

DOWNSTREAM ANCHORING REQUIREMENTS FOR THE MIDWEST GUARDRAIL SYSTEM

Submitted by

Mario Mongiardini, Ph.D. Former Post-Doctoral Research Assistant

> John D. Reid, Ph.D. Professor

Research Associate Professor MwRSF Director

Dean L. Sicking, Ph.D., P.E.

Emeritus Professor

Ronald K. Faller, Ph.D., P.E.

Cody S. Stolle, Ph.D., E.I.T.

Post-Doctoral Research Assistant

Karla A. Lechtenberg, M.S.M.E., E.I.T. **Research Associate Engineer**

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

WISCONSIN DEPARTMENT OF TRANSPORTATION

4802 Sheboygan Avenue Madison, Wisconsin 53707

MwRSF Research Report No. TRP-03-279-13

October 28, 2013

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-279-13	2.	3. Recipient's Accession No.
4. Title and Subtitle DOWNSTREAM ANCHORING REQUIREMENTS FOR THE MIDWEST GUARDRAIL SYSTEM		5. Report Date
		October 28, 2013
		6.
7. Author(s)		8. Performing Organization Report No.
Mongiardini, M., Faller, R.K.		TRP-03-279-13
Stolle, C.S., and Lechtenberg, K.A.		
9. Performing Organization Name and Address Midwest Roadside Safety Facility (MwRSF)		10. Project/Task/Work Unit No.
Nebraska Transportation Center University of Nebraska-Lincoln		11. Contract © or Grant (G) No.
130 Whittier Research Center		TPF-5(193) Suppl.# 28
2200 Vine Street		
Lincoln, Nebraska 68583-0853		
12. Sponsoring Organization Name and Add Wisconsin Department of Tra		13. Type of Report and Period Covered Final Report: 2010 – 2013
4802 Sheboygan Avenue		1
Madison, Wisconsin 53707		14. Sponsoring Agency Code
15. Supplementary Notes Prepared in cooperation with	U.S. Department of Transpo	ortation, Federal Highway Administration.
16. Abstract (Limit: 200 words) Most state Departments of Transportation use simple adaptations of crashworthy guardrail end terminals as downstream anchorage systems, which typically include breakaway posts and an anchor cable. The safety performance of these downstream anchorage systems, when struck in reverse-direction impacts, is not well-known. A research study was proposed to analyze and crash test one trailing-end anchorage system involving a modified Breakaway Cable Terminal (BCT) terminal to the MGS guardrail. Bogie component tests were used to validate computer simulation models of the downstream end anchorage. Crash simulations with vehicles similar to the 2270P pickup truck and 1100C small car		

downstream end anchorage. Crash simulations with vehicles similar to the 22/0P pickup truck and 1100C small car identified in the Manual for Assessing Safety Hardware (MASH) were used to determine (1) an effective critical impact point of the downstream system at the end of the length of need (LON) and (2) the location which maximizes the instability, snag, and wedging potential of a small car beneath the anchor cable. The end of the LON was defined as a downstream critical impact point (CIP) at which the terminal would no longer redirect an errant vehicle but instead gate and permit the vehicle to encroach behind the system. Two crash tests were conducted. A 5,172 lb (2,346 kg), 2270P pickup impacted the 6th post from the downstream trailing anchorage at 63.0 mph (101.4 km/h) and 26.4 deg, which caused the terminal to gate, and the vehicle proceeded behind the system. A second test, consisting of a 2,619 lb (1,188 kg) 1100C small car impacting the system 4 in. (102 mm) upstream of the 3rd post from the downstream trailing anchor at 62.0 mph (99.8 km/h) and 25.5 deg, resulted in acceptable redirection. Based on these crash tests and the simulations, recommended guidelines were provided for shielding obstacles behind the downstream anchorage of an MGS guardrail.

17. Document Analysis/Descriptors Highway Safety, Crash Test, Roadside Appurtenances,		18. Availability Statement	
Compliance Test, MASH, Downstream Anchorage,		No restrictions. Document available from:	
Guardrail, Midwest Guardrail System (MGS), and		National Technical Information Services,	
Terminal		Springfield, Virginia 22161	
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	472	

DISCLAIMER STATEMENT

This report was completed with funding from the Wisconsin Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Wisconsin Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration. Test nos. BCTRS-1, BCTRS-2, MGSEA-1, DSAP-1, and DSAP-2 were non-compliant component tests conducted for research and development purposes only.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mr. Scott Rosenbaugh, Research Associate Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Wisconsin Department of Transportation for

sponsoring this project and MwRSF personnel for constructing the barriers and conducting the

crash tests.

Acknowledgement is also given to the following individuals who made a contribution to

the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager R.W. Bielenberg, M.S.M.E., E.I.T., Research Associate Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Associate Engineer C.L. Meyer, B.S.M.E., E.I.T., Former Research Associate Engineer A.T. Russell, B.S.B.A., Shop Manager K.L. Krenk, B.S.M.A., Maintenance Mechanic D.S. Charroin, Laboratory Mechanic S.M. Tighe, Laboratory Mechanic Undergraduate and Graduate Research Assistants

Wisconsin Department of Transportation

Jerry Zogg, P.E., Chief Roadway Standards Engineer John Bridwell, P.E., Standards Development Engineer Erik Emerson, P.E., Standards Development Engineer

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	xvii
1 INTRODUCTION 1.1 Background 1.2 Objectives 1.3 Scope 1.4 Methods Used	1 2 2
 2 LITERATURE REVIEW	4
3 REVIEW STATE DOT TRAILING-END ANCHORAGES	
4 DYNAMIC COMPONENT TEST CONDITIONS AND INSTRUMENTATION 4.1 Purpose and Scope 4.2 Test Facility	
 4.3 Test Equipment and Instrumentation	
4.3.4 Compressive Load Cells	
 4.4 End of Test and Loading Event Determination	

5 COMPONENT TEST – ECCENTRICALLY LOADED BCT POST	
5.1 Test Setup and Instrumentation	
5.2 Results	
5.2.1 Test No. BCTRS-1	
5.2.2 Test No. BCTRS-2	
5.3 Discussion	47
6 DYNAMIC COMPONENT TEST – FOUNDATION TUBE	
6.1 Test Setup and Instrumentation	51
6.2 Results	51
6.3 Discussion	66
7 DYNAMIC COMPONENT TESTS – END ANCHOR SYSTEM	
7.1 Test Setup and Instrumentation	69
7.2 Test Results	
7.2.1 Test No. DSAP-1	
7.2.2 Test No. DSAP-2	
7.3 Discussion	91
8 NUMERICAL SIMULATIONS – COMPONENT MODELING	93
8.1 Wood Post Models	
8.2 Wood Splitting Simulation – Eccentrically-Loaded BCT Post	
8.3 Soil Foundation Tube and Soil Resistance Model	
8.4 Validation of the Downstream Anchorage	
9 NUMERICAL MODEL OF THE MGS BARRIER	111
9.1 Simulated Scenarios and Results	
9.1 Simulated Scenarios and Results	
9.1.2 Determination of Downstream End of LON	
9.1.2.1 BCT End Posts with Nominal Strength	
0	
9.1.2.2 BCT End Posts with Lowest Expected Strength	120
10 TEST REQUIREMENTS AND EVALUATION CRITERIA	
10.1 Test Requirements	
10.2 Evaluation Criteria	
10.3 Soil Strength Requirements	134
11 TEST CONDITIONS	
11.1 Test Facility	
11.2 Vehicle Tow and Guidance System	137
11.3 Test Vehicles	137
11.4 Simulated Occupant	145
11.5 Data Acquisition Systems	145
11.5.1 Accelerometers	
11.5.2 Rate Transducers	
11.5.3 Tensile Load Cell	
11.5.4 String Potentiometer	
11.5.5 Pressure Tape Switches	150

11.5.6 Digital Photography	150
12 MGS BARRIER WITH STANDARD MGS END ANCHORAGE	153
13 FULL-SCALE CRASH TEST NO. WIDA-1	178
13.1 Dynamic Soil Test	
13.2 Test No. WIDA-1	
13.3 Weather Conditions	
13.4 Test Description	
13.5 Barrier Damage	
13.6 Upstream End Anchor Loads	
13.7 Vehicle Damage	
13.8 Occupant Risk	185
13.9 Discussion	
	202
14 FULL-SCALE CRASH TEST NO. WIDA-2	
14.1 Static Soil Test	
14.2 Test No. WIDA-2	
14.3 Weather Conditions	
14.4 Test Description	
14.5 Barrier Damage	
14.6 Vehicle Damage 14.7 Occupant Risk	
14.7 Occupant Kisk	
	207
15 ANALYSIS AND DISCUSSION	229
16 DESIGN GUIDELINES FOR MGS DOWNSTREAM END ANCHORAGE	231
17 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	239
18 REFERENCES	243
19 APPENDICES	247
Appendix A. State DOT's Plans and/or Design Details for Downstream End	247
Anchorages	248
Appendix B. Material Specifications and Mill Certifications	
Appendix C. Bogie Test Results	
Appendix D. Vehicle Center of Gravity Determination	
Appendix E. System Details, Test No. WIDA-2	
Appendix E. System Details, Test No. WIDA-2	
Appendix G. Permanent Splice Displacements	
Appendix H. Vehicle Deformation Records	
Appendix I. Accelerometer and Rate Transducer Data Plots, Test No. WIDA-1	
Appendix J. Accelerometer and Rate Transducer Data Plots, Test No. WIDA-2	

LIST OF FIGURES

Figure 1. SRT End Terminal Slotted Bearing Plate [12]	9
Figure 2. BCT Post Trailing-End Terminal Adopted by Wisconsin DOT [25]	
Figure 3. Trailing-End Terminal Adopted by Iowa DOT with BCT Posts and Thrie Beam	
[19]	17
Figure 4. Rigid-Frame Bogie used for Test Nos. BCTRS-1 and BCTRS-2	19
Figure 5. Rigid-Frame Bogie used for Test Nos. MGSEA-1, DSAP-1, and DSAP-2	
Figure 6. Tensile Load Cell Location, Test No. MGSEA-1	23
Figure 7. Tensile Load Cell Setup, Test Nos. DSAP-1 and DSAP-2	
Figure 8. Compressive Load Cell Placement, Test No. DSAP-1	
Figure 9. String Pot Backup Structure and Attachment Location, Test Nos. MGSEA-1,	
DSAP-1 and DSAP-2	27
Figure 10. Bogie Testing Matrix and Setup, Test Nos. BCTRS-1 and BCTRS-2	34
Figure 11. BCT Wood Post, Test Nos. BCTRS-1 and BCTRS-2	
Figure 12. Eccentric Impact Post Attachment, Test Nos. BCTRS-1 and BCTRS-2	36
Figure 13. Eccentric Impact Post Attachment Components, Test Nos. BCTRS-1 and	
BCTRS-2	
Figure 14. Eccentric Impact Bogie Head, Test Nos. BCTRS-1 and BCTRS-2	38
Figure 15. Eccentric Impact Bogie Head Components, Test Nos. BCTRS-1 and BCTRS-2	
Figure 16. Bill of Materials, Test Nos. BCTRS-1 and BCTRS-2	40
Figure 17. Test Setup, Test Nos. BCTRS-1 and BCTRS-2	41
Figure 18. Time-Sequential and Post-Impact Photographs, Test No. BCTRS-1	43
Figure 19. Force vs. Deflection and Energy vs. Deflection, Test No. BCTRS-1	44
Figure 20. Time-Sequential and Post-Impact Photographs, Test No. BCTRS-2	46
Figure 21. Force vs. Deflection and Energy vs. Deflection, Test No. BCTRS-2	47
Figure 22. Force vs. Deflection Comparison, Test Nos. BCTRS-1 and BCTRS-2	
Figure 23. Energy vs. Deflection Comparison, Test Nos. BCTRS-1 and BCTRS-2	50
Figure 24. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 25. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 26. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 27. Post Details, Test No. MGSEA-1	
Figure 28. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 29. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 30. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 31. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 32. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 33. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 34. Bogie Testing Matrix and Setup, Test No. MGSEA-1	
Figure 35. Test Setup, Test No. MGSEA-1	
Figure 36. Test Setup, Test No. MGSEA-1	
Figure 37. Time-Sequential and Post-Impact Photographs, Test No. MGSEA-1	
Figure 38. Forces vs. Time and Displacement vs. Time, Test No. MGSEA-1	67
Figure 39. Bogie Force vs. Soil Tube Displacement Measured by String Pot, Test No.	
MGSEA-1	
Figure 40. Bogie Testing Matrix and Setup, Test Nos. DSAP-1 and DSAP-2	
Figure 41. Connection Details, Test Nos. DSAP-1 and DSAP-2	71

Figure 42. Modified BCT Cable Assembly, Test Nos. DSAP-1 and DSAP-2	72
Figure 43. Load Cell Locations, Test Nos. DSAP-1	73
Figure 44. Modified BCT Cable with Load Cell Assembly, Test Nos. DSAP-1 and DSAF	
Figure 45. Modified BCT Cable, Test Nos. DSAP-1 and DSAP-2	75
Figure 46. Shackle and Eye Nut, Test Nos. DSAP-1 and DSAP-2	76
Figure 47. BCT Timber Post and Foundation Tube, Test Nos. DSAP-1 and DSAP-2	
Figure 48. Rail Section Details, Test Nos. DSAP-1 and DSAP-2	
Figure 49. Bill of Materials, Test Nos. DSAP-1 and DSAP-2	
Figure 50. Bill of Materials, Test Nos. DSAP-1 and DSAP-2 (cont'd)	
Figure 51. Bogie Test Setup, Test Nos. DSAP-1 and DSAP-2	
Figure 52. Load Cell Setup, Test Nos. DSAP-1 and DSAP-2	
Figure 53. Forces vs. Time and Displacement vs. Time, Test No. DSAP-1	
Figure 54. Time-Sequential Photographs, Test No. DSAP-1	
Figure 55. Post-Impact Photographs, Test No. DSAP-1	86
Figure 56. Force vs. Time and Displacement vs. Time, Test No. DSAP-2	
Figure 57. Time-Sequential Photographs – Front View, Test No. DSAP-2	
Figure 58. Time-Sequential Photographs – Rear View, Test No. DSAP-2	
Figure 59. Post-Impact Photographs, Test No. DSAP-2	
Figure 60. Anchor Cable Load vs. Downstream Foundation Tube Displacement, Test No.	
DSAP-2	
Figure 61. Sample Wood Post Impact Simulation to Validate Wood Material Model	94
Figure 62. Force vs. Deflection, Simulation and Tests on CRT Posts at 0-deg Impact	95
Figure 63. Energy vs. Deflection, Simulation and Tests on CRT Posts at 0-deg Impact	95
Figure 64. Force vs. Deflection, Simulation and Tests on CRT Posts at 45-deg Impact	96
Figure 65. Energy vs. Deflection, Simulation and Tests on CRT Posts at 45-deg Impact	96
Figure 66. Force vs. Deflection Curves, Simulation and Tests on CRT Posts at 90-deg	
Impact	97
Figure 67. Energy vs. Deflection, Simulation and Tests on CRT Posts at 90-deg Impact	97
Figure 68. Example Simulation of Test Nos. BCTRS-1 and BCTRS-2 to Validate Wood	
Model	
Figure 69. Time-Sequential Images, Test BCTRS-1 and Simulation	
Figure 70. Force vs. Deflection, Simulation and Eccentric Tests on BCT Posts	100
Figure 71. Energy vs. Deflection, Simulation and Eccentric Tests on BCT Posts	101
Figure 72. Soil FoundationTube and Soil Resistance Model	
Figure 73. Time-Sequential Images, Test and Simulation, MGSEA-1	104
Figure 74. Force vs. Deflection, Test and Simulation, Test No. MGSEA-1	
Figure 75. Model of Test No. DSAP-2 Used to Validate End Anchor	107
Figure 76. BCT Cable Force vs. Top of Soil Tube Deflection, Test and Simulation	107
Figure 77. Time-Sequential Images, Test and Simulation, Test No. DSAP-2	108
Figure 78. LS_DYNA Model Used to Simulate Impact in Close proximity to the	
Downstream End Anchor	
Figure 79. Vehicle-Cable Interaction at Onset of End Post Fracturing	114
Figure 80. Vehicle-Cable Interaction at Onset of End Post Fracturing (continued)	
Figure 81. Vehicle-Cable Interaction at Onset of End Post Fracturing (continued)	116
Figure 82. Tire-Bearing Plate Contact Occuring for Various Initial Impact Points - 11000	C117
Figure 83. Vehicle-Cable Interaction for Critical Impact Points with 32-in. (813-mm) Tal	1
MGS	118

Figure 84. Impact at Midspan of 2 nd and 3 rd Post from Downstream End with 32-in. (813-	
mm) Tall MGS (Strong Wood)	.119
Figure 85. Simple Support (Shown in Blue) at Downstream End Post	.121
Figure 86. Simulated Impact at the 1100C CIP (Bolted Connection and Simple Support)	.123
Figure 87. Trajectories and Lateral Positions of 2270P Vehicle for Various Impact Points –	
Without Suspension Failure	.124
Figure 88. Trajectories and Lateral Positions of 2270P Vehicle for Various Impact Points –	
With Suspension Failure	
Figure 89. Simulated Kinematics of 2270P for Impact at Identified End of LON (Overhead)	.127
Figure 90. Simulated Kinematics of 2270P for Impact at Identified End of LON	
Figure 91. Simulated Kinematics of 2270P for Impact at Identified End of LON	.129
Figure 92. Simulated Trajectory of the 2270P c.g. for Impact at Identified End of LON	.129
Figure 93. Vehicle Redirection for Impact Occurring at 6 th Post from Downstream End	
Figure 94. Tire-Bearing Plate Contact for Impact at 2 nd Post from Downstream End - 2270P	.132
Figure 95. Test Vehicle, Test No. WIDA-1	.139
Figure 96. Vehicle Dimensions, Test No. WIDA-1	
Figure 97. Test Vehicle, Test No. WIDA-2	
Figure 98. Vehicle Dimensions, Test No. WIDA-2	
Figure 99. Target Geometry, Test No. WIDA-1	
Figure 100. Target Geometry, Test No. WIDA-2	
Figure 101. Load Cell Setup, Test No. WIDA-1	
Figure 102. String Pot Setup, Test No. WIDA-1	
Figure 103. Camera Locations, Speeds, and Lens Settings, Test No. WIDA-1	
Figure 104. Camera Locations, Speeds, and Lens Settings, Test No. WIDA-2	
Figure 105. Test Installation Layout, Test No. WIDA-1	
Figure 106. 31-in. (787-mm) Tall Blocked MGS Details, Test No. WIDA-1	
Figure 107. Upstream End Anchor Details, Test No. WIDA-1	
Figure 108. Anchor Details, Test No. WIDA-1	
Figure 109. Downstream End Anchor Details, Test No. WIDA-1	
Figure 110. Modified BCT Cable with Load Cell Assembly, Test No. WIDA-1	
Figure 111. Modified BCT Cable, Test No. WIDA-1	
Figure 112. Shackle and Eye Nut for Modified BCT Cable, Test No. WIDA-1	
Figure 113. Line Post Details, Test No. WIDA-1	
Figure 114. Anchor Post Details, Test No. WIDA-1	
Figure 115. BCT Anchor Cable Details, Test No. WIDA-1	
Figure 116. Ground Strut and Anchor Bracket Details, Test No. WIDA-1	
Figure 117. W-Beam Guardrail Details, Test No. WIDA-1	
Figure 118. Bill of Materials, Test No. WIDA-1	
Figure 119. Bill of Materials, Test No. WIDA-1 (continued)	
Figure 120. Test Installation Photographs, Test No. WIDA-1	
Figure 121. Test Installation Photographs, Test No. WIDA-1	
Figure 122. Test Installation Photographs, Test No. WIDA-1	
Figure 123. Test Installation Layout, Test No. WIDA-2 Figure 124. 32-in. (813-mm) Tall Blocked MGS Details, Test No. WIDA-2	
Figure 124. 52-m. (815-mm) Tan Blocked MOS Details, Test No. WIDA-2	
Figure 125. Test Installation Photographs, Test No. WIDA-2	
Figure 120. Test Installation Photographs, Test No. WIDA-2	177
11gure 127. 10st Instantation 1 notographs, 10st No. WIDA-2	.1//

Figure 128. Force vs. Deflection at Upstream End Anchorage, Test No. WIDA-1	183
Figure 129. Summary of Test Results and Sequential Photographs, Test No. WIDA-1	187
Figure 130. Additional Sequential Photographs, Test No. WIDA-1	
Figure 131. Additional Sequential Photographs, Test No. WIDA-1	189
Figure 132. Additional Sequential Photographs, Test No. WIDA-1	190
Figure 133. Documentary Photographs, Test No. WIDA-1	191
Figure 134. Impact Location, Test No. WIDA-1	192
Figure 135. Vehicle Final Position and Trajectory Marks, Test No. WIDA-1	193
Figure 136. System Damage, Test No. WIDA-1	
Figure 137. Rail Slot Tearing at Post Nos. 24 and 28, Test No. WIDA-1	195
Figure 138. Details of Rail Damage, Test No. WIDA-1	
Figure 139. System Damage at Post Nos. 21 through 24, Test No. WIDA-1	197
Figure 140. System Damage at Post Nos. 25 through 29, Test No. WIDA-1	198
Figure 141. Anchor Cable Damage, Test No. WIDA-1	
Figure 142. Vehicle Damage, Test No. WIDA-1	200
Figure 143. Vehicle Damage, Test No. WIDA-1	
Figure 144. Undercarriage and Suspension Damage, Test No. WIDA-1	202
Figure 145. Summary of Test Results and Sequential Photographs, Test No. WIDA-2	211
Figure 146. Additional Sequential Photographs, Test No. WIDA-2	212
Figure 147. Additional Sequential Photographs, Test No. WIDA-2	
Figure 148. Additional Sequential Photographs, Test No. WIDA-2	
Figure 149. Documentary Photographs, Test No. WIDA-2	
Figure 150. Impact Location, Test No. WIDA-2	
Figure 151. Vehicle Final Position and Trajectory Marks, Test No. WIDA-2	
Figure 152. System Damage, Test No. WIDA-2	
Figure 153. Rail Slot Tearing at Post Nos. 27 and 29, Test No. WIDA-2	
Figure 154. Rail Damage, Test No. WIDA-2	
Figure 155. System Damage at Post Nos. 25 through 29, Test No. WIDA-2	
Figure 156. Anchor Cable Damage, Test No. WIDA-2	
Figure 157. Vehicle Damage, Test No. WIDA-2	
Figure 158. Vehicle Damage, Test No. WIDA-2	
Figure 159. Vehicle Damage - Windshield Glue Strip, Test No. WIDA-2	
Figure 160. Vehicle Damage - Windshield, Test No. WIDA-2	
Figure 161. Vehicle Undercarriage Damage, Test No. WIDA-2	227
Figure 162. Traces of Bearing Plate Motion Path along Vehicle's Front End, Test No.	•••
WIDA-2	
Figure 163. Spinning of Downstream Anchor End Post, Test No. WIDA-2	
Figure 164. Redirection of 2270P at Identified End of LON	
Figure 165. Redirection of 2270P at Identified End of LON	
Figure 166. Predicted and Actual Maximum Penetration of 2270P in Test No. WIDA-1.	234
Figure 167. Proposed MGS Placement Guidelines for Shielding Hazards Near MGS	020
Downstream End Anchorage or Trailing-End Terminal	
Figure A-1. Illinois DOT Terminal Type 1B	
Figure A-2. Illinois DOT Terminal Type 2	
Figure A-3. Iowa DOT Terminal BA-203	
Figure A-4. Iowa DOT Terminal BA-204	
Figure A-5. Kansas DOT Terminal MGS Type II	

Figure A-6. Minnesota DOT Standard plate 8307R	258
Figure A-7. Minnesota DOT Standard plate 8307R	
Figure A-8. Minnesota DOT Standard plate 8307R	
Figure A-9. Minnesota DOT Standard plate 8307R	
Figure A-10. Minnesota DOT Standard plate 8308R	
Figure A-11. Minnesota DOT Standard plate 8308R	
Figure A-12. Minnesota DOT Standard plate 8308R	
Figure A-13. Minnesota DOT Standard plate 8308R	
Figure A-14. Missouri DOT Drawing 606.00AT	267
Figure A-15. Missouri DOT Drawing 606.00AT	268
Figure A-16. Missouri DOT Drawing 606.00AT	
Figure A-17. Missouri DOT Drawing 606.00AT	
Figure A-18. Missouri DOT Drawing 606.00AT	
Figure A-19. Missouri DOT Drawing 606.00AT	272
Figure A-20. Missouri DOT Drawing 606.00AT	
Figure A-21. Nebraska DOT Special Plan C	
Figure A-22. Ohio DOT Terminal Type T	
Figure A-23. Ohio DOT Terminal Type T	
Figure A-24. South Dakota DOT Drawing 630.80	
Figure A-25. South Dakota DOT Drawing 630.80	
Figure A-26. South Dakota DOT Drawing 630.32	
Figure A-27. South Dakota DOT Drawing 630.02	
Figure A-28. Wisconsin DOT Terminal Type 2	
Figure A-29. Wisconsin DOT Terminal Type 2	
Figure A-30. Wisconsin DOT Terminal Type 2	
Figure A-31. Wisconsin DOT Terminal Type 2	
Figure A-32. Wisconsin DOT Terminal Steel Plate Beam Guard Class B	
Figure A-33. Wyoming DOT Terminal Type C	
Figure A-34. Wyoming DOT Terminal Type D	
Figure A-35. Texas DOT Metal Beam Guard Fence Downstream Anchor Terminal	
Figure A-36. Type SFT	296
Figure A-37. Single Thrie-Beam Barrier End Aanchor	297
Figure A-38. Anchored-in-Backslope Rail	298
Figure B-1. 0.625-in. (16-mm) Post Bolts, Test Nos. DSAP-1 and DSAP-2	300
Figure B-2. 0.625-in. (16-mm) Post Bolts, Test Nos. DSAP-1 and DSAP-2	301
Figure B-3. 0.625-in. (16-mm) Post Bolts, Test Nos. DSAP-1 and DSAP-2	302
Figure B-4. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2	303
Figure B-5. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2	304
Figure B-6. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2	305
Figure B-7. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2	306
Figure B-8. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2	307
Figure B-9. Groundline Strut and Yoke, Test Nos.DSAP-1 and DSAP-2	308
Figure B-10. W6x8.5 6' (W152x12.6 1,829 mm) Long Steel Post,, Part a1, Test Nos.	
WIDA-1 and WIDA-2	311
Figure B-11. 6 ft-3 in. (1,905 mm) W-Beam MGS Section, Part a3, Test Nos. WIDA-1 and	
WIDA-2	312

Figure B-12. 12'-6" (3,810 mm) W-Beam MGS Section, Part a4, Test Nos. WIDA-1 and	
WIDA-2	313
Figure B-13. 12'-6" (3,810 mm) W-Beam MGS End Section, Part a5, Test Nos. WIDA-1	
and WIDA-2	314
Figure B-14. W-Beam Rounded End Section, Part a6, Test Nos. WIDA-1 and WIDA-2	315
Figure B-15. W-Beam Rounded End Section, Part a6, Test Nos. WIDA-1 and WIDA-2	316
Figure B-16. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
b1, Test Nos. WIDA-1 and WIDA-2	317
Figure B-17. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
	318
Figure B-18. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
b1, Test Nos. WIDA-1 and WIDA-2	319
Figure B-19. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
b1, Test Nos. WIDA-1 and WIDA-2	320
Figure B-20. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	001
b1, Test Nos. WIDA-1 and WIDA-2	321
Figure B-21. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	222
b1, Test Nos. WIDA-1 and WIDA-2	322
Figure B-22. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	222
b1, Test Nos. WIDA-1 and WIDA-2	323
Figure B-23. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2	324
Figure B-24. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	324
b1, Test Nos. WIDA-1 and WIDA-2	325
Figure B-25. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
b1, Test Nos. WIDA-1 and WIDA-2	326
Figure B-26. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
b1, Test Nos. WIDA-1 and WIDA-2	327
Figure B-27. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part	
b1, Test Nos. WIDA-1 and WIDA-2	328
Figure B-28. 16D Double Head Nail, Part b2, Test Nos. WIDA-1 and WIDA-2	329
Figure B-29. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
	330
Figure B-30. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	331
Figure B-31. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	332
Figure B-32. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
	333
Figure B-33. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	334
Figure B-34. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	335
Figure B-35. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	336
Figure B-36. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	337

Figure B-37. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
b3, Test Nos. WIDA-1 and WIDA-2	.338
Figure B-38. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part	
	.339
Figure B-39. 5/8 in. Diameter x 1 ¼ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	
	.340
Figure B-40. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	
	.341
Figure B-41. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	
,	.342
Figure B-42. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	2.42
	.343
Figure B-43. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	244
	.344
Figure B-44. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	.345
b4, Test Nos. WIDA-1 and WIDA-2 Figure B-45. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	.545
	.346
64, Test Nos. WIDA-1 and WIDA-2 Figure B-46. 5/8 in. Diameter x 1 ¹ / ₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part	,540
	.347
Figure B-47. 5/8 in. (16 mm) Diameter Flat Washer, Part b5, Test Nos. WIDA-1 and	,7-1
	.348
	.349
	.350
Figure B-50. 72 in. (1,829 mm) Long Foundation Tube, Part c2, Test Nos. WIDA-1 and	
	.351
Figure B-51. 72 in. (1,829 mm) Long Foundation Tube, Part c2, Test Nos. WIDA-1 and	
WIDA-2	.352
Figure B-52. Strut and Yoke Assembly, Part c3, Test Nos. WIDA-1 and WIDA-2	.353
Figure B-53. 8x8x5/8 in. (127x203x16 mm) Anchor Cable Bearing Plate, Part c4, Test	
	.354
Figure B-54. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2	
Figure B-55. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2	
Figure B-56. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2	
Figure B-57. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2	
Figure B-58. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2	
Figure B-59. Anchor Bracket Assembly, Part c6, Test Nos. WIDA-1 and WIDA-2	.360
Figure B-60. 2 3/8 in. (60 mm) O.D. x 6 in. (152 mm) Long BCT Post Sleeve, Part c7, Test	0.61
Nos.WIDA-1 and WIDA-2	.361
Figure B-61. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part	200
c8, Test Nos.WIDA-1 and WIDA-2	.362
Figure B-62. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part	262
c8, Test Nos.WIDA-1 and WIDA-2	.303
Figure B-63. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part c8, Test Nos.WIDA-1 and WIDA-2	361
Figure B-64. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part	.304
c8, Test Nos.WIDA-1 and WIDA-2	365
$0, 1001100.011DA^{-1}$ and $0.01DA^{-2}$.505

Figure B-65. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part	
c8, Test Nos.WIDA-1 and WIDA-2	366
Figure B-66. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	367
Figure B-67. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	368
Figure B-68. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	369
Figure B-69. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	370
Figure B-70. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	371
Figure B-71. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
	372
Figure B-72. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	373
Figure B-73. 5/8 in. Diameter x 1 ¹ / ₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part	
c9, Test Nos.WIDA-1 and WIDA-2	374
Figure B-74. 7/8 in. Diameter x 7 ¹ / ₂ in. (M16x191 mm) Long Hex Head Bolt and Nut, Part	
	375
Figure B-75. 7/8 in. Diameter x 7 ¹ / ₂ in. (M16x191 mm) Long Hex Head Bolt and Nut, Part	
	376
Figure B-76. 7/8" [22 mm] Dia. Flat Washer, Part c11, Test Nos.WIDA-1 and WIDA-2	377
Figure C-1. Test No. BCTRS-1 Results (EDR-3)	
Figure C-2. Test No. BCTRS-1 Results (DTS)	
Figure C-3. Test No. BCTRS-2 Results (EDR-3)	
Figure C-4. Test No. BCTRS-2 Results (DTS)	
Figure C-5. Test No. MGSEA-1 Results (EDR-3)	
Figure C-6. Test No. MGSEA-1 Results (DTS-SLICE)	
Figure C-7. Test No. MGSEA-1 Results (Load Cell, DTS-SLICE, and EDR-3)	
Figure C-8. Test No. DSAP-1 Results (DTS)	
Figure C-9. Test No. DSAP-1 Results (Load Cells and DTS)	
Figure C-10. Test No. DSAP-2 Results (EDR-3)	
Figure C-11. Test No. DSAP-2 Results (Load Cells and EDR-3)	
Figure D-1. Vehicle Mass Distribution, Test No. WIDA-1	
Figure D-2. Vehicle Mass Distribution, Test No. WIDA-2	
Figure E-1. Test Installation Layout, Test No. WIDA-2	
Figure E-2. Post and Splice Details, Test No. WIDA-2	
Figure E-3. Upstream End Anchor Details, Test No. WIDA-2	
Figure E-4. Anchor Details, Test No. WIDA-2	
Figure E-5. BCT Anchor Cable Details, Test No. WIDA-2	
Figure E-6. Downstream End Anchor Details, Test No. WIDA-2	
Figure E-7. Line Post Details, Test No. WIDA-2	
Figure E-8. BCT Timber Post and Foudation Details, Test No. WIDA-2	
Figure E-9. Ground Strut and Anchor Bracket Details, Test No. WIDA-2	
Figure E-10. W-Beam Guardrail Details, Test No. WIDA-2	
Figure E-11. Bill of Materials, Test No. WIDA-2	

Figure F-1. Summary Sheet for Strong Soil Test Results, Test No. DSAP-2	406
Figure F-2. Test Day Dynamic Soil Strength, Test No. WIDA-1	
Figure F-3. Test Day Static Soil Strength, Test No. WIDA-2	
Figure H-1. Floor Pan Deformation Data – Set 1, Test No. WIDA-1	
Figure H-2. Floor Pan Deformation Data – Set 2, Test No. WIDA-1	
Figure H-3. Occupant Compartment Deformation Data – Set 1, Test No. WIDA-1	
Figure H-4. Occupant Compartment Deformation Data – Set 2, Test No. WIDA-1	
Figure H-5. Exterior Vehicle Crush (NASS) - Front, Test No. WIDA-1	
Figure H-6. Exterior Vehicle Crush (NASS) - Side, Test No. WIDA-1	
Figure H-7. Floor Pan Deformation Data – Set 1, Test No. WIDA-2	
Figure H-8. Floor Pan Deformation Data – Set 2, Test No. WIDA-2	
Figure H-9. Occupant Compartment Deformation Data – Set 1, Test No. WIDA-2	
Figure H-10. Occupant Compartment Deformation Data – Set 2, Test No. WIDA-2	
Figure H-11. Exterior Vehicle Crush (NASS) - Front, Test No. WIDA-2	
Figure H-12. Exterior Vehicle Crush (NASS) - Side, Test No. WIDA-2	
Figure I-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. WIDA-1	
Figure I-2. Longitudinal Occupant Impact Velocity (DTS), Test No. WIDA-1	
Figure I-3. Longitudinal Occupant Displacement (DTS), Test No. WIDA-1 Figure I-4. 10-ms Average Lateral Deceleration (DTS), Test No. WIDA-1	
Figure I-4. 10-Ins Average Lateral Deceleration (D13), Test No. WIDA-1 Figure I-5. Lateral Occupant Impact Velocity (DTS), Test No. WIDA-1	
Figure I-6. Lateral Occupant Displacement (DTS), Test No. WIDA-1	
Figure I-7. Acceleration Severity Index (DTS), Test No. WIDA-1	
Figure I-8. Vehicle Angular Displacements (DTS), Test No. WIDA-1	
Figure I-9. 10-ms Average Longitudinal Deceleration (DTS - SLICE), Test No. WIDA-1	
Figure I-10. Longitudinal Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-1	
Figure I-11. Longitudinal Occupant Displacement (DTS - SLICE), Test No. WIDA-1	
Figure I-12. 10-ms Average Lateral Deceleration (DTS - SLICE), Test No. WIDA-1	
Figure I-13. Lateral Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-1	
Figure I-14. Lateral Occupant Displacement (DTS - SLICE), Test No. WIDA-1	
Figure I-15. Acceleration Severity Index (DTS - SLICE), Test No. WIDA-1	440
Figure I-16. Vehicle Angular Displacements (DTS - SLICE), Test No. WIDA-1	441
Figure I-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. WIDA-1	442
Figure I-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. WIDA-1	443
Figure I-19. Longitudinal Occupant Displacement (EDR-3), Test No. WIDA-1	444
Figure I-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. WIDA-1	445
Figure I-21. Lateral Occupant Impact Velocity (EDR-3), Test No. WIDA-1	
Figure I-22. Lateral Occupant Displacement (EDR-3), Test No. WIDA-1	
Figure J-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. WIDA-2	
Figure J-2. Longitudinal Occupant Impact Velocity (DTS), Test No. WIDA-2	
Figure J-3. Longitudinal Occupant Displacement (DTS), Test No. WIDA-2	
Figure J-4. 10-ms Average Lateral Deceleration (DTS), Test No. WIDA-2	
Figure J-5. Lateral Occupant Impact Velocity (DTS), Test No. WIDA-2	
Figure J-6. Lateral Occupant Displacement (DTS), Test No. WIDA-2	
Figure J-7. Acceleration Severity Index (DTS), Test No. WIDA-2	
Figure J-8. Vehicle Angular Displacements (DTS), Test No. WIDA-2	
Figure J-9. 10-ms Average Longitudinal Deceleration (DTS - SLICE), Test No. WIDA-2	
Figure J-10. Longitudinal Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-2	438

Figure J-11. Longitudinal Occupant Displacement (DTS - SLICE), Test No. WIDA-2459
Figure J-12. 10-ms Average Lateral Deceleration (DTS - SLICE), Test No. WIDA-2
Figure J-13. Lateral Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-2461
Figure J-14. Lateral Occupant Displacement (DTS - SLICE), Test No. WIDA-2462
Figure J-15. Acceleration Severity Index (DTS - SLICE), Test No. WIDA-2463
Figure J-16. Vehicle Angular Displacements (DTS - SLICE), Test No. WIDA-2
Figure J-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. WIDA-2465
Figure J-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. WIDA-2466
Figure J-19. Longitudinal Occupant Displacement (EDR-3), Test No. WIDA-2
Figure J-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. WIDA-2468
Figure J-21. Lateral Occupant Impact Velocity (EDR-3), Test No. WIDA-2
Figure J-22. Lateral Occupant Displacement (EDR-3), Test No. WIDA-2
Figure J-23. Acceleration Severity Index (EDR-3), Test No. WIDA-2

LIST OF TABLES

1 INTRODUCTION

1.1 Background

In 2004, the Federal Highway Administration (FHWA) published a memorandum which provided guidelines for the selection of W-beam barrier terminals [1]. Within this document, the primary purpose of a guardrail end treatment system was defined as "providing anchorage for the barrier to allow the development of the full tensile strength of the W-beam rail element for all impacts occurring within the barrier length of need (LON) while minimizing injury to vehicle occupants in the event of a crash near or at the end of the terminal." This definition of end terminals explicitly indicates a need to minimize the potential for injuries resulting from impacts occurring in close proximity to a guardrail end terminal. Although downstream end terminals are commonly placed outside the clear zone of vehicles in opposing travel lanes, or on the trailing end of systems with one-directional traffic flow, the potential risks of impacts near these anchorage systems are still largely unknown.

Downstream anchorage systems for guardrail used by most state departments of transportation (DOTs) are generally simple adaptations of crashworthy end terminals, which typically include breakaway posts and an anchor cable. Based on the successful performance of crashworthy end terminals under reverse-direction impacts with pickup trucks, it is generally believed that these simplified, non-crashworthy downstream anchors will perform adequately when struck by pickup trucks. As stated in the FHWA memorandum, most W-beam guardrail terminals are considered to be gating devices. This characteristic means that when struck at or near the nose, the end treatment will yield, thus allowing the vehicle to continue into the area immediately laterally behind and beyond the terminal. The gating definition does not apply to end-on impacts. However, the location along the downstream segment of a guardrail where pickup trucks are no longer contained and redirected has yet to be adequately determined.

Further, these downstream end anchor designs may not perform in an acceptable manner when impacted by small cars. Severe vehicle snag could occur, thus resulting in unacceptable occupant ridedown accelerations and occupant impact velocities as well as vehicle instabilities.

1.2 Objectives

The objective of this research project was to assess the safety performance of a nonproprietary, trailing-end terminal attached to the Midwest Guardrail System (MGS) according to the Test Level 3 (TL-3) requirements of the American Association of State Highway Officials (AASTHO) *Manual for Assessing Safety Hardware* (MASH) [2]. In particular, the research focused on: (1) determining the downstream end of the guardrail system's LON for impacts with pickup trucks and (2) investigating the potential risks for small passenger cars to become unstable when impacting a non-proprietary, trailing-end terminal.

1.3 Scope

The scope of this research study was to identify the downstream end of the length of need, identify the critical impact location to maximize instability of an errant small car, evaluate the impact performance of the downstream end anchorage of the MGS according to modified 3-37 test conditions described in MASH, and determine the shielded window for hazards placed behind a downstream guardrail terminal.

1.4 Methods Used

The research approach consisted of three distinct phases: bogie testing; computer simulation modeling; and crash testing. First, bogie tests were conducted to evaluate the reaction of the MGS end anchorage in various loading conditions, including splitting of the wood post and a pull test of the cable anchor. Next, computer simulation models of the bogie tests were simulated using LS-DYNA [3] and validated against test results. These validated models were then inserted into a model of the MGS guardrail, and impacts were simulated using a 2270P

pickup model and an 1100C small car model. The end of the LON was estimated based on the simulations, and a crash test consisting of a 2270P vehicle impacting the downstream anchor at nominally 62.1 mph (100.0 km/h) and 25 degrees was conducted. In addition, the location identified in the simulations with the maximum small car instability and entrapment beneath the anchor cable was selected for crash testing an 1100C small car at nominally 62.1 mph (100.0 km/h) and 25 degrees. Results of the simulations and crash tests were used to identify recommended envelopes for allowing hazards to be located behind the guardrail system.

2 LITERATURE REVIEW

2.1 Development of the MGS Downstream Anchorage System

Breakaway cable terminal (BCT) anchorage systems, and their derivatives, have often been used as an economical means of providing tensile anchorage to a corrugated-beam guardrail system. Variations of the BCT are frequently used by many state DOTs, having been adopted for use in many crashworthy terminal ends. The original BCT terminal was first developed in the early 1970's by researchers at Southwest Research Institute (SwRI) [4] as part of multiple National Cooperative Highway Research Program (NCHRP) projects. Over time, this general end terminal had evolved in order to meet various crash testing requirements. In general, most end anchorage systems derived from BCT terminals have used the following main components: (1) steel foundation tubes with or without soil plates; (2) a steel compression strut between the tube foundations; (3) two breakaway wood posts; and (4) a steel cable anchor system.

Steel foundation tubes were first introduced in NCHRP Research Digest 124 as an alternative foundation for the BCT [5]. The steel foundation tubes enhance the post-soil resistance by distributing the load in a more homogenous manner, while also allowing for easier post replacement if fractured. The soil resistance can be further increased by attaching bearing plates to the foundation tubes, which increases the area of the tube exposed to the soil. The use of a compression strut between the tube foundations was first introduced during the development of the Eccentric Loader Terminal (ELT) to maximize the soil resistance by coupling two foundation tubes [6].

The end wood posts were designed to fail (i.e., break) in a controlled manner in order to allow an impacting vehicle to pass through without imposing a sudden deceleration or rapidly changing its trajectory. This release behavior minimizes the risk of vehicle rollover or snag on a cable anchorage system or on strong posts. Wood has historically been selected for use as a breakaway post due to it being readily available, relatively low cost, brittle fracture behavior, and the ability to control load duration and fracture energy with holes drilled through the post at the ground level.

Steel anchor cables have been used to develop the tensile strength of the rail for impacts occurring beyond the LON of the barrier. The concept of these cable anchor systems is simple; one end of the steel cable is anchored to the end post and the corresponding steel foundation tube near the ground line, while the other end of the cable is connected to the back of the rail through a mounting bracket. For many crashworthy guardrail end terminals, the bracket-to-rail connection has been designed so that it can be quickly released during end-on impacts where energy-absorbing heads are pushed down the rail.

2.2 Prior Reverse-Direction Testing of Guardrail End Terminals

Historically, the reverse-direction impact performance of a typical guardrail terminal has been assessed before it could be deemed crashworthy and approved for use along U.S. highways and roadways. In both MASH [2] and NCHRP Report No. 350 [7], the required trailing-end terminal crash test corresponds to designation no. 37. This specific impact scenario considers the case in which the terminal may be placed in the clear zone of opposing traffic and serves to evaluate the safety performance of the terminal when it is hit by an errant vehicle departing the opposite lane. This testing condition may provide useful information about the behavior of an anchor system located on the downstream end of the barrier.

Neglecting the different impact side of the vehicle, a reverse-direction terminal impact is fundamentally similar to the impact of the downstream end anchorage in the direction of normal travel flow. Recently Texas Transportation Institute (TTI) designed and tested a non-proprietary downstream anchorage for W-beam guardrail systems [8]. A full-scale crash test was run to assess the safety performance of the downstream end anchor design when impacted by the small passenger car under modified MASH test designation 3-37 conditions.

A broader evaluation of reverse-direction impact conditions on proprietary end terminals is available in Reference 9. Impact conditions and test results for reverse-direction crashes into both downstream trailing-end terminals and common upstream guardrail end terminals are summarized in Tables 1 and 2.

The end terminal systems summarized in Table 1 make use of a cable anchorage to ensure an appropriate longitudinal resistance of the rail during vehicular LON impacts. The cable anchorage allows the use of steel posts or breakaway wood posts. As such, the problems that were reported during the reverse-direction testing of these systems can be used to draw a synthesis of potential hazards and related solutions that could be helpful in the design of a trailing-end terminal.

Although cable anchors are advantageous to efficiently anchor the end of a guardrail system, these anchors may adversely affect system performance when struck with reversedirection or trailing-end impact conditions. From an analysis of the reverse-direction full-scale crash tests summarized in Table 2, two major potential hazards related to cable anchors emerged: (1) snag on the anchor cable and (2) engagement of the bearing plate with the vehicle undercarriage after the cable end post release.

A cable anchor may snag on components of an impacting vehicle, including the bumper, a wheel, or the undercarriage. The median configuration of the FLEAT end terminal adopted a T-shaped post breaker assembly, which was attached to the back of the end post to facilitate the release and rotation of the post and the subsequent release of the cable anchor during a reversedirection impact [10]. This post breaker mechanism assures a controlled release of the anchor, reducing the propensity for cable anchor plate entrapment and an associated potential instability

	Terminal Type							
System Properties	FLEAT Median [10] ET-2000 [11]		SRT [12]	BEST [13, 14]	TxDOT Terminal [8]			
Post Type [steel/wood]	Steel	Wood (x8) 6"x10" (152x254	+ Wood (x8) 6"x8"	Wood (x2) 5 ¹ / ₂ "x7 ¹ / ₂ " (140 mm x 191 mm) + Wood (x5) 6"x8" (152 mm x 203 mm)	Wood (x2) 5½"x7½" (140 mm x 190 mm)			
Foundation Tube Locations	Post nos. 1,2,4	1,2,4 Post nos. 1-4 Post nos. 1-2 Post nos. 1-2		Post nos. 1-2	Post nos. 1-2			
Ground Strut Type	Tube		Channel	Tube	Angle			
Unbolted Post Locations	Post no. 1	Post nos. 1,3	Post nos. 2-4, 6-10	None	Post no. 1			
Flared/Straight	Flared	Straight	Flared (parabolic w/ max offset of 4 ft at post 1)	Straight	Straight			

Table 1. Selected End	Terminals with Revers	se-Direction Imp	act Testing
		b Direction imp	act resums

Table 2. Test Designation No. 3-37 Crash Test Results for End Terminals (NCHRP Report No. 350 and MASH)

	Terminal Type							
Test Parameters	FLEAT Median [10]	ET-2000 [11]	SRT [12]	BEST [13-14]	TxDOT Terminal [8]			
Impact Point	3 ft–3¼ in. (1 m) upstream Post no. 4	Post no. 5	Post no. 5	Midspan post nos. 3&4	3 ft (0.9 m) upstream Post no. 3			
End of the LOL	N/A	Post 3	N/A	N/A	N/A			
Vehicle	2000P	2000P	2000P	2000P	1100C			
Impact Speed mph (km/h)	60.8 (97.8)	63.1 (101.5)	62.7 (100.9)	63.1 (101.5)	61.9 (99.6)			
Impact Angle (deg)	20.8	20.9	21	20.5	25.3			
Yes Snagging w/ (solved w/ cable anchor? deflector bracket) bracket)		No	No	No	No			

or unacceptable ridedown decelerations. Although this device was originally designed for impacts occurring on the back side of the rail, the same concept may be effectively implemented to accommodate vehicular impacts occurring on the front side of the rail. Even though the FLEAT post breaker releases the end cable away from the anchor post during an impact event, the loose end of the cable may still pose a hazard to the errant vehicle. For example, the bearing plate used to transfer the load from the cable to the anchor post and foundation tube may become trapped in the vehicle's suspension.

A reverse-direction impact with an SRT terminal caused a pickup truck to yaw and eventually roll over due to cable anchor entrapment and snag with the vehicle suspension [12]. In addition to increased instability, any snag associated with the cable anchor could lead to unacceptable ridedown decelerations. In order to reduce the propensity for bearing plate snag on a vehicle's suspension, designers of the SRT installed a slotted anchor plate secured to the end post with two screws to cleanly release away from the post after post fracture. This slotted bearing plate is shown in Figure 1. The slotted anchor plate cleanly released away from the anchor cable during a reverse-direction impact, thus leading to acceptable performance of the end terminal system.

Recently, TTI conducted a full-scale reverse-direction crash test with an 1100C vehicle into a non-proprietary, end anchor design [8]. The 1100C vehicle was believed to be more critical than the 2270P vehicle for the reverse-direction test, because the small car had a greater propensity to wedge under the rail and potentially snag on the end anchor. The crash-tested end anchor design, developed for the Texas Department of Transportation (TxDOT), was similar to the MGS end anchorage system [15], which was adopted from the modified BCT system and installed tangent to the roadway. The end anchor uses two BCT posts embedded into foundation tubes with a cable anchor. The two minor differences between the TxDOT anchor and MGS end

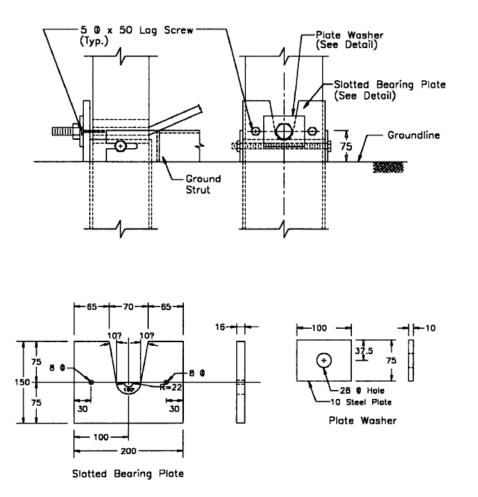


Figure 1. SRT End Terminal Slotted Bearing Plate [12]

anchorage were: (1) two C3x5 (C76x7.4) channel sections connected the foundation tubes instead of one C6x8.2 (C152x12.2) ground strut with two yokes; and (2) the W-beam rail was simply supported at the end post with a shelf angle bracket. The TTI end anchor design was successfully tested in combination with a 31-in. tall, 8-in. blocked MGS system.

The 1100C vehicle impacted the system 15 ft - $7\frac{1}{2}$ in. (4.8 m) upstream from the downstream end post. Although test results were successful, no specific investigation was noted to identify the critical impact location. The simple support condition at the end post may facilitate guardrail lift when the passenger car impacts the system in close proximity to the anchorage. This situation, which could increase the exposure of the vehicle's front end to the

cable anchor, may lead to instability due to snag of the impacting wheel on the cable. Further, the objectives of that research project did not include the determination of the end of the guardrail LON for the 2270P vehicle.

At present, limited research has been carried out to assess the safety of a guardrail barrier for vehicular impacts occurring in close proximity to non-crashworthy downstream anchorage systems. In fact, NCHRP Report No. 350 [7] nor MASH [2] do not specifically require a safety evaluation of a guardrail system under vehicular impacts occurring in close proximity to a downstream or trailing-end anchorage system.

2.3 Literature Review Summary

Previous pickup truck testing of end terminals using anchor cables under reversedirection impact conditions indicated that vehicle interaction with the cable anchor occurred. In the case of small passenger cars, this vehicle interaction with the anchor cable may cause instabilities or excessive occupant risk values. Only one full-scale crash test was conducted on a non-proprietary, trailing-end terminal using a MASH small passenger car under reverse-direction impact conditions, which did not indicate any particular problems. However, there remains concern that increased vehicle snag may occur when considering a different impact point.

3 REVIEW STATE DOT TRAILING-END ANCHORAGES

A standards review was conducted for the member states of the Midwest States Pooled Fund Program as well as for the states of California, Texas, and New York. This review indicated that different types of guardrail anchors were used for trailing-end terminals. Although the anchor requirements prescribed in the plans for each specific state vary, treatments generally pertained to one of two classes: (1) treatments inside or (2) treatments outside of the clear zone of traffic in opposite travel lanes. From the standard plans that were reviewed for the noted state DOTs, the end anchorage systems, or trailing-end terminals, are rarely considered to be part of the downstream LON.

When the downstream anchorage terminal is located within the clear zone of opposing traffic, most state DOTs use proprietary end terminals that have been successfully crash tested and evaluated under NCHRP Report No. 350 criteria [7] or the more recent MASH standards [2]. In those cases in which a crashworthy guardrail end terminal is not used, a crash cushion would be required for many scenarios.

When the downstream anchorage terminal is located outside the clear zone of the traffic coming from the opposing direction, various generic guardrail end terminals have been used, including adaptations of the Breakaway Cable Terminal (BCT) system. In general, these terminals consist of a straight segment of guardrail with one or two breakaway wood posts embedded into steel foundation tubes with a cable anchorage system. The use of steel foundation tubes increases the post soil resistance as compared to traditional soil-installed posts, allowing for a more controlled wood post fracture as well as easier post replacement. In most cases, these end anchorage systems use a ground strut to connect the first two posts together to improve the load distribution between end posts and increase the anchorage capacity.

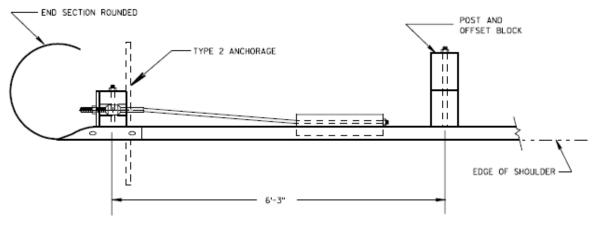
A summary of the generic trailing-end terminals in use by selected state DOTs is provided in Tables 3 and 4. From this review, it appeared that when non-proprietary, trailing-end terminals were utilized, the following two types were most often considered: (1) systems based on BCT posts and (2) systems buried in the backslope. In some cases, concrete anchorage system may be used as well. The drawings and the specifications for each system listed in Tables 3 and 4 can be found in Appendix A. The Wisconsin trailing-end anchorage system in use with many guardrail systems is shown in Figure 2.

The main advantage of non-proprietary anchor systems based on BCT posts is economics and ease of maintenance. Moreover, the use of BCT wood posts with a hole drilled at ground level allows for a controlled failure during vehicular impacts. On the other hand, the cable anchorage hardware at the end of the guardrail system may create a hazard for small cars. During a reverse-direction impact, a small car could be trapped or snagged on the sloped cable anchor, thus potentially increasing the ridedown acceleration to unacceptable values or causing vehicle rollover.

In addition to steel tube post foundations, concrete post foundations were historically used and are still in use by some state DOTs. Missouri DOT requires that posts are embedded into a concrete foundation. A concrete soil foundation was also previously used by Ohio DOT, but the concrete foundation was recently transitioned to a steel post foundation because it was believed to provide a stronger anchorage. A particular system proposed by the California Department of Transportation (Caltrans) [16] and the Minnesota DOT [17] consists of embedding the cable anchorage directly into a buried concrete foundation as an alternative to attaching the end of the cable to the end post through a classic bearing plate. Although constraining the cable anchor to a buried concrete block can increase the tensile resistance provided to the rail during an impact in close proximity to the anchorage, the cable would not be

State DOT	Terminal Designation	Rail Height (in.)	BCT Posts?	Cable Anchor?	Note	Trailing End Only?		
IL	Type 1B	31	Y	Y	Only to be installed where transition to dirt mound is possible. Flared system.	N		
[18]	Type 2	31	Y	Y	Only to be installed where end-on impacts are not a consideration.	Y		
IA	BA-203	31	Y	Y	Must be out of clear zone of opposing traffic.	Y		
[19]	BA-204	31	Y	Y	Must be out of clear zone of opposing traffic.	Y		
KS [20]	MGS Type II	31	Y	Y	Thrie beam w/ asymmetrical transition to barrier rail.	Y		
	Standard plate 8307R (Specification reference 2554)							
	i) Strut Anchorage	271/8	Y	Y	Must be out of clear zone of opposing traffic.	Y		
	ii) Buried Anchorage Assembly	271/8	Y	Y	Anchorage buried in soil.	Y		
MN	Standard plate 8338C (Specification reference 2554)							
[17]	i) Strut Anchorage	271/8	N (Steel posts)	Y	Must be out of clear zone of opposing traffic.	Y		
	ii) Buried Anchorage Assembly	271/8	N (Steel posts)	Y	Anchorage buried in soil.	Y		
	Drawing 606.00AT							
MO	i) Steel foundation tubes	27	Y	Y	Must be out of clear zone of opposing traffic.	Y		
[21]	ii) Concrete foundation	27	Y	Y	Must be out of clear zone of opposing traffic.	Y		
	iii) Anchored in backslope rail	27	Ν	N	For use with available back slopes. Anchorage provided by concrete block or steel post.	Ν		
NE [22]	Special Plan C	27	Y	Y	Must be out of clear zone of opposing traffic.	Y		
OH [23]	Type T Drawing GR-4.2	27¾	Y	Y	Must be out of clear zone of opposing traffic. The previous version w/ concrete foundation was replaced w/ steel foundation tubes.	Y		

Table 3. Summary of Non-Proprietary, Trailing-End Terminals for Reviewed State DOTs


13

October 28, 2013 MwRSF Report No. TRP-03-279-13

State DOT	Terminal Designation	Rail Height (in.)	BCT Posts?	Cable Anchor?	Note	Trailing End Only?
CD	Drawing 630.80	28 (32)	Y	Y	Either W-beam or thrie beam configuration. Must be out of clear zone of opposing traffic.	Y
SD [24]	Drawing 630.32	28	Ν	Ν	Must be out of clear zone of opposing traffic.	Y
[24]	Drawing 630.02	32	N	N	Thrie beam. Must be out of clear zone of opposing traffic.	Y
WI [25]	Type 2 Drawing S.D.D. 14 B 16-40	31¾	Y	Y	For one-way roadway only	Y
	Type C Drawing 606-1 (sheet 10)	27	Y	Y	Must be out of clear zone of opposing traffic.	Y
WY [26]	Type D (low-speed terminal) Drawing 606-1 (sheet 11)	27	Y	Y	Must be out of clear zone of opposing traffic.	N (only for short radius)
TX [27]	Metal Beam Guard Fence Anchor Terminal GF (31) DAT-11	31	Y	Y	Must be out of clear zone of opposing traffic.	Y
	Type SFT Drawing A77H1	27¾	Y	Y	Must be out of clear zone of opposing traffic. Thrie beam w/ asymmetrical transition to barrier rail.	Y
CA [16]	Single thrie beam barrier end anchor Drawing A78E1	32	Y	Y	Must be out of clear zone of opposing traffic. Thrie beam w/ asymmetrical transition to barrier rail.	Y
	Anchored in backslope rail	NA	N	N	Must be out of clear zone of opposing traffic. Thrie beam w/ asymmetrical transition to barrier rail.	N
NY [28]	Anchored in backslope rail	NA	Ν	Ν	Anchorage provided by concrete foundation.	Y

Table 4. Summary of Non-Proprietary, Trailing-End Terminals for Reviewed State DOTs (continued)

October 28, 2013 MwRSF Report No. TRP-03-279-13

PLAN VEW

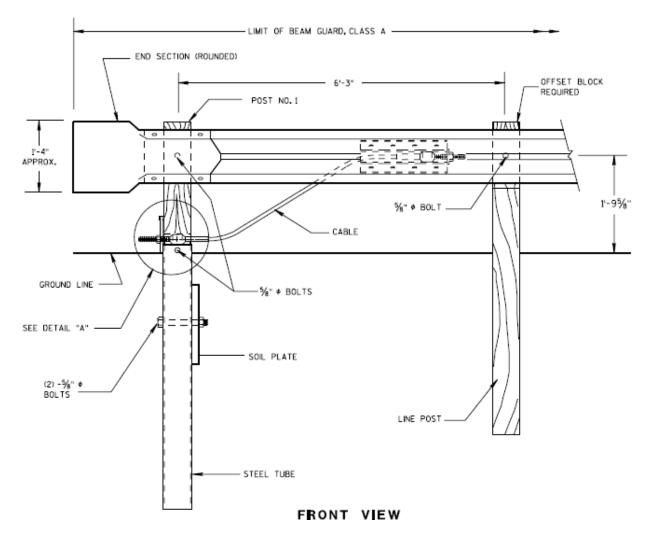


Figure 2. BCT Post Trailing-End Terminal Adopted by Wisconsin DOT [25]

able to release in a controlled manner if a vehicle wedged under and/or snagged on it. As such, there are concerns for excessive vehicle snagging on the cable anchor for this specific type of configuration.

For guardrail systems with rail splices located at the midspan between posts, such as the MGS, the reviewed state DOT standards, except for the Iowa DOT [19], considered adding an extra line post at the farthest downstream splice. By altering the post spacing near the trailingend terminal, the W-beam system terminates at a BCT post instead of extending one half span beyond the last BCT post.

A particular solution adopted by the Iowa DOT for trailing-end terminals was based on the use of BCT posts and a cable anchor in combination with a three beam rail element at the end of the barrier, as shown in Figure 3. Although this particular design requires the use of a transition between the three beam and the W-beam guardrail, the increased shielding area provided by the three-beam rail in lieu of W-beam rail may reduce the potential for vehicle snag on the cable anchor at the trailing end.

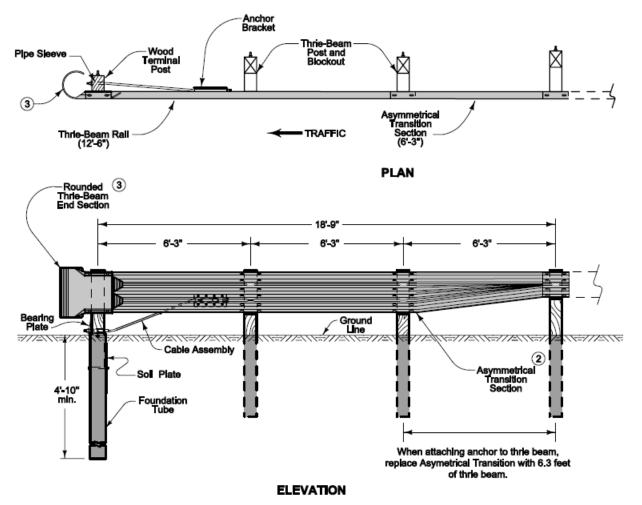


Figure 3. Trailing-End Terminal Adopted by Iowa DOT with BCT Posts and Thrie Beam [19].

4 DYNAMIC COMPONENT TEST CONDITIONS AND INSTRUMENTATION

4.1 Purpose and Scope

Most non-proprietary, trailing-end terminal designs use 5½-in. x 7½-in. (140-mm x 191mm) BCT wood posts embedded into steel foundation tubes connected with a ground strut. Unfortunately, limited information is available regarding the splitting resistance of the BCT wood posts, the soil foundation tube resistance, or the overall dynamic capacity of a trailing-end terminal system that uses these standard components. Therefore, a series of dynamic component tests were performed to investigate and measure the noted behaviors and/or capacities.

Three test series were conducted on BCT end anchorages. The first test series, test nos. BCTRS-1 and BCTRS-2, consisted of eccentric shear loading on a BCT post to evaluate post splitting. Second, component test no. MGSEA-1 consisted of a pull test of the soil foundation tube. The third test series, test nos. DSAP-1 and DSAP-2, consisted of pull tests of a cable attached to a BCT foundation tube and subsequently connected to a W-beam guardrail.

The information desired from the bogie tests was to determine force versus deflection response. These results were then used to find total energy dissipated during each test by calculating the area under the force versus deflection curve.

4.2 Test Facility

All dynamic tests were conducted at the MwRSF outdoor testing facility located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport. The facility is approximately 5 miles (8 km) northwest of the University of Nebraska's city campus in Lincoln, Nebraska.

4.3 Test Equipment and Instrumentation

Equipment and instrumentation utilized to collect and record data during the dynamic bogie testing program included a bogie, accelerometers, load cells, string potentiometers, pressure tape switches, high-speed and standard-speed digital video cameras, and still cameras. For test nos. MGSEA-1, DSAP-1 and DSAP-2, one or two tensile load cells and a string potentiometer were also used.

4.3.1 Bogie Vehicle

For test nos. BCTRS-1 and BCTRS-2, a rigid-frame bogie was used to impact the BCT wood posts. A fixed-height, eccentric, detachable impact head was used during the testing program. The impact head was constructed from a 12-in. x 12-in. x 1-in. (305-mm x 305-mm x 25-mm) steel plate that was welded to a 12-in. x 12-in. x 1-in. (305-mm x 305-mm x 25-mm) base mounting plate and reinforced with two triangular gussets, as shown in Figure 4, and was mounted with a center-of-head height of 247/s in. (632 mm). The centerline of the bogie was aligned with the center of the post. The eccentric head was designed to transfer weak-axis bending and twisting loads to the post by impacting a shear transfer device attached with a bolt through the guardrail post bolt hole in the post. The weight of the bogie with the addition of the mountable impact head and accelerometers was 1,590 lb (721 kg).

Figure 4. Rigid-Frame Bogie used for Test Nos. BCTRS-1 and BCTRS-2

Test nos. BCTRS-1 and BCTRS-2 were conducted using a steel corrugated beam guardrail to guide the tire of the bogie vehicle. A pickup truck was used to push the bogie vehicle to the required impact velocity. After reaching the target velocity, the push vehicle braked, thus allowing the bogie to be free rolling as it came off the track. A remote-control braking system was installed on the bogie, thus allowing it to be brought safely to rest after the test.

For test nos. MGSEA-1, DSAP-1, and DSAP-2, a rigid-frame bogie was used to pull the end anchor system. The total mass of the bogie vehicle was 4,753, 5,086, and 4,780 lb (2,156, 2,307, and 2,168 kg) for test nos. MGSEA-1, DSAP-1, and DSAP-2, respectively. Four 3x7 wire rope cables were connected in a parallel configuration and used to pull on various components. The wire ropes were terminated with thimble (or cable saver) terminations and attached to the back of the bogie vehicle using a high-strength nylon strap and a pin-and-shackle connection. The bogie vehicle and the pull cable used for test nos. MGSEA-1, DSAP-1, and DSAP-2 are shown in Figure 5.

Figure 5. Rigid-Frame Bogie used for Test Nos. MGSEA-1, DSAP-1, and DSAP-2

A pickup truck with a reverse cable tow system was used to propel the bogie to a target impact speed of 15 mph (24 km/h) for test no. MGSEA-1 and 25 mph (40 km/h) for test nos. DSAP-1 and DSAP-2. A steel corrugated beam guardrail guided the tire of the bogie vehicle. When the bogie approached the end of the guidance system, it was released from the tow cable, thus allowing it to be free rolling when it started to tension the pull cable. A remote-control braking system was installed on the bogie, thus allowing it to be brought safely to rest after the test.

4.3.2 Accelerometers

Two environmental shock and vibration sensor/recorder systems were mounted on the bogie vehicle near its center-of-gravity (c.g.) to measure the acceleration in the longitudinal, lateral, and vertical directions for each test, except only one system was used for test no. DSAP-2. However, only the longitudinal acceleration was processed and reported. The type of accelerometer systems used for each specific component test is shown in Table 5.

Table 5. Accelerometer Systems Used for Dynamic Component Tests

Test No.	Accelerometer
BCTRS-1	EDR-3, DTS
BCTRS-2	EDR-3, DTS
MGSEA-1	EDR-3, DTS-SLICE
DSAP-1	EDR-3, DTS
DSAP-2	EDR-3

The first accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. One accelerometer was used to measure longitudinal acceleration at a sample rate of 10,000 Hz. The accelerometer was configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on TDAS3-R4 module rack. The module rack was configured with isolated а power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal

backup battery. Both the SIM and module rack were crashworthy systems. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

A second system, Model EDR-3, was a triaxial piezoresistive accelerometer system manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM, a range of ± 200 g's, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The "DynaMax 1 (DM-1)" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

A third accelerometer system was a modular data acquisition system manufactured by DTS of Seal Beach, California. The acceleration sensor was mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.3.3 Tensile Load Cells

A load cell was installed in line with the pull cable for test nos. MGSEA-1, DSAP-1, and DSAP-2. One additional load cell was installed in line with the cable anchor for test nos. DSAP-1 and DSAP-2. The positioning and setup of the load cells are shown in Figures 6 and Figure 7.

The load cells were manufactured by Transducer Techniques and conformed to model no. TLL-50K with a load range up to 50 kip (222 kN). During testing, output voltage signals were sent from the load cells to a National Instruments data acquisition board, acquired with LabView software, and stored permanently on a personal computer. The data collection rate for the load cells was 10,000 samples per second (10,000 Hz).

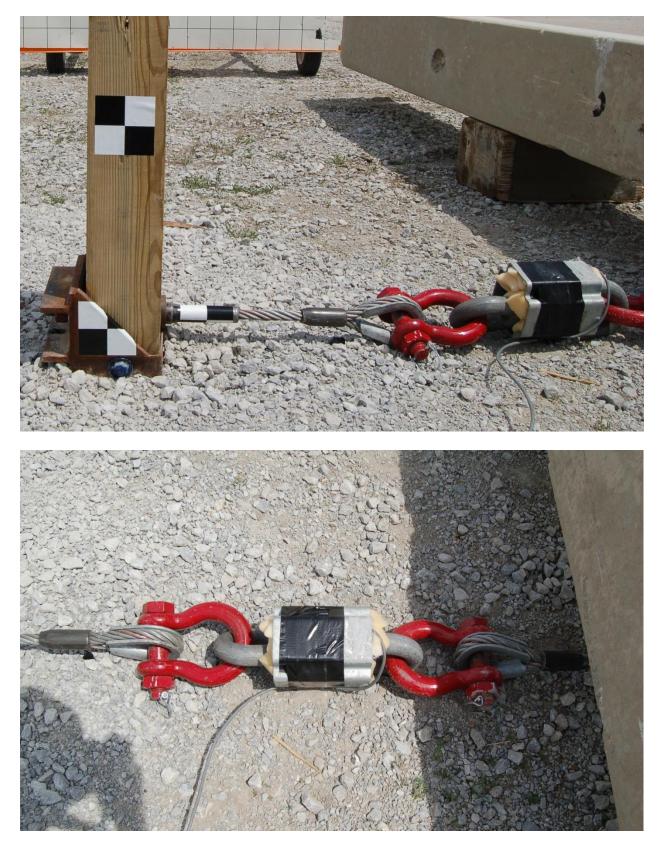


Figure 6. Tensile Load Cell Location, Test No. MGSEA-1

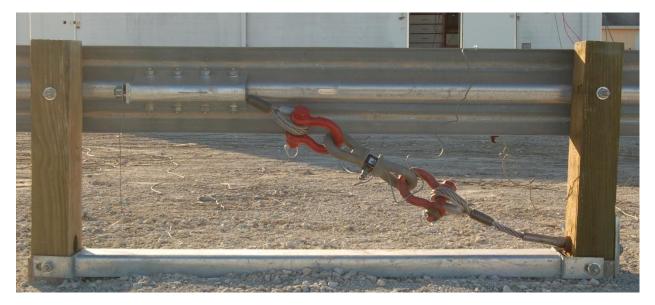


Figure 7. Tensile Load Cell Setup, Test Nos. DSAP-1 and DSAP-2

4.3.4 Compressive Load Cells

Two compressive load cells were also used in test no. DSAP-1. The compressive load cells are shown in Figure 8. One compressive load cells was placed between the nut and the modified cable anchor bracket at the end of the system, and one was attached between the nut and anchor bracket on the pull cable side of the system.

The washer-type compressive load cells were manufactured by Transducer Techniques and conformed to model no. LWO-80 with a load range up to 80 kip (356 kN). During testing, output voltage signals were sent from the load cells to a National Instruments data acquisition board, acquired with LabView software, and stored permanently on a personal computer. The data collection rate for the load cells was 10,000 samples per second (10,000 Hz).

4.3.5 String Potentiometers

A linear displacement transducer, or string potentiometer, was installed at the ground line of the post in test no. MGSEA-1 to determine the displacement of the post. For test nos. DSAP-1 and DSAP-2, the string potentiometer was attached at the ground line of the very end BCT post to measure the anchor systems displacement. The positioning and setup of the string potentiometer are shown in Figure 9. The string potentiometer used was a UniMeasure PA-50 with a range of 50 in. (1,270 mm). A Measurements Group Vishay Model 2310 signal conditioning amplifier was used to condition and amplify the low-level signals to high-level outputs for multichannel, simultaneous dynamic recording in the "LabView" software. The sample rate of the string potentiometer was 1,000 Hz.

4.3.6 Pressure Tape Switches

For test nos. BCTRS-1 and BCTRS-2, three pressure tape switches, spaced at approximately 18-in. (457-mm) intervals and placed near the end of the bogie track, were used to determine the speed of the bogie before impact. As the right-front tire of the bogie passed over

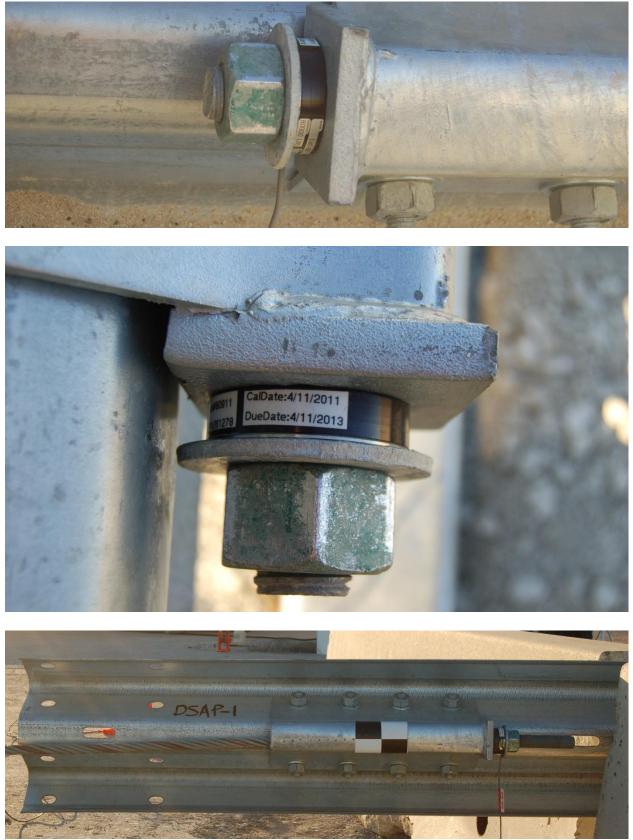


Figure 8. Compressive Load Cell Placement, Test No. DSAP-1

Figure 9. String Pot Backup Structure and Attachment Location, Test Nos. MGSEA-1, DSAP-1 and DSAP-2

each tape switch, a strobe light was fired, sending an electronic timing signal to the data acquisition system. The system recorded the signals and the time each occurred. The speed was then calculated using the spacing between the sensors and the time between the signals. Strobe lights and high-speed video analysis are used only as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.3.7 Digital Photography

AOS X-PRI high-speed digital video cameras and JVC digital video cameras were used to document each test. The AOS high-speed camera had a frame rate of 500 frames per second and the JVC digital video camera had a frame rate of 29.97 frames per second. The number of AOS VITcam cameras and JVC digital video cameras, and their location for each specific test are listed in Tables 6 and 7, respectively. A Nikon D50 digital still camera was also used to document pre- and post-test conditions for all tests.

Test No.	# of AOS X-PRI	Location	
BCTRS-1	2	Laterally from post, with view perpendicular to bogie's direction of travel:	
BCTRS-2	2	Camera 1 pointing at back side of post. Camera 2 pointing at front side of post.	
MGSEA-1	1	Laterally from post, with view perpendicular to bogie's direction of travel.	
DSAP-1	2	Perpendicular to the system, pointing toward the back side of the rail: Camera 1 focused on end anchor.	
DSAP-2 2		Camera 2 focused on connection between end of W-beam rail and pull cable.	

Table 6. Number and Location of High-Speed Cameras Used for Dynamic Component Tests

Test No.	# of JVC Cameras	Location
BCTRS-1	2	Laterally from post, with view perpendicular to bogie's direction of travel:
BCTRS-2	2	Camera 1 pointing at back side of post. Camera 2 pointing at front side of post.
MGSEA-1	3	Two cameras perpendicular, and one camera parallel to bogie's direction of travel: Camera 1 (perpendicular) pointing at front side of post. Camera 2 (perpendicular) pointing at rear side of post. Camera 3 (parallel) pointing at post from side opposite to bogies' direction of travel.
DSAP-1	3	Two cameras perpendicular, and one camera parallel to the system: Camera 1 (perpendicular) pointing at front side of W-beam rail.
DSAP-2	3	Camera 2 (perpendicular) pointing at rear side of W-beam rail. Camera 3 (parallel) pointing at anchor end post.

Table 7. Number and Location of JVC Digital Cameras Used for Dynamic Component Tests

4.4 End of Test and Loading Event Determination

When the impact head initially contacts the test article, the force exerted by the surrogate test vehicle is directly perpendicular. However, as the post rotates, the surrogate test vehicle's orientation and path moves further from perpendicular. This introduces two sources of error: (1) the contact force between the impact head and the post has a vertical component and (2) the impact head slides upward along the test article. Therefore, only the initial portion of the accelerometer trace may be used since variations in the data become significant as the system rotates, and the surrogate test vehicle overrides the system. For this reason, the end of the test needed to be defined.

Guidelines were established to define the end of test time using the high-speed video of the crash test. The first occurrence of any one of the following three events was used to determine the end of the test: (1) the test article fractures; (2) the surrogate vehicle overrides/loses contact with the test article; or (3) a maximum post rotation of 45 degrees is achieved.

The BCT posts fractured after impact with the bogie in test nos. BCTRS-1 and BCTRS-2. The test was determined to be completed after both halves of the BCT post fractured at the ground line and disengaged from the impact head.

For test no. MGSEA-1, the test was determined to be completed when the post and foundation tube had come to rest. During the test event, after the foundation tube had displaced more than 6 in. (152 mm), the wire rope connected to the load cell assembly and the bogie ruptured, resulting in a premature end-of-test event. Data collection and analysis ceased after the string pot data indicated very small perturbations from the permanent set at static equilibrium.

For test nos. DSAP-1 and DSAP-2, the W-beam was pulled downstream by the modified BCT cable anchor and the BCT posts fractured. The steel post with blockout was twisted downstream and released from the rail. After the rail had either disengaged from or fractured all three of the posts, data collection and analysis was terminated, and the test was determined to be completed.

4.5 Data Processing

4.5.1 Accelerometers

The electronic accelerometer data obtained in the dynamic testing was filtered using the SAE Class 60 Butterworth filter conforming to the SAE J211/1 specifications [29]. The pertinent acceleration was extracted from the bulk of the data signals.

The processed acceleration data was then multiplied by the mass of the bogie to get the impact force using Newton's Second Law. Next, the acceleration trace was integrated to find the change in velocity versus time. Initial velocity of the bogie, calculated from the pressure tape switch data, was then used to determine the bogie velocity. The calculated velocity trace was

then integrated to find the bogie's displacement, which is also the deflection of the post. Combining the previous results, a force versus deflection curve was plotted for each test. Finally, integration of the force versus deflection curve provided the energy versus deflection curve for each test.

4.5.2 Load Cells

For test nos. MGSEA-1, BCTRS-1, and BCTRS-2, force data was measured with the load cell transducers and filtered using the SAE Class 60 Butterworth filter conforming to the SAE J211/1 specifications [29]. The pertinent voltage signal was extracted from the bulk of the data signal similar to the acceleration data. The filtered voltage data was converted to load using the following equation:

$$Load = \left[\frac{1}{Gain}\right] \left[\frac{Filtered Load Cell Data}{\left(\frac{(Calibration Factor)(Excitation Voltage)}{Full - Scale Load}\right) \left(\frac{1 V}{1000 \text{ mV}}\right)}\right]$$

Details behind the theory and equations used for processing and filtering the load cell data are located in SAE J211/1. The gain and excitation voltage were recorded for each test. The full-scale load for the TLL 50K load cells was 50 kip (222 kN). The calibration factor varied depending on the specific load cell being used. The load cell data was recorded in a data file and processed in a specifically-designed Excel spreadsheet. Force versus time plots were created to describe the load imparted to the system.

4.5.3 String Potentiometers

For test nos. MGSEA-1, BCTRS-1, and BCTRS-2, the pertinent data from the string potentiometers was extracted from the bulk signal similar to the accelerometer and load cell data. The extracted data signal was converted to a displacement using the transducer's calibration factor. Displacement versus time plots were created to describe the motion of the system at

groundline. The exact moment of impact could not be determined from the string potentiometer data as impact may have occurred a few milliseconds prior to post movement. Thus, the extracted time shown in the displacement versus time plots should not be taken as a precise time after impact, but rather a general time in relation to the impact event.

5 COMPONENT TEST – ECCENTRICALLY LOADED BCT POST

5.1 Test Setup and Instrumentation

Bogie test nos. BCTRS-1 and BCTRS-2 were conducted on BCT wood posts to determine their dynamic properties under an eccentric loading condition. This phenomenon may occur when the rail pulls on the post through the bolted connection in an end anchorage system. Details of the test setup are shown in Figures 10 through 16. Photographs of the test setup are shown in Figure 17. Material specifications, mill certifications, and certificates of conformity for the BCT post materials used in test nos. BCTRS-1 and BCTRS-2 are shown in Appendix B.

Each test was conducted on a 5¹/₂-in. x 7¹/₂-in. (140-mm x 191-mm) BCT wood post embedded 14 in. (356 mm) into a rigid sleeve. A rigid, steel shear-and-torsion extension (STE) was attached to the BCT post through the post-to-rail attachment hole drilled through the post parallel with the strong axis. The resulting top mounting height of the STE was 26³/₈ in. (670 mm). An eccentric impact head, as described in Section 4.3.1, was mounted on the front of a 1,590-lb (721-kg) bogie vehicle and on the same side as the STE attached to the BCT post, such that the bogie head would impact the STE. This setup applied an eccentric impulse load to the BCT post, which approximates the tensile forces transferred between the rail and a BCT post without a cable anchor connection.

The target impact speed and angle were 15 mph (24 km/h) and 0 degrees (i.e., a weak axis bending), respectively. The protrusion attached to the post was impacted by the eccentric bogie head at a nominal offset of 3 in. (76 mm) from the post's side face, as shown in Figure 17. The centerline of the protrusion was located at 24% in. (632 mm) above the ground line.

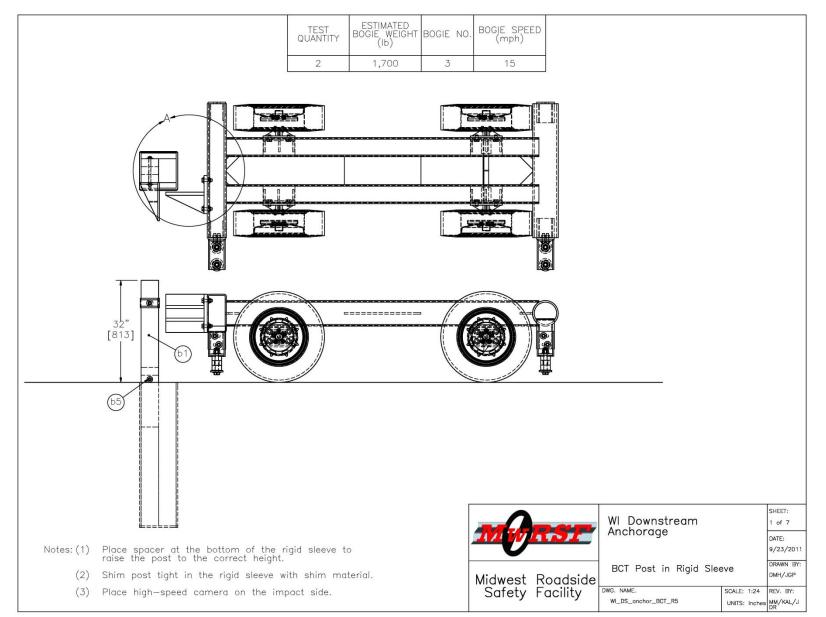


Figure 10. Bogie Testing Matrix and Setup, Test Nos. BCTRS-1 and BCTRS-2

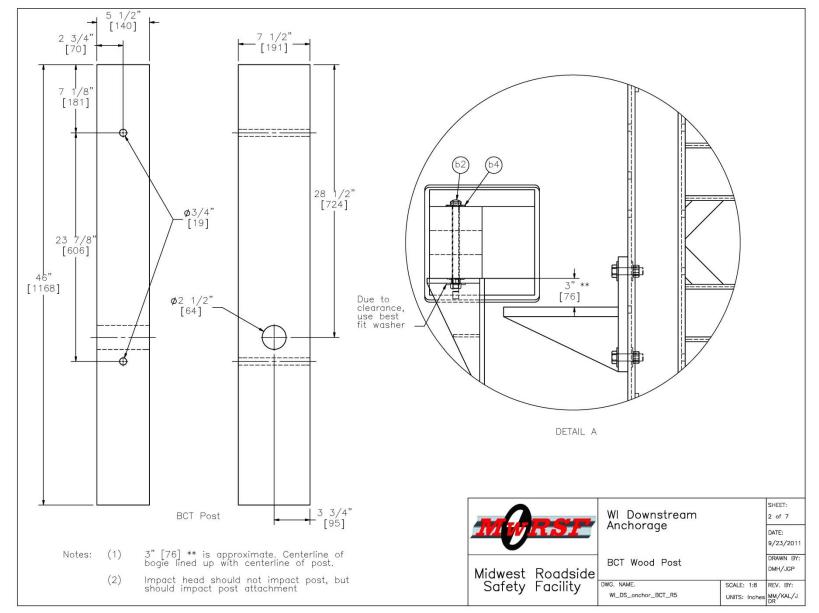


Figure 11. BCT Wood Post, Test Nos. BCTRS-1 and BCTRS-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

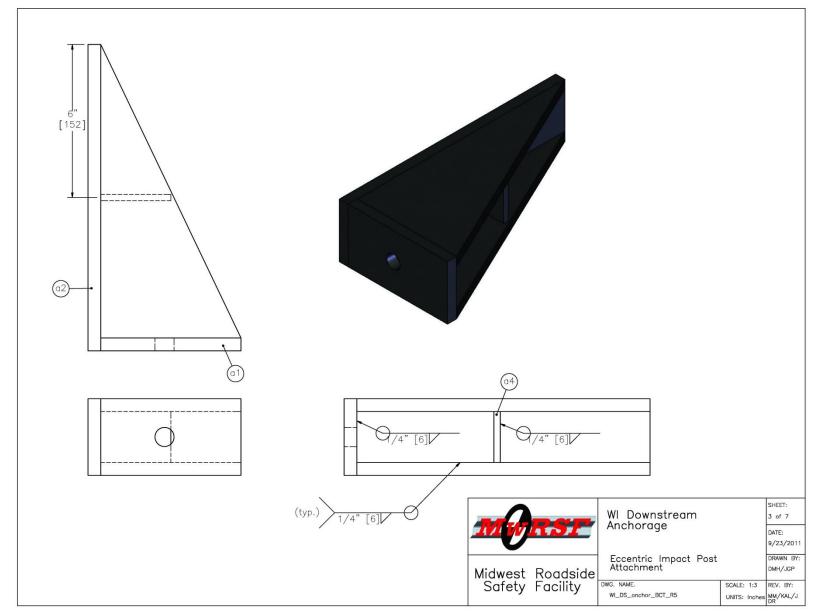


Figure 12. Eccentric Impact Post Attachment, Test Nos. BCTRS-1 and BCTRS-2

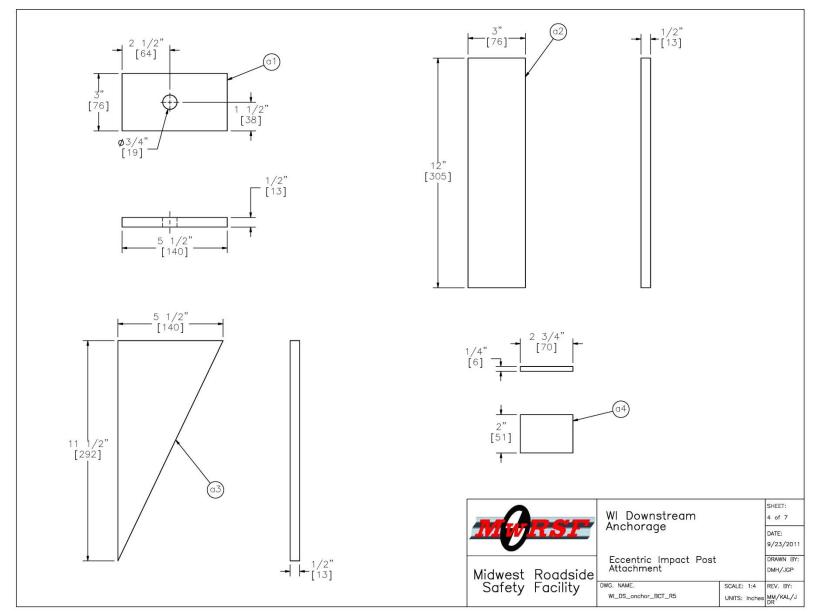


Figure 13. Eccentric Impact Post Attachment Components, Test Nos. BCTRS-1 and BCTRS-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

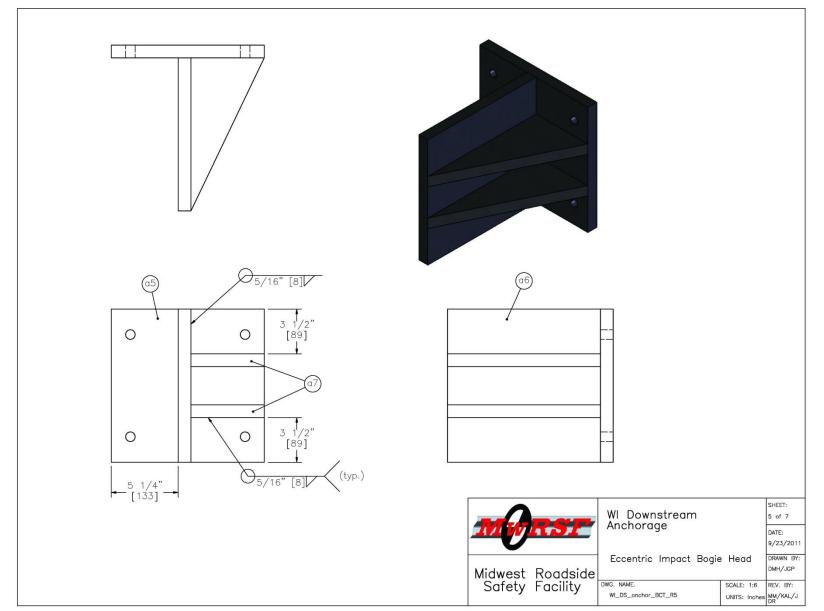


Figure 14. Eccentric Impact Bogie Head, Test Nos. BCTRS-1 and BCTRS-2

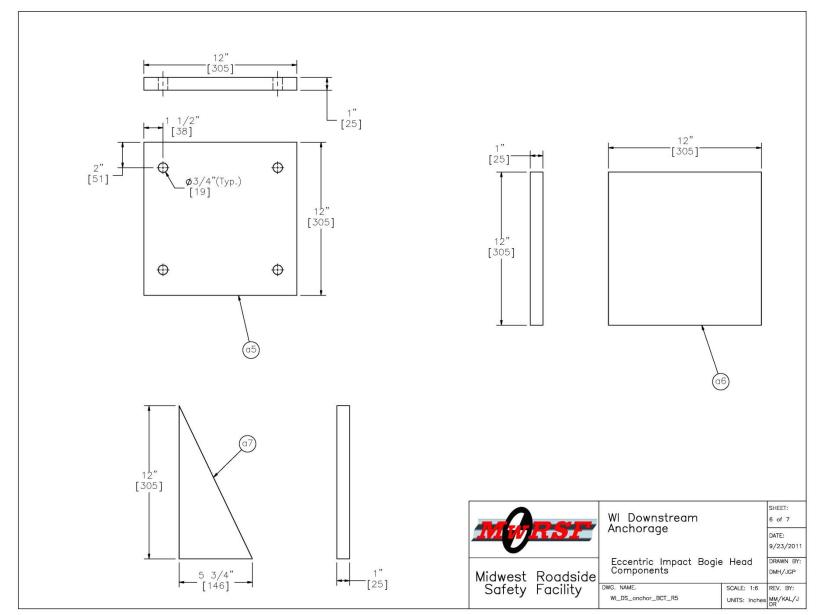


Figure 15. Eccentric Impact Bogie Head Components, Test Nos. BCTRS-1 and BCTRS-2

Item No.	QTY.	Description	Material Specification	Hardware Guide
a1	1	5 1/2x3x1/2" [140x76x13] Eccentric Impact Post Attachment Backplate	ASTM A36 Steel	-
a2	1	12x3x1/2" [305x76x13] Eccentric Impact Post Attachment Impactplate	ASTM A36 Steel	-
a3	2	1/2" [13] Eccentric Impact Post Attachment Gusset	ASTM A36 Steel	-
a4	1	1/4" [6] Eccentric Impact Post Attachment Supportplate	ASTM A36 Steel	-
a5	1	12x12x1" [305x305x25] Eccentric Impact Head Backplate	ASTM A36 Steel	-
a6	1	12x12x1" [305x305x25] Eccentric Impact Head Impactplate	ASTM A36 Steel	-
a7	2	1" [25] Eccentric Impact Head Gusset	ASTM A36 Steel	-
b1	1	BCT Timber Post MGS Height	SYP Grade No. 1 or better	PDF01
b2	1	5/8" [16] Dia. x 10" [356] long Guardrail Bolt and Nut	Bolt ASTM A307 or Grade 2 Steel/ Nut ASTM A563 DH	FBB06
b3	2	5/8" [16] Dia. Plain Round Washer	ASTM A307 or Grade 2 Steel	FWC16a
b4	2	3/4" [19] Dia. Plain Round Washer	ASTM A307 or Grade 2 Steel	FWC20a
b5	1	5/8" [16] Dia. Hex Bolt and Nut	Bolt ASTM A307 or Grade 2 Steel/ Nut ASTM A563 DH	FBX16a

MURSE		WI Downstream Anchorage		SHEET: 7 of 7
				DATE: 9/23/2011
Midwest	Roadside	Bill of Materials		DRAWN BY: DMH/JGP
Safety	Facility	DWG. NAME. WI_DS_anchor_BCT_R5	SCALE: N/A UNITS: Inches	REV. BY: MM/KAL/J

Figure 16. Bill of Materials, Test Nos. BCTRS-1 and BCTRS-2

40

October 28, 2013 MwRSF Report No. TRP-03-279-13

Figure 17. Test Setup, Test Nos. BCTRS-1 and BCTRS-2

The accelerometer data were processed in order to obtain acceleration, velocity, and deflection curves, as well as force versus deflection and energy versus deflection curves. The values described herein were calculated from the DTS data curves. Although the acceleration data was applied to the impact location, the data came from the c.g. of the bogie. Error was added to the data; since, the bogie was not perfectly rigid and sustained vibrations. The bogie may have also rotated during impact, causing differences in accelerations between the bogie center of mass and the bogie impact head. However, these sources of error were believed to be minor in comparison with the magnitudes of the data obtained. Filtering procedures were applied to the data to smooth out vibrations, and the rotations of the bogie during testing were deemed minor. One useful aspect of using accelerometer data was that it included influences of the post inertia on the reaction force. This was important as the mass of the post would affect barrier performance as well as test results.

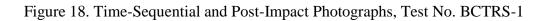
5.2 Results

5.2.1 Test No. BCTRS-1

During test no. BCTRS-1, the eccentric bogie head impacted the protrusion mounted on the left side of the 5½-in. x 7½-in. (140-mm x 191-mm) BCT wood post at a speed of 15.6 mph (25.1 km/h), which caused multiaxial loading, consisting of longitudinal shear, weak-axis bending, and torsion. Time-sequential and post-impact photographs are shown in Figure 18. After initially bending, the post split into two pieces along a fracture plane which was nearly perpendicular to the bogie vehicle's direction of motion. The fracture started at the top of the post and moved downward, but the split terminated above the through-hole at the ground line. At 0.046 sec, the bogie impacted the second portion of the post, which subsequently fractured at the ground line at 0.066 sec.

22 msec

32 msec


42 msec

102 msec

Force versus deflection and energy versus deflection curves created from the DTS accelerometer data are shown in Figure 19. The results from all transducers used during the test are provided in Appendix C. A large force spike occurred over the first 1.0 in. (25 mm) of deflection, and was caused by the inertial resistance of the post. After this initial spike, the force dropped to a relatively constant average value of 3.1 kip (14 kN) through a deflection of 4.8 in. (122 mm). At 0.018 sec after impact, and a bogie displacement of 5.0 in. (127 mm), the eccentrically-loaded BCT post split through a vertical plane, and the back half of the post fractured above the BCT hole. The final force spike occurred between a bogie displacement of 15 and 20 in. (381 and 508 mm) when the remaining portion of the post as impacted by the bogie vehicle. The second portion of the post fractured at 0.066 sec. The energy dissipated corresponding to the complete fracture of the first portion of the post at 5.9 in. (150 mm) was 19.0 kip-in. (2.1 kJ). The total energy dissipated due to fracture of both post sections was 59.9 kip-in. (6.8 kJ).

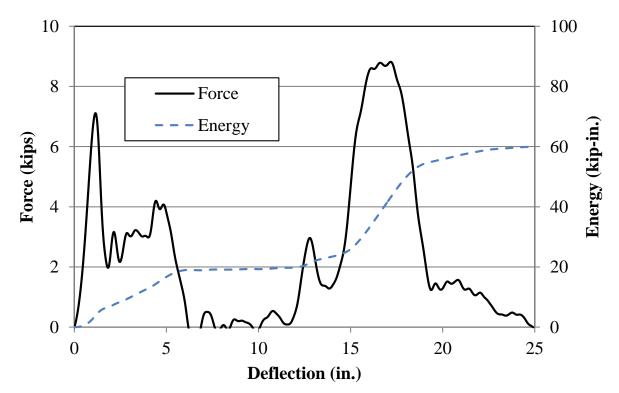
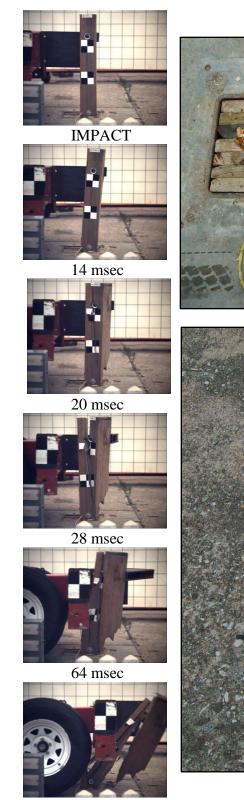
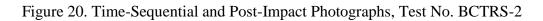



Figure 19. Force vs. Deflection and Energy vs. Deflection, Test No. BCTRS-1


5.2.2 Test No. BCTRS-2

During test no. BCTRS-2, the eccentric bogie head impacted the STE mounted on the face of the 5½-in. and 7½-in. (140-mm x 191-mm) BCT wood post at a speed of 15.3 mph (24.6 km/h), which caused multi-axial loading, consisting of lateral shear, weak-axis bending, and torsion. Time-sequential and post-impact photographs are shown in Figure 20. After initially bending and twisting, the post split in two pieces along a vertical fracture plane perpendicular to the bogie vehicle's direction of motion at 0.016 sec. The fracture started at the top of the post and moved downward, where the post portion connected to the STE fractured at the ground line. The bogie vehicle impacted the second portion of the post at 0.0513 sec. At 0.0645 sec, the second portion of the post fractured at the ground line. The results from all transducers used during the test are provided in Appendix C.

Force versus deflection and energy versus deflection curves created from the DTS accelerometer data are shown in Figure 21. An inertial force spike occurred over the first inch (25 mm) of deflection. After this initial force spike, the force dropped to a relatively constant average value of 5.0 kips (22 kN) through a deflection of approximately 3 in. (76 mm). This deflection was due to a combination of post bending and twisting. The resistance force increased to 7.4 kip (32.9 kN) at 0.016 sec and a bogie displacement of 3.7 in. (94 mm). The post then split through a plane that was nearly perpendicular to the bogie vehicle's direction of motion. The energy dissipated due to the splitting fracture of the first portion of the post at 0.0513 sec with a bogie displacement of 12.8 in. (325 mm), which fractured at a bogie vehicle displacement of 15.9 in. (404 mm) and a load of 10.7 kip (47.6 kN). The energy corresponding to the complete fracture of the BCT post with STE attachment was 62.6 kip-in. (7.1 kJ).

98 msec

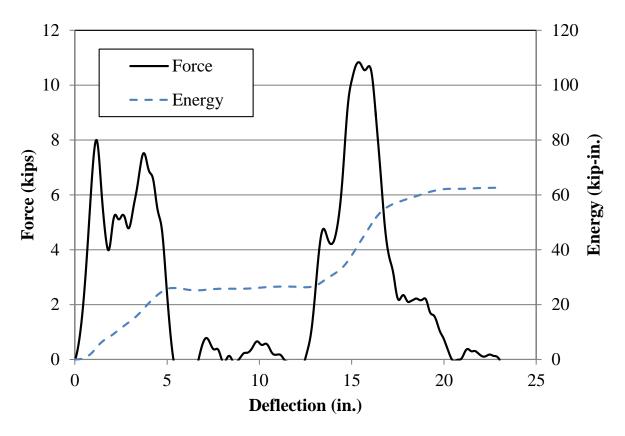


Figure 21. Force vs. Deflection and Energy vs. Deflection, Test No. BCTRS-2

5.3 Discussion

In both test nos. BCTRS-1 and BCTRS-2, the BCT post split into two pieces as a consequence of the impact force transferred by the rigid steel STE to the wood post. The impact speeds utilized in test nos. BCTRS-1 and BCTRS-2 were 15.6 mph and 15.3 mph (25.1 and 24.6 km/h), respectively. The energies associated with the fracture of the first post portion varied from 19.0 kip-in. (2.1 kJ) to 26.0 kip-in. (2.9 kJ) for test nos. BCTRS-1 and BCTRS-2, respectively. Although the splitting energies varied by 7.0 kip-in. (0.8 kJ), the posts dissipated approximately the same total amount of energy when the complete fracture of the BCT posts occurred.

Wood is a heterogeneous, laminated composite material with variable material properties. These variations likely contributed to the differences between the splitting energies in the BCT posts in test nos. BCTRS-1 and BCTRS-2. The plane of splitting in test no. BCTRS-1 was angled such that the fracture plane terminated above the BCT hole in the post, which was located at the ground line. The split in test no. BCTRS-2 was also angled, but the splitting plane intersected the BCT hole on the back side of the post. Thus, the second post portion had a larger cross-sectional area at the BCT hole in test no. BCTRS-1 compared to the post in test no. BCTRS-2. Therefore, even though the fracture force was higher for the second portion of the post in test no. BCTRS-2 than in test no. BCTRS-1, the overall fracture energies of the posts were very similar at 59.9 kip-in. (6.8 kJ) for test no. BCTRS-1 and 62.6 kip-in. (7.1 kJ) for test no. BCTRS-2, respectively. Force versus deflection and energy versus deflection comparison plots are shown in Figures 22 and 23, respectively.

Posts which are subjected to splitting in full-scale crash tests or real-world crashes may not be subjected to complete fracture. As a result, the splitting energies may be more representative of splitting capacities of the posts than the energy dissipation due to weak-axis post fracture. Although the energy required to initiate and propagate vertical splitting in wood is lower than the energy required to fracture the wood in the weak axis, the combined effect of splitting and subsequent fracture of both split pieces of wood dissipated more energy than only weak-axis fracture.

Splitting and weak-axis fracture energies of the two BCT posts in test nos. BCTRS-1 and BCTRS-2 were compared to weak-axis fracture energies of controlled-release terminal (CRT) posts embedded in rigid sleeves. CRT posts are 6 in. x 8 in. x 72 in. (152 mm x 203 mm x 1,829 mm) timber posts embedded directly in soil, and are often used in lieu of steel breakaway posts for strong-post systems. Rigid sleeve tests of CRTs dissipated energy in a range spanning between 11.6 and 35.4 kip-in. (1.3 and 4.0 kJ) [31]. BCT splitting energies in test nos. BCTRS-1 and BCTRS-2 were similar to weak-axis CRT fracture energies, and the combined splitting and post fracture dissipated almost double the upper range of CRT fracture energy.

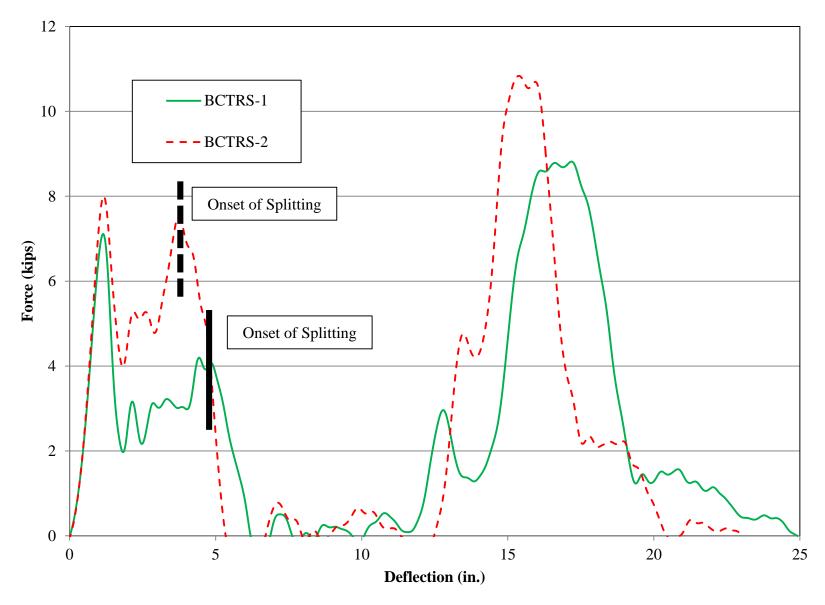


Figure 22. Force vs. Deflection Comparison, Test Nos. BCTRS-1 and BCTRS-2

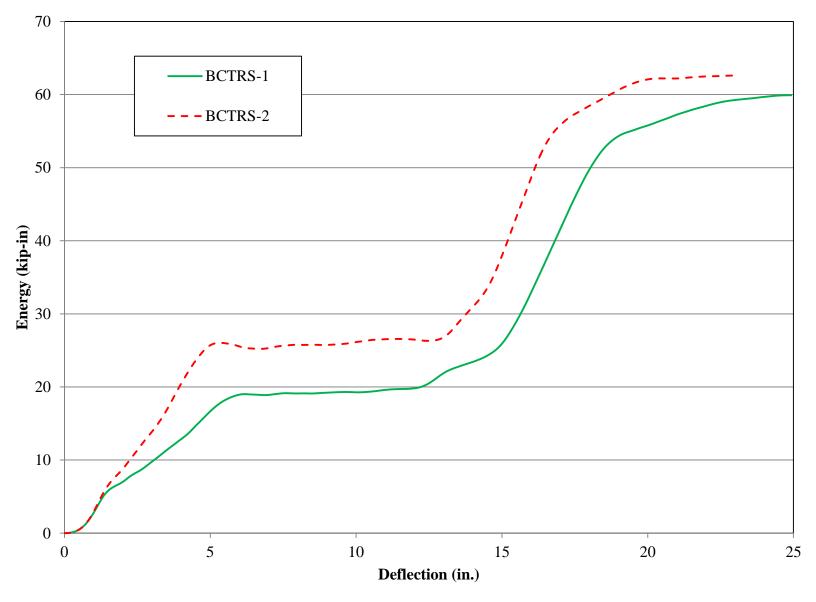


Figure 23. Energy vs. Deflection Comparison, Test Nos. BCTRS-1 and BCTRS-2

6 DYNAMIC COMPONENT TEST – FOUNDATION TUBE

6.1 Test Setup and Instrumentation

Bogie test no. MGSEA-1 was conducted by pulling on a single 6-in. x 8-in. x 72 in. (152mm x 203-mm x 1,829-mm) foundation tube embedded into a compacted, coarse, crushed limestone material, as recommended by MASH. Details of the test setup are shown in Figures 24 through 34. Photographs of the setup are shown in Figures 35 and 36. Materials specifications, mill certifications, and certificates of conformity for the system materials used in test no. MGSEA-1 are shown in Appendix B.

To account for potential inertial effects, a BCT post was placed into a foundation tube. A plate welded on the back side of the foundation tube was attached to a modified BCT anchor cable that contained a tension load cell. The instrumented anchor cable was then connected to a pull cable using an eye nut. The other end of the pull cable was attached to a 4,780-lb (2,168-kg) bogie vehicle. The target traveling speed was 15 mph (24 km/h).

The displacement of the foundation tube and the load at the ground line were measured using a string potentiometer and a load cell located in line with the anchor cable, respectively. During the test, the load cell cable connector became disconnected. Unfortunately, load cell data was lost when the wire disconnected early in the event. As a result, the force data was derived from the acceleration measured at the c.g. of the bogie vehicle.

6.2 Results

Time-sequential and post-test photographs of test no. MGSEA-1 are shown in Figure 37. During test no. MGSEA-1, the anchor foundation tube was pulled by the cable attached to the bogie vehicle, which was traveling at an initial speed of 16.1 mph (26.0 km/h) when the cable started to be tensioned. As a consequence of the pull force, the foundation tube rotated through the ground over a maximum dynamic displacement of 6.5 in. (165 mm). The final permanent

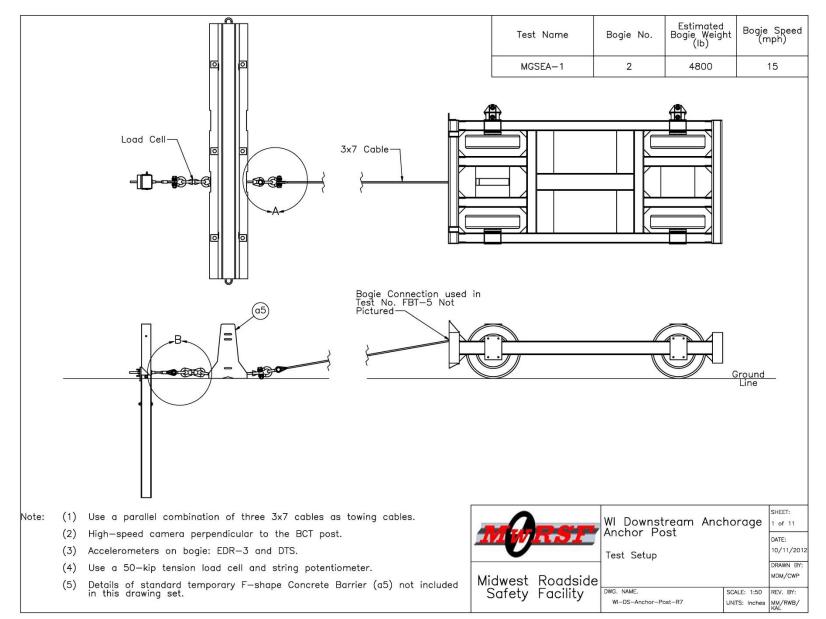


Figure 24. Bogie Testing Matrix and Setup, Test No. MGSEA-1

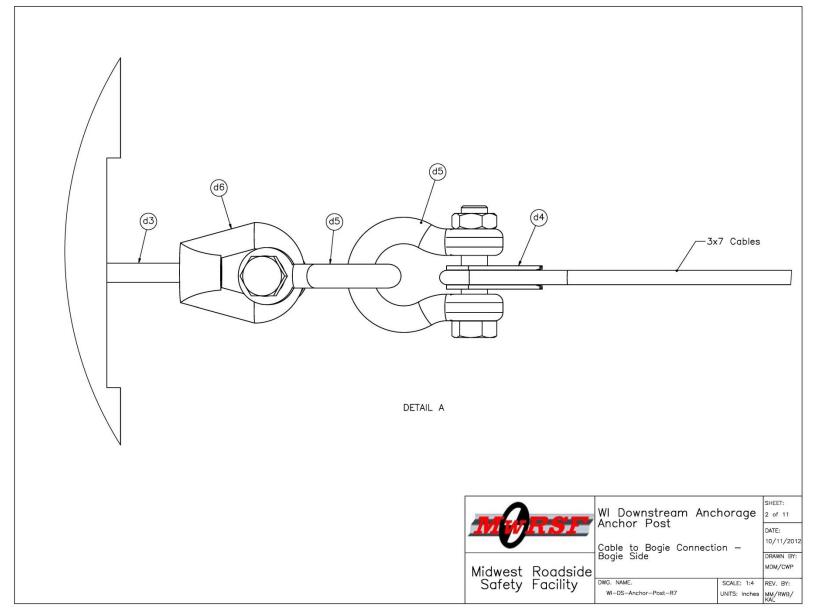


Figure 25. Bogie Testing Matrix and Setup, Test No. MGSEA-1

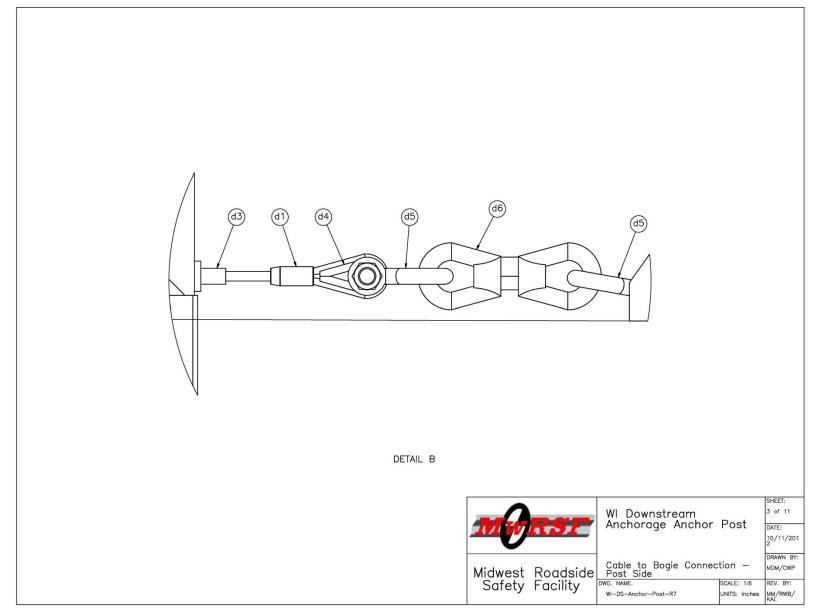
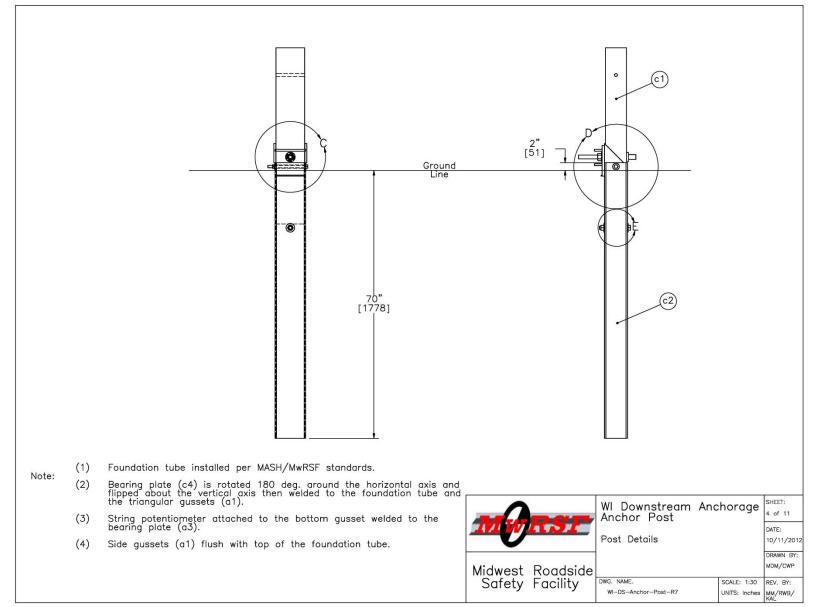



Figure 26. Bogie Testing Matrix and Setup, Test No. MGSEA-1

October 28, 2013 MwRSF Report No. TRP-03-279-13

Figure 27. Post Details, Test No. MGSEA-1

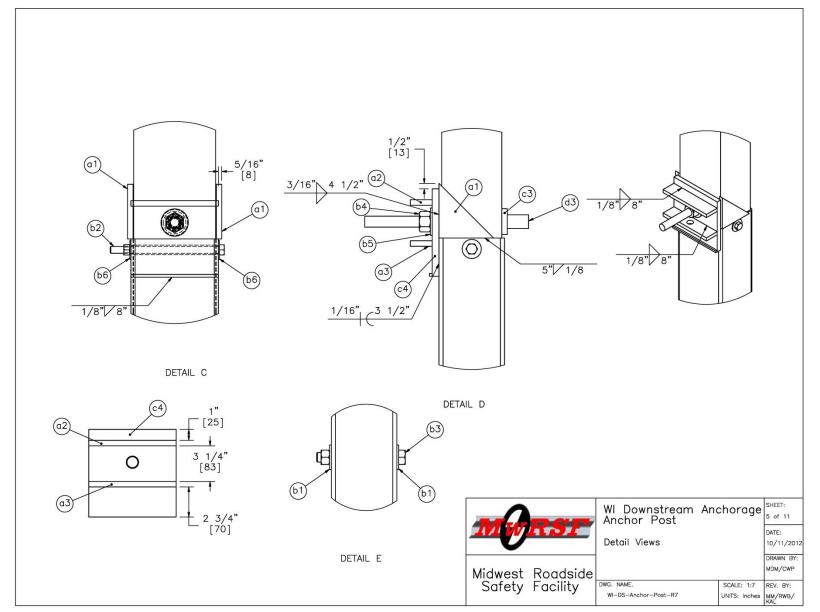


Figure 28. Bogie Testing Matrix and Setup, Test No. MGSEA-1

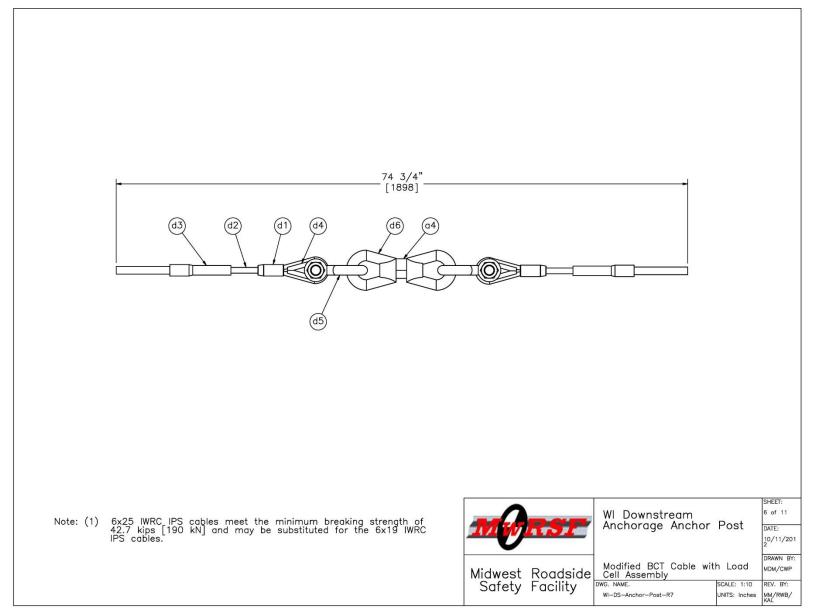


Figure 29. Bogie Testing Matrix and Setup, Test No. MGSEA-1

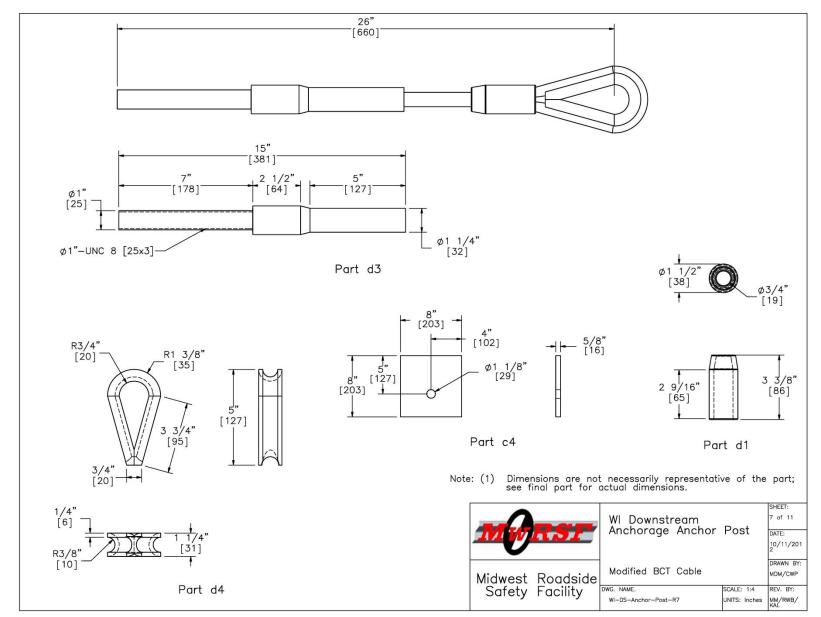


Figure 30. Bogie Testing Matrix and Setup, Test No. MGSEA-1

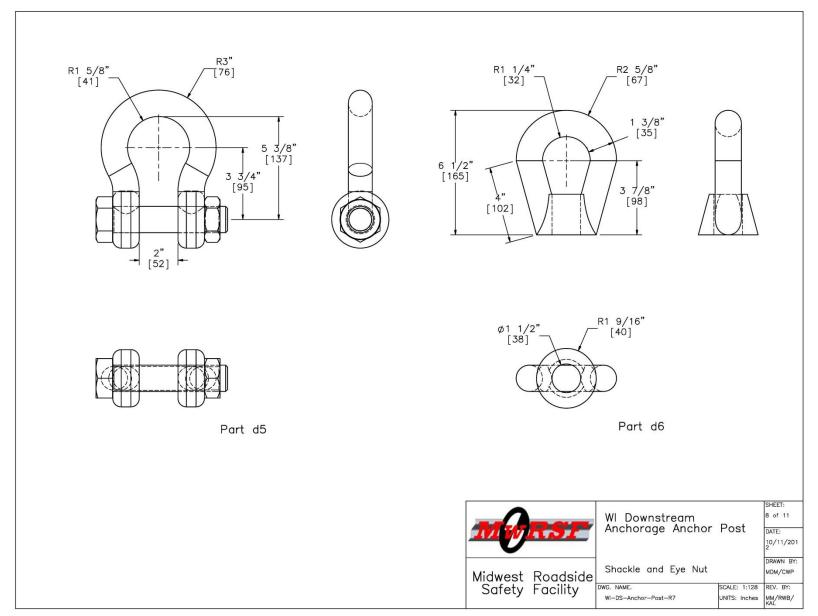


Figure 31. Bogie Testing Matrix and Setup, Test No. MGSEA-1

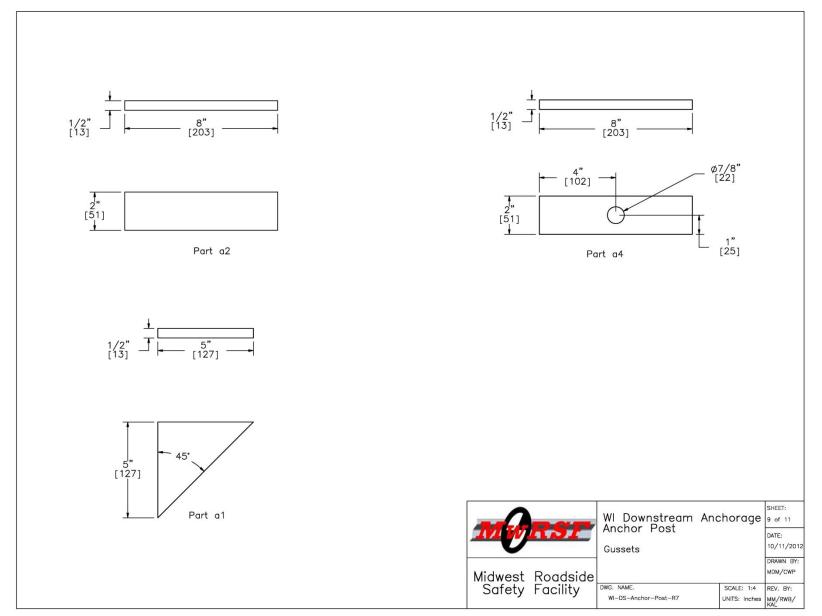


Figure 32. Bogie Testing Matrix and Setup, Test No. MGSEA-1

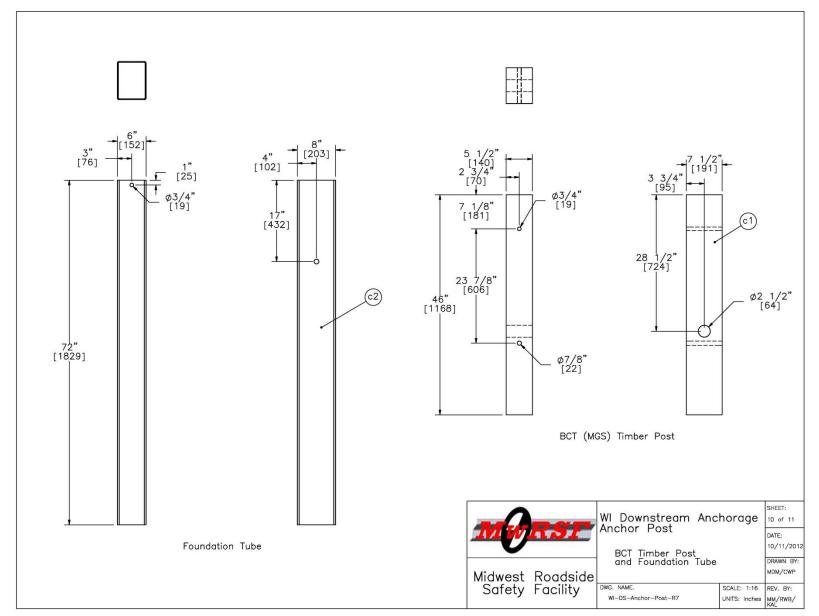


Figure 33. Bogie Testing Matrix and Setup, Test No. MGSEA-1

ltem No.	Quantity	Description	Material Specification	Hardware Guide
a1	2	Side Gusset-5"x5"x1/2" [127x127x12.7]	ASTM A36	-
a2	1	Top Gusset-8"x2"x1/2" [203x51x12.7]	ASTM A36	_
a3	1	Bottom Plate-8"x2"x1/2" [203x51x12.7]	ASTM A36	_
a4	1	50 kip Tension Load Cell	TLL-50K-PTB	-
a5	1	Temporary F-Shape Concrete Barrier Element	_	SWG09
b1	2	7/8" [22.2] Dia. Flat Washer	ASTM A153	FWC22a
b2	1	5/8" [15.9] Dia. x 10" [254] Long Hex Head Bolt and Nut	ASTM A307 and A563 DH	FBX16a
b3	1	7/8" [22.2] Dia. x 7 1/2" [191] Long Hex Head Bolt and Nut	ASTM A307 and A563 DH	FBX22a
b4	1	1" [25] Dia. Hex Nut	ASTM A563 DH Galvanized	FBX24a
b5	1	1" [25] Dia. Flat Washer	SAE Grade 5	FWC24a
b6	2	5/8" [15.9] Dia. Flat Washer	ASTM A153	FWC16a
c1	1	BCT Timber Post – MGS Height	SYP Grade No. 1 or better	PDF01
c2	1	72" [1829] Foundation Tube	ASTM A53 Grade B	PTE06
c3	1	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve ASTM A53 Grade B Schedule 40		FMM02
c4	1	5x8x5/8" [127x203x15.9] Anchor Bearing Plate ASTM A36 Steel		FPB01
d1	2	115-HT Mechanical Splice - 3/4" [19] Dia.	As Supplied	
d2	2	3/4" [19] 6x19 IWRC IPS Wire Rope IPS Galvanized		
d3	2	BCT Anchor Cable End Swage Fitting	Grade 5 — Galvanized	_
d4	3	Crosby Heavy Duty HT-3/4" [19] Dia. Cable Thimble	As Manufactured	-
d5	4	Crosby G2130 or S2130 Bolt Type Shackle — 1 1/4" [32] Dia. with thin head bolt, nut, and cotter pin, Grade A, Class 3	Stock Nos. 1019597 and 1019604 - As Supplied	
d6	3	Chicago Hardware Drop-Forged Heavy Duty Eye Nut - Drilled and Tapped 1 1/2" [38] Dia UNF 12 [M36] As Supplied, Stock No. 107		-
		Midua	WI Downstream A Anchor Post Bill of Materials	Anchorage SHEET 11 of DATE: 10/11 DRAWI MOM/
		Midwe Safe	ty Facility	SCALE: None REV. UNITS: Inches MM/R

Figure 34. Bogie Testing Matrix and Setup, Test No. MGSEA-1

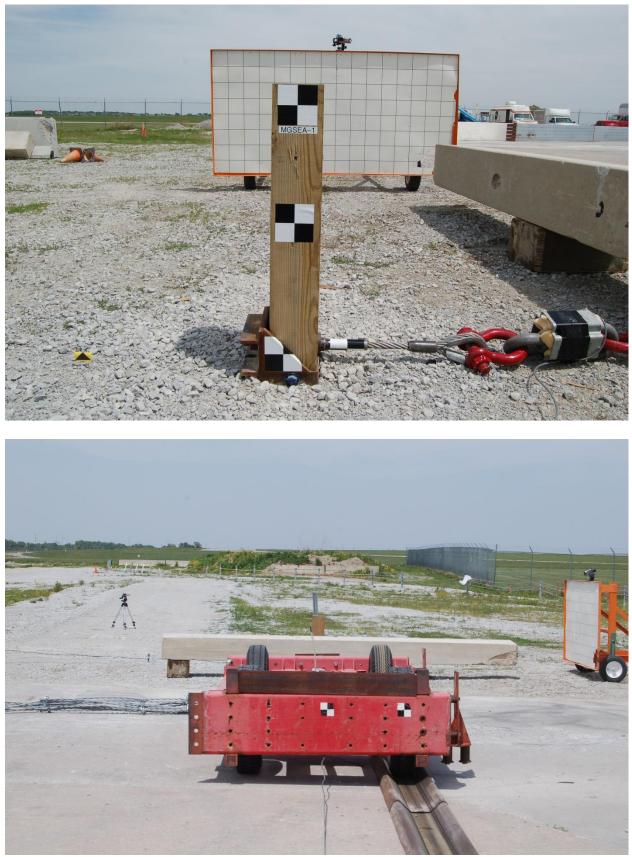
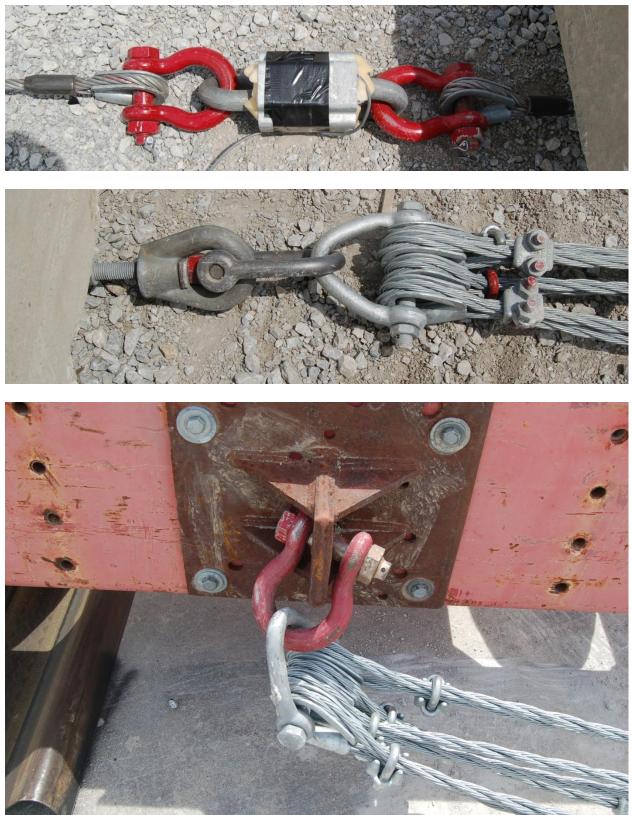


Figure 35. Test Setup, Test No. MGSEA-1



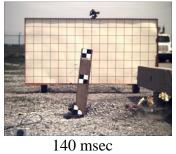
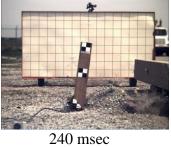


Figure 36. Test Setup, Test No. MGSEA-1

IMPACT



180 msec

200 msec

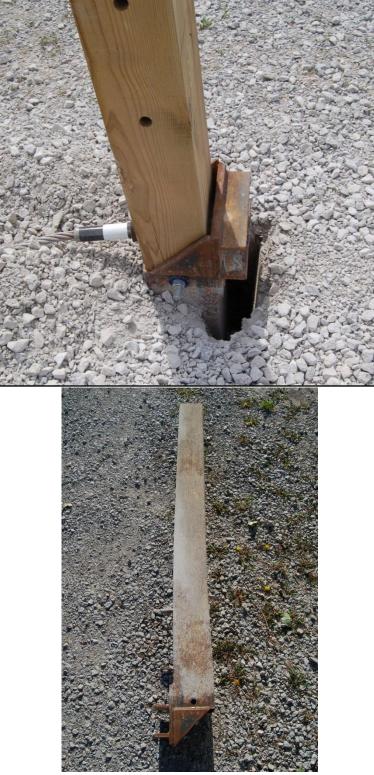


Figure 37. Time-Sequential and Post-Impact Photographs, Test No. MGSEA-1

set deflection was 4.2 in. (107 mm), as measured using the string potentiometer attached to the back of the tube at ground line. The steel foundation tube bent slightly, thus initiating a plastic hinge at about 8¹/₂ in. (216 mm) from its top edge.

The load cell cable connector became disconnected almost immediately after the pull cable was tensioned. Thus, the force was obtained using acceleration data from the bogie vehicle. Although the acceleration measured at the bogie center of mass may include damping effects due to the extension of the pull cable and a time shift, it still provides useful information related to load resistance of the foundation tube embedded into the soil. The maximum peak load was 43.4 kips (193 kN), as obtained from DTS-SLICE accelerometer data.

Force versus time and deflection versus time curves were plotted and are shown in Figure 38. The results from all transducers used in the test are provided in Appendix C. An intensive investigation into event timing was conducted to determine the approximate start times for string pot, accelerometer, and load cell curves. Although visual clues to indicate times of low and high tension were available, the most convenient reference was derived from the instrumentation cable which disconnected from the tension load cell at approximately 0.131 sec after the pull cable began to stretch. It was clearly identifiable in the high-speed video when the data cable disconnected. As a result, high-speed video of the post deflection was used to relate the time of maximum foundation tube deflection to the load cell data. Accelerometer data was also matched to similar load events in the load cell data. Therefore, researchers believe that the load and soil tube displacement curves plotted against time in Figure 38 are representative of the events that occurred in the test.

6.3 Discussion

The force measured by the accelerometer mounted on the bogie, DTS-SLICE, indicated that the maximum force encountered by the BCT anchor cable was approximately 43.4 kip (193

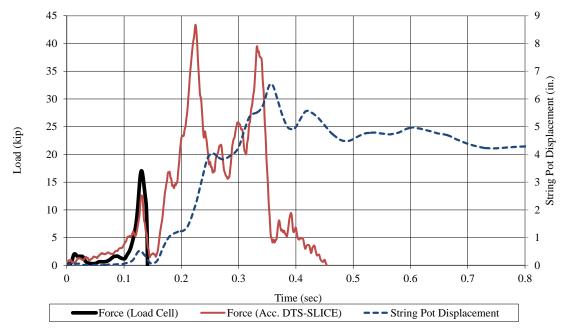


Figure 38. Forces vs. Time and Displacement vs. Time, Test No. MGSEA-1

kN), leading to a maximum displacement of the soil tube of approximately 6.5 in. (165 mm) as measured by the string pot. However, real-world soil strengths may be lower than provided by the coarse, compacted crushed limestone recommended by MASH and used for this bogie testing effort. Larger deflections of soil tubes may occur when anchor loads approach the failure limits of a guardrail system's end anchorage.

The force versus deflection curve of the soil foundation tube in test nos. MGSEA-1 is shown in Figure 39. An initial tension pulse caused the force on the foundation tube to ramp up to 13 kip (58 kN), and the deflection increased approximately proportional to the load to a maximum of 0.5 in. (13 mm), after which point the force and deflection dropped to nearly zero. This indicated the foundation tube and soil interaction was initially linearly elastic. The largest force impulse, experienced at approximately 2 in. (51 mm) of deflection, was required to overcome inertia and move the soil and foundation tube. A relatively steady force was recorded between 3 and 5 in. (76 and 127 mm) of displacement before the final force spike and maximum deflection were reached.

Figure 39. Bogie Force vs. Soil Tube Displacement Measured by String Pot, Test No. MGSEA-1

7 DYNAMIC COMPONENT TESTS – END ANCHOR SYSTEM

7.1 Test Setup and Instrumentation

Bogie test nos. DSAP-1 and DSAP-2 were conducted on a modified MGS end anchorage system consisting of two BCT posts and a steel W6x8.5 (W152x12.6) post, two 12 ft-6 in. (3,810 mm) long W-beam segments, and an instrumented cable anchor connecting the W-beam rail to the end BCT post. The test matrix and test setup are shown in Figures 40 through 50. Photographs of the test setup are shown in Figures 51 and 52. Material specifications, mill certifications, and certificates of conformity for the system materials used in test nos. DSAP-1 and DSAP-2 are shown in Appendix B.

The same modified cable anchor that was instrumented with a load cell, as used in test no. MGSEA-1, was used for test nos. DSAP-1 and DSAP-2 and is shown in Figures 42 through 45. A second load cell was placed between the cable anchor attached to the free end of the Wbeam rail and the pull cable. The other end of the pull cable was connected to a 4,780-lb (2,168kg) bogie vehicle. The target bogie speed was 25 mph (40 km/h).

For test nos. DSAP-1 and DSAP-2, the force was measured using the two load cells. For test no. DSAP-1, two probationary 80-kip (356-kN) washer-type, compressive load cells were placed on the threaded swage ends of the pull cable and the modified anchor cable at the anchor bracket connection. For test nos. DSAP-1 and DSAP-2, the acceleration of the bogie vehicle's c.g. was also measured as a backup and for comparison purposes.

For test nos. DSAP-1 and DSAP-2, a string pot was anchored to a flanged U-channel post embedded in the soil approximately 4 ft (1.2 m) from the upstream anchorage post. The string pot was secured to the foundation tube of the upstream post to track the displacement of the anchor tube in both tests.

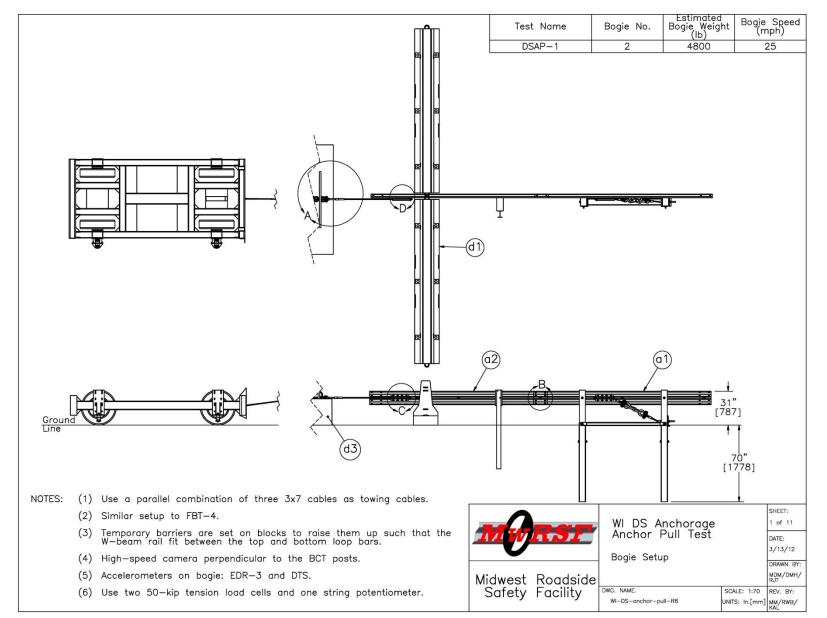


Figure 40. Bogie Testing Matrix and Setup, Test Nos. DSAP-1 and DSAP-2

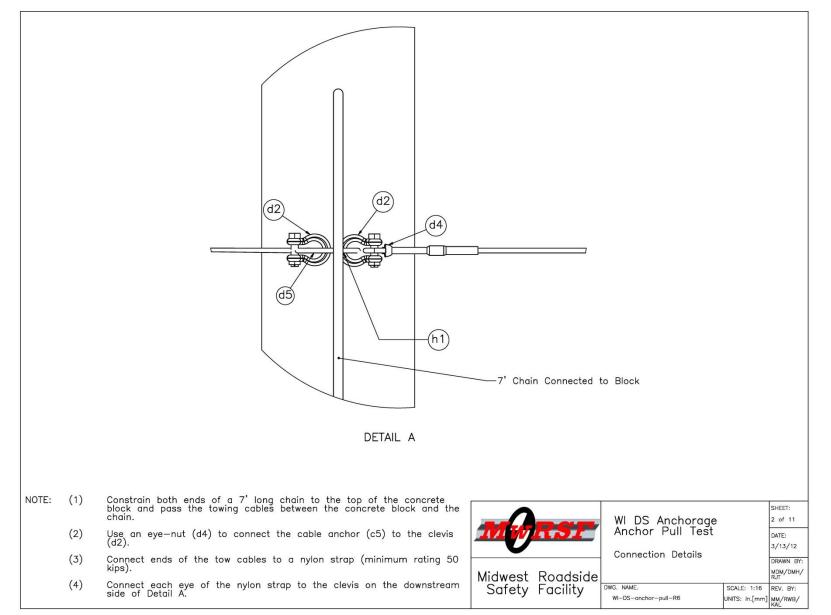


Figure 41. Connection Details, Test Nos. DSAP-1 and DSAP-2

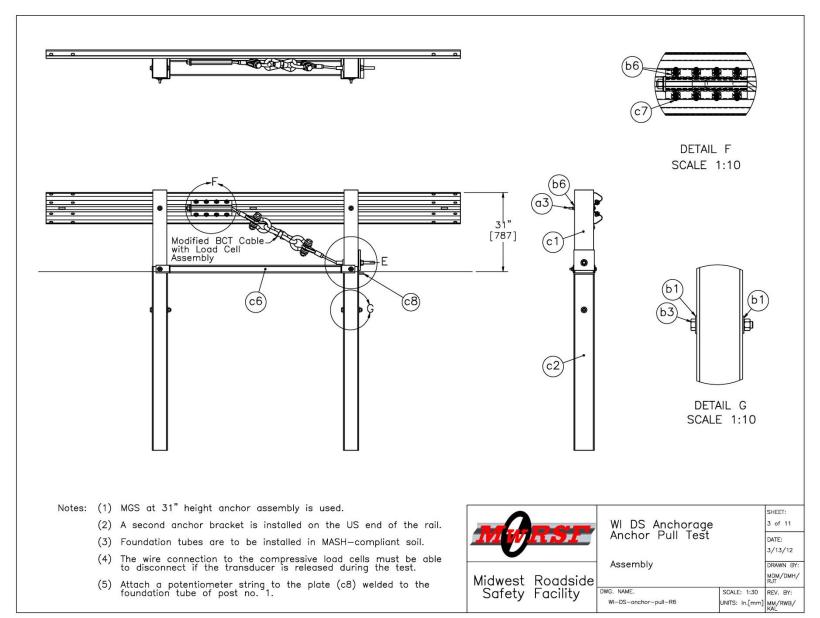


Figure 42. Modified BCT Cable Assembly, Test Nos. DSAP-1 and DSAP-2

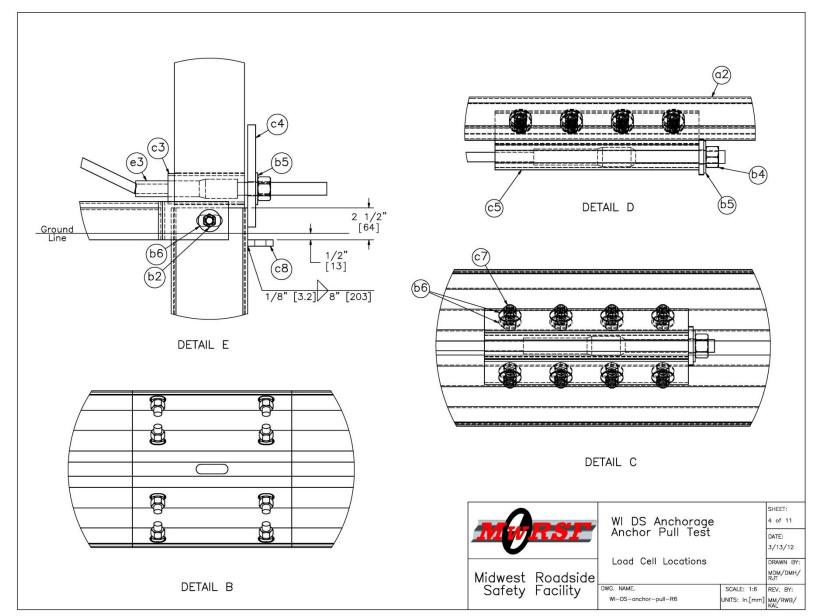


Figure 43. Load Cell Locations, Test Nos. DSAP-1

October 28, 2013 MwRSF Report No. TRP-03-279-13

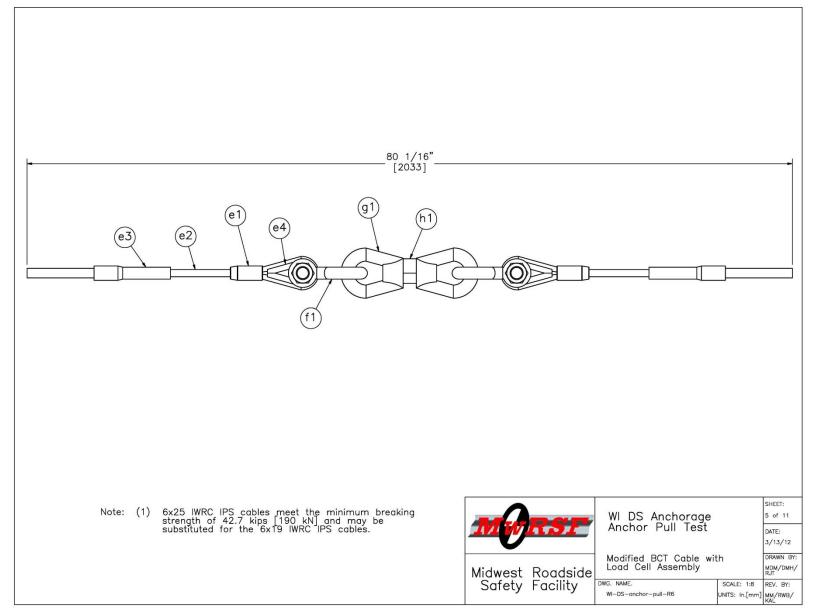


Figure 44. Modified BCT Cable with Load Cell Assembly, Test Nos. DSAP-1 and DSAP-2

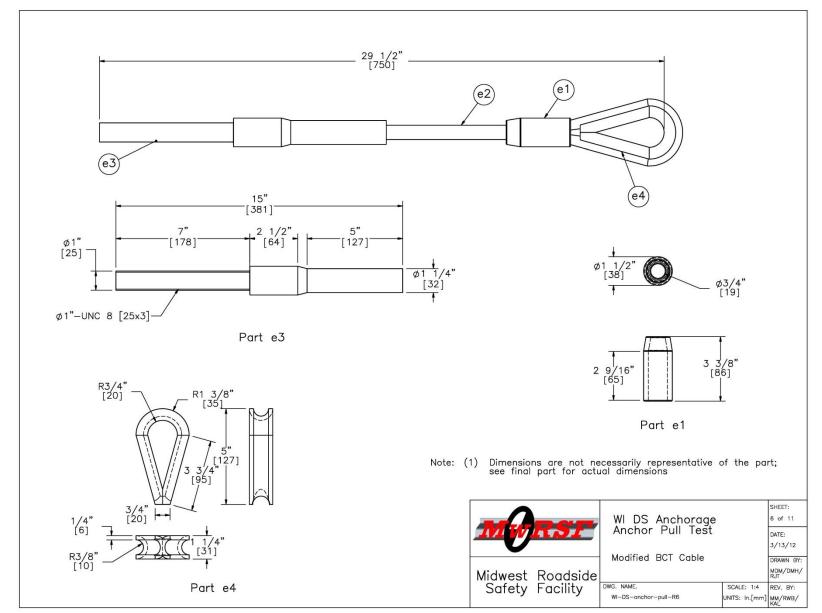


Figure 45. Modified BCT Cable, Test Nos. DSAP-1 and DSAP-2

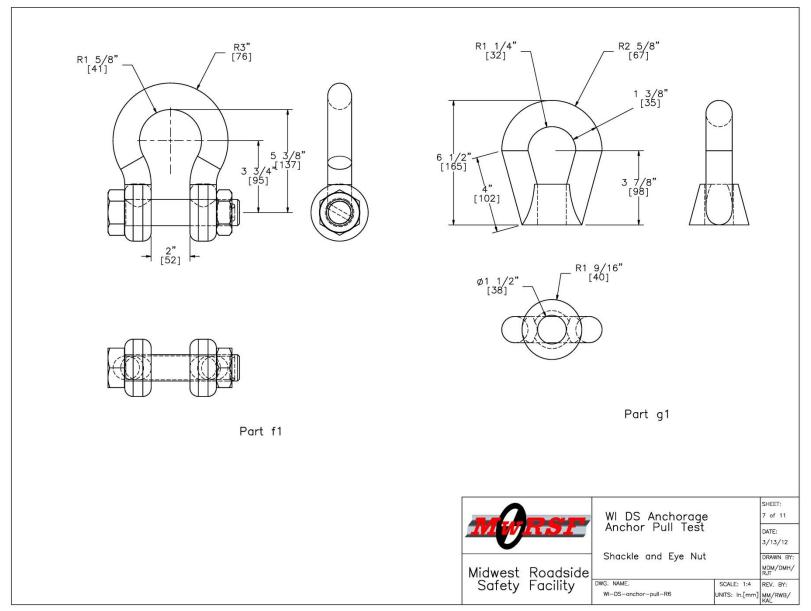


Figure 46. Shackle and Eye Nut, Test Nos. DSAP-1 and DSAP-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

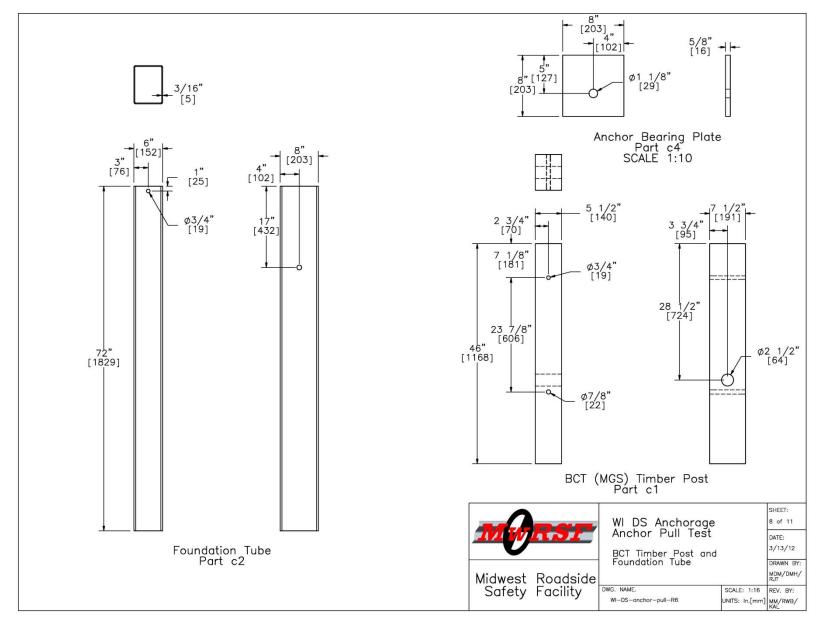


Figure 47. BCT Timber Post and Foundation Tube, Test Nos. DSAP-1 and DSAP-2

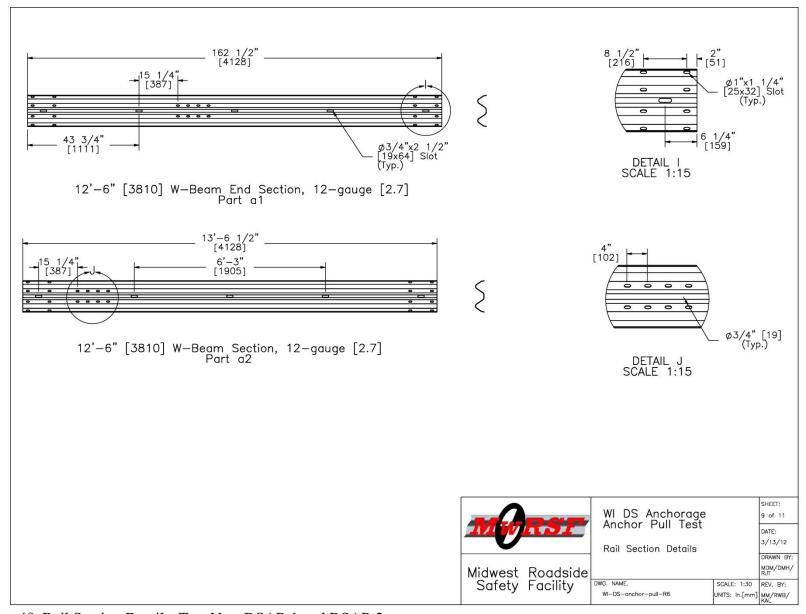


Figure 48. Rail Section Details, Test Nos. DSAP-1 and DSAP-2

	QTY.	Description	Material Specification	Hardware Guide	
a1	1	12'-6" [3810] W-Beam MGS End Section	12 gauge [2.7] AASHTO M180	RWM14a	
a2	1	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a	
a3	2	5/8" [16] Dia. x 10" [254] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBB03	
a4	8	5/8" [16] Dia. x 1 1/2" [38] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBB01	
a5	1	W6x8.5 [W152x12.6] 72" [1830] long	ASTM A992 Min. 50 ksi [345 MPa] (W6x9 ASTM A36 Min. 36 ksi [248 MPa])	PWE06	
a6	1	6x12x14 1/4" [152x305x362] Blockout	SYP Grade No.1 or better	-	
b1	4	7/8" [22] Dia. Flat Washer	Grade 2	FWC22a	
b2	2	5/8" [16] Dia. x 10" [254] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBX16a	
b3	2	7/8" [22] Dia. x 7 1/2" [191] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBX22a	
b4	3	1" [25] Dia. Hex Nut	ASTM A563 DH Galvanized	FBX24a	
b5	3	1" [25] Dia. Flat Washer	Grade 2	FWC24a	
b6	38	5/8" [16] Dia. Flat Washer	Grade 2	FWC16a	
c1	2	BCT Timber Post – MGS Height	SYP Grade No. 1 or better	PDF01	
c2	2	72" [1829] Foundation Tube	ASTM A53 Grade B	PTE06	
c3	1	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02	
c4	1	8x8x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36 Steel	FPB01	
c5	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01	
c6	1	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	-	
c7	16	5/8" [16] Dia. x 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 DH	FBX16a	
c8	1	8"x2"x1/2" [203x51x13]-Plate for String Potentiometer	ASTM A36 Steel	_	
d1	2	Temporary F-Shape Barrier	-	ROM02	
d2	2	Connecting Clevis (from FBT-4)	-		
d3	1	Concrete Block-MN Noise Wall			
d4	1	Ø1 Eye Nut (from FBT-4)		-	
d5	1	D-Ring (from FBT-4)	_	-	

Figure 49. Bill of Materials, Test Nos. DSAP-1 and DSAP-2

UNITS: In.[mm] MM/RWB/

ltem No.	QTY.	Description	Material Specification	
e1	2	115-HT Mechanical Splice - 3/4" [19] Dia. As Supplied		
e2	3	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope IPS Galvanized		
e3	4	BCT Anchor Cable End Swage Fitting Grade 5 - Galvanized		
e4	2	Crosby Heavy Duty HT-3/4" [19] Dia. Cable Thimble	Stock No. 1037773 - Galvanized	
f1	2	Crosby G2130 or S2130 Bolt Type Shackle — 1 1/4" [32] Dia. with thin head bolt, nut, and cotter pin, Grade A, Class 3	Stock Nos. 1019597 and 1019604 - As Supplied	
g1	2	Chicago Hardware Drop Forged Heavy Duty Eye Nut — Drilled and Tapped 1 1/2" [38] Dia. — UNF 12 [M36]	As Supplied, Stock No. 107	
h1	2	TLL-50K-PTB Load Cell	NA	

1		RSF	WI DS Anchorage Anchor Pull Test		SHEET: 11 of 11 DATE: 3/13/12
Mi	idwest	Roadside	Bill of Materials		DRAWN BY: MDM/DMH/ RJT
	Safety	ty Facility	DWG. NAME. WI-DS-anchor-pull-R6	SCALE: None UNITS: In.[mm]	REV. BY: MM/RWB/ KAL

Figure 50. Bill of Materials, Test Nos. DSAP-1 and DSAP-2 (cont'd)

Figure 51. Bogie Test Setup, Test Nos. DSAP-1 and DSAP-2

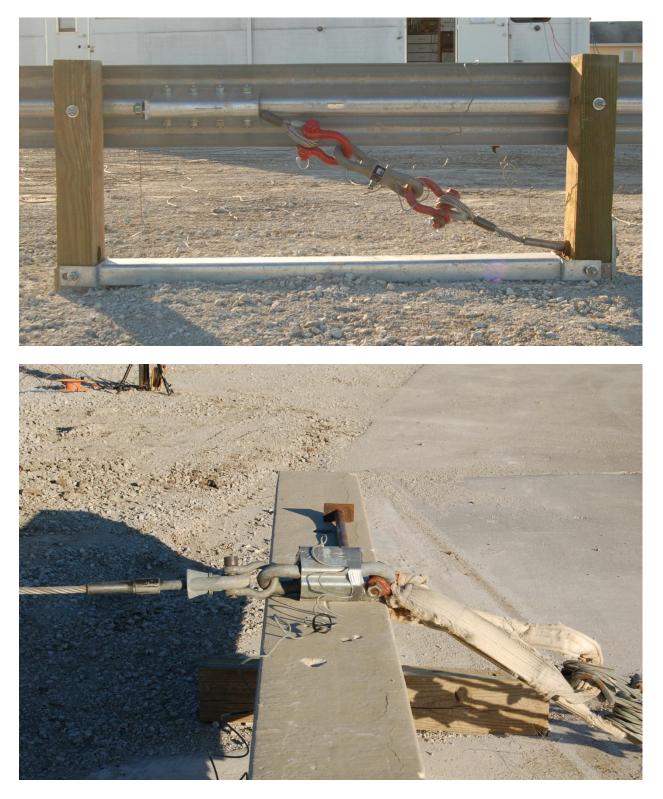


Figure 52. Load Cell Setup, Test Nos. DSAP-1 and DSAP-2

7.2 Test Results

7.2.1 Test No. DSAP-1

During test no. DSAP-1, the nylon strap used in the connection joint between the pull cable and upstream end of the guardrail ruptured. As a consequence, the anchorage was only partially loaded, and no damage occurred to the wood posts or the post-to-rail connection.

The force versus time curve and deflection versus time curve for test no. DSAP-1 are shown in Figure 53. The load measured by the two compressive load cells in test no. DSAP-1 were discarded, because it was determined that the washer-type load cell is extremely sensitive to small misalignments. The results from all tranducers used during the test are provided in Appendix C. The maximum force measured by the tension load cell attached to the anchor cable was approximately 18 kip (80 kN) at approximately 0.13 sec after the start of the pull event. The maximum displacement, as measured by the string potentiometer connected to the top of the foundation tube of the end post, was approximately 0.31 in. (8 mm) and occurred in concomitance to the peak force in the anchor cable. Time-sequential and post-impact photographs are shown in Figures 54 and 55, respectively. Due to the uncertainty associated with the start time in the string pot and load cells, the start time used for the load cell, anchor cable, and string pot data should be considered approximate. Therefore, force versus displacement and energy versus displacement curves were not plotted.

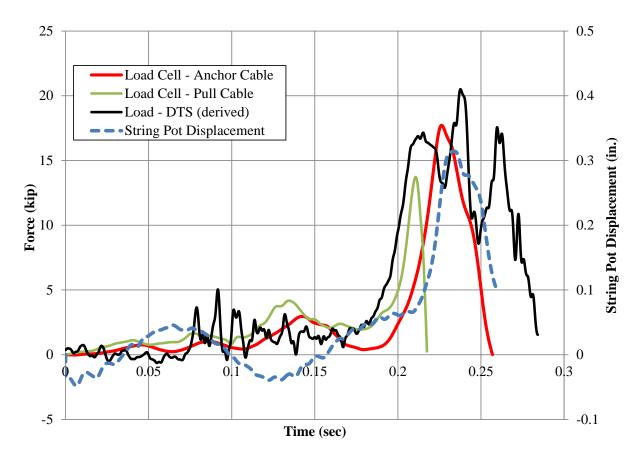


Figure 53. Forces vs. Time and Displacement vs. Time, Test No. DSAP-1

7.2.2 Test No. DSAP-2

Test no. DSAP-2 was conducted as a repeat of test no. DSAP-1; since, the nylon strap that was used to connect the pull cable to the anchor cable ruptured during the first test. As the pull cable started to be tensioned in test no. DSAP-2, the rail was pulled upstream, causing the two wood BCT posts to deflect upstream. The pull force was almost immediately transferred to the two foundation tubes, which rotated through the soil. When the cable anchor was tensioned, a downward vertical force component was applied to the rail. This force deformed the upper side of the rail slot at the connection with each of the two BCT posts due to the contact with the post bolt. The end BCT post fractured at the ground line first, followed immediately after by the other BCT post. After the fracture of the two BCT wood posts, the W6x8.5 (W152x12.6) steel

0.000 sec

0.048 sec

0.020 sec

0.060 sec

0.036 sec

0.140 sec

Figure 54. Time-Sequential Photographs, Test No. DSAP-1

Figure 55. Post-Impact Photographs, Test No. DSAP-1

post and the wood blockout twisted upstream. When the rail finally released away from the bolted connection, the steel post came back to its original untwisted configuration. The rail was eventually pulled downstream until it was brought to a stop by a steel chain connected to its upstream end and anchored to a concrete barrier.

The force versus time and the deflection versus time curves for test no. DSAP-2 were processed from transducer data. Event start times for the load cells, accelerometer, and string pot data were approximated, and the processed data are shown in Figure 56. Technical difficulties with the pull cable load cell rendered pull cable tension data unusable. The results from all transducers used during the test are provided in Appendix C. As illustrated in the force versus time curve, two peak forces of about 21 kip (93 kN) and 35 kip (156 kN) occurred at around 0.06 sec and 0.10 sec, respectively. Two local maximum displacements of about 0.5 in. (13 mm) and 0.9 in. (23 mm) were measured by the string potentiometer connected to the base of the end post. These two local peak displacements occurred at nearly the same time as two local force peaks. Time-sequential photographs are shown in Figures 56 and 57. Post-impact photographs are shown in Figure 58.

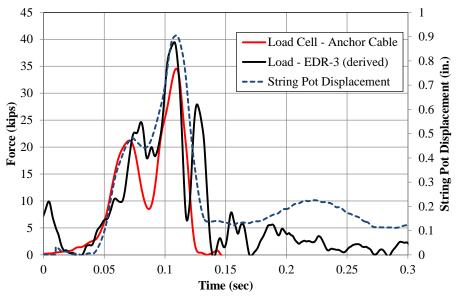


Figure 56. Force vs. Time and Displacement vs. Time, Test No. DSAP-2

0.000 sec

0.120 sec

0.080 sec

0.140 sec

0.100 sec 0.200 sec Figure 57. Time-Sequential Photographs – Front View, Test No. DSAP-2

0.180 sec Figure 58. Time-Sequential Photographs – Rear View, Test No. DSAP-2

Figure 59. Post-Impact Photographs, Test No. DSAP-2

7.3 Discussion

For test no. DSAP-2, several important observations were made. The increased tension in the anchor cable caused the farthest downstream anchor post to fracture first. The post was pulled upward and upstream by the releasing anchor cable, but it remained attached to the rail following fracture until it had rotated nearly 90 degrees. The second post from the downstream end also fractured at nearly the same time, but the post largely rotated around the BCT hole toward the ground level, and the post released away from the rail during fracture. Neither post was split due to the BCT loading through the post bolts.

The upward motion of the downstream BCT post after fracture was likely the result of the angle of the anchor cable between its attachment point on the W-beam and the BCT post. As the anchor cable tension increased, the angle of the cable resulted in a vertical force and a shear load applied longitudinally to the post. The lifting load from the cable pulling on the post was clearly visible at 0.120 sec into test no. DSAP-2, as shown in Figures 57 and 58.

The maximum load sustained by the end anchorage was between 35 and 40 kip (156 and 178 kN). A reasonable limit for estimating the capacity of an end anchorage would thus be 35 kip (156 kN). The anchor cable load versus downstream foundation tube displacement is shown in Figure 60. The loading curve of the anchor was linear through 0.40 in. (10 mm). The maximum load of 35 kip (156 kN) occurred at nearly the same time as the maximum deflection of 0.90 in. (23 mm). The anchor rebounded 0.75 in. (19 mm) in the soil, with a maximum permanent set deflection of 0.15 in. (4 mm). It should be noted that the rebound force curve was not relevant, because the anchor cable load cell disengaged from the soil foundation tube after the BCT post fractured and the bearing plate was released.

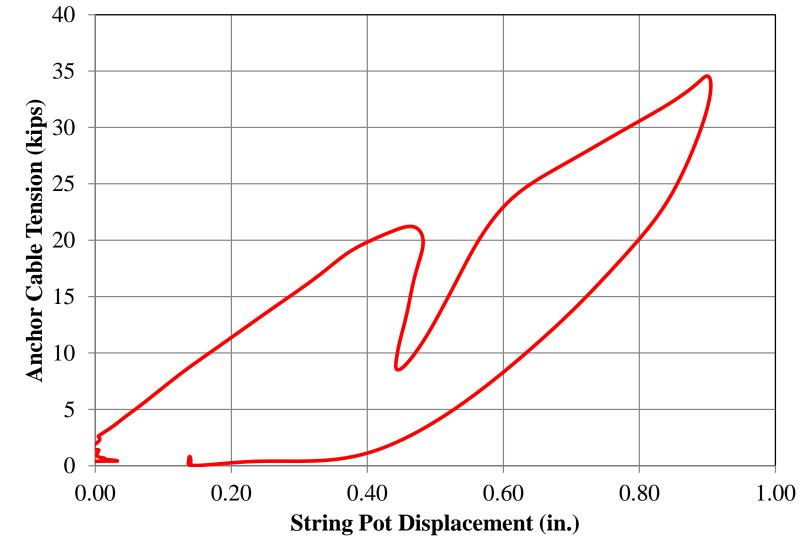


Figure 60. Anchor Cable Load vs. Downstream Foundation Tube Displacement, Test No. DSAP-2

92

8 NUMERICAL SIMULATIONS – COMPONENT MODELING

Results from the bogie testing program were used to generate models of the MGS end anchorage components. Simulations were then used to validate the models in predicting and replicating component behaviors observed in the physical tests. The non-linear finite element code LS-DYNA was used to perform this simulation effort [30]. First, models of wood CRT posts were created to compare simulated behavior against physical testing. Then, models of each of the three bogie testing efforts – eccentric post splitting tests, soil foundation tube tests, and downstream end anchorage system tests – were created and simulated, and results were evaluated.

8.1 Wood Post Models

The two BCT wood posts within the downstream end anchorage were modeled using an isotropic elasto-plastic material model. A bilinear material curve was used to characterize stress-strain behavior using elastic and plastic moduli equal to1,595 ksi (11 GPa) and 36 ksi (250 MPa), respectively. The yield stress of the wood material was set equal to 0.87 ksi (6 MPa). A failure criterion was defined based on a maximum plastic strain of 8 percent.

The calibration of the material parameters was based on a series of dynamic component tests performed at MwRSF. During a previous research effort, 6-in. x 8-in. (152-mm x 203-mm) CRT wood posts embedded in a rigid foundation were impacted at angles of 0, 45, and 90 degrees relative to the strong-axis impact direction [31]. One sample simulation used to validate the wood material model is shown in Figure 61. The material parameters were calibrated in order to match as close as possible the wood resistance that was measured in the various impact configurations. A comparison was made between the experimental and simulated force versus displacement and energy versus displacement curves for the three impact angles considered with the CRT wood posts (i.e., 0, 45, and 90 deg with respect to the post's strong axis of bending), as

shown in Figures 62 through 67. The results indicated that the modeled wood behavior, using an isotropic material model and the mentioned mechanical properties, was capable of reproducing dynamic wood post strength in a stable and efficient manner. Beside the particular geometry of the CRT wood posts that were used for the calibration process, this material model was deemed suitable for modeling other similar wood post geometries with a weakening hole, such as BCT wood posts used in downstream end anchor systems.

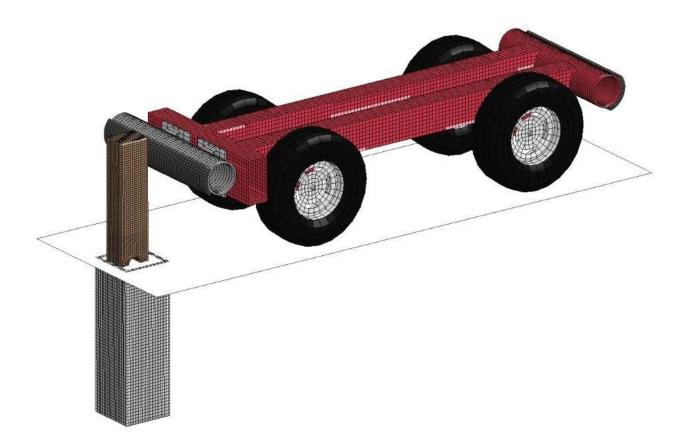


Figure 61. Sample Wood Post Impact Simulation to Validate Wood Material Model

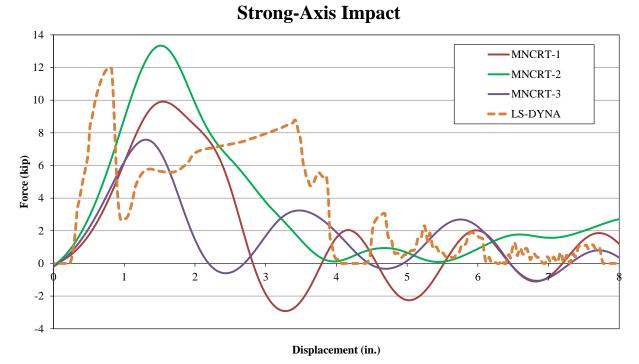


Figure 62. Force vs. Deflection, Simulation and Tests on CRT Posts at 0-deg Impact

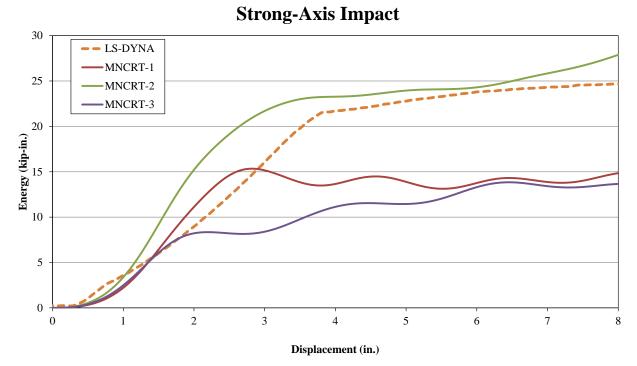


Figure 63. Energy vs. Deflection, Simulation and Tests on CRT Posts at 0-deg Impact

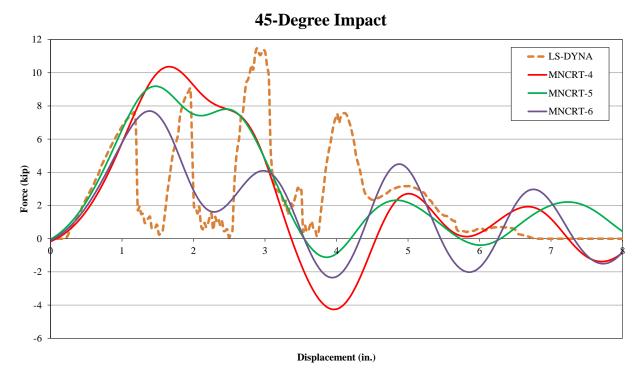


Figure 64. Force vs. Deflection, Simulation and Tests on CRT Posts at 45-deg Impact

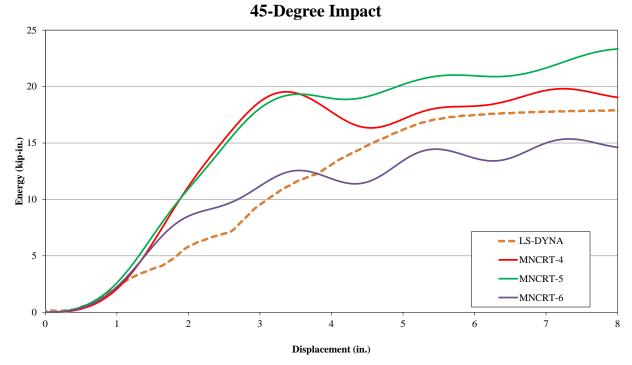
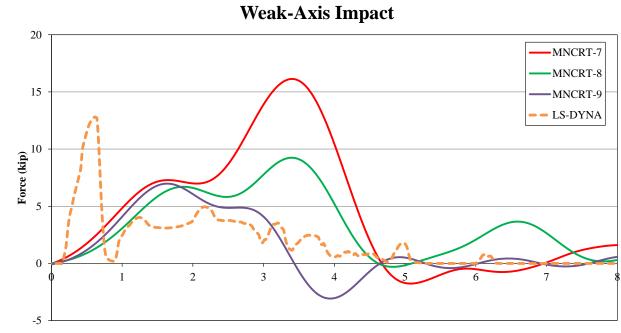



Figure 65. Energy vs. Deflection, Simulation and Tests on CRT Posts at 45-deg Impact

Displacement (in.)

Figure 66. Force vs. Deflection Curves, Simulation and Tests on CRT Posts at 90-deg Impact

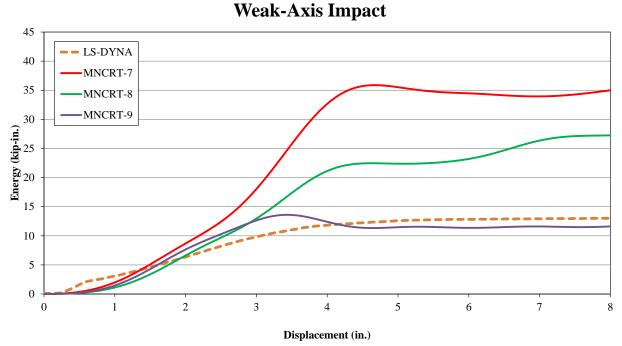


Figure 67. Energy vs. Deflection, Simulation and Tests on CRT Posts at 90-deg Impact

8.2 Wood Splitting Simulation – Eccentrically-Loaded BCT Post

A variation of the BCT wood post model was successfully developed to investigate splitting of the post in two pieces with a vertical fracture plane passing through the upper bolted connection between the rail and post. An example of a BCT post splitting simulation model is shown in Figure 68. The post model was comprised of two parts, which were connected using tied nodes along a vertical plane through the center of the post. Time-sequential photographs of test no. BCTRS-1 and the wood post splitting simulation are shown in Figure 69.

Experimental results from test nos. BCTRS-1 and BCTRS-2 were used to calibrate the wood post model. The comparison of the force versus deflection and energy versus deflection behaviors from numerical simulations and experimental results are shown in Figures 70 and 71, respectively.

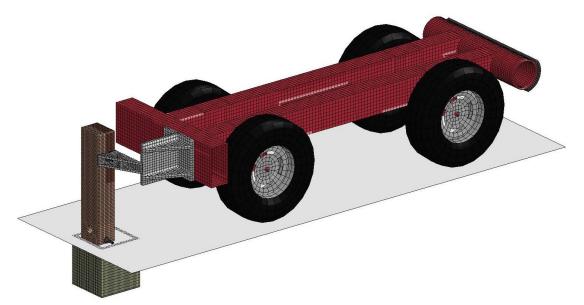


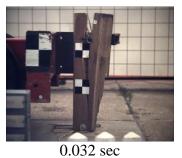
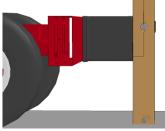
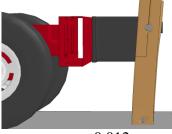
Figure 68. Example Simulation of Test Nos. BCTRS-1 and BCTRS-2 to Validate Wood Model

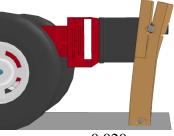
0.000 sec

0.012 sec

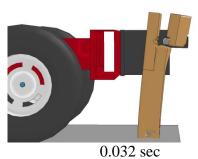
0.020 sec

0.024 sec


Figure 69. Time-Sequential Images, Test BCTRS-1 and Simulation

0.000 sec


0.012 sec

0.020 sec

0.024 sec

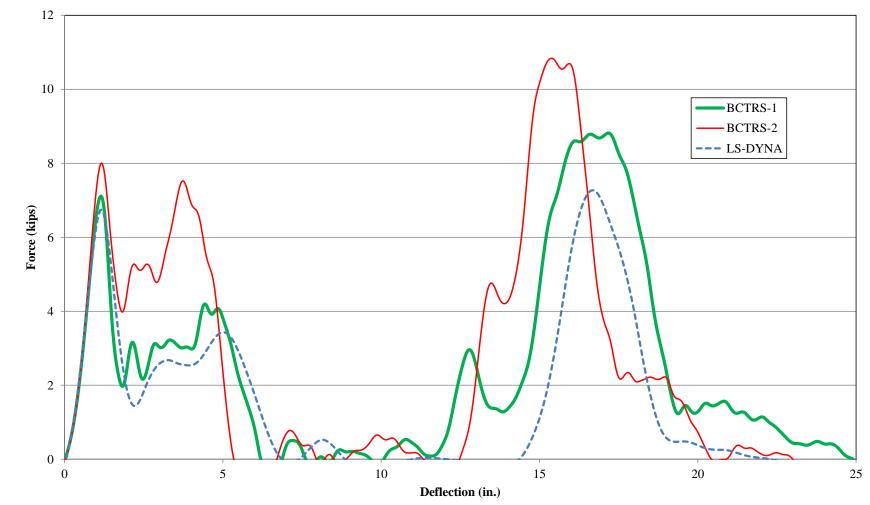


Figure 70. Force vs. Deflection, Simulation and Eccentric Tests on BCT Posts

100

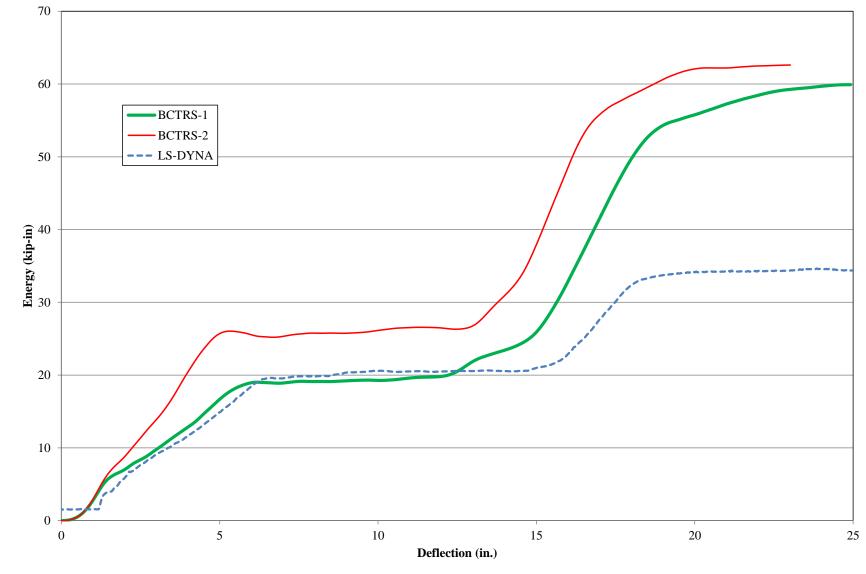


Figure 71. Energy vs. Deflection, Simulation and Eccentric Tests on BCT Posts

October 28, 2013 MwRSF Report No. TRP-03-279-13

101

Based on the simulation results, the force versus deflection characteristics of the wood post model with splitting capability were representative of the lower bound of the force versus deflection behavior during the initial phase of the post splitting. Complete post fracture dissipated approximately 38 kip-in. (4.3 kJ), or approximately 63 percent of the energy dissipated in test nos. BCTRS-1 and BCTRS-2. Splitting occurred along the vertical plane, thus separating two parts of the post model. The split terminated at the junction between the separate post parts, after which time the smaller post piece separated from the post and was projected in front of the bogie vehicle. The simulation was terminated after the bogie contacted and fractured the remaining piece of the modeled BCT post.

Similar to the CRT simulation effort, the weak-axis, secondary impact of the post dissipated much less energy in the model than observed in the test. Whereas the results of the initial phase of post splitting were very similar to test no. BCTRS-1, secondary fracture occurred at a significantly lower energy level. This result indicated that BCT post splitting behavior may be reproduced with the use of improved wood models capable of accurately simulating weak-axis fracture.

8.3 Soil Foundation Tube and Soil Resistance Model

One important aspect of downstream anchorage modeling is the dynamic behavior of soil foundation tubes. Due to the difficulty associated with modeling soil with a compacted, coarse crushed limestone material that is often used in full-scale crash testing, a simplified soil tube model was developed and evaluated with non-linear soil springs. A 50-in. (1,270-mm) long pull cable, consistent with wire rope properties derived from ³/₄-in. (19-mm) diameter 3x7 guardrail wire rope [32], was attached to the modified BCT soil foundation tube with a modified, reinforced bearing plate, as shown in Figure 72. A 2,452-lb (1,112-kg) discrete mass was attached to the end of the wire rope and was prescribed an initial velocity of 15 mph (6.7 m/s).

Figure 72. Soil FoundationTube and Soil Resistance Model

Results from the simulation of test no. MGSEA-1 were compared with physical test results and are shown in Figure 73. The force versus deflection behavior of the soil foundation tube model is shown in Figure 74. The soil tube was modeled with shell elements with a thickness of 0.1875 in. (4.76 mm), and prescribed with rigid material constrained against translational motion in any direction as well as constrained against twisting about the vertical axis. As a result, the modeled soil tube could not exactly replicate the behavior of the actual soil tube in the test, which accelerated and displaced soil. Soil displacement in the test culminated in both inertial and compressive loads transferred to the soil tube, and the top opening of the soil tube remained above ground throughout the deflection.

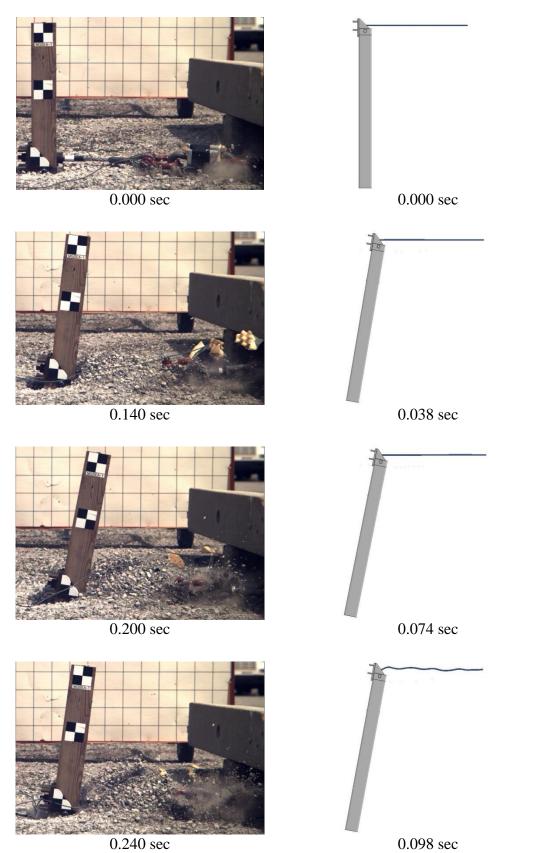


Figure 73. Time-Sequential Images, Test and Simulation, MGSEA-1

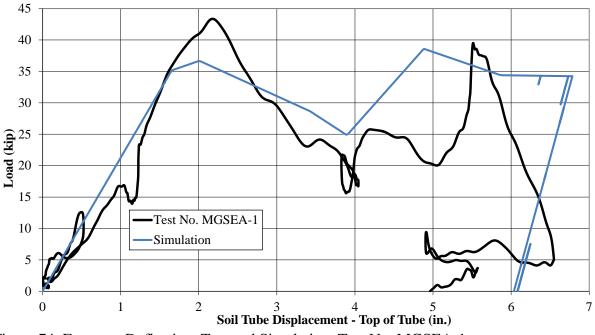


Figure 74. Force vs. Deflection, Test and Simulation, Test No. MGSEA-1

Historically, soil stiffness has had a significant effect on end anchorage motion. A test of an MGS long-span system spanning a box culvert resulted in a permanent set of the downstream anchor post soil tube of 9 in. (229 mm), and the downstream anchor post was lifted up and extended partially out of the ground after the test [33]. During a test and evaluation of a maximum flare rate used in combination with the MGS system, the MGS end anchorage deflected 1.5 in. (38 mm) and lifted partially out of the ground [34]. The dynamic loads applied to the anchors in these two tests were likely much higher than observed in many other full-scale crash tests. Nonetheless, the very large dynamic deflections of the soil foundation tubes may not be solely explained by the large anchor loads. Static soil tests conducted before and after revision of soil compaction practices at MwRSF indicated an increase in approximate static soil strength from 6 kip (27 kN) to 12 kip (53 kN). Lower soil strength may have contributed to the increased anchor deflections. In addition, soil inertia affected overall deflection in test no. DSAP-2.

Despite these difficulties, the force versus deflection behaviors for the soil foundation tubes in MGSEA-1 and the simulation with non-linear soil springs were very similar over the first 4 in. (102 mm) of deflection, as measured at the string potentiometer attachment location. A similar downstream soil foundation tube in test no. DSAP-2 only experienced a deflection of 0.9 in. (23 mm) before the BCT posts were fractured, with a string pot attached at the same location. Thus, it is not anticipated that deflections greater than 4 in. (102 mm) will occur in any future crash testing efforts utilizing a strong, heavily-compacted soil, to the model was considered accurate.

8.4 Validation of the Downstream Anchorage

The downstream end anchorage model was validated against the data obtained from the dynamic component test no. DSAP-2, in which an end anchor system was pulled by a dynamic impulsive load applied at the upstream end of the rail segment through a bogie vehicle and a tow cable. A more complete description of the test setup for test no. DSAP-2 was provided in Section 7.2.2.

Test no. DSAP-2 was simulated using modeled components of an MGS end anchorage system, as shown in Figure 75. The model consisted of two BCT posts inserted into steel foundation tubes connected by a ground strut. A cable anchor was also attached to a W-beam rail and with a bearing plate in contact with the end BCT post.

The MGS anchorage model was simulated and compared to the results from the bogie test. A comparison of the cable anchor force versus deflection of the top of the soil tube was made between test no. DSAP-2 and the numerical simulation, as shown in Figure 76. Time-sequential photographs of the test and simulation were compared and are shown in Figure 77. Both the test and simulation were assumed to start after the W-beam rail began to deflect downstream. The displacement corresponding to maximum load and the maximum displacement were 0.9 in. (23 mm) in test no. DSAP-2, whereas the displacement corresponding to the

maximum load and the maximum displacement were 0.99 in. and 1.03 in. (25.1 mm and 26.2 mm) in the simulation, respectively.

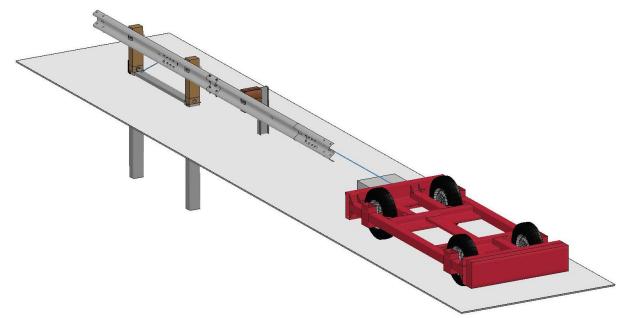


Figure 75. Model of Test No. DSAP-2 Used to Validate End Anchor

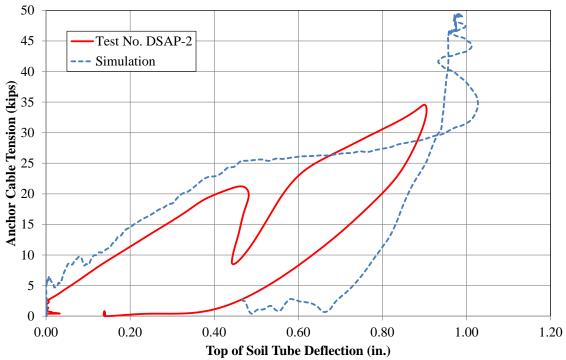


Figure 76. BCT Cable Force vs. Top of Soil Tube Deflection, Test and Simulation

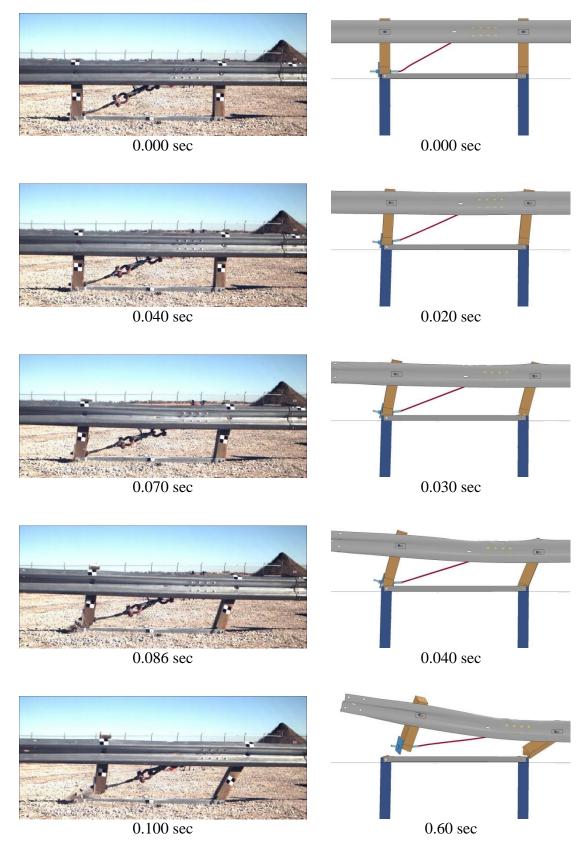


Figure 77. Time-Sequential Images, Test and Simulation, Test No. DSAP-2

Immediately after simulation began, the W-beam rail was pulled downstream, as shown in Figure 77. The upstream anchor post fractured through the cross-section between 0.030 to 0.040 sec, and the downstream anchor post fractured between 0.040 sec and 0.048 sec. By contrast, the downstream anchor post fractured abruptly at 0.040 sec during test no. DSAP-2, and the upstream post fractured between at 0.076 and 0.122 sec. The downstream anchor post rotated around the ground line, whereas the upstream anchor post was pulled downstream by the cable anchor and post bolt in both the test and simulation.

Several differences were noted between the simulation and bogie test of the downstream anchorage. First, a short length of wire rope was simulated to model the pull cable between the bogie and the rail. Thus, there was a large impulse force applied to the simulated system, causing immediate system deflection. In test no. DSAP-2, the bogie vehicle was attached to a long pull cable which initially rested on the ground. As a result, the system was loaded more gradually. The more gradual increase in loading also resulted in delayed post fracture in the test compared to the simulation.

Second, there was no modeled slack in the BCT anchor cable. As a result, the cable was almost immediately loaded in tension after the W-beam displaced downstream. Furthermore, the "geometrical stretch" noted in previous literature of slack wire rope during tensioning [32] was not taken into account in the wire rope model, which led to higher forces culminating from small deflections in the anchor cable. Thus, the anchor cable model over-predicted the cable anchor forces through much of the simulation.

Third, wood post modeling in LS-DYNA is subject to significant variation when wood posts fracture in weak-axis bending. Test and simulation results for the wood post tests shown in Figures 66 and 67 indicated that weak-axis impacts dissipated more energy and resulted in higher resistive forces on average through a deflection of 4 in. (102 mm) during the physical tests than

observed in simulations. Posts were optimized using strong-, weak-, and oblique-axis impacts, resulting in post models which tended to: overpredict loads and energy dissipated in strong-axis impacts; approximately matched the energy and force levels in angled-axis impacts; and underestimated loads and energy in weak-axis impacts. Thus, the BCT posts, which were subjected to weak-axis loading, fractured at lower loads and energy levels in the simulation than observed in the bogie test no. DSAP-2.

Despite these differences, the simulated load versus deflection behavior of the anchor and soil foundation tube reasonably reflected the behavior observed in the bogie test. Furthermore, an approximately 40-ms delay seemed to be present between the test and simulation, as events occurring in the simulation analogously occurred in the physical test 40 ms later. When additional uncertainties in the analysis, variability on repeated tests, and modeling constraints were taken into account, the simulated model of the MGS end anchorage was determined to be a good candidate for modeling the downstream end anchor for simulations of vehicular impact events.

9 NUMERICAL MODEL OF THE MGS BARRIER

Information gleaned from the actual and simulated bogic component testing program was used to generate models of an MGS barrier with the associated downstream anchorage system. Numerical simulations of full-scale crash tests were performed to determine potential critical impact points (CIPs) which may occur during an impact in close proximity to the downstream anchorage with both the 1100C and 2270P vehicles. The CIP of the pickup truck is frequently defined as the point at which it is unclear whether the system will contain and redirect the vehicle or the end of the system will gate and permit the vehicle to pass through. The small car CIP corresponds to the point/location which maximizes propensity for the small car to underride the barrier and become ensnared by the anchor cable.

An LS-DYNA model of a 175-ft (53.3 m) long MGS system was created. The W-beam rails, rail slots, splice bolts and posts were modeled in detail for the first ten spans from the downstream end, including the end anchorage. The LS-DYNA model is shown in Figure 78.

Detailed bolted connections were modeled between the cable-anchor bracket and the back of the most downstream rail segment and for the splice joints between the first six rail segments from the downstream end of the system. Also, the rail slots used for the connection to the first ten posts from the downstream end were characterized by a finer mesh in order to better simulate the plastic deformation in this area.

9.1 Simulated Scenarios and Results

9.1.1 Identification of Critical Impact Scenario for 1100C

The numerical model of a Dodge Neon passenger car was used to simulate full-scale crash tests at different impact locations in close proximity to the downstream end anchorage of the MGS barrier model previously described. Simulated impact scenarios considered a top rail mounting height of both 31 in. (787 mm) and 32 in. (813 mm).

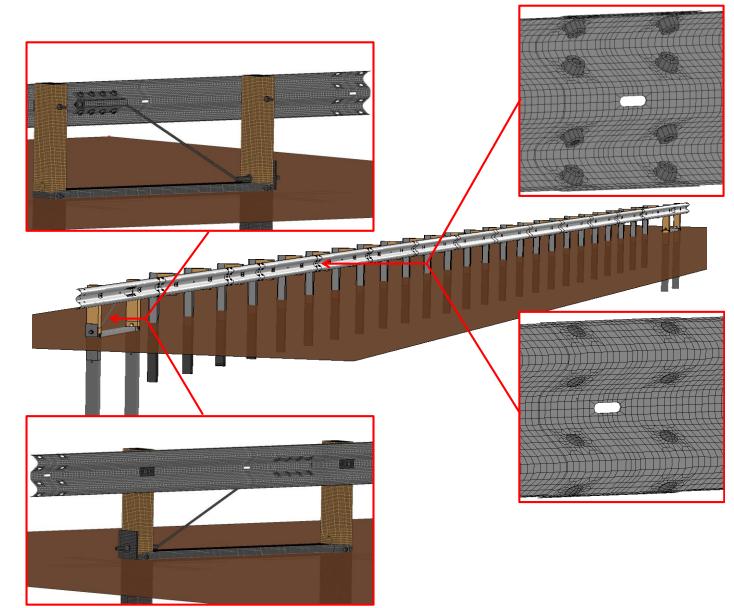


Figure 78. LS_DYNA Model Used to Simulate Impact in Close proximity to the Downstream End Anchor

To identify the critical impact location, full-scale crash tests were simulated with initial impact points at each quarter of guardrail span in the range starting from a quarter span upstream from the end post through midspan between the first two line posts. For all of these simulated scenarios, the initial impact speed and angle were 62 mph (100 km/h) and 25 degrees, respectively.

In the analysis of the simulation results, specific focus was given to the interaction between the vehicle's front end and the cable anchor. This interaction, at the instant when the end post fracture was initiated, is shown in Figures 79 through 81. Impact points between the second and third posts resulted in maximum vehicle snag on the BCT cable. In addition, impacts which occurred within the span of the anchor resulted in vehicle contact with the BCT bearing plate following the end post fracture, as shown in Figure 82. This interference between the bearing plate and the impacting tire did not lead to any vehicle instability in the simulations. However, in an actual full-scale crash test, this situation could lead to the potential for the vehicle to be trapped if the sharp edge of the bearing plate cut through the tire and hooked the vehicle's wheel.

Further simulations were also performed using BCT wood posts that exceeded the minimum required strength, with focus on impacts occurring between post nos. 2 and 3 to maximize vehicle snag on the anchor cable. A comparison between the results obtained with a standard wood strength and with strength of the BCT wood posts in the expected upper boundary is shown in Figure 83. The simulations with stronger BCT wood posts showed an increase in vehicle snag on the cable anchor. In particular, for an initial impact occurring at the midspan between the second and third posts from the downstream end of the rail, the cable anchor slid onto the inner side of the impacting tire. In the simulations, the vehicle eventually disengaged

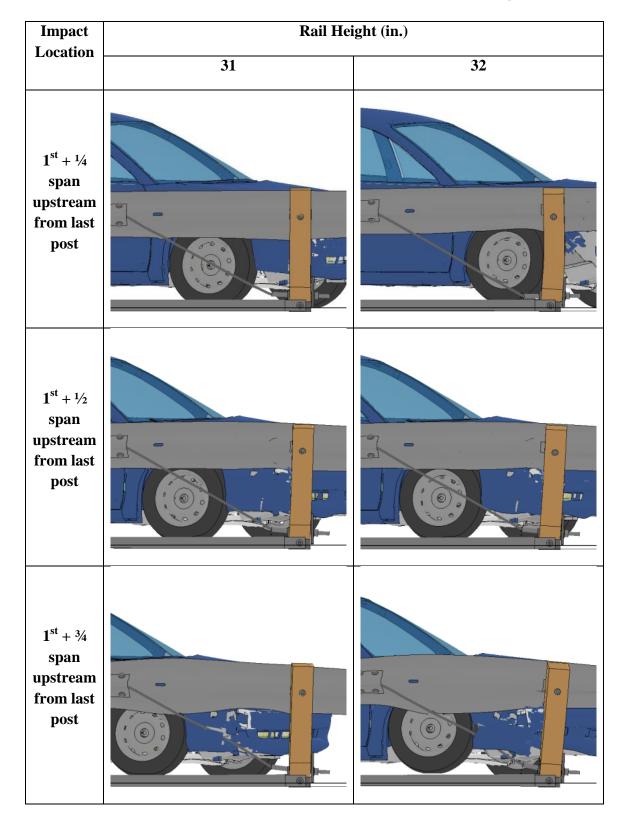


Figure 79. Vehicle-Cable Interaction at Onset of End Post Fracturing

Impact	Rail Height (in.)	
Location	31	32
2 nd Post		
2 nd Post + ¹ ⁄4 span		
2 nd Post + ¹ / ₂ span (CIP Impact)	Simulation Instabilities	

Figure 80. Vehicle-Cable Interaction at Onset of End Post Fracturing (continued)

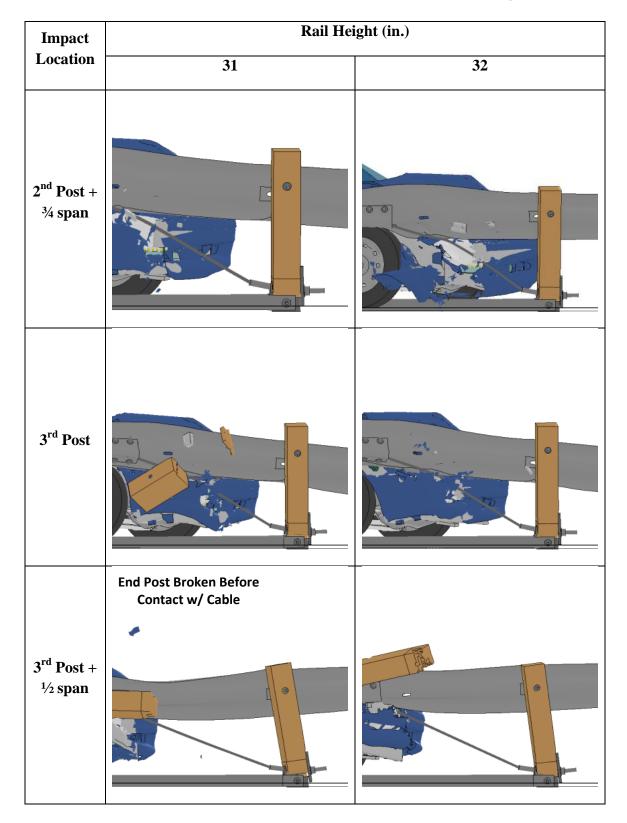


Figure 81. Vehicle-Cable Interaction at Onset of End Post Fracturing (continued)

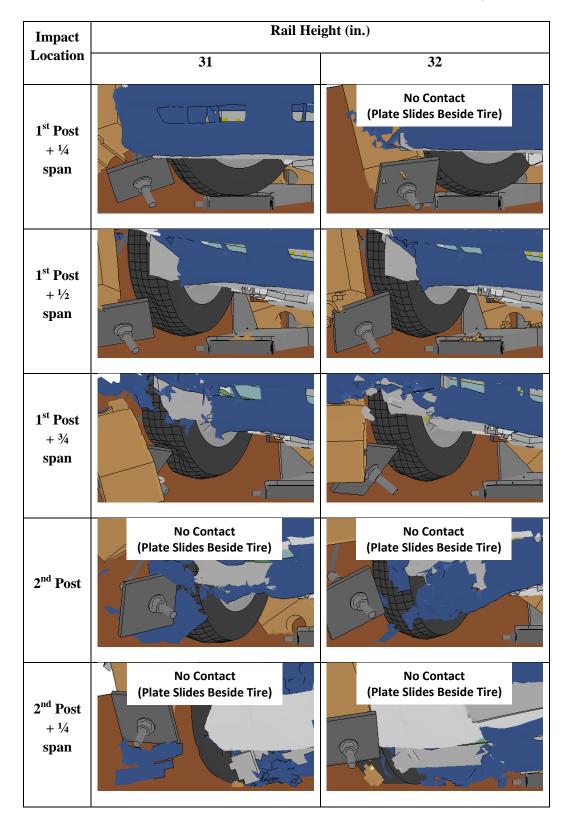


Figure 82. Tire-Bearing Plate Contact Occuring for Various Initial Impact Points – 1100C

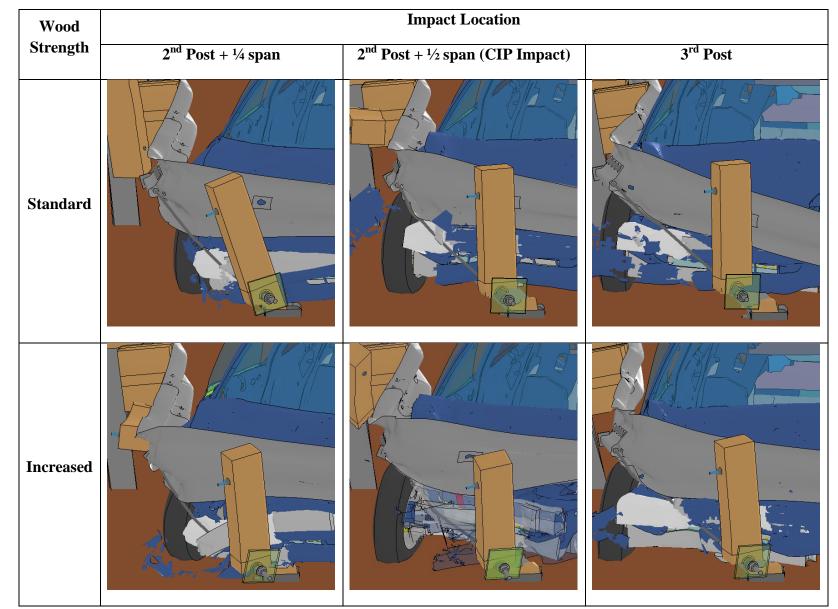
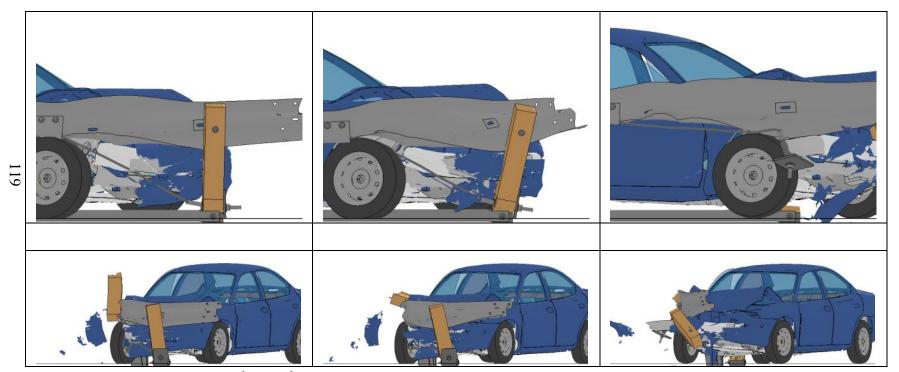
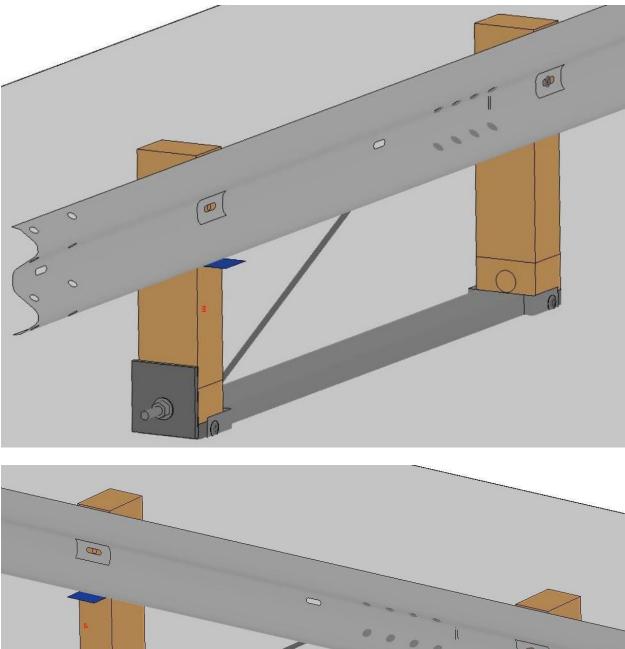


Figure 83. Vehicle-Cable Interaction for Critical Impact Points with 32-in. (813-mm) Tall MGS

118




Figure 84. Impact at Midspan of 2nd and 3rd Post from Downstream End with 32-in. (813-mm) Tall MGS (Strong Wood)

from the cable without instability, as shown in Figure 84. However, this situation may potentially be dangerous and cause increased occupant risk values during a full-scale crash test.

The simulated full-scale crash tests of the 1100C passenger car in close proximity to the downstream end anchorage of the MGS system identified two potential critical situations: (a) interference between the bearing plate and the impacting right-front tire and (b) snagging of the vehicle's front end on the anchor cable. Impacts in which the anchor cable interacts with the inner side of the front wheel were deemed more critical for vehicle instability and occupant risk.

The simulated impact utilized a BCT wood material model which was approximately representative of the upper boundary of wood strength, a 32-in. (813-mm)-high top rail mounting height, and an impact location between the second and third posts upstream from the downstream end post. During this simulation, the vehicle engaged the BCT cable, but the cable did not become snagged on the vehicle suspension. However, a different geometry of the vehicle's front-end, such as front bumper, engine hood, front fender, and wheel well, may allow the anchor cable to penetrate more deeply behind the impacting wheel, increasing snag potential and consequently causing excessive occupant decelerations and vehicle instability. This simulation scenario was determined to be the most critical impact to evaluate end anchorage crashworthiness.

Further investigation was carried out to assess potential advantages and disadvantages of a simple support between the rail and the downstream end post during an impact occurring at the identified critical impact point. An example of the simply-supported end post is shown in Figure 85. A simply-supported end may be realized as a BCT post which retains the rail at the desired height through use of an angle bracket or shelf to support the rail. Although a simple support may decrease the load applied to the BCT wood post, it may also allow for increased wedging of the vehicle's front end; since, there would be no vertical constraint applied to the end of the rail.

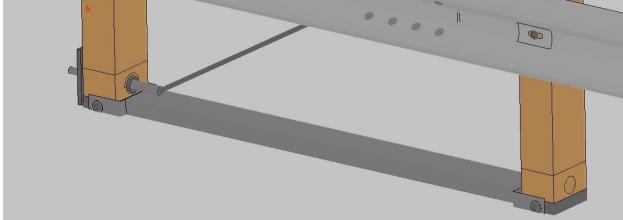


Figure 85. Simple Support (Shown in Blue) at Downstream End Post

The increased wedging or prying action of the rail by the front end of the vehicle could adversely affect vehicular stability and occupant risk by increasing the likelihood of vehicle snagging on the anchor cable.

The comparison of simulated impact scenarios with a bolted connection and a simple support between the rail and the downstream end post confirmed the initial concern about increased vehicle snag on the cable. In the case with a simple support, the cable penetrated more deeply into the wheel well and did not come out while the vehicle continued to proceed downstream. Simulation sequentials are shown in Figure 86. In both simulated scenarios, the initial impact occurred at the midspan between the second and third posts from the downstream end of the rail with the top of the rail at 32 in. (813 mm) from ground level and with BCT wood posts modeled with strengths at the expected upper boundary.

9.1.2 Determination of Downstream End of LON

9.1.2.1 BCT End Posts with Nominal Strength

For the determination of the end of the LON, the numerical model of a Chevrolet Silverado pickup developed by the National Crash Analysis Center (NCAC) [35] was used to simulate full-scale crash tests against the 31-in. (787-mm) tall MGS barrier model in close proximity to the downstream guardrail end anchorage. The simulated full-scale crash tests considered initial impact locations varying from the fourth to the ninth posts upstream from the end of the of the downstream anchorage rail section. For clarification, the MGS end anchorage BCT posts would be positioned at post nos. 1 and 2. Simulations were analyzed with and without failure of the connection between the right-front wheel and suspension, as shown in Figures 87 and 88. Suspension failure was modeled by terminating the simulation, deleting the rigid joint, and re-starting the simulation. Suspension failure time was estimated by examining wheel snag on posts and comparing simulated snag to known suspension failures in crash tests.

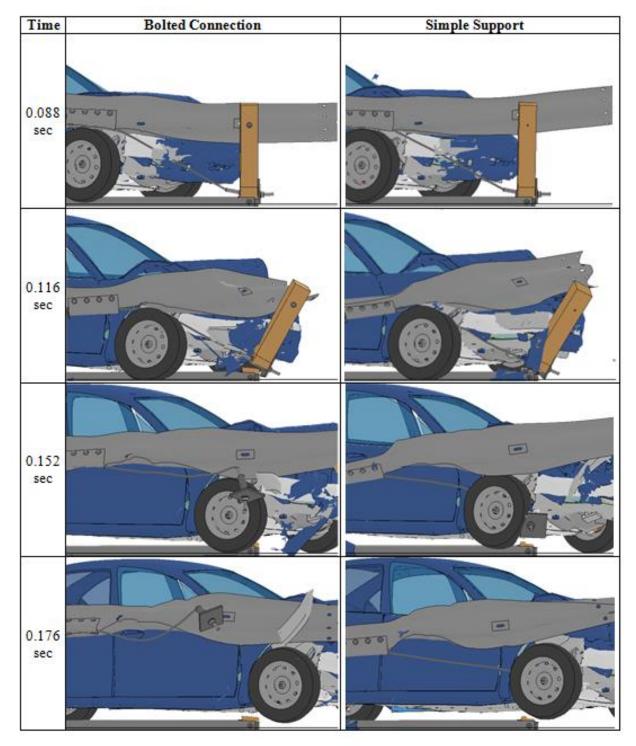


Figure 86. Simulated Impact at the 1100C CIP (Bolted Connection and Simple Support)

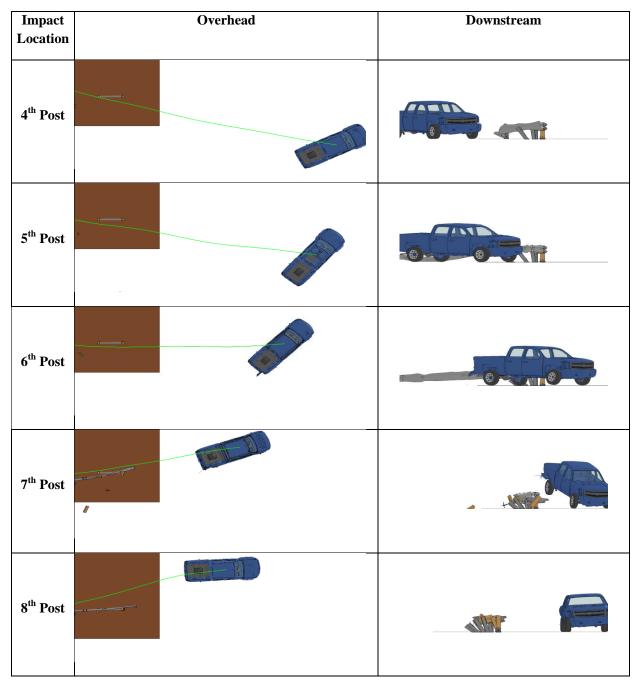


Figure 87. Trajectories and Lateral Positions of 2270P Vehicle for Various Impact Points – Without Suspension Failure

Impact Location	Overhead	Downstream
4 th Post		
5 th Post		
6 th Post		
7 th Post		
8 th Post		

Figure 88. Trajectories and Lateral Positions of 2270P Vehicle for Various Impact Points – With Suspension Failure

For a 175-ft (53-m) MGS guardrail system with upstream and downstream end anchors, a 2270P truck was predicted to cause system gating at the downstream end of the barrier for all impacts occurring downstream from the sixth post from the downstream end. When impacts occurred downstream of the sixth post from the downstream end, the pickup began to yaw and redirect, but the path of the c.g. continued to encroach behind the system after passing the downstream anchorage. Impacts occurring upstream of the sixth post from the guardrail end resulted in vehicle redirection and successful capture, as shown in Figures 87 and 88. Impacts occurring at the sixth post upstream from the downstream end represented a transition between capturing and redirecting the vehicle, and system gating permitting the vehicle to travel through the system. This transition in impact behavior was defined as the end of the LON. The trajectory of the pickup truck with and without suspension failure as well as system damage sustained during impacts at the end of the LON are shown in Figures 89 through 91.

A direct comparison of the c.g. trajectory of pickup trucks with and without suspension failure during impacts at the end of the LON is shown in Figure 92. Results are applicable for a 175-ft (53-m) long MGS system with a 31-in (787-mm) top guardrail mounting height. Similar results were obtained using the model of the wood BCT anchor posts characterized by the possibility to split along a vertical fracture plane passing through the upper bolted connection between the rail and the post. With this more refined model of the BCT wood posts, the anchor posts fractured at their base when the pickup truck approached the downstream end.

9.1.2.2 BCT End Posts with Lowest Expected Strength

Wood may present some considerable scatter in its mechanical strength properties. Although higher-strength wood posts were determined to be more critical with respect to small car redirections, a reduced resistance of the BCT posts at the downstream end anchorage could affect the safe redirection of the pickup truck. As such, the effect of low wood strength on the

Time	No Suspension Failure	Suspension Failure
0.080 sec		
0.290 sec		
0.450 sec		
0.608 sec		
0.810 sec		
1.090 sec		

Figure 89. Simulated Kinematics of 2270P for Impact at Identified End of LON (Overhead)

Time	No Suspension Failure	Suspension Failure
0.080 sec		
0.290 sec		
0.450 sec		
0.608 sec		
0.810 sec		
1.090 sec		

Figure 90. Simulated Kinematics of 2270P for Impact at Identified End of LON

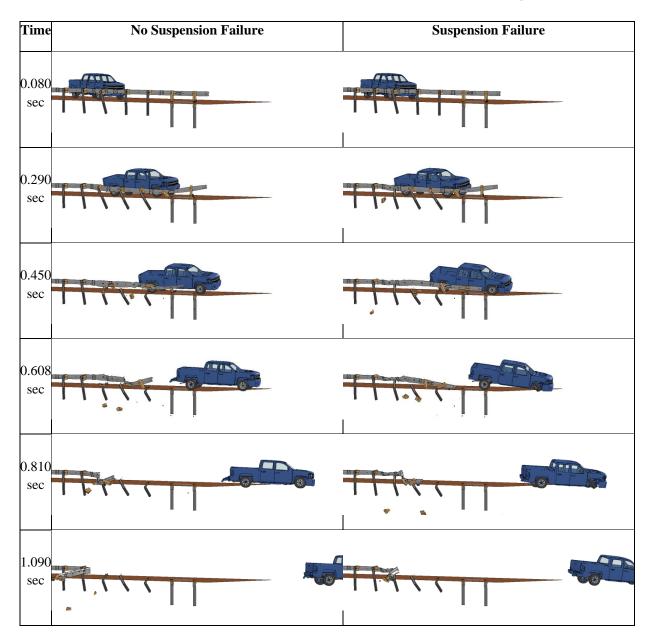


Figure 91. Simulated Kinematics of 2270P for Impact at Identified End of LON

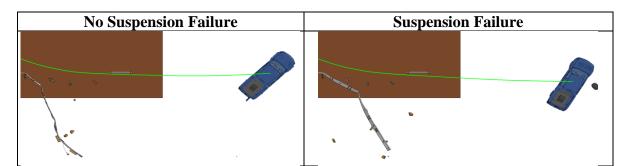


Figure 92. Simulated Trajectory of the 2270P c.g. for Impact at Identified End of LON

location of the downstream LON and vehicle redirection was investigated. Further investigation was performed by simulating vehicular impacts occurring at this nominally identified end of the LON (i.e., sixth post from the downstream end, or fourth steel post from the downstream end) with the end anchor wood BCT posts characterized by a reduced strength. A 50-percent reduction in the maximum strain at failure for the wood material model of the BCT posts was considered to represent the worst reasonable condition to evaluate the redirection capacity of the barrier system.

Crashes were simulated using the 2270P model with and without suspension failure. The maximum vehicle lateral penetration at each post location downstream from the considered initial impact point is shown in Table 8 along with a comparison of the corresponding values obtained considering BCT posts with a standard wood resistance. In general, larger barrier deflections occurred when the impacting wheel disconnected from the pickup truck. Pickup truck redirection under the various conditions for an impact occurring at the sixth post from the downstream end of the of the 31-in (787-mm) tall MGS system is shown in Figure 93. Although the 2270P pickup truck showed an increased pitch angle with a reduced strength of the anchor BCT wood posts, the vehicle was still safely redirected by the barrier.

Wood Strength	Maximum Vehicle Penetration (in.) Corresponding to Impact at Post No. 6					
	5 th	4 th	3 rd	2 nd	1 st	
Nominal	38	55	73	82	87	
	(40)	(62)	(76)	(87)	(96)	
Reduced	43	63	74	85	93	
	(45)	(69)	(83)	(99)	(113)	

Table 8. Maximum Simulated Deflection for 2270P Impact at 6th Post (End of LON)

* Values in parentheses indicate case w/ suspension failure

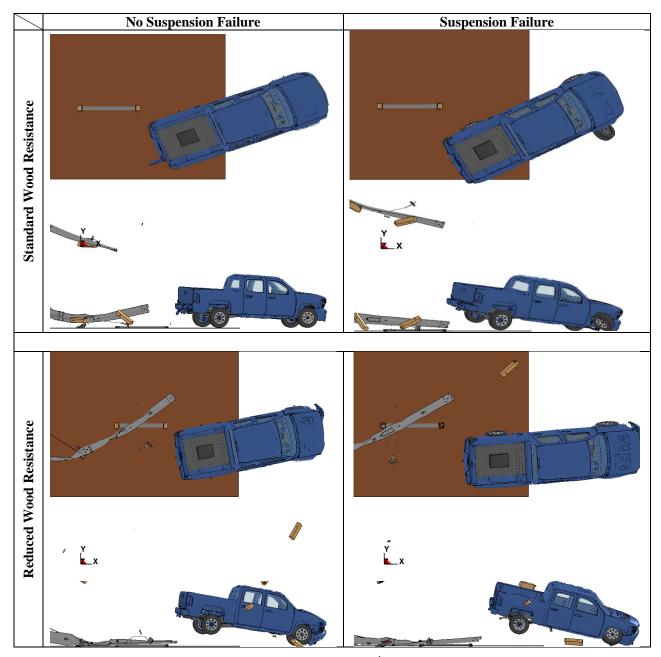


Figure 93. Vehicle Redirection for Impact Occurring at 6th Post from Downstream End

The simulated full-scale crash tests in close proximity to the downstream end anchorage of a 31-in (787-mm tall) MGS barrier indicated that the 2270P pickup is redirected for vehicular impacts occurring at or upstream of the sixth post from the downstream end. Further investigation that simulated scenarios involving a potential failure of the pickup's front suspension and/or a reduced resistance of the anchor BCT posts due to the expected natural scatter in the strength properties of wood confirmed a LON at the sixth post from the downstream end as the best candidate for full-scale crash testing.

It should be noted that for an initial impact at the second post from the downstream end, the bearing plate disengaged away from the fractured BCT end post and engaged the vehicle's tire, as shown in Figure 94. Although this interference between the front tire and the bearing plate did not result in any vehicle instability in the simulation, there is still a potential that the vehicle could snag and become unstable if the edge of the bearing plate cuts through the tire.

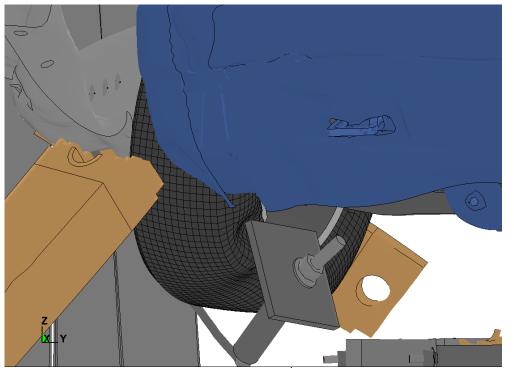


Figure 94. Tire-Bearing Plate Contact for Impact at 2nd Post from Downstream End - 2270P

10 TEST REQUIREMENTS AND EVALUATION CRITERIA

10.1 Test Requirements

Crashworthy W-beam guardrail terminals must satisfy impact safety standards in order to be accepted by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH [2]. According to TL-3 of MASH, W-beam guardrail terminals must be subjected to up to nine full-scale vehicle crash tests, as summarized in Table 9.

	Test	Test Vehicle		Impact Conditions		
Test Article	Designation No.	Туре	Weight lb [kg]	Speed (mph [km/h])	Angle deg	Evaluation Criteria ^{1,2}
	3-30	1100C	2,425 [1,100]		0	
	3-31	2270P	5,000 [2,268]	62 [100]	0	C,D,F,H,I,N A,D,F,H,I
	3-32	1100C	2,425 [1,100]		5-15	
Guardrail	3-33	2270P	5,000 [2,268]		5-15	
Trailing- End	3-34	1100C	2,425 [1,100]		25	
Terminal	3-35	2270P	5,000 [2,268]		25	
1 et minai	3-36	2270P	5,000 [2,268]		25	A,D,I',11,1
	3-37	2270P	5,000 [2,268]		25	C,D,F,H,I,N
	3-38	1500A	3,300 [1,500]		0	С,D,Г,П,I,N

Table 9. MASH TL-3 Crash Test Conditions for Guardrail Terminals

¹ Evaluation criteria explained in Table 10.

² For gating terminals.

For this specific effort, the full-scale vehicle crash testing program was focused on the investigation and evaluation of the safety performance of MwRSF's trailing end guardrail terminal. Thus, only MASH test designation no. 3-37 was considered and involved a reverse-direction impact. In particular, two modified versions of test designation no. 3-37 were considered: a modified test no. 3-37 with the intent of assessing the end of the length of need rather than maximizing vehicle snag and instability, and a modified test no. 3-37 with a 1100C

passenger car instead of a 2270P pickup truck. These two variations of MASH test designation no. 3-37 were identified as modified 3-37-a (2270P) and 3-37-b (1100C).

10.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the guardrail system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 10 and defined in greater detail in MASH. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined, as reported on the test summary sheet. Additional discussion on PHD, THIV, and ASI is provided in MASH.

10.3 Soil Strength Requirements

In order to limit the variation of soil strength among testing agencies, foundation soil must satisfy the recommended performance characteristics set forth in Chapter 3 and Appendix B of MASH. Testing facilities must first subject the designated soil to a dynamic post test to demonstrate a minimum dynamic load of 7.5 kips (33.4 kN) at deflections between 5 and 20 in. (127 and 508 mm). If satisfactory results are observed, a static test is conducted using an identical test installation. The results from this static test become the baseline requirement for

soil strength in future full-scale crash testing programs in which the designated soil is used. An additional post installed near the impact point is statically tested on the day of full-scale crash test in the same manner as used in the baseline static test. The full-scale crash test can be conducted only if the static test results show a soil resistance equal to or greater than 90 percent of the baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Alternatively, a dynamic post test could also be performed on the test day to demonstrate that the soil strength meets the minimum 7.5-kip (33.4 kN) lateral capacity. Otherwise, the crash test must be postponed until the soil demonstrates adequate post-soil strength.

Table 10. MASH Evaluation Criteria for Gating End Terminals Under Test No. 3-37

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	C.	Acceptable test article performance may be redirection, controlled penetration, or controlled stopping of the vehicle.				
	D.	should not penetrate or show compartment, or present a pedestrians, or personnel in intrusions into, the occupant	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.			
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:				
Risk		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
Vehicle Trajectory	N.	Vehicle trajectory behind the test article is acceptable.				

11 TEST CONDITIONS

11.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8 km) northwest of the University of Nebraska-Lincoln.

11.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [36] was used to steer the test vehicles. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

11.3 Test Vehicles

For test no. WIDA-1, a 2007 Dodge Ram QuadCab 1500 was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,016 lb (2,275 kg), 5,002 lb (2,269 kg), and 5,172 lb (2,346 kg), respectively. The test vehicle is shown in Figure 95, and vehicle dimensions are shown in Figure 96.

For test no. WIDA-2, a 2006 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,491 lb (1,130 kg), 2,449 lb (1,111 kg), and 2,619 lb

(1,188 kg), respectively. The test vehicle is shown in Figure 97, and vehicle dimensions are shown in Figure 98.

The longitudinal component of the c.g. was determined using the measured axle weights. The Suspension Method [37] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was estimated based on historical c.g. height measurements. The location of the final c.g. for the pickup truck and the passenger car is shown in Figures 96 and 98, respectively. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 99 and 100. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the right-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

Figure 95. Test Vehicle, Test No. WIDA-1

Date:	5/18/2012	Test Number	er:WIDA-1	Model:227)P	
Make:	Dodge Ram 1500	Vehicle I.D	.#:1D7HA18F	K17J601990		
Tire Size:	265/70 R17	Yea	ar: 2007	Odometer: 2075	34	
0.0000000000000000000000000000000000000	Tire Inflation Pressure:	35psi				
*(All Measuremen	nts Refer to Impacting Si	de)				
				Vehicle Geometry in. (mr	n)	
l n t Wheel Track		▶	m Wheel a Track	a <u>78 (1981)</u> b <u>75</u>	(1905)	
				c 228 (5791) d 47 1/2	(1207)	
				e 140 1/2 (3569) f 40	(1016)	
	Test Inertial C.M.—			g 28 1/8 (715) h 64 5/8	(1640)	
		\	TIRE DIA	i 16 (406) j 29	(737)	
				k 20 1/2 (521) l 28 1/2	(724)	
b	ĥ			m <u>67 3/8 (1711)</u> n <u>67 5/8</u>	(1718)	
ĨŦ_				o <u>45 (1143)</u> p <u>3 1/4</u>	(83)	
	S S		i j	q <u>31</u> (787) r <u>18 1/2</u>	(470)	
		h	t	s <u>15 1/8</u> (384) t <u>75 1/4</u>	(1911)	
	- d	ef		Wheel Center Height Front 15 1/8	(384)	
	Wrear	Wfront		Wheel Center Height Rear 14 7/8	(378)	
		c		Wheel Well Clearance (F) 36	(914)	
Mass Distributi	on ID (kg)			Wheel Well Clearance (R) 38	(965)	
Gross Static	LF 1417 (643)	RF 1389 (630)		Frame Height (F) <u>18 5/8</u>	(473)	
2	LR 1167 (529)	RR <u>1199 (544)</u>		Frame Height (R) <u>24 1/2</u>	(622)	
Weights				Engine Type V	-6 gas	
lb (kg)	Curb	Test Inertial	Gross Static	Engine Size	3.7L	
W-front	2753 (1249)	2703 (1226)	2806 (1273)	Transmission Type:		
W-rear	2263 (1026)	2299 (1043)	2366 (1073)	Automatic	Manual	
W-total	5016 (2275)	5002 (2269)	5172 (2346)	FWD RWD) 4WD	
GVWR Ratings Dummy Data						
		3700	Dummy I			
		3900	Type: Hybrid II			
	Rear Total	6700	Sent D	Mass: 170 lb osition: Passenger	· · · · · · · · · · · · · · · · · · ·	
	10(4)	0700	Scat r	1 assenger		
Note a	Note any damage prior to test: <u>Small scrapes and small dents in passenger side door and box side</u>					

Figure 96. Vehicle Dimensions, Test No. WIDA-1

Figure 97. Test Vehicle, Test No. WIDA-2

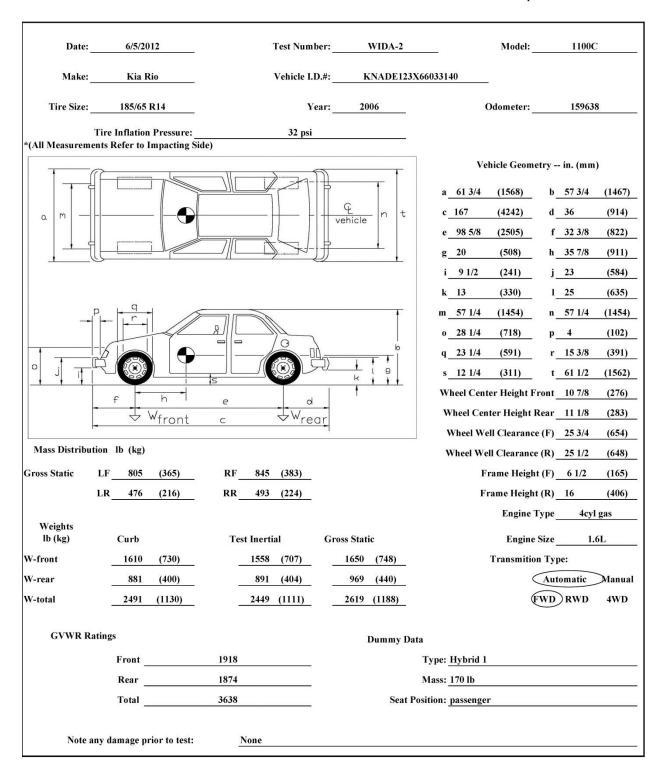


Figure 98. Vehicle Dimensions, Test No. WIDA-2

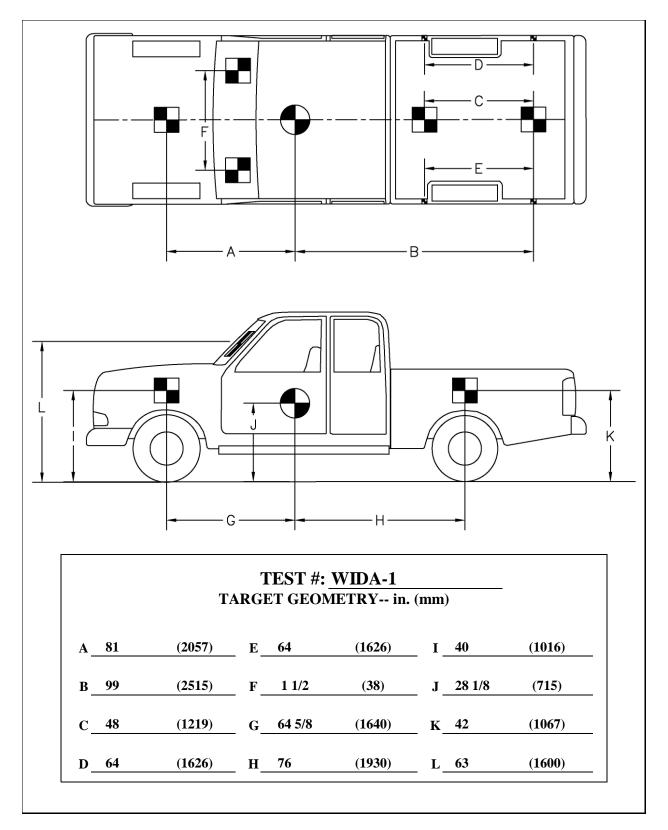


Figure 99. Target Geometry, Test No. WIDA-1

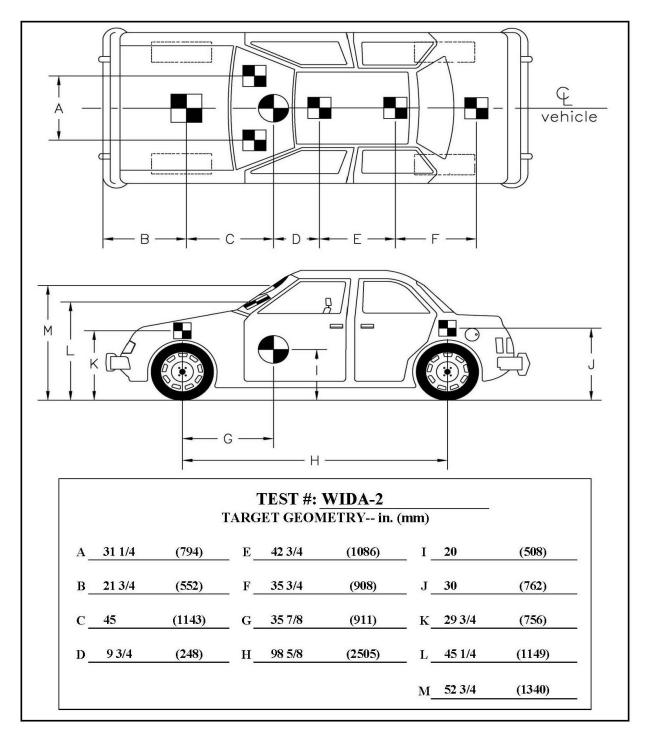


Figure 100. Target Geometry, Test No. WIDA-2

11.4 Simulated Occupant

For test nos. WIDA-1 and WIDA-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footware, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 170 lb (77 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH, the dummy was not included in calculating the c.g location.

11.5 Data Acquisition Systems

11.5.1 Accelerometers

Three environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [29].

The first accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were

crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The second accelerometer system was a modular data acquisition system manufactured by DTS of Seal Beach, California. The acceleration sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The third system, Model EDR-3, was a triaxial piezoresistive accelerometer system manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM, a range of ± 200 g's, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The "DynaMax 1 (DM-1)" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

11.5.2 Rate Transducers

An angular rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the c.g. and recorded data at 10,000 Hz to the SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

A second angle rate sensor system, the SLICE MICRO Triax ARS, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of

rotation of the test vehicles. The angular rate sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

11.5.3 Tensile Load Cell

A tensile load cell was installed in line with the cable anchor at the upstream end of the barrier system for test no. WIDA-1. The positioning and setup of the load cells are shown in Figure 101.

The load cell was manufactured by Transducer Techniques and conformed to model no. TLL-50K with a load range up to 50,000 lb (222.4 kN). During testing, output voltage signals were sent from the load cells to a National Instruments data acquisition board, acquired with the "LabView" software, and stored permanently on a personal computer. The data collection rate for the load cells was 10,000 samples per second (10,000 Hz).

11.5.4 String Potentiometer

A linear displacement transducer, or string potentiometer, was installed on the upstream side of the most upstream BCT post (post no. 1) to determine the displacement of the post for test no. WIDA-1. The positioning and setup of the string potentiometer are shown in Figure 102. The string potentiometer used was a UniMeasure PA-50 with a range of 50 in. (1,270 mm). A Measurements Group Vishay Model 2310 signal conditioning amplifier was used to condition and amplify the low-level signals to high-level outpus for multichannel simultaneous dynamic recording in the "LabVIEW" software. The sample rate of the string potentiometers was 1,000 Hz.

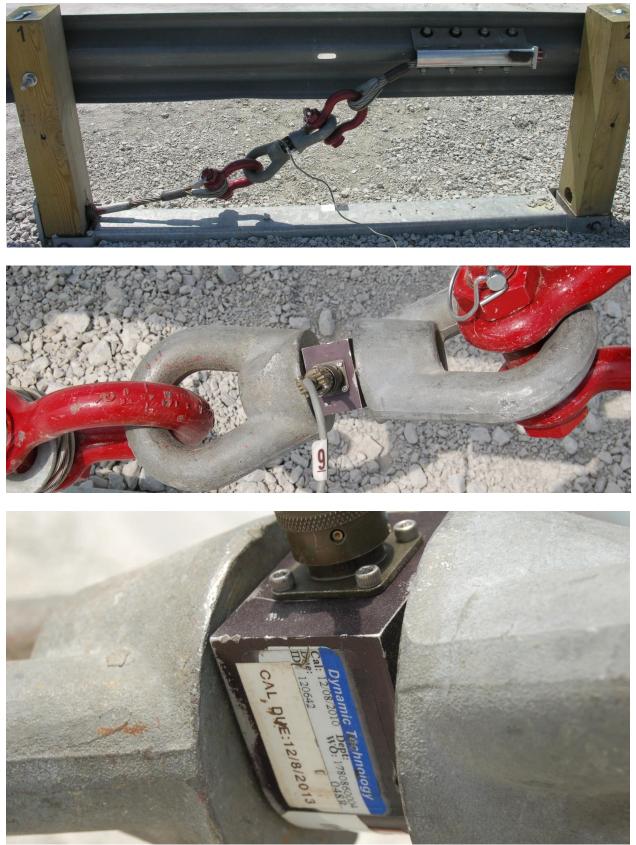


Figure 101. Load Cell Setup, Test No. WIDA-1

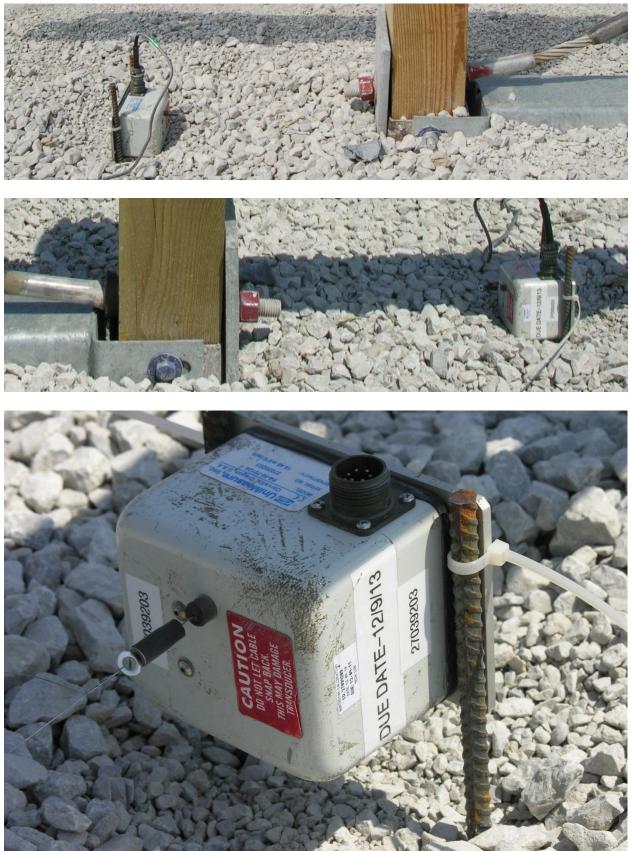
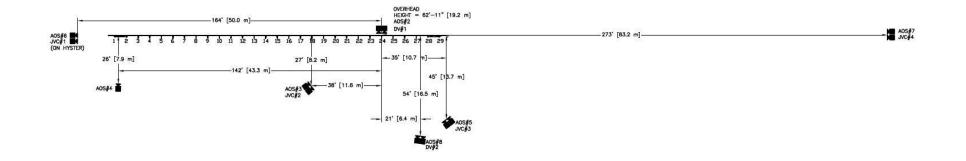


Figure 102. String Pot Setup, Test No. WIDA-1

11.5.5 Pressure Tape Switches


For both test nos. WIDA-1 and WIDA-2, three pressure-activated tape switches, spaced at approximately 6.56-ft (2-m) intervals, were used to determine the speed of the vehicle before impact. Each tape switch fired a strobe light which sent an electronic timing signal to the data acquisition system as the right-front tire of the test vehicle passed over it. Test vehicle speeds were determined from electronic timing mark data recorded using TestPoint and LabVIEW computer software programs. Strobe lights and high-speed video analysis are used only as a backup in the event that vehicle speed cannot be determined from the electronic data.

11.5.6 Digital Photography

Three AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, one AOS S-VIT 1531 high-speed digital video cameras, four JVC digital video cameras, and two Canon digital video cameras were utilized to film test no. WIDA-1. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 103.

Three AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, four JVC digital video cameras, and one Canon digital video camera were utilized to film test no. WIDA-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 104.

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon D50 digital still camera was also used to document pre-test and post-test conditions for all tests.

	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
0	2	AOS Vitcam CTM	500	Cosmicar 12.5 mm fixed	-
Video	3	AOS Vitcam CTM	500	Sigma 24-135 mm	24
	4	AOS Vitcam CTM	500	Fujinon 50 mm fixed	-
beed	5	AOS X-PRI Gigabit	500	Sigma 24-70 mm	24
High-Speed	6	AOS X-PRI Gigabit	500	Sigma 50 mm fixed	-
	7	AOS X-PRI Gigabit	500	Canon 17-102 mm	102
	8	AOS S-VIT 1531	500	Osowa 28-80 mm	45
Digital Video	1	JVC – GZ-MC500 (Everio)	29.97		
	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
	4	JVC – GZ-MG27u (Everio)	29.97		
	1	Canon ZR90	29.97		
	2	Canon ZR10	29.97		

Figure 103. Camera Locations, Speeds, and Lens Settings, Test No. WIDA-1

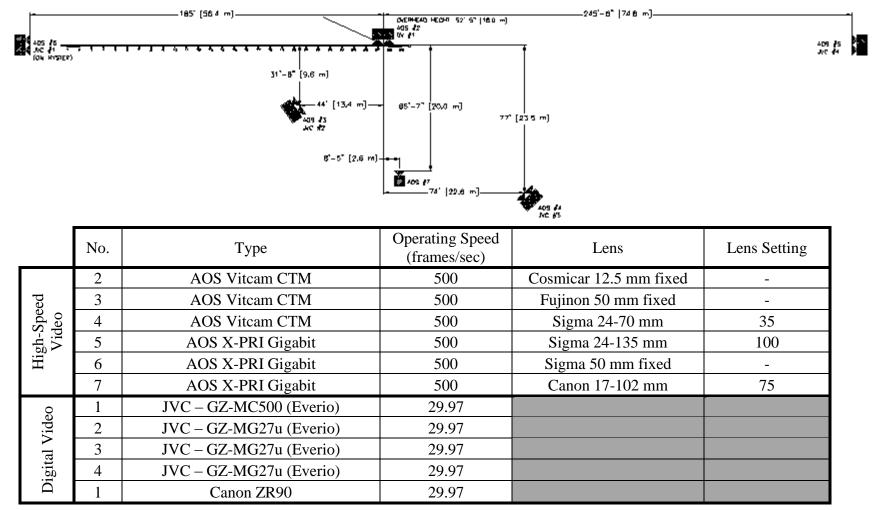


Figure 104. Camera Locations, Speeds, and Lens Settings, Test No. WIDA-2

12 MGS BARRIER WITH STANDARD MGS END ANCHORAGE

The test installation consisted of 181 ft – 3 in. (55.2 m) of MGS along with a standard MGS tension end anchorage system on each end, as shown in Figures 105 through 119. Photographs of the test installation are shown in Figures 120 through 122. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The system was constructed with twenty-nine posts. Post nos. 3 through 27 were galvanized, ASTM A36, W6x8.5 (W152x12.6) sections measuring 72 in. (1,829 mm) long. The post material was acceptable with either ASTM A36 or A992 steel. Post nos. 1, 2, 28, and 29 were 5¹/₂-in. wide x 7¹/₂-in. deep x 46-in. long (140-mm x 191-mm x 1,168-mm) breakaway cable terminal (BCT) timber posts. All posts were spaced 75 in. (1,905 mm) on center and placed in a compacted, coarse, crushed limestone material, as recommended by MASH [2]. Posts nos. 3 through 27 had a soil embedment depth of 40 in. (1,016 mm).

Both the upstream and downstream MGS end anchorage systems were adaptations of the original modified BCT end terminal system but installed tangent. Each anchorage consisted of two BCT timber posts set into a 6-in. wide x 8-in. deep x 72-in. long (152-mm x 203-mm x 1,829-mm), ASTM A500 Grade B, steel foundation tube. The two 6-ft (1,829-mm) steel foundation tubes were connected at the ground line with a strut and yoke assembly. The BCT end anchorage posts were placed in the foundation tube such that their top was 32 in. (813 mm) from the groundline. One end of a 34-in (19-mm) diameter 6x19 wire rope was attached on the back side of the W-beam, and the other end passed through the hole at the bottom of the end post and was secured through a 8-in. x 8-in. x 5%-in (203-mm x 203-mm x 16-mm) steel bearing plate. A modified BCT anchor cable was used at the upstream anchor in lieu of a standard cable anchor in test no. WIDA-1 in order to allow for load cell placement, as shown in Figures 110 and 111.

Wood blocks measuring 6 in. x 8 in. x 14 ¹/₄ in. (152 mm x 203 mm x 362 mm) were nailed to 6 in. x 4 in. x 14 ¹/₄ in. (152 mm x 102 mm x 362 mm) blocks to form larger 6 in. x 12 in. x 14 ¹/₄ in. (152 mm x 305 mm x 362 mm) offset blocks to space the rail away from the front face of each steel post. Standard 12-gauge (2.66-mm thick) W-beam rails with additional post bolt slots at half-post spacing intervals were mounted between post nos. 1 through 29. The Wbeam top rail height was 31 in. (787 mm) above the ground with a 24⁷/₈-in. (632-mm) center mounting height, such that the center of the rail was mounted 7¹/₈ in. (181 mm) from the top of the BCT timber posts. Rail splices were located at the midspan locations between posts. The lap splice connections between the rail sections were configured to reduce vehicle snag potential at the splice during the crash test.

The installation for test no. WIDA-2 was identical to the system used for test no. WIDA-1, except that the rail was raised 1 in. (25 mm) to provide a top guardrail height of 32 in. (813 mm), as shown in Figures 123 and 124. Photographs of the test installation are shown in Figures 125 through 127. Material specifications, mill certifications, and certificates of conformity are shown in Appendix B. A complete set of drawings for the MGS system with a 32 in. (813 mm) mounting height is provided in Appendix E

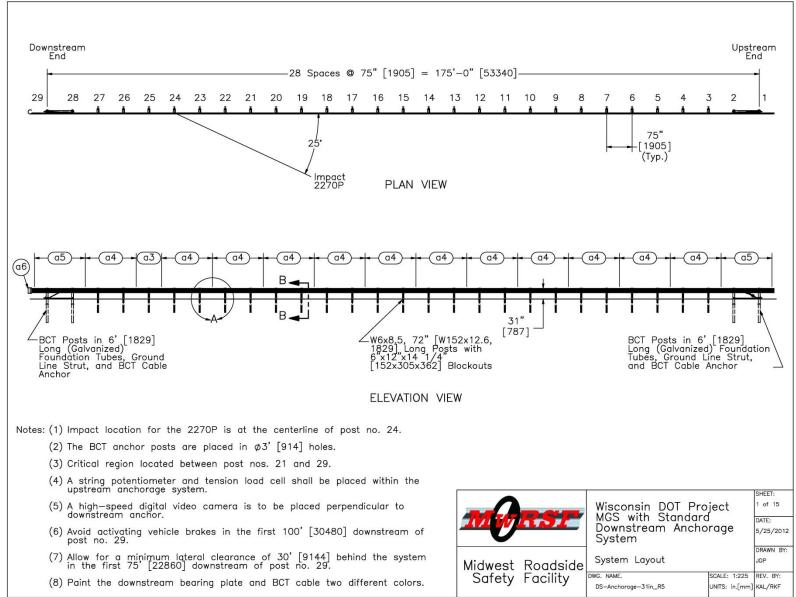


Figure 105. Test Installation Layout, Test No. WIDA-1

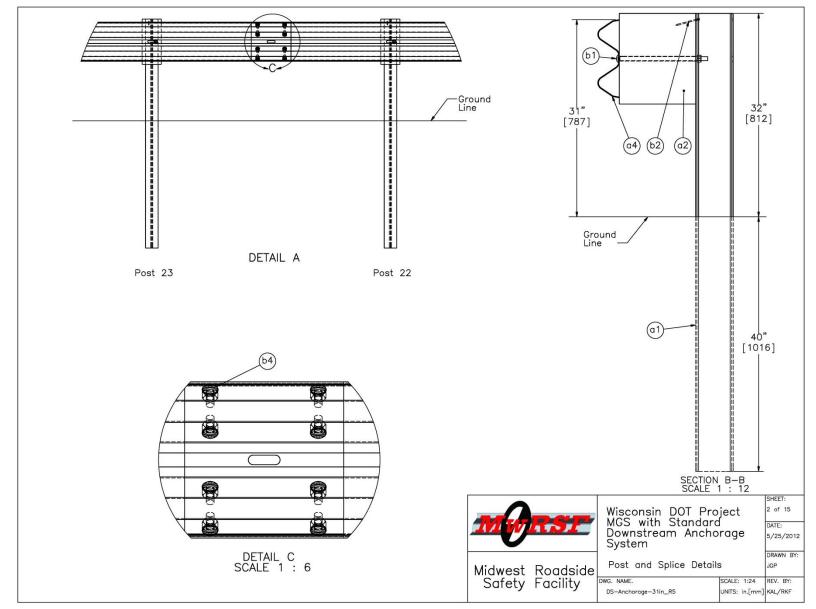


Figure 106. 31-in. (787-mm) Tall Blocked MGS Details, Test No. WIDA-1

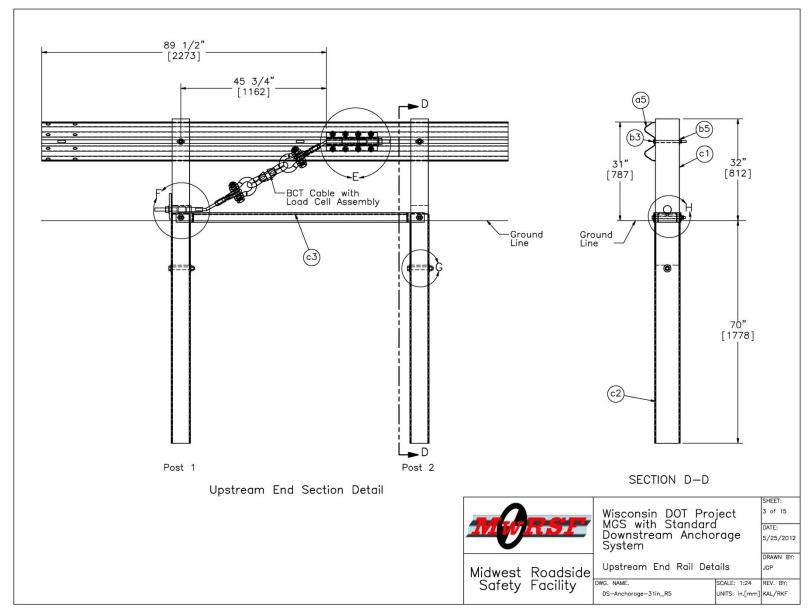


Figure 107. Upstream End Anchor Details, Test No. WIDA-1

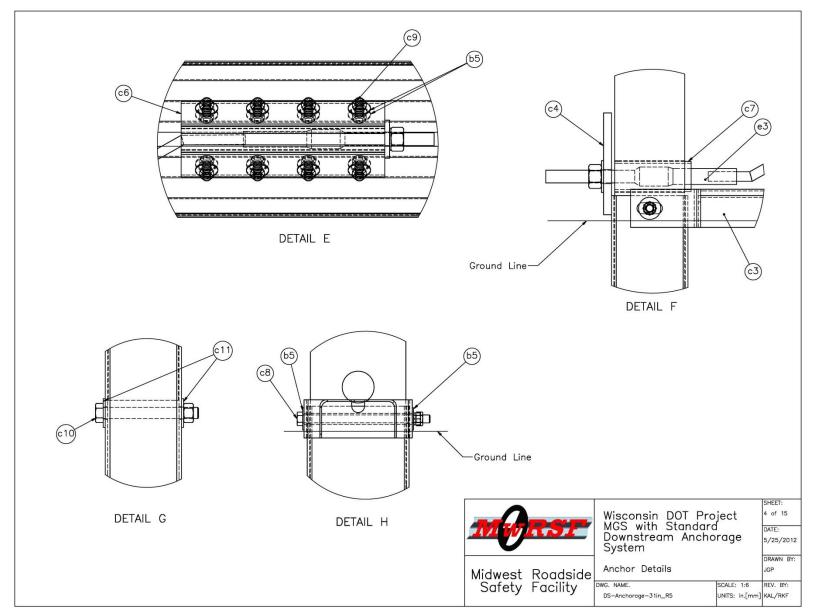


Figure 108. Anchor Details, Test No. WIDA-1

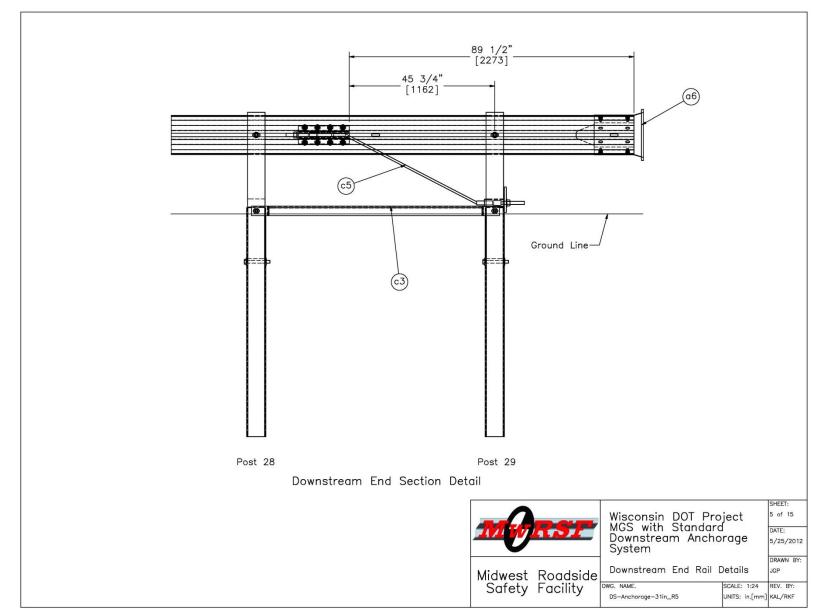


Figure 109. Downstream End Anchor Details, Test No. WIDA-1

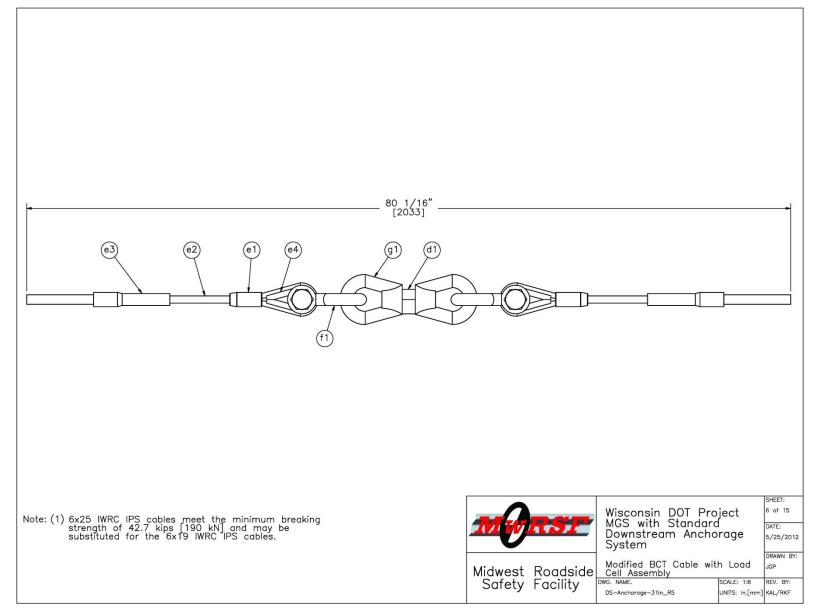


Figure 110. Modified BCT Cable with Load Cell Assembly, Test No. WIDA-1

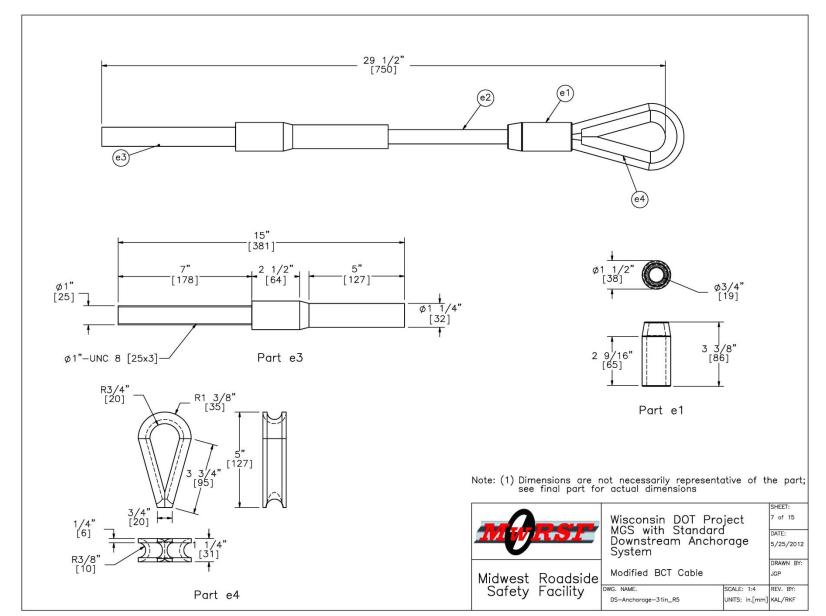


Figure 111. Modified BCT Cable, Test No. WIDA-1

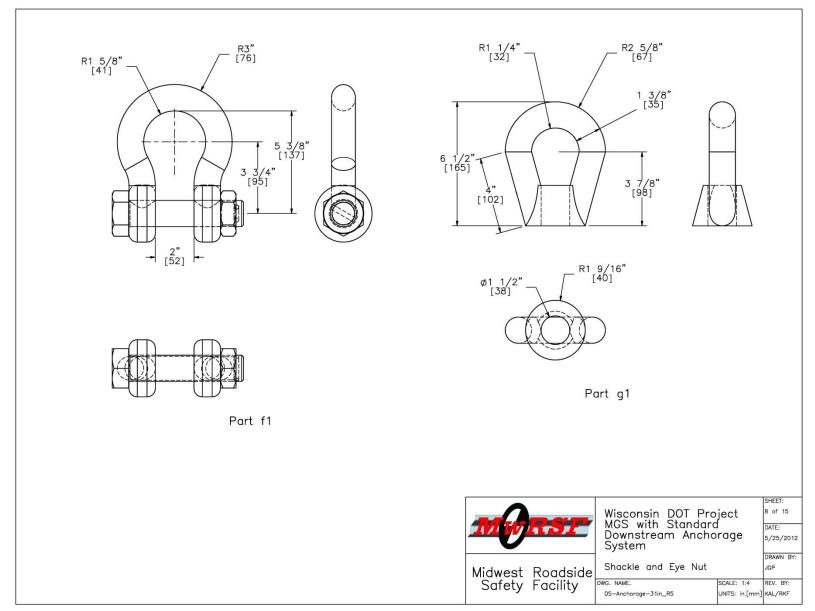


Figure 112. Shackle and Eye Nut for Modified BCT Cable, Test No. WIDA-1

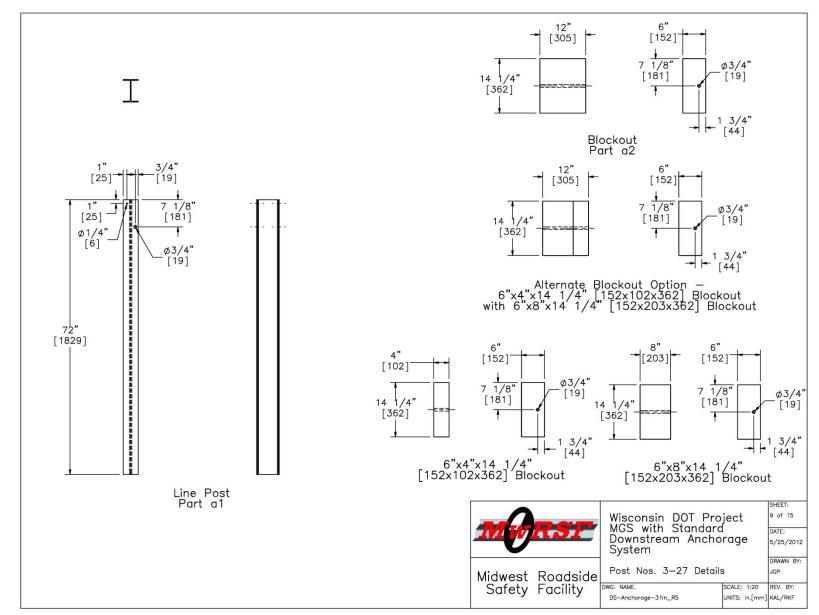


Figure 113. Line Post Details, Test No. WIDA-1

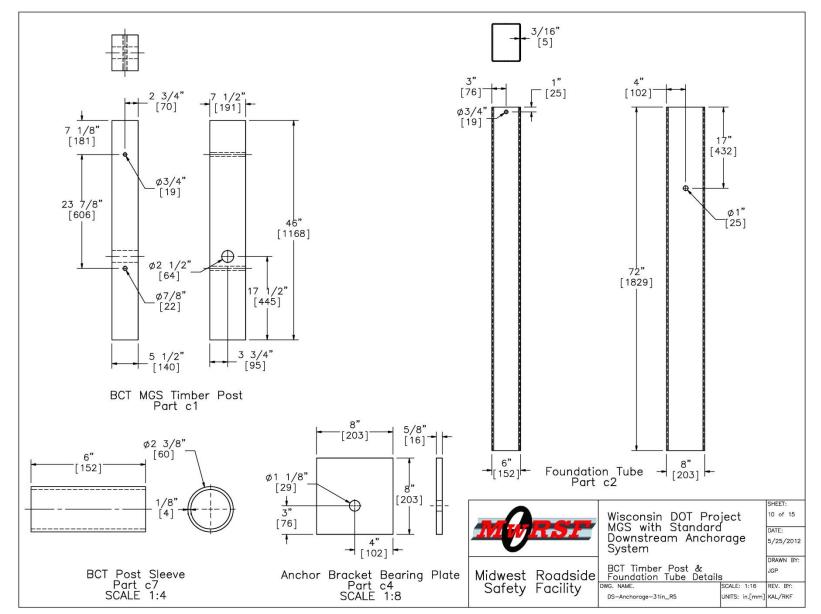


Figure 114. Anchor Post Details, Test No. WIDA-1

October 28, 2013 MwRSF Report No. TRP-03-279-13

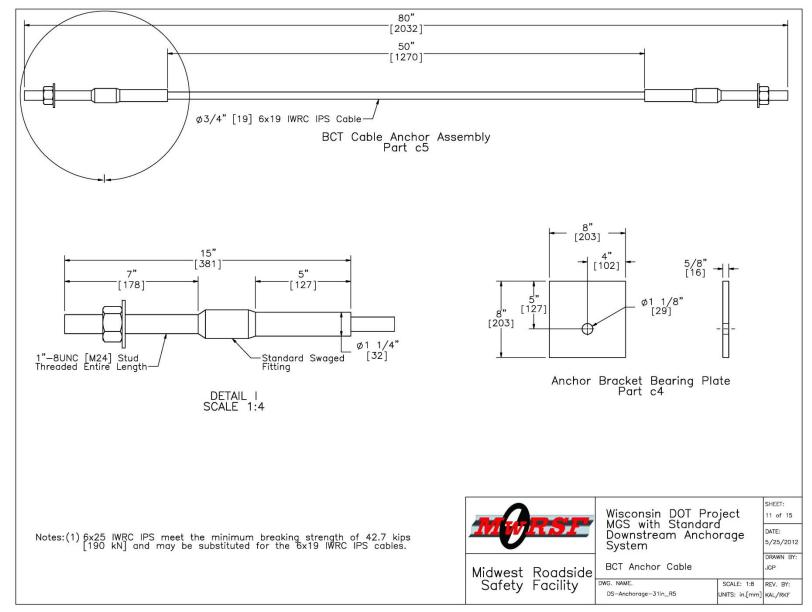


Figure 115. BCT Anchor Cable Details, Test No. WIDA-1

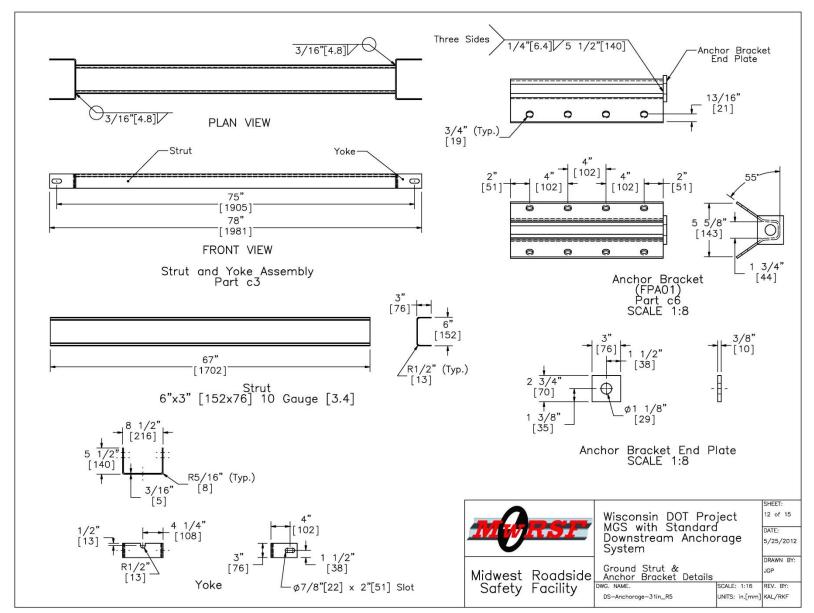


Figure 116. Ground Strut and Anchor Bracket Details, Test No. WIDA-1

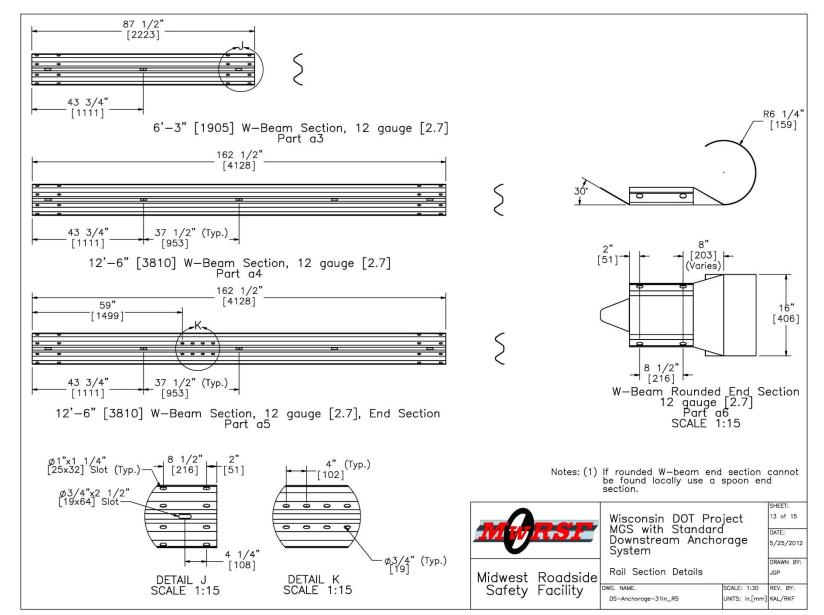


Figure 117. W-Beam Guardrail Details, Test No. WIDA-1

ltemNo.	QTY.	Description Material Specifica		Hardware Guide
a1	25	W6x8.5 6' Long [W152x12.6 1829] Steel Post	ASTM A992 Min. 50 ksi [345 MPa] (W6x9 ASTM A36 Min. 36 ksi [248 MPa])	PWE06
a2	25	6x12x14 1/4" [152x305x362] Blockout	4 1/4" [152x305x362] Blockout SYP Grade No. 1 or better	
a3	1	6'-3" [1905] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM01a
a4	12	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a
a5	2	12'-6" [3810] W-Beam MGS End Section	12 gauge [2.7] AASHTO M180	RWM14a
a6	1	W-Beam Rounded End Section	12 gauge [2.7] AASHTO M180	RWE03a
b1	25	5/8" Dia. x 14" Long [M16x356] Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 A	FBB06
b2	25	16D Double Head Nail	-	
b3	4	5/8" Dia. x 10" [M16x254] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 A	FBB03
b4	116	5/8" Dia. x 1 1/2" Long [M16x38] Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 A	FBB01
b5	46	5/8" [16] Dia. Flat Washer	ASTM F844 or SAE Grade 2 Steel	
c1	4	BCT Timber Post – MGS Height	st - MGS Height SYP Grade No. 1 or better	
c2	4	72" [1829] Long Foundation Tube	ASTM A53 Grade B	PTE06
c3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	-
c4	2	8x8x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36 Steel	FPB01
c5	1	BCT Anchor Cable Assembly	Ø3/4" [19] 6x19 IWRC IPS Galvanized Wire Rope	FCA01
c6	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01
c7	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02
c8	4	5/8" Dia. x 10" [M16x254] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 A	FBX16a
c9	16	5/8" Dia. x 1 1/2" Long [M16x38] Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 A	FBX16a
c10	4	7/8" Dia. x 7 1/2" [M22x191] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563 A	FBX22a
c11	8	7/8" [22] Dia. Flat Washer	ASTM F844 or SAE Grade 2 Steel	FWC22a

MORSE	Wisconsin DOT Pro MGS with Standarc Downstream Ancho System	ject rage	SHEET: 14 of 15 DATE: 5/25/2012
Midwest Roadside	Bill of Materials		JGP
	DWG. NAME. DS-Anchorage-31in_R5	SCALE: NONE UNITS: in.[mm]	REV. BY: KAL/RKF

Figure 118. Bill of Materials, Test No. WIDA-1

Item No.	QTY.	Description	Material Specification
d1	1	TLL-50K-PTB Load Cell	NA
e1	2	115-HT Mechanical Splice - 3/4" [19] Dia.	As Supplied
e2	2	3/4" [190] 6x19 IWRC IPS Wire Rope	IPS Galvanized
e3	4	BCT Anchor Cable End Swage Fitting	SAE Grade 5 — Galvanized
e4	2	Crosby Heavy Duty HT-3/4" [19] Dia. Cable Thimble	As Manufactured
f1	2	Crosby G2130 or S2130 Bolt Type Shackle $-$ 1 1/4" [32] Dia. with thin head bolt, nut, and cotter pin, Grade A, Class 3	Stock Nos. 1019597 and 1019604 - As Supplied
g1	2	Chicago Hardware Drop—Forged Heavy Duty Eye Nut — Drilled and Tapped 1 1/2" [38] Dia. — UNF 12 [M36]	As Supplied, Stock No. 107

MURSE	Wisconsin DOT Proj MGS with Standard Downstream Anchor System	ject rage	SHEET: 15 of 15 DATE: 5/25/2012
Midwest Roadside	Bill of Materials Continu	ued	DRAWN BY: JGP
Safety Facility	5161/50 MM/826321	SCALE: NONE UNITS: in.[mm]	REV. BY: KAL/RKF

Figure 119. Bill of Materials, Test No. WIDA-1 (continued)

Figure 120. Test Installation Photographs, Test No. WIDA-1

Figure 121. Test Installation Photographs, Test No. WIDA-1

Figure 122. Test Installation Photographs, Test No. WIDA-1

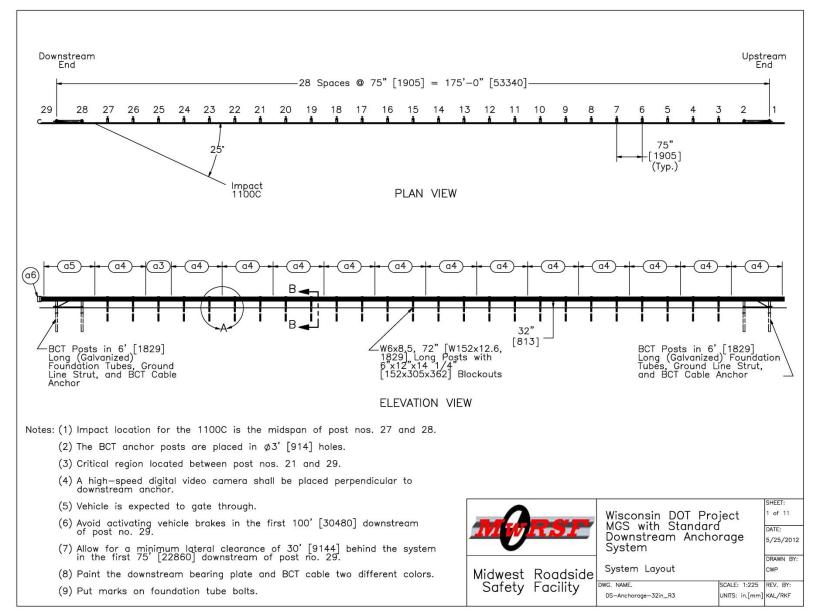


Figure 123. Test Installation Layout, Test No. WIDA-2

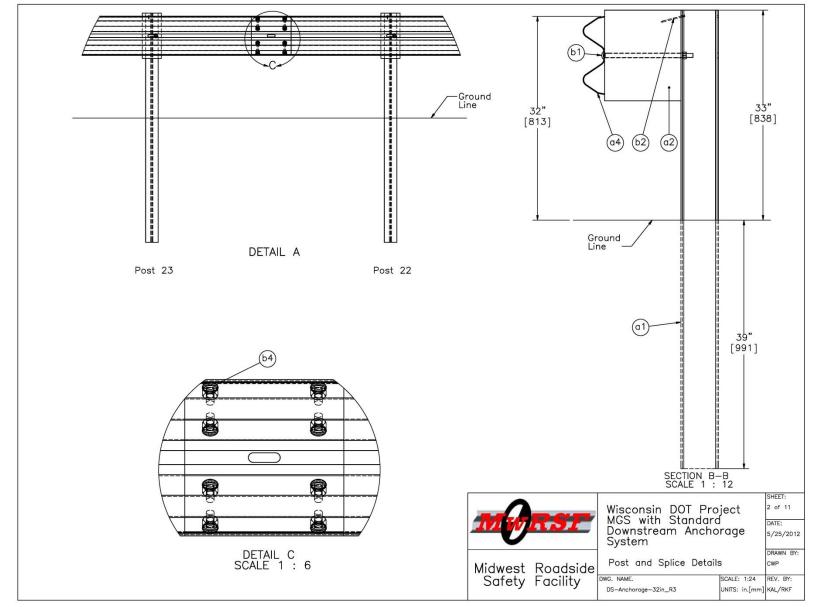


Figure 124. 32-in. (813-mm) Tall Blocked MGS Details, Test No. WIDA-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

Figure 125. Test Installation Photographs, Test No. WIDA-2

Figure 126. Test Installation Photographs, Test No. WIDA-2

Figure 127. Test Installation Photographs, Test No. WIDA-2

13 FULL-SCALE CRASH TEST NO. WIDA-1

13.1 Dynamic Soil Test

Before full-scale test no. WIDA-1 was conducted, the strength of the foundation soil was evaluated with a dynamic test, as described in MASH. The dynamic test results are shown in Appendix F. For the first 10 in. (254 mm) of deflection, the soil force exceeded the minimum force required by more than double. The force averaged 17 kip (76 kN) whereas the minimum is 7.5 kip (33 kN). Between 10 and 18 in. (254 and 457 mm), the soil strength was more than 10 kip (44 kN), which is 25 percent greater than the minimum required strength. After 18 in. (457 mm), the deflection of the post had dissipated most of the energy due to the high soil strength. Therefore, the force dropped off rapidly before even reaching 20 in. (508 mm) of deflection. However, the soil was more than capable of providing adequate post-soil strength, and full-scale crash testing was then conducted on the barrier system.

It should be noted that the measured forces were determined from accelerometers attached to the c.g. of the bogie vehicle. The accelerations are believed to provide an accurate assessment of the post-soil capacity.

13.2 Test No. WIDA-1

The 5,172-lb (2,346-kg) pickup truck impacted the downstream segment of the MGS trailing-end terminal at a speed of 63.0 mph (101.4 km/h) and at an angle of 26.4 degrees. A summary of the test results and sequential photographs are shown in Figure 129. Additional sequential photographs are shown in Figures 130 through 132. Documentary photographs of the crash test are shown in Figure 133.

13.3 Weather Conditions

Test no. WIDA-1 was conducted on May 18, 2012 at approximately 2:30 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were documented and are shown in Table 11 [38].

Temperature	90° F
Humidity	16 %
Wind Speed	33 mph
Wind Direction	160° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.0 in.
Previous 7-Day Precipitation	0.0 in.

Table 11. Weather Conditions, Test No. WIDA-1

13.4 Test Description

Initial vehicle impact was to occur at the centerline of post no. 24, as shown in Figure 134, which was selected using LS-DYNA analysis to identify the end of the LON, as described in section 9.1.2. The actual point of impact was 1 in. (25 mm) upstream from post no. 24, or the sixth post upstream from the downstream end of the barrier. A sequential description of the impact events is contained in Table 12. The vehicle came to rest facing downstream, located 232 ft – 1 in. (70.7 m) downstream from initial impact point and 5 ft – 3 in. (1.6 m) laterally behind the traffic-side face of the guardrail. The vehicle trajectory and final position are shown in Figures 129 and 135.

TIME	EVENT
(sec)	
0.000	Front bumper impacted rail 1 in. upstream from intended impact location.
0.022	Post no. 29 deflected upstream.
0.058	Post no. 25 disengaged from rail.
0.080	Right-front tire overrode post no. 25.
0.082	Vehicle yawed away from barrier.
0.118	Post no. 26 disengaged from rail.
0.150	Post no. 27 disengaged from rail.
0.166	Post no. 28 fractured at its base.
0.188	Post no. 29 developed a vertical fracture.
0.208	Post no. 29 disengaged from rail.
0.250	Post no. 24 disengaged from rail.
0.280	Vehicle impacted post no. 29.
0.292	Bearing plate on downstream cable anchor pulled through post no. 29.
0.296	Vehicle pitched down.
0.330	Vehicle became parallel to system with a velocity of 45.3 mph (72.9 km/h).
0.350	Post no. 29 fractured at the ground line.
0.354	Rail span downstream from post no. 25 rotated backward around post no. 25.
0.378	Buffer end rotated forward and impacted the vehicle's front end.
0.396	Vehicle's grill disengaged from vehicle.
0.406	Vehicle exited system with speed of 43.5 mph (70.0 km/h) and angle of 4.2 degrees away from the barrier.
0.412	Vehicle rolled away from barrier.
0.464	A bend formed in rail at post no. 27.
0.590	Vehicle rolled toward barrier.
1.452	Vehicle yawed toward barrier.
1.476	Vehicle pitched down.

Table 12. Sequential Description of Impact Events, Test No. WIDA-1

13.5 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 136 through 141. Barrier damage consisted of deformed W-beam rail and guardrail posts, disengaged rail and wood

blockouts, contact marks on posts and guardrail, and fractured end anchorage BCT posts. The length of vehicle contact along the barrier was approximately 34 ft – $4\frac{1}{2}$ in. (10.5 m), which spanned from the actual impact point at 1 in. (25 mm) upstream of post no. 24 to the downstream end of the guardrail.

The wood blockouts detached from post nos. 25 through 27. The bolt pulled through the W-beam rail slots at the post connections between post nos. 24 and 29. A ¹/₄-in. (6-mm) and a ¹/₂-in. (13 mm) tear occurred in the rail slot for post nos. 24 and 28, respectively, as shown in Figure 137. Small cracks formed at the downstream edge of the rail slot for post no. 29. Post nos. 21 and 22 rotated downstream. Post nos. 23 and 24 both rotated backward, and their front flange twisted downstream. Post nos. 25 through 27 bent about 30 degrees from the ground and twisted downstream. Both post nos. 26 and 27 encountered contact marks and gouges. A 7-in. (178-mm) long contact mark started at 7¹/₂ in. (191 mm) from the top of post no. 26. Two contact marks, 6-in. (152-mm) and 3-in. (76-mm) long, started at the top of the front flange of post no. 27 and at ¹/₄ in. (6 mm) from the top of the back flange, respectively. Post nos. 28 and 29 fractured at their foundation tubes.

The rail buckled at post no. 25, post no. 27, and 27¹/4 in. (692 mm) downstream of post no. 28, as shown in Figure 138. Kinks in the top and/or bottom corrugations of the rail were found between post nos. 22 and 29, as shown in Figure 136. Flattening and folding of the bottom corrugation of the W-beam rail occurred between post nos. 24 and 29. The bottom corrugation was folded upward at two main locations downstream of the initial impact point. The first location where the rail folded started at 6 in. (152 mm) from post no. 24, and extended downstream for 40¹/4 in. (1,022 mm), while the second location started 23 in. (584 mm) downstream of post no. 27 and ended 7 in. (178 mm) downstream of post no. 29. The bottom

(152 mm) downstream from the rail splice connection between post nos. 25 and 26 and ended 23 in. (584 mm) downstream of post no. 27. The second flattened location extended from 28¹/₂ in. (724 mm) upstream to 29 in. (737 mm) downstream of post no. 29. In addition, the swage connector between the downstream anchor cable and the corresponding bearing plate was slightly bent and the metal sleeve through which the cable passed was deformed, as shown in Figure 141.

The maximum separation between the W-beam sections was ³/₈ in. (10 mm) long and occurred at the splice connections between post nos. 2 and 3, 4 and 5, 22 and 23, and 26 and 27. No separation occurred at the splice connections between post nos. 6 and 7 as well as 27 and 28. The splice between post nos. 25 and 26 was separated ¹/₄ in. (6 mm) longitudinally. A separation of ¹/₈ in. (3 mm) was measured for all the remaining splice connections. A summary of the splice separation together with details of the slippage for each of the splice bolts is provided in Appendix G.

The permanent set of the rail and post was $26 \text{ ft} - 6\frac{3}{8} \text{ in.} (8.1 \text{ m})$ at post no. 29 and $21\frac{14}{4}$ in. (540 mm) at post no. 25, respectively, as measured in the field. The maximum rail and post dynamic deflection was 32 ft - 6.6 in. (9.9 m) at the downstream end of the W-beam rail and $34\frac{3}{4}$ in. (883 mm) at post no. 28, respectively, as determined from high-speed digital video analysis. The working width of the system coincided with the lateral dynamic barrier deflection which was 32 ft - 6.6 in. (9.9 m).

The main objective for impacts occurring in close proximity to the end of the LON is to safely redirect the vehicle rather than to prevent the barrier or debris from contacting the shieled hazard. As such, the working width based on the maximum vehicle penetration behind the original traffic-side face of the barrier system versus the working width based on maximum deflection should be considered to determine the allowable hazard envelope near MGS trailing end guardrail terminals. For test no. WIDA-1, the maximum lateral vehicle extension behind the traffic-side face of the barrier was 124 in. (3,150 mm). However, careful attention should be paid to hazards located behind the barrier which may either be damaged or fall when struck by the gating W-beam rail and anchorage system.

13.6 Upstream End Anchor Loads

The tensile force was measured in the upstream cable anchor and plotted against the ground line displacement of the upstream BCT end post, as shown in Figure 128. A peak load of 18.5 kip (82.3 kN) was measured at a displacement of about 0.9 in. (22.9 mm).

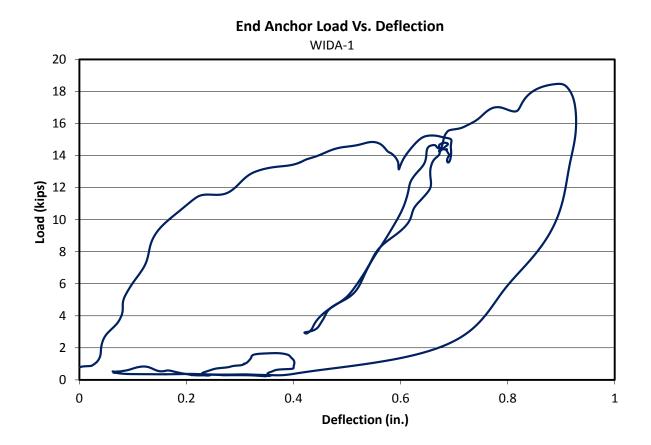


Figure 128. Force vs. Deflection at Upstream End Anchorage, Test No. WIDA-1

13.7 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 142 through 144. The maximum occupant compartment deformations are listed in Table 13 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix H.

Table 13. Maximum Occupant Compartment Deformations by Location, Test No. WIDA-1

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	3⁄8 (10)	≤9 (229)
Floor Pan & Transmission Tunnel	1⁄4 (6)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	0	≤ 12 (305)
Side Door (Above Seat)	1/2 (13)	≤9 (229)
Side Door (Below Seat)	1⁄4 (6)	≤ 12 (305)
Roof	0	\leq 4 (102)
Windshield	1/2 (13)	≤3 (76)

The majority of the damage was concentrated on the right-front corner of the vehicle where the impact occurred. The right side of the front bumper was dented about 2 in. (51 mm). The right-front fender crushed inward about 6 in. (152 mm) and crushed inward above the wheel well. The back of the right-front quarter panel was dented 2¹/₄ in. (57 mm). The right-front tire encountered contact marks and scuffing, and the inner side of the metal rim had contact marks and minor scrapes. Minor denting and scraping were observed on the vehicle right side. The front of the right-front door was slightly dented and encountered contact marks. The right-rear tire encountered light scuffing and the right taillight was partially disengaged.

The right-side headlight and the radiator grill disengaged from the vehicle. The center of the front bumper was dented. The front of the hood had a minor gap on the left side. The windshield and all the other glass were undamaged.

13.8 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 14. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 14. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 129. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix I.

Evaluation Criteria		Transducer			MASH
		EDR-3	DTS	DTS-SLICE	Limits
OIV	Longitudinal	-15.27 (-4.65)	-14.64 (-4.46)	-14.56 (-4.44)	≤ 40 (12.2)
ft/s (m/s)	Lateral	-14.85 (-4.53)	-14.83 (-4.52)	-15.13 (-4.61)	≤ 40 (12.2)
ORA	Longitudinal	-8.13	-7.48	-8.01	≤20.49
g's	Lateral	-6.25	-6.91	-6.31	\leq 20.49
	THIV ft/s (m/s)		20.07 (6.12)	19.74 (6.02)	not required
PHD g's		NA	9.36	9.5	not required
ASI (according to MASH)		0.53	0.53	0.54	not required

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WIDA-1

13.9 Discussion

The analysis of the test results for test no. WIDA-1 showed that the MGS barrier with a non-proprietary, downstream end anchor system (i.e., trailing-end terminal) adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix I, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. Therefore, test no. WIDA-1 was determined to be acceptable according to the MASH safety performance criteria for modified test designation no. 3-37.

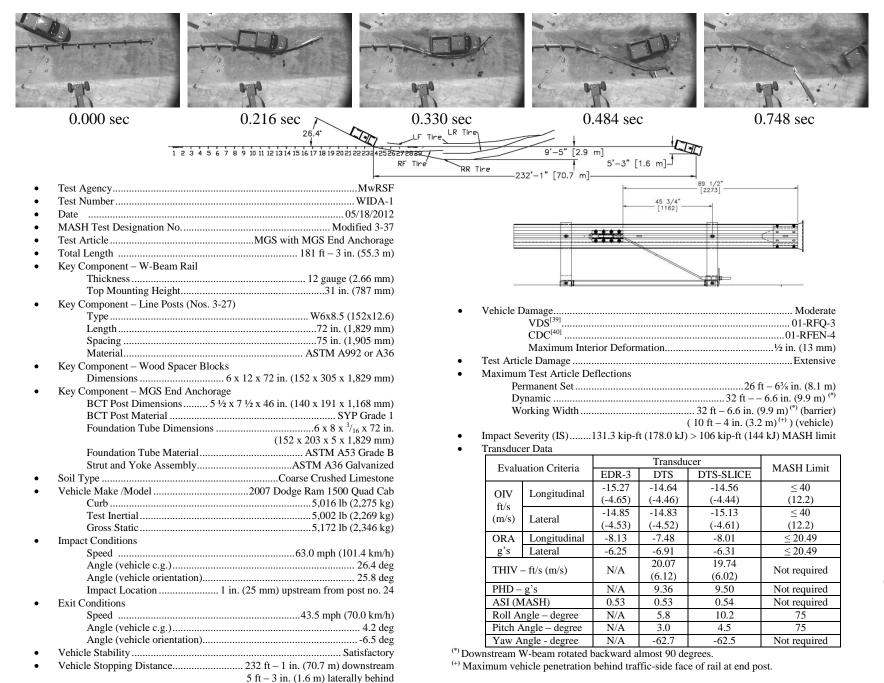
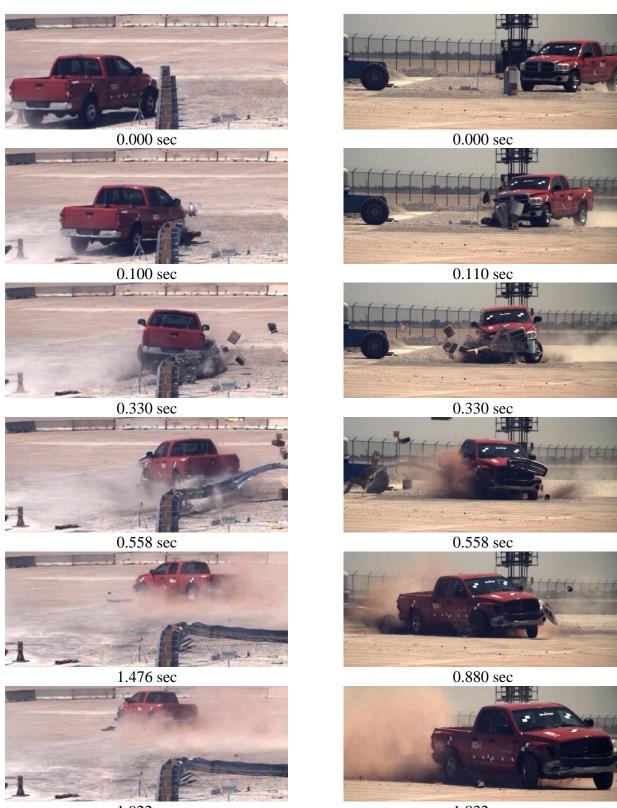



Figure 129. Summary of Test Results and Sequential Photographs, Test No. WIDA-1

Figure 130. Additional Sequential Photographs, Test No. WIDA-1

1.922 sec

1.832 sec

Figure 131. Additional Sequential Photographs, Test No. WIDA-1

0.000 sec

0.134 sec

0.268 sec

0.354 sec

0.472 sec

0.718 sec

Figure 132. Additional Sequential Photographs, Test No. WIDA-1 190

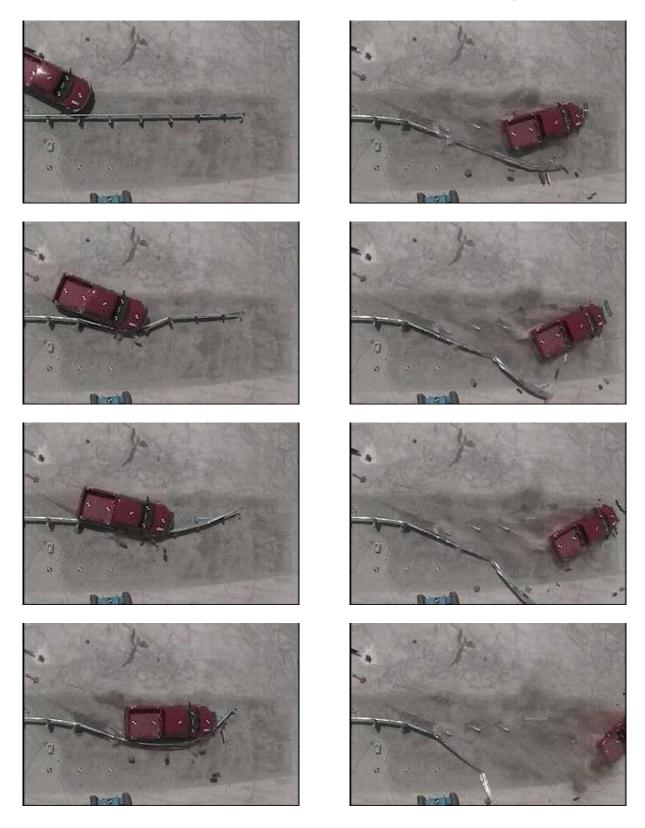


Figure 133. Documentary Photographs, Test No. WIDA-1

Figure 134. Impact Location, Test No. WIDA-1

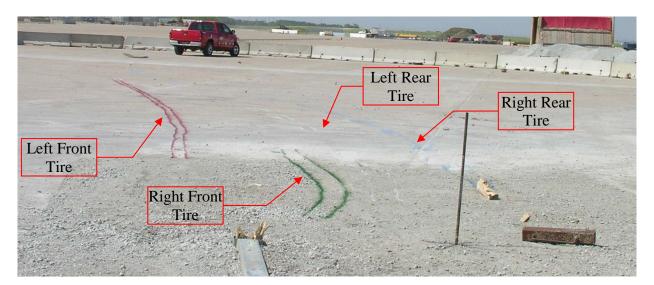


Figure 135. Vehicle Final Position and Trajectory Marks, Test No. WIDA-1

Figure 136. System Damage, Test No. WIDA-1

Figure 137. Rail Slot Tearing at Post Nos. 24 and 28, Test No. WIDA-1

Figure 138. Details of Rail Damage, Test No. WIDA-1

Figure 139. System Damage at Post Nos. 21 through 24, Test No. WIDA-1

Figure 140. System Damage at Post Nos. 25 through 29, Test No. WIDA-1

Figure 141. Anchor Cable Damage, Test No. WIDA-1

Figure 142. Vehicle Damage, Test No. WIDA-1

Figure 143. Vehicle Damage, Test No. WIDA-1

October 28, 2013 MwRSF Report No. TRP-03-279-13

Figure 144. Undercarriage and Suspension Damage, Test No. WIDA-1

14 FULL-SCALE CRASH TEST NO. WIDA-2

14.1 Static Soil Test

Before full-scale crash test no. WIDA-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static soil test results, as shown in Appendix F, demonstrated that a soil resistance above the baseline test limits was available. Thus, the soil provided adequate strength, and full-scale crash testing was conducted on the barrier system.

14.2 Test No. WIDA-2

The 2,619-lb (1,188-kg) small passenger car impacted the downstream MGS end anchorage of a 32-in (813-mm) high MGS barrier at a speed of 62.0 mph (99.8 km/h) and at an angle of 25.5 degrees. A summary of the test results and sequential photographs are shown in Figure 145. Additional sequential photographs are shown in Figures 146 through 148. Documentary photographs of the crash test are shown in Figure 149.

14.3 Weather Conditions

Test no. WIDA-2 was conducted on June 5, 2012 at approximately 2:00 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were documented and are shown in Table 15 [41].

Temperature	85° F
Humidity	36 %
Wind Speed	0 mph
Wind Direction	0° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.0 in.
Previous 7-Day Precipitation	0.07 in.

Table 15. Weather Conditions, Test No. WIDA-2

14.4 Test Description

Initial vehicle impact was to occur at the midspan between post nos. 27 and 28, as shown in Figure 150, which was selected using LS-DYNA analysis to maximize the probability of wheel snag on the cable anchor, as described in section 9.1.1. The actual point of impact was 4 in. (102 mm) upstream from the midspan between post nos. 27 and 28, or near the midspan between the second and third posts upstream from the downstream end of the barrier. A sequential description of the impact events is contained in Table 16. The vehicle came to rest with its front end facing the downstream anchor at 77 ft (23.5 m) downstream from initial impact point and 27 ft – 11 in. (8.5 m) laterally behind the traffic-side face of the guardrail. The vehicle trajectory and final position are shown in Figures 145 and 151.

TIME	EVENT	
(sec)		
0	Initial impact occurred 4 in. (102 mm) upstream from midspan between post nos.	
	27 and 28.	
0.004	Post no. 28 deflected backward.	
0.012	Vehicle hood crushed and bent at impacting corner.	
0.018	Post no. 29 deflected upstream.	
0.042	Right-front fender underrode rail between post nos. 28 and 29.	
0.05	Right-front tire contacted post no. 28, which fractured.	
0.074	Front bumper contacted post no. 29.	
0.084	Guardrail between post nos. 26 and 27 bent backward.	
0.098	Guardrail between post nos. 28 and 29 flattened.	
0.110	Vehicle pitched downward.	
0.112	Vehicle windshield detached from vehicle frame.	
0.114	Vehicle rolled toward barrier.	
0.126	Vehicle hood overrode guardrail end terminal, and post nos. 22 through 27	
	deflected upstream.	
0.14	Post nos. 28 and 29 rose into air.	
0.146	Bearing plate contacted vehicle's front end.	

Table 16. Sequential Description of Impact Events, Test No. WIDA-2

0.154	Left-rear tire was airborne.
0.160	Bearing plate lost contact with vehicle at right-front quarter panel.
0.162	Guardrail rotated backward.
0.164	Guardrail twisted 180 degrees.
0.216	Right-rear wheel rose into air.
0.248	Vehicle exited system at speed of 32.2 mph (51.8 km/h) and angle of 15.9 degrees.
0.356	Left-front wheel rose into air.
0.358	Guardrail at post no. 27 buckled.
0.436	Vehicle yawed toward system.
0.512	Right-rear tire contacted ground level.
0.594	Left-rear tire re-contacted ground.

14.5 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 152 through 156. Barrier damage consisted of deformed W-beam rail and guardrail posts, disengaged rail and wood blockouts, contact marks on posts and guardrail, and fractured end anchorage BCT posts. The length of vehicle contact along the barrier, which spanned from the actual impact point, was approximately 12 ft – 5 in. (3.8 m), at 4 in. (102 mm) upstream from the midspan between post nos. 27 and 28, to 5 in. (127 mm) upstream from the end of the guardrail.

Kinks in the top corrugation of the rail were found between post nos. 28 and 29, as shown in Figures 152 through 156. Flattening of the bottom corrugation of rail started at 4 in. (102 mm) upstream from post no. 28 and extended through 6 in. (152 mm) upstream from post no. 29. The bolt pulled through the W-beam rail slots at the post connections between post nos. 27 and 29, as shown in Figure 153. The W-beam rail buckled at post no. 27, and plastic deformation occurred on the top side of the W-beam rail slot at post nos. 27 through 29, as shown in Figure 154. The upper-front corner of the wood blockout at post no. 27 was fractured off and a ³/₈-in (10-mm) gap formed between the blockout and the front flange of the post. A ¹/₂-in. (13-mm) soil gap formed

in front of post no. 27, as shown in Figure 155. Post no. 28 fractured into three pieces beginning at the bolt connection to the rail through the ground line. Post no. 29 fractured at the ground line.

The swage connector between the downstream anchor cable and the corresponding bearing plate was bent, and the metal sleeve through which the cable passed was deformed, as shown in Figure 156. The ground strut connecting the foundation tubes of post nos. 28 and 29 had contact marks, and the foundation tube of post no. 28 was bent backward.

The separation between the W-beam sections and the slippage of the connection bolts were measured for the five most downstream splice joints. The maximum separation between the W-beam sections was ¹/₂ in. (13 mm) long and occurred at the splice connections between post nos. 20 and 21. A ³/₈-in. (10-mm) long separation occurred at the splice connection between post nos. 22 and 23, while the two splices between post nos. 25 and 28 were separated ¹/₄ in. (6 mm) longitudinally. A minimum separation of ¹/₈ in. (3 mm) was measured for the splice connection between post nos. 24 and 25. A summary of the splice separation together with details of the slippage for each of the splice bolts is provided in Appendix G.

The permanent set of the rail and post was 9 ft – 6¼ in. (2.9 m) at post no. 29 and 2 in. (51 mm) at post no. 27, respectively, as measured in the field. The maximum rail and post dynamic deflection was 12 ft – 3.3 in. (3.7 m) at the downstream end of the W-beam rail and 14 in. (356 mm) at post no. 28, respectively, as determined from high-speed digital video analysis. The working width of the system coincided with the lateral dynamic barrier deflection, which was 12 ft – 3.3 in. (3.7 m). It should be noted that the values for the permanent set and dynamic deflection of the barrier were calculated based on the farthest position of the buffer end after the W-beam rail, which disengaged from post nos. 28 and 29, rotated backward almost 90 degrees around post no. 27 where the initial impact point occurred. No vehicle working width data was collected from the vehicle, because the terminal gated and the vehicle was not redirected.

14.6 Vehicle Damage

The damage to the vehicle was extensive, as shown in Figures 157 through 161. The maximum occupant compartment deformations are listed in Table 17 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix H.

Table 17. Maximum Occupant Compartment Deformations by Location, Test No. WIDA-2

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	1 (25)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1⁄2 (13)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	¹ ⁄ ₄ (6)	≤ 12 (305)
Side Door (Above Seat)	1⁄2 (13)	≤9 (229)
Side Door (Below Seat)	1⁄2 (13)	≤ 12 (305)
Roof	0	≤ 4 (102)
Windshield	1/2 (13)	≤3 (76)

The majority of the damage was concentrated on the vehicle's front end, including both the left-front and right-front quarter panels due to contact with the barrier posts, rail, and the bearing plate attached to end of the cable anchor. The front end crushed inward, with a consequent deformation of the left-front and right-front fenders. The front bumper was completely detached, and the supporting bracket plate behind the bumper was dented. The leftside headlight assembly was partially disengaged. The radiator grill and right-side headlight assembly were disengaged from the vehicle. The radiator crushed back to the engine compartment and was partially twisted. The engine deformed backwards. The hood disconnected and was located against the vehicle's left-front fender with its front crushed in and the right corner deformed beneath below.

The left-front fender crushed inward, and a 1-in. (25-mm) separation was found between the left-front door and the back of the fender. The right-front fender crushed inward and back with a tear above the wheel well. Contact marks, denting, and scraping were observed on the right side of the vehicle. The right-front tire was partially de-beaded, and the internal-side rim was bent. The lower control arm of the right-front suspension disengaged.

The windshield, which separated from the vehicle in the early stage of the crash test, was located downstream from the vehicle and encountered spider-web cracks. The windshield sealing tape running around the vehicle frame had several irregularities, which indicated that a post-factory windshield installation was made with poor quality. In particular, the presence of dirt surrounding the sealing tape connection with the upper part of the windshield indicated that the glue did not adhere properly. The roof and remaining window glass remained undamaged. A dent was located at the center of the right A-pillar. Traces of yellow paint used to identify the bearing plate in the high-speed videos were found on the front bumper supporting rail, the engine alternator, the lower-right corner of the right-front suspension, and the right-front quarter panel, as shown in Figures 161 and 162.

14.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 18. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 18. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 129. The recorded data from the accelerometers and the rate transducers are shown graphically in

Appendix I. Due to technical difficulties, the DTS unit did not collect angular data from the rate transducer, but the DTS did collect acceleration data.

Evaluation Criteria		Transducer			MASH
		EDR-3	DTS	DTS-SLICE	Limits
OIV	Longitudinal	-37.06 (-11.30)	-34.89 (-10.63)	-36.56 (-11.14)	≤ 40 (12.2)
ft/s (m/s)	Lateral	-15.22 (-4.64)	-15.64 (-4.77)	-14.46 (-4.41)	≤ 40 (12.2)
ORA g's	Longitudinal	-14.87	-14.89	-14.77	≤20.49
	Lateral	4.13	-4.53	5.32	≤20.49
	THIV ft/s (m/s)		NA	42.24 (12.87)	not required
PHD g's		NA	NA	11.48	not required
ASI		1.34	1.29	1.31	not required

Table 18. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. WIDA-2

14.8 Discussion

The analysis of the test results for test no. WIDA-2 showed that the non-proprietary, downstream end anchor system (i.e., trailing-end terminal) did not adversely affect the stability of the 1100C vehicle. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix I, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. Therefore, test no. WIDA-2 was determined to be

acceptable according to the MASH safety performance criteria for modified test designation no.

3-37.

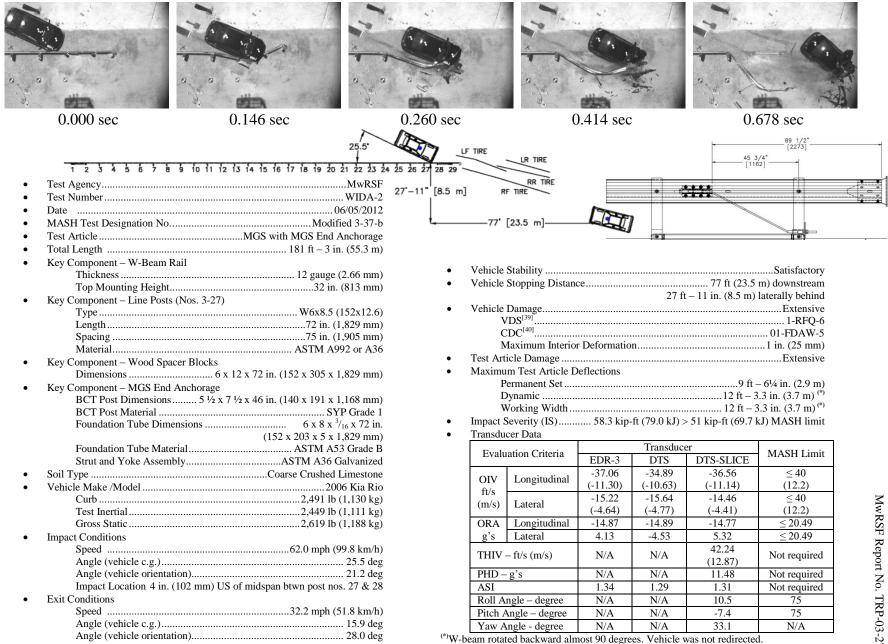
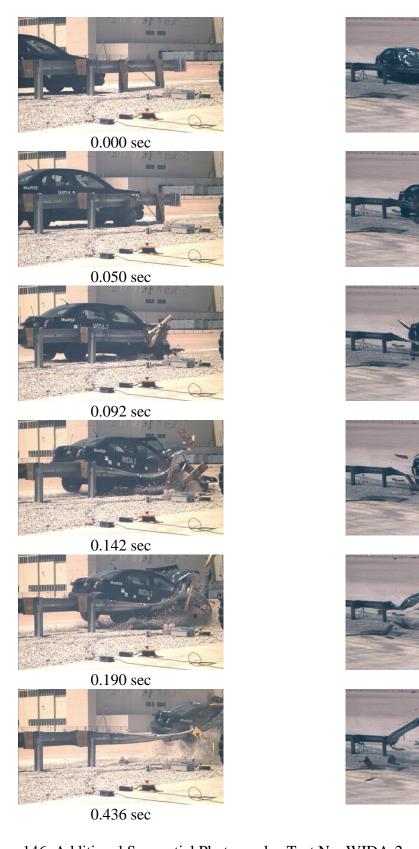



Figure 145. Summary of Test Results and Sequential Photographs, Test No. WIDA-2

211

October 28, 2013 MwRSF Report No. TRP-03-279-13

0.098 sec

0.146 sec

0.160 sec

0.334 sec

0.458 sec

Figure 146. Additional Sequential Photographs, Test No. WIDA-2

0.000 sec

0.068 sec

0.116 sec

0.152 sec

0.348 sec

0.912 sec

0.000 sec

0.102 sec

0.154 sec

0.302 sec

0.574 sec

0.690 sec

Figure 147. Additional Sequential Photographs, Test No. WIDA-2

0.282 sec

Figure 148. Additional Sequential Photographs, Test No. WIDA-2 214

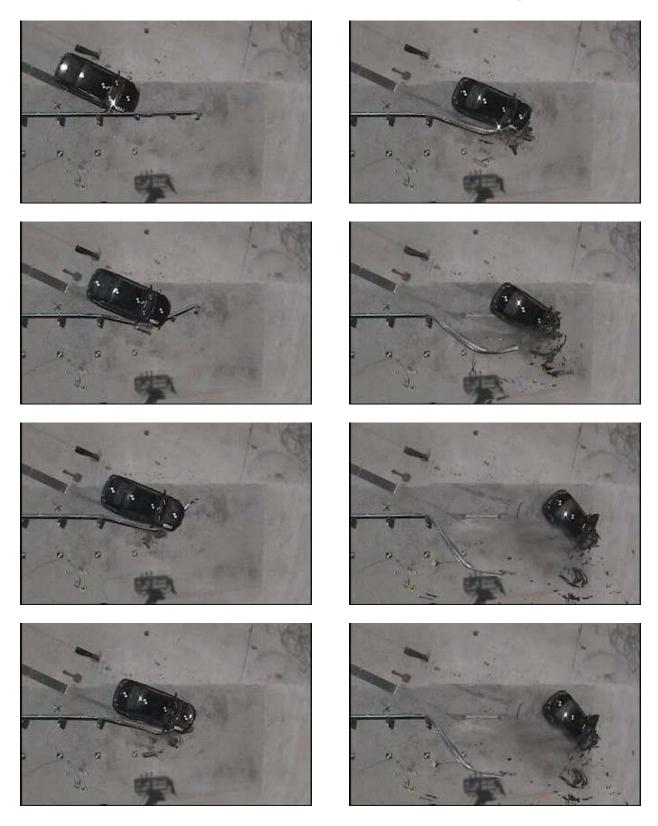


Figure 149. Documentary Photographs, Test No. WIDA-2

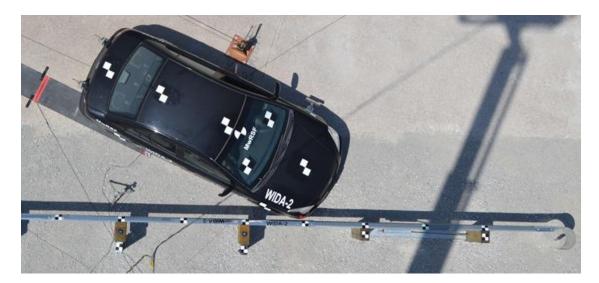


Figure 150. Impact Location, Test No. WIDA-2

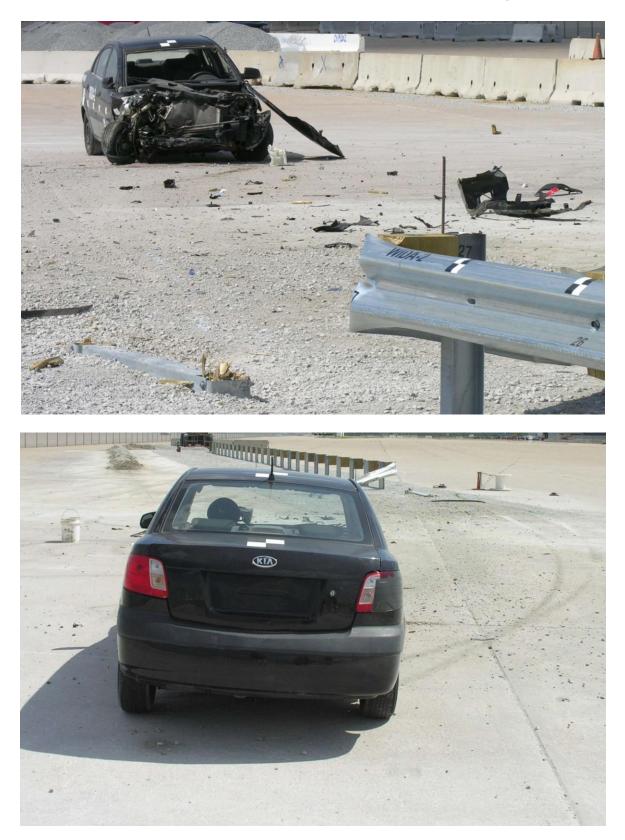


Figure 151. Vehicle Final Position and Trajectory Marks, Test No. WIDA-2

Figure 152. System Damage, Test No. WIDA-2

Figure 153. Rail Slot Tearing at Post Nos. 27 and 29, Test No. WIDA-2

Figure 154. Rail Damage, Test No. WIDA-2

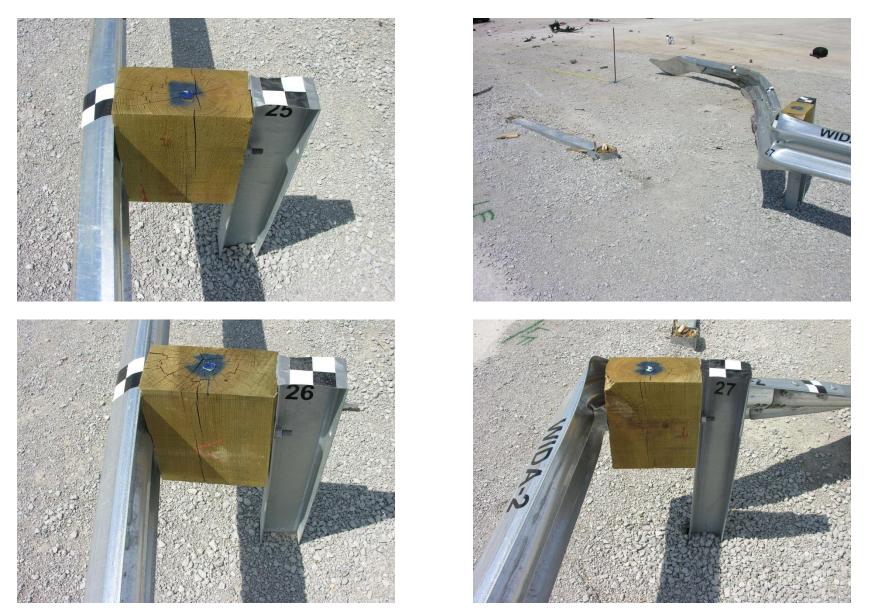


Figure 155. System Damage at Post Nos. 25 through 29, Test No. WIDA-2

221

Figure 156. Anchor Cable Damage, Test No. WIDA-2

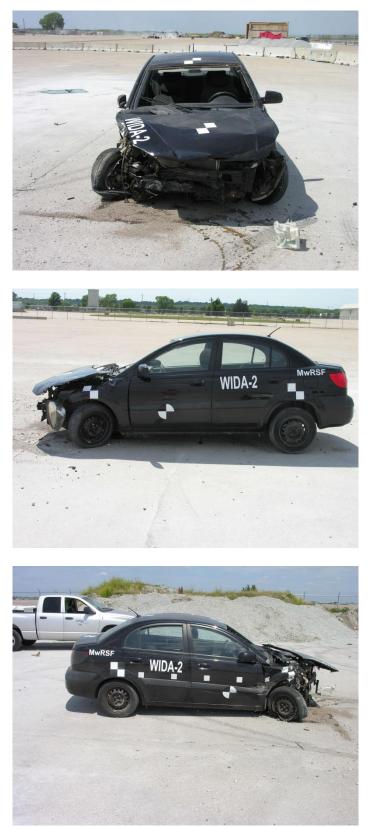


Figure 157. Vehicle Damage, Test No. WIDA-2

Figure 158. Vehicle Damage, Test No. WIDA-2

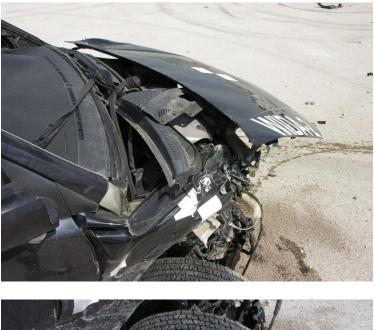


Figure 159. Vehicle Damage - Windshield Glue Strip, Test No. WIDA-2

Figure 160. Vehicle Damage - Windshield, Test No. WIDA-2

Figure 161. Vehicle Undercarriage Damage, Test No. WIDA-2

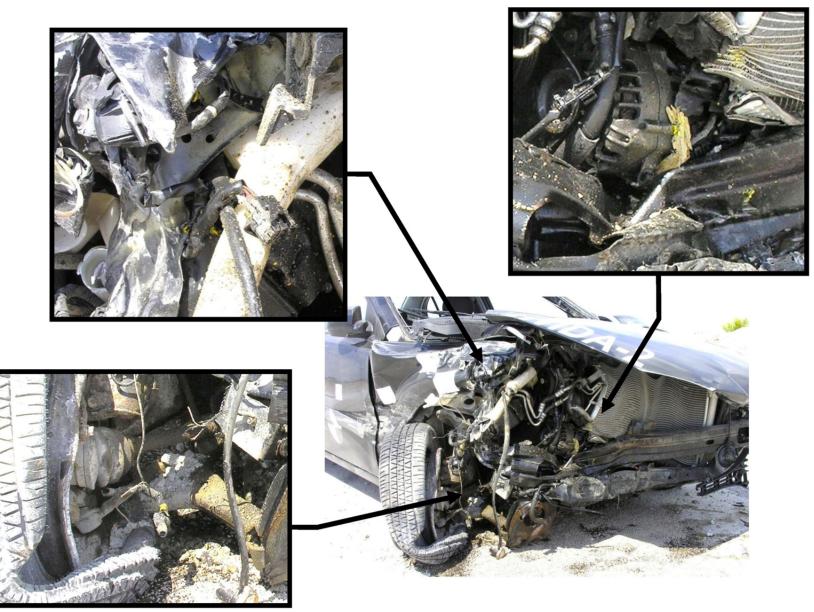


Figure 162. Traces of Bearing Plate Motion Path along Vehicle's Front End, Test No. WIDA-2

15 ANALYSIS AND DISCUSSION

During test no. WIDA-2, the 1100C vehicle experienced substantial snag on the downstream end anchorage, which lead to a longitudinal OIV value close to the maximum MASH acceptable limit. The peak longitudinal deceleration measured at the vehicle's c.g. occurred when the vehicle's front end contacted the bearing plate. This chapter provides an analysis of the potential causes for this vehicle snag.

As indicated by an analysis of the high-speed videos, the bearing plate slid along the right-front end of the vehicle and then onto the side of the right-front quarter panel. Eventually, the bearing plate lost contact with the vehicle after tearing the sheet metal of the right-front quarter panel above the right-front wheel well. Further, traces of the yellow-colored paint used to identify the bearing plate were found along the motion path of the plate while contacting vehicle components, such as the front bumper supporting rail, the radiator, the engine alternator, and the sheet metal of the right-front quarter panel, as shown in Figure 162. Due to the debris and dust that were covering the view of the high-speed video cameras, it was not always possible to clearly identify the location of the anchor cable when the right-front wheel was passing in close proximity to the cable during the impact event. In particular, it was not possible to directly determine whether the cable anchor slid onto the inner side of the impacting tire. Nevertheless, indirect evidence that the cable moved to the inner side of the tire is provided by the analysis of some events occurring immediately before or after the time during which the cable anchor was not visible in the high-speed videos. A description of this indirect evidence is provided in the following paragraphs.

Inspection of video, barrier damage, and vehicle damage indicated that the impacting tire slid under the anchor cable. This evidence was provided by the sudden rotation of the end wood post after it fractured at its base as a consequence of a direct impact with the vehicle's front bumper. Although the end post was already tilted more than 45 degrees with respect to its initial vertical configuration, it abruptly began to rotate as a consequence of a pull force applied by the bearing plate, which was still in contact with the fractured post base. The sequence of this rotation event is shown in Figure 163. The sudden tensioning of the anchor cable indicated that the right-front tire wedged under the cable. Further, the wedging under the cable anchor may have been facilitated by a preexisting outward tilt angle of the wheel after it snagged on the previous BCT wood post. In fact, a post-impact investigation showed a large deformation of the external side of the right-front rim, thus indicating considerable snag occurred on the wood post immediately upstream from the end post. This first snag event may have been the cause for the disengagement of the lower suspension arm from the vehicle frame. As a consequence of the damage to the corresponding suspension, the right-front wheel may have been deformed toward the barrier prior to impact with the second BCT post and anchor cable.

Figure 163. Spinning of Downstream Anchor End Post, Test No. WIDA-2

Further, evidence suggests that after initially sliding on the top of the wheel, the cable likely slid on the inner side of the tire. In fact, had the cable been in contact with the outer side of the wheel, it would have been immediately pushed backward, and the bearing plate would have been unable to contact the vehicle's front end and right-front side.

16 DESIGN GUIDELINES FOR MGS DOWNSTREAM END ANCHORAGE

LS-DYNA computer simulations were conducted for impacts occurring downstream from the identified end of the LON (i.e., the sixth post from the downstream end of the rail) using the 2270P pickup truck. These runs indicated that the post impact trajectory would be largely parallel with the barrier, and larger lateral vehicle penetrations would be expected for impacts occurring into the remaining downstream segment of the barrier and trailing-end terminal. For those cases where the vehicle would be allowed to safely travel behind the barrier within the clear zone located downstream from the end post, it would still be possible to shield hazards located farther behind the guardrail if larger system deflections and vehicle penetrations were allowed. As such, guidelines were proposed for shielding hazards located in close proximity to the crashworthy MGS downstream end anchorage system.

The comparison between simulated and actual vehicle kinematics during full-scale vehicle crash test no. WIDA-1 indicated that the numerical model can reasonably replicate an impact in close proximity to the tested, non-proprietary, MGS downstream anchorage system with the 2270P pickup truck. A comparison of the simulated and actual kinematics during test no. WIDA 1 is shown in Figures 164 and 165. A comparison of simulated and actual maximum penetration of the pickup truck at each post location is shown in Figure 166.

Actual and simulated dynamic deflections of the 2270P pickup impacting the 181 ft – 3 in. (55.3 m) long MGS at approximately 62.1 mph (100 km/h) and 25 degrees were used to develop placement guidelines for shielding hazards located in close proximity to the downstream end of a 31-in. (787-mm) tall barrier. These guidelines were based on the predicted maximum penetration of the 2270P vehicle at each post location utilizing various initial impact points along the MGS and the downstream anchorage system obtained from the simulation and full-scale crash test.

Time	Full-Scale Crash Test	Predicted Kinematics
0.080 sec		
0.290 sec		
0.450 sec		
0.608 sec		
0.810 sec		
1.090 sec		

Figure 164. Redirection of 2270P at Identified End of LON

Time	Full-Scale Crash Test	Predicted Kinematics
0.080 sec		
0.290 sec		
0.450 sec		
0.608 sec		
0.810 sec		

Figure 165. Redirection of 2270P at Identified End of LON

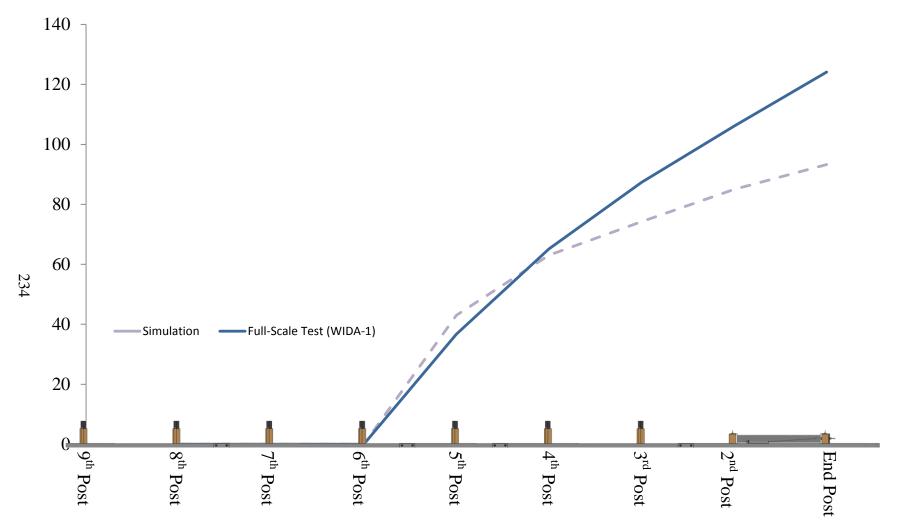


Figure 166. Predicted and Actual Maximum Penetration of 2270P in Test No. WIDA-1

October 28, 2013 MwRSF Report No. TRP-03-279-13 The maximum lateral pickup truck penetration predicted at each post location downstream of simulated initial impact points varying between the second and the ninth posts from the downstream end anchor post are tabulated in Table 19. The vehicle penetration values measured from the high-speed videos of test no. WIDA-1 are also shown in Table 19.

]	Maximui	n Later	al Vehic	le Displ	acemen	t (in.)		
		Post Number Increasing from Downstream End of Rail ⁽¹⁾								
		1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	
	2 nd	34	0							
E E	$2^{nd} + \frac{1}{2}$ span	52	20							
Impact point Post Number Increasing from Downstream End of Rail	$2^{nd} + \frac{3}{4}$ span	58	27							
	3 rd	71	38	0						
	4 th	98	73	41						
	4	(98)	(71)	(44)						
	5 th	124	95	71	45					
	5	(103)	(81)	(60)	(43)					
t p ing	6 ^{th (2)}	93	85	74	63	43				
bac easi d o	End of LON	(113)	(99)	(83)	(69)	(45)				
Imp Incre En	6 ^{th (2)} Test WIDA-1	124	106	87	65	37				
)er	7 th	22	37	43	56	61	43			
Numb	1	(0)	(29)	(47)	(61)	(62)	(44)			
	8 th	0	0	21	40	53	57	45		
ost	0	(NA ⁽³⁾)	(NA ⁽³⁾)	(24)	(41)	(53)	(57)	(46)		
\mathbf{P}_{0}	9 th	0	0	0	19	39	52	56	45	
	,	(0)	(0)	(0)	(18)	(35)	(49)	(55)	(45)	

Table 19. Maximum Lateral Vehicle Displacement of 2270P for Simulated Impact Scenarios and Test no. WIDA-1

⁽¹⁾ Values in parentheses indicate case with suspension failure (for impacts between the 9th and 4th post from downstream)

⁽²⁾ End of LON

⁽³⁾ Simulation terminated due to numerical instabilities

Simulations predicted vehicular redirection for all impacts occurring upstream from the sixth post from the downstream end of the rail. For impacts occurring at the ninth, eighth, and seventh posts upstream from the downstream end of the rail, the maximum vehicle dynamic deflections occurred two spans downstream from the corresponding initial impact point and were

56 in., 57 in., and 61 in. (1,422 mm, 1,448 mm, and 1,549 mm), respectively. These values are consistent with a maximum MGS working width of about 60 in. (1,524 mm), as evaluated from previous full-scale crash tests. As such, a conservative safe distance of 60 in. (1,524 mm) was proposed for locations upstream from the fifth post away from the downstream end of the rail. However, it should be noted that some decreased adjustment in the proposed minimum required working width of 60 in. (1,524 mm) could be made for locations upstream from the seventh post from the downstream end of the rail. Of course, the reduced working width should be determined by the results observed in a crash testing program for specific variations of the 31-in. (787-mm) tall MGS.

For an impact at the sixth post from the downstream end of the rail, the simulated maximum vehicle penetration was similar to the full-scale crash test for the first two spans after the initial contact (i.e., until the fourth post from the end of the simulated rail). Beyond that point, the simulation underestimated the actual measured vehicle penetration. The penetration curve derived from the full-scale crash test was considered for post locations at or downstream from the fourth post from the downstream end of the rail, with a maximum penetration of 65 in., 87 in., 106 in., and 125 in. (1,651 mm, 2,210 mm, 2,692 mm, and 3175 mm), at the fourth, third, second, and end posts, respectively.

The proposed guidelines for shielding hazards located in close proximity to the downstream end of a 31-in. (787-mm) tall barrier when using the crashworthy MGS downstream anchorage system are shown in Figure 167. Assuming a full-gating condition as a worst-case scenario for an impact at or downstream from the fifth post from the downstream end of the rail, the corresponding penetration curve would be a straight line at an angle of 25 degrees with respect to the horizontal axis. Although a full-gating scenario is very improbable for an initial impact at the fifth post from the downstream end of the rail, this new penetration curve would

intersect the boundary previously considered for safe hazard placement at the second post from the downstream end of the rail. Thus, this curve of a hypothetical full-gate penetration could be considered downstream of the second post from the downstream end of the rail in case of a highly dangerous hazard, such as a tree or a pillar.

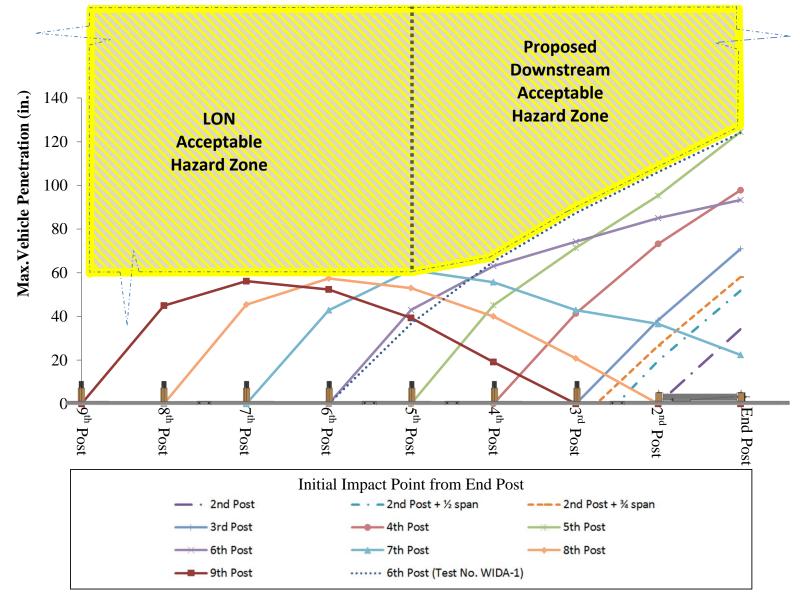


Figure 167. Proposed MGS Placement Guidelines for Shielding Hazards Near MGS Downstream End Anchorage or Trailing-End Terminal

17 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Component tests were conducted on critical components of the non-proprietary trailingend anchorage system (MGS end anchorage). Test nos. BCTRS-1 and BCTRS-2 consisted of an eccentric bogie impact with a BCT post installed in a rigid sleeve to measure BCT post splitting energies and loads. Loads and energies for the tests were 7.4 kip (32.9 kN) and 19.0 kip-in. (2.1 kJ) for test no. BCTRS-1, versus 3.1 kip (14 kN) and 26.0 kip-in. (2.9 kJ) for test no. BCTRS-2. Test no. MGSEA-1 utilized a bogie weighing 4,753 lb (2,156 kg) and traveling at approximately 16 mph (26 km/h) to pull a soil foundation tube downstream. The peak displacement recorded in the test was 6.5 in. (165 mm), and the maximum load recorded was 43.4 kips (193 kN). These two tests were used to calibrate computer simulation models of end anchorage components. Lastly, a component test of the entire end anchorage assembly was conducted by attaching a pull cable to a section of W-beam guardrail attached to a steel post with blockout and the MGS end anchorage system. The 4,780-lb (2,168-kg) bogie vehicle was accelerated to 25 mph (40 km/h) and used to pull the end anchorage to fracture. The dynamic capacity of the end anchorage system was 35 kip (156 kN), measured by a tension load cell in the BCT anchor cable.

A non-proprietary, downstream end anchorage system for 31-in. (787-mm) tall guardrail was crash tested and evaluated according to the MASH impact safety standards. The anchorage was an adaptation of the original modified BCT anchor system but installed tangent. It consisted of two BCT timber posts set into 6-in. wide x 8-in. deep x 72-in. long (152-mm x 203-mm x 1,829-mm), steel foundation tubes. The two steel foundation tubes were connected at the ground line through a strut and yoke assembly. A ³/₄-in. (19-mm) diameter 6x19 wire rope connected the back of the W-beam to the bottom of the end post. Two full-scale crash tests were performed on the system under MASH modified designation no. 3-37. Test no. WIDA-1 was conducted with a 5,172-lb (2,346-kg) pickup truck to identify the end of the LON, while test no. WIDA-2 was

conducted with a 2,619-lb (1,188-kg) small passenger car to assess any potential vehicle instability. Both tests were performed at a targeted initial impact speed and angle of 62 mph (100 km/h) and 25 degrees, respectively. The top-rail mounting height was 31 in. (787 mm) and 32 in. (813 mm) for test nos. WIDA-1 and WIDA-2, respectively.

Both test nos. WIDA-1 and WIDA-2 satisfied the crash test criteria set for by MASH for a modified test designation no. 3-37, as summarized in Table 20. Test no. WIDA-1 indicated that the 2270P pickup truck was completely redirected for an initial impact occurring at the sixth post from the non-proprietary, downstream MGS end anchorage system. Test no. WIDA-2 with the 1100C small passenger car indicated that, although considerable snag occurred, occupant risk values and vehicle stability were within the MASH acceptable limits.

Researchers believe that there may be some combination of vehicle front-end geometries, slack anchor cables, and rail heights which could culminate in a higher risk of snagging than what was observed in test no. WIDA-2 as well as in the simulations. In the event that a vehicle becomes snagged on the anchor cable, occupant risk criteria may be exceeded, or the vehicle may become unstable. However, the likelihood of a vehicle interacting with a downstream MGS end anchorage system with the necessary combination of high speed, high angle, susceptible front-end profile, and cable geometry necessary to cause snag, which was not observed in the crash test, is relatively low. In addition, there is currently no supporting research to assert that excessively slack anchor cables increase the risk for vehicle snag. However, it is recommended that excessive anchor cable slack be removed to facilitate the development of optimal tension in the rail and to reduce an opportunity for anchor cable snag behind an impacting vehicle's wheel.

Numerical simulations indicated that a simple-support connection between the W-beam rail and the end post would increase the penetration of the cable anchor into the wheel well. Thus, this type of connection is not recommended. Future design improvements should consider either shielding the anchor cable from the tire of the impacting vehicle or allowing the bearing plate to promptly release after the end post fractures. The latter option would eliminate the potential for the vehicle's front end to become being entangled with the cable once it is free to move upon fracture of the end post.

In addition, guardrail placement guidelines were proposed for safely shielding hazards located behind the downstream segment of a 31-in. (787-mm) tall MGS attached to the crashworthy MGS downstream end anchorage or trailing-end terminal.

Table 20. Results Summary of Safety Performance Evaluations

Evaluation Factors		Eva	Test No. WIDA-1	Test No. WIDA-2		
Structural Adequacy	C.	Acceptable test article performation or controlled stopping of the vehicle.	S	S		
Occupant Risk	D.	Detached elements, fragments of penetrate or show potential for p an undue hazard to other traf Deformations of, or intrusions in limits set forth in Section 5.3 and	S	S		
	F.	The vehicle should remain uprig and pitch angles are not to exceed	S	S		
	H.	Occupant Impact Velocity (OIV calculation procedure) should sat	S	S		
		Occupa				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Accele MASH for calculation procedure	S	S		
		Occupant F				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
Vehicle Trajectory	N.	S	S			
MASH Test	Desig	nation			Modified 3-37	Modified 3-37
Pass/Fail					Pass	Pass

18 REFERENCES

- 1. Federal Highway Administration (FHWA), *Guidelines for the Selection of W-Beam Barrier Terminals*, Memorandum, October 26, 2004.
- 2. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 3. LS-DYNA User's Manual Version 971 R5, Livermore Software Technology Company, Livermore, California, 2012.
- 4. Michie, J.D. and Bronstad, M.E., *Breakaway Cable Terminals for Guardrails and Median Barriers*, NCHRP Research Results Digest 84, Transportation Research Board, National Research Council, Washington D.C., March 1976.
- 5. Bronstad, M.E., *A Modified Foundation for Breakway Cable Terminals*, NCHRP Research Results Digest 124, Transportation Research Board, National Research Council, Washington D.C., November 1980.
- 6. Bronstad, M.E., Mayer, J.B., Jr., Hatton, J.H., Jr., and Meczkowski, L.C., *Crash Test Evaluation of Eccentric Loader Guardrail Terminals*, Transportation Research Record 1065, Transportation Research Board, Washington, D.C., 1986.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report No. 350, Transportation Research Board, Washington, D.C., 1993.
- 8. Arrington, D.R., Bligh, R.P, and Menges, W.L., *MASH Test 3-37 of the TxDOT 31-inch Wbeam Downstream Anchor Terminal*, Test Report No. 9-1002-6, Texas Transportation Institute, December 2011.
- 9. *Barrier Terminals and Crash Cushions*, Federal Highway Administration, Updated Feb 22, 2013. http://safety.fhwa.dot.gov/roadway_dept/policy_guide/road_hardware/listing.cfm
- 10. Mayer, J.B., Full-Scale Crash Evaluation of a Fleat Median Terminal System Test FMT-3M, Final Report Prepared for Safety by Design Inc., SwRI Project No. 18.01433.008, Southwest Research Institute, July 2001.
- 11. Hayes, E.R. Jr., Menges, W.L., and Bullard, D.L. Jr., *NCHRP Report 350 Compliance Testing of the ET-2000*, Texas Transportation Institute, Project 220510 & 220537, August 2005.
- 12. Mak, K.K., Bligh, R.P., Ross Jr, H.E., and Sicking, D.L., *Slotted Rail Guardrail Terminal*, Transportation Research Record No.1500, Transportation Research Board, Washington, D.C., 1995.

- 13. Pfeifer, B.G. and Sicking, D.L., *NCHRP Report 350 Compliance Testing of the Beam-Eating Steel Terminal System*, Transportation Research Record No. 1647, Transportation Research Board, 1998, p. 130-138.
- 14. Pfeifer, B. G., Rohde, J.R., and Sicking, D.L., *Development of a BEST Terminal to Comply with NCHRP 350 Requirements*, Midwest Roadside Safety Facility, Internal Report, December 1998.
- 15. Polivka, K. A., Faller, R. K., Sicking, D. L., Reid, J. D., Rohde, J. R., Holloway, J. C., Bielenberg, R. W., and Kuipers, B. D., *Development of the Midwest Guardrail System* (MGS) for Standard and Reduced Post Spacing and in Combination with Curbs, Final Report to the Midwest States Regional Pooled Fund Program, MwRSF Research Report No. TRP-03-139-04, Midwest Roadside Safety Facility, University of Nebraska–Lincoln, Lincoln, Nebraska, 2004.
- 16. *Standard Plans*, Caltrans, Accessed June, 2012. <u>http://www.dot.ca.gov/hq/esc/oe/project_plans/HTM/stdplns-US-customary-units-new10.htm#miscellaneous</u>
- 17. *Standard Plans*, Minnesota Department of Transportation, Accessed June, 2012. <u>http://standardplans.dot.state.mn.us/StdPlan.aspx</u>
- 18. *Highway Standards*, Illinois Department of Transportation, Accessed June, 2012. http://www.dot.il.gov/desenv/hwystds/HwyStndIndex.html
- 19. *Standard Road Plans*, Iowa Department of Transportation, Accessed June, 2012. http://www.iowadot.gov/design/stdrdpln.htm
- 20. *Standard Drawings*, Kansas Department of Transportation, Accessed June, 2012. <u>http://kart.ksdot.org/StandardDrawings/StandardDetail.aspx</u>
- 21. Standard Plans for Highway Construction, Missouri Department of Transportation, Accessed June, 2012. http://www.modot.mo.gov/business/standards_and_specs/currentsec600.htm
- 22. *Special Plans*, Nebraska Department of Roads, Accessed June, 2012. http://www.dor.state.ne.us/roadway-design/pdfs/stan-spec/special.pdf
- 23. Roadway Standard Construction Drawings, Ohio Department of Transportation, Accessed June, 2012. <u>http://www.dot.state.oh.us/Divisions/Engineering/Roadway/roadwaystandards/Pages/Standa</u>
- 24. *Standard Plates*, South Dakota Department of Transportation, Accessed June, 2012. <u>http://www.sddot.com/business/design/plates/index/Default.aspx</u>
- 25. *Standard Detail Drawings*, Wisconsin Department of Transportation, Accessed June, 2012. http://roadwaystandards.dot.wi.gov/standards/fdm/16-05-001e001.pdf

- 26. *Standard Plans*, Wyoming Department of Transportation, Accessed June, 2012. <u>http://www.dot.state.wy.us/wydot/engineering_technical_programs/manuals_publications/s</u> <u>tandardplans/Standard_Plans</u>
- 27. *Roadway Standards*, Texas Department of Transportation, Accessed June, 2012. <u>http://www.dot.state.tx.us/insdtdot/orgchart/cmd/cserve/standard/rdwylse.htm</u>
- 28. *Standard Drawings*, New York State Department of Transportation, Accessed June, 2012. <u>https://www.dot.ny.gov/main/business-center/engineering/cadd-info/drawings/standard-sheets/606-guide-railing</u>
- 29. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 30. LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation (LSTC), Version 971, March 2012.
- Arens, S.W., Faller, R.K., Rohde, J.R., and Polivka K.A., *Dynamic Impact Testing of CRT Wood Posts in a Rigid Sleeve*, Final Report to the Minnesota Department of Transportation (MnDOT), Transportation Research Report No. TRP-03-198-08, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, April 11, 2008.
- 32. Stolle, C.S., Reid, J.D., and Lechtenberg, K.A., *Development of Advanced Finite Element Material Models for Cable Barrier Wire Rope*, Final Report to the Mid-America Transportation Center, Midwest Research Report No. TRP-03-233-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, August 2010.
- 33. Bielenberg, R.W., Faller, R.K., Rohde, J.R., Reid, J.D., Sicking, D.L., Holloway, J.C., Johnson, E.A., and Polivka, K.A., *Midwest Guardrail System for Long-Span Culvert Applications*, Final Report to the Midwest States Regional Pooled Fund Program, Midwest Research Report No. TRP-03-187-07, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, November 2007.
- 34. Stolle, C.S., Polivka, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Rohde, J.R., *Evaluation of Critical Flare Rates for the Midwest Guardrail System (MGS)*, Final Report to the Midwest States Regional Pooled Fund Program, Midwest Research Report No. TRP-03-191-08, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, July 2008.
- Finite Element Model Archive, National Crash Analysis Center (NCAC), Accessed March 15, 2011.
 www.ncac.gwu.edu/vml/models.html.
- 36. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 37. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- Quality Controlled Local Climatological Data. Available at: < http://cdo.ncdc.noaa.gov/qclcd/QCLCD>, [2012, May 8].
- 39. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 40. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Quality Controlled Local Climatological Data. Available at: < http://cdo.ncdc.noaa.gov/qclcd/QCLCD>, [2012, June 5].

19 APPENDICES

Appendix A. State DOT's Plans and/or Design Details for Downstream End Anchorages

Drawings of trailing-end terminals that have been adopted by the members of the Midwest States Pooled Fund Program as well as the states of California, New York, and Texas are included herein.

Illinois

- 1) Type 1B
- 2) Type 2

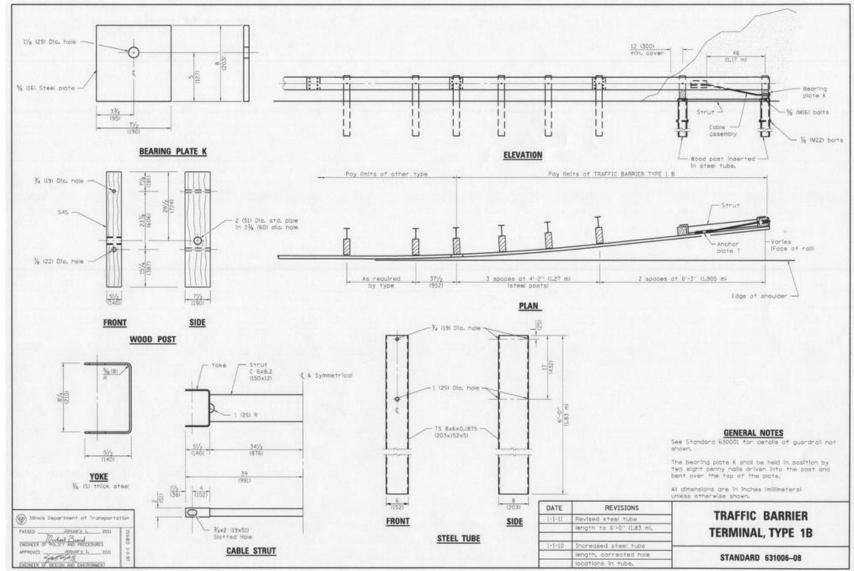


Figure A-1. Illinois DOT Terminal Type 1B

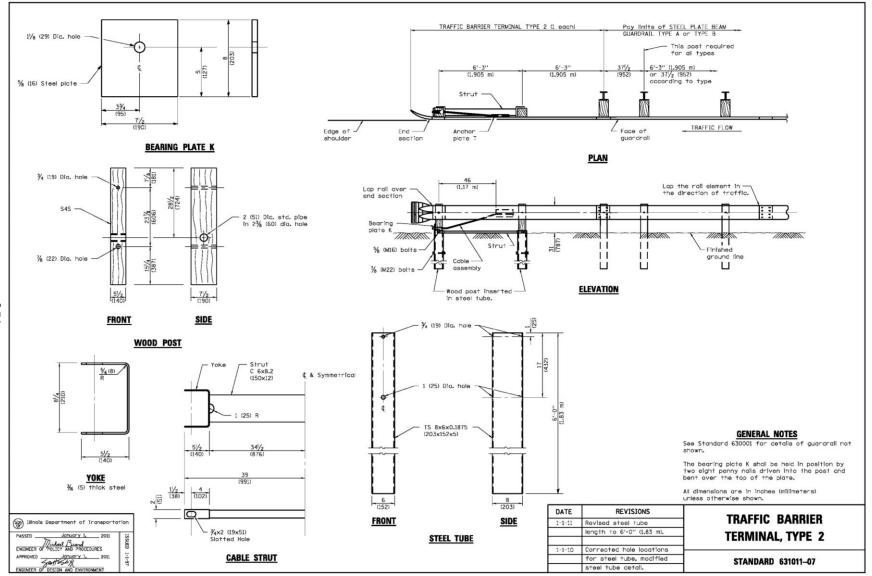


Figure A-2. Illinois DOT Terminal Type 2

Iowa

- 1) BA-203
- 2) BA-204

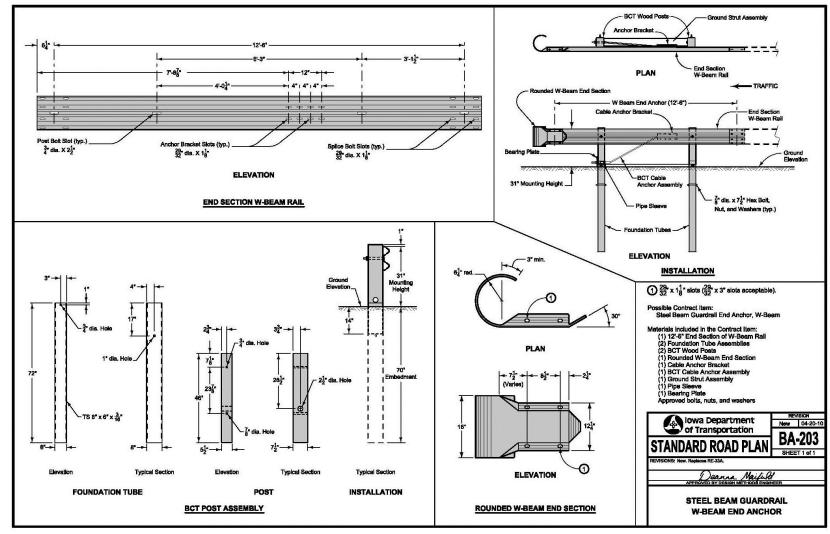


Figure A-3. Iowa DOT Terminal BA-203

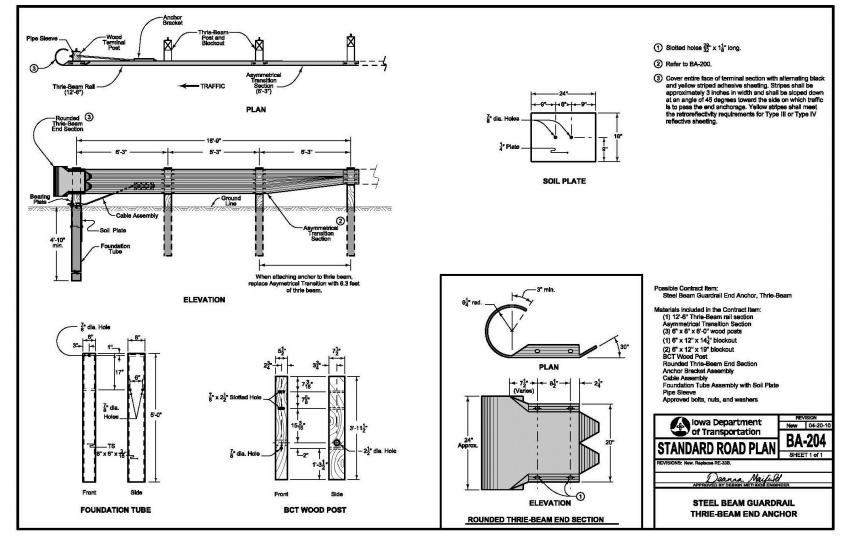


Figure A-4. Iowa DOT Terminal BA-204

Kansas

1) MGS Type II

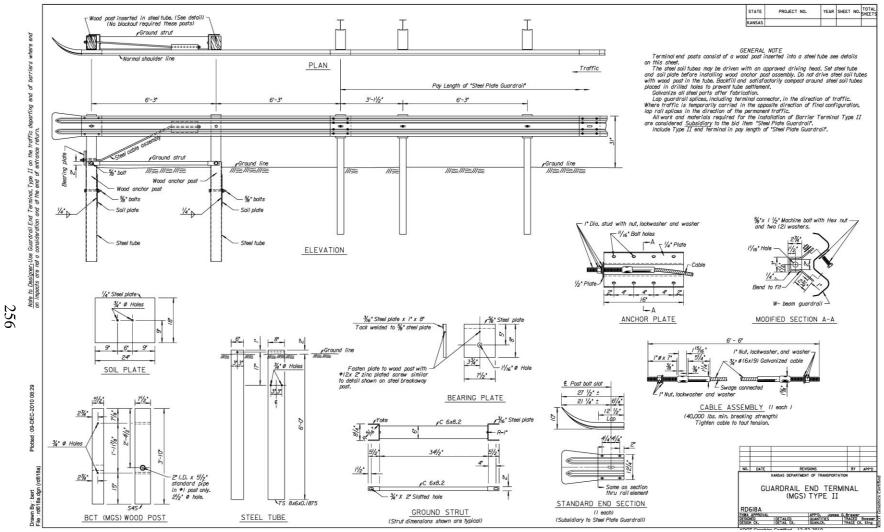


Figure A-5. Kansas DOT Terminal MGS Type II

Minnesota

- 1) Standard plate 8307R (Specification reference 2554)
 - a. Strut Anchorage
 - b. Buried Anchorage Assembly
- 2) Standard plate 8308R (Specification reference 2554)
 - a. Strut Anchorage
 - b. Buried Anchorage Assembly

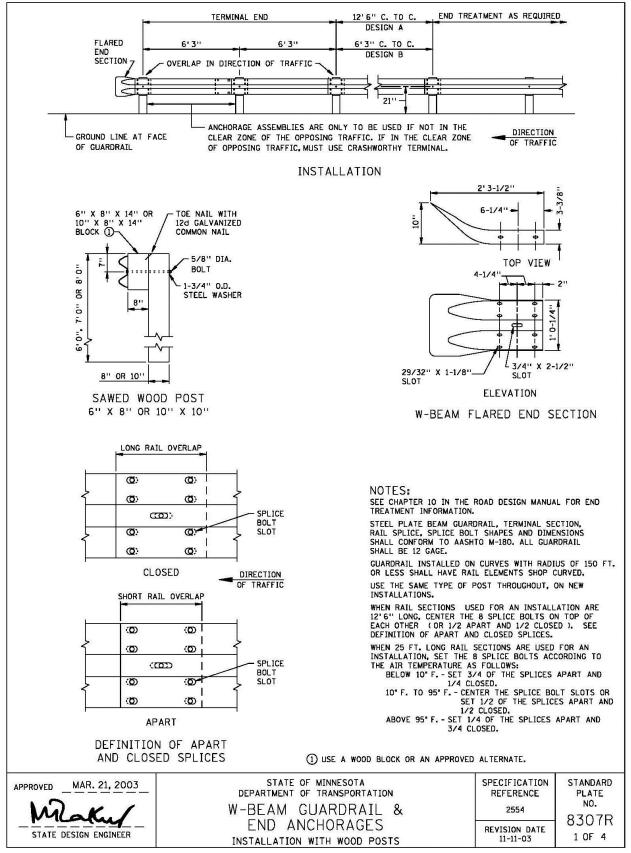


Figure A-6. Minnesota DOT Standard plate 8307R

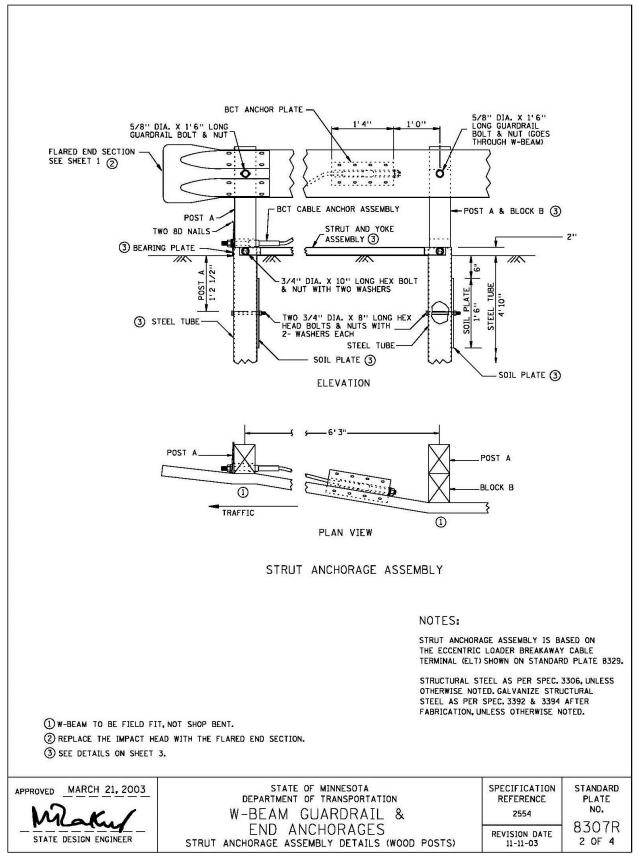


Figure A-7. Minnesota DOT Standard plate 8307R

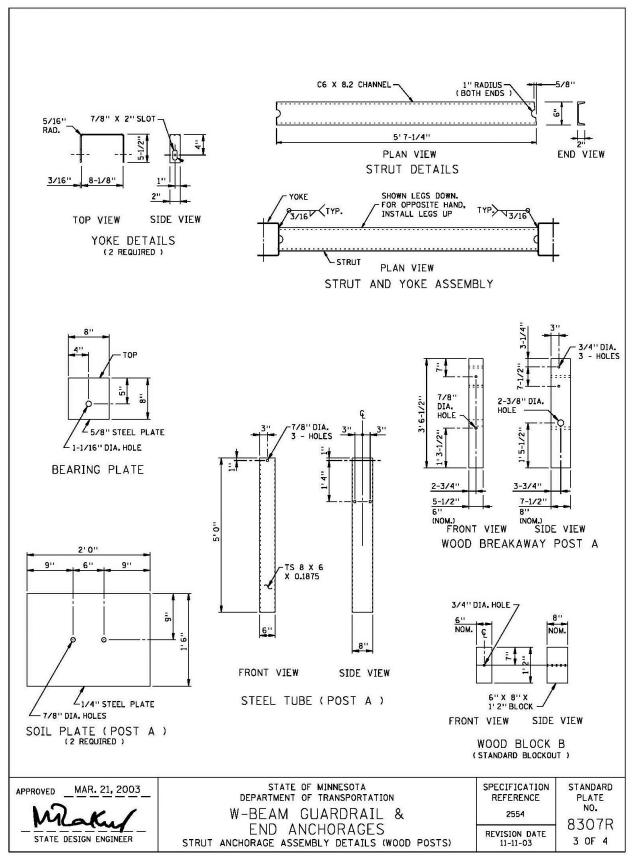


Figure A-8. Minnesota DOT Standard plate 8307R

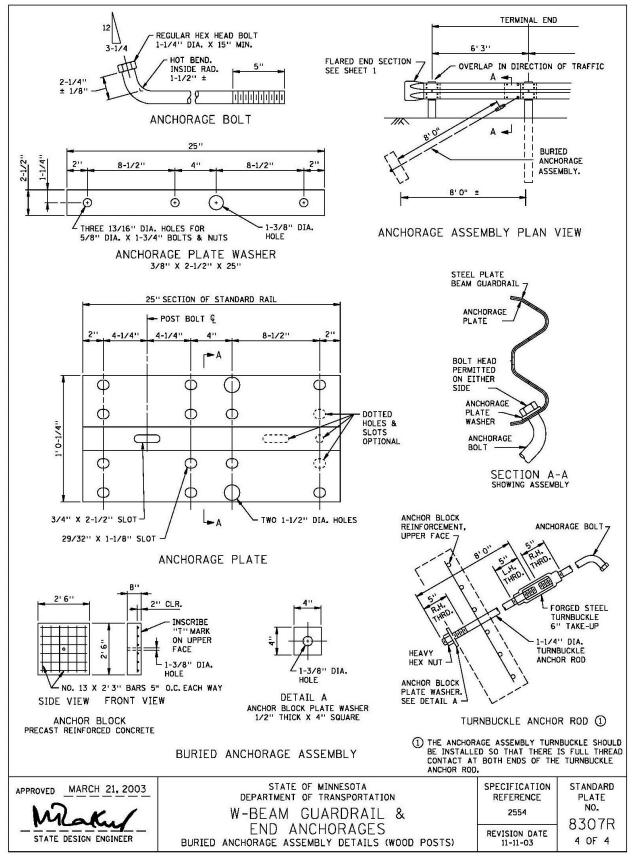


Figure A-9. Minnesota DOT Standard plate 8307R

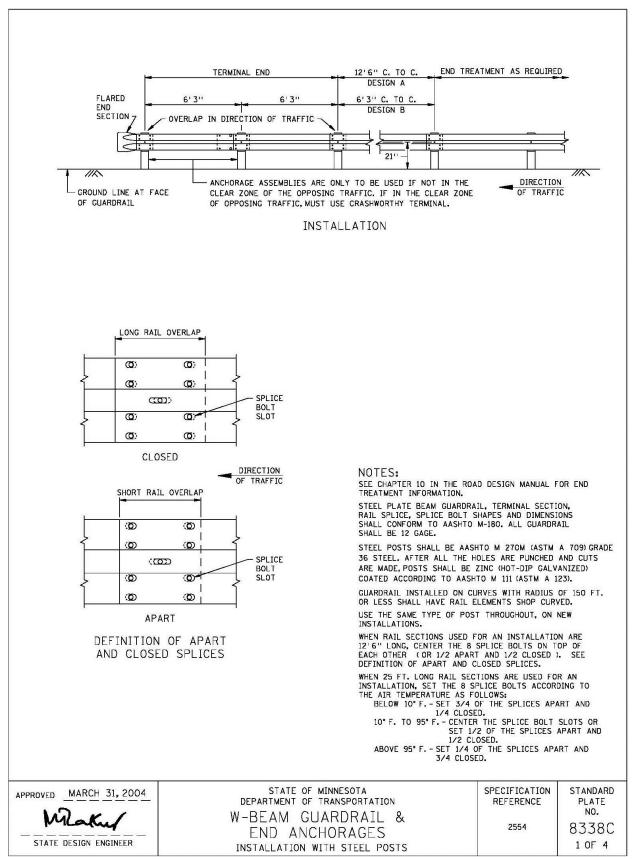


Figure A-10. Minnesota DOT Standard plate 8308R

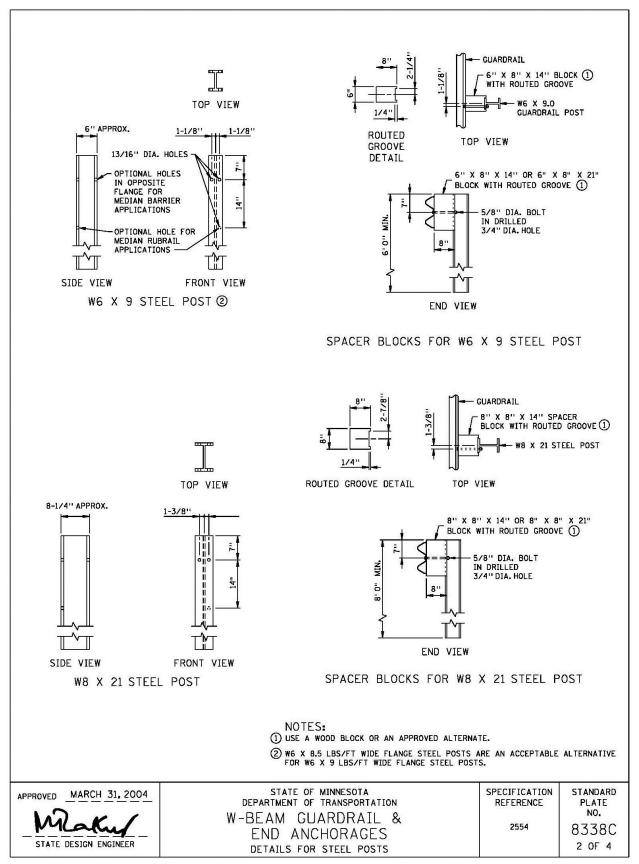


Figure A-11. Minnesota DOT Standard plate 8308R

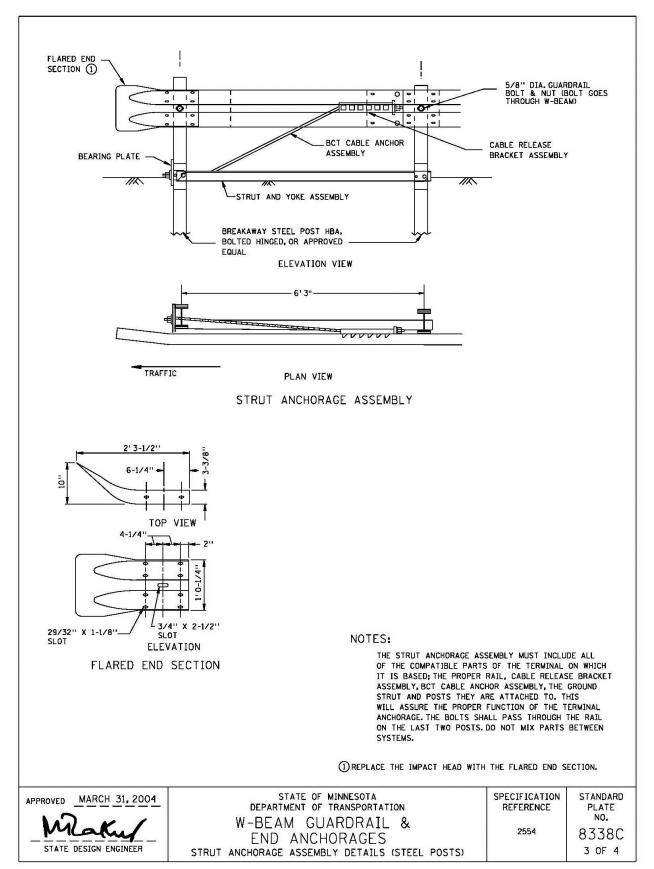


Figure A-12. Minnesota DOT Standard plate 8308R

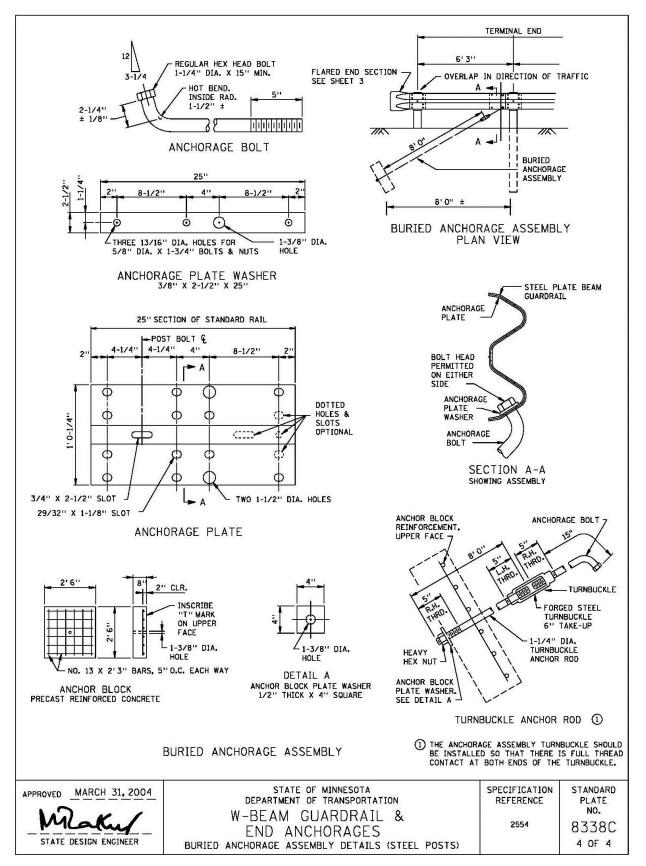


Figure A-13. Minnesota DOT Standard plate 8308R

Missouri

- 1) Drawing 606.00AT
 - a. Steel foundation tubes
 - b. Concrete foundation
 - c. Anchored in backslope rail

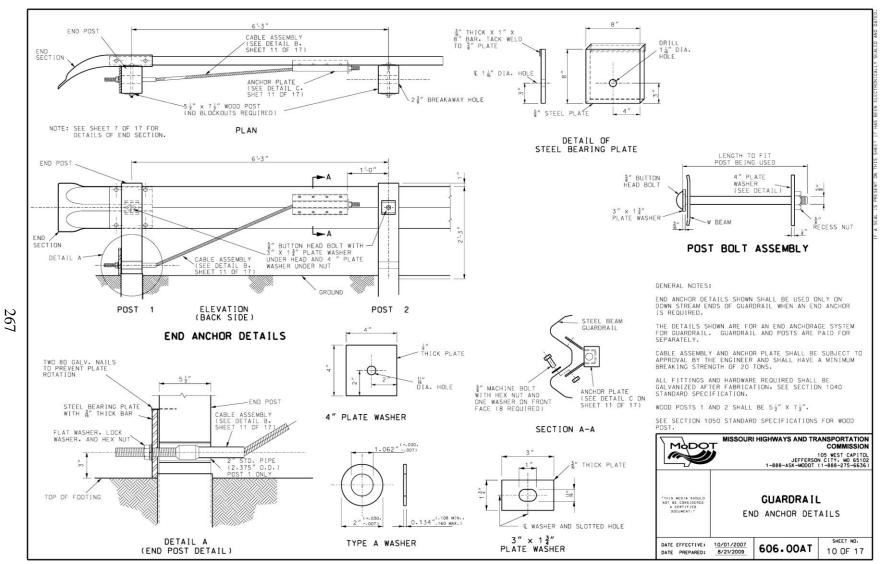


Figure A-14. Missouri DOT Drawing 606.00AT

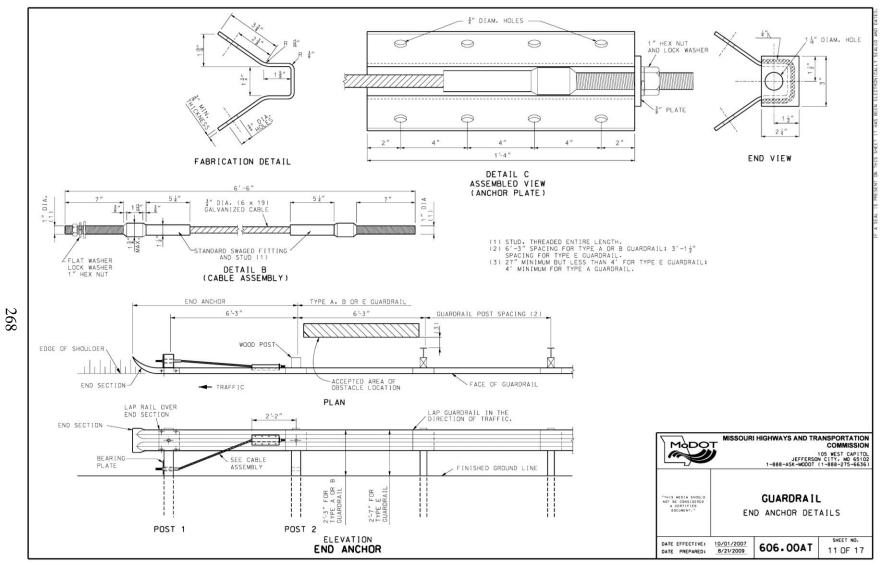
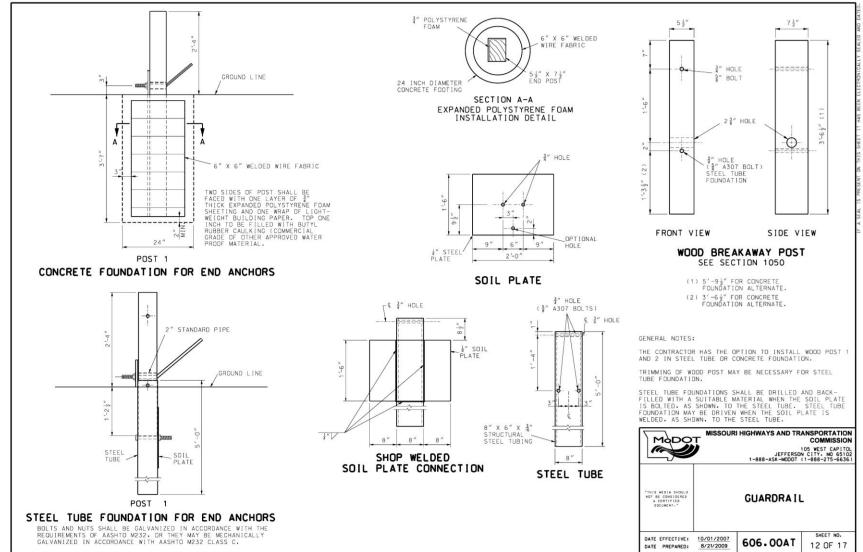



Figure A-15. Missouri DOT Drawing 606.00AT

October 28, 2013 MwRSF Report No. TRP-03-279-13

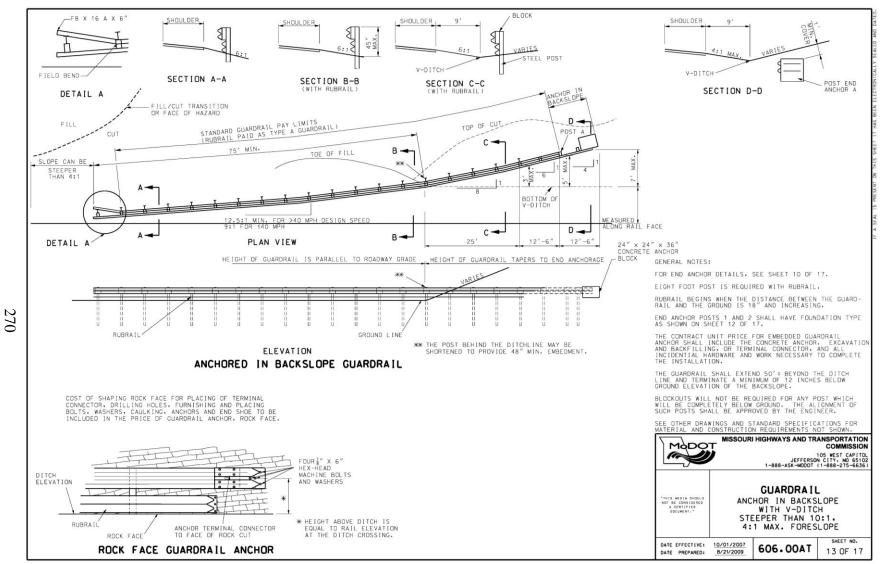


Figure A-17. Missouri DOT Drawing 606.00AT

October 28, 2013 MwRSF Report No. TRP-03-279-13

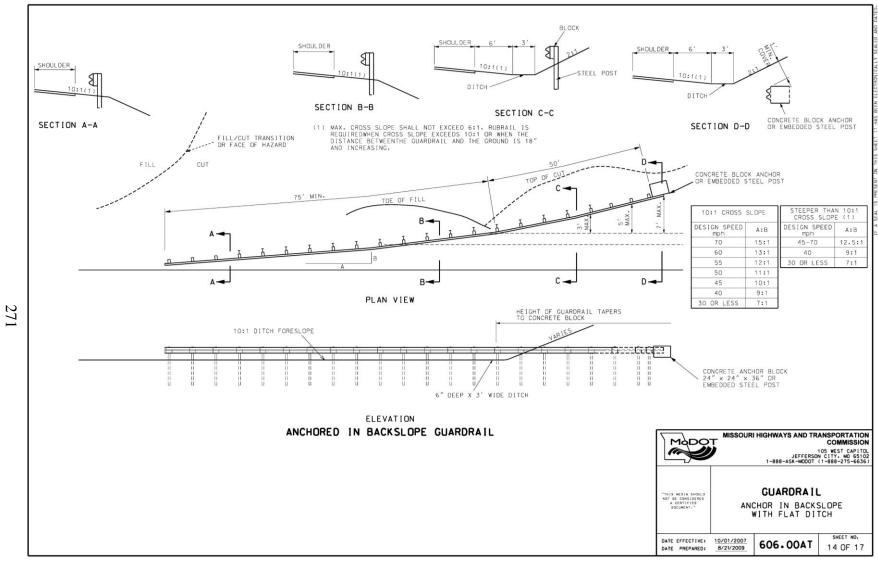
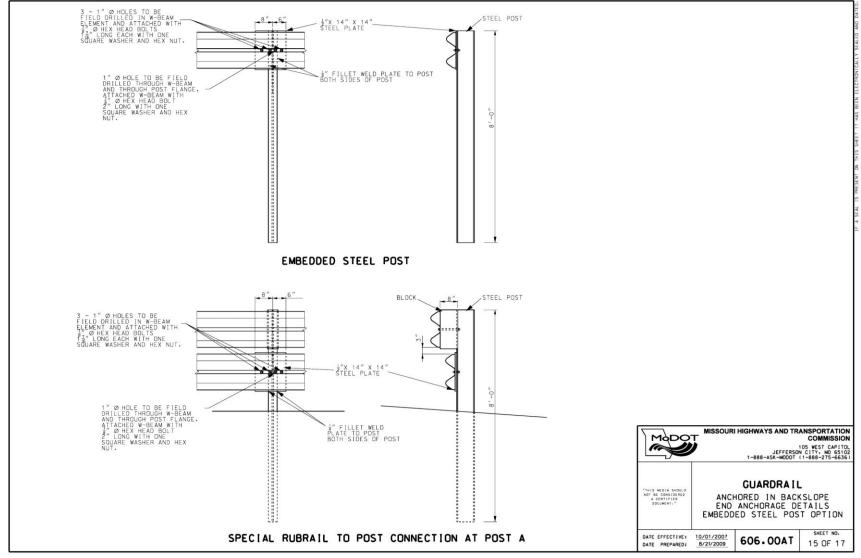



Figure A-18. Missouri DOT Drawing 606.00AT

October 28, 2013 MwRSF Report No. TRP-03-279-13

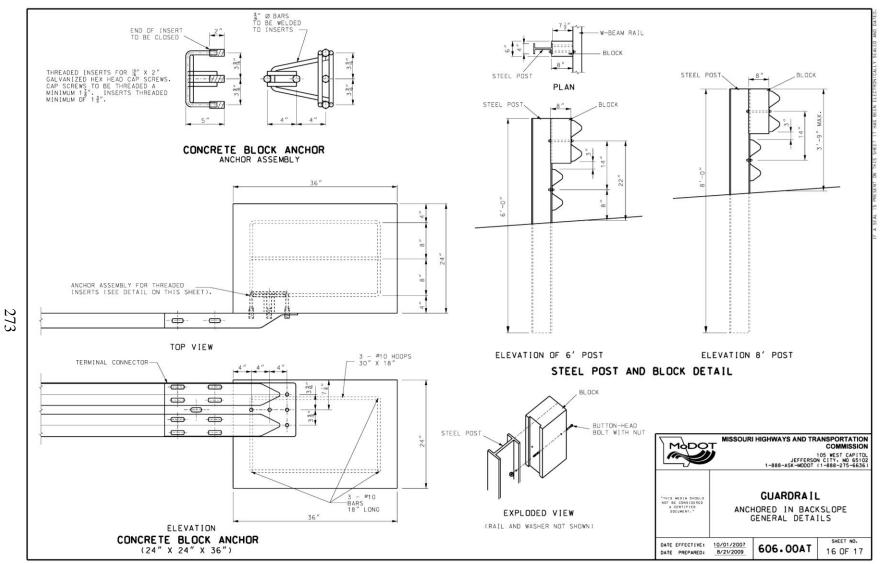


Figure A-20. Missouri DOT Drawing 606.00AT

Nebraska

1) Special Plan C

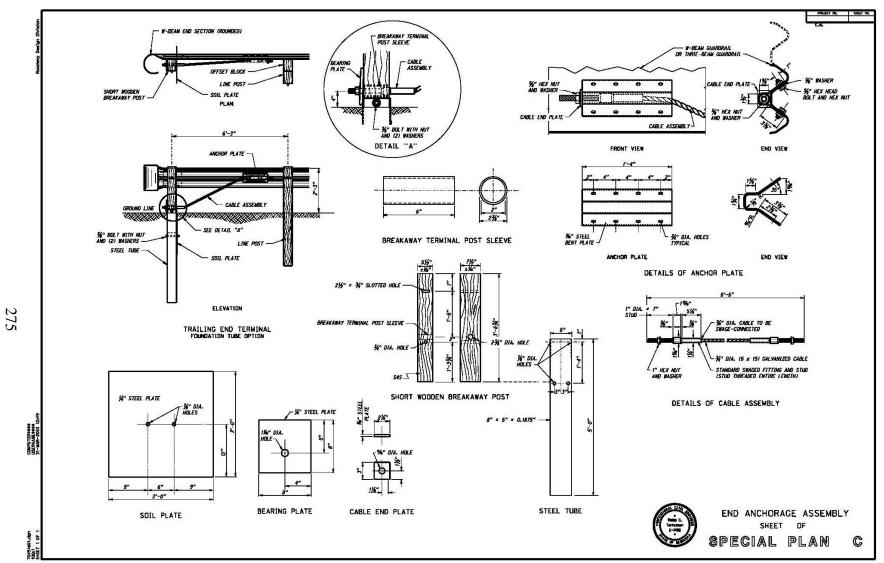


Figure A-21. Nebraska DOT Special Plan C

Ohio

1) Type T (Drawing GR-4.2)

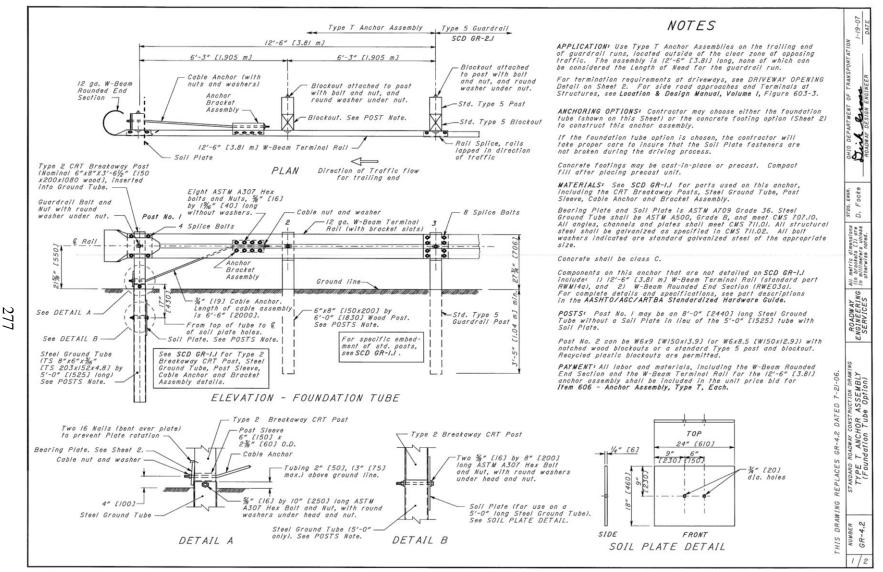


Figure A-22. Ohio DOT Terminal Type T

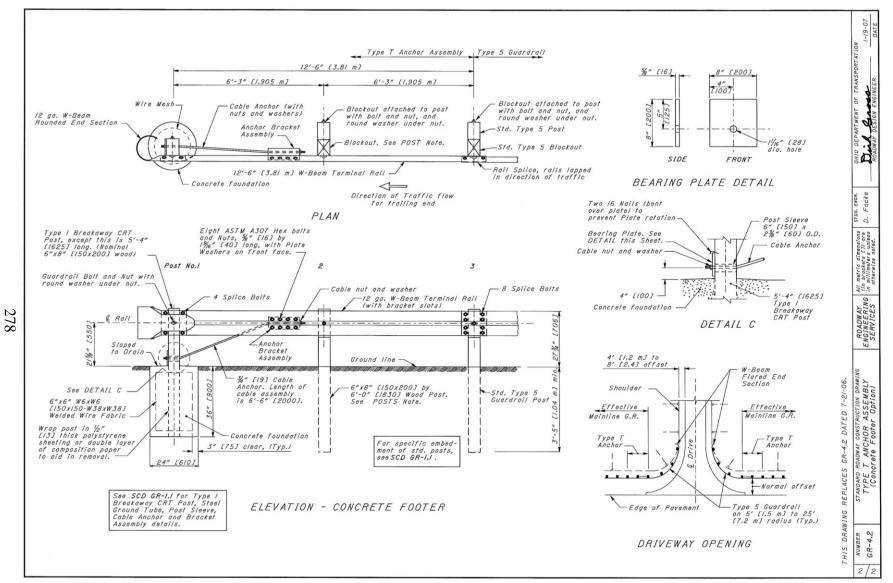


Figure A-23. Ohio DOT Terminal Type T

October 28, 2013 MwRSF Report No. TRP-03-279-13

South Dakota

- 1) Drawing 630.80
- 2) Drawing 630.32
- 3) Drawing 630.02

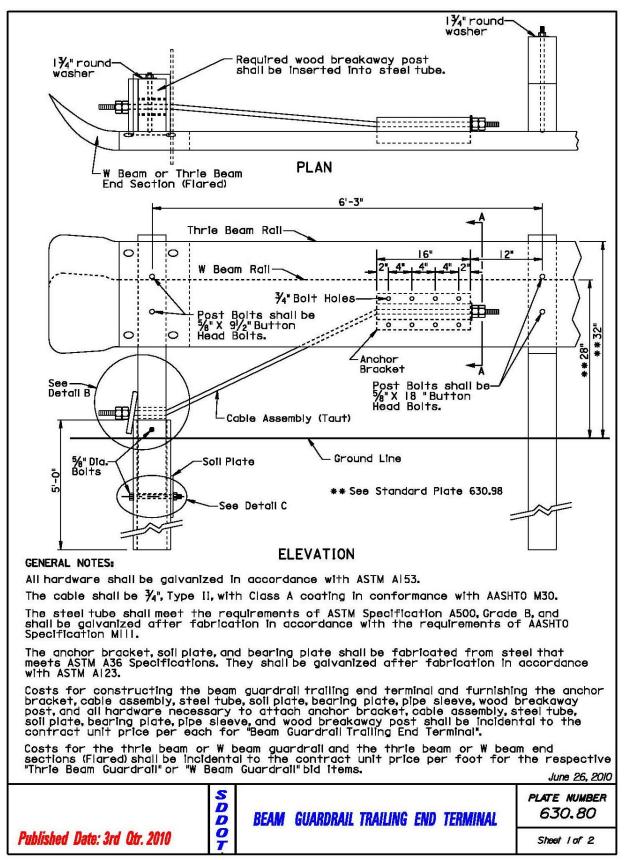


Figure A-24. South Dakota DOT Drawing 630.80

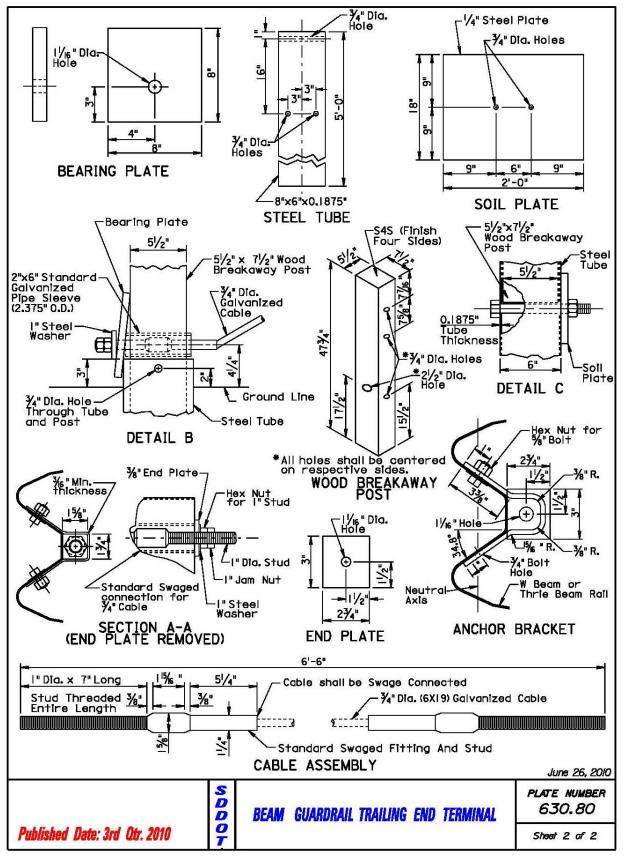


Figure A-25. South Dakota DOT Drawing 630.80

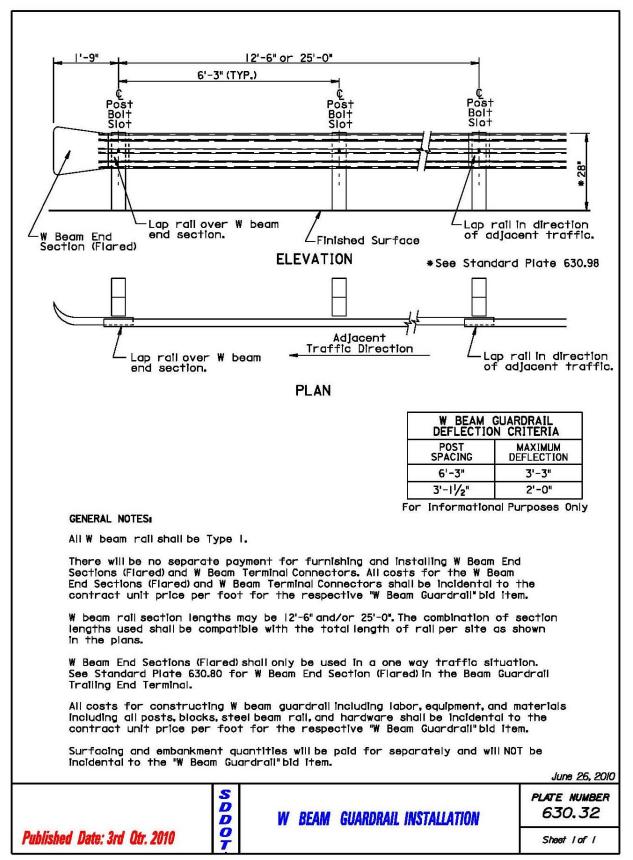


Figure A-26. South Dakota DOT Drawing 630.32

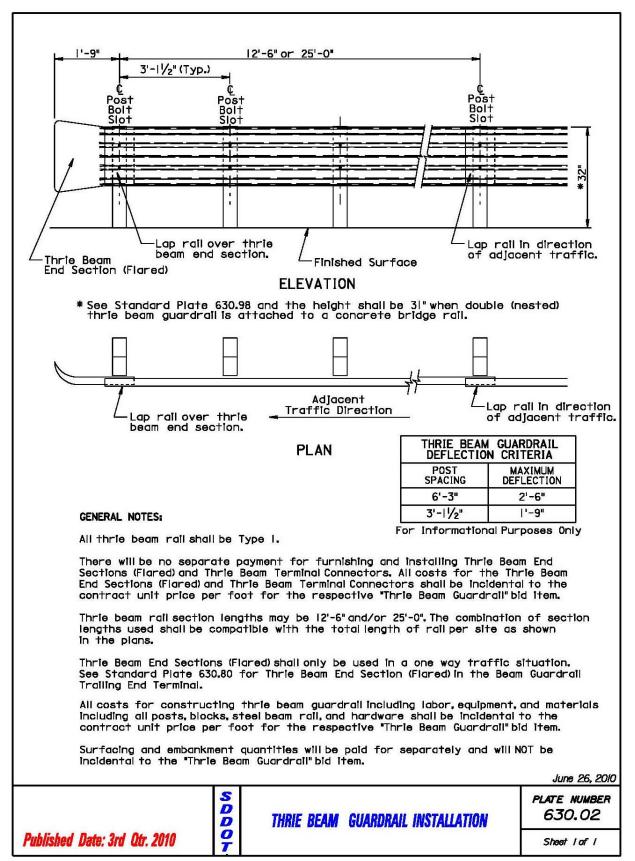


Figure A-27. South Dakota DOT Drawing 630.02

Wisconsin

- 1) Type 2 (Drawing S.D.D. 14 B 16-4a)
- 2) Rounded End Section Class B (Drawing S.D.D. 14 B 3-2)

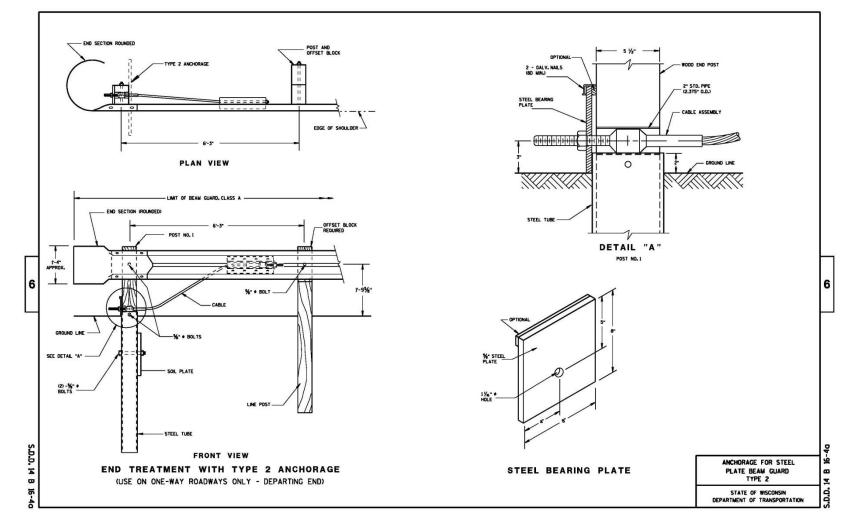


Figure A-28. Wisconsin DOT Terminal Type 2

Standard Detail Drawing 14B16-4a

References: FDM Procedure 11-45-1 AASHTO Roadside Design Guide

Bid items associated with this drawing:

ltem #	Title
614.0305	Steel Plate Beam Guard Class A (LF)
614.0115	Anchorages for Steel Plate Beam Guard Type 2 (each)

Standardized Special Provisions associated with this drawing:

<u>STSP#</u><u>Title</u>

Other SDD's associated with this drawing: 14B15 and 14B18 - 14B16-4b & 14B18-5a is required when this drawing is called for in the plans.

Design Notes:

A Type 2 anchor shall only be used on the departing end of beam guard located along one-way roadways.

Contact Person: Erik Emerson (608) 266 – 2842

September 7, 2007

Figure A-29. Wisconsin DOT Terminal Type 2

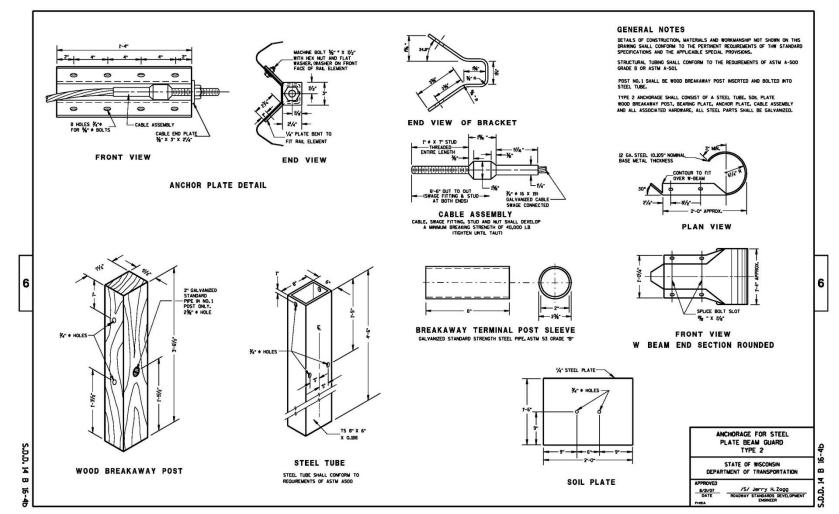


Figure A-30. Wisconsin DOT Terminal Type 2

October 28, 2013 MwRSF Report No. TRP-03-279-13

Standard Detail Drawing 14B16-4b

References: FDM Procedure 11-45-1 AASHTO Roadside Design Guide

Bid items associated with this drawing:

Item #	Title
614.0305	Steel Plate Beam Guard Class A (LF)
614.0115	Anchorages for Steel Plate Beam Guard, Type 2 (each)
205.9006.S	Grading, Shaping, and Finishing for Barrier Terminals, Item 205.9006.S (each)

Standardized Special Provisions associated with this drawing:

STSP #	Title
205.009	Grading, Shaping and Finishing for Barrier Terminals, Item 205.9006.S

Other SDD's associated with this drawing: 14B15 & 14B18 14B16-4a and 14B18-6a are required when this drawing is called for in the plans.

Design Notes: For Non-Grading Type Projects with Beam Guard - (Resurfacing plus Beam Guard or Separate Beam Guard Project)

<u>Item # Title</u>

205.9005.S Grading, Shaping and Finishing for Beam Guard Anchorage

List all items of work and round up the quantities for individual items and note them as "For Bid Information Only." Following is suggested table format for use on the Miscellaneous Quantities Sheet:

OTADIII		INO AND IT					0000.0
Station Location	* Fill	* Borrow Exc.	* Salv. Topsoil	* Fert. Type	* Seeding	* Mulching	Each
(Anchorage Post # 1)	C.Y.	C.Y.	S.Y.	CWT.	L.B.	S.Y.	
STA.							
Totals							

GRADIING, SHAPING AND FINISHING FOR BARRIER TERMINALS, ITEM 205.9006.S

* Items & Quantities listed for Bid Information Only. For quantities shown be very clear how many units Each are included in the table.

Options to use in displaying quantities:

- 1. Show items and quantities for 1 Each, typical location.
- 2. List each anchor location separately with respective quantities.
- 3. Show items and quantities for all anchors inclusive, and indicate the quantity of anchors these totals are for.

Contact Person: Erik Emerson (608) 266-2842

September 7, 2007

Figure A-31. Wisconsin DOT Terminal Type 2

Standard Detail Drawing 14B3 - 2

References:

Bid items associated with this drawing:

Standardized Special Provisions associated with this drawing:

STSP # <u>Title</u>

Other SDD's associated with this drawing:

Design Notes:

Contact Person: Peter Amakobe (608) 266-2842

April 18, 2003

Figure A-32. Wisconsin DOT Terminal Steel Plate Beam Guard Class B 289

Wyoming

- 1) Type C (Drawing 606-1 (sheet 10))
- 2) Type D low speed terminal (Drawing 606-1 (sheet 11))

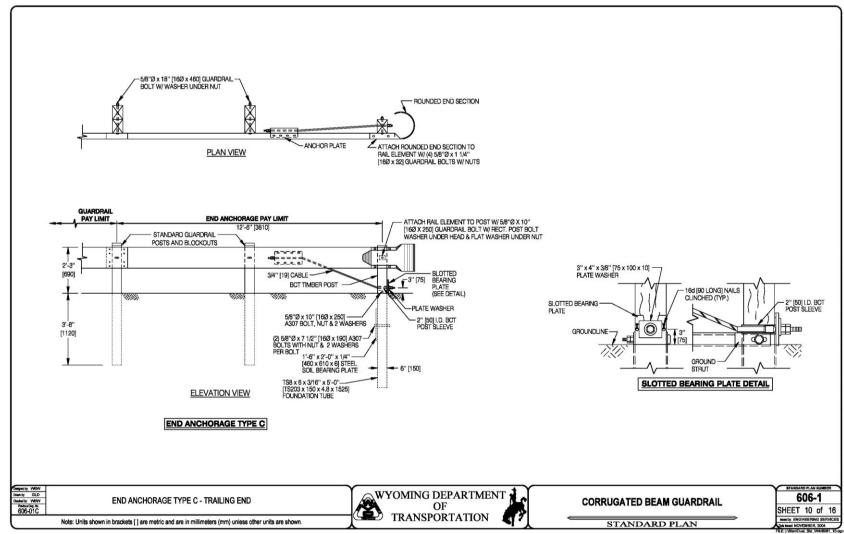


Figure A-33. Wyoming DOT Terminal Type C

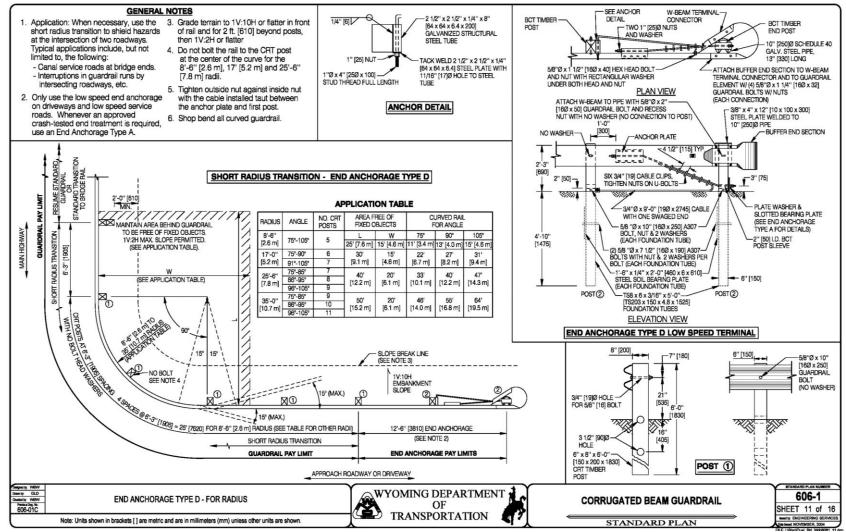


Figure A-34. Wyoming DOT Terminal Type D

Texas

1) Texas DOT Metal Beam Guard Fence Downstream Anchor Terminal

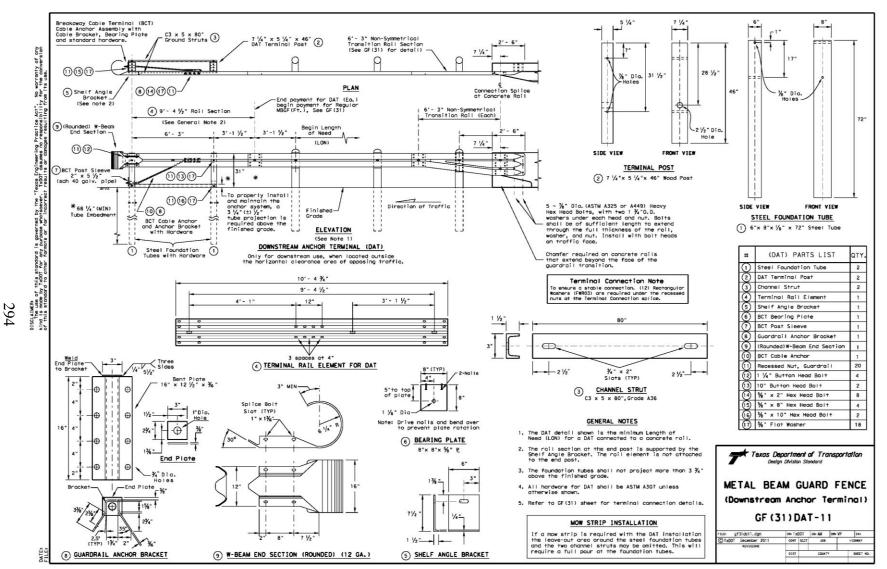


Figure A-35. Texas DOT Metal Beam Guard Fence Downstream Anchor Terminal

California

- 1) Type SFT
- 2) Single thrie beam barrier end anchor
- 3) Anchored in backslope rail

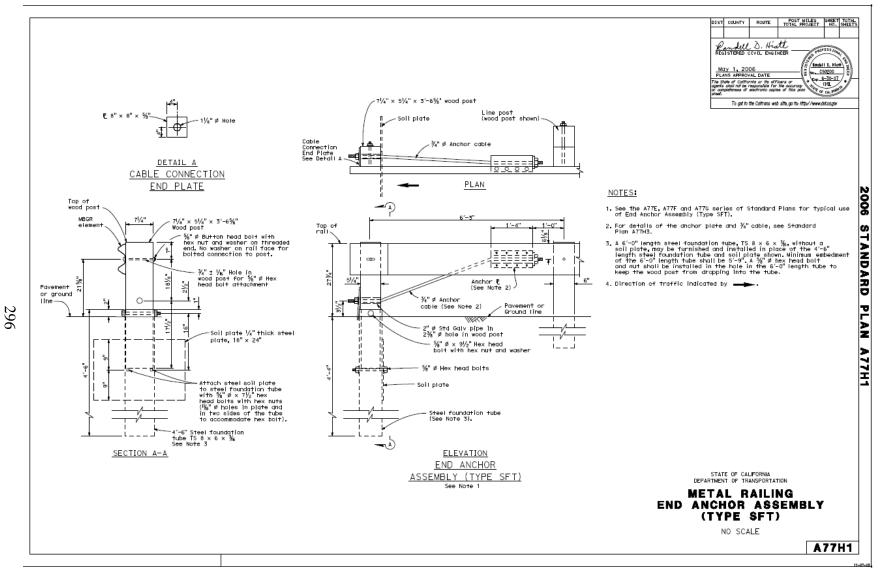


Figure A-36. Type SFT

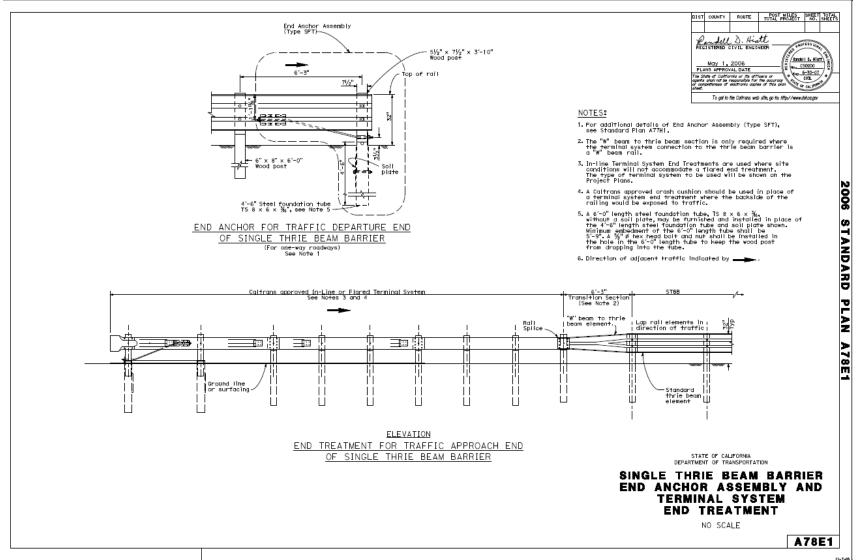


Figure A-37. Single Thrie-Beam Barrier End Aanchor

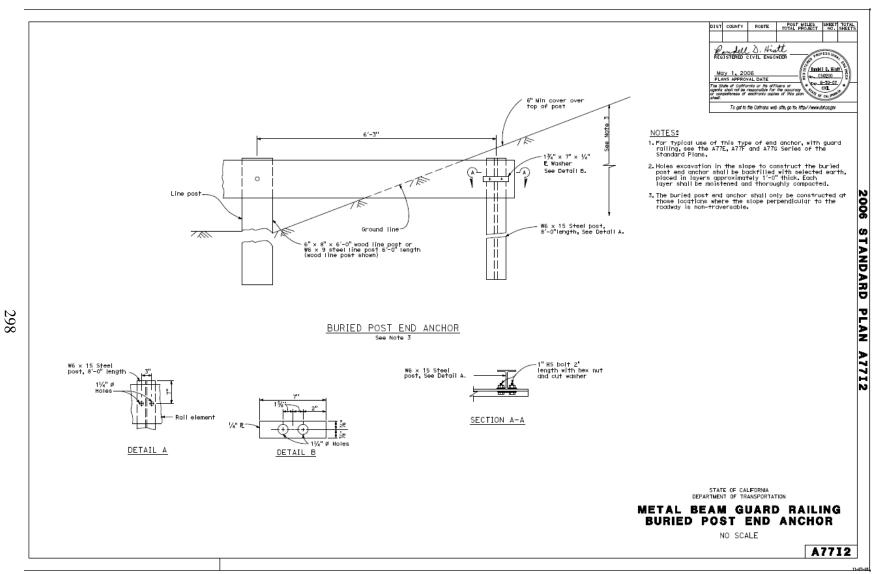


Figure A-38. Anchored-in-Backslope Rail

Appendix B. Material Specifications and Mill Certifications

															2	50
			TR			Pla D' CO Lima	AY PRO nt #55 NNOR A , OH 45 227-1296	AVEN 5801		LLC.						(*).
2					M	ATE	RIAL (CER	TIFIC	ATIO	N					
CUS	TOME	R: S	тоск				DATE	: MA	Y 05, 20	011						
							INVOI	ICE #								
							LOTN	IUME	ER: 11	0325L						
PAR	T NUM	BER 35()0G				QUAN	TITY	: 16,6	59		1	_			
DES	CRIPTI	ON: 5/8	"x 10" (GR BC	DLT		DATE	SHII	PPED:							
SPE	CIFICA	TIONS:	ASTM	A307-7	A /A15	3	HEAT	# 20	134300	& 2013	4310	-				
						MA	TERIAL	L CH	EMIST	RY		_				
C	MN	Р	S	SI	NI	CR	MO		SN	V	AL	N	В	TI	NB]
.08 .09	.34	.009	.004	.05	.04	.04	.01	.09	.009	.001	.030	.008	.0002	.001	.001	
TOF	DIP GA	LVANI					OR P	RO	FECT				Avg.			
	****	THIS PI	RODUC	CT WA	S MA	NUFA	CTURE	ED IN	THE U	NITED	STATI	ES OF A	MERIC	A****		8
					TAT	TO TI	Ľ.	J.S.A T OF	OUR K	RRECT	Tedere	ALL IN	URED I	VIION	_	
	SWOR	E OF OF N AND S 5 TH DAY	UBSCRI	BED B	EFOR		N	×	TRO	INITY	HIGHW	AYPR	ODUCT	'S, LLC		
	She	ind	Donor	Run	Jan	١	N	OTAF	Y PUB	LIC		×.		-		
	425 E.	0 'CON	NOR A	VENU	E		LIMA,	ОН	45801		41	9-227-1	296			

Figure B-1. 0.625-in. (16-mm) Post Bolts, Test Nos. DSAP-1 and DSAP-2

HEM C NN P S SI NI C.R. MO CU SN V AL N B TI NB SI NI C.R. MO CU SN V AL N B TI NB SI NI NI CR MO CU SN V AL N B TI NB SI NI NI CR MO CU SN V AL N B TI NB SI NI NI CR SI SI <th></th> <th>5</th> <th></th> <th>$E_{\rm esc}$</th>											5		$E_{\rm esc}$
Control of the constraints in the second results of rooling Low 2011826 December 201	No. CONTRACTOR							ER E					
STEEL Stackwille, Wisconsin 53080 (262) 268-2400 Division of Charles Mandeduring Company. Inc. CHARTER STEEL TEST REPORT Reverse Has Text And Codes 1-800-437-8789 FX (262) 268-2570 FAX (262) 268-2570 Trinity Indujstries Inc. 425 E. O Conner Ave Such Henline Images Status Lima, 0H-43801 Images Status Lima, 0H-43801 Mind Attn :Sue Henline Image Status Lima, 0H-43801 Image Status Lima, 0H-43801 Images Status Lima, 0H-43801 I. hereby certly that the material described baretin has been manufactured in accuratione with the specifications and standards listed below and on the reverse side. And status down and standards listed Image Status Lima, 0H-43801 I. hereby certly that the material described baretin has been manufactured in accuratione with the specifications and standards listed below and on the reverse side. And status down and standards listed I. down 2000 0.000 0.000 0.000 0.000 Mode Status Market Status Under Status Lima, 0Ho 9000 0.000 1.000 1.000 Mode Status Market Status Under Status Market Status Lima, 0Ho 9000 0.000 0.000 0.000 Market Status Market Status		C	;HA	RT	ER			TILL					1658 Cold Springs Road
(262) 268-2400 ADividen of Charler Mandaeuding Company. Inc. CHARTER STEEL TEST REPORT Reverse Has Text And Codes 1-800-437-8789 FAX (262) 288-2570 Trinity Industries Inc. 425 E. O Conner Ave Sue Henline Lima, Olf-45801 Sue Letter 1000 AM (2000) Sue Henline Sue Letter 1000 AM (2000) Sue Henline Sue Letter 1000 AM (2000) Sue Henline Interest certify that the material described hordin has been manufactured in accordance with the specifications and standards listed below and on the trevens idea of these requirements. Sue Code: 12544 With 0.64 M (2000) Also 0.00 0.00 Links Sue V (1000) Also 0.00 0.00 Links text Code: 12544 With 0.64 M (2000) With 0.64 M (2000) Also 0.00 0.00 Links Test Results of Reling Low 2011626 Sue V (2000) Also 0.00 0.00 Links text Code: 12544 With 0.64 M (2000) With 0.65 M (2000) Also 0.00 0.00 Links Test Results of Rolling Low 2011626 Sue V (2000) Also 0.00 0.00 Links Sue V (2000) Also 0.00 0.00 Links text Code: 12544 With 0.64 M (2000) With 0.65 M (2000) Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.9 0.00 Links Sue V (2000) Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.9 0.00 0.01 Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.9 0.00 0.01 Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.9 0.00 0.01 Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.9 0.00 0.01 Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.9 0.00 0.01 Manufactured per Charler Steel Quality Manual Rev 9.04 0.01 0.01 Manufactured per Charler Steel Manufactured per Charler Steel Quality Manufactured per Charler Steel Q	CHARTER	S	TE	EL							1	·S	aukville, Wisconsin 53080
Automate Manufacturing Company, Inc. Reverse Has Text And Codes FAX (262) 288–2570 Trinity Industries Inc. 425 E, O Conner Ave Such Hentine Lima, OH-45801 Image: Cust P, O. 139855M-3 (Cust OP OF # / 1000941B) Claster Hentine Lima, OH-45801 Image: Cust P, O. 139855M-3 (Cust OP OF # / 2011326) I henchy certly that the material described bordh has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. below and on the reverse side, and that it satisfies these requirements. Finish Size 1010 RAK FG RIQ 41/64. below and on the reverse side, and that it satisfies these requirements. Test Results of Real Low 20134300 41/64. W Above and the second control is accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. 1000 RAK FG RIQ 41/64. W Above and the second control is accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. 1000 RAK FG RIQ 41/64. W Above and the second control is accordance with the specification with any application of a bove and the second control is accordance with the specification with any application code beat a 1000 RAK FG RIQ 1000 RAK		and the second							2				(262) 268-2400
FAX (252) 288-2570 Trinity Industries Inc. 425 E. O Conner Ave Sue Henline Lima, Olf-45801 Kind Attn :Sue Henline Image: Cluster Part # 100941B Cluster Sales Order 70016081 Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and on the reveal sole and that is absiles these requirements. Below and and the reveal sole and that is absiles the sole and that absiles the requirements. Customer Document - ASTM A2-05 Revision = 65 Dated = Below and absole and the sole and that assume the sole and that assume the sole and the sole and that assume the sole and the sole and the sole and that assume the sole and the sole and that assume the sole and that a	A Division of	B .			(1-800-437-8789
Trinity Indulstries Inc. 425 E. O Conner Ave Sue Hendine 100941B Charter Sales Order 1000941B Charter Sales Order Sue Hendine Heat # 2011326 Charter Sales Order 1010 R AK FG RHQ 4/164 Process RHQ 4/164 Heat # I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side and that it satisfies these requirements. 1162 Charter Sales Order 1162 Heat # ab Code: 125544 HEM Test Results of Heat Lot# 20134300 Also 9 .009 .000 .001 N AL N B Ti NB 0.00 .000 .001 N HEM C4 N B Ti NB 0.00 .001 N HEM C4 N B Ti NB 0.00 .000 .001 N HEM C4 N B Ti NB 0.00 .000 .001 N HEM C6 N P S S N CA N V N Also 0000 .000 .000 .000 .001 NB .01 .001 NB N N N N N N N N N N N N N N N N	Charter Man	ufacturing	g Company	r. Inc.		Reve	rse Ha	s Text A	and Co	des			FAX (262) 268-2570
Trinity Indulstries Inc. 425 E. O Conner Ave Sue Hendine 100941B Charter Sales Order 1000941B Charter Sales Order Sue Hendine Heat # 2011326 Charter Sales Order 1010 R AK FG RHQ 4/164 Process RHQ 4/164 Heat # I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side and that it satisfies these requirements. 1162 Charter Sales Order 1162 Heat # ab Code: 125544 HEM Test Results of Heat Lot# 20134300 Also 9 .009 .000 .001 N AL N B Ti NB 0.00 .000 .001 N HEM C4 N B Ti NB 0.00 .001 N HEM C4 N B Ti NB 0.00 .000 .001 N HEM C4 N B Ti NB 0.00 .000 .001 N HEM C6 N P S S N CA N V N Also 0000 .000 .000 .000 .001 NB .01 .001 NB N N N N N N N N N N N N N N N N													
Trinky Industries Inc. 425 E. O Conner Ave Sue Hendine 100941B (Charter Sales Order 10010 R AK FG RHQ 41664 2011826 Lima, OH-45801 Kind Attn : Sue Hendine Heat # 2011826 (Charter Sales Order 2011826 (Charter Sales Order I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side and that it satisfies these regularements. Heat # 2011826 (Charter Sales Order ab Code: 125514 (HEM Test Results of Heat Lot# 20134300 (Add 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,											Curt D.O	_	12005514 2
425 E. O Conner Ave Sue Hendline Sue Hendline Heat # 20134300 Sinp Lot # 2013626 2013626 Lima, OH-45801 Grade 1010 R AK FG RHQ 4164 Kind Attn : Sue Hendline HR HR I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side and that it satisfies these requirements. HR ab Code: 125544 Test Results of Heat Lot/20134300 N AL N P S S AL N P S S N Als N P S S N CR MW .08 34 .09 .001 N N AL N B T N N N N Als N B T N N N N N N N Als N B T N N N N N N N N N N N N N N N													
Sue Henline Lima, OH-45801 Kind Attn :Sue Henline Ship Lot # 2011826 Grade I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. ab Code 125544 Hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. ab Code 125544 With 0.8 3.4 0.09 0.004 0.5 0.4 0.4 0.1 0.9 0.009 0.01 AL N B 0.002 0.01 0.01 Manufactured per Charter Steel Quality Manual Rev 9.08-01-03 Meets customer specifications with any applicable Charter Steel ex	÷								Ch			•	
Lima, OH-445801 Kind Attn : Sue Henline Sinp LO 10 R AK FG RHC 4164 Process I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it statistist these requirements:. Ob Code: 125544 WM Test Results of Heat Lot 20134300 Test Results of Heat Lot 20134300 AL N AL N B T Belowision = 05 Dated = Dated = DDUCTION RATIO Fact Mumber - 222-7398 E Pace Fiold Windex A Sing A A </td <td></td> <td></td> <td></td> <td>ner Ave</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				ner Ave									
Kind Attn :Sue Henline Process IR Process IR Finish Size 41764				01						S		-	
Interesting 11/64 I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. 11/64 ab Code: 12/54 Test Results of Heat Low 20134300 1 hEW 08 34 09 004 .05 .04 .04 .01 .09 .001 AL N B T NB .00 .001 .001 AL N B T NB .01 .09 .001 .001 AL N B T NB .01 .09 .001 .001 AL N B T NB .01 .09 .001 .001 AL N B T NB .01 .09 .001 .001 AL DEVIATION EXT-GREEN = E .001 .002-010 .002 .001 .001 Bedications: Manufactured per Charter Steel Quality Manual Rev 9.08-01-03 Meeter scale accordination with any applicable charter Steel scale accordination and scale accordination and scale accordination ac					ne .								
I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. Ib Code: 125544 HEM 0.08 M 0.09 SI NI CR MO CU SN V AL N P S SI NI CR MO CU SN V AL N B T NI NR CR MO CU SN V AL N B T NI NR CR MO CU SN V AL N B T NI NR CR CU SN V RECEIVEE Test Results of Rolling Loif 2011626 Test Results of Rolling Loif 2011628 Customer pocuments: Customer pocument e ASTM A29-05 Revision = 05 Dated = MAR 17 2011 teaclifications: Fax Number - 222-7396 RECEIVEE MAR 17 2011 Testrested tuyahoga Heights, OH, USA Usahoga Heights, OH, USA Jarice Barnard Jarice Barnard										Ci			
below and on the reverse side, and that it satisfies these requirements. b Code: 125544 Test Results of Heat Lot# 20134300 HEM 0.8 3.4 .009 .004 .05 .04 .04 .01 .09 .009 .001 AL N B TI NB .000 .001 REM. DEVIATION EXTGREEN = EDUCTION RATIO = 152:1 Test Results of Rolling Lot# 2011526 eclifications: Manufactured per Charter Steel Quality Manual Rev 9,08-01-09 Meets customer opecifications with any applicable Charter Steel esceptions for the following customer documents: Customer Document - ASTM A29-05 Revision = 05 Dated = ditional Comments: Fax Number - 222-7398 PECEIVEE Marker Steel uyahoga Heights, OH, USA Difference Comments: Facel Marker Steel Uyahoga Heights, OH, USA Difference Comments: Customer of Quality Assurance Marker of Quality Assurance Customer of Quality Assurance Marker of Quality Assurance	I hereby c	ertify th	at the mai	terial des	cribed be	erein has	heen m	anufacturi	ed in acc				
h Code 125544 http://doc.org/10.100 http://	below and	d on the	reverse s	ide, and t	hat it sati	sfies the	se requir	ements.					
WM .08 .34 .009 .004 .05 .04 .04 .01 .09 .003 .001 AL N B TI NB .001 .001 .001 HEM. DEVIATION EXTGREEN =	ab Code: 1255 HEM	644 C	MN	Р	S						SN	v	
1030 0.000 0.002 0.01 0.01 HEM. DEVIATION EXTGREEN = EDUCTION RATIO = 152:1 Pecifications: Manufactured per Charter Steel Quality Manual Rav 9,02-01-09 Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = ASTM A29-05 Revision = 05 Dated = dditional Comments: Fax Number - 222-7398 Charter Steel Charte													
HEM. DEVIATION EXTGREEN = EDUCTION RATIO = 152:1 Test Results of Rolling Lot# 2011626 Declifications: Manufactured per Charter Steel Quality Manual Rev 9,08-01-09 Meets customer Specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = ASTM A29-05 Revision = 05 Dated = Revision = 05										100			
Test Results of Rolling Lot# 2011626 EDUCTION RATIO = 152:1 Manufactured per Charter Steel Quality Manual Rev 9,08-01-03 Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = ASTM A29-05 Revision = 05 Dated = Additional Comments: Fax Number - 222-7398 Status of Colling Lot 2011 Teaving Additional Comments: Charter Steel MAR 17 2011 Teaving Heights, OH, USA Charter Steel Martaer Steel Marager of Quality Assurance													
EDUCTION RATIO = 152:1 pecifications: Manufactured per Charter Steel Quality Manual Rev 9,06-01-09 Meets customer ocument = ASTM A29-05 Customer Document = ASTM A29-05 Revision = 05 Dated = dditional Comments: Fax Number - 222-7396 Sditional Comments: Fax Number - 222-7396 MAR 17 2011 TRINTY HWY PRODUCTS, LLC Lima, Ohio MAR 17 2011 TRINTY HWY PRODUCTS, LLC Lima, Ohio Charter Steel Cuyahoga Heights, OH, USA Janice Barnard Manager of Quality Assurance	HEM. DEVIATI		-OKELN .			Test	Results	of Rolling	Lot# 2011	626			
Meets customer opcurrent = ASTM A29-05 Revision = 05 Dated = dditional Comments: Fax Number - 222-7398	EDUCTION RA	ATIO = 1	52:1	î		200100.000	=						
dditional Comments: Fax Number - 222-7398 RECEIVED MAR 17 2011 TRINITY HWY PRODUCTS, LLC Lima, Ohio Plant 55 Charter Steef Cuyahoga Heights, OH, USA Janice Barnard Manager of Quality Assurance	pecifications:	2	Me	eets custo	mer spec	ification	s with an	y applicab	le Charte	Steel exc		r the folio	wing customer documents:
Charter Steel Lyphoga Heights, OH, USA Charter Steel Lyphoga Heights, OH, USA Charter Steel Lyphoga Heights, OH, USA Charter Steel Lyphoga Heights, OH, USA Lime, Ohio Plant 55 Lime, Ohio Pl	ditional Com	ments:					110 00			Duite			
MAR 17 2011 TRAINITY HWY PRODUCTS, LLC Lime, Ohlo Plant 55 Charter Steel Dayahoga Heights, OH, USA ACCREDITED Training Charter Training Charter Trai													
Charter Steel Charter Steel Charte													
MAR 17 2011 TRAINITY HWY PRODUCTS, LLC Lime, Ohlo Plant 55 Charter Steel Dayahoga Heights, OH, USA ACCREDITED Training Charter Training Charter Trai				8									
MAR 17 2011 TRAINITY HWY PRODUCTS, LLC Lime, Ohlo Plant 55 Charter Steel Dayahoga Heights, OH, USA ACCREDITED Training Charter Training Charter Trai													
Charter Steel Charter Steel Charte	1												
Charter Steel Charter Steel Charte													
Charter Steel Charter Steel Charte					2								
Charter Steel Charter Steel Charte		,											
Charter Steel Charter Steel Charte													RECEIVED
Charter Steel Cuyahoga Heights, OH, USA													
Charter Steel Cuyahoga Heights, OH, USA													
Suyahoga Heights, OH, USA Jorour Summer ACCREDITED Janice Barnard Tentre Grantery Manager of Quality Assurance													
Cuyahoga Heights, OH, USA Joroung Guine Q ACCREDITED Janice Barnard Tente Grantsy Manager of Quality Assurance				3									
ACCREDITED Janice Barnard Tendre Grantiny Manager of Quality Assurance	Charter Steel	white O'	1100				1		(ER)				
Tente Lisenny Manager of Quality Assurance	Juyanoga Heig	jnts, OH	, USA				C	M4 1				8	forace Decenark
Manager of Quality Assurance							A	COREDITI	1			V	Janice Barnard
	Dame Lands P		10								1.5		er of Quality Assurance
	cem: Load1,E	ax1,Ma	0II					Page 1 o	11			3	

Figure B-2. 0.625-in. (16-mm) Post Bolts, Test Nos. DSAP-1 and DSAP-2

Pile 1680 Cold Springs Road Saukville. Wisconsin 53080 (26) 268-2400 Division of Carrier Manudaturing Company, Ix: CHARTER STEEL TEST REPORT 1-800-437-8789 Trinity Industries Inc. 425 E. O Commer Ave Status Hending Trinity Industries Inc. 425 E. O Commer Ave Status Hending Image: Status S													
Private Stand Settice Results Setiee Results Set	EXTERNING STRAT	a						ENE					MOND 3.22-1
ADMARTS Statistics (262) 268 - 2400 ADMARTS CHARTER STEEL TEST REPORT 1-800 - 437 - 8789 FAX (262) 268 - 2570 FAX (262) 268 - 2570 Trinity industries inc. 425 E. O Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Eleverse Has Text And Codes Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics Image: Conner Ave Statistics In cont Image: Conner Ave Statistics In Cont Image: Conner Ave Statistics In Conner Ave Statistics Image: Conner Ave Statistics Image: Conn		C	HA	RT	ER			FILE.				i i	658 Cold Springs Road
Charter Manufacturing Company. It: CHARTER STEEL TEST REPORT Reverse Has Test And Codes $1-800-437-8789$ FAX (262) 268-2570 Trivity Industries Inc. Sue Healine Sue Healine Charter Manufacturing Company. It: Trivity Industries Inc. Sue Healine Sue Healine Sue Healine Sue Healine Control State State Healine Sue Healine Control State State Healine Sue Healine Control State State Healine Sue Healine Control State State Healine State Healine State Healine Control State State Healine State Healine Control State State Healine State Healine State Healine Control State State Healine State Healine State Healine Control State State Healine State Healine Control State State Healine Control State State Healine Control State State Healine State Healine State St	CHARTER	Š	TE	EL								Sat	kville, Wisconsin 53080
Automation Control Manufacturing Company. Inc. Reverse Has Text And Codes FAX (262) 268-2570 Trining Industries Inc. 425 E, 0 Control Ave Sure Healing Lina,011-45801 Image: Control Ave Sure Healing Lina,011-45801 Image: Control Ave Sure Healing Lina,011-45801 Thereby certify that the material described herein has been manufactured in accordance with the specifications and standards lised below and on the reverse Side, and that sufficies these negliferents. It below and on the reverse Side, and that sufficies these negliferents. It deals 123544 Text Results of Heat Log 20114310 Med Attn - Stard Text Results of Heat Log 20114310 Med Attn - Stard Text Results of Heat Log 201143410 Med Attn - Stard Text Results of Heat Log 201143410 Med Attn - Stard Text Results of Heat Log 20114354 Med Attn - Stard Text Results of Heat Log 20114354 Med Stard Med Attn - Stard Text Results of Rolling Log 2011625 Control Nation 9 (Stard Stard Star	- Heade		a serve to										(262) 268-2400
Chanter Manufacturing Company, Inc. Reverse Has Text And Codes FAX (262) 288-2570 Trinkly Industries Inc. 426 E: 0 Commer Ave Site Healting 139856M-3 1009476 20134310 139856M-3 1009476 20134310 Image: Site Healting 139856M-3 1009476 20134310 139856M-3 1009476 20134310 Image: Site Healting 20134310 Image: Site Healting 20134310 Image: Site Healting 20134310 Item Attin : Steed Text Readle of Healt Ind 20134310 Item Attin : Steed Text Readle of Healt Ind 20134310 IteM Code: 122544 Text Readle of Healt Ind 20134310 IteM Code: 122544 Text Readle of Healt Ind 20134310 IteM Code: 122544 Text Readle of Healt Ind 20134310 IteM Code: 122544 Text Readle of Rolling Lodd 2011825 EDUCTION RATIO - 152:1 Text Readle of Rolling Lodd 2011825 Manufacturing per Charter Stool Coably Meanal Rev 9 (6-07-09 Means causemer specifications with any epidicable Charter Stool Coable y and Stool coable of Rolling Lodd 2011825 Reductoring per Charter Stool Coable y Meanal Rev 9 (6-07-09 Means causemer a ASTM A29-05 Reveloring of Bold - Means causemer accurrents: Customer Document = ASTM A29-05 Mark 15 20011 Text Namber - 222-7305					0	HART	ER ST	EEL TE	ST REF	ORT			1-800-437-8789
Trinky industries Inc. 425 E. O Conner Ave Such Hendline Lina,OH-45801 Kind Attn : Sue Hendline Image: Conner Ave Such Hendline Lina,OH-45801 Kind Attn : Sue Hendline Thereby cetify the the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse Side and that it Sales these regularements. Thereby cetify the the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse Side and that it Sales these regularements. the Code: 122564 HER Sole the Code: 122564 Test Results of Rolling Lode 2011826 the Code: 122564 Sole the Code: 122564 Test Results of Rolling Lode 2011826 the Code: 12267 Meredications with any splitchic Chort State acceptions for the following customer documents: Contemport Document - ARM Nationa Connertic: the Sole Fax Namber - 222-7308 Thereter Steed States	A Division of Charter Manu	facturing	Company	Inc.		Reve	rse Has	s Text A	and Con	des			
Trinky Industries Inc. 425 E. O. Conner Ave 20134310 Sue Healine 20134310 2011625 Lima,OH-45801 kind Attn : Sue Henline 20134310 Lima,OH-45801 201625 201625 Mind Attn : Sue Henline 201625 11825 Lima,OH-45801 Tool RAK (FRIC 4104 Mind Attn : Sue Henline 20134310 Lima,OH-45801 Tool RAK (FRIC 4104 Mind Attn : Sue Henline Tool RAK (FRIC 4104 Lima,OH = 1521 Tool RAK (FRIC 4104 Hend Att No Si Montoferenet Si N C No Si Montoferenet Si N C No Si N Montoferenet Side A. Adv Adv Adv Side A. Adv Side A. Adv Hend Side A. Adv Adv Side A. Adv Montoferenet Side A. Adv													1111 (101) 100 -1010
Trinky Industries Inc. 425 E. O. Conner Ave 20134310 Sue Healine 20134310 2011625 Lima,OH-45801 kind Attn : Sue Henline 20134310 Lima,OH-45801 201625 201625 Mind Attn : Sue Henline 201625 11825 Lima,OH-45801 Tool RAK (FRIC 4104 Mind Attn : Sue Henline 20134310 Lima,OH-45801 Tool RAK (FRIC 4104 Mind Attn : Sue Henline Tool RAK (FRIC 4104 Lima,OH = 1521 Tool RAK (FRIC 4104 Hend Att No Si Montoferenet Si N C No Si Montoferenet Si N C No Si N Montoferenet Side A. Adv Adv Adv Side A. Adv Side A. Adv Hend Side A. Adv Adv Side A. Adv Montoferenet Side A. Adv						18							
Add E E. O Commer Ave Ste Henline Lima, OH-45801 Kind Atm : Sue Henline Lima, OH-45801 Hendine Lima, OH-45801 Hendine Lima, OH-45801 Hendine Test Results of HeatLoff 20134310 Head to grad the stands of HeatLoff 20134310 Head to grad to g													
425 E. O Conner Ave 20134310 Sub Henline 201625 Lima,OH-45801 Fire CEND 41/64 Kind Atn: Sue Henline Fire Size 41/64 I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that t Saides these neglorements. Fire Advances and the specifications and standards listed below and on the reverse side, and that t Saides these neglotrements. the Code: 125544 Fire No. 9 Si N. CR. MO. CU. SN. V. effect Size Advances Jointon 2001 AL N. B. T. N.B. OC. 404 .05 .08 .001 Jointon 2001 AZA .070 .001 .001 .001 OCT Advances Jointon 2001 AL N.B. T. N.B. Test Results of Rolling Lot? 2011825 EDUCTION RATIO - 152:1 Test Results of Rolling Lot? 2011825 EDUCTION RATIO - 152:1 Test Results of Rolling Lot? 2011825 Exectifications: Manufacturer per Charter Stol Quality Menual Rev 9,66-01-09 Meeting customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = ASTM A29-05 Revision = 05 Martine Steel Martine Steel Martine Steel Jarice Buard										arter Sal	es Orde		
Lima, OH-45801 Kind Attn: Sue Henline Torio RAK FG RPIQ 40/04 HR 47/064 Hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that satisfies these may feenteen the. In Code 125544 HER 1000 RAK FG RPIQ 40/04 HR 47/064 H	*			ner Ave									
Kind Altin : Sub Henline HR I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. HR I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. Intel accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these requirements. I hereby certify that the material described herein has been manufactured by 20134310 Intel accordance with the specifications with a specification with a specifi		Llma,	OH-458					2			State	1010	
I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and on the reverse side, and that it satisfies these negutements. In Code: 125544 HEM C AD 9 S AD 0.09 .04 AD 0.01 .01 AD 0.01 .00 AD 0.00 .00 AD Test Results of Realing Lot? 2011825 Cubtome Document - ASTM A29-05 Revision = 05 Dated - Fax Number - 222-7338 Particle Steed AD Mark 15 2011 Test Results of AD AD AD AD AD AD <t< td=""><td></td><td>Kind</td><td>Attn :Su</td><td>e Henlir</td><td>10</td><td></td><td></td><td></td><td></td><td>Hamacher</td><td>Process</td><td></td><td></td></t<>		Kind	Attn :Su	e Henlir	10					Hamacher	Process		
bickey and on the reverse side, and that it satisfies these regularements. Test Results of Heat Low 2013/4310 High Code: 1255/4 High Code: 125/4	I hareby a	ortify th	at the mat	torial dec	cribed he	aroin has	hoon m	anufactura	ad In acc				
Historia CR MO CU SN V HEM Co NBN P S SI NI CR MO CU SN V AL N B T NB ND	below and	d on the	reverse s	ide, and t	hat It sati	isfies the	se requi	rements.			101 0 10 Sp	Concettor	
MR J.DS J.SS J.OOS J.OO	ab Code: 1255	44	0.05.1	P	5						SM	v	
1024 0.070 0.001 0.01 0.01 HEM. DEVIATION EXT-GREEN = Tost Results of Rolling Lot# 2011825 Tost Results of Rolling Lot# 2011825 Manufactured per Charter Sized Quality Menual Row 9,60-07-09 Meets customer pacifications with any applicable Charter Sized exceptions for the following customer documents: Customer Document - ASTM A29-05 Revision = 95 Dated - Hildional Comments: Fax Number - 222-7398 Precent Comments: Fax Number - 222-7398 Precent Comments: Fax Number - 222-7398 Precent Comments: Fax Number - 222-7398 Precent Comments: Fax Number - 222-7398 Precent Comments: Fax Number - 222-7398 Precent Comments: Fax Number - 222-7398 Precent Comment	GWI												
HEM. DEVIATION EXT-GREEN = Test Results of Rolling Lot# 2011825 EDUCTION RATIO - 152:1 Menufactured per Charter Stel Quality Menual Rev 9,66-07-09 Meets customer specifications with any applicable Charter Stel exceptions for the following customer documents: Customer Document = ASTM A29-05 Revision = 05 Dated = Hillional Comments: Fax Number - 222-7368 PRECEIVEE MAR 15 2011 TRUITY HWY PHODUCTS, LUC Linna, Ohio Plant 55 Faurter Steed Steed - Customer C													8
EDUCITION RATIO - 152:1 Test Results of Rolling Let# 2011825 EDUCITION RATIO - 152:1 ESTIGATION RATIO - 152:1 Test Results of Rolling Let# 2011825 Estimation of the following customer documents: Customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel exceptions for the following customer documents: Customer and any applicable Charter Steel and and any applicable Charter Steel exceptions for the following customer documents: Customer and angle of the following customer documents: Customer and angle of the following customer documents: Customer and angle of the following customer and customer and the following customer and customer a	UEN DEURAT				.001	.001							
EDUCTION RATIO - 152:1 medifications: Menufactured per Charter Steel Quality Menual Rev 9,68-07-09 Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document - 222-7398 Haltional Comments: Fax Number - 222-7398 Charter Steel Upahoga Heights, CH, USA Janice Barnard Janice Barnard Manager of Quality Assurance	HEM. DEVIAT	UN EAL	-GREEN	-		Test	Results	of Rolling	1 ct 2011	1825	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		· · · · · · · · · · · · · · · · · · ·
Meets customer bocuments: Customer Document = ASTM A29-05 Revision = 05 Dated = Iditional Comments: Fax Number - 222-7398 Revision = 05 Dated = Revision = 05 Dated = Revision = 05 Dated = Receiver MAR 15 2011 TRIVITY HWY PHODUCTS, LLC Lima, Ohlo Plant 55 Junice Barnard Manager of Quality Assurance	EDUCTION RA	10 - 15	52:1				=						
Harter Steel Starter Steel Steel Starter Steel Starter Steel Steel Starter Steel Steel Steel Steel St	pecifications:		Ma	eets custo	omer spec	dication	is with an	y applicab	le Charte	r Steel exc	eptions fo	ar the follow	ing customer documents:
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance	dditional Com	ments:	Fa	x Number	- 222-7	398							
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance													
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance													
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance			2										
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance									•				
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance													
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance													
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance													
MAR 15 2011 TRUNTY HWY PHODUCTS, LLC Lime, Ohlo Plant 55 Ugranoga Heights, OH, USA Janice Barnard Manager of Quelly Assurance													
iharter Steel Uyahoga Heights, OH, USA Uyahoga Heights, OH, USA Janice Barnard Manager of Quality Assurance		e: a											RECEIVED
iharter Steel Uyahoga Heights, OH, USA Uyahoga Heights, OH, USA Janice Barnard Manager of Quality Assurance										•			NAD 15 2011
Lima, Ohlo Plant 55													
Luyahoga Heights, CH, USA Jawa Jawa Janice Barnard Janice Barnard Manager of Quality Assurance							×			11			
Luyahoga Heights, CH, USA Jawa Jawa Janice Barnard Janice Barnard Manager of Quality Assurance													
Jarice Barnard Manager of Quality Assurance	Charter Steel	able Cill	115.8				1	TI		<u> </u>		n	RA
Manager of Quality Assurance	- nganoga neg					-	E.	4.				J	stand firmant
Rem: Load1,Fax1,Mallo Page 1 of 1 03/15/2011							A.	Product Laboration	999				
	Rem: Load1,F	ax1,Ma	10					Page 1 o	11		14	managel	03/15/2011
*													
x													

Figure B-3. 0.625-in. (16-mm) Post Bolts, Test Nos. DSAP-1 and DSAP-2

3341

TRINITY HIGHWAY PRODUCTS, LLC. 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419-227-1296

MATERIAL CERTIFICATION

CUSTOMER: STOCK	DATE: MARCH 31, 2011
	INVOICE #:
	LOT #: 110318N2
PART NUMBER: 3340G	QUANTITY: 106,000
DESCRIPTION: 5/8" GR NUT	DATE SHIPPED
SPECIFICATIONS: ASTM A563-A/A153	HEAT # 20131470 & 20131460

MATERIAL CHEMISTY

С	MN	Р	s	SI	NI	CR	мо	CU	SN	v	AL	N	в	TI	NB
.08	.35	.007	.004	.07	.05	.05	.02	.09	.007	.004	.023	.008	.0001	.001	.001
.09	.36	.008	.004	.05	.04	.06	.01	.09	.006	.004	.025	.006	.0002	.001	.001

PLATING AND/OR PROTECTIVE COATING

HOT DIP GALVANIZING (OZ. PER SQ. FT.) 2.52 AVG. ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA*** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A. WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT/ non HIGHWAY, RODUCTS, LLC. RINITY 1 STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 31ST DAY OF MARCH, 2011 5 Donof NOTARY PUBLIC Mann 13.24 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419-227-1296

Figure B-4. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2

Trinity Metals Laboratory

A DIVISION OF TRINITY INDUSTRIES 4001 IRVING BLVD. 75247 - P.O. BOX 568887 DALLAS, TX 75356-8887 Phone: 214.589.7591 FAX: 214.589.7594

Lab No: 11040021F **KEITH HAMBURG** TRINITY HWY PRODUCTS, LLC #55 ROLLFORM LIMA, OH 45801

a timle MSB

Received Date: 04/04/2011 Heat Code:

Other Information: 55-61597

Measured Value

Measured Value

Completion Date: 04/04/2011 Weld Spec: Heat Number: 20131460 & 20131470 Material Type: A 563 A PO or Work Order: 110318N2 Test Spec: F606 ASTM METHODS Material Size: 5/8" GR Nuts

Measured Amt

84

HARDNESS TEST:

Hardness Type: HARDNESS ROCKWELL BW Hardness Location: Surface of Wrench Flat A-Hardness Average: 86.5

Hardness Type: HARDNESS ROCKWELL BW Hardness Location: Surface of Wrench Flat B Hardness Average: 84

Hardness Type: HARDNESS ROCKWELL BW Hardness Location: Surface of Wrench Flat C Hardness Average: 87

Hardness Type: HARDNESS ROCKWELL BW Hardness Location: Surface of Wrench Flat D Hardness Average: 87.5

Measured Value	86
Measured Value	87
Measured Value	Measured Amt

ASSED

PASSED

PASSED

Measured Value	Measured Amt					
Measured Value	87					
Measured Value	87					

PASSED

Measured Value	Measured Amt
Measured Value	87
Measured Value	. 88

CG 4-04-11

We certify the above results to be a true and accurate representation of the sample(s) submitted. Alteration or partial reproduction of this report will void certification. NVLAP Certificate of Accreditation effective through 12-31-11. This report may not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Lab Director, Micha

Page 1 of 2

Figure B-5. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2

Trinity Metals Laboratory

A DIVISION OF TRINITY INDUSTRIES 4001 IRVING BLVD, 75247 - P.O. BOX 568887 DALLAS, TX 75356-8887 Phone: 214.589.7591 FAX: 214.589.7594

Lab No: 11040021F

KEITH HAMBURG TRINITY HWY PRODUCTS, LLC #55 ROLLFORM LIMA, OH 45801

a glining

Heat Code:

Received Date: 04/04/2011

Measured Value

Measured Value

Measured Value

Completion Date: 04/04/2011 Weld Spec: Material Type: A 563 A Material Size: 5/8" GR Nuts

Hardness Type: HARDNESS ROCKWELL BW Hardness Location: Surface of Wrench Flat E Hardness Average: 86.5

OTHER TEST:

Type: NUT PROOF LOAD (to 30K) Samples PASSED proof loads of 16,950 lbs.

Type: HEAD MARKINGS TRN N

Heat Number: 20131460 & 20131470 PO or Work Order: 110318N2 Test Spec: F606 ASTM METHODS Other Information: 55-61597

Measured Amt

87

86

PASSED

Quantity amount: 5

Quantity amount: 1

We certify the above results to be a true and accurate representation of the sample(s) submitted. Alteration or partial reproduction of this report will void certification. NVLAP Certificate of Accreditation effective through 12-31-11. This report may not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Page 2 of 2

Figure B-6. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2

D LIAPTER STEFT	S	HA TEI	EL								Sa	ukville, V		
				5	NUMBER	ED CT		et per	TOO	÷				68-240
A Division of Charter Manufacturing Company, Inc.				C	CHARTER STEEL TEST REPORT Reverse Has Text And Codes						1-800-437-878 FAX (262) 268-257			
			2								2/	TAX.	(202) 2	JJ-207
									t H					54M-4 10944B
		/ Indust					e.						700	31460
	Sue H	enline OH-458										-	20	10864
		Attn :Su		ıe					1		1010	RAKFO		HR
														1-7/32
below an					isfies the	se requir	ements.			wini ine sj	pecification	IS AND STAL	ndaros r	sæd
Lab Code: 125	544 C	MN	Р	5	Tes Si	t Results	of Heat L	1201314 MD	460 CU	SN	v			
SWA.	,09	.36	.009	.004	.05	.04	,06	.01	.09	.006	.004		х.	
				TI	NB		24							
-	AL .025	N .0050	B .0002	.001	.601									
Specifications:	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F Manual F y applicab Rev	tev 9,08-0	11-09 Steel ex	ceptions f	or the follow	wing custo	mer doc	Uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.D01 ad per Ch	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	or the follow	wing custo	mer doc	uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	or the folio	wing custo	mer dac	uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	or the folio	wing custo	mer dac	oments:
CHEM, DEVIAT REDUCTION R. Specifications: Additional Com	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f d =	or the follow	wing custo	mer dac	uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	ar the folio	wing custo	mer dac	uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	ar the folio	wing custo	mer dac	uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 wuufactur istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f d =	or the folio	wing custo	mar doc	uments:
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f d =	or the follow			
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	ar the folio	ning custo		
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f	or the folio	RE		IVE
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f		RE (MA	CEI R 11 WY PRO	1VE 2011
REDUCTION R	.025 ION EXT. ATIO = 42	.0056 -GREEN - :1 Ma Ma Cu	.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f d =		RE	CEI R 11 WY PRO	1 V E 2011
REDUCTION R Specifications: Additional Com	.025 ION EXT. ATIO = 42 ments:		.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f		RE (MA	CEI R 11 WY PRO	1VE 2011
REDUCTION R	.025 ION EXT. ATIO = 42 ments:		.0002 while a custor istomer D	.001 ed per Ch imer spec	.601 Test narter Ste cification a ASTM	el Quality s with any	Manual F	lev 9,08-0	11-09 Steel ex	ceptions f		RE (MA	CEI R 11 WY PRO	1VE 2011

Figure B-7. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2

Distances								*					
C	HAI	RTI	ER			FILE					1658 Cold	Springs	Road
CHARTER	TFF	-								Sa	ukville, Wi	sconsin 5	3080
STEEL	il lines the	nat Hicent			N.						. (2	262) 268-	2400
			0	HADT	ED ST	EEL TE	ST DEE	TRO				300-437-	
A Division of Charler Manufacturing	g Company,	Inc.				s Text /							
											FAX (2	262) 268-	2570
			đ.								÷		
									olistee	諷		139854M	-4
Triali	y Industr	ias lac.						Gusion	自己的			10094 700171	
425 E	. O Conn								les onte a Hent			201314	
	lenline OH-4580	11					121	5	ADD St. S.	語	DAKEC	20108	
	Attn :Sue		e.					12	এ ব ি রা। নির্মারজ্য	1010	RAKFG		HR
									h)shise	1		1-7	
I hereby certify the below and on the	at the mate	erial dese	cribed he	rein has	been m	ianufactur	red in acco	ordance	with the sp	pecification	ns and stand	dards listed	1
	1040126 20		idt it Salls			s of Heat L	.ot# 20131	170					
Lab Code: 125544 CHEM C	MN	Р	s	SI	NI	CR	MO	CU	SN	v		14	
5Wit .08	.35	.007	.004	.07	.05	.05	.02	.09	,007	.004			к.
AL	M ,0086	B ,0001	TI .CO1	NB .001									
.023													
.023 CHEM, DEVIATION EXT REDUCTION RATIO = 4	GREEN =	nufactum	ed per Ch	arter Ste	el Qualit	of Rolling y Manual I	Rev 9,08-0	1-09		ar the falls			
.023 CHEM, DEVIATION EXT REDUCTION RATIO = 4	-GREEN = 2:1 Ma	nufactum ets custo	ed per Ch mer spec ocument	arter Ste	el Quelit	y Manual I Ty applicat	Rev 9,08-0	1-09 Steel oo	ceptions f	or the follo	wing custon	ter docume	nts:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	mer spec	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fi d =	or the follo	wing custon	ver docume	nits:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fo d =	or the follo	wing custon	ter docume	nits:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fo d =	or the follo	wing custon	ver docume	nits:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fi d =	or the follo	wing custon	tocume	नारे ड :
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fo	or the follo	wing custon	ver docume	nits;
	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions f d =	or the folio	wing custon	ter docume	nis:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fi d =	or the follo	wing custom	ver docume	nits:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fi d =	or the folio	wing custon	ter docums	nts:
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	ceptions fo	or the folio	wing custon	ter docume	nits;
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	coptions fo	or the folio	X K	×	÷
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	coptions fo d =	or the folio	X K	er docume	÷
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	coptions fo d =	or the folio	RE	CEI	VE
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	d =	or the folio	RE	CEI AR 15	VE 2011
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	d =	or the folio	RE	CEI AR 15 HWY PROT	VE 2011
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications: Additional Comments:	GREEN = 2:1 Ma Cu	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	d =	or the folio	RE	CEI AR 15 HWY PROT	VE 2011
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications: Additional Comments:	GREEN = 2:1 Ma Mr Cu Fas	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	d =	or the folio	RE	CEI AR 15 HWY PROT	VE 2011
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications: Additional Comments:	GREEN = 2:1 Ma Mr Cu Fas	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	d =	or the follo	RE	CEI AR 15 HWY PROT	VE 2011
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications: Additional Comments:	GREEN = 2:1 Ma Mr Cu Fas	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,08-0 ble Charte	1-09 Steel oo	d =		РЕ М Тазиту Цтаз Лание Запісе Ваг	AR 15 HWY PROL Ohlo	VEI 2011 Plant 55
.023 CHEM. DEVIATION EXT REDUCTION RATIO = 4 Specifications: Additional Comments:	GREEN = 2:1 Max Cu: Fas	nufactum ets custo stomer D	aner spec ocument	arter Ste incation • ASTM	el Quelit	y Manual I Ty applicat	Rev 9,09-C ble Charter vision = 0	1-09 Steel oo	d =		RE M TREMITY Lime	AR 15 HWY PROT Obio	VEI 2011 Plant 55

Figure B-8. 0.625-in. (16-mm) Post Bolt Nuts, Test Nos. DSAP-1 and DSAP-2

Customer: MDWEST MACEL& SUPPLY CO. Seles Order: 1093497 Print Date: 6/30/08 P. O. BOX 81097 Customer PO: 2030 Project: RESALE BOL # 43073 Shipped To: NE Document # 1 Uses State: KS LINCOLN, NE 68501-1097 Trinity Highway Products, LLC Certificate Of Compliance For Trinity Industries, Inc. ** SLOTTED RAIL TERMINAL ** NCHRP Report 350 Compliant Places Description 64 5/8*X10° GR BOLT A307 12 1* ROUND WASHER F844 64 16 78/7X10° GR BOLT A307 12 1* ROUND WASHER F844 64 17 HEX NUT A563 192 WD 6V FOST 6XE CRT 192 WD 6V FOST 6XE CRT 192 WD 6V K CRE ASSY 128 SLOT GUARD 98 12 3/6 X 3 X 4 PL WASHER 64 WD 39 POST 5.5X7.5 BAND 12 3/6 X 3 X 4 PL WASHER 64 COVER ASSY 128 SLOT GUARD 98 12 SLOT GUARD 98 13 SLOT GUARD 98 14 SLOT GUARD 98 15 COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE ST	
LINCOLN, NE 68501-1997 Trinity Highway Products. LLC Certificate Of Compliance For Trinity Industries, Inc. ** SLOTTED RAIL TERMINAL ** NCHRP Report 350 Compliant	
L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLES WITH THE BUY AMERICA ACT L GUARDRAL MEETS AASHTO MARQUAL STRUCTURAL STEEL MEETS ASIM A36 L OTHER REJ WAS MELTED AND MANUFACTURED IN USA AND COMPLES WITH THE BUY AMERICA ACT L GUARDRAL MEETS AASHTO MATRAL CONFORMS WITH ASTMEL 123	
NCHRP Report 350 Compliant eces Description 4 56"X10" GR BOLT A307 52 5/8"X18" GR BOLT A307 52 5/8"X18" GR BOLT A307 52 1" ROUND WASHER F844 4 1" HEX NUT A563 52 WD 60 POST 6X8 CRT 52 WD 80 POST 5X7.5 BAND 54 NALL 164 SRT 54 WD 39 POST 5.5X7.5 BAND 54 STRUT & YOKE ASEY 58 SLOT GUARD 98 52 3/8 X 3 X 4 PL WASHER 5000 delivery, all materials subject to Trinisy Highway Products , LLC Storage Stain Policy No. LG-002.	
Description 4 5/8*X10" GR BOLT A307 52 5/8*X16" GR BOLT A307 52 1" ROUND WASHER F844 4 1" HEX NUT A563 52 WD 60 POST 6X8 CRT 52 WD 00 POST 6X8 CRT 52 WD 00 POST 6X8 CRT 52 WD 00 POST 6X7.5 BAND 54 NAIL 166 SRT 4 WD 39 POST 5.5X7.5 BAND 52 STRUT & YOKE ASSY 28 SLOT GUARD %8 21 3/8 X 3 X 4 PL WASHER 22 WD 84 SMELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT 23 GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT 24 GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT	
 5/8"X10" GR BOLT A307 5/8"X10" GR BOLT A307 1" ROUND WASHER F844 1" HEX NUT A563 WD 6'0 POST 6X8 CRT WD 6'0 POST 6X8 CRT WD 3'9 POST 5.X7.5 BAND STRUT & YOKE ASSY SLOT GUARD '98 SLOT GUARD '98 3/8 X 3 X 4 PL WASHER 	
4 5/8"X10" GR BOLT A307 92 5/8"X18" GR BOLT A307 92 1" ROUND WASHER F844 4 1" HEX NUT A563 92 WD 6'0 POST 6X8 CRT 92 WD 6'0 POST 6X8 CRT 92 WD 6'0 POST 5.X8 CRT 92 WD 14 6 SRT 4 WD 3'9 POST 5.X7.5 BAND 93 STRUT & YOKE ASSY 94 SLOT GUARD '98 95 SLOT GUARD '98 95 SLOT GUARD '98 95 SLOT GUARD '98 96 SLOT GUARD '98 97 STRUT & YOKE ASSY 98 SLOT GUARD '98 98 SLOT GUARD '98 99 STRUT & YOKE ASSY 98 SLOT GUARD '98 99 STRUT & YOKE ASSY 99 STRUT & YOKE ASSY 90 STRUT & YOKE ASSY 91 STRUT & YOKE ASSY 92 STRUT & YOKE ASSY 93 SLOT GUARD '98 94 SLOT GUARD '98 94 SLOT GUARD '98 95 SLOT GUARD '98 96 SLOT GUARD '98 97 STRUT & YOKE ASSY 98 SLOT GUARD '98 98 SLOT GUARD '98 SLOT GUARD '98 98 SLOT GUARD '98 SLOT GUARD '98 SLOT GUARD '98 SLOT	
2 5/8 X18° GR BOLT A307 1 " ROUND WASHER F844 1 " HEX NUT A563 2 WD 60 POST 6X8 CRT 2 WD BLK 6X8X14 DR MAL 166 SRT WD 39 POST 5.5K7.5 BAND STRUT & YOKE ASSY 8 SLOT GUARD '98 3 SLOT GU	And the state of the
1" HEX NUT A563 2 WD 6'0 POST 5X8 CRT 2 WD BLK 6X8X14 DR NALL 164 SRT WD 3'9 POST 5.5X7.5 BAND STRUT & YOKE ASSY 8 SLOT GUARD '98 3/8 X 3 X 4 PL WASHER O 9 1 on delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
2 WD 6'0 POST 6X8 CRT 2 WD BLK 6X8X14 DR NALL 164 SRT WD 3'9 POST 5.5X7.5 BAND STRUT & YOKE ASSY 8 SLOT GUARD '98 3/8 X 3 X 4 PL WASHER C Yound Structured State Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
 WD BLK 6X8X14 DR NAIL 166 SRT WD 39 POST 5.5X7.5 BAND STRUT & YOKE ASSY SLOT GUARD '98 3/8 X 3 X 4 PL WASHER Materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123 	R
WD 39 POST 5.5X7.5 BAND STRUT & YOKE ASSY 8 SLOT GUARD '98 3/8 X 3 X 4 PL WASHER C 9 m delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
8 SLOT GUARD '98 3/8 X 3 X 4 PL WASHER C 91 on delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
3/8 X 3 X 4 PL WASHER Ground Structured in the state of the structure of	
nn delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	it
on delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002. L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	453-8
L STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	123 0
L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
L GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123	
L OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123. LTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153. UNLESS OTHERWISE ST	
	TED.
TS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STA	ED.
DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA. ASTM 449 AASHTO M30, TYPE II BREAKING LENGTH - 49100 LB	
e of Ohio, County of Allen. Swom and Subscribed before me this 30th day of June, 2008	121
Trinity Highway Products, LLC () ALL LUN Certified By:	8-

Figure B-9. Groundline Strut and Yoke, Test Nos.DSAP-1 and DSAP-2

308

Item No.	OTY	Description	Material Specifications	Reference
a1	25	W6x8.5 6' [W152x12.6 1,829 mm] Long Steel Post	ASTM A992 Min 50 ksi [345 MPa] (W6x9 ASTM A36 Min 36 ksi [248 MPa])	NAVY BLUE TAGS 12-0348
a2	25	6x12x14 1/4" [152x305x362 mm] blockout	SYP Grade No. 1 or better	NAVY BLUE TAGS 12-0356, 11-0025
a3	1	6'-3" [1,905 mm] W-Beam MGS Section	12 gauge [2.7 mm] AASHTO M180	"WB1" w/GREEN 12-0034
a4	12	12'-6" [3,810 mm] W-Beam MGS Section	12 gauge [2.7 mm] AASHTO M180	HEAT #4614 12-6_4614
a5	2	12'-6" [3,810 mm] W-Beam MGS End Section	12 gauge [2.7 mm] AASHTO M180	HEAT #4614 12-6_4614
a6	1	W-Beam Rounded End Section	12 gauge [2.7 mm] AASHTO M180	BLUE PAINT 12-0358
b1	25	5/8" Dia. x 14" [M16x356 mm] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: RED 12-0368 / NAVY BLUE 12-0348 NUT: 12-0204
b2	25	16D Double Head Nail	-	16D-1
b3	4	5/8" Dia. x 10" [M16x254 mm] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: NAVY BLUE 12-0098 NUT: 12-0204
b4	116	5/8" Dia. x 1 1/4" [M16x32 mm] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT AND NUT: 12-0204
b5	44	5/8" [16 mm] Dia. Flat Washer	ASTM A153	PLAIN 090453 / BLACK 12-0019, BLUE 12-0098(*)
c1	4	BCT Timber Post - MGS Height	SYP Grade No. 1 or better	BLUE TAGS 11-0025
c2	4	72" [1,829 mm] Long Foundation Tube	ASTM A53 Grade B	REQ: 090453-7 AND 090458
c3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	090453-8
c4	2	8x8x5/8" [127x203x16 mm] Anchor Cable Bearing Plate	ASTM A36 Steel	BLACK PAINT, STAMPED WITH "A3", HEATS V911470 AND 18486
c5	2	BCT Anchor Cable Assembly	3/4-in. [19-mm] 6x19 IWRC IPS Galvanized Wire Rope	RED PAINT, REEL # 428-277631-1-2-3
сб	2	Anchor Bracket Assembly	ASTM A36 Steel	BLACK PAINT, STAMPED WITH "A2", HEATS V911470 AND 18486
c7	2	2 3/8" [60 mm] O.D. x 6" [152 mm] Long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	REQUISITION: 09-0458 HEAT # 280638
c8	4	5/8" Dia. x 10" [M16x254 mm] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: NAVY BLUE 12-0098 NUT: 12-0203
c9	16	5/8" Dia. x 1 1/2" [M16x38 mm] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: 11-0006-3 NUT: 12-0203
c10	4	7/8" Dia. x 7 1/2" [M16x191 mm] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	12-0037
c11	8	7/8" [22 mm] Dia. Flat Washer not provided	ASTM A153	12-0037

Table B-1. Bill of Materials for Test No. WIDA-1

(*) Mill Certification not provided

Item No.	OTY	Description	Material Specifications	Reference
a1	25	W6x8.5 6' [W152x12.6 1,829 mm] Long Steel Post	ASTM A992 Min 50 ksi [345 MPa] (W6x9 ASTM A36 Min 36 ksi [248 MPa])	NAVY BLUE TAGS 12-0348
a2	25	6x12x14 1/4" [152x305x362 mm] blockout	SYP Grade No. 1 or better	NAVY BLUE TAGS 12-0356, 11-0025
a3	1	6'-3" [1,905 mm] W-Beam MGS Section	12 gauge [2.7 mm] AASHTO M180	"WB1" w/GREEN 12-0034
a4	12	12'-6" [3,810 mm] W-Beam MGS Section	12 gauge [2.7 mm] AASHTO M180	HEAT #4614 12-6_4614
a5	2	12'-6" [3,810 mm] W-Beam MGS End Section	12 gauge [2.7 mm] AASHTO M180	HEAT #4614 12-6_4614
a6	1	W-Beam Rounded End Section	12 gauge [2.7 mm] AASHTO M180	BLUE PAINT 12-0358
b1	25	5/8" Dia. x 14" [M16x356 mm] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: RED 12-0368 / NAVY BLUE 12-0348 NUT: 12-0204
b2	25	16D Double Head Nail	-	16D-1
b3	4	5/8" Dia. x 10" [M16x254 mm] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: NAVY BLUE 12-0098 NUT: 12-0204
b4	116	5/8" Dia. x 1 1/4" [M16x32 mm] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT AND NUT: 12-0204
b5	44	5/8" [16 mm] Dia. Flat Washer	ASTM A153	PLAIN 090453 / BLACK 12-0019, BLUE 12-0098 ^(*)
c1	4	BCT Timber Post - MGS Height	SYP Grade No. 1 or better	BLUE TAGS 11-0025
c2	4	72" [1,829 mm] Long Foundation Tube	ASTM A53 Grade B	REQ: 090453-7 AND 090458
c3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	090453-8
c4	2	8x8x5/8" [127x203x16 mm] Anchor Cable Bearing Plate	ASTM A36 Steel	BLACK PAINT, STAMPED WITH "A3", HEATS V911470 AND 18486
c5	2	BCT Anchor Cable Assembly	3/4-in. [19-mm] 6x19 IWRC IPS Galvanized Wire Rope	RED PAINT, REEL # 428-277631-1-2-3
c6	2	Anchor Bracket Assembly	ASTM A36 Steel	BLACK PAINT, STAMPED WITH "A2", HEATS V911470 AND 18486
c7	2	2 3/8" [60 mm] O.D. x 6" [152 mm] Long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	REQUISITION: 09-0458 HEAT # 280638
c8	4	5/8" Dia. x 10" [M16x254 mm] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: NAVY BLUE 12-0098 NUT: 12-0203
с9	16	5/8" Dia. x 1 1/2" [M16x38 mm] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	BOLT: 11-0006-3 NUT: 12-0203
c10	4	7/8" Dia. x 7 1/2" [M16x191 mm] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM 563 DH	12-0037
c11	8	7/8" [22 mm] Dia. Flat Washer not provided	ASTM A153	12-0037

Table B-2. Bill of Materials for Test No. WIDA-2

(*) Mill Certification not provided

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. P.O. Box 80508 Canton, Ohio 44708

Customer:	MIDWEST M 2200 Y STRE LINCOLN,NE	EET	& SUPPLY	(CO.			Test Report B.O.L. # Customer P.O Shipped to: Project: GHP Order No	MIDWEST MAC	HINERY & SUF		HIPPED: 02	2/29/12
HT # code	C.	Mn.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
L81665	0.1	0.8	0.01	0.025	0.19	63000	53300	20	200		2	6IN WF AT 8.5 X 6FT 0IN GR POST
L83827	0.09	0.94	0.013	0.031	0.23	70400	56300	24	200		2	6IN WF AT 8.5 X 6FT 0IN GR POST
L83786	0.09	0.85	0.011	0.038	0.23	66500	52300	20	200		2	6IN WF AT 8.5 X 6FT 0IN GR POST
L83766	0.09	0.88	0.011	0.036	0.19	67200	53300	21	200		2	6IN WF AT 8.5 X 6FT 0IN GR POST
L81670	0.09	0.92	0.014	0.028	0.2	62000	47400	21	50		2	6IN WF AT 8.5 X 6FT 0IN GR POST

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

All material fabricated in accordance with Nebreska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

By:_ 111 Andrew Artar

Vice President of Sales & Marketing Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed batterner, a Notary Public, by Andrew Artar this 1 st pay of Marso 2012 James P. Dehnke Notary Public, State of Ohio My Commission Expires 10-19-2014 Notary Public, State

Figure B-10. W6x8.5 6' (W152x12.6 1,829 mm) Long Steel Post,, Part a1, Test Nos. WIDA-1 and WIDA-2

		-			
	· . :	Certifie.	Analysis	* *	ay Products
Trinity Highway Products, LLC	3	· · ·		a	
550 East Robb Ave.		Order Num	ber: 1150595		
				1 A A A A A A A A A A A A A A A A A A A	
Lima, OH 45801	-	Customer	PO: 2483		As of: 6/27/11
Customer: MIDWEST MACH.& SUPPLY CO.		BOL Num	ber: 63165	W BEAM - 6'	- **
P. O. BOX 703		Docume	nt #: 1	12-0034	s
		Shipped	To: NE	12-0034	
MILFORD, NE 68405	* p = 2 - 2		ate: KS		
and the second		030 51	ate. Kb		
Project: RESALE			<u></u>	· · · · · · · · · · · · · · · · · · ·	······································
Qty Part# Description Spec	CL TY	Heat Code/ Heat #	Yield TS	Elg C Mn P S	Si Cu Cb Cr Vn ACW
40 6G 12/6'3/S M-180	20 B	144794	59,920 76,860	28.7 0.190 0.740 0.011 0.003 0.0	
M-180	· A · 2	144790	62,490 79,560	26.7 0.190 0.730 0.014 0.000 0.	030 0.130 0.000 0.050 0.001 4
M-180	A 2	144791	60,790 77,800	26.7 0.200 0.730 0.013 0.004 0.	010 0.130 0.000 0.060 0.002 4
M-180	A 2	144793	63,330 78,900	28.4 0.190 0.730 0.012 0.002 0	
6G M-180		95601	60,950 78,720	28.1 0.180 0.740 0.013 0.001 0.0	
M-180	A 2	144789	61,990 78,810	29.3 0.190 0.730 0.013 0.002 0	
M-180	A 2	144791	60,790 77,800	26.7 0.200 0.730 0.013 0.004 0	
M-180 M-180	A 2 A 2	144794 144795	59,920 76,860 59,070 76,940	28.7 0.190 0.740 0.011 0.003 0 28.7 0.200 0.730 0.014 0.001 0	
M-180 M-180	A 2	144800	60,890 78,640	27.0 0.190 0.730 0.015 0.002 0	and and a second s
M-180	A 2	145135	61,550 79,710	25.5 0.190 0.730 0.012 0.002 0	
M-180	A 2	145136	61,410 79,430	25.6 0.190 0.730 0.011 0.003 0	
M-180	A 2	145137	59,910 77,480	29.4 0.190 0.720 0.011 0.003 0	.010 0.120 0.000 0.050 0.001 4
25 211G T12/12'6/3'1.5/S M-180	A 2	144302	59,460 78,950	25.8 0.190 0.720 0.010 0.004 0.	020 0.140 0.00 0.060 0.001 4
M-180	A. 2	143214	64,690 82,970	24.9 0.200 0.740 0.012 0.003 0	
M-180	A 2	144300	53,230 72,710	32.2 0.190 0.730 0.012 0.004 0	
M-180	. A 2	144301	61,670 78,930	25.5 0.180 0.720 0.013 0.003 0	
M-180	A 2	144303 144304	59,490 78,080	27.1 0.190 0.740 0.013 0.003 0	and a second second second second second second second
M-180 M-180	A 2. A 2	144305	57,100 75,130 57,590 76,090	27.1 0.190 0.730 0.012 0.004 (27.6 0.190 0.740 0.013 0.003 (
20 260G T12/25/6'3/S M-180		144301	61,670 78,930	25.5 0.180 0.720 0.013 0.003 0	
M-180	A 2	144300	53,230 72,710	32.2 0.190 0.730 0.012 0.004 (A CONTRACTOR CONTRACTOR CONTRACTOR - PARAMANA - PA
M-180	A 2	144303	59,490 78,080	27.1 0.190 0.740 0.013 0.003 (
M-180	A. 2	.144304	57,100 75,130	27.1 0.190 0.730 0.012 0.004 0	0.020 0.140 0.000 0.060 0.001 4
M-180	A 2	144305	57,590 76,090	27.6 0.190 0.740 0.013 0.003	0.010 0.140 0.000 0.050 0.002 4
M-180	A 2	144306	57,890 77,170	29.9 0.190 0.730 0.011 0.004	0.020 0.100 0.000 0.050 0.001 4

Figure B-11. 6 ft-3 in. (1,905 mm) W-Beam MGS Section, Part a3, Test Nos. WIDA-1 and WIDA-2

2009 **GREGORY HIGHWAY PRODUCTS, INC.** 4100 13th St. P.O. Box 80508 1 Canton, Ohio 44708 AV Test Report B.O.L. # DATE SHIPPED: 05/07/09 * UNIVERSITY OF NEBRASKA-LINCOLN 39963 Customer: 401 CANFIELD ADMIN BLDG Customer P.O. 4500204081/ 04/06/2009 Shipped to: UNIVERSITY OF NEBRASKA-LINCOLN P O BOX 880439 TEST PANELS LINCOLN, NE. 68588-0439 Project : GHP Order No 105271 Elong. Class Description HT # code C. Mn. P. S. Si. Tensile Yield Quantity Type 12GA 12FT6IN/3FT1 1/2IN WB T2 0.21 0.84 0.011 0.003 0.03 89432 67993 19.8 160 Α 2 4614 Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-525 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation STATE OF OHIO: COUNTY OF STARK on resistant Guardrail and terminal sections meet ASTM A606, Type 4. All controlled oxidized/g Sworn to and subscribed before me, a Notary Public, by unch Artar this 8th day of May, 2009. By: Andrew Artar Vice President of Sales & Marketing Gregory Highway Products, Inc. ublic, State of Ohio CYNTHIA K. CRAWFORD Notary Public, State of Ohio My Commission Expires 09-16-2012

Figure B-12. 12'-6" (3,810 mm) W-Beam MGS Section, Part a4, Test Nos. WIDA-1 and WIDA-2

2009 **GREGORY HIGHWAY PRODUCTS, INC.** 4100 13th St. P.O. Box 80508 1 Canton, Ohio 44708 AV Test Report B.O.L. # DATE SHIPPED: 05/07/09 * UNIVERSITY OF NEBRASKA-LINCOLN 39963 Customer: 401 CANFIELD ADMIN BLDG Customer P.O. 4500204081/ 04/06/2009 Shipped to: UNIVERSITY OF NEBRASKA-LINCOLN P O BOX 880439 TEST PANELS LINCOLN, NE. 68588-0439 Project : GHP Order No 105271 Elong. Class Description HT # code C. Mn. P. S. Si. Tensile Yield Quantity Type 12GA 12FT6IN/3FT1 1/2IN WB T2 0.21 0.84 0.011 0.003 0.03 89432 67993 19.8 160 Α 2 4614 Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-525 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation STATE OF OHIO: COUNTY OF STARK on resistant Guardrail and terminal sections meet ASTM A606, Type 4. All controlled oxidized/g Sworn to and subscribed before me, a Notary Public, by unch Artar this 8th day of May, 2009. By: Andrew Artar Vice President of Sales & Marketing Gregory Highway Products, Inc. ublic, State of Ohio CYNTHIA K. CRAWFORD Notary Public, State of Ohio My Commission Expires 09-16-2012

Figure B-13. 12'-6" (3,810 mm) W-Beam MGS End Section, Part a5, Test Nos. WIDA-1 and WIDA-2

Certified Analysis

As of: 3/9/12

 Trinity Highway Products , LLC

 550 East Rob Ave.
 Order Number:
 1168756

 Lima, OH 45801
 Customer PO:
 2581

 Customer:
 MIDWEST MACH.& SUPPLY CO.
 BOL Number:
 68287

 P. O. BOX 703
 Document #:
 1

 Shipped To:
 NE

 MILFORD, NE 68405
 Use State:
 KS

 Project:
 RESALE
 KS

	Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat #	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn .	ACW	
8	30	260G	T12/25/6'3/S	M-180	А	2	151877	58,680	77,470	26.0	0.190	0.720	0.013	0.004	0.010	0.120	0.00	0.050	0.002	4	
				M-180	А	2	152774	59,060	77,140	29.2	0.190	0.720	0.011	1 0.004	0.010	0.011	0.000	0.050	0.001	4	
				M-180	А	2	152775	60,650	79,300	25.1	0.190	0.730	0.014	4 0.004	0.020	0.120	0.000	0.060	0.001	4	
				M-180	A	2	152777	59,110	76,570	30.4	0.190	0.730	0.012	2 0.004	0.020	0.120	0.000	0.050	0.001	4	
				M-180	А	2	152779	58,850	76,750	25.7	0.180	0.710	0.010	0.004	0.010	0.120	0.000	0.050	0.001	4	
				M-180	A	2	152780	61,020	78,750	26.6	0.190	0.730	0.009	0.001	0.030	0.110	0.000	0.040	0.001	4	
	50	901G	12/FLARE/8 HOLE	M-180	A	2	149776	54,950	71,300	29.5	0.190	0.730	0.013	0.004	0.020	0.110	0.00	0.050	0.001	4	
	10	907G	12/BUFFER/ROLLED	M-180	А	2	515699	67,600	76,100	28.0	0.063	0.780	0.014	0.008	0.009	0.031	0.04	0.029	0.000	4	

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT" ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH – 49100 LB

Figure B-14. W-Beam Rounded End Section, Part a6, Test Nos. WIDA-1 and WIDA-2

Certified Analysis

Order Number: 1168756

Customer PO: 2581

Document #: 1 Shipped To: NE

BOL Number: 68287

Use State: KS

1

As of: 3/9/12

2 of 2

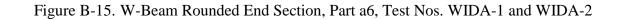
Trinity Highway Products , LLC Certified By:

MILFORD, NE 68405

P. O. BOX 703

Customer: MIDWEST MACH.& SUPPLY CO.

Trinity Highway Products, LLC


Project: RESALE

550 East Robb Ave.

Lima, OH 45801

State of Ohio, Cound of Allen, Sworn and subscribed before me this 9th day of March, 2012 Notary Public: Commission Expires 2010

						3540
		ROCKFORD 126 M	N CERTIFICATE BOLT & STEEL CO. ILL STREET ORD, IL 61101			
			FAX# 815-968-3111			
CUSTOMER NA	ME:	TRINITY INDUSTRIES				
CUSTOMER P.C).:	143227	•			
INVOICE #:	946256		DATE SHIPPED:	6/20/11		
LOT #:	22191					
SPECIFICATION	l:	ASTM A307, GRADE A M	LD CARBON STEEL B	OLTS		
		TENSILE RESULTS:	SPECIFICATION 60,000 min.	ACTUAL 81,460 70,642 81,389 70,341		
		HARDNESS RESULTS:	SPECIFICATION 100 MAX	80.63 83.90 86.33 77.90	84.00 85.00	
COATING: AS	TM SPEC	IFICATION F2329 HOT DI	P GALVANIZE			
STEEL SUPPLIE	ER:	NUCOR, CHARTER, NU	JCOR			
HEAT NO. NF	1101335	, 10132120, NF111013	36			
QUANTITY AND	DESCRI	PTION:			÷	
	5 5/8" X 1 3540G	4" GUARD RAIL BOLT				
AND MANUFACTURED I BY THE MATERIALS SU	N THE U.S.A. PPLIER, AND	OLTS HAVE BEEN MANUFACTURE . WE FURTHER CERTIFY THAT TH THAT OUR PROCEDURES FOR TH OR EXCEED ALL APPLICABLE TES	IS DATA IS A TRUE REPRESENT IE CONTROL OF PRODUCT QU	NTATION OF INFORMATIC	N PROVIDED	
STATE OF ILLINOIS COUNTY OF WINNEBAC SIGNED BEFORE ME OF	NTHIS	UL 20 11	Sinda Mil	tomas bi TORY DATE	21/11	
Arani K	hamu	the				
OFFICIAL I DIANA RASM NOTARY PUBLIC - ST. MY COMMISSION ED	USSEN ATE OF ILLING (PIRES: 10/15/	X6			a.	

Figure B-16. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

*			
		20 	
Mill Certification Details			
NUCOR			
NUCOR CORPORATION			
NUCOR STEEL NEBRASKA			
Mill Certification Details - 4/11/2011 10:10 AM			
Customer: KRUEGER & CO - ELMHURST			
Bill of Lading #: 197576 Chief Metallurgist: Jim Hill Date: 4/4/2011			
Meat #: NF1110133502 Tag #: NF1111050255 Product: RDC Size:.594-19/32 Wire Rod			
Grade: 1010 Division : Norfolk, NE			
Comments : Billet Heat #1 NF11101335 Chemical Properties -Wt.%			
2011年1月1日1月1日1月1日日日日日日日日日日日日日日日日日日日日日日日日日			
0.13 0.57 0.17 0.020 0.014 0.23 0.13 0.09 0.03 0.001 0.000 0.000 0.000 0.000 0.0002			
000 0 001			
Physical Properties			
Se interpret of			
Tensile: 64127 Vield: 46541			
Elongation (in 8 inches):			
Elongation (in 2 inches):			
The testing was conducted in accordance with the requirements of this specification. All malting and			
The testing was conducted in accordance with the requirements of this specification. All melting and manufacturing processes were performed in the United States of America.		a X	
anufacturing processes were performed in the United States of America.		8	
Jim Hill			
Jim Hill			
Jim Hill			
anufacturing processes were performed in the United States of America.			
anufacturing processes were performed in the United States of America.			
Jim Hill			
anufacturing processes were performed in the United States of America.			
Jim Hill			
anufacturing processes were performed in the United States of America.			
anufacturing processes were performed in the United States of America.			
Jim Hill -			
anufacturing processes were performed in the United States of America. Jim Hill Division Metallungist			
Jim Hill -	, ,		

Figure B-17. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

Apr 11 11 12:49p KruegerCo	630-833-2625 p.2	
Krueger Steel & Wire Calar Procession of the scanes SOLD TO Rockford Bolt & Steel 126 Mill St. Rockford, IL 61101 United States Atta: Dianz Pasmussen	PRODUCT CERTIFICATION WORK ORDER LOT NUMBER 027544 NF11101335 SALES ORDER / RLS 028704 / 1	
USTOMER P.O. CUSTOMER PART 232693 100094	QUANTITY COILS LADING NO SHIPMENT DATE 8,160 lb 2 00020419 ?	
SPECIFICATION 593R1010IQCL 19/32" Diameter 1010 Industrial Quality, Clean	and Lime	
CERTIFICATION REQUIREMENTS		
	Chemical	
C Mm P S .13 .57 .014 .020 Al .001	Si Pb Cr Cu Ni Mo Nitr .17 .00 .13 .23 .09 .03 .0300	
	Physical	
Xelt Country USA	End of CertVication	x
	epecification. Chemistry is as reported by the trouted except in full without the written Page 1 Date Printed 04/07/2011	
C) AXIS Computer Systems - qtc302 (* 1) APR-11-2011 13:11 . F	Page 1 Dato Printad 04/07/2011	

Figure B-18. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

					-					3							
						L	OAD.			2							
and and		CL	IAR	TC	D						1658	Cold Sp	orings R	oad			
	-				17						Saukville	e, Wisco	nsin 53	080			
CHART STEE	CONTRACTOR OF THE OWNER.	211	EEL	-			-		BODT			(262	2) 268-2	400			
		A Divisio	on of			RTER S						1-80	0-437-8	789			
		Charter	Manufad	cturing C	Compan	y, Inc.					1	FAX (26)	2) Z68-Z	570			
										ust P.O. r Part #				2626			
	Rockfe 126 M	ord Bolt	& Steel							es Order			7001	9230		8	
	Lynn I	McComa ord,IL-61							Sh	Heat #	1		408	0465			
		Attn :Lyn		mas						Grade Process	1010	0 A SK	FGIQ	HRCC			
1 keesk		hat also	and dist.	a sail said	have - t					nish Size		*1005 5		19/32			
listed be	low and	on the rev	aterial de verse sid	e, and the	at it sat	isfles the	se requir	ements.		e with the	specifica	tions an	d standa	iras	-		
ab Code: 738 HEM		MN	P	s	SI	Results o	CR	MO	CU	SN	v						
Wt	.11 AL	.37 N	.007 B	.014 71	.18 NB	.04	.07	.02	.09	.006	.001						
	.024	.0070	.0001	.001	.001												
HEM. DEVIAT					Test	Results o	f Boliling L	ot# 1039	920			~ •			-		
EDUCTION R	ATIO = 1	09:1				inducing o											
udditional Com	aments:		Istomer D				,	Kevision =	05 0	aptions for 1 ated =							
Charter Stee Saukville, W	el II, USA				_			A.			5	forment	Same	previously r this orde	y it		
Rem: Load	il,FaxO,	MailO				Testing	Ladorat				Manage	er of Qu	Barnard Iality As 1/2011	surance	8		
		1920															

Figure B-19. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

The following statements are applicable to the material described on the front of this Test Report: 1. Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS compliance. 2. Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing. Unless directed by the customer, there are no welds in any of the coils produced for this order. The laboratory that generated the analytical or test results can be identified by the following key: Certificate Lab Code Laboratory Address Number Charter Steel CSSM 0358-01 1653 Cold Springs Road, Saukville, WI 53080 7388 Melting Division CSSR Charter Steel Rolling 8171 1658 Cold Springs Road, Saukville, WI 53080 0358-02 CSSP Processing Division Charter Steel Ohio 6255 US Highway 23, Risingsun, OH 43457 0358-03 123633 CSFP Processing Division CSCM 4300 E. 49th St., Cuyahoga Heights, OH 125544 Charter Steel Cleveland 0358-04 CSCR 44125-1004 . Subcontracted test performed by laboratory not in Charter Steel system When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual. 5. Test Possible Laboratory Specification Chemistry Analysis CSSM, CSCM/CSCR ASTM E415: ASTM E1019 -ray Fluorescence Stainless and Alloy Steel CSCM/CSCR ASTM E572 Macroetch CSSM, CSCM/CSCR ASTM E381 Hardenability (Jominy) CSSM, CSCM/CSCR ASTM A255: SAE J406: JIS G0561 Grain Size CSSM ASTM E112 Tensile Test CSSR/CSSP, CSFP, ASTM E8: ASTM A370 CSCHICSCO Rockwell Hardness All Jabs ASTM E18: ASTM A370 Microstructure (spheroidization) CSSR/CSSP, CSFP ASTM A892 Inclusion Content (Methods A, E) CSSR/CSSP, CSCM/CSCRASTM E45 Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 01/31/13. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA. 6. The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample. This test report cannot be reproduced or distributed except in full without the written permission of Charter 7. Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions: It may be distributed only to their customers Both sides of all pages must be reproduced in full This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report. Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report. q

Figure B-20. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

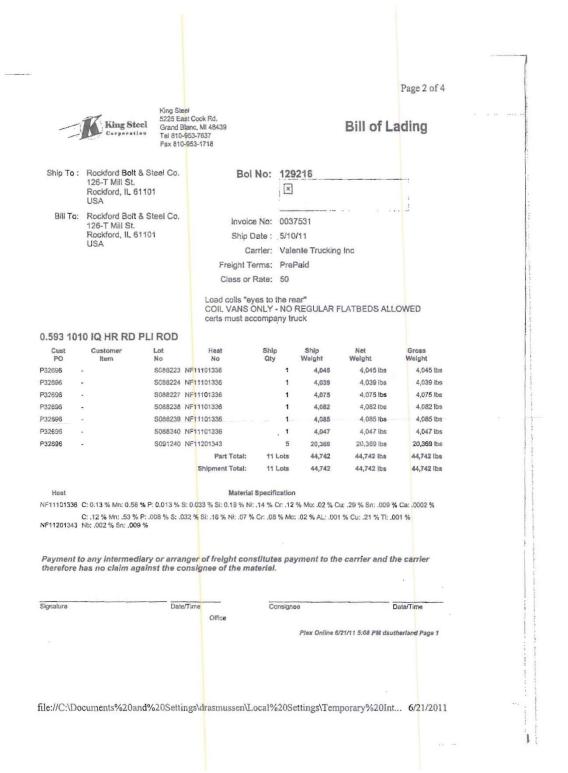


Figure B-21. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

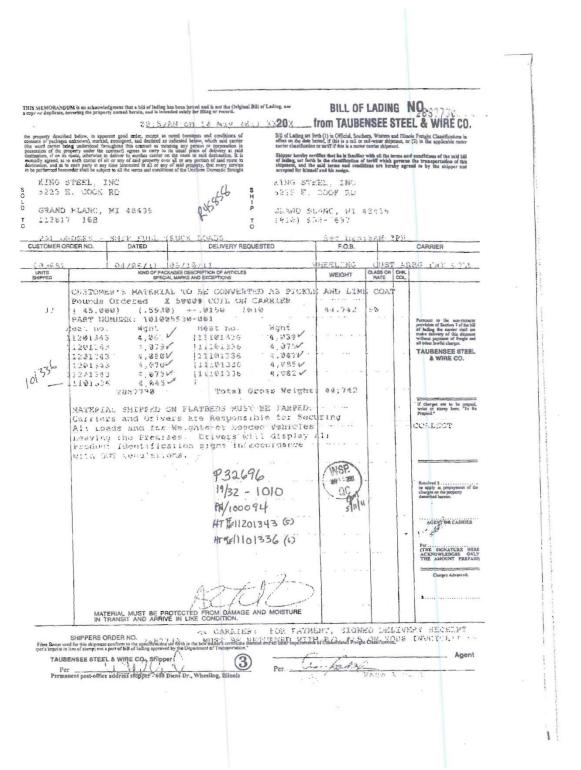


Figure B-22. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

	Is	
NUCOR		
NUCOR CORPORATION NUCOR STEEL NEBRASKA		
Mill Certifica	tion Details - 5/10/2011 11:13 AM	
Customer: KING STEEL	CORP - GRAND BLANC	
Bill of Lading #: 197610		
Chief Metallurgist : Jim Hill	Date: 4/4/2011	
Heat # : NF11101336 Product : RDC	01 Tag #: NF1111050147 Size: .594-19/37 Wice Rod	
Grade: 1010	Division : Norfolk, NE	
Camments :	Billet Heat #: NF11101336	
	生。1991年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	
Physical Properties		
	治治 (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
Tensi	le: 66213	
	d: 50184	
Elongation (in 8 inches		
Elongation (in 2 inches	a):	
	e with the requirements of this specification. All melting and ed in the United States of America.	
manufacturing processes were perform		
manufacturing processes were perform		
manufacturing processes were perform		
Anthop		
Jim Hill Division Metallurgist		

Figure B-23. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

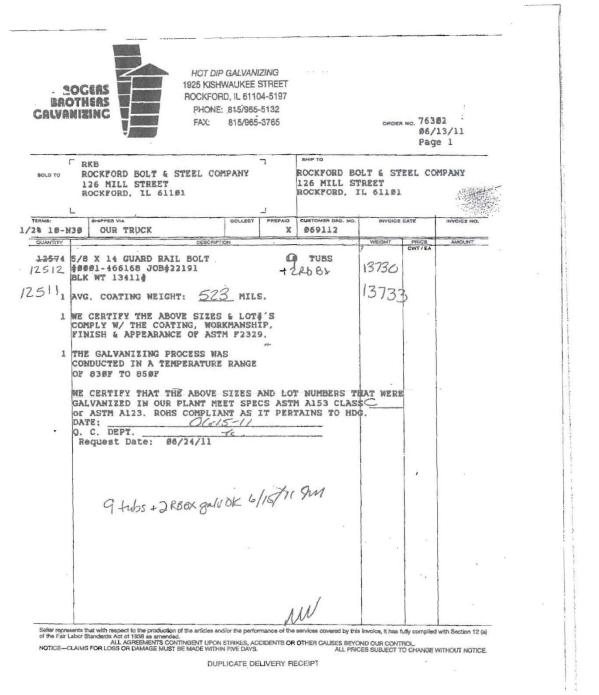


Figure B-24. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

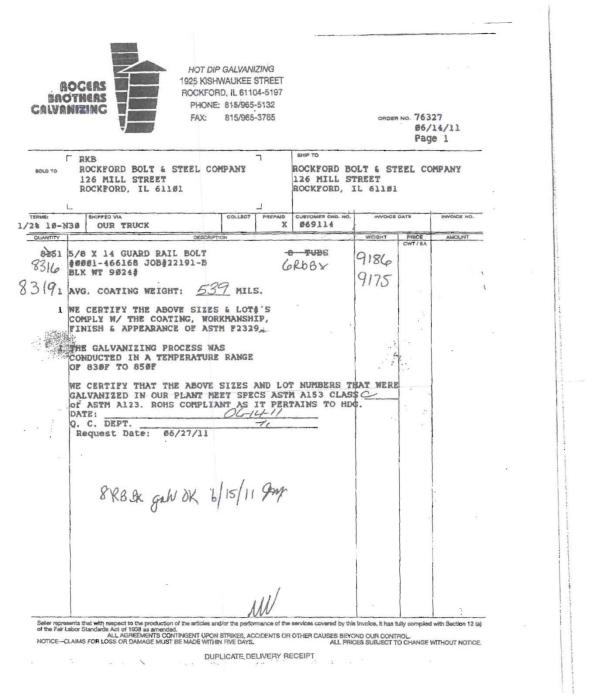


Figure B-25. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

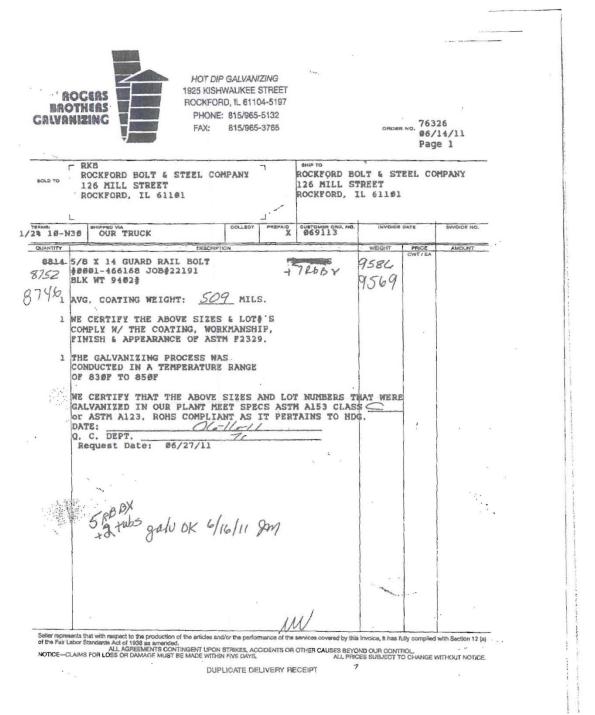


Figure B-26. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

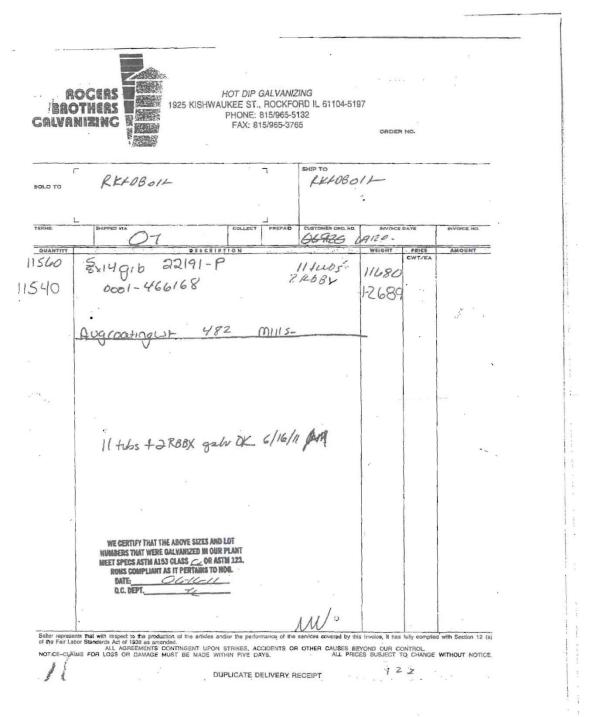


Figure B-27. 5/8 in. Diameter x 14 in. (M16x356 mm) Long Guardrail Bolt and Nut, Part b1, Test Nos. WIDA-1 and WIDA-2

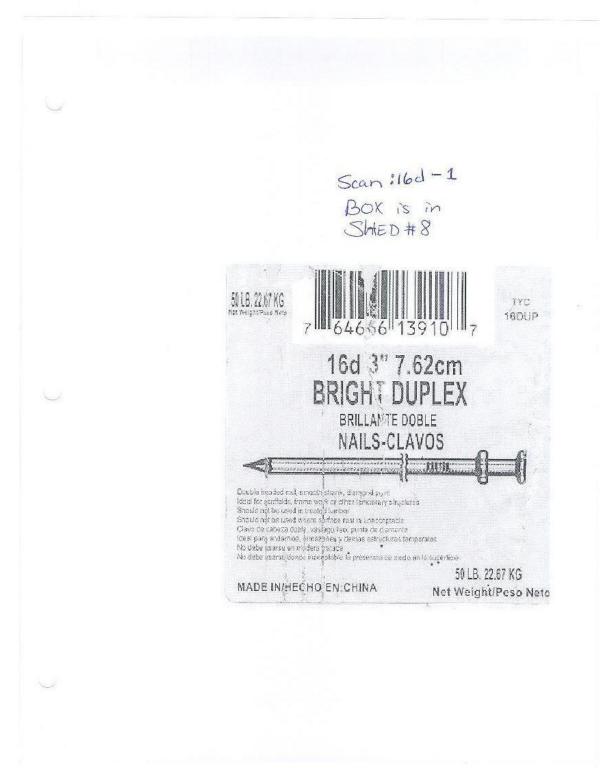


Figure B-28. 16D Double Head Nail, Part b2, Test Nos. WIDA-1 and WIDA-2

1	TRINITY	HIGHWAY PRODUCTS,	LLC	2
			1.1	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	425 East O'Connor Ave	· · · · · · · · · · · · · · · · · · ·	

Lima, Ohio 45801 419-227-1296

	MATERIAL CERTI	FICATION	
Customer: Stock	Date:		
	Invoice Number: Lot Number:	DECKER 1135055	
Part Number: 3340G	Quantity:	239,000	
Description: 5/8" GUARD	Heat Number(s):	20163550	20166280
RAIL NUT +.03	1	20158820	

Specification: ASTM 563-A / A153 / F2329 as described

Heat	C.	MN	· P ·	S	SI	NI	ĊR	MO	CU	SN	. v	AL	N	В	TL	NB
20163550	.08	.32	· .010	.003	.08	.04	.05	.01		.0.08	.001	.040	.008	.0003	.001	.001
20158820	.10	.39	.009	.002	.06	.04	.05	.01	.08	.009	.001	.040	.007	.0003	.001	.001
20166280	.08	.35	.009	.004	.08	.03	.03	:01	.07	.006	.001	.039	.008	.0002	.001	.001

PLATING AND/OR PROTECTIVE COATING

HOT DIP GALVANIZED (Lot Ave. Thickness / Mils) 2.52 (2.0 Mils Minimum)

****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA****

THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A.

WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ANL INFORMATION CONTAINED HEREIN IS CORRECT.

ind Im TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS 21st DAY OF NOVEMBER, 2011 S. Doroff Braun NOTARY PUBLIC HOXXI 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419-227-1296

Figure B-29. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

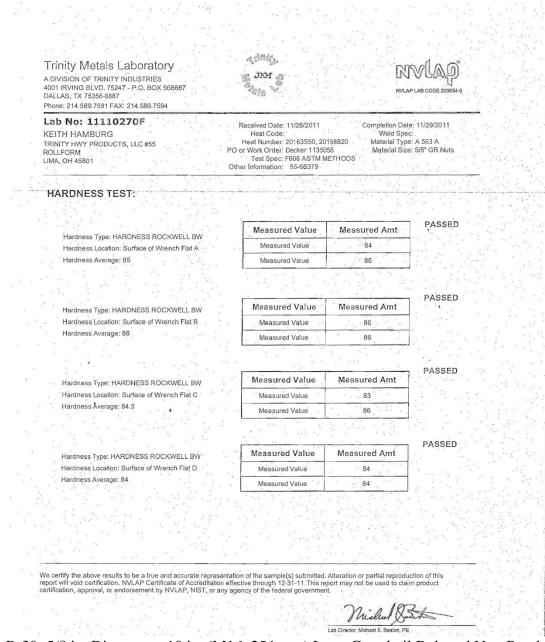


Figure B-30. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

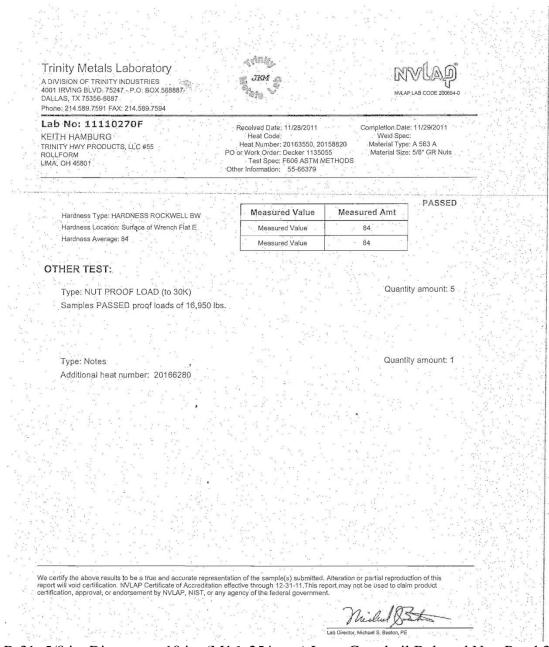


Figure B-31. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

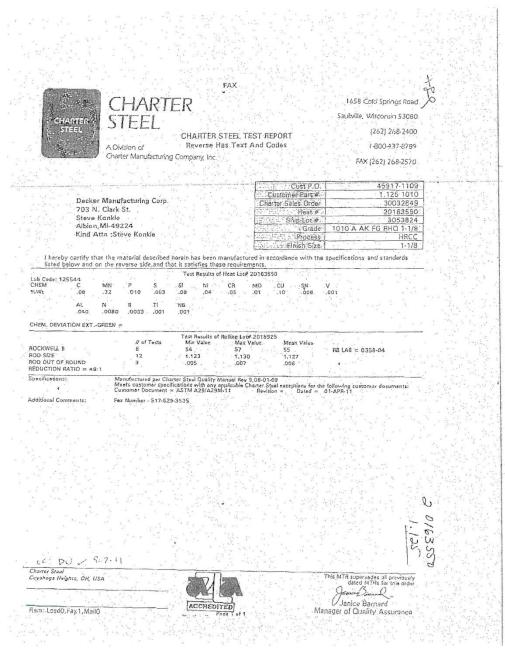


Figure B-32. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

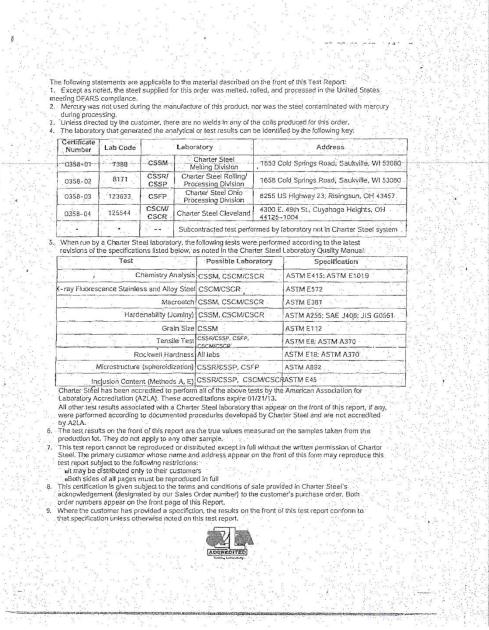


Figure B-33. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

	FAX	The second s
CHART	FR	1658 Cold Springs Road
CHARTER STEEL		Saukville, Wisconsin 53080
STARL STARL	CHARTER STEEL TEST REPORT	[262] 268-2400
A Division of	Revorse Has Text And Codes	1-800-437-8789
Charter Mapufacturing	Company, Inc.	FAX (262) 268-2570
	Custone Custo	
Decker Manufacturing Corp.	Charter Sales Or	der 30032649
703 N. Clark St. Steva Konkle	Hear ShipLot	
Atbion, MI-49224		ade 1010 A AK FG RHQ 1-1/8
Kind Attn :Steve Konkle	Proc	
	Finish S	
.040 .0070 .0003 .001	.001	
CHEM DEVIATION EXT. GREEN = NOCKWELL B 3 NOCKWELL B 3 NOC SIZE 8 ROD SIZE 8 ROD OUT OF POUND 2 REDUCTION RATIO = 951	Test Results of Pating Let# 2018923 Min Value Max Value Mean Value 57 61 59 1.123 1.132 1.128 -008 .008 .008	e R6 LAB = 0358-04
# of Tests ROCKWELL B 3 ROD SIZE 8 ROD OUT OF FOUND 2 REDUCTION RATIO 49:1	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
InCONVELL B d of Years ROD SIZE B d ROD OUT OF POUND 2 REDUCTION RATIO = 49:1 Specifications: Manufactured pay Ch Meet customer specifications	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04
NOCKWELL B 3 ROD SIZE 8 ROD OUT OF POUND 2 REDUCTION NATIO = A9:1 Specifications: Manufactured no! Ch Meet 5 customer boourned Customer Document Additional Comments: Fax Number - 517-52	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	RE LAB = 0358-04
NOCKWELL B ROD SIZE BCO OUT OF POUND Specifications: Manufactured no? Ch Meet customer specifications Additional Comments: Eas Number - 517-52 CC* DU _ 9-7-1(57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	RE LAB = 0358-04
NOCKWELL B 3 ROD SIZE 8 ROD OUT OF POUND 2 REDUCTION NATIO = A9:1 Specifications: Manufactured no! Ch Meet 5 customer boourned Customer Document Additional Comments: Fax Number - 517-52	57 61 59 1.123 1.332 1.128 .008 .008 .008 refer Steel Quality Manual Rev 9,08-01-09	R6 LAB = 0358-04

Figure B-34. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

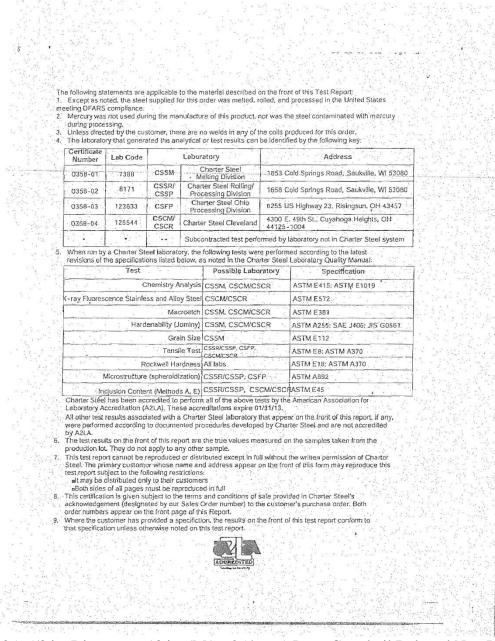


Figure B-35. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

	aller description of the data of	1. 28월 1115년 11월 11일 - 11일 11일 - 11일 - 11 11일 - 11일 - 112 11일 - 11일 - 11일 - 112 - 1		1. Sec. 1.
an a	지하는 방법을 위해하는			
10-10-2011 05:0844 FROM	-PROCESSING QC	+1-282-268-2569	T-308 P.002/003 F-474	X
ACCUMULATION PROPERTY.	FAX			A
I- CH	ARTER		1658 Cold Springs Road	- 0
CHARTER ST	EEL		Saukville, Weconsin 53080 (262) 768-2400	
STEEL	CHARTER STEEL Reverse Has Tex		1-800-437-8789	
A Divisio Charter	on of Manufacturing Company, Inc.		FAX (262) 268-2570	
		Cust P.O.	45917-1110 1.125 1010	지 같은
Decker Manufar 703 N. Clark St	cturing Corp.	Charter Sales Order Heat #	30034370 20166280	
Steve Konkle Albion,MI-4922		Ship Lot #	4101595	en de la composition de la composition La composition de la c
Kind Attn :Stev		Grade Process	1010 A AK FG RHO 1-1/8 HRCC	
	rerial described herein has been manufec	Finish Size	1-1/8	
ит .08 .35 AL N	Test Results of Heat Lo P S Si Ni CR .009 .004 .08 .03 .03 8 TI N8 .0002 .001 .001	MO CU SN	V .001	
HEM C MN .08 .35 AL N .039 .0080 HEM. DEVIATION EXTGREEN = DICKWELL 8 DD SIZE DD SIZE DD SIZE - ALL N .039 .0080 .00000 .00000 .0000 .00000 .0000 .0000	P S Si NI CR .009 .004 .08 .03 .03 B TI N8 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .0002 .001 .0002 .	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN .08 .35 AL N .039 .0080 HEM. DEVIATION EXT. GREEN = DCKWELL B DD SIZE DD DUT OF ROUND, DD/CUTON RATIO = 49:1	P S Si NI CR .009 .004 .08 .03 .03 B TI N8 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .0002 .001 .0002 .	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MM .08 .35 AL N .03 .0080 HEM. DEVIATION EXT. GREEN = DCKWELL 8 DD SIZE DD DUT OF ROUND DD UT OF ROUND DDUTTON HATIO = 49:3 Decifications: Core Core Core Core	P S Si NI CR .009 .004 .08 .03 .03 B TI N8 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .0002 .001 .000 .001 .0	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN ,08 .35 AL N .039 .0080 16M. DEVIATION EXT. GREEN = JCKWELL 8 DO SIZE DO SIZE DO SIZE SCHOOL NOTIO = 49:1 Scifications: Coro	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td></td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td></td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td></td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td></td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN ,08 .35 AL N .039 .0080 16M. DEVIATION EXT. GREEN = JCKWELL 8 DO SIZE DO SIZE DO SIZE SCHOOL NOTIO = 49:1 Scifications: Coro	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td></td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td></td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td>26</td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	2 6
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td>91 oc</td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	91 oc
HEM C MN 08 .35 AL N .033 .0080 HEM, DEVIATION EXT. GREEN = DCKWELL 8 DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE DD SIZZE MON Meet Corey	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td>20/66</td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	20/66
HEM C MN ,08 .35 AL N .039 .0080 16M. DEVIATION EXT. GREEN = JCKWELL 8 DO SIZE DO SIZE DO SIZE SCHOOL NOTIO = 49:1 Scifications: Coro	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td>1000</td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	1000
HEM C MAN 08 35 AL N 033 0080 HEM. DEVLATION EXT.GREEN = ICKWELL 8 DO SIZE DO COMPANY DO COMPANY ICKWELL 8 DO SIZE ICKWELL 8 ICKWELL 8	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 HB LAB = 0358-34 endowing informer documents: σμυθητη</td><td>07E9910C</td></td<>	MG CU SN .01 .07 .006	.001 HB LAB = 0358-34 endowing informer documents: σμυθητη	07E9910C
HEM C MN ,08 .35 AL N .039 .0080 16M. DEVIATION EXT. GREEN = JCKWELL 8 DO SIZE DO SIZE DO SIZE SCHOOL NOTIO = 49:1 Scifications: Coro	P S SI NI CR .009 .004 .03 .03 .03 B TI NB .0002 .001 Ø of Yests Min Value Min Value Min Value # of Yests Min Value Min Value <td< td=""><td>MG CU SN .01 .07 .006</td><td>.001 Ηθ LAB = 0358-04</td><td>at 23100</td></td<>	MG CU SN .01 .07 .006	.001 Ηθ LAB = 0358-04	at 23100

Figure B-36. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

December 7,2011 5/8" Guardrail Wat Reg# 12-0204

Figure B-37. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

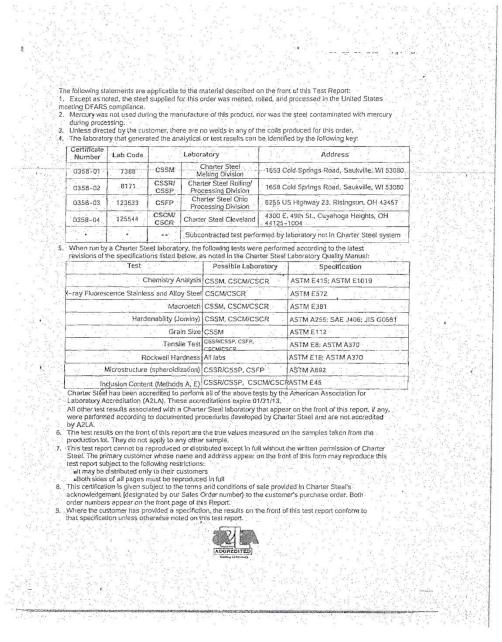


Figure B-38. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Guardrail Bolt and Nut, Part b3, Test Nos. WIDA-1 and WIDA-2

			11.		East O			e. :								-
						227-12										
		4. j									1				·	
			1		MA'	TERI	AL C	ERT	-	ATIO		1. 11				
Custo	omer:	-	Stock						Date:		T 18,2	2011	-		a an	
	0							ce Nu		7	10930	2	-			
Part Nur	nhor		33600	s r			L	ot Nu	ntity:		116,23		a del North			
							Heat	Numb			01566			2016	1540	
Descrip	otion:	5/8"	x 1 1/4 BOLT	GR		111	mear	i unio	ci (3).		01615			2010	1040	
	18.	1.1			•				1.0				a			
Sn	olfio	ation	ASTN	1 1 20-	7 . / .	152 /	Eggan	1.1							14	
opt	some	auon.	<u>A0110</u>		-	1007	2020	-	11.25			ester à F		(e_1, e_2)	1.14	
				an an an Thairte Thairte		MATI	ERIAI	CHE	MIST	RY						i.
			P	S	SI	ŇI	CR	MO	CU	SN	v	AL	N	В	TI	N
Heat	C	MN						80000			.001	.027	:007	.0002	.001	.00
	C	.34	.011	.004	.04	.05	.06	01	:08	.007	.001	.027	1.007	.0002	.001	.00
0156640			.011	.004	.04	.05	.06	.01	.08	.007	.001	.027	.008	.0001	.001	1
0156640	.09	.34						5. 5.		·			1.1	1	÷.,	.00
20156640 20161530 20161540	.09 .09 .08	.34 .33 .34	.007	.005 .001 I	.03 .06 PLATI	.04 .04 NG OI	.06 .06 R PRC	.01	.10 .08 TVE (003 003	.001 .001	.025	.008	.0001	.001	.00
20156640 20161530 20161540 HOT D WE HER	.09 .09 .08 IP GAI ** THE EBY C	.34 .33 .34 -VANIZ **THIS MATEH CERTIF	.007 .007 ED (Lo S PROD RIAL US Y THA'	.005 .001 If t Ave.T UCT W SED IN T TO T	.03 .06 PLATII hickne /AS MA THIS F HE BES	.04 .04 NG OI ss / Mi NUFA(PRODU ST OF (.06 .06 R PRC Is) CTURF CT WA DUR KI COF	.01 .01 DTECI ED IN TE AS MEL NOWLI RECT.	10 .08 TVE (2. HE UN TED A EDGE A	003 003 COATH 32 ITED S ND MA ALL IN	.001 .001 (2.0 Mils TATES NUFAC FORM	025 028 Minimu OF AN CTURE	008 .006 m) HERICA D IN TH CONTA	.0001 .0002	.001 .001 A HEREI	.00
20156640 20161530 20161540 HOT D WE HER	.09 .09 .08 IP GAI ** THE EBY C	.34 .33 .34 -VANIZ **THIS MATEH CERTIF	.007 .007 ED (Lo S PROD RIAL US Y THA'	005 .001 I F t Ave.T UCT W SED IN T T O T SED IN T T O T	.03 .06 PLATII hickne /AS MA THIS F HE BES	.04 .04 NG OI ss / Mi NUFA RODU ST OF (THIS	.06 .06 R PRC Is) CTURE CT WA DUR K COI	.01 .01 DTECI CD IN T S MEL NOWLI RECT.	10 .08 TVE (2. HE UN TED A EDGE A	003 003 COATH 32 ITED S ND MA ALL IN	.001 .001 (2.0 Mils TATES NUFAC FORM	025 028 Minimu OF AN CTURE	008 .006 m) HERICA D IN TH CONTA	.0001 .0002 A**** HE U.S. AINED	.001 .001 A HEREI	.00
20156640 20161530 20161540 HOT D WE HER	.09 .09 .08 IP GAI ** THE EBY C	34 .33 .34 .VANIZ .VANIZ 	.007 .007 ED (Lo S PROD RIAL US Y THA'	.005 .001 I F t Ave.T UUCT W SED IN T T O T T T O T O BEFC	03 06 LATII hickne /AS MA THIS F HE BES	.04 .04 .04 .04 .04 .04 .04 .04 .04 .04	06 06 R PRC Is) CTURE CT WA DUR KI COF 18th	.01 .01 DTECI CD IN T S MEL NOWLI RECT.	10 08 IVE (2 2 HE UN TED A 2DGE /	003 003 COATI 32 ITED S ND MA ALL IN TRIN OBER,	001 001 (20 Miles TATES NUFAC FORM. ITY HI 2011	025 028 Minimu OF AN CTURE ATION	008 .006 m) HERICA D IN TH CONTA	.0001 .0002	.001 .001 A HEREI	.00
20156640 20161530 20161540 HOT D WE HER	.09 .09 .08 IP GAI ** THE EBY C	34 .33 .34 .VANIZ .VANIZ 	.007 .007 ED (Lo S PROD RIAL US Y THA'	.005 .001 I F t Ave.T UUCT W SED IN T T O T T T O T O BEFC	03 06 LATII hickne /AS MA THIS F HE BES	.04 .04 .04 .04 .04 .04 .04 .04 .04 .04	06 06 R PRC Is) CTURE CT WA DUR KI COF 18th	01 01 01 01 01 01 01 01 01 01 01 01 01 0	10 08 IVE (2 2 HE UN TED A 2DGE /	003 003 COATI 32 ITED S ND MA ALL IN TRIN OBER,	001 001 (20 Miles TATES NUFAC FORM. ITY HI 2011	025 028 Minimu OF AN CTURE ATION	.008 .006 m) HERIC/ D IN TH CONT.	.0001 .0002	.001 .001 A HEREI	.00

Figure B-39. 5/8 in. Diameter x 1 ¹/₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

Tripity Motolo	Laboratory	grinity.		- in all a c	ē.
Trinity Metals		MSR .		NVUAD)
A DIVISION OF TRINITY 4001 IRVING BLVD, 752				NVLAP LAB CODE 20065	
DALLAS, TX 75356-8887		·安门曾		NVLAP LAB CODE 20085	4-0 .
Phone: 214.589.7591 FA	X: 214.589.7594				
Lab No: 11100	124F	Received Date	: 10/14/2011	Completion Date: 10/21/2011	·
KEITH HAMBURG		. Heat Code	Ľ	Weld Spec:	
TRINITY HWY PRODUC	TS, LLC #55	PO or Work Orde	: 20156640, 20161530 : 110930B2	Material Type: A 307 A Material Size: 5/8" x 1-1/4" 0	GR BOLT
LIMA, OH 45801		Test Spec	: F606 ASTM METHODS		
1	and the second	Other Information	: SO#: 55-65321	· · · · ·	
OTHER TEST:		e has he in a line			
THEFT	FOO DOOKWELL DW			Quantity amount:	20
Type: HARDN	ESS ROCKWELL BW		ta parte de la serie	dudinity amount.	
Bolt "A": 88 - 8	87 - 87 - 87				
BUIL A . 88-9	57-07-07				1 A
Bolt "B": 85 - 8	37 - 87 - 87				
Bolt "C": 84 - 8	87 87 87				
Boilt O . Of	51 - 01 - 01		Negative Contraction		
Bolt "D": 88 - 8	39 - 88 - 88				
Bolt "E": 87 - 8	88 . 88 . 88	1 (S. 17)			
BOR E. OF					
		1			
Type: Notes				Quantity amount:	1
Additional heat	t #: 20161540				le garden de la
la pripa d					
Type: HEAD M	ARKINGS			Quantity amount:	1
1	307A O				
TRN USA .	JULY O				
		Sec. 27. 18			
		a de la composición d			
			0		
			CG- 10-21-1	1	
		representation of the sam	ole(s) submitted. Alteration	or partial reproduction of this	
We certify the above resu		- opiosonitation of the sain	12-31-11 This report may n	ot be used to claim product	
We certify the above resu report will void certification	n. NVLAP Certificate of Accre	editation effective through	de sel ser se se per se		
We certify the above resu report will void certification certification, approval, or	Its to be a true and accurate n. NVLAP Certificate of Accre endorsement by NVLAP, NIS	editation effective through ST, or any agency of the fe	deral government.		
We certify the above resu report will void certification certification, approval, or	Its to be a true and accurate n. NVLAP Certificate of Accru endorsement by NVLAP, NIS	editation effective through ST, or any agency of the fe	deral government.	1.01824	
We certify the above resu report will void certification certification, approval, or	JIts to be a true and accurate n. NVLAP Certificate of Accr endorsement by NVLAP, NIS NUSA (1997) 10 NUSA (1	editation effective through ST, or any agency of the fe	deral government.	hicked St	2
We certify the above resureport will void certification certification, approval, or	ills to be a true and accurate n. NVLAP Certificate of Accrr endorsement by NVLAP, NIS	editation effective through ST, or any agency of the fe	deral government.	Michael S. Beaton, PE	-
We certify the above resu report will void certificatio certification, approval, or	ills to be a true and accurate n. NVLAP certificate of Accr endorsement by NVLAP, NIS	editation effective through ST, or any agency of the fe	deral government.	hicked St	2

Figure B-40. 5/8 in. Diameter x 1 ¹/₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

	PLA A	ND T I	c			FILE					1658 C	old Sprin	as Road		ŀ
	CHA	73 I I F								S		Wisconsi	-		
TRE	SIL	time them		100						5	ourvine,		58-2400		
E STA			t.		-			OPT							
A Division of Charter Manufactu	ring Company	, Inc.	(EEL TE						1-800-43			
											FAD	(262) 26	8-2570		1
		1.5						Norozza	D at Pilo				96M-2		1
Tri	nity Indust	riss Inc.						Clisterne atten Sal					0941B 23317		
42	E. O Con Henline			÷.					a tost v			201	56640		
Lin	na,OH-458							- Si	11年12月前来 (11)	10	10 R AK	FG RHQ	17253		
Kir	d Atin :Su	e Henlin	IE -						1		1011114		HR		ł.
1.1.1	Se							建立印	1.5002	超			41/64		
Thereby certify below and on	that the ma	ide,and th	cribed he hat it sat						nh the sp	pecificatio	ons and s	andards h	sted		
ub Code: 125544 HEM C	+					of Hast L				v	3				
HEM C W1 ,09	NIN .34	P .011	S .004	.04	NI .05	CR .05	MO .ori	.u3	SN .007	.001					
AL	N	в	п	NB	10										
.02		,0002	.001	.601											ŀ
ILM. DE VIATION I	XTGREEN	- '	1	Tact	Destrike a	of Callina	1	1251							
EDUCTION RATIO			1	Test	Results o	of Rolling	Late 2017	253		<u>.</u>		2	<i>x</i>		
	• 152:1	anutacture	ed par Ch	narter Sta	al Quality	Manual R	aw 9,08-0	11-09		·					
EDUCTION RATIO	• 152:1	anutacture	mer spe	narter Sta	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09	eptions f	or the foll	owing cue	stomer dao	untents:		
EDUCTION RATIO	* 152:1	anutacture aets custo	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fo	or the foll I-APR-11	owing cus	stomer doo	uments:		
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions f ited = 01	or the foll I-APR-11	owing cu	stomer doo	uments;		
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi fæd = 01	or the foll - APR-11	owing cue	stomer doc	uments:	а ж. ж. ж.	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi	or the foll I-APR-11	owing cus	stomer dao	uments;		
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi	or the foll I-APR-11	owing cus	stomer doc	uments:	4 8.8 12	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions for sted = 01	or the foll - APR-11	owing cus	stomer doc	uments:	а - к.к. - 2 - 2	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi	or the foll - APR-11	owing cus	itomer doc	uments:		
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi	or the foll - APR-11	owing cus	stomer daor	uments;	2 2 2 2 2	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi ted = 01	or the foll- - APR-11	owing cus	nomer dao	uments:	- 	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi	or the foll- I-APR-11	е Че 1			а а а а а а	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions fi	er the foli- APR-11	е Че 1	tomer dec		ED	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,68-0	11-09 r Steel exc	eptions fi	or the foil - APR-11	е Че 1	ECE	EIVI		
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,68-0	11-09 r Steel exc	eptions fa ted = 01	or the foil I-APR-11	R	ECE SEP 1	EIVI 4 201	1	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,68-0	11-09 r Steel exc	eptions fa ted = 01	rr tha foil		ECE	EIVI 4 201	1	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions for 01	-APR-11	TRIN	ECE SEP 1 ITY HWY P ms, Ohio	EIVI 4 201 Plant	1	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions for 01	-APR-11	TRIN	ECE SEP 1 ITY HWY P ma, Ohio Seedes all p	EIVI 4 201 Plant	1	
EDUCTION RATIO	* 152:1	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hav 9,08-0	11-09 r Steel exc	eptions for tred = 01	This		ECE SEP 1 TTY HWV P mma, Ohio a MTTRs for 3 a MTTRs for 3	4 201 Report of the arder	1	
EDUCTION RATIO	* 152:1 M C S: Fi	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Manual R	hw 8,08-0 lis Chartner Revusie Revusie	11-09 r Steel exc	eptions fr ted = 01	This	Гани Ца Мітя сору Далісе Раго Су.	ECE SEP 1 ITY HWY P ma, Ohio arsedes al J d MTRs for 3 and MTRs for 3 Barmard ality Assu	4 201 Report of the arder	1	
EDUCTION RATIO	* 152:1 M C S: Fi	anufacture aets custo astomer D	ocument	nartar Sta cification t = ASTM	el Quality s with ສາງ	Haruul ayapilcab adata ayapilcab adata ayapilcab	hw 8,08-0 lis Chartner Revusie Revusie	11-09 r Steel exc	eptions fr ted = 01	This	Гани Ца Мітя сору Далісе Раго Су.	ECE SEP 1 TTY HWV P mma, Ohio a MTTRs for 3 a MTTRs for 3	4 201 Report of the arder	1	

Figure B-41. 5/8 in. Diameter x 1 ¼ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

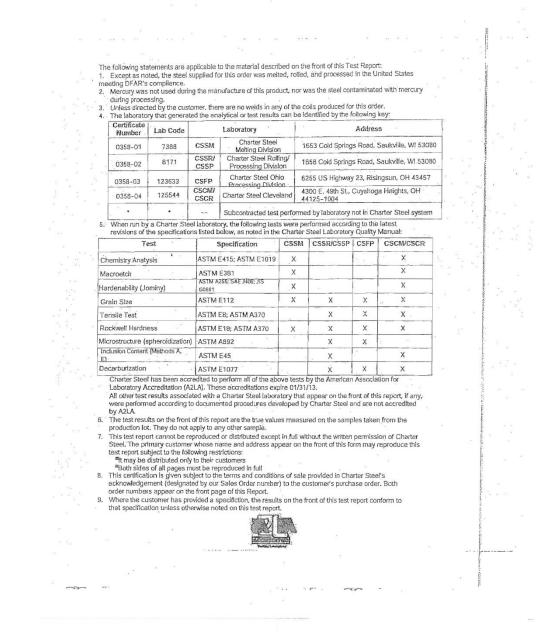


Figure B-42. 5/8 in. Diameter x 1 ¹/₄ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

Mercury was during proce	ssing.		nufacture of this prod				d with mercury		
 Unless direct The laborato 	ed by the cust ry that general	tomer, the ted the an	re are no welds in any alytical or test results	y of the c can be in	coils produced for dentified by the fo	this orde	er. key:		
Certificate	Lab Code		Laboratory	12		Addres	s		
0358-01	7388	CSSM	Charter Steel	. 1	653 Cold Spring	s Road, s	Saukville, WI 5308	0	
0358-02	8171	CSSR/ CSSP	Melting Division Charter Steel Roll Processing Divisi	ing/ 1	658 Cold Spring	s Road, S	Saukville, WI 53080	0	
0358-03	123633	CSFP	Charter Steel Oh		255 US Highway	23, Risi	ngsun, OH 43457		
0358-04	125544	CSCW	Processing Division Charter Steel Cleve	4	300 E. 49th St., 0 4125-1004	Cuyahog	a Heights, OH	· · · · · ·	3.4
· ·	•		Subcontracted test	-		not in Ch	arter Steel system		. 1
5. When run by	a Charter Ste	el laborat	ory, the following test	s were pe	erformed accordi	ng to the	latest	<u> </u>	
-		-	below, as noted in the						
-	ist .	-	Specification	CSSM	CSSR/CSSP	CSFP	CSCM/CSCR		
Chemistry Anal	/sis		E415; ASTM E1019	X			x	1.1	
Macroetch		ASTM	E381 255; SAE J406; JIS	X				1.00	
Hardenability (Jo	ominy)	G0561		X			x		
Grain Size		ASTM	E112	X	х	x	X	1 an 188	
Tensile Test	8	ASTM	E8; ASTM A370		X	Х	X , .:	1.	
Rockwell Hardn	ess ·	ASTM	E18; ASTM A370	x	х	х	x		- 1
Microstructure (spheroidization) ASTM	A892		Χ.	X		1. A	
Inclusion Conten	(Methods A,	ASTM	E45		x		X		
Decarburization		ASTM	E1077		x	x	x		
All other test were perform by A2LA. 6. The test ress production lo 7. This test rep Steel. The put test report st "It may be "Both side 8. This certifica acknowledge order numbe 9. Where the ci	results associated according lits on the front. They do not ort cannot be i imary custom- bject to the for distributed on s of all pages i tion is given as iment (design rs appear on t stome has p	ated with to docume apply to a eproduce er whose r llowing re: ly to their must be re ubject to the ated by ou he front p rovided a		atory that reloped b es measu it in full w pear on t ns of sale r) to the o ts on the	t appear on the fit y Charter Steel a ured on the samp without the written the front of this for a provided in Char customer's purch	and are r ples take permiss prm may arter Stee ase orde	not accredited n from the sion of Charter reproduce this el's ar. Both		

Figure B-43. 5/8 in. Diameter x 1 ¼ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

									S. *	
IN THE OWNER OF THE OWNER	10 IT 11 A1	thread with a Rout D	n	FILE			1050.0	ald Cardania Day		
And a state	CHA	RIE	R.				1858 C	old Springs Ro	30	
	STER	An A					Saukville,	Wisconsin 530	80 🦾	
an and		and shows						(262) 268-24	00	
the seal										
A Division of				TER STEEL T rse Has Text	EST REPORT			1-800-437-871	89.	
Charter Manul	actualog Company,	Inc.	Reve	rse mas reat	And Godes		FAD	((262) 268-25	70	
									· · ·	
						1.1.1.1.1				
			9 8 17 ac			FIZEL COL		142496M-1		
	Trinity Indust	nee Inc			「「「「「」」	and Fight I	· ·	100941E 70023316		
· · ·	425 E. O Corr		1. a. 1.		· · · · · · · · · · · · · · · · · · ·			20161540		
	Sue Henline	1 .	. A		A REAL PROPERTY.	1811 H		2018475	5	
	Lima,OH-458 Kind Attn : Su				是的理论	The Dates	1010 R AK	FG RHQ 41/64		1
100 A		- THE NUMBER				The stars		41/64		, 11
1. Liberaharan	with the time and	odal dacarite	d harala ba	a boon manufrin	trad in according		antione and w		إسه	d,
below and	on the reverse s	de, and that It	satisfies the	ese requirements	шлен тарсондало S.	ce with the specifi	cauons and S	anuaros isteo		
nh Code: 1255-				st Results of Hea			1			
CHEM	C ASN .	P S	SI	NI CR			~	X a co		
6Wt	.08 .34	.007		.04 .06	.01 .08	id. 2005 I	ы. 			
		-				1.5				
	AL N .028 .0060	B 11	NB 1 .BO1							
	.028 .0060	.0802 .03								
CHERL DEVIATIO		.0802 .03	ri .co1							
	.028 .0060	.0802 .03	ri .co1	t Results of Rolli	ng Lot# 2018475	, , , , , , , , , , , , , , , , , , ,	1 	· · ·	- 1	
ZEDUCTION RAT	.028 .0060 IN EXTGREEN . 10 = 152:1	.0602 .00	ri .coi Tesi	u						
ZEDUCTION RAT	.028 .0060 IN EXTGREEN I 10 = 152:1	30, 2680.	ri .coi Tesi	a	1 Elev 8.08-01-08	exceptions for the Dated = 01-API	Tallowing cu:	kanser documents	=	
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datad = 01-APJ	 i čili owing cu: R-11	Ramer documents	E State	
REDUCTION R.A. Spacifications:	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	30, 2680.	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	sxceptions for the Dated = 01-APJ		aanser documents	5	
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Detect = 01-API	າ ໄດ້ມີດາທຳເຫຼ ເບ: R-11	kamer documents		
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datad ~ D1-API	riallowing cu: R-11	stamer tlocumente		
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datad = 01-API	riallowing cu: R-11	tamer ticcumente		
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Detad = 01-API	r following cus R-11	tanse documents		
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	szceptions for the Datad – 01-API	r following cu: R-T1	Romer documents		
2EDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal – 01-API	i föllowing au 2-11	tanser tlocumente		
2EDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal – 01-API	s füllowing cus R-11	tamer tlocumente		
EDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	sxceptions for the Datad = 01-API	e füllowing cus R=11	tamer documents		
2EDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	szcsptions for the Detad – 01-API	Following sus	tomer documents		and the second
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN . 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal – 01-API	following ex- 1-11	tomer documente		
2EDUCTION R.A.	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal – 01-API				
2EDUCTION R.A.	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	sxceptions for the Datai = 01-API		tumer documente		
2EDUCTION R.A.	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	sxceptions for the Datad - 01-APJ		RECE	IVE	
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal – 01-API		RECE SEP 14	IVE 2011	and the second
ZEDUCTION R.A.	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal = 01-API		RECE SEP 14 ADDITY HWY PAG	IVE 2011	and the second
REDUCTION RA	.028 .0060 IN EXT GREEN I 10 = 152:1 Ma Ma Cu	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	szcsptions for the Datad – 01-API		RECE SEP 14 ANNTY HARCHING ONIO	IVEE 2011 Plant 55	and the second
REDUCTION R.A. Spacifications:	.028 .0980	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	sxceptions for the Datad - 01-APJ		RECE SEP 14	IVEE 2011 Plant 55	and the second
REDUCTION RA'	.028 .0980	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08	exceptions for the Datal – 01-API	This MTR sur Jacuary	КР ЕСЕ SEP 14 Авлиту нуу рас Цлар, оню чемене на ремаки Алем (С. на осо Затем)	IVEE 2011 Plant 55	and the second
REDUCTION RA'	.028 .0980	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	1 Elev 8.08-01-08		This MTR sup ada January	RECE SEP 14 Jume, Ohlo MTRelice his oc Same Barmard	2011 2011 DDUCTS, ELC Plant 55 aly er	and the second
REDUCTION RA'	.028 .0080 IN EXTGREEN - RO - 152:1 Bdg Rdg Rdg Rdg Rdg Rdg Rdg Rdg Rdg Rdg R	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	a	d Rev D.08-07-00 Bable Chartor Staal Revision w		This MTR sup ada January	RECE SEP 14 Jume, Ohlo MTRelice his oc Same Barmard	2011 2011 DDUCTS, ELC Plant 55 aly er	and the second
EEDUCTION RA' Späcifications Uduktonsi Comm Uduktonsi Comm Chuntor Steed Cityahogu Halg	.028 .0080 IN EXTGREEN - RO - 152:1 Bdg Rdg Rdg Rdg Rdg Rdg Rdg Rdg Rdg Rdg R	.0602 .00 antifactured pe ents customer stomer Docum	ri .coi Tesi * Chartar Stu specification nent = ASTM	el Cuality Mercus se Welth any applic A 22/A 2004-11	d Rev D.08-07-00 Bable Chartor Staal Revision w		This MTR sup ada January	КР ЕСЕ SEP 14 Авлиту нуу рас Цлар, оню чемене на ремонал актор Зателе на ремонал Зателе на ремонал за ре	2011 2011 DDUCTS, ELC Plant 55 aly er	Secondo

Figure B-44. 5/8 in. Diameter x 1 ¼ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

NUC	DR	LOT NO. 289716A			Post Office Box 6100 Saint Joe, Indiana 46785
FASTENER	DIVISION				Telephone 260/337-1600
CUSTOMER NO/NAME 8061 STRUCTURAL BOI		NUCOR ORDER # CUST PART #	755201	×.	
TEST REPORT SERIAL# TEST REPORT ISSUE DAT DATE SHIPPED	TE 7/01/11 7/21/11	CUSTOMER P.O. #	12052	PDH	
NAME OF LAB SAMPLER: ************************************	Jeff Hoering, LAB TIFIED MATERIAL TEST R	EPORTXXXXXXXXXXXXX	*****	(\bigcirc))
NUCOR PART NO QU 175647	UANTITY LOT NO. D 3600 289716A 1-	ESCRIPTION 8 GR DH HV H.1) G	1011	ř.
MANUFACTURE DATE 5/	06/11 F	HEX NUT H.D.G.		n	
CHEMISTRY MATERIAL HEAT	MATERIAL G	GRADE -1045L POSITION (WT% HEA	T ANALVSTS) BY MA	TERTAL SUPPLITER	
NUMBER NUMBER	C MN P	S SI	I AIAE (OLO) DI IA	NUCOR STEEL	- NEBRASKA
RM026568 NF112015		,016 ,20			
	MIN .20 .60 MAX .55 .0	040 .050			
MECHANICAL PROPERT	IES IN ACCORDANCE WITH	1 ASTM A563-07a			
SURFACE CORE HARDNESS HARDNESS	PROOF LOAD 90900 LBS	TENSILE	STRENGTH G-WEDGE		
(R30N) (RC)		(LBS)	STRESS (PSI)		
N/A 27.4	PASS	N/A	N/A		
N/A 30.1	PASS	N/A	N/A N/A		
N/A 26.7 N/A 32.9	PASS	N/A N/A	N/A N/A		
N/A 28.6	PASS	N/A	N/A	1	
AVERAGE VALUES FROM 29.1	TESTS PRODUCTION I	OT SIZE 90	000 PCS		
ROTATIONAL CAPACITY	TESTED IN ACCORDANCE	AITH A325-09, A56	3-07a AND F606-09	TO 360 DEGREES O	F ROTATION.
	SAMPLE #2 PASSED			careco da store deresador voza	
VISUAL INSPECTION	IN ACCORDANCE WITH AST	FM A563-07a		80 PCS. SAMPLED	LOT PASSED
COATING - HOT DIP	GALVANIZED TO ASTM F23	329-05			
	0.00523 3. 0.0058	83 4. 0.00849 22 11. 0.00349	5. 0.00952 12. 0.00397		. 0.00754 4. 0.00430
8. 0.00272 9. 15. 0.00583	0.00/20 10. 0.008	22 II. 0.00349	12. 0.00597	15. 0.00552 1	4. 0.00430
	OM 15 TESTS .00563				
AVERAGE THICKNESS FR					
AVERAGE THICKNESS FR HEAT TREATMENT - AUS	TENITIZED, OIL QUENCH	ED & TEMPERED (MI	N 800 DEG F)		
DIMENSIONS PER ASM	TENITIZED, OIL QUENCH				
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC	TENITIZED, CIL QUENCH E B18.2.6-2006 #SAMPLES TESTED	MINIMUM MA	XIMUM		
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC Width Across Co	TENITIZED, CIL QUENCH E B18.2.6-2006 #SAMPLES TESTED	MINIMUM MA 1.8240	XIMUM 1,8290		
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC	TENITIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED rners 8	MINIMUM MA	XIMUM		
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC Width Across Co	TENITIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED rners 8	MINIMUM MA 1.8240	XIMUM 1,8290		
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC Width Across Co	TENITIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED rners 8	MINIMUM MA 1.8240	XIMUM 1,8290		
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC Width Agross Co	TENITIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED rners 8	MINIMUM MA 1.8240	XIMUM 1,8290		
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750	XIMUM 1.8290 0.9950		
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Hidth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750	XIMUM 1.8290 0.9950	RIBED IN THE APPL TBED/LISTED ADVE	ICABLE SAE AND ASTM AND WERE MANUFACTURED 9 IFAN WERE INSPI
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750	XIMUM 1.8290 0.9950	RIBED IN THE APPL RIBED/LISTED ABOVE RIMM, TELLURIUN, O	ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750	XIMUM 1.8290 0.9950	RIBED IN THE APPL INDEDLISTED ADULTSTED ADULTSTED INUM, TELLURIDH, O INUFACTURED AND TE	ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750	XIMUM 1.8290 0.9950	RIBED IN THE APPL IBED/LISTED ABOUT 1004, TELLURION, O NUFACTURED AND TE THC REPRESENTATI TED MATERIAL TEST ULL.	ICABLE SAE AND ASTM AND WERE MANUFACTURED I LEAD WERE USED IN THE STED IN THE U.S.A. ON DF INFORMATION REFORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	MINIMUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECTE THE U.S.A. AND T . WE CERTIFY THA RESTING LABORAT MAY NOT BE REPRO	XIMUM I.8290 0.9950 THE METHODS PRESS IEATIONS AS DESCI PEISHUTH, SELEF HE PRODUCT WAS M T THIS DATA IS A T THIS DATA IS A T YLS DATA IS A T YLS DATA SERTI DUCED EXCEPT IN 1	RIBED IN THE APPL IBED/LISTED ADUT IUM/, TELLUAIDUN, O NUFACTURED AND TE TRUE REPRESENTATI TED MATERIAL TEST ULL.	ICABLE SAE AND ASTM AND WERE MANUFACTURED I LEAD WERE USED IN THE STED IN THE U.S.A. OH OF INFORMAIION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORN TO THE SPECIF TOMAL ADDITIONS THE U.S.A. AND T . WE CERTLY THA R TESTING LABORAT MAY NOT BE REPRO	XIMUM 1.8290 0.9950 THE METHODS PRESS ICATIONS AS DESC TOF BISMUTH, SELE HE PRODUCT WAS MA ORY. THIS CERTI DUCED EXCEPT IN I ENER		ICABLE SAE AND ASTM AND WERE MANUFACTURED I LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Hidth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS. TI FREE OF MERCURY CON STEEL USE TO PRODUCT FREUTE TO THE THE MAIN FROUTCOMPLIES WILT FROUTCOMPLIES WILT FOUNDED BY THE MAIN TO THE ITEMS LISTED	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORN TO THE SPECIF TOMAL ADDITIONS THE U.S.A. AND T . WE CERTLY THA R TESTING LABORAT MAY NOT BE REPRO	XIMUM I.8290 0.9950 THE METHODS PRESS IEATIONS AS DESCI PEISHUTH, SELEF HE PRODUCT WAS M T THIS DATA IS A T THIS DATA IS A T YLS DATA IS A T YLS DATA SERTI DUCED EXCEPT IN 1		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Hidth Across Co Thickness	TENTTIZED, OIL QUENCH E B18.2.6-2006 #SAMPLES TESTED Frers 8 32	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORN TO THE SPECIF TOMAL ADDITIONS THE U.S.A. AND T . WE CERTLY THA R TESTING LABORAT MAY NOT BE REPRO	XIMUM 1.8290 0.9950 THE METHODS PRESS ICATIONS AS DESC TOF BISMUTH, SELE HE PRODUCT WAS MA ORY. THIS CERTI DUCED EXCEPT IN I ENER		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS, TH FREE OF MERCURATIONS, TH FREE OF MERCURATIONS THE STEEL MAS MELTER PROVIDED BY THE MAT TO THE ITEMS LISTED ACCREDITED HECHNICAL FACTORES	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN D AND RAUVRACTURED TO AND RAUVRACTURED TO AND RAUVICTURED TO AND RAUVICE AND OUT	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF OMM TO THE SPECTF TIONAL ADDITIONS THE U.S.A. AND T . WE CERTPY THA R TESTING LABORAT MAY NOT BE REFRO NUCOR FASTI A DIVISION	XINUM 1.8290 0.9950 THE METHODS PRESS OF BISMUTH, SELEH HE PRODUCT WAS MA ORY. THIS CERTIN JUCCD EXCEPTINT SNER OF NUCOR COMPORA		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS, TH FREE OF MERCURATIONS, TH FREE OF MERCURATIONS, TH FREE OF MERCURATIONS THE STEEL MAS MELTER FROUIDED BY THE MAT TO THE ITEMS LISTED ACCREDITED	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECIF TO THE SPECIF ITOMAL ADDITIONS THE U.S.A. AND T . WE CERTPY THA R TESTING LABORAT MAY NOT REPERP NUCOR FASTI A DIVISION BOB HAVMOON	THE METHODS PRESS 0.9950 THE METHODS PRESS ICATIONS AS DEST 0F BISNUTH, SELE HE PRODUCT WAS MA ORY. THIS CERTIN DUCED EXCEPT IN I ENER OF NUCCR COPPORA		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS PER ASM CHARACTERISTIC Midth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS. TH FREE OF MERCURY CON STEEL USE TO PRODUC THE STEEL WAS MELTE PRODUCT COMPLIES WI TO THE STEEL WAS MELTE PRODUCT COMPLIES WI COMPLES WI ACCOREDITED	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECIF TO THE SPECIF ITOMAL ADDITIONS THE U.S.A. AND T . WE CERTPY THA R TESTING LABORAT MAY NOT REPERP NUCOR FASTI A DIVISION BOB HAVMOON	XINUM 1.8290 0.9950 THE METHODS PRESS OF BISMUTH, SELEH HE PRODUCT WAS MA ORY. THIS CERTIN JUCCD EXCEPTINT SNER OF NUCOR COMPORA		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES DNLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISIC Midth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS. TH FREE OF MERCURY DON SPECIFICATIONS. TH FREE OF MERCURY DON THE STEEL MAS MELTER FROUDED BY THE MAT TO THE ITEMS LISTED ACCREDITED MECHANICAL FASTEMER	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECIF TO THE SPECIF ITOMAL ADDITIONS THE U.S.A. AND T . WE CERTPY THA R TESTING LABORAT MAY NOT REPERP NUCOR FASTI A DIVISION BOB HAVMOON	THE METHODS PRESS 0.9950 THE METHODS PRESS ICATIONS AS DEST 0F BISNUTH, SELE HE PRODUCT WAS MA ORY. THIS CERTIN DUCED EXCEPT IN I ENER OF NUCCR COPPORA		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES DNLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISIC Midth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS. TH FREE OF MERCURY DON SPECIFICATIONS. TH FREE OF MERCURY DON THE STEEL MAS MELTER FROUDED BY THE MAT TO THE ITEMS LISTED ACCREDITED MECHANICAL FASTEMER	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECIF ORM TO THE SPECIF THE U.S.A. AND T WE CERTEY THA R TESTING LABORAT MAY NOT BE REPRO NUCOR FASTI A DIVISION BOB HAYNOOT QUALITY ASS	XIMUM I. 8290 0. 9950 THE METHODS PRESS ICATIONS AS DESCI TOF BISNUT, SLEP HE PRODUCT WAS MA OF V. THIS CERTI DUCED EXCEPT IN 1 SUBJ OF NUCCOR COPPORA OF NUCCOR COPPORA DURANCE SPERVISO		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Midth Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS, TH FREE OF MERCURATIONS, TH FREE OF MERCURATIONS, TH FREE OF MERCURATIONS THE STEEL MAS MELTER FROUIDED BY THE MAT TO THE ITEMS LISTED ACCREDITED	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECIF TO THE SPECIF ITOMAL ADDITIONS THE U.S.A. AND T . WE CERTPY THA R TESTING LABORAT MAY NOT REPERP NUCOR FASTI A DIVISION BOB HAVMOON	XIMUM I. 8290 0. 9950 THE METHODS PRESS ICATIONS AS DESCI TOF BISNUT, SLEP HE PRODUCT WAS MA OF V. THIS CERTI DUCED EXCEPT IN 1 SUBJ OF NUCCOR COPPORA OF NUCCOR COPPORA DURANCE SPERVISO		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Width Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS, TH FREE OF MERCUPACIONS, TH FREE OF MERCUPACIONS THE STEEL MAS MELTER FROUDDE DB YTHE MAT TO THE ITEMS LISTED ACCCREDITED HECHANICAL FACTORES	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORM TO THE SPECIF ORM TO THE SPECIF THE U.S.A. AND T WE CERTEY THA R TESTING LABORAT MAY NOT BE REPRO NUCOR FASTI A DIVISION BOB HAYNOOT QUALITY ASS	XIMUM I. 8290 0. 9950 THE METHODS PRESS ICATIONS AS DESCI TOF BISNUT, SLEP HE PRODUCT WAS MA OF V. THIS CERTI DUCED EXCEPT IN 1 SUBJ OF NUCCOR COPPORA OF NUCCOR COPPORA DURANCE SPERVISO		ICABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY
HEAT TREATMENT - AUS DIMENSIONS FER ASM CHARACTERISTIC Width Across Co Thickness ALL TESTS ARE IN AC SPECIFICATIONS, TH FREE OF MERCUPACIONS, TH FREE OF MERCUPACIONS THE STEEL MAS MELTER FROUDDE DB YTHE MAT TO THE ITEMS LISTED ACCCREDITED HECHANICAL FACTORES	TENTTIZED, CIL QUENCHI E BLB.2.6-2006 #SAMPLES TESTED rmars 8 32 CORDANCE WITH THE LATT E SAMPLES TESTED CONFI TAMINATION. NO INTEN 5 AND RANUFACTURED TO AND RANUFACTURED TO AND RANUFACTURED TO NO THIS DOCUMENT AND	HINIHUM HA 1.8240 0.9750 EST REVISIONS OF ORN TO THE SPECTF HIONAL ADDITIONS THE U.S.A. AND T WE CERTY THA R TESTING LABORAT MAY NOT BE REPRO NUCOR FASTH A DIVISION BOB HAYNOOD QUALITY ASS Page 1 of 1	XIMUM I. 8290 0. 9950 THE METHODS PRESS ICATIONS AS DESCI TOF BISNUT, SLEP HE PRODUCT WAS MA OF V. THIS CERTI DUCED EXCEPT IN 1 SUBJ OF NUCCOR COPPORA OF NUCCOR COPPORA DURANCE SPERVISO		ICABLE SAE AND ASTM AND WERE MANUFACTURED I LEAD WERE USED IN THE STED IN THE U.S.A. ON OF INFORMATION REPORT RELATES ONLY

Figure B-45. 5/8 in. Diameter x 1 ¼ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

NUCOR					Mill Certi 4/27/201		ж.				2911 E NORF Fax:	ast Nucor Ro OLK, NE 687 (402) 644-02 (402) 644-03
Sold To:	NUCOR F/ PO BOX 6 3730 COU ST JOE, IN (260) 337- Fax: (435)	ASTENER INDI 100 NTY RD 60 146785-0000 1600 734-4581	ANA		SH	hip To; NUC COU ST J	COR FASTI UNTY RD 6 IOE, IN 467	ENER INDIANA 0 785-0000				
Custo	mer P.O.	123394					1	Sales C	Order	114818.13	3	
Produ	ct Group	Special Bar Qu	uality	•				Part Nun	nber	30001281		1
	Grade	1045L					-	Le	ot ID.	NF112015	55051	
	Size	1-9/32" (1.281:	3) Round					Не	at ID	NF112015	550	
	Product	1-9/32" (1.281)	3) Round 40'	1045L				B.L. Nur	nber	N1-19901	0	
De	scription	1045L						Load Nu	mber	N1-147886	6	
Custor	ner Spec					_	100	Customer P	art#	025016	00000 40	
I hereby dentity in	iai the materia	é described horein ha	e loeen manufectu	red in accordance	on with the specificat	shrute boa anol	rds listeri shov	e end thei li sailslies	fitose rea	quirementa		
- Test outsid	de scope d Mn	of L-A-B accredit	ation Si	S	Ρ	Cu	Cr	NI	N	0	AI	Cb
0.43%	0.68%	0.000%	0.20%	0.016%	0.015%	0.15%	0.10%	0.06%	0.0		.002%	0.001%
Pb 0.000%	Sn 0.C07%	Ca 0.0002%	B 0.0000%	11 0.00 1%	*NICUMO 0.23							
NICUMO: C	u + Ni + M	a										
Reduction R	ntio 24 d											
		s; Coarse Grain	Prosting					and in the second second	-	-		-
		ocesses of the st d are weld free, has not been u emical Testing, M A29-05, ASTM Nucor Steel Ne					been perfo Ipplicable c	rmed ustomer				×
							been perfo	rmed ustomer				
							been perfo	rmed ustomer				
							Cb	emistry Ve				
						inace		eemistry Ve	_RN		263	<i>68</i>
					Electric Arc Fu	inace	Cb	emistry Ve	_RN		263	5 <u>68</u> Date
					Electric Arc Fu Part #	#Receiving	Ch 25 c g OK:_	emistry Ve 216 Checked ØB 02	_RN By 20		263 1	Date /\$7/
					Electric Arc Fu Part #	#Receiving	Ch 25 c g OK:_	eemistry Ve 216 Checked	_RN By 20		263 1	
		Nucor Steel Ne	braska is pro-	duced in an	Electric Arc Fu Part #	#Receiving	Ch 25 c g OK:_	emistry Ve 216 Checked ØB 02	_RN By 20		263 1	Date /\$7/
		LAR ACC BUP	braska is pro-	duced in an	Part # Part # F Certi	#Receiving	Ch 25 c g OK:_	emistry Ve 216 Checked ØB 02	_RN By 20		263 1	Date /\$7/
	Î melted af	LAR ACC BUP	SORATORY BORATORY SEAU SEAU SEAU SEAU SEAU SEAU	duced in an	Part # Part # Certi	# fications	Ch <i>35</i> 0 g OK: OK:	emistry Ve 216 Checked ØB 02	_RN By 20	1 # <u></u>	263 1	Date <u>27</u> -2 }-
6. All materia	Î melted af	LAR ACC Contro L-2292	DORATORY REDITATORY REDITATOR Statu Statu 2 Testing - Cher	duced in an N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Part # Part # Certi	# Receiving fications 	Ch 257 g OK: G OK: st	emistry Ve 216 Checked ØB 02	_RN By 20	1 # <u></u>	263 	Date

Figure B-46. 5/8 in. Diameter x 1 ¼ in. (M16x32 mm) Long Guardrail Bolt and Nut, Part b4, Test Nos. WIDA-1 and WIDA-2

Figure B-47. 5/8 in. (16 mm) Diameter Flat Washer, Part b5, Test Nos. WIDA-1 and WIDA-2

AUGUST 4, 2009

Midwest Machinery & Supply PO Box 81097 Lincoln, NE 68501

The following material delivered on 8/3/09 on bill of lading number 19477 has been inspected before and after treatment and is in full compliance with applicable Nebraska Department of Roads requirements for southern yellow pine Timber Guardrail Components, preservative treated with Chromated-Copper-Arsenate (CCA-C) to a minimum retention of .60 lbs/cu.ft. The acceptance of each piece by company quality control is indicated by a hammer brand on the end of each piece.

MAT	ERIAL	CHARGE #	DATE	RETENTION	QUANTITY
6x8x14"	Blockout (CD)	09-283	7/29/09	0.67	70
6x8x6'	Line Post	09-283	7/29/09	0.67	175
51/2x71/2-46"	TB Bullnose	09-283	7/29/09	0.67	48
6x6x8"	Blockout	09-283	7/29/09	0.67	100
6x8x22"	Blockout	09-283	7/29/09	0.67	70

This certificate applies to material ordered for your order no.: $\mathcal{A}[9]$ For any inquiries, please retain this document for future reference. Thank you for your order. Sincerely,

Karen Storey

SIGNED BEFORE ME THIS 4 DAY OF AUGUST 2009.

Notary: Willing States Notary Public Flored Explored Com My Commission Explores Oct. 19, 2	AND COUNTING	
Phone: 706-234-1605	P.O. Box 99, Armuchee, GA 30105	Fax: 706-235-8132

Figure B-48. BCT Timber Post - MGS Height, Part c1, Test Nos. WIDA-1 and WIDA-2

Charge Re Plant No. : 1	port							т		je: 283 nt:Guardi	rail Type	1				Board Ft : Cubic Ft :	6,037 491	
	dress							,		te : 7/29/0				Тс	otal Treatable		491	
S.I. Storey Lumber										al : CCA					Displaced V	olume In :	502	
285 Sike Storey Ro								Target F	Retentio	n: .60				1	Displaced Vol	lume Out :	535	
Armuchee, GA 30									Cylinde	er:1 (9,090)			Volu	ume Start :	8,616	
PH: 706 234-1605									Tar	ik: 3					Volun	ne Finish :	7.598	
Fax:706 235-8132										or: Richar					Volu	me Used :	1,018	
EPA Reg. No. 3008	9.36							Т	otal Tim	e: 2:06:4	13				Penetration			
LFA Rey. No. 3000	0-30					т	urn Ar	round Ti	me (mi	n): 2,676					Penetratio	on Failed :	0	
							Time/	Date Off	Drip Pa	id :					Treat	t By Tally :	True	
Step	1 7	Time	Pr	essure	1	njectio	n	1	Retenti	on i		Flow Rat	te		Time		Volume	Reason
0000	Min M			Max Act	1	Max	Act	Min	Max	Act	Min	Max	Act	Ramp	Start	End	End	
Initial Vacuum		7 17	0	-23 -23		0.00	0.00	.00	.00	.00	0.00	0.00	0.00	0	12:42:23	12:59:25	. 8,616	Time
Fill		0 7	0	-23 10		0.00	0.00	.00	.00	.00	0.00	0.00	0.00	0	12:59:25	13:06:05	3.281	Full
Raise Press		2 0	0	75 78	1 2 2 2 3	0.00	0.08	.00	.00	.01	0.00	0.00	0.00	0	13:06:06	13:06:26	3,159	PSI
Pressure		45	75	140 128	100000000	3.20	1.97	.00	.00	.32	0.00	0.00	0.01	1	13:06:26	13:51:27	2.229	Time
Press Relief	-	1 1	0	25 13		0.00	1.93	.00	.00	.31	0.00	0.00	0.00	1	13:51:27	13:52:15	2,249	PSI
Empty		0 9	0	0 0	0.00	0.00	2.61	.00	.00	.42	0.00	0.00	0.00	0	13:52:15	14:00:55	7.334	Empty
Final Vacuum		45	0	-29 -26		1.75	2.10	.00	.00	.34	0.00	0.00	0.01	0	14:00:55	14:45:57	7,588	Time
Final Empty		1 2	-1	-1 -1 -1 0	0.00	0.00	2.09	.00	.00.	.34	0.00	0.00	0.00	0	14:45:57	14:48:02	7,593	Empty
Finish	0	1 1	1 0	-1 0	0.00	0.00	2.07			.34	0.00		1	0	14:48:03	14:49:06	7,598	Time
AUTO ADDRESS OF		NEW COLOR		on Percen			-	Lbs. Per			-	Total	Contractor of the local division of the loca	ACCOUNTS OF A DESCRIPTION OF	etention	10000	Assay	
	Chemica CCA		Start 90 %	1.90		.162		EIDIS .162		Absorbed		Sauge 165	Absorbed 165	.337	Absorbed	i Min Ret	en Wood	100
			.90 %	1.90	1000 B	.162	2 C 1	.162		.1624		165	165	.337	.337	.60		
	10	Lais .	.00 70	1.00	70							100	100			1 .00		
ENERGY STREET, STREET, STR		ditive List					-	01-0					Automatic M					D.4
Ad		the second se	Solu	tion %		F		Che		. 1	Current	t Value	Target Valu	ie l	Required	Act	New York Control of Co	
Ad		the second se	Solu	tion %		-		Wa	ater		-	t Value Gals.	Target Valu - Gals	ie l	Required 319 Gals.	- 1,3	11 Gals.	-8 Gals.
Ad		the second se	Solu	tion %				Wa			and the first of the local division	t Value Gals.	Target Valu	ie l	Required	- 1,3	New York Control of Co	
	ditives	1						Wa Ci	ater CA	·	1.88	t Value Gals. %	Target Valu - Gals 1.90 %	le 1,	Required 319 Gals. 25 Gals.	- 1,3	11 Gals. 25 Gals.	-8 Gals. - Gals.
1021.0010	ditives	ieces:175		icks/Size :	5		35	Wa Ci	CA 6 x 8 x 6		- 1.88 t Rough	t Value Gals. % Nebraska #	Target Valu - Gals. 1.90 %	ie 1, 1, : 4,200	Required 319 Gals.	1,3	11 Gals. 25 Gals. % Mois	-8 Gals. - Gals. st. Cont.:
	ditives	1			5		35 None	Wa Ci	CA 6 x 8 x 6	5 Line Post	- 1.88 t Rough	t Value Gals. % Nebraska #	Target Valu - Gals. 1.90 %	le 1,	Required 319 Gals. 25 Gals.	- 1,3	11 Gals. 25 Gals.	-8 Gals. - Gals. st. Cont.:
1021.0010	ditives 021.60 P .60	ieces:175	5 <u></u> Pa	icks/Size :	5			Wa Ci	CA 6 x 8 x 6	eat?: Fal	- 1.88 t Rough	t Value Gals. % Nebraska #	Target Valu - Gals. 1.90 %	e 1, 1, : 4,200 es: <u>SYP</u>	Required 319 Gals. 25 Gals.	0HW:	11 Gals. 25 Gals. % Mois No	-8 Gals. - Gals. st. Cont.:
11 	ditives 021.60 P .60	ieces:175 Mill:	5 <u></u> Pa	icks/Size : Cust Nu	5 um:1		None	Wa Co Desc:	ater CA <u>6 x 8 x 8</u> Retr	eat?: Fal	1.88 t Rough lse (14 Block	Value Gals. % Nebraska # Chg#:	Target Valu - Gals. 1.90 % #1 Dense BF 0 Specie BF	e 1, 1, : 4,200 es: <u>SYP</u>	Required 319 Gals. 25 Gals. CF: 35	0HW:	11 Gals. 25 Gals. % Mois No	-8 Gals. - Gals. st. Cont.: one st. Cont.:
1 021.0010 Std.: 2 021.0010 Std.:	difives 121.60 P .60 108.60 P .60	ieces: <u>175</u> Mill: ieces: <u>70</u> Mill:	5 Pa	icks/Size : Cust Nu icks/Size : Cust Nu	5 Jm: 1 Jm:	_@	None 70 None	Wa Cl Desc: Desc:	ater CA 6 x 8 x 6 Retr	eat?: _Fal 6 x 8 x 0- eat?: _Fal	1.88 t Rough Ise (14 Block	Value Gals. % Nebraska # Chg#: Chg#:	Target Valu - Gals. 1.90 % 11 Dense BF 0 Specie 0 Specie	: 4,200 es: <u>SYP</u> : <u>329</u> es: <u>SYP</u>	Required 319 Gals. 25 Gals. CF: 35 CF: 27	0 HW: Rem1: 7 HW: Rem1:	11 Gals. 25 Gals. % Mois No % Mois No	-8 Gals. - Gals. st. Cont.: one st. Cont.: one
1 021.0010 Std.:	ditives 121.60 P .60 108.60 P .60 9 P	ieces: Mill: ieces:70 Mill: ieces:48	5 Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 Jm: Jm: 1	_@	None 70 None 48	Wa Co Desc:	ater CA 6 x 8 x 8 Retr Retr 5-1	eat?:Fal 6 x 8 x 0- eat?:Fal /2 x 7-1/2 >	1.88 t Rough lse (14 Block lse (0-46 TE	Value Gals. % Nebraska # Chg#: cout Rough Chg#: 3 Bullnose I	Farget Valu - Gals. 1.90 % If Dense BF 0 Specie BF 0 Specie Post BF	ie 1, 1, 2,200 25: <u>SYP</u> 229 25: <u>SYP</u> 229 25: <u>SYP</u> 2720	Required 319 Gals. 25 Gals. CF: CF: CF:	0HW: Rem1: HW: Rem1: HMALYS	11 Gals. 25 Gals. % Mois % Mois	-8 Gals. - Gals. st. Cont.: ine st. Cont.: ine 'ORT
1 021.0010 Std.: 2 021.0010 Std.:	difives 121.60 P .60 108.60 P .60	ieces: Mill: ieces:70 Mill: ieces:48 Mill:	5_ Pa Pa Pa	icks/Size : Cust Nu icks/Size : Cust Nu icks/Size : Cust Nu	5 Jm: 1 Jm: 1 Jm:	_@	None 70 None 48 None	Wa Co Desc: Desc: Desc:	ater CA 6 x 8 x 8 Retr Retr 5-1	eat?: <u>Fal</u> 6 x 8 x 0- eat?: <u>Fal</u> /2 x 7-1/2 x eat?: <u>Fal</u>	1.88 t Rough (se) (se) (0.46 TE (se)	Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(3 Bullnose Chg#:(Farget Valu - Gals. 1.90 % 1 Dense BF 0 Specie BF 0 Specie Post BF 0 Specie	 4,200 329 329 329 329 25: SYP 720 26: SYP 	Required 319 Gals. 25 Gals. CF:35 CF:6 CF:6	0 HW: Rem1:	11 Gals. 25 Gals. % Mois No % Mois No 515 REP	-8 Gals. - Gals. st. Cont.: ine st. Cont.: ine 'ORT
1 021.0010 Std.:	ditives 121.60 P .60 108.60 P .60 9 P .60	ieces: Mill: ieces:70 Mill: ieces:48	5_ Pa Pa Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 Jm: 1 Jm: 1 Jm:	_@	None 70 None 48	Wa Cl Desc: Desc:	ater CA 6 x 8 x 6 Retr 5-1 Retr	eat?: Fal 6 × 8 × 0- eat?: Fal /2 × 7-1/2 > eat?: Fal 6 × 8 × 0-2	1.88 t Rough i ise (1 14 Block se (1 c 0-46 TE ise (1 22" Roug	Value Gals. % Nebraska # Chg#: cout Rough Chg#: 3 Bullnose I	Farget Valu - Gals. 1.90 % 11 Dense BF 0 Specie Post BF 0 Specie 0 Specie BF 0 Specie	4,200 es: SYP : 329 : 329 : 329 : 513	Required 319 Gals. 25 Gals. CF: CF: CF:	0HW: Rem1: HW: Rem1: HMALYS	11 Gals. 25 Gals. 	-8 Gals. - Gals. st. Cont.: nne st. Cont.: nne 'ORT
1 021.0010 Std.:	ditives 121.60 P .60 108.60 P .60 9 P .60	ieces: Mill: ieces:0 Mill: ieces:48 Mill:	5_ Pa Pa Pa	icks/Size : Cust Nu icks/Size : Cust Nu icks/Size : Cust Nu	5 1 1 1 1 1	_@	None 70 None 48 None	Wa Co Desc: Desc: Desc:	ater CA 6 x 8 x 6 Retr 5-1 Retr	eat?: <u>Fal</u> 6 x 8 x 0- eat?: <u>Fal</u> /2 x 7-1/2 x eat?: <u>Fal</u>	1.88 t Rough i ise (1 14 Block se (1 c 0-46 TE ise (1 22" Roug	Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(3 Bullnose Chg#:(Farget Valu - Gals. 1.90 % 1 Dense BF 0 Specie BF 0 Specie Post BF 0 Specie BF 0 Specie	4,200 es: SYP : 329 : 329 : 329 : 513	Required 319 Gals. 25 Gals. CF:35 CF:6 CF:6	0 HW: Rem1:	11 Gals. 25 Gals. 	-8 Gals. - Gals. st. Cont.: nne st. Cont.: nne 'ORT
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60	ieces: Mill: ieces:0 Mill: ieces:48 Mill: ieces:70	5 Pa Pa Pa Pa	icks/Size : Cust Nu icks/Size : Cust Nu icks/Size : Cust Nu icks/Size :	5 1 1 1 1 1		None 70 None 48 None 70	Wa Co Desc: Desc: Desc:	ater CA 	eat?:Fal 6 x 8 x 0- eat?:Fal /2 x 7-1/2 > eat?:Fal 6 x 8 x 0-2 eat?:Fal	1.88 1.88 14 Block 14 Block (0-46 TE (se) (0-46 TE (se) (22" Roug	Nebraska # Chg#:(cout Rough Chg#:(B Bullnose I Chg#:(gh Blockout	Farget Valu - Gals. 1.90 % 1 Dense BF 0 Specie Post BF 0 Specie BF 0 Specie BF 0 Specie	a 1, i 329 is: SYP i: 720 i: 513 i: SYP	Required 319 Gals. 25 Gals. CF:35 CF:6 CF:6	0 HW: Rem1:	11 Gals. 25 Gals. 	- Gals. st. Cont.:
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60	ieces: Mill: ieces:70 Mill: ieces:48 Mill: ieces:70 Mill:	5 Pa Pa Pa Pa	icks/Size : Cust Nu icks/Size : Cust Nu icks/Size : Cust Nu icks/Size : Cust Nu	5 1 1 1 1 1 1 1 1	 	None 70 None 48 None 70 None	Wa C Desc: Desc: Desc: Desc:	ater CA Retr S-1 Retr Retr	eat?: <u>Fal</u> 6 × 8 × 0- eat?: <u>Fal</u> /2 × 7-1/2 > eat?: <u>Fal</u> 6 × 8 × 0-2 eat?: <u>Fal</u> 6 × 6 × 8"	1.88 t Rough (14 Block (0-46 TE (0-46 TE (22" Roug (22" Roug (se (12) (Post Block))	Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(3 Bullnose Chg#:(h Blockout Chg#:(h Bl	Farget Valu - Gals. 1.90 % 1.90 % 1.90 % 5 Specie BF 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie	a 1, i 329 is: SYP i: 720 i: 513 i: SYP	Required 319 Gals. 25 Gals. CF: CF: CF: CF:	0 HW: Rem1:	11 Gals. 25 Gals. 	-8 Gals. - Gals. st. Cont.: me st. Cont.: me *ORT = 0.32 PCf = 0.12 PCf
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60 9 P	ieces: Mill: ieces:70 Mill: ieces:48 Mill: ieces:70 Mill: ieces:70	5 Pa Pa Pa Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 1 1 1 1 1 1 1 1	 	None 70 None 48 None 70 None	Wa C Desc: Desc: Desc: Desc:	ater CA Retr S-1 Retr Retr	eat?:Fal 6 x 8 x 0- eat?:Fal /2 x 7-1/2 > eat?:Fal 6 x 8 x 0-2 eat?:Fal	1.88 t Rough (14 Block (0-46 TE (0-46 TE (22" Roug (22" Roug (se (12) (Post Block))	Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(B Bullnose I Chg#:(h Blockout Chg#:(h Blockout h Bloch	Farget Valu - Gals. 1.90 % 1.90 % 1.90 % 5 Specie BF 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie	a 1, i 329 i 720 is: SYP i 513 is: SYP i 275	Required 319 Gals. 25 Gals. CF:	0 HW: Rem1: Rem1: Rem1: Rem1: Rem1: RETEN1	11 Gals. 25 Gals. % Mois No % Mois No 515 REP 10N CR03 CU0 R5205	-8 Gals. - Gals. st. Cont.: me st. Cont.: me *ORT = 0.32 PC = 0.12 PC = 0.23 PC
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60 9 P	ieces: Mill: ieces:70 Mill: ieces:48 Mill: ieces:70 Mill: ieces:70	5 Pa Pa Pa Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 1 1 1 1 1 1 1 1	 	None 70 None 48 None 70 None	Wa C Desc: Desc: Desc: Desc:	ater CA Retr S-1 Retr Retr	eat?: <u>Fal</u> 6 × 8 × 0- eat?: <u>Fal</u> /2 × 7-1/2 > eat?: <u>Fal</u> 6 × 8 × 0-2 eat?: <u>Fal</u> 6 × 6 × 8"	1.88 t Rough (14 Block (0-46 TE (0-46 TE (22" Roug (22" Roug (se (12) (Post Block))	Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(B Bullnose I Chg#:(h Blockout Chg#:(h Blockout h Bloch	Farget Valu - Gals. 1.90 % 1.90 % 1.90 % 5 Specie BF 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie	a 1, i 329 i 720 is: SYP i 513 is: SYP i 275	Required 319 Gals. 25 Gals. CF:	0 HW: Rem1: Rem1: Rem1: Rem1: RETENT	11 Gals. 25 Gals. % Mois No % Mois No 515 REP 10N CR03 C00 R5205 RETENT	-8 Gals. - Gals. st. Cont.: me st. Cont.: me *ORT = 0.32 PC = 0.12 PC = 0.23 PC
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60 9 P	ieces: Mill: ieces:70 Mill: ieces:48 Mill: ieces:70 Mill: ieces:70	5 Pa Pa Pa Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 1 1 1 1 1 1 1 1	 	None 70 None 48 None 70 None	Wa C Desc: Desc: Desc: Desc:	ater CA Retr S-1 Retr Retr	eat?: <u>Fal</u> 6 × 8 × 0- eat?: <u>Fal</u> /2 × 7-1/2 > eat?: <u>Fal</u> 6 × 8 × 0-2 eat?: <u>Fal</u> 6 × 6 × 8"	1.88 t Rough (14 Block (0-46 TE (0-46 TE (22" Roug (22" Roug (se (12) (Post Block))	Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(B Bullnose I Chg#:(h Blockout Chg#:(h Blockout h Bloch	Farget Valu - Gals. 1.90 % 1.90 % 1.90 % 5 Specie BF 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie	a 1, i 329 i 720 is: SYP i 513 is: SYP i 275	Required 319 Gals. 25 Gals. CF: CF: CF: CF: CF:	0 HW: Rem1: Rem1: Rem1: Rem1: RETENT	11 Gals. 25 Gals. % Mois No % Mois No 515 REP 10N CR03 CU0 R5205	-8 Gals. - Gals. st. Cont.: me st. Cont.: me *ORT = 0.32 PC = 0.12 PC = 0.23 PC
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60 9 P	ieces: Mill: ieces:70 Mill: ieces:48 Mill: ieces:70 Mill: ieces:70	5 Pa Pa Pa Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 1 1 1 1 1 1 1 1	 	None 70 None 48 None 70 None	Wa C Desc: Desc: Desc: Desc:	ater CA Retr S-1 Retr Retr	eat?: <u>Fal</u> 6 × 8 × 0- eat?: <u>Fal</u> /2 × 7-1/2 > eat?: <u>Fal</u> 6 × 8 × 0-2 eat?: <u>Fal</u> 6 × 6 × 8"		Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(B Bullnose I Chg#:(h Blockout Chg#:(h Blockout h Bloch	Farget Valu - Gals. 1.90 % 1.90 % 1.90 % 5 Specie BF 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie	a 1, i 329 i 720 is: SYP i 513 is: SYP i 275	Required 319 Gals. 25 Gals. CF:35 CF: CF: CF: CF:	0 HW: Rem1:	11 Gals. 25 Gals. % Mois No % Mois No 515 REP 10N CR03 C00 R5205 RETENT	-8 Gals. - Gals. st. Cont.: - ine *ORT *ORT = 0.32 PC = 0.12 PC = 0.23 PC *ION
1 021.0010 Std.:	dítives 121.60 P .60 108.60 P .60 9 P .60 9 P .60 9 P	ieces: Mill: ieces:70 Mill: ieces:48 Mill: ieces:70 Mill: ieces:70	5 Pa Pa Pa Pa	cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size : Cust Nu cks/Size :	5 1 1 1 1 1 1 1 1	 	None 70 None 48 None 70 None	Wa C Desc: Desc: Desc: Desc:	ater CA Retr S-1 Retr Retr	eat?: <u>Fal</u> 6 × 8 × 0- eat?: <u>Fal</u> /2 × 7-1/2 > eat?: <u>Fal</u> 6 × 8 × 0-2 eat?: <u>Fal</u> 6 × 6 × 8"		Value Gals. % Nebraska # Chg#:(cout Rough Chg#:(B Bullnose I Chg#:(h Blockout Chg#:(h Blockout h Bloch	Farget Valu - Gals. 1.90 % 1.90 % 1.90 % 5 Specie BF 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie 0 Specie	a 1, i 329 i 720 is: SYP i 513 is: SYP i 275	Required 319 Gals. 25 Gals. CF:35 CF: CF: CF: CF:	0 HW: Rem1:	11 Gals. 25 Gals. 	-8 Gals. - Gals. st. Cont.: - ine *ORT *ORT = 0.32 PC = 0.12 PC = 0.23 PC *ION

Figure B-49. BCT Timber Post - MGS Height, Part c1, Test Nos. WIDA-1 and WIDA-2

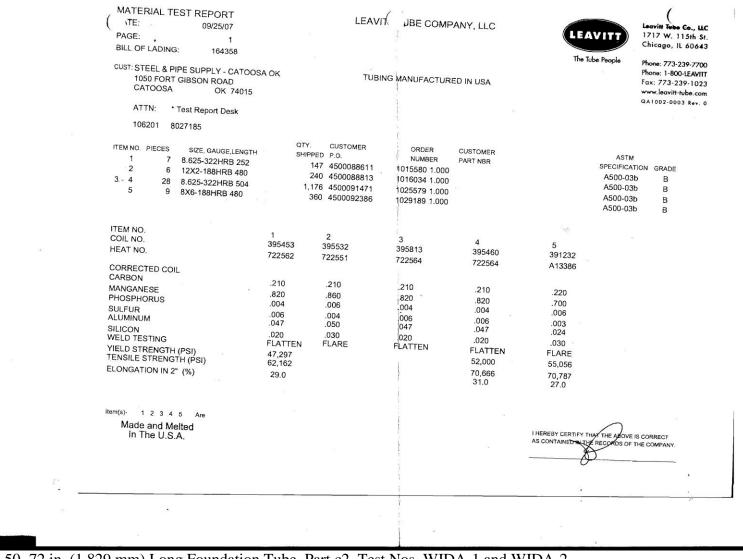


Figure B-50. 72 in. (1,829 mm) Long Foundation Tube, Part c2, Test Nos. WIDA-1 and WIDA-2

Certified Analysis

Order Number. 1108107

Customer PO: 2132

BOL Number: 48341

Use State: KS

Document #: 1 Shipped To: NE

4 of 7

As of: 5/22/09

MACHINERY	Qty	Part#	Description	Spec CL	TY	Heat Code/ Heat #	Yield	15	Elg	С	Mn	P	s	Si	Cu	Сь	Cr	Va .	ACW
Ŧ			and the second	M-180 A	2	C49037	64,600	88,600	21.2	0.210	0.880	0.010	0.000	0.030	0.080	0.000	0.060	0.010	4
MAC	. 25	736G	57TUBE SL/.188"X6"X8"FLA	A-500		¥85912	56,500	72,980	37.0	0.210	0.770	0.009	0.006	0.016	0.010	0.00	0.020	0.001	4
MIDWEST	6	742G	60 TUBE SL/.188X8X6	A-500		Y85912	56,500	72,980	37.0	0.210	0.770	0.009	0.006	0.016	0.010	0.08	0.020	0.001	4
MID	26	764G	1/4"X24"X24"SOIL PLATE	A-36		120039	46,660	73,630	26.9	0.190	0.520	0.012	0.003	0.020	0.090	0.00	0.040	0.000	4
	32	923G	BRONSTAD 98" W/O	M-180 A	2	122209	63,590	82,010	26.6	0.190	0.730	0.015	9.004	0.020	0.110	0.00	0.040	0.000	4
	4	9270	10/END SHOE/EXT	M-180 B	2	A314375	59,770	78,641	23.4	0.210	0.750	0.017	0.005	0.030	0.090	0.00	0.036	0.002	4

402-761-3288 Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

- ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36
- ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.
- BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
- NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

16:35 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH-49100 LB

- State of Ohio, County of Allen. Sworn and subscribed before me this 22nd day of May, 2009
- Notary Public:
- 06/04/2009 Commission Expires /1 28 17012

Trinity High Certified By:

Figure B-51. 72 in. (1,829 mm) Long Foundation Tube, Part c2, Test Nos. WIDA-1 and WIDA-2

46/52

PAGE

Trinity Highway Products, LLC

Customer: MIDWEST MACH & SUPPLY CO.

LINCOLN, NE 68501-1097

P. O. BOX 81097

425 E. O'Connor

Project: STOCK

Lima, OH

Linna, OH Constonner: MIDWEST MACH.& SUPPLY CO. P. O. BOX \$1097

A25 E. O'Connor

Sales Order: 1093497 Customer PO: 2030 BOL # 43073 Document # 1 Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS

LINCOLN, NE 68501-1097

Trinity Highway Products. LLC

Certificate Of Compliance For Trinity Industries, Inc. ** SLOTTED RAIL TERMINAL **

NCHRP Report 350 Compliant

E Pieces	Description	- -	
Pieces 32 32 32 32 32 32 32 32 540 1,728 1,152 256 54	12/12/6/S SRT-1 12/250/SPEC/S SRT-2 3/16X12.5X16 CAB ANC BRKT 2" X 5 1/2" PIPE (LONG) 60 TUBE SL/.188X8X6 5/6 X 6 X 8 BEARING PLATE 12/BUTFER/ROLLED CEL 3/4X6%/DBL SWG/NOHWD 5/8" RD WASHER 1 3/4 OD 5/8" GR HEX NUT 5/8" X1.25" GR BOLT 5/8"X1.25" GR BOLT 5/8"X1.5" HEX BOLT A307 5/6"X3.5" HEX BOLT A307		
	all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.	ĩ	
8900		- 19 	
1-3			
22.			
ALL STEEL U	SED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT	<u>к</u>	14
ALL QUARDR	AIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36		,
	ALVANIZED MATERIAL CONFORMS WITH ASTM-123.	THE OTTEN SHOT OF ATEN	
STITS COMP	LY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UN Y WITH ASTM A-363 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNL	ESS OTHERWISE STATED.	
1/4" DIA CABL	B 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II I	REAKING	
STRENGTH-4		A Mr	
vitate of Unio, Co	sunty of Allen. Sworn and Subscribed before merinis 36th day of June, 2008	NO.X	
Stotary Public:	(num muth) Certified By:	WKL Lalma	
Svotary Public:	mirae & h h h h h h	N	A 3- F

Figure B-52. Strut and Yoke Assembly, Part c3, Test Nos. WIDA-1 and WIDA-2

						6											.wway	Prod.	
						Certif	ied Analy	sis								Trinity K.	igne .		111
Frinity Hig	ghway Pi	roducts, LLC																100	7
50 East R	obb Ave					Ore	ier Number: 114521.	5									-	1	
Lima, OH 4	5801					C	ustomer PO: 2441									22 121120			
		EST MACH.& SUPPLY C	0				OL Number: 61905								A	s of: 4/1.	5/11		
Justomer.			.0.								2								
	P. O. B	OX 703					Document #: 1												
							Shipped To: NE												
	MILFO	RD, NE 68405					Use State: KS												
Project:	RESAL	LE																	
0.	D. 44	Developing	S	CT		Heat Code/ Heat#	Vield	TS	121.	6	M		0		0	C 1-	0	v	
- Qty 10	Part # 206G	Description T12/6'3/S	Spec M-180	CL	2	Heat Code/ Heat # 140734	64,240	18	Elg		Mn 0.740 (P	S	Si	Cu	Cb 0.00 0.	Cr 050 0	Vn A	4
10	2000	1120010	M-180	A		139587	64,220	81,750		0.190		0.014				0.000 0			
	10		M-180	A		139588	63,850	82,080		0.200		0.012				0.000 0			
			M-180	А	2	139589	\$5,670	74,810	27.7	0.190	0.720	0.012	0.003	0.020	0.130	0.000 0	.060 (0.002	4
			M-180	А	2	140733	59,000	78,200	28.1	0.190	0.740	0.015	0.006	0.010	0.120	0.000 0	.070	0.001	4
55	260G	T12/25/6'3/S	M-180	À	2	139588	63,350	82,080	24.9	0.200	0.730 (0.012 0	.004	0.020	0.140	0.00 0.	050 0	.002	4
			M-180	А	2	139206	61,730	78,580	26.0	0.180	0.710	0.012	0.004	0.020	0.140	0.000 0	0.050	0.001	4
			M-180	А	2	139587	64,220	81,750	28.5	0.190	0.720	0.014	0.003	0.020	0.130	0.000 (0.060	0.002	4
			M-180	А		140733	59,000	78,200	28.1	0.190		0.015				0.000 0			
			M-180	A		140734	64,240	82,640		0.190		0.015				0.000 0			
	260G	2	M-180	A	2	140734	64,240	\$2,640			0.740					0.00 0			4
			M-180	A		139587	64,220	81,750		0.190		0.014				0.000 0			
			M-180 M-180	A A			63,850 55.670	\$2,080 74,810	24.9	0.200		0.012				0.000 0			
			M-180	A			59,000	74,810		0.190		0.012						0.00.000	
26	701A	.25X11.75X16 CAB ANC	A-36	~	2	V911470	51,460	71,280			0.800					0.000 0			
	701A		A-36			N3540A	46,200	65,000	31.0	0.120	0.380	0.010	0.019	0.010	0.180	0.00 0	.070 (0.001	4
24	729G	TS 8X6X3/16X8'-0" SLEEVE	E A-500			N4747	63,548	85,106	27.0	0.150	0.610	0.013	0.001	0.040	0.160	0.00 0	.160 (0.004	4
24	749G	TS 8X6X3/16X6'-0" SLEEVI	E A-500			N4747	63,548	85,106	27.0	0.150	0.610	0.013	0.001	0.040	0.160	0.00 0	.160 (0.004	4
22	782G	5/8"X8"X8" BEAR PL/OF	A-36			18486	49,000	78,000	25.1	0.210	0.860	0.021	0.036	0.250	0.260	0.00 0	.170 (0.014	4
25	974G	T12/TRANS RAIL/6'3"/3'1.5	M-180	Α	2	140735	61,390	80,240	27.1	0.200	0.740	0.014	0.005	0.010	0.120	0.00 0	.070 (0.001	4
																	1 01	2	
																		-	

Figure B-53. 8x8x5/8 in. (127x203x16 mm) Anchor Cable Bearing Plate, Part c4, Test Nos. WIDA-1 and WIDA-2

2.7 2427 East Judd Rd., Burton, MI 48529 Phone (810) 744-4540 • Fax (810) 744-1588 NOVEMBER 15TH 2011 TRINITY INDUSTRIES-DALLAS TRINITY INDUSTRIES-LLC-55 550 EAST ROBB AVE. LIMA, OHIO 45801 ATTN: MR. KEITH HAMBURG ENCLOSED ARE THE NECESSARY COMPLIANCE CERTIFICATES FOR YOUR PURCHASE ORDER# 146071. THESE CERTIFICATES ARE FOR YOUR PART # 003000G (750) PCS 3/4" X 6FT 6IN DOUBLE SWAGE GUARD RAIL ASSEMBLIES, YOUR PART #003011G (20) PCS 3/4" X 11FT 3IN SINGLE SWAGE GUARDRAIL ASSEMBLIES, YOUR PART # 003012G (150) PCS 3/4" X 8FT DOUBLE SWAGE GUARDRAIL ASSEMBLIES, THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, MELTED AND MANUFACTURED IN THE USA. VERY TRULY YOURS ol Carpenter JOE CARPENTER OFFICE / CUSTOMER SERVICE MGR 18 201 NITY HWY PRODUCTS, LLC Plant 68

Figure B-54. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2

1

24150 Oak Grove Late PO Box 844 Sedalia, MO 65302

660.829.6721 Fax 660.829.6780

November 9th, 2011

Order No. 81156

CERTIFICATION OF COMPLIANCE

This is to certify that the diameter, strand construction, minimum breaking strength, and wire coating weights for RP122260 3/4 6x19W RR A741 CL-A SC -US produced on 428-277631 are in accordance with ASTM A741-98 (2003) titled "Standard Specification for Zinc Coated Steel Wire Rope and Fittings for Highway Goard Rail".

All rope manufacturing processes occurred in the United States. All steel used was melted and manufactured in the United States.

ACTUAL TEST DATA

MEASURED ROPE DIAMETER:	0.7560		
STRAND CONSTRUCTION:	19 WARRING	TON 1-6-(6+	6)
BREAKING STRENGTH:	51,885 pounds	Req	d. 42,800 pounds
ZINC COATING WEIGHT'S (Class A):	Wire Dia.	Min, Oz/ft ²	Avg. Oz/ft ²
	.0395"	N/A	0.429
	.0460"	0.40	0.454
	.0540"	0.40	0.444
	.0610"	0.40	0.463
WIRECO WORLD GROUP			

Michele Johnson Quality Process Administrative Assistant Muhle Johnson

Page 1

Figure B-55. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2

Certificate of Compliance

Report of Chemical Analysis and Physical Tests Customer: Commercial Group

G-2427 E Judd Group

Burton, MI 48529

Date November 9th, 2011

Order 81156 Reel numbers 428-277631-1-2-3

Rope Description 3/4 6x19W RR A741 CLA SC

		Tensile St	rength		Tors				1		
Item			Lbs. per	WH.	Test	Heat			1		
No.	Description	Lbs.	sq. in.	Coat	8"	No.	c	MN	P	s	Si
001	.0395" Galvanized	Wire									
	0.0395	344	281,000	0.413	87	11R541721	0.81	0.59	0.018	0.007	0.20
						11R541722	0.80	0.56	0.011	0.008	0.23
	0.0395	344	281,000	0.411	86	10R534925	0.79	0.60	0.012	0.003	0.22
					1	10R536303	0.79	0.54	0.008	0.006	0.23
	0.0395	329	268,000	0.418	69	108532013	0.81	0.56	0.013	0.007	0.21
						10R532996	0.80	0.55	0.011	0.004	0.24
	0.0395	348	284,000	0.415	86	9R525608	0.79	0.56	0.019	0.010	0.24
	0.0395	359	293,000	0.448	81	10R536602	0.83	0.59	0.014	0.004	0.21
					81	11R530539	0.74	0.67	0.012	0.007	0.22
	0.0395	331	270,000	0.446	94	108532996	0.80	0.55	0.011	0.004	0.24
	0.0395	349	285,000	0.349	79	108539802	0.81	0.56	0.009	0.008	0.25
002	.0460" Galvanized	Wire							1		1
	0.0460	417	251,000	0.478	69	108533658	0.79	0.53	0.008	0.009	0.23
		•				10R534943	0.58	0.70	0.012	0.004	0.23
	0.0460	431	259,000	0.431	78	08R521550	0.79	0.57	0.017	0.005	0.22
						08R520728	0.80	0.56	0.012	0.013	0.19
	0.0460	429	258,000	0,458	67	10R538434	0.79	0.58	0.009	0.006	0.22
	0.0460	425	256,000	0.450	69	07R514031	0.79	0.59	0.014	0.014	0.22
003	.0540" Galvanized	Wire									
	0.054	661	289,000	0.418	56	10R538434	0.79	0.58	0.009	0.006	0.22
						10R536258	0.81	0.57	0.010	0.006	0.24
						10R534277		0.56	1	0.001	0.24
	0.054	651	284,000	0.467	58	09R527474	0.80	0.57	0.011	0.014	0.20
						09R529653		0.58	1	0.011	0.25
	0.054	671	293,000	0.477	53	11R530641		0.51	1	800.0	0.22
						11R528609	1	0.65	1	0.006	0.27
	0.054	649		0.428	62	09R531038	1	0.58		0.009	0.23
	0.054	658	287,000	0.431	59	10R531471	0.80	0.57		0.011	0.24
	0.054	622	272,000	0.443	58	108532995	0.81	0.56	0.008	0.005	0.23
004	.0610" Galvanized		· · · · · · · · · · · · · · · · · · ·								1
	0.061	741	254,000	0.411	58.	08R519995	0.80	0.57	0.013	0.11	0.21
	0.061	781	267,000	0.504	46	11R528609		0.65		0.006	0.27
	No recorded at						0.79	0.51		0.008	0.22
	0.061	775	265,000	0.478	58	09R531039	0.80	0.58	0.010	0.009	0.23
	1	1	1	1	1	1		1	1		L

The material covered by this certification was manufactured and tested in accordance with spacifications as listed above. We certify that representative samples of the material have been fested and the results conform to the requirements outlined in these specifications.

The chemical, physical, or mechanical tosts reported above are correct as contained in the records of the corporation. ,

,

Michele Johnson michile of 1000

Figure B-56. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2

Signed:

Page 2

357

,									140	**	
, Sep.08.2011 10:	37 AM									PAG	E. 2/1
.Aar. 24. 20:1-: 3:	18PM N	IEW DIM	EVSION	METALS				Ŋ	o. 5031	۲, ۱,	
	Dayton,	ryden R Ohio 45	d. 5439	IAL CI	ERTIF	CATIO	N		Date	s: 3/24/2	011
	(931) 2	99-223:	3			T					
BILTO REMLINGER MANUFA P.O. BOX 299 KALIDA, OH45853	CTURING			×	163	ILINGE 94 U.S.	R MANU 224 H 4585		RING		
Customer PO#: 0077	748-00			(ustor	ner Pa	t#:				
Order Date: 12/6/201						1 Descr					
NDM S0: 30504 - 1 Item code: H1625RC	7	02			HR 1	-5/8 RD	1035 X DEGAS CARBON	20 FT / ASTM A	4576		
			MATER	AL TES	TRESL	ILTS					
Heat #: M39998 Chemical Composition %	Mn	P	<u>s</u>	SI	Ni	Cy	G	Mo	B	Pb	AI
0.33 Material Grade: 1035		0.018	0.024	0.250	0.060	0,150	0,110	0.020	0.000	0.000	0.035
Grade Min: 0.320 Max: 0.380		0.000	0,000 0,050	0.000 0.350	0.000	0,000 0.350	0.000 0.350	0.000	0,000	0,000 0,000	0.000
Material conforms to AS I certify that the above in New Dimension Metals المعتد M. Wilson Daniel M. Wilson Director of Quality & Tec	nformation Corp.	is true	and acc	urate as	s contai	ned in th	e record	s of the d	compañ	у,	
		11000		•							
								3		*	
											÷
										<i>1</i> 0	
								Fo	om: ND!	MQ200-F	R (10/08)
New Dimension Metals I	SO 9001:2	2008 ce	rtificate	¥ 3600							age 1 of 1
New Dimension Metals I	SO 9001:2	2008 ce	rtificate;	# 3600	;		8				

Figure B-57. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2

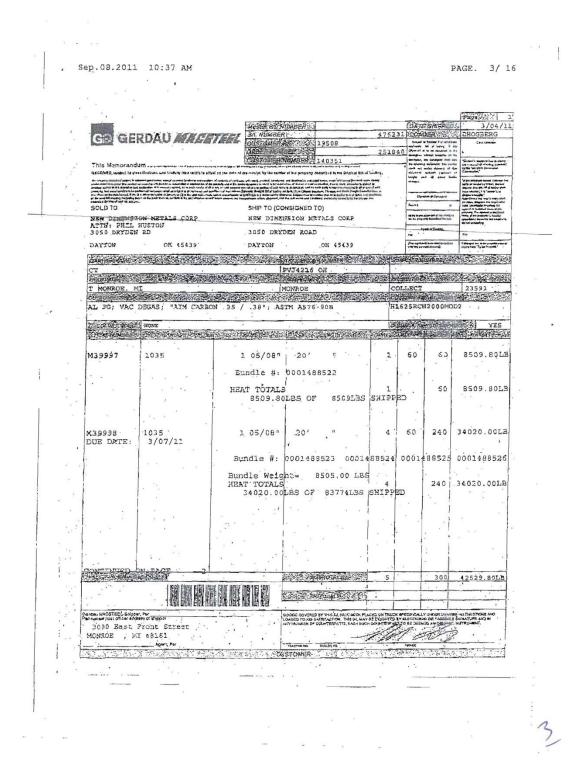


Figure B-58. BCT Anchor Cable Assembly, Part c5, Test Nos. WIDA-1 and WIDA-2

															201	Van Prov	
						Certifi	ed Analy	ysis							Hapit		acts 115
Frinity Hig	ghway Pr	oducts, LLC															7
50 East R	obb Ave					Order	r Number: 11452	15									
Lima, OH 4	5801					Cust	tomer PO: 2441										
			~											A	s of: 4/15/1	1	
Justomer:		EST MACH.& SUPPLY C	0.				Number: 61905										
	P. O. B	OX 703				Do	cument #: 1										
						Sh	nipped To: NE										
	MILFO	RD, NE 68405				T	Use State: KS										
Project:	RESAL	E															
						· · · ·										-	
									5								
- Qty	Part #		Spec	CL		Heat Code/ Heat #	Vield	TS	Elg	С	Mn	P S		Cu	Ch Cr		ACW
10	206G	T12/63/S	M-180	A	2	140734	64,240	82,640				0.015 0.006			0.00 0.060		
			M-180	A	2	139587	64,220	81,750				0.014 0.00			0.000 0.06		
			M-180	A	2	139588	63,850	82,080		0.200		0.012 0.00			0.000 0.05		
			M-180	A	2	139589	55,670	74,810		0.190		0.012 0.00			0.000 0.06		
55	260G	T12/25/6'3/S	M-180 M-180	A	22	140733 139588	59,000 63,850	78,200 82,080	28.1	0.190		0.015 0.00			0.000 0.07		
55	2000	112120/00/0	M-180	A		139206	61,730	78,580		0.180		0.012 0.00			0.000 0.05		
			M-180	A	2	139206	64,220	81,750	28.5			0.012 0.00					
	2		M-180	A		140733	59,000	78,200		0.190		0.014 0.00					
		i i	M-180	A		140734	64,240	82,640		0.190		0.015 0.00					
	260G		M-180	A	2	140734	64,240	\$2,640				0.015 0.00			0.00 0.06		
			M-180	А	2	139587	64,220	81,750	28.5	0.190	0.720	0.014 0.00	0.020	0.130	0.000 0.00	0.00	2 4
			M-180	A	2	139588	63,850	\$2,080	24.9	0.200	0.730	0.012 0.0	04 0.020	0.140	0.000 0.05	0.00	2 4
			M-180	A	2	139589	\$5,670	74,810	27.7	0.190	0.720	0.012 0.0	03 0.020	0.130			
			M-180	А	2	140733	59,000	78,200	28.1	0.190	0.740	0.015 0.0	06 0.010	0.120	0.000 0.0	70 0.00	14
26	701A	.25X11.75X16 CAB ANC	A-36			V911470	51,460	71,280	27.5	0.120	0.800	0.015 0.03	0.190	0.300	0.00 0.09	0 0.023	4
	701A		A-36			N3540A	46,200	65,000	31.0	0.120	0.380	0.010 0.01	9 0.010	0.180	0.00 0.07	0 0.001	4
24	7290	TS 8X6X3/16X8'-0" SLEEVE	A-500			N4747	63,548	85,106	27.0	0.150	0.610	0.013 0.00	0.040	0.160	0.00 0.16	0 0.004	4
24	749G	TS \$X6X3/16X6'-0" SLEEVE	A-500			N4747	63,548	85,106	27.0	0.150	0.610	0.013 0.00	0.040	0.160	0.00 0.16	0 0.004	4
22	782G	5/8"X8"X8" BEAR PL/OF	A-36			18486	49,000	78,000	25.1	0.210	0.860	0.021 0.03	6 0.250	0.260	0.00 0.17	0 0.014	4
25	974G	T12/TRANS RAIL/6'3"/3'1.5	M-180	А	2	140735	61,390	80,240	27.1	0.200	0.740	0.014 0.00	0.010	0.120	0.00 0.07	0 0.00	4
															1	of 2	
															~		

Figure B-59. Anchor Bracket Assembly, Part c6, Test Nos. WIDA-1 and WIDA-2

360

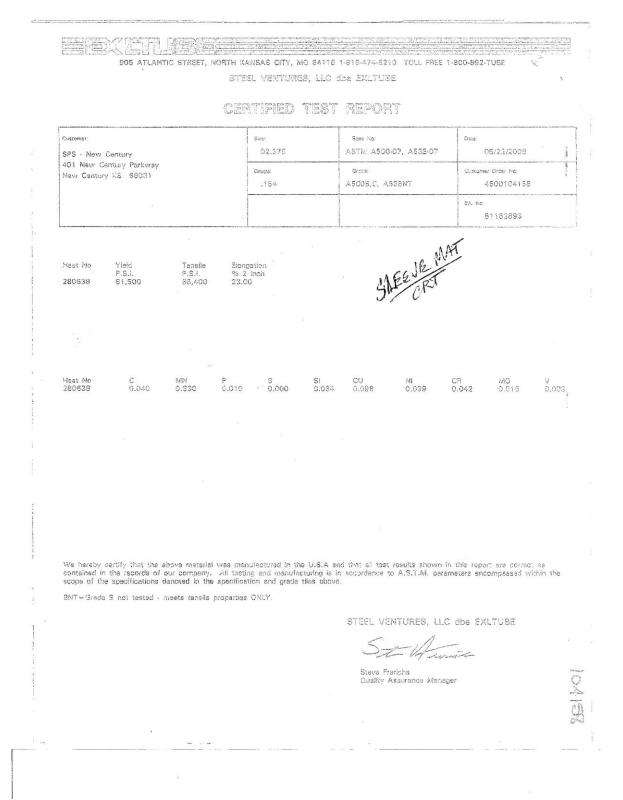


Figure B-60. 2 3/8 in. (60 mm) O.D. x 6 in. (152 mm) Long BCT Post Sleeve, Part c7, Test Nos.WIDA-1 and WIDA-2

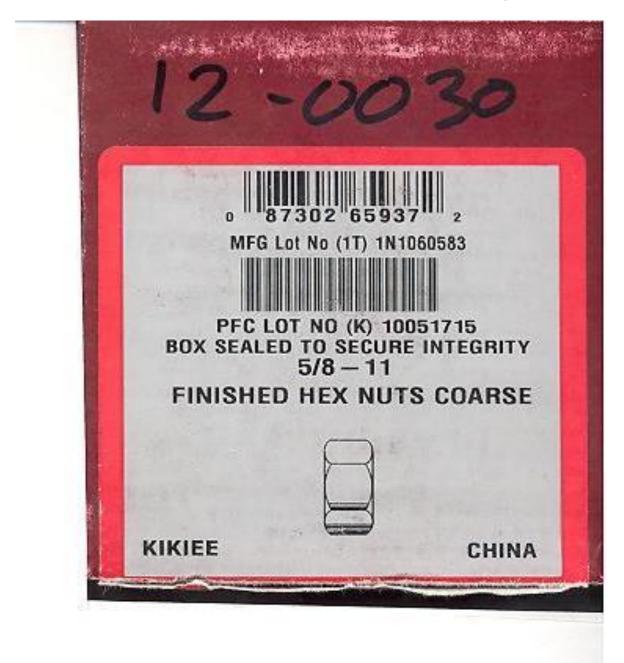


Figure B-61. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part c8, Test Nos.WIDA-1 and WIDA-2

Birmingham Fastener Manufacturing P.O. Box 10323

P.O. Box 10323 Birmingham, Alabama 35202 (205) 595-3512

Pg 1 of 1

Certificate of Compliance

tem	Quantity	Description	Lot#	Heat #	Specification	Finish
2	100	5/8"-11 x 10" HEX BOLT	154572	780337	ASTM A307 GR A	HDG
3	156	5/8"-11 x 12" HEX BOLT	156402	DL1010223101	ASTM F1554-36	HDG
4	504	5/8"-11 x 19" HEX BOLT	156403	DL1010223101	ASTM F1554-36	HDG
5	102	3/4"-10 x 8" HEX BOLT	156404	JK1110044101	ASTM A36	HDG
6	513	7/8"-9 x 14" HEX BOLT	156405	11907740	ASTM F1554-55	HDG
7	208	7/8"-9 x 16" HEX BOLT	156406	11907740	ASTM F1554-55	HDG
8	48	1"-8 x 24" HEX BOLT	156407	109218	ASTM F1554-55	HDG
9	102	3/4"-10 x 16" HEX BOLT	143841	DL0910629104	ASTM A36	HDG
	Birmingha	m Fastener Manufacturing. h	ereby cert	ifies that the n	naterial	L
	-	in reference to the above purch issigned specifications. OBL Brian Hug	h	number will n	neet or exceed Date: <u>03/21/2</u>	2011

Figure B-62. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part c8, Test Nos.WIDA-1 and WIDA-2

		С	Birm		Manufacturi 323 35202			а.
Customer		ST MACHI	NERY		Date Shipp BFM Order			1/2011
Description		E	/8"-11 x 10"	Descrip			Qty	100
Description	154572		pecification			Finish		
			Raw Ma	terial A	nalysis			
Heat#		780337						
Chemical Co C 0.16	omposition (v Mn 0.54	P 0.009	Analysis) By S 0.04	Si 0.18	Cu 0.36	Ni 0.09	Cr 0.13	Mo 0.020
			Mechan	ical Pro	perties			
Sample # 1 2 3 4 5	Hardness 80 HRB 80 HRB		Tensile Str 16, 16,)	73,	rength (psi 900 400	1)
customer ord	ion represent er. The samp ed and manuf	oles tested	conform to t				stated	
Authorized Signature:		Birian Hugh lity Assur			Date:	3/21	/2011	

Figure B-63. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part c8, Test Nos.WIDA-1 and WIDA-2

NUC	38	Mill Certification	n	300 Steel Mill Road DARLINGTON SC 29540
NUCOR COR	the second	1/26/2010		300 Steel Mill Road DARLINGTON, SC 29540 (843) 393-5841 Fax: (843) 395-8701
	INGHAM FASTENER & SUPPL DX 10323 INGHAM, AL 35202-0323 595-3511 205) 591-0244	Y Ship To: Bit 93 PBI Bit 22 Fa	RMINGHAM FASTENER & SI 1 AVE W 0 BOX 10323 RMINGHAM, AL 35202-0000 05 985-3511 x: (205) 591-0244	JPPLY
Customer P.O	m52300		Sales Order	100312.4
Product Group	Merchant Bar Quality		Part Number	300005634803800
Grade	ASTM A36/A36M-08, A709/A	709M-07 GR36, ASME \$A36-07	Heat #	780337
Sze	9/16* (.5625) Round		HeatID	DL0810033701
Product	9/16" (.5625) Round 40' A36		B.L. Number	C1-522429
Description	A36		Load Number	C1-210596
Custome: Spec			Customer Part #	
c . I		Si Cu Ni	Cr Ma	V Cb
0.16% 0.	54% 0.009% 0.04%	0.18% 0.36% 0.09%	0.13% 0.020%	0.004% 0.003%
ield 1 50000psi	(345MPa)	Tensile 1: 69000psi (476MPa)	Elon	gation: 25% in 8"(% in 203.3mm)
WELDING OR MELTED AND I MERCURY, RA		Tensile 2: 69000psi (476MPa) FORMED ON THIS MATERIAL ATERIALS IN ANY FORM HAVE NOT		gation 27% in 8"(% in 203.3mm)

Figure B-64. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part c8, Test Nos.WIDA-1 and WIDA-2

518 × 10 From: 2055914659 Page: 9/10 Date: 3/22/2011 9:52:39 AM BIRMINGHAM | ATLANTA | JACKSONVILLE | HOUSTON ICH B MATER Metalplate Galvanizing, L.P. MARCH 22, 2011 Birmingham Fastener P.O. Box 10323 Birmingham, Alabama 35202 Purchase Order # M58420 154572 Lot# We certify that the material on your above order was galvanized with 2-1/2 oz, of zinc per square foot of surface areas in accordance with specifications set forth in ASTM Standard Specification Designation F2329. METALPLATE GALVANIZING, L.P. 17-1 Gilbert O. Fredrick, Plant Manager I certify the above to be correct. Rhonda D.Newton, Notary Public honda D.N.e
 Corporate Office
 Plant 1

 P.O. Box 966
 767 44th Street North

 120 39th Street North
 Intringham, AL 35212

 Birmingham, AL 35201
 Phone (205) 591-1106

 Phone (205) 593-4700
 Fax (205) 591-4659

 Fax (205) 587-7800
 Fax (205) 581-4659
 Plant 2 1120 36th Sireet North Birmingham, AL 35234 Phone (205) 585-7103 Fax (205) 585-2985 Atlanta Plant Jacksonville Plant Houston West Houston East Atlanta Plant 605 Selig Drve, S.W. Allanta, GA 30336 Phone (404) 881-0500 Fax (404) 899-2270
 HOUss Chr.
 HOUSS C 7123 Monorief Road, West Jacksonville, FL 32219 Phone (904) 768-6330 Fax (904) 764-3948 This fax was received by GFI FAXmaker fax server. For more information, visit. http://www.gfi.com

Figure B-65. 5/8 in. Diameter x 10 in. (M16x254 mm) Long Hex Head Bolt and Nut, Part c8, Test Nos.WIDA-1 and WIDA-2

TRINITY HIGHWAY PRODUCTS, LLC. 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419-227-1296

MATERIAL CERTIFICATION

		CU	STON	IER:	STOC	CK			DAT	E: SEP	TEMI	BER 29	, 2009						
									INVO	ICE #:									
									LOT	#: 0901	23B								
					1 × 1										_	7			
			RT NU			80G			QUA	VTITY	: 119,2	201				-			
			SCRIF X11	4 HH					DATI	E SHIP	PED:								
<i>3</i> .		SP	ECIFIC AST		ONS: 307-A/	A153			HEAT	r #: 73	67052,	736648	34,7368	369					
				100 C			MAT	ERIA	L CHE	EMIST	Y								
С	MN	P	s	SI	CU	NI	CR	мо	AL	v	N	СВ	SN	В	TI	NB]		
.15	.49	.008	.002	.06	.03	.02	.05	.01	.029	.002	.005	.001	.001	.000	.000	.000	1		
.13	.38	.007	.002	.10	.03	.04	.06 .06	.02	.037	.002	.004	.001	.001	.000.	.000.	.000			
				÷	PLA	TING	S AND	OR P	ROTE	CTIVE	E COA	TING						4	
HC	DT DH	GAL	VANIZ	ZING	(OZ. 1	PERS	SQ. FT	r.)				2.74	AVG.						
Tł	IE MA	TERI	AL US	ED II	Y THI	S PRO	ODUC O THI	CT WA	ED IN S MEI T OF C REIN	LTED /	NOWI RRECT	LANUF	ACTI	INFOI	IN THI	E U.S.A.	,		
SWC	DRN A	F OHIO	BSCR	IBEL	BEF	ORE		2							8 1				
~	A	POAY	SEPTI	embi V	ept, 20	09.		NOTA	RY PL	BLIC							έ.		

Figure B-66. 5/8 in. Diameter x 1 ¹/₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

Trinity Metals Laboratory A DIVISION OF TRINITY INDUSTRIES 4001 IRVING BLVD. 75247 - P.O. BOX 56 DALLAS, TX 75356-8887 Phone: 214.589.7591 FAX: 214.589.7594		MSB	NVLAP LAB CODE 200854-0
Lab No: 9010250F SUE HENLINE TRINITY HWY PRODUCTS, LLC #55 ROLLFORM LIMA, OH 45801		Received Date: 01/27/2009 Heat Code: Heat Number: 7387052, 73664 PO or Work Order: Lot#: 0901238 Test Spec: F606 ASTM ME Other Information: SO#: 55-46503	
OTHER TEST:	à		
Type: HARDNESS ROCKW	ELL BW		Quantity amount: 20
A) 90-91-90-89			
B) 88-90-91-91			
C) 89-91-91-91			
D) 89-89-91-91	12.1		
E) 91-91-90-88			
а ж			*
Type: HEAD MARKINGS TRN 307A USA		÷	Quantity amount: 0
a.	Clino.	2	
s. š			
			x
/e certify the above results to be a true and port will void certification. NVLAP Certifica artification, approval, or endorsement by N	accurate repres te of Accreditatio VLAP, NIST, or a	iny agency of the rederal government.	Iteration or partial reproduction of this of may not be used to claim product Michael States ab Director, Michael S. Beaton, PE

Figure B-67. 5/8 in. Diameter x 1 ¹/₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

				·					
07/10/000	oʻ 11,10	330-670-3198		REPUR	IC ENGINEER		08	PAG	E 03/04
0//18/200	a 11:13	230-070-3130	¢ -						
-	A	TTN CARIN	a Dwo	20	2				
101500	Ror	Nubli	- 10	07 EAST 281	11 CT			Labate	, OH 4403
	NC.	JUUI	HIT PH	UNE: 330-43					330-438-561
RTIFICATE	OF TESTS	ENGINEERED PRODU	C28	IC ENGINEEREL				July 9, 20	
		5. S.		17 - 1924 1934					PAGE 1
7 2	*********	**************							
RCHASE ORD		2 - 2 - 2			URCHASE ORL			4/14/20	
DER NUMBER: DER NUMBER:	1379747 -	01			CHEDULE: REVISION:	15 1 . 1		4116-85	
				5 () () () () () () () () () (EVISION:	TP TO		1	
		(Par)		and a sub-stated	132.00				
	Y INDUSTRI	ES INC RODUCTS INC			RINITY INDU	ISTRIES 1	NC		
POBO	X 568887 4	TH FLOOR		Q	800 STERLIN APLE HTS, C	G AVE			
DALLAS	, TX 75356	-8887		ALC: ALC: N	APLE HTS, C	44137			
	Ú.	1.25					*		
	9		MATERIA	L DESCRIPTION					
	TEL COILS	CARBON AISI-1015	AK AL P	CILLED FINE GRA	IN COLD WOR	KING QUA	LITY I	EST REPO	DRTS OF
ZE: RDS .6	390 DIAM X		RA TEST		142 () 142 ()	t t	2.1		
	.2306MM DI	AM X COIL	- LADLE	CHEMISTRY :	1877 . 		13).		
	MN		5	S SI T		23	· NI		CR
.13	.0.38	0.007 SN	0.002	0.1.0			0.04	3	0.06
.002 .	0.02	0.001		CB 0.001			A State		
DUCTION RAT			CALCULA	ATED TESTS	***				
	TENSILE	YIELD(0.2%) PSr		8 8					
E 10427		422000			1 × 1				
RDNESS TEST	MTD-BADTING	M ELO/ASTM A370							
E 10428	107			1 - A 					
EMICAL ANAL	XSIS CONFO	RMS TO APPLICABL D ASTM E1085, LB	E SPECS	NOTES	L10129, LBL	10130,			
					-		- Flores -		
STED IN ACC	ORDANCE WI	DUCTS HEREBY CER TH THE METHODS P	RESCRIBE	D IN THE GOVER	NING SPECIF	ICATIONS	AND B	ASED UPC	IN THE
SULTS OF SU	CH INSPECT	ION AND TESTING	HAS BEEN	APPROVED FOR	CONFORMANCE	TO THE	SPECIF	ICATIONS	3.
RTIFICATE O	F TESTS SH	ALL NOT BE REPRO	DUCED EX	CEPT IN FULL.					
		RFORMED USING TH		121		A			
CORDING OF A FELONY U	FALSE, FIC NDER FED S	TITIOUS OR FRAUD TATUES TITLE 18	OLENT SI CHAPTER	ATEMENTS OR EN	TRIES ON TH	LIA DOCUM	ENT MA	y be put	VISHED
		POSED TO MERCURY ILE IN OUR POSSE		METAL ALLOY TH	AT IS LIQUI	DAT AMB	IENT I	EMPERATI	R B
WELD OR WE	LD REPAIR	WAS PERFORMED ON	THIS MA	TERIAL.					
R. A. SZELI		100	BY JANE	T K. HARTLINE	shellar		8		
NAGER TECH.	* .	A CARLEY AND A CAR			1.2.1.4 The	-1.5			(P)
P. A. Szer	inga	N. C. S.		Mr. Dauge.		*5 * 14*			
· · · ·		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				16 e			
				權利的		1			
		A started				de al	2		
				4.5 4.2					
					*				

Figure B-68. 5/8 in. Diameter x 1 ¹/₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

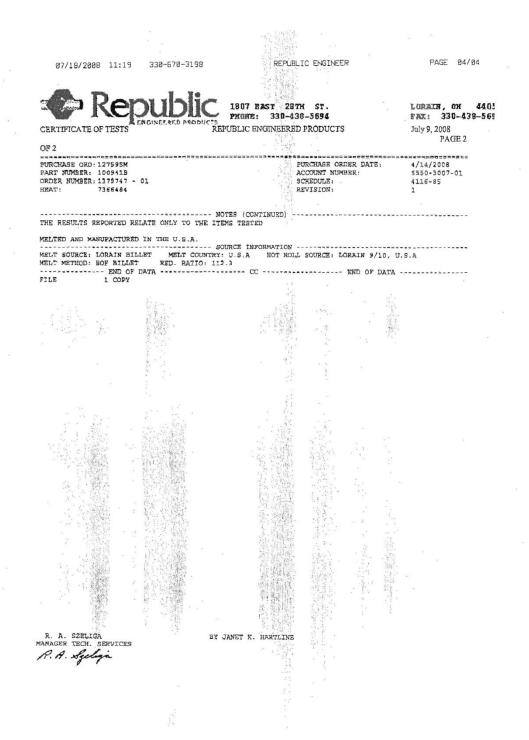


Figure B-69. 5/8 in. Diameter x 1 $\frac{1}{2}$ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

	Kel	oubli	1807 H PHONE:	CAST 28TH S 330-438-56			LORAIN, OH 440 FAX: 330-438-50
CERTIFICATE	OF TESTS	en la servicia en la servicia en la servicia	REPUBLIC E	NGINEERED PRO	DUCTS		September 12, 2008 PAGE 1
OF 2		1					
PURCHASE ORE PART NUMBER:	: 127595M : 1009418			ACCOUN	ASE ORDER DA	ATE:	4/14/2008 5550-3007-01
ORDER NUMBER		01		SCHEDU			7327-85
	7367052			REVIS			1
LIEF CHARGE	S ADDRESS SE	**************			and a superior		
HIGHW	TY INDUSTRIE AY SAGETY PR	ODUCTS INC		C/O BC	TY INDUSTRIE	REP	
	OX 568887 4T S, TX 75356-		<i>N</i>		HEIGHTS, OF		
, ORDER	.o, 1X / 0000	antie service	1	1011 00	1. 4. 20	CARLES THE	
		184			1942-117-119	國際的自由	
		· · · · · · · · · · · · · · · · · · ·	《推销】	· · · · · · · · · · · · · · · · · · ·	VANNUAL		
				SCRIPTION		OTINT TYPY T	PROT DEDODTE OF
		OR INFO ONLY EX		D FINE GRAIN CO	JCD WORKLING	QUALITY 1	EST REPORTS OF
SIZE: RDS .			ALL LOTING				
RDS 1	6.2306MM DI	M X COIL	電波		1 M. 19 1 1	an a	
			LADLE CHEM	ISTRY &			
C 0.15	No. 0.49	P	S.	SI	CU	INI OD	CR. 0.05
V	MO	SN	λι.	SI 0.06 CB	N.03	0.02	0.03
0.002	0.01	0.001	λL 0.029	CB	0.0050	WELL T	
			- CALCULATED	maama		2.4	
REDUCTION RA AUSTENITIC G ASTM A29.	RAIN SIZE 5	OR FINER BASED	ON A TOTAL P	LUMINUM CONTEN	计传统 测试法	DR GREATER	THAN .020% PER
AUSTENITIC G ASTM A29.	SRAIN SIZE 5	O 1 OR FINER MASED	ON A TOTAL F SEMI - FINISH FINISHED SIZ	ALUMINUM CONTEN MED RESULTS	计传统 测试法	DR GREATER	
AUSTENITIC G ASTM A29.	SRAIN SIZE 5	O 1 OR FINER DASED	ON A TOTAL F SEMI - FINISH FINISHED SIZ	ALUMINUM CONTEN	计传统 测试法	DR GREATER	
AUSTENITIC G ASTM A29. FENSILE TEST	SRAIN SIZE 5 STANDARD PO TENSILE PSI 60850	OR FINER DASED OR MAT YIELD (0.2%) PSI 45000	ON A TOTAL F SEMI - FINISH FINISHED SIZ RA E \$ \$ 64.4 44.0	ALUMINUM CONTENT HED RESULTS' IR RESULTS'	计传统 测试法	DR GREATER	
AUSTENITIC G ASTM A29. FENSILE TEST PCE 14133 HARDNESS TES	SRAIN SIZE 5 T STANDARD PI TENSILE PSI 60850 ST ASTM MID-RADIUS	0 1 OR FINER DASED ORMAT YIELD (0.2%) PSI 45000 4 E10/ASTM A370	ON A TOTAL F SEMI - FINISH FINISHED SIZ RA E \$ \$ 64.4 44.0	ALUMINUM CONTENT HED RESULTS' IR RESULTS'	计传统 测试法	OR GREATER	
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134	SRAIN SIZE 5 T STANDARD F TENSILE PSI 60850 ST ASTM MID-RADIUS 116	0 1 OR FINER DASED ORMAT YIELD(0.2%) PSI 45000 4 E10/ASTM A370	ON A TOTAL F SEMI - FINISH FINISHED SIZ RA B \$ \$ 64.4 44.0 HBW AS-R	LUMINUM CONTENT		DR GREATER	
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134 CHEMICAL ANA	STAIN SIZE 5 STANDARD F TENSILE PSI 60850 ST ASTM MID-RADIUS 116 LLYSIS CONFOR	OR FINER DASED ORMAT YIELD (0.2%) PSI 45000 4 El0/ASTM A370 DASTM EL085, LI	ON A TOTAL J SEMI - FINISH FINISHED SI2 RA E t t 64.4 44.0 HBW AS-R HBW AS-R LES SPECS: AST	LUMINUM CONTENT IED RESULTS LD/CD HEW LD/CD HEW	29, LBL1013	i, astme	
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TESS PCE 14134 CHEMICAL ANA LBL10158, LB HEDUBLIC ENG TESTED IN AC	STAIN SIZE S T STANDARD F TENSILE PSI 60850 ST ASTM MID-RADIUS 116 LLYSIS CONFOO bL10114, AND SINEERED PROI CORDANCE WIT	OR FINER BASED ORFAT YIELD (0.2%) PSI 45000 4 El0/ASTM A370 2005 ASTM El085, L DUCTS HEREBY CEI HT THE METHODS	ON A TOTAL J SEMI - FINISH FINISHED SI2 RA E 64.4 44.0 HBW AS-R LE SPECS: AST ELIGIBA, LELI RTIFY THAT TH	LLUMINUM CONTENT HED RESULTS LD/CD HEN SS ME MATERIAL LIST HE MATERIAL LIST	29, LBLIDIS PED HEREIN J SPECIFICATJ). ASTM E IAS BEEN I CONS AND T	1019, MSPRCTED AND ASED UPON THE
AUSTENITIC G ASTM 229. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134 CHEMICAL ANA EL10158, LB REPUBLIC ENG TESTED IN AC RESULTS OF S	SRAIN SIZE 5 STANDARD FO TENSILE PSI 60850 ST ASTM MID-RADIUS 116 LLYSIS CONFOR LLUSIS	OR FINER DASED OR FINER DASED ORMAT YIELD (0.2%) PSI 45000 4 E10/ASTM AJTO 2005 TO APPLICAB D ASTM 21085, LI DUCTS HEREBY CE DUCTS HEREBY CE DUCTS HEREBY CE ALL NOT BE REPR	ON A TOTAL J SEMI - FINISH FINISHED SIZ RA E \$ 6 64.4 44.0 HBW AS-R HBW AS-R LE SPECS: ASI BLIO184, LBLI RTIFY THAT TH PRESCRIBED IN HAS BEEN APF	LUMINUM CONTENT HED RESULTS LD/CD HEN S M E415, LBLJOL 0188. HE MATERIAL LIST I THE GOVERNING PROVED FOR CONFO S IN FULL.	29, LBLIDIS PED HEREIN J SPECIFICATJ). ASTM E IAS BEEN I CONS AND T	1019, MSPRCTED AND ASED UPON THE
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134 CHEMICAL ANA LBL10158, LB REPUBLIC ENG TESTED IN AC RESULTS OF S CERTIFICATE	SRAIN SIZE 5 T STANDARD F TENSILE PSI 60850 ST AST MID-RADIUS 116 LIYSIS CONFOR BLI0114, AND SINEERED PROI CORDANCE WIJ SUCH INSPECTI OF TESTS SHA	ORMAT YIELD (0.2%) PSI 45000 4 El0/ASTM A370 ASTM 21085, LI DUCTS HEREBY CE FHT THE METHODS, ION AND TESTING ALL NOT BE REPR	ON A TOTAL P SEMI - FINISH FINISHED SIZ RA E \$ 4 64.4 44.0 HBW AS-R HBW AS-R HBW AS-R LES SPECS: AST ELIOI84, LBLI RTIFY THAT TH PRESCRIBED IN HIS BEEN APP	LUMINUM CONTENT TED RESULTS LD/CD HEN ES M E415, LELIOLI 0.188. N THE GOVERNING RROVED FUR CONFI	29, LBLIDIG FED HEREIN I SPECIFICAT DRMANCE 70 (I, ASTM E LAS BEEN I LONS AND T LONS AND T SPECTS	1019, MSPRCTED AND ASED UPON THE ICATIONS,
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134 CHEMICAL ANA LBL10158, LB HALDICENG RESULTS OF S CERTIFICATE ALL TESTING OF	STAIN SIZE S TENSILE PSI 60850 ST ASTM MID-RADIUS 116 SINEERED PROI SINEERED PROI SINEERED PROI SINEERED PROI OF TESTS SHP HAS BEEN PES PALSE, FICT	ORMAT VIELD (0.24) PSI 45000 4 E10/ASTM A370 4 E10/ASTM A370 2005 4 E10/ASTM 21085, LI 2005 4 E10/ASTM 21085, LI 2005 100 AND, TESTING 200 AND,	ON A TOTAL J SEMI - FINISH FINISHED SI2 RA E 64.4 44.0 HBW AS-R HBW AS-R LE SPECS: AST BLIO184, LBLI RTIFY THAT TH PRESCRIBED IN HAS BEEN AFF ODUCED EXCEPT HE CURRENT RE DULENT STATEM	LUMINUM CONTENT HED RESULTS LD/CD HEW S LD/CD HEW S LD/CD HEW S LD/CD HEW S LD/CD HEW S LD/CD HEW S S LD/CD HEW S S LD/CD HEW S S S S S S S S S S S S S	29, LBL10130 FED HEREIN J SPECIFICAT JORMANCE TO J TESTING SPEC	LAS BEEN I LAS BEEN I CONS AND E CONS AND E SPECIFICATION	1019, MSPECTED AND AASED UPON THE ICATIONS.
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134 CHEMICAL ANA LBL1015A, LB LBL1015A, LB LBL1015A, LB CHEMICAL ANA LBL1015A, LB CERTIFICATE ALL TESTING RECORDING OF AS A FELONY CHE MATERIAL	SRAIN SIZE S TENSILE PSI 60850 ST ASTM MID-RADIUS 116 LLYSIS CONFOG LLOI14, AND HIMEERED PROI SUCH INSPECTI OF TESTS SHA HAS BEEN PEF PALSE, FICT UNDER PED ST , WAS NOT EXE	ORMAT YIELD (0.2%) PSI 45000 4 El0/ASTM A370 ASTM 21085, LI DUCTS HEREBY CE PH THE METHODS, ION AND TESTING ALL NOT BE REPR ALL NOT BE REPR REPRMED USING TO PITIOUS OR FRAUN ADDES TITLE 18	ON A TOTAL J SEMI - FINISH FINISHED SIZ RA E 64.4 44.0 HBW AS-R HBW AS-R LE SPECS: AST ELIOIB4, LELI RAIFY THAT TH HAS BEEN APF ODUCED EXCEPT HE CURRENT RE DULENT STATEPC CHAPTER 47. Y OR ANY METR	LUMINUM CONTENT HED RESULTS LD/CD HEW LD/CD HEW ME415, LBLIOLI 0188. HE MATERIAL LIST WITHE GOVERNING RE MATERIAL LIST WITHE GOVERNING ENDED CONF IN FULL. EVISION OF THE C	29, LBLIDIS TED HEREIN I SPECIFICATI DRMANCE TO TESTING SPEC S ON THIS DO), ASTM E IAS BEEN I IONS AND E SUFICATION DCUMENT MA	1019, NSPECTED AND ASED UPON THE ICATIONS. IS. Y BE PUNISHED
AUSTENITIC G ASTM A29. TENSILE TEST PCE 14133 HARDNESS TES PCE 14134 CHEMICAL ANA LBL1015A, LB HEPUBLIC ENG RESULTS OF S TERTIFICATE ALL TESTING RECORDING OF AS A FELONY CHE MATERIAL DURING PROCE	SRAIN SIZE S T STANDARD F TENSILE PSI 60850 ST ASTM MID-RADIUS 116 SIMEERED PROI SIMEERED PROI SUCH INSPECTION OF TESTS SHA HAS BEEN PES PALSE, FICT UNDER PED ST , WAS NOT EXE SSING OR WHI	OR FINER BASED ORFAT YIELD (0.2%) PSI 45000 4 ELO/ASTM A370 4 ELO/ASTM A370 4 ELO/ASTM ELOBS, LL DUCTS HEREBY CEL TH'THE METHODS CON AND, TESTING ALL NOT BE REPR REFORMED USING T TITIOUS OR FRAU NATUES TITLE 18 MOSED TO MERCUR	ON A TOTAL J SEMI - FINISH FINISHED SIZ RA E 64.4 44.0 HBW AS-R HBW AS-R LE SPECS: AST BLIO184, LBLI RTIFY THAT TH RESCRIBED IN HAS BEEN AFF ODUCED EXCEPT HE CURRENT RE DULENT STATEM CHAPTER 47. Y OR ANY META ESSION.	ALUMINUM CONTENT HED RESULTS LD/CD HEN IS ME MATERIAL LIST IN FULS, LELIOLI OI88 ROVED FUR CONFO IN FULL EVISION OF THE 1 MENTS OR ENTRIES LL ALLOY THAT IS	29, LBLIDIS TED HEREIN I SPECIFICATI DRMANCE TO TESTING SPEC S ON THIS DO), ASTM E IAS BEEN I IONS AND E SUFICATION DCUMENT MA	1019, NSPECTED AND ASED UPON THE ICATIONS. IS. Y BE PUNISHED

Figure B-70. 5/8 in. Diameter x 1 ¹/₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

CERTIFICATE OF TESTS	REPUBLIC	EAST 28TH S E: 330-438-56 ENGINEERED PROI	r. 94 DUCTS	LORAIN, DH FAX: 330-438 September 12, 2008 PAGE 2	
DF 2 URCHASE ORD:127595M PART NUMBER: 100941B URDER NUMBER:1379747 - 01 IEAT: 7367052	•••••	PURCHA	SE ORDER DATE: T NUMBER: LE: ON:	******	
THE RESULTS REPORTED RELATE					
ELTED AND MANUPACTURED IN	THE U.S.A.				
MELT SOURCE: LORAIN BILLET MELT METHOD: BOF BILLET	MELT COUNTRY: U.S.A RED. RATIO: 112.3	HOT ROLL SOUR	CE: LORAIN 9/10, U	.S.A	
KELTED AND MANUFACTURED IN HELT SOURCE: LORAIN BILLET HELT METHOD: BOP BILLET PID OF DATA HELT I COPY					
R. A. SZELIGA	BY JANET K				
ANAGER TECH. SERVICES P. A. Syclogia	J. GALLA				

Figure B-71. 5/8 in. Diameter x 1 ¹/₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

1.

11		oubli		807 EAS HONE:	т 28тн s 330-430-56	T. 94			N, DH 330-43	
CERTIFICATE		ulang si nakatas	1.15		NEERED PRO			October	31, 2008 PAGE 1	
OF 2		****************	********	******		denewssites	***********		*******	
PURCHASE ORD PART NUMBER: ORDER NUMBER HEAT:	100941B : 1396203 - 0 7368369	1			ACCOUN SCHEDU REVIS	ION:		8/27/2 5550-3 9510-8 1	1007-01 15	
P O BC	TY INDUSTRIES AY SAGETY PRO DX 568987 4TH S, TX 75356-8	DUCTS INC			C/O B0 5800 5	TY INDUSTRI CS METALS P STERLING AV HEIGHTS, O	REP E			
1										
			- MATERI	TAL DESCR	IPTION					
MECHANICAL PL SIZE: RDS	ROPERTIES FOR	AREON AISI-101 R INFO ONLY EX COIL			INE GRAIN CO	DLD WORKING	QUALITY 1	EST RE	PORTS OF	
			LADLE	CHEMIST	RY \$					
C	MIN	P 0.006	S 0.008	3	SI 0.06	CU 0.04	NI 0.02	2	CR 0.06	
V 0.002	MO 0.02	P 0.006 SN 0.001	AL 0.034	1	CB	N 0.0050				
		11	- CALCUI	LATED TES						
REDUCTION RAY	110 112.3 10	 			44.10 2004					
AUSTENITIC GI	RAIN SIZE 5	OR FINER BASED			State Sheet		OR GREATER			2
AUSTENITIC GI ASTM A29.	RAIN SIZE 5 (OR FINER BASED	SEMI - F	FINISHED	INUM CONTEN		OR GREATER			2
AUSTENITIC GI ASTM A29. TENSILE TEST	RAIN SIZE 5 (STANDARD FO TENSILE	OR FINER BASED	SEMI - F FINISHE RA	FINISHED ED SIZE R E	INUM CONTEN		OR GREATER			2
AUSTENITIC GI ASTM A29. TENSILE TEST	RAIN SIZE 5 (STANDARD FO TENSILE FSI 58600	OR FINER BASED	SEMI - F FINISHE RA	FINISHED ED SIZE R E	INUM CONTEN RESULTS ESULTS		OR GREATER			Z
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600	OR FINER BASED RMAT YIELD(0.24) PSI 43200	SEMI - F FINISHE RA % 63.9	FINISHED ED SIZE R E \$ 47.0	INUM CONTEN		OR GREATER			2
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910 HARDNESS TES	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID_RADIUS	OR FINER BASED RMAT YIELD(0,2*) PSI 43200 E10/ASTM A370	SEMI - F FINISHE RA % 63.9	FINISHED ED SIZE R E \$ 47.0	INUM CONTEN		OR GREATER			2
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910 HARDNESS TES' PCE 15911	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID-RADIUS 111	OR FINER BASED RMAT YIELD(0,24) FSI 43200 E10/ASTM A370	SEMI - F FINISHE RA 4 63.9 HBW	E SIZE R E 47.0 AS-RLD/0 - NOTES -	INUM CONTEN RESULTS ESULTS		OR GREATE			2
AUSTENITIC GI AXTM A29. TENSILE TEST PCE 15910 HARDXESS TEST PCE 15911 CHEMICAL ANAI LELIOIS, LEJ	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID.RADIUS 111 LVSIS CONFORM LUSIS CONFORM	OR FINER BASED RMAT YIELD(0,2*) FSI 43200 ELD/ASTM A370	SEMI - F FINISHE RA 4 63.9 HBW	E E E SIZE R 47.0 AS-RLD/0 - NOTES - S: ASTM E	INUM CONTENT RESULTS ESULTS CD HEW 415, LBL101: 8.	29, LBL1013	OR GREATE			2
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910 HARDYESS TEST PCE 15911 CHEMICAL ANAI LBLIOISS, LBLI REPUBLIC ENG REPUBLIC ENG	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID-RADIUS 111 LVSIS CONFOR LLUSIM AND LNEERED PRODI CORDANCE WITI	OR FINER BASED RMAT YIELD(0.24) PSI 43200 E10/ASTM A370 ASTM E1085 LI JCTS HEREBY CEI 4 THE METHODS	SEMI - F FINISHE RA 4 63.9 HBW LE SPECS BL10184, RTIFY TH PRESCRIE	FINISHED ED SIZE R F 47.0 AS-RLD/0 - NOTES - S: ASTM E LBL1018 HAT THE M JED IN TH	INUM CONTEN RESULTS ESULTS CD HBW 415, LBL101 8. ATERIAL LIST & GOVERNING	29, LBL1013 FED HEREIN SPECIFICAT	OR GREATEN 0. ASTM E HAS BEEN I IONS AND E	1019, NSPECTI ASED UI	ED AND PON THE	č
AUSTENITIC GI AXTM A29. TENSILE TEST PCE 15910 HARDYESS TES: PCE 15911 CHEMICAL ANAI LELIOISS, LEJ REPUBLIC ENG TESTED IN ACC RESULTS OF ST	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID-RADIUS 111 111 112 112 113 111 112 112 112 112	OR FINER BASED RMAT YIELD(0,24) FSI 43200 El0/ASTM A370 ASTO APPLICAB ASTM EJ055 LI JCTS HEREBY CEI 4 THE METHODS	SEMI - F FINISHE RA 4 63.9 HBW LE SPECS BL10184, RTIFY TH PRESCRIE HAS BEE	FINISHED SD SIZE R F 47.0 AS-RLD/0 - NOTES - 3: ASTM E . LBL1018 HAT THE M HED IN THE NAPPROV	INUM CONTEN RESULTS ESULTS CD HBR 415, LBL101: 8: ATERIAL LIS E GOVERNING ED FOR CONF	29, LBL1013 FED HEREIN SPECIFICAT	OR GREATEN 0. ASTM E HAS BEEN I IONS AND E	1019, NSPECTI ASED UI	ED AND PON THE	2
AUSTENITIC GI ANTM A29. TENSILE TEST PCE 15910 HARDXESS TES PCE 15911 CHEMICAL ANAI LBLIO158, LBI REPUBLIC ENG TESTED IN ACC RESULTS OF SU CERTIFICATE O	RAIN SIZE 5 (STANDARD FO TENSILE FSI 58600 T ASTM MID-FADIUS 111 LVSIS CONFOR L10114, AND LVSIS CONFOR L10114, AND LNEERED PRODI CORDANCE WITH UCH INSPECTIO OF TESTS SHAI	OR FINER BASED RMAT YIELD(0,24) FSI 43200 E10/ASTM A370 MS TO APPLICAE ASTM E1085 LI UCTS HEREBY CE H THE METHODS N AND TESTING	SEMI - F FINISHE RA 4 63.9 HBW LE SPECS BL10184, RTIFY TH PRESCRIP HAS BEE SDUCED E	FINISHED SD SIZE R F 47.0 AS-RLD/ - NOTES - S: ASTM E . LBL1018 HAT THE M BED IN THE N APPROV EXCEPT IN	INUM CONTEN RESULTS ESULTS CD HER 415, LELL01: 8. ATERIAL LIS: E GOVERNING ED FOR CONF FULL.	29, LELIOI3 FED HEREIN SPECIFICAT ORMANCE TO	OR GREATEN 0. ASTM E HAS BEEN I IONS AND F THE SPECIF	1019, NSPECTI ASED UI TCATTO	ED AND PON THE	2
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910 HARDYESS TEST PCE 15911 CHEMICAL ANAL LBLIOISS, LBL REPUBLIC ENG RESULTS OF ST CERTIFICATE C ALL TESTING F RECORDING OF	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID-RADIUS 111 LVSIE CONFORE L10114, AND L0214,	OR FINER BASED RMAT YIELD(0.24) FSI 43200 ELO/ASTM A370 AS TO APPLICAB ASTM E1085 LI UCTS HEREBY CEI 4 THE METHODS UN ON AND TESTING LL NOT BE REPR	SEMI - F FINISHE RA 4 63.9 HBW LE SPECS BL10184, RTIFY TH PRESCRIF HAS BEE SOUCED E HE CURRE DULENT S	FINISHED ED SIZE R F 47.0 AS-RLD/0 S: ASTM E LBL1018 HAT THE M HAT THE M HAT THE M PPROV EXCEPT IN ENT REVIS	INUM CONTEN RESULTS ESULTS CD HEW 415, LELLOI 8. ATERIAL LIST E GOVERNING ED FOR CONFO FULL. ION OF THE 1	29, LELIOI3 FED HEREIN SPECIFICAT ORMANCE TO FESTING SPE	OR GREATEN 0, ASTM E HAS BEEN I IONS AND F THE SPECIF CIFICATION	1019, NSPECTI ASED UI ICATION	ED AND DON THE IS.	2
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910 HARDXESS TES: PCE 15911 CHEMICAL ANAI LELIOIS, LEJ REPUBLIC ENC RESULTS OF SU CERTIFICATE (ALL TESTING F RECORDING OF AS A FELONY (THE MATERIAL	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID-RADIUS 111 UVSIS CONFORM 111 UVSIS CONFORM 1111 UVSIS CONFORM 111 UVSIS CONFORM 1111 UVSIS CONFORM 11	OR FINER BASED RMAT YIELD(0,24) FSI 43200 E10/ASTM A370 ASTM E1055 LI STM E1055 LI UCTS HEREBY CEH 4 THE METHODS 1 DN AND TESTING LL NOT BE REPRO FORMED USING TI ETIOUS OR FRAUN	SEMI - F FINISHE RA 4 63.9 HBW LE SPECS Ballol84, RTIFY TH PRESCRIEY TH PRESCRIEY TH PRESCRIEY HAS BEE DOUCED E HE CURRE CHAPTER CHAPTER	TINISHED ED SIZE R F 47.0 AS-RLD/0 - NOTES - S: ASTM E LBL1018 UAT THE M BED IN TH EN APPROV EXCEPT IN ENT REVIS STATEMENT & 47.	INTEM CONTENT RESULTS ESULTS ESULTS ESULTS AIS, LELIOI: 8: ATERIAL LIS' 8: ATERIAL LIS' 8: ATERIAL LIS' 8: ATERIAL LIS' 8: ATERIAL LIS' 8: ATERIAL LIS' 8: ATERIAL LIS' 8: ATERIAL LIS' 5 OR ENTRIES	29, LELI013 FED HEREIN SPECIFICAT SRMANCE TO FESTING SPE S ON THIS D	OR GREATEN O, ASTM E HAS BEEN I IONS AND F THE SPECIF CIFICATION OCUMENT MA	1019, NSPECTI ASED UI TCATION S. Y BE PI	ED AND PON THE 15. JNISHED	2
AUSTENITIC GI ASTM A29. TENSILE TEST PCE 15910 HARDXESS TES: PCE 15911 CHEMICAL ANA LBLIOISS, LBJ REPUBLIC ENG RESULTS OF ST CERTIFICATE C ALL TESTING F RECORDING OF AS A FELONY I THE MATERIAL LURING FROCES	RAIN SIZE 5 (STANDARD FO TENSILE PSI 58600 T ASTM MID-RADIUS 111 LINGING CONFOR LINGING AND LINGING AND UCH INSPECTIO OF TESTS SHAI HAS BEEN PERI PALSE, FICTI UNDER FED ST/ WAS NOT EXPO SSING OR WHII	OR FINER BASED RMAT YIELD(0,24) PSI 43200 EL0/ASTM A370 ASTM EL085 LL NOT BE REPROVE FORMED USING TH TTIOUS OR FRAU ATUES TITLE 18 DSED TO MERCURY	SEMI - E FINISHE RA 4 63.9 HEW LE SPECS BLI0184, RTIFY TH PRESCRTE HAS BEE DOUCED E HE CURRE OULCENT S CHAPTER Y OR ANY ESSION.	TINISHED ED SIZE R F 47.0 AS-RLD/ NOTES - S. ASTM E LBLI018 HAT THE M ED IN THE M ED IN THE M SAT THE M ENT REVIS STATEMENT & 47. K METAL A	INTEM CONTENT RESULTS ESULTS ESULTS ESULTS S. ATERIAL LIS' E GOVERNING ED FOR CONF FULL. ION OF THE ' S OR ENTRIES LLOY THAT IS	29, LELI013 FED HEREIN SPECIFICAT SRMANCE TO FESTING SPE S ON THIS D	OR GREATEN O, ASTM E HAS BEEN I IONS AND F THE SPECIF CIFICATION OCUMENT MA	1019, NSPECTI ASED UI TCATION S. Y BE PI	ED AND PON THE 15. JNISHED	2

「「「「「「「「

Figure B-72. 5/8 in. Diameter x 1 ¹/₂ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

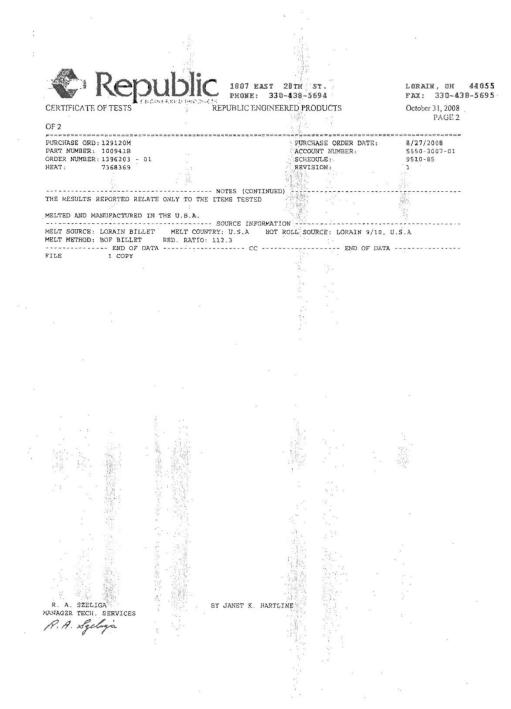


Figure B-73. 5/8 in. Diameter x 1 $\frac{1}{2}$ in. (M16x38 mm) Long Hex Head Bolt and Nut, Part c9, Test Nos.WIDA-1 and WIDA-2

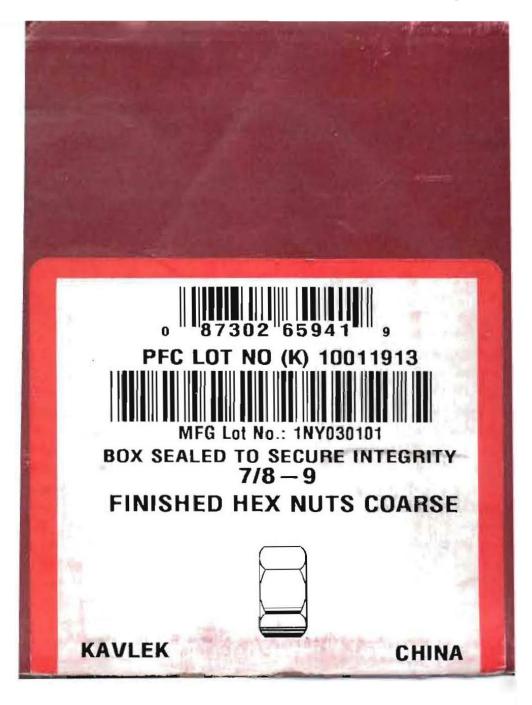


Figure B-74. 7/8 in. Diameter x 7 ½ in. (M16x191 mm) Long Hex Head Bolt and Nut, Part c10, Test Nos.WIDA-1 and WIDA-2

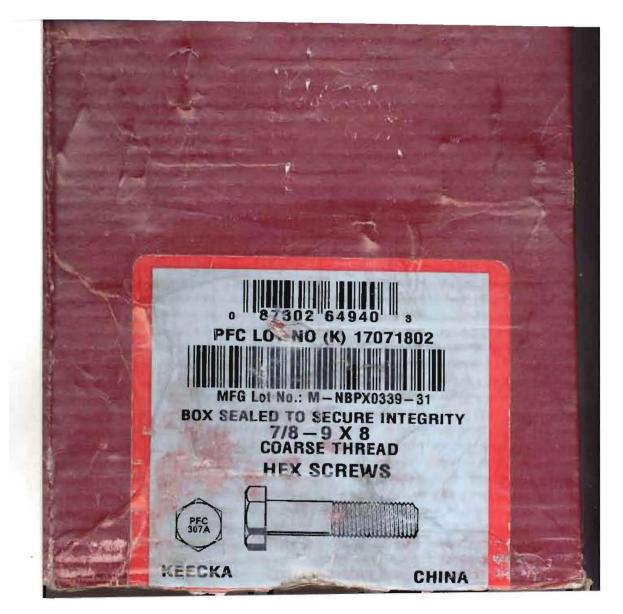


Figure B-75. 7/8 in. Diameter x 7 ½ in. (M16x191 mm) Long Hex Head Bolt and Nut, Part c10, Test Nos.WIDA-1 and WIDA-2

Figure B-76. 7/8" [22 mm] Dia. Flat Washer, Part c11, Test Nos.WIDA-1 and WIDA-2

Appendix C. Bogie Test Results

The results of the recorded data from each accelerometer for every dynamic bogie test are provided in the summary sheets found in this appendix. Summary sheets include acceleration, velocity, deflection versus time plots, force versus deflection plots, and energy versus deflection plots. For those bogie tests for which load cells were used, the corresponding measured data are provided as well.

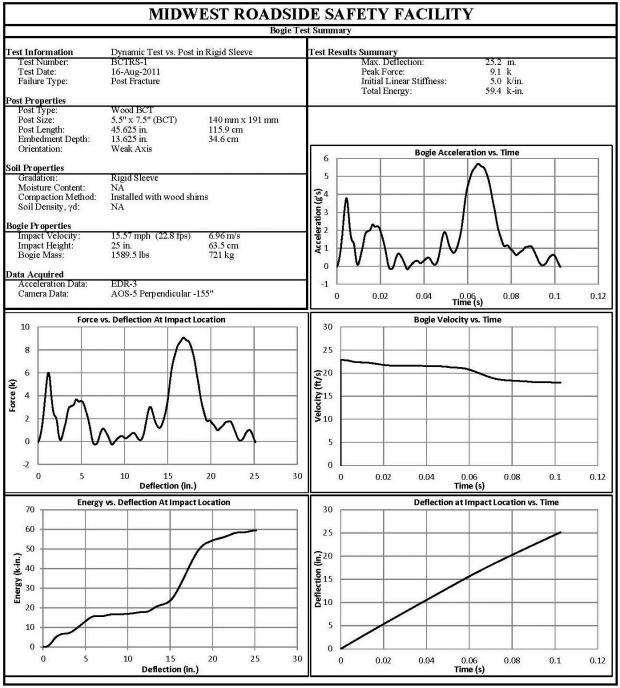


Figure C-1. Test No. BCTRS-1 Results (EDR-3)

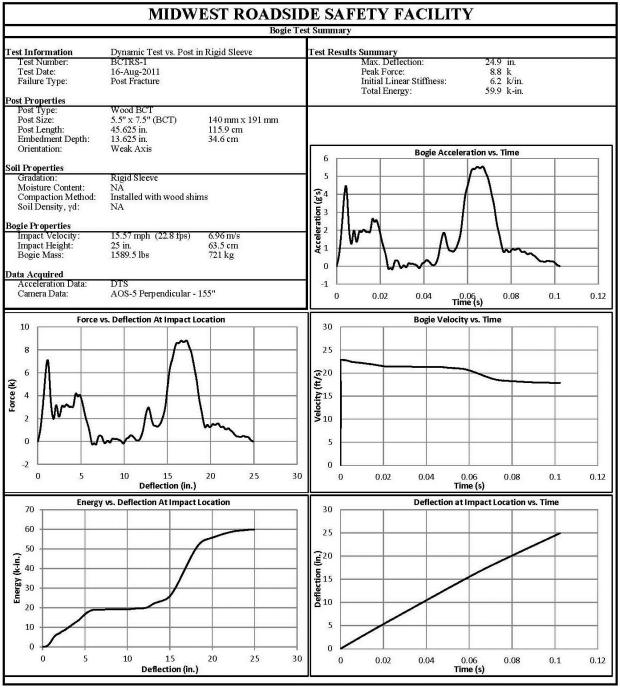


Figure C-2. Test No. BCTRS-1 Results (DTS)

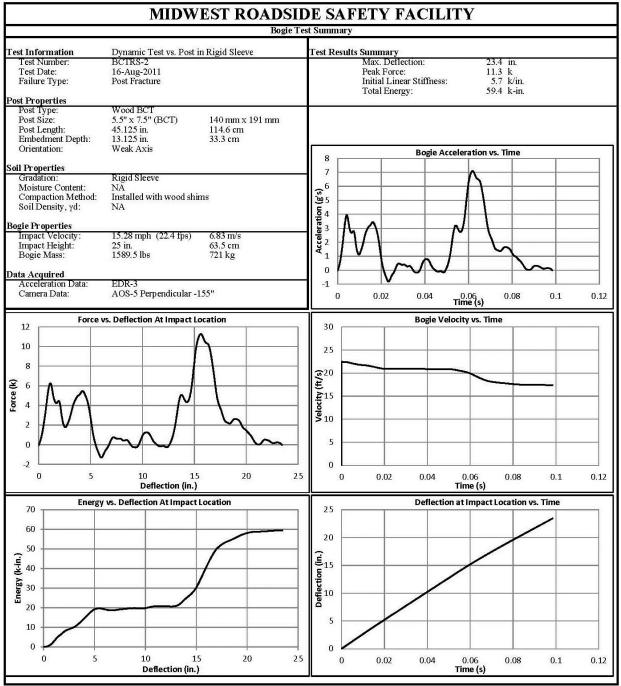


Figure C-3. Test No. BCTRS-2 Results (EDR-3)

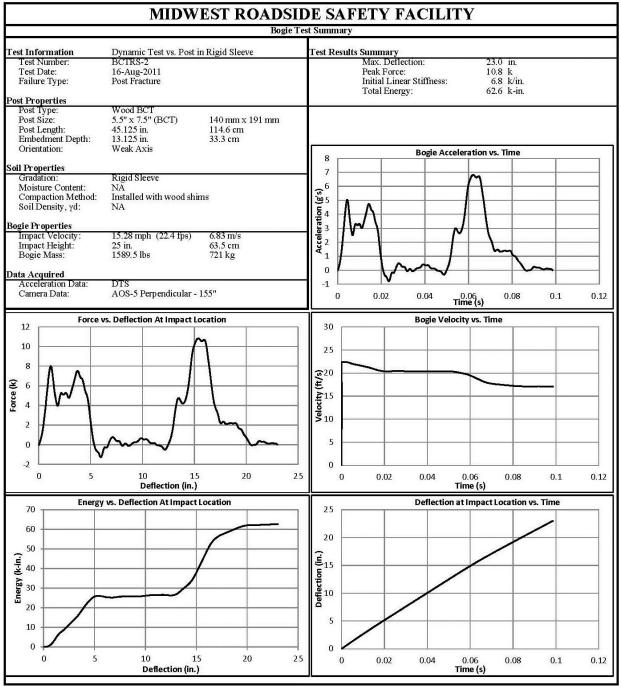


Figure C-4. Test No. BCTRS-2 Results (DTS)

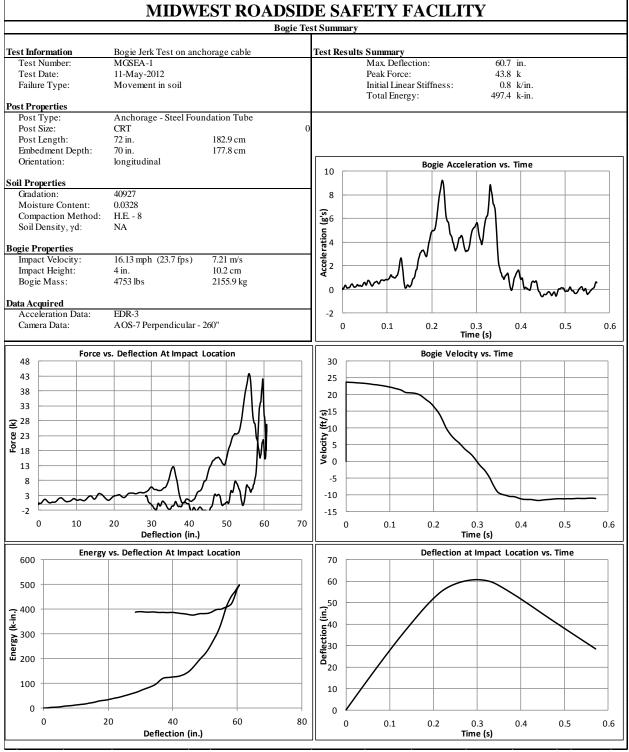


Figure C-5. Test No. MGSEA-1 Results (EDR-3)

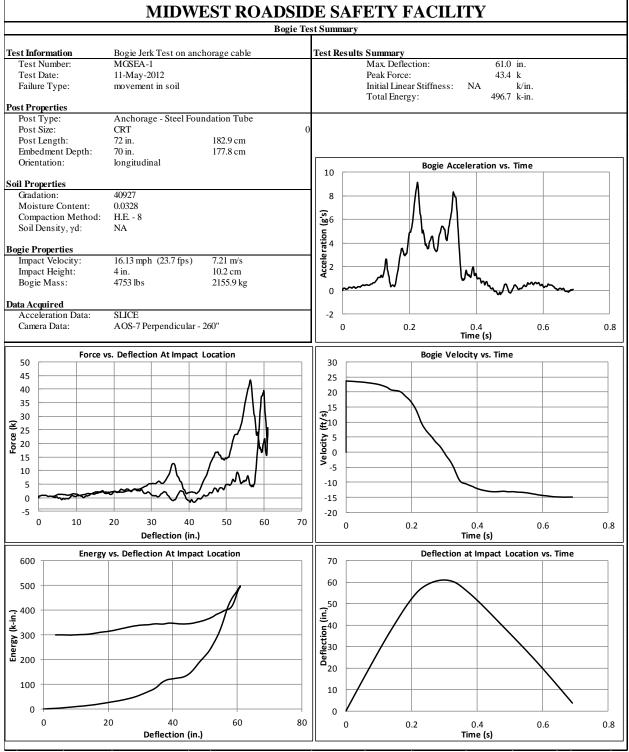


Figure C-6. Test No. MGSEA-1 Results (DTS-SLICE)

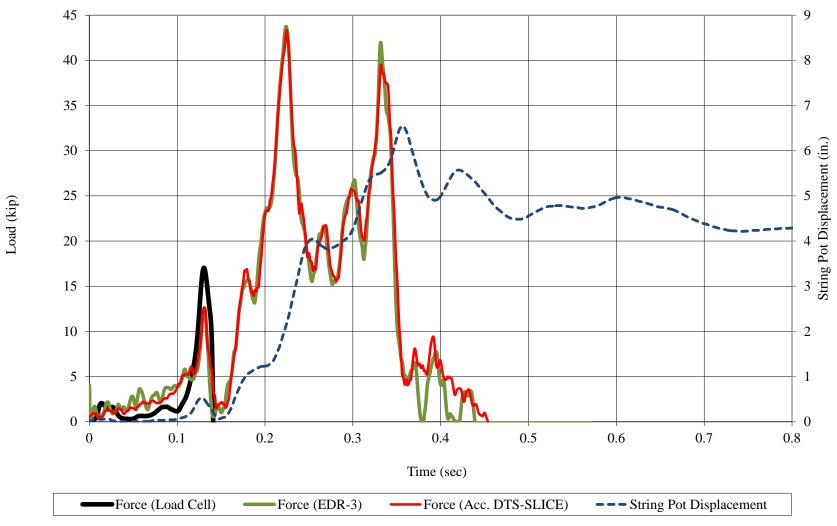


Figure C-7. Test No. MGSEA-1 Results (Load Cell, DTS-SLICE, and EDR-3)

رەر

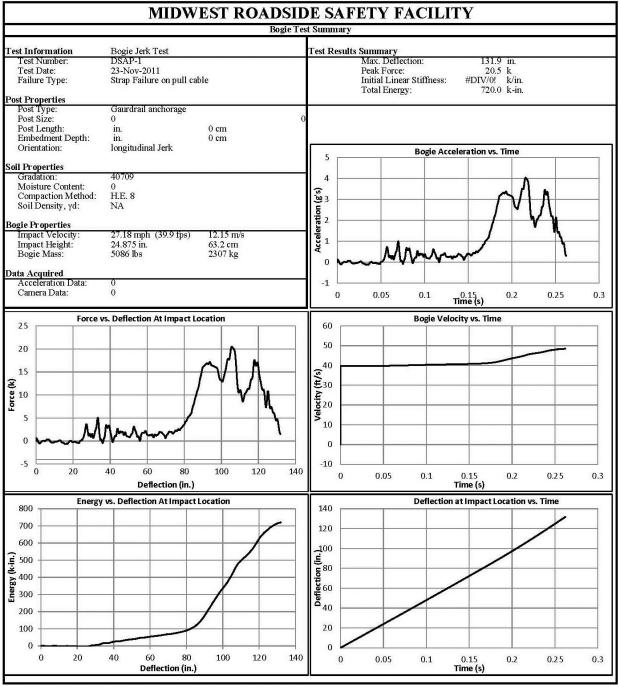


Figure C-8. Test No. DSAP-1 Results (DTS)

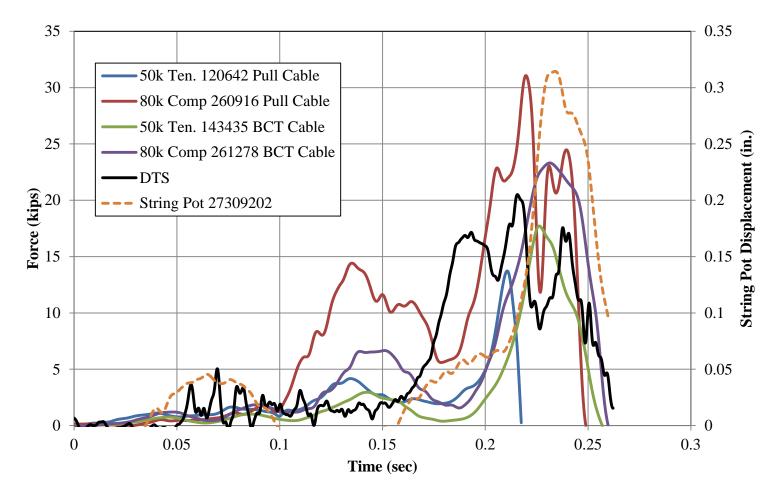


Figure C-9. Test No. DSAP-1 Results (Load Cells and DTS)

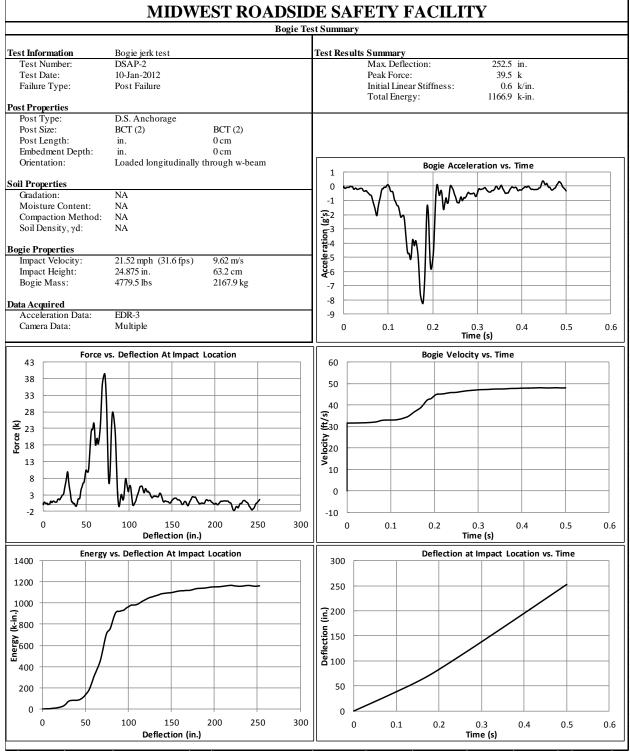


Figure C-10. Test No. DSAP-2 Results (EDR-3)

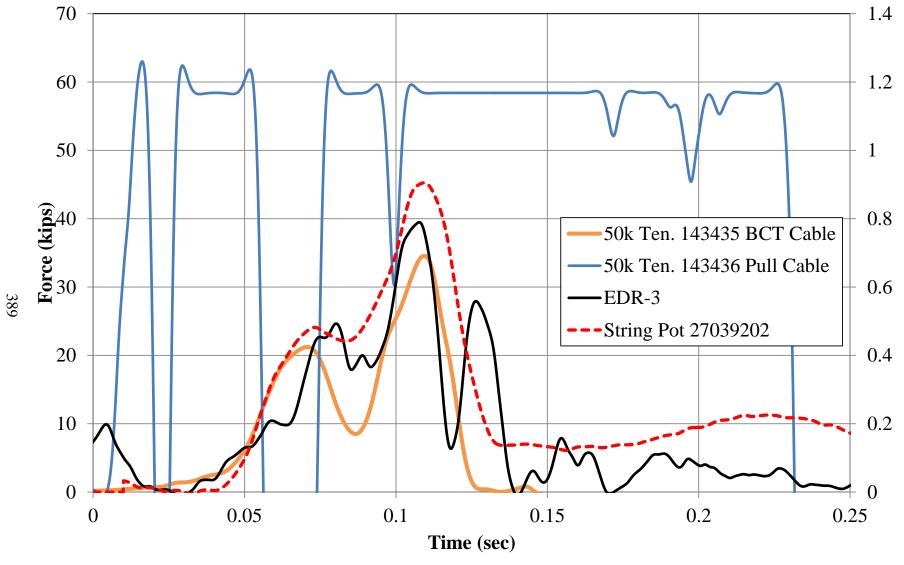


Figure C-11. Test No. DSAP-2 Results (Load Cells and EDR-3)

October 28, 2013 MwRSF Report No. TRP-03-279-13

Appendix D. Vehicle Center of Gravity Determination

Test: WIDA-1	Vehicle:	2270P		10
	Vehicle CG	Determina	ition	
		Weight	Vert CG	Vert M
VEHICLE	Equipment	(lb)	(in.)	(lb-in.)
+	Unbalasted Truck (Curb)	5016	28.30313	141968.5
+	Brake receivers/wires	6	52	312
+	Brake Frame	6	26	156
+	Brake Cylinder (Nitrogen)	22	27.5	605
+	Strobe/Brake Battery	6	32	192
 -	Hub	27	15	405
+	CG Plate (EDRs)	8	33.5	268
-	Battery	-42	41.5	-1743
1-	Oil	-5	15.5	-77.5
-	Interior	-64	24	-1536
	Fuel	-152	18	-2736
2 4 -	Coolant	-13	36	-468
	Washer fluid	-2	40	-80
BALLAST	Water	181	18	3258
	DTS Rack	17	30	510
	Misc.			0
		198	5	141034

Estimated Total Weight (lb) 5011 Vertical CG Location (in.) 28.14488

wheel base (in.)	140.5		
MASH Targets	Targets	Test Inertial	Difference
Test Inertial Weight (Ib)	5000 ± 110	5002	2.0
Long CG (in.)	63 ± 4	64.58	1.57607
Lat CG (in.)	NA	-0.63425	NA
Vert CG (in.)	28	28.14	0.14488

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)			
	Left	Rig	ht
Front		1437	1316
Rear		1144	1119
FRONT		2753 lb	
REAR		2263 lb	
TOTAL		5016 lb	

TEST INE	RTIA	L WEI	GHT	(lb)
(from scales)				
	Left		Righ	t
Front		1402	1920	1301
Rear		1146		1153
FRONT		2703	lb	
REAR		2299	lb	
TOTAL		5002	lb	

Figure D-1. Vehicle Mass Distribution, Test No. WIDA-1

Test: WIDA-2

Vehicle: 1100C

	Vehicle C	G Determination
		Weight
VEHICLE	Equipment	(lb)
+	Unbalasted Car (curb)	2491
+	Brake receivers/wires	6
+	Brake Frame	6
+	Brake Cylinder	22
+	Strobe Battery	6
+	Hub	20
+	CG Plate (EDRs)	8
+	DTS	17
	Battery	-35
Ξ.	Oil	-5
. 	Interior	-33
-	Fuel	-20
.	Coolant	-5
-	Washer fluid	-7
BALLAST	Water	
	Spare tire	-23
	Misc.	

Estimated Total Weight

2448 lb

wheel base	98.625	in.		
MASH targets			Test Inertial	Difference
Test Inertial Wt (lb)		2420 (+/-)55	2449	29.0
Long CG (in.)		39 (+/-)4	35.88	-3.11806
Lateral CG (in.)		N/A	-0.38572	NA

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGH	IT (Ib)		
	Left	Rig	ht
Front		822	788
Rear		448	433
FRONT		1610 lb	
REAR		881 lb	
TOTAL		2491 lb	

Dummy	= 166lb	S.	
TEST IN	ERTIAI	_ WEIG	HT (lb)
(from scales)		
	Left	F	Right
Front		787	771
Rear		454	437
FRONT		1558 lb	0
REAR		891 lk)
TOTAL		2449 lk)

Figure D-2. Vehicle Mass Distribution, Test No. WIDA-2

Appendix E. System Details, Test No. WIDA-2

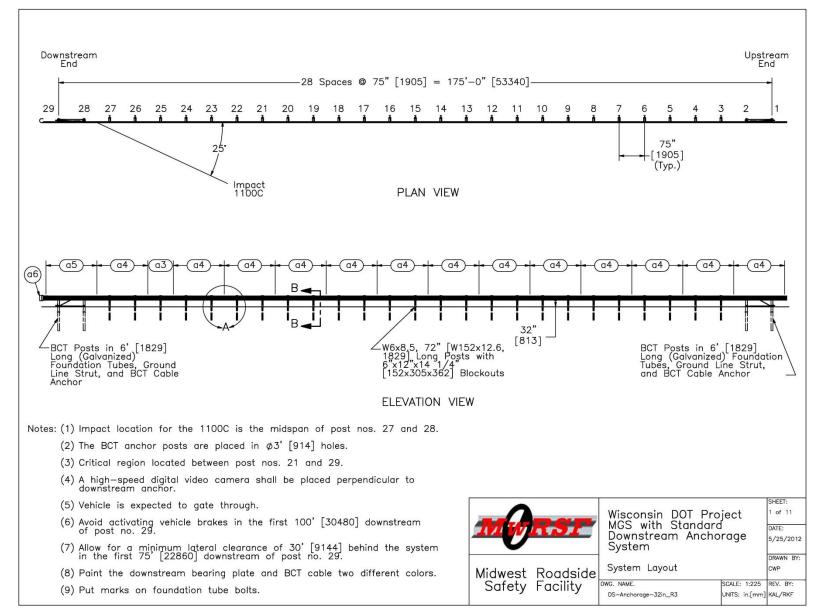


Figure E-1. Test Installation Layout, Test No. WIDA-2

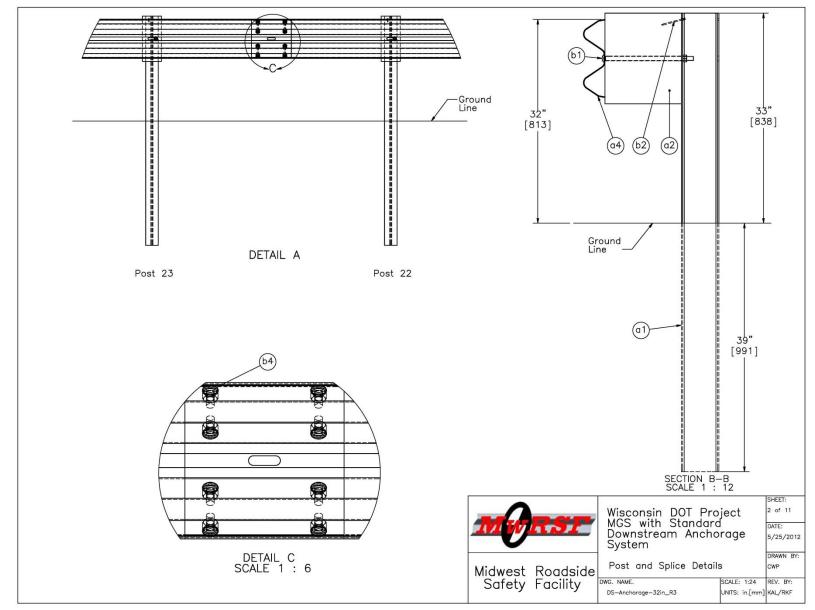


Figure E-2. Post and Splice Details, Test No. WIDA-2

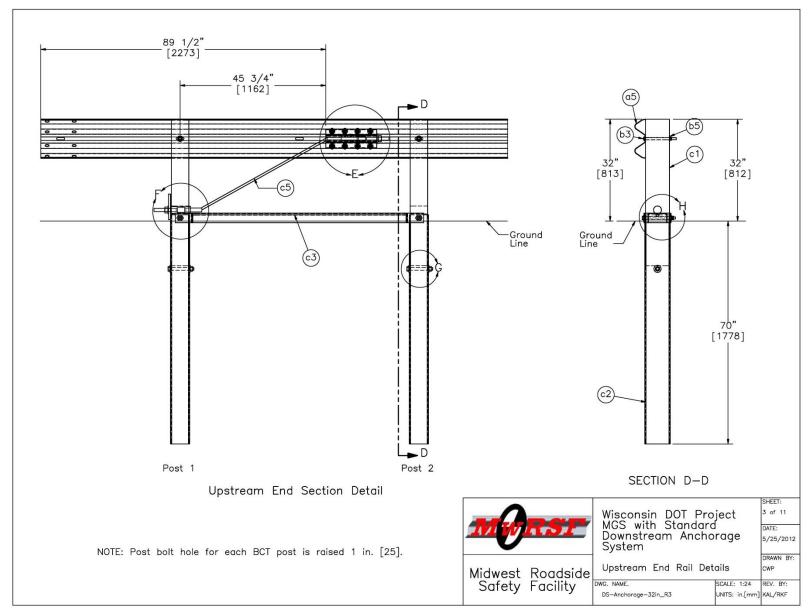


Figure E-3. Upstream End Anchor Details, Test No. WIDA-2

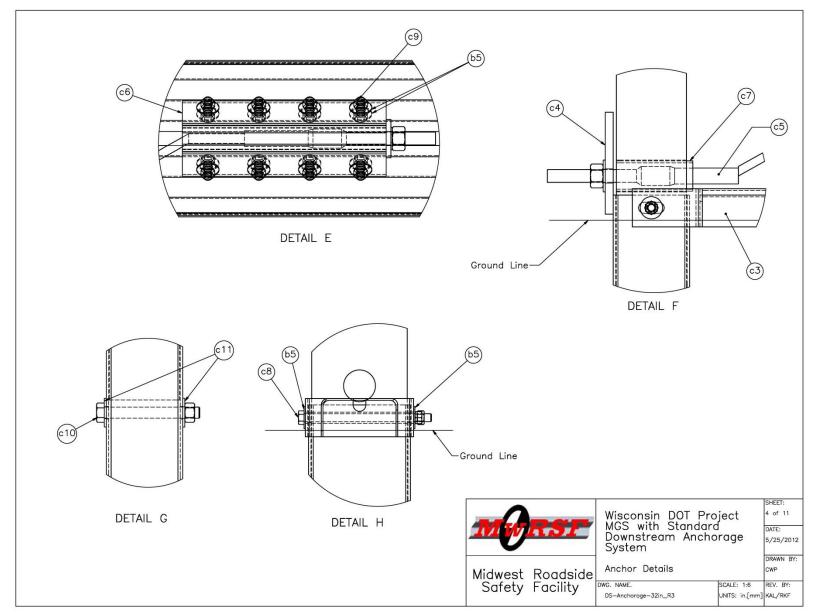


Figure E-4. Anchor Details, Test No. WIDA-2

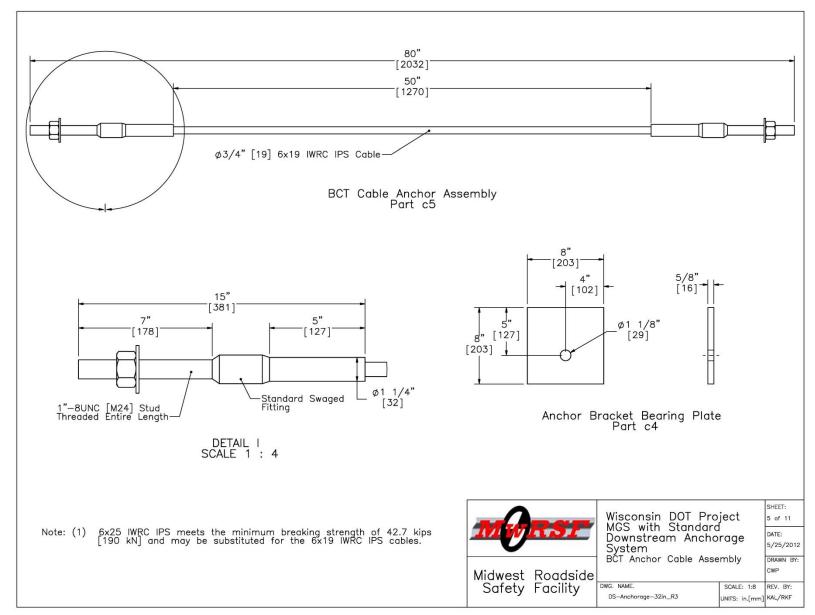


Figure E-5. BCT Anchor Cable Details, Test No. WIDA-2

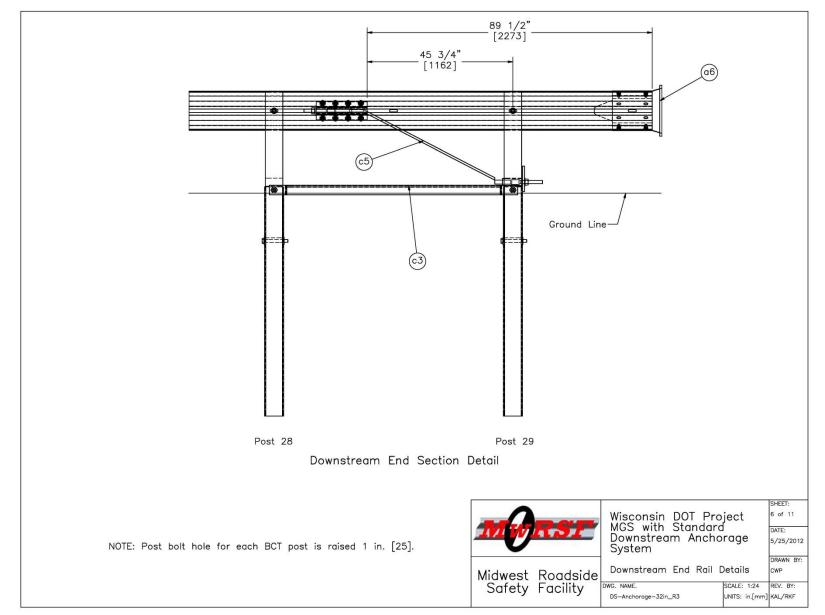


Figure E-6. Downstream End Anchor Details, Test No. WIDA-2

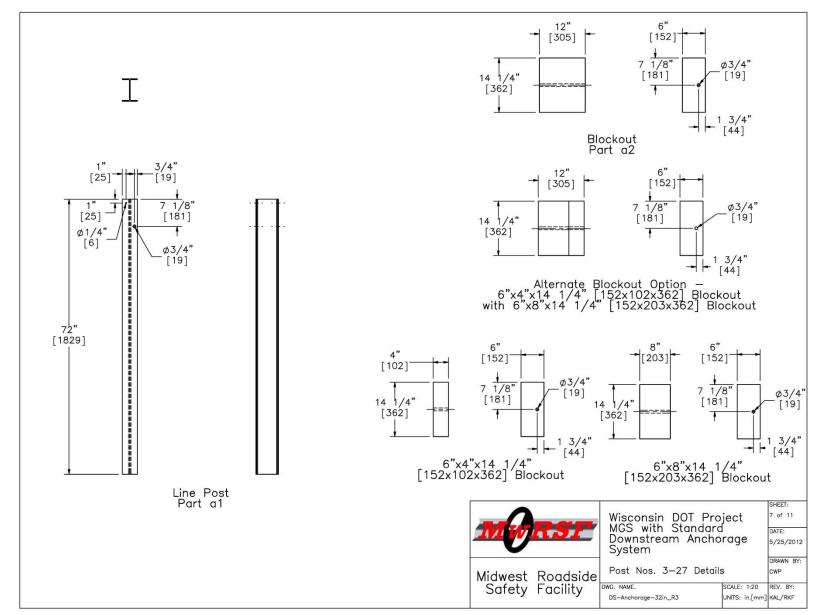


Figure E-7. Line Post Details, Test No. WIDA-2

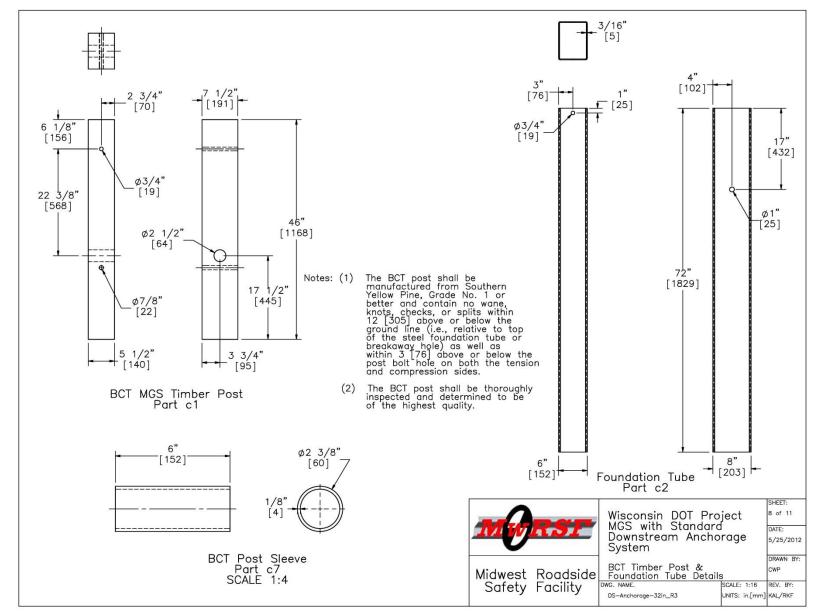


Figure E-8. BCT Timber Post and Foudation Details, Test No. WIDA-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

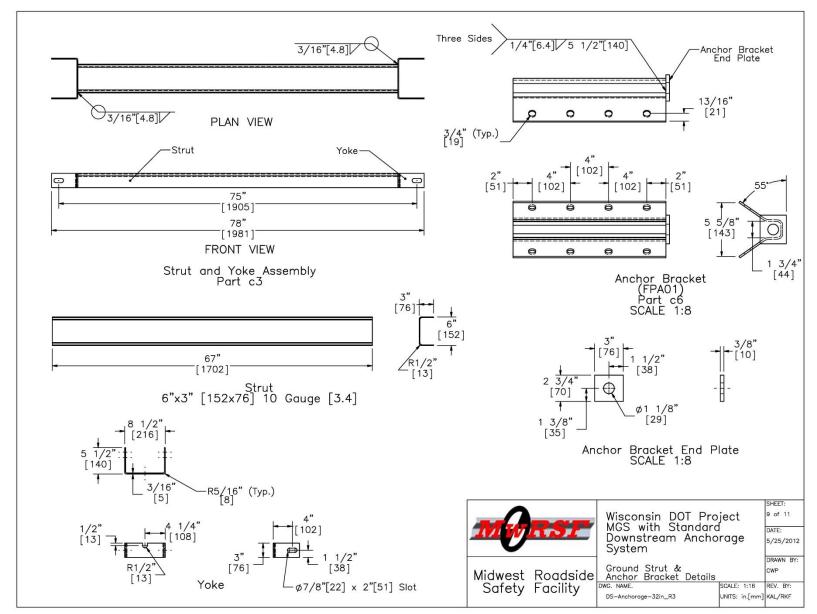


Figure E-9. Ground Strut and Anchor Bracket Details, Test No. WIDA-2

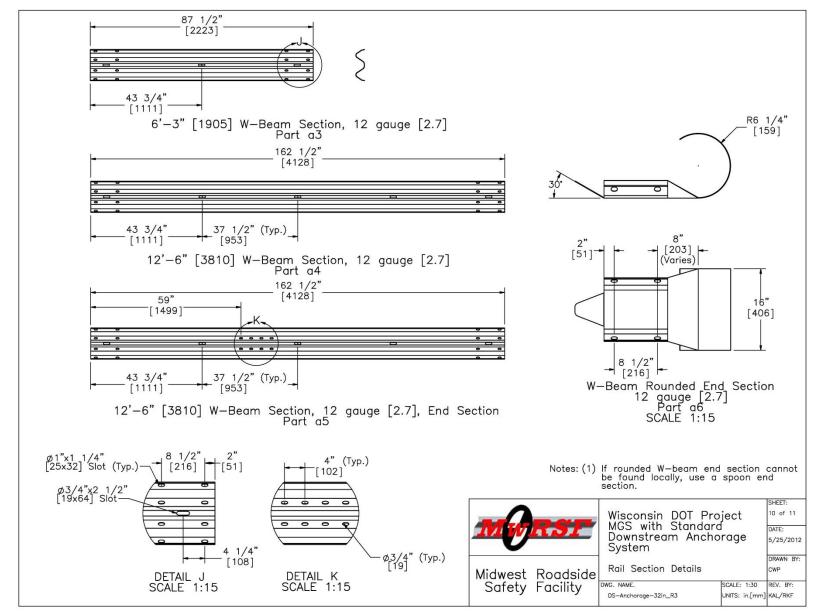


Figure E-10. W-Beam Guardrail Details, Test No. WIDA-2

ltemNo.	QTY.	Description	Material Specification	Hardware Guide					
a1	25	W6x8.5 6' Long [W152x12.6 1829] Steel Post	ASTM A992 Min. 50 ksi [345 MPa] (W6x9 ASTM A36 Min. 36 ksi [248 MPa])	PWE06					
۵2	25	6x12x14 1/4" [152x305x362] Blockout	SYP Grade No. 1 or better	PDB10a-b					
a3	1	6'-3" [1905] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM01a					
a4	12	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a					
α5	2	12'-6" [3810] W-Beam MGS End Section	12'-6" [3810] W-Beam MGS End Section 12 gauge [2.7] AASHTO M180						
a6	1	W-Beam Rounded End Section	12 gauge [2.7] AASHTO M180	RWE03a					
b1	25	5/8" Dia. x 14" Long [M16x356] Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563A	FBB06					
b2	25	16D Double Head Nail	-	_					
b3	4	5/8" Dia. x 10" [M16x254] Long Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563A	FBB03					
b4	116	5/8" Dia. x 1 1/2" Long [M16x38] Guardrail Bolt and Nut	Bolt ASTM A307, Nut ASTM A563A	FBB01					
b5	46	ASTM F844 or Grade 2 Steel	FWC16a						
c1	4	BCT Timber Post - MGS Height SYP Grade No. 1 or better (high quality)							
c2	4	72" [1829] Long Foundation Tube	ASTM A53 Grade B	PTE06					
c3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	-					
c4	2	8x8x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36 Steel	FPB01					
c5	2	BCT Anchor Cable Assembly	ø3/4" [19] 6x19 IWRC IPS Galvanized Wire Rope	FCA01					
c6	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01					
c7	2	2 3/8" [60] 0.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02					
c8	4	5/8" Dia. x 10" [M16x254] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563A	FBX16a					
c9	16	5/8" Dia. x 1 1/2" Long [M16x38] Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563A	FBX16a					
c10	4	7/8" Dia. x 7 1/2" [M22x191] Long Hex Head Bolt and Nut	Bolt ASTM A307, Nut ASTM A563A	FBX22a					
	8	7/8" [22] Dia. Flat Washer	SAE Grade 2	FWC22a					

MURSE	Wisconsin DOT Pro MGS with Standarc Downstream Ancho System	ject	SHEET: 11 of 11 DATE: 5/25/2012
Midwest Roadside	Bill of Materials		DRAWN BY: CWP
Safety Facility	DWG. NAME. DS—Anchorage—32in_R3	SCALE: NONE UNITS: in.[mm]	REV. BY: KAL/RKF

Figure E-11. Bill of Materials, Test No. WIDA-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

Appendix F. Soil Tests

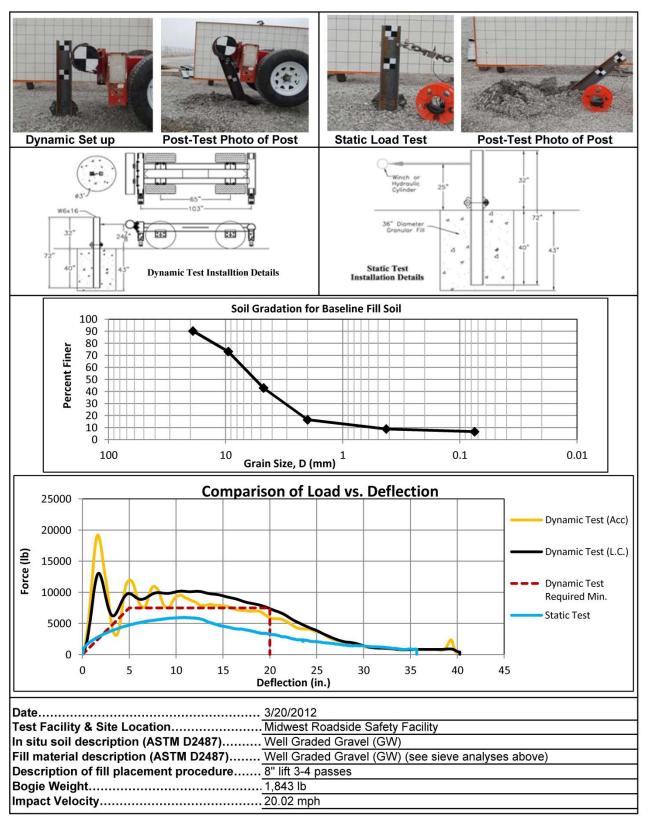
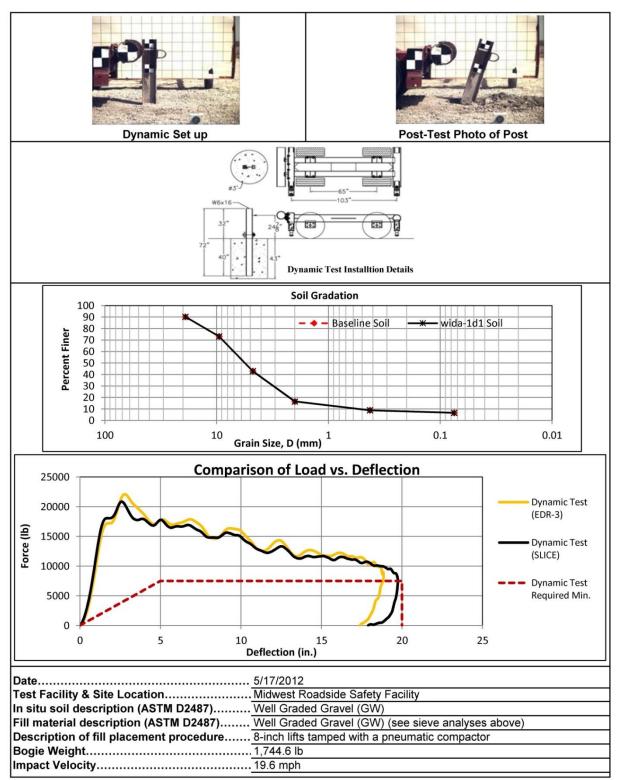



Figure F-1. Summary Sheet for Strong Soil Test Results, Test No. DSAP-2

NOTE: Although the end of the force-deflection curve dropped below the mnimum load defined in MASH for a dynamic soil test, the soil resistance was still deemed satisfactory. In fact, for the first 10 in. (254 mm) of deflection, the soil was clearly capable of sustaining a force double the minimum required. Between 10 and 18 in. (254 and 457 mm), the soil still sustained a force above 10 kip (44 kN), which is 25 percent greater than the minimum required. By this time, there was no more energy to be dissipated, thus the sharp drop-off in force. Figure F-2. Test Day Dynamic Soil Strength, Test No. WIDA-1

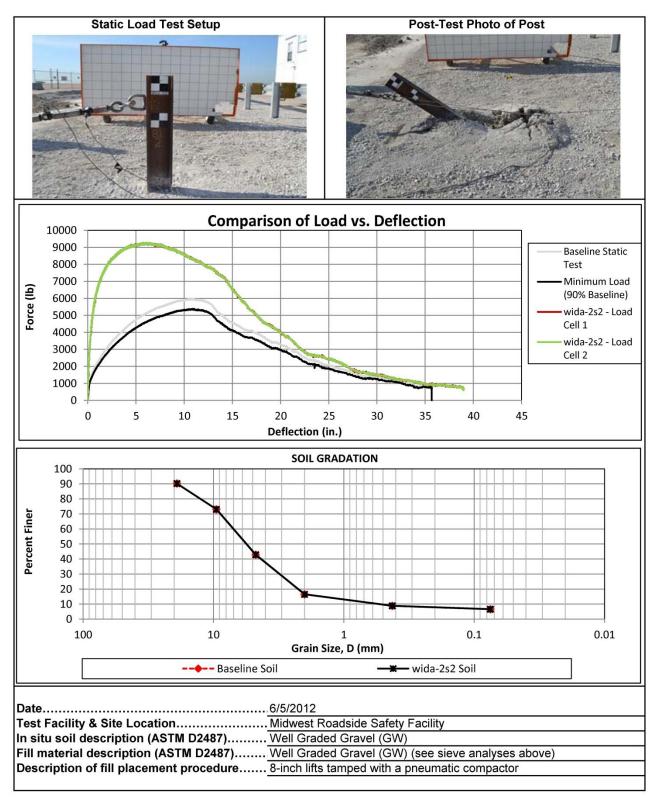
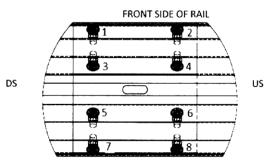



Figure F-3. Test Day Static Soil Strength, Test No. WIDA-2

Appendix G. Permanent Splice Displacements

		Splice Location																										
Splice Movement (in.)		F0SU NOS. 2023	Doct Noc. 12.5	r ust 1705. 4000	Doct Noc 62-7	rust 1705. 000 /	Doct Noc 98.0	0.001	Doct Noc 108-11	TWUT -SULT		CTX 71.801 1801	Doct Noc 118-15		Doct Noc 16 8-17	TXONT .SOLI		LOSI NOS. 1907	Boot Moo 300-31	LUSU 1905. 2002 1		Post Nos. 22&23		F 051 1705. 24 06 23		n	Doct Noc 37 2-30	LUSU 1705. 21 0020
	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back
Rail	3/8		3/8	3/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	3/8	3/8	1⁄4	1⁄4	3/8	3/8	0	0
Bolt No. 1	0	0	1/8	1/8	1/8	1/8	$\frac{1}{8}$	1/8	$\frac{1}{8}$	$\frac{1}{8}$	1/8	1/8	1/8	1/8	1/8	$\frac{1}{8}$	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 2	0	0	1/8	$\frac{1}{8}$	1/8	1/8	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	1/8	$\frac{1}{8}$	1/8	1/8	$\frac{1}{8}$	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 3	0	0	1/8	$\frac{1}{8}$	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	$\frac{1}{8}$	1/8	1/8	1/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 4	0	0	1/8	$\frac{1}{8}$	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	$\frac{1}{8}$	1/8	1/8	1/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 5	1/8	1/8	1/8	1/8	1/8	1/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 6	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 7	0	0	1/8	1/8	1/8	1/8	$\frac{1}{8}$	1/8	$\frac{1}{8}$	$\frac{1}{8}$	1/8	1/8	1/8	1/8	1/8	$\frac{1}{8}$	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0
Bolt No. 8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	0	0

Table G-1. Permanent Separation of Splice Connections and Bolt Slippage, Test No. WIDA-1

October 28, 2013 MwRSF Report No. TRP-03-279-13

				Sp	lice	Loc	atio	n			
Splice Movement (in.)	Doct Noc 30 8-31	LUSU 1705. 20021	Doct Noc 33 2-33	L USU 17US. 22002	Post Nos. 24&25		Post Nos. 25&26		Post Nos. 27&28		
	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	
Rail	1⁄2	1⁄2	3/8	3/8	1/8	1/8	1⁄4	1⁄4	1⁄4	1⁄4	
Bolt No. 1	1⁄4	0	1/8	$\frac{1}{8}$	0	0	$\frac{1}{8}$	¹ / ₁₆	1/8	1/8	
Bolt No. 2	1⁄4	1/8	1⁄4	1⁄4	0	0	1/8	0	1/8	1/8	
Bolt No. 3	1⁄4	1⁄4	1⁄4	1⁄4	1/8	0	1/8	1/8	1/8	1/8	
Bolt No. 4	1⁄4	1⁄4	1/8	1⁄4	1/8	0	1/8	0	1/8	1/8	
Bolt No. 5	3/8	1/8	1⁄4	1/8	1/8	0	1/8	¹ / ₁₆	0	0	
Bolt No. 6	1/8	1⁄4	1⁄4	1/8	¹ / ₁₆	0	1⁄4	0	¹ / ₁₆	0	
Bolt No. 7	1/8	1⁄4	1/8	1⁄4	1/8	1/8	0	1/8	1/8	0	
Bolt No. 8	1⁄4	1⁄4	3/8	1/8	0	0	1/8	1/8	1/8	0	

Table G-2. Permanent Separation of Splice Connections and Bolt Slippage, Test No. WIDA-2

October 28, 2013 MwRSF Report No. TRP-03-279-13

Appendix H. Vehicle Deformation Records

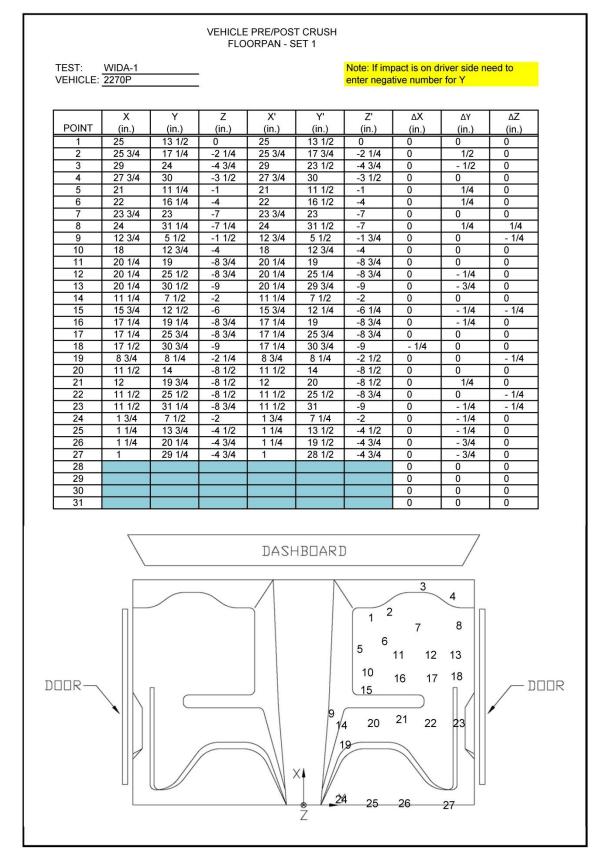


Figure H-1. Floor Pan Deformation Data - Set 1, Test No. WIDA-1

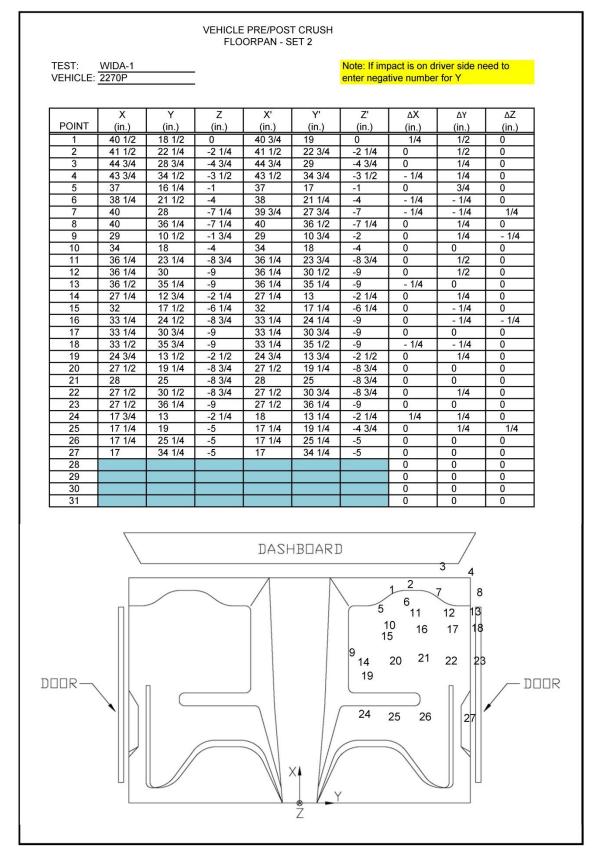


Figure H-2. Floor Pan Deformation Data - Set 2, Test No. WIDA-1

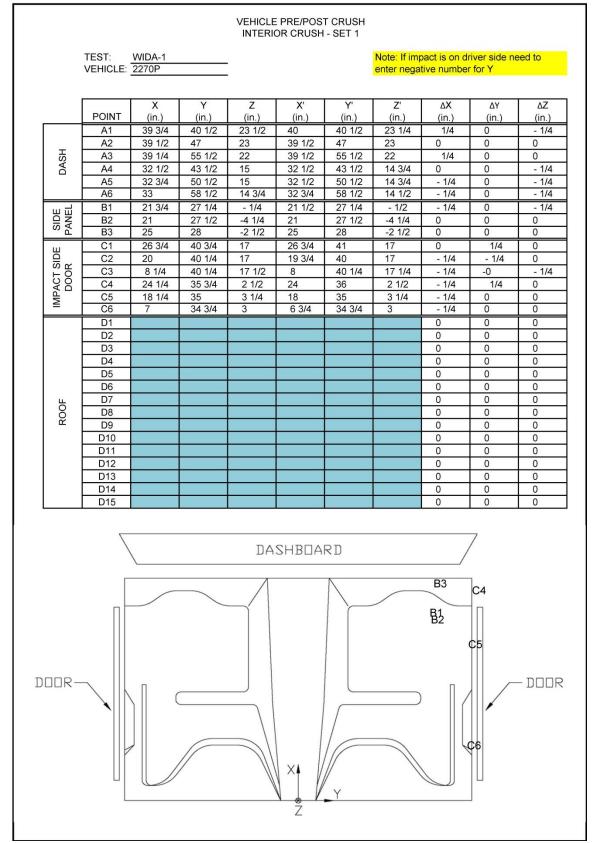


Figure H-3. Occupant Compartment Deformation Data - Set 1, Test No. WIDA-1

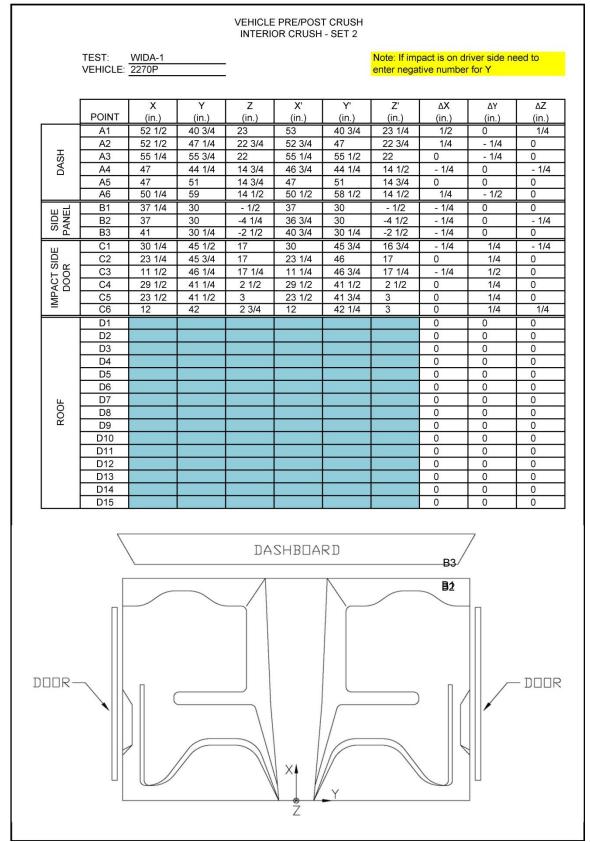


Figure H-4. Occupant Compartment Deformation Data - Set 2, Test No. WIDA-1

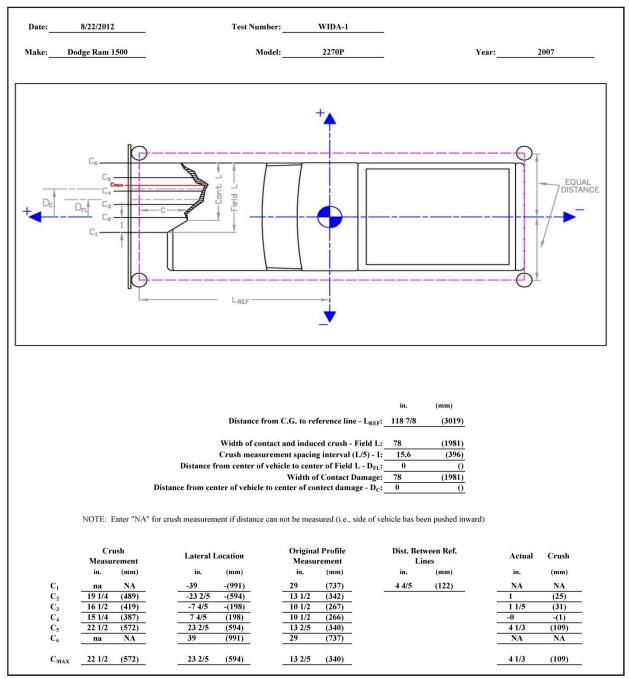


Figure H-5. Exterior Vehicle Crush (NASS) - Front, Test No. WIDA-1

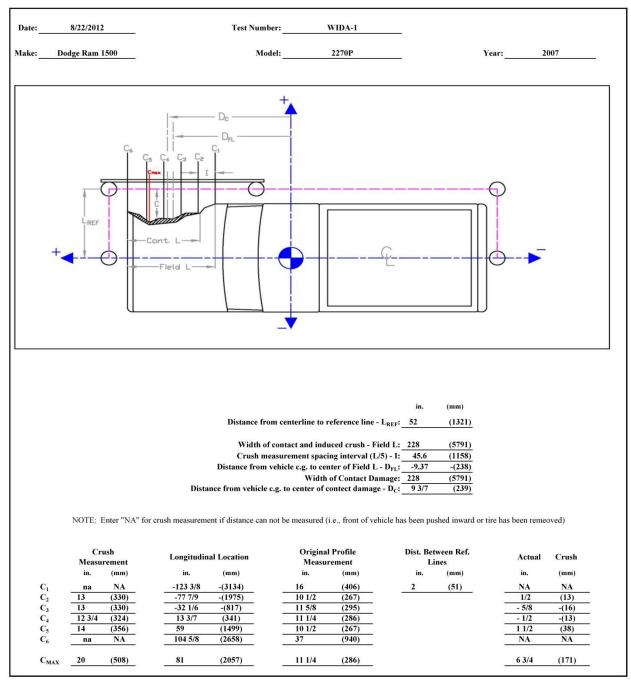


Figure H-6. Exterior Vehicle Crush (NASS) - Side, Test No. WIDA-1

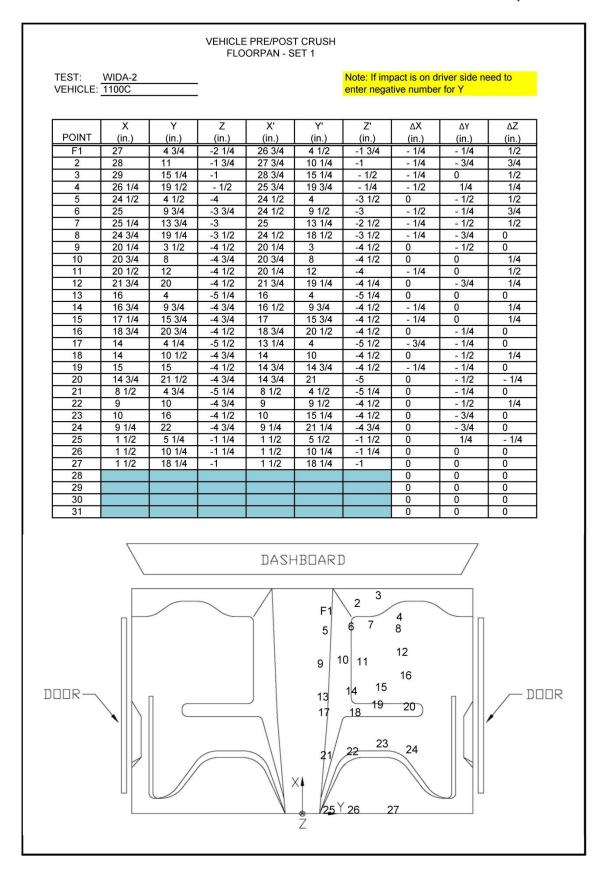


Figure H-7. Floor Pan Deformation Data – Set 1, Test No. WIDA-2

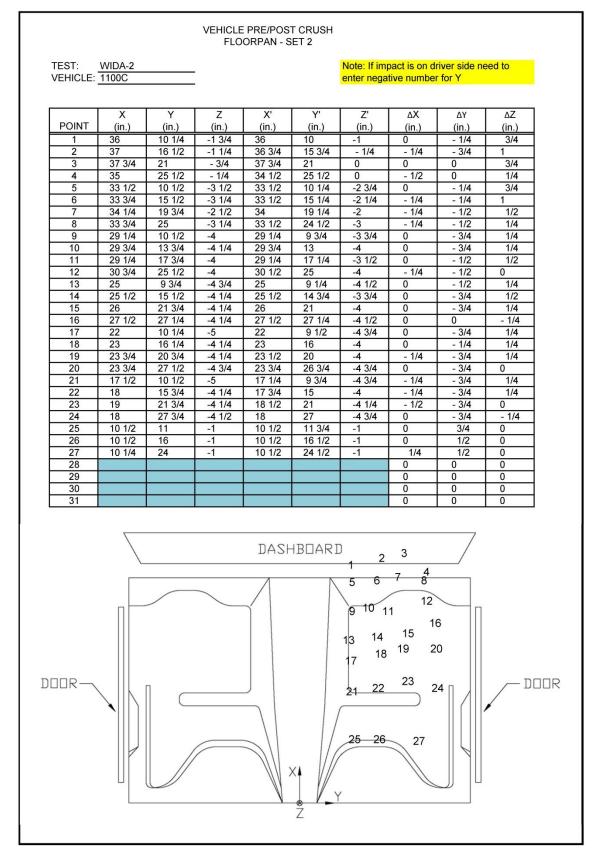


Figure H-8. Floor Pan Deformation Data – Set 2, Test No. WIDA-2

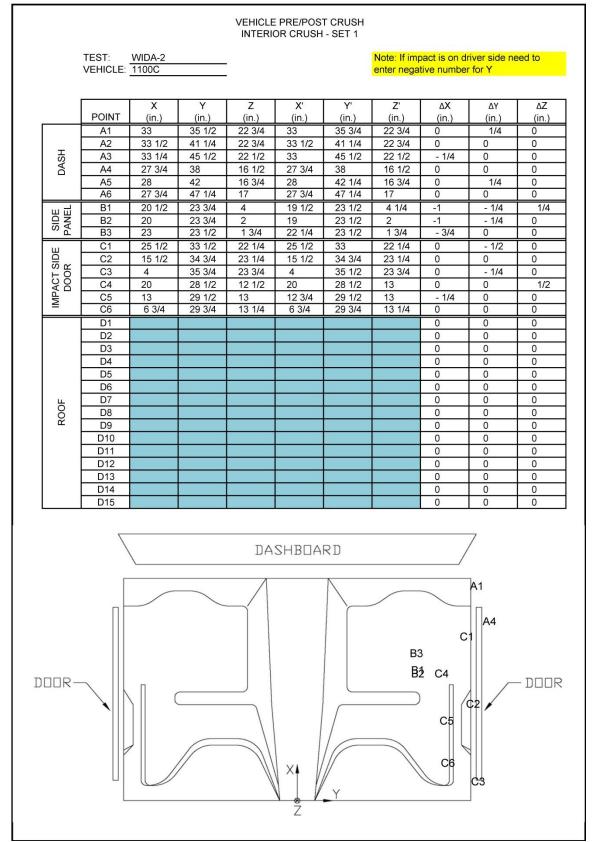


Figure H-9. Occupant Compartment Deformation Data – Set 1, Test No. WIDA-2

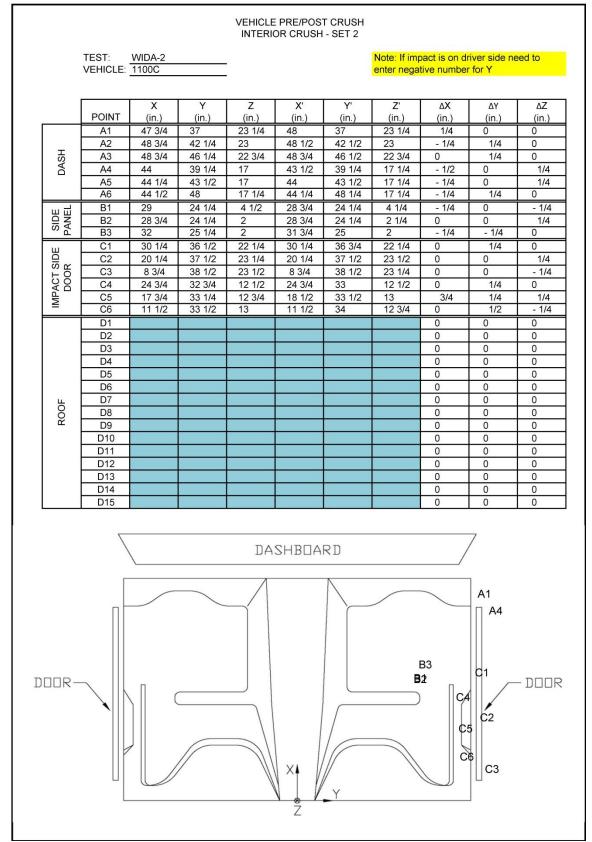


Figure H-10. Occupant Compartment Deformation Data – Set 2, Test No. WIDA-2

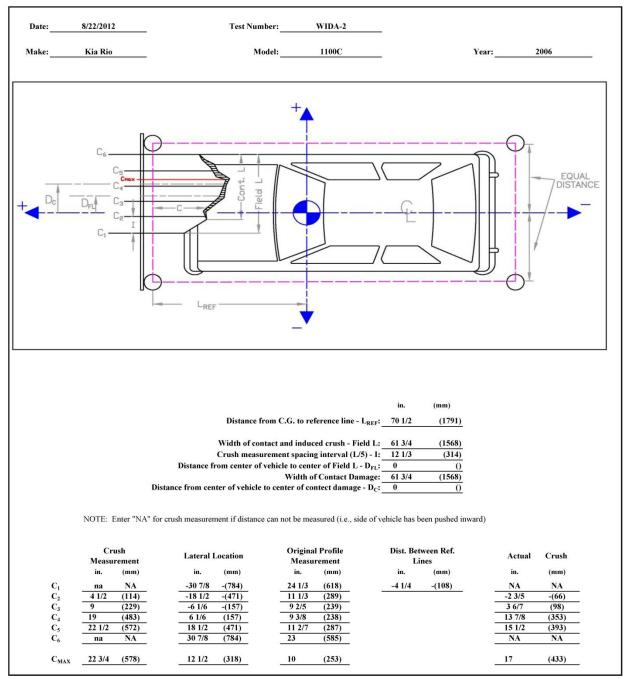


Figure H-11. Exterior Vehicle Crush (NASS) - Front, Test No. WIDA-2

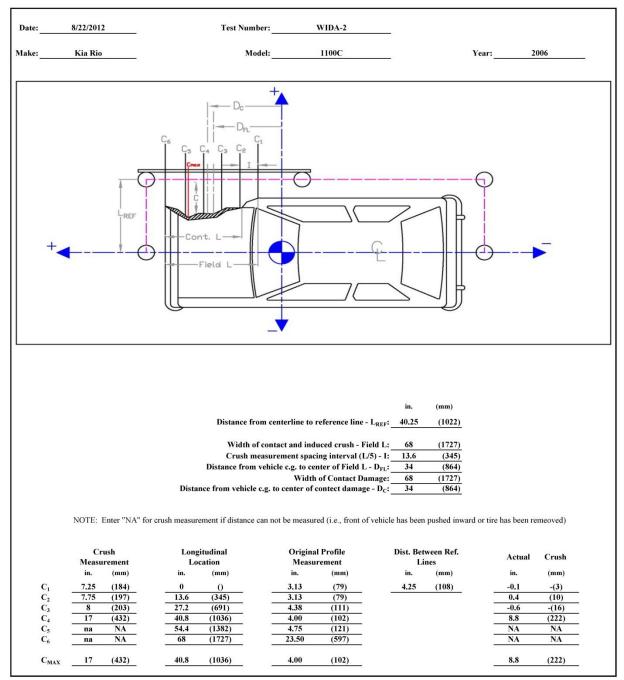


Figure H-12. Exterior Vehicle Crush (NASS) - Side, Test No. WIDA-2

Appendix I. Accelerometer and Rate Transducer Data Plots, Test No. WIDA-1

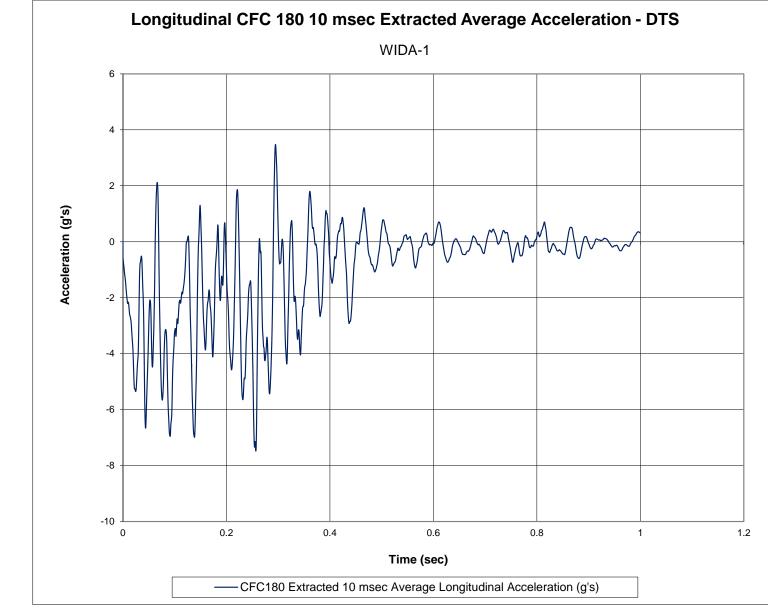


Figure I-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. WIDA-1

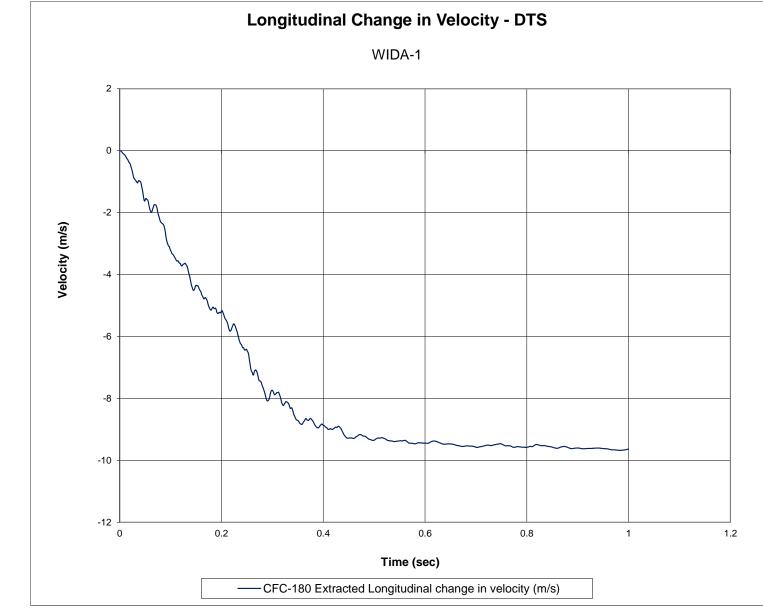


Figure I-2. Longitudinal Occupant Impact Velocity (DTS), Test No. WIDA-1

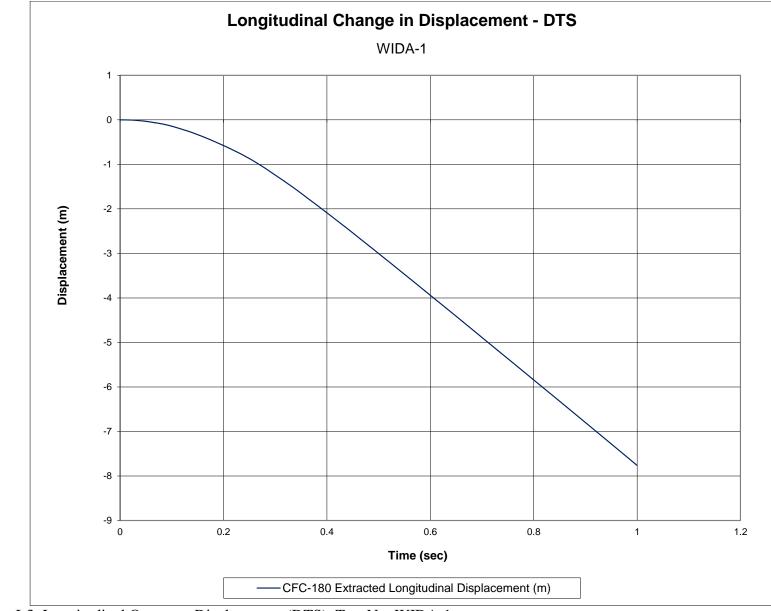


Figure I-3. Longitudinal Occupant Displacement (DTS), Test No. WIDA-1

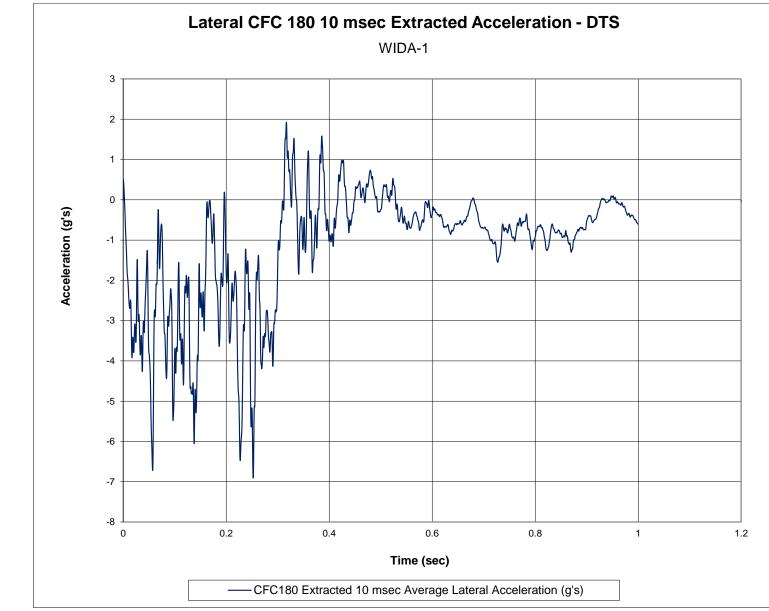


Figure I-4. 10-ms Average Lateral Deceleration (DTS), Test No. WIDA-1

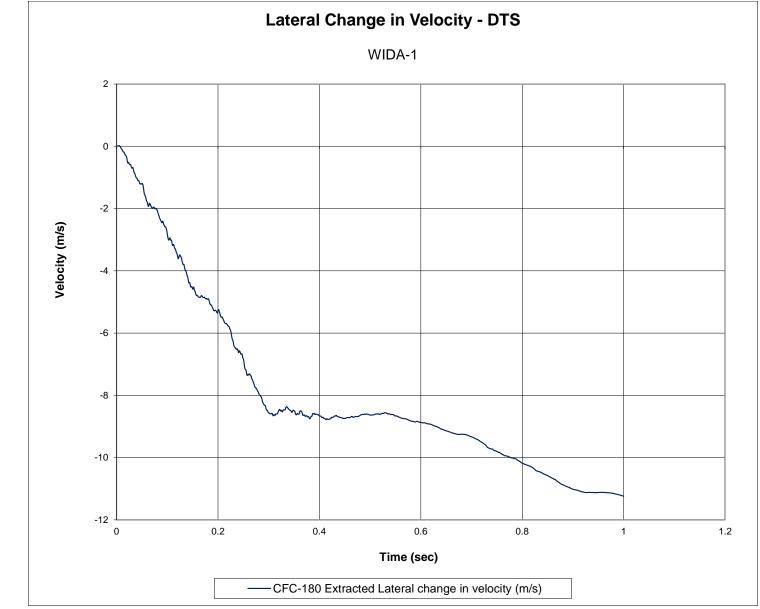


Figure I-5. Lateral Occupant Impact Velocity (DTS), Test No. WIDA-1

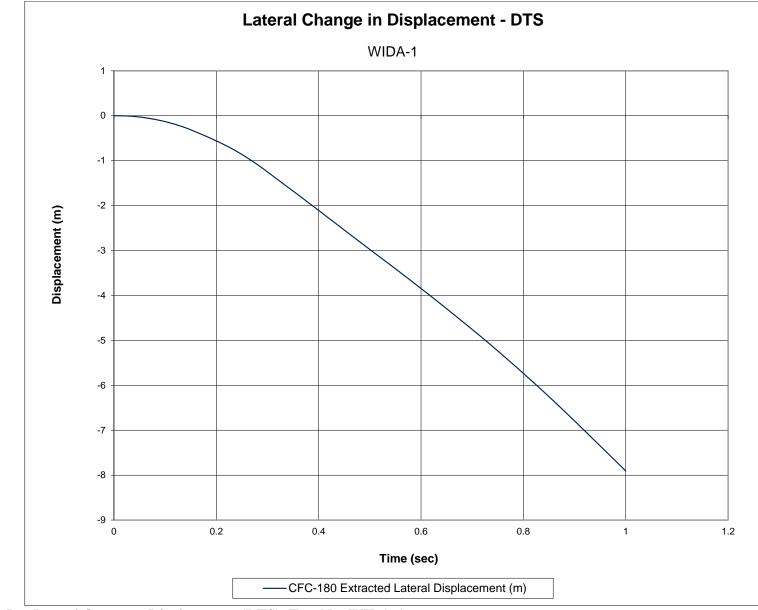


Figure I-6. Lateral Occupant Displacement (DTS), Test No. WIDA-1

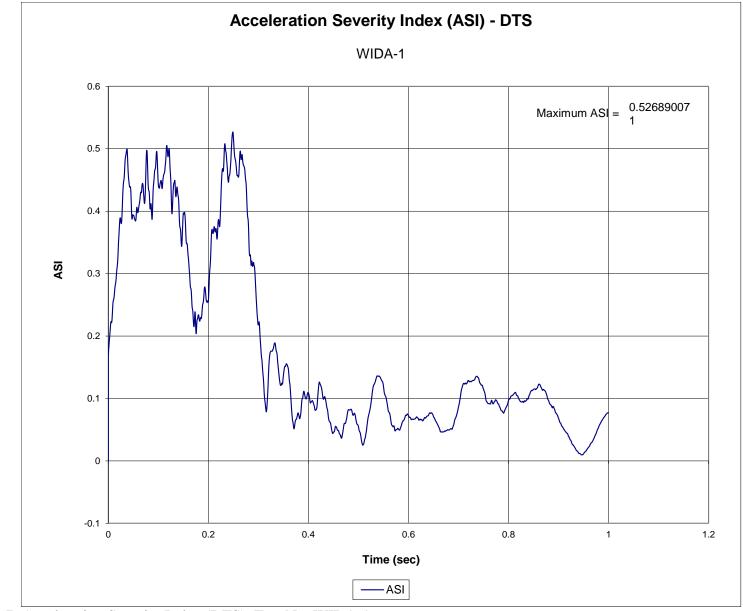


Figure I-7. Acceleration Severity Index (DTS), Test No. WIDA-1

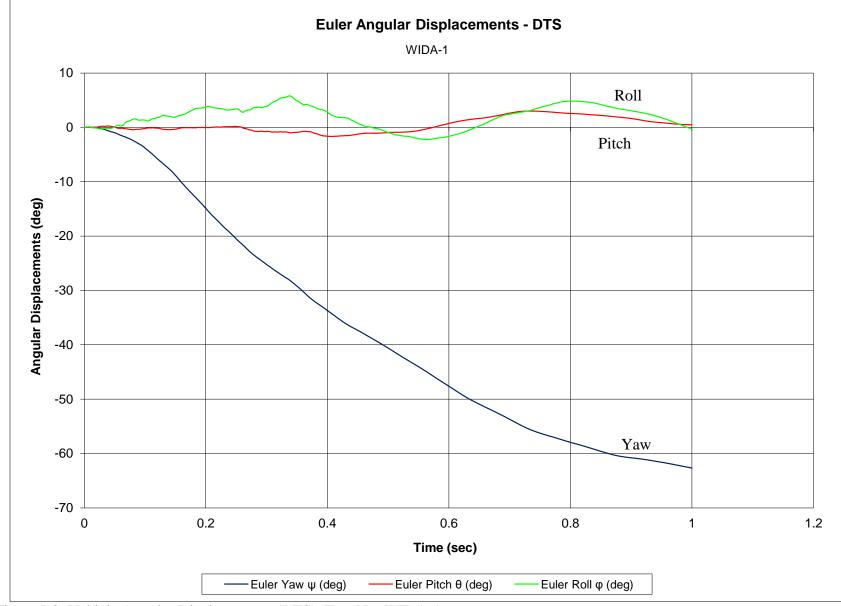


Figure I-8. Vehicle Angular Displacements (DTS), Test No. WIDA-1

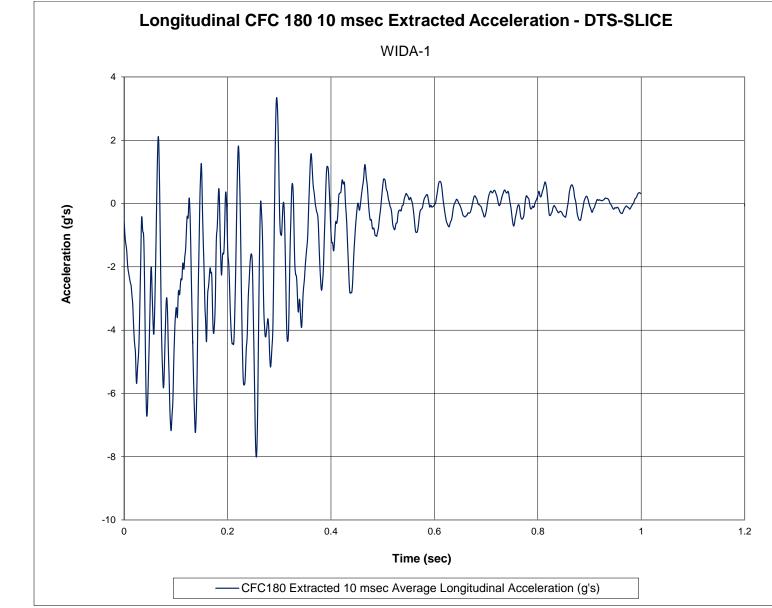


Figure I-9. 10-ms Average Longitudinal Deceleration (DTS - SLICE), Test No. WIDA-1

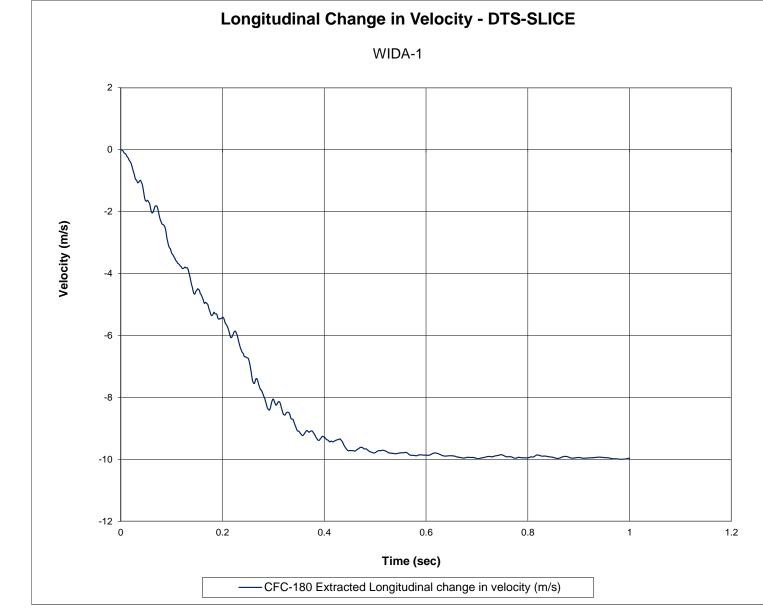


Figure I-10. Longitudinal Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-1

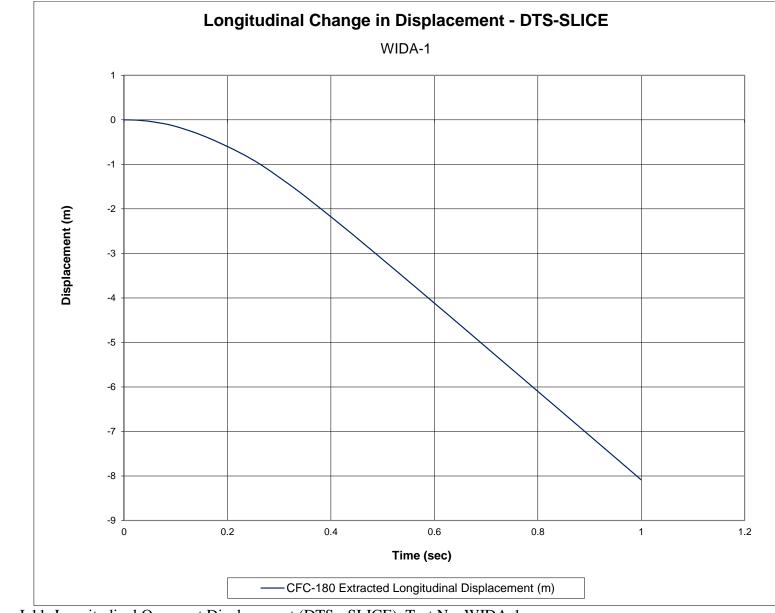


Figure I-11. Longitudinal Occupant Displacement (DTS - SLICE), Test No. WIDA-1

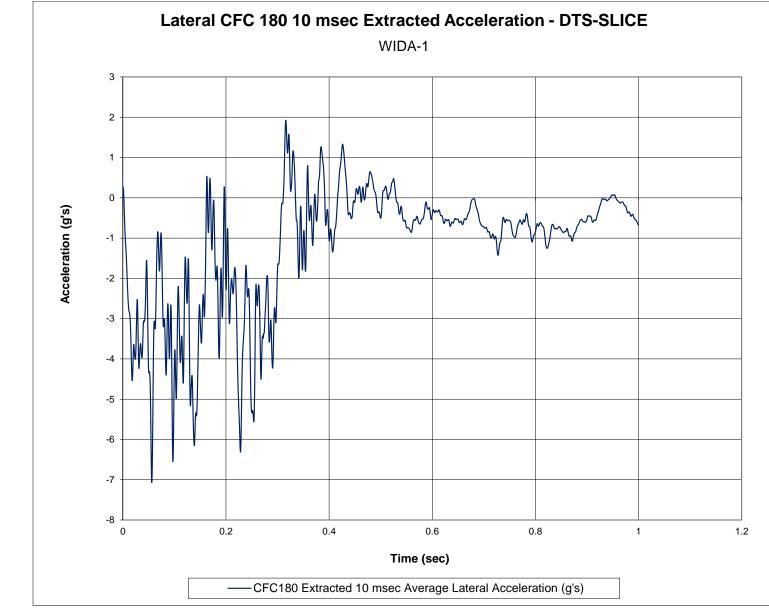


Figure I-12. 10-ms Average Lateral Deceleration (DTS - SLICE), Test No. WIDA-1

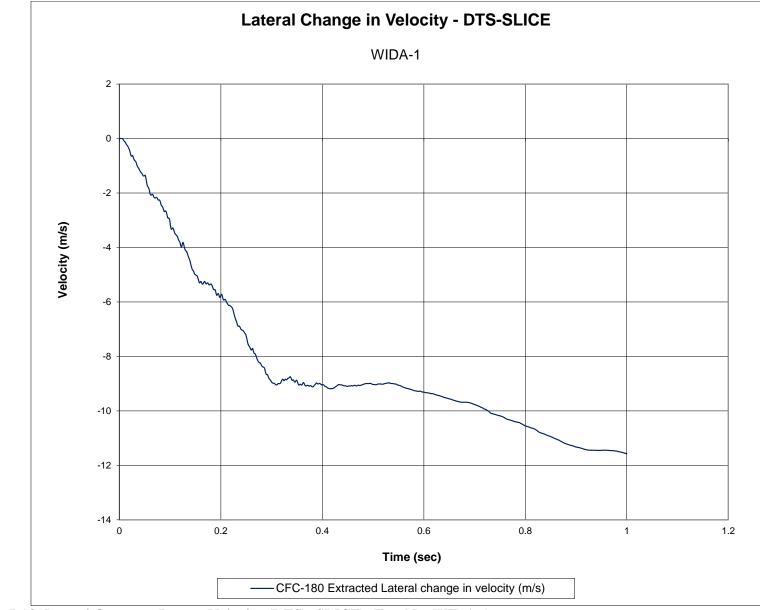


Figure I-13. Lateral Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-1

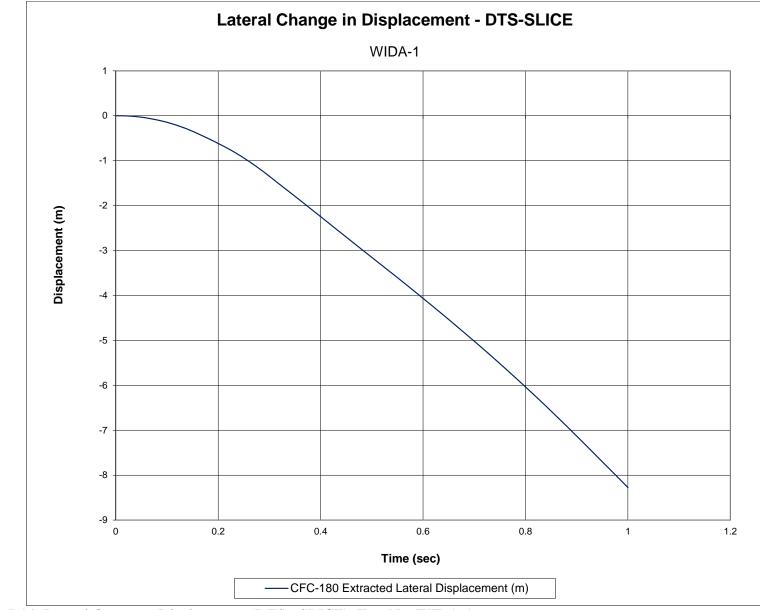


Figure I-14. Lateral Occupant Displacement (DTS - SLICE), Test No. WIDA-1

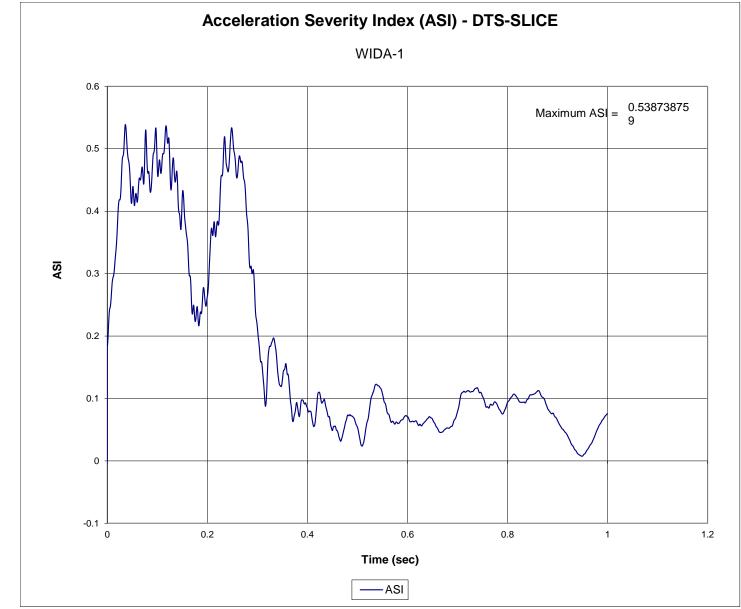


Figure I-15. Acceleration Severity Index (DTS - SLICE), Test No. WIDA-1

Figure I-16. Vehicle Angular Displacements (DTS - SLICE), Test No. WIDA-1

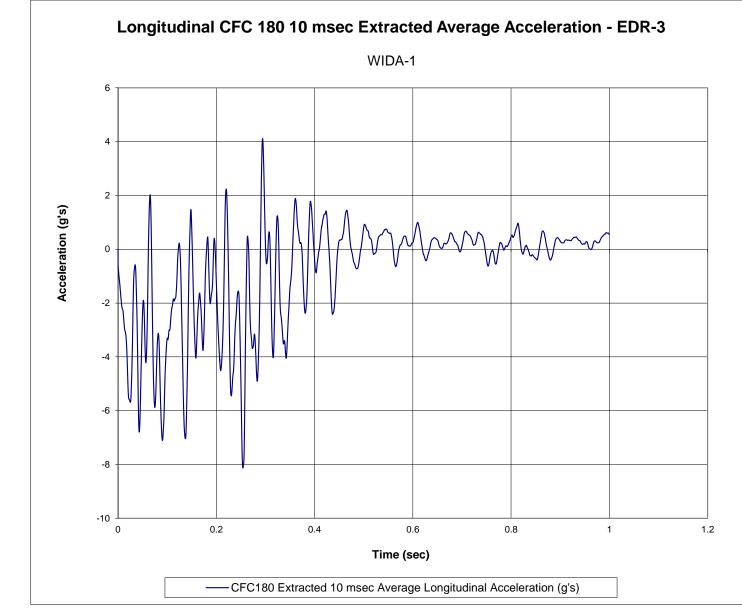


Figure I-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. WIDA-1

Figure I-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. WIDA-1

Figure I-19. Longitudinal Occupant Displacement (EDR-3), Test No. WIDA-1

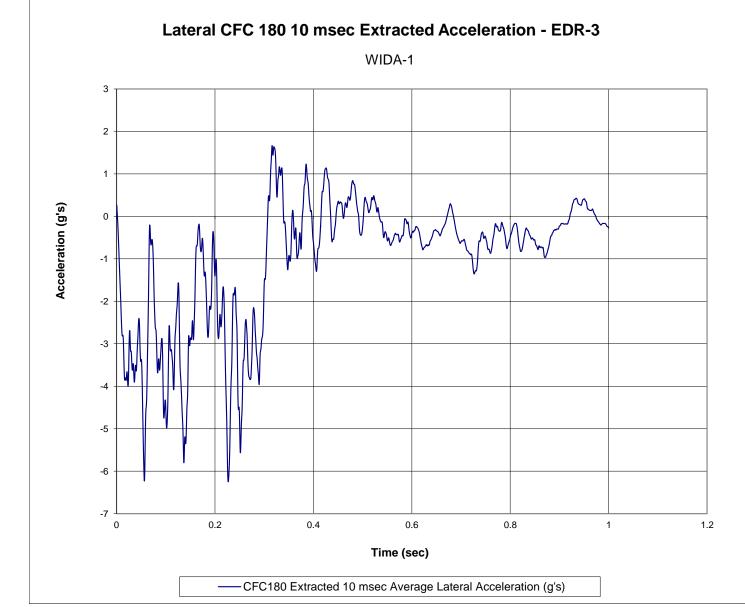


Figure I-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. WIDA-1

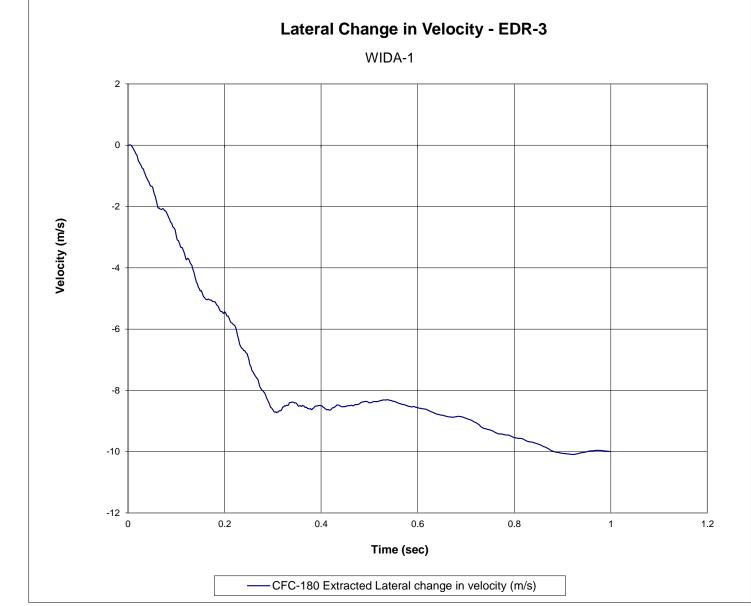


Figure I-21. Lateral Occupant Impact Velocity (EDR-3), Test No. WIDA-1

Figure I-22. Lateral Occupant Displacement (EDR-3), Test No. WIDA-1

Appendix J. Accelerometer and Rate Transducer Data Plots, Test No. WIDA-2

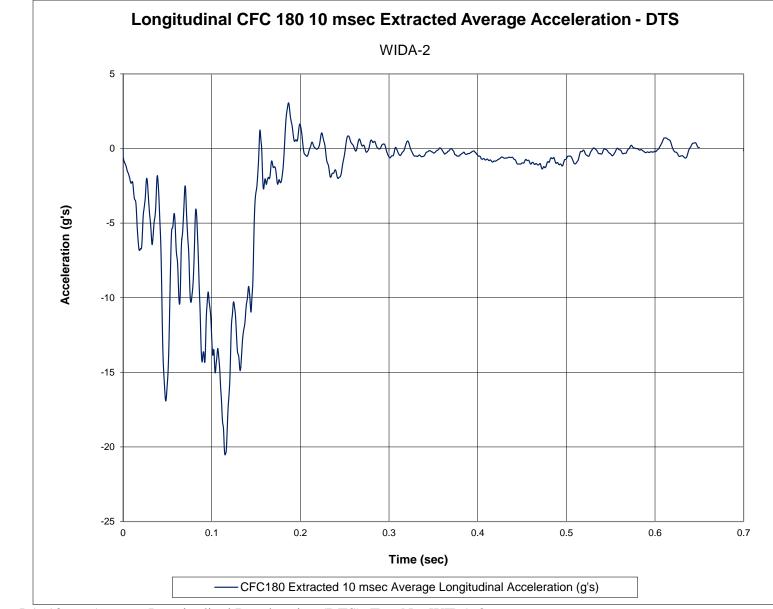


Figure J-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. WIDA-2

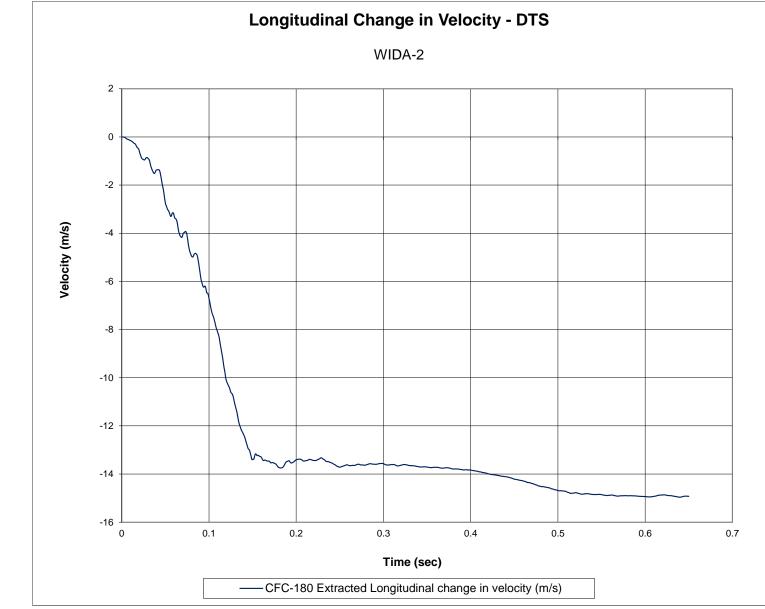


Figure J-2. Longitudinal Occupant Impact Velocity (DTS), Test No. WIDA-2

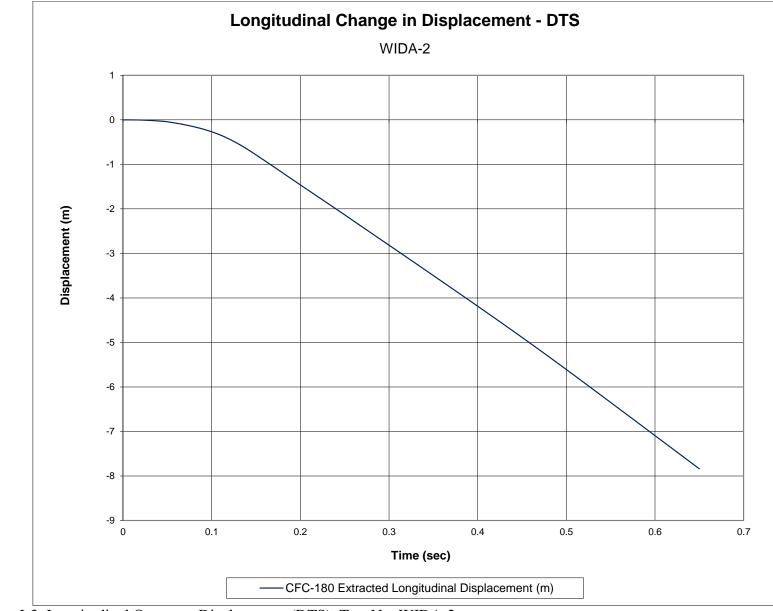


Figure J-3. Longitudinal Occupant Displacement (DTS), Test No. WIDA-2

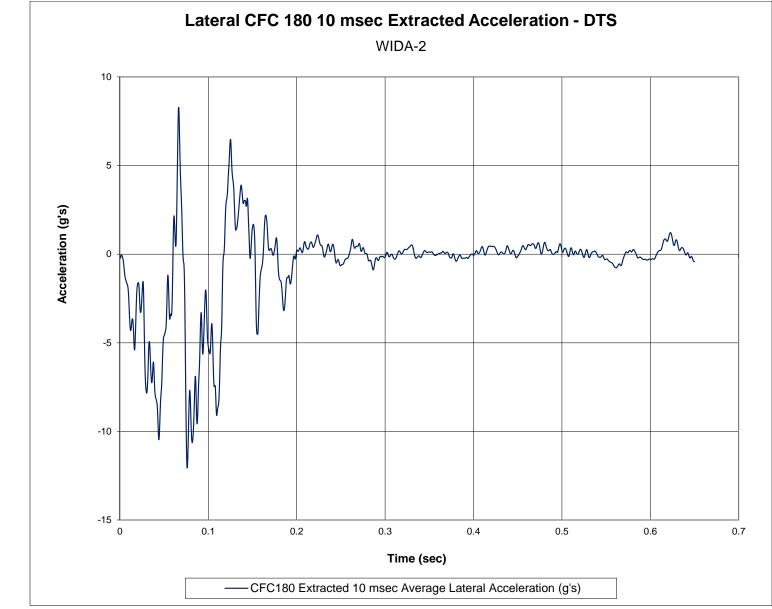


Figure J-4. 10-ms Average Lateral Deceleration (DTS), Test No. WIDA-2

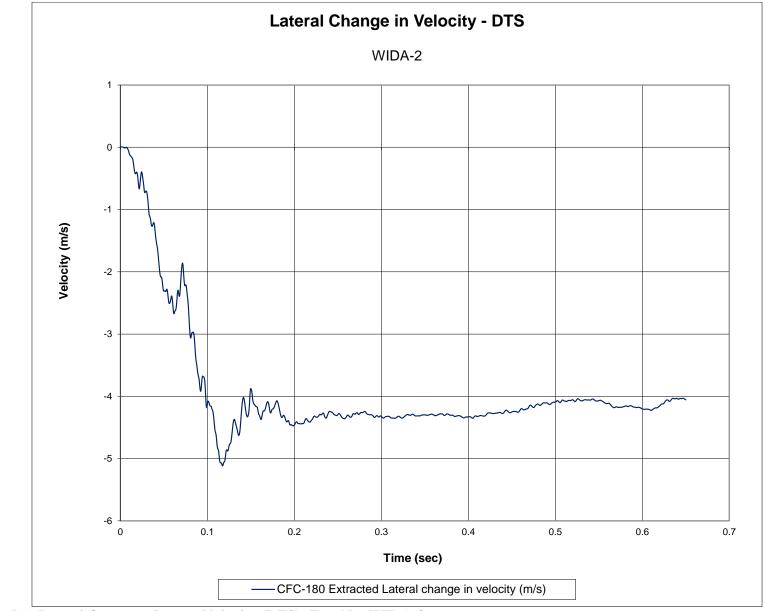


Figure J-5. Lateral Occupant Impact Velocity (DTS), Test No. WIDA-2

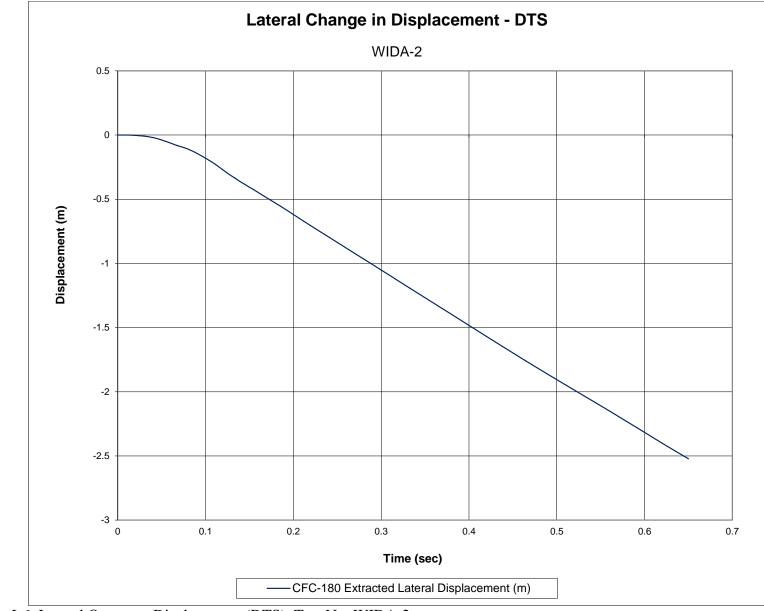


Figure J-6. Lateral Occupant Displacement (DTS), Test No. WIDA-2

Figure J-7. Acceleration Severity Index (DTS), Test No. WIDA-2

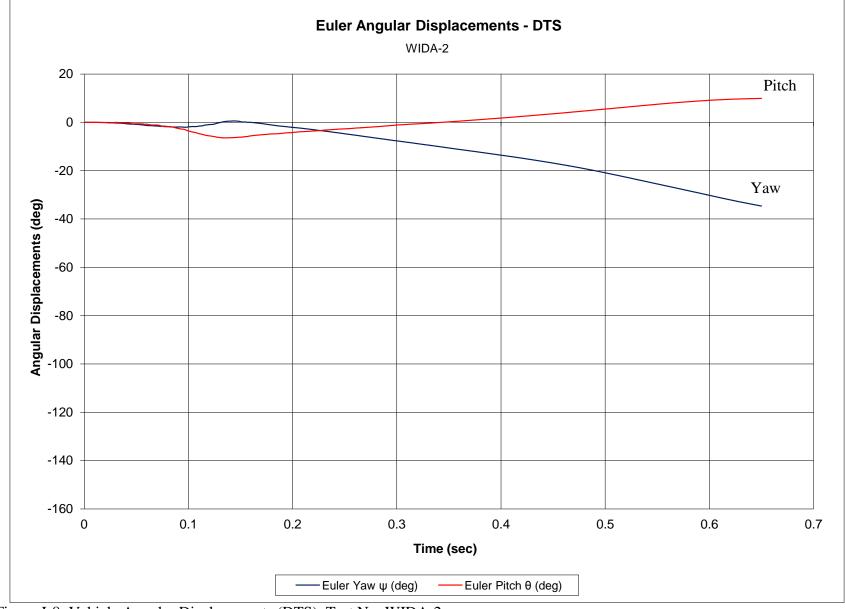


Figure J-8. Vehicle Angular Displacements (DTS), Test No. WIDA-2



Figure J-9. 10-ms Average Longitudinal Deceleration (DTS - SLICE), Test No. WIDA-2

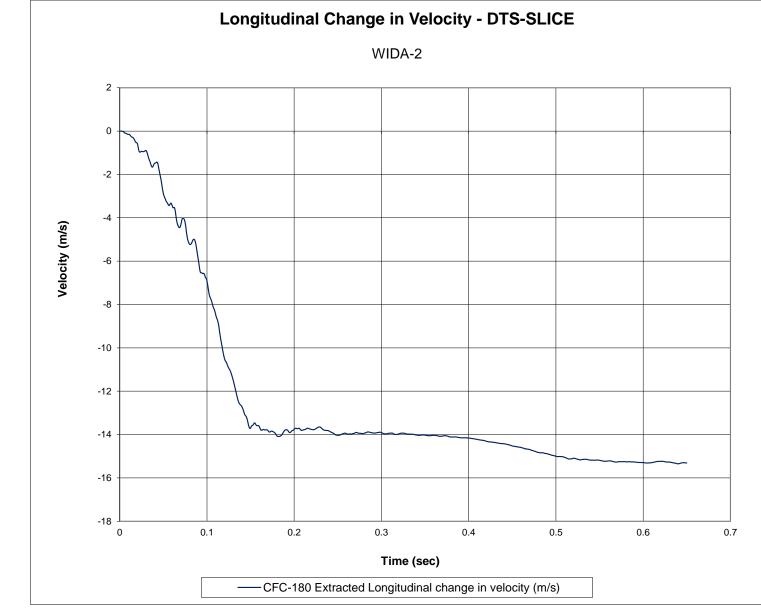


Figure J-10. Longitudinal Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-2

Figure J-11. Longitudinal Occupant Displacement (DTS - SLICE), Test No. WIDA-2

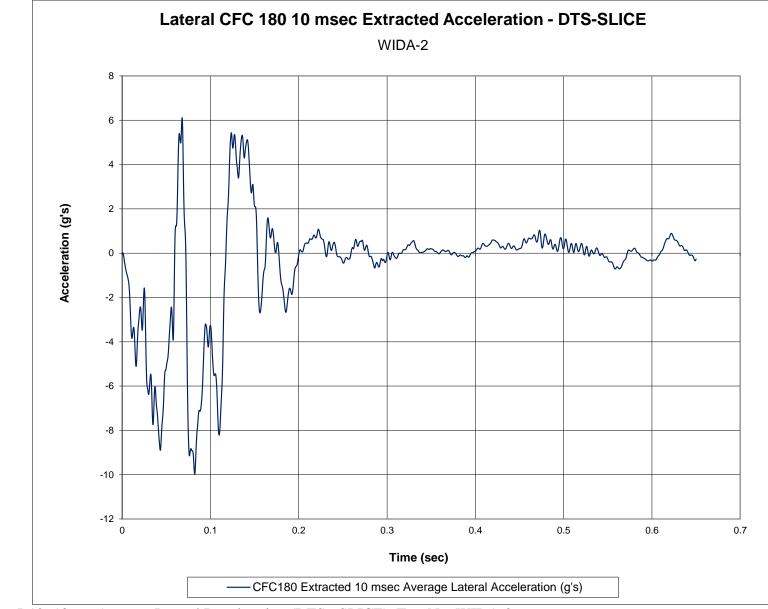


Figure J-12. 10-ms Average Lateral Deceleration (DTS - SLICE), Test No. WIDA-2

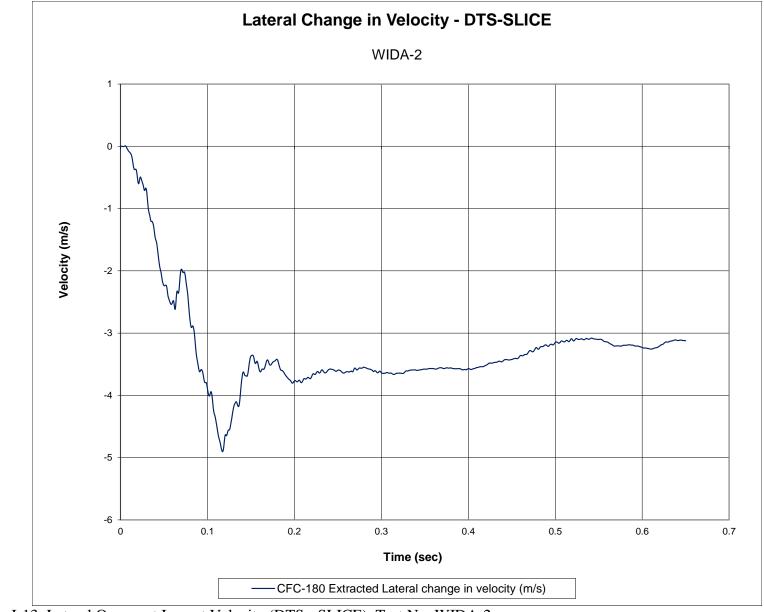


Figure J-13. Lateral Occupant Impact Velocity (DTS - SLICE), Test No. WIDA-2

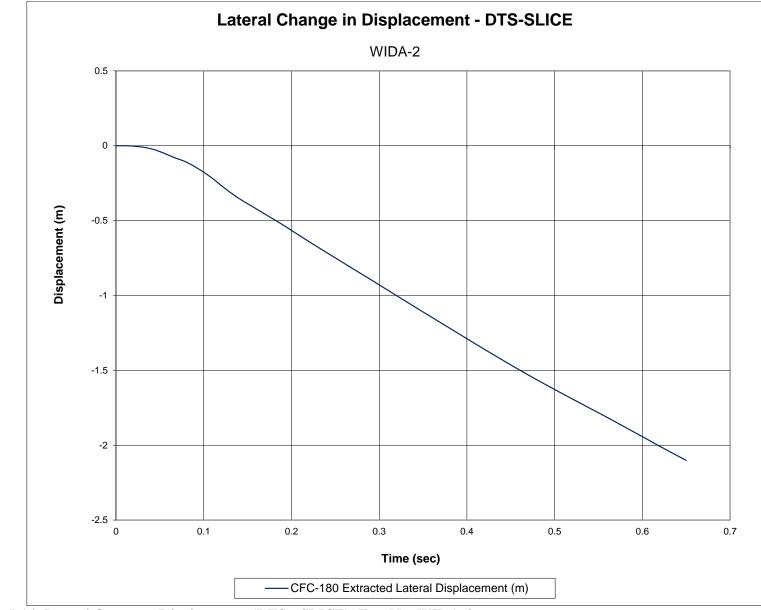


Figure J-14. Lateral Occupant Displacement (DTS - SLICE), Test No. WIDA-2

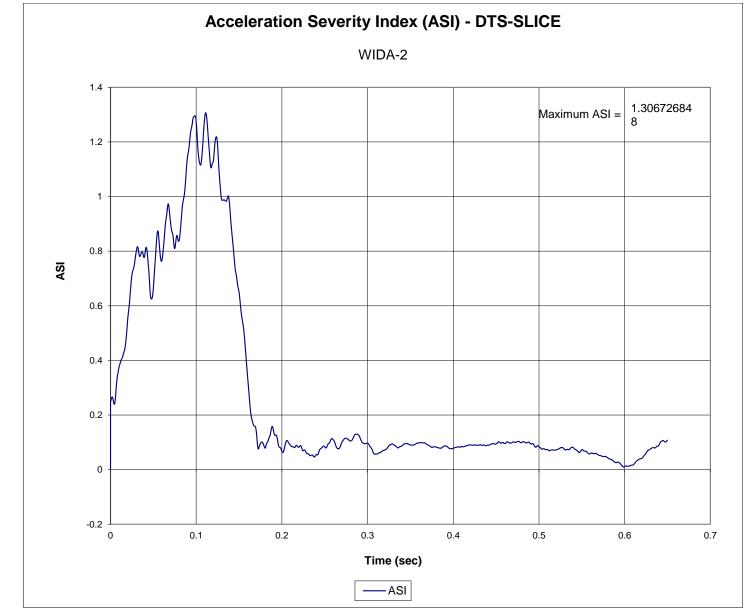


Figure J-15. Acceleration Severity Index (DTS - SLICE), Test No. WIDA-2

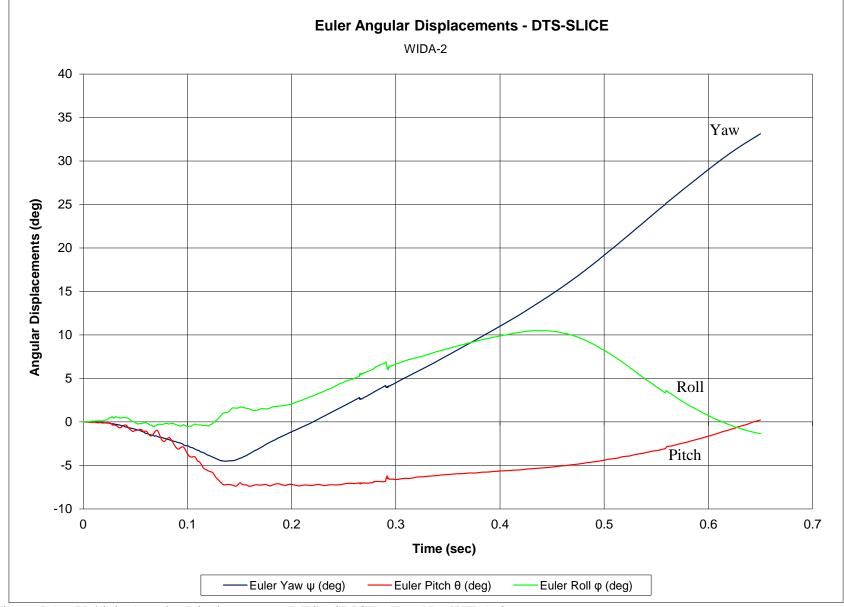


Figure J-16. Vehicle Angular Displacements (DTS - SLICE), Test No. WIDA-2

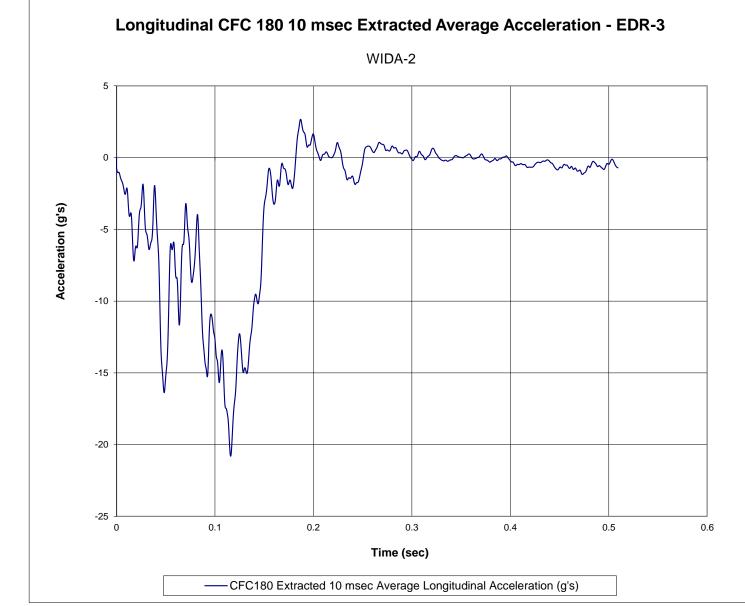


Figure J-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. WIDA-2

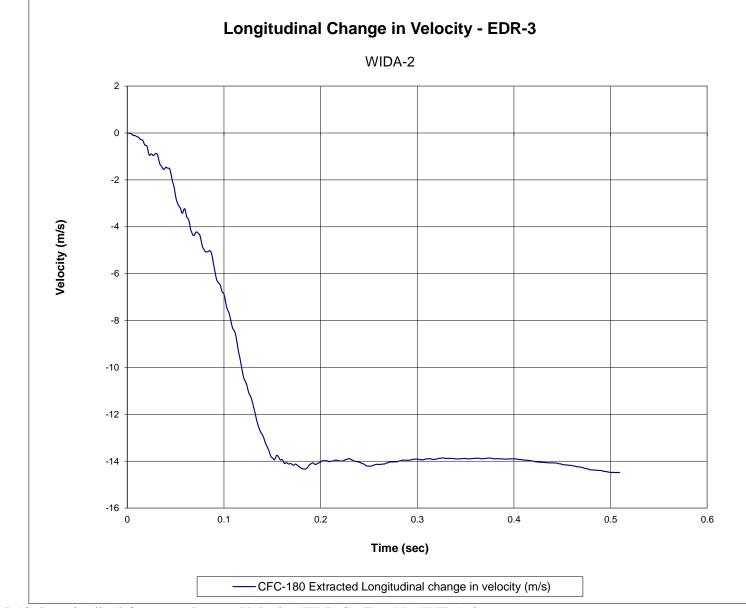


Figure J-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. WIDA-2

Figure J-19. Longitudinal Occupant Displacement (EDR-3), Test No. WIDA-2

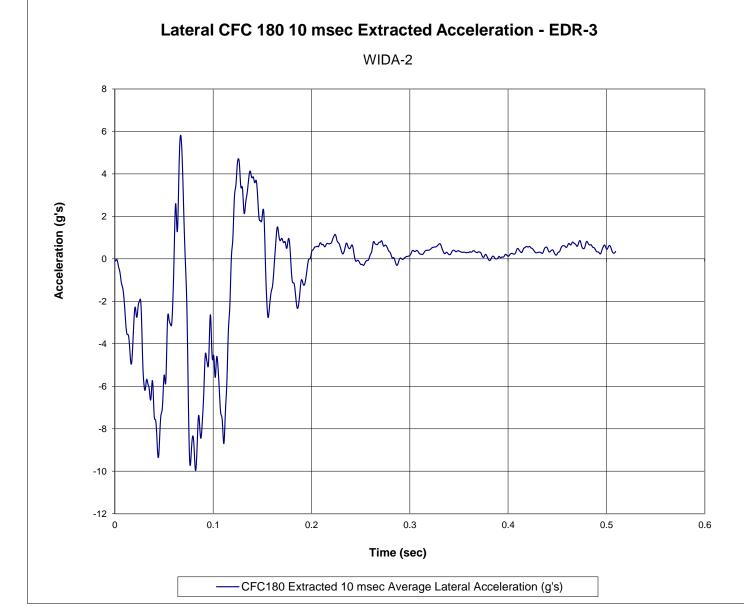


Figure J-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. WIDA-2

Figure J-21. Lateral Occupant Impact Velocity (EDR-3), Test No. WIDA-2

Figure J-22. Lateral Occupant Displacement (EDR-3), Test No. WIDA-2

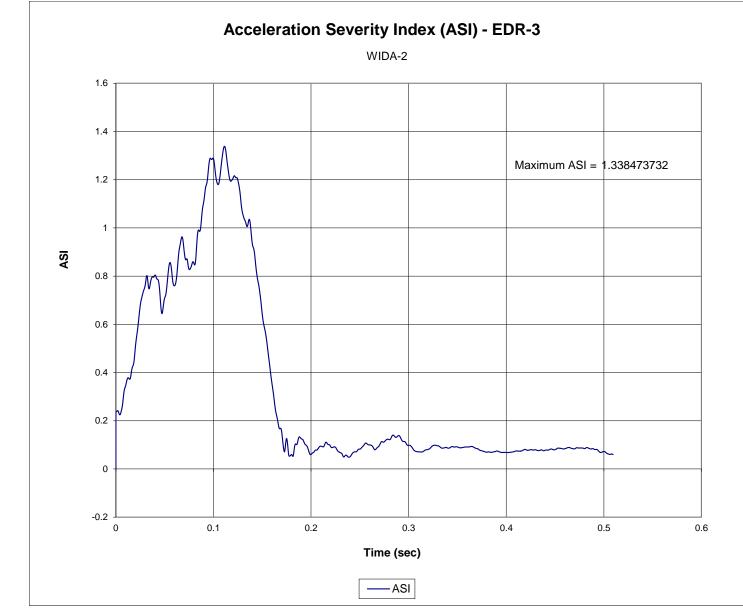


Figure J-23. Acceleration Severity Index (EDR-3), Test No. WIDA-2

END OF DOCUMENT