Nebiaska,

Lincoln

Midwest Roadside Safety Facility
ebraska

University of Nebra:

NDOR Project No. SPR-P1(07) P596

PHASE | DEVELOPMENT OF AN AESTHETIC,
PRECAST CONCRETE BRIDGE RAIL

Submitted by

Scott K. Rosenbaugh, M.S.C.E., E.I.T. Ronald K. Faller, Ph.D., P.E.
Research Associate Engineer Research Assistant Professor

Robert W. Bielenberg, M.S.M.E., E.I.T. Dean L. Sicking, Ph.D., P.E.
Research Associate Engineer Professor and MwRSF Director

John D. Reid, Ph.D.
Professor

MIDWEST ROADSIDE SAFETY FACILITY (MwRSF)
Nebraska Transportation Center
University of Nebraska-Lincoln
130 Whittier Building
2200 Vine Street
Lincoln, Nebraska 68583-0853
(402) 472-0965

Maher K. Tadros, Ph.D., P.E.
Professor

UNIVERSITY OF NEBRASKA-OMAHA
Department of Civil Engineering
Omaha, Nebraska 68182
(402) 554-4842

Submitted to

NEBRASKA DEPARTMENT OF ROADS
1500 Nebraska Highway 2
Lincoln, Nebraska 68502
MwRSF Research Report No. TRP-03-239-12

February 13, 2012



TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. 2.

TRP-03-239-12

3. Recipient’s Accession No.

4. Title and Subtitle 5. Report Date
Phase I Development of an Aesthetic, Precast Concrete | February 13, 2012

Bridge Rail o

7. Author(s)
Rosenbaugh, S.K., Faller, R.K., Bielenberg, R.W.,
Sicking, D.L., and Reid, J.D.

8. Performing Organization Report No.

TRP-03-239-12

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Midwest Roadside Safety Facility (MwRSF)

Nebraska Transportation Center
University of Nebraska-Lincoln
130 Whittier Research Center
2200 Vine Street

Lincoln, Nebraska 68583-0853

11. Contract © or Grant (G) No.

13. Type of Report and Period Covered

Final Report: 2006 — 2012

12. Sponsoring Organization Name and Address

Nebraska Department of Roads

1500 Nebraska Highway 2
Lincoln, Nebraska 68502

14. Sponsoring Agency Code

NDOR Project No. SPR-P1(07) P596

15. Supplementary Notes
Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract (Limit: 200 words)

Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction
time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, improved railing quality, and
greater flexibility for aesthetic treatments. The objective of this project was to develop a precast concrete bridge rail system that met the
TL-4 impact safety standards provided in MASH. The design criteria for the new bridge rail system included criteria for barrier geometry,
provisions for open and closed rail options, constructability, weight limitations, segment length, design impact loads, connection of
barrier segments, and connection to the bridge deck among other factors.

The research effort proceeded in several phases. First, the research focused on determining the overall concept for the new bridge rail
system in terms of the rail configuration and geometry as well as the required barrier reinforcement. Next, design concepts for the joints
connecting adjacent rail segments were designed and subjected to dynamic component testing in order to select a design capable of
meeting design criteria for the precast bridge rail system. After selection of an appropriate rail joint, the researchers developed connection
details for the attachment of the rail to the bridge deck. Once the design of the various precast bridge rail components was completed, a
complete set of CAD details for the prototype precast concrete bridge rail system were completed. Following the design effort,
recommendations were made regarding the full-scale testing required to implement the new, precast concrete bridge rail system

17. Document Analysis/Descriptors 18. Availability Statement

Precast Concrete, Bridge Rail, Barrier, MASH, Safety,
TL-4, Bogie Testing, Crash testing, Aesthetic, Joints,
Attachments, and Accelerated Bridge Construction

No restrictions. Document available from:
National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page)

21. No. of Pages 22. Price

345




February 13, 2012
MwRSF Report No. TRP-03-239-12

DISCLAIMER STATEMENT
This report was completed in part through funding from the Federal Highway
Administration, U.S. Department of Transportation. The contents of this report reflect the views
and opinions of the authors who are responsible for the facts and the accuracy of the data
presented herein. The contents do not necessarily reflect the official views or policies of the
Nebraska Department of Roads nor the Federal Highway Administration, U.S. Department of
Transportation. This report does not constitute a standard, specification, regulation, product

endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT
The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of
measurements for several parameters involved in standard full-scale crash testing and non-
standard testing of roadside safety features. Information regarding the uncertainty of
measurements for critical parameters is available upon request by the sponsor and the Federal
Highway Administration. Test nos. PCRB-1 through PCRB-5 consisted of non-compliant

component tests that were conducted for research and development purposes only.

i



February 13, 2012
MwRSF Report No. TRP-03-239-12

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project:
(1) the Nebraska Department of Roads for sponsoring the research study; (2) MwRSF personnel
for constructing the barriers and conducting the crash tests; (3) Prestressed Concrete Association
of Nebraska for their contribution in casting the concrete rail segments; and (4) L&M
Construction Chemicals for donating the grout material.

A special thanks is also given to the following individuals who made a contribution to the
completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager

K.A. Lechtenberg, M.S.M.E., E.I.T., Research Associate Engineer
C.L. Meyer, M.S.M.E., E.I.T., Research Associate Engineer

A.T. Russell, B.S.B.A., Shop Manager

K.L. Krenk, B.S.M.A, Maintenance Mechanic

A.T. McMaster, Former Laboratory Mechanic

Undergraduate and Graduate Research Assistants

Nebraska Department of Roads

Lymon Freeman, P.E., Former State Bridge Engineer

Sam Fallaha, P.E., Former Assistant State Bridge Engineer (TAC Member - Bridge)
Mark Traynowicz, P.E., State Bridge Engineer and Former Construction Engineer (TAC
Member - Construction)

Phil TenHulzen, P.E., Design Standards Engineer (TAC Member - Roadway Design)
Amy Starr, P.E., Research Engineer

Jodi Gibson, Research Coordinator

Concrete Industries, Inc. (Lincoln)

Mark Lafferty, P.E., Vice President, General Manager

Coreslab Structures, Inc. (Omaha)

Todd Culp, P.E., Vice-President, Sales Manager

il



February 13, 2012
MwRSF Report No. TRP-03-239-12

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE .......cooiiiiiieeeeeeeeeee e i
ACKNOWLEDGEMENTS ...ttt ettt sttt ettt et st sbe et s nas il
TABLE OF CONTENTS ...ttt ettt ettt et e st e beenteeneeseensesneas v
LIST OF FIGURES ...ttt sttt sttt sttt et et s nbeens viii
LIST OF TABLES ...ttt sttt ettt et e s st e st e seentesseenseeneenaeans Xiv
I INTRODUCTION ...ttt ettt et sttt ettt st sttt et sbeeteeatesaeenbesarens 1
1.1 BaCKEIOUN......eiiiiiiieeie ettt et e e et e e st e e esaaeesaseaesnseeennnes 1

1.2 RESEAICH ODJECTIVES ....vieuiieiiieiieeiiieiie ettt ettt et ettt s te et essbeesaeenaeeseesnseeneeas 2

1.3 EXpected BN its .....cccueiiiiiieiiicciie et 2

1.4 Research Plan and Preliminary Design Considerations............ccoceeveevverienennienveneenne. 3

1.4.1 Bridge Railing SYStEMS.......cueeeiuiiiiiieeeiieeeiie ettt esreeeiaeeeevee e eeeeae e 3

1.4.2 Bridge Deck and Anchorage Systems...........ccccueeeiieviienieenieniieiiecie e 3

1.4.3 Test Level for Railing Systems...........ccccvieeiiiieiiie e 4

144 ACSTRELICS ..ttt 5

1.4.5 Roadway Surfacing or OVErlays ........cccccueeeciieeriieeriie e 5

1.4.6 Connection Design Considerations............ccueereeeriieriieeieenieeiieeneeereeneeesneens 6

1.4.7 Analysis and DeSI@N ........ccoeiieeiiiiiiiiiecie et 7

1.4.8 Experimental Subsystem Testing — Phase L..........ccccooviiiiiiniiiiieniiciiee 8

1.4.9 Full-Scale Vehicle Crash Testing — Phase 1T .........ccccoeovvieiiieeiiiicieeeeee 8

2 LITERATURE REVIEW L...iiiiiiiiiiiiiee ettt st st 10
3 DESIGN CRITERIA ...ttt ettt ettt e e st et eneeseeenseennas 12
3.1 Bridge Rail Cross Section GEOMELIY ..........cccuieriiieiiieniiieiieiieeieeiie et seee e 12

3.1.1 Barrier Width ..o 12

3.1.2 Barrier FAce GEOMELIY.......cccuieviieiiieiieeiieiie ettt 12

3.1.3 Barrier HEIGht ......ooiiiiieeeeeeeeee et 15

3.1.4 Open and CloSed OPHIONS .......ccueeuerierieriienienieeieneenteeee st eieens 20

3.2 DESIGN LOAA ... uiiiiiieiiiciieieeceete ettt et e raeenneenns 20

3.3 Constructability CONSIAErations. .......ccceevuerieruierierienieeieriiereete ettt 23

3.3.1 JOINt TOIETANCES ......eeeiiiiiiiiiiieiiee e 23

3.3.2 Weight LIMILS ..eouviiiiiiiiiiiieiceieetee ettt 24

3.3.3 Deck Type and Strength..........cceeecvieiiiiiieiieiieceeeee e 24

3.3.4 Rail Segment Length..........ccocooiiiiiiiiiiiiiiecececeeeeees 25

3.4 BarTier ACSRETICS. ...ccuuiiiiiiiiieiieeieete ettt 25

4 PRECAST BRIDGE RAIL - DESIGN CONCEPTS .....ccoioieieieeteeeeeeeeee e 26
A1 OVEIVIEW ..ttt ettt ettt ettt e sat e et e s bt e e bt e sat e e bt e sateebeenaneens 26

4.2 Rail Concepts — No or Limited CONtINUILY .......ccceevveriinieieniieniiienieneenieeeesieeneeenn 26

4.2.1 Concept A (L-PoOSt) ...ueieeiiieiiieeiieeite ettt 26



February 13, 2012
MwRSF Report No. TRP-03-239-12

4.2.2 Concept B (Post-Off-Deck) .......cceecuiimiiiiiiiiiieiecieeeece et 41

4.2.3 Concept C (Rail €Cap)...ccccueieeciieeeiiieeiieeetee ettt 45

4.3 Rail Concepts - Moderate CONINUILY .......cceevveeriieeiiieniieeieerie et eseeeieenieeereeseneeeeens 50
4.3.1 Concept D (Staggered Rail).......ccceeeiiieiiiieiiiieiieeeeeee e 50

4.4 Rail Concepts — High CONtINUILY ........cooviieriieriieiieeiieiie ettt et 53
4.4.1 Concept E (Ladder).......cccuiieiieeeiieeciieeeee ettt 53

4.4.2 ConcCept F (FENCE)...ccuuuiiiiiiiiieeiieee ettt 62

4.5 Rail Desi@n SeleCtION.......ccciiiiiiiieeiiieeiie ettt ettt e e e e e e e e saeeenaaeesnseeeenneees 63
5 RAIL TO RAIL JOINT DESIGNS ..ottt sttt 68
5.1 OVEIVIEW ...ttt ettt ettt b et b e et e bt e e st e et e e sat e e bt e enbeebeesateebeeenee 68
5.2 Joint Loading Criteria ......cccueeeiieruieeiieiiie et eeie ettt et iteebe et et esaeeebeeseeseseeseeenne 68
5.2.1 Shear Loading .......cccuieeiiieiiieeiie ettt eae e svee e svee e e e 68

5.2.2 Moment Loading.........c.ceoieiiieniieiiieiie ettt 69

5.3 JOINt ClaSSTICATION ......eoiuiiiiiiiiiieiiee ettt ettt et e 70
5.4 DIy JOINE DESIZNS. ..cieuviieiiieiieiiieiie et eriee ettt et et e eteebeesebeeteesnbeeseesnseeseesnseenseennne 71
5.4.1 Joint Design A — Bolted Splice Plates ..........cccccveeeiieieciieeeiieeieeceeeeeee 71

5.4.2 Joint Design B — X-BOItS .......ccoiiiiiiiiiiiieiiecieeeee e 74

5.4.3 Joint Design C — Side Bolts and Center Shear Key ...........cccceevvveeciiincnnnns 76

5.4.4 Joint Design D — Side Bolts and Shear Tubes ..........cccceevvieiiieniieviienieenen. 78

5.4.5 Joint Design E — Center Bolt and Shear Pipe ........ccccoeevveviiieeiiiiiciieeie, 82

5.4.6 Joint Design F — Baluster Connection Piece..........ccccoevveviiiciieniieniienieenen. 86

5.5 Grouted JOINt DESIZNS....ccuiiiiiiiiiiiieciie ettt tee e ar e e s eeesbeeessaeeesseeenes 90
5.5.1 Joint Design G — Center Bolt and Side Grout Pockets ...........ccccceeveernnnnnen. 90

5.5.2 Joint Design H — I-Shape Segments in Side Grout Pockets...........c...c...... 94

5.5.3 Joint Design I — Side Bolts and Center Grout Pocket............cccceeviennrnnnen. 96

6 RAIL JOINT BOGIE TESTING — ROUND 1 ..ccuiiiiiiiiieieeieieee e 98
0.1 PUIPOSE....coneiiiieite ettt et ettt e et e st esabb e sbteesabeeea 98
0.2 SCOPE .. uvieieiieeeiteeeeiee et te ettt e et e e e bt e e steeeatae e st eeeaatae e sbeeesbeeennbeeenteeenbaeeenbaeeenseeeanbaeens 98
6.3 TeStING FACIIILY ...cueiiiiiiiiee ettt et 100
6.4 Equipment and InStrumentation..............ccuveeriieeriieenieeeniee et 100
0.4.1 BOZIC ..ttt et ettt et et e ene 100

6.4.2 ACCEIETOMELETS ....cuveiiiiiiiiiieeiieeiee ettt st 101

6.4.3 Pressure Tape SWItChes.......ccoevuiriiriiiiiiiiniiiccecccceee e 102

6.4.4 Photography Cameras ..........c.cccvierieeiiieniieeieenieereesieeeveesreesneeseessneesseennns 102

6.5 Test Specimen — Selected Joint DeSIigNs......c..ccveeierierieneniinieieieeeeeeeceee 103
6.5.1 Test No. PCRB-1, Joint Design H.........cccooveviiiiiiiniieiieieeecee e 104

6.5.2 Test No. PCRB-2, Joint Design D ........ccccoirviiniininiiniicecneccceeeee, 118

6.6 Bogie Test NO. PCRB-1......ooiiiiieeee et 134
6.6.1 Test DESCIIPHION ...cuviiiiiiiieiie ettt ettt e 134

6.6.2 Rail Joint Component Damage ............ccceeruieeiienieeiiienieeieesie e sve e 135

6.6.3 Data ANALYSIS ..eoouiiiiieiiieiieeie e 136

6.7 Bogie Test NO. PCRB-2......cooiiiiiieeee ettt 144
6.7.1 Test DESCIIPHION ...cuvieiiiiiieiie ettt ettt ettt s 144

6.7.2 Rail Joint Component Damage ............cccueerveeeiiienieeiiienieeieesie e see e 145

v



February 13, 2012
MwRSF Report No. TRP-03-239-12

6.7.3 Data ANALYSIS ..eecuiieiiieiieeiieeiieeteee ettt 146

6.8 Round 1 Bogie Testing DiSCUSSION........cccuieriiiieriieeeiieeniieereeeeiveeeeeeeeeeeeereeeseneees 155

7 RAIL JOINT DESIGN MODIFICATIONS AND IMPROVEMENTS.......c.ccoveiiiiiiieienens 157
7.1 Refined Grout JOINT......cc.uiiiiiiiiiiieie ettt et et 157

7.2 Alternate Grout JOINL.......c..eovuiriiriiiiiinierieeie ettt sttt 159

7.3 Refined DIy JOINt.....cooiiiiiiiciie ettt e rae e e rae e e e e ennee s 163

8 RAIL JOINT BOGIE TESTING - ROUND 2......coiiiiiiiiiiiieniieieeteieeeseerie et 166
LT B0 ) o TP UP PSR 166

8.2 Equipment and InStrumentation...............cceevieeiiierieeiiienieeieeeie et eee e ens 166

8. 2.1 BOZIC .ntiieeiieeeeie ettt et e e e b e e et e e nnbaeen 166

8.2.2 Photography Cameras ............cccueeeuierieeiiieniieeiienieeieesiieereeseneeseeseeessee e 167

8.3 Test Specimen — JOINt DESIZNS ......cccviiiiiiiiiiiieciieeciee e eaaee e 169

8.3.1 Test No. PCRB-3, Refined Grout Joint Design ..........cccceeveeiienieeiiennnnne. 169

8.3.2 Test No. PCRB-4, Refined Dry Joint Design .......ccccccevveerieeenieeeiieeeiieenns 186

8.3.3 Test No. PCRB-5, Alternate Grout Joint Design.........cccceceeeeveenieeiiennnnne. 210

8.4 Bogie Test NO. PCRB-3.......uiiiieeeeeeee ettt 227

8.4.1 TeSt DESCIIPLION .....veeeeeieiieeiiieiieeieeite ettt et seee et e st eenbeeseaeeteesaeeesseanes 227

8.4.2 Component Damage.........cc.uveeeeruiiieeiiiiieeeeiiieeeeeitee e ettt e e sere e eaaeee e 227

8.4.3 Data ANALYSIS ..ccuvieiuieeiieriieeiieiie et ettt site ettt e e teesaae e e aeebeeeaae b e e 228

8.5 Bogie Test NO. PCRB-4.........ooiiiiieieeeeeeeee ettt e 234

8.5.1 TeSt DESCIIPLION ....uveeeiieiieeiiieiie ettt ettt ettt et eiee e seaesbeesaeeesseeees 234

8.5.2 Component Damage..........c.uueeeeruiiieeiiiiieeeeiieeeeeitee et e e sree e e aaee e e 235

8.5.3 Datd ANALYSIS ..ccuvieitieeiieiieeiieiie et ettt tte et et e ettt e s et aae b ees 236

8.6 Bogie Test NO. PCRB-5.....c.uiiiiiececeee ettt 243

8.6.1 TeSt DESCIIPLION .....veeeiieiieeiiieiee ettt ettt ettt eiee e eaeebeesaeeesbeees 243

8.6.2 Component Damage.........cc.uueveeriuiiieeiiiiieeeeiieeeeeitee e et e e e eeaeee e 244

8.6.3 Data ANALYSIS ..ccueiiiieeiiieiieeieeiie ettt ettt et 245

8.7 Round 2 —Bogie Testing DiSCUSSION.........eeeiiiieiiieeiiieeiieeeiteeeieeeeiee e esiveeseneeens 252

9 BARRIER POST TO DECK ATTACHMENT DESIGN........ccccoiiiiiiieieieeieeee e 257
0.1 OVEIVIEW ...ttt ettt et e b e et b e et esbt e e st e bt e sab e e bt e eabeenbeesareens 257

9.1.1 Deck Attachment A - Threaded Rods and Shear Tubes...........c.ccccuveeeneee. 257

9.1.2 Deck Attachment B - Threaded Rods ........c.coccveeiieniieiiiniieieciceiee, 259

9.1.3 Deck Attachment C - Cleat...........cccveieeiiieiiieeciee e 261

9.1.4 Deck Attachment D - Shear Curb .........cccoecveevieiiiiiiieiieieceeeeee e 262

9.1.5 Deck Attachment E - Shear Channel .............cccooeeviieiiieiecieecieeeeee, 264

9.1.6 Deck Attachment SeleCtion...........cccevverieriinieneeiereeeeeeeeee e 265

9.2 Bridge Deck Reinforcement DeSi@n ..........coeuieiiieiiiiiiiiiiieiiesie e 266

10 FINAL PROTOTYPE DESIGN DETAILS .....oooiiitiieiietecee ettt 280
11 SUMMARY, CONCLUSIONS, AND RECOMENDATIONS ......ccocoiiieieieeeieeieeeene 323
11.1 Summary and CONCIUSIONS .......ccueeruiieiiierieeiiieiie et ete et e e seeeebeeseeeeneees 323

11.2 Recommendations and Future Work ...........ccccocoiieiiiieiiiicieeceecee e 327



February 13, 2012
MwRSF Report No. TRP-03-239-12

12 REFERENCES ...ttt ettt ettt st et sttt nbe e 330
I3 APPENDICES ...ttt et et et e s e te st esaeebeenaesseenseennens 333
APPENDIX A. Additional Rail to Rail Joint Concepts........cccccceerireriienieeneeeieeeene 334

vil



February 13, 2012
MwRSF Report No. TRP-03-239-12

LIST OF FIGURES

Figure 1. Head Ejection ENvelope [8].....c.cooiiiiiiiiiieieeiieieee et et 14
Figure 2. New Bridge Rail Geometry Using Width and Head Ejection Limits .............cccceunee. 15
Figure 3. Barrier Forces Acting on Single-Unit Truck During Impact...........ccccceevveriieneennennen. 16
Figure 4. Maximum Roll Angle of 10000S Vehicle Impacting 34'%-in. Tall, Rigid Barrier ....... 18
Figure 5. Bridge Rail Geometric Bounds ...........cccoeoiiiiiiiiiiiiieiieiceteee e 19
Figure 6. LS-DYNA Impact Force vs. Time - MASH TL-4 Condition ..........cccccueeevveenciveenneeens 22
Figure 7. Concept A (L-P0Ost) - OVEIVIEW .....cccuieiuiiiiieiiieiieeie ettt ettt sieesse e 31
Figure 8. Concept A (L-Post) — Assembled Side VIEW .......cccceevciiieiiiieiiie e 32
Figure 9. Concept A (L-Post) — Connection Details..........cceeeeeiieriieiieniieiienieeieeeee e 33
Figure 10. Concept A (L-Post) — Rail Segment GEOmetry.........ccceevvieeriieerieeeiie e 34
Figure 11. Concept A (L-Post) — Rail Segment Reinforcement..............cccoccveviieniiieninniiiniennen. 35
Figure 12. Concept A (L-Post) — POSt GEOMELIY.......c.vieiiuiieeiiieeiieeeie et e 36
Figure 13. Concept A (L-Post) — Post Reinforcement..............ccocoeviiiiiiniienieniieiecieeeeeeeeen 37
Figure 14. Concept A (L-Post) — Placement of Post Reinforcement............cccccecvvevviienciveennnens 38
Figure 15. Concept A (L-Post) —Deck Panel Attachment Details ..........ccccoecveviinineniininiennne. 39
Figure 16. Concept A (L-Post) — ISOtrOPIC VIEW.....cccviiiiiiiiiiiieeiie ettt s 40
Figure 17. Concept B (Post-Off-Deck) - Assembled OVerview ..........cccoecueeveieeiieneeeiiienieeieenen. 42
Figure 18. Concept B (Post-Off-Deck) — Rail DImensions ..........cccceeveeeriieenieeeniee e evee e 43
Figure 19. Concept B (Post-Off-Deck) — Post Dimensions.............ccoecverieeriienieenieenieeieeeeeneen 44
Figure 20. Concept C (Rail Cap) - Assembled OVEIVIEW .........cccveeeieeeiiieeiiieeeiieeeeeeeiieesieeens 47
Figure 21. Concept C (Rail Cap) — Rail DIimensions............cceeevuierieeiiienieeiieriie et 48
Figure 22. Concept C (Rail Cap) — Post DIMENSIONS ........eeeeviieiiieeiiiieeiiee e cieee e 49
Figure 23. Concept D (Staggered Rail) - GEOMEIIY ........oovieiiiiiiiiiiieiieeieeieecie et 51
Figure 24. Concept D (Staggered Rail) — ISOtropiC VIEW.....ccuuieviiieiiiieiieciee e 52
Figure 25. Concept E (Ladder) - OVEIVIEW ....c..cccuiriiriiiiiiriiiiiieeiesiteicee et 56
Figure 26. Concept E (Ladder) — Cross SeCtion VIEW..........cccueevuieriieiieenieeniieeieeneieeveesieeeveenenes 57
Figure 27. Concept E (Ladder) — Connection Hardware ..........c..cccevveenieiiniiiniencnncncecienn 58
Figure 28. Concept E (Ladder) — Rail Segment...........cccocevieiiieriieiiieniieieeie e eee et 59
Figure 29. Concept E (Ladder) — Post Segment ...........cceocuiriiniininiinienieicneeeceeeee e 60
Figure 30. Concept E (Ladder) — ISOtropic VIEW .......cccveriieriieeiieniieeieeniieereesiee e eve e eeve s 61
Figure 31. Concept F (FEeNce) - OVEIVIEW ......cceovuiiiiiiiiiiiiiiiiienieeieeieseeete et 65
Figure 32. Concept F (Fence) - GEOMELIY .....c.ueveiuiieiiiieiiieeeiieeeiee et eeee et e e e e saae e 66
Figure 33. Concept F (Fence) — ISOtropic VIEW ........ccccoieiiiriiniiniiniinieneeieneeieee e 67
Figure 34. Factored Rail Moment Strength vs. Post Moment Strength.............cccoocvevviiinienneenen. 70
Figure 35. Joint Design A — Bolted Splice Plates..........coceevviriiniiiiniiniiiiiicneccecece e 73
Figure 36. Joint Design B — X-BOItS......cccciiiiiiiiiiiciececee e 75
Figure 37. Joint Design C — Side Bolts and Center Shear Key........ccccoceeviiiiniinniininciicnne 77
Figure 38. Joint Design D — Side Bolts and Shear Tubes..........ccceeevieriiiiiinieeiieiecieeeeee e, 80
Figure 39. Joint Design D — Side Bolts and Shear Tubes - Assembly........cccccoceeverieniencniicnnne 81
Figure 40. Joint Design E — Center Bolt and Shear Pipe..........cccceviieiieiiieiieiiicieceeeeeeen 84
Figure 41. Joint Design E — Center Bolt and Shear Pipe — Assembly and Parts ..........c...ccccueee. 85
Figure 42. Joint Design F — Baluster Connection Pi€Ce ..........ccovciiiiiiieniiieiiiieciieeiee e, 88
Figure 43. Joint Design F — Baluster Connection Piece — Individual Parts...........c.cccocceveniennee 89

viil



Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.

February 13, 2012
MwRSF Report No. TRP-03-239-12

Joint Design G — Center Bolt and Side Grout Pockets...........cccceeeiieniiniiienieniieienne, 92
Joint Design G — Center Bolt and Side Grout Pockets — Assembly.........cccccveeennennnee. 93
Joint Design H — Wide Flange Segments in Side Grout Pockets ..........ccccceveeveriennene 95
Joint Design I — Side Bolts and Center Grout Pocket ..........c.ccccevveeiiieeiiieniieeeieeeee, 97
Bogie TeStiNG St UP....ccoueeiiieiieieeiieeieete ettt et ettt e et e eaaeenee e 99
Bogie Vehicle (a) Impact Head and (b) on Guidance Track..........ccceevviieiviennnnenn. 101
Camera Locations, Test Nos. PCRB-1 and PCRB-2............cccccovviiiiiiiiieiiiiiiiineen, 103
Wide Flange Joint Test Specimen, Test No. PCRB-1.........cccoooiiiiiiieiiiiieieees 106
Wide Flange Joint Assembly, Test No. PCRB-1 .......ccccoooiiiiiiiiiiiiecceeen 107
Long Rail Segment, Test No. PCRB-1.......cccoiiiiiiiiiieeeeeeeeeee e 108
Cross Section Views of Long Rail Segment, Test No. PCRB-1..........ccccooevienenne. 109
Rail Steel Reinforcement, Test NO. PCRB-1 .......oooiiiiiiiiiiiieeeee e 110
Short Rail Segment, Test No. PCRB-1 .....oociiiiiiiiiiieeeece e 111
Cross Section Views of Short Rail Segment, Test No. PCRB-1.........cccccoeevvvenenn. 112
Grout Pocket Assembly and Reinforcement, Test No. PCRB-1 ...........ccccoceviennee. 113
Left-Side Grout Pocket Details, Test No. PCRB-1 .....cccvvvvviiiiiiiiiieieeeeeee, 114
Right-Side Grout Pocket Details, Test No. PCRB-1........ccccocveviiiiiiiiiiiieieeieee, 115
Pocket Reinforcement Details and Wide Flange Section, Test No. PCRB-1 ........... 116
Rail Component Photographs, Test No. PCRB-1 ........cccoociviiiiiiiiiiiieieeecee, 117
Side Bolts and Shear Tubes Joint Test Specimen, Test No. PCRB-2........................ 121
Side Bolts and Shear Tubes Joint Assembly, Test No. PCRB-2..........c..cccceeveennenee. 122
Long Rail Segment, Test No. PCRB-2.......ccccooiiiiiiiieeeeeeeeeee e 123
Cross Section Views of Long Rail Segment, Test No. PCRB-2..........cccccccveeiienene. 124
Rail Steel Reinforcement, Test NO. PCRB-2 .......ooooiiiiiiiiiiiiiiiieeieeeeeee e, 125
Short Rail Segment, Test No. PCRB-2 ......cccoooiiiiiiiiiiieieeeeee e 126
Cross Section Views of Short Rail Segment, Test No. PCRB-2...........ccccoecvvvenenn. 127
End Pockets Assembly and Reinforcement, Test No. PCRB-2 .........c..cccccovieiinen 128
Left-Side Pocket Details, Test NO. PCRB=2 .....oooiiiiiiiieeeeee et 129
Right-Side Pocket Details, Test No. PCRB-2 .......ccccooiiiiiiiniiiinieccececiee 130
Pocket Gusset Plates, Shims, and Shear Bolts, Test No. PCRB-2.........cccccvvveunnnnen. 131
Connection Hardware, Test No. PCRB-2.........cccoiiiiiiiiiiiiiee e 132
Rail Component Photographs, Test No. PCRB-2 .........cccccooviivviiiiiiniiciecieeeeeen 133
Sequential Photographs, Test No. PCRB-1.....cc.cooiiiiiiiiiiiiiiiceccccecee 137
Additional Sequential Photographs, Test No. PCRB-1........cccccoovvviiiiieniiiieeieee, 138
Component Damage, Test No. PCRB-1......cccoooiiiiiiiiiiiiiccecccece 139
Component Damage — Long Rail Segment, Test No. PCRB-1.........c.cccceevieiiennnn. 140
Component Damage — Short Rail Segment, Test No. PCRB-1 ........c.ccccccooiniienne. 141
Bending Damage of Long Rail Segment, Test No. PCRB-1 .........c.ccccoeeviieirennnen. 142
Data Analysis Plots, Test No. PCRB-1 ......ccccooiiiiiiiiiiiicceeccee 143
Sequential Photographs, Test No. PCRB-2.........cccooviieiiiiiieiececeececee e 147
Additional Sequential Photographs, Test No. PCRB-2........ccccccoviininiininniiicnne 148
Additional Sequential Photographs, Test No. PCRB-2.........ccccccevviievienviieiecieenee. 149
Component Damage, Test No. PCRB-2......cccccooiiiiiiiiiiiiicceeceeee 150
Component Damage - Front Pocket Assembly, Test No. PCRB-2..........ccccccceeneeeee. 151
Component Damage — Back Pocket Assembly, Test No. PCRB-2..............cccce..e. 152

X



February 13, 2012
MwRSF Report No. TRP-03-239-12

Figure 89. Component Damage — Loose Concrete Removed, Test No. PCRB-2 ...................... 153
Figure 90. Data Analysis Plots, Test No. PCRB-2 ........cccciiiiiiiiiieceeeeeeeeee e 154
Figure 91. Data Comparison Plots, Round 1 Bogie Testing Results..........cccceceveeviriicniencnnns 155
Figure 92. Grout Rail Joint Improvements — Steel I-Shape Connector ...........cccccveeeevveeecveeennnenn. 158
Figure 93. Grout Rail Joint Improvements — Alternate Modifications..........cc.cceceeveevierienennnens 162
Figure 94. Dry Rail Joint Improvements — Shear/Tension Tube..........ccccveeveiveerciieencieeeniee e, 165
Figure 95. Bogie Impact Head with Steel Tube BIOCKOULS ...........cceeviiiiiieniieiiiieciieieeee 167
Figure 96. Camera Locations, Test Nos. PCRB-3 and PCRB-4............cccooeviieiiieeiiecieee, 168
Figure 97. Camera Locations, Test No. PCRB-5.........cccoiiiiiiiiiieeeeee e 169
Figure 98. Refined Grout Rail Joint Design, Test No. PCRB-3........ccccooviiviiieiieeeeeeee, 172
Figure 99. Refined Grout Joint Assembly, Test No. PCRB-3..........cccciiiiiiiiiiiiiiieeee 173
Figure 100. Long Rail Segment, Test No. PCRB-3.........ccoooiiiiiiieeeeeeeeee e 174
Figure 101. Cross Section Views of Long Rail Segment, Test No. PCRB-3............cccccveennenne 175
Figure 102. Short Rail Segment, Test No. PCRB-3 ..o 176
Figure 103. Cross Section Views of Short Rail Segment, Test No. PCRB-3...........cccccoceeenene 177
Figure 104. Rail Internal Steel Reinforcement, Test No. PCRB-3.........cccoooiiieiiiiciieeieee, 178
Figure 105. Grout Pocket Assembly, Test No. PCRB-3........cccccciiiiiiiiiiiiiieecceeee 179
Figure 106. Grout Pocket Assembly Connections, Test No. PCRB-3...........ccccoeoviiviiiinieennnnn. 180
Figure 107. Left Grout Pocket, Test No. PCRB-3.......cccoooiiiiiiiiiieieeeiee e 181
Figure 108. Right Grout Pocket, Test No. PCRB-3.......cccoiiiiiiiieceeeeeee e 182
Figure 109. Grout Pocket Accessories and Shear Bolts, Test No. PCRB-3 .........cccccoceviineneene 183
Figure 110. Built Up I-Shape Connector, Test No. PCRB-3........cccccooviiiiiiiiiiiee e, 184
Figure 111. Rail Component Photographs, Test No. PCRB-3 .......ccccccoviiiiniiniiiiiiceeienene 185
Figure 112. Refined Dry Rail Joint, Test No. PCRB-4 .........cccoooiiiiiiiiieeeeeeeeeeeee e 189
Figure 113. Refined Dry Joint Assembly, Test No. PCRB-4...........cccccoviiiniiiiiiniicieeee 190
Figure 114. Long Rail Segment, Test No. PCRB-4............coooiiiiiiieeeeeeeee e 191
Figure 115. Cross Section Views of Long Rail Segment, Test No. PCRB-4...........cccccoceveenens 192
Figure 116. Cross Section Views of Long Rail Segment, Test No. PCRB-4............cccccueenneee. 193
Figure 117. Short Rail Segment, Test No. PCRB-4 .........cccooiiiiiiiiiiiiniieeceecncee 194
Figure 118. Cross Section Views of Short Rail Segment, Test No. PCRB-4...........ccccvvenneee. 195
Figure 119. Cross Section Views of Short Rail Segment, Test No. PCRB-4...........c...ccccoeees 196
Figure 120. Rail Internal Steel Reinforcement, Test No. PCRB-4.........c..ccocoviiiiiiiiniiniienen, 197
Figure 121. End Pocket Assembly, Test No. PCRB-4 .........ccccociiiiiiiniiniiiniecceceeee 198
Figure 122. Pocket Assembly Connections, Test No. PCRB-4...........c.cccceviievienciiiiieieeeene 199
Figure 123. Left Pocket, Test NO. PCRB-4 ...c..cooiiiiiiiiiiiiececeeceeetee e 200
Figure 124. Left Pocket, Test NO. PCRB-4 ........cccoiiiiiiiieeieeeeceeee et 201
Figure 125. Right Pocket, Test NO. PCRB-4......cc.ooiiiiiiiiiiiicceeeeeeceec e 202
Figure 126. Right Pocket, Test NO. PCRB-4 ..........ccccoooiiiiiiiiciteeceeee et 203
Figure 127. Shear Plates, Test NO. PCRB-4 .......ccooiiiiiiiiiiiiiceeceeeeeeee e 204
Figure 128. Reinforcing Rebar, Test No. PCRB-4 ........ccccooiiiiiiiiiieeeeeeeeeeeee e 205
Figure 129. Shear Tube Connector, Test No. PCRB-4.........cccccocoiiiiiiiiniiniiiececeeeee 206
Figure 130. Shear Tube, Shim Plates, and Gussets, Test No. PCRB-4 ...........ccccoeevivviieieenenne. 207
Figure 131. Dry Joint Installation Hardware, Test No. PCRB-4.........ccccoccviiiiniininiiniiicnens 208
Figure 132. Rail Component Photographs, Test No. PCRB-4 ..........ccccooiiiiiiiiiniicieeeeen 209
Figure 133. Alternate Grout Joint Design, Test No. PCRB-5 ........coceiiniiniiiiniiiicnicees 213

X



Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.

February 13, 2012
MwRSF Report No. TRP-03-239-12

Alternate Grout Joint Assembly, Test No. PCRB-5.........ccccoooiiiiiiniiiiiiiiiieieee 214
Long Rail Segment, Test No. PCRB-5.......cccoiiiiiiiiieeeeeeeeee e 215
Cross Section Views of Long Rail Segment, Test No. PCRB-5...........ccccveeennene 216
Short Rail Segment, Test No. PCRB-5 ....c..ooiiiiii e 217
Cross Section Views of Short Rail Segment, Test No. PCRB-5...........ccccceeeenee. 218
Rail Internal Steel Reinforcement, Test No. PCRB-5..........oooviiiiiiiiiiiiiieieeeeeiin, 219
Pocket Assembly and Anchorage, Test No. PCRB-5.......c.cccoviviiiiiiiiiiinieiiee 220
Pocket Assembly Connections, Test No. PCRB-5........ccooooviiieiiiieiiecieeeeeee 221
Left Grout Pocket, Test NO. PCRB-5...coooiiiiiiieiiieiee ettt 222
Right Grout Pocket, Test No. PCRB-5.......oooviiiiiieeeeeeece e 223
Grout Pocket Cap, Shear Plate, and Anchorage, Test No. PCRB-5........................ 224
Threaded Rod Connector Assembly, Test No. PCRB-5 ........ccccovevviiiiiiiecieee, 225
Rail Component Photographs, Test No. PCRB-5 .......cccooiiiiiiiiiiiiicieeee 226
Sequential Photographs, Test No. PCRB-3..........ccoiiiiiiiiiieeeeeeee e 229
Component Damage, Test No. PCRB-3.......cooiiiiiiieeeeeeeeee e 230
Component Damage — Steel Pockets, Test No. PCRB-3 .........ccccooviiiiniiiiicieee. 231
Rail Tension Cracks and Damage to Bottom of Joint, Test No. PCRB-3............... 232
Data Analysis Plots, Test No. PCRB-3 ..o 233
Sequential Photographs, Test No. PCRB-4..........cccoooiiiiiiiiiiieeeceee e 237
Additional Sequential Photographs, Test No. PCRB-4...........cccvveviiieiieeeieeee. 238
Component Damage, Test No. PCRB-4.........ccoooiiiiiiiiiiieeeeeeeeeeeee 239
Component Damage — Steel Pockets, Test No. PCRB-4 ..........ccccoevivviviieecieennen. 240
Component Damage — Concrete Damage, Test No. PCRB-4 ............cccccoevieennen. 241
Data Analysis Plots, Test NO. PCRB-4 .........cccoooiiiiiiieeeeeeeee e 242
Sequential Photographs, Test No. PCRB-5.........ccccoiiiiiiiiiiiieeecee e, 246
Additional Sequential Photographs, Test No. PCRB-5........cccccooiiiiiieeiiiieieeen 247
Component Damage, Test No. PCRB-5.....ccooiiiiiiiiiiicceccceceeen 248
Component Damage — Short Rail Segment, Test No. PCRB-5 ..........ccccoeovveennnnen. 249
Component Damage — Long Rail Segment, Test No. PCRB-5.........cccccoceviiiinnins 250
Data Analysis Plots, Test NO. PCRB-5 ......ccooiiiiiiieeeeeeeeee e 251
Data Comparison Plots, Round 2 Bogie Testing Results...........cccccoceevincniencnnns 255
Joint Comparison Plots, Round 2 Bogie Testing Results...........cccceovvveevviennieennnen. 256
Deck Attachment A — Threaded Rods and Shear Tubes...........ccccceviiiiiiniieenne 258
Deck Attachment B — Threaded Rods ........ccooeeiiiiiiiiinieiinieeeeeeeeee 260
Deck Attachment C - Cleat.........ocouoeiiiiiiiiienieeieee e 262
Deck Attachment D - Shear Rail ..........cooiiiiiiiiiiiieeeeeeee e 264
Deck Attachment E — Shear Channel .............ccoocooiiiiiiiiiiiiiee e 265
Schematic Details of Modified Bridge Deck Reinforcement.............cccceevuveennnnee. 269
Schematic Details of Modified Bridge Deck Reinforcement...........cccccecvevueeiennene. 270
Schematic Details of Modified Bridge Deck Reinforcement..............cceevuvennneen. 271
Schematic Details of Modified Bridge Deck Reinforcement...........cccccocveeeeiennee. 272
Schematic Details of Modified Bridge Deck Reinforcement..............ccceevuveennneen. 273
Schematic Details of Modified Bridge Deck Reinforcement...........cccccecveeuieiennee 274
Schematic Details of Modified Bridge Deck Reinforcement.............cccceevuveenneeen. 275
Schematic Details of Modified Bridge Deck Reinforcement...........cccccecveeuieiennee 276

x1



Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.
Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure A-1.
Figure A-2.
Figure A-3.

February 13, 2012
MwRSF Report No. TRP-03-239-12

Schematic Details of Modified Bridge Deck Reinforcement..............cccoevuvenneneee. 277
Schematic Details of Modified Bridge Deck Reinforcement.............ccceeveuveeennnennn. 278
Schematic Details of Modified Bridge Deck Reinforcement.............ccccoevuvennnneen. 279
Precast Bridge Rail Segment CAD Details ........c.coooiieiiiieiiieeiiiecieeeeeeeeeee 284
Precast Bridge Rail Segment CAD Details ........c.coceeeiiiniiiiieniieieieeeeeeeeene 285
Precast Bridge Rail Segment CAD Details ........cccoocuiieviiieiiieeiiieeieeceeeeeeee 286
Precast Bridge Rail Segment CAD Details ........cccccceeeiieniiiiieniieieieceeeeeeee 287
Precast Bridge Rail Segment CAD Details ........ccccooouiieiiiieiiieeiieeieeceeeeee e 288
Precast Bridge Rail Segment CAD Details ........c.coceeeiiiiiiiiieniieiieieeeeeeeeene 289
Precast Bridge Rail Segment CAD Details ........ccoocuiieviiieiiieeiieeieeeeeeeee e 290
Precast Bridge Rail Segment CAD Details ........cccccceeeviieniiiiieniieieieeeeeeeeene 291
Precast Bridge Rail Segment CAD Details ........c.coocviveviiieiiieeciieeieeeeeeeee e 292
Precast Bridge Rail Segment CAD Details ........cccccceeeviieniiiiieniieiieieeeeeeeene 293
Precast Bridge Rail Segment CAD Details ........cccoocuiieiiiieniieeiieeieeeeeeeee e 294
Precast Bridge Rail Segment CAD Details ........cccccceeeeiieriiiiieniieiecieeeeeeeieee 295
Precast Bridge Rail Segment CAD Details ........cccooouiieiiiieiiieeciieeieeeeeeeee e 296
Precast Bridge Rail Segment CAD Details ........c.ccceeeiiiniiiiieniieieiecceeeeeene 297
Precast Bridge Rail Segment CAD Details ........ccccoocviieviiieiiieeiiieeieeceeeeee e 298
Precast Bridge Rail System Layout.........cccccoecieiiiiiiiiiiieieeiieeeeee e 299
Precast Bridge Rail System Layout.........c.cccccvveiiiiiiiiiiiiiieecee e 300
Precast Bridge Rail System Layout..........ccccoecuiriiiiiiiiiiieieeiieeeeeee e 301
Precast Bridge Rail System Layout...........cccccvveiiiiiiiiiieciieeeeeee e 302
Precast Bridge Rail System Layout.........ccccoeeiiiiiiiiiiiieieeieeee e 303
Precast Bridge Rail System Layout.........c.cccccuiieviiiiiiiieiiiecceeeeeeee e 304
Precast Bridge Rail System Layout.........cccccoevieiiiiiiiniieieeieeeeeee e 305
Precast Bridge Rail System Layout...........cccccvveiiiiiiiieeciieeceeeee e 306
Precast Bridge Rail System Layout..........cocceeiiniiniiiininiiincccececeeeeen 307
Precast Bridge Rail System Layout..........ccccoeviiiiieiieeiieiieeiicceceeeee e 308
Precast Bridge Rail System Layout.........ccocceeiiniiniiiiniiniiccceececeeee 309
Precast Bridge Rail System Layout.........ccccoevieiiieiiieiiieiieeieeeieeieeeie e 310
Precast Bridge Rail System Layout..........coccoeviniiniiiiniiniiniceccececeeee 311
MwRSF Simulated Bridge Test Pit.......c.cccceeviiiiieiiiieiieciieieecee e 312
Precast Bridge Rail Foam Model with 1100C Vehicle ...........coceviiiiniiniincnnnnnen. 313
Precast Bridge Rail Foam Model with 2270P Vehicle.........ccoovveviieiiieniiiiiennene, 314
Precast Bridge Rail Foam Model with 10000S Vehicle..........ccccoceviininninicncnnns 315
Precast Bridge Rail Aesthetic Treatment Concepts........cccvvereerciierieeieeneeenieennnenn. 316
Precast Bridge Rail Aesthetic Treatment Concepts.........coceveererrierieneeniereeneennens 317
Precast Bridge Rail Aesthetic Treatment CONCepts........ccvveereeriierieeieenieeieennnenn 318
Precast Bridge Rail Aesthetic Treatment Concepts.........cocevvererrierieneenieneeneennens 319
Precast Bridge Rail Aesthetic Treatment CONcCepts........cccveereeriierieeieenieeieennnenn 320
Precast Bridge Rail Aesthetic Treatment Concepts.........cocevvererreeeieneeniereeneennens 321
Precast Bridge Rail Aesthetic Treatment CONcCepts........cocveerveerviierieecieenieeieennrenn. 322
Dry Rail Joint — SHder Tube ...........cooiiiiniiiiiiiiiieeceeee e 335
Dry Rail Joint — Slider Tube ASSEMDIY ........ccoviiviiiiiieiieiieeieecee e 336
Dry Rail Joint — Plates Underneath Rail ........c...ccccooiiiiniiiiniiniiiiceceee, 337

xii



February 13, 2012
MwRSF Report No. TRP-03-239-12

Figure A-4. Dry Rail Joint — Structural Steel Shape (C-Channel) Underneath Rail .................. 338
Figure A-5. Dry Rail Joint — Bolts Through End Balusters............ccccceeriieeiiieeiiiecieeeie e 339
Figure A-6. Dry Rail Joint — Bolts and Shear Pipes Through End Balusters...........c.cccocceeuenee 340
Figure A-7. Dry Rail Joint — Unsymmetrical, One-Way Bolt Assembly ...........ccceevvveercreeennnenn. 341
Figure A-8. Grouted Rail Joint — Side Bolts and Vertical, Center Grout Pocket ............c..c...... 342
Figure A-9. Grouted Rail Joint — Large Grout Pocket with exposed Steel Reinforcement........ 343
Figure A-10. Grouted Rail Joint — Structural Steel Shape in Center Grout Pocket.................... 344

xiil



February 13, 2012
MwRSF Report No. TRP-03-239-12

LIST OF TABLES
Table 1. Estimated Peak Lateral Impact Force - MASH TL-4 Conditions ..........cccceveevvereennenee. 22
Table 2. LS-DYNA Peak Lateral Impact Force — MASH TL-4 Conditions ..........ccccceeeevveenveenne 23
Table 3. Camera and Lens Information, Test NoS. PCRB-1 & 2 ....ovvvviviiiiiiiiiiiiieeeeeeeeee 103
Table 4. Camera and Lens Information, Test Nos. PCRB-3 and PCRB-4 ...........ccccccccoevvvnnnneen. 167
Table 5. Camera and Lens Information, Test No. PCRB-5.......coooviiiiiiiiiiiiiiieeeeeeeeeeea 168

X1V



February 13, 2012
MwRSF Report No. TRP-03-239-12

1 INTRODUCTION
1.1 Background

Historically, most open concrete bridge railings have been installed using cast-in-place
concrete construction. As a result, significant labor costs are expended at the actual jobsite in
order to set forms, tie steel reinforcing bars, place concrete, and allow for adequate curing while
considering environmental and weather conditions. The increased labor and extended
construction time results in higher construction costs and delays in opening a bridge system.

Alternatively, an open concrete bridge railing system could be developed using precast
concrete construction. For this precast system, all of the bridge railing components would be
fabricated offsite and then later delivered to the jobsite. Subsequently, the precast post and beam
components would be erected onsite in a relatively short period of time as compared to the cast-
in-place construction methods. Labor costs would be significantly reduced by eliminating the
need for form construction and field placement of the reinforcement and concrete.

The design of a new, precast concrete bridge railing system would consider the following
factors: aesthetics; ease of construction; maintenance and repair; load transfer; dynamic safety
performance; as well as the overall economy of an "installed" barrier system. Design variations
could be made to accommodate various levels of service. In addition, a precast concrete bridge
railing system could be configured either as an open rail or as a closed vertical parapet. Finally,
precast concrete bridge railing systems could be developed for use on either cast-in-place and
precast concrete bridge decks. The development effort would consider the selection of cost-
effective anchorage hardware for making the connection between the bridge railing and deck

systems.
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1.2 Research Objectives

For this research project, an open precast concrete bridge railing system was developed
for use on cast-in-place and precast concrete bridge deck systems. In addition, conceptual
modifications were developed for creating a closed version of the precast concrete railing system
for use in special applications. The open and closed new railing systems were designed to meet
the Test Level 4 impact safety standards provided in the American Association for State
Highway and Transportation Officials (AASHTO) document entitled, Manual for Assessing
Safety Hardware (MASH) [1].
1.3 Expected Benefits

The successful development of a new family of precast bridge railing systems will
significantly reduce construction time and should ultimately reduce overall costs as contractors
and precasters gain experience with the new system. Construction of precast bridge railing
systems should be much less weather sensitive than cast-in-place bridge railing systems. With
the reduced construction time, the roadway and bridge would be opened to the motoring public
in a more-timely manner. Further, a precast barrier system will greatly simplify barrier repair
should any damage occur during high-energy, impacts with trucks. Standardized barrier
components will allow maintenance personnel to easily remove and replace any damaged barrier
components in a timely and efficient manner without requiring long periods of lane closure.
Finally, aesthetic features can be easily cast into the face of a precast barrier system without the
high costs associated with field construction. Hence, the new barrier system should allow
designers much greater flexibility to develop bridge designs that contribute to the overall beauty

of Nebraska's highways.
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1.4 Research Plan and Preliminary Design Considerations

1.4.1 Bridge Railing Systems

The preliminary plan was to develop two precast railing systems - an open concrete
railing and a closed concrete parapet. In general, open concrete railings are preferred on rural
highways for several reasons. First, an open railing design allows transverse water runoff to flow
easily over the deck edge in applications where no traffic or pedestrians are found below the
bridge system. Second, open railing systems reduce snow accumulation in front of the railing
system both during snow removal operations as well as during snow storms. In addition, open
railing designs arguably have more aesthetic appeal as compared to most closed concrete
parapets. Closed concrete railings are typically utilized in urban applications where it is
necessary to prevent water runoff from traveling over the deck edge.

1.4.2 Bridge Deck and Anchorage Systems

As previously noted, the preliminary plan was to develop railing systems for use on both
cast-in-place reinforced concrete decks as well as precast reinforced concrete deck panels. As
such, it was envisioned that the same steel anchorage system would be developed for use with
either bridge deck type. However, it should be noted that the size, spacing, and/or configuration
of the anchorage system may differ for the open and closed railing designs. For example, open
concrete railings require attachment to the deck at the base of the each bridge post. Alternatively,
continuous closed concrete parapets are typically anchored to the deck along the entire length of
the parapet. If deemed feasible, the research and engineering team would consider the use of one
anchorage system for both the open and closed railing designs.

The railing systems were to be developed for two bridge deck systems. As such, the most

critical deck system would be selected for use in the crash testing program. The successful
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completion of this research and development project should result in the allowance of either
railing system to be anchored to both deck types. For this project, it was anticipated that the most
critical bridge railing system would be tested and evaluated on a 7% to 8-in. (190 to 216-mm)
thick deck system. In addition, it was envisioned that the transverse, precast concrete deck panels
would measure approximately 12 ft (3.66 m) wide by 15 to 16 ft (4.57 to 4.88 m) long.

1.4.3 Test Level for Railing Systems

Based on discussions between Nebraska Department of Roads (NDOR) personnel and
Midwest Roadside Safety Facility (MwRSF) researchers, it was anticipated that the new, precast
bridge railing systems would be designed to meet the revised Test Level 4 (TL-4) condition
provided in the new MASH impact safety standards. At the revised TL-4 impact condition, three
full-scale vehicle crash tests are required - a 2,425-1b (1,100-kg) small car impacting at 62.1 mph
(100 km/hr) and 25 degrees, a 5,000-1b (2,268-kg) pickup truck impacting at 62.1 mph (100
km/hr) and 25 degrees, and a 22,046-1b (10,000-kg) single-unit truck impacting at 55.9 mph (90
km/hr) and 15 degrees.

Using the revised TL-4 impact condition, the bridge railing and deck systems were to be
designed to limit the overall damage imparted to the bridge deck. An acceptable level of deck
damage was determined as damage which can be repaired through standard crack filling
operations. However, any damage occurring to the rail and/or post elements that requires
replacement would be deemed acceptable as long as the safety performance criteria were met.

Historically, TL-4 open concrete bridge railings and closed concrete parapets have been
configured with a top mounting height which has ranged from 29 to 34 in. (737 to 864 mm).
Initially, it was anticipated that the new precast railing systems would be configured with similar

top railing heights, even when developed to meet the revised TL-4 impact conditions. The new,
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precast concrete bridge railing systems would be developed using a vertical, or nearly vertical,
front-face railing geometry in order to reduce the propensity for vehicle climb and subsequent
vehicular instabilities during redirection.

1.4.4 Aesthetics

The bridge railing systems would be developed with the assumption that aesthetic
features (i.e., decorative geometric features, longitudinal asperities, etc.) could be placed on the
front face of the rail elements. The research team was also to consider the inclusion of decorative
elements and/or medallions on the back side of the system, more specifically at the post
locations, if deemed desirable by NDOR officials. It should also be noted that the appearance of
the precast railing and post components could be enhanced with the use of various textures and
dyes on the concrete surfaces.

Professor William Holmes, R.A., a University of Nebraska — Lincoln (UNL) faculty
member with expertise in architectural design and aesthetics, was retained on this project in
order to better address the overall appearance of the new bridge railing systems.

1.4.5 Roadway Surfacing or Overlays

The development of the new bridge railing systems would make accommodation for the
future placement of roadway surfacing or overlays with a maximum thickness of 2 in.(51 mm).
As such, the overall top mounting height of the bridge railing could be constructed 2 in. (51 mm)
taller than that deemed necessary to meet the revised TL-4 test condition. For the experimental
testing program, a 2-in. (51-mm) asphalt or low-strength, concrete wearing surface was to be
considered over the concrete bridge deck in order to evaluate the worst case scenario.

In addition, the height of the opening below the rail element for the open concrete railing

configuration would be sized to prevent small car wheel snag on the posts when no asphalt
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overlay was used. However, it should be noted that the inclusion of the 2-in. (51-mm) wearing
surface will reduce the propensity for wheel snag from that observed without any overlay.

1.4.6 Connection Design Considerations

For the new, precast open and closed concrete railing systems, the rail, post, and solid
parapet elements would be designed to accommodate both horizontal and vertical roadway
curves. Therefore, it would be necessary for NDOR officials to provide to the research team the
maximum horizontal and vertical curves that could be used on future bridge systems.

In addition to the curve considerations, the post-to-deck and parapet-to-deck connections
would be designed to accommodate cross slopes (i.e., roadway crown and super-elevation). As
such, a shim detail would likely be necessary to construct the rail face either perpendicular to the
earth or perpendicular to the deck at the appropriate locations.

Initially, it was anticipated that the rail and solid parapet elements would be fabricated
using 12 or 24-ft (3.66 or 7.32-m) lengths in order to accommodate the various roadway curves.
Using the 12-ft (3.66-m) wide precast deck panels, it was envisioned that a 12-ft (3.66-m) center-
to-center post spacing would provide the necessary structural capacity as well as an acceptable
appearance for the open concrete rail design. For open concrete railings installed on the precast
deck panel systems, the posts would be attached to the deck panels at the center locations of the
panels instead of the panel joint locations.

Based on prior discussions with NDOR bridge personnel regarding the open concrete
railing system, two separate connections were to be considered to attach the rail to the posts and
the posts to the deck. The use of separate connection details was believed to provide for an easier
replacement of damaged components. For example, a vertical bolted connection was being

considered to attach the posts to the deck surface, while a horizontal bolted connection was
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considered to mount the rail elements to the posts. Initially, it was uncertain whether the rail
splice connection detail would occur at the posts, at the midspan, or even at one of the quarter
span locations. Grouted connections were to be used if deemed absolutely necessary.

1.4.7 Analysis and Design

The development of the two new, precast bridge railing systems would consider the
following features: (1) prestressed and standard reinforced concrete design for the railing
components; (2) smooth and/or deformed welded wire reinforcement for posts and/or rail
elements; (3) standard and self-consolidating concrete mixes; (4) high-strength concrete mix
designs ranging between 10,000 and 12,000 psi (68.95 to 82.74 MPa); (5) Grade 60 steel
reinforcement and high-strength steel reinforcing rods, such as rods conforming to the 120,000
and 150,000 psi (827.4 to 1,034.2 MPa) specifications; and (6) tapered front-face post geometry
to reduce and/or prevent wheel snag.

Standard reinforced and prestressed concrete design methods were to be utilized for
configuring all of the connections details, sizing the posts, rails, and solid parapet segments, as
well as the determining the required deck reinforcement adjacent to the barrier attachment
locations. However, the redirective capacity of the rigid, open and closed concrete bridge railing
systems would be determined using existing, yield-line analysis procedures outlined in the
literature.

For the research project, all of the construction and fabrication details for the bridge
railing systems, and even components, would be prepared using 3-D Solidworks CAD modeling.
The use of 3-D computer-aided drafting would ensure that appropriate design tolerances were
provided as well as to allow for an aesthetic evaluation of the systems prior to final fabrication of

the system component.
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1.4.8 Experimental Subsystem Testing — Phase |

Upon completion of the preliminary design, Phase I dynamic bogie testing would be
utilized to evaluate the structural adequacy of selected subsystems of the precast bridge railings
prior to conducting the full-scale vehicle crash testing program. Subsystem testing may include:
cantilevered post testing with a rigid sleeve foundation or attachment to an existing, rigid section
of bridge deck; three- or four-point bend testing for simply-supported rail sections; and lateral
load testing of mid-span or quarter-span rail splice connections. In addition, it may be valuable to
perform similar experimental testing on selected subsystems from NDOR’s current bridge railing
systems (i.e., open concrete railing). If this testing is deemed appropriate and necessary, those
test results would be used for a baseline comparison to those results obtained from the subsystem
testing of the new railing components. For this project, it was anticipated that a minimum of six
(6) dynamic bogie tests would be performed on various subsystems of the precast bridge railings.

1.4.9 Full-Scale Vehicle Crash Testing — Phase 11

The new, precast open concrete bridge railing system would be constructed on a full-size
bridge deck and girder system located at MwRSF’s outdoor test facility and within an existing
bridge test pit. The existing bridge test pit is configured with two exterior abutments and two
interior bents. The bridge support structure consists of two rows of longitudinal steel girders for a
total of six (6) girders. The girders are configured with lateral bracing and are attached to a series
of reinforced concrete bents and abutments. As previously mentioned, the precast open concrete
bridge railing system would be anchored to either a cast-in-place concrete deck or a precast
concrete deck panel system.

For the Phase II testing program, the bridge railing and deck systems would be
constructed in the bridge test pit. Subsequently, a full-scale vehicle crash testing program would
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be utilized to demonstrate the structural adequacy of the bridge railing system as well as to prove
its overall crashworthiness according to the impact safety standards. Three crash tests are
required according to the TL-4 impact conditions - a small car test, a pickup truck test, and a
single-unit truck test. Since the railing geometry would be designed to mitigate any propensity
for small car wheel snag on the railing or post components, the research team believed that the
small car test would likely be waived from the test matrix. However, the pickup truck and single-
unit truck crash tests would likely be required for certifying and garnering FHWA acceptance for
the new bridge railing systems.

Occasionally, barrier systems are instrumented with sensors in order to determine the
magnitude of the deformation, loading, stress, and/or strain imparted to selected components
when subjected to dynamic vehicular impact events. As such, the research team intends to
consider the instrumentation of selected steel reinforcing bars within the bridge deck system and
near specific post locations in order to better evaluate the adequacy of the deck design under an
impact loading scenario. This instrumentation could include the installation of strain gauges on
steel reinforcing bars that are expected to experience maximum loading during both of the truck
tests. However, this effort could require two different regions to be instrumented along the length

of the bridge deck.
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2 LITERATURE REVIEW

A literature review was performed to identify prior research, development, and testing
studies pertaining to precast concrete bridge railing systems. If relevant systems were identified,
then the research results would be evaluated to determine whether existing technologies and
methods should be considered for the new railing system. Second, the research team also wanted
to be knowledgeable of any prior successful and/or unsuccessful crash testing programs in order
to guide the development of new precast, open and closed concrete bridge railing systems. From
the literature review, it was discovered that very little research had been performed on the
development and testing of solid concrete parapets, while no prior efforts were uncovered which
involved precast open concrete bridge railings.

In the late 1980s, the L.B. Foster Company developed a half-section, precast concrete
barrier and anchoring system for use on bridges [2]. The front face of the parapet resembled the
New Jersey profile which extended to a height of 32 in. (813 mm). The concrete section utilized
a 9% in. (248 mm) top width and a 19 in. (483 mm) base width. The 20-ft (6.10-m) long
segments were anchored to a concrete deck using ten 1-in. (25-mm) diameter, ASTM A325 steel
anchor rods that were bonded into the deck, spaced on 2 ft (610 mm) centers along the barrier
length, and inserted into precast vertical holes at the barrier base. The precast bridge railing
system was successfully crash tested and evaluated by the Texas Transportation Institute using
the Test Level 4 (TL-4) safety performance criteria found in AASHTO’s Guide Specifications
for Bridge Railings [3]. One test was performed with the 18,000-1b (8,165-kg) single-unit truck
at the approximate impact conditions of 50 mph (80.5 km/hr) and 15 degrees.

The Texas Department of Transportation (TxDOT) also utilizes a precast concrete

parapet as a permanent traffic barrier [4-5]. The Type T503 and Type T504 barriers are
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configured with a half-section, New Jersey safety shape using segment lengths ranging between
9 ft (2.74 m) and 31 ft - 6 in. (9.60 m). The overall height of the parapet was 32 in. (8§13 mm),
including the use of a }4-in. (13-mm) thick grout pad. The segments were anchored to a concrete
deck using seven 1-in. (25-mm) diameter, steel anchor rods that were epoxied or grouted into the
deck. The steel anchor rods were noted to conform to ASTM A325, A321, or A193 B7. The
precast bridge railing has been approved as meeting Test Level-4 of NCHRP Report No. 350

based on its equivalent strength to other railings with similar geometry [6].
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3 DESIGN CRITERIA
3.1 Bridge Rail Cross Section Geometry

3.1.1 Barrier Width

The selection of a particular bridge railing can affect a bridge structure’s width and
overall cost. A top-mounted barrier with a wide footprint requires additional width of the bridge
deck and support structure, while a top-mounted bridge rail with a narrow footprint reduces the
overall structure width. Side-mounted bridge rails can also potentially reduce the required
structure width if a greater portion of the barrier is positioned beyond the outer deck edge. In any
event, narrow and/or side-mounted bridge rails should be considered when optimizing a bridge
system.

For this project, the width of the new precast concrete bridge rail was to be limited in
order to provide a cost-effective barrier and bridge deck system. One of the more common
concrete bridge rails in use today is the 32-in. (813-mm) tall, New Jersey safety shape, single-
sided, concrete bridge barrier with a top width of 6 in. (152 mm) and a base width of 15 in. (381
mm) [7]. Therefore, the maximum width of approximately 15 in. (381 mm) was targeted for the
new, precast bridge railing.

3.1.2 Barrier Face Geometry

Previously, full-scale crash testing and computer simulation modeling have shown that
vehicle stability is improved as the barrier face becomes more vertical [8-9]. Full-scale crash
testing of vertical-faced parapets under NCHRP Report No. 350 guidelines has also
demonstrated that vehicle decelerations fall below the threshold limits for occupant risk [10].
More recently, full-scale crash testing has been successfully performed on two nearly rigid,

vertical-faced, concrete barriers according to the MASH impact safety standards which also
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demonstrated acceptable safety performance [11-12]. Therefore, a vertical-faced geometry was
selected for use in the development of a precast concrete bridge railing.

The barrier system was also designed to reduce the risk of head slap against the concrete
parapet. Head slap is defined as an event where an occupant’s head contacts the barrier during
vehicle redirection. In 2007, MwRSF researchers preformed a study on head ejection from
passenger vehicles [8]. For this effort, a head ejection envelope was developed to provide
guidance regarding predicted positions for ejected heads outside of a vehicle’s side window, as
shown in Figure 1. The head ejection envelope was positioned at the barrier’s front face to

determine the upper cross section of the precast concrete bridge rail, as shown in Figure 2.
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Figure 2. New Bridge Rail Geometry Using Width and Head Ejection Limits

3.1.3 Barrier Height

Concrete barrier heights typically range from 32 to 42 in. (813 to 1,067 mm). Passenger
vehicles, including small cars and pickup trucks, normally have a center of gravity height below
30 in. (762 mm). As a result, passenger vehicles are normally redirected with lateral forces
generated from these vehicle-to-barrier impact events. However, taller vehicles, such as single-

unit trucks, have a much higher center of gravity and run the risk of rolling over the top of
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shorter barriers during impact events. For example, the MASH 10000S single-unit truck (SUT)
has a ballast center of gravity (c.g.) height of 63 in. (1,600 mm). Thus, these heavier and taller
vehicles, such as single-unit trucks, are redirected and prevented from rolling over the top of
rigid barriers due to a combination of a vertical barrier load being applied to the outer underside
of the cargo box and a lateral barrier resistance imparted to the wheels and axle assemblies, as

shown in Figure 3.

Figure 3. Barrier Forces Acting on Single-Unit Truck During Impact

Multiple 32-in. (813-mm) tall concrete barriers have been shown to redirect single-unit
trucks under the TL-4 crash testing guidelines found in NCHRP Report No. 350 which have
consisted of a 17,637-1b (8,000-kg) vehicle impacting at approximately 50 mph (80 km/h) and 15
degrees [13-15]. However, the new MASH guidelines modified the TL-4 test conditions for the
SUT vehicle to include a weight of 22,046 1b (10,000 kg) and a speed of approximately 56 mph

(90 km/h). These changes resulted in a 58 percent increase in impact severity, from 97.6 k-ft
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(132 kJ) to 154.4 k-ft (209 kJ). Thus, there exists an increased risk for a SUT vehicle to roll over
a 32-in. tall rigid barrier when impacted under the new TL-4 MASH criteria. In fact, previous
TL-4 MASH crash tests with a 10000S vehicle on 32-in. (813-mm) tall, New Jersey safety shape
bridge rails have resulted in the single-unit truck rolling over the barrier [16-17].

Subsequently, MwRSF researchers determined that barrier heights in excess of 32 in.
(813 mm) would likely be required to prevent single-unit trucks from rolling over the top of
common rigid barriers during TL-4 impacts under MASH. With increased barrier height, the
truck box would contact the top of the barrier sooner, thus allowing the vertical force to stabilize
vehicle roll before it became critical.

As such, an LS-DYNA computer simulation effort [18] was utilized to determine the
barrier height necessary to prevent rollover. A 15-in. (381-mm) wide, rigid barrier was
configured using a cross-sectional geometry conforming to the design limits shown in Figure 2.
The barrier geometry was modeled such that the barrier height could be raised or lowered
between simulation trials. A 10000S vehicle was modeled to impact the barrier under the TL-4
impact conditions of MASH. If the initial simulation provided satisfactory results (i.e., the
vehicle was redirected without rolling over the barrier), then a second simulation was conducted
at the same barrier height in which the suspension was disconnected from the front axle during
impact. This type of vehicle damage has been commonly observed in previous TL-4 full-scale
crash tests [15-16, 19-21], which can cause vehicle instabilities. LS-DYNA simulations
demonstrated that a barrier height of 34’ in. (876 mm) was adequate for redirecting a single-unit
truck and preventing the vehicle from rolling over the top of the barrier. Crash images depicting
the vehicle’s maximum roll angle when impacting a 34'2-in. (8§76-mm) tall barrier are shown in
Error! Reference source not found. for both the connected and deleted suspension simulations.
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Figure 4. Maximum Roll Angle of 10000S Vehicle Impacting 34%-in. Tall, Rigid Barrier

A final design criteria considered with respect to rail height was the height of the bottom
of the rail for open concrete railings. The height of the bottom of the rail was critical with respect
to small car vehicles in order to provide proper capture and redirection of the vehicle and to
prevent the vehicle from extending too far underneath the rail and snagging on the rigid concrete
posts supporting the system. In order to determine the minimum height for the bottom of the rail,
the researchers reviewed previous small car testing on open concrete railings and timber railings.
The results of this review found that a minimum height for the bottom of the rail was 12 in. (305
mm) above the ground in order to ensure the system functioned properly for small car vehicles.

Asphalt overlays are typically used to refurbish the wearing surfaces of a bridge deck,
which would lower the bridge rail’s effective height. A bridge rail should be designed to perform
in an acceptable manner when the road or deck surface is expected to be treated with an asphalt
overlay in the future. The presence of an asphalt overlay could increase the propensity for a
heavy truck to roll over the top of the bridge rail. Therefore, the minimum rail height was raised

to 36" in. (927 mm) in order to allow for a future 2-in. (51-mm) thick overlay applied on the
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bridge deck surface in front of the parapet. Using the prior width and head ejection limits in
combination with the noted rail height, the geometric bounds for the new bridge rail were
determined, as shown in Figure 5. However, it was noted that additional features may be
incorporated into the simple geometry shown in Figure 5 as long as the head ejection envelope or

lateral rail width limits are not violated.

1
N
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Figure 5. Bridge Rail Geometric Bounds

19



February 13, 2012
MwRSF Report No. TRP-03-239-12

3.1.4 Open and Closed Options

For the new precast bridge rail, it was determined that the general configuration should
be adaptable to both open and closed design variations. Open bridge rails allow water to flow off
of the bridge deck and/or snow to be pushed through the barrier and off of the bridge. Closed
bridge rails keep all water, snow, or debris on the bridge, thereby preventing it from falling
laterally onto a lower roadway. Instead, water is often redirected into drainage systems and
transported to acceptable outlet locations or to the bridge ends. The decision to use an open or a
closed bridge rail is often dependent on bridge location and site constraints below the structure.
Therefore, both open and closed versions were desired in order for the new precast rail to be used
on the full spectrum of bridges. Open concrete bridge rails are not continuous at their base. Thus,
open rails are inherently weaker than closed rails and require additional strengthening at the
discrete post locations. Thus, the initial design efforts, as outlined in Chapter 4, were based on
starting with an open configuration with the understanding that the system could later be easily
converted to a closed configuration.
3.2 Design Load

When the design effort was initiated, the preliminary MASH guidelines had only recently
been released. Thus, only a small number of full-scale crash tests with SUT vehicles had been
conducted under the MASH safety standards. As such, a design impact load for the MASH TL-4
single-unit truck test had not yet been determined or estimated using crash test results. Therefore,
three different methods were utilized to approximate the TL-4 design impact load for SUT
vehicles, including: (1) numerical approximations; (2) scaling of previous crash test results; and

(3) computer simulations.
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NCHRP Report No. 86 outlines a numerical analysis used to approximate vehicle impact
loads based on vehicle dimensions and impact conditions [22]. The equations used to calculate
vehicle impact loads are shown below:

(V; * sin )?
Grar = :
2g[AL *sin® — B(1 — cos0) + D]

and
Frar-ave = Grar * Wt

where Vi and 0 are the initial impact speed and angle, respectively, AL is the distance from the
front of the vehicle to the center of gravity, 2B is the width of the vehicle, D is the barrier lateral
deflection, and g is the gravitational constant. Using the TL-4 impact conditions, AL and B
distances of 16.4 and 3.5 ft (5.0 and 1.07 m), respectively, and with the assumption of a rigid
barrier, the average lateral impact force was determined to be 37.5 kips (167 kN). Assuming a
dynamic impact factor of 2, the lateral peak impact force was determined to be 75 kips (334 kN).

As previously stated, only a limited number of TL-4 crash tests had been performed
under the MASH standards due to its recent release. Thus, the majority of single-unit truck crash
tests were conducted in accordance to the TL-4 standards of NCHRP Report No. 350. Thus,
results from prior NCHRP Report No. 350 TL-4 crash tests were used in combination with a
scaling factor to estimate the lateral impact load. The impact force data from these previous tests
were scaled to reflect the increased impact severity.

In 2007, MwRSF researchers calculated peak lateral impact forces for several full-scale
crash tests using results obtained from onboard vehicle accelerometers and rate gyros [23]. For
this effort, three single-unit truck crash tests into rigid parapets were considered. Subsequently,

the peak lateral impact forces were multiplied by the ratio of the MASH target impact severity,
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154.4 k-ft (209 kJ), divided by the actual impact severity. From this analysis, the peak loads were

approximated to range between 88 and 95 kips (391 and 4,253 kN), as shown in Table 1.

Table 1. Estimated Peak Lateral Impact Force - MASH TL-4 Conditions

mpact | tmpact | AW | R | bredicted
. mpac mpac -4 Pea redicte
Lest sgf Weight Speed Angle S'g‘/g?ﬁ; Lateral Peak Lateral
' ' (deg) Impact Force | Impact Force
(Ibs) | (k@) | (mph) | (km/h) (k-ft) | (kJ) | (kips) | (KN) | (Kips) | (kN)
CYRO-1 | [20] | 17,840 | 8,092 51.2 82.4 17.7 145 196 87.2 388 93.3 415
ZOI-1 [24] | 17,605 | 7,985 50.4 81.1 15.64 108 146 66.8 297 88.7 395
ZOI-3 [24] | 17,637 | 8,000 50.2 80.8 16.32 117 159 66.9 298 94.5 421

The third method for approximating the MASH TL-4 peak lateral impact loads consisted
of LS-DYNA computer simulation. The computer simulations described in Section 3.1.3 were
used to demonstrate that a 34'% in. (876 mm) tall, rigid barrier could successfully redirect a
10000S vehicle. These same simulations were also used to predict the peak lateral impact forces.
Two simulations were conducted for each barrier height of 36%2 and 34 in. (927 and 876 mm).
The front suspension was deleted at 100 ms for one simulation at each barrier height. Figure 6
contains force vs. time curves for all four simulations after an SAE C60 filter was applied. Table

2 contains the simulation results for the applicable TL-4 test condition.
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Figure 6. LS-DYNA Impact Force vs. Time - MASH TL-4 Condition
22




February 13, 2012
MwRSF Report No. TRP-03-239-12

Table 2. LS-DYNA Peak Lateral Impact Force - MASH TL-4 Conditions

Peak Lateral

Case Simulation Impact Load
No. Conditions (kips) | (kN)
A | 36% in. [927 mm] barrier height 81 360
B | 36’2 in. [927 mm)] barrier height, front suspension deleted @ 100 ms 98 436
C | 34%1n.[876 mm] barrier height 75 334
D | 34 in. [876 mm] barrier height, front suspension deleted (@ 100 ms 86 383

In summary and as noted above, three methods were used to determine the peak lateral
impact force for single-unit truck impacts into rigid parapets under the MASH TL-4 test
conditions. From this analysis, the peak lateral impact force was found to range from 75 to 98
kips (334 to 436 kN). For the development of the new precast bridge railing, the research team
conservatively selected a design lateral impact force of 100 kips (445 kN).

3.3 Constructability Considerations

3.3.1 Joint Tolerances

It is impractical to assume that the precast bridge rail components would fit together in a
perfect manner when constructed on a real bridge deck. As such, constructions tolerances were
incorporated into to each connection or interface between the adjacent precast components. Since
the precast bridge railing components were to be fabricated in a controlled environment and not
on site, it was determined that %2 in. (12.7 mm) of construction tolerance should be adequate.
Thus, the rail-to-deck connections and the rail-to-rail connections incorporated a Y2-in. (12.7-

mm) construction tolerance in the longitudinal and lateral directions.
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3.3.2 Weight Limits

For this R&D effort, the project team also considered the construction equipment that
was deemed necessary to install the precast bridge rail segments. From discussions with
Nebraska Department of Roads engineers as well as construction and maintenance personnel, a
5-ton (44.5-kN) limit was established to accommodate the most common heavy lifting
machinery utilized for construction and maintenance operations on the job sites. Therefore, each
precast rail component had an upper weight limit of 10,000 Ibs (4,536 kg).

3.3.3 Deck Type and Strength

In recent years, much interest has been directed toward the use of accelerated bridge
construction as well as precast bridge deck panels. However, many bridges are still being
constructed with cast-in-place concrete bridge decks. Therefore, it was reasoned that the new
precast bridge railing would be primarily designed for use on cast-in-place concrete bridge decks
but with the potential for it to be later adapted to precast concrete deck panels.

Regardless of the deck type, the concrete bridge deck would need sufficient strength to
resist the peak lateral impact load imparted to the deck edge without resulting in any structural
damage. Damage to the precast bridge railing system was deemed tolerable; since, the damaged
components could be removed and replaced with new railing hardware without closing the
bridge. However, the replacement of new deck panels would be much more difficult and would
likely require the bridge structure to be closed and traffic rerouted. Thus, it was determined that
structural damage due to vehicular impact events should be mostly limited to the bridge railing

system.
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3.3.4 Rail Segment Length

In order to maximize efficiency, a rail segment length should be selected to limit the
number of precast sections per bridge without exceeding the weight limit of 10,000 lbs (4,536
kg), as determined in Section 3.3.2. Also, a rail segment length should be selected to either
match the width of one precast deck panel or the width of two or more panels in order to provide
for a consistent installation pattern across the length of the bridge. Precast bridge deck panels are
commonly fabricated in 8, 10, or 12 ft (2.4, 3.1, or 3.7 m) lengths. Assuming the cross-sectional
geometry shown in Figure 5, a 16 ft (4.9 m) long rail segment would weigh about 7,500 lbs
(3,400 kg) for concrete alone. Thus, the design concepts for the precast bridge rail were focused
with using a 16-ft (4.9-m) long rail segment that would span two 8-ft (2.4-m) wide deck panels.
Cast-in-place and precast concrete decks can be modified to contain attachment hardware at any
spacing along the bridge length. Thus, the bridge rail should be applicable for use on either deck
configuration.
3.4 Barrier Aesthetics

One of the primary project goals was to design a precast concrete bridge rail that was
aesthetically pleasing. Historically, barrier aesthetics have often been enhanced through the use
various treatments, such as: longitudinal face asperities; imprinted facial patterns; openings, such
as windows; and color additives. As a result, the research team believed that the new precast
concrete bridge rail would likely be innovative and attractive with the inclusion of several of

these characteristics in combination with a new rail shape.
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4 PRECAST BRIDGE RAIL - DESIGN CONCEPTS
4.1 Overview

Several design concepts were prepared for the new precast concrete bridge rail prior to
selecting the final barrier concept, as described in Section 4.4.2. The initial design concepts were
based on using separate post and rail pieces that utilized simple bolted connections to form
simply-supported beams. However, the analysis and design of these barrier concepts
demonstrated a need to incorporate alterations to the barrier shape as well as utilize a continuous
rail in order to satisfy the criteria described in Chapter 2. Within the following sections, the
major barrier concepts are presented and discussed, including CAD details which depict the
evolution of the precast bridge rail.

4.2 Rail Concepts — No or Limited Continuity

4.2.1 Concept A (L-Post)

The precast concrete bridge rail was designed to incorporate separate rail and post
segments. For Concept A, all posts were identical. The rail segments which spanned between
posts could be configured to provide either an open or a closed bridge rail configuration. The
rail-to-post and post-to-deck connections were configured to utilize either bolts or threaded rods.
Thus, the precast concrete bridge railing could easily be dismantled in the event that damage
occurred, and a portion of the barrier system was to be removed or replaced. Detailed drawings
for this system, including internal steel reinforcement, were prepared and are shown in Figures 7
through 16.

Initially, the rail segments were designed to span across only two posts, thus resulting in

unmanageable impact loads for a simply-supported configuration. Subsequently, the rails were
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extended to cover two spans or three posts, thus greatly reducing the loads imparted to the posts
and rail segments.

The analysis and design effort was focused on the open rail configuration; since, the
closed rail configuration would likely provide greater redirective capacity. The rail segment
utilized a basic rectangular shape, except for the top-front portion of the rail which was sloped to
match the relevant boundaries of the head ejection envelope, as discussed in Section 3.1.2. Also,
longitudinal asperities were integrated into the front face of the rail to provide more aesthetic
appeal. Finally, recessed areas were placed within the rail face around the bolt holes so that the
bolt heads would not extend out and become a snagging hazard. Internal steel reinforcement
provided the necessary bending and shear strength to resist the impact loads. Fourteen no. 7
longitudinal bars were placed through the rail, and the no. 4 vertical stirrups were placed at 4 in.
(102 mm) intervals, as shown in Figure 11. For this steel reinforcement configuration, a
minimum rail width of 11 in. (279 mm) was required to provide sufficient structural strength.

The posts were L-shaped for a number of reasons. First, the taller portion of the post
provides lateral restraint for the rail segments with minimal connection hardware. Next, the
lower extension provided a location for bolting the post to the deck without having to extend the
bolt through the entire height of the post. Finally, the lower extension also serves as a seat for the
rail. With the rail supported by this seat, a gap was established below the rail, thus resulting in an
open configuration. As a result, the rail-to-post bolts did not need to resist any dead weight of the
beams. As shown in Figure 12, the lower extension of the post was tapered on the front corners
to prevent impacting vehicles from snagging on the upstream and downstream corners of the
post. Similar to the face of the rail, the areas around the bolts were recessed so that the bolt heads

would not protrude from the post so that the rail could sit flush on the post seat.
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Longitudinal and transverse steel reinforcement was utilized within each post, as shown
in Figures 13 and 14. The longitudinal steel consisted of no. 4 stirrups and provided resistance to
shear, while the transverse steel consisted of no. 6 stirrups and provided bending or overturning
resistance. The minimum post length and width was 3 ft (0.9 m) and 8% in. (216 mm),
respectively. This post geometry, used in combination with the current reinforcement
configuration, was deemed necessary to provide adequate strength to resist the design impact
load.

Within the post-to-deck connection, the bending and shear strength were provided by
separate components. Bending strength was provided by two 13s-in. (35-mm) diameter ASTM
A193 Grade B7 threaded rods which extended through the seat of the post as well as the deck.
Shear strength was provided by two 3 x 3 x Y-in. (76 x 76 x 6-mm) steel tubes which were
partially cast into the post and extended out from the bottom of the post. The exposed portion of
the tube extended into sleeves which were cast into the deck. These components, along with the
1% in. (32 mm) diameter, SAE Grade 5 heavy hex bolt connecting the rail and post, are shown in
Figure 9.

As previously mentioned, the transverse precast concrete deck panels were selected to be
8 ft (2.4 m) wide. Each panel contained two holes for the ASTM A193 Grade B7 threaded rods
as well as the two 4 x 4 x %-in. (102 x 102 x 6-mm) steel tubes, or sleeves, for the shear tubes.
These holes and sleeves were centered on each panel and spaced 18 in. (457 mm) apart, as
shown in Figure 15. In the event that a cast-in-place deck is to be used, the connection hardware
would need to be repeated at 8-ft (2.4-m) intervals. All of the connection holes and sleeves were
designed with a construction tolerance of %4 in. (13 mm) in both the lateral and longitudinal

directions.
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For this project, it was deemed important to mitigate damage to first occur to the rail and
post components rather than the deck. As such, a steel angle was placed on the outside edge of
the bridge deck to provide increased deck strength as well as an improved bearing surface for the
posts. Also, each post had a notch integrated into the lower-back surface with the intent of
weakening the concrete in the post’s compression zone. This stress concentration point was
expected to result in concrete crushing on the back side of the post before the deck sustains any
significant damage. Finally, 's-in. (3-mm) thick neoprene pads were placed between every
concrete-to-concrete surface to distribute bearing loads and prevent localized crushing.

Although Concept A (L-Post) had adequate strength and could easily be installed and
removed, it did not satisfy all of the design criteria. For example, the system width, 20% in. (511
mm), exceeded the width limit of 15 in. (381 mm). Recall, the width limit was set so that the rail
would not occupy more deck space than current safety-shaped bridge rails. A wider bridge rail
would require an extended bridge deck and result in an increased bridge cost for a comparable
width of traveled way. Further analysis was undertaken in an attempt to decrease the width of the
rail and/or posts. However, the strength requirements combined with the current quantity and
layout for the steel reinforcement rendered these efforts unsuccessful.

As previously noted, there existed concerns regarding the magnitude of the impact load
imparted into the rail, post, and deck components. With no or very limited rail continuity to
distribute the impact load along the length of the bridge, the entire impact load could likely be
transmitted into the deck through only a few posts. Under this scenario, high shear and bending
moments would occur at the post locations near impact. It was feared that current precast panels,
and even some cast-in-place concrete decks, would not provide adequate strength to withstand

MASH TL-4 impact loads without suffering major structural damage. Recall, it was desirable for
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all structural damage to only occur within the easily-replaceable precast bridge rail and post

members and not within the bridge deck.
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Figure 16. Concept A (L-Post) — Isotropic View
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4.2.2 Concept B (Post-Off-Deck)

In an effort to improve Concept A (L-Post), the posts were altered to wrap around the
edge of the bridge deck, as shown in Figures 17 through 19. As a result, the rail was shifted
outward and now occupied only the outer 15 in. (381 mm) of the deck, thus satisfying the rail
width requirement. The attachment hardware was similar to that used for Concept A (L-Post),
which consisted of two bolts in the rail-to-post connection and three bolts in the post-to-deck
connection. The bridge deck retained the steel angle on its outer edge to mitigate deck damage.

Although Concept B (Post-Off-Deck) satisfied the width criteria established in Section
3.1.1, it did not help reduce the load imparted to the bridge deck. The rail remained non-
continuous and essentially simply supported, resulting in localized load transfer to the deck. The
lack of load distribution again causes high shear and bending loads which can lead to structural
damage to the bridge deck.

It should be noted that the design of Concept B was not completed, thus details regarding

anchorage hardware as well as rebar sizes and quantities are not available.
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4.2.3 Concept C (Rail Cap)

Concept C (Rail Cap) was configured as another variation of Concept A (L-Post), which
was modified to allow for the rail to be supported on top of the posts. As shown in Figures 20
through 22, the rail was designed with bottom cavities for which the posts would be inserted,
similar to an extended cap. With the posts inserted 16 in. (406 mm) into the rail, no additional
connection hardware was needed between the posts and rail sections. The weight of the 16-ft
(4.9-m) concrete rail segments was deemed adequate to hold it in position.

The rail cross section was widened to 21 in. (533 mm) in order to ensure that adequate
shear strength could be provided around the bottom cavities, as shown in Figure 21. Since the
rail element was configured to cap the posts, the outer portion of the rail extended beyond the
edge of the bridge deck. Although the rail section was wider than the 15-in. (381-mm) maximum
width requirement, the bridge railing system occupied only 15 in. (381 mm) of deck space. Also,
the increased rail width (i.e., beam depth) could likely result in reduced steel reinforcement.

As noted above, the rail was designed to cap the post instead of sit on a small extension,
or post seat. Thus, the overall post width was reduced, as shown in Figure 22. Also, the post’s
geometry was simplified to utilize a trapezoidal shape. However, the size of the connection bolts
would need to be increased due to the reduced moment arm.

As with the first two concepts, Concept C (Rail Cap) lacked continuity in the rail, thus
resulting in concerns for high, localized deck loads and probable deck damage. All three of the
discontinuous bridge rail concepts were deemed easy to fabricate, install, and replace. However,
the simplicity of these systems caused considerable concern for high impact loading to result in

structural deck damage.
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It should be noted that the design of Concept C was not completed, thus details regarding

anchorage hardware as well as rebar sizes and quantities are not available.
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4.3 Rail Concepts - Moderate Continuity

4.3.1 Concept D (Staggered Rail)

Concept D (Staggered Rail) was configured for the precast concrete bridge rail system in
order to provide increased continuity and improved load distribution. This concept used two
individual rails that were stacked on top one another instead of using a single rail. The two rails
were staggered longitudinal such that the end of the upper rail lined up with the middle of the
lower rail, as shown in Figures 23 and 24. Thus, the impact load would always be distributed to
adjacent posts by at least one of the two rail segments.

The rail geometry was configured to be symmetric as well as to satisfy the head ejection
envelope criteria. For this concept, the rails were stacked on top of the short posts, thus resulting
in a system width below the 15-in. (381-mm) limit noted in Section 3.1.1. Although not shown in
Figures 23 and 24, the connection hardware consisted of both bolts and a shear key. The vertical
bolts penetrated through the top of the rails, posts, and deck and provided the post’s lateral shear
and moment capacities. Steel tubes were placed between the post-to-rail and rail-to-rail surfaces
to act as shear keys and prevent any lateral movement between rail sections.

Although Concept D (Staggered Rail) distributed the impact forces outward another span
or two beyond the prior concepts, the potential for deck damage remained. The shear and
bending loads imparted to the deck still posed moderate risk of structural damage to standard
bridge decks. Therefore, Concept D (Staggered Rail) was abandoned in favor of developing a
more continuous bridge railing system.

It should be noted that the design of Concept D was not completed, thus details regarding

anchorage hardware as well as rebar sizes and quantities are not available.
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4.4 Rail Concepts — High Continuity

4.4.1 Concept E (Ladder)

During the development of Concepts A through D, the research team had concerns as to
whether cost-effective bridge railing systems with limited continuity could reasonably withstand
TL-4 impact loading without incurring significant damage to the bridge deck. As previously
noted, the prior concepts were associated with greater risk of structural deck damage due to high
shear and bending loads concentrated at the post locations nearest to impact. Therefore, it was
deemed necessary to utilize a continuous railing system that would provide shear and moment
transfer between adjacent rail segments and better distribute the impact load along the length of
the bridge.

Concept E (Ladder) was similar to prior concepts as it was comprised of separate post
and rail segments. However, Concept E was also much different as each rail utilized two rails
separated by diaphragms, thus creating many void spaces between rails, as shown in Figures 25
through 30. For this concept, steel connection hardware was placed between adjacent rail
segments on the inside of the rails, effectively shielding the joint hardware from view on either
side. Thus, a rigid rail-to-rail joint was created without sacrificing aesthetics. Since the middle
region of the rail had many void regions, the railing system was lighter per unit length than a
solid rail. In addition, the rail segments were extended to a length of 24 ft (7.3 m) to reduce the
number of rail segments necessary to span a bridge.

As noted above, multiple diaphragms or spacers were used to connect the two rail
segments throughout the length of the segment at a consistent offset, as shown in Figure 28.
These spacers served multiple purposes. First, the spacers functioned similar to the web of an I-

shape beam by shear transfer across the beam depth, thus allowing the built-up section to provide
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increased bending strength and act as a single structural element. The diaphragms were also
intermittently spaced to allow for drainage of water as well as aid in controlling weight and
material costs. The spacers were strategically positioned to allow for the posts to be easily
attached to the rail segments, as shown in Figure 25.

For Concept E (Ladder), the posts measured 24 in. (610 mm) wide by 11 in. (279 mm)
deep. Vertical bolts were placed through the posts and deck to anchor the bridge railing to the
bridge deck surface. Corbels were added to the upstream and downstream sides of the posts, as
shown in Figure 29, to support the rail diaphragms or spacers on both sides of the post. Since the
two rails and attached diaphragms completely surrounded each post and were supported on the
corbels, a rail-to-post connection may not be warranted. However, horizontal bolts would ensure
that the rail does not move vertically during impact loading, as shown in Figure 27.

After the Concept E (Ladder) was configured, some concerns remained regarding the
overall system width and shear strength. The back side of the rail extended off of the deck edge
and still occupied 20’ in. (546 mm) of deck space, exceeding the 15-in. (381-mm) limit
established in Section 3.1.1. Unfortunately, the current rail width could not easily be reduced to
satisty this limit for two reasons. First, the 11 in. (279 mm) post depth was necessary to develop
the bending strength at the post-to-deck interface. Second, the depth of both rails was already
narrow and further reductions would cause concern for inadequate shear strength.

In addition, the two rail sections were attached to one another with discrete spacer blocks
and not a solid, continuous midsection of the rail. With this configuration, there remained
concerns that inadequate shear capacity would be provided within a single, thin rail section. An
impact load located between spacers would cause the front rail to carry the entire shear load until
the load path reached a spacer block and was distributed to the back face. The same would be
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true for impacts near, but not yet on, a post. Only with extensive steel reinforcement could a 7-in.
(178-mm) deep rail resist the significant impact loading.

Concept E (Ladder) was deemed aesthetic through the use of unique geometry and rail
asperities. The rail contained steel joint hardware within the middle cavity, thus creating a
continuous bridge rail system without taking away from the aesthetic appeal. Unfortunately,
competing demands remained due to the need to widen the individual rails to resist high shear
loading in conjunction with the need to narrow overall system width to meet the 15-in. (381-mm)
limit. Therefore, this concept was abandoned.

It should be noted that the design of Concept E was not completed, thus only partial

details are available for the anchorage hardware as well as rebar sizes and quantities.
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Figure 25. Concept E (Ladder) - Overview
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Figure 27. Concept E (Ladder) — Connection Hardware
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Figure 28. Concept E (Ladder) — Rail Segment
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Figure 30. Concept E (Ladder) — Isotropic View
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4.4.2 Concept F (Fence)

Concept F (Fence) was similar to the previous continuous rail design in that it also
incorporated two longitudinal rails. However, the rails in Concept F (Fence) were placed on top
of each other vertically instead of side by side horizontally, as shown in Figures 31 through 33.
This orientation allowed for the width of each rail to extend across the full width of the barrier
cross section rather than just a portion. Consequently, an increase in the width of each rail
directly correlates to an increase in the shear capacity of each rail. Thus, concerns associated
with insufficient shear capacity encountered with the previous continuous rail design were
eliminated. As such, a width of 19 in. (483 mm) was selected for the rails. The width
requirement established in Section 3.1.1 was satisfied by centering the rails over the 11-in. (279-
mm) deep posts. This geometry left 4 in. (102 mm) of rail hanging off the deck edge and
occupied only 15 in. (381 mm) of deck space, as shown in Figure 32.

The two rails were set apart to create an aesthetic opening in the bridge rail system.
Balusters, similar to the spacer blocks described for Concept E (Ladder), were utilized to span
the opening and connect the rails. The height (i.e., vertical distance between rails) and the offset
distance from the face of the rail to each baluster were set at 8 2 in. (216 mm) and 4 in. (102
mm), respectively. These cross sectional dimensions and individual rail heights satisfied all of
the geometry requirements specified in Section A13.1.1 of the AASHTO LRFD Bridge Design
Specifications [25]. In addition, the top rail geometry conformed to the geometric bounds set
forth in Section 3.1.3 regarding the head ejection envelope.

The post dimensions remained the same from earlier design configurations, 24 in. wide
by 11 in. deep (610 by 279 mm) at 8-ft (2.4-m) spacing. Further, the post and rail components
were integrated to form a single bridge rail segment, as shown in Figure 31. Thus, there was no
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need for connection hardware between the post and the rail. However, integrating both
components significantly increased the weight of each bridge rail segment. As such, the heavy
combination rail made it necessary to utilize a 16 ft (4.9 m) segment length rather than a 24 ft
(7.3 m) segment length to satisfy the 10,000-1b (4,500-kg) weight requirement established in
Section 3.3.2.

Although the unique geometry of Concept F (Fence) contained many aesthetically
appealing features, it did not conceal the connection hardware between the rails as well as other
previous concepts had. Still, it was felt that numerous simple rail-to-rail joints could be
developed without sacrificing a significant portion of aesthetic appeal. Rail-to-rail joints are
explored in detail in the following chapter.

4.5 Rail Design Selection

After significant consideration, it was concluded that Concept F (Fence) was the most
appealing of all the bridge rail concepts discussed herein for numerous reasons. First, the
openings between the upper and lower rails presented an extra aesthetic appeal that would
remain whether the bridge rail was specified to be open or closed. Another unique geometrical
feature that added aesthetic appeal to the concept was a draft along to the top and bottom of the
rails and also along the upstream and downstream faces of each post. Moreover, this draft
alignment was also a functional part of the design which allows for the easy removal of form
work after casting of the bridge rail segment is completed. Finally, Concept F (Fence) called for
the fewest assembly components for each segment. In fact, the posts and rails in an individual
segment were cast together and did not require a connection or joint between them during

installation.
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In addition, Concept F (Fence) met all of the design criteria discussed in Chapter 2: each
bridge rail only occupied 15 in. (381 mm) of transverse deck space; each segment of rail
weighed less than 10,000 Ib (4,536 kg); and the design satisfied the geometric bounds established
to prevent vehicle rollover and occupant head slap. Also, the relatively large size of individual
rail and post elements allowed for numerous possible solutions for rigid rail-to-rail joints and
post-to deck attachments. These connections, explored in detail in the following chapters, should
provide the rail segments with the ability to form a rigid, continuous bridge rail system and
thereby decrease impact loading and subsequent damage to the deck. Considering all these
factors, Concept F (Fence) was selected by engineers, fabricators, and researchers at NDOR,

PCAN, and MwRSF for further development and testing.
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5 RAIL TO RAIL JOINT DESIGNS

5.1 Overview

As described in Chapter 4, it was necessary to design the precast bridge rail system as a
continuous structure in order to withstand TL-4 impacts and prevent structural damage to the
bridge deck. Thus, adjacent precast segments of the bridge rail system required the utilization of
a rigid joint which was capable of transferring both shear and moment loadings. Although the
upper and lower rails contained different cross sectional geometries, it was desired to design a
single joint that would utilize identical installation hardware for either rail. As such, the design
effort focused on creating a compatible joint for the smaller and thus more critical upper rail.
Joint hardware designed for the upper rail would be assumed to have an adequate capacity if
utilized for the lower rail.

It should be noted that the selected precast bridge rail design, as described in Section
4.4.2, was symmetric both through its cross section and also along its length. This eliminated the
need to classify one end as either upstream or downstream. Preserving this symmetry was a
priority in rail joint design. Also, it was essential for the joint to accommodate both straight and
curved sections of a bridge for the same precast segments. Finally, it was important to
incorporate the construction tolerances established in Section 3.3.1 into the joint design.
5.2 Joint Loading Criteria

5.2.1 Shear Loading

Recall from Section 3.2, the design impact load to the bridge rail system was determined
to be 100 kips (445 kN). As such, shear and moment design loads were determined for both the

upper and lower rails for impacts of this magnitude. To ensure the rail joints would not
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prematurely fail, the rail joints were designed to have minimum shear and moment capacities
equal to or greater than the rail itself.

A conservative estimate for the maximum shear force through the rail sections was
determined by placing the impact load near midspan of two consecutive post locations. This
resulted in a maximum rail shear load of 50 kips (223 kN) between consecutive posts in the
impact region of the bridge rail. However, the maximum load imparted to each rail joint would
not be of this magnitude since the upper and lower rails need only resist some fraction of this
load individually. It is important to clarify that loads would not necessarily be divided equally
between the upper and lower rails for every impact scenario. For example, passenger vehicles
would be more likely to impart a greater load upon the lower rail, while single unit trucks with a
higher center of gravity would be more likely to impart a greater load upon the upper rail.
Therefore, it was conservatively determined that each individual rail would be designed to carry
two-thirds of the maximum rail design shear, or 35 kips (156 kN).

5.2.2 Moment Loading

The required moment strength for the joint was estimated using Yield Line Theory [26].
In particular, parameters corresponding to a design capacity equal to 100 kips (445 kN), a barrier
height of 36 'z in. (927 mm), and a 24-in. (610-mm) wide post at 8 ft-(2.44-m) spacing were
utilized to calculate the required total moment resistance of the rails, My, as a function of the post
bending moment, M,. A safety reduction factor of ®=0.75 was applied to both My, and M, during
yield line calculations to account for any material defects, installation problems, or tolerance
issues. A plot showing the relationship between rail strength and post strength is shown in Figure

34.
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The plot shown in Figure 34 was used to analyze the effects rail strength had on post

strength, and vice versa. A value of 1,000 k-in. (113 kN-m) was selected as the design moment

for the rail beams, which corresponded to a post bending value equal to 800 k-in (90 kN-m).

Note that this post bending value will be used to design the post to deck attachment hardware in

Chapter 9. Again, the rail design moment was allocated accordingly between the upper and lower

rails. Estimating that up to two-thirds of the impact load could be applied to a single rail, a

design moment of 700 k-in (79 kN-m) was prescribed for each rail.
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5.3 Joint Classification

During the initial design stages, two different methods emerged as ways to provide

stiffness and strength to the rail joint. The first method employed standard steel hardware (i.e.,

bolts, threaded rods, etc.) in combination with shim plates. The general purpose of the shim

plates was to fill gaps left in the joint for tolerance purposes and/or bridge curvature. By

eliminating this gap the shims were able to provide immediate stiffness to the joint, thus

70



February 13, 2012
MwRSF Report No. TRP-03-239-12

significantly reducing the possibility of undesirable deck damage. Joint designs which utilized
only steel hardware and/or shims were termed “dry” joints. Dry joints had an advantage that
allowed them to be quickly assembled in the field. Further, dry joints could also easily be
disassembled for the repair or replacement of damaged segments. However, dry joints generally
consisted of multiple installation parts and often included specific steel hardware that would
need to be fabricated.

The second method for connecting the rails involved the use of grout to fill voids in the
joint. Although grout represents an easy solution to initial rigidity, tolerance, and curvature
issues, it also posed a few problems of its own. Grouted joints generally consisted of fewer parts
than dry joints, but did require an additional skill for field assembly. Also, using grout would
prolong the opening of the bridge since it would require time to cure and harden. Finally, if a
segment of rail was damaged and needed to be replaced, disassembling a grouted joint would be
more difficult and time consuming than disassembling a dry joint.

Ultimately, both dry and grouted joints were developed. Bogie component testing would
later be utilized to determine the optimum joint design.

5.4 Dry Joint Designs

5.4.1 Joint Design A — Bolted Splice Plates

One of the simplest solutions to forming a rigid joint between rail ends was to utilize
bolted splice plates. The relatively large moment arm created by mounting splice plates on
opposite faces of the joint allowed for an extremely efficient use of steel to resist bending.
Further, this configuration also created a mechanism for lining up the precast bridge rail
segments longitudinally. Tightening the bolts on the plates would force adjacent rail ends flush,

thus preventing any lateral misalignment of the precast segments. Subsequently, the bolts and
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splice plates could be easily removed in the event that one of the precast segments were damaged
and needed to be replaced.

A preliminary drawing of Joint Design A is shown in Figure 35. Recessed grooves were
placed on the front and back of the rail so that the plates remained flush with the rail face. The
resulting flat surface of the rail and the selected dome head bolts should prevent vehicle snag on
the joint hardware.

The simplicity of this joint makes it quick and easy to assemble. However, several
disadvantages were recognized with this design. First, the flat plates do not easily allow
curvature in the bridge rail. Curved sections of a bridge would require the fabrication of specially
angled plates for the plates to sit perfectly in the grooves. Further, the holes in the plate and the
rail would need to be oversized to account for tolerance issues. As such, the play created from
this tolerance would allow the rails to significantly deflect before any tension and/or
compression is applied to the plates. Thus, the rails would lose continuity at the onset of impact.
It was feared that this loss of continuity may result in high, localized loading and premature
damage to the posts and bridge deck. Finally, the amount of exposed steel, especially the nuts
and bolts on the outer face of the barrier, may detract from the unique aesthetics of the precast

concrete bridge rail.
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5.4.2 Joint Design B — X-Bolts

In 2005, the Texas Transportation Institute (TTI) developed a barrier-to-barrier joint in
order to limit deflections in portable concrete median barrier systems [27]. This joint consisted of
two bolts which crossed from the front face of one barrier to the back face of the other and vice
versa. Hence, an ‘X’ was formed when looking down upon the joint.

Several aspects of this bolt configuration made it favorable for adaptation to Joint Design
B. First, this joint prevents relative movement between barrier segments, thus providing both
shear and moment resistance between rail segments. Further, the limited amount of steel
hardware necessary to create the joint and the ease in which this joint can be assembled and
disassembled made it appealing for accelerated construction applications. Finally, the out of
plane placement of the two bolts did not detract from the overall symmetry of the precast rail
segments. When facing the end of the rail, the top bolt hole always goes to the right, as shown in
Figure 36. As such, the upstream and downstream ends remain identical and the precast
segments could be installed with either end pointed upstream.

Unfortunately, a major issue developed upon further examination of the cross bolt joint:
the size of the bolts needed to significantly increase. The original cross bolt joint design by TTI
utilized 7s-in. (22-mm) diameter bolts. However, the design criteria used in that study
corresponded to a NCHRP Report No. 350 TL-3 barrier, whereas the design criteria for the
proposed precast bridge rail in this project corresponds to a MASH TL-4 barrier. Consequently,
impact loading conditions vary between the two designations. In fact, the proposed precast
barrier is required to resist much higher force levels than the original TTI design. Thus, larger
bolts and more anchorage in the rail segment ends were necessary. The task of increasing the

size of the bolts while still providing adequate concrete cover proved to be too difficult.
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5.4.3 Joint Design C — Side Bolts and Center Shear Key

Joint Design C attempted to reduce the size of the steel joint hardware by designating
specific components for isolated loading conditions. Components which provided shear
resistance were analyzed separately from those components which provided moment resistance
(tension and compression). Bending resistance between rail ends was provided by bolts placed
inside steel pockets cast into the rails while shear resistance between rail ends was provided by a
steel shear plate, as shown in Figure 37.

The steel pockets utilized for bending resistance would be cast into both the front and
back faces of the rails. This maximized the distance between the tension and compression load
paths during bending. The steel pockets were open to the bottom of the rail, which enabled
installation of the bolts from underneath the rail. This method removed the bolts from the
visibility of motorists. Large circular washers were placed around the bolts and used as shims to
fill the gap between rail ends. This provided an immediate compression load path through the
steel pockets. The amount, or thickness, of the shims could be varied to adjust for curvature in
the bridge. The plates utilized for shear resistance would simply drop into notches cast into the
top of the rail. The shear plates would be short enough as to not prohibit any curvature in the
bridge rail system.

With only two bolts and a simple drop in shear plate, Joint Design C permitted quick and
easy joint assembly on site. However, the steel pockets required more material and labor during
the fabrication process than the previous joint designs. Thus, this design had a higher initial cost
than previous designs. Further, the steel pockets themselves were visible from the sides of the
rail while the shear plates were visible from the top of the rail. These exposed features had the

potential to detract from the aesthetics of the precast concrete bridge rail system.
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5.4.4 Joint Design D — Side Bolts and Shear Tubes

Similar to the previous joint design, Joint Design D used separate hardware to provide
shear and bending resistance. Again, bolts placed inside of steel pockets and shims placed
between rail ends were used to provide the bending resistance. The unique aspect of this design
was that it utilized steel tubes for shear resistance. The shear tubes were small enough to fit
inside the steel pockets, but large enough to fit around the bolts. This allowed both the separate
shear and moment resistive mechanisms to be hidden from view inside the steel pockets, as
shown in Figure 38.

Circular and square shapes were both considered for the shear tubes, but square shear
tubes were ultimately selected for two reasons: (1) the flat faces of the square shear tube created
a larger bearing surface between the tubes and the pocket wall than a circular tube, and (2) the
square cross section allowed the shim plates to rest directly on top of the shear tubes which
prevented the shims from rotating. To create the largest possible compression area, the shims
were designed to match the geometry of the barrier cross section. Thinner shims were selected to
be used in combination on each side of adjacent rails rather than a thicker individual shim so that
each rail could be shimmed independently to create a tight joint for curved bridges.

Joint assembly was a process that required several steps. First, the shear tubes must be
placed into the steel pockets. Next, the bolts must be inserted into the backside of the steel
pockets and pushed through the gusset plates and into the shear tubes. Then, the shims must be
lowered into the gap between the rails and over the shear tubes. Finally, the washers and nuts can
be applied and tightened to secure the joint and compress the shim plates. The assembly process

is shown in Figure 39.
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Although Joint Design D eliminated the visibility of the shear plate from the top of the
rail, the sides of the steel pockets were still exposed to view and may reduce the precast rails
aesthetic appeal. In addition, the steel pockets required more fabrication during casting than

other joint designs.
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5.4.5 Joint Design E — Center Bolt and Shear Pipe

Joint Design E was designed to contain all of the steel joint hardware in the center of the
rails. As such, no exposed steel elements would be located on the face of the precast concrete rail
system. A steel pipe was utilized to transfer shear between rails, while a high strength rod in
combination with shims were designed to transfer moment between rails, as shown in Figure 40.

Placing the hardware in the center of the rail essentially cut the moment arm in half and
doubled the necessary tension load for moment transfer. Thus, a large B7 threaded rod was
specified instead of the lower grade bolts used in previous designs. Further, placing all of the
joint hardware in a single location resulted in concentrated stresses during loading. As such, the
probability of localized failure and/or steel hardware components pulling through the concrete
rail was increased. To prevent the rail ends from premature failure, a steel end cap was created to
distribute the load throughout the rail cross section. The end cap consisted of a plate in the shape
of the rail cross section with a short length of pipe welded near the center. Shims had to be
designed to create compression zones near both the front face and the back face of the rail.
However, only the shear pipe in the center of the rail provided a location for the shims to attach
to. Thus, the shims were made to span the entire rail cross section. Small pins inserted through
tabs on both sides of the shim were required to prevent the shim from rotating and dropping out
of the joint. Both the shim plates and the pins are shown in Figure 41.

Joint assembly was a process that required several steps. First, both the shear pipe and the
threaded rod must be inserted into hollow pockets in the rail and fed across the joint through the
end caps. The threaded rod fits inside the shear pipe, similar to previous joint designs. Next,
shims matching the cross section of the rail are lowered into place, resting on the shear pipes.
Then, the small pins are inserted through the tabs on both sides of the shim. Finally, the joint is
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completed with the addition of washers and nuts to secure the threaded rod. Note the shear pipe
is encased inside the rail cap by the washers. The assembly process is shown in Figure 41.
Although locating the joint hardware in the center of rail eliminated steel from the rail
face and reduced the amount of parts necessary for installation, it did create other problems.
Without a moment arm for bending transfer, the threaded rod had to be larger and of higher
strength material than in other joint designs. Also, due to the hollow pocket for hardware in the
center of the rail, a steel end cap assembly was necessary to distribute the loads and prevent
concrete failure to the reduced rail section. Finally, since the shims covered the entire rail width

and not individual sides, creating a tight joint in a curved bridge rail system would be difficult.
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5.4.6 Joint Design F — Baluster Connection Piece

Joint Design F utilized a baluster as the load transfer mechanism. This load transfer
baluster was separate from those connecting the vertically mounted rails in each segment, as
shown in Figures 42 and 43. The position of the balusters through the length of the precast rail
segment was shifted such that one of the load transfer balusters would be centered across each
joint. The baluster at this location would not be cast in with the rest of the precast rail segment.
Instead, it would be a separate precast piece bolted to the rail segments during installation to
create the necessary rigid joint.

By using a separate baluster piece to transfer the load between rail segments, much of the
extra fabrication and installation efforts associated with other designs were eliminated. For this
joint design, only a few vertical bolt holes need to be cast into the rail segment ends. The joint
design contained no extra pockets or steel pieces that needed to be specially fabricated. Even
during installation, only the baluster pieces and few bolts would be necessary to assemble the
joint. This joint should be quick to assemble and easy to take apart if a segment needed
replacement. Also, this joint design nearly eliminated all exposed steel and preserved the
aesthetic appeal of the precast bridge rail. The only exposed steel parts were the nuts and bolt
heads. However, the nuts were underneath the bottom rail and the dome head bolts, used to
prevent vehicle snag, would not attract as much attention as standard hex head bolts.

A negative aspect of this design was that the concrete baluster, at an estimated 75 b (34
kg), may not be easy to transport and position during installation. Also, the balusters require
heavy reinforcement in order to transfer the entire load between both the upper and lower rails.

Steel plates embedded inside the baluster may be necessary. Finally, the oversized bolt holes,
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needed to account for tolerances, may allow significant movement in the rail before transferring

load.
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5.5 Grouted Joint Designs

5.5.1 Joint Design G — Center Bolt and Side Grout Pockets

Joint Design G consisted of a center tension rod with front and back grout pockets, as
shown in Figure 44. Described in Section 5.4.5, when the tension member is located in the center
of the rail, the moment arm is effectively cut in half and the tension required to transfer the
design moment doubles. As such, a threaded B7 rod was used instead of a standard grade bolt.
Hollow pockets underneath the rails allow the B7 rod to connect the rail end caps without being
visible from the roadway, as shown in Figure 45. Thick plate washers were used to distribute the
tensile load from the B7 rod and prevent excessive deformation in the rail end cap.

Similar to the Joint Design E, a steel end cap was necessary to anchor the B7 rod.
However, a cavity plate was welded to the rail end cap to help anchor the cap in tension and form
the pocket underneath the rail used to install the B7 rod. Also, an 8 x 4 x %-in. (203 x 102 x 13-
mm) steel tube was cut in half and welded to each side of the rail end cap to form the grout
pockets. Finally, a thin steel plate was welded to the bottom of the tubes to contain the grout
during installation. The entire rail end cap assembly is shown in Figure 44.

Grout pockets spanned between adjacent rail ends on both the front and back faces of the
rail. Steel U-shape sections welded to both sides of the end caps formed the pockets while grout
and a steel sleeve were used to fill the pocket. These grout pockets served multiple functions.
First, the grout provided a mechanism for compression between the rail ends to complete the
moment transfer. Second, the steel sleeve lining the pocket provided shear transfer between the
rails and effectively confined the grout to prevent fracture across the gap. Finally, filling in the
pockets with grout created a strong and rigid joint that can adapt to both tolerance and curvature

requirements in the bridge rail.
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Joint Design G was one of the most robust of all joint designs described in this chapter.
However, this strength and durability came at the expense of an elaborate rail end cap which
required six different steel pieces to be fabricated and welded together. Also, installation on the
joint required multiple steel hardware pieces and grout. Thus, this joint was considered one of
the more expensive joint to fabricate and to install. Further, a reduction in the aesthetic appeal of
the precast concrete bridge rail was another concern with the design. This joint contained both
exposed steel to the rail faces and grout on the top surfaces of each rail. The entire bridge rail

system may have to be painted to preserve the appeal of the precast bridge rail system.
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5.5.2 Joint Design H — I-Shape Segments in Side Grout Pockets

Joint Design H utilized short segments of steel I-shapes to transfer load between rail
segments. The I-shape segments were placed inside steel pockets on both the front and back
sides of the rail, and the pockets were filled with grout, as shown in Figure 46. The I-shape
connectors were designed to transfer both shear and moment loads across the joint while the
grout held them rigidly in place.

This unique joint design had many advantages over other joint designs. First, it required
only two steel parts for field assembly, both of which simply dropped into place. The slots in the
steel pockets were cut wider than the web of the I-shape to allow the joint to handle all tolerance
issues as well as curvature in the bridge. Further, filling the inside of the pockets with grout
created a rigid joint that was capable of transferring load instantly upon impact. Finally, all of the
steel pieces needed for the joint can be cut from standard sections, thus fabrication was limited to
cutting and tack welding a plate to the inside of the pocket to hold in the grout.

Although the grout pocket solved many of the joint issues, it still contained the same
issues mentioned in previous sections regarding the installation of the grout itself. These issues
include additional installation labor, additional time for the grout to cure, and difficult joint
disassembly. Also, the exposed grout on the top surface and the exposed steel of the pocket may
take away from the aesthetic appeal of the precast concrete bridge rail system unless the system

is painted after installation.
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5.5.3 Joint Design | — Side Bolts and Center Grout Pocket

Joint Design I was designed to create a grouted joint that could be easily disassembled.
As such, the grout was limited to a single pocket running along the top of the rails, as shown in
Figure 47. A steel pocket liner was designed to sit inside the pocket and create a barrier between
the grout and the precast concrete rail. Thus, the grout was used as the mechanism to provide
instantaneous shear transfer across the joint. The pocket liner itself allowed the grout to be
removed from the pocket without damage to the rail. Additional pockets were created on the
front and back faces of the rail by steel angles and gussets. Bolts were inserted into the pockets
and across the joint to carry tension and provide moment resistance. Shims were not necessary
for this design because the grout pocket carried both the compression load for moment resistance
as well as the shear load.

Separating the grout from the rest of the precast rail and connection hardware created a
joint that could be assembled and disassembled quickly and easily. However, this ease in field
labor was the result of pre-construction fabrication which required multiple steel pieces to
complete the joint. Although the steel pocket assemblies were small, they required both cutting
and welding to attach the gussets. Also, the grout pocket liner was not created from a standard
steel shape, thus it required specific fabrication as well. Further, the side pockets may also be the
source of future problems. Since the pockets were designed open to the sides, they increase the
risk of vehicle snag on the joint during impacts. The pockets may also result in a reduction in

aesthetic appeal to the precast concrete rail that painting could not cover up.
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6 RAIL JOINT BOGIE TESTING - ROUND 1

6.1 Purpose

To determine the optimum joint design from the options presented in Chapter 5, a bogie
testing program was initiated. These bogie tests were used to evaluate selected rail joint designs
in multiple areas including strength, stiffness, toughness, constructability, and ability to
disassemble the joint after loading.
6.2 Scope

Two of the most promising rail joint designs from Chapter 5 were selected for component
testing using a dynamic impact bogie vehicle. The joints were used to connect two segments of
concrete beams with the same cross section as the upper rail of the Concept F (Fence) bridge rail
design. The upper rail geometry was selected because it has a smaller cross-sectional area than
the lower rail. Thus, it would represent the weaker of the two rails. The segments measured 9 ft —
6 in. (2.90 m) and 5 ft (1.52 m) long. The adjacent ends of the rails were spaced !4 in. (13 mm)
apart to represent the maximum tolerance of the joint gap in the actual bridge rail. Wood blocks
were used to vertically support the concrete segments and position the center of the segments in
plane with the center of the bogie impact head. The interface between the blocks and the rails
was coated with grease to allow the rails to move and rotate during testing. Three anchor posts
spaced 72 in. (1,829 mm) apart were used to laterally brace the rails and generate the desired
shear and moment loads at the joint. The first anchor post was centered 41 in. (1,041 mm) and 35
in. (889 mm) away from the rail joint and bogie impact location, respectively, as shown in Figure
48. These specified dimensions for anchor post spacing, joint location, and impact location were
selected such that an impact force of 62 kips (276 kN) would result in the design shear and
moment loads through the joint of 35 kips (156 kN) and 700 k-in (79 kN-m), respectively.

98



66

_16 :E :ﬁnlm“

o 4

1
2

support comprised of

Ternporery roil

‘2"?' l:”laﬂlotu cnd two
. x

0'1622‘ -mgcn plorks.

ports comprised
4" tubes, two

wooden poal.
Notes:
1. Guidance for bogie utilizing buffalo rail.
2 Front tube of bogie filled ‘with concrete.
16 3/47
Teat_Orlentqtion sty | Lood Height 2 jo Speed
ongrees) | Test Guantity (g o | Boge Mo | S5 50
0 1 21.125 3 20

18 I/-l'

21 18"

[
n LI noan
'] uu

Midwest Roadside
Safety Facility

e
NDOR Precast Rail Ve 7
DaTE:
¥ ; 9/30/2010
Grouted Connection Option A v
Bogie Test TRAWS BT
c/Mou
OWC. NAME SCALL: None |MEV. ©Y:
NOOR_Precant_Begie_Setup_A2 UNTS: irchen | RWD,/S0R

Figure 48. Bogie Testing Set Up

TI1-6€T-€0-d Y.L 'ON Hodoy JSYMN

Z10T ‘€1 Areniqag



February 13, 2012
MwRSF Report No. TRP-03-239-12

6.3 Testing Facility

Physical bogie testing of the two rigid rail-to-rail joint designs was conducted at the
MwRSF testing facility which is located at the Lincoln Air Park on the Northwest side of the
Lincoln Municipal Airport. The facility is approximately 5 miles (8 km) northwest from the
University of Nebraska-Lincoln’s city campus.

6.4 Equipment and Instrumentation

Equipment and instrumentation utilized to collect and record data during the dynamic
bogie tests included a bogie, accelerometers, pressure tape switches, high-speed and standard-
speed digital video, and still cameras

6.4.1 Bogie

A rigid frame bogie was used to impact the posts. A variable height, detachable impact
head was constructed and used in the testing. The bogie head was constructed of 3-in. (76-mm)
diameter steel pipe welded to a '2-in. (13-mm) thick steel plate using multiple gussets. Also, the
steel tube was filled with concrete to prevent damage to the impact head. The impact head
assembly was bolted to the bogie vehicle at a centered height of 21% in. (537 mm) above the
ground. The bogie with attached impact head is shown on the guidance track in Figure 49. The
weight of the bogie with the addition of the mountable impact head was 1,616 lbs (733 kg).

A pickup truck with a reverse cable tow system was used to propel the bogie down the
guidance track to a target impact speed of 22 mph (35 km/h). When the bogie reached the end of
the guidance system, it was released from the tow cable, allowing it to be free rolling when it
impacted the rail joint specimen. A remote braking system was installed on the bogie allowing it

to be safely brought to rest after the test.
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KON
Figure 49. Bogie Vehicle (a) Impact Head and (b) on Guidance Track

6.4.2 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure
the accelerations in the longitudinal, lateral, and vertical directions. One triaxial piezoresistive
accelerometer system, Model EDR-3, was developed by Instrumented Sensor Technology (IST)
of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM memory, a range of
+200 g’s, a sample rate of 3,200 Hz, and a 1,120 Hz lowpass filter.

The second accelerometer was a two-Arm piezoresistive accelerometer system developed

by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each
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of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000
Hz. Data was collected using a Sensor Input Module (SIM), Model TDAS3-SIM-16M, which
was developed by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SIM
was configured with 16 MB SRAM memory and 8 sensor input channels with 250 kB
SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack is
configured with isolated power/event/communications, 10BaseT Ethernet and RS232
communication, and an internal back-up battery. Both the SIM and module rack are crashworthy.
A customized Microsoft Excel worksheet computer software program was used to analyze and
plot the accelerometer data from both the DTS unit and the EDR-3. Both accelerometers were
mounted near the center of gravity of the test vehicles.

6.4.3 Pressure Tape Switches

Three pressure tape switches spaced at approximately 18 in. (457 mm) intervals and
placed near the end of the bogie guidance track were used to determine the speed of the bogie
before impact. As the left-front tire of the bogie passed over each tape switch, a strobe light was
fired sending an electronic timing signal to the data acquisition system. The system recorded the
signals and the time each occurred. The speed was then calculated using the spacing between the
sensors and the time between the signals.

6.4.4 Photography Cameras

For test nos. PCRB-1 and PCRB-2, three high-speed AOS VITcam video cameras, three
JVC digital video cameras, and one Canon digital video camera were utilized to record the crash
test. Camera details, lens information, and camera operating speeds are shown in Table 3. A
schematic of the camera locations is shown in Figure 50. A Nikon D50 digital camera was used

to document pre- and post-test conditions for each rail joint specimen.
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Table 3. Camera and Lens Information, Test Nos. PCRB-1 & 2

Operating
No. Type Speed Lens Sléftril;
(frames/sec) g
PR 1 Vitcam CTM 500 Cosmicarl2.5 Fixed
C 83| 2 Vitcam CTM 500 Sigma 70-200 200
7~ | WEIN Vitcam CTM 500 Sigma 24-70 70
3 JVC — GZ-MC40U (Everio) 29.97
= § 4 JVC — GZ-MC40U (Everio) 29.97
o0 .= .
A > 5 JVC — GZ-MC40U (Everio) 29.97
8 JVC — GZ-MC40U (Everio) 29.97
-
A
B R53m

26" (88 1)

29 [76 1)

19 [58 1)

*.TVCM

OVERHEAD Height - 17-7" [5.4 m]

A0S #l
DV CAM#
WEIN Carera

Figure 50. Camera Locations, Test Nos. PCRB-1 and PCRB-2

6.5 Test Specimen — Selected Joint Designs

VC#

The most promising rail joint design from each of the two rail connection categories,

grouted and dry, was selected. Recall, grouted joint designs were seen as initially stiffer and

better equipped to handle tolerances and curvature, while dry joint designs were seen as easier

and quicker to construct and disassemble. Both of the joints were expected to provide adequate
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shear and moment capacity. Thus, testing one of each joint type helped evaluate the benefits of
one design method over the other in terms of maximum strength, toughness, and constructability.
The two selected joints, Joint Design H and Joint Design D, are described in detail in Sections
6.5.1 and 6.5.2, respectively.

6.5.1 Test No. PCRB-1, Joint Design H

The test specimen used for bogie test no. PCRB-1 consisted of two reinforced concrete
rail segments connected by two I-shaped steel sections and grout, as shown in Figures 51 through
62. The cross-sectional geometry of the concrete rail segments resembled that of the upper rail of
the selected bridge rail design, Concept F (Fence). One rail segment had a length of 9 ft — 6 in.
(2.90 m) while the other had a length of 5 ft (1.52 m). The concrete used to construct each rail
had a design strength of 5,000 psi (34 MPa).

Both stirrups and longitudinal bars were used as steel reinforcement for the rail segments,
as shown in Figures 53 through 57. The closed loop stirrups were bent from no. 4 rebar and were
spaced at 8 in. (203 mm). Near the ends of the segments this spacing was reduced to 4 in. (102
mm) to protect against localized damage from the anchor post supports and the impact head. All
stirrups were given a minimum clear cover of 1’ in. (38 mm). Two no. 5 longitudinal bars were
placed on each side of the rail and two no. 4 bars were placed in the middle for a total of six (6)
longitudinal bars. All of the internal reinforcement for the rail segments was epoxy coated Grade
60 rebar.

One end of each rail was configured with steel pockets on the front and back faces of the
rail segment. These pockets were 6 x 6 x 2-in. (152 x 152 x 13-mm) A500 Grade C steel tubes
cut to match the cross section geometry, as shown in Figures 59 and 60. Also, a %-in. (19-mm)

wide vertical slot was cut through the side of the tube on the end plane to allow the web of the I-
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shaped steel section to span between the pockets. To hold the I-shape segment and the grout in
the pocket, a '4-in. (3-mm) thick steel plate was welded to the bottom of the pocket as an end
cap. Gusset plates measuring Y4 in. (6 mm) thick were welded to the inside corners of the tubes to
prevent the pockets from prying open during loading. They were positioned such that the steel
segment could still drop in from the top. The gusset plates and end caps were all made from
AS572 Grade 50 steel and are shown in Figures 58 and 61.

Steel rebar was welded to the outside of the pockets to anchor the pockets to the concrete
rails, as shown in Figure 58. A no. 4 bar was welded between the pockets to provide shear
reinforcement and resist lateral movement. Also, two no. 6 bars were welded to the back of each
pocket and lay adjacent to the no. 5 longitudinal bars in the concrete rail. These no. 6 bars
provided anchorage for the pockets and transferred tension loads to the longitudinal bars of the
concrete rail. All of the components comprising the end pocket assembly were galvanized.

The rail segments were placed on wooden support blocks and positioned as prescribed by
Section 6.2 and Figure 48. To assemble the rail joint, two wide flange segments were dropped
into the pockets with the web spanning across the ’2-in. (13-mm) wide gap between rail ends.
The steel segments were 5%-in. (137-mm) long S8x23 (S200x34) members. Once the segments
were in place, L&M Crystex grout with a design strength of 10,000 psi (68.9 MPa) was used to
fill the pockets and secure the steel sections. Photographs of the assembled joint specimen are

shown in Figure 62.
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6.5.2 Test No. PCRB-2, Joint Design D

The test specimen used for bogie test no. PCRB-2 consisted of two reinforced concrete
rail segments connected by two bolts and two shear tubes, as shown in Figures 63 through 75.
The concrete rail segments had the same lengths, cross sectional geometries, and steel
reinforcement configurations as the rail segments used during test no. PCRB-1. These
dimensions and reinforcement configurations are shown in Figures 65 through 69. The concrete
design strength remained at 5,000 psi (34 MPa) and the use of epoxy coated Grade 60 rebar was
again used for all internal reinforcing bars.

As opposed to the previous joint design test, this joint design test specified the rail end
pockets as open on the underside of the rail. This configuration concealed all of the joint
hardware. The steel pockets were cut from a 14'2-in. (368 mm) long piece of 10 x 4 x '4-in. (254
x 102 x 13-mm) A500 Grade C steel tubing such that two pockets were created from each
section of tube. The tubes were cut to follow the bottom geometry of the rail for both sides of the
rail, as shown in Figures 71 and 72. Also, 2-in. (13-mm) diameter holes were placed near the
bottom corner on both sides of each pocket for the shear bolts. A nut for the shear bolts was
welded over the hole on the inner most surface of each pocket, as shown in Figure 70, so that
only the bolt was needed for assembly. The shear bolts were added to prevent the side of the
steel tube from deforming and opening under shear loading.

Two -in. (13-mm) thick gusset plates made from A572 Grade 50 steel were welded
inside each of the pockets, as shown in Figure 70. A solid gusset plate was welded near the back
end of the pocket to prevent concrete from entering the pocket during casting and to provide a
welding surface for the anchorage rebar. The second gusset plate contained a 1'-in. (29-mm)

diameter hole near its center and was placed 3 in. (76 mm) from the end of the pocket. This
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gusset enabled pockets from adjacent rail segments to be bolted together. Both gusset plates are
shown in Figure 73.

Steel bars and plates were used to anchor the pockets in both the lateral and longitudinal
directions. A */j¢-in. (8-mm) thick A572 Grade 50 steel plate was welded between the pockets
near the end of the rail, while two no. 5 bars were welded between the pockets near the middle
and at the opposite end of the pockets. To anchor the pockets longitudinally, two no. 6 bars were
welded to each pocket and extended into the rail. One rebar was welded directly to the back
gusset plate while the other was welded to the face of the inner most surface of each pocket.
Both the lateral and longitudinal anchorage bars and plates are shown in Figures 70 and 73. All
of the steel components of the end pocket assembly, including gusset plates and anchorage bars,
were galvanized.

The following hardware was necessary to assemble the joint between rail segments: two
I-in. (25-mm) diameter, 9-in. (229-mm) long Grade 5 bolts, four Y2-in. (13-mm) diameter by 5-
in. (127-mm) long Grade 5 bolts, two shear tubes made from 2 %2 x 2 %2 x Y4-in. (64 x 64 X 6-mm)
A500 Grade C steel tubing, and two 2-in. (13-mm) thick shim plates. All of this hardware is
shown in Figure 74. During assembly, first a shear tube was positioned inside adjacent pockets
spanning the ’2-in. (13-mm) gap between rail segments, as shown in Figure 64. Next, a 1-in. (25-
mm) diameter bolt was inserted into a pocket between the gusset plates and slid through the
gusset plate, shear tube, and gusset plate of the adjacent pocket. This process was repeated for
the other side of the rail joint. Shims were then positioned in the gap between the rail segments
and surrounding the shear tubes, as shown in Figure 64. The shim plates were intended to close
the gap between rail ends left as a result of tolerance issues and provide a compression zone for

bending resistance. The nuts and bolts were then tightened bringing the rail segments together
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and clamping down on the shim plates. Finally, the }2-in. (13-mm) diameter shear bolts were
inserted through the holes of each pocket and tightened into place to prevent the pockets from
bending out during loading and to hold the shear tubes in place vertically.

The segments were set in the same positions as the segments in test no. PCRB-1, only the
rail system was flipped upside down so that the joint hardware could be viewed from the
overhead video during the test. Photographs of the assembled joint specimen for test no. PCRB-2

are shown in Figure 75.
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Figure 64. Side Bolts and Shear Tubes Joint Assembly, Test No. PCRB-2
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Figure 68. Short Rail Segment, Test No. PCRB-2
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6.6 Bogie Test No. PCRB-1

6.6.1 Test Description

The 1,616-1b (733-kg) bogie vehicle impacted the reinforced concrete rail specimen 6 in.
(152 mm) from the centerline of the joint at a speed of 23.4 mph (37.7 km/h). At 0.002 seconds
after impact, cracks had formed through both the front grout pocket of the short rail segment and
the back grout pocket of the long rail segment. At 0.004 sec, the short rail segment had begun to
deflect backward. Shear cracks had also formed on the short rail segment, extending from the
front grout pocket to the backside of the rail. At the same time, the back grout pocket of the long
rail segment had begun to rotate clockwise and break away from the rest of the rail. Concrete
spalling was visible around this grout pocket as it broke away. At 0.006 sec, the front grout
pocket of the short rail segment had experienced noticeable deformation which allowed the crack
through its center to expand. At the same time, localized crushing and spalling near the impact
point was observed. By 0.008 sec, the back grout pocket of the long rail had completely
separated from the rest of the concrete rail. However, the grout pocket and the steel I-shape
connector remained rigidly attached to the back grout pocket of the short rail segment as it
continued to rotate backward. At 0.020 sec, the I-shape connector had pried open the front grout
pocket of the short rail segment and was pulling pieces of fractured grout out of the pocket. At
this point, the short rail segment was rotating freely. At 0.032 sec, the right side of the bogie
vehicle’s frame contacted the front of the long rail segment. At 0.034 sec, shear and bending
cracks appeared in the long rail segment around the middle anchor post. By 0.038 sec, the
cracking in the long rail segment had propagated on both the front and back faces and caused

spalling. At 0.044 sec, the bogie vehicle had reached its maximum displacement into the system
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and began to redirect in the opposite direction. Sequential photographs of the impact event are
shown in Figures 76 and 77.

6.6.2 Rail Joint Component Damage

During bogie test no. PCRB-1, the joint failed and the rail segments completely
separated, as shown in Figure 78. After the joint failed, the short rail segment (e.g., impact side)
spun off of the wood block supports and fell to the ground. The long rail segment (e.g., non-
impact side) remained on top of its supports, but had rotated away from the anchor posts
following the redirection of the bogie vehicle.

As shown in Figure 79, the I-shape connector used to connect the front grout pockets
remained attached to the long rail segment. However, it was bent nearly 90 degrees toward the
center of the rail. The back grout pocket of the long rail segment had completely broken away
from the rest of the rail. Both of the butt welds attaching the pocket to the longitudinal
reinforcement of the rail segment had failed. Also, the rebar running between the grout pockets
was bent out toward the joint and the butt weld connecting the rebar to the back pocket had
failed. Concrete spalling was located around the area in which the back grout pocket was
originally positioned.

The front grout pocket on the short rail segment was pried open, as shown in Figure 80.
Subsequently, the I-shape connector and fragments of grout had been pulled out of the pocket.
Concrete shear cracks were found running from the front grout pocket to the back grout pocket.
The back grout pocket remained intact. Only minor cracks had formed between the steel pocket
and the surrounding concrete rail. The back grout pocket that had been removed from the long

rail segment remained attached to the back grout pocket of the small rail segment via the steel I-
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shape segment. Both pockets appeared to be in good condition with only minor cracking of the
grout.

Bending cracks were found in the long rail segment, as shown in Figure 81. Also, a large
amount of spalling was observed on the back face of the rail segment. Both the spalling and the
bending cracks were located near the middle anchor post and were caused by the bogie frame
impacting the long rail segment after the joint had failed. Although this damage was not directly
related to the strength of the joint, it was documented to demonstrate that the strength of the rail
cross section was adequate to carry the design load with only minor damage.

6.6.3 Data Analysis

Data from the accelerometers was used to calculate and analyze the loads imparted to the
rail component during test no. PCRB-1. The data collected by the DTS was unusable. EDR-3
plots depicting force vs. time and force vs. displacement are shown in Figure 82. The data
illustrates an initial force spike that reached 143 kips (636 kN). However, this spike had quickly
subsided by 0.01 seconds into impact, or 2 in. (51 mm) of deflection. This corresponded well
with the video analysis in that the back grout pocket was almost immediately detached from the
rail. Although a portion of this initial force spike represents the strength of the joint before
failure, the majority of the spike is a result of inertia. As such, the strength of the joint is
considerably less than this maximum recorded force. A second force spike reaching 75 kips (334
kN) was recorded between 6 and 7 inches (152 and 178 mm) of deflection. This spike
corresponds to the impact between the bogie vehicle frame and the long rail segment after the

joint had failed.
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0.000 sec 0.032 sec

0.004 sec 0.044 sec

0.014 sec 0.098 sec

0.026 sec 0.566 sec
Figure 76. Sequential Photographs, Test No. PCRB-1
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0.000 sec 0.014 sec

0.008 sec 0.110 sec
Figure 77. Additional Sequential Photographs, Test No. PCRB-1

138



6¢l

Figure 78. Component Damage, Test No. PCRB-1
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Figure 79. Component Damage — Long Rail Segment, Test No.

PCRB-1
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Figure 80. Component Damage — Short Rail Segment, Test No. PCRB-1
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Figure 81. Bending Damage of Long Rail Segment, Test No. PCRB-1
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Figure 82. Data Analysis Plots, Test No. PCRB-1
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6.7 Bogie Test No. PCRB-2

6.7.1 Test Description

The 1,616-1b (733-kg) bogie vehicle impacted the reinforced concrete rail specimen 6 in.
(152 mm) from the centerline of the joint at a speed of 23.4 mph (37.7 km/h). At 0.002 seconds
after impact, the short rail segment (e.g., impact side) had begun to deflect. At this same time,
the top portion of the wood blockout attached to the impact head of the bogie vehicle splintered.
At 0.004 sec, the pockets had engaged the shear tubes and both rail segments began to deflect
together. At this same time, cracks developed between the pockets of both rail segments. At
0.008 sec, the rails continued to deflect together as more cracks formed between the steel pockets
of both rail segments. At this same time, the back side of the joint had begun to widen. This
meant that the front shear tube would be responsible for transferring the majority of the load for
the remainder of the test. At 0.010 sec, the bolt connecting the back pockets had fractured in
tension as the cracks further propagated and expanded in the rails. This allowed fragments of
concrete between the rail pockets to break free. At this same time, the head broke off of the shear
bolt holding together the front pocket of the short rail segment, while the pocket itself began to
deform around the impact head. By 0.016 sec, large fragments of concrete had broken away from
the bottom of the rail segments (as oriented in the test) and had fallen to the ground. At 0.020
sec, the cracking between rail pockets was severe enough that the long rail segment pockets
began to rotate independently from the rest of the rail. At 0.026 sec, the back of the joint had
widened enough for the shear tube to pop out of the back pocket of the long rail. At 0.030 sec,
the back side shim plate became loose and began to fall toward the ground. At 0.048 sec, the
rails continued to deform while many concrete fragments broke away from between the pockets

of the long rail segment. At 0.068 sec, the bogie vehicle reached its maximum displacement into
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the system and began to redirect in the opposite direction. At 0.132 sec, the impact head was no
longer in contact with the rail joint component. Also by this time, all of the concrete between the
steel pockets of the long rail joint had broken apart. By 0.228 sec, the internal steel of the long
rail segment was exposed. At 0.588 sec, the rail joint component had stopped rebounding from
the impact and was no longer in motion. Sequential photographs of the impact event are shown
in Figures 83 through 85.

6.7.2 Rail Joint Component Damage

During bogie test no. PCRB-2, the rail-to-rail joint was severely damaged, but it held
together, as shown in Figure 86. The concrete between the steel pockets of the long rail segment
had completely broken apart. Only the internal steel rebar was preventing the loose concrete
from falling to the ground. Due to the loss of concrete, the rebar anchoring the steel pockets to
the rest of the long rail segment had bent. This allowed the pockets to rotate backward slightly.
Concrete fragments had also broken off of the short rail segment near the joint and on the bottom
face (as oriented in the test). Additional concrete cracks were found stemming from the steel
pockets of both rail segments.

Damage to the front pocket assembly consisted mostly of deformations to the steel pocket
walls. The exposed pocket wall of the short rail segment was bent outward, while the inner
pocket wall of the long rail segment was bent toward the center of the rail, as shown in Figure
87. The bogie impact head had caused the pocket to pinch together slightly at the point of
impact, and the shear bolt on the front pocket of the short rail segment had fractured at the base
of the head. Also, the deformation in the joint caused the longitudinal bolt connecting the front

pockets to bend.
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The tension bolt connecting the back pockets had completely fractured, as shown in
Figure 88. The bolt had fractured through the threaded portion near the nut. The back side of the
joint had widened apart, and the shear tube had popped out of the back pocket of the long rail
segment.

The loose concrete remaining on the rails was removed revealing damage to the interior
steel reinforcement of the long rail segment. Similar to test no. PCRB-1, the butt welds used to
attach rebar between the steel pockets had failed, as shown in Figure 89. The welds holding the
shear plate to the steel pockets remained intact, but the shear plate itself was bent.

6.7.3 Data Analysis

Data from the accelerometers was used to calculate and analyze the loads imparted to the
rail component during test no. PCRB-2. The data from EDR-3 was unusable. DTS plots
depicting force vs. time and force vs. displacement are shown in Figure 90. Similar to bogie test
no. PCRB-I1, inertia resulted in an initial force spike that reached 102 kips (454 kN).
Immediately following the inertia spike, a second force spike was recorded reaching 92 kips (409
kN) at 0.008 seconds into impact, or 2.4 in. (61 mm) of deflection. This second force spike
represented the strength capacity of the rail section before the tension bolt fractured. Recall, the

overhead video illustrated the tension bolt had fractured before 0.010 seconds.
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Figure 83. Sequential Photographs, Test No. PCRB-2
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0.010 sec

0.016 sec 0.296 sec
Figure 84. Additional Sequential Photographs, Test No. PCRB-2
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©0.026 sec

Figure 85. Additional Sequential Photographs, Test No. PCRB-2
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Figure 86. Component Damage, Test No. PCRB-2
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Figure 87. Component Damage - Front Pocket Assembly, Test No. PCRB-2
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Figure 88. Component Damage — Back Pocket Assembly, Test No. PCRB-2
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— Loose Concrete Removed, Test No. PCRB-2

Figure 89. Component Damage
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6.8 Round 1 Bogie Testing Discussion

Recall from Section 6.2, an impact force of 62 kips (276 kN) would result in predicted
shear and moment loads through the joint of 35 kips (156 kN) and 700 k-in (79 kN-m),
respectively. As shown in Figure 91, both test nos. PCRB-1 and PCRB-2 initially exceeded this
target impact force. However, the majority of the initial force spike observed in both tests was
attributed to inertia. Thus, the actual strengths of the joints were much less than these inertial
force spikes at 1 in. (25 mm) of displacement. Only the second force peak of test no. PCRB-2,
which reached 92 kips (409 kN), demonstrated adequate strength. Also, neither of the joints
demonstrated much ductility as both joints began to fail before 3 in. (76 mm) of deflection.
Providing some measure of ductility to the joint increases the joints ability to absorb energy,

decreases the forces in the joint and the railing and improves the overall toughness of the joint.
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Figure 91. Data Comparison Plots, Round 1 Bogie Testing Results
155



February 13, 2012
MwRSF Report No. TRP-03-239-12

Additional undesirable results were observed for both joint designs. The grouted joint of
test no. PCRB-1 was determined to be very brittle due to the short amount of time and distance
that significant forces were recorded. As such, the system did not absorb much energy before the
joint failed. Also, the butt welds utilized to attach steel rebar to the pockets proved too weak to
anchor the joint pockets. All three of the butt welds on the back pocket of the long rail segment
failed during the test. Finally, the steel pockets proved to be susceptible to prying action, as
observed during the opening of the front pocket of the short rail segment during test no. PCRB-1.

Although the dry joint of test no. PCRB-2 demonstrated an adequate ultimate strength
and an improved ductility over the grouted joint, it took much longer to transfer the load across
the joint. The impacted side of the joint moved approximately %2 in. (13 mm) before engaging the
shear tubes. Ideally, load transfer should occur earlier in the impact event to maintain a
continuous rail joint through the entirety of the event. In addition, the butt welds used on the
rebar connecting the pockets failed, similar to the result observed in the grouted joint. However,
the fillet welds and the flare bevel welds used elsewhere on the pocket sides held together. Thus,
it was determined that premature weld failure may be limited to only butt welds. Finally, the
concrete required more confinement to prevent large concrete fragments from falling off of the
bridge rail system and onto the roadway. These fragments could become a hazard to ensuing

motorists, or worse, they could fall onto traffic below the bridge.
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7 RAIL JOINT DESIGN MODIFICATIONS AND IMPROVEMENTS
7.1 Refined Grout Joint

After evaluating the results of the grouted rail joint in bogie test no. PCRB-1, multiple
design weaknesses were identified. These weaknesses included lateral and longitudinal
anchorage of the pockets, weld strength, pocket resistance to prying action, and the bending
capacity of the I-shape steel section. Each of these design aspects was refined to make the
grouted joint stronger and more ductile, as shown in Figure 92.

The biggest change to the grouted rail design was that the longitudinal steel of the rail
was directly used to anchor the grout pockets. During test no. PCRB-1, rebar was attached to the
back of each pocket using butt welds. A lap splice was used to transfer load from the anchorage
rebar to the longitudinal rebar of the rail segment. These anchorage bars and the weak butt welds
that connected them to the grout pockets were removed. Also, the no. 5 longitudinal rebar was
changed to no. 7 threaded rebar. These threaded rebar were inserted through holes cut in the back
of the grout pocket, and nuts were used to fasten the pocket to the longitudinal threaded bars.
The increase in bar size from no. 5 bars to no. 7 bars increased both the pocket anchorage
strength and the bending strength of the rail. With the increase in rail bending strength, the two
no. 4 longitudinal bars in the center of the rail cross section were no longer necessary and were
therefore removed. To fit the threaded rebar and nuts inside the pockets and still leave room for
the steel I-section, 6 x 8 x Y2-in. (152 x 203 x 13-mm) steel tubes were utilized for the pockets
instead of the previous 6 x 6 x 2-in. (152 x 152 x 13-mm) tubes. Overall, these simple changes
significantly increased both the strength of the grout pocket longitudinal anchorage and the rail
bending strength. Further, these changes also eliminated all butt welds and reduced the number

of longitudinal reinforcing bars in the rail.
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Round 1 Grouted Joint Design
Bogie Test No. PCRB-1
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Figure 92. Grout Rail Joint Improvements — Steel I1-Shape Connector
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The shear reinforcement was also modified to allow for a greater resistive strength. The
no. 4 rebar which tied the pockets together was replaced by a */1¢-in. (8-mm) thick plate, as
shown in Figure 92. Fillet welds on both sides of the plate were utilized to replace the unreliable
butt welds. Thus, the strength of both the connecting element and the welds were greatly
increased.

Two changes were made to the reinforcement of the pocket to prevent it from prying
open. First, a 5/8-in. (16-mm) diameter, Grade 5 shear bolt was placed near the top front corner
of the pocket to prevent the outside wall of the tube from prying open. Similar to the shear bolt
used in the dry design in test no. PCRB-2, a nut was welded to the inside of the pocket before
casting so that only the bolt was needed during construction. Second, the thickness of the grout
tube cap at the bottom of the pocket was increased from ' in. (3 mm) to % in. (6 mm). This
increase in thickness allowed the cap to act as a gusset plate and help prevent the pocket from
prying open.

The final change to the grouted joint design was to use a built-up, steel I section instead
of the previous S8x23 (S200x34) section. An increase in web thickness was desired for increased
bending strength. However, all standard sections were too deep to fit into the available space.
Therefore, the I-shaped section was fabricated from three %:-in. (19-mm) thick plates that were
welded to together to form the desired section.

7.2 Alternate Grout Joint

During the refinement of the grouted joint described in Section 7.1, design alternatives
arose which concerned both pocket anchorage and the prevention of pocket prying action. These
alternate ideas were combined to create a second grouted joint design. Instead of a steel I-shaped

connector, the alternate joint utilized a threaded rod assembly to connect adjacent rail pockets.
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This assembled connector consisted of a threaded rod, four nuts, and two washer plates, as
shown in Figure 93. The threaded rod spanned between grout pockets of adjacent rail segments
and two nuts were used to secure a washer plate at each end of the threaded rod. The washer
plates acted similar to the flanges of the previous I-section by preventing longitudinal movement
inside the grout pocket. Thus, the rod provided both tensile and compressive resistance. The
threaded rod was designed to transfer all loads across the joint, similar to the web of the I-
section.

The advantage of using the threaded rod connector instead of an I-section was that the
rod could slide through holes in adjacent grout pockets and then be assembled inside the pockets.
Thus, the slots cut into the grout pockets in previous designs were replaced by a hole. Since the
pocket was a complete steel tube without the slot cut down one side, it was much stronger.
Further, the removal of the slot eliminated the potential for the pocket to pry open. Therefore, the
gusset plates at the top of the pocket were unnecessary and removed.

Similar to the refined grouted joint discussed in Section 7.1, the longitudinal anchorage
of the grout pocket was altered to eliminate weak butt welds and reduce the number of
reinforcing bars. The two no. 5 longitudinal bars on each side of the rail were replaced by a
single no. 8 bar with threaded ends. The threaded ends were inserted into the backside of the
grout pocket and nuts fastened the pocket to the longitudinal bar. The no. 8 bars were positioned
in line with the threaded rod joint connectors to create concentric loading during load transfer.
Also similar to the grout joint modifications of Section 7.1, the pocket had to be extended
longitudinally in order for both the joint connector and the longitudinal bar to fit inside the

pocket.
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Lateral pocket anchorage consisted of a }2-in. (13-mm) thick shear plate running between
the pockets. Fillet welds were used to fasten the shear plate to the grout pockets, thus removing
the butt welds that failed during test no. PCRB-1. Also, three U-shaped no. 4 bars were wrapped
around the plate and extended into the rail. These U-bars provided additional longitudinal pocket
anchorage as well as reinforcement to prevent concrete failures on the plane directly behind the

pockets.
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Round 1 Grouted Joint Design
Bogie Test No. PCRB-1
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Figure 93. Grout Rail Joint Improvements — Alternate Modifications
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7.3 Refined Dry Joint

After evaluating the results of the dry rail joint in bogie test no. PCRB-2, multiple design
weaknesses were identified. First, the shear tubes length was insufficient to prevent significant
lateral movement of one side of the joint relative to the other before load transfer occurred.
Second, the butt welds used to attach anchorage rebar to the steel pockets proved too weak and
subsequently failed. Third, the anchorage bars needed to be optimized with a focuse on reducing
the number of bars required to adequately anchor the pockets while simultaneously confining the
concrete around the pockets. All of these design aspects were incorporated in the refined design
to increase the capacity and improve the load transfer of the dry joint. The refined dry joint is
shown in Figure 94.

As described previously in the modifications to the grouted joints, the longitudinal steel
used in the refined dry joint was altered to eliminate butt welds and increase efficiency. One of
the two no. 5 longitudinal bars on each side of the original rail segment was replaced with a
threaded no. 8 bar. Due to this additional strength, the two no. 4 bars running down the center of
the rail were removed. The remaining no. 5 bars, one on each side of the rail, stopped at the
pocket edge, while the ends of the no. 8 bars extended into the steel pockets at the ends of the
rail. However, the no. 8 bars were not fastened to the pocket itself like the other refined joint
designs. Instead the no. 8 bars were fastened to a redesigned shear tube connector inside the rail
end pockets. This new connector directly tied the longitudinal bars of adjacent rail together and
was designed to transfer both shear and tension loads across the joint. As such, the tension bolt
from the previous dry joint design was removed.

The new shear tube connectors were cut from a 25% in. (648 mm) long, 8 x 4 x 2-in.
(203 x 102 x 13-mm) steel tube to form two 4 x 4 x "2-in. (102 x 102 x 13-mm) U-shape pieces.
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End caps measuring % in. (16 mm) thick were welded at each end of these U-shape connectors.
Slots measuring 1% in. (35 mm) wide were cut into the top of the shear tube connectors on the
outer 5 in. (127 mm) of each end. These slots were extended down into the gusset plates 1% in.
(41 mm). During construction of the joint, the shear tube would be inserted into the adjacent rail
pockets and the no. 8 bars would pass through the slots and into the center of the shear tube
connector. Washer plates and nuts would then be applied to each of the threaded no. 8 bars to
secure the shear tube connector in place and link the longitudinal steel of adjacent rails together.
The new shear tube connector improved the joint design by increasing the size and length of the
tube to improve load capacity and to ensure that the load transfer would occur more rapidly.

The size of the joint connection pockets increased in the refined dry joint design. The
new joint pockets were formed by cutting a 12 x 6 x Y2-in. (305 x 152 x 13-mm) tube to match
the rail geometry. The length of the pocket was increased to 14 in. (356 mm). A 5/8-in. (16-mm)
diameter, Grade 5 shear bolt was placed near the open end of the pocket to prevent the outside
wall of the tube from prying open. Changes were also made to the shear reinforcement anchoring
the steel pockets together. The two rebar segments that connected to the pockets with butt welds
were each replaced by a /i-in. (8-mm) thick steel plate and fillet welds. Therefore, two steel
plates were used as lateral reinforcement, one near the joint and the second near the far end of
the pockets. Also, three galvanized no. 3 bars were welded across the tops of the pockets to

better confine the concrete near the end of the rail.

164



February 13, 2012
MwRSF Report No. TRP-03-239-12

Round 1 Dry Joint Design
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Figure 94. Dry Rail Joint Improvements — Shear/Tension Tube
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8 RAIL JOINT BOGIE TESTING - ROUND 2

8.1 Scope

The first round of bogie tests, as described in Chapter 6, helped identify weaknesses in
each of the selected grouted and dry rail-to-rail joint designs. Refinements to these rail joint
concepts resulted in the three improved joint concepts (i.e., two grouted and one dry) as
discussed in Chapter 7. Each of these three rail joints were used to connect short segments of
concrete beams with the same cross section shape as the upper rail of the selected bridge rail
design. The joint components were dynamically tested with the same set-up and under the same
conditions as the first round of bogie tests. General details describing the bogie tests and testing
facility can be found in Section 6.2 and 6.3, respectively.
8.2 Equipment and Instrumentation

The same accelerometers and pressure tape switches from the first round of bogie testing
were used during the second round of testing. Accelerometer and pressure tape switch details can
be found in Section 6.4.

8.2.1 Bogie

The same bogie vehicle from the first round of bogie testing was used during the second
round of testing. However, the wooden blockouts used to offset the bogie head from the vehicle
frame were damaged during test no. PCRB-2. As such, steel tubes were used instead of wooden
blockouts to provide a more robust bogie head. These steel tubes were filled with concrete and
capped with a steel plate, as shown in Figure 95. The weight of the bogie with the addition of

concrete filled steel tubes to the impact head was 1,707 lbs (774 kg).
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Figure 95. Bogie Ipact Head with Steel Tube Blockouts
8.2.2 Photography Cameras
For test nos. PCRB-3 and PCRB-4, three high-speed AOS VITcam video cameras and
four JVC digital video cameras were utilized to record the crash test. Camera details, lens
information, and camera operating speeds are shown in Table 4. A schematic of the camera
locations is shown in Figure 96. A Nikon D50 digital camera was used to photograph pre- and
post-test conditions for each joint component.

Table 4. Camera and Lens Information, Test Nos. PCRB-3 and PCRB-4

No. Type Operating Speed Lens Lens
(frames/sec) Setting

L3 8 1 Vitcam CTM 500 Signma 24-70 70
el 2 Vitcam CTM 500 Cosmicar 12.5 Fixed --
Sl 5 Vitcam CTM 500 Sigma 50 Fixed

2 | JVC-GZ-MC40u (Everio) 29.97
=3 8 3 | IVC-GZ-MC40u (Everio) 29.97
£ 22| 4 | IVC-GZ-MC40u (Everio) 29.97

5 | JVC-GZ-MC27u (Everio) 29.97
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For test no. PCRB-5, three high-speed AOS VITcam video cameras and four JVC digital

video cameras were utilized to record the crash test. Camera details, lens information, and

camera operating speeds are shown in Table 5. A schematic of the camera locations is shown in

Figure 97. A Nikon D50 digital camera was used to document pre- and post-test conditions for

each joint component.

Table 5. Camera and Lens Information, Test No. PCRB-5

No. Type Operating Speed Lens Lens
(frames/sec) Setting

L3 8 1 Vitcam CTM 500 Sigma 50 Fixed --
eS| 2 Vitcam CTM 500 Cosmicar 12.5 Fixed --
= A>T Vitcam CTM 500 Sigma 24-70 24

2 | JVC-GZ-MC40u (Everio) 29.97
=3 5[ 3 | IVC-GZ-MC40u (Everio) 29.97
£ 22| 4 | IVC-GZ-MC40u (Everio) 29.97

5 | JVC-GZ-MC27u (Everio) 29.97
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Figure 97. Camera Locations, Test No. PCRB-5

8.3 Test Specimen — Joint Designs

8.3.1 Test No. PCRB-3, Refined Grout Joint Design

The test specimen used for test no. PCRB-3 consisted of two reinforced concrete rail
segments connected by two I-shaped steel sections and grout, as shown in Figures 98 through
111. The cross sectional geometry of the concrete rail segments was the same as the upper rail of
the selected bridge rail design, Concept F (Fence). One rail segment had a length of 9 ft — 6 in.
(2.90 m), while the other segment had a length of 5 ft — 9 in. (1.75 m). The concrete used in the
construction of the rails had a design strength of 5,000 psi (34 MPa).

Both stirrups and longitudinal bars were used as steel reinforcement for the rail segments,
as shown in Figures 100 through 104. The closed loop stirrups were epoxy coated no. 4 rebar
with a 8 in. (203 mm) spacing. Near the ends of the segments this spacing was reduced to 4 in.

(102 mm) to protect against localized damage from the anchor post supports and the impact
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head. All stirrups were given a minimum clear cover of 1% in. (38 mm). The longitudinal
reinforcement consisted of two no. 7 threaded rebar placed on each side of the rail cross section.
All four threaded bars were galvanized grade 60 bars

One end of each rail segment was configured with steel pockets on both the front and
back faces of the rail. These pockets were composed of 6 x 8 x Y2-in. (152 x 203 x 13-mm)
ASTM AS500 Grade C steel tubes cut to match the cross section geometry of the rail, as shown in
Figures 107 and 108. The back side of these pockets had two 1'4-in. (29-mm) diameter holes in
which the rail longitudinal steel was extended through. A hex nut was used to fasten each bar
inside the pockets. Also, the front face of the pockets had a 1-in. (25-mm) wide slot cut into it
which allowed the web of the steel I-shape segment to pass between adjacent pockets. Shear bolt
holes measuring '/ in. (17 mm) in diameter were placed on both the left and right sides of each
pocket. A hex nut was welded over the shear bolt hole on the inside face of the pocket so that
only the %-in. (16-mm) diameter shear bolt was needed during assembly.

To hold the steel I-segment and grout inside the pocket during assembly, a “4-in. (6-mm)
thick plate was welded to the bottom of the pocket as a cap. Also, two Y4-in. (6-mm) thick gusset
plates were welded to the inside corners near the top of each pocket to prevent the pocket from
prying open. Finally, a */j¢-in. (8-mm) thick, 3%-in. (89-mm) wide shear plate was welded
between the pockets for lateral support. All steel plates and gussets were made from A572 Grade
50 steel and are shown in Figures 105, 106, and 109. The entire end pocket assembly was
galvanized.

Three pieces of %-in. (19-mm) thick galvanized, ASTM A572 Grade 50 steel plate were

used to create each 4-in. (102-mm) tall I-shape connector, as shown in Figure 110. The web was
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7 in. (178 mm) long, and the flanges were 4% in. (108 mm) wide. Pairs of Y2-in. (13-mm) fillet
welds were used to secure the flanges to the web.

The rail segments were placed on wooden support blocks and positioned as prescribed by
Section 6.2 and Figure 48. To assemble the rail joint, two I-shape connectors were dropped into
the pockets with the web spanning across the '5-in. (13-mm) wide gap between rail ends. Next, a
%-in. (16-mm) diameter shear bolt was inserted through the ''/;¢-in. (17-mm) diameter holes of
each pocket and turned through the fixed nut on the inside surface of each pocket. Once the
connectors and shear bolts were in place, L&M Crystex grout with a strength of 10,000 psi (69
MPa) was used to fill the pockets and secure the steel I-shape connectors. Photographs of the

assembled joint specimen are shown in Figure 111.
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item No. ary. Description Material Spec Comment File Nome
ol 1t |Precast Concrete Bridge Rail Section SSC f'c = 5000 psi - Grouted_Wide_Flonge. Dplion_A_body_9.51
b1 18 [No. 4 Top Rl Stirup AB15 Grace 60 - Epaxy Cooted = Wn_mu_nmﬁ'&n_m:m_m‘_c:
c10 4 Wiliams R53-07 Hex Nut Galvanized - HNUT 0.8750-9-D-N
€12 4 N0 7. Wioms Grade 60 AN=Threod Rebor Grode 60 — Gelvanized - Grommwm$m%§_l‘i;n 453 No7-6

Note:
1. g;iwp cloor cover s 1.5 on the side ond 2.625" from the top foce of the roil section,
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Figure 101. Cross Section Views of Long Rail Segment, Test No. PCRB-3
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Notes:
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Wide Flange Connection — Option A
ftem No. arv. Description Material Spec Comment File Nome
2 1 |Precast Concrete Bridge Rall Section SSC f'c = 5000 psi - Grouted_Wide_Flonga Bation_A_body_5.75ft
b1 12 [No. ¢ Top RoWl Stirmup AB15 Grode 60 — Epoxy Cooted - Wn_mu_nw%&_m:m_m‘_c:
ot 1 |Wide Flonge Connoction Option A = = Beom_1—Grouted_Wide_Flange_Option_A
10 4 |wioms RS3-07 Hex Nut Calvanized - HNUT 0.8750-9-D—-N
c13 4 ool Ygiome Grade, 80 Ak-Theead Rebor Crode 60 — Golvanized - cmmm.wam?}?t"m' TPh_No.7_
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Figure 102. Short Rail Segment, Test No. PCRB-3
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Wide Flange Connection — Option A
ftem No. ary. Description Material Spec Comment File Nome
2 1 |Precast Concrete Bridge Rail Section SSC f'c = 5000 psi - Grouted_Wide_Flonga Bation_A_body_5.75ft
b1 12 [No. & Top Roil Stirrup AB15 Grade 60 - Epoxy Coated - Wn_mu_nw%&_m:m_w.‘_c:
c10 4 Wiliams R53-07 Hex Nut Galvanized - HNUT 0.8750-9-D-N
13 4 [No 1. Wioms Grade 60 A¥=Threod Rebor Grode 60 — Gelvanized - mnﬁwcwﬁf& Q57 No.7

Note:
1. gi:mup cloor cover is 1.5 on the side and 2.625" from the top foce of the rail section.
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Figure 103. Cross Section Views of Short Rail Segment, Test No. PCRB-3
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Figure 104. Rail Internal Steel Reinforcement, Test No. PCRB-3
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Wide Flange Connection — Option A

tem No ary. Description Material Spec Commaent File Nome

2 1 |Option A Left Grout Pocket Tube BxBx0.5 ASDD Grode C — Golvenized = Med_"-ﬂomﬁgg‘;?.gm
3 1 |Cption A Right Grout Pocket Tube 6xBx0.5 ASD0 Grode C - Golvenized - Grouted_Wide_Flan g‘p_g.;%gmn_mu
5 2 |option A Grout Tube Cop AS72 Crode 50 - Golvanized - wm_vrm_nmq-_ewu;m.;\_gm_mm
cé 1 Option A Shear Picte A572 Grode 50 ~ Galvenized - MmMMSﬂ%E‘ggnm_plma-
c? 2 [0.625 UNC-11 Hoavy Hex Nut Grode 5 — Golvenired - HHNUT 0.6250-11-D-C

9 4 [option A Grout Tube Gusset AS72 Grode 50 - Golvonized - mma_m_n«Q_Wtﬁifm_A_mum_
e 2 Option A No. 5 Boluster Reinforcement AB15 Grade 60 — Epoxy Cooted -

=
Grouted_Wide_Flanga_Option_A_No.5_Grode6|
Ko ey
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S
Wide Flange Connection |[*« '
Option A =
09,/07/2014)
Option A End Connection CRAWN BT
Assembly s/

Safety Facility
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OWG. NAME.
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Figure 105. Grout Pocket Assembly, Test No. PCRB-3
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Wide Flonge Connection — Option A

item No. ary. Description Material Spec Comment File Nome
2 1 |Option A Left Grout Pocket Tube 6xBx0.5 AS00 Grode C — Golvanized cwu«mu_n;ﬁﬂo‘gw;wm
3 1 |option A Right Grout Pocket Tude BxEx0.5 ASCO Grade C — Golvanized Grouted_Wise_Flonge_Gplion A_grout _pocket
s 2 |option A Grout Tube Cap AS72 Grode 50 — Golvonized cmu_mu_nm_copliu_qm_m
8 1 |option A Shear Piote AS72 Grade 50 — Goivonized W«*m.ﬁoix’%&wm.mo_
7 2 [0.625 UNC=11 Heavy Hex Nut Grade 5 - Galvenized HHNUT 0.6250-11-D-C
9 4 |option A Grout Tube Guaset A572 Grode 50 - Golvorized

Boom_1—
Grom-d_mo._nanp_di;ion)_mlm-

Option A Ne. 5 Baluster Reinforcement

AB15S Grade 60 — Epoxy Coated

Grouted_Wide_Flange_ Gption_A_No.5_Grade6
9 _boluster

EB0xx

Midwest Roadside

Safety Facility
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Wide Flange Connection |[®
Option A =

00,/07 /201
Connection Weld Detcils [ & |
-

OWC. NAME. SCALE: %10 |mtv, 8Y

Crovted_Was_Flongs A_B %Sx 1] UNITS: rchan |98

Figure 106. Grout Pocket Assembly Connections, Test No. PCRB-3
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Wide Flange Connection — Option A
tem No. ary. Description Material Spec Commant File Nome
= < BEam_1—
c2 1 Option A Left Grout Pocket Tube BxBx0.5 ASD0 Crode C - Golvonized Gmned_‘l’-ﬂ_ﬂw',?t%-or-\sﬁk.gm_m
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Option A =
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Figure 107. Left Grout Pocket, Test No. PCRB-3
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Wide Flange Connection — Option A
tem No. ary. Description Material Spec Commant File Nome
BEIm_ 1~
1 jon A Ri T X = : = Wi 5
c3 Option ght Grout Pocket Tube BxBx0.5 ASDD Grode C — Golvonized Grouted_) m_MEﬁgoénr\ngm_m
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Figure 108. Right Grout Pocket, Test No. PCRB-3
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Wide Flange Connection — Option A

R1/2 -\

ftom No. ary. Description Materal Spec Comment File Nome
s 1 [oston A Grout Tube Cop A572 Grodo 50 — Golvonized - Grouted_Wide_Flange. Optan_A_grout_pocke
6 1 |ostion A Sneor Picte AB72 Grode 50 — Golvonized - Grouted_Wide_Flonge, tio _piote_|
7 1 [0.625 UNC-11 Hoavy Hex Nt Grodo 5 — Goivonized = HHNUT 0.6250-11-D-C
8 1 |Meovy Hex Boit 0.625-11x7x1.25 Grede 5 - GCavonized - HHBOLT 0.6250—11x6x1.25-C
9 1 [option A Grout Tube Gusset AS72 Grade 50 - Golvonized - cmd_m_n%&_n_muw_
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Figure 109. Grout Pocket Accessories and Shear Bolts, Test No. PCRB-3
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Wide Flange Connection — Option A

ftern No. ary. Description Maotericl Spec Comment File Name
o3 2 Option A Buit Up Flange AS72 Grace S0 = - Grouted_Wide. 7} e Sption, A_w-section_
? o4 1 Option A Bultl Up Web AST2 Grods B0~ - Grouted.Wide_Flonge, tion A_w-section._
| _?
_— 1 5/4
” &1 G
i 1 3/4°
3/4 [
T S PR _—
I 8 1/2" J,
? “
~
73 EB0xx
SHELT:
14 Wide Flange Connection |« v
I Option A =
3/4° 09/07/2014
'I Option A Bullt Up Wide Flenge Section DRAWNN BT

Midwest Roadside
Safety Facility
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Figure 110. Built Up I-Shape Connector, Test No. PCRB-3
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Figure 111.

Rail Component Photographs, Test No. PCRB-3
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8.3.2 Test No. PCRB-4, Refined Dry Joint Design

The test specimen used for test no. PCRB-4 consisted of two reinforced concrete rail
segments connected by two shear tube connectors, as shown in Figures 112 through 132. Both
the cross sectional geometry and lengths of each rail segment were the same as the previously
described specimen for test no. PCRB-3. Also carried over from the previous design were the
concrete strength of 5,000 psi (34 MPa) and the epoxy coated no. 4 rebar stirrups spaced at 8§ in.
(203 mm) intervals.

The rail longitudinal steel consisted of a no. 5 rebar and no. § threaded rebar running
down each side of the rail for a total of four bars, as shown in Figures 114 through 120. The no. 5
bars were epoxy coated, while the threaded no. 8 bars were galvanized. For the short rail
segment, adequate development length was not available for the no. 8 bars. Thus, for the short
segment only, the no. 8 bars were extended out the far end of the concrete rail and were fastened
to a steel end plate with heavy hex nuts. The end plate was Y4-in. (6-mm) thick, as shown in
Figure 120, and made of ASTM A752 Grade 50 steel.

One end of each rail segment was configured with steel U-shape pockets that opened to
the underside of the rail. These 57 x 6 x "2-in. (149 x 152 x 13-mm) U-shape pockets were 14 in.
(356 mm) long and fabricated from ASTM A500 Grade C steel, as shown in Figures 123 through
126. One side of the pocket was cut to a height of 5 in. (127 mm) to match the cross section
geometry of the rail. An end cap measuring '2-in. (13-mm) thick was welded near the back of
each pocket. The end cap was cut from galvanized ASTM A572 Grade 50 steel and contained a
1%-in (32-mm) diameter hole in the middle. This hole allowed the threaded no. 8 bars to extend
into the pockets. During assembly, the no. 8 bars are directly attached to the shear tube connector
using Williams R63-08, Grade 75 hex nuts.
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Similar to the dry joint design from the first round of bogie testing, a shear bolt was used
to prevent the pocket from prying open. As such, an ''/j¢-in. (17-mm) diameter hole was placed
on both the outside and inside arms of the U-shape pocket near the end of the segment. Also
repeated from previous designs, a nut was welded around the hole on the inside face of the
pocket so that only the bolt was needed for assembly. These holes are shown in Figures 123
through 126, while the nuts are shown in Figures 121, 122, and 128.

Two shear plates were welded between the pockets for lateral anchorage. These shear
plates were cut from galvanized A572 Grade 50 steel and measured */;¢ in. (8 mm) thick by 3 in.
(76 mm) wide. Also, three galvanized no. 3 bars were welded across the tops of the pockets to
better confine the concrete near the end of the rail. The locations of both the shear plates and the
no. 3 bars are shown in Figures 121 and 122, while the pieces are shown independently in
Figures 127 and 128.

The rail segments were placed on wooden support blocks and positioned as prescribed by
Section 6.2 and Figure 48. Just as the previous dry joint bogie test, the rail was positioned upside
down so that the joint hardware was visible to the overhead, high-speed camera used to
document the test.

Assembling the joint required the shear tube connector and the additional hardware
shown in Figure 131 which included shims, washers, nuts, and bolts. The joint shims were cut
from '2-in. (13-mm) thick ASTM A36 steel plate to match the cross section geometry of the rail
and to fit over the shear tube connector. A 7-in. (178-mm) long, ¥s-in. (16-mm) diameter Grade 5
bolt was used as the shear bolt. Plate washers were cut from '2-in. (13-mm) thick ASTM A572

Grade 50 steel plate. Each measured 2% x 2% in. (70 x 57 mm) with a 1%-in. (32-mm) diameter
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hole in its center. Finally, 1-in (25-mm) diameter Schedule 80 pipe was used as the collars
around the shear bolt to prevent the shear tube connector from pinching.

The shear tube was a 25%-in. (648-mm) long, 4 x 4 x Ys-in. (102 x 102 x 13-mm) U-
shape that was cut from an 8 x 4 x %2-in. (203 x 102 x 13-mm), ASTM A500 Grade C steel tube,
as shown in Figures 129 and 130. A 13&-in. (35-mm) wide slot was cut into the top of the shear
tube on the outer 5 in. (127 mm) of each end. Gusset plates cut from %-in. (16-mm) thick,
ASTM A572 Grade 50 steel were welded inside the shear tube at each end. A 13%&-in. (35-mm)
wide slot was also cut into the gusset plates beginning at the top of the gusset plate and
continuing to the middle. Two 1 x ¥-in. (25 x 19-mm) slots were cut near the middle of the shear
tube, which allowed the shear bolts to pass through the connector during assembly of the joint.
Shim plates were welded to the sides of the shear tube to reduce the gaps between the shear tube
and the inside pocket walls. The shim plates were 25% in. (648 mm) long by 2% in. (64 mm)
wide by 3/8 in. (10 mm) thick and had the same shear bolt slots cut into them.

Assembly of the joint began with the shear tube connector being inserted into adjacent
pockets such that the longitudinal rail steel (i.e., threaded no. 8 bars) passed through the slots cut
into the top of the connector and gusset plates. Next, washers and nuts were placed on the
threaded no. 8 bars inside the shear tube connector to hold the connector in place. Shims were
dropped into the 2-in. (13-mm) gap between rail ends and over the connectors. Then, the nuts
were tightened which pulled the rail ends together on the shim plates and tied the longitudinal
steel from adjacent rails together through the shear tube connector. Finally, shear bolts were slid
into place through the pocket, shear tube connector, and collars and were fastened to the pocket
by the nut welded to the inside of the pocket. Photographs of the assembled joint specimen are
shown in Figure 132.
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome

pt 1 |Dry Connection — 9.5 ft Beam - - Dry..Connection_vé_9.5ft

p2 1 |ory Connection — 5.75 ft Beom - - Dry_Connection_vé_5.75ft

€10 4 |Wirioms RE3-08 Hex Nut Gavarized - e O e T T
f 2  |Dry Connection V4 Sheor Tube Assembly - - Dry_Connection_v4_sheartube

12 4 |Dry Conmection V& Shear Tube Washer AS72 Grode 50 - Goivonized - [Dry—Connection_vé_sheartube_wosher_AS72_
14 4 |Ory Connection V4 Shear Tube Pipe 1" Schedule 80 Pipe — Golvanized - e - R S
16 4 |0.625-UNC 11x7x1.25 Heavy Hex Bolt Grode 5 — Golvonized - HHBOLT 0.6250-11x6x1.25-C

® 2 |bry Connection Shim Piote A36 Steel - Gaolvanized W Dry..Connection_vé_shimplate
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Figure 112. Refined Dry Rail Joint, Test No. PCRB-4
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome
p! 1 Dry Connection — 9.5 ft Bearn - - Dry_Connection_v4_9.5ft
p2 1 Dry Connection — 5.75 ft Beom - - Dry_Connection_v4_5.754t
€10 4 |Wirioms RE3-08 Hex Nut Gavarized - e O e T T
(1] 2  |Dry Connection V4 Sheor Tube Assembly - - Dry_Connection_v4_sheartube
12 4 |Dry Conmection V& Shear Tube Washer AS72 Grode 50 - Goivonized - [Dry—Connection_vé_sheartube_wosher_AS72_
14 4 [Dry Connection V& Shear Tube Pipe 1" Schedule 80 Pipe — Golvarized - e - R S
16 4 [0.625-UNC 11x7x1.25 Heavy Hex Bolt Grode 5 — Golvenized - HHBOLT 0.6250-11x6x1.25-C
e 2 Ory Connection Shim Picle A36 Steel — Galvonized change Inlm;:g Dry..Connection_v4_shimplate
gomponent lesting
|
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SECTION 8-8
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Figure 113. Refined Dry Joint Assembly, Test No. PCRB-4
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Dry Connection
itemn No. ary. Description Material Spec Commaent File Nome

ol 1 Precast Concrete Bridge Rall Section S$SC f'c = 5000 psi - Dry_Connection_vé_body_9.5ft
b1 18 |No. 4 Top Roil Stirrup AB15 Grade 60 - Epoxy Cooted - ny.conm.w_mm_ﬁnup_uo.4_cw

i Connection_v4_9.51t_lo _No.5_Grad
b2 2 |No. 5 Longitudinal Rebar AB1S Grods 60 — Epoxy Coated - Ury-tionnection_v4_.f1_longbar
a 1 [Ory Connection End Assembly - - ry_Connection_v4_end_connection_ossemb!
8 2 '.“"nEl.o.W Grade 75 Ali-Threcd Rebor Grode 75 — Golvanized — o.,_com;m_v‘_gg Go..x.,.ﬂ,—i_m__|m
c11 2 Williens R83-08.N Jom Nut ASTM 108 - Golvonized - %&B_MT& ’hm
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Figure 114. Long Rail Segment, Test No. PCRB-4

TI-6€7-€0-d¥.L "ON 10doy JSUMIN

Z10T ‘1 Areniqag



61

Precost Bridge Rail — Single Rail Section

flem No. ary. Description Material Spec Comment File Nome
of 1 Precast Concrete Bridge Rall Section SSC f'c = 5000 pei - Dry_Connection_vé_body_9.5ft
b1 18 |No. 4 Top Roil Stirrup AB15 Grode 60 - Epoxy Coated - DryConnection,.vé..topailstirup.No.4..Gre
b2 2 [No. 5 Longitugina! Rebar AB15 Grode 60 - Epoxy Coated - Dey—Coonecton_y4_2-3e\loagbar. o5 {irod
8 2 '—hﬂ&!&m Grade 75 All-Threcd Rebar Grode 75 — Golvanized = ow.unmumov:&r:agéo?un_g.anm
l— 2 5787 1'=1 3/4° 2 5/8" —
3 5/8"
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2 178" O 2 178"
1
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\/ - 5/8-
3 1=1" b
1"=7"
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Figure 115. Cross Section Views of Long Rail Segment, Test No. PCRB-4
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temn No. ary. Description Material Spec Comment File Nome
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome
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Figure 118. Cross Section Views of Short Rail Segment, Test No. PCRB-4
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Figure 119. Cross Section Views of Short Rail Segment, Test No. PCRB-4
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome
a2 1 Dry Connection Bolt Pocket Left = = M.Wmtim_vq_ao;t_pocm_hft_m
a3 1 |Dry Connection Boit Pocket Right - - W-WW\-"-W.;,'—PNW%M
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Figure 121. End Pocket Assembly, Test No. PCRB-4
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome
a2 1 Dry Connection Bolt Pocket Left = = M.Wmtim_vq_ao;t_pocm_h&_m
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Figure 122. Pocket Assembly Connections, Test No. PCRB-4
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome
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Figure 123. Left Pocket, Test No. PCRB-4
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Figure 124. Left Pocket, Test No. PCRB-4
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Dry Connection

itemn No. ary. Description Material Spec Commaent File Nome
413 1 [ory Cpnnection Boit Pocket Tuse Right AS00 Grade C — Golvanized - Dry~Connection_.v4._Botl_pockel_6:5x0.5..rig
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Figure 125. Right Pocket, Test No. PCRB-4
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Figure 126. Right Pocket, Test No. PCRB-4
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Dry Connection
itemn No. ary. Description Material Spec Comment File Nome
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Figure 129. Shear Tube Connector, Test No. PCRB-4

TI-6€7-€0-d¥.L "ON 10doy JSUMIN

Z10T ‘1 Areniqag



LOT

5° =3 1/2" —_
RS s e e —————— o e e e e
1 378 I I |
BT e |
| 2'=1 1/2°

r A=t gl Db
Vi P o
i—— 10 5/8° 1M it 10 5/8° J
2 1/4°
[ 1 |
[ |
s 1
[ 18 S 1
-1 1/2°
E:
, 5]”' e & 2 I|(-
e l— 10 5/8° _-Il' — 1'! 10 5/8° !
2 1/4"

R11/16"

3 1{2'
17

o1

s |-

b\

5/8"
R1/2" typ.

O

Midwest Roadside
Safety Facility

SHEET
Dry Connection 20 ot 21
Version 4 ATE
9/30/2010
Sheor Tube Parts [Raw BT |
o NOM
DWW, NAME. SCALE: 16 |mv, @Y
Dry_Corraction_ve_8 %193 UNITS: rchen | W8

Figure 130. Shear Tube, Shim Plates, and Gussets, Test No. PCRB-4
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Figure 132. Rail Component Photographs, Test No. PCRB-4
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8.3.3 Test No. PCRB-5, Alternate Grout Joint Design

The test specimen used for test no. PCRB-5 consisted of two reinforced concrete rail
segments connected by two threaded rods and grout, as shown in Figures 133 through 146. Both
the cross sectional geometry and the lengths of each rail segment were the same as the two
previously described specimens for test nos. PCRB-3 and PCRB-4. Similar to previous testing,
the concrete strength of 5,000 psi (34 MPa) and the epoxy coated no. 4 rebar stirrups spaced at 8-
in. (203-mm) intervals were used.

The longitudinal steel in the rail consisted of two no. 4 rebar and two 1-in. (25-mm)
diameter smooth bars for a total of four longitudinal bars, as shown in Figures 135 through 139.
The no. 4 bars were epoxy coated Grade 60 rebar and ran down the center of the rail segments.
The 1-in. (25-mm) diameter smooth bars were galvanized A449 rods with threaded ends and
were positioned along each side of the rail cross section. The threaded ends allowed the rod to be
fastened to the inside of the steel pockets at the ends of every bridge rail segment and provide the
anchorage needed to develop tension.

One end of each rail segment was configured with steel pockets on both the front and
back faces of the rail. These pockets were galvanized 6 x 10 x ’2-in. (152 x 254 x 13-mm) ASTM
A500 Grade C steel tubes cut to match the cross section geometry of the rail, as shown in Figures
142 and 143. Due to a delivery error the actual thickness for the pockets tested were % in. (16
mm) thick. The front and back of these pockets had concentric holes. The front measured 1% in.
(35 mm) in diameter, and the back measured 1'% in. (29 mm) in diameter. The front hole allowed
the threaded rod connector to extend between grout pockets of adjacent rails for assembly. The
threaded ends of the longitudinal rods were inserted through the back hole of each pocket and a
heavy hex nut fastened the two components together.
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Since the pockets were only located on one end of each rail segment test specimen, an
alternate method of anchoring the smooth steel rods had to be utilized on the opposite end of the
segment. At these locations the threaded portions actually extended out of the end of the concrete
rail. A V4-in. (6-mm) thick, ASTM A572 Grade 50 steel plate with two 1'-in. (29-mm) diameter
holes was placed on the rods and pressed against the rail end. Heavy hex nuts were fastened to
the rods and anchored the longitudinal steel in the rail. The anchorage plate and nuts are shown
in Figures 135, 137, and 144.

To hold the grout in the pocket during assembly, a 's-in. (6-mm) thick steel plate was
welded to the bottom of each grout pocket. Also, a 's-in. (13-mm) thick, 6-in. (152-mm) wide
steel shear plate was welded between the pockets to provide both lateral and additional
longitudinal anchorage for the pockets. The additional longitudinal anchorage was developed by
three U-bars which wrapped around the shear plate and extended into the rail. The U-bars were
bent from epoxy coated no. 4 rebar, while the plates were galvanized, ASTM A572 Grade 50
steel. The completed pocket assembly and the individual parts are shown in Figures 140 and 141.

The connector assembly consisted of a threaded rod, two washer plates, and four heavy
hex nuts, as shown in Figure 145. The threaded rod was made from B7 steel and measured 77 in.
(191 mm) in length and 1 in. (25 mm) in diameter. The washers were 4/ in. (114 mm) square,
72-in. (13-mm) thick plates cut from ASTM A572 Grade 50 steel.

To assemble the rail joint, the rail segments were first placed on wooden support blocks
and positioned as prescribed by Section 6.2 and Figure 48. Next, the ASTM A193 B7 rod was
inserted into one of the pockets and slid through the front holes of the adjacent pocket so that
half of the rod was in each pocket. Then, two nuts were used to secure a washer plate to each end

of the B7 rod. Once the connector was assembled and in place, L&M Crytex grout with a
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strength of 10,000 psi (69 MPa) was used to fill the pockets and secure the steel connector.

Photographs of the assembled joint specimen are shown in Figure 146.
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Figure 133. Alternate Grout Joint Design, Test No. PCRB-5
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Wide Flange Connection — Option C

Itemn No. ary. Description Material Spec Comment File Nome
Pl 1 |Grouted Connecton Option © - 5.75 1t = Grouted_Wide_Flongs_OptionC_5.751t
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Figure 134. Alternate Grout Joint Assembly, Test No. PCRB-5
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Wide Flange Connection — Option C
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Figure 135. Long Rail Segment, Test No. PCRB-5
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Wide Flange Connection — Option C

ftem No. ar. Descristion Moterial Spec Comment File Nome
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8.4 Bogie Test No. PCRB-3

8.4.1 Test Description

The 1,707-1b (774-kg) bogie vehicle impacted the concrete rail specimen 6 in. (152 mm)
from the centerline of the joint at a speed of 22.2 mph (35.8 km/h). At 0.002 seconds after
impact, separation cracks formed between the back pockets and the concrete of both rails.
Further, chipping of the grout near impact was observed. At this same time, the short rail
segment developed a crack stemming from the front pocket and extending diagonally away from
the joint. The long rail segment had a crack running between the steel pockets. At 0.004 sec, the
rails began to deflect backward as a crack developed between the pockets of the short rail
segment. At this same time, tension and shear cracks had formed in both rail segments near the
anchor post supports. At 0.006 sec, the separation cracks between the back pockets and the
concrete continued to expand. At 0.008 sec, the back pocket of the long rail segment rotated back
slightly as a large crack opened between the pockets of the long rail segment. At 0.014 sec, the
bogie and rail specimen had reached a maximum displacement of 2.1 in. (533 mm) and began to
redirect in the opposite direction. At this same time, the front face of the short rail segment near
the steel pocket began to spall. At 0.018 sec, minor concrete spalling was observed on both the
top and bottom surfaces of either rail segment. At 0.028 sec, the bogie lost contact with the rail
specimen as it continued to travel away from the test specimen. Sequential photographs of the
impact event are shown in Figure 147.

8.4.2 Component Damage

Damage to the rail component consisted mainly of cracks and concrete spalling, as shown
in Figures 148 through 150. Both rail segments suffered large shear cracks running between the
front and back steel pockets. Also, the back pockets of both rails had separation cracks along the
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interface between the steel and concrete. However, the threaded rebar remained intact with the
joint and was still able to anchor the back pockets. Small separation cracks were also found on
the inside of the pocket along the interface between the steel and grout. Both separation cracks
and the shear cracks running between the pockets were found on the bottom surface of the rail
component as well, as shown in Figure 150.

The front pocket of the short rail segment was slightly indented from direct contact with
the bogie impact head. Also, a small piece of grout had chipped off from the top surface of this
grout pocket, as shown in Figure 149. A 6 x 6 in. (152 x 152 mm) area of concrete spalling was
located on the front face of the short rail segment adjacent to the steel pocket. Finally, tension
cracks were found in the long rail segment near the location of the middle anchor post support, as
shown in Figure 150.

8.4.3 Data Analysis

Data from the accelerometers was used to calculate and analyze the loads imparted to the
rail component during test no. PCRB-3. The data collected by the DTS was unusable. EDR-3
plots depicting force vs. time, force vs. displacement, and energy vs. displacement are shown in
Figure 151. Two force spikes were observed, the first of which was largely due to inertial effects.
Beyond the inertial force spike, the joint component resisted an impact load greater than 100 kips
(445 kN) until 0.015 seconds after impact. At this time both the bogie and the rail component
reached maximum deflection and began to rebound. Recall form Section 6.2, the impact load for
this test was 62 kips (276 kN) of which the joint was only required to resist 35 kips (156 kN).
Thus, the joint used in test no. PCRB-3 provided adequate strength throughout the impact event.
Also, the rail component demonstrated an ability to absorb over 330 k-in. (37 kN-m) of energy
through a relatively small deflection without failing.

228



February 13, 2012
MwRSF Report No. TRP-03-239-12

0.002 sec 0.014 sec

0.006 sec 0.042 sec
Figure 147. Sequential Photographs, Test No. PCRB-3
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Figure 148.

Component Damage, Test No. PCRB-3
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Figure 149. Component Damage — Steel Pockets, Test No. PCRB-3
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Figure 150. Rail Tension Cracks and Damage to Bottom of Joint, Test No. PCRB-3
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Figure 151. Data Analysis Plots, Test No. PCRB-3
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8.5 Bogie Test No. PCRB-4

8.5.1 Test Description

The 1,707-1b (774-kg) bogie vehicle impacted the concrete rail specimen 6 in. (152 mm)
from the centerline of the joint at a speed of 23.4 mph (37.7 km/h). At 0.002 seconds after
impact, the front steel pocket of the short rail segment had bent inward. A crack developed from
the corner of this pocket toward the center of the rail. At 0.004 sec, a crack developed from the
corner of the front pocket of the long rail segment to the center of the rail. At this same time,
both rail segments were deflecting backward. At 0.006 sec, concrete cracks development
stemming from the inside faces of the back steel pockets on both rail segments. At 0.008 sec, a
separation crack had developed at the interface between the steel and concrete along the edge of
the back pocket in the short rail segment. At this same time, the cracks stemming from the
pocket edges in both rail segments continued to grow and widen. At 0.010 sec, cracks developed
in the long rail segment near the middle anchor post. Also at this time, a concrete fragment broke
free from the bottom surface (as oriented in the test) of the short rail segment adjacent to the
back pocket. By 0.014 sec, the cracks in the long rail segment had combined and propagated to
form a large crack spanning from the front steel pocket to the middle anchor post. At 0.022 sec,
the rail component reached its maximum deflection of 2.4 in. (61 mm). At this same time loose
fragments of concrete began to break away from the top surface (as oriented in the test) of the
rail around the large crack in the long rail segment. At 0.024 sec, large concrete fragments broke
away from the bottom (as oriented in the test) of both rail components underneath the pockets.
At 0.046 sec, the bogie vehicle lost contact with the rail component as many concrete fragments

broke free from the long rail segment adjacent to the pocket edges. At 0.120 sec, the back shim
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plate slipped out of the joint and fell to the ground. Sequential photographs of the impact event
are shown in Figures 152 and 153.

8.5.2 Component Damage

Damage to the rail component consisted of bent steel hardware and concrete fracture, as
shown in Figure 154. The steel joint hardware remained intact with only minor deformations.
Both the front pocket of the short rail segment and the front shear tube connector were bent
inward at the impact location, as shown in Figure 155. The shear bolt collar nearest to impact
was pinched by the collapsing shear tube and prevented further deformation. In addition, the
threaded rebar inside the back pocket of both rail segments were bent slightly inward, matching
the curvature of the rail deformation during impact. The curvature also resulted in the back side
of the joint opening approximately 1 in. (25 mm) and the back shim plate slipping out. However,
if the rail were right side up, the shim would have been resting on the shear tube and would not
have fallen to the ground.

Similar to previous test component damage, concrete cracks stemmed from the inside
corner of all four steel pockets. On the short rail segment, cracks were found between the steel
pockets and a loose concrete fragment was located adjacent to the back pocket, as shown in
Figure 154. Also, spalling was located on the front face of the short rail segment adjacent to the
front pocket. On the long rail segment, concrete fragments had broken free of the rail from the
back edge of the pockets to the middle anchor post. This left the interior steel reinforcement
exposed. Finally, large concrete fragments broke off of the bottom (as oriented in the test) of

both rail segments exposing the internal steel rebar near the joint, as shown in Figure 156.
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8.5.3 Data Analysis

Data from the accelerometers was used to calculate and analyze the loads imparted to the
rail component during test no. PCRB-4. Due to unacceptable data from previous tests, the DTS
unit was not used for this run. EDR-3 plots depicting force vs. time, force vs. displacement, and
energy vs. displacement are shown in Figure 157. Two force spikes were clearly visible from the
data. First an inertial spike followed by a resistive spike. Both were well above the design impact
load of 62 kips (276 kN). In fact the impact load did not drop below 62 kips (276 kN) until after
0.015 seconds, or the time of maximum deflection and redirection. Maintaining such a high
impact load resulted in the rail component absorbing over 370 k-in. (42 kN-m) of energy during

the impact event.
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0.010 sec 0.144 sec
Figure 152. Sequential Photographs, Test No. PCRB-4
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0.008 sec ©0.124 sec

0.016 sec 0260 sec
Figure 153. Additional Sequential Photographs, Test No. PCRB-4
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Figure 154. Component Damage, Test No. PCRB-4
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Figure 155. Component Damage — Steel Pockets, Test No. PCRB-4
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A

Figure 156. Component Damage — Concrete Damage, Test No. PCRB-4

241



February 13, 2012

MwRSF Report No. TRP-03-239-12

Force (kips)

180

160

140

120

100

80

60

40

20

TestNo.PCRB-4
CFC 60 Data Analysis

~

\

/

\\/

\

0.005

0.01

0.015 0.02
Time (sec)

0.025

0.03

Force (kips)

180

160

140

120

100

80

60

40

20

TestNo.PCRB-4
CFC 60 Data Analysis

N

N\

N

\
/
\//

0.5

15 2 2.5
Displacment (in.)

35

Energy (k-in.)

400

350

300

250

200

150

100

50

TestNo.PCRB-4
CFC 60 Data Analysis

0.5

15 2 25
Displacment (in.)

3.5

Figure 157. Data Analysis Plots, Test No. PCRB-4
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8.6 Bogie Test No. PCRB-5

8.6.1 Test Description

The 1,707-1b (774-kg) bogie vehicle impacted the rail joint specimen 6 in. (152 mm)
from the centerline of the joint at a speed of 22.9 mph (36.8 km/h). At 0.002 seconds after
impact, two cracks developed in the short rail segment as it deflected back. The first stemmed
from the inside corner of the front pocket, while the second originated on the front face near the
anchor post. At 0.004 sec, the long rail segment began to deflect. At this same time, a crack
formed between the pockets of the short rail segment. At 0.006 sec, tension cracks developed in
the long rail segment near the middle anchor post. At this same time, small pieces of grout began
to chip away from the front pocket of the short rail segment. At 0.008 sec, the threaded rod
connecting the back pockets had fractured. By 0.010 sec, or a deflection of 2.5 in. (64 mm), both
threaded rod connectors had fractured. Thus, the joint had failed and the small rail segment was
free to rotate about the end anchor post. At 0.018 sec, the right side of the impact head contacted
the end of the long rail segment. At 0.020 sec, the impact head lost contact with the short rail
segment which continued to rotate about the end anchor post. At 0.028 sec, the cracks near the
middle of the long rail segment were expanding as the rail continued to deflect backward. Also at
this time, the back face of the long rail segment began to spall near the middle anchor post. At
0.040 sec, the long rail segment reached a maximum deflection of 2.1 in. (56 mm). The bogie
vehicle had traveled 6.5 in. (165 mm) into the system. Both the long rail segment and the bogie
then began to redirect into the opposite direction. At 0.066 sec, the long rail segment lost contact
with the bogie vehicle. Meanwhile, the short rail segment continued to rotate freely about the end
anchor post. At 0.224 sec, the free end of the short rail segment contacted the bogie vehicle
stopping the rotational movement. The segment came to rest laying perpendicular to its original
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position approximately 2 ft (0.6 m) in front of the end anchor post. Sequential photographs of the
impact event are shown in Figures 158 and 159.

8.6.2 Component Damage

The joint for bogie test no PCRB-5 failed during the impact event. This caused the two
rail segments to separate. As a result, the short rail segment ended up laying on the ground,
perpendicular to its original position, as shown in Figure 160. The long rail segment remained
atop the wooden support blocks, but had rotated slightly away from the anchor posts. Analysis of
the threaded rods fracture patterns, as shown in Figure 162, revealed that the front threaded rod
failed in shear, while the back threaded rod failed from a combination of tension and shear. Then
combination tension and shear failure of the back threaded from was evidenced by the 45-degree
fracture plane and the bending in the rod.

Damage to the short rail segment was minimal, as shown in Figure 161. A few concrete
cracks were found in the middle of the segment near the original position of the anchor post, and
another concrete crack was found spanning between the steel pockets. Also, contact marks on the
short rail segment were located at the impact point and along the back face where the segment
contacted the anchor post assembly while rotating.

Damage to the long rail segment consisted mainly of bending cracks and concrete
spalling, as shown in Figures 160 and 162. This damage was the result of the long rail segment
absorbing all of the impact energy from the bogie after the joint failed. The concrete cracks
spanned from the middle anchor post to the front face of the rail. Small fragments of concrete
had broken off of the rail where the cracks met the front face of the segment. Concrete spalling

was found on the back face of the segment around the middle anchor post bearing location. This

244



February 13, 2012
MwRSF Report No. TRP-03-239-12

spalling region measured approximately 18 in. (457 mm) wide and was as deep as 2 in. (51 mm)
in the most severe areas.

8.6.3 Data Analysis

Data from the accelerometers was used to calculate and analyze the loads imparted to the
rail component during test no. PCRB-5. The data collected by the DTS was unusable. EDR-3
plots depicting force vs. time, force vs. displacement, and energy vs. displacement are shown in
Figure 163. The initial force spike was above the design impact load of 62 kips (276 kN).
However, the majority of this spike was attributed to inertial forces. Subsequently, the force
curve quickly fell below 50 kips (222 kN). As the time the impact force returned to near design
levels at approximately 0.070 seconds, the joint fractured. The rail segments examined in test no.
PCRB-5 were only able to absorb 208 k-in. (23.5 kN-m) of energy as a result of the premature

fracture of the joint.
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0.012secc ©0.094sec
Figure 158. Sequential Photographs, Test No. PCRB-5
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0.030 sec 0.728 sec
Figure 159. Additional Sequential Photographs, Test No. PCRB-5
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Figure 160. Component Damage, Test No.

PCRB-5
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Figure 161. Component Damage — Short Rail Segment, Test No. PCRB-5
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Figure 162. Component Damage — Long Rail Segment, Test No. PCRB
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8.7 Round 2 —Bogie Testing Discussion

Of the three rail-to-rail joint designs examined during the second round of bogie testing,
the grouted joint which utilized I-shaped connectors (test no. PCRB-3) performed the best.
Recall from Section 6.2, an impact force of 62 kips (276 kN) would result in design shear and
moment loads through the joint of 35 kips (156 kN) and 700 k-in (79 kN-m), respectively. As
shown in Figures 164 and 165, the grouted joint from test no. PCRB-3 met and exceeded these
design loads. In fact, the joint upheld an average load of approximately 100 kips (445 kN)
through the duration of the impact event. Also, this joint sustained only minimal damage from
the impact, while the other joints were more severely damaged. The refinements made to the
grouted joint after the first round of bogie testing proved to effectively strengthen the joint. All
of the pockets remained intact without any prying or disengagement from the rail segments.
Concrete cracking and spalling was minimal and was mostly limited to the area between the
grout pockets. Only small pieces of concrete broke free from the bottom of the rail.

A negative aspect of the grouted joint examined in test no. PCRB-3 was that it was not
easily disassembled. After the bogie test was complete, the segments were taken apart as though
one segment was damaged and needed to be replaced. The shear bolts were removed easily with
the use of a socket wrench, but the grout had to be chiseled out of the pockets before the I-shape
connectors could be removed. Even with the use of a pneumatic chisel, it took some effort to
chisel out the grout around the gusset plates on the front corners, the connecter, and threaded
rebar anchored to the back of each pocket. It should be noted that the pneumatic chisel did not
appear to cause damage to the beam or connection components during disassembly. Fortunately,
only the grout pockets on the “undamaged” segment need to be chiseled. The damaged segment

was lifted and removed with the I-shape connectors still attached. New I-shape connectors and
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grout would be necessary to recreate the joint after a new segment had replaced the damaged
one.

The load sustained by the dry joint in test no. PCRB-4 was very comparable to that of the
grouted joint in test no. PCRB-3, as shown in Figures 164 and 165. The dry joint sustained a load
that averaged over 100 kips (445 kN) and never dropped below 70 kips (312 kN) throughout the
duration of the impact event. For this reason, the dry joint absorbed slightly more energy than the
grouted joint. The refinements made to the joint after the first round of bogie testing improved
both the initial stiffness and strength of the joint. The shear tubes transferred load almost
immediately across the joint and prevented the rails from moving independent of each other at
the onset of impact. Also, none of the joint hardware or the rail reinforcing steel failed during the
test. However, the specimen in test no. PCRB-4 suffered much more damage than did the
specimen in test no. PCRB-3. There was more concrete cracking and spalling. The largest
concern, though, was the amount of concrete that broke free from the top of the rail (bottom as
oriented in the test). This concrete could potentially that could fall onto another roadway below
the bridge. The majority of the concrete above the top of the pockets had broken away during the
test. The additional no. 3 bars spanning across the top of the pockets was only able to contain the
concrete directly between the pockets.

Similar to the previous test specimen, the segments connected by the dry joint were taken
apart after the bogie test was complete. Socket wrenches were used to remove the shear bolts as
well as the nuts fastened to the longitudinal threaded bars. The loose washers and shim plates
were removed by hand and a hammer was used to knock the shear tube connectors loose of the
constricted pockets. As expected, disassembling the dry joint proved to be much easier and
quicker than taking apart the grouted joint from test no. PCRB-3.
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The alternative grouted joint evaluated in test no. PCRB-5 proved to be too weak to
transfer the design load between rail segments. The threaded rods connecting the grout pockets
failed at a load just over 60 kips (267 kN). This magnitude of load was only half as strong and
had roughly 70 percent of the energy absorbing potential of the other two joints tested during the
second round of bogie testing, as shown in Figure 164. Before fracturing, the rail specimen took
an initial load spike of 131 kips (583 kN). However, as explained in the first round of bogie tests,
the majority of the initial force spike was the result of inertia. After this inertial spike, the joint
sustained an average load of only 55 kips (245 kN). Also, since the threaded rod connectors
fractured so quickly, the joint in test no. PCRB-5 lacked a desired amount of ductility. In fact,
the lack of damage, or even cracking, to the concrete rail segments themselves showed that the
joint failed while transferring much lower loads than the previous joints.

After the second round of bogie testing, only the grouted joint design from test no.
PCRB-3 satisfied all design criteria and could be implemented into the precast bridge rail design.
The dry joint from test no. PCRB-4 illustrated the ability to transfer the design loads between
adjacent rail segments. However, the significant amount of concrete that broke free from the rails
had the potential to cause problems on the bridge or roadway below. This joint would become a
feasible option for precast bridge rails if the concrete above the pockets was better confined. The
alternate grout joint from test no. PCRB-5 would require major changes to strengthen and
improve ductility before it was a viable option. Thus, it was decided to proceed with the grouted
joint design from test no. PCRB-3 while keeping in mind that the dry joint from test no. PCRB-4

could potentially be used if additional confinement steel were added to the joint design.
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9 BARRIER POST TO DECK ATTACHMENT DESIGN
9.1 Overview

The attachment of the precast bridge rail segments to the bridge deck itself was another
connection critical to the success of the barrier. It was essential that the anchorage comprising
this attachment was capable of transferring both shear and moment loads to the bridge deck
without causing structural damage to the deck. Further, the attachment needed to allow
tolerances of 2 in. (13 mm) in both longitudinal and lateral directions during assembly. Similar
to the rail-to-rail joint design, preserving the symmetry of the bridge rail segments was
considered a priority, albeit not a requirement.

Recall from Section 5.2.2, Yield-Line Theory calculations were used to estimate the
resistance necessary for the bridge rail to sustain a 100-kip (445-kN) impact load. These
calculations led to a design moment load of 800 k-in. (90 kN-m), which each post within the
bridge rail system was required to resist. The design shear load for the posts was conservatively
selected as 40 kips (178 kN). Thus, it was a prerequisite that the joint utilized to attach each post
to the bridge deck had resistances greater than or equal to 800 k-in. (90 kN-m) in bending and 40
kips (178 kN) in shear.

Multiple attachment designs were explored and evaluated for the post-to-deck joint. A
number of these designs are presented in the following sections.

9.1.1 Deck Attachment A - Threaded Rods and Shear Tubes

Deck Attachment A consisted of two threaded rods and two shear tubes connecting each
barrier post to the bridge deck, as shown in Figure 166. The threaded rods provided resistance to

bending and moment loads, while the shear tubes provided resistance to lateral movement and
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shear. Deck Attachment A was efficient in that each subcomponent was only required to resist

forces in one direction.
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Figure 166. Deck Attachment A — Threaded Rods and Shear Tubes

The threaded rods were located near the front corners of each post and were partially
embedded in the rail and post of the barrier segment during casting. The rods extended up
through the post and into the lower rail of the barrier where a single washer plate and nuts were
used to secure the rods inside the barrier segment. The washer plate and nuts were necessary to
anchor the rods because the proper development length of the threaded rods could not be
obtained within the geometry of the post. The opposite ends of the rods which protruded from
the bottom of the bridge rail posts would extend through holes in the bridge deck and fasten to
nuts on the bottom of the deck. Casting the rods inside the rail segment reduced the amount of

hardware needed for installation as only nuts and washers were necessary to fasten the rail

segments to the bridge deck.
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The shear tubes were not embedded into the rail segment. Instead, cavities were cast into
the bottom of the rail and the top of the deck. During installation, the shear tubes would first be
placed into the cavities of the deck. Then the rail segment would be lowered into place such that
the extruding rods passed through the holes in the deck and the exposed upper portion of the
shear tube slid into the cavities in the post. Finally, washers and nuts would fasten the rail
segment to the deck. Both the holes and the cavities in the bridge deck were oversized to satisfy
tolerance issues in both the lateral and longitudinal directions. To ensure the tension rods were
not loaded in shear, the holes were further oversized so that the shear tubes would engage first.

A downside to this design was that the rail segments were no longer symmetric. In fact,
the threaded rods were specified in the front of rail (traffic side) while the shear tubes were
specified in the back. Only one distinct orientation would allow for proper installation. Further,
installation of the protruding rods into their respective cavities required a significant amount of
precision, which may not be possible with cast-in-place decks. If this precision is not attained,
the rods may be loaded in shear before the shear tubes. Recall, the threaded rods were not
designed to sustain shear loading. Such loading could cause failure of the system. Moreover,
without substantial precision, the rail segments might not fit properly on the bridge deck.

9.1.2 Deck Attachment B - Threaded Rods

Deck Attachment B consisted of four threaded rods which connected each barrier post to
the bridge deck, as shown in Figure 167. Similar to the previous Deck Attachment A, the
threaded rods were partially embedded into the segment post during casting. The upper end of
each rod extended into the lower rail of the segment where it was anchored with a nut and

washer plate. The opposite ends of each rod would extend out from the bottom of the post.
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Contrary to Deck Attachment A, the post and the entire rail segment were both
symmetric. A threaded rod was positioned near each one of the four corners. Also, this
configuration did not require any additional vertical reinforcing steel inside the post.

During installation, the rail segments would be lowered into position by guiding the
exposed rods through holes in the bridge deck. Washers and nuts would then be applied to the
rods on the bottom of the deck to fasten the segment in place. As such, the only additional
hardware necessary to install the rail segments are washers and nuts. This created a quick and

easy installation process.
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Figure 167. Deck Attachment B — Threaded Rods
During an impact, the threaded rods on the traffic side of the post would provide tension
for bending and moment resistance, while the rods on the opposite side would provide shear
resistance. To achieve rail symmetry it was necessary to specify all the threaded rods to be the

same size. As such, the holes in the deck had to be designed so that the front rods were not
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loaded in shear. Thus, the holes for on the traffic side were oversized to allow some movement
before shear loading would occur.

9.1.3 Deck Attachment C - Cleat

Deck Attachment C consisted of interlocking cleats that connected rail posts to the bridge
deck, as shown in Figure 168. Both the deck and the rail posts had coupled cleats that hooked
onto each other when installed. It was necessary for the attachment to transfer both shear and
moment, so the cleat would mutually resist both. The actual shape of the cleats could consist of a
variety of shapes and was not overly important.

Cleats in the bridge deck would be partially embedded into the deck with the top
extending out from the deck. The cleat in the bottom of the rail post would also be partially
embedded. In order for the rail segment to rest flush on the deck, the cleat could not extend past
the bottom surface of the post. As such, a cavity at the bottom of the post would contain the
exposed arm of the cleat. The cavity would be centered both laterally and longitudinally along
the bottom face post. The cleat would be positioned toward the traffic side of this cavity. This
allowed the deck cleat to fit into the cavity during assembly. Further, this positioning created a
larger moment arm and, thus, a stronger attachment.

To install the rail segment, the segment would be lowered into position such that the post
cavity fit over the exposed deck cleat. Then the segment would be pushed toward the edge of the
deck so that the cleats would hook onto each other and lock the segment into place. No
additional hardware would be necessary for this attachment method making it the simplest and

quickest to assemble.
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Figure 168. Deck Attachment C - Cleat

Section A-A

Two negative attributes could be identified with Deck Attachment C: (1) loss of rail
symmetry and the possibility of a reversible rail segment and (2) damage to the cleat, or the
deck, during an impact would require deck repairs or replacement. To prevent this damage, the
cleat must be fabricated from strong, thick steel components, and extra deck reinforcement
would be required to prevent the cleat from pulling out of the deck.

9.1.4 Deck Attachment D - Shear Curb

Deck Attachment D consisted of four threaded rods and a concrete shear curb connecting
the rail posts to the bridge deck, as shown in Figure 169. The four threaded rods were the same
as in Deck Attachment B, thus the rail was symmetric. Similarly, installation of the rail segments
involved lowering the segment into position such that the exposed rods passed through the holes
in the deck and were fastened with washers and nuts. The key difference between Deck
Attachment B and Deck Attachment D was the concrete shear curb located on the edge of the

deck and behind the rail post. This shear curb prevented lateral movement of the rail system and
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resisted the shear component of impact. Therefore, the threaded rods were only required to carry
tension loads in bending. Further, the holes in the deck did not have to be oversized to prevent
shear loading.

The shear curb could be placed on the deck in two different ways. First, the entire deck
could be widened to fit the shear curb behind the post. Previously, there had only been 1 in. (25
mm) of deck outside of the base of the rail system. Second, the deck could be extended only in
the areas directly behind the post to account for the shear curb. However, this option created an
uneven or non-uniform deck edge.

A major problem with Deck Attachment D was that a deck with a shear curb could not be
easily cast in place. The addition of the shear curb to the deck resulted in the loss of a flat upper
surface for the casting and curing process. This problem could be prevented in precast deck
panels by casting them upside down to utilize the flat surface on the bottom of the deck. The
installation of the shear curb would also use valuable deck width and would require reducing the
amount of bridge deck available for travel lanes or widening the bride deck, which would incur

significant cost.
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Figure 169. Deck Attachment D - Shear Rail
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9.1.5 Deck Attachment E - Shear Channel

Deck Attachment E consisted of three threaded rods and a shear channel connecting the
rail posts to the bridge deck, as shown in Figure 170. Similar to previous designs, the threaded
rods were partially embedded into the rail post. However, instead of positioning the rods near the
corners of the post, the rods were placed longitudinally in plane along the center of the post. The
trapezoidal, concrete shear channel extruding from the bottom of the post would also span along
the center of the post. A matching cavity would have to be cast into the deck for the shear
channel to rest in. Ensuring both the threaded rods and the shear channel ran down the center of
the post retained symmetry in the segments. Installation involved lowering a segment in place by
guiding the shear channel into the matching cavity in the bridge deck and extending the exposed

threaded rods through the holes in the deck. Washers and nuts would be used to fasten the rail

segment to the deck.
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As with the Deck Attachment D, the threaded rods were designed only for tension in
bending and moment resistance. Additionally, the rods held the shear channel snug inside the
cavity of the bridge deck to prevent lateral movement during impact. This ensured immediate
shear transfer through the shear channel.

Although the channel created a strong, compact joint, the cavity in the deck resulted in a
loss of deck thickness in a critically loaded area. The reduction in deck thickness ultimately
would produce a corresponding reduction in both the bending and shear capacities of the deck.
Consequently, the deck had an increased risk for structural damage during any significant

impacts.
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Figure 170. Deck Attachment E — Shear Channel

9.1.6 Deck Attachment Selection
Following a thorough review of all the deck attachments presented in this chapter, the
designers chose Deck Attachment B as the most ideal design. This attachment employed four

threaded rods of equivalent size to connect the rail posts to the bridge deck. This configuration
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allowed the rail segments to remain symmetric while utilizing a quick and simple method of
fastening the segments to the bridge deck. Also, the attachment did not require additional deck
width nor created an increased risk for deck damage. Therefore, Deck Attachment B was
selected for use in the precast bridge rail system. Analysis of the shear and tension design loads
for the connection led to the selection of four 1Y-in. (32-mm) diameter, Grade 5 threaded rods
for anchoring the post. The rods would be affixed to the underside of the bridge deck with 2-in.
(13-mm) thick plate washers and 1%-in. (32-mm) diameter Grade 5 heavy hex nuts.

9.2 Bridge Deck Reinforcement Design

Following the selection of the post-to-deck attachment method, it was necessary for the
researchers to modify the standard bridge deck reinforcement to accept the chosen post
attachment. The post-to-deck attachment method selected consisted of four threaded rods that
passed from the post, through the bridge deck, and were bolted to the underside of the deck.
Thus, the attachment required the creation of four holes in the deck and additional reinforcement
to prevent the anchor bolts from causing damage to the deck.

The basic deck reinforcement chosen for the project was Nebraska’s standard, cast-in-
place bridge deck reinforcement, as supplied by NDOR bridge engineers. It was decided to
design the modifications to the bridge deck reinforcement using the standard, cast-in-place deck
details first, with the understanding that the reinforcing details could be adapted to other bridge
deck designs and precast bridge deck panels at a later date. Nebraska’s standard, cast-in-place
bridge deck consisted of an 8-in. (203-mm) thick deck reinforced by a pattern of longitudinal and
transverse reinforcing bars. All of the reinforcing steel consisted of Grade 60 epoxy coated rebar.
The transverse steel consisted of a top and bottom mat of reinforcing bars. The top mat of

transverse steel had 2’2 in. (64 mm) of clear cover and used a repeated pattern of one no. 4 bar,
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two no. 6 bars. All three bars were spaced at 4 in. (102 mm) on center. The bottom mat of
transverse steel had 1 in. of clear cover and used repeated pattern of no. 5 bars at 12 in. (305
mm) spacing on center. The longitudinal steel was also comprised of a top and bottom mat of
reinforcing bars. The top mat of longitudinal steel had 2'2 in. (64 mm) of clear cover and used
no. 4 bars spaced at 12 in. (305 mm) on center. The bottom mat of longitudinal steel had 1 in. of
clear cover and used no. 5 bars spaced at 12 in. (305 mm) on center except for the final bar
adjacent to the deck edge which was spaced at 6 in. (152 mm) on center.

Modification of the reinforcing steel for the attachment of the precast bridge rail required
consideration of design loads, ease of installation, and minimizing the changes to the current
reinforcement layout. The proposed modifications to the reinforcing steel are shown in Figure
171 through Figure 181. Note that the details shown show a limited length section of the bridge
deck sized for mounting on girders in the existing bridge rail pit at the MwRSF test facility. The
major addition to the deck reinforcement consisted of four 3-in. wide by 2-in. deep by 8-in. long
by Vs-in. thick (76-mm wide by 51-mm deep by 203-mm long by 6-mm thick) steel tubes. The
steel tubes served to create the holes in the deck required for the anchor rods in the post. To ease
concerns with installation tolerances, the four tubes were connected by lateral and longitudinal
spacer places that were welded to each tube. The spacer plates ensured that the spacing between
the anchor rods on the base of post would be maintained in the bridge deck. The anchor rod tubes
then needed to be tied into the existing deck. Recall that the design impact load for the bridge rail
was estimated to be 100 kips (445 kN). It was conservatively assumed that the entire design load
could be imparted to the deck through a single post under a worst case scenario in which the
bridge rail lost it continuity. Based on this assumption, a no. 5 bar was bent around each pair of

anchor and extended back laterally into the deck to resist the impact loads. In addition to these tie
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back bars, a pair of longitudinal bars were mounted across the front and rear anchor tubes and
spliced with the existing longitudinal reinforcement to further anchor the tubes and prevent shear
cracking. The additional steel tubes and reinforcing bars required only minor modification to
Nebraska’s standard, cast-in-place bridge deck reinforcement. The only change to the
reinforcement was the removal of one of the no. 6 bars in the top mat of the transverse steel at
each of the anchor tube locations. The additional of the no. 5 tie back bar at these locations more
than compensated for the removed bar.

The proposed bridge deck reinforcing steel modification for attachment of the precast
bridge rail design described herein was preliminary. Further revision of the design was
anticipated following additional component level or full-scale testing of the precast bridge rail

when mounted on a simulated bridge deck.
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10 FINAL PROTOTYPE DESIGN DETAILS

After completing the design of the basic rail geometry and structure, the rail segment
connections, the post-to-deck attachment, and the revised bridge deck reinforcement, the
researchers assembled design details and CAD for the complete bridge rail system required for
full-scale crash testing of the precast concrete bridge rail prototype. The details for a single
segment of the precast concrete bridge rail prototype are shown in Figure 182 through Figure
196. The details for the assembled bridge rail mounted on a simulated bridge deck at the MwRSF
test facility, including the revised deck reinforcement, are shown in Figure 197 through Figure
209.

The precast bridge rail segment consisted of 191%-in. (4.87-m) long rail segments with a
Y4-in. nominal gap length between segments for a center to center distance of 16 ft. (4.88 m). The
rail section was 36 in. (927 mm) tall by 19 in. (483 mm) wide. The rail segment geometry was
based on the Concept F (Fence) design selected in Chapter 4. This design consisted of two main
rail segments separated by rail spacers or balusters. The upper rail segment incorporated
geometry for mitigation of occupant head contact during passenger vehicle impacts.
Reinforcement of both the upper and lower rail segments consisted of four no. 7 Grade 70
threaded rebar for the longitudinal steel and no. 4 Grade 60 epoxy coated stirrups at 8 in. (2093
mm) spacing on center for the shear reinforcement. The shear stirrup spacing was reduced to 4
in. (101 mm) for the final 13’ in. (343 mm) adjacent to the end connection pockets at each end
of the rail. The balusters separating the top and bottom rail sections were 13 in. wide by 11 in.
wide by 5% in. tall (330 mm wide by 279 mm wide by 146 mm tall). Each baluster was
reinforced vertically with four no. 4 Grade 60 epoxy coated bars and used two no. 3 Grade 60

epoxy coated stirrups at 4 in. (102 mm) spacing on center for shear reinforcement.
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Two posts were used to support the railing and attach the segments to the bridge deck.
Each post was 25 in. wide by 11 in. deep by 12 in. tall (635 mm wide by 279 mm wide by 305
mm tall) and was spaced 71 in. (1,803 mm) from the adjacent post and 35 3/8 in. (899 mm) from
the end of the rail segment. The vertical reinforcement of the post was comprised of the four 1%4-
in. (32-mm) diameter, Grade 5 threaded rods used for anchoring the post to the bridge deck. The
shear reinforcement for the post consisted of three no. 3 Grade 60 epoxy coated stirrups spaced
at 4% in. (114) mm on center. The base of the post was fitted with a 1/8-in. (3-mm) thick
neoprene pad to form an evenly distributed connection bearing surface between the rough
concrete that comprised the base of the post and the top of the bridge deck.

The connection between the post and the bridge deck was based on the Deck Attachment
B, as detailed in Chapter 9. The connection consisted of the four 1'4-in. (32-mm) diameter Grade
5 threaded rods that were cast into the post and extended 12 in. (305 mm) from the base of the
post. The threaded rods would pass through tubes cast into the bridge deck and then be affixed to
the underside of the bridge deck with '2-in. (13-mm) thick plate washers and 1%-in. (32-mm)
diameter Grade 5 heavy hex nuts.

As detailed in Chapter 9, the bridge deck design used in conjunction with the precast
concrete bridge rail prototype was based on Nebraska’s standard, cast-in-place bridge deck
reinforcement as supplied by NDOR. Steel tubes were inserted into the reinforcement to create
mounting holes for the anchor rods. The steel tubes were connected by welded plates in order to
help maintain the correct spacing during construction. Reinforcing steel was added around the
steel tubes to tie the tubes into the existing deck reinforcement. The modifications required for

the mounting of the precast concrete bridge rail required only the removal of on transverse no. 6
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bar in the region of the steel tubes. No other modifications were necessary to the standard
reinforcement.

The precast concrete bridge rail prototype segments were connected at both the top and
bottom rail sections with the refined grouted joint design successfully tested in component test
PCRB-3, as detailed in Chapter 8. This connection consisted of fabricated I-beam sections that
dropped into open tube sections on each side of the joint. The open tube sections were then filled
with grout to complete the connection. Full-details of the grouted connection design are located
in the subsequent CAD details. This joint design had the developed very high loads and energy
dissipation during component testing while retaining its integrity. In addition, the grouted
connection required no shimming and was capable of handling joint tolerances and horizontal
and vertical curves without additional hardware.

The system details shown for the precast concrete bridge rail prototype were developed
for implementation and installation of the system at the MwRSF test facility. As such, the bridge
deck and system length are configured for full-scale crash testing in the MwRSF simulated
bridge pit on an existing girder system, as shown in Figure 210. Actual field installation details
would vary from what is shown herein.

It should be noted that details for a closed rail system were also developed based on the
open rail system shown here. The basic design of the closed rail system was unchanged from the
open railing described above except for the addition of a reinforced concrete panel that ran flush
with the front face of the posts on the closed rail system. This reinforcing steel for the panel was
tied into the posts and the lower rail of the bridge rail. These details are available upon request

but were not provided as part of this report.
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Finally, it should be noted that the new, precast bridge rail system was developed with
considerations for aesthetic treatments including the shape of the rail itself, additional surface
treatments, dyes, and medallions. In order to evaluate the potential aesthetics of the new bridge
rail design, a full-scale model of a single rail section was formed from Styrofoam and
photographs with various vehicle types to provide a better feel for the actual aesthetics of the
design, as shown in Figures 211 through 213. In addition to the full-scale model, renderings were
prepared of potential aesthetic treatments for both the open and closed rail sections, shown in
Figures 214 through 220. Many of these aesthetic treatments would not be possible without the
use of precast concrete construction techniques. These efforts demonstrated the improved

aesthetic qualities of the new design as compared to more conventional concrete bridge rails.
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Figure 210. MWRSF Simulated Bridge Test Pit
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Figure 211. Precast Bridge Rail Foam Model with 1100C Vehicle
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Figure 212. Precast Bridge Rail Foam Model with 2270P Vehicle
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Figure 213. Precast Bridge Rail Foam

Model with 10000S Vehicle
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Figure 214. Precast Bridge Rail Aesthetic Treatment Concepts
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Figure 215. Precast Bridge Rail Aesthetic Treatment Concepts
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Figure 216. Precast Bridge Rail Aesthetic Treatment Concepts
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Figure 217. Precast Bridge Rail Aesthetic Treatment Concepts

2I-6€£7-€0-d Y.L "ON 1odoy JSYMIN

10T ‘€1 Areniqag



0C¢

Figure 218. Precast Bridge Rail Aesthetic Treatment Concepts
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Figure 2109.

Precast Bridge Rail Aesthetic Treatment Concepts
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Figure 220. Precast Bridge Rail Aesthetic Treatment Concepts
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11 SUMMARY, CONCLUSIONS, AND RECOMENDATIONS
11.1 Summary and Conclusions

The research effort described herein was focused on the development of a new, precast
concrete bridge railing system. Precast concrete bridge rail systems offer several advantages over
traditional cast-in-place rail designs, including reduced construction time and costs, installation
in a wide range of environmental conditions, easier maintenance and repair, improved railing
quality, and greater flexibility for aesthetic treatments. The objective of this project was to
develop a precast concrete bridge rail system that met the TL-4 impact safety standards provided
in MASH. The design criteria for the new bridge rail system included criteria for barrier
geometry, provisions for open and closed rail options, constructability, weight limitations,
segment length, design impact loads, connection of barrier segments, and connection to the
bridge deck among other factors.

The research effort proceeded in several phases. First, the research focused on
determining the overall concept for the new bridge rail system in terms of the rail configuration
and geometry as well as the required barrier reinforcement. Next, design concepts for the joints
connecting adjacent rail segments were designed and component tested in order to select a design
capable of meeting design criteria for the precast bridge rail system. After selection of an
appropriate rail joint, the researchers developed connection details for the attachment of the rail
to the bridge deck. Once the design of the various precast bridge rail components was completed,
a complete set of CAD details for the proto type precast concrete bridge rail system were
completed.

Many design concepts for the precast concrete bridge rail system were developed in the

first phase of the research. Review of previous TL-4 bridge rail research and finite element
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computer simulation using LS-DYNA developed criteria for design impact loading, rail height,
and barrier geometry guidelines to mitigation occupant head slap during passenger vehicle
impacts. These criteria were combined with criteria for constructability, weight and segment
length limitations, bridge rail width, load transfer to the bridge deck, and aesthetics to select the
optimal precast bridge rail concept. Following detailed analysis and review of the various rail
concepts, it was concluded that Concept F (Fence) was the optimal design. Concept F (Fence)
was on open concrete railing that consisted of two stacked beams mounted at different heights
and separated by balusters or spacers. This design provided advantages over the other design
concepts in terms of aesthetics and constructability and met all of the other design criteria listed
above.

Following selection of the basic bridge rail concept, the research was focused on
development of a joint between adjacent rail segments. Analysis had shown that it was critical to
develop continuity across the rail joints in order with potential TL-4 impact loads and limit the
loads transferred to the bridge deck. The anticipated impacts loads required for the joint were
calculated to be a shear loads of 35 kips (156 kN) and a moment of 700 k-in. (79 kN-m). A wide
variety of joint designs were developed and considered based on load capacity, constructability,
ease of repair, and aesthetics. Review of the initial design concept led to the selection of two
potential joint designs for component testing. The designs selected for component testing were
Joint Design H, a grouted, wide-flange beam joint connection and Joint Design D, a dry joint
connection consisting of a shear tube and through bolts located in pockets at the outside edge of
the rail beam.

The first round of component testing of the precast bridge rail joint designs was

conducted to evaluate the feasibility of the two joint concepts and suggest potential

324



February 13, 2012
MwRSF Report No. TRP-03-239-12

improvements to the designs. Test nos. PCRB-1 and PCRB-2 were conducted on Joint Design H
and Joint Design D, respectively. The joints were tested by impacting short sections of the top
rail beam of the bridge rail mounted on supports with the selected joint installed. The rail beam
segments were then impacted by a bogie vehicle to produce the anticipated design loads. Both of
the component test resulted in failure of the joint. Both joints displayed limited ductility and
insufficient ability to sustain resistance to the design impact load during the impact. In addition,
critical components of both joint designs failed during the testing. While the joint designs tested
in test nos. PCRB-1 and PCRB-2 did not meet the design goals, they did demonstrate the
potential to be used in the bridge rail design with the proper modifications.

Following the initial round of joint component testing, both the grouted and dry joint
designs were revised to improve their capacity. A third joint design was also developed that
considered an alternative grouted joint configuration. A second round of component testing was
performed on these refined joint designs to determine if they met the design criteria. Test nos.
PCRB-3, PCRB-4, and PCRB-5 were conducted on the refined grouted joint, the refined dry
joint, and the alternative grouted joint design, respectively. The setup of the joint testing was
similar to the previous testing. Results from the second round of bogie testing found that the
revised grouted joint performed the best. This joint design met the design impact loads and
retained its integrity. The revised dry joint proved to be capable of meeting similar impacts
loads, but large pieces of concrete were disengaged from the joint during the component test.
This behavior was undesirable, but it could be remedied through improved confinement of the
concrete in the area of the joint pockets. The alternative grouted joint design fractured and failed
very quickly and was deemed unacceptable for use in the bridge rail system. Following the

results of the component testing, the revised grouted joint was chosen as the primary joint design
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for the precast bridge rail system. It was believed that revised dry joint could be further revised
to provide a second connection alternative if desired.

The final part of the design effort for the precast concrete bridge rail was to develop a
connection between the bridge rail segments and the bridge deck. The design of the attachment
focused on effectively transferring both shear and moment loads to the bridge deck without
causing structural damage to the deck. Several attachment concepts were considered and
evaluated based on capacity, constructability, and symmetry. Deck Attachment B was chosen as
the most ideal design. This attachment employed four threaded rods of equivalent size to connect
the rail posts to the bridge deck. This configuration allowed the rail segments to remain
symmetric while utilizing a quick and simple method of fastening the segments to the bridge
deck. Additional reinforcement details for the bridge deck were also designed to provide for the
attachment of the post-to-deck anchorage. These reinforcement details provided additional
capacity in the area of the post attachment to the deck while creating only minimal changes to
the standard cast-in-place deck construction.

The individual design components of the new, precast bridge rail system were combined
to create a prototype rail section design. Full CAD details of the prototype precast bridge rail
design were prepared, including details for installation and mounting of the new design on a
simulated concrete bridge deck at the MwRSF test facility.

The design of the new, precast concrete bridge railing system will significantly reduce
construction time and should ultimately reduce overall costs as contractors and the precast
industry gain experience with the new system. Construction of precast concrete railings will be
much less weather sensitive as compared to the field installation cast-in-place, concrete railings.

One additional benefit of the reduced construction time would result in a more-timely opening of
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a bridge to the motoring public. The reduction in bridge construction time will improve work-
zone safety for workers and motorists due to the reduced time period and exposure for the work
zone near the bridge. Accident studies have found that accident and fatality rates increase in
work zones. Thus, a reduced duration for the work zone should reduce accidents and improve
safety. Further, a precast barrier system will greatly simplify barrier repair and maintenance
should any damage occur during a moderate truck impact event. Standardized barrier
components will allow maintenance personnel to easily remove and replace any damaged barrier
components in a timely and efficient manner without requiring long periods of lane closure.
Minimizing the bridge rail repair time also improves work-zone safety by reducing worker
exposure to traffic. Finally, aesthetic features can be easily cast into the face of a precast barrier
system without the high costs associated with field construction. Hence, the new barrier system
allows designers much greater flexibility to develop bridge designs that contribute to the overall
beauty of our nation’s highways. In addition, it is believed that the rapid construction and
innovative design allowed through the use of precast rail segments will provide the giant step in
the advancement of bridge rail construction and safety.
11.2 Recommendations and Future Work

Only one design element of the precast bridge rail remained unfinished at the end of the
research effort. The details for the bridge rail end sections were not finalized. MwRSF prepared
preliminary concepts for the end section details, but the final details were left unfinished until the
compliance testing of the new, precast bridge rail design was complete.

The original plan for the precast bridge rail project described herein included further
component testing of a single rail section on a simulated concrete bridge deck to evaluate the

connection between the bridge rail and the bridge deck. In addition, full-scale crash testing was
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planned to evaluate the design and provide compliance for acquiring FHWA acceptance of the
system. However, the intensive design and component testing efforts involved in the
development of the precast bridge rail system did not leave sufficient funding for completion of
these tasks. MwRSF researchers believe that the development of the precast bridge rail system
could be completed through completion of the full-scale crash testing. Thus, it is recommended
that the remaining full-scale crash testing be completed in order to finish the development of the
new, precast bridge rail system.

Three crash tests are required according to the TL-4 impact conditions in MASH - a
small car test, a pickup truck test, and a single-unit truck test. Since the railing geometry was
designed to mitigate any propensity for small car wheel snag on the railing or post components,
MwRSF believes that the small car test likely will be waived from the test matrix. However,
MwRSF believes that both the pickup truck and single-unit truck crash tests will be required for
certifying and garnering FHWA acceptance for the new bridge railing system. Thus, two full-
scale crash tests will be required for evaluation and Federal acceptance under the requirements of
MASH: (1) a 10,000-kg (22,000-1b) single-unit truck impacting at 56 mph (90 km/hr) and 15
degrees; and (2) a 2,268-kg (5,000-1b) pickup truck impacting at 62 mph (100 km/hr) and 25
degrees.

Full-scale crash testing and FHWA acceptance of the new bridge rail will aid
implementation of the design as the benefits of the system become evident. New construction
techniques will be developed to more rapidly install vehicular bridge railings, thus allowing for a
more advanced bridge opening to the motoring public. The decreased construction time will
result in improved safety of workers and motorists as well as decreased traffic congestion and the

length of time that a work zone is operational. The completion of this effort will demonstrate to
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other State DOTs that new, innovative bridge railings are feasible and available for use across

the U.S.
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APPENDIX A. Additional Rail to Rail Joint Concepts
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Figure A-1. Dry Rail Joint — Slider Tube
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Figure A-2. Dry Rail Joint — Slider Tube Assembly
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Figure A-3. Dry Rail Joint — Plates Underneath Rail
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Figure A-4. Dry Rail Joint — Structural Steel Shape (C-Channel) Underneath Rail
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Figure A-5. Dry Rail Joint — Bolts Through End Balusters
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Figure A-6. Dry Rail Joint — Bolts and Shear Pipes Through End Balusters
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Figure A-7. Dry Rail Joint — Unsymmetrical, One-Way Bolt Assembly
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Figure A-8. Grouted Rail Joint — Side Bolts and Vertical, Center Grout Pocket
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Figure A-9. Grouted Rail Joint — Large Grout Pocket with exposed Steel Reinforcement
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Figure A-10. Grouted Rail Joint — Structural Steel Shape in Center Grout Pocket
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