UDOT DESIGN MANUAL PHASE I

UDOT STANDARD CONCRETE BARRIER CALCULATIONS AND DOCUMENTATION

November 2011

Prepared for:

Utah Department of Transportation

Structures Department
Salt Lake City, UT

UDOT Bridge Design Manual - Phase I
Concrete Barrier Calculations and Documentation
November 2011
Alan Yates

Table of Contents
Subject
Page \#1
Clear Zone Definition
1
Bridge Column Protection
1-2
Documentation of Barrier Sections
3-6
Areas and Weights
7-12
7-12
Retaining Barrier Calculations
Retaining Barrier Calculations
13-19
13-19
Small Sign Embedment 20-21
Reference Documentation 22-61

Clear Zone Definition

AASHTO Roadside Design Guide Chapter 3

- The maximum value will be used (Tables 3.1 and 3.2). Drawings notes will read "maximum required AASHTO clear zone."
- The original BA standards used 1.2 times the minimum clear zone. The maximum clear zone is roughly equivalent. This was prescribed by Glenn Schulte (UDOT Traffic and Safety).

Bridge Column Protection

AASHTO LRFD 2.3.2.2.1

- Provide the AASHTO Clear Zone, if possible.
- When impractical, the columns should be protected by barrier. The barrier should be "independently supported with its roadway face at least 2.0 ft . from the face of pier or abutment, unless a rigid barrier is provided."

AASHTO LRFD 3.6.5.1

- Column protection will be provided to eliminate the Vehicular Collision Force (CT).
- There are three options:
o An embankment
o A structurally independent, 54-inch barrier that meets TL-5. Use when barrier is located within 10.0 ft from the column.
o A structurally independent, 42-inch barrier that meets TL-5. Use when barrier is located more than 10.0 ft from the column.

UDOT Requirement (will be in UDOT Design Manual)

- Design column for the 400 kip load (AASHTO LRFD 3.6.5.1) if face of barrier is 4 ft or less from the face of column.

Documentation of Barrier Sections

Barrier Shapes

- The following shapes and approved test levels are provided in the AASHTO Roadside Design Guide (Section 5.4.1 and 6.4.1):
o New Jersey 32" - TL-4
o Single Slope $42^{\prime \prime}$ - TL-5
- "These shapes when adequately designed and reinforced may all be considered TL-4 designs at the standard height of 32 inches and TL-5 designs at the heights 42 inches and higher" (AASHTO Roadside Design Guide 6.4.1).

Precast 32" NJ Shape (Full or Half)

- This barrier is similar to Idaho Transportation Department's standards
- It has been accepted as a TL-3 barrier (FHWA Acceptance Letter B-70)

Cast-In-Place 32" NJ Shape to the 42" Constant Slope Transition

- This section was developed with reference to the I-15; Utah Co Line to 10600 S Project (2004)

Cast-In-Place 42" Constant Slope

- This section is similar to the Caltrans Type 60 and extruded to a height of 42 "
- The Type 60 has been accepted as TL-3 (FHWA Acceptance Letter B-45)

Precast 42" Single Slope

- This design is based on the Ohio DOT 50" portable concrete barrier.
- The pin and loop connection has been accepted by FHWA as a TL-3 system.
- FHWA approval was obtained for this system by Glenn Schulte.

Cast-In-Place 42" Constant Slope Half Barrier

- This barrier is similar to the Caltrans Type 60D and the Ohio DOT's Single Slope Barrier, Type D
- The barrier was used on the I-15 Design Build (in SLC) Project (1998)
- The Type 60 is accepted as TL-3 (FHWA Acceptance Letter B-45)

Precast 42" Constant Slope Half Barrier

- The precast version of this section was created with reference to the UDOT CIP version and the precast 32 " NJ Half Barrier.

Cast-In-Place 54" Constant Slope

- This section was developed with reference to the Caltrans Type 60G
- The barrier was used on the I-15 Design Build (in SLC) Project (1998)
- The Type 60G has been accepted as TL-3 (FHWA Acceptance Letter B-45)

Test Level 5 Constant Slope (42" and 54")

- The MwRSF Research Report No. TRP-03-194-07 documents the TL-5 crash testing of a similar shape. An equivalent amount of longitudinal reinforcement was used ($7.35 \mathrm{lb} / \mathrm{ft}$ was used in the barrier of the report).
- The 54 " shape was extrapolated using a similar structural capacity.

Precast or Cast-In-Place Median Small Sign Barrier

- These sections were developed with reference to the I-15; Utah Co Line to 10600 S Project (2004)

Cast-In-Place Median Sign or Lighting Structure Transition (42" and 54")

- These sections were developed with reference to the $114^{\text {th }}$ South (2009) and I-15 CORE (2010) Projects

Cast-In-Place Stepped Median Barrier (42" and 54")

- These details were developed with reference to:
o Caltrans Type 60C, Type 60GC, and Type 60SC
o Kansas DOT Type III (F-Shape)
o Ohio DOT Type C and Type C1
\qquad
\qquad 3
\qquad
\qquad Date \qquad

ATLEAS AND WVENCOHTS

3Z"NJ
Standard Shape:

$$
\begin{aligned}
& A_{1}=\left(\frac{10+6}{2}\right)(19)=152 \mathrm{in}^{2} \\
& A_{2}=\frac{(10+24)}{2}(10)=170 \mathrm{in}^{2} \\
& A_{3}=3(24)=72 \mathrm{in}^{2} \\
& A_{4}=-\frac{1}{2}(12)(z)=-12 \mathrm{in}^{2} \\
& \sum A=382 \text { in }^{2}=2.65 \mathrm{ft}^{2} \\
& \omega=0.150(\Sigma A)=0.398 \mathrm{k} / \mathrm{ft} \\
& L=20^{\circ} \\
& W=7.96 \mathrm{~K} \\
& \text { Scuppers }:(0.15)\left(24 \times 24 \times 2-24 \times \frac{1}{2}(12) \times 2\right) / 12^{3} \\
& =0.15 \mathrm{k} \\
& \begin{aligned}
\text { lockouts: } & 0.15(4)\left[4,125 \times 1.375 \times 7,5+7 \times 5.5 \times 3.5 x^{5} 5\right) \\
= & 0.04 \mathrm{k}
\end{aligned} \\
& W=7.96-0.15-0.041=7.77 k \\
& =3,9 \text { Tons }
\end{aligned}
$$

Sloped End Section:

$$
\begin{aligned}
A_{E N D} & =4(24) / 1 z^{2}=0 . c 7 f+2 \\
W & =0.15 A_{E N D}=0.1 \mathrm{k} / f+ \\
W & =0.398(1)+\frac{0.398+0.1}{2}(19)=5.13 \mathrm{k} \\
& =2.6 \text { TOnS }
\end{aligned}
$$

Small Sian Section:

$$
\begin{aligned}
& A_{M I D L E}=2.65+\frac{10(32)}{1 z^{2}}=4.87 \mathrm{ft}^{2} \\
& \begin{aligned}
W & =0.15 A_{\text {MIDDLE }}=0.73 \mathrm{ft} \\
W & =0.73(3.33)+2\left(\frac{0.398+0.73}{2}\right)(8.33) \\
& =11.83 \mathrm{k} \\
& =5.9 \mathrm{TMS}
\end{aligned}
\end{aligned}
$$

\qquad 4 of \qquad Drawing No. \qquad
Computed by \qquad $A F y$ Checked By \qquad Date \qquad AREAS AND WEIGHTS CONT.

$$
\begin{aligned}
& A_{1}=\left(\frac{6+8}{2}\right)(19)=133 \mathrm{in}^{2} \\
& A_{2}=\left(\frac{8+15}{2}\right)(10)=115 \mathrm{in}^{2} \\
& A_{3}=3(15)=45 \mathrm{in}^{2} \\
& \sum A=293 \mathrm{in}^{2}=2.03 \mathrm{ft}^{2} \\
& W=0.15 \mathrm{\sum A}=0.305 \mathrm{th}+ \\
& W_{20}=6.101=3.0 \text { Tons } \\
& W_{12.5}=3.81 K=1.9 \text { Tons }
\end{aligned}
$$

\qquad
\qquad of \qquad
\qquad Drawing No. \qquad
\qquad Date \qquad

AREAS AND WEIGHTS CONT.
42 "Constant SLOPE (PIZELAST)
standard section:

$$
\begin{aligned}
& A=\frac{(8+24)}{2}(42)=6>2 \mathrm{in}^{2} \\
&
\end{aligned}=4.67 \mathrm{ft}^{2} .
$$

Sloped End Section:

$$
\begin{aligned}
& A_{\text {END }}=4(24) / 12^{2}=0.67 \mathrm{f}^{2} \\
& \begin{aligned}
& W=0.15 A_{\text {END }}=0.100 \mathrm{Klf} \\
& W=0.700(1\rangle+\frac{0.700+0.100}{2}\langle 19\rangle=8.3 \mathrm{~K} \\
&=4.2 \text { Tons }
\end{aligned}
\end{aligned}
$$

Median Small Sian Section:

$$
\begin{aligned}
& A_{\text {MIDDLE }}=4.67+\frac{8(42)}{12^{2}}=7.00 \mathrm{ffz} \\
& \begin{aligned}
w=0.15 \mathrm{~A}_{\text {MIDDLE }} & 1.050 \mathrm{H}
\end{aligned} \\
& \begin{aligned}
W=1.5(1.05)+2\left(\frac{1.050+0.700}{2}\right) & 6.67=13.2412 \\
& =6.6 \text { Tor }
\end{aligned}
\end{aligned}
$$

32"NJ To $4 z^{\prime \prime}$ CS Transition:

$$
\begin{aligned}
W=\left(\frac{0.398+0.700}{2}\right) 9.833 & =6.6 \text { Tors } \\
& =5.40 \mathrm{~K} \\
& =2.7 \text { Tons }
\end{aligned}
$$

\qquad
\qquad
Drawing No. \qquad
Computed by \qquad Checked By \qquad Date \qquad AREAS AND WEIGHTS cONT
42" LONSTANT SLOPE HIALE BARRIER (DRECAST)

$$
\begin{aligned}
& A=\left(\frac{6+14}{2}\right) 4 z=420 \mathrm{in}^{2}=2.92 \mathrm{ft}^{2} \\
& \begin{aligned}
W=0.15 A & =0.438 \mathrm{k} / \mathrm{ft} \\
W=14.833(0.438) & =6.49 \mathrm{k} \\
& =3.2 \text { Tons }
\end{aligned}
\end{aligned}
$$

S．O．No
Subject

Retaining Barrier Calculations－32＂NJ Barrier
Assume pins provide sliding resistance．Assume pins do not provide any restoring moment resistance．

Load Definitions and Material Assumptions Barrier				
Concrete Density，	$\gamma_{\text {conc }}=$	0.150	kcf	
Area，	$\mathrm{A}=$	2.653	ft^{2}	
Weight，	$\mathrm{P}=$	0.398	$\mathrm{k} / \mathrm{ft}=\gamma_{\text {conc }} \mathrm{A}$	
Width，	w＝	24.0	in	
Soil－2：1 Backslope with No Live Load Surcharge				
Soil Unit Weight，	$\nu_{\text {soil }}=$	0.120	kcf	
Effective Angle of Internal Friction，	$\phi_{f}^{\prime}=$	30	。	
Angle of BF of Wall to the Horizontal，	$\theta=$	74	－	
Angle of Fill to the Horizontal，	$\beta=$	26.6	－	
Friction Angle of Dissimilar Materials，	$\delta=$	24.0	－	
	「＝	1.569		AASHTO LRFD EQTN 3．11．5．3－2
Coefficient of Active Lateral Earth Pressure，	$\mathrm{k}_{\mathrm{a}-2: 1}=$	0.848		AASHTO LRFD EQTN 3．11．5．3－1
Soil－Level with Live Load Surcharge				
Equivalent Height of Soil for Vehicular Loading，	$\mathrm{h}_{\text {eq }}=$	2.000	ft	AASHTO LRFD Table 3．11．6．4－1
Effective Angle of Internal Friction，	$\phi_{f}^{\prime}=$	30	。	
Angle of BF of Wall to the Horizontal，	$\theta=$	74	。	
Angle of Fill to the Horizontal，	$\beta=$	0	。	
Friction Angle of Dissimilar Materials，	$\delta=$	24	－	
	「＝	3.032		AASHTO LRFD EQTN 3．11．5．3－2
Coefficient of Active Lateral Earth Pressure，	$\mathrm{k}_{\mathrm{a}-\mathrm{LS}}=$	0.439		AASHTO LRFD EQTN 3．11．5．3－1
Load Factors				
Barrier Self／Weight，	DC＝	0.90		
Soil Active Lateral Force，	$\mathrm{EH}=$	1.50	（max）	
		0.90	（min）	
Live Load Surcharge，	LS＝	1.75		

S.O. No
Subject

S.O. No. Subject:	123248					
	UDOT C	Barrier Stand	Sheet \#	8	of	61
Computed by	AFY	Checked by	Date		10/	

Baker

Permissible Soil Heights

2:1 Backslope with No Live Load Surcharge
Retained Soil Height,
Retained Soil Force,

Retained Soil Moment,

Soil Above Barrier Width,
Soil Above Barrier Force (Vertical),
Soil Above Barrier Moment,

Factored Overturning Moment,
Resultant of Vertical Forces,
Eccentricity of Resultant,
Maximum Eccentricity,

Level Backslope with Live Load Surcharge
Retained Soil Height,
Retained Soil Force,

Retained Soil Moment,

Soil Above Barrier Width,
Soil Above Barrier Force (Vertical),
Soil Above Barrier Moment,

Live Load Surcharge Equivalent Soil Height,
Soil Force,
Overturning Moment,

Factored Overturning Moment,
Resultant of Vertical Forces,
Eccentricity of Resultant,
Maximum Eccentricity,

$\mathrm{H}=$	29.087	in
$\mathrm{F}_{\text {soil1 }}=$	0.267	$\mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \gamma_{\text {soil }} \mathrm{k}_{\text {a-2:1 }} \mathrm{H}^{2}$
$\mathrm{F}_{\text {soil2 }}=$	0.134	$\mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \gamma_{\text {snil }} \mathrm{k}_{\text {a- }-1.1} \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=$	2.591	k -in/ft $=\mathrm{F}_{\text {soil1 }} \mathrm{H} / 3$
$\mathrm{M}_{\text {soil2 }}=$	-1.606	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil }} \mathrm{w} / 2$
$\mathrm{b}=$	8.341	in $=\tan (90-\theta) \mathrm{H}$
$\mathrm{F}_{\text {soil3 }}=$	0.101	$\mathrm{k} / \mathrm{ft}=-0.5 \gamma_{\text {soil }} \mathrm{Hb}$
$\mathrm{M}_{\text {soil3 }}=$	-0.932	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w} / 2-\mathrm{b} / 3)$
$\mathrm{M}_{\text {overturn }}=$	1.603	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}$
$\mathrm{R}=$	0.267	$\mathrm{k} / \mathrm{ft}=\mathrm{DC}{ }^{*} \mathrm{P}+E H^{*} \mathrm{~F}_{\text {soil3 }}$
e $=$	6.000	in $=M_{\text {overturn }} / R$
w/4 =	6.000	in OK
$\mathrm{H}=$	13.839	in
$\mathrm{F}_{\text {soil1 }}=$	0.035	$\mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \gamma_{\text {soil }} \mathrm{k}_{\text {a-Ls }} \mathrm{H}^{2}$
$\mathrm{F}_{\text {soil2 }}=$	0.000	$\mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \gamma_{\text {soil }} k_{\text {a-Ls }} \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=$	0.162	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil1 }} \mathrm{H} / 3$
$\mathrm{M}_{\text {soil2 }}=$	0.000	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil }} \mathrm{W} / 2$
$\mathrm{b}=$	3.968	in $=\tan (90-\theta) \mathrm{H}$
$\mathrm{F}_{\text {soil3 }}=$	0.023	$\mathrm{k} / \mathrm{ft}=-0.5 \gamma_{\text {soil }} \mathrm{Hb}$
$\mathrm{M}_{\text {soil3 }}=$	-0.244	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w} / 2-\mathrm{b} / 3)$
$\mathrm{h}_{\text {eq }}=$	24.000	in
$\mathrm{F}_{\mathrm{LS}}=$	0.121	$\mathrm{k} / \mathrm{ft}=\gamma_{\text {soil }} \mathrm{k}_{\mathrm{a}-\mathrm{LS}} \mathrm{h}_{\text {eq }} \mathrm{H}$
$M_{\text {LS }}=$	0.840	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\mathrm{LS}} \mathrm{H} / 2$
$\mathrm{M}_{\text {overturn }}=$	1.493	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}+\mathrm{LS}{ }^{*} \mathrm{M}_{\text {LS }}$
$\mathrm{R}=$	0.249	$\mathrm{k} / \mathrm{ft}=\mathrm{DC}{ }^{*} \mathrm{P}+E H^{*} \mathrm{~F}_{\text {soil3 }}$
$\mathrm{e}=$	6.000	in $=M_{\text {overturn }} / R$
w/4 =	6.000	in OK

AASHTO LRFD 11.6.3.3
$F_{\text {soil1 }}=0.035 \mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \nu_{\text {soil }} \mathrm{K}_{\text {a-Ls }} \mathrm{H}^{2}$
$F_{\text {soil2 }}=0.000 \mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \nu_{\text {soil }} k_{\text {a-Ls }} H^{2}$
$\mathrm{M}_{\text {soil1 }}=0.162 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil1 }} \mathrm{H} / 3$
$M_{\text {soil2 }}=0.000 \quad \mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil2 }} \mathrm{w} / 2$
$\begin{aligned} \mathrm{b} & =3.968 \quad \mathrm{in}=\tan (90-\theta) \mathrm{H} \\ & =0.023 \quad \mathrm{k} / \mathrm{ft}=-0.5\end{aligned}$
$M_{\text {soil3 }}=-0.244 \quad \mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w} / 2-\mathrm{b} / 3)$
$h_{\text {eq }}=24.000$ in
$F_{\text {LS }}=0.121 \mathrm{k} / \mathrm{ft}=\gamma_{\text {soil }} k_{\mathrm{a}-\mathrm{LS}} \mathrm{h}_{\text {eq }} \mathrm{H}$
$M_{\mathrm{LS}}=0.840 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\mathrm{LS}} \mathrm{H} / 2$
$\mathrm{M}_{\text {overturn }}=1.493 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}+\mathrm{LS} \mathrm{M}_{\mathrm{LS}}$
$R=0.249 \mathrm{k} / \mathrm{ft}=\mathrm{DC}^{*} \mathrm{P}+\mathrm{EH}^{*} \mathrm{~F}_{\text {soil }}$
$w / 4=6.000$ in OK
AASHTO LRFD 11.6.3.3

S．O．No
Subject

S．O．No． Subject：	123248					
	UDOT	Barrier Stand	Sheet \＃	9	of	61
Computed by	AFY	Checked by	Date		10／11	

Retaining Barrier Calculations－42＂Constant Slope Barrier
Assume pins provide sliding resistance．Assume pins do not provide any restoring moment resistance．

Load Definitions and Material Assumptions Barrier				
Concrete Density，	$\gamma_{\text {conc }}=$	0.150	kcf	
Area，	$\mathrm{A}=$	4.667	ft^{2}	
Weight，	$\mathrm{P}=$	0.700	$\mathrm{k} / \mathrm{ft}=\gamma_{\text {conc }} \mathrm{A}$	
Width，	w＝	24.0	in	
Soil－2：1 Backslope with No Live Load Surcharge				
Soil Unit Weight，	$\chi_{\text {soil }}=$	0.120	kcf	
Effective Angle of Internal Friction，	$\phi_{f}^{\prime}=$	30	－	
Angle of BF of Wall to the Horizontal，	$\theta=$	79	。	
Angle of Fill to the Horizontal，	$\beta=$	26.6	。	
Friction Angle of Dissimilar Materials，	$\delta=$	24.0	。	
	$\Gamma=$	1.554		AASHTO LRFD EQTN 3．11．5．3－2
Coefficient of Active Lateral Earth Pressure，	$\mathrm{k}_{\text {a－2：1 }}=$	0.729		AASHTO LRFD EQTN 3．11．5．3－1
Soil－Level with Live Load Surcharge				
Equivalent Height of Soil for Vehicular Loading，	$\mathrm{h}_{\text {eq }}=$	2.000	ft	AASHTO LRFD Table 3．11．6．4－1
Effective Angle of Internal Friction，	$\phi_{\text {＇}}{ }^{\prime}=$	30	。	
Angle of BF of Wall to the Horizontal，	$\theta=$	79	。	
Angle of Fill to the Horizontal，	$\beta=$	0	。	
Friction Angle of Dissimilar Materials，	$\delta=$	24	。	
	「＝	2.922		AASHTO LRFD EQTN 3．11．5．3－2
Coefficient of Active Lateral Earth Pressure，	$\mathrm{k}_{\mathrm{a}-\mathrm{Ls}}=$	0.388		AASHTO LRFD EQTN 3．11．5．3－1
Load Factors				
Barrier Self／Weight，	DC $=$	0.90		
Soil Active Lateral Force，	$\mathrm{EH}=$	1.50	（max）	
		0.90	（min）	
Live Load Surcharge，	LS＝	1.75		

S.O. No
Subject

S.O. No. Subject:	123248					
	UDOT C	Barrier Stand	Sheet \#	10	of	61
Computed by	AFY	Checked by	Date		10/11	

Baker

Permissible Soil Heights

2:1 Backslope with No Live Load Surcharge
Retained Soil Height,
Retained Soil Force,

Retained Soil Moment,

Soil Above Barrier Width,
Soil Above Barrier Force (Vertical),
Soil Above Barrier Moment,

Factored Overturning Moment,
Resultant of Vertical Forces,
Eccentricity of Resultant,
Maximum Eccentricity,

Level Backslope with Live Load Surcharge
Retained Soil Height,
Retained Soil Force,

Retained Soil Moment,

Soil Above Barrier Width,
Soil Above Barrier Force (Vertical),
Soil Above Barrier Moment,
Live Load Surcharge Equivalent Soil Height,
Soil Force,
Overturning Moment,

Factored Overturning Moment,
Resultant of Vertical Forces,
Eccentricity of Resultant,
Maximum Eccentricity,

$\mathrm{H}=$	35.236	in
$\mathrm{F}_{\text {soil }}=$	0.337	$\mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \gamma_{\text {soil }} \mathrm{k}_{\mathrm{a}-2 \cdot 1} \mathrm{H}^{2}$
$\mathrm{F}_{\text {soil2 }}=$	0.169	$\mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \gamma_{\text {snil }} \mathrm{K}_{\text {a- }}$. $1 \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=$	3.960	k -in/ft $=\mathrm{F}_{\text {soil }} \mathrm{H} / 3$
$\mathrm{M}_{\text {soil2 }}=$	-2.026	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil }} \mathrm{W} / 2$
$\mathrm{b}=$	6.849	in $=\tan (90-\theta) \mathrm{H}$
$\mathrm{F}_{\text {soil3 }}=$	0.101	$\mathrm{k} / \mathrm{ft}=-0.5 \mathrm{p}_{\text {soil }} \mathrm{Hb}$
$\mathrm{M}_{\text {soil3 }}=$	-0.977	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w} / 2-\mathrm{b} / 3)$
$\mathrm{M}_{\text {overturn }}=$	3.237	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E \mathrm{E}^{*} \mathrm{M}_{\text {soil }}$
$\mathrm{R}=$	0.540	$\mathrm{k} / \mathrm{ft}=\mathrm{DC} * \mathrm{P}+\mathrm{EH}^{*} \mathrm{~F}_{\text {soil3 }}$
$\mathrm{e}=$	6.000	in $=M_{\text {overturn }} / R$
w/4 =	6.000	in OK
$\mathrm{H}=$	19.722	in
$\mathrm{F}_{\text {soil1 }}=$	0.063	$\mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \mathrm{Y}_{\text {soiil }} \mathrm{k}_{\text {a-Ls }} \mathrm{H}^{2}$
$\mathrm{F}_{\text {soil2 }}=$	0.000	$\mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \nu_{\text {soil }} \mathrm{k}_{\mathrm{a}-\mathrm{s}} \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=$	0.413	$k-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil }} \mathrm{H} / 3$
$\mathrm{M}_{\text {soil2 }}=$	0.000	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil2 }} \mathrm{W} / 2$
$\mathrm{b}=$	3.834	in $=\tan (90-\theta) \mathrm{H}$
$\mathrm{F}_{\text {soil3 }}=$	0.032	$\mathrm{k} / \mathrm{ft}=-0.5 \mathrm{p}_{\text {soil }} \mathrm{Hb}$
$\mathrm{M}_{\text {soil3 }}=$	-0.338	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w} / 2-\mathrm{b} / 3)$
$\mathrm{h}_{\text {eq }}=$	24.000	in
$\mathrm{F}_{\text {LS }}=$	0.153	$\mathrm{k} / \mathrm{ft}=\gamma_{\text {soil }} \mathrm{k}_{\mathrm{a}-\mathrm{ss}} \mathrm{heq}_{\text {eq }} \mathrm{H}^{\text {d }}$
$\mathrm{M}_{\text {LS }}=$	1.508	k -in/ft $=\mathrm{F}_{\text {LS }} \mathrm{H} / 2$
$\mathrm{M}_{\text {overturn }}=$	2.954	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}{ }^{+L S}{ }^{*} \mathrm{M}_{\text {LS }}$
$\mathrm{R}=$	0.492	$\mathrm{k} / \mathrm{ft}=\mathrm{DC}^{*} \mathrm{P}+\mathrm{EH}^{*} \mathrm{~F}_{\text {soil3 }}$
e=	6.000	in $=M_{\text {overturn }} / R$
w/4 =	6.000	in OK

AASHTO LRFD 11.6.3.3
$F_{\text {soil1 }}=0.063 \mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \nu_{\text {soil }} \mathrm{K}_{\text {a-Ls }} \mathrm{H}^{2}$
$F_{\text {soil2 }}=0.000 \mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \nu_{\text {soil }} \mathrm{K}_{\text {a-s }} \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=0.413 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil1 }} \mathrm{H} / 3$
$M_{\text {soil2 }}=0.000 \mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil2 }} \mathrm{W} / 2$
$\begin{aligned} \mathrm{b} & =3.834 \quad \text { in }=\tan (90-\theta) \mathrm{H} \\ & =0.032 \text { k/ft }=-0.5\end{aligned}$
$M_{\text {soil3 }}=-0.338 \mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w} / 2-\mathrm{b} / 3)$
$h_{\text {eq }}=24.000$ in
$F_{\text {LS }}=0.153 \mathrm{k} / \mathrm{ft}=\gamma_{\text {soil }} k_{\text {a-LS }} h_{\text {eq }} H$
$M_{L S}=1.508 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\mathrm{LS}} \mathrm{H} / 2$
$M_{\text {overturn }}=2.954 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}+\mathrm{LS}^{*} \mathrm{M}_{\mathrm{Ls}}$
$R=0.492 \mathrm{k} / \mathrm{ft}=\mathrm{DC}^{*} \mathrm{P}+\mathrm{EH}^{*} \mathrm{~F}_{\text {soil3 }}$
$w / 4=6.000$ in OK
AASHTO LRFD 11.6.3.3

S．O．No
Subject

S．O．No． Subject：	123248					
	UDOT	Barrier Stand	Sheet \＃	11	of	61
Computed by	AFY	Checked by	Date		10／11	

Retaining Barrier Calculations－42＂Constant Slope Half Barrier
Assume pins provide sliding resistance．Assume pins do not provide any restoring moment resistance．

Load Definitions and Material Assumptions Barrier				
Concrete Density，	$\gamma_{\text {conc }}=$	0.150	kcf	
Area，	$\mathrm{A}=$	3.354	ft^{2}	
Weight，	$\mathrm{P}=$	0.503	$\mathrm{k} / \mathrm{ft}=\gamma_{\text {conc }} \mathrm{A}$	
Width，	w＝	17.0	in（C．G．is 9.	m toe of traffic face）
Soil－2：1 Backslope with No Live Load Surcharge				
Soil Unit Weight，	$\nu_{\text {soil }}=$	0.120	kcf	
Effective Angle of Internal Friction，	$\phi_{f}^{\prime}=$	30	。	
Angle of BF of Wall to the Horizontal，	$\theta=$	86	－	
Angle of Fill to the Horizontal，	$\beta=$	26.6	。	
Friction Angle of Dissimilar Materials，	$\delta=$	24.0	－	
	「＝	1.544		AASHTO LRFD EQTN 3．11．5．3－2
Coefficient of Active Lateral Earth Pressure，	$\mathrm{k}_{\text {a－2：}}=$	0.595		AASHTO LRFD EQTN 3．11．5．3－1
Soil－Level with Live Load Surcharge				
Equivalent Height of Soil for Vehicular Loading，	$\mathrm{h}_{\text {eq }}=$	2.000	ft	AASHTO LRFD Table 3．11．6．4－1
Effective Angle of Internal Friction，	$\phi_{f}^{\prime}=$	30	。	
Angle of BF of Wall to the Horizontal，	$\theta=$	86	。	
Angle of Fill to the Horizontal，	$\beta=$	0	－	
Friction Angle of Dissimilar Materials，	$\delta=$	24	－	
	「＝	2.815		AASHTO LRFD EQTN 3．11．5．3－2
Coefficient of Active Lateral Earth Pressure，	$\mathrm{k}_{\text {a－Ls }}=$	0.327		AASHTO LRFD EQTN 3．11．5．3－1
Load Factors				
Barrier Self／Weight，	DC＝	0.90		
Soil Active Lateral Force，	$\mathrm{EH}=$	1.50	$\begin{aligned} & (\max) \\ & (\min) \end{aligned}$	
		0.90		
Live Load Surcharge，	LS＝	1.75		

S.O. No
Subject

S.O. No. Subject:	123248					
	UDOT C	Barrier Stand	Sheet \#	12	of	61
Computed by	AFY	Checked by	Date		10/11	

Baker

Permissible Soil Heights

2:1 Backslope with No Live Load Surcharge

Retained Soil Height,
Retained Soil Force,

Retained Soil Moment,

Soil Above Barrier Width,
Soil Above Barrier Force (Vertical),
Soil Above Barrier Moment,

Factored Overturning Moment,
Resultant of Vertical Forces,
Eccentricity of Resultant,
Maximum Eccentricity,

Level Backslope with Live Load Surcharge
Retained Soil Height,
Retained Soil Force,

Retained Soil Moment,

Soil Above Barrier Width,
Soil Above Barrier Force (Vertical),
Soil Above Barrier Moment,

Live Load Surcharge Equivalent Soil Height,
Soil Force,
Overturning Moment,
Factored Overturning Moment,
Resultant of Vertical Forces,
Eccentricity of Resultant,
Maximum Eccentricity,

$\mathrm{H}=$	28.953	in
$\mathrm{F}_{\text {soil1 }}=$	0.186	$\mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \gamma_{\text {soii }} \mathrm{k}_{\text {a-2:1 }} \mathrm{H}^{2}$
$\mathrm{F}_{\text {soil2 }}=$	0.093	$\mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \gamma_{\text {soi }} \mathrm{K}_{\text {a- }) \cdot 1} \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=$	1.795	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil } 1} \mathrm{H} / 3$
$\mathrm{M}_{\text {soil2 }}=$	-0.792	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil }} \mathrm{W} / 2$
$b=$	2.025	in $=\tan (90-\theta) \mathrm{H}$
$\mathrm{F}_{\text {soil3 }}=$	0.024	$\mathrm{k} / \mathrm{ft}=-0.5 \gamma_{\text {soil }} \mathrm{Hb}$
$\mathrm{M}_{\text {soil3 }}=$	-0.165	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil }}(\mathrm{w}-9.55-\mathrm{b} / 3)$
$\mathrm{M}_{\text {overturn }}=$	1.831	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}$
$\mathrm{R}=$	0.431	$\mathrm{k} / \mathrm{ft}=\mathrm{DC} * \mathrm{P}+E H^{*} \mathrm{~F}_{\text {soil3 }}$
e =	4.250	in $=M_{\text {overturn }} / \mathrm{R}$
w/4 =	4.250	in OK
$\mathrm{H}=$	15.314	in
$\mathrm{F}_{\text {soil1 }}=$	0.032	$\mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \gamma_{\text {soii }} \mathrm{k}_{\text {a-Ls }} \mathrm{H}^{2}$
$\mathrm{F}_{\text {soil2 }}=$	0.000	$\mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \nu_{\text {soil }} \mathrm{k}_{\text {a-Ls }} \mathrm{H}^{2}$
$\mathrm{M}_{\text {soil1 }}=$	0.163	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil } 1} \mathrm{H} / 3$
$\mathrm{M}_{\text {soil2 }}=$	0.000	$k-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil }} \mathrm{W} / 2$
$\mathrm{b}=$	1.071	in $=\tan (90-\theta) \mathrm{H}$
$\mathrm{F}_{\text {soil3 }}=$	0.007	$\mathrm{k} / \mathrm{ft}=-0.5 \gamma_{\text {soil }} \mathrm{Hb}$
$\mathrm{M}_{\text {soil3 }}=$	-0.048	$\mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w}-9.55-\mathrm{b} / 3)$
$\mathrm{heq}_{\text {eq }}=$	24.000	in
$\mathrm{F}_{\text {LS }}=$	0.100	$\mathrm{k} / \mathrm{ft}=\gamma_{\text {soil }} \mathrm{k}_{\mathrm{a}-\mathrm{LS}} \mathrm{h}_{\text {eq }} \mathrm{H}$
$M_{\text {LS }}=$	0.766	$k-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\mathrm{LS}} \mathrm{H} / 2$
$\mathrm{M}_{\text {overturn }}=$	1.541	k-in/ft $=\Sigma E H^{*} \mathrm{M}_{\text {soil }}+\mathrm{LS} * \mathrm{M}_{\text {Ls }}$
$\mathrm{R}=$	0.363	$\mathrm{k} / \mathrm{ft}=\mathrm{DC}{ }^{*} \mathrm{P}+E H^{*} \mathrm{~F}_{\text {soil3 }}$
e =	4.249	in $=M_{\text {overturn }} / \mathrm{R}$
w/4 =	4.250	in OK

AASHTO LRFD 11.6.3.3
$F_{\text {soil1 }}=0.032 \mathrm{k} / \mathrm{ft}=\cos (\beta) 0.5 \gamma_{\text {soil }} \mathrm{K}_{\text {a-Ls }} \mathrm{H}^{2}$
$F_{\text {soil2 }}=0.000 \mathrm{k} / \mathrm{ft}=\sin (\beta) 0.5 \nu_{\text {soil }} k_{\text {a-Ls }} H^{2}$
$\mathrm{M}_{\text {soil1 }}=0.163 \mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\text {soil1 }} \mathrm{H} / 3$
$M_{\text {soil2 }}=0.000 \quad \mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil2 }} \mathrm{w} / 2$
$\mathrm{b}=1.071$ in $=\tan (90-\theta) \mathrm{H}$
$F_{\text {soil3 }}=0.007 \mathrm{k} / \mathrm{ft}=-0.5 \gamma_{\text {soil }} \mathrm{Hb}$
$M_{\text {soil3 }}=-0.048 \quad \mathrm{k}-\mathrm{in} / \mathrm{ft}=-\mathrm{F}_{\text {soil3 }}(\mathrm{w}-9.55-\mathrm{b} / 3)$
$\mathrm{h}_{\mathrm{eq}}=24.000 \mathrm{in}$
$F_{\text {LS }}=0.100 \mathrm{k} / \mathrm{ft}=\gamma_{\text {soii }} k_{\text {a-LS }} h_{\text {eq }} H$
$M_{\mathrm{LS}}=0.766 \quad \mathrm{k}-\mathrm{in} / \mathrm{ft}=\mathrm{F}_{\mathrm{LS}} \mathrm{H} / 2$
$\mathrm{M}_{\text {overturn }}=1.541 \quad \mathrm{k}-\mathrm{in} / \mathrm{ft}=\Sigma E H^{*} \mathrm{M}_{\text {soil }}+\mathrm{LS}{ }^{*} \mathrm{M}_{\mathrm{LS}}$
$R=0.363 \mathrm{k} / \mathrm{ft}=\mathrm{DC}^{*} \mathrm{P}+\mathrm{EH}^{*} \mathrm{~F}_{\text {soil3 }}$
$w / 4=4.250$ in OK
AASHTO LRFD 11.6.3.3

Impact Analysis

Design Approach

- A linear elastic analysis is not appropriate for roadside barrier due to the dynamic nature of the loading and the inelastic action of the barrier and pavement.
- AASHTO LRFD Bridge Specifications (Section 13) provide suggested load definitions; however, this approach is intended for elements with fixed anchorages such as bridge parapets or moment slabs.
- Yield line analysis is an approximate approach that can be used for an understanding of the behavior of the system (see following calculations). An estimated length of engagement can be determined by balancing the impact work with the work required to yield the section. The limitation of this approach is that it does not take into account the contribution of the foundation.
- The only accepted method of rating barrier for impact loading is to use crash testing according to NCHRP 350. See "Documentation of Barrier Sections" for accepted test level ratings of barrier sections.
\qquad Sheet No. 14 \qquad of \qquad
\qquad Drawing No.
\qquad Checked By \qquad Date \qquad 10/20lll

ESTIMATED LENGTH OF ENGAGEMENT
MEDIAN BARRIER
ANALYSIS METHOD
Use yield line analysis's:

(Note: AASHTO $\angle R F D A B .2$ distributes this, F, for over a length of, \angle_{T}, For ease of calculations negus this distribution)
Work $=$ F $\Delta \leftarrow$ Impact work
or $M \backsim$ Assume all Material Wort is done by
rotation and flexure of barrier
yield Line Work $=\operatorname{\sum n\theta }$
$\theta=\tan ^{-1}\left(\frac{\Delta}{L_{c} / 2}\right) \approx \frac{2 \Delta}{L_{c}}$ (Rotation about a vertical axis)
Wort $E=4 M_{n}\left(\frac{2 \Delta}{L_{c}}\right)$ (4 locations of flexure)
set Impact Wort equal to Yield Line wort

$$
F_{T} \Delta=4 M_{n}\left(\frac{2 \Delta}{L_{C}}\right)
$$

(Note: This equation is 1)
\rightarrow Mn can be obtained from sectional analysis
$\rightarrow F_{T}$ can be obtained from A4SHTO $\angle R F D 413.2$
\rightarrow Equation is identical to a fixed-fixed bean; therefore, $\Delta=\frac{F_{T} L_{C}^{3}}{192 E I}$
\qquad
\qquad Sheet No. 1 \qquad of 61
\qquad Drawing No.
\qquad
\qquad Date \qquad $10 / 20 / 11$

ESTIMATES LENGTH OF ENGAGEMENT
$M=D$ IAN BARRIER
BARRIER BEHAVIOR
$4 z^{\prime \prime}$ Constant Stope:

$$
\begin{aligned}
& M_{n}=104 \mathrm{k} \cdot \mathrm{ft} \\
& F_{T}=54 \mathrm{~K}(T L-3) \\
& E=3605 \mathrm{~K}=3 \mathrm{i} \\
& I=17,920 \mathrm{in}^{4}(1 / 2)=8960 \mathrm{in}^{4} \quad \text { (racked) } \\
& L_{C}=\frac{8(104)}{54}=15.4 \mathrm{ft} \\
& \Delta=\frac{54(15.4 \times 12)^{3}}{192(3605)(8960)}=0.05 \mathrm{in}
\end{aligned}
$$

$4 Z^{\prime \prime}$ Constant slope (TL-5):

$$
\begin{aligned}
& M_{1}=146 \mathrm{k.ft} \\
& F_{T}=124.0 \mathrm{~K} \\
& L_{C}=21.6 \mathrm{ft} \\
& \Delta=0.35 \mathrm{in}
\end{aligned}
$$

54" Constant Slope: By inspection, the flexural upacily of this barrier will be comparable because the additional material is added of the neutral axis.
\rightarrow The length of engagement is approximately 15'-20.'
\rightarrow The foundation stiffness is not taken into account. The barrier deflection is expected to be primarily dependent on this. The barrier pins can only be accurately analyzed by crash testing.

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

General Information:
File Name: P:\proj\123248\AJ Work $\backslash 42$ Inch Constant Slope.col

Run Option: Investigation Slenderness: Not considered
Run Axis: Y-axis Column Type: Structural
Material Properties:
$===================$
f'c $=4 \mathrm{ksi}$
EC $=3605 \mathrm{ksi}$
Ultimate strain $=0.003$ in/in
Beta1 $=0.85$
fy $=60 \mathrm{ksi}$
$\mathrm{Es}=29000 \mathrm{ksi}$

Section:

Confinement: Tied; \#3 ties with \#10 bars, \#4 with larger bars.
$\operatorname{phi}(\mathrm{a})=0.8, \mathrm{phi}(\mathrm{b})=0.9, \operatorname{phi}(\mathrm{c})=0.65$
Pattern: Irregular
Total steel area: As $=2.48$ in^2 at rho $=0.37 \%$ (Note: rho < 0.50\%)
Minimum clear spacing $=5.37$ in

Area in^2	X (in)	Y (in)	Area in^2	X (in)	Y (in)	Area in^2	X (in)	Y (in)
0.31	-9.0	3.0	0.31	-7.0	15.0	0.31	-5.0	27.0
0.31	-3.0	39.0	0.31	3.0	39.0	0.31	5.0	27.0
0.31	7.0	15.0	0.31	9.0	3.0			

Control Points:

Bending about	Axial Load P kip	$\begin{array}{r} \text { X-Moment } \\ \mathrm{k}-\mathrm{ft} \end{array}$	$\underset{\mathrm{k}-\mathrm{ft}}{\mathrm{Y} \text {-Moment }}$	NA depth in	Dt depth in	eps_t	Phi
Y @ Max compression	1576.4	-26.61	-0.00	67.67	21.00	-0.00207	0.650
@ Allowable comp.	1261.1	-142.67	188.94	20.17	21.00	0.00012	0.650
@ fs = 0.0	1317.5	-141.97	163.41	21.00	21.00	0.00000	0.650
@ fs = 0.5*fy	888.4	-45.64	289.64	15.62	21.00	0.00103	0.650
@ Balanced point	610.2	36.80	296.45	12.43	21.00	0.00207	0.650
@ Tension control	314.2	215.80	274.98	7.88	21.00	0.00500	0.900
@ Pure bending	-0.0	162.83	103.89	4.14	21.00	0.01220	0.900
@ Max tension	-133.9	39.06	0.00	0.00	21.00	9.99999	0.900
-Y @ Max compression	1576.4	-26.61	-0.00	67.67	21.00	-0.00207	0.650
@ Allowable comp.	1261.1	-142.67	-188.94	20.17	21.00	0.00012	0.650
@ fs = 0.0	1317.5	-141.97	-163.41	21.00	21.00	0.00000	0.650
@ fs = 0.5*fy	888.4	-45.64	-289.64	15.62	21.00	0.00103	0.650
@ Balanced point	610.2	36.80	-296.45	12.43	21.00	0.00207	0.650
@ Tension control	314.2	215.80	-274.98	7.88	21.00	0.00500	0.900
@ Pure bending	-0.0	162.83	-103.89	4.14	21.00	0.01220	0.900
@ Max tension	-133.9	39.06	0.00	0.00	21.00	9.99999	0.900

*** End of output ***
P:\proj\123248\AJ Work $\backslash 42$ Inch Constant Slope.col
$\begin{array}{ll}\text { Ix }=90552 \text { in^4 } & \text { Iy }=17920 \mathrm{in}^{\wedge 4} \\ r x=11.6082 \text { in } & r y=5.16398 \mathrm{in}\end{array}$
$X 0=0$ in $\quad Y o=17.5$ in

Reinforcement:
Bar Set: ASTM A615

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

General Information:
File Name: P:\proj\123248\AJ Work\42 Inch Constant Slope - TL5.col

Project:	UDOT Barrier	
Column:	42" CS	Engineer: AFY
Code:	ACI 318-08	Units: English
Run Optio	, Investigation	Slenderness: Not considered
Run Axis	Y-axis	Column Type: Structural

Run Option: Investigation Slenderness: Not considered
Run Axis: Y -axis

Slenderness: Not considered
Column Type: Structural

Material Properties:
$====================$
f'c $=4 \mathrm{ksi}$
Ec $=3605 \mathrm{ksi}$
Ultimate strain $=0.003 \mathrm{in} / \mathrm{in}$
Beta1 $=0.85$
fy $=60$ ksi
$\mathrm{Es}=29000 \mathrm{ksi}$

Section:
$========$
\quad Exterior Points

No.	X (in)	Y (in)	No.	X (in)	Y (in)	No.	X (in)	Y (in)
1	-4.0	42.0	2	4.0	42.0	3	12.0	0.0
4	-12.0	0.0						

```
Gross section area, Ag = 672 in^2
Ix = 90552 in^4 4y = 17920 in^4
rx = 11.6082 in ry = 5.16398 in
Xo = 0 in Yo = 17.5 in
```

Reinforcement:

Bar Set: ASTM A615									
Size	Diam (in)	Area (in^2)	Size	Diam (in)	Area (in^2)		$z e$	Diam (in)	Area (in^2)
\# 3	0.38	0.11		0.50	0.20	\#	5	0.63	0.31
\# 6	0.75	0.44	\# 7	0.88	0.60	\#	8	1.00	0.79
\# 9	1.13	1.00	\# 10	1.27	1.27	\#	11	1.41	1.56
\# 14	1.69	2.25	\# 18	2.26	4.00				

Confinement: Tied; \#3 ties with \#10 bars, \#4 with larger bars.
$\operatorname{phi}(\mathrm{a})=0.8, \mathrm{phi}(\mathrm{b})=0.9, \operatorname{phi}(\mathrm{c})=0.65$
Pattern: Irregular
Total steel area: As $=3.72$ in^2 at rho $=0.55 \%$ (Note: r ho $<1.0 \%$)
Minimum clear spacing $=5.37$ in

Area in^2	X (in)	Y (in)	Area in^2	X (in)	Y (in)	Area in^2	X (in)	Y (in)
0.31	-9.0	3.0	0.31	-3.0	39.0	0.31	3.0	39.0
0.31	9.0	3.0	0.31	7.8	10.2	0.31	-7.8	10.2
0.31	6.6	17.4	0.31	-6.6	17.4	0.31	5.4	24.6
0.31	-5.4	24.6	0.31	4.2	31.8	0.31	-4.2	31.8

Control Points:

Bending about	Axial Load $\begin{array}{r}\text { p } \\ \text { kip }\end{array}$	$\begin{array}{r} \mathrm{X} \text {-Moment } \\ \mathrm{k}-\mathrm{ft} \end{array}$	$\begin{array}{r} \mathrm{Y} \text {-Moment } \\ \mathrm{k}-\mathrm{ft} \end{array}$	NA depth in	Dt depth in	eps_t	Phi
Y @ Max compression	1622.0	-39.92	-0.00	67.67	21.00	-0.00207	0.650
@ Allowable comp.	1297.6	-151.74	193.78	20.32	21.00	0.00010	0.650
@ fs = 0.0	1343.9	-150.57	172.70	21.00	21.00	0.00000	0.650
@ fs = 0.5*fy	902.5	-50.42	302.93	15.62	21.00	0.00103	0.650
@ Balanced point	611.2	36.49	313.91	12.43	21.00	0.00207	0.650
@ Tension control	290.3	230.38	297.82	7.88	21.00	0.00500	0.900
@ Pure bending	0.0	209.74	146.20	4.80	21.00	0.01014	0.900
@ Max tension	-200.9	58.59	0.00	0.00	21.00	9.99999	0.900
-Y @ Max compression	1622.0	-39.92	-0.00	67.67	21.00	-0.00207	0.650
@ Allowable comp.	1297.6	-151.74	-193.78	20.32	21.00	0.00010	0.650
@ fs = 0.0	1343.9	-150.57	-172.70	21.00	21.00	0.00000	0.650
@ fs = 0.5*fy	902.5	-50.42	-302.93	15.62	21.00	0.00103	0.650
@ Balanced point	611.2	36.49	-313.91	12.43	21.00	0.00207	0.650
@ Tension control	290.3	230.38	-297.82	7.88	21.00	0.00500	0.900
@ Pure bending	0.0	209.74	-146.20	4.80	21.00	0.01014	0.900
@ Max tension	-200.9	58.59	0.00	0.00	21.00	9.99999	0.900

P:\proj\123248\AJ Work $\backslash 42$ Inch Constant Slope - TL5.col

[^0]\qquad
\qquad of
\qquad Drawing No.
\qquad Date \qquad $10 / 21 / 11$

SMALL STUN EMBEDMENT

NORMAL
TRANSVERSE

Normal - $V=4(9)(18.8)=67716$

$$
h=a+a / 2=13.5 \mathrm{ft}
$$

$$
M_{u}=V h=9.14 \mathrm{k} \cdot f t
$$

$$
\partial N_{u}=12.8 \mathrm{~F}
$$

$$
\begin{gathered}
\text { Transverse }-V=0.33(18)(17.4\rangle=103 \mathrm{lb} \\
h=18 / 2=9 . \\
M_{u}=V h=0.93 \mathrm{k} \cdot f \mathrm{ft} \\
\text { IN }=1.30 \mathrm{k}=f
\end{gathered}
$$

$$
\begin{aligned}
& P_{z}=0.00256 \mathrm{~K}_{2} \mathrm{GV} V^{2} I_{r} c_{d} \\
& V=90 \mathrm{mph} \\
& I_{r}=0.71 \text { (10-yr Recurrence Interval, see Table 3-3) } \\
& G=1.14 \\
& \begin{array}{l}
K_{2}=0.94 \quad(24.6) \text { height, conservative) } \\
\left.C_{d}=1.10 \text { post }\left(L_{V} V d=0,84(90)(0.33)=25\right) 39 \mathrm{mph}-\mathrm{ft}\right)
\end{array} \\
& =1119 \operatorname{mign}(L / W=9 / 4=2.25) \\
& P_{z}=17.4 \text { psf post } \\
& =18.8 \text { psf sign }
\end{aligned}
$$

\qquad 1 of
\qquad Drawing No.
\qquad AF Checked By \qquad Date \qquad 10/z1/11

SMALL SIGN EMBEDMENT CONT:
Teni-thences:
Normal-
 (approach is
conservative)

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=\frac{0.80(60)}{0.85(4)(16)}=0.882 \mathrm{in}
$$

$$
\phi M_{n}=0.9 A_{s} f_{y}\left(d-\frac{a}{z}\right)=197 \mathrm{k} \cdot i n=16.4 \mathrm{k} \cdot \mathrm{ft}
$$

$$
D / C=0.78
$$

$$
f_{r}=0.74 k \pi=0.37 \sqrt{f_{c}^{\prime}}
$$

$$
S_{c}=b n^{2} / c_{0}=16(5.875) / 6=92.0 \mathrm{in}^{3}
$$

$$
M_{c r}=0.74(144)(92.0)=9.80 \text { kIf }
$$

$$
1.2 \mathrm{Nar}_{\mathrm{c}}=11.8 \mathrm{k} \cdot \mathrm{ft} \leftarrow \text { Controls }
$$

$$
1.33 m_{u}=17.0 \mathrm{k} \cdot f \mathrm{ft}
$$

$$
D / C=0.72
$$

$$
\begin{aligned}
& \begin{array}{r}
\text { Transverse - Use the some except use shear } \\
\text { capacity of bar instead of tension } \\
\text { cenpdity }
\end{array} \\
& \text { cupoderty } \\
& A_{s}=0.6(0.80)=0.48 \mathrm{in}^{2} \\
& a=0.529 \mathrm{in} \\
& d N_{n}=1.14 \mathrm{tin}=9.48 \mathrm{Ht} \\
& D / L=0.14 \\
& 1.2 \mathrm{M}_{\mathrm{cr}}=11.8 \mathrm{k} . \mathrm{ft} \\
& 1.33 M_{u}=1.73 \text { ft } \longleftarrow \text { controls } \\
& D / L=0.18
\end{aligned}
$$

2006 STANDARD PLAN A76G

Mr. Rich Peter
Chief, Roadside Safety Technology Unit
Office of Materials Engineering and
Testing Services - MS \#5
P.O. Box 19128
Sacramento, California 95819-0128

Dear Mr. Peter:

In your January 12 letter to Mr. Henry H. Rentz, you requested the Federal Highway Administration's formal acceptance of your Type 60G median barrier for use on the National Highway System (NHS). This is a slip-formed, reinforced concrete barrier having a constant slope face of 9.1 degrees, versus the 10.8 -degree slope developed and first used by Texas for a similar barrier. The Type 60 G barrier has a $610-\mathrm{mm}$ base width, a $150-\mathrm{mm}$ top width, and a total height of 1420 mm . The barrier itself is slip-formed on grade with no embedment, but each end has a $3050-\mathrm{mm}$ long by $250-\mathrm{mm}$ deep footing and contains additional reinforcing steel as shown in Enclosure 1. To support your request, you sent us a copy of the Caltrans report titled "Vehicular Crash Tests of a Slip-Formed, Single Slope, Concrete Median Barrier With Integral Concrete Glare Screen," dated December 1997, and video tapes of the full-scale tests that you conducted.

Two tests, test 3-10 and test 3-11, are recommended in the National Cooperative Highway Research Program (NCHRP) Report 350 to qualify a longitudinal barrier as crashworthy at test level 3 (TL-3). Test $3-10$ requires an $820-\mathrm{kg}$ car to impact the barrier at $100 \mathrm{~km} / \mathrm{h}$ and 20 degrees. These impact conditions were attained in your Test 511 , which met all apnropriate evaluation criteria. We noted, however, that a shorter design (called the Type 60). a!so with a $610-\mathrm{mm}$ base width and a 9.1 degree sloped face, but with an overall height of only 810 mm , was used for this test. Nevertheless, we concur with your assertion that the test results would have been the same with the taller Type 60 G design. Test 3-11 requirements were satisfied by your Test 534 , a $97.7 \mathrm{~km} / \mathrm{h}$ impact at 25.2 degrees with a $2000-\mathrm{kg}$ pickup truck into the Type 60G design. Again, we noted that all NCHRP Report 350 evaluation criteria were met. Enclosure 2 consists of summaries of both of these acceptance tests. It appears that this barrier is an improvement over both the standard New Jersey concrete barrier shape and the Texas constant slope barrier because of the reduced vehicular climb seen upon impact with this barrier's 9.1 degree sloped-face and on the less severe post-crash vehicular trajectories observed in the crash test videos.

Based on our review of the information you provided, we consider both the Type 60 and Type 60G barriers to be acceptable at TL-3 for use on the NHS. We will so advise our field offices via copies of this letter.

Sincerely yours,

Dwight A. Horne
Chief, Federal-Aid and Design Division

2 Enclosures

Geometric and Safety Design Group Acceptance Letter BB-45

CONCRETE BARRIER TYPE 60G
(Monollthic concr ote
giore screen/barrler)

SECTION $8-8$

CONCRETE BARRIER TYPE 6OC
CONCRETE BARRIER ENO ANCHORAGE

Figure 2.43 - Test 511 Data Summary Sheet

Test Barrier
Type: Length:
Test Date:
Test Vehicle: Model: $\quad 1992$ Geo Metro Inertial Mass:
Impact / Exit Velocity: Impact / Exit Angle:

Type 70 Bridge Rail
22.86 meters

April 6, 1997

843 kg
$104.1 \mathrm{~km} / \mathrm{h} / 92 \mathrm{~km} / \mathrm{h}$
$20.0 / 12.1^{\circ}$
Test Dummy: Type:

Hybrid III
74.8 kg / lap and shoulder

Front Right
Test Data:
Occ. Impact Velocity (Long / Lat):
$4.51 \mathrm{~m} / \mathrm{s} / 7.22 \mathrm{~m} / \mathrm{s}$
Ridedown Acceleration (Long / Lat):
$-2.9 \mathrm{~g} /-16.0 \mathrm{~g}$
Max. 50 ms Avg. Accel (Long / Lat):
Exterior: VDS/CDC
Interior: OCDIS
Barrier Damage:

FR-5, RD-4 / 12RFEW3
RF0000110
Only superticial scufting

Figure 2.34 - Test 534 Data Summary Sheet

Test Barrier
Type:
Length:

Test Date:
Test Vehicle:
Model:
Inertial Mass:
Impact / Exit Velocity: Impact / Exit Angle:
Test Duminy:
Type:
Weight / Restraint: Position:

Type 60G
50 meters
November 28, 1995
1991 Chevy pickup
2000 kg
$97.7 \mathrm{~km} / \mathrm{h} / 83.1 \mathrm{~km} / \mathrm{h}$
$25.2^{\circ} / 6.5^{\circ}$
None
NA
NA

Test Data:
Occ. Impact Velocity (Long / Lat):
Ridedown Acceleration (Long / Lat): Max. 50 ms Avg. Accel (Long / Lat): Exterior: VDS/CDC ${ }^{2}$ Interior: OCDI ${ }^{10}$
Barrier Damage:
$6.8 \mathrm{~m} / \mathrm{s} /-9.51 \mathrm{~m} / \mathrm{s}$
$-6.7 \mathrm{~g} / 2.3 \mathrm{~g}$
$-8.9 \mathrm{~g} / 15.7 \mathrm{~g}$
FL-3. LD-4 i 12LFEK3
LF1111131
Only superficial scuffing

U.S. Department

400 Seventh St., S.W of Transportation

Washington, D.C. 20590
Federal Highway
Administration

Milford L. Miller, P.E./L.S.
Standard Drawing Engineer
State of Idaho Transportation Department
P.O. Box 7129

Boise, Idaho 83707-l 129
Dear Mr. Miller:

In your June 20 letter you requested formal Federal Highway Administration acceptance of the Idaho Transportation Department's 6095-mm (20-foot) long precast concrete barrier for use on the National Highway System (NHS) as a test level 3 (TL-3) barrier. To support your request, you also sent a copy of an April 2000 test report prepared by E-TECH Testing Services, Inc., in Rockland, California, entitled "NCHRP Report 350 Crash Test Results for the Idaho $6095-\mathrm{mm}$ Concrete Barrier" and a video tape of the two tests that were conducted.

The barrier you tested was a standard New Jersey profile concrete barrier 81 O-mm (32-inches) tall and $6.095-\mathrm{m}$ (20 -feet) long. The base width was $610-\mathrm{mm}$ (24 inches) and the top width was $150-\mathrm{mm}$ (6 inches). Each segment weighed approximately 3630 kg (8000 pounds). Adjacent segments were connected using 3 1.8-mm (1.25-inch) diamctcr steel pins passed through four loops made from $19-\mathrm{mm}$ (.75-inch) diameter steel bars. Longitudinal reinforcement consisted primarily of six no. 16 bars per segment. Two different connection designs were tested. The first consisted of galvanized $32-\mathrm{mm}$ (1.25 -inch) diameter by $638-\mathrm{mm}$ (25-inch) long A307 hex bolts secured by $32-\mathrm{mm}$ (1.25-inch) A536 heavy hex nuts. Two F844 Wide Type A washers were used, one under the bolt head and one above the nut. Enclosure 1 is a schematic drawing of this connection detail. The connection in the second test was a $32-\mathrm{mm}$ (1.25-inch) diameter A36 steel pin that was $660-\mathrm{mm}$ (26-inches) long. No locking nut or other pin retention device was used in this design. The steel loops were identical in both tests.

Staff members have reviewed the results of the two tests you conducted and concur with your assessment that appropriate NCHRP Report 350 evaluation criteria were met. They also agree that it is not necessary to test the $860-\mathrm{kg}$ car since the barrier is identical to California’s K-Rail which was successfully tested with the small car. The summary results of each test are shown in Enclosure 2. Maximum permanent deflection was 1.0 m with the bolted connection and 1.1 m with the pinned connection. The test installation was 73.2 m long and
the pickup truck impacted 1.2 m from the mid-point in both tests. Impacts nearer the ends of an installation would be expected to increase the deflection distance under similar impact conditions. Based on these test results, the Idaho Concrete Barrier, with either the bolted pin connection or the drop-pin connection, may be considered acceptable for use as an NCHRP Report 350 TL-3 barrier on the NHS when such use is requested by a State transportation agency. I understand that this design remains nonproprietary and that anyone wanting to obtain detailed specifications and plan sheets for this barrier (can request them by calling you directly at (208) 334-8475.

Sincerely yours,

2 Enclosures

32 mm F844 Type A Wide Plain Flatwasher (Typ 2 plcs)

32 mm dia. $x 638 \mathrm{~mm}$ long A307 Grade A Hex Bolt w/76 mm long machined threads at 2.8 threads per centimeter

$1=0.000$ set

$\mathrm{t}=\mathrm{o} .15 \mathrm{osec}$
$\mathrm{t}=0.300 \mathrm{sex}$

General Information
Test Agency
Test Designation
Test No
Date ...
Test Article
Type ..
Installation Length, (m)
Material and key elements

Foundation Type and Condition
Test Vehicle
Type ..
Designation
Model \qquad
Mass (kg)
Curb ...
Test inertial Gross Static ...
Impact Conditions
Speed(km/h)
Speed(km/h)
Angle (deg)

E-TECH Testing Services, Inc NCHRP 350 Test 3-1 1 13-4300-001
3/16/00
IdahoTransportationDepartment 6095 mm Concrete Barrier 73.2 (overall installation) 6095 -mm !ong NJ Shaped Concrete Harrier section with 32 mm dias. bolted connection and 19 mm dias. solid steel loops Aged chip-sealed asphalt

Production Mode
2000P
1993 Chevrolet C2.500
314 Ton Pickup
1859
1975
N/A
1975
101.1
101.
25

25
138.9

$\mathrm{t}=0.450$ set

76

Ans ant Risk Values
Impact Velocity (m / s)
x-direction ... 5.2
y-direction .. -5.9
ridedown Acceleration (g's)

$$
\begin{aligned}
& \text { x-direction } \\
& \text { v-direction }
\end{aligned}
$$

$$
-11.7
$$

y-direction

European Committee for Normalization (CEN) Values THIV (mss) ... PIID (g's) \qquad 13, AS \qquad
st Article Dellections (m)
Dynamic
Permanent \square
1.2
1.0
chicle Damage
Exterior
VD

$$
\begin{aligned}
& \text { VD } \\
& \text { CDC }
\end{aligned}
$$

\qquad Interior

OCD
Post-Impact Vehicular Behavior (deg - rate gyro) Maximum Roll Angle
Maximum Pitch Angl
Maximum Yaw Angle
\qquad
\qquad
1.0

Figure 1. Summary of Results - Idaho $\mathbf{6 0 9 5} \mathbf{~ m m}$ Concrete Barrier Test 13-4300-001
General Information

Test Agency
Test Designation
Test No
Date
st Article
Type

Installation Length，（m）
Material and key elements \qquad

Foundation Type and Condition \qquad
Test Vehicle
Type
Designation ．．．
Model \qquad
Mass（kg）
Curb ．．．
Test inertial ．． Static．．．．．． ．．． Impact Conditions

Speed（km／h）
Angle（deg）
Impact Severity（kJ）

E－TECII Testing Services，Inc． NCHRP 350 Test 3－11
13－4300－002
4／l l／00
Idaho Transportation Department 6095 mm Concrete Harrier 73.2 （overall installation） 6095 mm long NJ Shaped Concrete Barrier section with 32 mm dia．pinned connection and 19 mm dia．solid steel loops Aged chip－sealed asphalt

Production
 Model

20001＇
1995 Chevrolet C2SOO
314 Ton Pickup

1972

1994
N／A
1994
99.0

25
134.6

$t=0.54$ set

Occupant Risk Values
Impact Velocity（m／s）
x －direction
4.9
y：equ－direction
x－arection
x －direction
－4．0
y－direction ．．．．．．．．．I．．．
European Commitlee for Normalization（CEN）ValucT
TIIIV（m／s）
7.8

PIID（g＇s）
x． 9
est Article Deflections（m）
Dynamic
nent

RI＇Q－5 01 RIWW3
VDS
CDC
Interior
＜WI）1
Post－Impact Vehicular Behavior（deg • rate gyro）
Maximum Roll Angle
AS0000000
23.3

2x． 3
135．x

Figure 6．Summary of Results－Idaho $\mathbf{6 0 9 5} \mathbf{~ m m}$ Concrete Barrier Test 13－4300－002

NOTES

CONTRACTION JOINTS: Maximum allowable spacing of unsealed joints is

ADJOONNG PAVEMENT: When the barrier is constructed in conjunction

When the barrier is construc ted in conjunction with new concrete
pavement, place it directy oon the base material. Construct the

minimum height of $3^{\prime \prime}$ [75].
SEALING JOINTS: Use a butt longitudinal joint between. the barrier and
adjoining concrete pavement sealed with CMS 705.04 joint sealer. See odjoining concrete
detail on Sheet 2 .
TRANSITIONS: Make linear transitions between different types of
barrier within a 20 [6.0 m] length.
CONSTRUCTION JOINTS: Barrier runs with abutting vertical surfaces o either required or permissible construction joints are to be
doweled to each other by use of y_{4} "clis] dia. by 18 " [450] long epoxy as shown on the RACEWAY and DOWEL BAR PLACEMENT detail on this sheet. SS Shown on the RACEWY and DOWEL BAR PLACEMENT detail on this
Provide o $4^{\prime \prime}$ clearance to barrier surfaces and to any raceways.
STATION MARKINGS: Impress markings in the ""reen" concrete on both
sides at the top of the barrier. The cost is incidental to the unit cost
bid tor this barier.
RACEWAY: Locate as shown on in RACEWAY PLACEMENT Detail, unless way is clear of obstructions.
Cost of the 4" [100] polyvinyl chloride raceway is included where
shown on the plans. The cost for addit The con for additional raceways and No. 10 AW
opperclad or ar aluminum-clad wire is also included where shown on the

PAYMENT will be made at the unit price bid per Foot CMeter] for Item S22- - Concrete Barrier, single Slope, Type pe- Include all materials,
lobor, rocewys, dowel holes, markings and other incidentals necessary
to construct the barrier.

Item 604 Barrier Median Inlet

 $20 \mathrm{ft}$. [6 meters] 4 ft. $[1.2$ meters] 10 ft . [3 meters].

Payment for any reinforced end anchorages as shown on the END ANCHORAGE
details shown on sheet 2, will be made at the unit price bid pN Each
 all mothor

SECTION A-A

Directional Travel where no trailing guardrail is used.

Use Bridge Terminal Assembly, Type 2 for directional roadways where trailing
Bi-directional Travel or Directional Travel where trailing guardrail is used.

NOTES

GENERAL: Single Slope Concrete Barrier, Type D, may be cast-in--place
or slip-formed. See SCD RM-4.3 for other standard barrier types and any details not shown, including materia/s, adjoining pavement, and
doweling de tails. Longitudinal steel is not required when top width doweling de dails. Longitudinal stet.
of barrier is $12^{\prime \prime}[300]$ or greater.
CONTRACTION JINTS: Maximum allowable spacing of unsealed joints is
20 [6.0 m] throughout the run of the barrier. Construct ints 20 ' 6.0 mJ throughout the run of the barrier. Construct joints by using metal inserts inside the forms preformed full widt th joint filler,
a groving tool, or by sawing. Inserts, tooled or sawed joints will have
a ${ }^{3}$ c757 minimum depth a " ${ }^{\text {[755 min mimum depth. }}$. as curing will allow to prevent spalling. when used in oonjunction with
concrete pavement, match joints to those in the concrete pavement concrete pavement, match joints to those in the
but not exceeding the maximum allowable spacing.
ADJOINING PAVEMENT: When the barrier is constructed in conjunction ADJOINING PAVEMENT: When the barrier is construuted in conjunction
with new osphal povement, place it directly on the intermediate course.
Construct the surfoce course directly gacinst the barrier set barrier Construct the surface course directly against the barrier. Set barrier
placed on existing pavement with a continuous wedge of surface material Placed on existing pavement with a con inuous wedge of sur sace mater
tapering from tor the minimum thicness ot the toe of therr ior to
zero zero. For unidirectional installations, construct the wedge on the tro
veled way side and the width may be reduced to $12^{\prime \prime}$. 53001 minimum. When the barrier is construct ted in conjunction with new concrete
pavement, place it directly on the base material. Construct the con pavement
crete slab agace
Barrier
Barrier may be placed on to. of existing concrete pavement and
doweled as shown in DOWELING DETALS (see Sheet 2). When Pave
 on the opposited
height of J" [75].
SEALING JOINTS: Use a butt longitudinal joint between the barrier and
any adjoining concrete pavement sealed with cMS 705.04 joint sealer.
CONSTRUCTION JOINTS: Barrier runs with abutting vertical surfaces al either required or permissible construction joints are to be doweled
to each other by use of 3 " "19] dia. by 18 " 4503 long epoxy coated deforme dowe bars as ser CMS G2. o2. Bars are to be placed as show
on the DOWEL BAR PLACEMENT detail So Shet 2.
RACEWAYS: Raceways on Type D barriers are typically not embedded
within the barrier. but are mounted outside of it on the back side and
END SECTIONS: End Sections are used when barrier connects to Bridge
Terminal assemblies, Guardrail runs, or Impact Attenuators. See SCD Termina ossemblies, Guardrail runs, or
RM-4.6 for Type D End Section details.
END ANCHORAGE: At other barrier ends, or at vertical construction
joints, construct a reinforced End Anchorage as shown on Sheet 2 . GUARDRALL: For Bridge Terminal Assembly, Type 1, details and connec-
tions, see SCD $6 R$-3.1.

Barrier installations that cannot be constructed at the normal
gurdrail oftset and are to be connected to the approach or tral guardrail offset and are to be connected to the approach or trailing
guardrail runs shall have o 25:I guardrail toper to meet the existing
or normal guardrail offset. Installations that are not to be connected to the approach or trail-
ing guardrail runs must include the standard guardrail flare as per SCD R-5.।
PAYMENT: will be made at the unit price bid per Feet cMe ter] for Item
622-Concrete Barrier, single slope, Type D. Include all materials and
labor to construct the Barrier. Payment for any reinforced end anchorages, as shown on the END ANCHO AGE details shown on sheet 2, will be made at the unit price bid per
Each for Item 622 - Corcrete Barrier End Anchorage, Reinforced ype 0 .
This This includes all materials, labor, and other incidentals necessary to

DOWELING DETAILS
See adJoining pavement notes on Sheet 1

Pier (optional)

INCORPORATED INSTALLATIONS

DOWEL BAR PLACEMENT

In Reply Refer To:
HSA-10/B149

Chuck Plaxico, Ph.D.
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201-2693
Dear Dr. Plaxico:

In Mr. Michael Halladay’s January 8, 2002, letter to the Ohio Department of Transportation’s Mr. Larry Sutherland, the Federal Highway Administration (FHWA) agreed that the Ohio Department of Transportation 32-inch high precast New Jersey shape concrete barrier with a standard pin and loop connection met the evaluation criteria for an National Cooperative Highway Research Program (NCHRP) Report 350 test level 3 (TL-3) temporary traffic barrier. In your May 1, 2006, letter to Mr. Richard Powers of my staff, you requested the FHWA’s concurrence that a new barrier, a 50-inch high precast safety shape with a unique pin and loop connection, also be accepted as a TL-3 design.

Prior to conducting a full-scale crash test, Battelle developed a new design for the pin and loop connection through a series of finite element analyses that predicted the design would meet all Report 350 evaluation criteria for a TL-3 temporary barrier. The Ohio Department of Transportation's tall barrier is a 50 -inch high, modified New Jersey shape concrete barrier with each segment being 12 -feet long. Since the base width remained a standard 24 inches and the top width remained 6 inches, the extended upper sloped face was about 3 degrees steeper than the upper slope of a 32-inch tall New Jersey shape. Reinforcement consisted of five \#5 steel bars and two sections of $6 \times 6 \times$ W2.9 welded wire fabric. Segments were connected by 1.25 -inch diameter x 43 -inch long galvanized Grade 5 (high strength) steel bolts passing through 8 loops (4 loops at the ends of each segment). These loops are made from 0.75 -inch diameter A36 steel bars bent to an inside radius of 2.25 inches. There are two loops at the top of each segment at one end and a single upper loop at the opposite end. The bottom loops are reversed, with a single loop beneath the upper double loops and vice versa. Each segment also has a single loop, approximately centered between the upper and lower sets of loops. This design, shown as Enclosure 1, was successfully tested at the Transportation Research Center in East Liberty, Ohio on April 12, 2006. Total installation length was about 200 feet and the impact point was approximately 80 feet from the upstream end, resulting in a dynamic

deflection of 1.9 meters. Equally severe impacts closer to either unanchored end would be expected to result in greater deflections. Enclosure 2 is the test summary sheet. Vehicular pitch and roll were significantly less than typically noted in concrete barrier tests, probably due to the increase in height and the steeper upper slope that minimizes vehicular climb and roll upon contact.

Based on the crash test results, I agree that this 50-inch high New Jersey portable concrete barrier may be considered an NCHRP Report 350 TL-3 design and used on the National Highway System at the State’s discretion. The same barrier design in a 20 -foot length may also be considered a TL-3 barrier, provided the longitudinal reinforcement is equivalent to that contained in any other $20-\mathrm{ft}$ segment that has been crash tested successfully. California, New York, and Virginia each have such designs. Please note also that the Oregon Department of Transportation successfully tested a 42 -inch tall F-shape concrete barrier with a similar double-shear pin connection to NCHRP Report 350 TL-4. It is very likely that the Ohio Department of Transportation 50-inch tall barrier would have similar capacity.

Sincerely yours,

/original signed by/

John R. Baxter, P.E.
Director, Office of Safety Design
Office of Safety

2 Enclosures

2. barrier specifications, including bars and concrete, shall be per cms 62 .

connect ing hardmare:

3. mark

(A3) | | 5 | 5 | $6005063-19-01$ | | BAR, REINF, STR, 45×1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A4 | 4 | 4 | $6005063-14-01$ | | BAR, HING,, 75×87.01 |

138.0

Figure 9. Summary of results for test 060412

[^0]: *** End of output ***

