FULL-SCALE VEHICLE CRASH TESTS on NEBRASKA RURAL MAILBOX DESIGNS

by

Ronald K. Faller Research Graduate Assistant

John A. Magdaleno Research Graduate Assistant

Byron A. Warlick Highway Access Control Officer

> William H. Wendling Safety Program Engineer

Edward R. Post Professor of Civil Engineering

Sponsored by Nebraska Department of Roads RESI (0099) P415

August, 1987

Disclaimer

This document is disseminated in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The contents do not necessarily reflect the official policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

ABSTRACT

The Nebraska Department of Roads, in conjunction with the Federal Highway Administration, have developed a new mailbox support system which could be used to accommodate a wide range of mailbox sizes. To be considered a safe appurtenance, the system had to be subjected to full-scale crash tests, as provided by "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," National Cooperative Highway Research Program Report 230, Transportation Research Board, March, 1981. The major concern was to find whether the support system would keep the mailbox attached to the post, not allowing for detached elements to penetrate the passenger compartment.

Four full-scale crash tests were conducted with an 1800-1b vehicle. Two tests, with the post embedded in weak soil, were performed at 20 mph and 60 mph, respectively. Two tests, with the post embedded in strong soil, were conducted at 20 mph and 60 mph, respectively. Three of the tests used a mailbox support system which held two mailboxes (size 1-A). One test used a system which supported one mailbox (size 2).

After analyzing the results of the crash tests, it was evident that all of the performance criteria had been met. The major criteria evaluated were: change in velocity, maximum 0.010 sec average deceleration, whether the mailbox support system kept the mailbox attached to post, and whether the vehicle remained stable and upright during and after the stages of impact.

TABLE OF CONTENTS

Α.	List of Tables	Pag
В.	List of Figures	
C.	Acknowledgements	
D.	Introduction	
E.	Full-Scale Crash Tes	st Details
	1. Test Description	
	2. Test Facility	
	3. Test Article Deta	ails
	4. Test Vehicle	
	5. Data Acquisition	Systems
F.	Performance Standard	ds
G.	Test Results	
	1. Test No. 1	
	2. Test No. 2	
	3. Test No. 3	
	4. Test No. 4	
Н.	Conclusions	
I.	Recommendations	
J.	References	
К.	Appendices	
	1. Appendix A	Strong Soil Tests
	2. Appendix B	Computer Program
	3. Appendix C	Computer Printout

LIST OF TABLES

1	Summary of	Test Conditions														age)
1.	Dammary Or	Test conditions	•	•	•	•	•	•	•	•	٠	•	•	•	•	C
2.	Summary of	Test Results			•		•									36
3.	Summary of	Results, Test 1			•				•							37
4.	Time-Event	Summary for Test 1														39
5.	Summary of	Results, Test 2									,					50
6.	Time-Event	Summary for Test 2														52
7.	Summary of	Results, Test 3												a.		63
8.	Time-Event	Summary for Test 3														65
9.	Summary of	Results, Test 4														69
10.	Time-Event	Summary for Test 4														71

LIST OF FIGURES

1.	Double Mailbox Support System	<u>rage</u> . 3
2.	Single Mailbox Support System	. 4
3.	Photos Showing Placement of Strong Soil	. 7
4.	Photos Showing Compaction Testing	. 8
5.	Test Site Facility	10
6.	Sketch of Cable Tow System	. 11
7.	Cable Guidance System and Tow Vehicle	12
8.	Photos of Guide-Flag Sheared Off	13
9.	Mailbox Support Hardware	15
10,	Schematic of Three Adaptable Mailbox Types or Sizes	16
11.	Photos of the Complete Double Mailbox System	17
12.	Photos of the Complete Single Mailbox System	18
13.	Mailbox Post Dimensions and Breakaway Feature	20
14	Post Embedment Diagram	21
15.	Post Installation Diagram	22
16.	Photos of the Test Vehicle	. 23
17.	Crash Test Vehicle Dimensions	24
18.	Photos of Mounted Accelerometers	26
19.	Flowchart of Metraplex Data Acquisition System	27
20.	Photos of Data Acquisition System	28
21.	Schematic of Camera Layout	30
22.	Sequential Photos, Test 1	38
23.	Damages to Mailbox System, Test 1	40
24.	Post Position After Impact, Test 1	41
25.	Vehicle Deceleration Versus Time, Test 1	42

26.	Vehicle Deceleration Versus Time, Test 1	٠	•			•		43
27.	Vehicle Velocity Change Versus Time, Test	1		•	,			44
28.	Vehicle Velocity Change Versus Time, Test	1		,	٠		•	45
29.	Occupant Displacement Versus Time, Test 1							46
30.	Occupant Displacement Versus Time, Test 1							47
31.	Damages to Test Vehicle, Test 1		٠			,	•	48
32.	Sequential Photos, Test 2							51
33.	Damages to Mailbox System, Test 2				•		•	53
34.	Post Position After Impact, Test 2						•	54
35.	Vehicle Deceleration Versus Time, Test 2							55
36.	Vehicle Deceleration Versus Time, Test 2	•	•		•	•	•	56
37.	Vehicle Velocity Change Versus Time, Test	2	•				•	57
38.	Vehicle Velocity Change Versus Time, Test	2						58
39.	Occupant Displacement Versus Time, Test 2						٠	59
4 0.	Occupant Displacement Versus Time, Test 2						٠	60
41.	Damages to Test Vehicle, Test 2		•	•				61
42.	Sequential Photos, Test 3							64
43.	Damages to Mailbox System, Test 3						•	66
44.	Damages to Test Vehicle, Test 3		•				•	67
45.	Sequential Photos, Test 4							70
46.	Damages to Mailbox System, Test 4		•		•		•	72
47.	Post Position After Impact, Test 4		•		•		•	73
48.	Vehicle Deceleration Versus Time, Test 4							74
49.	Vehicle Deceleration Versus Time, Test 4				•			75
50.	Vehicle Velocity Change Versus Time, Test	4	•		•			76
51.	Vehicle Velocity Change Versus Time. Test	4						77

52.	Occupant Displacement Versus Time, Test 4
53.	Occupant Displacement Versus Time, Test 4
54.	Damages to Test Vehicle, Test 4

ACKNOWLEDGEMENTS

The authors wish to express their appreciation and thanks to the following people who made a contribution to the successful outcome of this research project.

Nebraska Department of Roads

Dalyce Ronnau (Materials and Tests Division and Research Engineer)
Leona Kolbet (Materials and Tests Division and Research Coordinator)
Richard J. Ruby (Roadway Design Division and Project Manager)

Federal Highway Administration

Wilson J. Lindsay (Research Engineer - Region 6, Fort-Worth, TX)

University of Nebraska

Michael Cacak (Manager - Automobile Support Services)

Patrick Barrett (Assistant Manager - Automobile Support Services)

James Dunlap (Manager - Photographic Productions)

Vince Ullman (Photographic Technician)

Gerald Fritz (E.E. Technician)

Tom Grady (E.E. Technician)

William Kelly (Professor and C.E. Chairman)

Eugene Matson (C.E. Research Technician)

Brian Pfeifer (M.E. Student)

Mary Lou Tomka (C.E. Administrative Assistant)

Mary Lou Wegener (C.E. Secretary - Typist)

Marilyn Mues (C.E. Secretary - Typist)

INTRODUCTION

Recent federal requirements have made it mandatory, that safe mailbox support systems be designed to yield or breakaway if struck by a vehicle. The Nebraska Department of Roads (NDOR), in cooperation with the Federal Highway Administration (FHWA), have developed a bracket for attaching the mailbox to the support post. The mounting bracket system, which attached the mailbox to the post, was designed so that it was adaptable to fit a wide range of mailbox sizes. In order to certify that the new attaching bracket was effective, it had to meet the criteria, as given by the National Cooperative Highway Research Program (NCHRP), for conducting full-scale crash tests (1). If it met those criteria, it could then be considered a safe mailbox support system and then become installed on the federal, state, and local highway systems.

It was decided that two mailbox support systems were to be tested. The systems were to be mounted to the Franklin Steel eze-erect sign posts, which had already been subjected to crash tests in the past (2)(3). Thus, it was known that the post itself had already met the criteria presented by recommended procedures (1). But now the major concern was whether the mailbox would remain attached to the post. The second concern was whether the mailbox or detached fragments would penetrate or show potential for penetrating the passenger compartment or present undue hazard to other traffic.

FULL-SCALE CRASH TEST DETAILS

TEST DESCRIPTION

Four full-scale crash tests were conducted on mailbox supports shown in Figures 1 and 2. Three of the tests used two mailboxes (size 1-A) mounted side by side. The fourth test used one mailbox (size 2) mounted to the post. Table 1 contains a summary of the test conditions.

Tests 1 and 2 were conducted in weak soil (S-2) and strong soil (S-1), respectively, at approximately 20 mph with the point of impact being at the quarter point of the bumper. Tests 3 and 4 were conducted in weak soil (S-2) and in strong soil (S-1), respectively, at approximately 60 mph with the impact point being at the center of the bumper.

According to the recommended test procedures, a weak soil (S-2) may be appropriate for breakaway/yielding supports. However, due to the variation of soil properties in Nebraska, it was decided that the strong soil (S-1) also be used for the crash tests. The strong soil consisted of a well-graded, crushed limestone, and the weak soil consisted of a fine aggregate meeting the requirements (ASTM C33-78). Two 10-feet long, 8-feet wide, by 5-feet deep pits were excavated and filled with strong soil (S-1) and weak soil (S-2), respectively.

The soil properties and compaction procedures at the test site met the guidelines given in the recommended procedures by NCHRP 230 (1). The strong and weak soils were placed and compacted in 6 to 12 in. layers using a hydraulic, vibrating

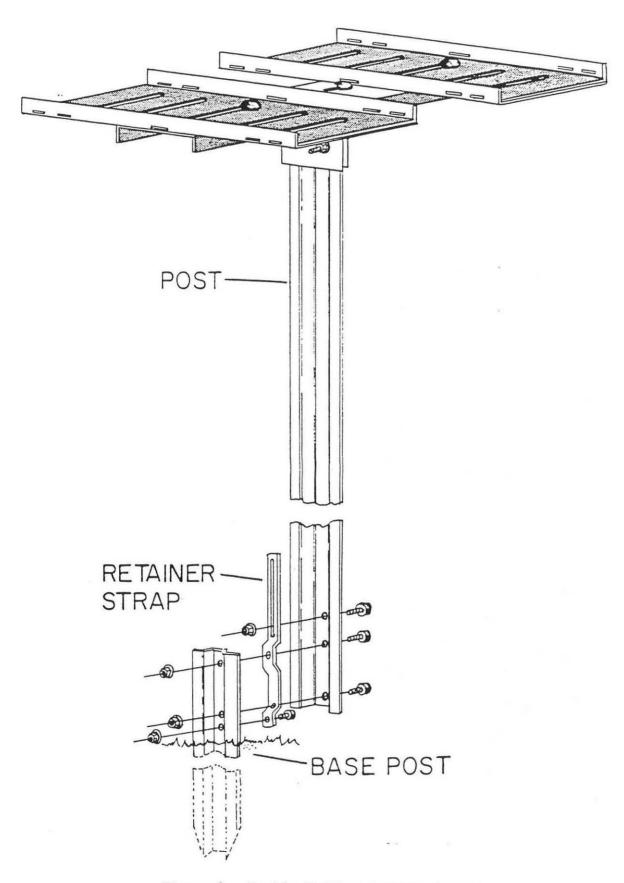


Figure 1. Double Mailbox Support System

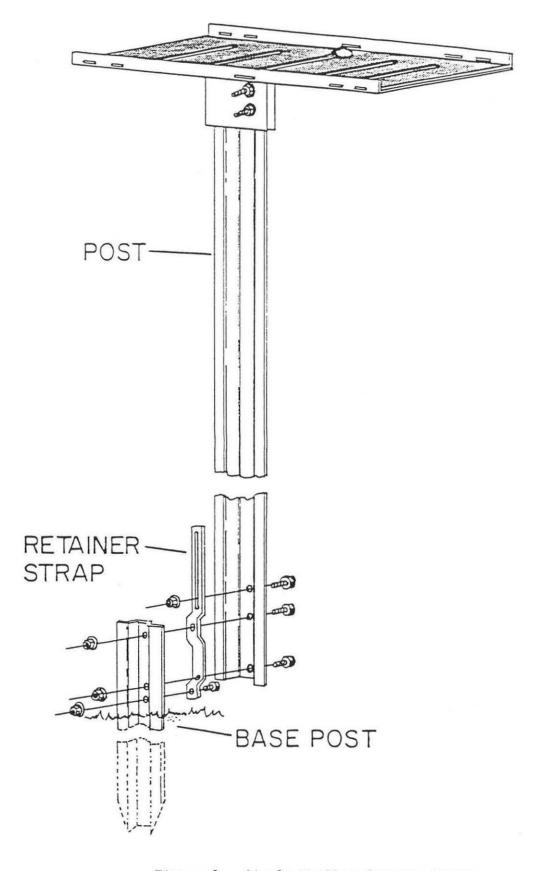


Figure 2. Single Mailbox Support System

TEST NO.	VEHICLE TYPE (1bs)	TARGET SPEED (mph)	SOIL TYPE	MAILBOX DESIGN	0.075	POST EMBEDMENT		POINT OF IMPACT	TARGET IMPACT SEVERITY
	(100)	(DEPTH (in)	METHOD	(lbs/ft)		(ft - kips)
1	1800	20	Weak (S-2)	l-Post 2-Mailboxes (size l-A)	37	Driven	2.0	14" to Right of Center	24-3,+3
2	1800	20	Strong (S-1)	1-Post 2-Mailboxes (size 1-A)	37	Driven	2.0	14" to Right of Center	24 ⁻³ ,+3
3	1800	60	Weak (S-2)	1-Post 2-Mailboxes (size 1-A)	37	Driven	2.0	Center of Bumper	216 ⁻²¹ ,+37
4	1800	60	Strong (S-1)	l-Post l-Mailbox (size 2)	37	Driven	2.0	Center of Bumper	216 ⁻²¹ ,+37

tamper with a flat plate mounted onto a backhoe, as shown in Figure 3. The strong soil was compacted to an average density of 95% maximum dry density at an average moisture content of 10%. The results of the strong soil tests, conducted by Geotechnical Services, Inc., are presented in Appendix A. A Troxler Nuclear Density Gage, shown in Figure 4, was used to determine moisture content and compaction.

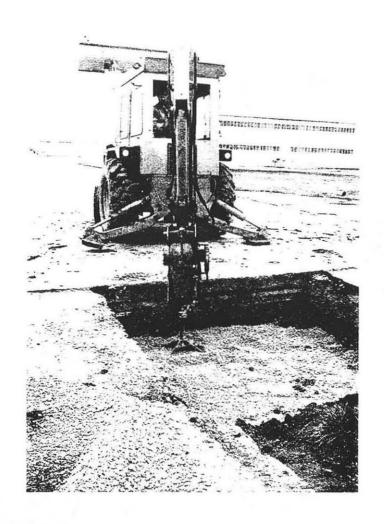
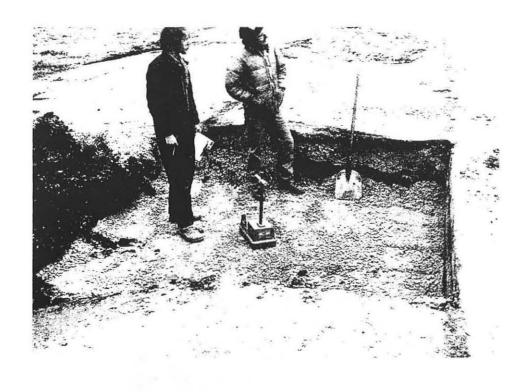



Figure 3. Photos Showing Placement of Strong Soil

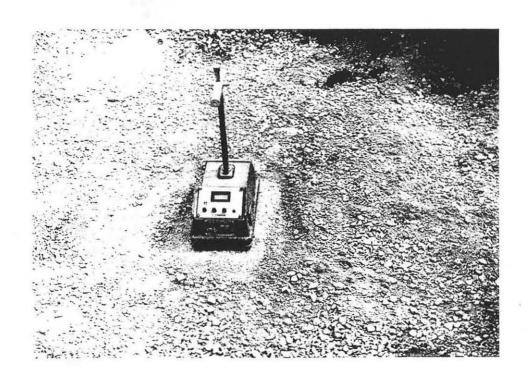


Figure 4. Photos Showing Compaction Testing

TEST FACILITY

The test site facility is located at Lincoln Air-Park on the NW corner of the west apron of the Lincoln Municipal Airport. The test facility, shown in Figure 5, is approximately 7 mi. NW of the University of Nebraska-Lincoln.

A reverse cable tow system, with a 1:2 mechanical advantage, was used to propel the test vehicle. Thus, the distance traveled and speed of the tow vehicle are one-half of that of the test vehicle. A sketch of the cable tow system is shown in Figure 6. The test vehicle was released from the tow cable approximately 6 feet before impact with the mailbox system. Photos of the tow vehicle with attached fifth-wheel are shown in Figure 7.

A vehicle guidance system, developed by Hinch (4), was used to steer the vehicle. Photos of the guidance system are also shown in Figure 7. The guide-flag, attached to the front-left wheel and guide cable, was sheared off approximately 6 feet before impact with the mailbox system. Photos of the sheared off guide-flag are shown in Figure 8. The 3/8 in. dia. guide cable, tensioned to 3,000 lbs., was supported laterally and vertically every 50 feet by stanchions. The hinged stanchions stood upright while holding up the guide cable. When the vehicle passed, the guide-flag struck each stanchion and knocked it to the ground. The vehicle guidance system was approximately 1,000 feet in length.

Zone	Zone Usage	Length (ft)
	Automobiles, Pickups, Etc.	1,000
0.0.0.0	Buses, Large Trucks, Etc.	3,000
	Hardware To Be Tested	200
	Vehicle Runout Area	500

Figure 5. Test Site Facility

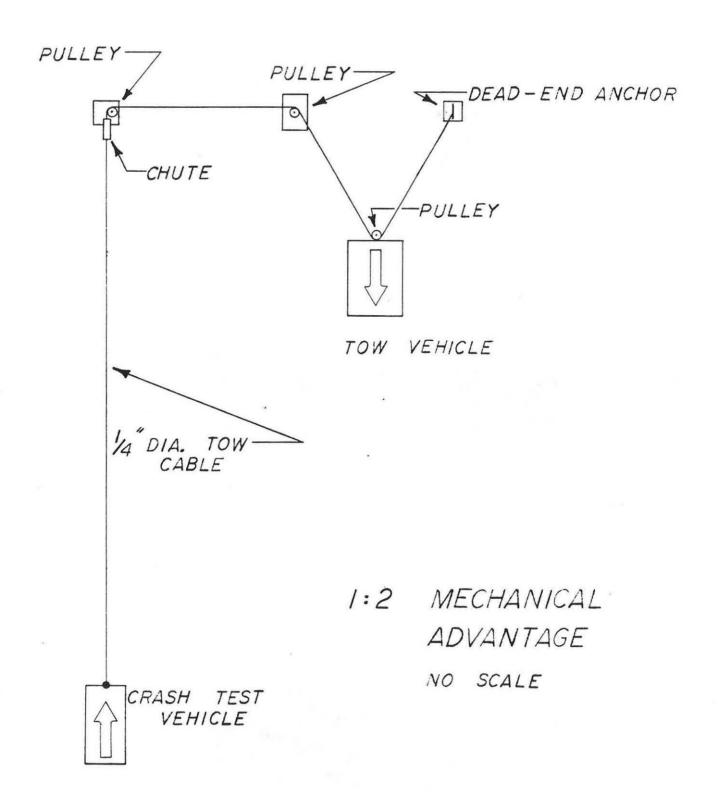
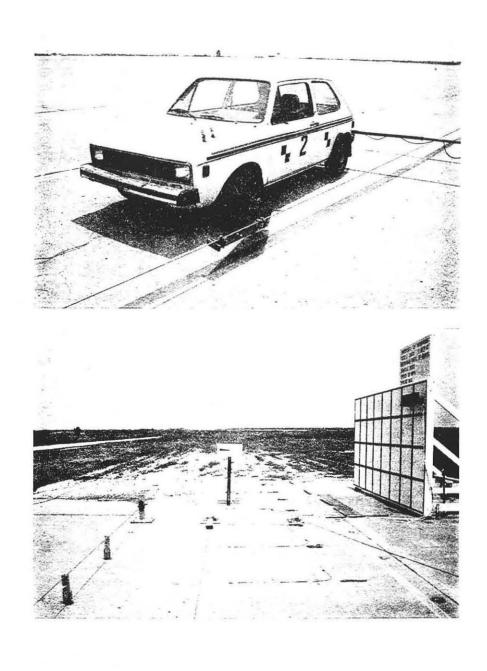



FIGURE 6 . SKETCH OF CABLE TOW SYSTEM

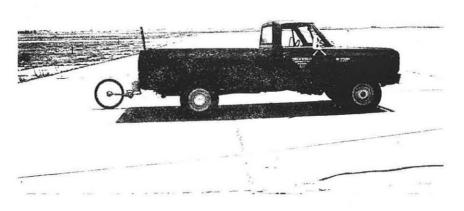


Figure 7. Cable Guidance System And Tow Vehicle

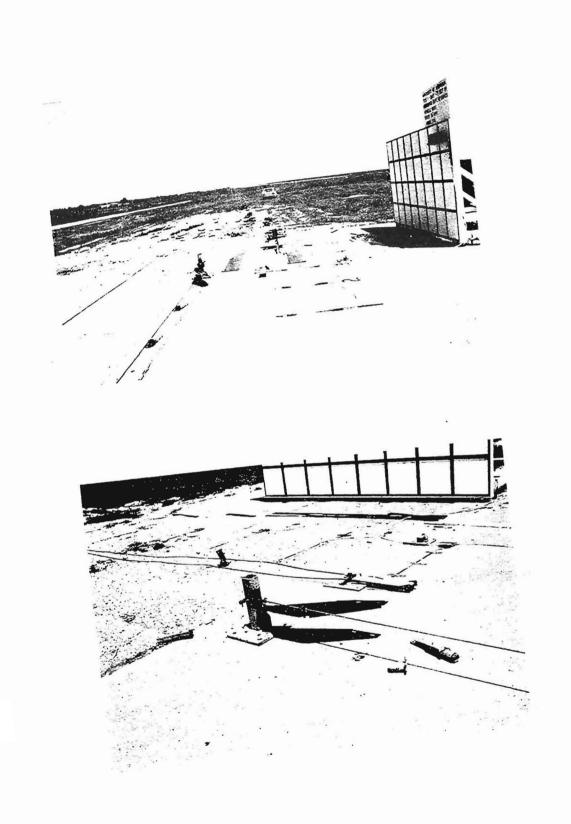


Figure 8 . Photos Of Guide-Flag Sheared Off

TEST ARTICLE DETAILS

Two mailbox support systems were tested. The parts that were used for the support system are shown in Figures 9 and 10.

The first mailbox support system was used to support 2 mailboxes (size 1-A) which were 8 in. wide, 21 in. long, and 10 1/2 in. tall. Under each mailbox there was a pair of platform plates, shown in Figure 9, which bolted to the bottom of each mailbox. The two plates can be adjusted to fit any standard width mailbox. The two mailboxes, with the platform plates, were mounted directly onto the adapter plate or shelf, shown in Figure 9. Then two L-shaped brackets, shown in Figure 9, were used to attach the adapter plate or shelf to the U-shaped post. The double mailbox support system is shown in Figure 1 and the complete system is shown in Figure 11.

The second mailbox support system was used to support one mailbox (size 2) which was 11 1/2 in. wide, 23 1/2 in. long, and 13 1/2 in. tall. Under the mailbox there was a pair of adjustable platform plates, shown in Figure 9, which bolted to the bottom of the mailbox. The larger mailbox, with the platform plates, was mounted directly to the post, with a pair of L-shaped brackets. The brackets are shown in Figure 9. The single mailbox support system is shown in Figure 2 and the complete system is shown in Figure 12.

The post system consisted of four main parts, the top post, the base post, the retainer strap, and the anti-twist plate.

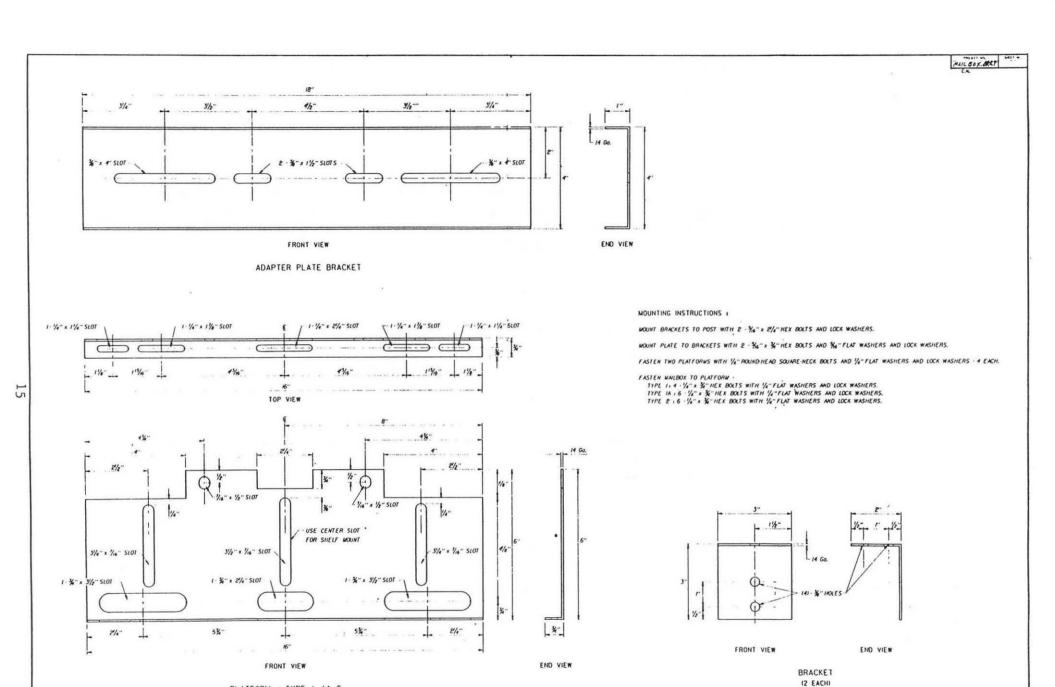
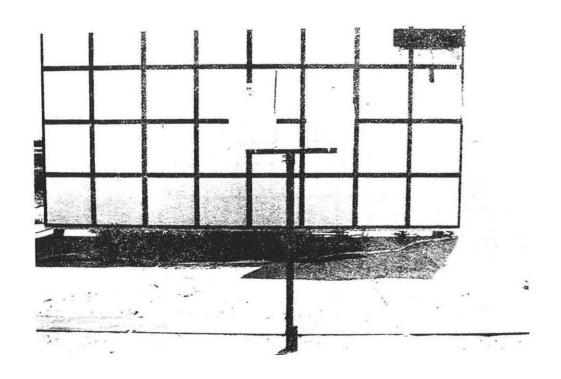



Figure 9. Mailbox Support Hardware

PLATFORM - TYPE 1, 1A, 2

TOP VIEW

Figure 10. Schematic of Three Adaptable Mailbox Types or Sizes

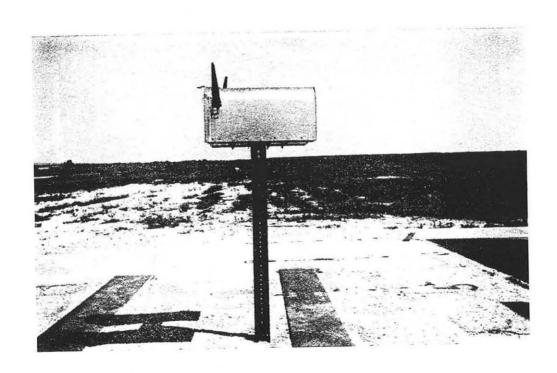
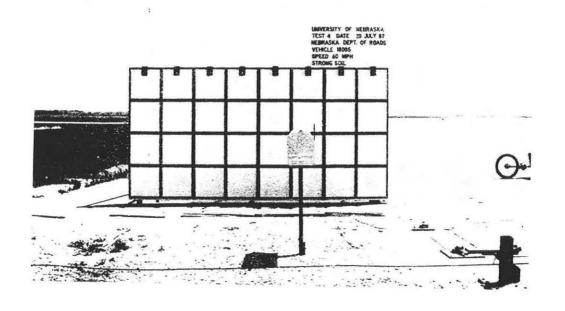



Figure 11. Photos Of The Complete Double Mailbox System

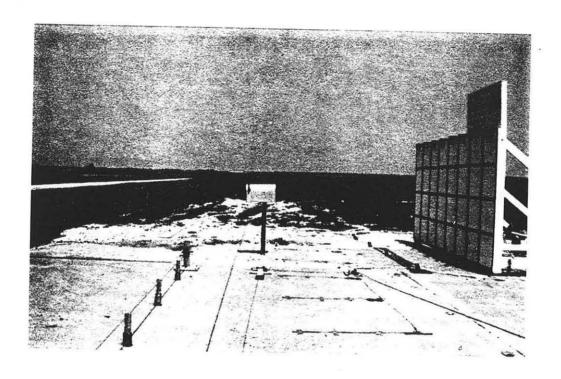


Figure 12. Photos Of The Complete Single Mailbox System

With the exception of the anti-twist plate, the post system is shown in Figure 1.

The top post was 42 in. long and had the cross-sectional dimensions and values as shown in Figure 13.

The base post, which was embedded 37 in. into the soil, was also 42 in. long and had the same dimensions as the top post. The post embedment diagram is shown in Figure 14.

The retainer strap, 17 in. long, was used to connect the two post sections together. The installation instructions for the Franklin Steel eze-erect sign posts are shown in Figure 15. The breakaway or slip feature is demonstrated in Figure 13.

The anti-twist plate was made from a 1/8 in. sheet of galvanized sheet metal. It had the shape of a trapezoid with the following dimensions, top horizontal length, 12 in., bottom horizontal length, 6 in., and height, 6 in. It was bolted to the base post so that it would be positioned below ground level.

TEST VEHICLE

A 1979 Volkswagon Rabbit, weighing approximately 1840 lb, was used as the crash test vehicle. Pictures of the test vehicle are shown in Figure 16. Vehicle dimensions are shown in Figure 17.

The left and right front wheels of the test vehicle were set to a toe-in value of zero-zero to allow the vehicle to track properly along the guide cable.

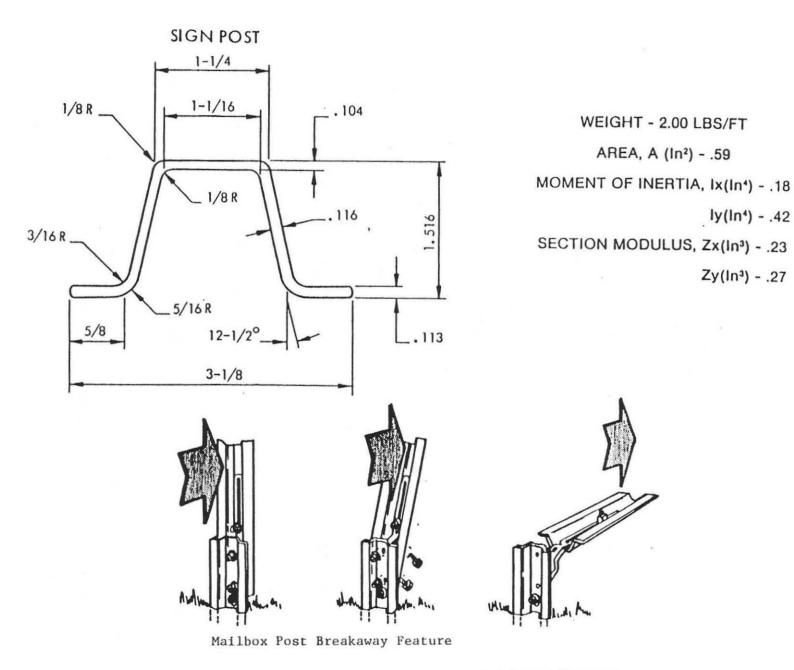


Figure 13. Mailbox Post Dimensions and Breakaway Feature

BASE POST

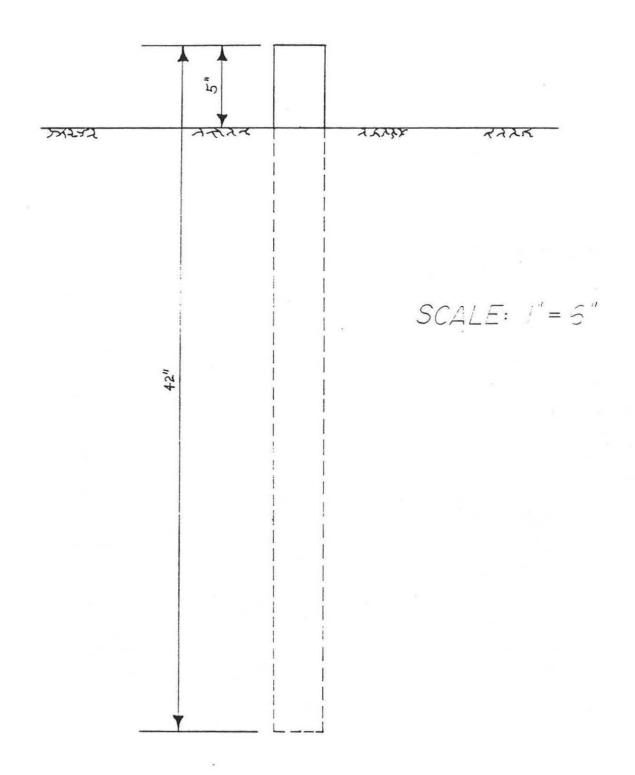


FIGURE 14. POST EMBEDVENT DIAGRAM

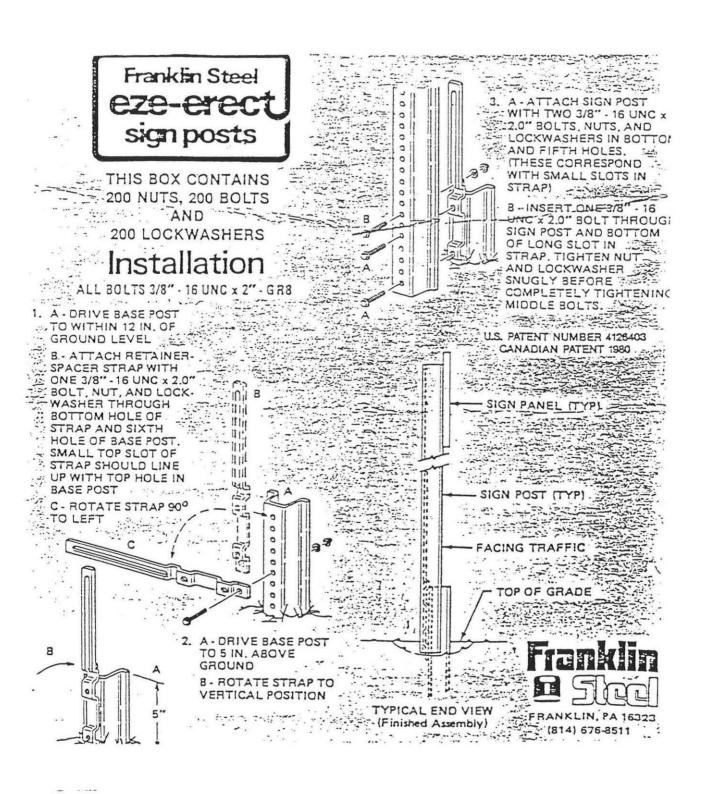
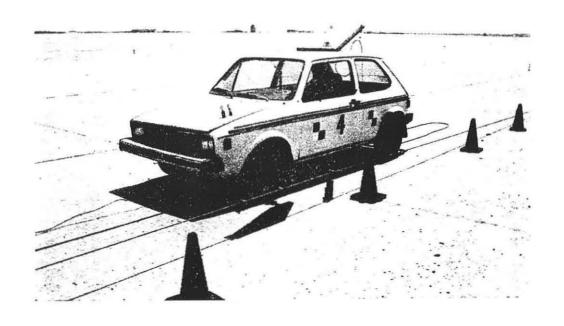



Figure 15. Post Installation Diagram

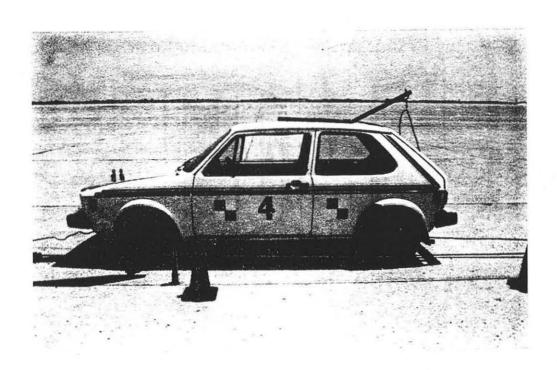
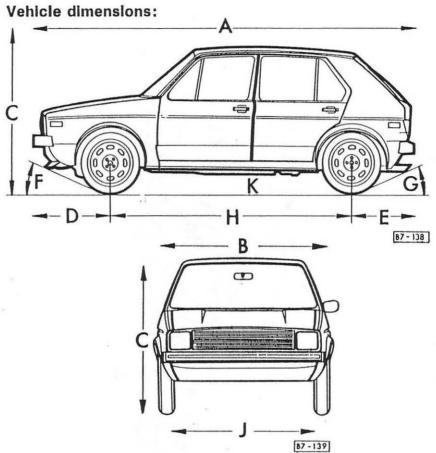



Figure 16. Photos Of The Test Vehicle

A - Length	155.3 ln/3945 mm
B - Width	63.4 ln/1610 mm
C - Height (unladen)	55.5 ln/1410 mm
D - Overhang, front	32.7 ln/ 830 mm
E - Overhang, rear	27.2 ln/ 693 mm
F - Ramp angle, front	24°
G - Ramp angle, rear	22.5°
H - Wheelbase	94.5 In/2400 mm
J - Front track	54.7 In/1390 mm
Rear track	53.1 In/1350 mm
K - Ground clearance	4.8 In/ 122 mm
Measured at gross vehiltem C, which is mea weight.	
Turning circle diameter 31.5 ft/9.6 m curb to curb	

Gross Vehicle Weight: 2822 1bs.

Gross Axle Weight: 1609 lbs. (front)
Gross Axle Weight: 1278 lbs. (rear)

Figure 17. Crash Test Vehicle Dimensions

Two 8 in. square, black and white targets were placed on the test vehicle on 42 in. centers to aid with the analysis of the high-speed film.

Two 5B flash-bulbs were mounted on the front hood of the test vehicle to record the time of impact with the mailbox on the high-speed film. The flash-bulbs were fired by a pressure or tape switch which was mounted to the front of the bumper.

DATA ACQUISITION SYSTEMS

Two piezoresistive accelerometers, (model 7264) with a range of 200 g's, were used to measure the accelerations in the longitudinal direction of the vehicle. The accelerometers were attached to metal blocks which were mounted to the front floorboards of both the left side (driver) and right side (passenger). Photos of the accelerometers mounted in the test vehicle are shown in Figure 18. The signals from the accelerometers were first sent to the Metraplex FM multiplexed data acquisition system (series 300), and then to the Honeywell 101 analog tape recorder for permanent storage. A flowchart of the accelerometer signals passing through the data acquisition system is shown in Figure 19. Photos of the system located in the test vehicle the back of a station wagon are shown in Figure 20. The computer program used to analyze and plot the accelerometer data is given in Appendix B.

Two cameras were used to record each test; both of which were high-speed film cameras, running at approximately 500 frames/sec. The first camera, Locam, which used a wide angle

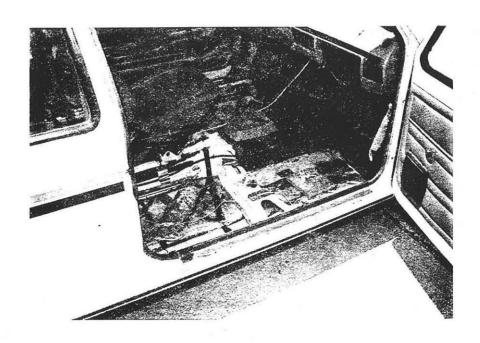


Figure 18. Photos Of Mounted Accelerometers

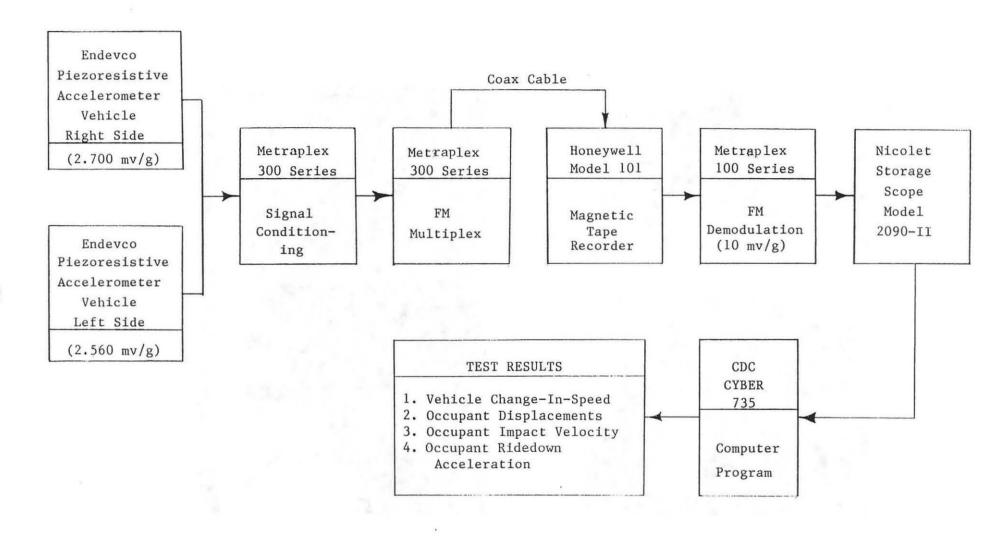
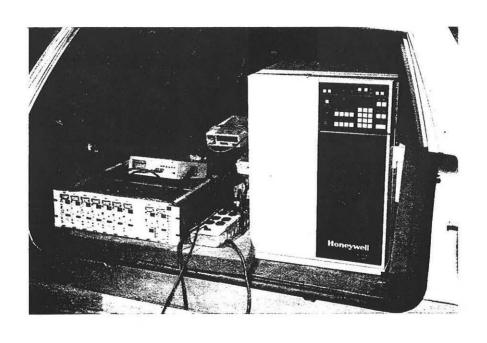



Figure 19. Flowchart of Metraplex Data Acquisition System

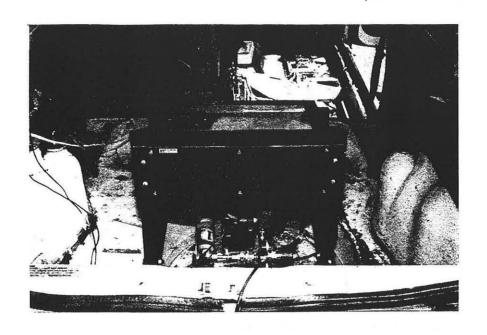


Figure 20. Photos Of Data Acquisition System

lens, was placed approximately 80 feet perpendicular to the direction of the vehicle. The second camera, Photec IV, was also positioned perpendicular to the direction of the vehicle. It was placed at approximately 137 feet. A schematic of the camera layout is shown in Figure 21.

A 8-feet high by 16-feet long backboard, with a 2-feet line grid layout, was used as a reference system for analysis of the high-speed film. The moveable backboard was placed perpendicular at a distance of 13 feet from the centerline of the vehicle path.

Following the tests, the film was analyzed using the Vanguard motion analyzer.

Tape or pressure switches positioned along the length of the impact area, at 5 feet intervals, were activated by the vehicle to indicate the travel time over a known distance. Each switch would fire a blue 5B flash-bulb, which was mounted to the backboard, as the right front tire of the test vehicle passed over it. Thus, the number of film frames was counted between flashes and was used along with the film speed and tape switch spacing to calculate the test vehicle speed. This provided a quick check of the impact speed and also values for change in velocity.

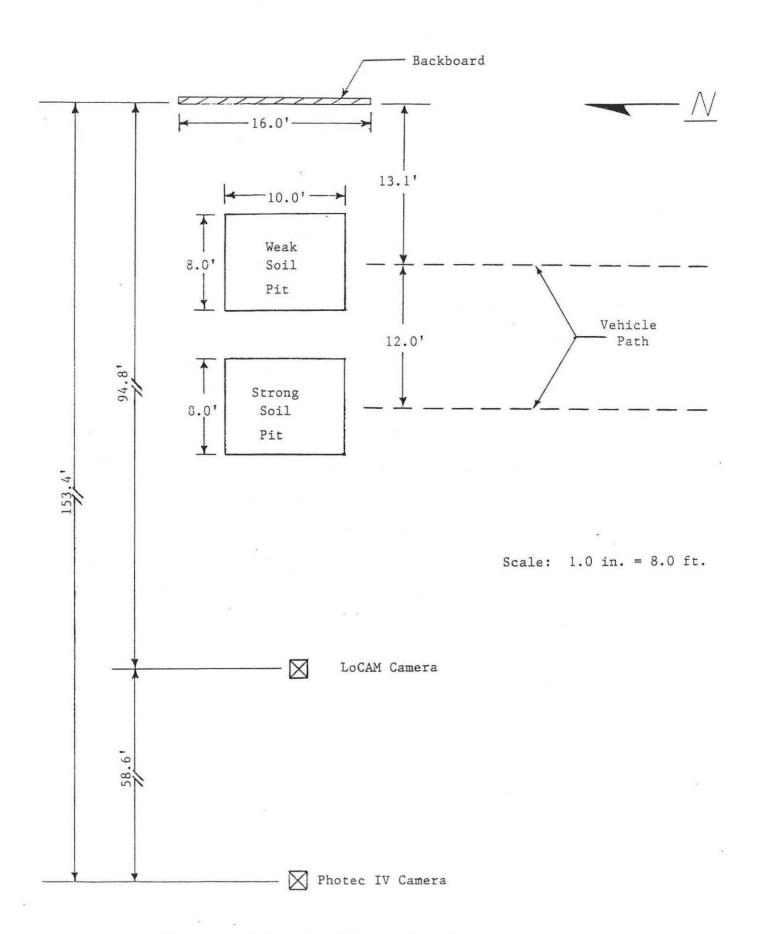


Figure 21. Schematic of Camera Layout

PERFORMANCE STANDARDS

Currently, there are no established guidelines or performance criteria which directly deal with full-scale crash tests on mailbox supports. However, a procedure guide by the American Association of State Highway and Transportation Officials (AASHTO) ($\underline{5}$) provides three very useful general criteria:

- The mailbox support details should prevent mailboxes from separating from the post if struck by a vehicle.
- Windshield penetration from the mailbox should be minimized.
- Single or multiple mailbox installations should not cause vehicle ramping or rollover as a result of a mailbox collision.

In addressing safety appurtenances, AASHTO requires all new roadside signs and luminaries on high speed highways, located within the suggested clear zone width, to be placed on breakaway supports unless they are located behind a barrier or crash cushion. Therefore, it was assumed that mailbox support systems should comply with the safety standards required for a breakaway or yielding device. Breakaway supports are all types of devices which are safely displaced under vehicle impact, whether the release mechanism is a slip plane, plastic hinges, fracture elements, or a combination of these.

According to AASHTO, "satisfactory dynamic performance is indicated when the maximum change in velocity for a standard

1800-pound (816.5kg) vehicle, or its equivalent, striking a breakaway support at speeds from 20 mph to 60 mph (29.33 fps to 88 fps) (32 kmph to 97 kmph) does not exceed 15 fps (4.57 mps), but preferably does not exceed 10 fps (3.05 mps) or less." (Standard Specifications for Structural Supports for Highway Signs, Luminaries and Trafic Signals, 1985, AASHTO, Section 1.7.2) (6).

Other specifications require that detached elements, fragments, or other debris from the test article (mailbox assembly) shall not penetrate or show potential for penetrating the occupant compartment or provide undue hazard to other traffic. Also, the vehicle shall remain upright during and after the mailbox crash test (1).

The change in velocity, peak deceleration, maximum 10 ms average deceleration, and occupant displacement (free missile travel) were four types of data that were derived from the accelerometer readings. Change in velocity and occupant displacement are both time dependent. Due to this time dependency, guidelines have been established to determine the "duration of the event" for computation. The duration of the event is defined as the lesser of the following: (1) time between incipient contact and loss of contact between vehicle and the yielding support, or (2) the time for a free missile to travel a distance of 24 inches starting from rest with the same magnitude of vehicle decelerations. (7).

The time between incipient contact and loss of contact between vehicle and yielding support is not easily determined. By using the high-speed film, it was observed that contact between the vehicle and the support may take place over a long period of time if the vehicle moves over the mailbox. Therefore, after reevaluation of the accelerometer graphs, it was decided that the duration of the event was the time between contact and when the acceleration returned to and remained at zero. This decision was made because deceleration cannot remain at zero unless the vehicle reached a constant velocity or has stopped.

After the test, the damage was assessed by the traffic accident data scale (TAD) ($\underline{8}$) and the vehicle damage index (VDI) ($\underline{9}$).

Because test conditions are sometimes difficult to control, a composite tolerance limit is presented. It is called the impact severity (IS). For structural adequacy, it is preferable for the actual impact severity to be greater than the target value rather than being below it. During low-speed tests, the goal is to determine the lower speed threshold for detaching the appurtenance. Then it is preferable to be on the low side of the target value. The IS target values for the 20 mph and 60 mph tests are 24^{-3} , +3 ft-kips and 216^{-21} , +37 ft-kips, respectively. (1).

TESTS RESULTS

In the following section, each test will be explained along with the individual results. Table 2 summarizes the results of the four tests. The accelerometer data was used for the calculation of change in velocity while the high-speed film was used as a backup system and check on the accelerometer results. The computer printout results for each test are shown in Appendix C.

TEST NO. 1

The results of Test 1 are shown in Table 3. Figure 22 shows the sequential photos taken from the high-speed film, and the corresponding time-event summary is given in Table 4. Upon impact, the post first wrapped around the bumper, and then the mailbox hit the front end of the hood. The car then continued to push the mailbox and post to the ground. While the car continued to move over the mailbox and post, the retainer strap held the top section of the post to the base post, which was not pulled out. Photos of the damage to the mailbox system are shown in Figure 23. A diagram of the base post position after impact is shown in Figure 24.

Plots of deceleration, change in velocity, and occupant displacement versus time are shown in Figures 25 through 30.

The vehicle received no damage with the exception of a small dent in the bumper as shown in Figure 31. The damage was

TABLE 3. SUMMARY OF RESULTS, TEST 1

Impact Velocity = 20.5 mph

Actual Impact Severity = 25.8 ft-kips

MAILBOX SUPPORT DATA

Mailbox	2 boxes (size 1-A)			
Post Type	Steel U-post *			
Size	2.00 lbs/ft			
Embedment Method	Driven into Weak Soil (S-2)			
Embedment Depth	37 in.			

VEHICLE DATA

TAD

Make	Volkswagon
Model	Rabbit
Year	1979
Weight	1840 lbs.
Impact Point	14 in. to right of center

None

12FCLN1

ACCELEROMETER DATA	Left	Right
Change in Velocity (ft/sec)	1.9	3.2
Duration of Event (sec) ** Peak Deceleration (g's)	0.082 8.2	22.6
Maximum 0.010 sec Average Deceleration (g's) Occupant Displacement (in)	2.74 1.30	4.60

YEHICLE DAMAGE CLASSIFICATION

VDI

Did test article penetrate the the	
passenger compartment?	NO
Was windshield broken?	NO

*Franklin Steel eze-erect sign post **Time of Contact

TABLE 2. SUMMARY OF TEST RESULTS.

TEST NO.	ACTUAL VEHICLE WEIGHT (1bs)	IMPACT SPEED (mph)	CHANGE IN VELOCITY (left/right) (fps)	PEAK DECELERATIONS (left/right) (g's)	MAXIMUM 0.010 SEC AVERAGE DECELERATION (left/right) (g's)	OCCUPANT DISPLACEMENT (left/right) (in)	ACTUAL IMPACT SEVERITY (ft-kips)
1	1840	20.5	1.9/3.2	8.2/22.6	2.74/4.60	1.30/2.10	25.8
2	1840	21.3	2.7/3.3	7.5/13.2	3.62/4.03	2.20/1.80	27.9
3	1840	63.6	4.4/4.5*	NA/NA**	NA/NA**	NA/NA**	248.6
4	1840	64.5	2.7/1.1	21.2/26.1	4.86/4.04	2.10/0.50	255.7

^{*}From high-speed film analysis

^{**}Not available due to the breakage of the data cable

TABLE 3. SUMMARY OF RESULTS, TEST 1

Impact Velocity = 20.5 mph

Actual Impact Severity = 25.8 ft-kips

MAILBOX SUPPORT DATA

Mailbox Post Type Size Embedment Method Embedment Depth 2 boxes (size 1-A)
Steel U-post *
2.00 lbs/ft
Driven into Weak Soil (S-2)
37 in.

VEHICLE DATA

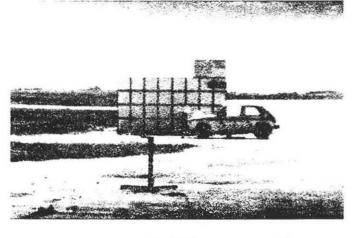
Make Model Year Weight Impact Point Volkswagon Rabbit 1979 1840 lbs. 14 in. to right of center

ACCELEROMETER DATA	Left	Right
Change in Velocity (ft/sec)	1.9	3.2
Duration of Event (sec) ** Peak Deceleration (g's)	0.082	22.6
Maximum 0.010 sec Average Deceleration (g's) Occupant Displacement (in)	2.74	4.60 2.10

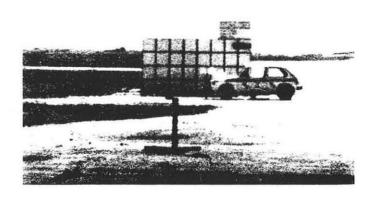
VEHICLE DAMAGE CLASSIFICATION

TAD None 12FCLN1

Did test article penetrate the the passenger compartment?

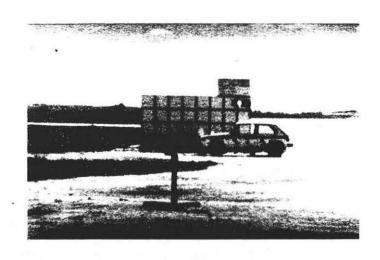

NO

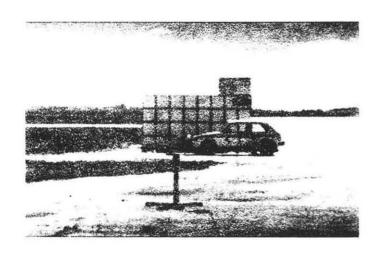
Was windshield broken?

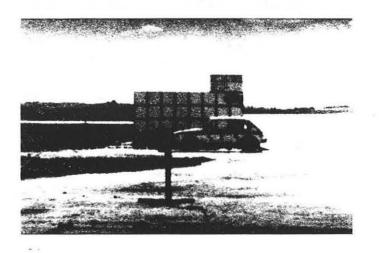

NO

*Franklin Steel eze-erect sign post

**Time of Contact


0.000 sec


0.006 sec


0.018 sec

0.050 sec

0.095 sec

0.147 sec

TABLE 4. TIME-EVENT SUMMARY FOR TEST 1.

TIME (sec)	EVENT
0.000	Impact
0.006	Post begins bending
0.018	Post wrapping around bumper
0.050	Mailbox hits front end of hood
0.095	Mailbox and post being pushed over
0.147	First mailbox hits ground

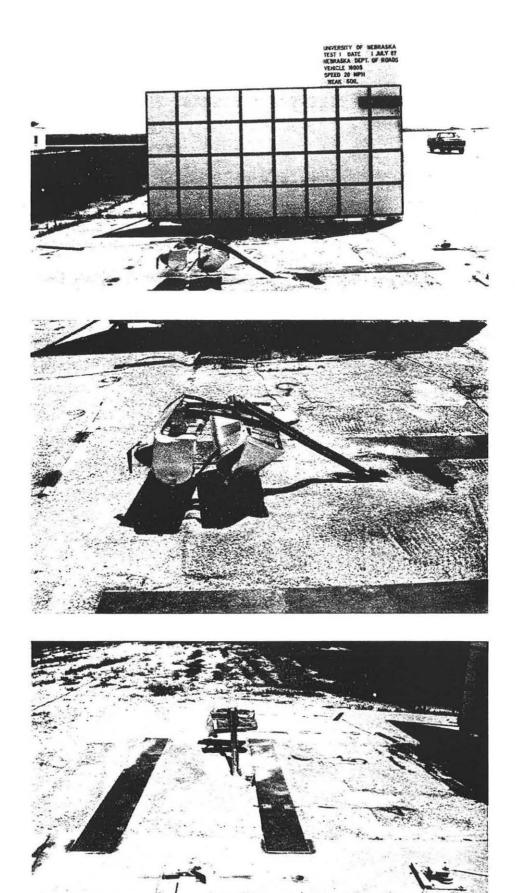


Figure 23. Damages To Mailbox System, Test 1 40

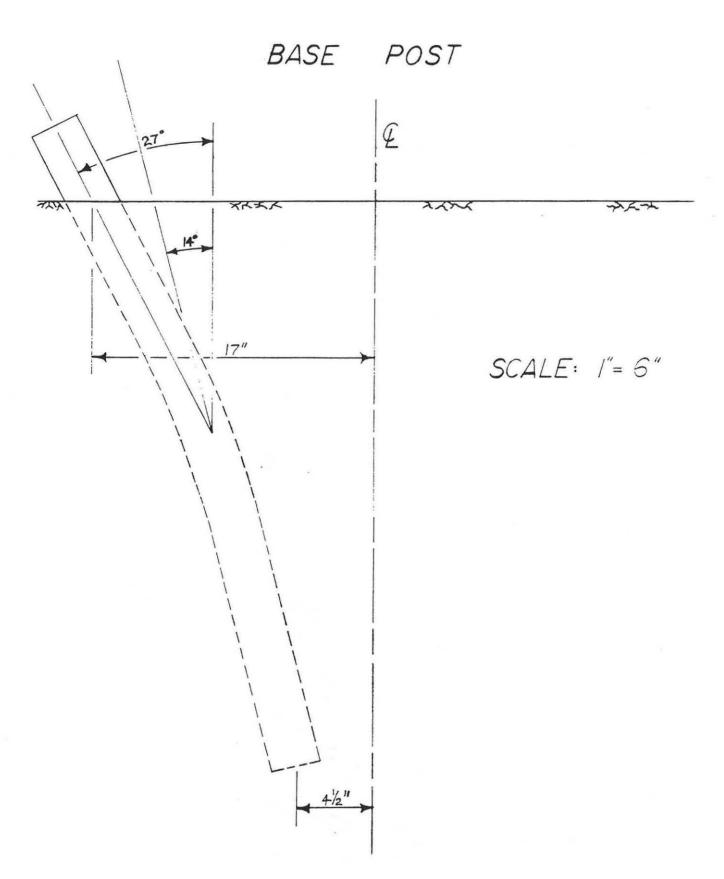


FIGURE 24. POST POSITION AFTER IMPACT, TEST I

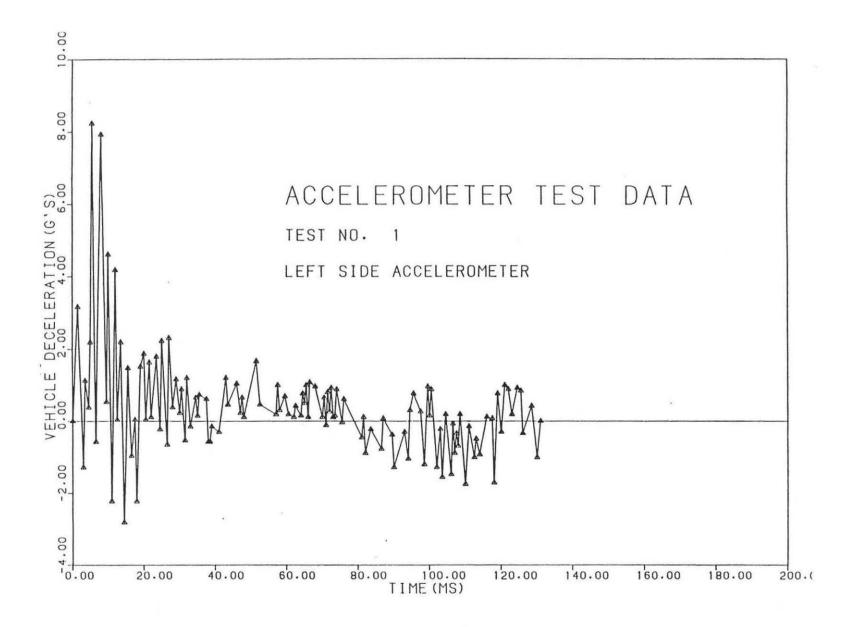


Figure 25. Vehicle Deceleration Versus Time, Test 1

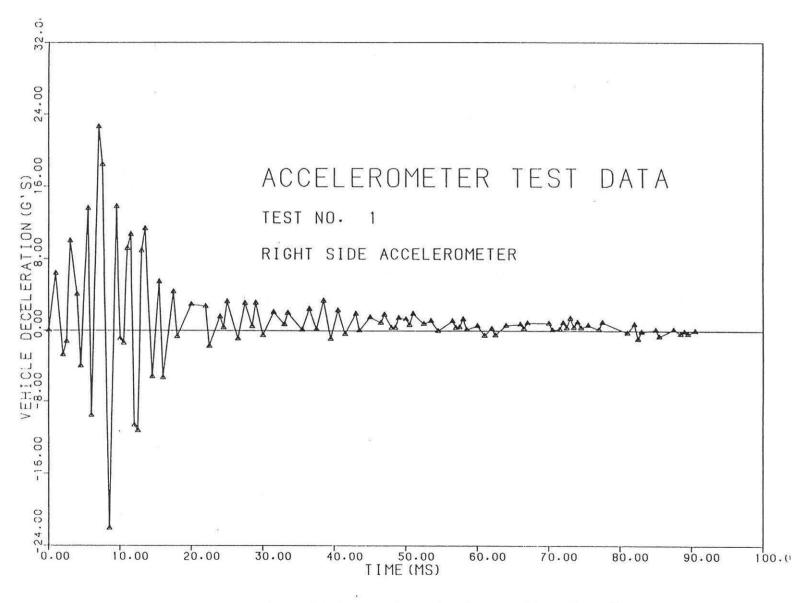


Figure 26. Vehicle Deceleration Versus Time, Test 1

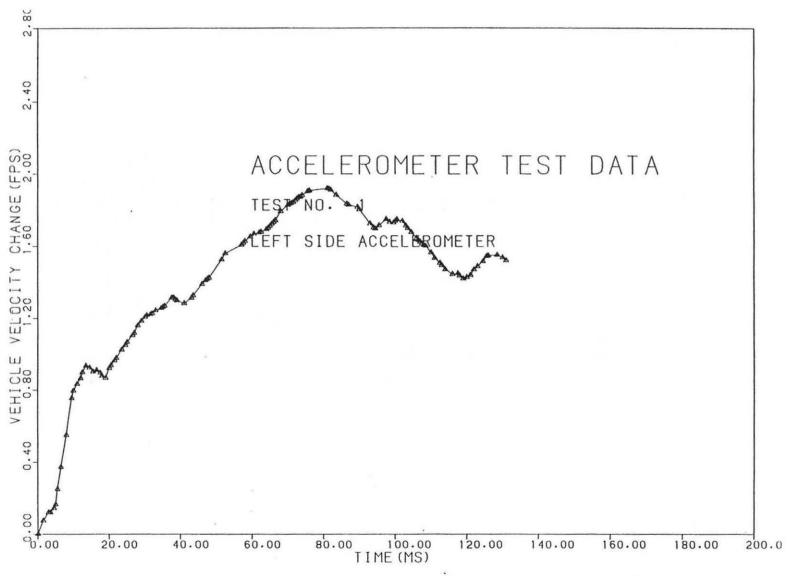


Figure 27. Vehicle Velocity Change Versus Time, Test 1

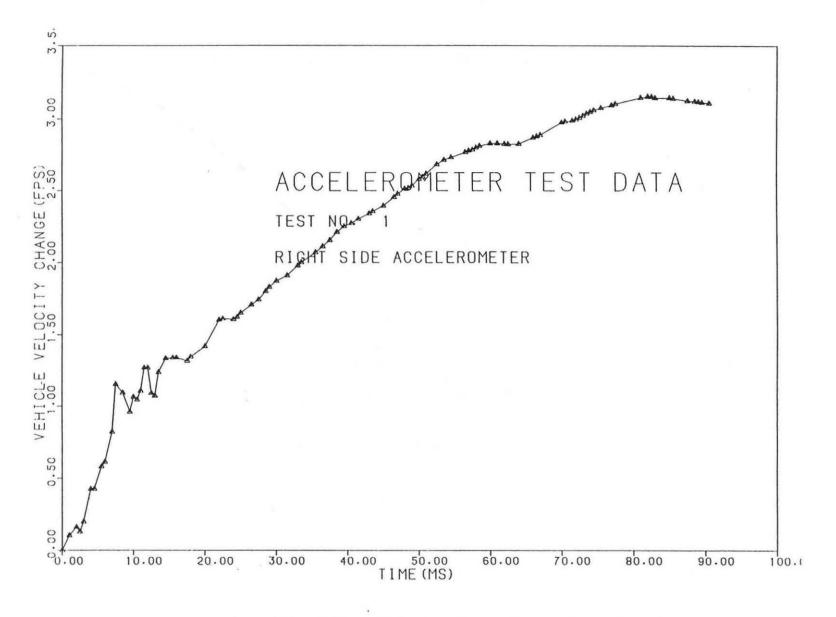


Figure 28. Vehicle Velocity Change Versus Time, Test 1

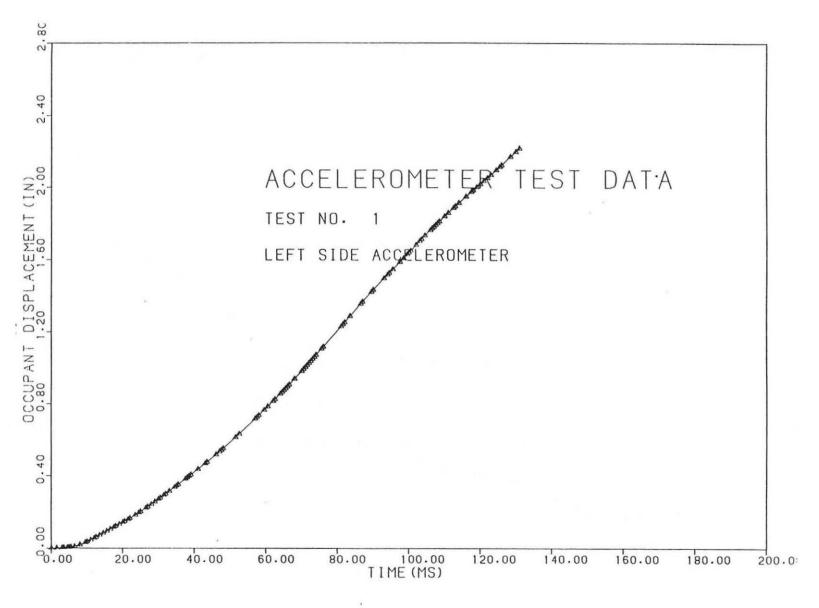


Figure 29. Occupant Displacement Versus Time, Test 1

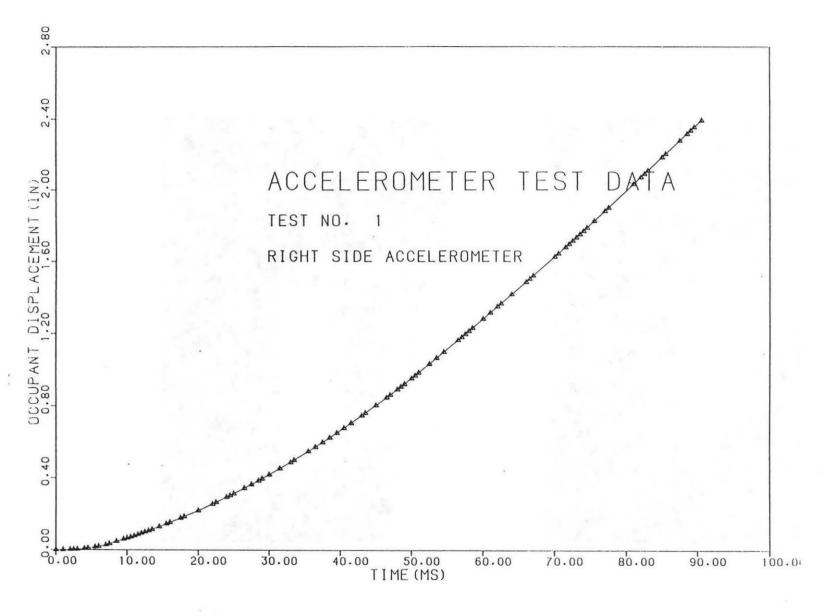


Figure 30. Occupant Displacement Versus Time, Test 1

Figure 31. Damages To Test Vehicle, Test 1

TEST NO. 2

A summary of the results of Test 2 is given in Table 5. The sequential photos taken from the high-speed film are shown in Figure 32. Table 6 gives the time-event summary. Upon impact, the post began to wrap around the bumper, and then the mailbox hit the front end of the hood. As the car continued to travel over the mailbox assembly, the top section of the post broke away from the base post, which remained in the ground. This demonstrated the breakaway or slip feature. Photos of the damage to the mailbox system are presented in Figure 33. Figure 34 shows the position of the base post after impact.

Figures 35 through 40 show deceleration, change in velocity, and occupant displacement versus time.

The only damages to the vehicle were a small dent in the front end of the hood and a minor dent in the bumper and front lower right fender as shown in Figure 41. Table 5 gives the TAD and VDI damage ratings.

TABLE 5. SUMMARY OF RESULTS, TEST 2.

Impact Velocity = 21.3 mph

Actual Impact Severity = 27.9 ft-kips

MAILBOX SUPPORT DATA

Mailbox 2 boxes (size 1-A)
Post Type Steel U-post *
Size 2.00 lbs/ft

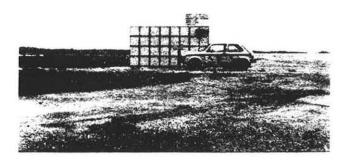
Embedment Method Driven into Strong Soil (S-1)

Embedment Depth 37 in.

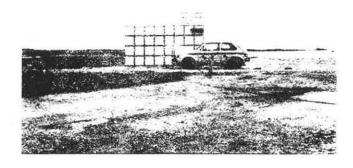
VEHICLE DATA

Make Volkswagon
Model Rabbit
Year 1979
Weight 1840 lbs.
Impact Point 14 in. to right of center

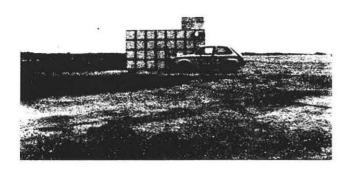
ACCELEROMETER DATA	Left	Right
Change in Velocity (ft/sec)	2.7	3.3
Duration of Event (sec)**	0.100	0
Peak Deceleration (g's)	7.5	13.2
Maximum 0.010 sec Average		
Deceleration (g's)	3.62	4.03
Occupant Displacement (in)	2.20	1.80

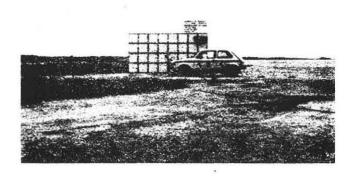

VEHICLE DAMAGE CLASSIFICATION

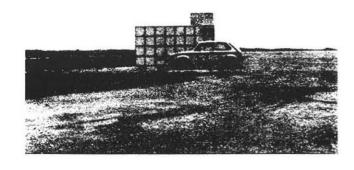
TAD None VDI 12FREE1

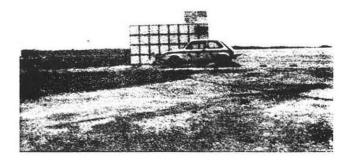

Did test article penetrate the passenger compartment? NO Was windshield broken? NO

*Franklin Steel eze-erect sign post


**Time of Contact


0.000 sec


0.008 sec


0.037 sec

0.052 sec

0.101 sec

0.118 sec

Figure 32. Sequential Photos, Test 2

TABLE 6. TIME-EVENT SUMMARY FOR TEST 2.

TIME (sec)	EVENT
0.000	Impact
0.008	Post begins bending
0.037	Post wrapping around bumper
0.052	Mailbox hits front end of hood
0.101	Mailbox and post being pushed over
0.118	First mailbox hits ground

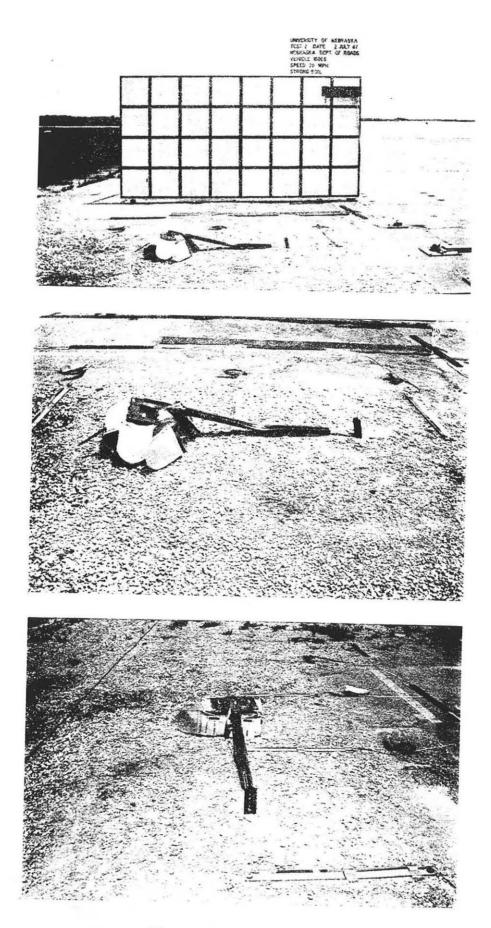


Figure 33. Damages To mailbox System, Test 2

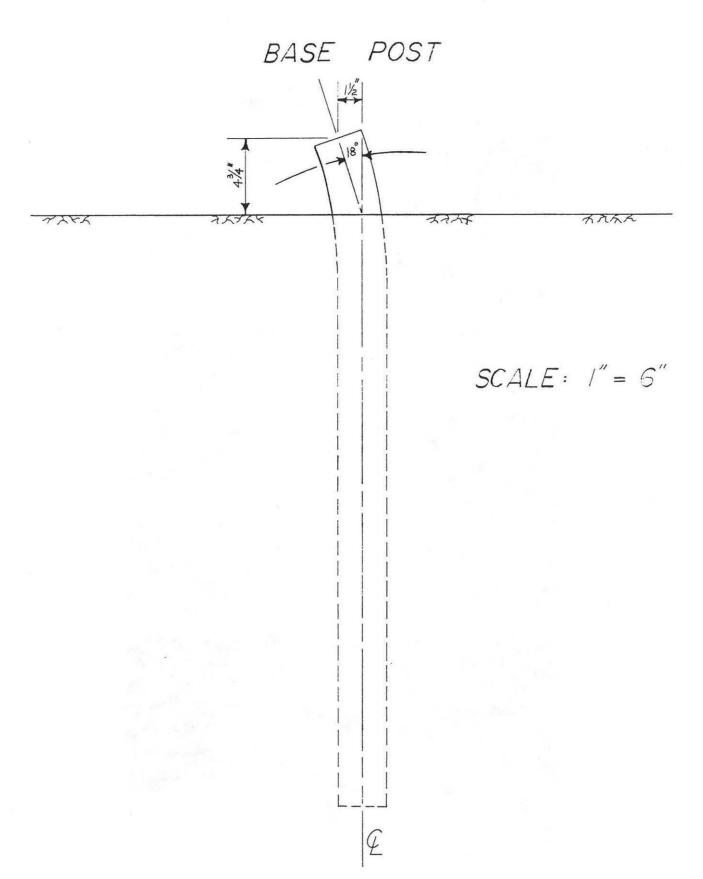


FIGURE 34. POST POSITION AFTER IMPACT, TEST 2

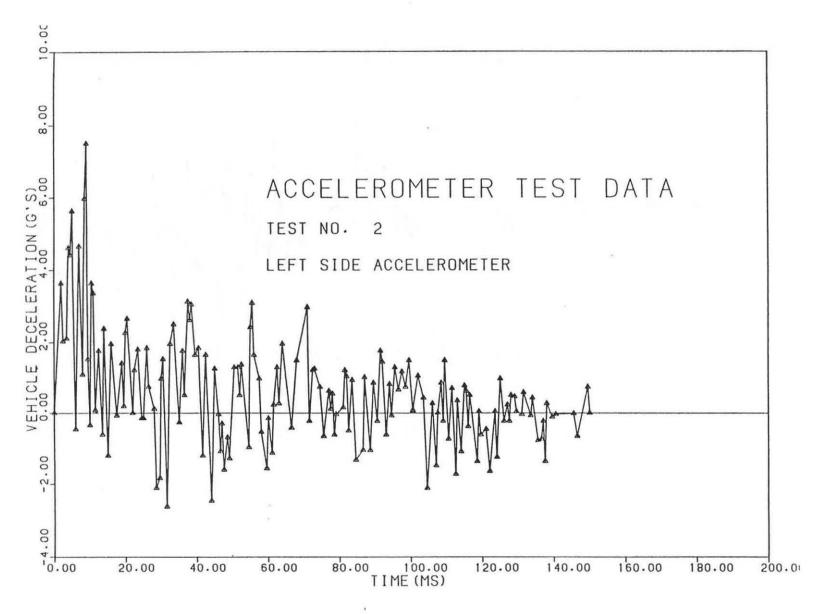


Figure 35. Vehicle Deceleration Versus Time, Test 2

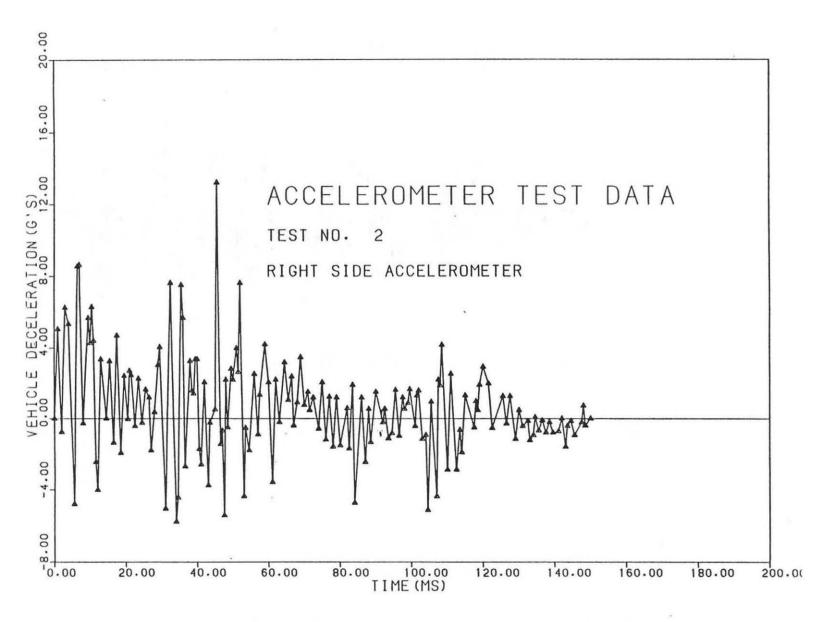


Figure 36. Vehicle Deceleration Versus Time, Test 2



Figure 37. Vehicle Velocity Change Versus Time, Test 2

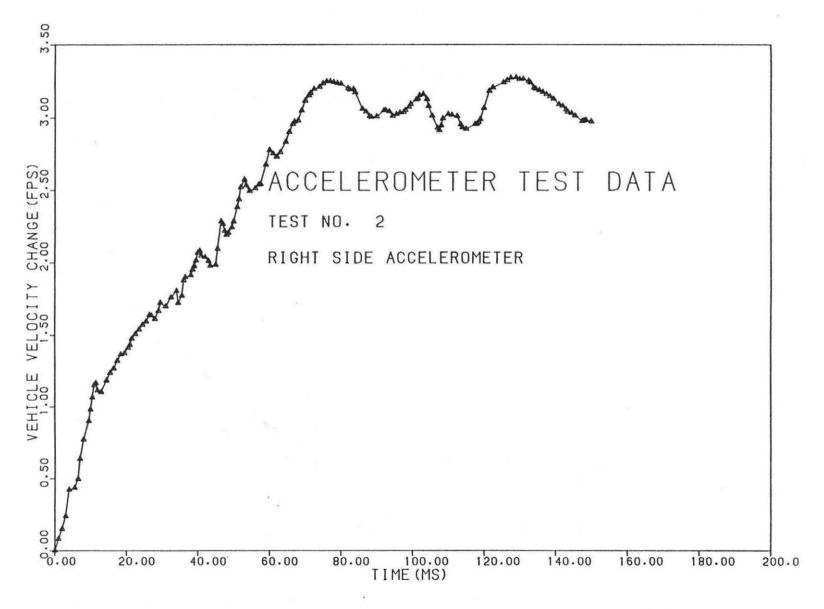


Figure 38. Vehicle Velocity Change Versus Time, Test 2

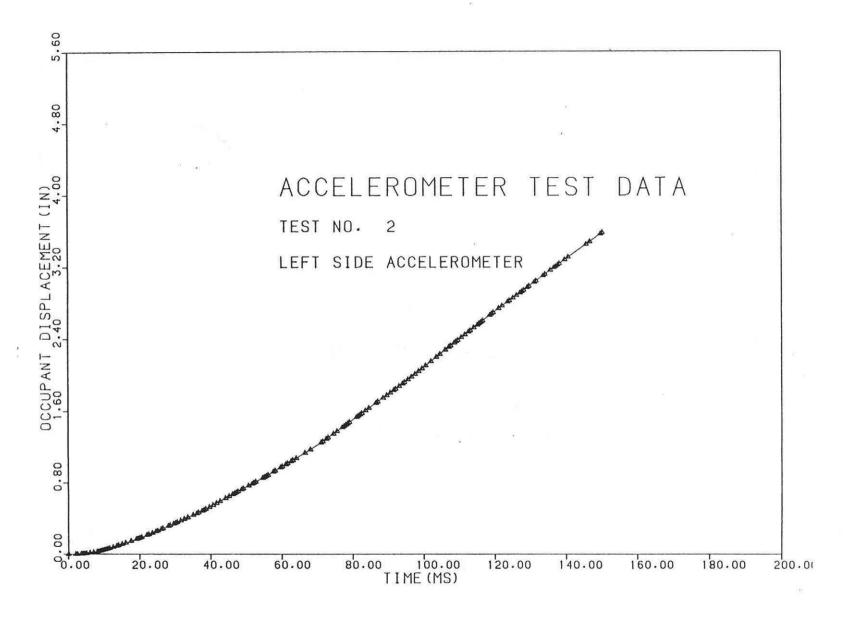


Figure 39. Occupant Displacement Versus Time, Test 2

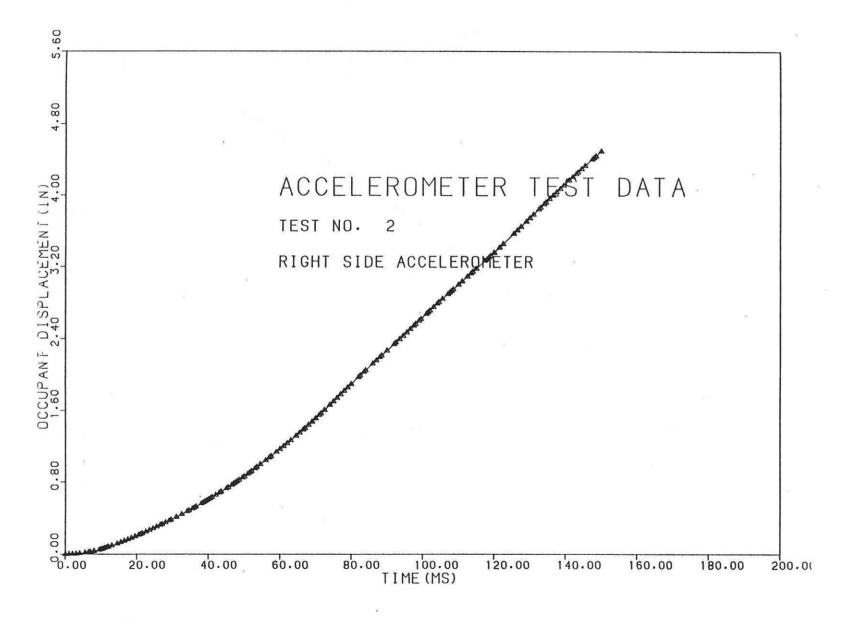


Figure 40. Occupant Displacement Versus Time, Test 2

Figure 41. Damages To Test Vehicle, Test 2

TEST NO. 3

The results of Test 3 are shown in Table 7, and the sequential photos from the high-speed film are presented in Figure 42. The time-event summary is given in Table 8. After impact, the post wrapped around the bumper while the mailbox struck the hood of the car. As the car traveled forward, the mailbox remained on the hood while the post assembly was pulled from the ground. At approximately 0.090 sec after impact, the mailbox assembly started to lose contact with the hood. The base post, top post, and mailbox all remained intact after they came to a rest 366 feet away, when it was run over by the vehicle. Damage to the mailbox system is shown in the photos given in Figure 43.

During Test 3, the data cable, between the onboard metraplex unit and tape recorder, became tangled with the car cable guidance system. Thus, the cable broke before the car had reached the impact point and no accelerometer data was recorded. The NDOR decided not to re-run the test because the needed information could be obtained from the high-speed film and also the vehicle remained stable and upright during and after collision.

The most noticeable damages to the vehicle were a punctured and dented hood and a busted plastic grill plate as shown in Figure 44. The TAD and VDI damage ratings are given in Table 7.

TABLE 7. SUMMARY OF RSULTS, TEST 3.

Impact Velocity = 63.6 mph

Actual Impact Severity = 248.6 ft-kips

MAILBOX SUPPORT DATA

Mailbox Post Type

Size

Embedment Method

Embedment Depth

2 boxes (size 1-A) Steel U-post *

2.00 lbs/ft

Driven into Weak Soil (S-2)

37 in.

VEHICLE DATA

Make Model Year Weight

Impact Point

Volkswagon Rabbit 1979 1840 lbs.

Center of bumper

ACCELEROMETER DATA

Change in Velocity (ft/sec)***
Duration of Event (sec)**
Peak Deceleration (g's)
Maximum 0.010 sec Average
Deceleration (g's)
Occupant Displacement (in)

Left

4.4 (Photec) 4.5 (Locam) 0.090 Not Available

Right

Not Available Not Available

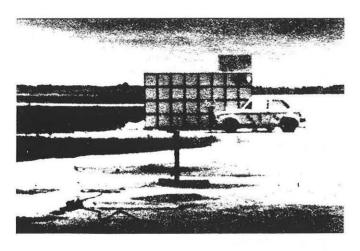
VEHICLE DAMAGE CLASSIFICATION

TAD

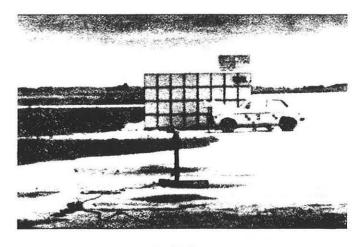
FC-1 12TFCN5

Did test article penetrate the passenger compartment?

Was windshield broken?

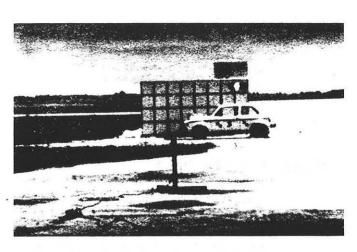

NO

NO


*Franklin Steel eze-erect sign post

**Time of Contact

***From high-speed film analysis


0.000 sec

0.002 sec

0.006 sec

0.040 sec

0.080 sec

0.090 sec

Figure 42. Sequential Photos, Test 3

TABLE 8. TIME-EVENT SUMMARY FOR TEST 3.

TIME (sec)	EVENT
0.000	Impact
0.002	Post begins bending
0.006	Post wrapping around bumper
0.016	Mailbox hits hood
0.040	Mailbox on hood and post being pulled out
0.080	Post dragging through sand
0.090	Mailbox loses contact with hood

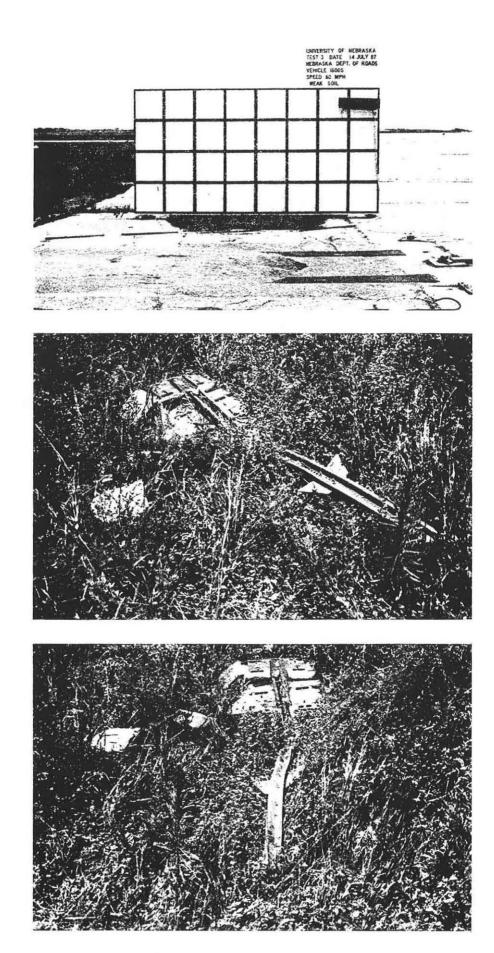


Figure 43 . Damages To Mailbox System, Test 3

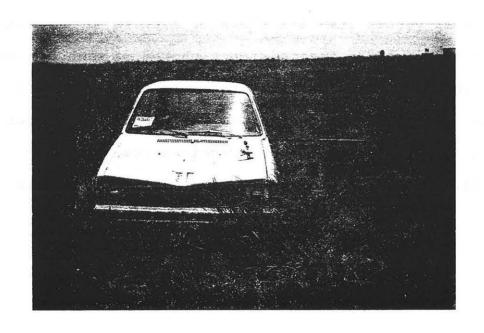


Figure 44. Damages To Test Vehicle, Test 3

TEST NO. 4

A summary of the Test 4 results is given in Table 9. The sequential photos are shown in Figure 45 and time-event summary is given in Table 10. As the vehicle moved through the impact, the mailbox post wrapped around the bumper, and then the top section of the post separated from the base post. The base post remained embedded in the soil. The mailbox then struck the hood and was carried for a distance before being thrown from the car. The final resting place of the mailbox assemble was 130 feet from the point of impact. Photos of the damaged mailbox can be viewed in Figure 46. A diagram of the base post position after impact is shown in Figure 47.

Plots of deceleration, change in velocity, and occupant displacement versus time are shown in Figures 48 through 53. It is noted that a minor inconsistency showed up when comparing the results obtained from the left and right accelerometers.

The vehicle's hood received the most significant damage although the center grill area received some dents as shown in Figure 54. Table 9 gives the TAD and VDI damage ratings for Test 4.

TABLE 9. SUMMARY OF RESULTS, TEST 4.

Impact Velocity = 64.5 mph

Actual Impact Severity = 255.7 ft-kips

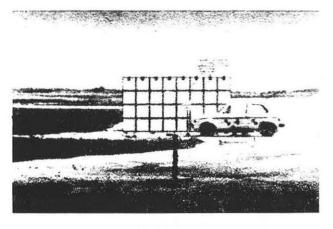
MAILBOX SUPPORT DATA

Mailbox	1 box (size 2)
Post Type	Steel U-post*
Size	2.00 lbs/ft ·
Embedment Method	Driven into Strong Soil (S-1)
Embedment Depth	37 in.

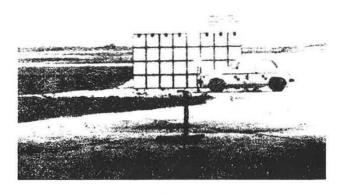
FC-1

VEHICLE DATA

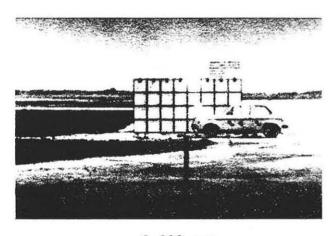
TAD

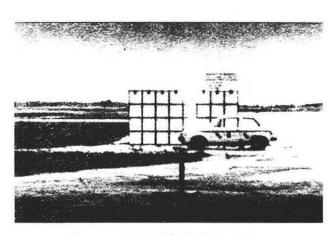

Make	Volkswagon				
Model	Rabbit				
Year	197 9				
Weight	1840 lbs.				
Impact Point	Center of bumper				

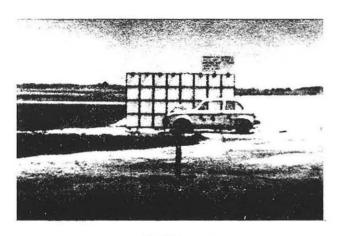
ACCELEROMETER DATE	Left	Right
Change in Velocity (ft/sec)	2.7	1.1
Duration of Event (sec)** Peak Deceleration (g's)**	21.2	26.1
Maximum 0.010 sec Average Deceleration (g's)	4.86	4.04
Occupant Displacement (in)	2.1	0.50


VEHICLE DAMAGE CLASSIFICATION

VDI	12TFDW
Did test article penetrate the passenger compartment?	МО
Was windshield broken?	NO


*Franklin Steel eze-erect sign post **Time of Contact


0.000 sec


0.002 sec


0.010 sec

0.022 sec

0.040 sec

0.148 sec

Figure 45. Sequential Photos, Test 4

TABLE 10. TIME-EVENT SUMMARY FOR TEST 4.

TIME (sec)	EVENT				
0.000	Impact				
0.002	Post begins bending				
0.010	Post wrapping around bumper				
0.022	Post separates from base				
0.026	Mailbox hits hood				
0.040	Mailbox on hood				
0.148	Mailbox leaving hood				

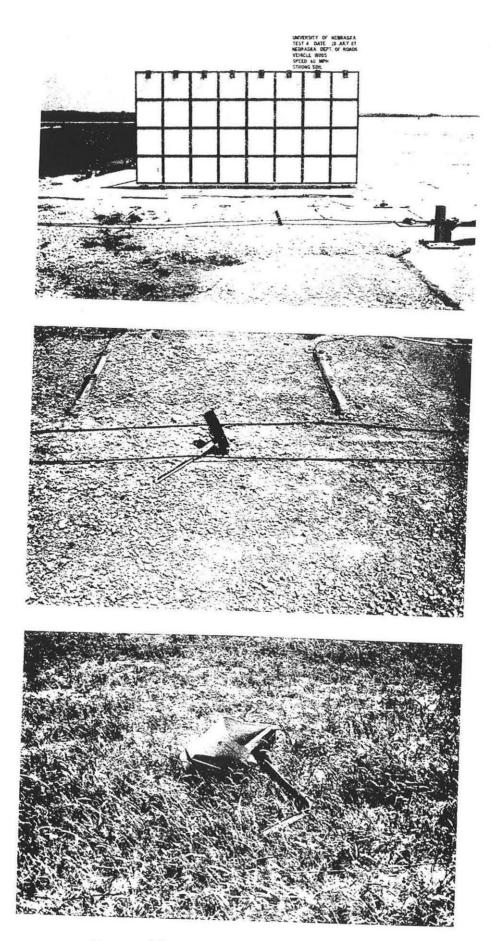


Figure 46. Damages To Mailbox System, Test 4

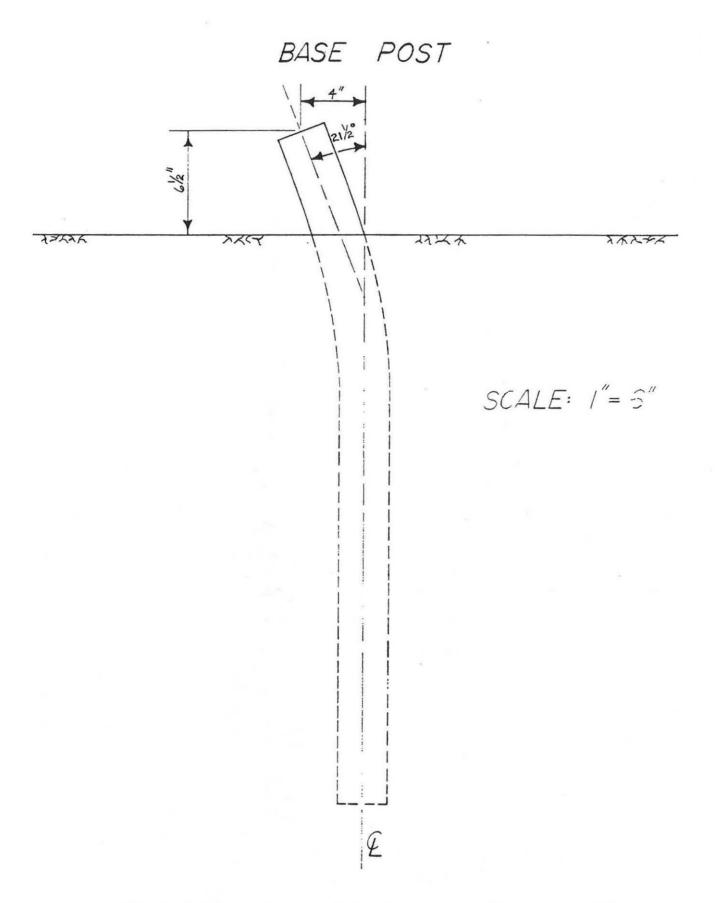


FIGURE 47. POST POSITION AFTER
IMPACT, TEST 4

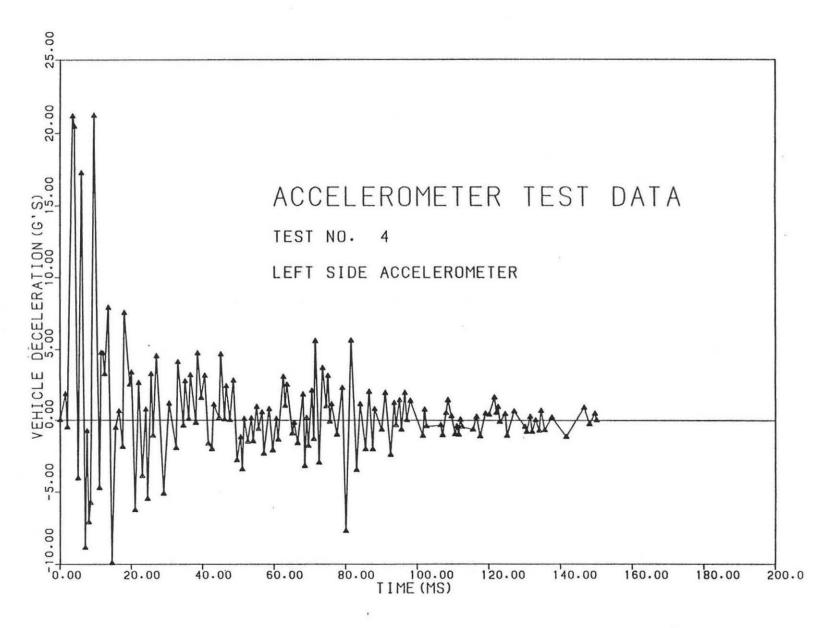


Figure 48. Vehicle Deceleration Versus Time, Test 4

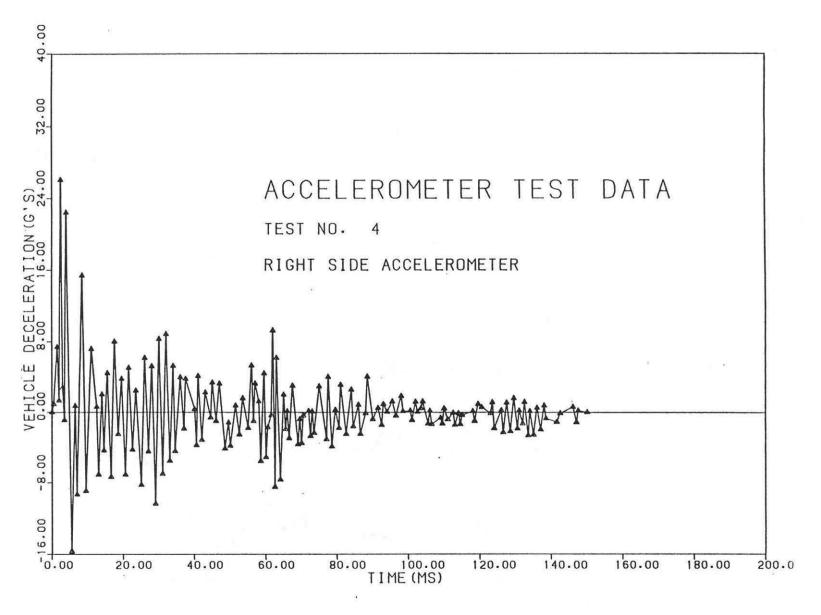


Figure 49. Vehicle Deceleration Versus Time, Test 4

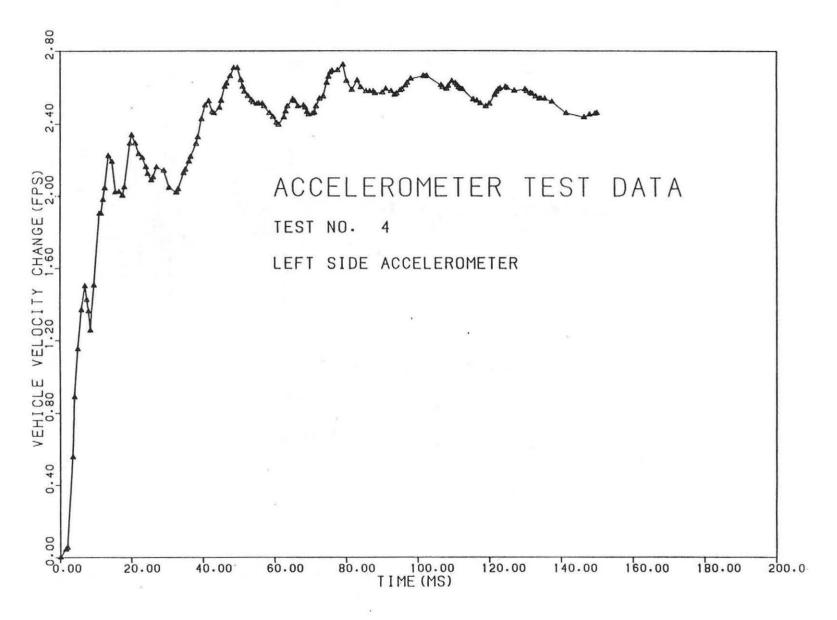


Figure 50. Vehicle Velocity Change Versus Time, Test 4

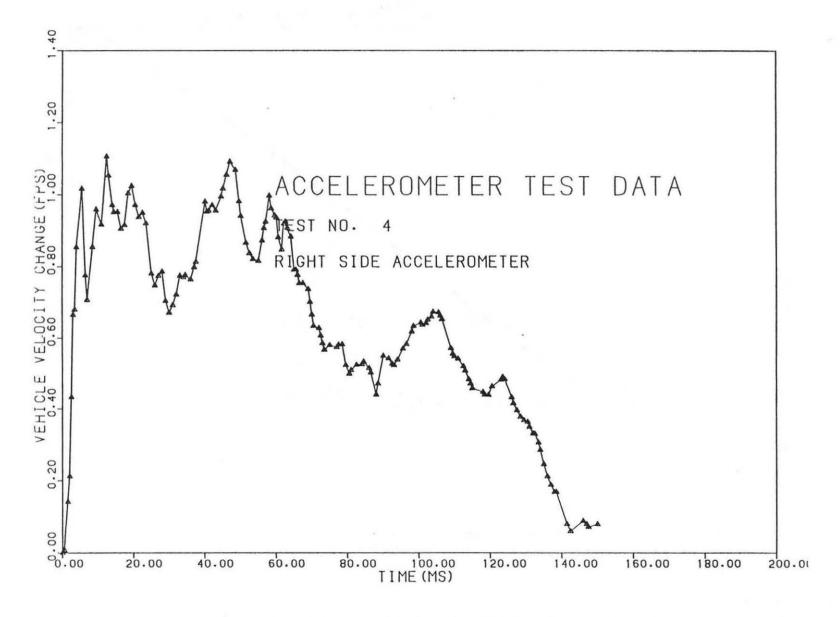


Figure 51. Vehicle Velocity Change Versus Time, Test 4

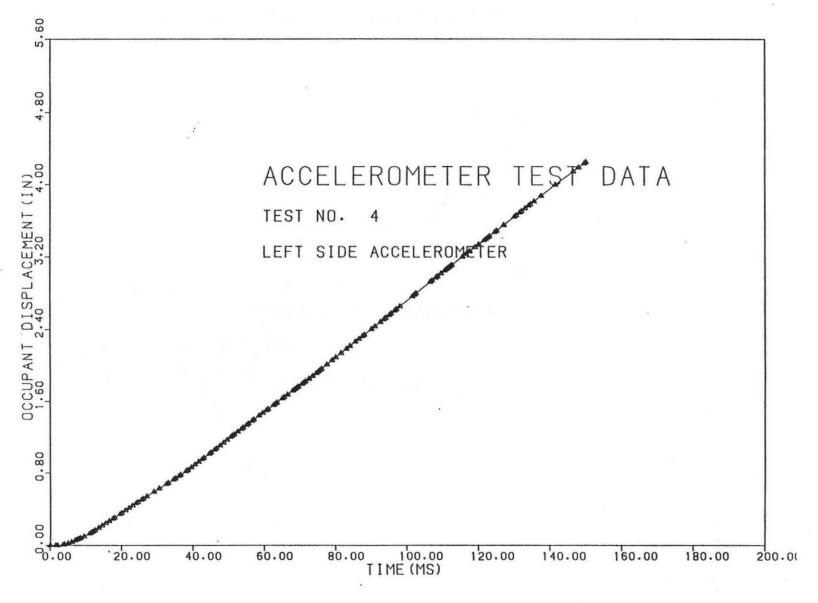


Figure 52. Occupant Displacement Versus Time, Test 4

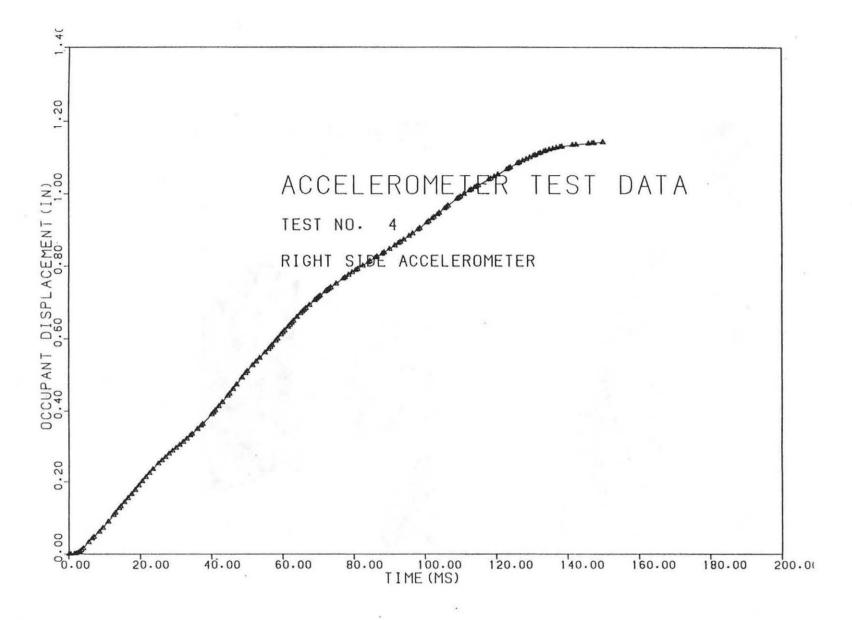


Figure 53. Occupant Displacement Versus Time, Test 4

Figure 54. Damages To Test Vehicle, Test 4

CONCLUSIONS

Four full-scale crash tests were conducted to evaluate the impact behavior on two NDOR mailbox support systems. One design used two mailboxes (size 1-A) mounted side-by-side, and the other design consisted of one mailbox (size 2) mounted to the top of the post.

The analysis of the four crash tests revealed the following:

- 1. In Tests 1 and 3, the actual impact severity was within the recommended limits. During Tests 2 and 4, the actual impact severity exceeded the recommended limits by 3.3% and 1.5%, respectively. Since the error was small, the tests were taken to be valid.
- 2. In each test the change in velocity of the vehicle was well below the recommended limit of 15 fps and also the preferable limit of 10 fps.
- In each test where accelerometer data was available, the maximum 0.010 sec average deceleration was well below the recommended limit of 15 g's.
- 4. In all of the tests, the mailbox support system functioned as intended. It kept the mailbox attached to the top of the post, not allowing any detached fragments or elements to penetrate or show potential for penetration into the passenger compartment.
- 5. In each test the vehicle remained stable and upright during and after impact and also showed no potential for ramping or rolling over. Also, there were no severe

damages assessed to the vehicle during each of the four tests.

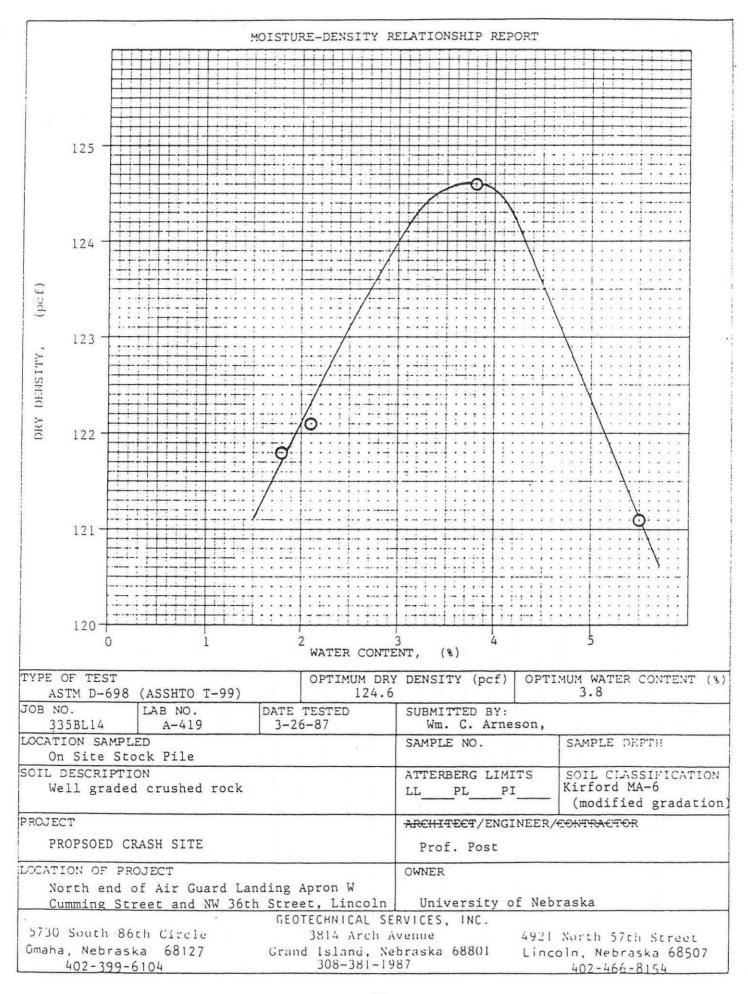
6. The breakaway device functioned as intended for Tests 2 and 4. During Tests 1 and 3, which were conducted in the weak soil, the breakaway device did not function. In Test 1, the post system pushed over allowing the vehicle to safely pass over it. In Test 3, the entire post system pulled out of the ground.

Based upon the above listed items, the results of each test are acceptable according to the NCHRP 230 guidelines.

RECOMMENDATIONS

In order to more securely tighten together the mailbox support system, it was suggested that the circular holes in the platform and L-shaped bracket be either punched to a larger size diameter or punched square so the carriage bolt can fit in the hole.

Also, it was suggested that the support system consisting of the platform plates, the adapter plate, and L-shaped brackets be treated with some type of protective surface coating such as paint or zinc plating. This would reduce the effects of rust on the system and possible mailbox detachment due to weakened steel parts.


REFERENCES

- 1. "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," National Cooperative Highway Research Program Report 230, Transportation Research Board, Washington, D.C., March 1981.
- 2. Effenberger, M.J. and Ross, H.E. Jr., "Report on the Static and Dynamic Testing of Franklin's U-Post and Eze-Erect Connection," Final Report to Franklin Steel Company, Project RF 3491, Texas Transportation Institute, Texas A&M University, June, 1977.
- 3. Ross, H.E. Jr. and Walker, K., "Static and Dynamic Testing of Franklin Steel Signposts," Final Report to Franklin Steel Company, Project RF 3636, Texas Transportation Institute, Texas A&M University, February, 1978.
- 4. Hinch, J., Yang, T-L, and Owings, R., "Guidance Systems for Vehicle Testing," ENSCO, Inc., Springfield, VA, 1986.
- 5. "A Guide for Erecting Mailboxes on Highways," American Association of State Highway and Transportation Officials, 1984.
- 6. "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals," American Association of State Highway and Transportation Officials, 1985.
- 7. "Recommended Procedures for Vehicle Crash Testing of Highway Appurtenances," Transportation Research Circular No. 191, Transportation Research Board, Washington, D.C., February, 1978.
- 8. "Vehicle Damage Scale for Traffic Accident Investigators," Traffic Accident Data Project Technical Bulletin No. 1, National Safety Council, Chicago, Ill., 1971.
- 9. "Collision Deformation Classification, Recommended Practice J224 Mar 80," SAE Handbook Vol. 4, Society of Automotive Engineers, Warrendale, Penn., 1985.

APPENDICES

APPENDIX A.

Strong Soil Tests

· COMPACTION TEST REPORT

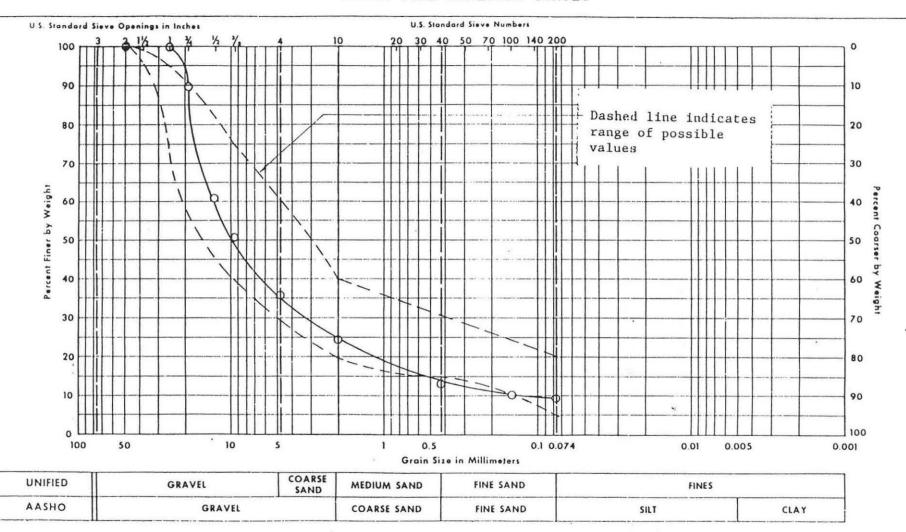
	PROJECT	LOCATION					
	CRASH SITE	W Cumming Street & NW 36th, Lincoln, NE					
	TYPE OF TEST	CONTRACTOR					
	Backfill	Strohmyer					
JOB NUMBER	335BL14						

GEOTECHNICAL SERVICES, INC.

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Lincoln, Grand Island & Omana, Neoraska Salina, Kansas Ames, lowa

TEST DATE			DEPTH	COIL	M D RESULTS		REQUIREMENTS		TEST RESULTS		RESULTS			
1EST NO	1200	LOCATION	OF FILL	SOIL DESCRIPTION	MAX DENS	OPT MOIST (*4)	COMP (%)	MOIST • OPT	DENSITY (pcl)	MOIST (%)	COMP (%)	MOIST • OPT	PASS FAIL	REMARKS
1272	RE: 3-31-87 3-26-87	North end of runway Air Park in the center of the test site	2-3	Crushed Rock	124.6		STD 95			14.8		+11.0		
1273 1A		11		,,	"				The same of the sa				PASS	
2 2	"	Center of test pit N.end of apron at Crash Site	3-4	Gray Rock	"								PASS	
1275		upron ac orașii orce	Grade	"	n		"						PASS	
	•								-112.5			0.0	11100	
				10.	-									
ì														
	. 1													
						- 101								
		1												ALL STATE OF THE S


COPIES.				1-Post						
ORIGIN	AL:	File		1-10	96					
NOTE	Test	nun	bers	followed	by an	alphahetical	latter	ndic	ates	RETES

466 815

SUBMITTED BY: _ 25m. C. anison

Wm. C. Arneson, P.E.

GRAIN SIZE ANALYSIS CURVES

Drill Hole	Sample No.	Sample Depth	LL	PL	PI	Water Cont.%	Classification	Project: CRASH SITE
-							Manufactured — gravel base —	Date: 4-14-87
								GEOTECHNICAL SERVICES, INC. OMAHA, LINCOLN, GRAND ISLAND AND SALINA

APPENDIX B.

Computer Program

(:

```
COMPUTER PROGRAM TO COMPUTE VEHICLE CHANGE IN
C
         *
              VELOCITY AND OCCUPANT IMPACT VELOCITY DURING
C
              HEAD-ON IMPACT WITH SMALL SIGNS
         *
C
         INPUT DATA NAMES
C
     NPTS
           = NUMBER OF INPUT DATA POINTS
     ITEST = TEST NUMBER
     SPEED = ACTUAL VEHICLE IMPACT SPEED (MPH)
     IVEL = TARGET VEHICLE IMPACT SPEED (MPH)
     TACCEL = ACCELERATION NUMBER
                NO. 1...LEFT SIDE
                NO. 2....RIGHT SIDE
            = ACCELEROMETER CALIBRATION FACTOR (MV/G)
     ACAL.
           = ACCELEROMETER DATA (MV)
     A(1)
     T(1)
           = TIME DATA (MSEC)
      PROGRAM SIGN(MABX4R, OUTPUT, TAPES=MABX4R, TAPE6=OUTPUT)
     DIMENSION A(1000), T(1000), G(1000), V(1000), SPD(1000), D(1000)
C
     READ(5,400) NPTS, ITEST, IVEL, IACCEL, ACAL, SPEED
      WRITE(6,500) ITEST, SPEED, LACCEL
     WRITE(6,505)
C
      TSUM=0.0
      VEL = 0.0
     DISP=0.0
      V(1) = 0.0
     D(1)=0.0
      SPD(1)=SPEED*(88.0/60.0)
      J=0
 1000 CONTINUE
      J=J+1
C
     DO 100 1=1, NPTS
      IF(J.EQ.2) GO TO 95
     READ(5,405) A(1),T(1)
      A(1)=(A(1)/(50.0*ACAL))*32.2
      G(1)=A(1)/32.2
   95 CONTINUE
  100 CONTINUE
      L=NPTS-1
      DO 200 I=1,L
     TT = (T(1+1) - T(1)) / 1000.0
      IF (J.EQ.2)GO TO 105
      A1=A(1)
      A2=A(1+1)
      GO TO 110
  105 CONTINUE
      TSUM=TSUM + TT
      A1mSPD(1)
      A2=SPD(1+1)
  110 CONTINUE
      IFI A1 .GE. 0.0 .AND. A2 .GE. 0.0 JGO (0 130
      IF( A1 .LT. 0.0 .AND. A2 .LT. 0.0 )GO TO 150
      IF( A1 .GE. 0.0 .AND. A2 .LT. 0.0 )60 TO 154
      IFC A1 .LT. 0.0 .AND. A2 .GE. 0.0 JGD TO 156
C
```

```
65 10 160
0
  154 CONTINUE
      T1=((TT)/(A1-A2))*A1
      TT-TT=ST
      AREA=(0.5*A1*T1) + (0.5*A2*12)
      60 TO 160
  156 CONTINUE
      T1 = ((TT)/(-A1+A2))*(-A1)
      12=TT-T1
      AREA = (0.5 * A1 * T1) + (0.5 * A2 * T2)
C
  160 CONTINUE
C
      IF(J.EQ.2)GO TO 170
      VEL=VEL + AREA
      V(1+1)=VEL
      SPD(I+1)=SPEED*(88.0/60.0) - VEL
      GO TO 180
  170 CONTINUE
      DISP DISP + AREA
      D(1+1)=(SPEED*(88.0/60.0)*TSUM) - DISP
  180 CONTINUE
  200 CONTINUE
C
      IF(J.EQ.1)GO TO 1000
      DO 210 1=1,NPTS
      D(1)=D(1)*12.0
      WRITE(6,510)T(1),G(1),V(1),D(1)
  210 CONTINUE
C
    WRITE STATEMENTS
  500 FORMAT(1H1,///,T43,'A N A L Y S I S',//,T49,'Q F',//,T33,
             'A C C E L E R U M E T E R D A T A', ///, T45, 'TEST NO.'
              12,7,743,'SPEED',FS.1,T54,'MPH',7,140,'ACCELEROMETER NO.
              12)
  SOS FORMAT(////,T22,'TIME',T34,'ACCELERATION',T53,'VELOCITY',
             T70, 'OCCUPANT', /, T34, 'CHANGE', T68, 'DISPLACEMENT', /,
             T21, '(MSEC)', T38, '(G)', T55, '(FPS)', T72, '(IN)', //)
  510 FORMAT(T21,F5.1,T37,F5.1,T55,F5.1,T72,F4.1)
C
    READ STATEMENTS
  400 FORMAT(415,2F10.0)
C
  405 FORMAT(2F10.0)
C
C
      CALL PLOTS(0,0,1)
      CALL PLOT(0.3,0.3,-3)
      00 10 1=1,3
      IF(ITEST.EQ.1) GO TO 701
      IF(ITEST.EQ.2) 60 TO 702
      IF (ITEST.EQ.3) GO TO 703
      IF(ITEST.EQ.4) GO TO 704
      IF(ITEST.EQ.5) 60 TO 703
      IF (ITEST.EQ.6) 60 TO 706
      60 ** 330
```

the traction of the first track of the first track to

41:

92

```
93
```

```
art.
      -11 Tar 1 - U
 703 CALL SYMBOL (4.5,4.5,0.15,1H3,0.0,1)
      60 TO 720
 704 CALL SYMBOL(4.5,4.5,0.15,1H4,0.0,1)
      GO TO 720
 705 CALL SYMBOL(4.5,4.5,0.15,1H5,0.0,1)
      GO TO 720
     CALL SYMBOL (4.5,4.5,0.15,1H6,0.0,1)
 720 CALL SYMBOL(3.0,4.5,0.15,8HTEST NO.,0.0,8)
      IF (IACCEL.EQ.2) GO TO 721
      CALL SYMBOL(3.0,4.0,0.15,23HLEFT SIDE ACCELEROMETER,0.0,23)
      GO TO 730
     CALL SYMBOL(3.0,4.0,0.15,24HRIGHT SIDE ACCELEROMETER,0.0,24)
 730 CONTINUE
      IF(1.EQ.1) GO TO 601
      IF(1.EQ.2) GO TO 602
      IF(1.EQ.3) GO TO 603
 601 CALL PLOT(0.0,7.0,3)
      CALL PLUT(10.0,7.0,2)
      CALL PLOT(10.0,0.0,2)
      CALL PLOT(0.0,2.0,3)
      CALL PLOT(10.0,2.0,2)
      CALL SCALE(T, 10.0, NPTS, 1)
      CALL SCALE(G,7.0,NPTS,1)
      CALL AXIS(0.0,0.0,SHTIME(MS),-8,10.0, 0.0,T(NPTS+1),
     *T(NPTS+2))
      CALL AXIS(0.0,0.0,25HVEHICLE DECELERATION(G'S),25,7.0,
     *90.0,G(NPTS+1),G(NPTS+2))
     CALL LINE(T,G,NPTS,1,1,2)
      CALL SYMBOL( 3.0,5.0,0.25,23HACCELEROMETER TEST DATA,
     * 0.0,23)
      CALL PLOT(12.0,0.0,-3)
      GO TO 10
C
     CALL SCALE(T, 10.0, NPTS, 1)
      CALL SCALE(V,7.0,NPTS,1)
      CALL PLOT(0.0,0.0,-3)
      CALL PLOT(0.0,7.0,3)
      CALL PLUT(10.0,7.0,2)
      CALL PLOT(10.0,0.0,2)
      CALL AXIS(0.0,0.0,8HTIME(MS),-8,10.0,0.0,T(NPTS+1),
     *T(NPTS+2))
      CALL AXIS(0.0,0.0,28HVEHICLE VELOCITY CHANGE(FPS),28,
     *7.0,90.0,V(NPTS+1),V(NPTS+2))
      CALL LINE(T, V, NPTS, 1, 1, 2)
      CALL SYMBOL(3.0,5.0,0.25,23HACCELEROMETER TEST DATA,
     *0.0,23)
      CALL PLOT(12.0,0.0,-3)
      GO TO 10
C
     CALL SCALE(T, 10.0, NPTS, 1)
      CALL SCALE(D, 7.0, NPTS, 1)
      CALL PLOT(0.0,0.0,-3)
      CALL PLOT(0.0,7.0,3)
      CALL PLOT(10.0,7.0,2)
      CALL PLOT(10.0,0.0,2)
      CALL AXIS(0.0,0.0,8HTIME(MS),-8,10.0,0.0,T(NPTS+1),
     *T(NPTS+2))
      CALL AXIS(0.0,0.0,25HDCCUPANT DISPLACEMENT(IN),25,7.0,
     *90.0,D(NPTS+1),D(NPTS+2))
     CALL LINE(T,D,NPTS,1,1,2)
      CALL SYMBOL(3.0,5.0,0.25,2SHACCELEROMETER TEST DATA,
     (ES, 0.04
```

APPENDIX C.

Computer Printout Test Results

OF

ACCELEROMETER DATA

TEST NO. 1 SPEED 20.5 MPH ACCELEROMETER NO. 1 LEFT SIDE

TIME		ACC	ELERA	TION	VELOCITY CHANGE	DCCUPANT DISPLACEMENT
(MSEC)			(G)		(FP\$)	CIND
.0 1.5 3.0 3.5 4.5		?	0.2 3.2 -1.8 1.1		.0	.0
5.0 5.5 6.5 8.0 9.5 10.0			2.269-5.62		2 2 4 6 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12.0 12.5 19.5 14.5 15.5 16.5	(a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	in the second se	4.00.00 -2.05 -1.00		୍	
18.00 19.00 20.55 20.55 22.55 24.5		1000 m 27 - 4 1 - 2 - 25 - 4	-2.2 1.5 1.9 1.0 1.0		.9 .9 .9 1.0 1.0	8 e a a
25.0 25.5 27.0 29.0 29.0 29.5 30.5	0		2.73422952		1.1 1.1 1.2 1.2 1.2 1.2	
32.0 33.0 34.5 35.0 35.5		7	1.2 8 .7 .8 .7		1.2 1.3 1.3 1.3	.3 .3 .3 .3 .4

1 1 1 2 12	, I	1 . 7-1	a: . W	,
117.5	. 1	1.4	2 D	3/~
118.0	-1.7	1 . 4	2 0	9/5
119.0	.8	1.4	2 0	
120.0	9	1.4	2.0	
121.0	1 0	1 4	2 0	
188.0	ં વું	1.5	2.0	
123.0	. 2	1 14	G. 1	
124.5	ä	1.5	2 1	the state of the state of
125.5	9	1.5	G. 1	
126.0	- 4	1.5	5	
128.5	Λ .	1 66	E I	
190.0	-1.0	1.6	2.2	R PERFECT BRANCH TA
181.0	. 0	1 5	9 9	
		1.0		

The transport of the contract of the contract

11.15.50

a 1126 Andread

to.

di e i i i i i i

130.0

65.5

99

ACCELEROMETER DATA

TEST NO. 1 SPEED 20.5 MPH ACCELEROMETER NO. 2

RIGHT SIDE

TIME	ACCELERATION	VELOCITY .	OCCUPANT DISPLACEMENT
(MSEC)	(G)	CHANGE (FPS)	(IN)
.0 1.0 2.0 2.5	.0 6.4 -2.8 -1.3	.0 .1 .2	.0
8.0 4.0 4.5 5.5 6.0 7.0 7.5	10.0 4.1 -4.0 13.6 -9.6 22.6	.2 .4 .4 .6 .6	.0
8.5 9.5 10.0 10.5 11.0 11.5 12.0	-22.1 18.8 9 -1.4 9.2 10.7 -10.6	1.1 1.0 1.1 1.0 1.1 1.8 1.8	
18.0 18.5 14.5 15.5 16.0 17.5 18.0 22.0	8.9 11.4 -5.2 5.5 -5.3 4.4 7 8.7	1.1 1.2 1.3 1.3 1.3 1.3 1.3	1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
22.5 24.0 24.5 25.0	-1.8 1.6 4 3.3	1.6 1.6 1.6	
26.5 27.5 29.0 30.0 31.5 33.5 35.5	3.1 5 3.1 5 2.1 7 2.0	1.7 1.7 1.8 1.8 1.9 2.0 2.0	0444445555

		503		5	
		52 C4		5	
		40		1.5	
		41		5	
		48	Ų.	O	
		43	Ĉ	5	
		4.5	15	()	
		46		15;	
		4.2	•	Ö	
		40	Ĉ	ä	
		01335078890012346	*	50500500	
		21.04	•	n	
		50		17	
		50	•	15	
		NS 1		n	
		E. 0	•	ı.	
-		50	•		
		5.0		0	
		C /4))	
		20	•	C	
		07		Ü	
		51535555555555555555555555555555555555	•	2	
		57 57 58		(1)	
		22	٠	0	
	*	00		Ü	
		61	٠	Ü	
		() c	٠	Ü	
		60 61 62 64 66 66 70	•	15055555050500050	
		64	•	0	
		00	٠	()	
		60		5	
		67	٠	()	
		70	•	O	
		70 70 71 72 78	•	3	
		71		5	
		72 78	•	()	
		16	9	5	
		73	•	O	
		13		5	
		74.	٠	()	
		1.4		5	
		75	٠	5	
		77		()	
		77		5	
		61		()	
		85		()	
		82		Ľ)	
		83		()	
		75777122335578990		0500050505050505005005550	
		85		5	
		1217		5	
		cic		5	
		$\Xi(\mathbb{S})$		()	
		89		5	
		CSC		1.	

	0.1	() . ()
	ଞ୍ଚୁପ , ପ୍ର	1.0
	-885.0	2.0
	-175.0	2.5
	1885.0	8.0
	565.0	4.0
	-560.0	4.5
	1880.0 -1825.0	5.5 6.0
	-1925.0 3135.0	7.0
1	2550.0	7.5
	-8055.0	8.5
	1910.0	9.5
	-130.0	10.0
	-200.0	10.5
1	1270.0	11.0
	1485.0	11.5
	-1475.0	12.0
	-1560.0	12.5
3.3	1285.0 1575.0	18.0 18.5
	-725.0	18.5 14.5
	760.0	15.5
	-740.0	16.0
	605.0	17.5
150	-95.0	18.0
	410.0	20.0
	380.0	22.0
	-245.0	22.5
	220.0	24.0
4.	50.0 455.0	24.5 25.0
0	-180.0	25.0 26.5
w	480.0	27.5
	70.0	28.5
	485.0	29.0
	-75.0	80.0
	290.0	31.5
76	100.0	98.0
4	280.0	33.5
1.3	15.0	85.5
	840.0 20.0	30.3
	470.0	97.5 98.5
	-130.0	89.5
	320.0	40.5
	-50.0	41.5
	270.0	43.0
	5.0	48.5
	215.0	45.0
	180.0	46.5
1	255.0	47.0
	50.0 50.0	48.0 48.5
	205.0	49.0
	185.0	50.0
	95.0	50.5
	270.0	51.0
4	110.0	52.5
2	100.0	53.5
(9)	0.0	54.5
	155.0	56.5
	50.0	57.0
	⊕0.0	57 5

80.0				60	. (
-75.0				61	. (
35.0				62	. (
-70.0				62	
85.0				64	. 4
105.0				15.65	. 1
85.0			500	66	
125.0				67	. (
120.0				70	. (
15.0				70	
25.0			(a) e	71	. 5
130.0			***	72	. (
50.0				72 73	. !
200.0				73	. (
55.0				78	. 5
140.0				74	. (
50.0				74	
90.0				75	
20.0				77	. (
185.0				77	
-80.0				81	. (
105.0				22	. (
-180.0	-	100		82	
-15.0	- 2	0		23	- (
15.0		Q.		85	. (
-90.0				85	. 3
20.0		100		87	. 5
-50.0				88	. 1
10.0				855789	. (
-50.0				50	. :
0.0				90	. 5
			12		

ANALYSIS

OF

ACCELEROMETER DATA

TEST NO. 2 SPEED 21.3 MPH ACCELEROMETER NO. 1

105

LEFT SIDE

TIME (MSEC)	·:	A		ELEI (G		The state of the s	e Gyz y Tyyy Name		CI	LOC HAN (FP	9E.		, u	DI	300 398 398	.AC	E.M	EN	r		3-10-10-10-10-10-10-10-10-10-10-10-10-10-			195
2.0	•			30	00.		٠				. 0					:	0			,				
3.5 4.5 4.5 5.0 6.0		. W.	-1	2445	104056						.20445						000000							
8.0 8.5 9.0 9.5 10.5 11.5		t ory to	• 1	1 6 7 1 - 8 3	.10554641		5	veden.		. 1	77899000	 	2 m m	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		77.	000001111			•				
12.5 10.5 14.0 15.0 16.0 17.5 19.0			4.4	1 2 - 1 2 - 1	86420140				** *** **	1 1 1 1 1 1	.1 .1 .1 .2 .2 .2				1.3		1111122				- *p			*
20.0 20.5 22.0 22.5 23.5 24.5 25.0			9	1 1	00000000	5 0 00 0 0	74			1 1 1 1 1 1	2004444		* *					· •				.75		
26.0 26.5 28.0 28.5 29.5 80.0				-2 -1	871180		33			1 1 1 1 1	.5.5.5	a i Vii					000004				pro**s	. 2.,	1.00	17

		1 .2.560	21.3 TADUT	NATA	,	
465 260	.0 @	. 0	INPUT	DATA		
270 590	. () 4	.5 .0				
565 720	.0 5	.5 .0	1 1 2 4 N	252		
-60 595	.0 7	. O . O	*	44	5	
140 765		. 0		er ser en	en grandstand in the contract	
960 195	.0 9	. 0				, it,
-45 465	.0 10	.0	1995 . N. S.		in selfen bei en en	
430 10	.0 11	. 0				
225	.0 . 12	. 5 . 5		48	1 20	and the second
305	. 0 14	. O		* WE		
155 250	.0 16	. 0				i i
10 180	.0 19	. 5 . 0			87 .	V V 4
25 290	.0 . 20	. 5 . 0	in the second of		TO THE PROPERTY OF THE PARTY OF	
840	.0 22	. 0	16.			
155 230	.0 . 23	. 5 . 5	- W			
-20		. 5 . 0			+ 59	
295 95	.0 25	. 0 . 5			A a' IV	12
15 -270	.0 / 28	.0				11000
-285 125	.0 29	.5				
195 -335	.0 80				The state of the s	
250 320	.0 82	. 5 . 5			N. S.	-1 · 10 ν Α
-95 225	.0 95	.0		The second second		
400	.0 86	. 5				* * * * * * * * * * * * * * * * * * *
885 890	.0 88	.0		4 (C. #A.G		Action (Care Care Care Care Care Care Care Care
210 235	. 0 89	. 5				4 5 3
··· 155	.0 41	. 5				
210. 815	. () 44	. ()			2.4	
160.	. 0 46	. ()				ee,
140 . 40	. () 47	. ()				
-205. -90. -135.	.0 47 .0 48	. 5 . 5			* * *	
4.35	4 115	. 1)				

1. 1. 1. 1. 1.			
5.0			119.0
-80.0			119.5
-60.0			121.0
-210.0			122.0
5.0			123.5
-160.0			124.0
125.0			125.0
30.0			126.0
30.0			127.0
-80.0			127.5
65.0			128.0
60.0			129.0
5.0			129.5
-5.0			181.0
75.0		19	131.5
-10.0			199.5
55.0	19		134.0
-100.0	30		185.5
	1		136.5
-80.0			187.0
-175.0			137.5
85.0			188.0
4 *** **			139
-15.0 -5.0		3.	139.5 140.5 145.5
-2.0			145 5
-85.0			146.5
95.0			149.5
0.0	141	-11	150.0

ACCELEROMETER DATA

TEST NO. 2 SPEED 21.3 MPH ACCELEROMETER NO. 2

RIGHT SIDE

TIME (MSEC)	ACCELERATION (G)	VELOCITY CHANGE (FPS)	DCCUPANT DISPLACEMENT (IN)	
1.0 2.0 3.0 4.0 5.5 6.5 7.0	.0 5.1 5.2 5.2 5.2 5.3 -4 8.6 9.0 9.0	.0122445568	0 0 0	
9.5 10.0 10.5 11.0 11.5 12.0 13.0 14.5 15.5	5.7 4.3 6.3 4.4 -2.5 -4.0 3.4	1.0 1.1 1.2 1.2 1.1 1.1		
16.5 17.5 18.5 19.5 20.5 21.0 21.5 22.5	-1.4 4.7 -1.9 2.4 .0 2.7 2.5	1.3 1.4 1.4 1.4 1.5 1.5	1 2 2 2 2 2 2 2	
20.5 24.5 25.5 26.5 27.0 28.0 29.0 29.5 31.0 32.5	2.3 1.7 1.2 -1.8 -1.8 -4.9 -5.1 7.6 -5.8	1.55 1.56 1.55 1.57 1.77 1.72 1.87	200000000444455	

36.5 38.0			-2.7 3.2				1.9	
38.5			1.6				2.0	
89.5			3 . 4				2.0	
40.0			3.4				2.1	
41.0			-2.6				2.0	
43.0			2.1 -3.8	No.		*	2.0	
49.5		9	8 .5		§200 ii		2.0	
45.5			18.2				2.1	
46.5		D#0#0.080	-1.4	1 751 T - 114	**** L*,# * * *	*** ********	2.3	١.
47.5		861	-5.4 2.2	× 1			2.2	
48.5		ed a	5		13		2.2	
49.5 50.0		* ** ## 9	2.8			8 8 =	2.2	
51.0			4.0				2.4	
51.5 52.0			7.6			F41_E 491 = 6	2.4	
53.0 53.5			-4.4 5	×	, n		2.5	
54.5			-1.8	V _{ali} n	. 7		2.5	
56.0 57.0		man a	2.5	- 3	9136 <u>()</u>	-5	2.5	
57.5 59.0			1.8 4.2				2222222	
60.0			2.1				2.8	
61.0 62.0		a 500 g	-3.6 2.2			84 S	2.8	
63.0 64.5			8.2				2.8	
65.5		E 8 000 (00)	1.0	*** ***	din taka mada		C . W	
66.5 67.0			2.4				8.0	
68.0 69.0		han in	3.5		·		3.0	
70.0		h.b.	. 3	3 N 200			8.1	3 -
71.0			1.5	10 10			3.2	
72.5			1.2				3.2	
75.0		٦.	2.1				3.2 3.2	
76.0	¥3.		1.2		A 157 11 11	* * * * *	3.3	50.00
78.0 79.0			-1.6 1.2		8 4 .		3.2	
SO.0			-1.5	1 10 5	2	in the later	3.2	
82.0 82.5			-1.5 .6 -1.7				93.2	
88.5			1.9				3.2	
86.0		100	1.2				8.2 3.1	
87.0 88.0			-2.5				3.0	
88.5			-1.8 -1.5			0.180	8.0	
90.0 92.0			··· . 2				3.0	
92.5 98.5			. 5 1 1				8.1	
94.5			E		ĕ		3.0	el .
~~~ 5 			* 6 (				: . n	

.9 1.0 1.0 1.0 1.1 1.1 122222

1.4 1.4 1.5 1.5 1.5 1.5 1.7 1.7 1.8 1.9 1.9 1.0 2.0 ar a

e e e e e e e e e e e e e e e e e e e			·/113	Ġ.		
				×		
		;				
			34			
			ć			
	144.5 145.5 147.5 148.0 148.5 150.0	186.5 187.5 188.5 189.5 141.0 142.0 143.0	127.5 129.0 130.0 131.0 132.5 133.0 134.0 134.5 135.5	118.5 119.0 120.0 121.5 122.5 125.5	108.5 110.0 111.0 112.5 118.5 114.0 115.0 117.5 118.0	101.5 102.0 108.0 104.0 104.5 105.5 107.0 107.5
		e.				
, si						**************************************
					-2	- : - :
•	9 2 7 4 . 0	18287064	1.81.25	1.9 2.9 2.0 1.8 1.8 1.2 1.2	1.9 2.59 5.9 1.9 1.50	1.3 1.5 1.2 5.1 4.4 2.2 4.2 4.2 4.2
eng						
u ii		3. 3.				
						e .
		· 1 .		- 5 ₉ .		
	3.0 3.0 3.0 3.0	300000000000000000000000000000000000000	000000000000000000000000000000000000000	300000000000000000000000000000000000000	00.000000000000000000000000000000000000	
	0 :	2 1 1 1 1 1		0 1 2 2 2 3 3	0 .	211000000000000000000000000000000000000
		9	-4			
				9		
	• •:					
741	4.	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	000000004	000000000000	333	เพลพลพลพย
		0 1 1 2 2 2 3	7788999	994 445 56	0	.7788889999
	***					
	,104				1	
	y e		ee,		*	
4					5	

700 100 865 740 665 1180	0.0 0.0 5.0 5.0 0.0	20	2 0.0 1.0 2.0 3.0 4.0 5.5 6.5 7.0		2.7	70	Por S	21	.3	= 48 g	I	NP	'UT	D	ATA	<b>a</b>	7	\$ 500 \$ 500 \$		, c					3/
765 590 670 610 -340 -555 465	3.0 5.0 0.0 0.0 0.0	ari 191 j.	9.5 10.0 10.5 11.0 11.5 12.0 13.0			ű,	* * * * * * * * * * * * * * * * * * *	221 - 21 245 - 24		a a		one or		0) ;	8						A ME			a me	e <b>2</b>
27( 335 5 375 34(	0.0 0.0 0.0 5.0 5.0 5.0		15.5 16.5 17.5 18.5 19.5 20.5 21.0 21.5	8							* 040 g			. Pana 3										- 14 (*) - 14 (*) - 14 (*)	
-6( 815 -35 23( 165 -25( 5( 42(	0.0 5.0 5.0 0.0 5.0 0.0 0.0		22.5 23.5 24.5 25.5 26.5 27.0 28.0 29.0		8			у. Н					X							.T.					
700 1055 800 615 1040 765 875	5.0 0.0 5.0 0.0 5.0		29.5 91.0 32.5 94.5 95.5 95.5				X X					5. 			-16										
220 195 465 465 240 360 285	0.0 5.0		38.0 39.5 39.5 40.0 40.5 41.0 42.0								- 18					i i			6,		* 1			· · · · · · · · · · · · · · · · · · ·	
7( 188( -20( -95 -75(	5.0 0.0 0.0 0.0 .0		48.0 48.5 45.0 45.5 46.5 47.0 47.5 48.0		8			39.1	2		8					er E		8 8 8 8			e men	&			
89( 05	0 . 0 0 . 0 5 0 .		48.5 49.5 D C 1 :							8									200	8 (c.#)	80 K	9	18.818. E	* (* * * * * * * * * * * * * * * * * *	324

ANALYSIS

DF

# ACCELEROMETER DATA

# TEST NO. 4 SPEED 64.5 MPH ACCELEROMETER NO. 1

## LEFT SIDE

TIME (MSEC)	ACCELERATION VELOCITY DCCUPANT CHANGE DISPLACEMENT (FPS) (IN)
.0 1.5 2.0 3.5 4.0 5.0 7.0 7.5	1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
8.0 8.5 9.5 11.0 11.5 12.5 13.5	-7.1 -5.7 21.2 -4.7 4.8 4.7 2.0 2.0 2.2 7.9
14.5 15.5 16.5 17.5 18.0 19.5 20.0 21.0	-9.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22.0 28.0 24.0 24.5 25.5 26.0 29.0 29.5 80.5	2.6 2.2 .4 -0.9 2.2 .5 -5.5 2.1 .5 -1.1 2.1 2.1 .5 -1.2 2.1 .6 -1.2 2.0 .7
33.0 34.5 95.0	4.1 4 2.0 2.1 2.1 2.7

98.5 94.0 95.6 95.5 95.5	84.0 85.5 86.5 87.5 88.0 90.0 91.0	76.0 77.5 79.0 80.0 81.5	70.8 71.0 71.5 72.5 79.5 74.8 75.6	63.0 63.5 65.0 65.5 66.5 68.6 69.6	55.8 56.5 57.0 58.8 59.8 60.8 61.0 62.8	49.5 50.5 51.0 51.5 52.5 59.5 54.0	43.0 44.5 45.0 46.0 46.5 47.5	88.0 89.5 40.5 41.5 42.5
) ) ;		) ; ) )						5 5 5
	7				and the second	. 1		10.90
1.6	7.6 -2.8 -2.8 -2.8 -2.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1	1.7.7.7.5.6	2. -1.3 -3.0 -3.0	1.0 2.3 9 -1.6 -1.8 -3.8	-2.3 -2.3 -2.1	-2.6 -1.6 -3.4 -1.5	4.6 4.6 2.4	4.7 1.6 3.1 -1.6
1 1 4 7 2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 3 5	1 3 5 7 7	0 5 6 6 8 2 2	5 5 1 1	2,	1 2 5 5 6 7	e 7 5 1 5
		· · · · · · · · · · · · · · · · · · ·				***************************************		-
168880			38888888	200000000000000000000000000000000000000				282888
. 6 . 6 . 6 . 6 . 6	.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.7.7.6	55556677	555555555	55554444	.7 .6 .6 .5 .5	.5	004555 
( W					ا در از	1.43.E		, we see
lening II							,	
	พยนยนยนยนยนยนยน	NEW MEN	1.					3
55 55 60 6	6 0 0 0 0 4 4 5	001112	300000000	6 5 6 7 7 7 8	4 4 4 5 5 5	- 24 - 44 - 44 - 44 - 44 - 44 - 44 - 44	0	300000
							721 .7 74 22.273	
				v. <b>v</b>	**************************************			2/
				***				6

1	46 4	60		â	. 560		64.5							197				•
	0.0 235.0 -65.0 2710.0 2620.0		0.0 1.5 2.0 3.5 4.0						IN	IPUT	DAT	-A				1	-3 3	
	-520.0 2205.0 -1185.0	-3 10	5.0 6.0 7.0						3	*			36 00 00M				i a	
	-100.0 -910.0 -795.0 2715.0 -605.0 610.0	2 (2 2 3	7.5 8.0 9.5 11.0 11.5 12.0													No.		
	415.0 1010.0 -1270.0 -70.0 60.0 -240.0 965.0		12.5 18.5 14.5 15.5 16.5 17.5				V		a i		7			Track				
	820.0 480.0 -800.0 385.0 -500.0 -700.0 415.0 -140.0	9	19.5 20.0 21.0 22.0 28.0 24.5 25.0								* )	a so	4.					
1 (2)	580.0 -655.0 150.0 -250.0 525.0 -50.0 350.0	e e	27.0 29.0 30.5 32.5 33.0 34.5 35.0															
	405.0 -25.0 605.0 200.0 400.0 -210.0 -260.0		36.5 38.5 39.5 40.5 41.5 42.5 43.0			× **	at	9 441										
	20.0 595.0 5.0 805.0 0.0 855.0 -860.0		44.5 45.0 46.0 46.5 47.5 48.5 49.5 50.5										1) E		JAN 19		w. 21	
	-440.0 10.0 -195.0 15.0 190.7		51.0 51.5 52.5 58.5 4.0							¥.			9/				<del>naza</del> e	

.

a 100 () . ()	16.57
(E: () . ()	127.0
···60.0	180.0
-105.0	130.5
80.0	181.5
-105.0	132.0
0.0	193.0
-95.0	184.0
85.0	184 . 5
-90.0	194.5 195.5
25.0	187.5
-150.0 115.0	141.5
115.0	146.5
-35.0	
60.0	149.5
	150.0

### ANALYSIS.

OF

### ACCELEROMETER DATA

TEST NO. 4 SPEED 64.5 MPH ACCELEROMETER NO. 2

RIGHT SIDE

TIME	ACCELERATION	VELOCITY	DISCUPANT
(MSEC)	(G)	(FPS)	DISPLACEMENT (IN)
.0550 1.50 2.50 2.50 3.05 4.55 5.55	.0 .9 7.4 1.3 26.1 2.8 9 22.4 -15.7	.0 .0 .1 .2 .4 .7 .9 1.0	.0
7.0 8.5 9.5 11.0 12.5 13.0 14.0	-9.8 15.4 -8.9 7.2 -7.1 2.0 -4.4	 1.0 .9 1.1 1.1 1.1 1.0	
15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5	4.4 -7.4 8.0 -2.5 8.8 -7.1 5.1	1.0 .9 .9 1.0 1.0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
23.5 25.0 26.0 27.0 28.0 29.0 30.0 81.0 82.0 83.0 84.0	2.225223203030 -64.503030303 -15037355	.9.27.887.77.77.88	
84.5	-4.5	. 8	.3 .3

123

190000

.

50 1 . D	1 29
	ė. Š
40.0	. 4
40.5	-a.8
41.0	4.1
	- & . ê
	- AD - 15
48.0	2.2
44.5	6
45.0	3.4
+ O . O	⇒ . • <u>†</u>
46.0	-1.0
47.0	3.2
	-ā . Ē
48.5	
49.5	-1.2
50.0	-8.9
51.5	. 8
58.5	-8.6
58.5	1.6
	-1.8
55.0	
56. U	5.3
56.5	- 1 . O
	77 73
57.0	8.2
58.0	1.2
58.5	-5.6
E (3 E	0 0
59.5	य . य
60.0	-5.2
60.5	-1.7
	q.
61.5	
62.0	9.2
62.5	-a.4
68.0	6.8
	Ο. α.
64.0	-7.7
65.0	æ.O
65.5	-1.9
66.0	. 1
66.5	-3.O
67.5	8.0
60.0	
69 . O	-3.7
69.5	8 -3 .5
20.0	-3 %
70 E	
70.5	A
72.0	. 1
7a.5	2 7
73.0	1
78.5	-2.4
75.0	2.9
77.0	÷3.1
7 . 0	9.1
77.5	4.0
78.5	-8.9
79.5	. 8
	-1.8
81.0	3.1
88.5	-2.5
	0 0
84.D	2.6
84.5	1 . Ö
86.0	. 9
	* ***
86.5	-a.5
88.0	1
88.5	4.0
90.0	8
91.5	. 5
92.5	-1.4
98.0	. 9
94.0	. O
95.5	1 . 2
96.5	· 4·
()	4

124---

.8 1.0 1.0 1.0 1.0				.4
1.0 1.0 1.1 1.1 1.1				.4 .5 .5
.9 .99 .99				.5 .5 .5
.9 .9 .9	** 1			. <b>ნ</b> . ნ . ნ
1.0				. છ . છ . છ . છ
. 9	¥.		Ť.	. 6 . 6 . 6
. 9 . 9 . 8				.6
.8				.7.7.7.7.7.7.7.7.7
.7 .6 .6		* S*54.7		.7
. 6 6 6			3	.7.7.7
. © . Ö		4		8. 8.
.5 .5 .5				
.5 .5 .5				
.4 .5 .5 .5 .5				8 9 9
.5 .5 .6		W.		.9 .9 .9 .9
. 6				. 9 a

INPUT DATA

4.	60 2	2.77	0	64.5
	0.0		U	01.0
C	. 5			
1.5				
2.0				
2.5				
3.0				
a.5				
4.0				
5.5 6.5				
7.0				
é.5				
9.5				2
11.0				
12.5				
13.0				
14.0				
14.5				
15.5				
16.5				
17.5				
18.5			1.00	
19.5				
20.5				
21.5	.t.			
22.5				
23.5 25.0				
25.0			*	
27.0	*		18.	
28.0			10 14	
29,0				
80.0				
81.0			* 794	
a2.0				
33.0				
94.0				
34.5		4	* 1	
86.0				
37.0				
97.5				
40.0			4	
40.5				F-1
42.0				
43.0				
44.5				
45.0				
46.0				
47.0				
48.5				
49.5				
50.0				
51.5				
52.5				
53.5				
55.0				
56.D				
56.5				

.10 .'15.0 -240.0 -50.0 1280.0 -1170.0 855.0	50.5 60.5 62.0 62.5 63.0
-1060.0	64.0
275.0	65.0
-270.0	65.5
15.0	66.0
-415.0	66.5
415.0 -510.0 -110.0 -490.0 -55.0 20.0	67.5 69.0 69.5 70.0 70.5 72.0 72.5
-880.0 10.0 -880.0 405.0 -480.0	78.0 78.5 75.0 77.0
555.0	77.5
-545.0	78.5
40.0	79.5
-250.0	80.5
480.0	81.0
-845.0	82.5
355.0	84.0
-225.0	84.5
120.0	86.0
-345.0	86.5
-15.0	88.0
560.0	88.5
-110.0	90.0
-70.0	91.5
-200.0	92.5
180.0	98.0
5.0	94.0
170.0 -55.0 255.0 15.0 25.0 -125.0 165.0	95.5 96.5 98.5 100.5 101.0 102.5
65.0	108.5
170.0	104.0
-180.0	105.5
20.0	106.0
-190.0	106.5
-90.0	109.0
-180.0	109.5
-50.0	110.0
-115.0	111.0
-10.0	112.5
-200.0	118.0
-15.0 -190.0 -45.0 15.0	118.0 114.0 114.5 115.0 118.0

(*)

and the second second

. F.

110 10 10 11				
⊗() . O	126.0			
-820.0	126.5			
150.0	127.5			
-805.0	1.000 (6)			
220.0	129.5			
-260.0	180.5			
25.0	131.0			
-180.0	182.0			
100.0	132.5			
-870.0	199.5			
15.0	134.0			
-860.0	185.0			
70.0	136.0	*:		
-275.0	187.0			
105.0	188.0			
-100.0	188.5			
-155.0	141.5			
15.0	142.5			
85.0	146.0			
-160.0	147.0			
25.0	147.5			
0.0	150.0			
			16	
			19.	

: