.084	The blockout at post no. 9 detached from post.	
0.116	The vehicle's front bumper contacted post no. 10.	
0.118	W-beam guardrail ruptured at splice to W-to-thrie transition segment, at post no. 9.	
0.134	The vehicle's front bumper was detached and the vehicle pitched downward.	
0.188	The vehicle stopped moving downstream and the rear tires became airborne.	
0.258	The vehicle began to yaw toward barrier.	
0.350	The rear tires rose above guardrail height.	
0.710	The vehicle exited system.	
0.786	The vehicle reached a maximum pitch of -36.3 degrees.	
1.860	The rear tires first returned to ground.	
2.400	Vehicle came to a stop.	

5.5 System Damage

Damage to the barrier was severe, as shown in Figures 50 through 52. System damage consisted of deformed guardrail and posts, displaced soil, fractured wooden spacer blockouts, contact marks, and W-beam rail rupture. The length of vehicle contact along the barrier was approximately 17.5 ft (5.3 m), which spanned from 14³/₄ in. (375 mm) downstream of post no. 7 to post no. 12.

The 12-gauge (2.66-mm thick) W-beam rail ruptured at the splice at post no. 9 with all bolts remaining on the downstream end of the ruptured rail or on the 10 gauge (3.42-mm thick) W-to-thrie transition element, as shown in Figure 51. The guardrail tore from the top, downstream corner of the splice diagonally to the bottom, upstream corner. The downstream edge of the W-beam remained attached to the W-to-thrie transition segment. The downstream end of rail folded back and behind the system at post no. 12.

Rail deformation first occurred with a buckle in the guardrail 4 in. (102 mm) upstream of post no. 7. Contact marks on the rail began 4 in. (102 mm) upstream from targeted impact and extended until post no. 12. Rail flattening occurred from 18 in. (457 mm) upstream of post no. 8 and extended to downstream of post no. 9. The bottom corrugation of the W-to-thrie transition segment folded up from post no. 9 through 11 in. (279 mm) downstream of post no. 10. Two 90 degree buckles were found in the thrie beam rail adjacent to the W-to-thrie transition segment. The first was just downstream of post no. 11 and the second was at post no. 12. A 1½-in. (38-mm) vertical tear occurred at the bottom post bolt at post no. 12. There were also several kinks in the rail throughout the impact region.

Post no. 8 buckled at ground line and bent backward and downstream. Post nos. 9 through 12 also deflected downstream and bent and twisted backward. The front flanges of post nos. 10 and 11 tore at the lower post bolt hole. The rail disengaged from post nos. 7-12. The

blockouts at post nos. 5, 13, 16, and 17 were split. The blockouts were disengaged from post nos. 8, 9, and 10. The blockout of post no. 11 had gouging and multiple fractures, while the upstream face of the blockout at post no. 12 fractured at the bottom bolt location.

A 6-in. (152-mm) long gouge was found on top of the curb beginning 27 in. (686 mm) upstream of post no. 8. Gouging also occurred at the top of the curb beginning 23 in. (584 mm) upstream of centerline of post no. 9 and extending to 2 in. (51 mm) downstream from the center line of post no. 11.

5.6 Vehicle Damage

The damage to the vehicle was moderate with most of the damage occurring on the left side of the vehicle, as shown in Figure 53. The maximum occupant compartment deformations are listed in Table 5 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

On the left side of the vehicle, a 20-in. (508-mm) long scrape was found across both doors. A 22-in. (559-mm) long dent was found on the vehicle's fender and left-front door. The fender was crushed inward and backward at the top, with the bottom of the fender pulled out and away from the door. The left-front tire was torn, and the tire was deflated. The left-front wheel well was partially disengaged. The left-front lower control arm was damaged and both the radiator and left headlight crushed inward. A 3-in. (76-mm) vertical gap was found between the fender and hood.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	¹ /2 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	¹ /2 (13)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	³ ⁄ ₄ (19)	≤ 12 (305)
Side Door (Above Seat)	¹ ⁄ ₄ (6)	≤ 9 (229)
Side Door (Below Seat)	¹ ⁄ ₄ (6)	≤ 12 (305)
Roof	0	≤ 4 (102)
Windshield	0	≤ 3 (76)

Table 5. Maximum Occupant Compartment Deformations by Location

The front bumper and bumper cover were dented and disengaged on the left side. The left-front corner of the hood folded under and the engine cover split. Also, minor spider web cracking occurred in the lower-left corner of the windshield.

On the right side of the car, the top frame around the radiator bent inward. The right bumper frame deflected backward, and the right headlight disengaged. After the vehicle came to rest, fluid leaked under the right-front corner of the vehicle.

5.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 6. Note that the OIVs were within the suggested limits provided in MASH, but the longitudinal ORA values exceeded the MASH limits. The calculated THIV, PHD, and ASI values are also shown in Table 6. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 45. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria		Transducer			MASH
		DTS	DTS SLICE	EDR-3	Limits
OIV	Longitudinal	-35.86 (-10.93)	-32.56 (-9.92)	-37.52 (-11.44)	≤ 40 (12.2)
ft/s (m/s)	Lateral	16.45 (5.01)	17.59 (5.36)	16.01 (4.88)	≤ 40 (12.2)
ORA	Longitudinal	-21.76	-22.25	-21.23	≤ 20.49
g's	Lateral	-8.70	-8.51	-8.42	\leq 20.49
THIV ft/s (m/s)		38.78 (11.82)	36.88 (11.24)	NA	not required
PHD g's		23.29	23.79	NA	not required
ASI		1.23	1.26	1.26	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MWTC-1

5.8 Discussion

The analysis of the test results for test no. MWTC-1 showed that the MGS to thrie beam transition system with curb did not safely redirect the 1100C vehicle. During the test, components of the small car penetrated under the W-beam rail, while the wheel climbed up and overrode the curb. These events led to heavy upward and lateral vehicle loading on the lower region of the W-beam rail in advance of the splice between the W-beam and asymmetrical transition segment. The W-beam rail ruptured at the splice location, gave way, and allowed the vehicle to snag on a stiff rail element in combination with several exposed transition posts. The presence of a curb under the MGS near a stiff transition likely changed the load direction and magnitude applied to the guardrail in advance of the splice location. In addition, the presence of a curb may also have provided increased soil confinement and/or resistance to post-soil rotation within the guardrail region in advance of the splice location. The wheel interaction with the curb surface and curb back side edge may have contributed to a slightly-altered vehicle trajectory

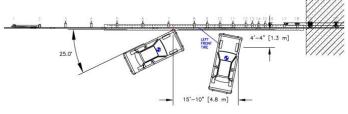
from that observed in the successful small car crash test on the system without a curb. One factor, or even a combination of these factors, likely led to the W-beam rupture at the splice to the W-to-thrie transition element. The failure of the rail allowed the vehicle to travel into the transition region where it contacted stiff rail elements and multiple transition posts. This contact resulted in the vehicle quickly being brought to a stop with excessive longitudinal ORA values. Therefore, test no. MWTC-1, conducted on the MGS to thrie beam transition system with curb, was determined to be unacceptable according to the MASH safety performance criteria for test designation no. 3-20.

0.000 sec

٠

0.044 sec

Test Agency......MwRSF


0.152 sec

0.248 sec

Test Number	MWTC-1
Date	
MASH Test Designation	
Test ArticleStiffness Transition b	
and Thrie Beam Transit	
Total Length	7.5 ft (26.7 m)
Height to Top of Rail	
Steel 12 gauge (2.66 mm) W-Beam Guardrail	,
Segment Location - Single	ost nos. 1 to 9
Steel 10 gauge (3.42 mm) W-Beam to Thrie Beam Transition	
Segment Location	st nos. 9 to 11
Steel 12 gauge (2.66 mm) Thrie Beam Guardrail	
Segment Location - SinglePost nos. 11 to 14	4 and 19 to 21
Segment Location - NestedPost	nos. 14 to 19
Guardrail Posts	
Post Nos. 1-2	Γ timber posts
Post Nos. 3-15	(W152x12.6)
Post Nos. 16-18	
Post Nos. 19-21 295% in. (752 mm) long, W6x20	(W152x29.8)
Post Spacing	
Post Nos. 1-8, 19-2175 in	
Post Nos. 8-12, 16-19	
Post Nos. 12-16	· · · · · ·
Soil TypeAASI	HTO Grade B
Vehicle	
Make and Model	
Test Inertial2,457	
Gross Static	([']
Curb2,468	lb (1,119 kg)
Impact Conditions	
Speed62.9 mph	
Angle	
Impact Severity (IS)	
Impact Location	n of post no. 7
Exit Conditions	
Speed	
Angle	
Exit Box Criterion	
Vehicle Stability	Satisfactory

•	Vehicle Stopping Distance	ce15.8 ft (4.8 m) downstream			of impact
			4.3 ft (1.3 m) la	aterally in front	of system
٠	Vehicle Damage				Moderate
	VDS ^[7]				11-LFQ-5
	CDC ^[8]				1-LFEW2
	Maximum Interior	Deformation		³ ⁄4 in	. (19 mm)
•	Test Article Damage			Severe (rail	ruptured)
•	Maximum Test Article D				•
	Permanent Set			NA (rail	ruptured)
	Dynamic			NA (rail	ruptured)
	Working Width			NA (rail	ruptured)
•	Maximum Angular Displacements				
	Roll			3.7° < 75°	
	Pitch	Pitch36.3° < 75°			6.3° < 75°
	Yaw				54.1°
•	Transducer Data				
	Evaluation Criteria	Transducer			MASH
	Evaluation Criteria	DTS	DTS SLICE	EDR-3	Limit
		25.96	22.56	27 50	< 10

	Evaluation Criteria		DTS	DTS SLICE	EDR-3	Limit
	OIV Longitudinal		-35.86	-32.56	-37.52	≤ 40
			(-10.93)	(-9.92)	(-11.44)	(12.2)
		Lateral	16.45	17.59	16.01	≤ 40
	(m/s)		(5.01)	(5.36)	(4.88)	(12.2)
	ORA	Longitudinal	-21.76	-22.25	-21.23	≤ 20.49
	g's	Lateral	-8.70	-8.51	-8.42	≤ 20.49
	THIV – ft/s (m/s)		38.78	36.88	NA	not
			(11.82)	(11.24)	114	required
	PHD – g's		23.29	23.79	NA	not required
	ASI		1.23	1.26	1.26	not required

Figure 45. Summary of Test Results and Sequential Photographs, Test No. MWTC-1

0.000 sec

0.036 sec

0.068 sec

0.110 sec

0.314 sec

0.710 sec

0.000 sec

0.038 sec

0.068 sec

0.132 sec

0.198 sec

0.710 sec

Figure 46. Sequential Photographs, Test No. MWTC-1

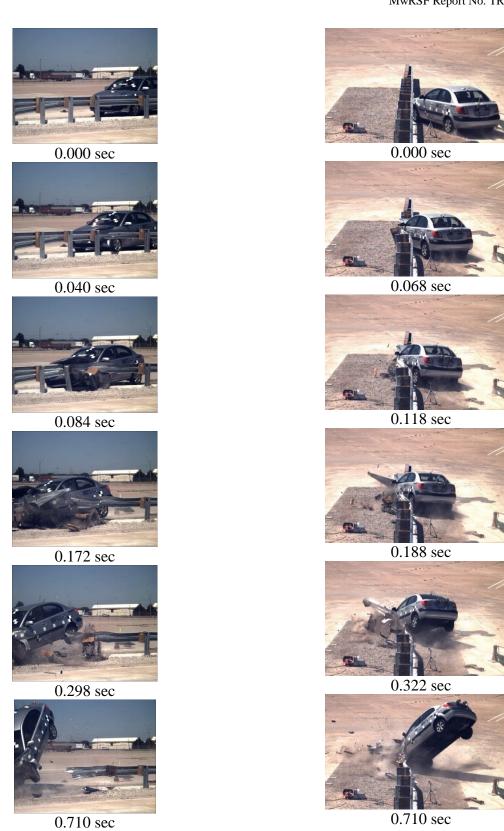


Figure 47. Additional Sequential Photographs, Test No. MWTC-1

Figure 48. Impact Location, Test No. MWTC-1

Figure 49. Vehicle Final Position, Test No. MWTC-1

Figure 50. System Damage, Test No. MWTC-1

Figure 51. Rail Pocketing and Rupture, Test No. MWTC-1

Figure 52. Post Deflection, Test No. MWTC-1

Figure 53. Vehicle Damage, Test No. MWTC-1

6 DESIGN DETAILS AND MODIFICATIONS AND DETAILS

Due to the rail rupture and subsequent system failure experienced during test no. MWTC-1, design modifications were required to strengthen the rail near the upstream end of the asymmetrical transition element. Thus, an additional 12-gauge (2.66-mm thick) W-beam segment was incorporated into the system such that 12.5 ft (3.8 m) of nested W-beam guardrail preceded the 10-gauge (3.42-mm thick) W-to-thrie transition segment. This minor modification was believed to be sufficient to prevent rail rupture observed during a small car impact just upstream from the asymmetrical element and in combination with a concrete curb.

Design details for test nos. MWTC-2 and MWTC-3 are shown in Figures 54 through 82. The system layouts for these two tests are nearly identical to that of test no. MWTC-1, with only the addition of the 12.5 ft (3.8 m) nested W-beam section prior to the W-to-thrie transition segment. Test no. MWTC-2 used an 1100C crash vehicle and had the same impact point as test no. MWTC-1, 18³/₄ in. (476 mm) downstream of post no. 7. Test no. MWTC-3 used a 2270P vehicle and had a target impact point 37¹/₂ in. (953 mm) downstream of post no. 7. Photographs of the test system are shown in Figure 83. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

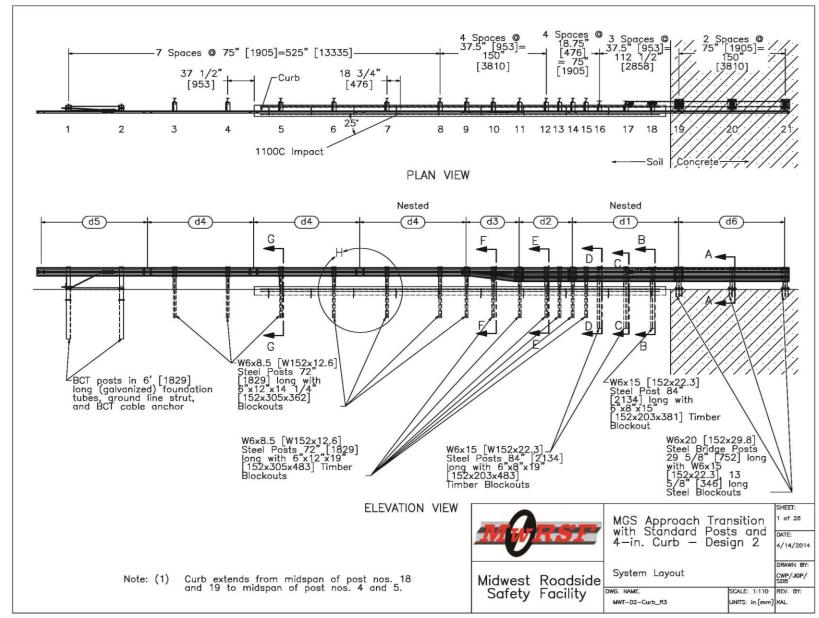


Figure 54. System Layout, Test No. MWTC-2

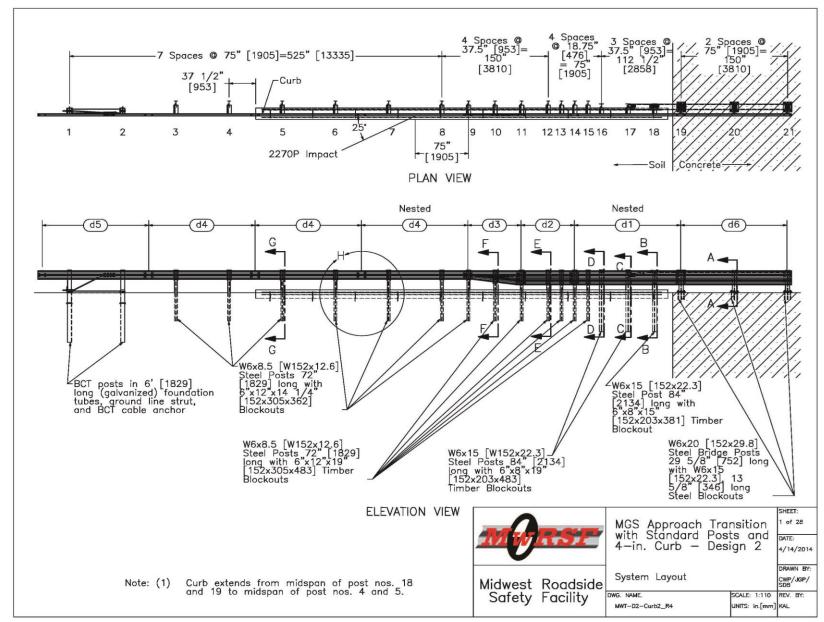


Figure 55. System Layout, Test No. MWTC-3

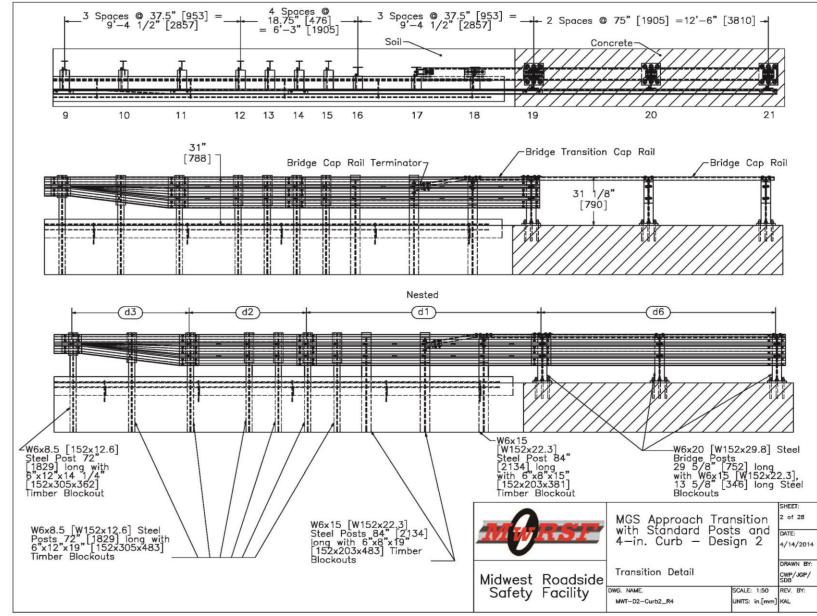


Figure 56. Downstream End System Layout, Test Nos. MWTC-2 and MWTC-3

76

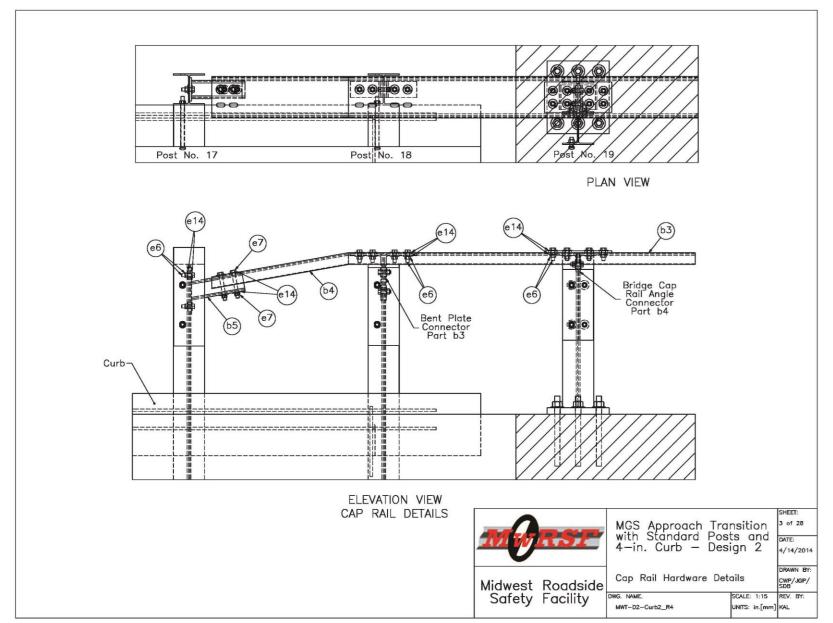


Figure 57. Cap Rail Hardware Details, Test Nos. MWTC-2 and MWTC-3

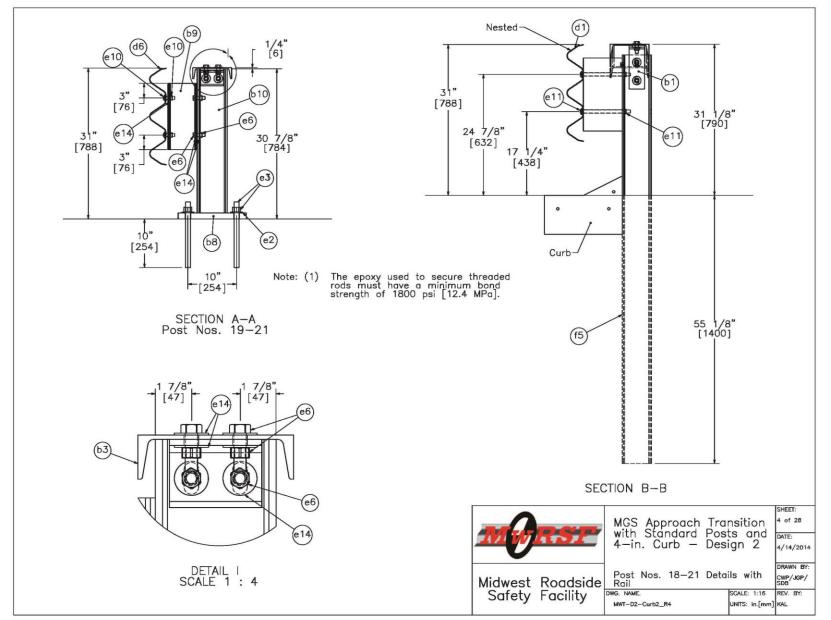


Figure 58. Post Nos. 18 through 21 Details with Rail, Test Nos. MWTC-2 and MWTC-3

78

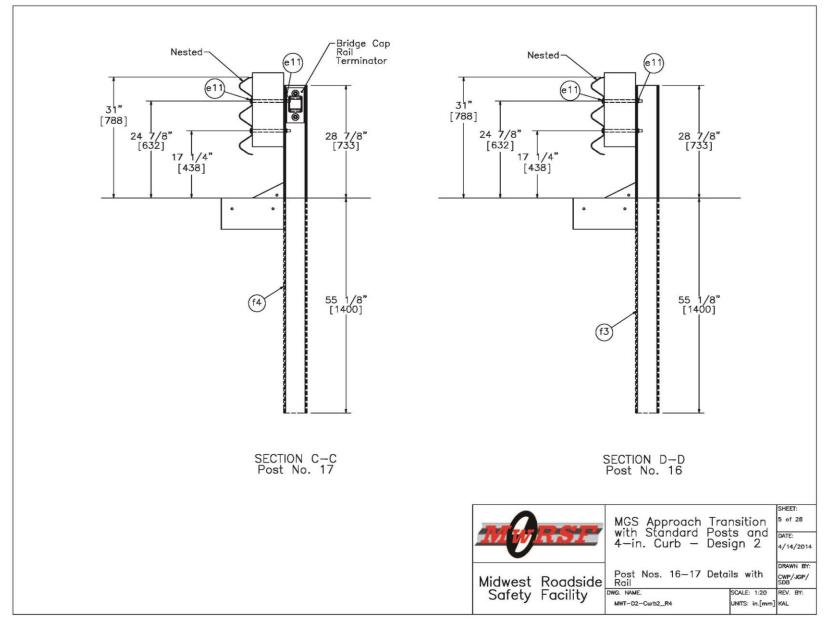


Figure 59. Post Nos. 16 through 17 Details with Rail, Test Nos. MWTC-2 and MWTC-3

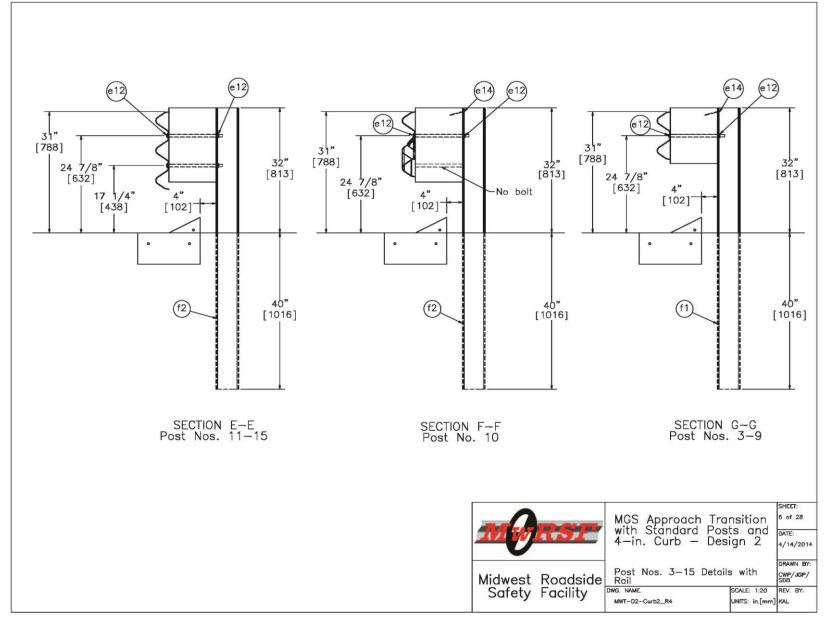


Figure 60. Post Nos. 3 through 15 Details with Rail, Test Nos. MWTC-2 and MWTC-3

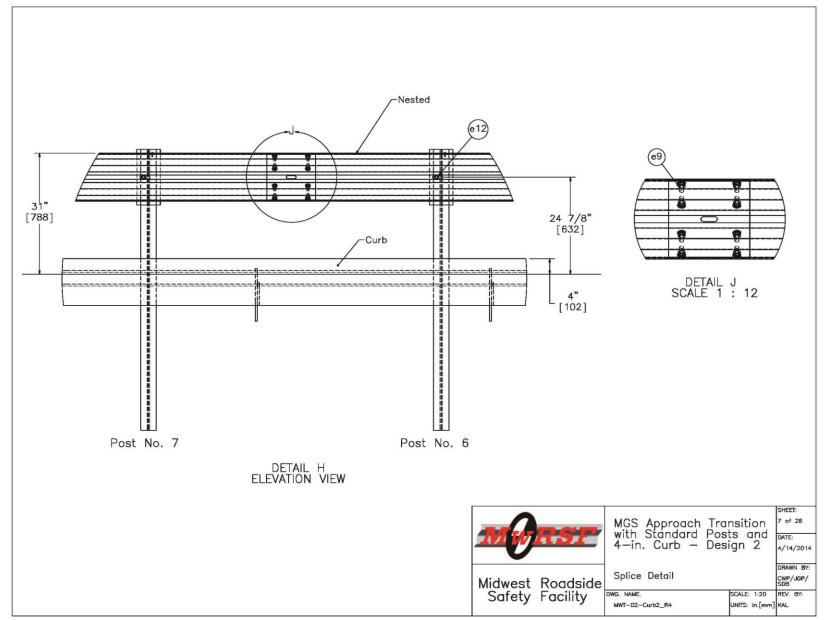


Figure 61. Splice Detail, Test Nos. MWTC-2 and MWTC-3

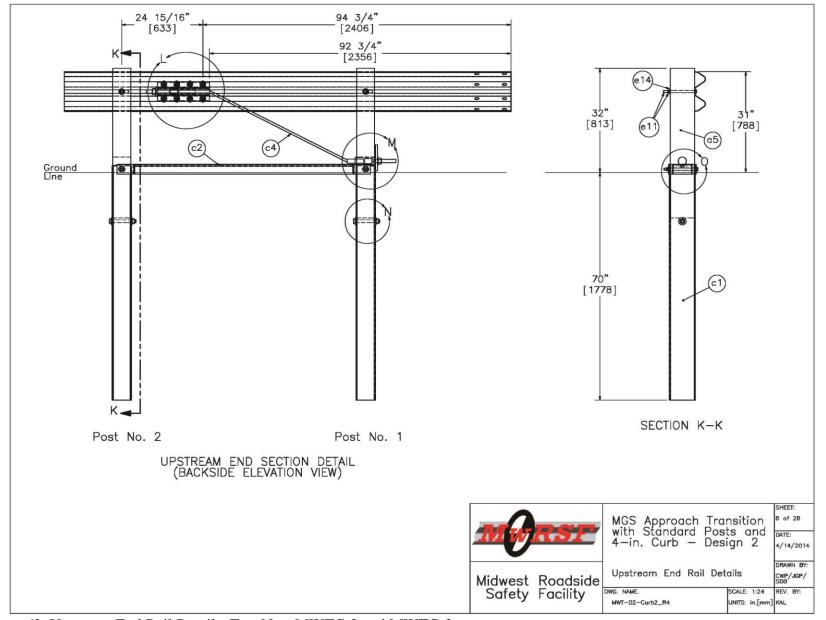


Figure 62. Upstream End Rail Details, Test Nos. MWTC-2 and MWTC-3

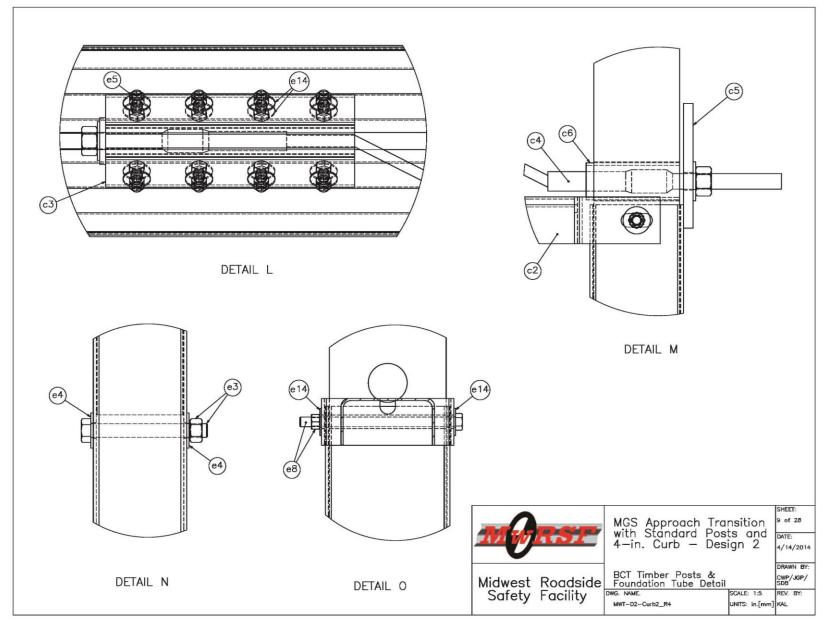


Figure 63. BCT Timber Posts and Foundation Tube Detail, Test Nos. MWTC-2 and MWTC-3

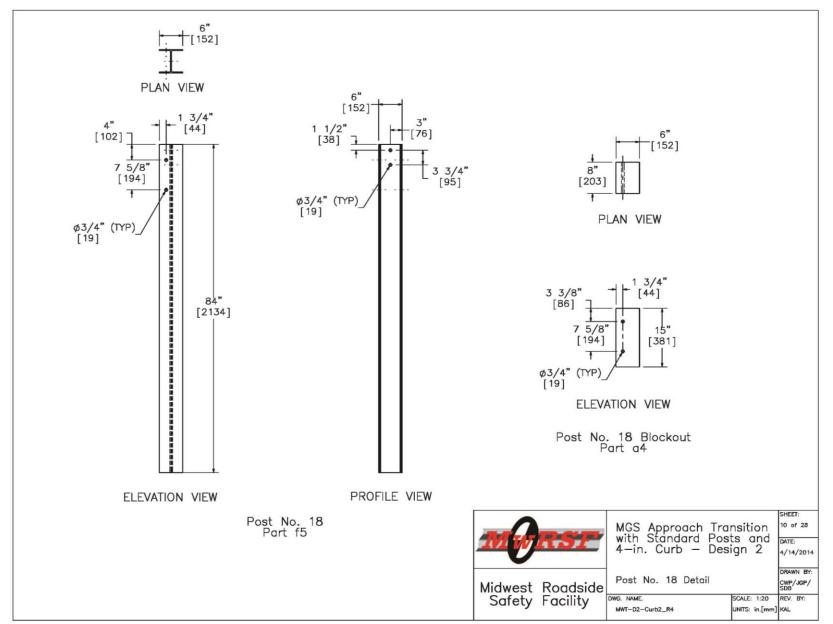


Figure 64. Post No. 18 Detail, Test Nos. MWTC-2 and MWTC-3

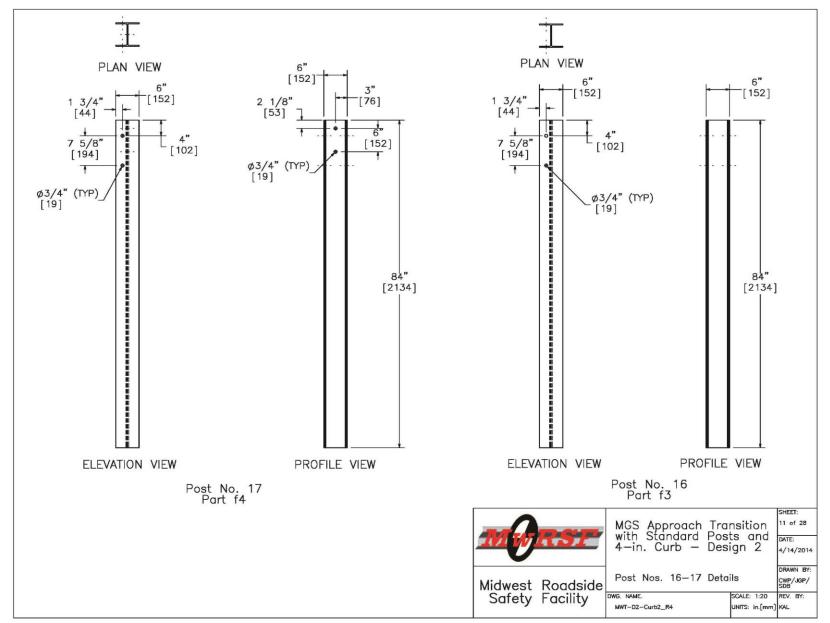


Figure 65. Post Nos. 16 through 17 Details, Test Nos. MWTC-2 and MWTC-3



Figure 66. Post Nos. 3 through 15 Details, Test Nos. MWTC-2 and MWTC-3

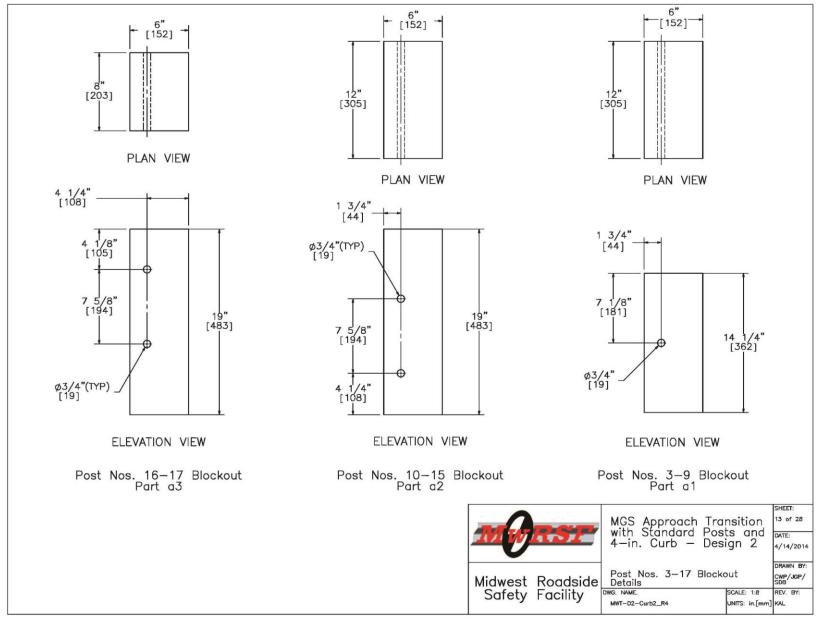


Figure 67. Post Nos. 3 through 17 Blockout Details, Test Nos. MWTC-2 and MWTC-3

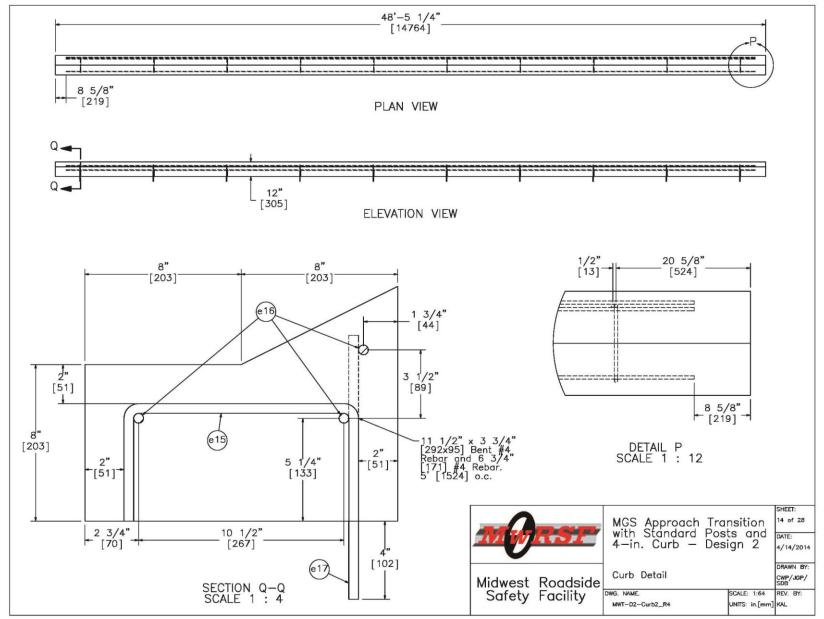


Figure 68. Curb Detail, Test Nos. MWTC-2 and MWTC-3

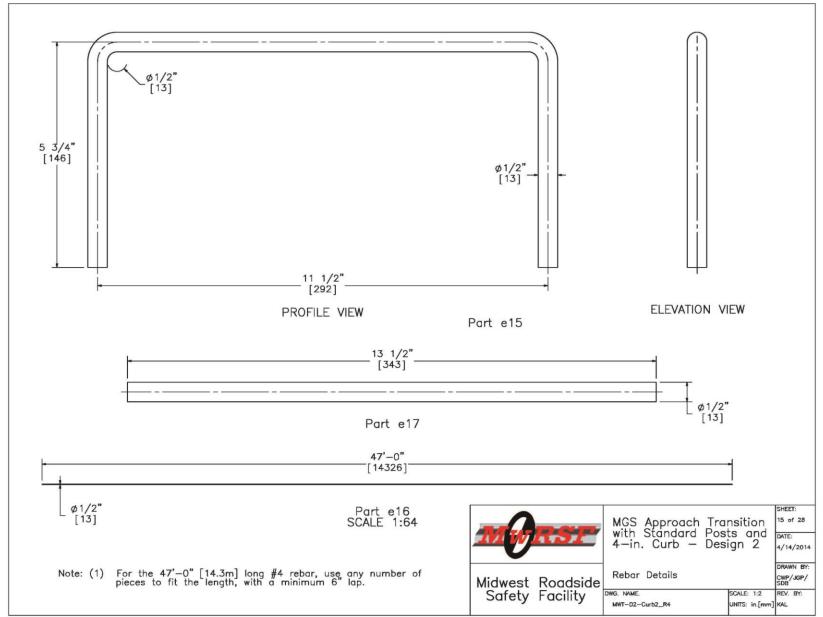


Figure 69. Rebar Details, Test Nos. MWTC-2 and MWTC-3

June 30, 2014 MwRSF Report No. TRP-03-291-14

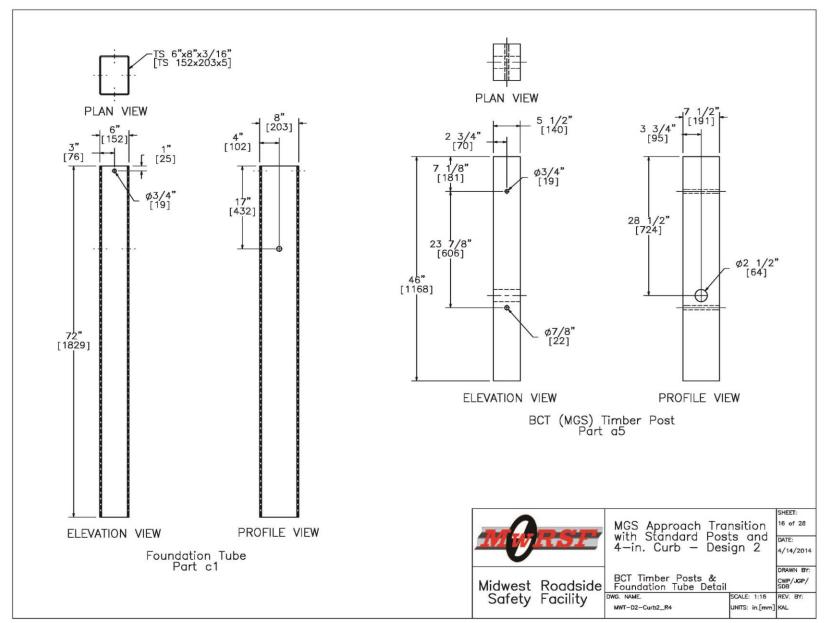


Figure 70. BCT Timber Posts and Foundation Tube Detail, Test Nos. MWTC-2 and MWTC-3

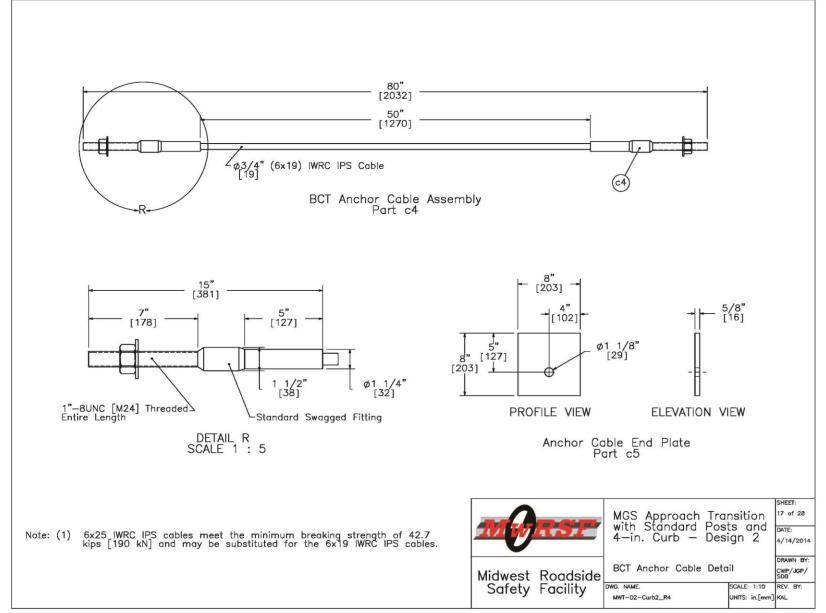


Figure 71. BCT Anchor Cable Detail, Test Nos. MWTC-2 and MWTC-3

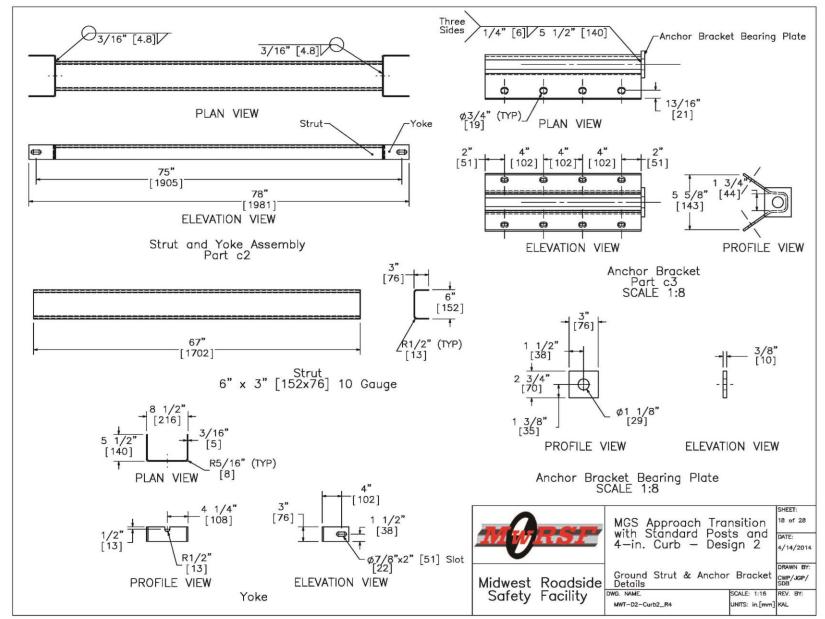


Figure 72. Ground Strut and Anchor Bracket Details, Test Nos. MWTC-2 and MWTC-3

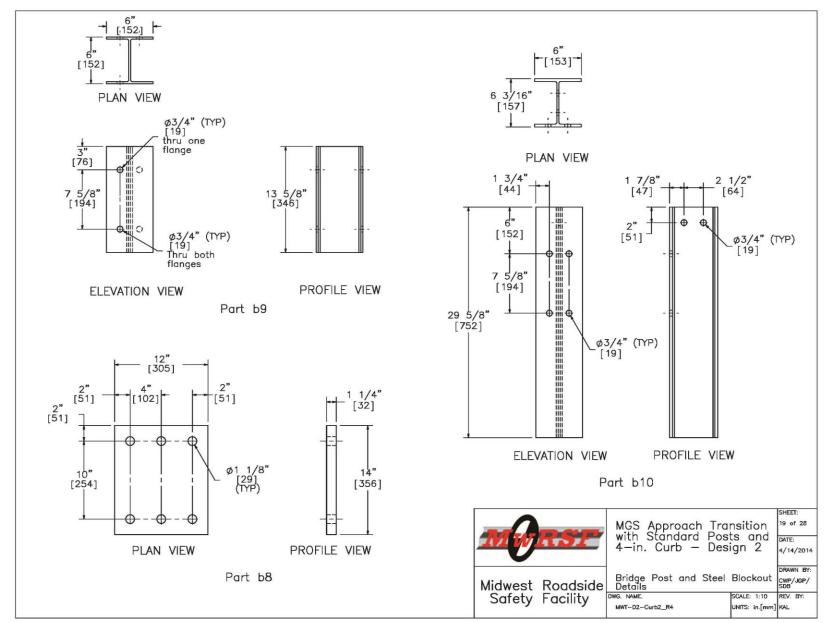


Figure 73. Bridge Post and Steel Blockout Details, Test Nos. MWTC-2 and MWTC-3

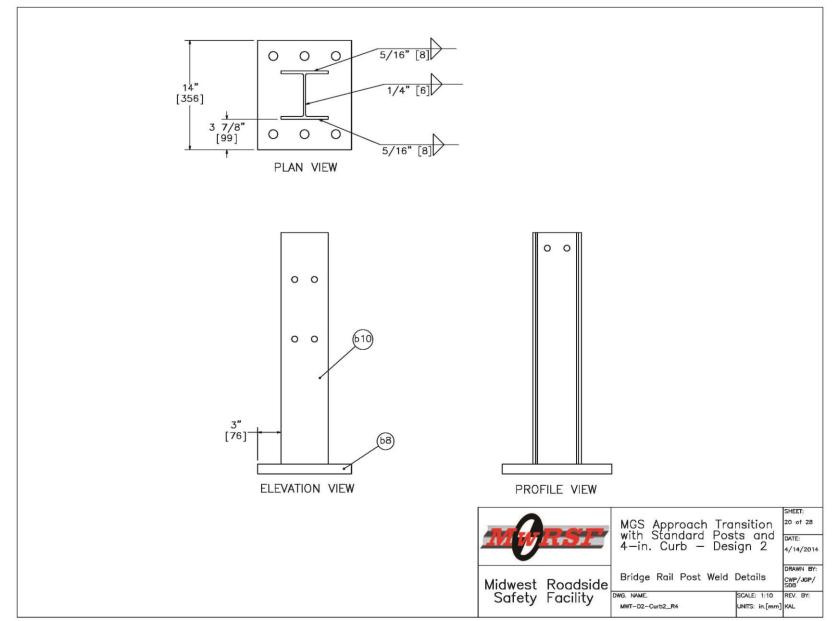


Figure 74. Bridge Rail Post Weld Details, Test Nos. MWTC-2 and MWTC-3

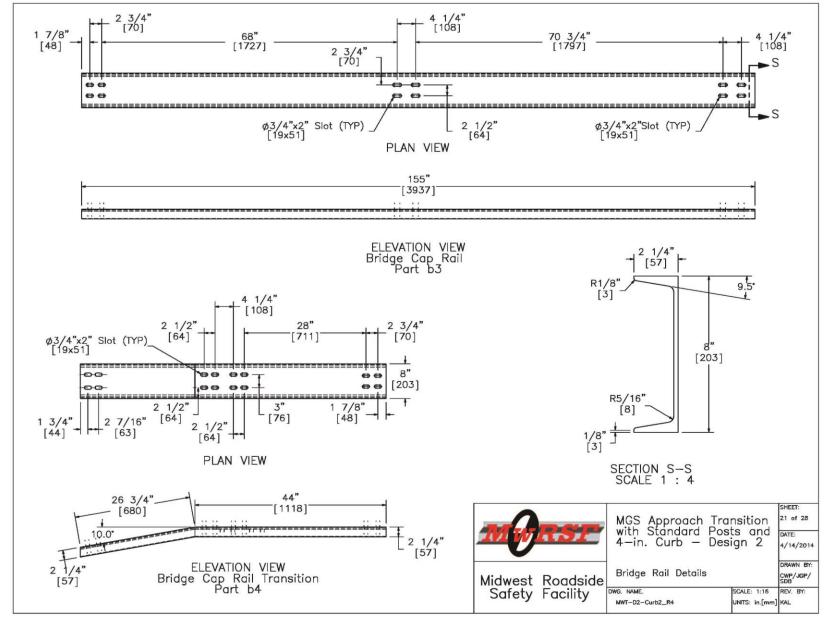


Figure 75. Bridge Rail Details, Test Nos. MWTC-2 and MWTC-3

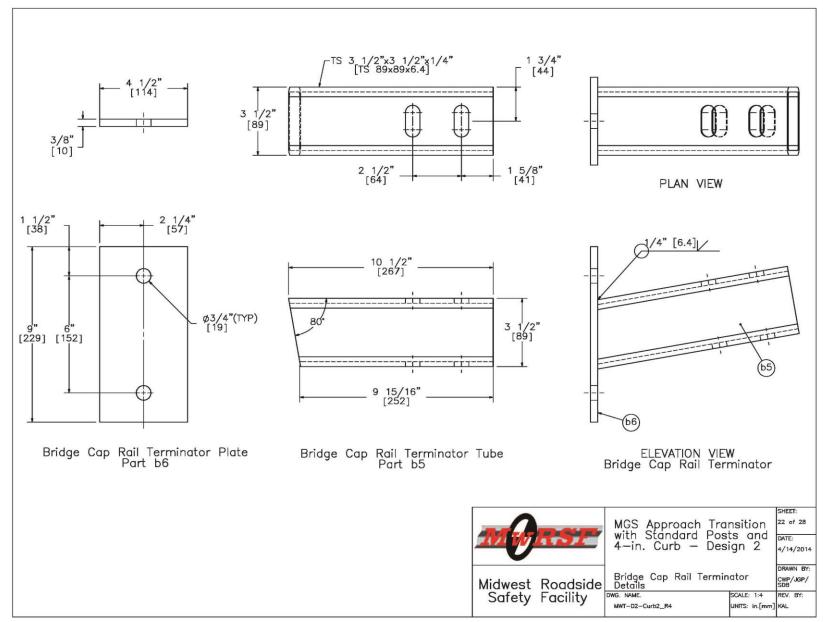


Figure 76. Bridge Cap Rail Terminator Details, Test Nos. MWTC-2 and MWTC-3

96

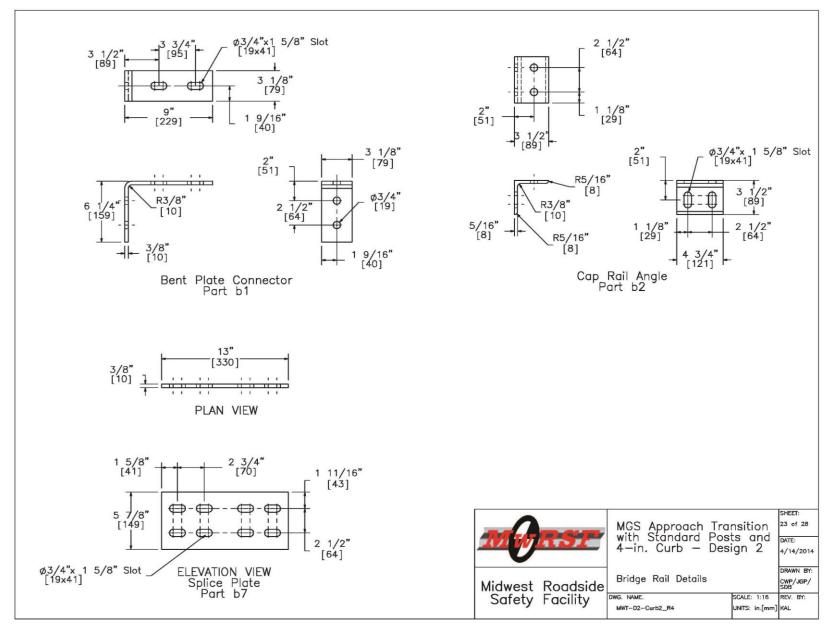


Figure 77. Bridge Rail Details, Test Nos. MWTC-2 and MWTC-3

97

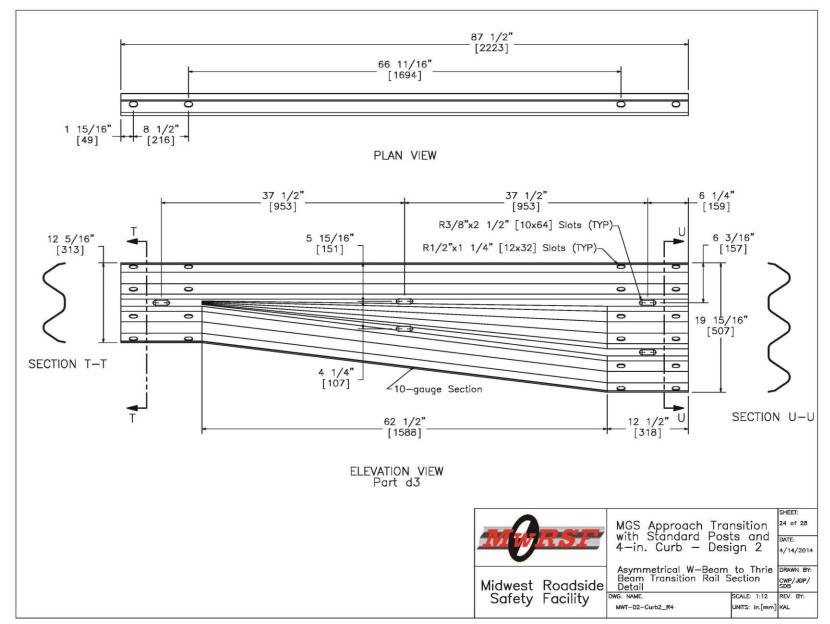


Figure 78. Asymmetrical W-Beam to Thrie Beam Transition Rail Section Detail, Test Nos. MWTC-2 and MWTC-3

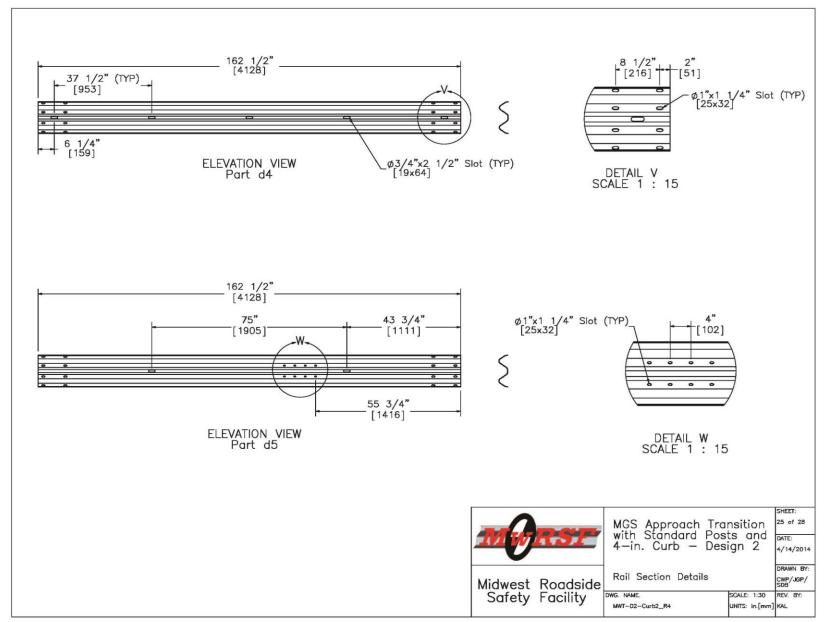


Figure 79. Rail Section Details, Test Nos. MWTC-2 and MWTC-3

66

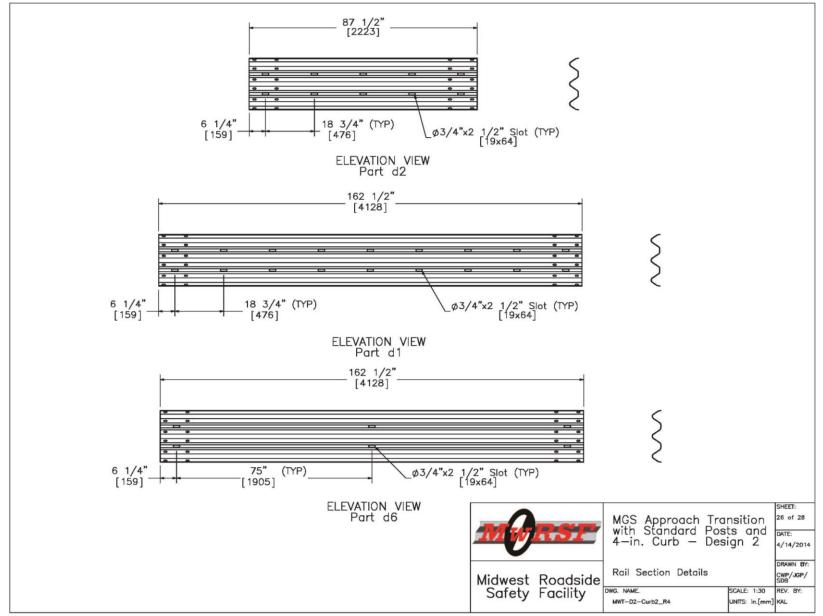


Figure 80. Rail Section Details, Test Nos. MWTC-2 and MWTC-3

Item No.	QTY.	Description	Material Spec Hardware Guid	
a1	7	6"x12"x14 1/4" [152x305x362] Blockout - Post 3-9	SYP Grade No.1 or better PDB10a	
a2	6	6"x12"x19" [152x305x483] Blockout - Post 10-15	SYP Grade No.1 or better -	
a3	2	6"x8"x19" [152x305x483] Blockout - Post 16-17	SYP Grade No.1 or better -	
a4	1	6"x8"x15" [152x305x381] Blockout - Post 18	SYP Grade No.1 or better -	
a5	2	BCT Timber Post MGS Height	SYP Grade No.1 or better PDF01	
b1	2	6 1/4"x9"x3/8" [159x229x9.5] Bridge Cap Rail Bent Plate Connector	ASTM A36 –	
b2	6	3 1/2"x3 1/2"x5/16" [89x89x7.9] Bridge Cap Rail Angle	ASTM A36 –	
b3	1	C8x11.5 [C203x17.1] Bridge Cap Rail	ASTM A36 –	
b4	1	C8x11.5 [C203x17.1] Bridge Cap Rail Transition	ASTM A36 –	
b5	1	3 1/2"x3 1/2"x1/4" [89x89x6.4] Bridge Cap Rail Terminator Tube	ASTM A36 –	
b6	1	9"x4 1/2"x3/8" [229x114x9.5] Terminator Plate	ASTM A36 –	
b7	1	5 7/8"x13"x3/8" [149x330x9.5] Bridge Cap Rail Splice Plate	ASTM A36 –	
b8	3	12"x14"x1 1/4" [305x356x32] Bridge Cap Connector Plate	ASTM A36 –	
b9	3	W6x15 [W152x22.3] Steel Bridge Blockout	ASTM A992 -	
b10	3	W6x20 [W152x29.8] Steel Bridge Post - Post Nos. 19-21	ASTM A992 -	
c1	2	6"x8"x3/16" [152x203x5],72" [1829] Long Foundation Tube	ASTM A500 Grade B PTE06	
c2	1	Strut and Yoke Assembly	ASTM A36 Steel Galvanized -	
c3	1	Anchor Bracket	ASTM A36 FPA01-02	
c4	1	6' [1829] Long BCT Anchor Cable Assembly	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope FCA01	
c5	1	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36 FPB01	
c6	1	2 3/8" [60] O.D., 6" [152] Long BCT Hole Insert	ASTM A53 Grade B Schedule 40 FMM02	
d1	2	12'-6" [3810] Thrie Beam Section	12 gauge AASHTO M180 -	
d2	1	6'-3" [1905] Thrie Beam Section	12 gauge AASHTO M180 -	
d3	1	6'-3" [1905] W-Beam to Thrie-Beam Transition Section	10 gauge AASHTO M180 RWT02a	
d4	4	12'-6" [3810] W-Beam MGS Section	12 gauge AASHTO M180 RWM04a	
d5	1	12'-6" [3810] W-Beam MGS End Section 12 gauge AASHTO M180		
d6	1	12'-6" [3810] Thrie Beam Section	12 gauge AASHTO M180 RTM02a	
			MGS Approach Transition with Standard Posts and 4-in. Curb – Design 2 Bill of Materials	
			dwest Roadside afety Facility	

Figure 81. Bill of Materials, Test Nos. MWTC-2 and MWTC-3

Item No.	QTY.	Description	Material Spec	Hardware Guide
e1	18	1" [25] Dia. UNC, 13 1/2" [343] Long Threaded Rod and Heavy Hex Nut	Bolt B7 or ASTM A449 Type 1, Nut ASTM A563 Gr. C	-
e2	18	1" [25] Dia. Hardened Round Washer	ASTM F436 Type 1	FWC24a
e3	2	7/8" [22] Dia. UNC, 7 1/2" [191] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX22a
e4	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	FWC22a
e5	8	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a
e6	42	5/8" [16] Dia. UNC, 2" [51] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a
e7	2	5/8" [16] Dia. UNC, 5" [127] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a
e8	2	5/8" Dia. x 10" [M16x254] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBX16a
e9	68	5/8" [16] Dia. UNC, 1 1/2" [38] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB01
e10	6	5/8" [16] Dia. UNC, 2" [51] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB02
e11	8	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB03
e12	18	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB06
e13	116	5/8" [16] Dia. Plain Round Washer	ASTM F844	FWC16a
e14	8	16D Double Head Nail	-	-
e15	10	11 1/2" x 5 3/4" [292x146] Bent #4 Rebar ASTM A615 Grade 60		
e16	3	47' [14.3 m] Long #4 Rebar ASTM A615 Grade 60		
e17	10	13 1/2" [343] Long #4 Rebar	ASTM A615 Grade 60	-
f1	7	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 3-9	ASTM A992	-
f2	6	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 10-15	ASTM A992	-
f3	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 16	ASTM A992	-
f4	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 17	ASTM A992	-
f5	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 18	ASTM A992	-
			V FUCILITY	ign 2 DATE: 4/14/201

Figure 82. Bill of Materials Continued, Test Nos. MWTC-2 and MWTC-3

Figure 83. System Photographs, Test Nos. MWTC-2 and MWTC-3

7 FULL-SCALE CRASH TEST NO. MWTC-2

7.1 Static Soil Test

Before full-scale crash test no. MWTC-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Test No. MWTC-2

The 2,410-lb (1,093-kg) small passenger car impacted the MGS to three beam transition system with curb at a speed of 61.3 mph (98.7 km/h) and at an angle of 25.6 degrees. A summary of the test results and sequential photographs are shown in Figure 84. Additional sequential photographs are shown in Figures 85 and 86.

7.3 Weather Conditions

Test no. MWTC-2 was conducted on November 30, 2012 at approximately 1:15 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 7.

Temperature	47° F
Humidity	52%
Wind Speed	5 mph
Wind Direction	Variable
Sky Conditions	Clear
Visibility	6 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

Table 7. Weather Conditions, Test No. MWTC-2

7.4 Test Description

Initial vehicle impact was to occur 18³/₄ in. (476 mm) downstream of post no. 7, as shown in Figure 87. The actual point of impact was 11¹/₄ in. (286 mm) downstream of post no. 7. A sequential description of the impact events is contained in Table 8. The vehicle came to rest 43.0 ft (13.1 m) downstream of impact and 3.8 ft (1.2 m) laterally in front of the system. The vehicle trajectory and final position are shown in Figures 84 and 88.

Table 8. Sequential Description of Impact Events, Test No. MWTC-2

TIME	EVENT		
(sec)	EVENT		
0.000	The vehicle impacted the system 11 ¹ / ₄ in. (286 mm) downstream of post no. 7.		
0.014	The vehicle's left-front tire underrode rail; the left-front fender deformed.		
0.034	The vehicle's left-front tire overrode curb.		
0.068	The vehicle's left-front tire contacted and snagged on post no. 8.		
0.070	Rail between post nos. 7 and 11 deflected backward, and left-front wheel deformed.		
0.100	The blockout at post no. 8 disengaged from post.		
0.132	The vehicle's left-front tire contacted post no. 9, and left rear tire was airborne.		
0.144	The rail between post nos. 7 and 9 deflected forward.		
0.174	The vehicle's front bumper contacted ground.		
0.176	The vehicle's left-front tire contacted post no. 10.		
0.228	The front-left tire was sliding down backside of curb, and it contacted post no. 11.		
0.230	The blockout at post no. 11 fractured.		
0.240	The vehicle's right-rear tire was airborne.		
0.242	Vehicle's front bumper even with post no. 13, and vehicle nearly parallel with system.		
0.258	The vehicle's left-rear tire was airborne.		
0.280	Front bumper was detaching from vehicle, and vehicle began to yaw toward barrier.		
0.296	The front-left tire impacted post no. 12 and detached from vehicle.		
0.312	The vehicle exited system.		
2.130	The vehicle came to a stop.		

7.5 System Damage

Damage to the barrier was moderate, as shown in Figures 90 and 91. Barrier damage consisted of deformed guardrail and posts, displaced soil, fractured wooden spacer blockouts, and contact marks on sections of guardrail and posts. The length of vehicle contact along the barrier was approximately 18 ft – 5 in. (5.6 m), which spanned from $11\frac{1}{4}$ in. (286 mm) downstream of post no. 7 to 7 in. (178 mm) downstream of post no. 12.

The contact marks on the rail began 11¹/₄ in. (286 mm) downstream of post no. 7 and continued until 7 in. (178 mm) downstream of post no. 12. The bottom corrugation of the W-beam folded up starting at the midspan of post nos. 7 and 8 and extending to post no. 8. The bottom corrugation flattened between post nos. 8 and 12. There were also various kinks in the rail throughout the impact region. The curb had spalling between post nos. 7 and 8. The rail disengaged from post nos. 8 through 10.

The front face of post no. 7 twisted downstream and rotated backward. Post no. 8 rotated and bent. The flanges and web deformed, and the bolt pulled out of the rail. The front flanges of post nos. 9 through 11 rotated upstream. Post no. 12 twisted downstream and rotated backward. At post no. 8, the back, upstream corner of the blockout partially separated, and the bolt was embedded. The bottom corner on the front, downstream side of the blockout was crushed. The blockout split down the middle and disengaged from post no. 11.

The permanent set deflections of the post and rail system were 16 in. (406 mm) at post no. 8 and 10¹/4 in. (260 mm) at post no. 9, respectively, as measured in the field. The maximum lateral dynamic post and barrier deflections were 14.4 in. (366 mm) at post no. 9 and 16.4 in. (417 mm) at post no. 8, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 32.5 in. (826 mm), also determined from highspeed digital video analysis.

7.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figure 92. The maximum occupant compartment deformations are listed in Table 9 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	³ ⁄ ₄ (19)	≤ 9 (229)
Floor Pan & Transmission Tunnel	¹ /2 (13)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	1 (25)	≤ 12 (305)
Side Door (Above Seat)	1 (25)	≤ 9 (229)
Side Door (Below Seat)	1 (25)	≤ 12 (305)
Roof	0	≤ 4 (102)
Windshield	0	≤ 3 (76)

Table 9. Maximum Occupant Compartment Deformations by Location

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The left-front tire was deflated, disengaged, and came to rest adjacent to post no. 12. The outside of the rim of the left-front wheel had a 7-in. (178-mm), a 3-in. (76-mm), and an 8-in. (203-mm) long dent, and the side wall of the tire had an 8-in. (203-mm) tear. A 1-in. (25-mm) long tear was found in the rim, and the brake line was severed. The entire left-front fender, the front edge of the left-front door, and the left-front corner of the hood were gouged. Also, the bottom of the left-front fender was torn and pulled away from the vehicle. The side mirror on the left side of the car was partially disengaged.

The left-front headlamp disengaged and the front bumper was only attached on the right side of the vehicle. A 2-in. (51-mm) gap occurred between the door and the B-pillar. Another gap, $2\frac{1}{2}$ in. (64 mm) wide, formed between the front of the hood and the front bumper. Fluid leaked from the front of the car, and the suspension was disengaged. The right-front tire was deflated, and the hub cap fractured.

7.7 Occupant Risk

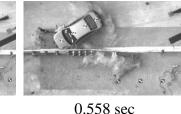
The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 10. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 10. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 84. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducer			MASH
		DTS	DTS SLICE	EDR-3	Limits
OIV	Longitudinal	-22.23 (-6.78)	-23.04 (-7.02)	-24.21 (-7.38)	≤ 40 (12.2)
ft/s (m/s)	Lateral	22.53 (6.87)	24.14 (7.36)	21.19 (6.46)	≤ 40 (12.2)
ORA	Longitudinal	-15.65	-16.58	-11.72	≤ 20.49
g's	Lateral	13.45	12.45	10.88	≤20.49
	THIV ft/s (m/s)		31.79 (9.69)	NA	not required
PHD g's		15.69	18.84	NA	not required
ASI		1.32	1.40	1.27	not required

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MWTC-2

7.8 Discussion

An analysis of the results for test no. MWTC-2 showed that the MGS to thrie beam transition system with curb adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 11.0 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MWTC-2, conducted on the MGS to thrie beam transition system with curb, was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-20.



0.162 sec

Test Agency......MwRSF

0.412 sec

Test ArticleStiffness Transition between MGS and Thrie Beam Transition with Curb Steel 12 gauge (2.66 mm) W-Beam Guardrail . Segment Location - SinglePost no. 1 to Splice 6/7 Segment Location - NestedSplice 6/7 to Post no. 9 Steel 10 gauge (3.42 mm) W-Beam to Thrie Beam Transition ٠ Segment LocationPost nos. 9 to 11 Steel 12 gauge (2.66 mm) Thrie Beam Guardrail Segment Location - SinglePost nos. 11 to 14 and 19 to 21 Segment Location - NestedPost nos. 14 to 19 Guardrail Posts ٠ Post Nos. 1-2......46 in. (1,168 mm) long, BCT timber posts Post Spacing . Soil Type AASHTO Grade B ٠ Vehicle Test Inertial......2,410 lb (1,093 kg) Impact Conditions Exit Conditions . Exit Box Criterion Passed

43' [13.1 m] - 3'-10" [1.2 m] 14'-7" [4.4 m] 32"-10" [10.0 m] Maximum Interior Deformation......1 in. (25 mm) Maximum Test Article Deflections Maximum Angular Displacements Roll.....-13.7° < 75° Pitch.....-8.6° < 75° Yaw-70.7° Transducer Data Transducer MASH **Evaluation** Criteria DTS SLICE Limit DTS EDR-3 -22.23 -23.04 -24.21 ≤ 40 OIV Longitudinal (6.78)(-7.02)(-7.38)(12.2)ft/s 22.53 24.14 21.19 ≤ 40 (m/s)Lateral (6.87)(7.36)(6.46)(12.2) ≤ 20.49 ORA Longitudinal -15.65 -16.58 -11.72 < 20.49Lateral 13.45 12.45 10.88 g's 31.66 31.79 not THIV - ft/s (m/s) NA (9.65)(9.69)

15.69

1.32

18.84

1.40

PHD – g's

ASI

0.772 sec

required

not

required

not

required

NA

1.27

Figure 84. Summary of Test Results and Sequential Photographs, Test No. MWTC-2

0.772 sec

0.000 sec

0.042 sec

0.080 sec

0.142 sec

0.386 sec

0.772 sec

Figure 85. Sequential Photographs, Test No. MWTC-2

nonn

nonn

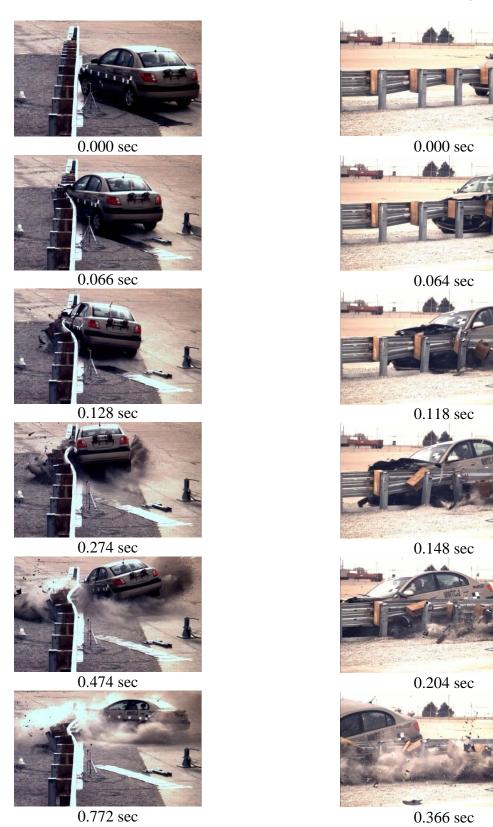


Figure 86. Additional Sequential Photographs, Test No. MWTC-2

Figure 87. Impact Location, Test No. MWTC-2

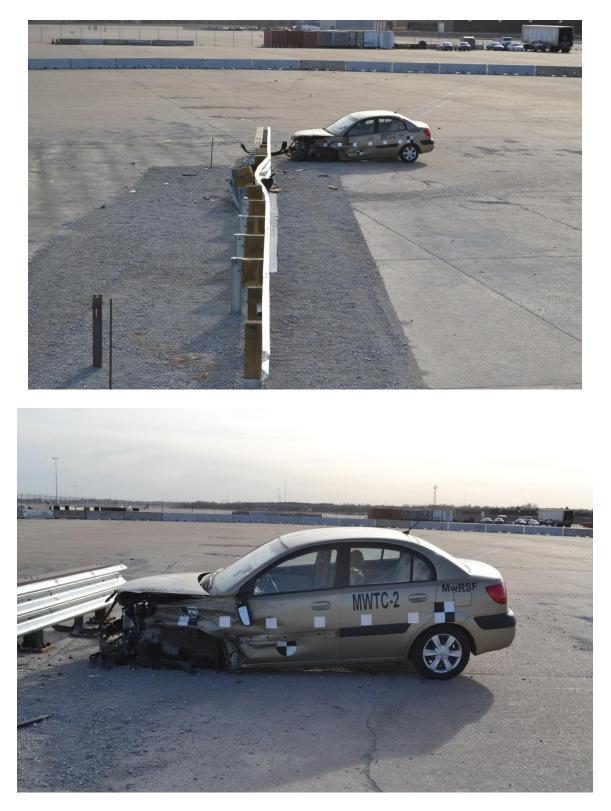
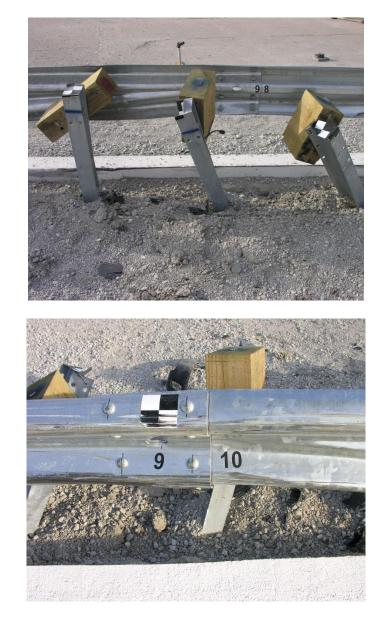


Figure 88. Vehicle Final Position, Test No. MWTC-2

Figure 89. Impact Region Damage, Test No. MWTC-2

June 30, 2014 MwRSF Report No. TRP-03-291-14

Figure 90. Rail System Damage, Test No. MWTC-2



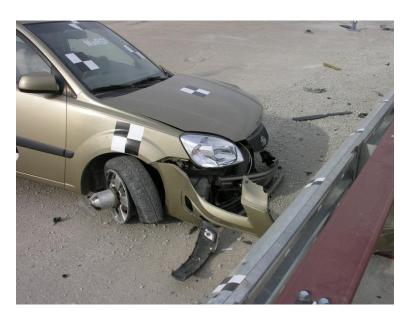

Figure 91. Post and Blockout System Damage, Test No. MWTC-2

Figure 92. Vehicle Damage, Test No. MWTC-2

8 FULL-SCALE CRASH TEST NO. MWTC-3

8.1 Static Soil Test

Before full-scale crash test no. MWTC-3 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

8.2 Test No. MWTC-3

The 4,969-lb (2,254-kg) pickup truck impacted the MGS to thrie beam transition system with curb at a speed of 61.0 mph (98.1 km/h) and at an angle of 24.4 degrees. A summary of the test results and sequential photographs are shown in Figure 93. Additional sequential photographs are shown in Figures 94 and 95. The impact severity of test no. MWTC-3 was 108.9 kip-ft (147.6 kJ). This value was larger than the lower bound, as specified by MASH with an 8% reduction, 105.6 kip-ft (143.1 kJ).

8.3 Weather Conditions

Test no. MWTC-3 was conducted on May 16, 2013 at approximately 12:15 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 11.

Temperature	83° F
Humidity	65%
Wind Speed	6 mph
Wind Direction	South
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.01 in.
Previous 7-Day Precipitation	0.08 in.

Table 11. Weather Conditions, Test No. MWTC-3

8.4 Test Description

Initial vehicle impact was to occur 75 in. (1,905 mm) upstream of post no. 9, as shown in Figure 96, which was selected based on previous testing [1-2]. Initial vehicle impact occurred at the targeted impact point. A sequential description of the impact events is contained in Table 12. The vehicle came to rest 101 ft (30.8 m) downstream of impact and 6.4 ft (2.0 m) laterally behind the system. The vehicle trajectory and final position are shown in Figures 93 and 97.

TIME	EVENT		
(sec)	EVENI		
0.000	The vehicle impacted the system 75 in. (1,905 mm) upstream of post no. 9.		
0.006	Post nos. 7 and 8 began to deflect backward.		
0.014	Post nos. 9 and 10 began to deflect backward.		
0.022	The vehicle's left-front headlight and hood began to deform.		
0.030	The guardrail between post nos. 8 and 9 began to flatten.		
0.044	The vehicle's left-front tire began to override the curb of the system.		
0.056	The vehicle began to yaw away from barrier.		
0.070	The vehicle's left-front tire underrode the system.		
0.078	Post no. 11 began to twist.		
0.080	Post no. 12 was deflecting backward.		
0.090	The left-front tire impacted post no. 9, ruptured, and deflated.		
0.102	Post nos. 13 and 14 were deflecting backward.		
0.110	The vehicle's right rear tire became airborne.		
0.140	The left-side door of the vehicle began to deform.		
0.160	The vehicle began to pitch downward.		
0.192	The vehicle's left-rear quarter contacted the guardrail between post nos. 7 and 8.		
0.206	The occupant was positioned against driver door.		
0.218	The vehicle is parallel with system.		
0.258	The vehicle's rear bumper reached the top of rail height between post nos. 7 and 8.		
0.300	The vehicle lost contact with rail and came to a stop.		
0.326	The vehicle exited system.		

Table 12. Sequential Description of Impact Events, Test No. MWTC-3

8.5 System Damage

Damage to the barrier was moderate, as shown in Figures 99 and 100. System damage consisted of deformed guardrail and posts, fractured wooden posts, displaced soil, gouged wooden spacer blockouts, and contact marks on the guardrail. The length of vehicle contact along the barrier was approximately 18 ft – 2 in. (5.5 m) which spanned from the impact point to $7\frac{1}{2}$ in. (191 mm) upstream of post no. 14.

Flattening of the bottom corrugation began 18 in. (457 mm) upstream of post no. 8 and ended 13 in. (330 mm) upstream of post no. 11. Guardrail bolts pulled through the rail element at post nos. 6, 8, and 10 through 12. There were also several kinks in the rail throughout the impact region.

Post no. 1 partially fractured vertically through the length, on both the upstream and downstream faces. Post nos. 3 through 6 rotated downstream, and post no. 7 rotated backward and upstream. Post no. 8 rotated back and downstream and twisted downstream. The front flange of post no. 9 twisted downstream, and the post rotated backward. The front flange of post no. 10 twisted upstream. Post nos. 10 and 11 bent backward and downstream. Post nos. 12 and 13 rotated backward and downstream. Post no. 12 was also twisted upstream. All blockouts remained attached to their respective posts. The blockouts at post nos. 8, 9, and 11 through 14 were gouged on the top of the blockouts, and the blockout at post no. 10 was twisted 45 degrees.

The permanent set of the rail and posts were 16¹/₈ in. (410 mm) at post no. 10 and 18³/₈ in. (467 mm) at post no. 10, respectively, as measured in the field. The maximum lateral dynamic post and barrier deflections were 23.9 in. (607 mm) at post no. 10 and 22.0 in. (559 mm) at post no. 10, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 40.8 in. (1,036 mm), also determined from high-speed digital video analysis.

8.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figure 101. The maximum occupant compartment deformations are listed in Table 13 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

MASH ALLOWABLE MAXIMUM DEFORMATION DEFORMATION LOCATION in. (mm) in. (mm) Wheel Well & Toe Pan $1\frac{1}{8}(29)$ $\leq 9(229)$ Floor Pan & Transmission Tunnel 1/2 (13) $\leq 12 (305)$ 21/2 (64) Side Front Panel (in Front of A-Pillar) $\leq 12 (305)$ $\leq 9(229)$ Side Door (Above Seat) 11/2 (38) Side Door (Below Seat) 11/2 (38) $\leq 12 (305)$ Roof 0 < 4 (102)Windshield 0 $\leq 3(76)$

Table 13. Maximum Occupant Compartment Deformations by Location

The majority of the damage was concentrated on the left-front corner and left side of the vehicle where impact occurred. The left-front quarter panel deflected inward 10 in. (254 mm), and the left-front bumper was kinked. The left-front headlight and wheel assembly were both detached from the vehicle. Contact marks spanned the left side of the vehicle at the rail height. The left-front wheel well sheet metal tearing was torn at the top. The left-side windshield had spider-web cracking. A 3-in. (76-mm) indentation occurred in the left-front door and an 8-in. (203-mm) crack was found on the left-rear rim. The left-side bumper buckled, and a 3³/4-in. (95-mm) gap occurred between the left-rear bumper and the fender. At the final position, brake fluid

leaked where the left-front wheel detached. The middle-bottom of the grill had a 4-in. (102-mm) tear. Also, a 2-in. (51-mm) gap occurred at the left-front and right-front hood connections.

8.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 14. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 14. The results of the occupant risk analysis, as determined from the accelerometer data, are also summarized in Figure 93. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Transducer			MASH
		DTS	DTS SLICE	EDR-3	Limits
OIV	Longitudinal	-17.62 (-5.37)	-17.46 (-5.32)	-18.77 (-5.72)	≤ 40 (12.2)
ft/s (m/s)	Lateral	16.31 (4.97)	17.79 (5.42)	17.11 (5.22)	≤ 40 (12.2)
ORA	Longitudinal	-12.52	-12.29	-13.07	\leq 20.49
g's	Lateral	10.94	9.18	10.12	\leq 20.49
THIV ft/s (m/s)		23.03 (7.02)	23.75 (7.24)	NA	not required
PHD g's		15.21	14.83	NA	not required
ASI		0.88	0.93	0.92	not required

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MWTC-3

8.8 Discussion

The analysis of the results for test no. MWTC-3 showed that the stiffness transition between the MGS and thrie beam transition with curb adequately contained and redirected the

2270P vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor override the barrier and remained upright throughout the impact event. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 11.7 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MWTC-3, conducted on the stiffness transition between the MGS and thrie beam transition with curb, was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-21.

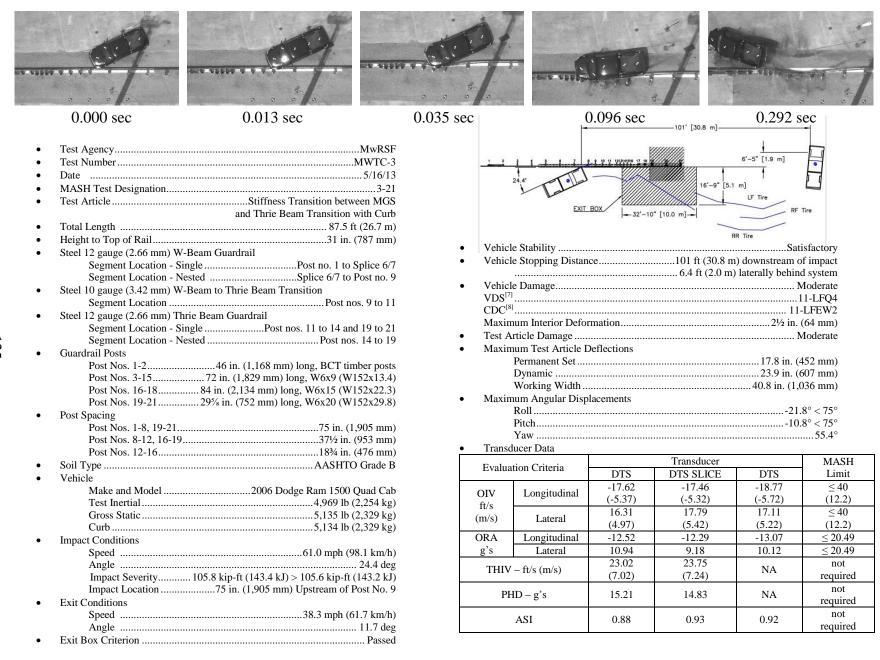


Figure 93. Summary of Test Results and Sequential Photographs, Test No. MWTC-3

125

June 30, 2014 MwRSF Report No. TRP-03-291-14

0.000 sec

0.092 sec

0.154 sec

0.696 sec

0.000 sec

0.072 sec

0.138 sec

0.200 sec

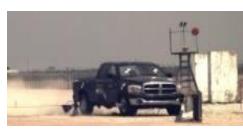
0.275 sec

Figure 94. Sequential Photographs, Test No. MWTC-3

0.000 sec

0.080 sec

0.122 sec


0.174 sec

0.240 sec

0.358 sec

0.000 sec

0.090 sec

0.156 sec

0.222 sec

0.422 sec

0.696 sec

Figure 95. Additional Sequential Photographs, Test No. MWTC-3

Figure 96. Impact Location, Test No. MWTC-3



Figure 97. Vehicle Final Position, Test No. MWTC-3

Figure 98. System Damage Overview, Test No. MWTC-3

Figure 99. System Damage, Test No. MWTC-3

Figure 100. System Damage, Test No. MWTC-3

Figure 101. Vehicle Damage, Test No. MWTC-3

9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The objective of this study was to evaluate the MGS stiffness transition between W-beam guardrail and thrie beam approach transitions with a 4-in. (102-mm) curb. The MGS stiffness transition incorporated an asymmetrical W-beam to three beam transition element, standard MGS, and single and nested three beam sections with both guardrail and bridge posts. In 2010, the stiffness transition configuration was previously crash tested without a curb by MwRSF researchers.

Three full-scale crash tests were conducted on the modified stiffness transition according to the TL-3 safety performance criteria found in MASH. A summary of the safety performance evaluation for all three tests is provided in Table 15. The initial crash test, test no. MWTC-1, was performed according to test designation no. 3-20 of MASH with an 1100C small car. During the test, components of the small car penetrated under the W-beam rail, while the wheel climbed up and overrode the curb. These events led to heavy upward and lateral forces on the lower region of the guardrail in advance of the splice between the W-beam and asymmetrical transition segments. The W-beam rail ruptured at the splice location and plastically hinged away from impact, which contributed to snag on a combination of stiff rail elements and several exposed transition posts. Subsequently, the longitudinal ORA values exceeded the MASH limits. Therefore, test no. MWTC-1 was determined to be unacceptable according to test designation 3-20 of MASH.

In an effort to strengthen the rail near the upstream end of the transition, an additional 12gauge (2.66-mm) W-beam segment was incorporated into the barrier system such that 12.5 ft (3.8 m) of nested guardrail preceded the asymmetric W-to-thrie transition segment. MASH test designation 3-20 was then repeated on the modified system with the same conditions and target impact point as used in test no. MWTC-1. For test no. MWTC-2, the small car was safely contained and redirected with moderate damage to the car and barrier. The test did not pose any significant risk to the occupants of the vehicle as the measured ORA and OIV values were within MASH safety limits. Therefore, test no. MWTC-2 was determined to be acceptable according to test designation no. 3-20 of MASH.

The third full-scale crash test, test no. MWTC-3, was performed with a 2270P pickup truck using the same system configuration as test no. MWTC-2, but it used a different impact point. The vehicle was safely contained and redirected with moderate damage to both the barrier system and the vehicle. Occupant compartment deformation was held to a minimum, and the measured ORA and OIV values were within MASH safety limits. Therefore, test no. MWTC-3 was determined to be acceptable according to test designation no. 3-21 of MASH.

Upon the successful completion of the MASH TL-3 testing matrix, the modified stiffness transition between the MGS and thrie beam approach guardrail transition with curb was found to satisfy current safety standards. Since a very stiff thrie beam approach guardrail transition was used in the full-scale crash testing program, the upstream stiffness transition developed herein should be applicable to most other thrie beam approach guardrail transition systems. Details concerning the attachment of the upstream stiffness transition to other thrie beam transition systems can be found in the 2010 report on the original development of the stiffness transition [1].

The use of nested W-beam rail at the upstream end of the W-to-thrie transition segment will be required for transition installations that utilize lower curbs. The use of nested rail was shown to sufficiently increase the strength of the system to prevent rail tearing. Additionally, rail nesting adjacent to the upstream end of the transition element aided to decrease vehicle pocketing and snag. These same benefits could also be gained if the modified (nested) version of the stiffness transition was utilized for installations without curbs. Thus, system installations without curbs have the option to use either the original MGS stiffness transition design or the modified, nested, MGS stiffness transition.

As detailed in Chapter 6, the curb was installed above ground line and without additional soil backfill. Thus, the ground surface underneath and behind the barrier remained level with the roadway surface and not the top of curb. This configuration was selected as a critical design to test in order to allow a vehicle's wheel to snag or catch on the backside of the curb, thus potentially leading to increased propensity for vehicle instabilities or wheel/bumper snag on strong posts. However and if used, the 4 in. (102 mm) of extra soil backfill would result in increased post embedment, increased post-soil resistance, and a slightly stiffer and stronger barrier system. Impacts into the stiffened transition system would likely result in reduced lateral barrier displacements. Thus, the MGS stiffness transition was tested and evaluated without the extra soil fill, but it was believed that installation later could occur with or without soil backfill.

In order to ensure the safety performance of the MGS stiffness, the 4-in. (102-mm) tall curb should be placed through the entire length of the stiffness transition. Thus, the curb should be extended a minimum of 37.5 ft (11.4 m) from the bridge parapet before either being terminated or transitioning to a 6-in. (152-mm) high AASHTO Type B curb. Additionally, it is recommended to utilize a minimum length of 3 ft (0.9 m) for any curb shape transitions or terminations (e.g. transitioning from 4-in. (102-mm) curb to no curb).

The modified MGS stiffness transition to a thrie beam approach guardrail transition was 37 ft - 6 in. (11.4 m) in length (as measured from the first bridge post to the upstream end of the nested W-beam rail segment) and had 34 ft - 4.5 in. (10.5 m) of standard MGS between the stiffness transition and the upstream BCT wood anchor post. Guardrail end terminals are designed, crash tested, and evaluated for use when directly attached to semi-rigid W-beam guardrail systems, instead of stiffer approach guardrail transitions. The introduction of stiffer

(nested) rail segments may potentially lead to degraded performance of crashworthy terminals. Additionally, the placement of the upstream end anchorage too close to the stiffness transition may negatively affect system performance, thus potentially resulting in excessive barrier deflections, vehicle pocketing, wheel snagging on posts, vehicle-to-barrier override, or other vehicle instabilities. Thus, the following implementation guidelines should be considered when utilizing the modified MGS stiffness transition. Although the reference point was changed to the upstream end of the nested rail segment, these recommendations result in the same system lengths upstream of the W-to-thrie transition segment that were recommended previously for the original transition system design without nesting [1].

- 1. The length of W-beam guardrail installed upstream of the nested W-beam section is recommended to be greater than or equal to the total system length of an acceptable TL-3 guardrail end terminal. Thus, the guardrail terminal's interior end (identified by stoke length) should not intrude into the nested W-beam section of the modified MGS stiffness transition.
- 2. A recommended minimum barrier length of 34 ft $-4\frac{1}{2}$ in. (10.5 m) is to be installed beyond the upstream end of the nested W-beam section, which includes standard MGS, a crashworthy guardrail end terminal, and an acceptable anchorage system.
- 3. For flared guardrail applications, a minimum length of 12.5 ft (3.8 m) is recommended between the upstream end of the nested W-beam section and the start of the flared section (i.e. bend between flare and tangent sections).

The original MGS stiffness transition was recommended for use in either the tested configuration, Design K, or a configuration which included an additional post at the upstream end of the transition, Design L [1]. The additional post of Design L would be located at the midpoint of the first full post spacing upstream of the W-to-thrie transition segment and within the nested W-beam section of the modified MGS stiffness transition (between post nos. 7 and 8 in Figure 54). Although it provided a longer system length, Design L had foreseeable safety performance benefits, such as reductions in vehicle pocketing, snag, and system deflection.

These benefits would also apply to systems installed in combination with curb. Thus, either design can be implemented within the modified MGS stiffness transition.

The MGS stiffness transition was successfully crash tested and evaluated for use with a thrie beam approach guardrail transition where all posts were installed in level terrain. Therefore, this stiffness transition should be implemented with a minimum of 2 ft (0.61 m) of level or gently-sloped fill placed behind the posts, unless special design provisions are made to account for decreased post-soil resistance. Additionally, it is unknown as to whether a non-blocked version of the MGS installed adjacent to the new stiffness transition will negatively affect the system. The safety performance of non-blocked MGS in conjunction with the modified stiffness transition can only be verified through the use of full-scale crash testing. As such, it is recommended that a minimum of 12.5 ft (3.8 m) of standard MGS with spacer blocks be placed adjacent to the modified stiffness transition (upstream end of the nested rail section) prior to transitioning to a non-blocked, 31-in. (787-mm) tall, W-beam guardrail system.

Table 15. Summary	of Safety	Performance	Evaluation Results
10010 1010 0000000000000000000000000000	01 200100		<u>2</u> , <i>u</i> , <i>u</i>

Evaluation Factors		Eva		Test No. MWTC-1	Test No. MWTC-2	Test No. MWTC-3	
Structural Adequacy	А.	Test article should contain and controlled stop; the vehicle sh installation although controlled la	U	S	S		
	D.	Detached elements, fragments of penetrate or show potential for p an undue hazard to other traff Deformations of, or intrusions in limits set forth in Section 5.3 and	S	S	S		
	F.	The vehicle should remain uprig and pitch angles are not to exceed	S	S	S		
Occupant	H.	. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:					
Risk		Occupa	nt Impact Velocity Limit	\$	S	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:							
		Occupant R	Ridedown Acceleration Li	mits	U	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
MASH Test Designation					3-20	3-20	3-21
	Pass/Fail					Pass	Pass

10 REFERENCES

- Rosenbaugh, S.K., Faller, R.K., Bielenberg, R.W., Lechtenberg, K.A., Sicking, D.L., Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Final Report to the Midwest States Regional Pooled Fund Program, Transportation Research Report No. TRP-03-210-10, Project No. SPR-3 (017)-Years 18 and 19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, December 10, 2010.
- 2. Lechtenberg, K.A., Rosenbaugh, S.K., Bielenberg, R.W., Mongiardini, M., Faller, R.K., Albuquerque, F.D.B., *Development and Implementation of the Simplified Midwest Guardrail System Stiffness Transition*, Transportation Research Record No. 2309, Transportation Research Board, Washington, D.C., 2012.
- 3. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009
- 4. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 5. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 6. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 7. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 8. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

11 APPENDICES

Appendix A. Vehicle Center of Gravity Determination

MWTC-1	l
--------	---

Vehicle: 1100C

	Vehicle C	G Determina
		Weight
VEHICLE	Equipment	(lb)
+	Unbalasted Car (curb)	2468
+	Brake receivers/wires	6
+	Brake Frame	6
+	Brake Cylinder	22
+	Strobe Battery	6
+	Hub	20
+	CG Plate (EDRs)	10
+	DTS	17
-	Battery	-33
-	Oil	-13
-	Interior	-28
-	Fuel	0
-	Coolant	-8
-	Washer fluid	0
BALLAST	Spare tire	-27
	Misc.	
	Misc.	

Vehicle CG Determination

Estimated Total Weight

wheel base	98.5	in.		
MASH targets			Test Inertial	Difference
Test Inertial Wt (lb)		2420 (+/-)55	2457	37.0
Long CG (in.)		39 (+/-)4	35.92	-3.07977
Lateral CG (in.)		N/A	0.409989	NA

2446 lb

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)					
	Left		Right		
Front		793		801	
Rear		448		426	
FRONT		1594	lb		
REAR	874 lb				
TOTAL		2468	lb		

Dummy = 166lbs.						
TEST INE	RTIAL	. WEI	GHT (lb)		
(from scales)						
	Left		Right			
Front		774		787		
Rear		437		459		
FRONT		1561	lb			
REAR		896	lb			
TOTAL		2457	lb			

Figure A-1. Vehicle Mass Distribution, Test No. MWTC-1

MWTC-2

Vehicle: 1100C/Rio

	Vehicle (CG Determina
		Weight
VEHICLE	Equipment	(lb)
+	Unbalasted Car (curb)	2390
+	Brake receivers/wires	5
+	Brake Frame	5
+	Brake Cylinder	22
+	Strobe Battery	6
+	Hub	20
+	CG Plate (EDRs)	10
+	DTS	17
-	Battery	-33
-	Oil	-8
-	Interior	-28
-	Fuel	0
-	Coolant	0
-	Washer fluid	-8
BALLAST	Water	0
	Spare Tire	
	Misc.	

Vehicle CG Determination

Estimated Total Weight

23	98	lb

wheel base	98.75	in.		
MASH targets			Test Inertial	Difference
Test Inertial Wt (lb)		2420 (+/-)55	2410	-10.0
Long CG (in.)		39 (+/-)4	37.98	-1.01608
Lateral CG (in.)		N/A	0.522614	NA

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)				
	Left		Right	
Front		744		759
Rear		451		436
FRONT		1503	lb	
REAR		887	lb	
TOTAL		2390	lb	

Dummy = 166lbs.								
TEST INE	TEST INERTIAL WEIGHT (Ib)							
(from scales)								
	Left		Right					
Front		731		752				
Rear		452		475				
FRONT		1483	lb					
REAR		927	lb					
TOTAL		2410	lb					

Figure A-2. Vehicle Mass Distribution, Test No. MWTC-2

	Vehicle CG Determination				
		Weight	Vert CG	Vert M	
VEHICLE	Equipment	(lb)	(in.)	(lb-in.)	
+	Unbalasted Truck (Curb)	5134	28.32279	145409.2	
+	Brake receivers/wires	6	52.5	315	
+	Brake Frame	5	27	135	
+	Brake Cylinder (Nitrogen)	22	27	594	
+	Strobe/Brake Battery	5	32	160	
+	Hub	27	14.9375	403.3125	
+	CG Plate (EDRs)	8	32	256	
-	Battery	-43	41	-1763	
-	Oil	-8	17	-136	
-	Interior	-74	22	-1628	
-	Fuel	-156	21	-3276	
-	Coolant	-15	37	-555	
-	Washer fluid	-8	40	-320	
BALLAST	Water	0	21	0	
	DTS	21	30	630	
	Misc.			0	
				140224.5	

Vehicle:

MWTC-3

Vahiala	CC	Dotorminati	•

2270P

Estimated Total Weight (lb)	4924	
Vertical CG Location (in.)	28.47776	

wheel base (in.)	140.5		
MASH Targets	Targets	Test Inertial	Difference
Test Inertial Weight (lb)	5000 ± 110	4969	-31.0
Long CG (in.)	63 ± 4	62.06	-0.93570
Lat CG (in.)	NA	0.2671	NA
Vert CG (in.) ≥	28	28.48	0.47776

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)				
	Left		Right	
Front		1494		1360
Rear		1129		1151
FRONT		2854	lb	
REAR		2280	lb	
TOTAL		5134	lb	

TEST INERTIAL WEIGHT (Ib)						
(from scales)						
	Left		Right	:		
Front		1389		1385		
Rear		1076		1119		
FRONT		2774	lb			
REAR		2195	lb			
TOTAL		4969	lb			

Figure A-3. Vehicle Mass Distribution, Test No. MWTC-3

Appendix B. Material Specifications

Item No.	QTY.	Description	Material Spec	Hardware Guide	Reference
a1	7	6"x12"x14 1/4" [152x305x362] Blockout - Post 3-9	SYP Grade No.1 or better	PDB10a	COC Invoice #43270
a2	6	6"x12"x19" [152x305x483] Blockout - Post 10-15	SYP Grade No.1 or better	-	COC Invoice #43688
a3	2	6"x8"x19" [152x305x483] Blockout - Post 16-17	SYP Grade No.1 or better	-	COC Invoice #43688
a4	1	6"x8"x15" [152x305x381] Blockout - Post 18	SYP Grade No.1 or better	-	COC Invoice #43688
a5	2	BCT Timber Post -MGS Height	SYP Grade No. 1 or better	PDF01	COC Invoice #2589 and #2598
b1	2	6 1/4"x9"x3/8" [159x229x9.5] Bridge Cap Rail Bent Plate Connector	ASTM A36	-	H#85211
b2	6	3 1/2"x3 1/2"x5/16" [89x89x7.9] Bridge Cap Rail Angle	ASTM A36	-	H#85211
b3	1	C8x11.5 [C203x17.1] Bridge Cap Rail	ASTM A36	-	H#85211
b4	1	C8x11.5 [C203x17.1] Bridge Cap Rail Transition	ASTM A36	-	H#85211
b5	1	3 1/2"x3 1/2"x1/4" [89x89x6.4] Bridge Cap Rail Terminator Tube	ASTM A36	-	H#85211
b6	1	9"x4 1/2"x3/8" [229x114x9.5] Terminator Plate	ASTM A36	-	H#85211
b7	1	5 7/8"x13"x3/8" [149x330x9.5] Bridge Cap Rail Splice Plate	ASTM A36	-	H#85211
b8	3	12"x14"x1 1/4" [305x356x32] Bridge Cap Connector Plate	ASTM A36	-	H#85211
b9	3	W6x15 [W152x22.3] Steel Bridge Blockout	ASTM A992	-	H#22514790
b10	3	W6x20 [W152x29.8] Steel Bridge Post	ASTM A992	-	H#11959830
c1	2	72" [1829] Long Foundation Tube	A500 Grade B	PTE05	H#A13386
c2	1	Strut and Yoke Assembly	ASTM A36	-	COC Invoice #1093497
c3	1	Anchor Bracket	ASTM A36	FPA01-02	H#V911470
c4	1	6' [1829] Long BCT Anchor Cable Assembly	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope	FCA01	H#M39999B
c5	1	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36	FPB01	H#18486
c6	1	2 3/8" [60] O.D., 6" [152] Long BCT Hole Insert	ASTM A53 Grade B Schedule 40	FMM02	H#280638
d1	3	12'-6" [3810] Thrie Beam Section - 1/4 Post Spacing	12 gauge AASHTO M180	-	H#151877
d2	1	6'-3" [1905] Thrie Beam Section - 1/4 Post Spacing	12 gauge AASHTO M180	-	H#154420
d3	1	6'-3" [1905] W-Beam to Thrie- Beam Transition Section	10 gauge AASHTO M180	RWT02a	H#1106510
d4	3	12'-6" [3810] W-Beam MGS Section	12 gauge AASHTO M180	RWM04a	H#4614
d5	1	12'-6" [3810] W-Beam MGS End Section	12 gauge AASHTO M180	RWM14a	H#4614

Table B-1. Bill of Materials for Test No. MWTC-1

e1	18	1" [25] Dia. UNC, 13 1/2" [343] Long Threaded Rod and Heavy Hex Nut	Bolt B7 or ASTM A449 Type 1, Nut ASTM A563 Gr. C	-	LOT#F2N0985600
e2	18	1" [25] Dia. Hardened Round Washer	ASTM F436 Type 1	FWC24a	LOT#017718
e3	2	7/8" [22] Dia. UNC, 7 1/2" [191] Long Hex Bolt and Hex Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX22a	H#10100058-3
e4	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	FWC22a	H#10100058-3
e5	8	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Bolt and Hex Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#090123B
e6	42	5/8" [16] Dia. UNC, 2" [51] Long Hex Bolt and Hex Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#11032541C3
e7	2	5/8" [16] Dia. UNC, 5" [127] Long Hex Bolt and Hex Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	H#01069
e8	2	5/8" [16] Dia. UNC, 10" [254] Long Hex Bolt and Hex Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	H#780337
e9	68	5/8" [16] Dia. UNC, 1 1/2" [38] Long Guardrail Bolt and Double Recessed Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB01	LOT#1335055
e10	6	5/8" [16] Dia. UNC, 2" [51] Long Guardrail Bolt and Double Recessed Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB02	H#5074697
e11	8	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Double Recessed Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB03	H#JK1110419701
e12	18	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Double Recessed Nut	ASTM A307 Gr. A, SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB06	H#JK1110419701
e13	116	5/8" [16] Dia. Plain Round Washer	ASTM F844	FWC16a	n/a
e14	8	16D Double Head Nail	-	-	n/a
e15	10	11 1/2" x 5 3/4" [292x146] Bent #4 Rebar	ASTM A615 Grade 60	-	H#K117810
e16	3	47' [14.3 m] Long #4 Rebar	ASTM A615 Grade 60	-	H#K117810
e17	10	13 1/2 [343] Long \$4 Rebar	ASTM A615 Grade 60	-	H#K117810
f1	7	W6x8.5 [W152x12.6] 72" [1829] long - Post Nos. 3-9	ASTM A992	-	LOT#5239AA-1
f2	6	W6x8.5 [W152x12.6] 72" [1829] long - Post Nos. 10-15	ASTM A992	-	LOT#5239AA-1
f3	1	W6x15 [W152x22.3] 84" [2134] long - Post No. 16	ASTM A992	-	H#11952390
f4	1	W6x15 [W152x22.3] 84" [2134] long - Post No. 17	ASTM A992	-	H#11952390
f5	1	W6x15 [W152x22.3] 84" [2134] long - Post No. 18	ASTM A992	-	H#11952390
-	-	EPOXY	AC100+ GOLD	-	LOT#C020
-	-	Concrete	minimum 3500 psi.	-	TICKET#4139567

Item No.	QTY.	Description	Material Spec	Hardware Guide	Reference
a1	7	6"x12"x14 1/4" [152x305x362] Blockout - Post 3-9	SYP Grade No.1 or better	PDB10a	COC Invoice #43270
a2	6	6"x12"x19" [152x305x483] Blockout - Post 10-15	SYP Grade No.1 or better	-	COC Invoice #44149
a3	2	6"x8"x19" [152x305x483] Blockout - Post 16-17	SYP Grade No.1 or better	-	COC Invoice #44149
a4	1	6"x8"x15" [152x305x381] Blockout - Post 18	SYP Grade No.1 or better	-	COC Invoice #44149
a5	2	BCT Timber Post -MGS Height	SYP Grade No.1 or better	PDF01	COC Invoice #2589 and #2598
b1	2	6 1/4"x9"x3/8" [159x229x9.5] Bridge Cap Rail Bent Plate Connector	ASTM A36	-	H#85211
b2	6	3 1/2"x3 1/2"x5/16" [89x89x7.9] Bridge Cap Rail Angle	ASTM A36	-	H#85211
b3	1	C8x11.5 [C203x17.1] Bridge Cap Rail	ASTM A36	-	H#85211
b4	1	C8x11.5 [C203x17.1] Bridge Cap Rail Transition	ASTM A36	-	H#85211
b5	1	3 1/2"x3 1/2"x1/4" [89x89x6.4] Bridge Cap Rail Terminator Tube	ASTM A36	-	H#85211
b6	1	9"x4 1/2"x3/8" [229x114x9.5] Terminator Plate	ASTM A36	-	H#85211
b7	1	5 7/8"x13"x3/8" [149x330x9.5] Bridge Cap Rail Splice Plate	ASTM A36	-	H#85211
b8	3	12"x14"x1 1/4" [305x356x32] Bridge Cap Connector Plate	ASTM A36	-	H#85211
b9	3	W6x15 [W152x22.3] Steel Bridge Blockout	ASTM A992	-	H#11952390
b10	3	W6x20 [W152x29.8] Steel Bridge Post - Post Nos. 19-21	ASTM A992	-	H#11959830
c1	2	6"x8"x3/16" [152x203x5],72" [1829] Long Foundation Tube	ASTM A500 Grade B	PTE06	H#A13386
c2	1	Strut and Yoke Assembly	ASTM A36	-	COC Invoice #1093497
c3	1	Anchor Bracket	ASTM A36	FPA01-02	H#V911470
c4	1	6' [1829] Long BCT Anchor Cable Assembly	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope	FCA01	H#M39999B
c5	1	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36	FPB01	H#18486
c6	1	2 3/8" [60] O.D., 6" [152] Long BCT Hole Insert	ASTM A53 Grade B Schedule 40	FMM02	H#280638
d1	2	12'-6" [3810] Thrie Beam Section - 1/4 Post Spacing	12 gauge AASHTO M180	-	H#4174436
d2	1	6'-3" [1905] Thrie Beam Section - 1/4 Post Spacing	12 gauge AASHTO M180	-	H#154420
d3	1	6'-3" [1905] W-Beam to Thrie- Beam Transition Section	10 gauge AASHTO M180	RWT02a	H#4174436
d4	4	12'-6" [3810] W-Beam MGS Section	12 gauge AASHTO M180	RWM04a	H#4614
d5	1	12'-6" [3810] W-Beam MGS End Section	12 gauge AASHTO M180	RWM14a	H#4614

Table B-2. Bill of Materials for Test No. MWTC-2

e1	18	1" [25] Dia. UNC, 13 1/2" [343] Long Threaded Rod and Heavy	Bolt B7 or ASTM A449 Type 1, Nut	-	LOT#F2N0985600
e2	18	Hex Nut 1" [25] Dia. Hardened Round Washer	ASTM A563 Gr. C ASTM F436 Type 1	FWC24a	LOT#017718
e3	2	7/8" [22] Dia. UNC, 7 1/2" [191] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX22a	H#10100058-3
e4	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	FWC22a	H#10100058-3
e5	8	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#090123B
e7	2	5/8" [16] Dia. UNC, 5" [127] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	H#01069
e8	2	5/8" [16] Dia. UNC, 10" [254] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#10083111C3
e9	68	5/8" [16] Dia. UNC, 1 1/2" [38] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB01	LOT#1335055
e10	6	5/8" [16] Dia. UNC, 2" [51] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB02	H#5074697
e6	42	5/8" [16] Dia. UNC, 2" [51] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#11032541C3
e11	8	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB03	H#JK1110419701
e12	18	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB06	H#JK1110419701
e13	116	5/8" [16] Dia. Plain Round Washer	ASTM F844	FWC16a	n/a
e14	8	16D Double Head Nail	-	-	n/a
e15	10	11 1/2" x 5 3/4" [292x146] Bent #4 Rebar	ASTM A615 Grade 60	-	H#K117810
e16	3	47' [14.3 m] Long #4 Rebar	ASTM A615 Grade 60	-	H#K117810
e17	10	13 1/2" [343] Long #4 Rebar	ASTM A615 Grade 60	-	H#K117810
f1	7	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 3-9	ASTM A992	-	LOT#5239AA-1
f2	6	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 10-15	ASTM A992	-	LOT#5239AA-1
f3	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 16	ASTM A992	-	H#11952390
f4	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 17	ASTM A992	-	H#11952390
f5	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 18	ASTM A992	-	H#11952390
-	-	EPOXY	AC100+ GOLD	-	LOT#C020
		Concrete Curb NEW	minimum 3500 psi.	-	TICKET#4139567

Item No.	QTY.	Description	Material Spec	Hardware Guide	Reference
a1	7	6"x12"x14 1/4" [152x305x362] Blockout - Post 3-9	SYP Grade No.1 or better	PDB10a	COC Invoice #43270
a2	6	6"x12"x19" [152x305x483] Blockout - Post 10-15	SYP Grade No.1 or better	-	COC Invoice #44149
a3	2	6"x8"x19" [152x305x483] Blockout - Post 16-17	SYP Grade No.1 or better	-	COC Invoice #44149
a4	1	6"x8"x15" [152x305x381] Blockout - Post 18	SYP Grade No.1 or better	-	COC Invoice #44149
a5	2	BCT Timber Post -MGS Height	SYP Grade No.1 or better	PDF01	COC Invoice #2589 and #2598
b1	2	6 1/4"x9"x3/8" [159x229x9.5] Bridge Cap Rail Bent Plate Connector	ASTM A36	-	H#85211
b2	6	3 1/2"x3 1/2"x5/16" [89x89x7.9] Bridge Cap Rail Angle	ASTM A36	-	H#85211
b3	1	C8x11.5 [C203x17.1] Bridge Cap Rail	ASTM A36	-	H#85211
b4	1	C8x11.5 [C203x17.1] Bridge Cap Rail Transition	ASTM A36	-	H#85211
b5	1	3 1/2"x3 1/2"x1/4" [89x89x6.4] Bridge Cap Rail Terminator Tube	ASTM A36	-	H#85211
b6	1	9"x4 1/2"x3/8" [229x114x9.5] Terminator Plate	ASTM A36	-	H#85211
b7	1	5 7/8"x13"x3/8" [149x330x9.5] Bridge Cap Rail Splice Plate	ASTM A36	-	H#85211
b8	3	12"x14"x1 1/4" [305x356x32] Bridge Cap Connector Plate	ASTM A36	-	H#85211
b9	3	W6x15 [W152x22.3] Steel Bridge Blockout	ASTM A992	-	H#11952390
b10	3	W6x20 [W152x29.8] Steel Bridge Post - Post Nos. 19-21	ASTM A992	-	H#11959830
c1	2	6"x8"x3/16" [152x203x5],72" [1829] Long Foundation Tube	ASTM A500 Grade B	PTE06	H#A13386
c2	1	Strut and Yoke Assembly	ASTM A36	-	COC Invoice #1093497
c3	1	Anchor Bracket	ASTM A36	FPA01-02	H#V911470
c4	1	6' [1829] Long BCT Anchor Cable Assembly	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope	FCA01	H#M39999B
c5	1	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36	FPB01	H#18486
c6	1	2 3/8" [60] O.D., 6" [152] Long BCT Hole Insert	ASTM A53 Grade B Schedule 40	FMM02	H#280638
d1	3	12'-6" [3810] Thrie Beam Section - 1/4 Post Spacing	12 gauge AASHTO M180	-	H#4174436
d2	1	6'-3" [1905] Thrie Beam Section - 1/4 Post Spacing	12 gauge AASHTO M180	-	H#154420
d3	1	6'-3" [1905] W-Beam to Thrie- Beam Transition Section	10 gauge AASHTO M180	RWT02a	H#4174436
d4	4	12'-6" [3810] W-Beam MGS Section	12 gauge AASHTO M180	RWM04a	H#4614
d5	1	12'-6" [3810] W-Beam MGS End Section	12 gauge AASHTO M180	RWM14a	H#4614

Table B-3. Bill of Materials for Test No. MWTC-3

e1	18	1" [25] Dia. UNC, 13 1/2" [343] Long Threaded Rod and Heavy	Bolt B7 or ASTM A449 Type 1, Nut	_	LOT#F2N0985600
	10	Hex Nut	ASTM A563 Gr. C		2011121(0)00000
e2	18	1" [25] Dia. Hardened Round Washer	ASTM F436 Type 1	FWC24a	LOT#017718
e3	2	7/8" [22] Dia. UNC, 7 1/2" [191] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX22a	H#10100058-3
e4	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	FWC22a	H#10100058-3
e5	8	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#090123B
e7	2	5/8" [16] Dia. UNC, 5" [127] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	H#01069
e8	2	5/8" [16] Dia. UNC, 10" [254] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#10083111C3
e9	68	5/8" [16] Dia. UNC, 1 1/2" [38] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB01	LOT#1335055
e10	6	5/8" [16] Dia. UNC, 2" [51] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB02	H#5074697
e6	42	5/8" [16] Dia. UNC, 2" [51] Long Hex Bolt and Hex Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBX16a	LOT#11032541C3
e11	8	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB03	SEE TABLE A-4
e12	18	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Double Recessed Nut	Bolt ASTM A307 Gr. A or SAE J429 Gr. 2, Nut ASTM A563 Gr. A	FBB06	SEE TABLE A-4
e13	116	5/8" [16] Dia. Plain Round Washer	ASTM F844	FWC16a	n/a
e14	8	16D Double Head Nail	-	-	n/a
e15	10	11 1/2" x 5 3/4" [292x146] Bent #4 Rebar	ASTM A615 Grade 60	-	H#K117810
e16	3	47' [14.3 m] Long #4 Rebar	ASTM A615 Grade 60	-	H#K117810
e17	10	13 1/2" [343] Long #4 Rebar	ASTM A615 Grade 60	-	H#K117810
f1	7	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 3-9	ASTM A992	-	LOT#5239AA-1
f2	6	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1829] Long - Post Nos. 10-15	ASTM A992	-	LOT#5239AA-1
f3	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 16	ASTM A992	-	H#11952390
f4	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 17	ASTM A992	-	H#11952390
f5	1	W6x15 [W152x22.3], 84" [2134] Long - Post No. 18	ASTM A992	-	H#11952390
		New Concrete Curb	SG3500		TICKET#4141778

Post 1	10" - Yellow
Post 2	10" - Yellow
Post 3	14" - Red
Post 4	14" - Red
Post 5	14" - Yellow
Post 6	14" - Yellow
Post 7	14" - Yellow
Post 8	14" - Yellow
Post 9	14" - Yellow
Post 10	14" - Yellow
Post 11	14" Blue x2
Post 12	14" - Yellow x2
Post 13	14" - Yellow x2
Post 14	14" Blue x2
Post 15	14" - Red x2
Post 16	14" - Red x2
Post 17	14" - Red x2
Post 18	14" - Red x2

P. O. Box 630 • Sutton, NE 68979 Pone 402-773-4319 FAX 402-773-4513												
				10 1010	C	VNP In	voice <u>4</u> .	3270	0			
					C		ed To MIA					
					C		er PO _2		0			
	Date: _		Certification	n of Insp -	ection							
			av Construction Use	-								
Charge #	Date Treated	Grade	Material Size, Length & Dressing	# Pieces	White Moisture Readings	≓ of	netration Borings & onforming	Ret	ctual entions nforming			
	5/3/12	MAN #-1	6x12 - 14" Rott	732	18%	26	90%	.687	pet			
335		MEG #1	6×12-19" ADIST. Rot	36	17%	1/20	95%	.623	pot			
335 334	4/20/12	00	6×12-19" Pgt	176	19%	3/20	85%	-620	pof			
	4/20/12	mfor FI	0410-11 1901			1						
334	1 1 1	mfor mfor	0410-11 1901									
334	1 1 1	MF00	0 ×10-11 Pg01									

Figure B-2. Wood Blockouts for Test Nos. MWTC-1 through MWTC-3

.8			CENTRAL NEBRASKA WOOD PRESERVE	RS, INC.			a a						
				Sutton, NE 6897 2-773-4319 -773-4513	9								
CWNP Invoice 43688													
Shipped To Midwest Michaely													
Customer PO 2214.													
Specifi	Date: _	6/10	entral Nebraska Certificatio 2/12 av Construction Use			s, 1nc.							
	rvative:		CA - C 0.60 pcf										
Charge #	Date Treated	Grade	Material Size, Length & Dressing	# Pieces	White Moisture Readings	Penetration # of Boring % Conform	s & Retentions						
339	5/14/12	MfG #1	6×8-8'2" RgH	35	18%	1/20 90 %	% ,620 pot						
342	6/1/12	MFG #1	6x8-14" RgH	110	19%	26 90	% 608 pet.						
345	6/7/12	MFG	6x8-19" RgH	80	19%	36 85	% .638 pet.						
345	6/7/12	MRG7 #1	6×12-19" RoH.	120 OCD 40 ADAPT	19%	3/0 85	% .638 pct						
347	6/7/12	MFG	6X12-14" Rgh	352	19%	2/20 90	0% .641 pcf						
Move Statem reference		oove refe cations.	d and reason for rejec erence material was trea		cted in acc	cordance wi	th the above						

Figure B-3. Wood Blockouts for Test No. MWTC-1

CENTRAL NEBRASKA WOOD PRESERVERS, INC.												
P. O. Box 630 • Sutton, NE 68979 Pone 402-773-4319 FAX 402-773-4513												
CWNP Invoice <u>44149</u> Shipped To <u>Mid west Machinery</u> Customer PO <u>2636</u>												
Central Nebraska Wood Preservers, Inc. Certification of Inspection												
	Date:	8. L.	2012									
Specifications: <u>Highway Construction Use</u>												
Preservative: <u>CCA - C 0.60 pcf</u>												
Charge #	Date Treated	Grade	Material Size, Length & Dressing	# Pieces	White Moisture Readings	# of E	etration Borings & nforming -	Actual Retentions -%-Conforming				
Lot 367	7.27.12	1	6X8-6' Rough CRT	70	19%	1/20	95%	- 644 pcs				
Lot 372	7.30.1Z	1	688-42"545 BCT	38	19%	2/20	90%	.653pcf				
Lot 367	7.27.12	y	6×8-14 Roh OCD BR	150	192	1/20	95%	-644pf				
Lot 359	7.5,12	1	688-19" Rah OCD BI		19%	1/20	95%	.623 pcf				
Lot 359	2,5,12	1 (6×12-19 Ral 2H offse		19%	1/20	95%	-623 pef				
Lot 359	7.5.12	1	6X12-19 Rgh 2H Adp		19%	1/20	95%	.623 pcf				
Xlon Stateme	e	ove refe	d and reason for rejectio		ected in acc	cordanc	e with the	e above				

Figure B-4. Wood Blockouts for Test Nos. MWTC-2 and MWTC-3

					NE 68979 19			
			144	402-170-40		Invoid Shipped	се # 2589 2559 То <u>міднеяте мі</u>	78 1621
			tral Nebrasl rtification o			ers, Inc.		
E)ate:	4-10	7-12					
Specificati	ons: <u>High</u>	wav Co	nstruction Use					
Preservat	ive:	CCA	- C 0.60 pcf		_			
Т	vpe: <u>All S</u>	YP S4S	(unless noted)					
Charge ≐	Date Treated	Grade	Material Size Length	≓ Pieces	White Moisture Readings	Penetration ≓ of Borings & % Conforming	Actual Retentions % Conforming	
329		µFG ≉1	GX8-2' RgH cRT	35	19%	3/30 85%	-617 pet	1
329		MFG FI	6×8-6'6" 2-Hde	35	19%	3/0 85 %	-617 pcf	
329		MFG	5/5×7% 46" BCT	36	19 %	3/20 85%	-617 pef	
329		MFG7 #1	6×6-8" Block	60	19%	3/30 85%	.617 pet-	
Number o	f pieces rej	ected a	nd reason for re	ejection:				

Figure B-5. BCT Posts for Test Nos. MWTC-1 through MWTC-3

ArcelorMit	ArcelorMittal 138 HWY 3217 LaPlace LOUIS Telephone (98	LaPlace 55 59 IANA 70068 66	TEEL & PIPE S 55 Poyntz Ave 5505-1688 Man	nue	ST PO 10	EEL & PIPE SU RT OF CATOOSA 50 FT. GIBSON 015 Catoosa	OK
ested in Acco ith: ASTM A6	rdance	Invoice NO. Product Cha Heat NO. L85 Length 40'	nnels 211	Date 04/03/20 Cust 40006652 Grade A3652950 Size 8" X11.5	2 Ref D Pie	450017493 . 80407662 .ccs 17	13
CHEMICAL	MECHANICAL	TE	ST 1 METRIC	TE	ST 2 METRIC	TE	EST 3 METRIC
ANALYSIS C 0.11 Mn 0.94 P 0.007 S 0.037 Si 0.18 Cu 0.24 Ni 0.07 Cr 0.06 Mo 0.018 Cb 0.200 V 0.0000 B A1 Sn 0.008 N Ti	YIELD STRENGTH TENSILE STRENGTH ELONGATION GAUGE LENGTH BEND TEST DIAMETER BEND TEST RESULTS SPECIMEN AREA REDUCTION OF AREA IMPACT STRENGTH	58,200 PSI 73,800 PSI 29 % 8 IN	401 MPa 509 MPa 29 % 203 mm	58,800 PSI 74,100 PSI 28 % 8 IN	405 MPa 511 MPa 28 % 203 mm		
	IMPACT STRENGTH I AVERAGE TEST TEMP ORIENTATION	IMPERIAL ME	SEVE	TERNAL CLEANLI RITY UENCY NG	HARDNES GRAIN F		

I hereby certify that the material test results presented here are from the reported heat and are correct. All tests were performed in accordance to the specification reported above. All steel is electric furnace melted (billets), manufactured, processed, and tested in the U.S.A with satisfactory results, and is free of Mercurv contamination in the process. No weld repair was performed on this heat.

Notarized upon request: Sworn to and subscribed before me in and for ST. John Parish on this 3rd day of April, 2012

Signed MARK EDWARDS, QUALITY ASSURANCE SUPERVISOR

Michael E. Soileau, #81887, Notary Public

Direct any questions or necessary clarifications concerning this report to the Sales Department 1-800-535-7692(USA)

Figure B-6. Bridge Cap Assembly for Test Nos. MWTC-1 through MWTC-3

Bill To: STEEL AND P.O. BOX MANHATTAN 66502	1688	SUPPLY	KS US		AND PI SMITH BURG		PLY M U	0	ill Orde	d No:12'	/12562 38593 70828		CERTII	FIED MATERIAL TEST GERDAU AMER Midlothia AU AMERISTEEL 300 Ward Midlothian, (972) 775	RISTEEL n Mill l Road TX 76065
				SIZE				GRADE			LENG	TH		PRODUCT	
SPECIFICAT	IONS			W 6 X	15# / W1	50 X 22	. 5	992/57	2-50		50 F	T / 15	.24 M	WF BEAMS	
ASTM A6-05	a, A992	-06a, A	572-06												
HEAT NO:	2251479	0						(CHEMICAL	ANALYSIS					
C	Mn	P	S	Si	Cu	Ni	Cr	Mo	Sn	v	Al	Nb	CE		
.07	. 88	.020	.009	.20	.40	.13	.16	.039	.011	.002	.004	.019	.29		
								I	PHYSICAL	PROPERTI	ES				
Yield Str	renath		T	ensile S	trength		Spe	ecimen			ongatio	n		Bend Test	ROA
KSI	MP	a		KSI	MPa		SqI		Sq cm	8		e Leng	gth	Dia. Result	8
56.9	392.	3	7	8.4	540.5		0.35	2	2.27	20.5		8 In	200 mm	1	
56.7	390.	9	7	6.9	530.2		0.35	1	2.26	23.0		8 In	200 mm	1	
TENSILE	TEST R	ATIOS													
YLD/TENS	YLD/TI	ENS													
.73	.74														
									Re	marks					

MATERIAL COMPLIES WITH ASTM A709-50 & 50S FOR NON-TENSION COMPONENTS.

All manufacturing processes of this product, including electric arc MELTING and continuous CASTING, occurred in the U.S.A. CMTR complies with EN 10204 3.1

"I hereby certify that the contents of this report are correct and accurate. All tests and operations performed by this material manufacturer or its sub-contractors, when applicable, are in compliance with the requirements of the material specifications and applicable purchaser designated requirements."

Signed Jone C / Same Date: Sep. 30, 2009	Signed:	Date:		
Tom L. Harrington: Quality Assurance Manager	Notary Public (if applicable)			
		Page:	1 of	1

Figure B-7. Steel Blockout for Test No. MWTC-1

-

Certified Analysis

Order Number: 1173935

Customer PO: 2623

Document #: 1 Shipped To: NE

BOL Number: 69891

Use State: KS

As of: 6/5/12

MILFORD, NE 68405 Project: RESALE

P. O. BOX 703

Customer: MIDWEST MACH.& SUPPLY CO.

Trinity Highway Products, LLC

550 East Robb Ave.

Lima, OH 45801

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat #	Yield	TS	Elg	С	Mn	Р	s	Si	Cu	Cb	Cr	Vn	ACW
72	14556G	7'0 PST/6X15/SB:3HI	M-180 A-36	A	2	152778 11952390	61,460 55,000	80,130 72,100	24.2 24.8		0.720 0.860				0.110 0.270		0.050		
12	27895A	5'6" POST/8.5/5/8X6X10	A-36			1020086	56,597	73,891	27.8	0.120	0.930	0.019	0.030	0.170	0.430	0.00	0.160	0.003	4
	27895A		A-36			2P819	49,000	71,000	34.0	0.170	0.520	0.008	0.005	0.240	0.246	0.00	0.077	0.010	4
12	32218G	T10/TRAN/TB:WB/ASYM/R	M-180	В	2	4175839	66,100	71,000	316.0	0.070	0.740	0.008	0.005	0.030	0.040	0.61	0.020	0.001	4
12	32219G	T10/TRAN/TB:WB/ASYM/L	- M-180	В	2	1106510	50,400	70,300	32.0	0.060	0.460	0.007	0.004	0.040	0.080	0.00	0.030	0.040	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT"

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH – 49100 LB

2 of 3

Figure B-8. Transition Section for Test No. MWTC-1, Steel Blockout for Test Nos. MWTC-2 and MWTC-3, and Post Nos. 16 through 18 for Test Nos. MWTC-1 through MWTC-3

Bill To: STEEL AND P.O. BOX MANHATTAN 66502	1688	UPPLY	KS US		AND PIPE ORT GIBSO		OK US	Orde Mill Or SAP Shp					FIED	Midlot U 300 Midlothi	ST REPORT ERDAU thian Mill Ward Road an, TX 76065 775-8241
SPECIFICAT	IONS			SIZE W 6 X 2	0# / W150	X 29.8	GRAD 992/	E 572-50			ENGTH 0 FT /	15.24 M		PRODUCT WF BEAMS	
ASTM A6-09	, A992-0	6a, A5	72-07												
HEAT NO:	11959830)						CHEMICA	ANALY	SIS					
С	Mn	P	S	Si	Cu	Ni	Cr	Мо	Sn	v	Al	Nb	CE		
.09	.93	.010	.022	.22	.24	.10	.10	.029	.006	.001	.003	.018	.29		
								PHYSICAL	PROPE	RTIES				*	
Yield St	rength		Ten	sile St	and the second se			en Area		Elongat		٠		Bend Test	ROA
KSI	MPa		KS		MPa		q In	Sq cm			age Ler			Dia. Result	0j0
54.2	373.7		71.		493.7		.548	3.54	22.		8 In	200 mm			
55.2	380.6		15	. 2	504.7	0	.538	3.47	23.	1	8 In	200 mm			
TENSILE										221					*
YLD/TENS		NS						•							
.75	.76							T	lemarks					•	
	0000111			700 50			ENGLON	-						8. ²	· · ·
MATERIAL	COMPLIE	S WITH	ASTM A	109-50	& 505 EO	R NON-1	ENSION	COMPONEN	15.;				1		
								1							
				3		*									
													1 1		
												,			
								21							
				8											
CMTR comp	certify	th EN 1	.0204 3. the con	1 tents o	of this r	eport a	re cor	rect and	accurat	te. Al	l test	s and ope	eratio	occurred in th ns performed l ts of the mate	by this
specifica									TH COM	Jiance	wich	che requi	remen	us of the mate	erial
Signed: C	Jon	er C	-18-	inje	جنيك		pr. 13,	2012 Si	gned:	otary I	ublic	(if appl)	icable	Date:	
Tom	L. Harr	ington	: Qualit	y Assu	rance Mar	ager				courly 1		in abbr			l of 1

Figure B-9. Post Nos. 19 through 21 for Test Nos. MWTC-1 through MWTC-3

MATERIAL TEST REPORT (TE: 09/25/07 PAGE: 1 BILL OF LADING: 164358		LEAVIT	JBE COMP	'ANY, LLC	LEAVITT	Leavitt Tube Co., LLC 1717 W. 115th St. Chicago, IL 60643
CUST: STEEL & PIPE SUPPLY - CATO 1050 FORT GIBSON ROAD CATOOSA OK 74015		TUBING	G MANUFACTURI	ED IN USA	The Tube People	Phone: 773-239-7700 Phone: 1-800-LEAVITT Fax: 773-239-1023 www.leavitt-tube.com QA1002-0003 Rev. 0
ATTN: * Test Report Desk 106201 8027185						
ITEM NO. PIECES SIZE, GAUGE, LENG 1 7 8.625-322HRB 252 2 6 12X2-188HRB 480 3 4 28 8.625-322HRB 504 5 9 8X6-188HRB 480	14 24 1,17	CUSTOMER D P.O. 7 4500088611 0 4500088813 6 4500091471 0 4500092386	ORDER NUMBER 1015580 1.000 1016034 1.000 1025579 1.000 1029189 1.000	CUSTOMER PART NBR	AST SPECIFIC/ A500-0: A500-0: A500-0: A500-0:	ATION GRADE 3b B 3b B 3b B
ITEM NO. COIL NO. HEAT NO. CORRECTED COIL CARBON MANGANESE PHOSPHORUS SULFUR ALUMINUM SILICON WELD TESTING YIELD STRENGTH (PSI) TENSILE STRENGTH (PSI) ELONGATION IN 2" (%)	1 395453 722562 .210 .820 .004 .006 .047 .020 FLATTEN 47,297 62,162 29.0	2 395532 722551 .210 .860 .006 .004 .050 .030 FLARE	3 395813 722564 210 820 004 006 047 020 FLATTEN	4 395460 722564 .210 .820 .004 .006 .047 .020 FLATTEN 52,000 70,666 31.0	5 391232 A13386 .220 .700 .006 .003 .024 .030 FLARE 55,056 70,787 27.0	
Item(s)- 1 2 3 4 5 Are Made and Melted In The U.S.A.					I HEREBY CERTIFY THAT THE ABOVE AS CONTAINED THE RECORDS OF	E IS CORRECT THE COMPANY,

Figure B-10. Foundation Tube for Test Nos. MWTC-1 through MWTC-3

F25 E. O'C Lima, OH					
Customer:	MIDWEST MACH.& SUPPLY CO. P. O. BOX 81097	Sales Order: Customer PO: BOL # Document #	2030 43073	Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS	
	LINCOLN, NE 68501-1097				
		Tri	nity Highway Pro	ducts. LLC	-
	Certificate O	f Compliance For T	rinity Industries, In	c. ** SLOTTED RAIL TERMINA	L**
		NC	HRP Report 350	Compliant	
					· .
leces	Description		an a 19 an an an an an an Araba Cara an an Araba an Araba an		
64 192	5/8"X10" GR BOLT A307 5/8"X18" GR BOLT A307				
32	1" ROUND WASHER F844				
64	1" HEX NUT A563				A) C C C C C
192	WD 6'0 POST 6X8 CRT		•		MGSBR
192	WD BLK 6X8X14 DR				
64 64	NAIL 16d SRT				
32	WD 3'9 POST 5.5X7.5 BAND STRUT & YOKE ASSY				
128	SLOT GUARD '98				
32	3/8 X 3 X 4 PL WASHER			(Bround Strut
	•				090453-8
				•	0 10 1.3 0 0
Ipon delive	ery, all materials subject to Trinity Highway	Products , LLC Stora	ge Stain Policy No. I	.G-002.	
LL STEE	LUSED WAS MELTED AND MANUFAC	TURED IN USA AN	D COMPLIES WIT	H THE BUY AMERICA ACT	
LL GUAR	DRAIL MEETS AASHTO M-180, ALL ST	TRUCTURAL STEE	L MEETS ASTM AS	6	
U. OTHE	R GALVANIZED MATERIAL CONFORM	AS DUTTH ASTM. 12			
OLTS CO	MPLY WITH ASTM A-307 SPECIFICAT	IONS AND ARE GA	LVANIZED IN AC	CORDANCE WITH ASTM A-153, UN	LESS OTHERWISE STATED.
UTS CON	APLY WITH ASTM A-563 SPECIFICATK	ONS AND ARE GAL	VANIZED IN ACCO	ORDANCE WITH ASTM A-153, UNL	ESS OTHERWISE STATED.
4" DIA CA	BLE 6X19 ZINC COATED SWAGED END A	ISI C-1035 STEEL AN	INEALED STUD 1" D	IA. ASTM 449 AASHTO M30, TYPE II I	REAKING
	-49100 LB			A,	
ate or Unic	, County of Allen. Swom and Subscribed before	emethis such day of h	ine, 2008	The second second	at Mark
	maling	(\mathcal{H})		Trinity Highway Products, LLC	MALLINNO
				Contined by:	
ctary Publ					2 of

Figure B-11. Strut and Yoke Assembly for Test Nos. MWTC-1 through MWTC-3

163

						Certifie	d Anal	ysis					in Highway Proc	tucis IL
Trinity Hi	ghway P	roducts, LLC												7
550 East R						Order 1	Number: 11452	15			140			r
Lima, OH 4							mer PO: 2441							
								5				A	s of: 4/15/11	
Customer:		EST MACH.& SUPPLY C	.0.				Number: 61905			×				
	P. O. E	OX 703				Doc	ument #: 1							
						Shij	oped To: NE							
	MILFC)RD, NE 68405				U	se State: KS							
Project:	RESAL	LE												
		To an and the second						+						
· Qty 10	Part # 206G	Description T12/6'3/S	Spec M-180	CL A	TY 2	Heat Code/ Heat #	Vicld 64,240	TS 82,640	Elg C 26.4 0.190	Mn	P S	Si Cu 0.010 0.110	Cb Cr Vn 0.00 0.050 0.000	AC
10	2000	11210 373	M-180	A	2	139587	64,220	81,750	28.5 0.190			0.020 0.130	0.000 0.060 0.000	
			M-180	A	2	139588	63,850	82,080	24.9 0.200			0.020 0.140	0.000 0.050 0.00	
			M-180	А	2	139589	55,670	74,810	27.7 0.190			0.020 0.130		
			M-180	А	2	140733	59,000	78,200	28.1 0.190	0.740	0.015 0.006	0.010 0.120	0.000 0.070 0.00)1 4
55	260G	T12/25/6'3/S	M-180	À	2	139588	63,850	82,080	24.9 0.200	0.730	0.012 0.004	0.020 0.140	0.00 0.050 0.002	2 4
			M-180	А	2	139206	61,730	78,580	26.0 0.180	0.710	0.012 0.004	0.020 0.140	0.000 0.050 0.00	11 4
			M-180	А		139587	64,220	81,750	28.5 0.190	0.720	0.014 0.003	0.020 0.130	0.000 0.060 0.00	12 4
			M-180	A		140733	59,000	78,200	28.1 0.190			0.010 0.120	0.000 0.070 0.00	
	2000		M-180	A		140734	64,240	82,640	26.4 0.190			0.010 0.110		
	260G		M-180 M-180	A A	2	140734 139587	64,240 64,220	\$2,640 81,750				0.010 0.110	0.00 0.060 0.000	
			M-180	A			63,850	82,080	24.9 0.200			0.020 0.130		
			M-180	A			55,670	74,810	27.7 0.190			0.020 0.140		
			M-180	A			59,000	78,200	28.1 0.19			0.010 0.120		
26	701A	.25X11.75X16 CAB ANC	A-36			V911470	51,460	71,280				0.190 0.300	0.00 0.090 0.02	
	701A		A-36			N3540A	46,200	65,000	31.0 0.120	0.380	0.010 0.019	0.010 0.180	0.00 0.070 0.00	1 4
24	729G	TS 8X6X3/16X8'-0" SLEEV!	E A-500			N4747	63,548	85,106	27.0 0.150	0.610	0.013 0.001	0.040 0.160	0.00 0.160 0.00	4 4
24	749G	TS \$X6X3/16X6'-0" SLEEVI	E A-500			N4747	63,548	85,106	27.0 0.150	0.610	0.013 0.001	0.040 0.160	0.00 0.160 0.00	14 4
22	782G	5/8"X8"X8" BEAR PL/OF	A-36			18486	49,000	78,000	25.1 0.210	0.860	0.021 0.036	0.250 0.260	0.00 0.170 0.01	4 4
25	974G	T12/TRANS RAIL/6'3"/3'1.5	M-180	A	2	140735	61,390	80,240	27.1 0.200	0.740	0.014 0.005	0.010 0.120	0.00 0.070 0.00	11 4

1 of 2

Figure B-12. Anchor Bracket and Bearing Plate for Test Nos. MWTC-1 through MWTC-3

164

	011 10:	J/ AM									PAG	E. 2/	16
.1ar. 24.	20:1: 3:1	8 PM	NEW DIM	EVSION	METALS				Ą	10. 5031	٢, ١		~ 5
)		ł	MATER	RIALCI	ERTIF	CATIC	N		Date	5: 3/24/3	2011	
E	2		Dryden F 2 Ohio 4										
NEW DIMENSION	METALS		299-223										
BIII! To:						Ship	To:						
REMLINGER	MANUFAC	TURIN	9					RMANL	JFACTU	RING			
P.O. BOX 29: KALIDA, OH							94 U.S.	. 224 H 4585	3				
						A.M.	-APA, 0	11 4000	~				
		~ _											
Customer P	O#: 0077	48-00			(Custor	ner Pa	rt#:					
Order Date	8: 12/6/2010	· .					n Descr	-					
NDM SO:	30504 - 7							1035 X					
Item code	: H1625RCH	2000MO	D2			AIM	.3538	-DEGAS CARBON	/ASTM /	A576			
													_
Mant #1.8420	009			MATER	AL TES	TRES	JLTS						
Heat #: M39 Chemical Compositi	C	Mn	P	<u>s</u>	SI	Ni	Cy	Cr .	Mo	B	Pb	_A!	
	0.330	0.760	0.018	0.024	0.250	0.060	0.150	0.110	0.020	0.000	0.000	0.035	1
Material Grade: 103 Grade	5 Min: 0.320	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	
	Max: 0.380	0.900	6.040	0,050	0.350	0.350	0.350	0.350	0.350	0,350	0.000	0.350	
Material confo I certify that the New Dimension	orms to AS ne above in on Metals C	TM A-57 formation Corp.	6.						in		,	0.350	
Material confo I certify that the New Dimension	orms to AS	TM A-57 formation Corp.	6.						in		,	0.30	
Material confo I certify that the New Dimension	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true						in		,	1.30	
Material confo I certify that the New Dimension Deniel M. With	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true						in		,	1.30	
Material confo I certify that the New Dimension Deniel M. With	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true								,	1.30	
Material confo I certify that the New Dimension Deniel M. With	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true								,	1	
Material confo I certify that the New Dimension Deniel M. With	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true						in		,	,	
Material confo I certify that the New Dimension Deniel M. With	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true						in		,	,	
Material confo I certify that the New Dimension Deniel M. With	ne above in on Metals C . W וואס	FM A-57 formation Corp.	6. n is true						in		,	1.30	
Material confo I certify that the New Dimension Daniel M. Will Director of Qu	orms to AS ne above in on Metals C . ພີ່ປະດ son rality & Tecl	TM A-57 formation Corp.	6. n is true	and acc	curate as				s of the	compañ	у ,	,	
Material confo I certify that the New Dimension Deniel M. With	orms to AS ne above in on Metals C . ພີ່ປະດ son rality & Tecl	TM A-57 formation Corp.	6. n is true	and acc	curate as				s of the	compañ	у,	0.300 , 1 (10/08) age 1 of 1	
Material confo I certify that the New Dimension Daniel M. Will Director of Qu	orms to AS ne above in on Metals C . ພີ່ປະດ son rality & Tecl	TM A-57 formation Corp.	6. n is true	and acc	curate as				s of the	compañ	у,	, , ,	

Figure B-13. Anchor Cable Assembly for Test Nos. MWTC-1 through MWTC-3



Figure B-14. BCT Hole Insert for Test Nos. MWTC-1 through MWTC-3

						Certifie	CE RINGER	9 515							Irini		16
Trinity Highway Products, LLC																	
0 East R	obb Ave.					Order 1	Order Number: 1164746										
ima, OH 4	45801				Customer PO: 2563												
ustomer:	MIDWE	EST MACH.& SUPP	PLY CO.			BOLI	Number: 69500)						A	s of: 5/16/12	ŝ	
			21 00.				ument#: 1	·									
	P. O. B(JA 703															
						Ship	oped To: NE										
	MILFOR	RD, NE 68405				Us	se State: KS	×									
roject:	RESAL	Е															
					_												
Qty	Part #	Description	Spec	CL		Heat Code/ Heat #	Yield	TS	Elg	С	Mn	Р	S Si		Cb Cr		ACW
			M-180	A	2	515664	64,600	74,600		0.067		0.009 0.0		0.019	0.000 0.022		
			M-180	A	2	515665	64,300	73,800		0.063		0.012 0.0		0.018	0.000 0.027		
			M-180	A	2	515666	64,700	74,200		0.067		0.009 0.0			0.000 0.023		
			M-180	A	2	515669	64,500	74,100		0.063		0.014 0.0			0.000 0.028		
			M-180	A	2	515690	63,000	71,800		0.059		0.010 0.0		8 0.024	0.000 0.042		
			M-180	A	2	515691	64,000	72,300		0.060		0.009 0.0			0.000 0.032		
			M-180 M-180	A	2 2	515696	62,900	72,500		0.058		0.013 0.0			0.000 0.046		
			M-180	A	2	515696	63,900 67,800	73,400		0.058		0.013 0.0			0.000 0.046		
			M-180	A A	2	515700 515701	64,300	77,700 74,200		0.065		0.013 0.0			0.000 0.035		
			M-180	A	2	515701	65,200	73,700		0.064		0.013 0.0			0.000 0.029		
			M-180	A	2	521448	65,400	75,600		0.004	0.0078	0.013 0.0			0.000 0.029		
			M-180	A	2	616037	67,800	78,000		0.065		0.014 0.			0.000 0.038		
			M-180	A	2	616038	65,500	73,700		0.070		0.009 0.0			0.000 0.018		
			M-180	A	2	616041	63,700	74,300		0.065	0.760	0.013 0.			0.000 0.029		
			M-180	A	2	616043	62,700	71,800		0.067		0.013 0.			0.000 0.025		
			M-180	A	2	616043	64,900	77,000		0.067		0.013 0.			0.000 0.031		
			M-180	A	2	616067	63,200	73,300		0.063		0.013 0.					
			M-180	A	2	616069	62,600	73,100		0.064		0.008 0.					
			M-180	A	2	616070	62,800	73,000		0.060		0.014 0.			0.000 0.032		
			M-180	A	2	616071	64,000	74,000		0.061		0.016 0.			0.000 0.028		
			M-180	A	2	616072	63,800	74,200	29.0			0.014 0.					
			M-180	A	2	616073	63,900	73,300	27.0	0.064	0.760	0.016 0.	0.01	2 0.024			
			M-180	A	2	616073	65,000	74,500	28.0	0.064	0.760	0.016 0.	0.01 0.01	2 0.024	0.000 0.041	0.000	4
			M-180	A	2	621267	65,000	74,800	29.0	0.066	0.780	0.015 0.	013 0.00	9 0.068	0.000 0.055	0.000	4
	12365G	T12/12'6/8@1'6.75/S	M-180	A	2	151877	58,680	77,470	26.0	0.190	0 720	0.013 0.0	04 0.010	0 120	0.00 0.050	0.002	4

Figure B-15. 12'-6" Thrie Beam Section for Test No. MWTC-1

N

1050 N. Steel Dr. | Huger, SC 29450

METALLURGICAL REPORT

Date: 5/9/11

Customer: IMH

Purchase Order: 42441

Type of Steel: .134 x 29.875 x 87.375

Tag Numbers: C30142408 through C30142415

Heat Number: 4174436

	MIN	1	3	SI	AL	NB	V	Yield	Tensile	Elongation	nn
070	.740	.008	005							Longation	RB
	. / 40	.008	.005	.030	.049	.061	.001	68.8	72	0.0.0.0	
		1						00.0	73	27.7%	

This document reports either JM Steel's best efforts to interpret the Results obtained from its own tests or a reproduction of test results Furnished to JM Steel by the supplier of the product or those of an Independent laboratory. This record is not and shall not be construed As a guaranty or warranty of the results stated. The test results are Solely for the use of the addressee at its own risk and not a third party, Unless recertified to that party by JM Steel Co.

4QF10-02

Rev. # 01

Rev. Date: 1/15/00

Figure B-16. 12'-6" Thrie Beam Section and 6'-3" Transition Section for Test Nos. MWTC-2 and MWTC-3

Certified Analysis

1 of 2

`rinity Highwa	ay Products, LLC				
50 East Robb	Ave.	Order Number:	1171992		
.ima, OH 45801	L	Customer PO:	2600	As of: 5/11/12	2
Customer: MII	DWEST MACH.& SUPPLY CO.	BOL Number:	69420		
P. 0	D. BOX 703	Document #:	1		
		Shipped To:	NE		
MII	LFORD, NE 68405	Use State:	KS		
Project: STO	OCK				

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat #	Yield	TS	Elg	С	Mn	P	s	Si	Cu	Cb	Cr	Vn	ACW
12	980G	T10/END SHOE/SLANT	M-180	B	2	4140268	48,200	63,600	24.5	0.220	0.770	0.012 0	0.008	0.010	0.020	0.00	0.030	0.001	4
12	12173G	T12/6'3/4@1'6.75"/S	M-180	А	2	154420	61,680	80,320	27.4	0.190	0.730	0.011 (0.002	0.030	0.120	0.00	0.050	0.001	4
			M-180	A	2	153981	60,580	78,620	24.6	0.190	0.710	0.013	0.008	0.010	0.120	0.000	0.050	0.001	4
			M-180	A	2	153982	60,660	78,520	26.5	0.180	0.720	0.017	0.003	0.020	0.110	0.000	0.070	0.001	4
			M-180	A	2	153983	60,550	79,350	27.2	0.200	0.730	0.014	0.004	0.020	0.120	0.000	0.040	0.001	4
24	12365G	T12/12'6/8@1'6.75/S	M-180	А	2	151877	58,680	77,470	26.0	0.190	0.720	0.013 (0.004	0.010	0.120	0.00	0.050	0.002	4
			M-180	A	2	152774	59,060	77,140	29.2	0.190	0.720	0.011	0.004	0.010	0.011	0.000	0.050	0.001	4
			M-180	A	2	152775	60,650	79,300	25.1	0.190	0.730	0.014	0.004	0.020	0.120	0.000	0.060	0.001	4
			M-180	A	2	152777	59,110	76,570	30.4	0.190	0.73	0.012	0.004	0.020	0.120	0.000	0.050	0.001	4
			M-180	A	2	152779	58,850	76,750	25.7	0.180	0.71	0.010	0.004	0.010	0.120	0.000	0.050	0.001	4
			M-180	A	2	152780	61,020	78,750	26.6	0.190	0.73	0.009	0.001	0.030	0.110	0.000	0.040	0.001	4
3	14556G	7'0 PST/6X15/SB:3H1	A-36			11952390	55,000	72,100	24.8	0.080	0.860	0.011 (0.029	0.230	0.270	0.02	0.110	0.002	4
3	32218G	T10/TRAN/TB:WB/ASYM/R	M-180	В	2	4126166	70,400	77,000	28.8	0.080	0.730	0.010 (0.003	0.008	0.040	0.04	0.030	0.002	4
	32219G	T10/TRAN/TB:WB/ASYM/L	M-180	В	2	4126166	70,400	77,000	28.8	0.080	0.730	0.010 (0.003	0.008	0.040	0.04	0.030	0.002	4

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT" ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.

Figure B-17. 6'-3" Thrie Beam Section for Test Nos. MWTC-1 through MWTC-3

2009 **GREGORY HIGHWAY PRODUCTS, INC.** 4100 13th St. P.O. Box 80508 1 Canton, Ohio 44708 A Test Report B.O.L. # 39963 DATE SHIPPED: 05/07/09 " UNIVERSITY OF NEBRASKA-LINCOLN Customer: Customer P.O. 4500204081/ 04/06/2009 401 CANFIELD ADMIN BLDG Shipped to: UNIVERSITY OF NEBRASKA-LINCOLN P O BOX 880439 TEST PANELS LINCOLN, NE. 68588-0439 Project : GHP Order No 105271 Quantity Description Si. Tensile Yield Elong. Class Туре HT # code C. Mn. P. S. 12GA 12FT6IN/3FT1 1/2IN WB T2 4614 0.84 0.011 0.003 0.03 89432 67993 19.8 160 Α 2 0.21 Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-525 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation STATE OF OHIO: COUNTY OF STARK All controlled oxidized/col on resistant Guardrail and terminal sections meet ASTM A606, Type 4. Sworn to and subscribed before me, a Notary Public, by lu Andrew Artar this 8th day of May, 2009. By: Andrew Artar Vice President of Sales & Marketing Gregory Highway Products, Inc. Public, State of Ohio CYNTHIA K. CRAWFORD Notary Public, State of Ohio My Commission Expires 09-16-2012

Figure B-18. 12'-6" W-Beam MGS Sections for Test Nos. MWTC-1 through MWTC-3

Figure B-19. Heavy Hex Nut for Test Nos. MWTC-1 through MWTC-3

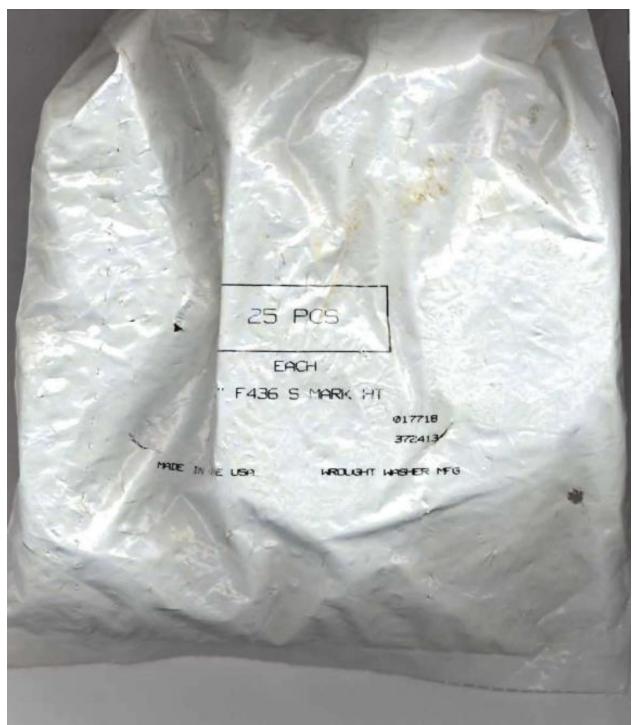


Figure B-20. 1" Dia. Hardened Round Washer for Test Nos. MWTC-1 through MWTC-3

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

TESTING CERT 1292-01 MECHANICAL TESTING

Tel: (0573)84185001(48Lines)

DATE: 2010/09/02

Fax: (0573)84184488 84184567

PACKING NO: GEM100811019

SAMPLING PLAN : ASME B18.18.2

PART NO: 00200-3400-020

HEAT NO: 10100058-3

MATERIAL : X1008A FINISH: PLAIN

INVOICE NO: GEM/PFC-100831 SFS

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R.CHINA

PURCHASER : PORTEOUS FASTENER COMPANY. PO. NUMBER : 10011913 COMMODITY : FINISHED HEX NUT ASTM A563 GR-A SIZE : 7/8-9 NC LOT NO: 1N1030101 SHIP QUANTITY : 2,700 PCS HEADMARKS :

PERCENTAGE COMPOSITION OF CHEMISTRY :

Chemistry	Al%	C%	Mn%	P%	S%	Si%
Spec. : MIN.	0.0200	22		-	2	
MAX.	State in concern the	0.1000	0.6000	0.0300	0.0350	0.1000
Test Value	0.0500	0.0800	0.3200	0.0110	0.0060	0.0400

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME/ANSI B18.2.2

TEST DATE : 2010/03/31		SAMPLED BY : YAN	U WANG	SAMPLING DATE: 2010	0/03/31	
INSPECTIONS ITEM	SAMPLE	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	32 PCS	MIL-STD-120	36.770-38.490 MM	37.210-37.250 MM	32	0
THICKNESS	32 PCS	MIL-STD-120	18.410-19.050 MM	18.660-18.700 MM	32	0
WIDTH ACROSS FLATS	32 PCS	MIL-STD-120	32.250-33.300 MM	32.410-32.450 MM	32	0
SURFACE DISCONTINUITIES	100 PCS	ASTM F812		PASSED	100	0
THREAD	32 PCS	MIL-STD-120	2B	PASSED	32	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

TEST DATE: 2010/08/13	-10	SAMPLED BY : GA	O MINGHUA	SAMPLING DATE: 20	10/08/10)
INSPECTIONS ITEM	SAMPLE	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	18PCS	ASTM F606/F606M	68-107 HRB	81 HRB	18	0
PROOF LOAD	13PCS	ASTM F606/F606M	Min. 41,600 LBF	OK	13	0

ALL TESTS ARE IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM/SAE/ASME/MIL-STD-120 SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

WE CERTIFY THE PARTS ARE ROHS COMPLIANT

THIS CERTIFIED MATERIAL TEST REPORT APPLIES TO THE SAMPLES TESTED AND IT CANNOT BE REPRODUCED EXCEPT IN FULL.

SIGNATURE :

Figure B-21. 7/8" Dia., 71/2" Long Hex Bolt for Test Nos. MWTC-1 through MWTC-3

TRINITY HIGHWAY PRODUCTS, LLC. 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419-227-1296

MATERIAL CERTIFICATION

CUSTOMER: STOCK	DATE: SEPTEMBER 29, 2009
.8	INVOICE #:
	LOT #: 090123B
PART NUMBER: 3380G	QUANTITY: 119,201
DESCRIPTION: 5/8" X 1 ½ HH BOLT	DATE SHIPPED:
SPECIFICATIONS: ASTM A307-A/A153	HEAT #: 7367052, 7366484,7368369

MATERIAL CHEMISTY

С	MN	P	s	SI	CU	NI	CR	мо	AL	v	N	СВ	SN	В	TI	NB
.15	.49	.008	.002	.06	.03	.02	.05	.01	.029	.002	.005	.001	.001	.000	.000	.000
.13	.38	.007	.002	.10	.03	.04	.06	.02	.037	.002	.004	.001	.001	.000	.000	.000
.14	.43	.006	.008	.06	.04	.02	.06	.02	.034	.002	.005	.001	.001	.000	.000	.000

PLATING AND/OR PROTECTIVE COATING

HOT DIP GALVANIZING (OZ. PER SQ. FT.)	2.74 AVG.

****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA***

THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A.

WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND INFORMATION CONTAINED HEREIN IS CORRECT.

HIGHWAY PRODUC S. LLC.

STATE OF OHIO, COUNTY OF ALLEN	
SWORN AND SUBSCRIBED BEFORE ME	
THIS 29TH BAY SEPTEMBER, 2009	
M. A.	
Allow Alteller	NOTARY PUBLIC

425 E. O'CONNOR AVENUE

LIMA, OHIO 45801

419-227-1296

Figure B-22. ⁵/₈" Dia., 1¹/₂" Long Hex Bolt for Test Nos. MWTC-1 through MWTC-3

CERTIFIED MATERIAL TEST REPORT

FACTORY: JIANGZHEN METAL PRODUCTS (SUZHOU) CO., LTD. ADDRESS: GUIZHUANG TOWN TAICANG CITY JIANGSU CHINA

Date:Aug-01-2011

PRODUCT: HEX TAP BOLTS ZPLR QUANTITY SHIPPED: 9000 PCS SAMPLING PLAN PER ASTM 307A Gr.A SIZES& DESCRIPTION:5/8-11*2 HEADING MARK:307A JZ INVOICE NO:A110856 P.O. NUMBER:11032541C3 LOT NO:116PT002

PART NO:#00022-3024-021

STEEL PROPERTIES: STEEL GRADE:Q235

WIRE DIA:16 HEAT NO:01069

Chemistry	C%	MN%	P%	S%	SI%	CU%	NI%	CR%
Specified	Max:0.29	Max:1.20	Max:0.040	Max:0.150				
Test:	0.15	0.48	0.026	0.029	0.19			

MECHANICAL PROPERTIES:

	CORE HERDNESS	SURFACE HARDNESS	WEDGE TENSILE
	(HRB)	(HRB)	(PSI)
SPEC:	69.0-100.0		60,000.MIN
HIGH:	85.5	/	89,500
LOW:	82.0	/	81,000
AVG:	83.9	/	85,000

Reference to the Seventh Edition,2003.

All tests are in accordance with the methods prescribed in the applicable SAE specification. We certify that this data is a true representation of information Provided by the material supplier and our testing laboratory.

INSPECTOR:HOU

YOULI

Figure B-23. ⁵/₈" Dia, 2" Long Hex Bolt for Test Nos. MWTC-1 through MWTC-3 and ⁵/₈" Dia. 5" Long Hex Bolt for Test Nos. MWTC-2 and MWTC-3

MATERIAL CERTIFICATION Customer:		• .		• •	I		Ohio 4 227-12					• •		N			
Customer: Stock Date: November 21,2011 Invoice Number: Lot Number: DECKER 1135055 Part Number: 3340G Quantity: 239,000 Description: 5/8" GUARD Heat Number(s): 20163550 20166280 Description: 5/8" GUARD Heat Number(s): 20163550 20166280 Specification: ASTM 563-A / A153 / F2329 as described MATERIAL CHEMISTRY Material C MN P S SI NI CR MO 00 004 003 001 040 008 001 040 001			· · · ·	2 × 2													5 2 - 5
Invoice Number:	• • • •				<u>.</u>	MA	TER	AL C	ERT	IFICA	TIO	N	÷			e de la composición d	
Lot Number: DECKER 1135055 Part Number: 3340G Quantity: 239,000 Description: 5/8'' GUARD Heat Number(s): 20163550 20166280 RAIL NUT +.031 20158820 20158820 20166280 Specification: ASTM 563-A / A153 / F2329 as described MATERIAL CHEMISTRY Heat C MN P S SI NI CR MOO CU SN V AL N B TI NB 20163550 08 32 010 003 00 0.04 0.05 0.01 0.04 0.07 0.003 0.01	Custo	omer:		Stock				· · ·	Date	. No	vembe	er 21,2	011				
Part Number: 3340G Quantity: 239,000 Description: 5/8" GUARD Heat Number(s): 20163550 20166280 Description: 5/8" GUARD Reat Number(s): 20163550 20166280 Specification: ASTM 563-A / A153 / F2329 as described MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 20163550 0.08 0.32 010 0.03 0.08 0.04 0.05 0.01 0.00 0.001 0.01 0.00 0.001 0.01 0.01 0.01 0.00 0.001 0.01 0.001 0.001 0.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Invoi</td><td>ce Nu</td><td>mber</td><td>·<u>···</u></td><td>et jak</td><td></td><td></td><td></td><td></td><td></td><td>5. (.</td></t<>							Invoi	ce Nu	mber	· <u>···</u>	et jak						5. (.
Description: 5/8" GUARD RAIL NUT +.031 Heat Number(s): 20163550 20166280 Specification: ASTM 563-A / A153 / F2329 as described MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 20163550 0.08 32 0.01 0.03 0.8 0.4 0.5 0.1 1.0 0.08 0.003 0.01 0.01 20163550 0.8 32 0.10 0.03 0.8 0.4 0.5 0.1 1.0 0.08 0.003 0.01 0.01 20163550 0.8 3.5 0.09 0.02 0.66 0.4 0.5 0.1 0.8 0.09 0.01 0.001 0.01 20160280 0.8 3.5 0.09 0.04 0.8 0.3 0.3 0.1 0.7 0.003 0.01 0.01 0.01 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	من المراجع الم مراجع المراجع ال					·	Ĺ	ot Nu	mber:	DE	CKER	11350	055		· · · · · ·		· · ·
Description: Site of NUT 20158820 RAIL NUT +.031 20158820 Specification: ASTM 563-A / A153 / F2329 as described MATERIAL CHEMISTRY Material Colspan="2">Material Chemistry Material Colspan="2">Not on the state of the	Part Nur	nber:	<u>.</u>	33400									· · · · ·		4		· · · · · · · · · · · ·
Specification: ASTM 563-A / A153 / F2329 as described MATERIAL CHEMISTRY <u>heat</u> <u>C <u>MN P </u><u>S <u>Si Ni </u><u>Cr <u>MO Cu <u>SN V <u>AL N </u><u>B <u>Ti NB </u> <u>Ti NB NB <u>Ti NB NB <u>Ti NB NB <u>Si NB NB <u>Si NB ND ND ND </u></u></u></u></u></u></u></u></u></u></u>	Descri	otion:	5/8	" GUA	RD		Heat	Numb	per(s):						2016	6280	<u> </u>
MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 20163550 0.8 32 0.10 0.03 0.8 0.4 0.5 0.1 1.0 0.08 0.01 0.40 0.08 0.001 0.01 0.001 0.01		• •	RAIL	NUT	+.031	da si s	i de la		in . S	<u></u>	2015	8820				 	
MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 20163550 0.8 32 0.00 0.02 0.6 0.4 0.5 0.1 1.0 0.008 0.01 0.04 0.03 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.01 </td <td>C</td> <td></td> <td></td> <td>AOTA</td> <td>NECO</td> <td></td> <td>50'/ F</td> <td></td> <td></td> <td></td> <td></td> <td>: .</td> <td></td> <td></td> <td></td> <td></td> <td></td>	C			AOTA	NECO		50'/ F					: .					
Heat C MN P S SI NI CR MO CU SN V AL N B TI NB 20163550 08 32 010 003 0.08 0.4 0.5 0.1 10 0.08 0.01 0.40 0.08 0.003 0.01 0.01 20163550 0.8 3.2 0.10 0.03 0.8 0.4 0.5 0.1 1.0 0.08 0.01 0.40 0.07 0.003 0.01 0.01 20163520 0.8 3.5 0.09 0.02 0.6 0.4 0.5 0.1 0.8 0.01 0.40 0.07 0.003 0.01 0.01 20166280 0.8 3.5 0.09 0.04 0.8 0.3 0.3 0.1 0.7 0.008 0.002 0.01 0.01 20166280 0.8 3.5 0.09 0.04 0.8 0.3 0.3 0.1 0.7 0.008 0.002 0.01 0.01 2016280 0.8 0.04	Sp	ecinica	auon.	ASTIN	1 303-1	<u>A/ A1</u>	<u>537 F</u> .	2329 8	<u>is des</u>	cnoed		i di					
20163550 .08 .32 .010 .003 .08 .04 .05 .01 .10 .008 .001 .040 .008 .001 <t< td=""><td>a 7</td><td>··· ·.</td><td></td><td>1. 1. </td><td></td><td></td><td>MAT</td><td>ERIAL</td><td>CHE</td><td>MISTI</td><td>RY :</td><td></td><td></td><td></td><td></td><td>·. · .</td><td></td></t<>	a 7	··· ·.		1. 1. 			MAT	ERIAL	CHE	MISTI	RY :					·. · .	
20158820 .10 .39 .009 .002 .06 .04 .05 .01 .08 .009 .001 .040 .007 .0003 .001 .001 20166280 .08 .35 .009 .004 .08 .03 .03 .01 .07 .006 .001 .039 .002 .001 .001 PLATING AND/OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils) _2.52 _(2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND INFORMATION CONTAINED HEREIN IS CORRECT. JUM JUM JUM JUM JUM JUM JUM	Heat	С	MN	P	S	SI	NI	CR	MO	CU.	SN	v	AL	N	В	TI	NB
20166280 08 35 009 004 08 03 03 01 07 006 001 039 008 0002 001 001 PLATING AND/OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.52 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. Jume:	20163550	.08	.32	• .010	.003	.08	.04	.05	.01	.10	.0.08	.001		.008	.0003	.001	.001
PLATING AND/OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.52(2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ATL INFORMATION CONTAINED HEREIN IS CORRECT. Music Boom management of the this 21st Day of November, 2011 Ment & Omet Back					· ·.									1.1			
HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.52 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE and INFORMATION CONTAINED HEREIN IS CORRECT. STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011 Mult & Onoff Black NOTARY PUBLIC	20166280	.08	.35	.009	.004	.08	.03	.03	.01	.07	.006	.001	.039	.008	.0002	.001	.001
HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.52 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE and INFORMATION CONTAINED HEREIN IS CORRECT.			· · · · ·				•••	· .						<u>.</u> 	1.1.1	<u>.</u>	
**** THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ATL INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011 MULL S. ONOF MALL	·		· . · . ·		PLA	TINC	AND	OR P	ROTE	CTIVI	E COA	TING	÷.				
THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011 HULL S. OMOTO MALLON NOTARY PUBLIC	HOT D	IP GAL	VANIZ	ED (Lo	t Ave.T	hickne	ss / Mil	ls)		.2,	52	(2.0 Mils	Minimu	m)		en de la composition de la composition Composition de la composition de la comp	
THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011 HULL S. OMOTO MALLON NOTARY PUBLIC	• •	****T	HIS PI	RODIIC	TWA	SMAT	ITFAC	TURE	DINT	HEIN	TED	STATI	ES OF	AMER	ICA**	**	
WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE AND INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011 Huri & Omore Braun Notary Public	тн	· · · ·		1	1.1		•		· •			1.1		•			
HEREIN IS CORRECT.			1.0		et et	1		•				11		1. 24	1.1.1		
TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS <u>21st DAY OF NOVEMBER, 2011</u> There & Omot Brann Notary Public	WE HE	REBY	CERI	1FY 11	HATT	отні						YEL IN	FORM	IATIO	N CON	TAIN	ED
TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS <u>21st DAY OF NOVEMBER, 2011</u> There & Omot Brann Notary Public	· ·									0		1	1	1	1	i i i i i Li i i i i i	
SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011									•	1	TRIN				DUCTS	LLC	in the second
SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011	STA		оню	COUNT	YOFA			·	. 0			<u>.</u>	0	1.11			1.1
							THIS	21st I	DAY OF	NOVE	MBER,	2011		•			
	Shore	: g:	Donot	x/Bn	aun		NOTAF	RY PUB	LIC		Ч	•.••					
		· .	425	E. O'CO		AVEN	UE	LIN	IA, OH	10 4580		• • •	419-227	-1296			

TRINITY HIGHWAY PRODUCTS, LLC 425 East O'Connor Ave.

Figure B-24. ⁵/₈" Dia., 1¹/₂" Long Guardrail Bolt for Test Nos. MWTC-1 through MWTC-3

Certificate of Compliance

Birmingham Fastener Manufacturing PO Box 10323 Birmingham, AL 35202 (205) 595-3512

Customer	MIDWES	T MACHIN	ERY	0	ate Ship	oped _	03/21	/2011
Customer Ord	der Number	243	30	E	BFM Ord	er Number	1003	25-00
			Item	Descript	tion			
Description	an a	5/8	"-11 x 10"	HEX BOLT		the second second second second	Qty	100
Lot #	154572	Spe	cification	ASTM A307-	-07b Gr A	Finish	F2	329
		á	Raw Ma	aterial An	alysis	;		
Heat#	41 MA	780337						
Chemical Co	omposition (w	vt% Heat A	nalysis) By	/ Material Su	pplier			
C 0.16	Mn 0.54	P 0.009	S 0.04	Si 0.18	Cu 0.36	Ni 0.09	Cr 0.13	Mo 0.020
		1	Mechan	nical Prop	perties	5		
Sample # 1 2 3 4	Hardness 80 HRB 80 HRB		16,	rength (lbs) 700 600		Tensile Str 73,9 73,4	00	i)

All steel melted and manufactured in the U.S.A.

Authorized Signature: Brian Hughes **Quality Assurance**

Date: 3/21/2011

Figure B-25. ⁵/₈" Dia., 10" Long Hex Bolt for Test No. MWTC-1

		3400G
425 E . O' CO LIMA,	VAY PRODUCTS, LLC. ONNOR AVENUE OHIO 45801 -227-1296	
MATERIA	L CERTIFICATION	
CUSTOMER: STOCK	DATE: MARCH 15, 2011 INVOICE #	
	LOT NUMBER: 101203B	
PART NUMBER: 3400Ġ	QUANTITY: 108,493	
DESCRIPTION: 5/8"x 2 GR BOLT	DATE SHIPPED:	
SPECIFICATIONS: ASTM A307-A/A153	HEAT#: 5074697	
MATERIAL C	CHEMISTRY	
C MN P S SI CU NI .09 .40 .009 .01 .09 .11 .08	CR V MO SN AL CB N TI .08 .003 .03 .005 .049 .000 .0072 NA	
.07 .40 .007 .01 .07 .11 .00	.00 .003 .03 .003 .049 .000 .0072 IA	
PLATING A	ND/OR PROTECTIVE COATING	
HOT DIP GALVANIZED (OZ. PER SQ. FT.)		
	ACTURED IN THE UNITED STATES OF AMERICA****	
THE MATERIAL USED IN THIS PR	ODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A	
WE HEREBY CERTIFY THAT TO T CONTA	THE BEST OF OUR KNOWLEDGE ALL INFORMATION INED HEREIN IS CORRECT.	
	TRINITY HIGHWAY PRODUCTS, LLC.	
STATE OF OHIO, COUNTY OF ALL SWORN AND SUBSCRIBED BEFORE THIS 15 TH DAY OF MARCH, 2011		
425 E. O 'CONNOR AVENUE	LIMA, OH 45801 419-227-1296	

Figure B-26. 5/8" Dia., 2" Long Guardrail Bolt for Test Nos. MWTC-1 through MWTC-3

From: 281-391-2044 To: The Boulder Company

Date: 5/24/2012 Time: 3:34:00 PM

Page 2 of 2

.

May 24, 2012

Date: May 24,2012

K-T Bolt Manufacturing Company, Inc.@ 1150 Katy Fort-Bend Road Katy, Texas 77494 Ph: 281-391-2196 Fax: 281-391-2673 shirley@k-tbolt.com

Original Mill Test Report

Company: Part Description: Material Specification: Coating Specification Purchase Order Number: Lot Number: Comments: Material Heat Number: Testing Laboratory: The Boulder Company 125 pcs % - 11X 9 ½"Finish Hex Bolts A307 A ASTM F2329-05 161005 08334-1 None JK1110419701 Nucor

Chemical Analysis - Weight Percent

 C
 Mn
 P
 S
 Si
 Cu
 Cr
 Ni
 Mo
 V
 Cb
 Sn
 Al
 B
 Ti
 Ca
 Co
 N

 .13
 .69
 .018
 .030
 .20
 .26
 .12
 .09
 .020
 .003
 .002
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

Tensile and Hardness Test Results

Property#1 pslTensile:70.550Proof/Yield:52.360Elongation:27.5ROA:•Hardness:149 HBN

<u>Comments</u> Test results meet mechanical requirements of specification.

All reports are the exclusive property of K-T Boll Manufacturing Company, Inc & Any reproduction must be in their entirety and at the permission of same.

Figure B-27. ⁵/₈" Dia., 10" Long and 14" Long Guardrail Bolt for Test Nos. MWTC-1 through MWTC-3

Chemical and Physical Test Report

MADE IN UNITED STATES

KNOXVILLE STEEL MILL 1919 TENNESSEE AVE KNOXVILLE TN 37921 USA

CUSTOMER: CONCRETE INDUSTRIES INC

SHAPE + SIZE		GRAD	DE	SPEC	FICA	TION												SALES	ORDER	CU	IST P.O	. NUMB	ER
X13MM REBAR (# 4))	420 (6	0)	ASTM	A615/	A615M-	09B TH	ERME	X TRE	ATED													
HEAT I.D.	C	Mn	P	S	Si	Cu	Ni	Cr	Mo	V	Nb	Sn	C Eqv							177			
K117810	.28	.56	.027	.072	.16	.37	.15	.15	.016	.006	.004	.005	.404										
Mechanical Test: 8.33MM %I/h 5.2L		90840					: 10515	0 PSI,	724.98	MPA	%EI:	10.6/8i	in, 10.6	200MM	Bend: OK	Def H	F: .031,	.79MM	Def G	ap: .118	8, 3MM	Def S	SP: .328
Customer Requirem	ents	CASTI	NG: \$1	RAND																			
Mechanical Test: 8.33MM %l/h 5.2L		91410	PSI, 6	30.25 N	/IPA	Tensile	: 10555	0 PSI,	727.74	MPA	%EI:	10.0/8i	in, 10.0	200MM	Bend: OK	Def H1	r: .031,	.79MM	Def G	ap: .118	8, 3MM	Def S	SP: .328
Customer Requirem	ents	CASTI	NG: ST	RAND	CAST																		
Mechanical Test: 8.33MM %I/h 5.2L		89240	PSI, 6	15.29 N	I PA	Tensile	: 10360	0 PSI,	714.3 M	/IPA	%EI: *	11.3/8in	, 11.3/2	00MM	Bend: OK	Def HT:	.031,	.79MM	Def Ga	ip: .118,	3MM	Def SI	P: .328,
Customer Requirem	ents	CASTI	NG: ST	RAND	CAST																		

This material, including the billets, was melted and manufactured in the United States of America

Markon

Bhaskar Yalamanchili Quality Director Gerdau THE ABOVE FIGURES ARE CERTIFIED CHEMICAL AND PHYSICAL TEST RECORDS AS CONTAINED IN THE PERMANENT RECORDS OF COMPANY.

Jun Churnetst

Metallurgical Services Manager KNOXVILLE STEEL MILL

Seller warrants that all material furnished shall comply with specifications subject to standard published manufacturing variations. NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, ARE MADE BY THE SELLER, AND SPECIFICALLY EXCLUDED ARE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no event shall seller be liable for indirect, consequential or punitive damages arising out of or related to the materials furnished by seller.

Any claim for damages for materials that do not conform to specifications must be made from buyer to seller immediately after delivery of same in order to allow the seller the opportunity to inspect the material in question.

Figure B-28. #4 Rebar for Test Nos. MWTC-1 through MWTC-3

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. P.O. Box 80508 Canton, Ohio 44708

Customer:	MIDWEST M 2200 Y STRE LINCOLN,NE	ET	& SUPPLY	′ CO.			Test Report B.O.L. # Customer P.O Shipped to: Project: GHP Order No	MIDWEST MAC	HINERY & SUF		HIPPED:	02/29/12	
HT # code	C.	Mn.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре		Description
L81665	0.1	0.8	0.01	0.025	0.19	63000	53300	20	200		2		6IN WF AT 8.5 X 6FT 0IN GR POST
L83827	0.09	0.94	0.013	0.031	0.23	70400	56300	24	200		2		6IN WF AT 8.5 X 6FT OIN GR POST
L83786	0.09	0.85	0.011	0.038	0.23	66500	52300	20	200		2		6IN WF AT 8.5 X 6FT 0IN GR POST
L83766	0.09	0.88	0.011	0.036	0.19	67200	53300	21	200		2		6IN WF AT 8.5 X 6FT 0IN GR POST
L81670	0.09	0.92	0.014	0.028	0.2	62000	47400	21	50		2		6IN WF AT 8.5 X 6FT 0IN GR POST

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653

All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"

Ali Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant @uardrail and terminal sections meet ASTM A606, Type 4

By:

Andrew Artar Vice President of Sales & Marketing Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed battere mer a Motary Public, by Andrew Artar this 1 st pay 8 14 co 2012 James P. Dehnke Notary Public, State of Ohio My Commission Expires 10-19-2014 Notary Public, State

Figure B-29. W6x8.5 72" Long Posts for MWTC-1 through MWTC-3

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. P.O. Box 80508 Canton, Ohio 44708

Customer:	MIDWEST M 2200 Y STRE LINCCLN, N	EET	& SUPPLY	00.			Test Report B.O.L.# Customer P.O. Shipped to: Project : GHP Order No	MIDWEST	MACHINERY			06/20/08	
HT # cods G802202 G8022217 G802213 G802203 13715 26267 56632 256632 256632 25165 44330 44261	C. 0.14 0.12 0.13 0.13 0.14 0.14 0.09 0.09 0.09 0.12 0.12 0.15	Mn. 0.74 0.74 0.71 0.71 0.83 0.79 0.83 0.69 0.61	P. 0.014 0.014 0.014 0.014 0.026 0.011 0.011 0.011 0.012 0.011 0.011	S. 0.027 0.029 0.03 0.027 0.027 0.028 0.028 0.031 0.028 0.028 0.028 0.028	SI. 0.21 0.26 0.23 0.2 0.23 0.17 0.2 0.18 0.2 0.22 0.23 0.19	Tensile 78300 76400 76700 76600 71000 69000 78790 78790 66000 63000 68000	Yteld 50500 58300 60000 69660 49000 64860 64860 64860 64860 445000 44000 45000	Elong. 22.5 26.6 24.6 22.9 24.7 24.4 23 24 23 24 23.5 20.4 27.2	Quantity 750	Class A A A A A A A A A A A A A A A	Туре		Description GIN WF AT 8.5 X GFT 0IN GR POST GIN WF AT 8.5 X GFT 0IN GR POST

182

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-653 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-525 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrali and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

All material fabricated in approance with Nebraska Department of Fransportation

By:_

Andrew Arta? Vice President of Sales and Markeling Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed before me, a Notary Public, by Andrew Artar this 2,3th day of June, 2008.

CYNTHIA K. CRAWFORD Notary Public, State of Ohio Commission Expires 09-16-2012

Figure B-30. W6x8.5 72" Long Posts for Test Nos. MWTC-2 and MWTC-3

PAGE

03/19

Concrete Company

Lincoln, Nebraska 68529 Telephone 402-434-1844

6200 Cornhusker Highway, P.O. Box 29288

CAUTION FRESH CONCRETE

Body and or eye contact with fresh (moist) concrete should be avoided because it contains alkali and is caustic.

DRIVER DESTINATION TIME DATE PLANT MIX CODE YARDS TRUCK CLASS TICKET 13513000 1.33 4 0116 NTE MA92:80 10/24/12 4139567 CUSTOMER CUSTOMER NAME TAX CODE PARTIAL NIGHT R LOADS JOB 00003 CIA---MWRS /UNL 1 DELIVERY ADDRESS SPECIAL INSTRUCTIONS P.O. NUMBER NW 38TH & W. CUMING E/ TO N/S OF GOODYEAR HANGER 4024506250 LOAD QUANTITY CUMULATIVE QUANTITY ORDERED QUANTITY PRODUCT UNIT PRICE PRODUCT DESCRIPTION AMOUNT 1.33 1.33 1,33 13513000 SG3500 4.00 92.50 123.03 MINIMUM HAUL 55.00 SUBTOTAL 178.03 WATER ADDED ON JOB TAX AT CUSTOMER'S REQUEST GAL RECEIVED B TOTAL 78.03 USER LOGIN USER MIX CODE TRUCK DISP TICKET NUM 4139567 DATE 1072472012 LOAD ID TICKET NUM 159551 TICKET ID 172632 TIME 08:26 SEQ SIZE CODE 13513000 DESIGN GTY 2964.0 15 611.0 15 3.0 oz MATERIAL ACTUAL 10.84 WAT MOISTURE BATCHED VAR VAF
 Image: Constraint of the 0.19% 7.6 805 4.0 38.35 gl 0.1 WATER/CEMENT: 0.510A DESIGN WATER: 47.9 g1 ACTUAL WATER: 49.2 g1

Figure B-31. Concrete Curb for Test Nos. MWTC-1 and MWTC-2

PLANT MIX CODE YARDS TRUCK DRIVER DESTINATION CLASS TIME DATE TICKET 4 13513000 1.25 0125 029 NTE 11:21AM 01/28/13 414177 2USTOMER JOB CUSTOMER NAME CLASS TIME DATE 01/28/13 414177 2USTOMER JOB CUSTOMER NAME CLASS TAX CODE PARTIAL NIGHT R LOADS 200003 DELIVERY ADDRESS JOB CUSTOMER NAME SPECIAL INSTRUCTIONS TAX CODE PARTIAL NIGHT R LOADS 200003 DELIVERY ADDRESS SPECIAL INSTRUCTIONS NORTH OF GOUDYEAR HANGER P.O. NUMBER 4504250 4800 NW 35TH ORDERED PRODUCT PRODUCT DESCRIPTION UNIT AMOUNT 1.25 1.25 1.25 13513000 SG3500 4.00 92.50 115.63 122.20 122.20 16.00 P220 NON-CHLORIDE 9.00 11.00 57.50 1.25 0.22.0 16.00 P220 NON-CHLORIDE 57.50 5.00 MANTER ADDED ON JOB GAL RECEIVED BY AMOUNT TAX TAX <th></th> <th>cc</th> <th>ncrete s</th> <th>or eye cont hould be ave and is caus</th> <th>bided beca</th> <th>use it con-</th> <th>16400 1</th> <th></th> <th>Telephone</th> <th>402-4</th> <th>34-1844</th> <th></th> <th></th>		cc	ncrete s	or eye cont hould be ave and is caus	bided beca	use it con-	16400 1		Telephone	402-4	34-1844		
SUSTOMER 00003 JOB CUSTOMER NAME CIAUNLMRS TAX CODE PARTIAL NIGHT R LOADS 1 DELIVERY ADDRESS 4800 NW 35TH SPECIAL INSTRUCTIONS NORTH OF GOODYEAR HANGER PO. NUMBER 4506250 PO. NUMBER 4506250 LOAD OUANTITY CUMULATIVE QUANTITY ORDERED QUANTITY PRODUCT QUANTITY PRODUCT CODE PRODUCT DESCRIPTION UNIT PRICE AMOUNT 1.25 1.25 1.25 13513000 SG3500 4.00 92.50 115.63 122.20 16.00 PZ20 NON-CHLORIDE MINIMUM HAUL WINTER SERVICE 9.00 11.00 57.50 NATER ADDED ON JOB Sal DECEMED BY OFFICE SUBTOTAL TAX 189.13					Carl State State State	A CONTRACTOR OF				and the second sec			
Delivery ADDRESS 4800 NW 35TH SPECIAL INSTRUCTIONS NORTH OF GODDYEAR HANGER PO. NUMBER 4506250 LOAD QUANTITY CUMULATIVE QUANTITY ORDERED QUANTITY PRODUCT QUANTITY PRODUCT QUANTITY <th></th> <th>1.001.</th> <th></th> <th>and the second second</th> <th>Der ren gewente</th> <th>067</th> <th>NIL</th> <th></th> <th></th> <th>01.</th> <th></th> <th>-</th> <th></th>		1.001.		and the second second	Der ren gewente	067	NIL			01.		-	
4800 NW 35TH NORTH OF GOODYEAR HANGER 4504250 LOAD OUANTITY CUMULATIVE QUANTITY ORDERED QUANTITY PRODUCT QUANTITY PRODUCT PRICE AMOUNT 1.25 1.25 1.25 13513000 SG3500 4.00 92.50 115.63 122.20 122.20 16.00 PZ20 NON-CHLORIDE MINIMUM HAUL WINTER SERVICE 9.00 110.00 ATER ADDED ON JOB On J	A STATISTICS AND A STATISTICS			CIA	UNLMR	S	Barris	1.1.1	No. The		Come ?	-2.0	1
QUANTITY QUANTITY QUANTITY CODE PRODUCT DESCRIPTION PRICE AMOUNT 1.25 1.25 1.25 1.25 13513000 SG3500 4.00 92.50 115.63 122.20 122.20 16.00 PZ20 NON-CHLORIDE 9.00 115.03 11.00 MINIMUM HAUL WINTER SERVICE 9.00 57.50 5.00	4800	NW 3	35TH			NORTH	OF GOODYE	AR HANGER		4	506250		
122.20 122.20 16.00 PZ20 NON-CHLORIDE 9.00 11.00 MINIMUM HAUL WINTER SERVICE 9.00 57.50 5.00 ATER ADDED ON JOB Gal BECEIVED BY MALE 189.13							PRO	DUCT DESCRIPTION	9			,	AMOUNT
ATER ADDED ON JOB						PZ20	NON-CHLO MINIMUM	HAUL	4.00			11 57	.00 .50
189.13					e tijel		AC.t	xX -1	ANL	4		189	.13

Figure B-32. Concrete Curb for Test No. MWTC-3

Appendix C. Static Soil Tests

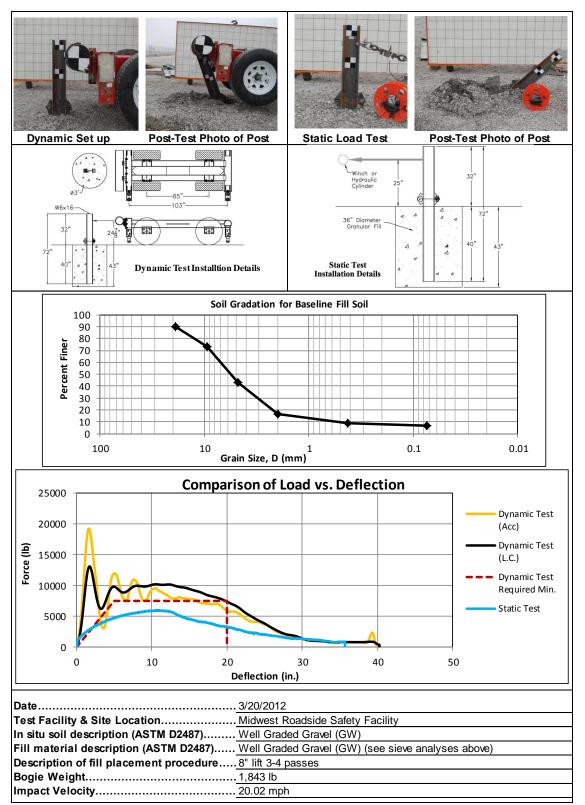


Figure C-1. Soil Strength, Initial Calibration Tests

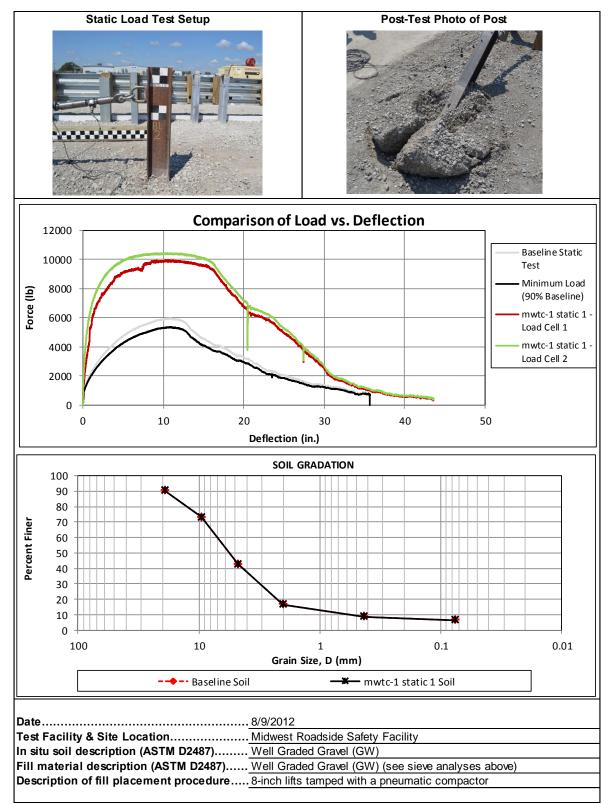


Figure C-2. Static Soil Test, Test No. MWTC-1

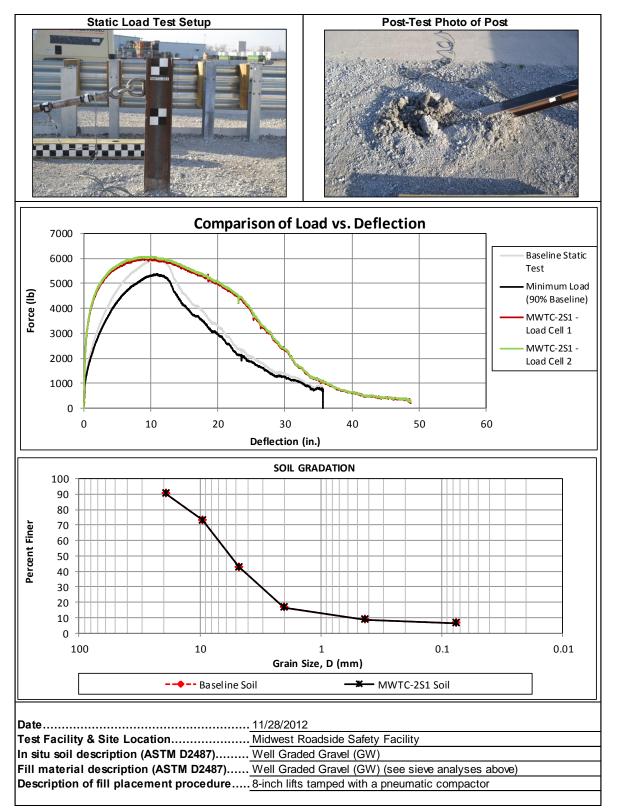


Figure C-3. Static Soil Test, Test No. MWTC-2

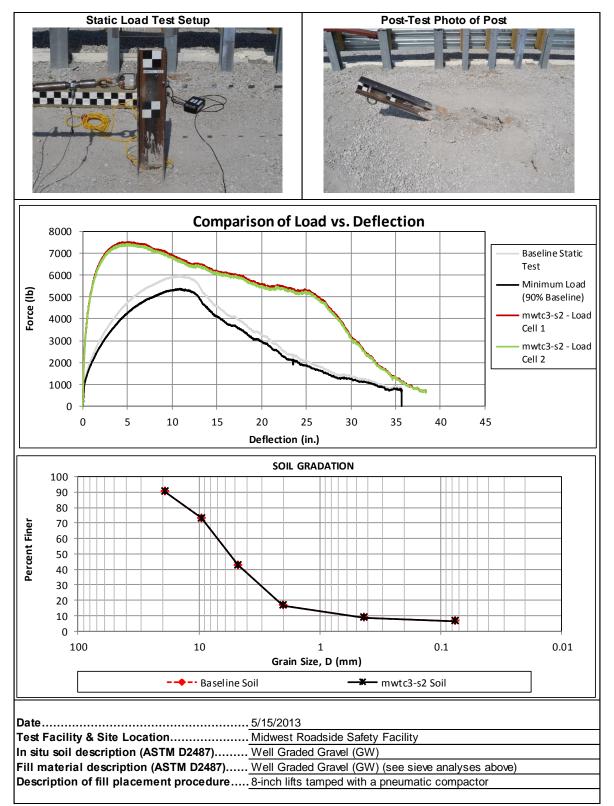


Figure C-4. Static Soil Test, Test No. MWTC-3

Appendix D. Vehicle Deformation Records

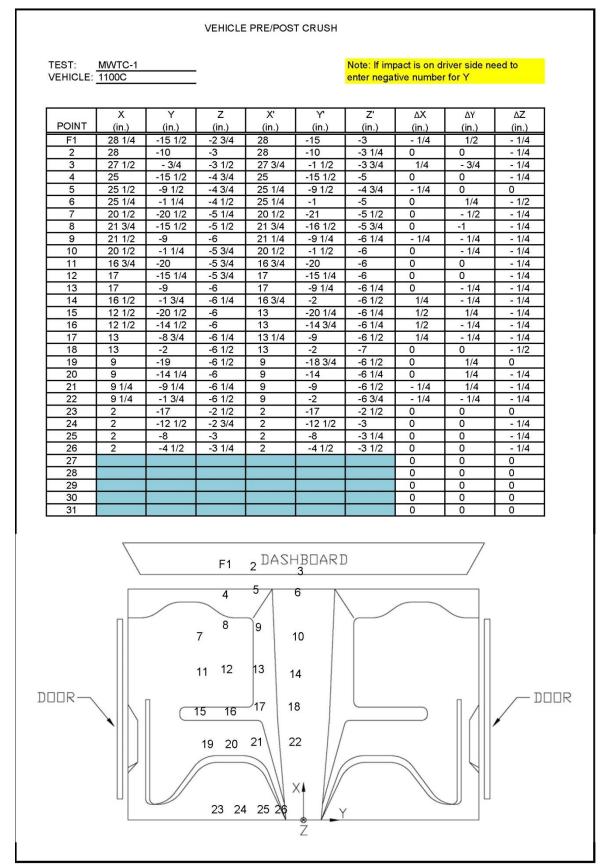


Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MWTC-1

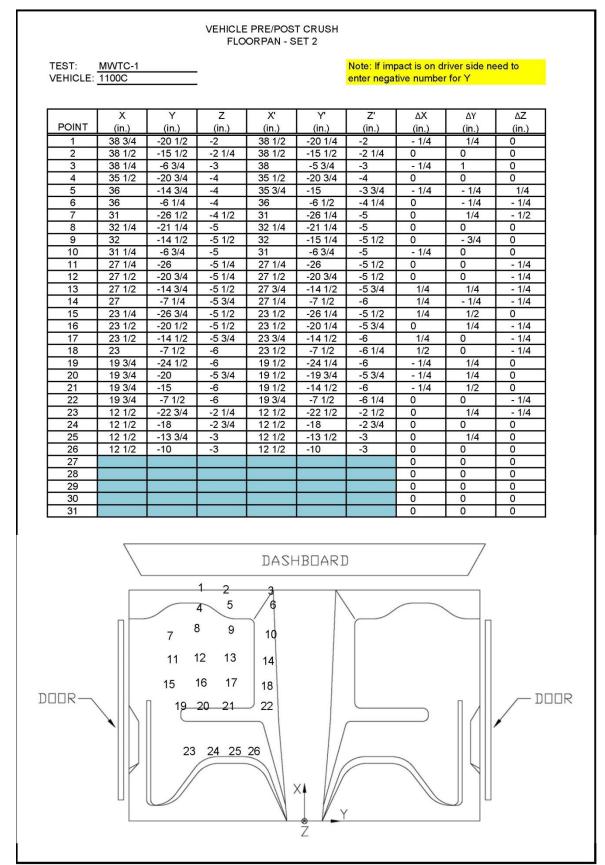


Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MWTC-1

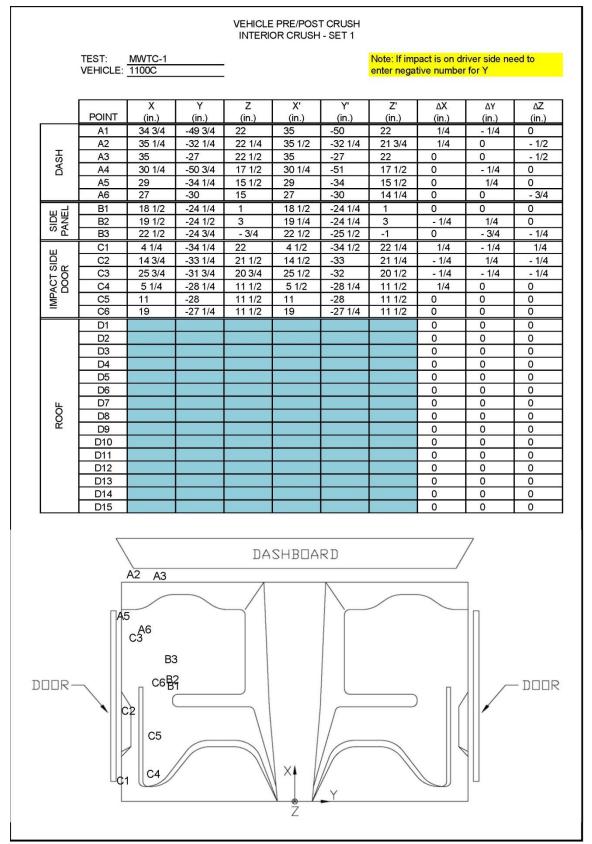


Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. MWTC-1

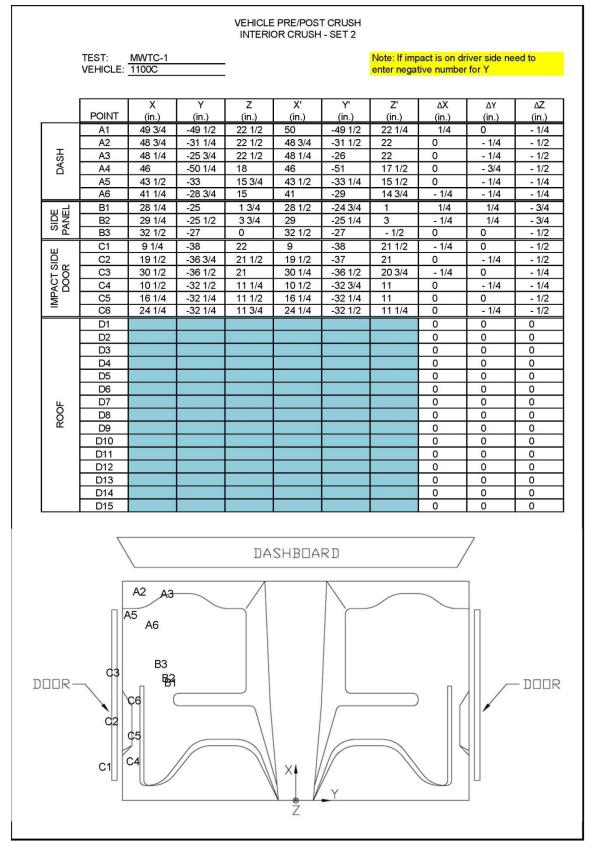


Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. MWTC-1

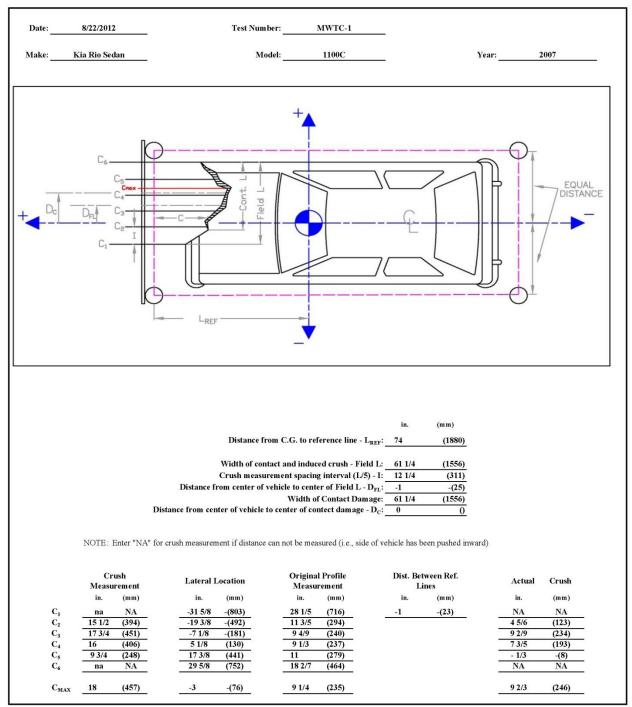


Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-1

Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MWTC-1

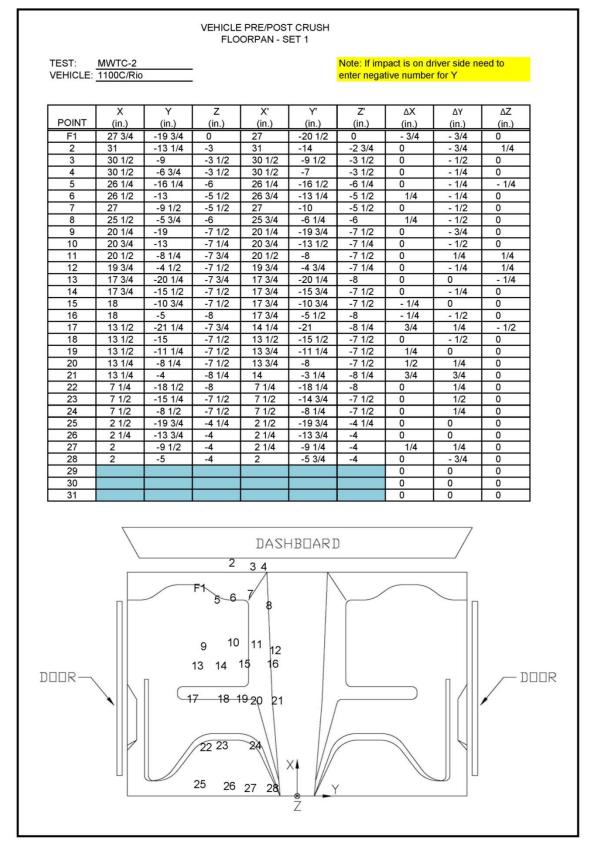


Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MWTC-2

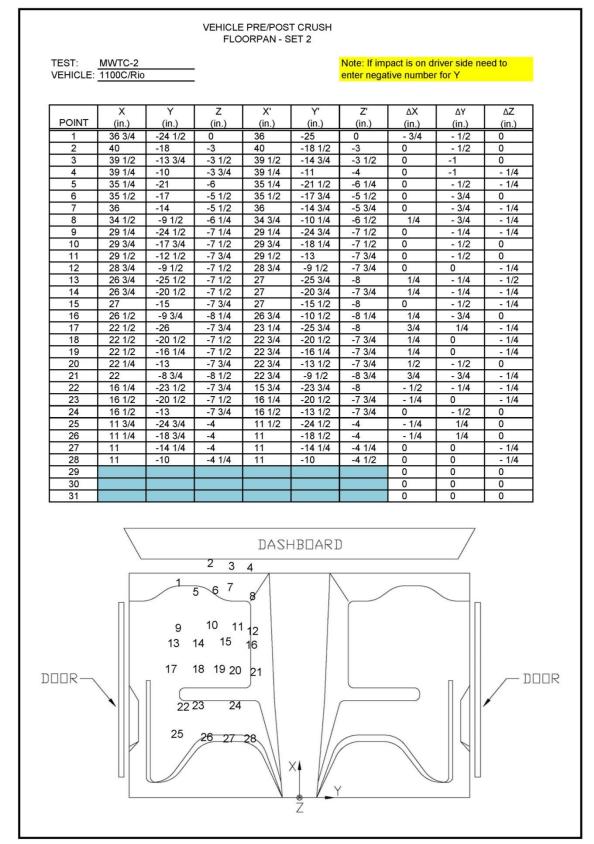


Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MWTC-2

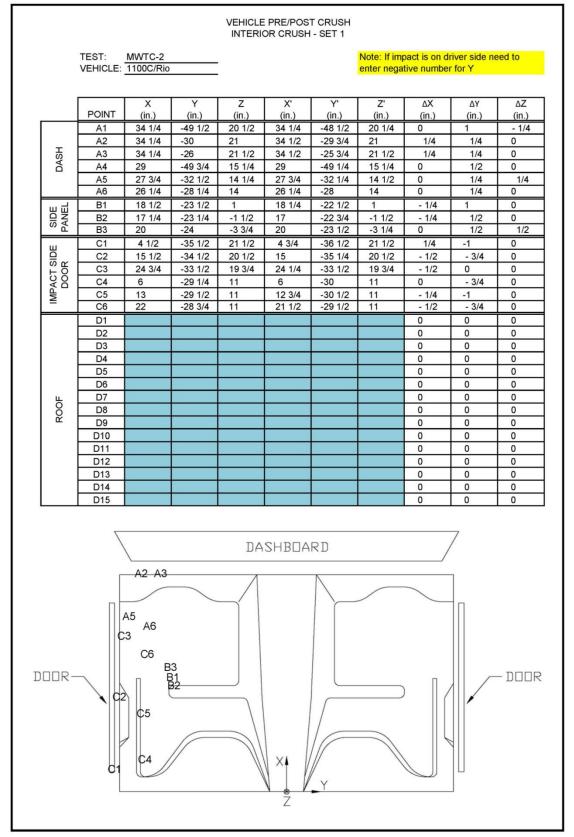


Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. MWTC-2

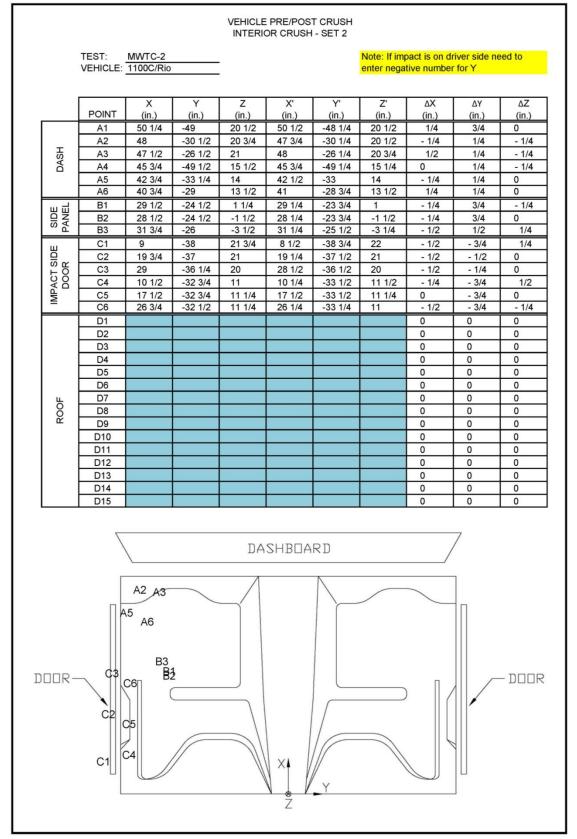


Figure D-10. Occupant Compartment Deformation Data - Set 2, Test No. MWTC-2

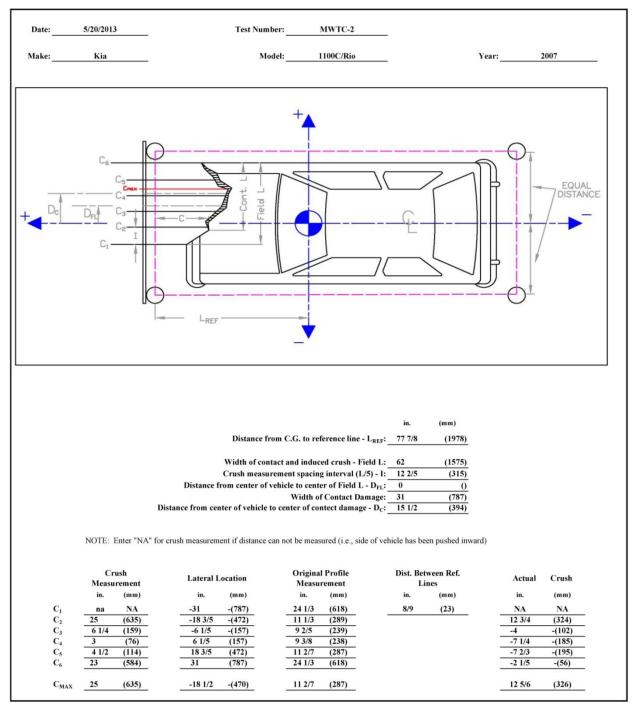


Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-2

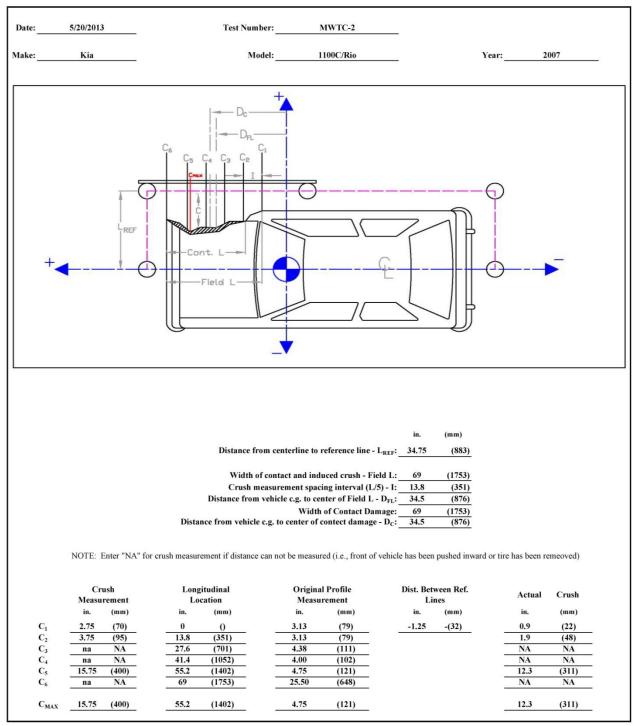


Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MWTC-2

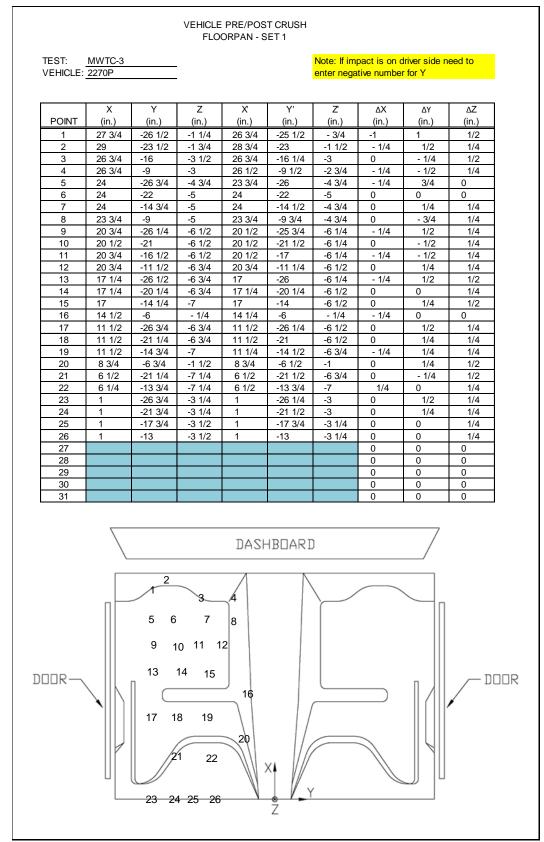


Figure D-13. Floor Pan Deformation Data – Set 1, Test No. MWTC-3

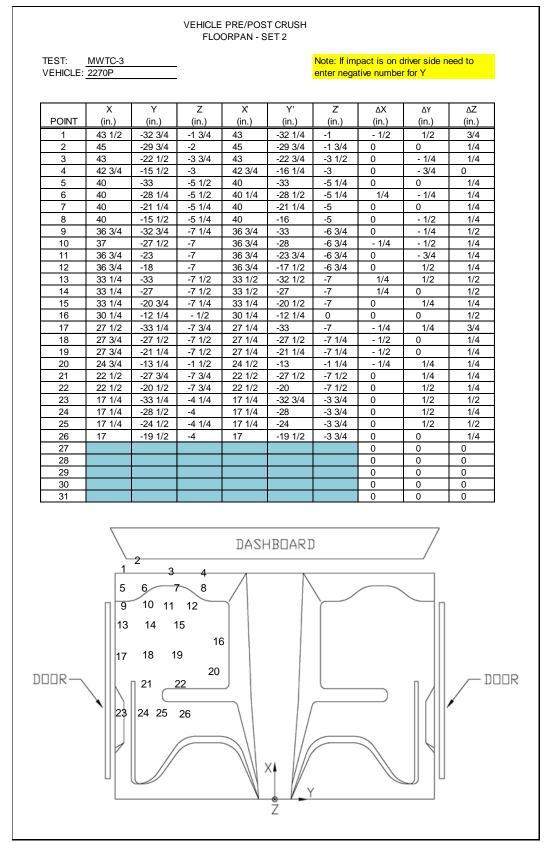


Figure D-14. Floor Pan Deformation Data – Set 2, Test No. MWTC-3

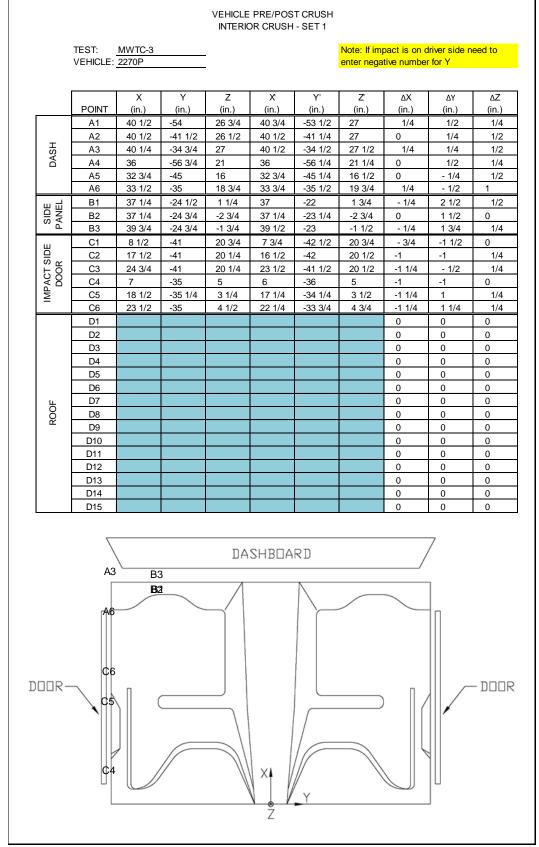


Figure D-15. Occupant Compartment Deformation Data – Set 1, Test No. MWTC-3

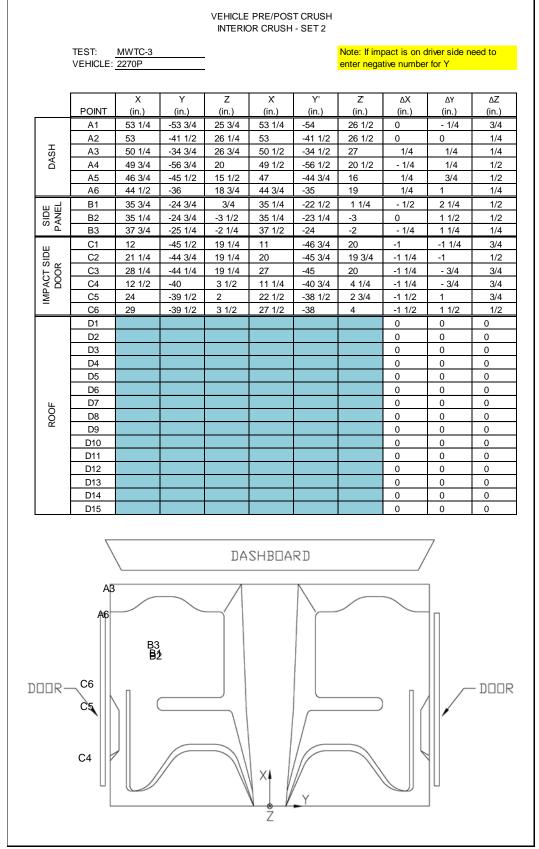


Figure D-16. Occupant Compartment Deformation Data – Set 2, Test No. MWTC-3

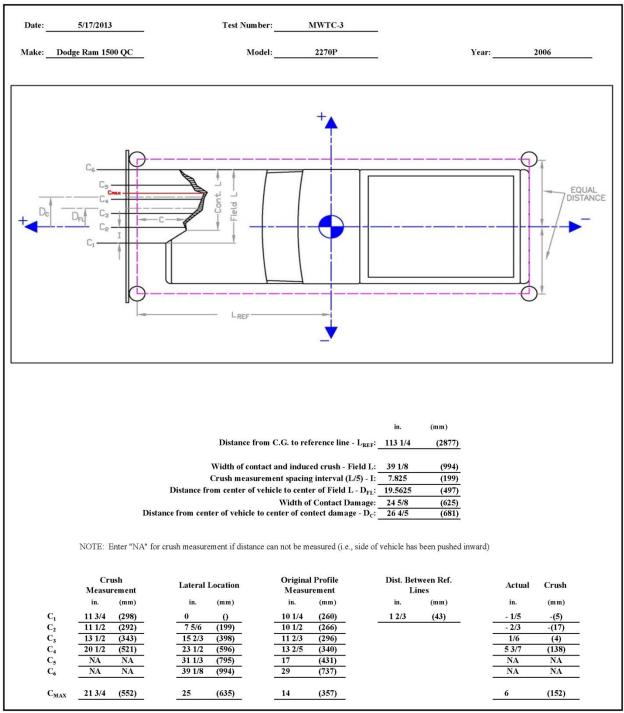


Figure D-17. Exterior Vehicle Crush (NASS) - Front, Test No. MWTC-3

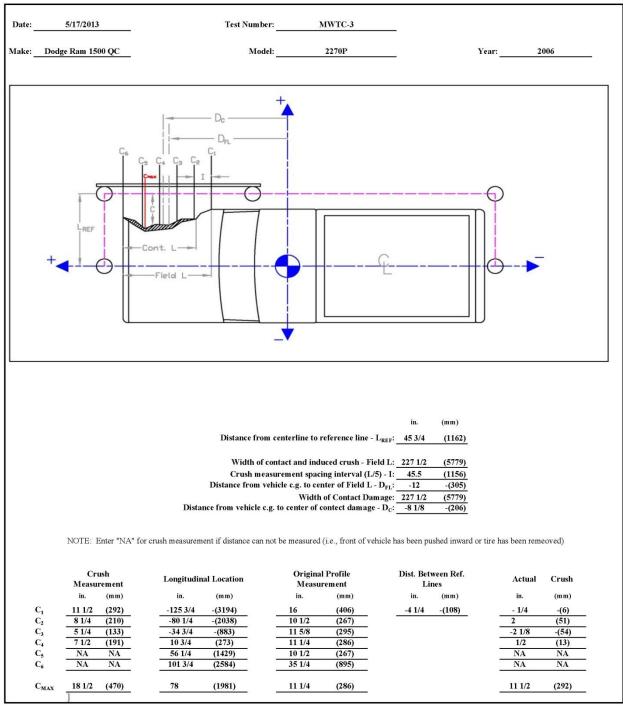


Figure D-18. Exterior Vehicle Crush (NASS) - Side, Test No. MWTC-3

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MWTC-1

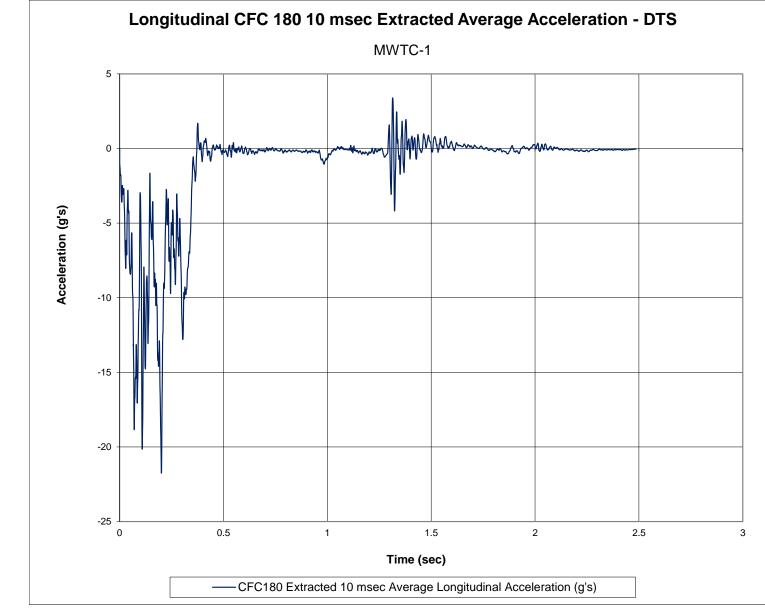


Figure E-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MWTC-1

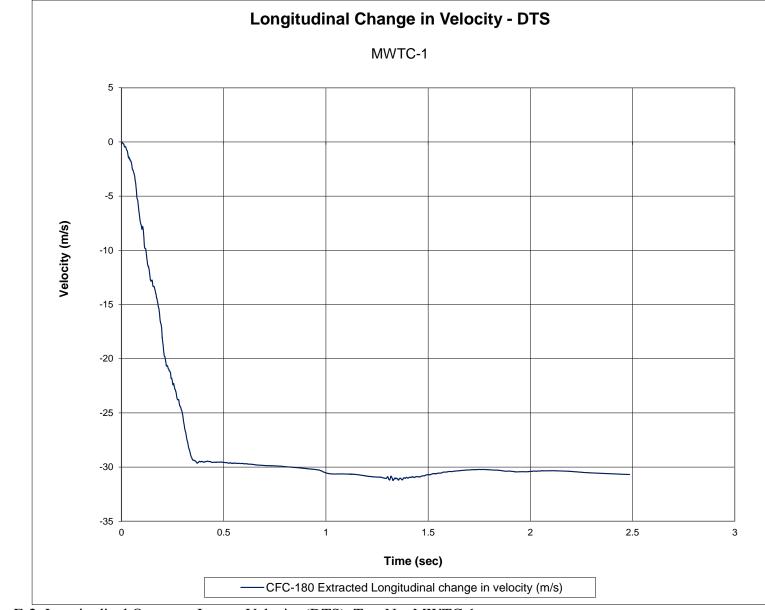


Figure E-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MWTC-1

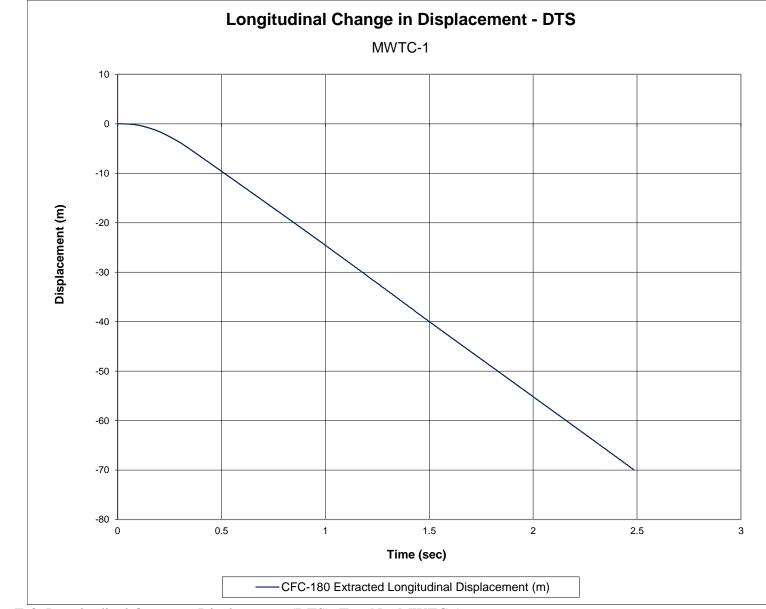


Figure E-3. Longitudinal Occupant Displacement (DTS), Test No. MWTC-1

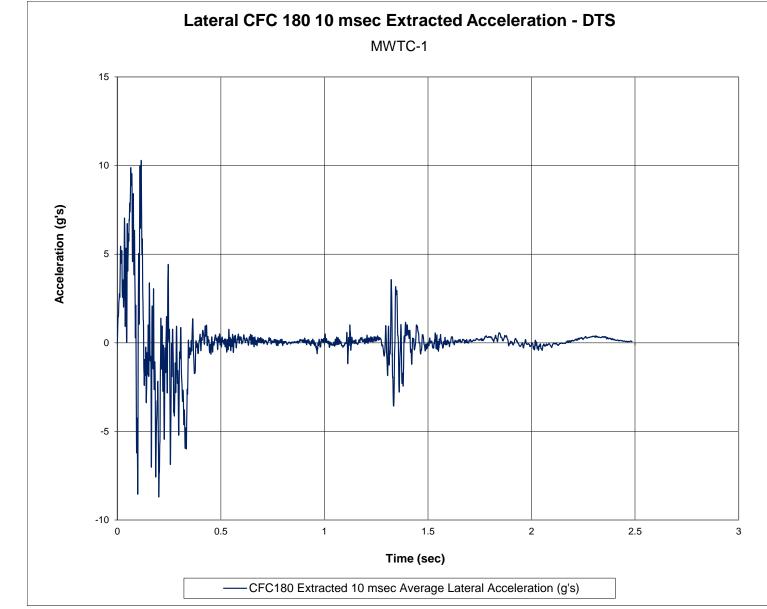


Figure E-4. 10-ms Average Lateral Deceleration (DTS), Test No. MWTC-1

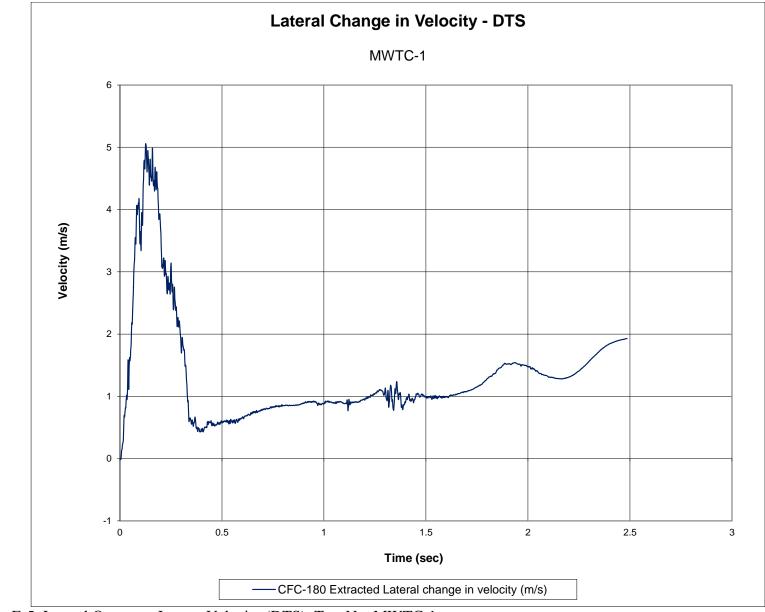


Figure E-5. Lateral Occupant Impact Velocity (DTS), Test No. MWTC-1

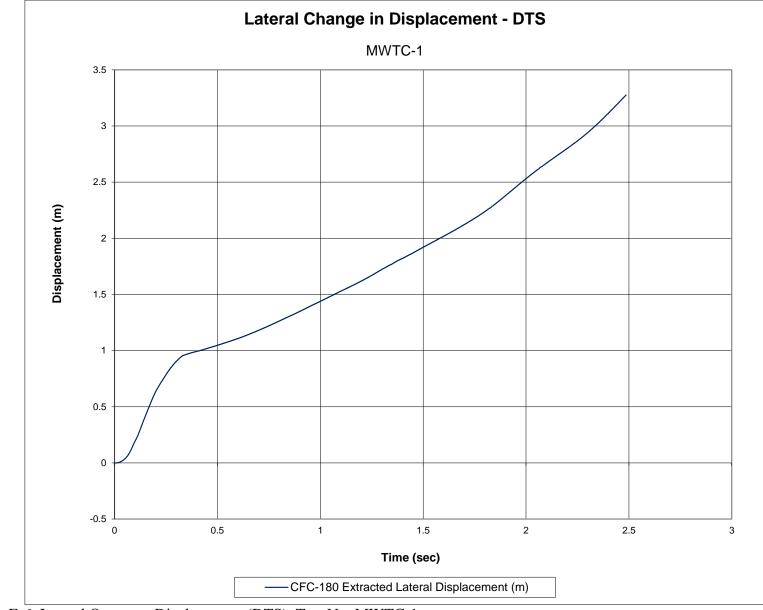


Figure E-6. Lateral Occupant Displacement (DTS), Test No. MWTC-1

Figure E-7. Vehicle Angular Displacements (DTS), Test No. MWTC-1

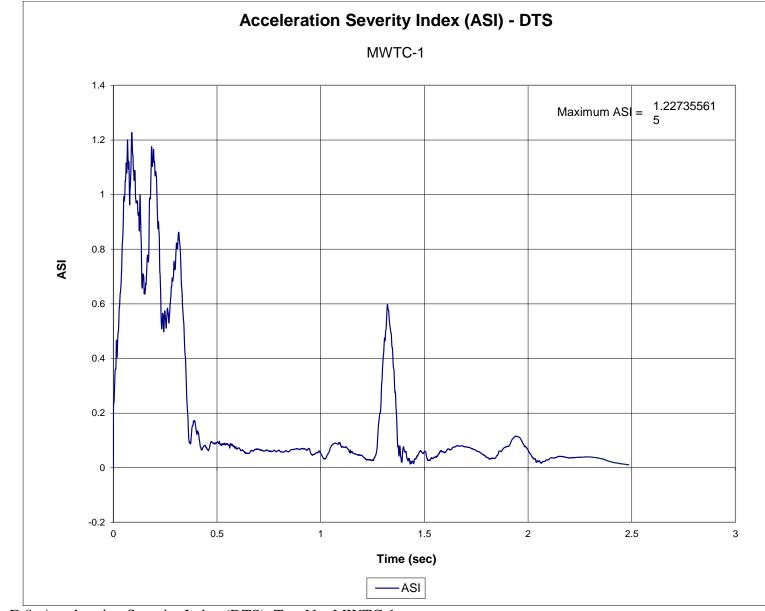


Figure E-8. Acceleration Severity Index (DTS), Test No. MWTC-1

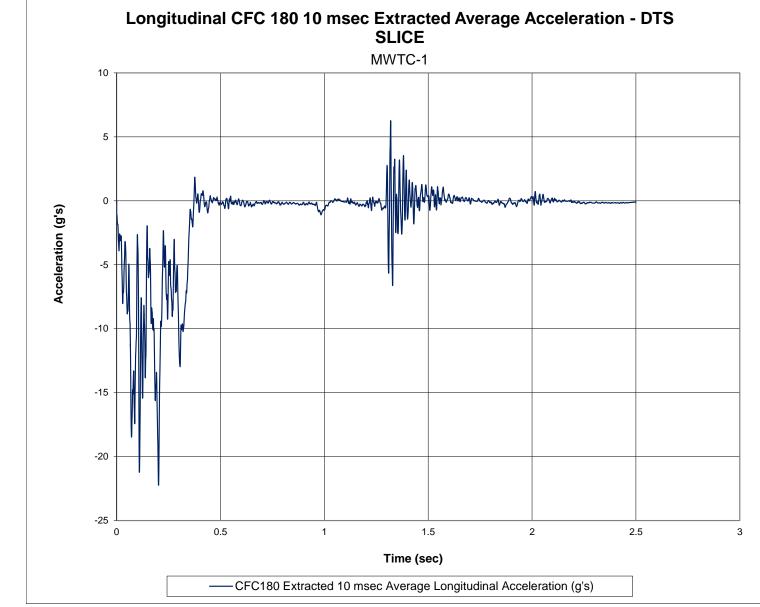


Figure E-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. MWTC-1

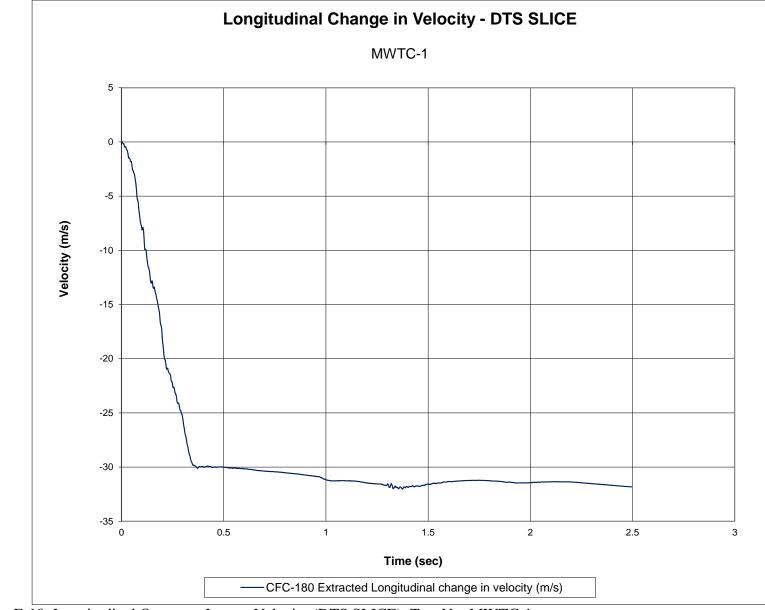
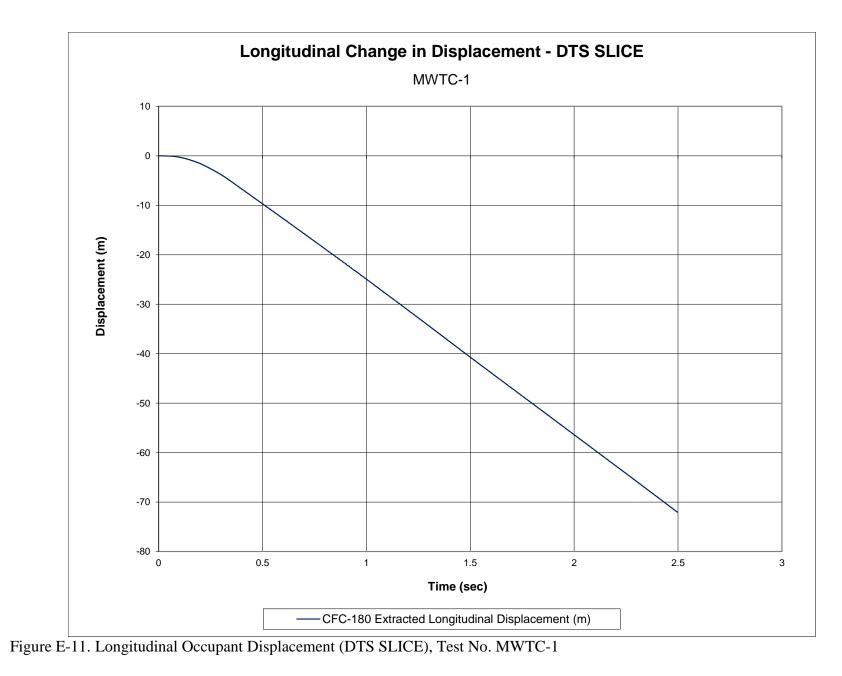



Figure E-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. MWTC-1

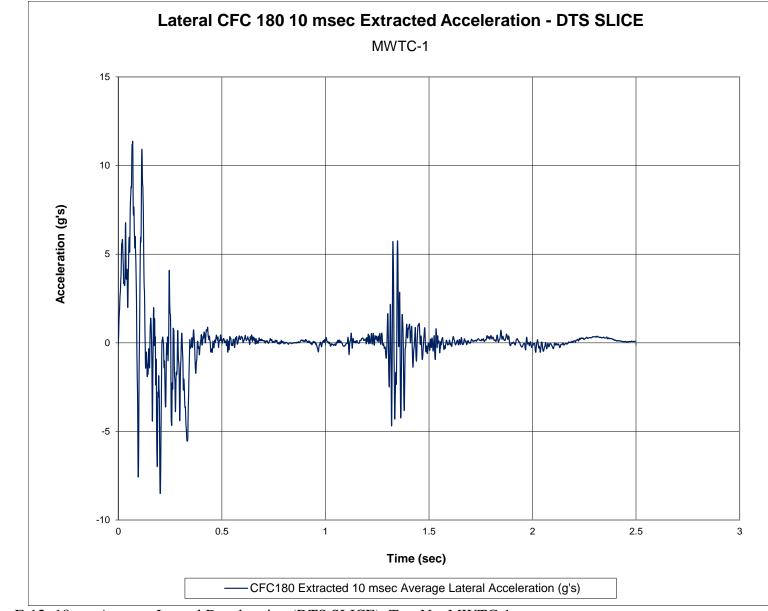


Figure E-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. MWTC-1

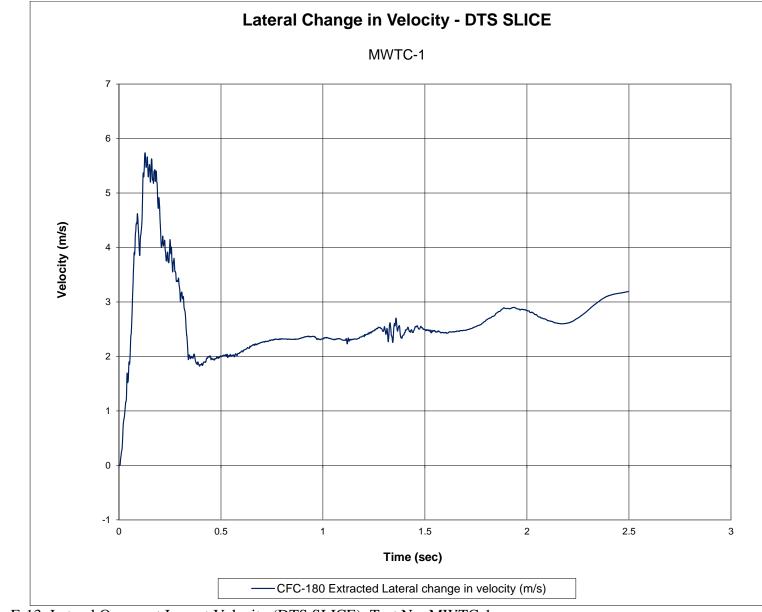


Figure E-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. MWTC-1

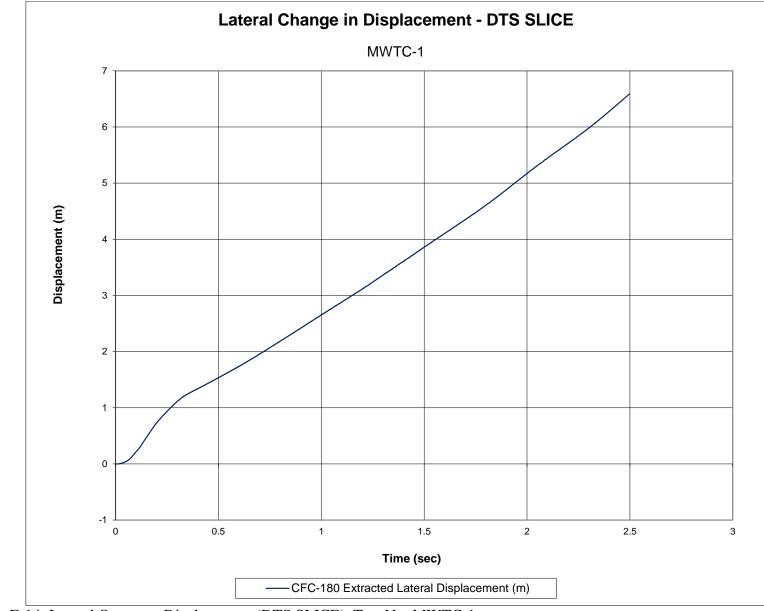


Figure E-14. Lateral Occupant Displacement (DTS SLICE), Test No. MWTC-1

Figure E-15. Vehicle Angular Displacements (DTS SLICE), Test No. MWTC-1

224

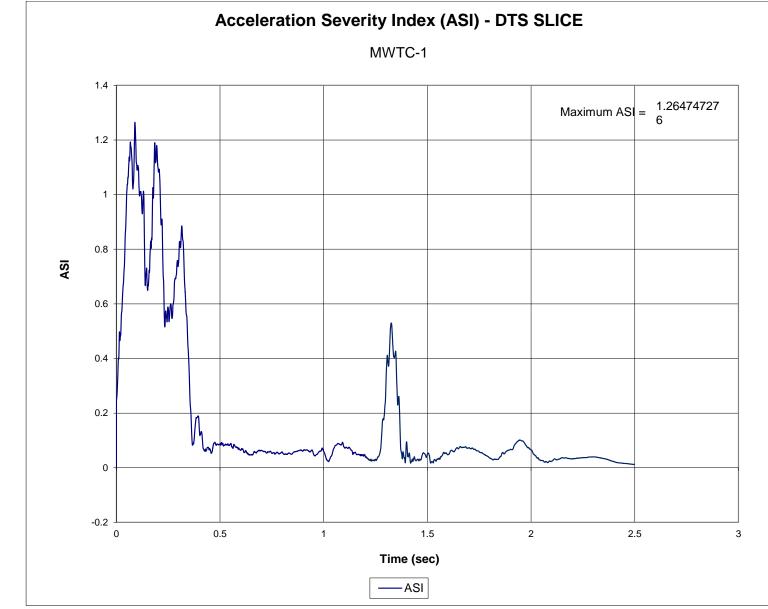


Figure E-16. Acceleration Severity Index (DTS SLICE), Test No. MWTC-1

225

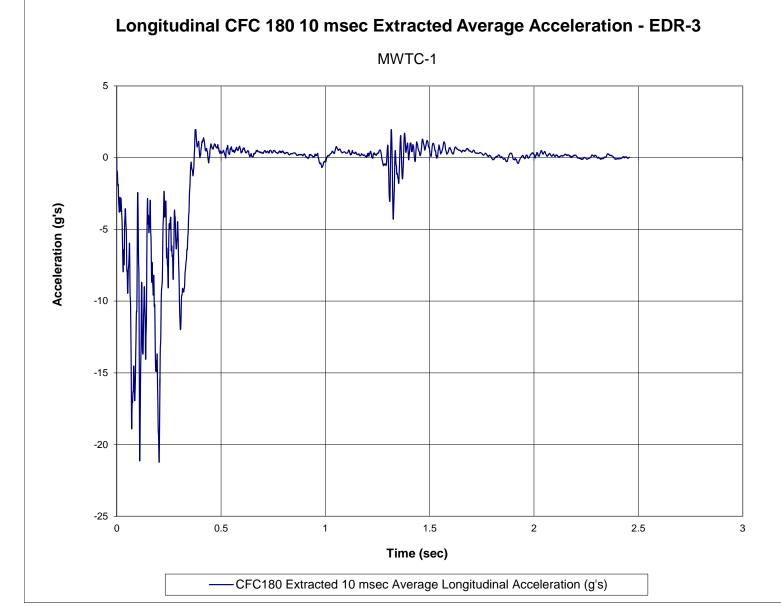


Figure E-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MWTC-1

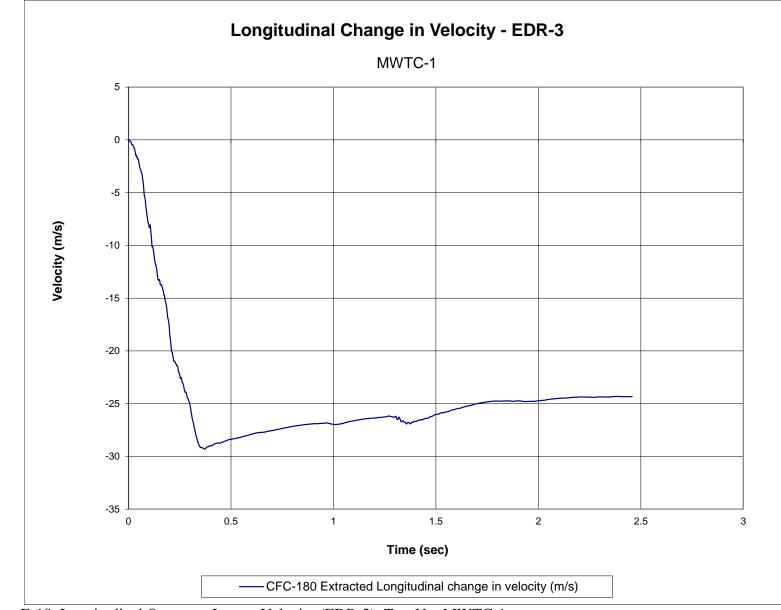


Figure E-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MWTC-1

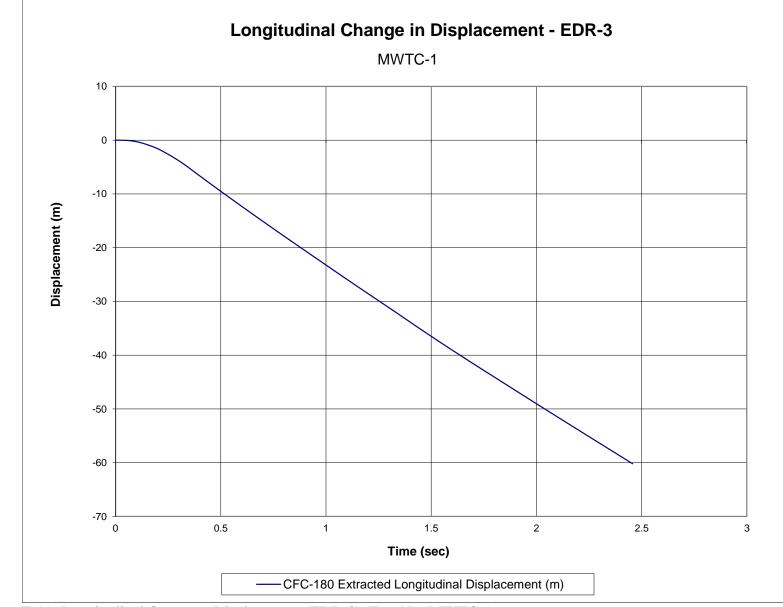


Figure E-19. Longitudinal Occupant Displacement (EDR-3), Test No. MWTC-1

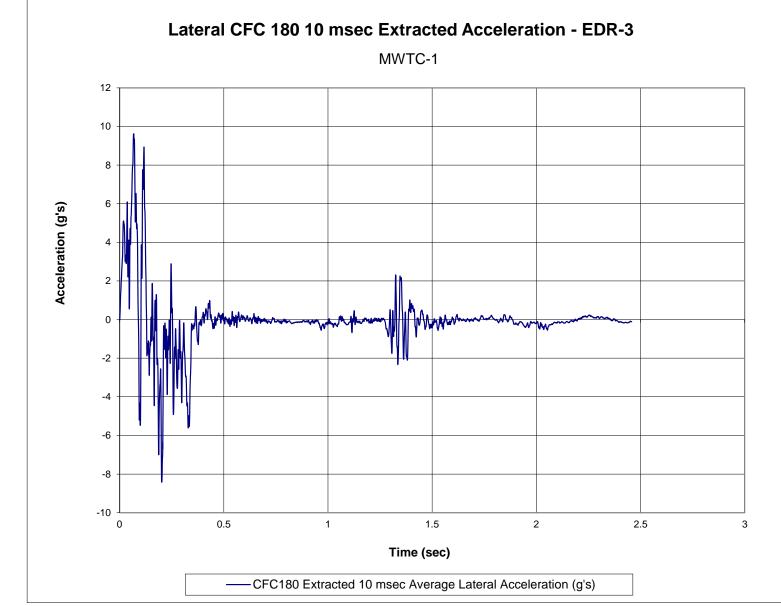


Figure E-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MWTC-1

229

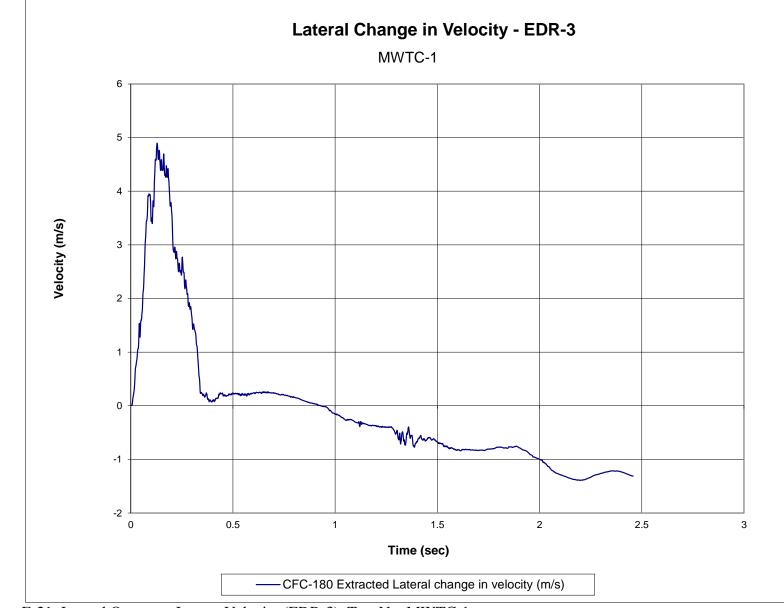


Figure E-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MWTC-1

Figure E-22. Lateral Occupant Displacement (EDR-3), Test No. MWTC-1

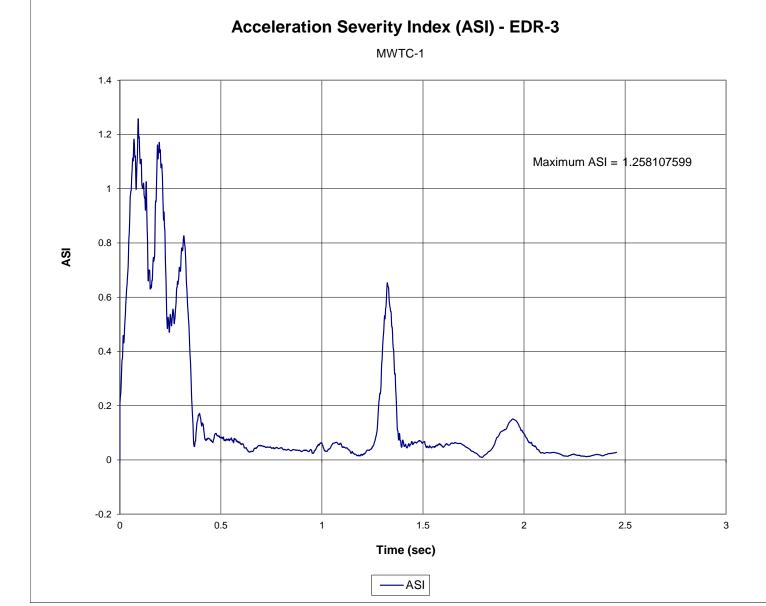


Figure E-23. Acceleration Severity Index (EDR-3), Test No. MWTC-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MWTC-2

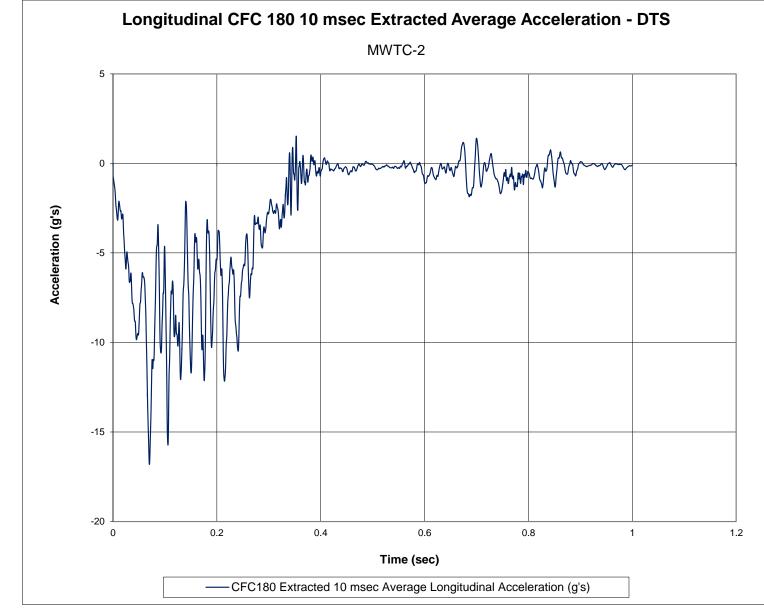


Figure F-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MWTC-2

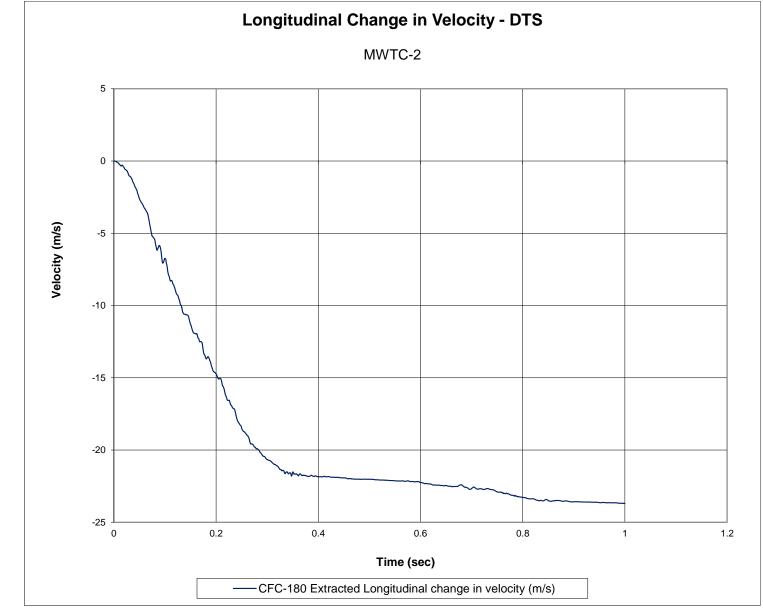


Figure F-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MWTC-2

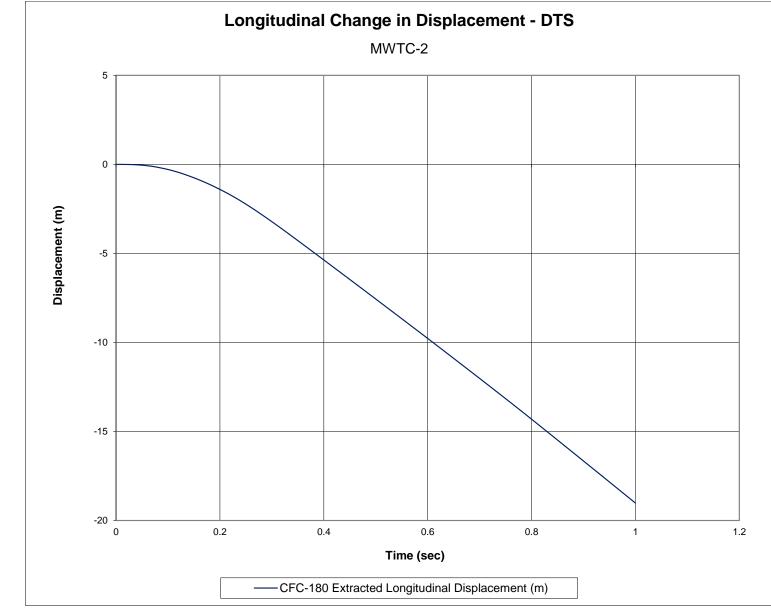


Figure F-3. Longitudinal Occupant Displacement (DTS), Test No. MWTC-2

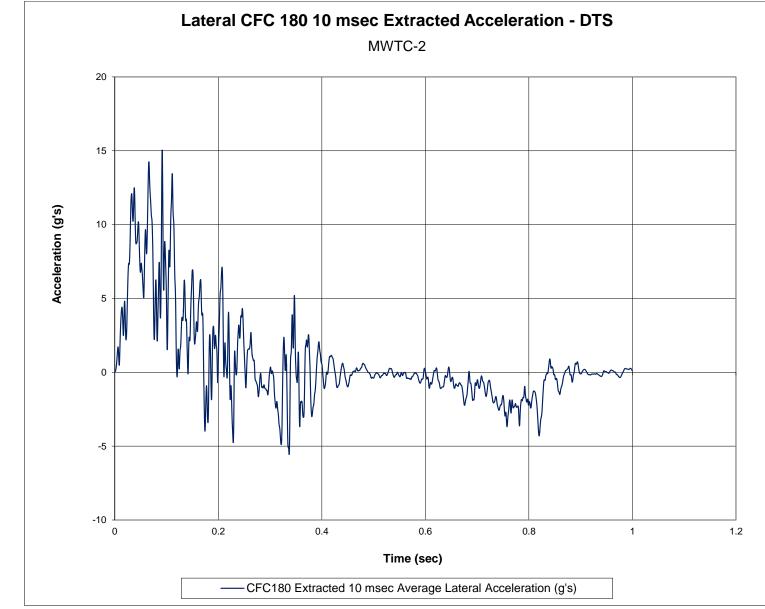


Figure F-4. 10-ms Average Lateral Deceleration (DTS), Test No. MWTC-2

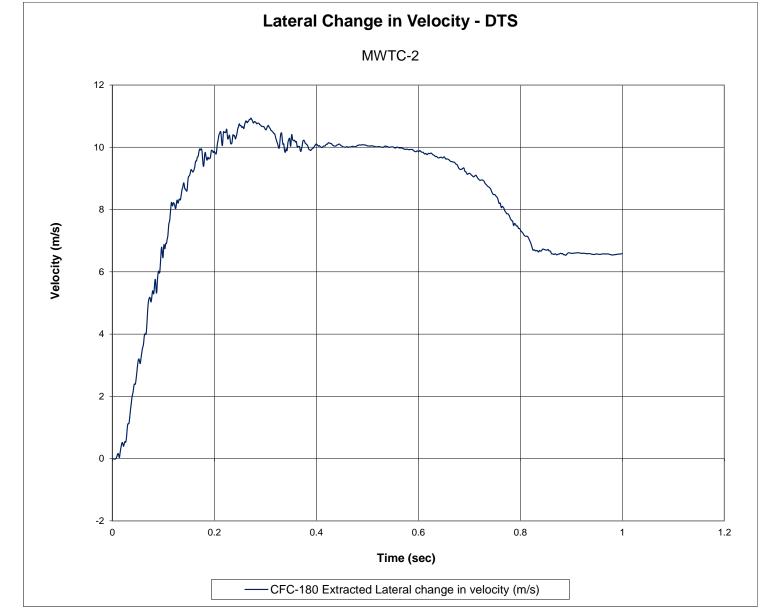


Figure F-5. Lateral Occupant Impact Velocity (DTS), Test No. MWTC-2

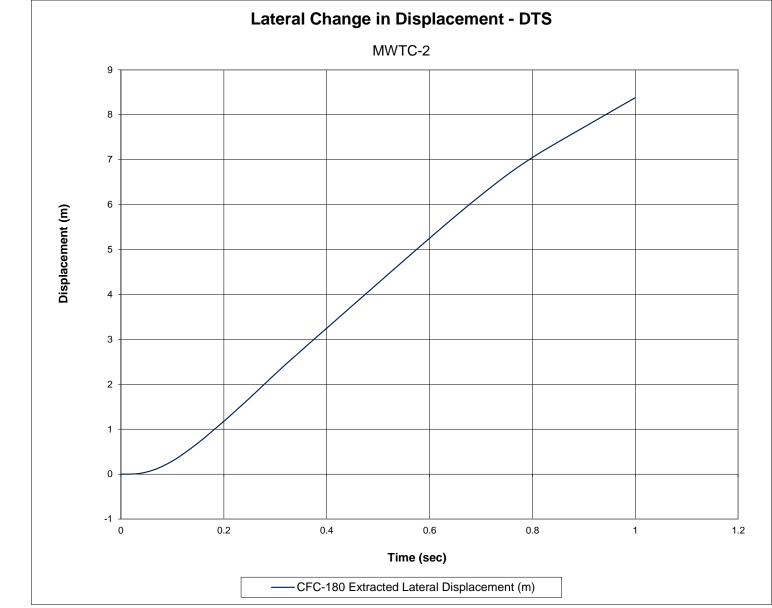


Figure F-6. Lateral Occupant Displacement (DTS), Test No. MWTC-2

Figure F-7. Vehicle Angular Displacements (DTS), Test No. MWTC-2

June 30, 2014 MwRSF Report No. TRP-03-291-14

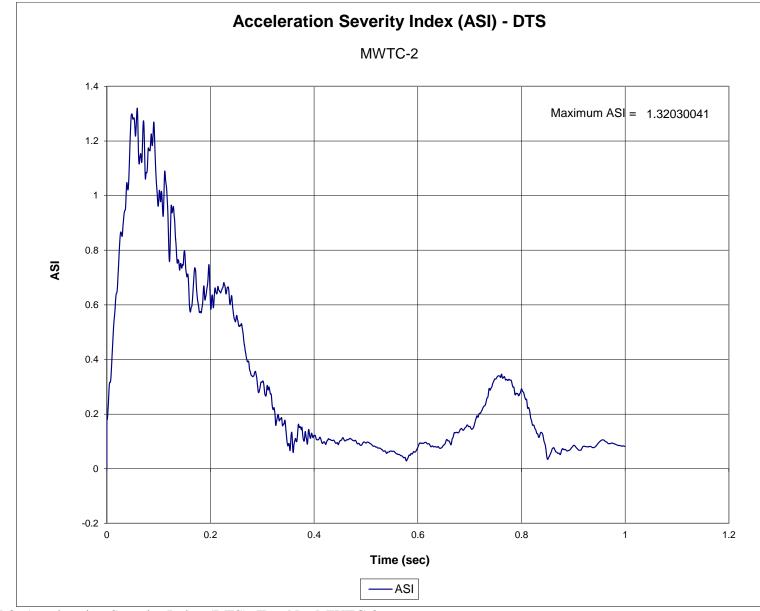


Figure F-8. Acceleration Severity Index (DTS), Test No. MWTC-2

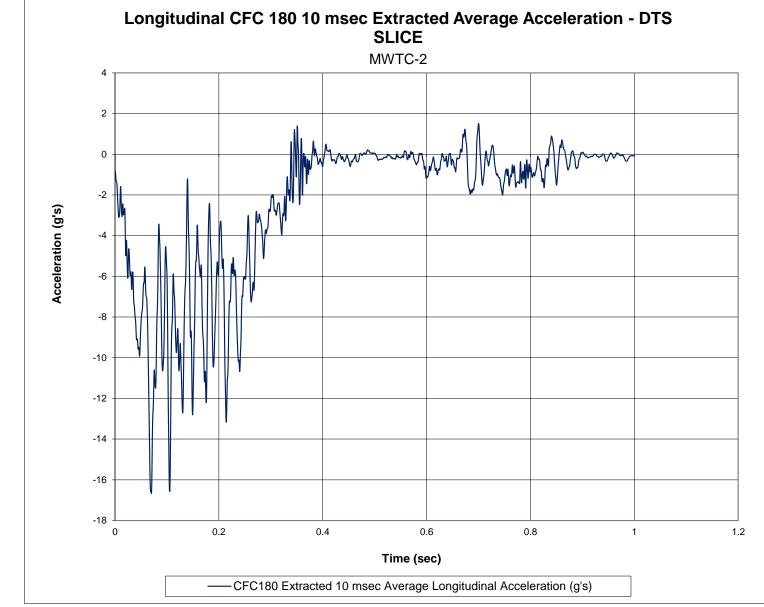


Figure F-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. MWTC-2

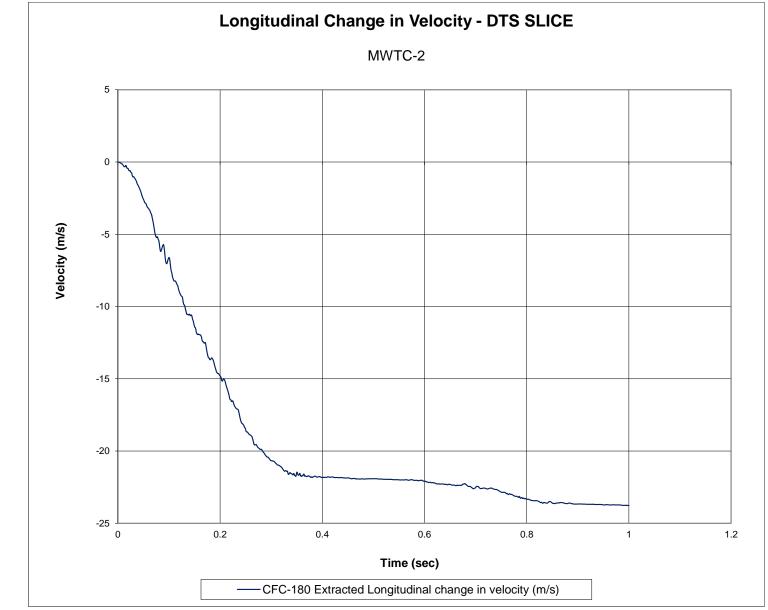


Figure F-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. MWTC-2



Figure F-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. MWTC-2

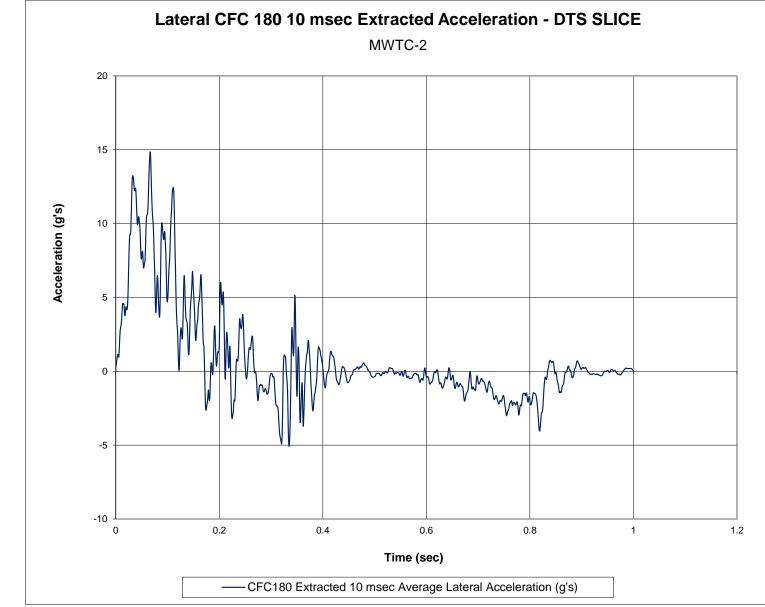


Figure F-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. MWTC-2

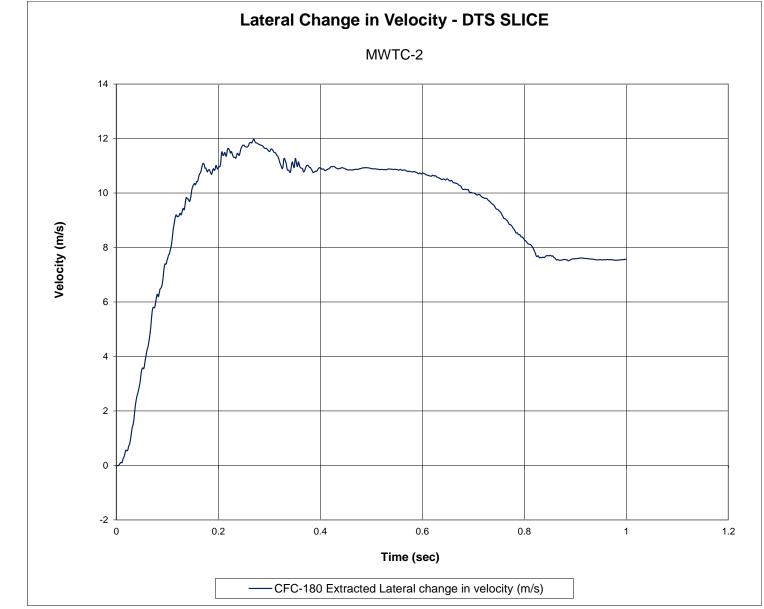


Figure F-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. MWTC-2

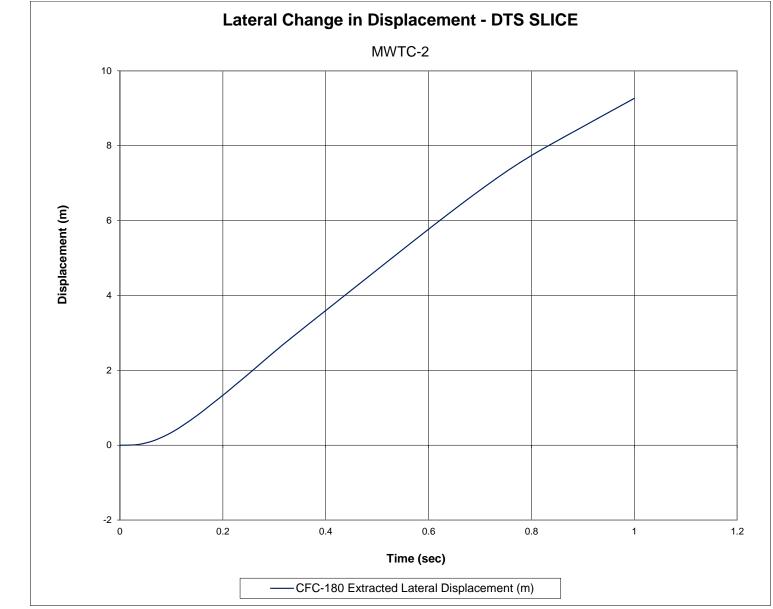


Figure F-14. Lateral Occupant Displacement (DTS SLICE), Test No. MWTC-2

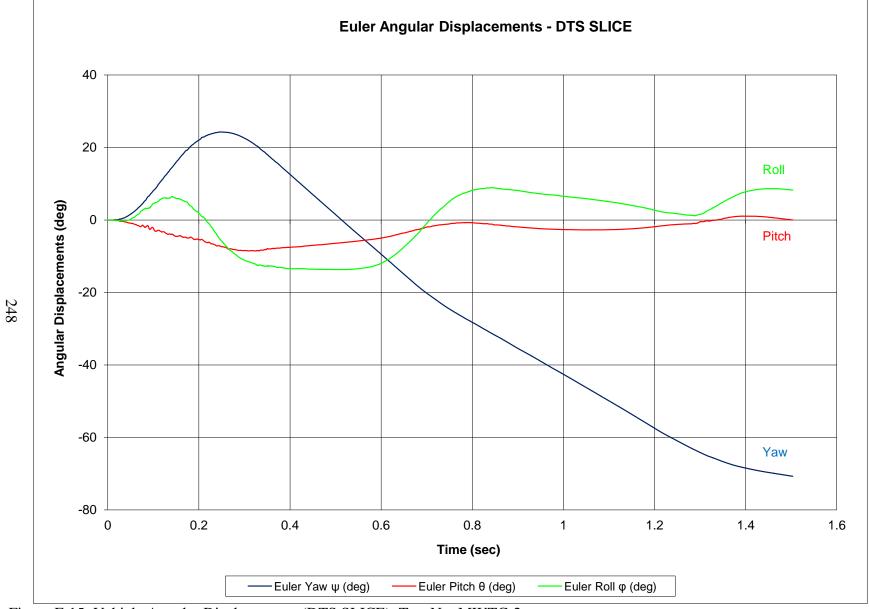


Figure F-15. Vehicle Angular Displacements (DTS SLICE), Test No. MWTC-2

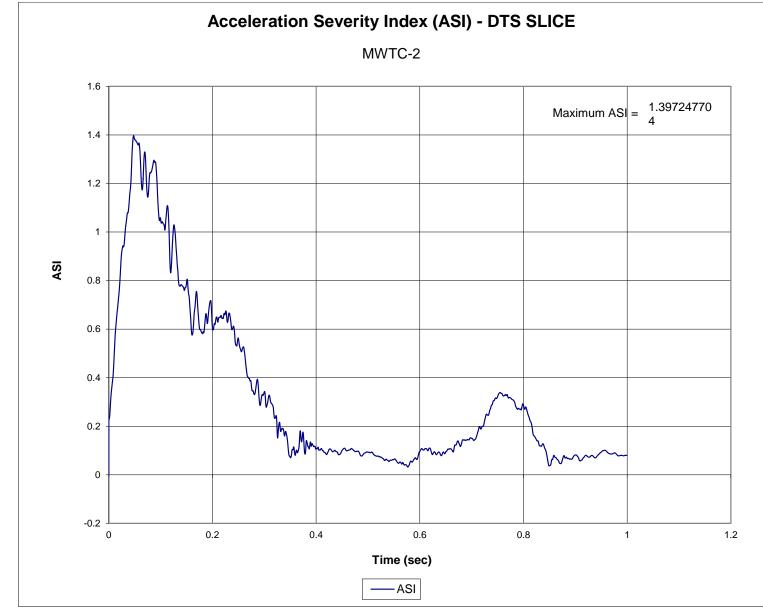


Figure F-16. Acceleration Severity Index (DTS SLICE), Test No. MWTC-2

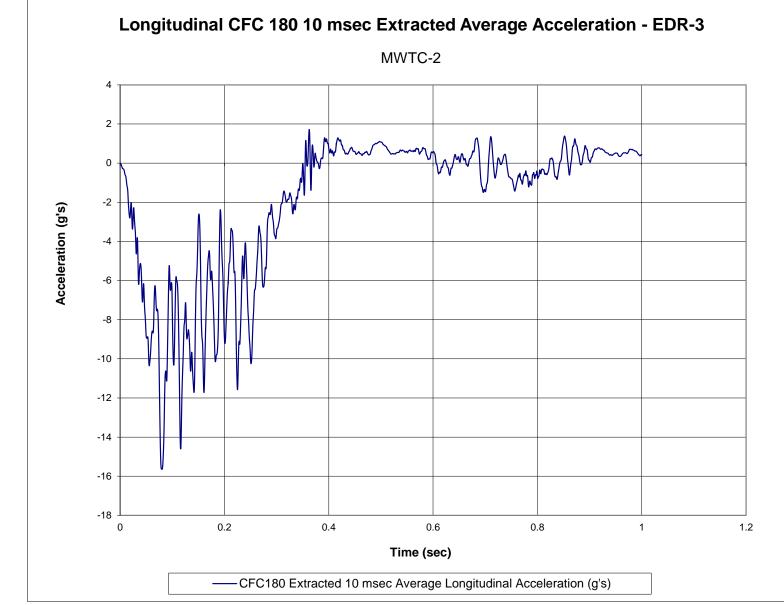


Figure F-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MWTC-2

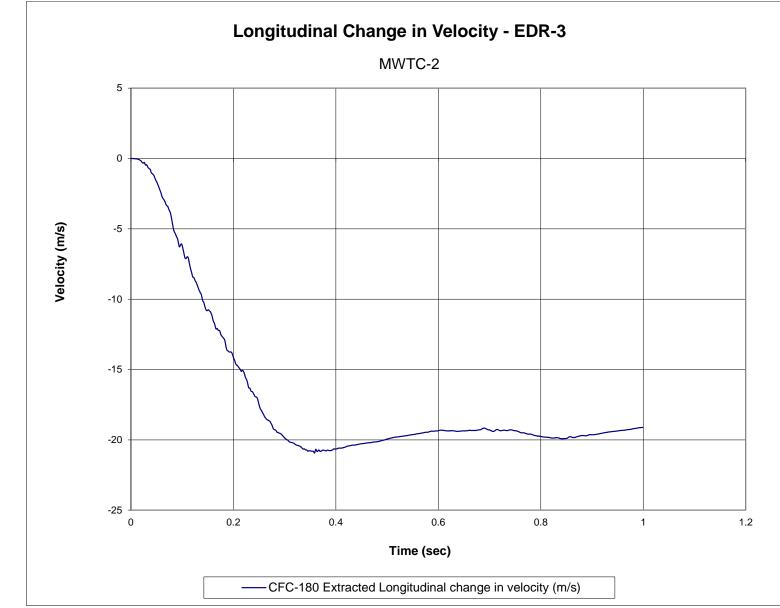


Figure F-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MWTC-2

Figure F-19. Longitudinal Occupant Displacement (EDR-3), Test No. MWTC-2

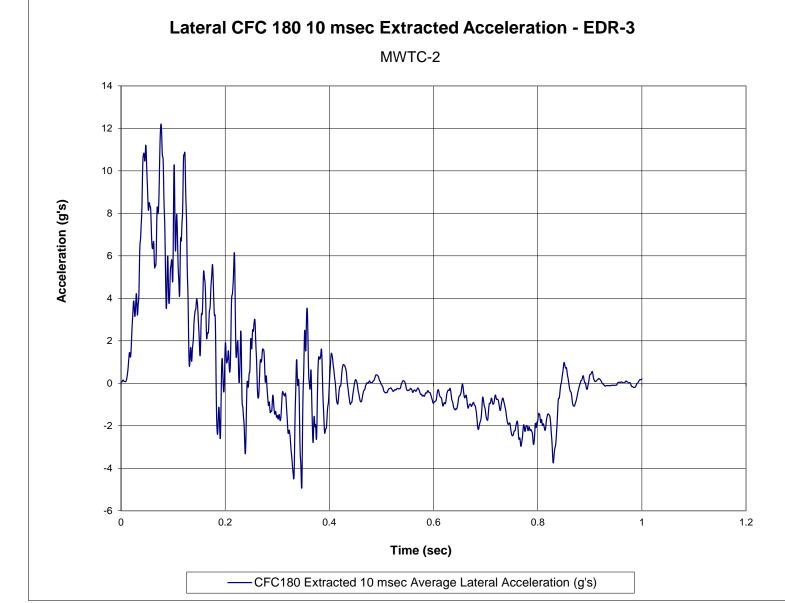


Figure F-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MWTC-2

June 30, 2014 MwRSF Report No. TRP-03-291-14

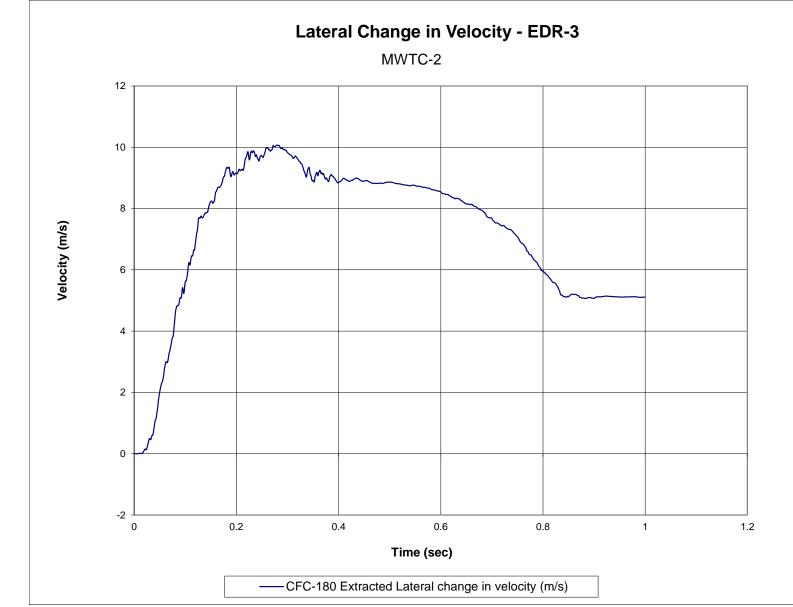


Figure F-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MWTC-2

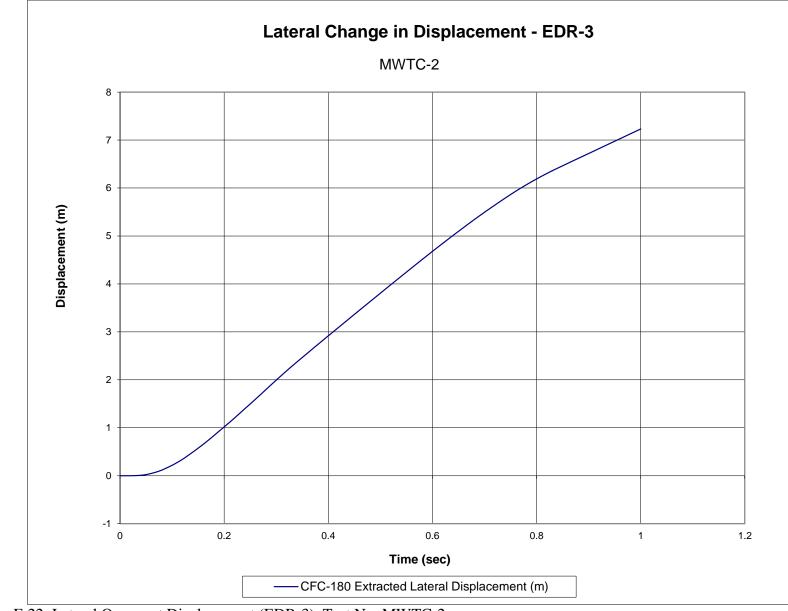


Figure F-22. Lateral Occupant Displacement (EDR-3), Test No. MWTC-2

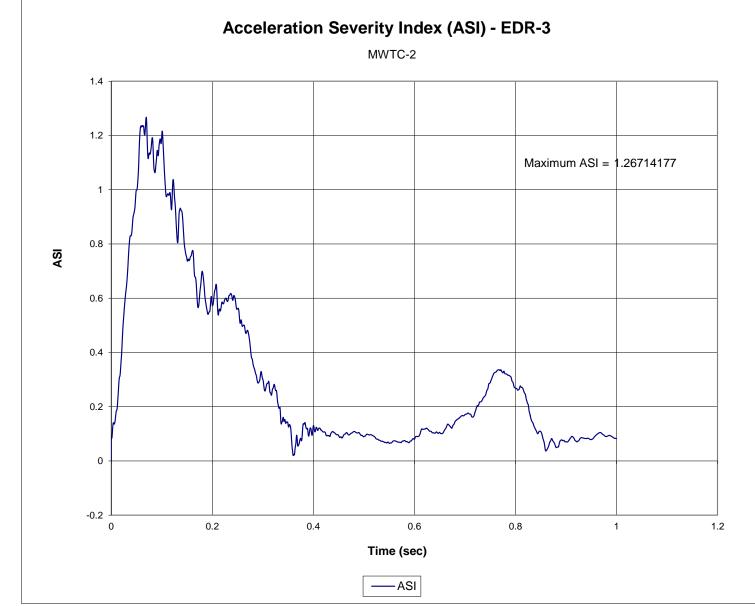


Figure F-23. Acceleration Severity Index (EDR-3), Test No. MWTC-2

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MWTC-3

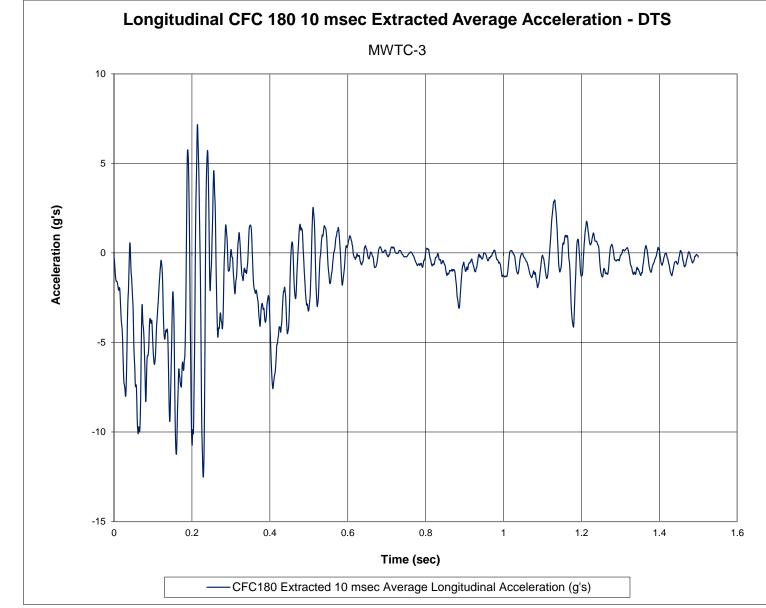


Figure G-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MWTC-3

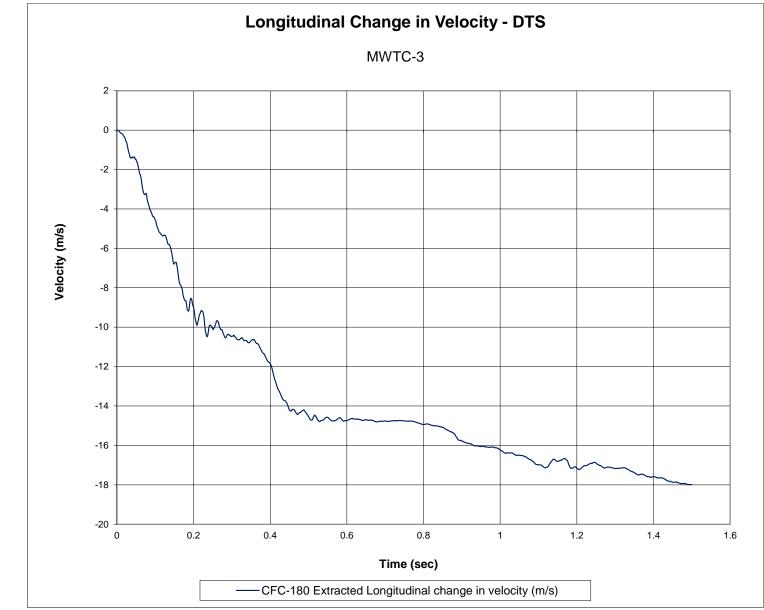


Figure G-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MWTC-3

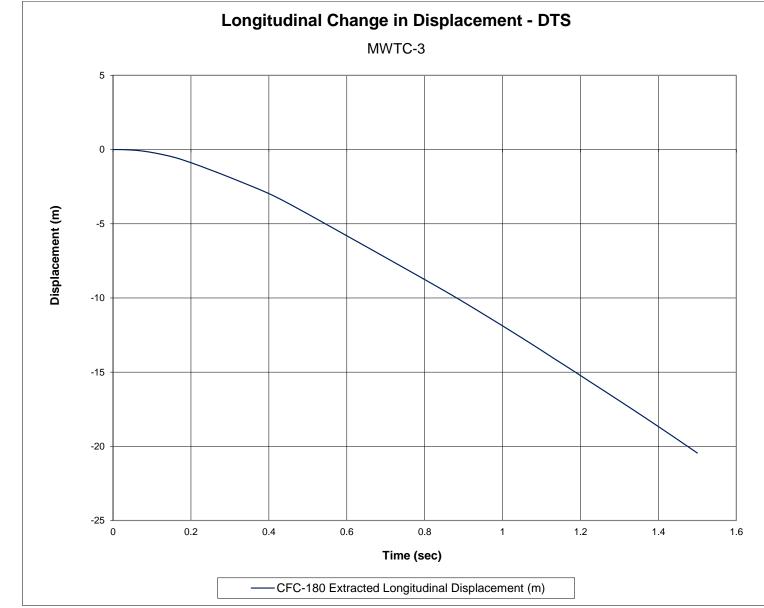


Figure G-3. Longitudinal Occupant Displacement (DTS), Test No. MWTC-3

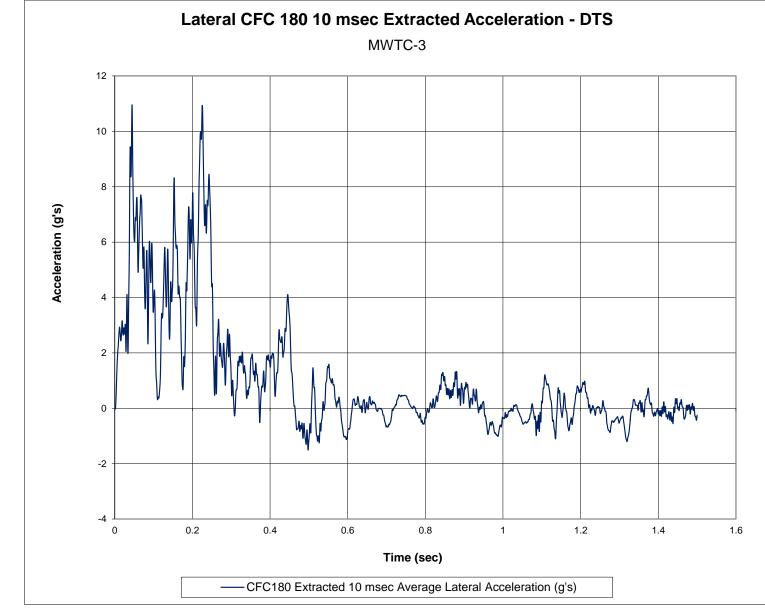


Figure G-4. 10-ms Average Lateral Deceleration (DTS), Test No. MWTC-3

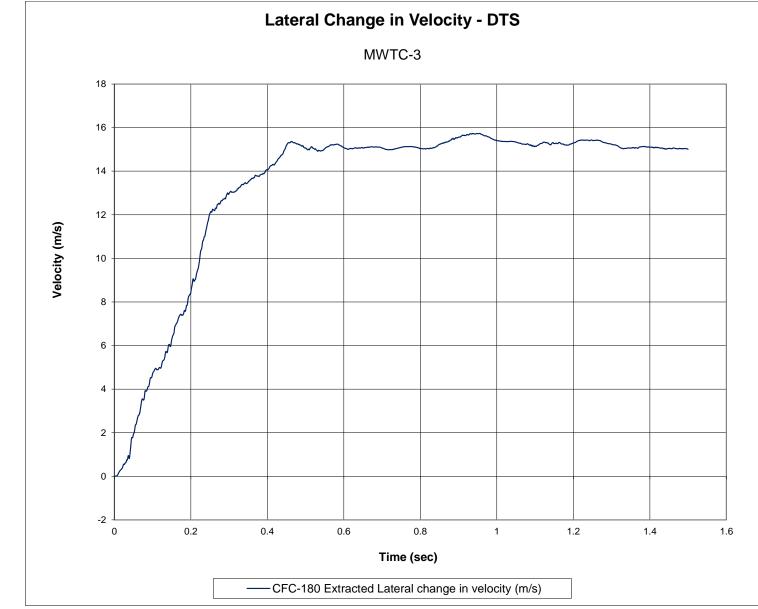


Figure G-5. Lateral Occupant Impact Velocity (DTS), Test No. MWTC-3

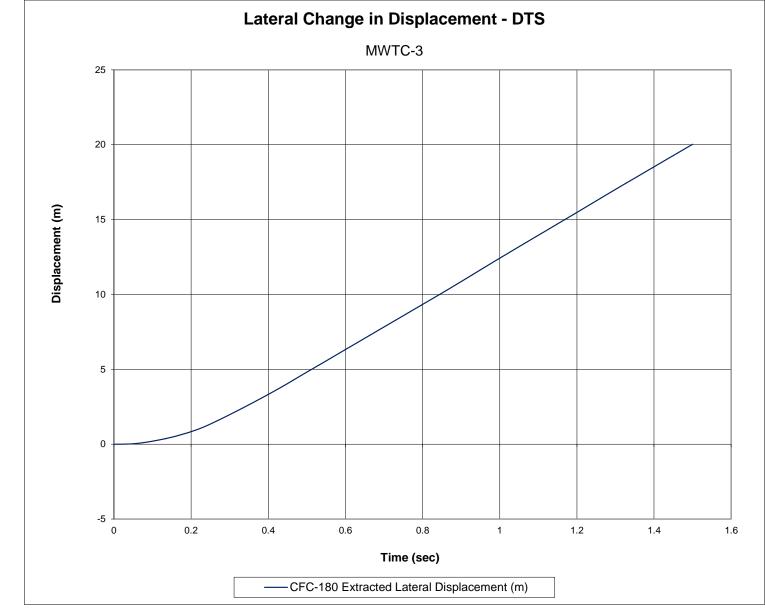


Figure G-6. Lateral Occupant Displacement (DTS), Test No. MWTC-3

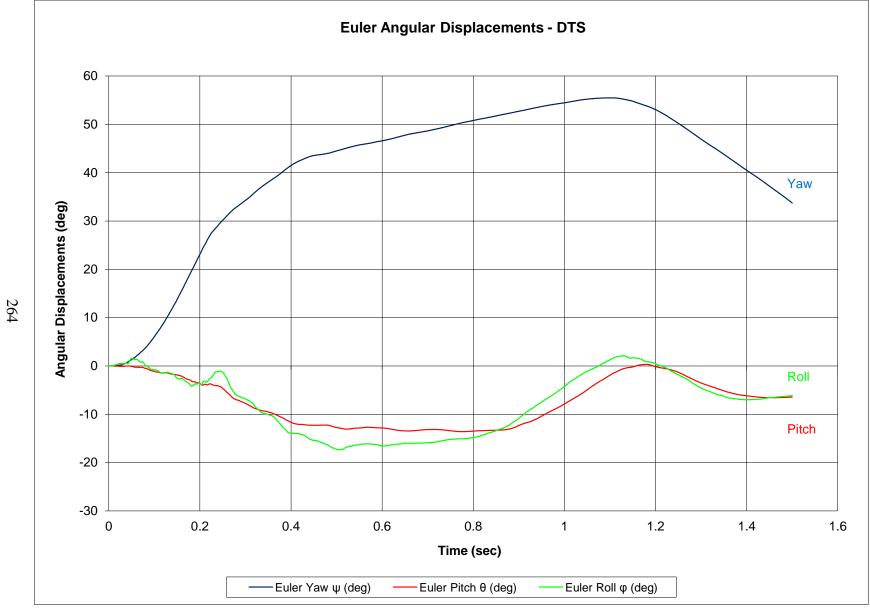


Figure G-7. Vehicle Angular Displacements (DTS), Test No. MWTC-3

June 30, 2014 MwRSF Report No. TRP-03-291-14

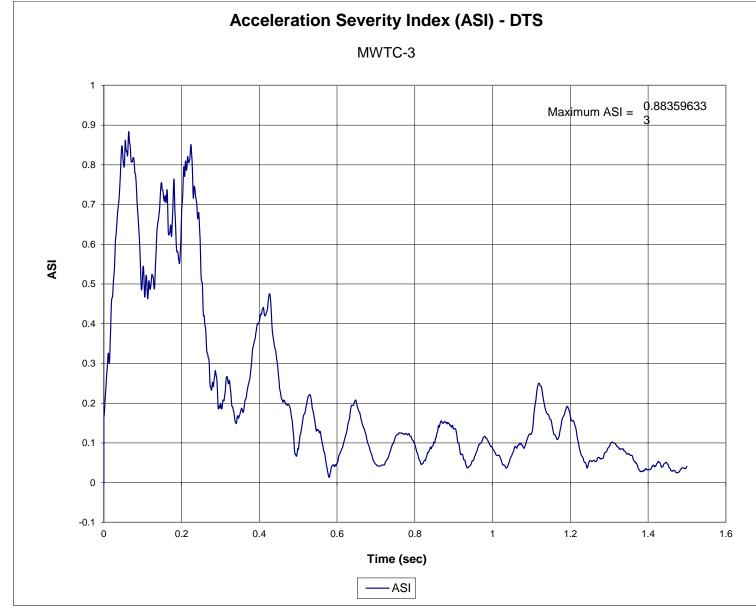


Figure G-8. Acceleration Severity Index (DTS), Test No. MWTC-3

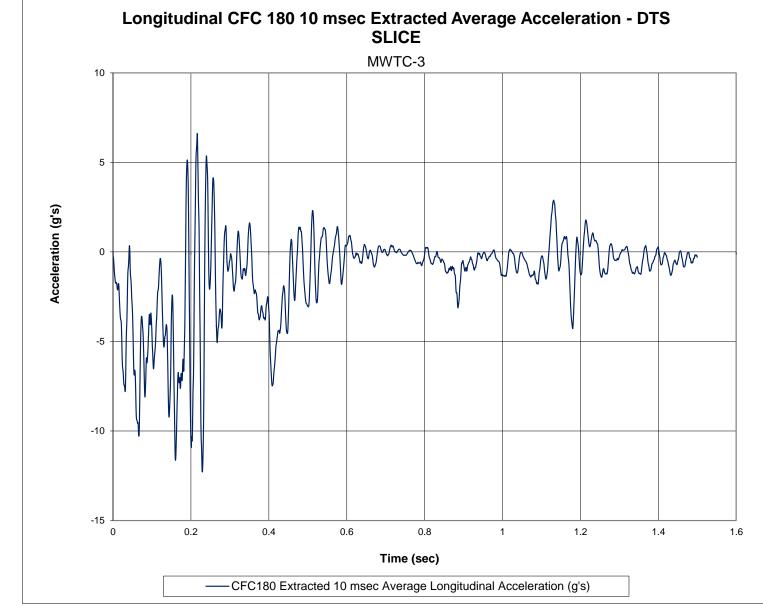


Figure G-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. MWTC-3

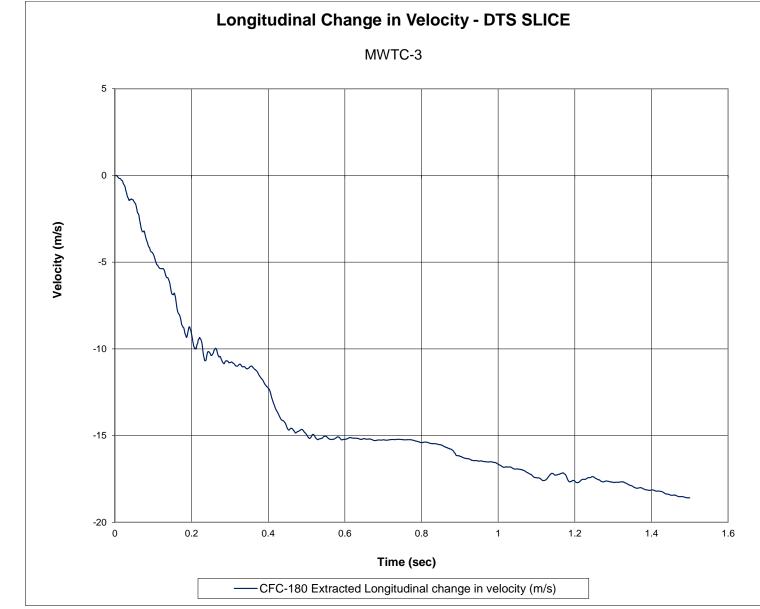


Figure G-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. MWTC-3

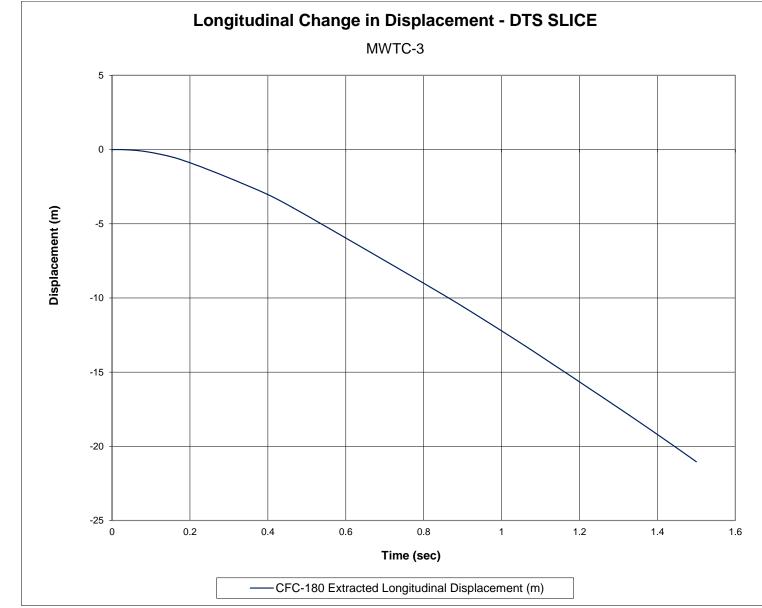


Figure G-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. MWTC-3

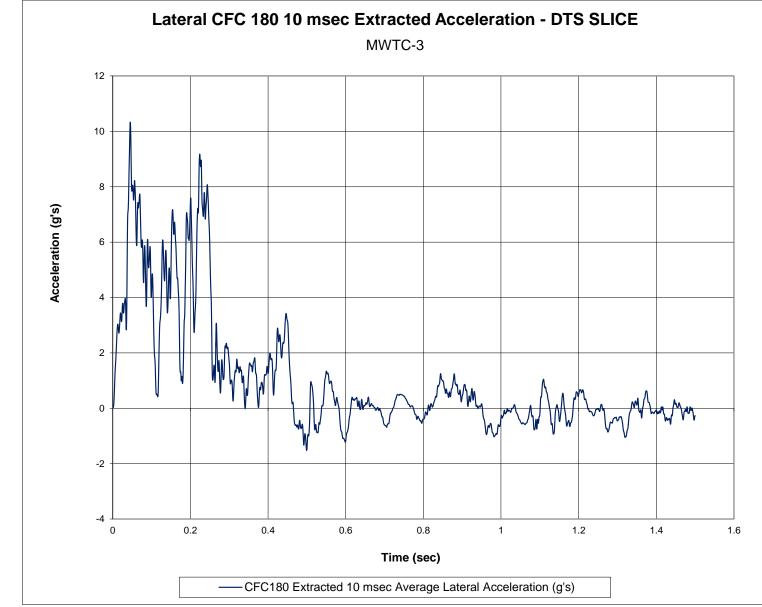


Figure G-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. MWTC-3

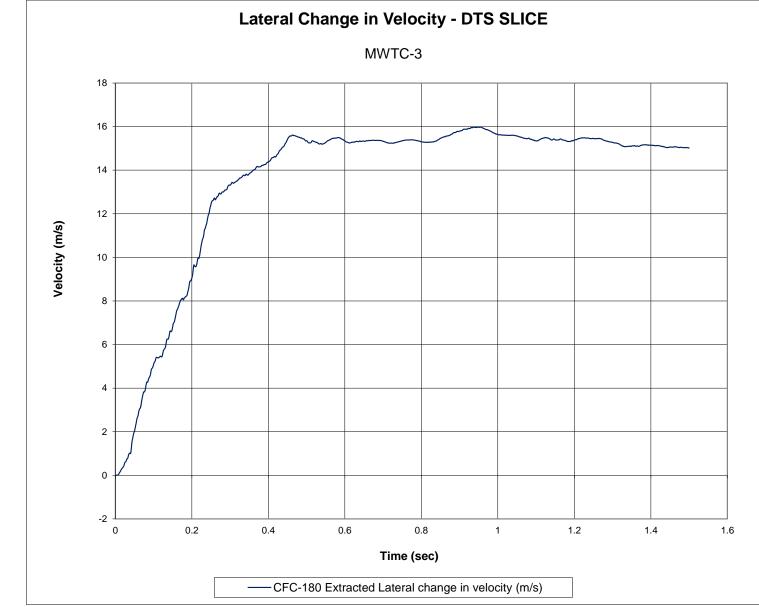


Figure G-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. MWTC-3

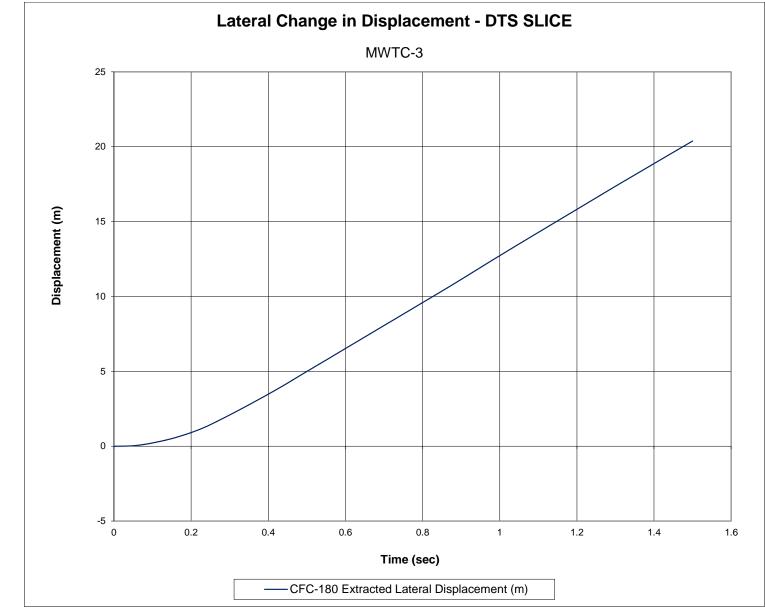


Figure G-14. Lateral Occupant Displacement (DTS SLICE), Test No. MWTC-3



Figure G-15. Figure 102. Vehicle Angular Displacements (DTS SLICE), Test No. MWTC-3

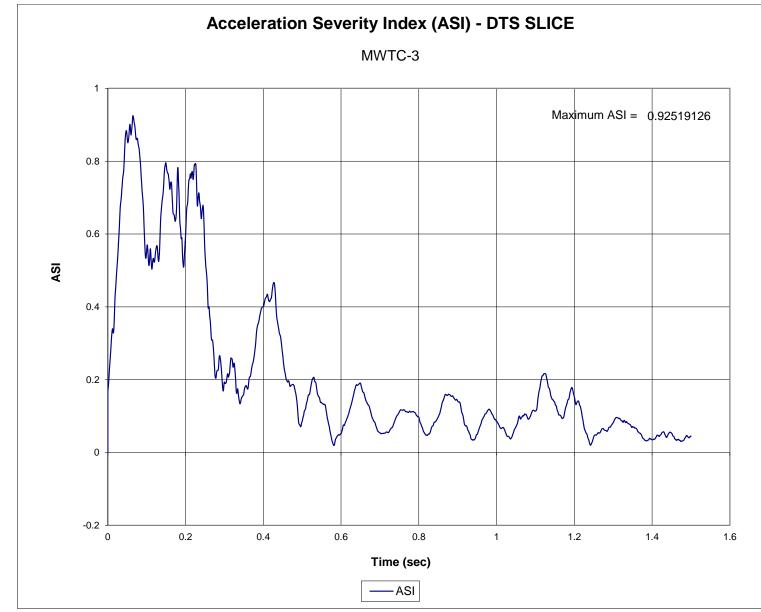


Figure G-16. Acceleration Severity Index (DTS SLICE), Test No. MWTC-3

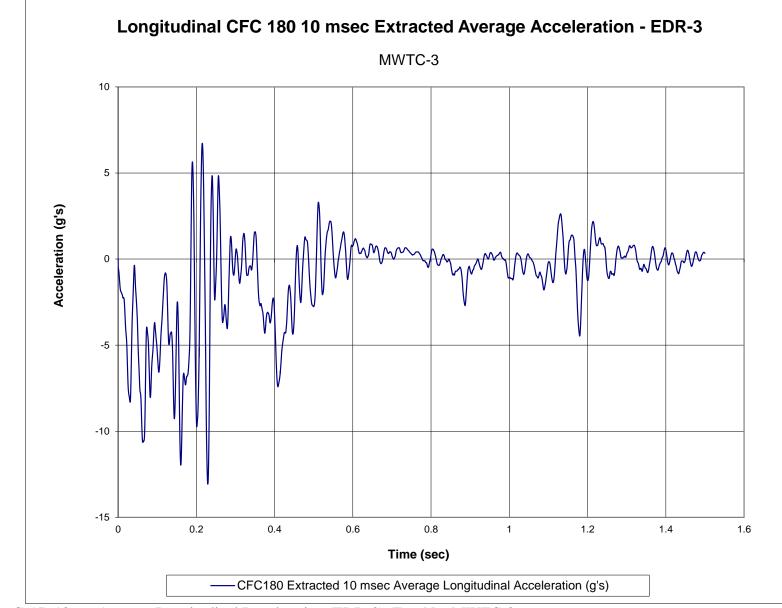


Figure G-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MWTC-3

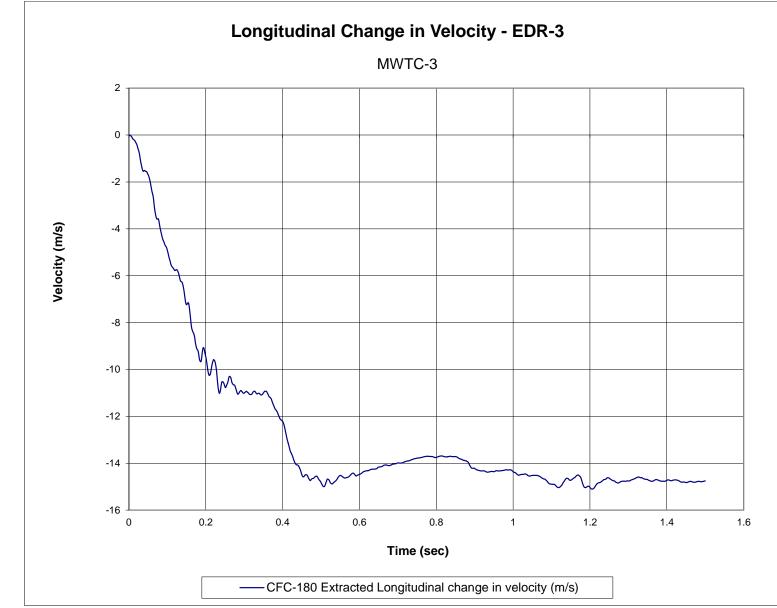


Figure G-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MWTC-3

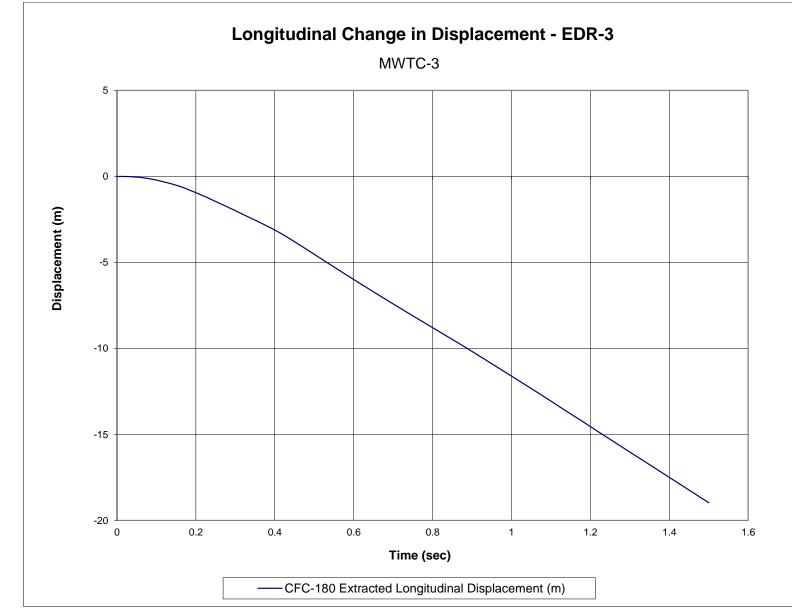


Figure G-19. Longitudinal Occupant Displacement (EDR-3), Test No. MWTC-3

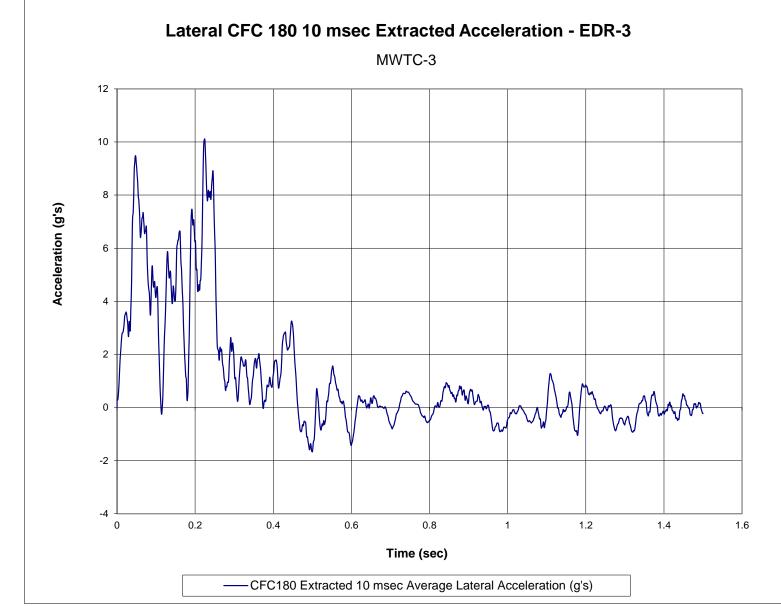


Figure G-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MWTC-3

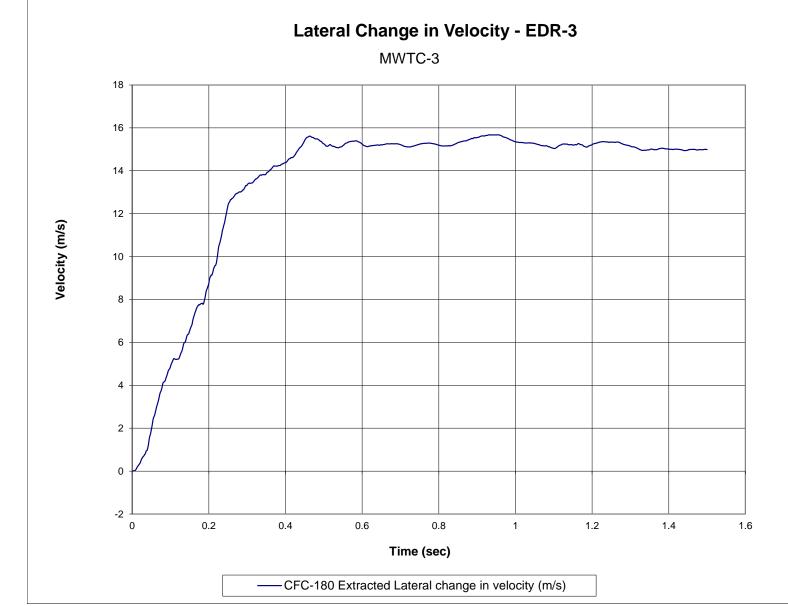


Figure G-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MWTC-3

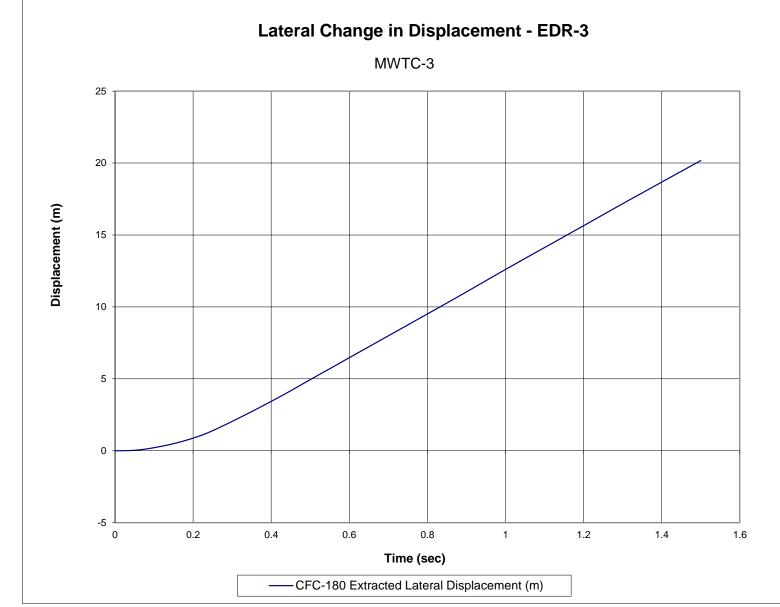


Figure G-22. Lateral Occupant Displacement (EDR-3), Test No. MWTC-3

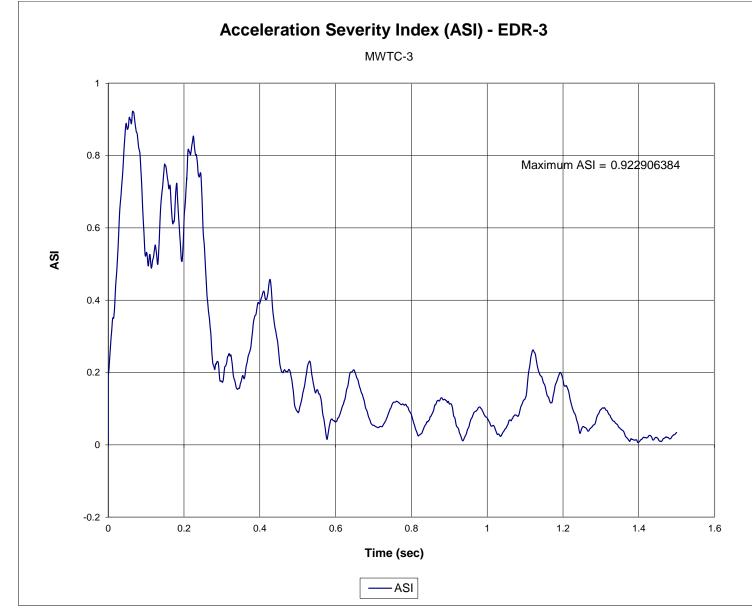


Figure G-23. Acceleration Severity Index (EDR-3), Test No. MWTC-3

END OF DOCUMENT