INVESTIGATING THE USE OF SMALL-DIAMETER SOFTWOOD AS GUARDRAIL POSTS

by

Jason A. Hascall

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Civil Engineering

Under the Supervision of Professor Dean L. Sicking

Lincoln, Nebraska

December 2005

INVESTIGATING THE USE OF SMALL DIAMETER SOFTWOOD AS GUARDRAIL POSTS

Jason A. Hascall, M.S.

University of Nebraska, 2005

Advisor: Dean L. Sicking

The use of small-diameter softwood as guardrail posts was investigated to offer a lower cost guardrail system to the State Departments of Transportation and open a new market for small-diameter timber which is often the source of devastating forest fires.

The behavior of the round Douglas Fir and Ponderosa Pine posts was evaluated and compared to that of steel posts currently installed on guardrail systems. The diameter of the round posts was adjusted so that they would serve as sufficient substitutes in the barrier system.

Three types of tests were employed to investigate the behavior of round posts: static and dynamic cantilever tests and dynamic soil tests. Shortcomings in the standard wood post testing procedures were identified that could cause the post strength to be overestimated by as much as 50 percent. Revised testing procedures were developed to mitigate the problem.

Results from the testing in combination with results from previous testing and computer simulation indicated that round posts meeting the appropriate size and grading criteria should be adequate substitutes for steel posts currently used in the Midwest Guardrail System. For Douglas Fir, acceptable posts were restricted to those with knots no larger than 51 mm (2 in.) in diameter and a ring density of 6 rings-per-inch or more. The diameter of the Douglas Fir post was recommended to fall between 171 mm (6.75 in.) and 197 mm (7.75 in.). Recommended Ponderosa Pine posts were those with knots no larger than 102 mm (4 in.) in diameter and a ring density of 6 rings-per-inch or more. The diameter of Ponderosa Pine posts must be larger than 197 mm (7.75 in.), but less than 222 mm (8.75 in.).

Two full-scale vehicle crash tests are recommended to verify the adequacy of the longitudinal barrier system, one utilizing 197-mm (7.25-in.) diameter Douglas Fir posts and one utilizing 184-mm (7.75-in.) diameter Ponderosa Pine posts.

ACKNOWLEDGMENTS

I would like to acknowledge David Kretschmann and the U.S. Department of Agriculture for sponsoring this project. Arnold Forest Products Corp., Burke-Parsons-Bowlby Corp., Interstate Timber Products Co., Marks-Miller Post and Pole, Inc., and Porterbilt Post and Pole Co. also deserve recognition for their contribution of materials for the project.

I would also like to sincerely thank my advisor, Dr. Dean Sicking, for without his encouragement, I would not have pursued a Master's Degree. His positive influence stretches beyond the bounds of engineering and research, for it was his stern and inquisitive nature that has taught me independence, critical thinking, and determination. He has the utmost of my respect.

My committee members, Drs. Ronald Faller, John Reid, and Ruqiang Feng, also deserve special thanks for their never-ending contributions to this project and my education. Their advice and supervision has been greatly appreciated. Dr. Faller, thank you for making the office entertaining and reminding me that work should be fun. When you're around, it always is. Dr. Reid, thank you for the articles and conversations about roller coasters, religion, and life in general. I always appreciated your sincerity in conversation. Dr. Feng, Thank you for your entertaining mechanics courses. They are far and away my favorite from the department.

A special thanks to my fellow graduate students and the rest of the staff at the Midwest Roadside Safety Facility. Beau, Dave, Dustin, Caleb, Scott (No. 1 and No. 2), Ling, and Daniel, you guys are great, and I had a lot of fun. Bob, thanks for your expertise in engineering and diamond engagement rings. Karla, you are computer expert. I never would have finished without your help. Greg, midnight ice cream and an occasional game of checkers always made the day better.

Finally, I would like to thank my family and my fiancée, Jenny Johannes. It was you who I turned to when things did not go well, and you were always there to lend me your ears. Thank you for being great influences on me.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	i
LIST OF FIGURES	v
LIST OF TABLES	ix
1 INTRODUCTION	1
1.1 Background	
1.2 Objective	
1.3 Research Approach	
2 LITERATURE REVIEW	7
2.1 Prior Wood Post Testing	
2.1.1 Static and Dynamic Post Testing	
2.1.2 Full-Scale Crash Testing	
2.2 Grading	
3 SAMPLING	24
3.1 Sample Collection	
3.2 Sample Documentation	
4 PHYSICAL TESTING - ROUND ONE	31
4.1 Purpose	
4.2 Scope	
4.3 Round Wood Post	
4.4 Equipment and Instrumentation	
4.4.1 Bogie	
4.4.2 Accelerometer	
4.4.3 Pressure Tape Switches	
4.4.4 Photography Cameras	
4.5 Data Processing	
4.6 End of Test Determination	
5 ROUND 1 CANTILEVER TEST RESULTS	30
5.1 Introduction	
5.2 MOR Results	
5.2.1 Ponderosa Pine	
5.2.2 Douglas Fir	
5.3 Force Results	
5.3.1 Ponderosa Pine	
5.3.2 Douglas Fir	

	iii
6 PRELIMINARY POST SIZE DETERMINATION	44
6.1 Probability Method	
6.1.1 BARRIER VII Modeling	
6.1.2 MGS Model	
6.1.3 BARRIER VII Results	46
6.1.4 Post Reliability	
6.2 Static Method	52
6.3 Dynamic Method	54
6.4 Post Size Conclusion and Summary	
7 INERTIAL EFFECTS	57
7.1 Introduction	57
7.2 Fracture Time Investigation	59
7.3 Possible Explanation – The Inertial Spike Theory	76
7.3.1 Explanation and Physical Description	
7.3.2 Impulse and Analysis	
7.3.3 Distinction between Real and Inertial Forces	
7.4 Effects of the Inertial Spike Theory	82
7.4.1 Predicted Impulse and Angular Momentum	
7.4.2 Supplemental Testing	
7.4.3 Effects of Inertial Spike on Post Size	
7.4.4 Effects on Future Testing	88
8 PHYSICAL TESTING – ROUND TWO	89
8.1 Purpose	
8.2 Pretest Documentation and Preparation	
8.3 Scope	93
9 SYSTEM DETAILS – ROUND TWO	
9.1 Round Wood Posts	
9.2 Equipment and Instrumentation	95
10 ROUND 2 CANTILEVER TEST RESULTS	
10.1 MOR Results	
10.1.1 Ponderosa Pine	
10.1.2 Douglas Fir	
10.2 Force Results	
10.2.1 Ponderosa Pine	
10.2.2 Douglas Fir	
10.3 Adjusted Peak Force	
10.3.1 Ponderosa Pine	
10.3.2 Douglas Fir	104
11 INTERMEDIATE POST SIZE DETERMINATION	
11.1 Overview	105

	iv
11.2 Probability Method for Determining Size	
11.2.1 Strength Distribution Model	
11.2.2 Minimum Size Determination	111
12 PHYSICAL TESTING – SOIL BOGIE TESTING	115
12.1 Scope	
12.2 Results	
12.2.1 Ponderosa Pine.	
12.2.2 Douglas Fir	
12.3 Re-Evaluation of Post Size	
12.4 Results – Additional Soil Tests.	
12.4.1 Ponderosa Pine.	
12.4.2 Douglas Fir	
13 BARRIER VII MODELING - SYSTEM EVALUATION	
13.1 Round Post Properties – BARRIER VII Model	
13.2 BARRIER VII Results	133
14 SUMMARY AND FULL-SCALE TEST RECOMMENDATION	135
14.1 Summary	
14.2 Future Work	
14.2.1 Ponderosa Pine	
14.2.2 Douglas Fir	
14.2.3 System Details	
15 DEFEDENCES	1.40
15 REFERENCES	142
16 APPENDICES	147
Appendix A. Knot Location Documentation Tables	148
Appendix B. Round 1 Cantilever Bogie Test Results	
Appendix C. Barrier VII Simulation Deck	
Appendix D. Supplemental Inertia Cantilever Bogie Test Results	247
Appendix E. Round 2 Cantilever Bogie Test Results	
Appendix F. Post Size Determination – Excluding Inertial Effects	282
Appendix G. Soil Bogie Test Results	285
Appendix H. General Post Grading Criteria	299

LIST OF FIGURES

Figure 1. NPGB 4, 9, and 10 Bogie Testing Results	16
Figure 2. Major Dimensions of Round Wood Posts	24
Figure 3. Bogie Testing Matrix	32
Figure 4. Bogie Testing Setup	33
Figure 5. Bending Stress Distribution.	34
Figure 6. Rigid Frame Bogie on Guidance Track	36
Figure 7. Rail Slope Diagram	
Figure 8. Wheel Snag Diagram	
Figure 9. Force vs. Deflection NPGB - 4, 9, and 10	
Figure 10. Bogie Test DF-1 Non-Filtered Acceleration	57
Figure 11. Bogie-Post Impact – Frame 102	
Figure 12. Post Bending Prior to Fracture - Frame 107	60
Figure 13. Post After Fracture - Frame 108	61
Figure 14. DF-1 Raw Acceleration with Fracture Interval	
Figure 15. DF-2 Raw Acceleration with Fracture Intervals	
Figure 16. DF-3 Raw Acceleration with Fracture Interval	
Figure 17. DF-4 Raw Acceleration with Fracture Interval	
Figure 18. DF-5 Raw Acceleration with Fracture Interval	
Figure 19. DF-7 Raw Acceleration with Fracture Interval	
Figure 20. DF-8 Raw Acceleration with Fracture Interval	
Figure 21. DF-10 Raw Acceleration with Fracture Intervals	
Figure 22. DF-11 Raw Acceleration with Fracture Intervals	
Figure 23. DF-15 Raw Acceleration with Fracture Interval	
Figure 24. PP-5 Raw Acceleration with Fracture Intervals	
Figure 25. PP-8 Raw Acceleration with Fracture Intervals	
Figure 26. PP-9 Raw Acceleration with Fracture Interval.	
Figure 27. PP-11 Raw Acceleration with Fracture Interval	
Figure 28. PP-13 Raw Acceleration with Fracture Interval.	
Figure 29. PP-14 Raw Acceleration with Fracture Intervals	70
Figure 30. SY-2 Raw Acceleration with Fracture Interval	
Figure 31. SY-3 Raw Acceleration with Fracture Interval	
Figure 32. SY-4 Raw Acceleration with Fracture Interval	
Figure 33. SY-5 Raw Acceleration with Fracture Interval	
Figure 34. SY-7 Raw Acceleration with Fracture Interval	
Figure 35. SY-8 Raw Acceleration with Fracture Interval	
Figure 36. SY-9 Raw Acceleration with Fracture Intervals	
Figure 37. SY-10 Raw Acceleration with Fracture Interval	
Figure 38. SY-11 Raw Acceleration with Fracture Intervals	
Figure 39. SY-13 Raw Acceleration with Fracture Interval	
Figure 40. Bogie Force and Post Force Test PT-1	
Figure 41. Acceleration vs. Time - Test No. SY-3	
Figure 42. Acceleration vs. Time - Test No. SYPI-3	
Figure 43. Round Two Bogie Testing Matrix	
Figure 44. Major Dimensions of Round Wood Posts - Round Two Testing	95

	vii
Figure 91. Results of Test No. DF-7	
Figure 92. Results of Test No. DF-8.	
Figure 93. Results of Test No. DF-9.	
Figure 94. Results of Test No. DF-10.	228
Figure 95. Results of Test No. DF-11.	
Figure 96. Results of Test No. DF-12.	
Figure 97. Results of Test No. DF-13	231
Figure 98. Results of Test No. DF-14.	
Figure 99. Results of Test No. DF-15	
Figure 100. Results of Test No. SYPI-1	248
Figure 101. Results of Test No. SYPI-2	249
Figure 102. Results of Test No. SYPI-3	250
Figure 103. Results of Test No. PP-16	
Figure 104. Results of Test No. PP-17	253
Figure 105. Results of Test No. PP-18	254
Figure 106. Results of Test No. PP-19	255
Figure 107. Results of Test No. PP-20	256
Figure 108. Results of Test No. PP-21	
Figure 109. Results of Test No. PP-22	258
Figure 110. Results of Test No. PP-23	259
Figure 111. Results of Test No. PP-24	260
Figure 112. Results of Test No. PP-25	261
Figure 113. Results of Test No. PP-26	262
Figure 114. Results of Test No. PP-27	263
Figure 115. Results of Test No. PP-28	264
Figure 116. Results of Test No. PP-29	265
Figure 117. Results of Test No. PP-30	266
Figure 118. Results of Test No. DF-16	267
Figure 119. Results of Test No. DF-17	268
Figure 120. Results of Test No. DF-18	269
Figure 121. Results of Test No. DF-19	270
Figure 122. Results of Test No. DF-20.	271
Figure 123. Results of Test No. DF-21	272
Figure 124. Results of Test No. DF-22.	273
Figure 125. Results of Test No. DF-23	
Figure 126. Results of Test No. DF-24	275
Figure 127. Results of Test No. DF-25	
Figure 128. Results of Test No. DF-26.	
Figure 129. Results of Test No. DF-27	278
Figure 130. Results of Test No. DF-28	
Figure 131. Results of Test No. DF-29	
Figure 132. Results of Test No. DF-30	
Figure 133. Results of Test No. PP-31	
Figure 134. Results of Test No. PP-32	
Figure 135. Results of Test No. PP-33	
Figure 136. Results of Test No. PP-34	

	viii
Figure 137. Results of Test No. PP-35	290
Figure 138. Results of Test No. PP-36	291
Figure 139. Results of Test No. PP-37	292
Figure 140. Results of Test No. DF-31	293
Figure 141. Results of Test No. DF-32	294
Figure 142. Results of Test No. DF-33	295
Figure 143. Results of Test No. DF-34	296
Figure 144. Results of Test No. DF-35	297
Figure 145. Results of Test No. DF-36	
č	

LIST OF TABLES

Table 1. Dynamic Post Strength	7
Table 2. Static Post Breaking Strength	
Table 3. Dynamic Post Testing Results by Michie	9
Table 4. Dynamic Post Testing Results for Red and Southern Yellow Pine Species.	
Table 5. Southwest Research Institute Pendulum Test Results	
Table 6. Post Testing Matrix and Test Results Summary	14
Table 7. 1971 Southwest Research Institute Testing Summary	
Table 8. Rosson, Bierman and Rohde Post Test Summary	
Table 9. WWPA Timber Grading Summary	
Table 10. WWPA Knot Grading Criteria	
Table 11. Ponderosa Pine Pre-test Documentation.	
Table 12. Douglas Fir Pre-test Documentation.	28
Table 13. Douglas Fir Test Day Measurements	
Table 14. Ponderosa Pine Test Day Measurements	
Table 15. Dynamic Ponderosa Pine Round Wood Post Test Results	
Table 16. Dynamic Douglas Fir Round Wood Post Test Results	43
Table 17. FPL BARRIER VII Results Summary	
Table 18. Probability Method Calculation Summary	
Table 19. Static Method Calculation Summary	
Table 20. Dynamic Method Calculation Summary	55
Table 21. Post Diameter Calculation Summary	56
Table 22. Douglas Fir Impulse-Momentum Comparison	79
Table 23. Ponderosa Pine Impulse-Momentum Comparison	
Table 24. Southern Yellow Pine Impulse-Momentum Comparison	
Table 25. Supplemental Bogie Testing Predictions	
Table 26. Supplemental Bogie Test Results Comparison	85
Table 27. Supplemental Bogie Test Results Summary	87
Table 28. Ponderosa Pine Round Two Pre-Test Documentation	
Table 29. Douglas Fir Round Two Pre-Test Documentation	91
Table 30. Ponderosa Pine Round Two Test Day Measurements	92
Table 31. Douglas Fir Round Two Test Day Measurements	92
Table 32. Ponderosa Pine Round Wood Post Test Results - Round Two Testing	101
Table 33. Douglas Fir Round Wood Post Test Results - Round Two Testing	102
Table 34. Ponderosa Pine – Adjusted Peak Force	103
Table 35. Douglas Fir - Adjusted Peak Force	104
Table 36. Dynamic Magnification Factor - Round 1 Bogie Testing	107
Table 37. Dynamic Magnification Factor - Round 2 Bogie Testing	107
Table 38. Dynamic Magnification Factor Excluding Inertial Effects	107
Table 39. Douglas Fir Random Sample Testing Results	
Table 40. Ponderosa Pine Random Sample Testing Results	111
Table 41. Minimum Diameter Calculation	
Table 42. Soil Bogie Test Overview	118
Table 43. Soil Bogie Test Results Summary	119

	X
Table 44. BARRIER VII Round Wooden Post Lateral Properties Summa	ry 132
Table 45. FPL BARRIER VII Results Summary	134
Table 46 Douglas Fir Random Sample Testing Results – Excluding Inert	ia 283
Table 47. Ponderosa Pine Random Sample Testing Results – Excluding 1	nertia 283
Table 48. Minimum Diameter Calculation – Excluding Inertia	

1 INTRODUCTION

1.1 Background

Prompted by the devastating forest fire season of 2000, President Bill Clinton initiated the development of what would become the National Fire Plan. The plan established four main goals: to improve prevention and suppression, reduce hazardous fuels, restore fire adapted ecosystems, and to promote community assistance [1].

One of the most commonly used prevention techniques is fuel management, an idea that has been around for many years. In the 1960's, the U.S. Department of Agriculture (USDA) - Forest Service began managing fuels by using controlled burn techniques [2]. Using these techniques, fires were initiated in areas where they could be contained in order to consume the small-diameter forest thinnings (SDT), most commonly made up of various pine and fir species, that might serve as fuel for fires in the future. Although this method is generally effective, it offers no economic benefits and has high risks.

Today, there are many uses for the small diameter trees that make up the majority of the forest thinnings consumed during controlled burns. Uses for the thinnings include lumber, structural roundwood, wood composites, wood fiber products, compost, mulch, energy, and fuels [3]. The idea is to remove the fuel and sell it for use in various products, hopefully recovering the cost of removing the material. The more products there are, the more likely the cost of removing the SDT will be recovered. Therefore, more uses for small diameter trees must be developed [4].

Guardrail post production is one possible application for SDT that is under consideration. Using SDT's in guardrail systems would provide a new application for thinnings while also reducing the cost of the barrier system.

Guardrail systems constructed on today's roadsides have two main functions. First, they safely redirect vehicles that impact the barrier systems. Second, they dissipate much of the vehicle's kinetic energy during the impact event. Safe redirection prevents the impacting vehicle from contacting the hazard behind the system and also prevents secondary collisions with vehicles sharing the roadway. Energy dissipation reduces the forces applied to the vehicle during the redirection process and thereby reduces the risk of injury to the vehicle's occupants.

The Midwest Guardrail System (MGS) is a specific type of W-beam guardrail that will be used in the study [5-7]. MGS was specifically designed for the high center of gravity vehicles found on today's roadways. The system uses a higher rail mounting height, a shallower post embedment depth, deeper blockouts, and a modified post placement scheme than previous guardrail systems which often fail to perform adequately for the larger and higher vehicles. As with all strong-post W-beam guardrail systems, MGS dissipates energy through the deflection and deformation of the rail and the rotation of the posts in the soil. If the wood posts have insufficient bending strength, the bulk of the impacting vehicle's energy will be absorbed by the W-beam element, thus increasing the tensile force in the rail. If the force increases beyond the capacity of the rail, it will fail, allowing the impacting vehicle to pass through. Therefore, the posts must have sufficient structural capacity to displace founding soils and absorb energy.

1.2 Objective

The objective of the research project was to determine the properties of the Douglas Fir and Ponderosa Pine wood species when used as round posts under impact loading conditions. The primary goal of this research was to determine an acceptable diameter and grading specification for the two species in order to allow these species to serve as substitutes for the rectangular Southern Yellow Pine and wide-flange steel posts currently used in guardrail applications.

1.3 Research Approach

As discussed in Section 1.1, historical testing has shown that wood posts should generally have sufficient strength to rotate in the soil without fracturing. Hence, identifying the necessary size and wood grading criteria to assure such behavior was the most important task of the research described herein.

BARRIER VII [8], a computer simulation program was utilized to establish failure criteria for the MGS system, and an acceptable level of risk for that failure was defined. Once an acceptable level of risk had been established, the results of physical testing could be compared with results from soil bogie tests conducted on the standard steel post used in the MGS system. Based on those comparisons, the diameter of the wood posts could be selected to be capable of developing the capacity that was required to meet the established level of reliability.

A series of dynamic and static cantilever tests was conducted to develop a preliminary post diameter. In order to complete the testing, a sample of posts was collected for each species. Each specimen in the sample was required to meet a general grading criterion that is presented in Appendix F.

The general grading criteria pertain mostly to the manufacturing methods and manufacturing defects. The criteria were specified to prevent damaged or poorly processed products from being used in a guardrail system based on those parameters established for wood poles by the American National Standards Institute (ANSI) in ANSI 05.1 [9]. Specific changes were made to the limits on manufacturing methods, scars, shape, straightness, splits, shakes, decay, holes, slope of grain, and compression wood.

The total sample was composed of two sub-samples, sample A and sample B. Sample A was made up of posts falling into three categories based on variation in knot locations and sizes, and ring density. Sample B was randomly selected. Dynamic and static testing was conducted on sample A, and static testing was conducted on sample B.

When an approximate diameter had been determined from the first set of tests, a second set of cantilever tests was conducted on a sample of posts that were selected in the same manner as before. The second set of cantilever tests was conducted to evaluate and verify the capacity of posts with the adjusted diameter. Based on the results of the second set of tests, the required post diameter and wood grading specifications were adjusted as needed to develop the desired capacity.

When the post diameter had been finalized, dynamic soil bogie tests were conducted to verify that the diameter was large enough to give the posts sufficient capacity to rotate in the soil rather than fracture. Since this was not the case, the diameter of the posts was increased based on the results, and a second set of soil bogie tests was conducted. The second set of tests verified that the new diameter was large enough, and the results of the soil tests were used in BARRIER VII computer simulations to evaluate

the effectiveness of the barrier. The simulations showed that the posts should be adequate, and a full-scale test was recommended for both species.

This thesis is divided into 15 chapters plus references and appendices. The first chapter serves as an introduction and overview of the project. Chapter 2 contains a comprehensive literature review and overview of the grading criteria for wood posts. Chapter 3 contains a thorough explanation of the sampling and documentation procedures used for the testing specimen. It also includes summaries of properties recorded for each post.

Chapter 4 and 5 contain information from the first round of dynamic testing. Chapter 4 describes the physical testing setup, includes the round 1 bogie testing matrix, and presents the details of the testing including information on the devices used to record impact events, data processing methods, and wood post details. Chapter 5 presents the results of the first round of tests.

In Chapter 6, the diameter for the second round of testing is selected based on the results of the first round of testing and some initial computer simulation modeling. Chapter 7 describes the flaws discovered in the bogie testing methods, the effects they can have, and the possible solutions to remedy the problem. Chapters 8, 9, and 10 describe the second set of cantilever sleeve testing and results.

Chapter 11 discusses modifications in the diameter requirements based on the results from the second round of testing. The process of testing the candidate post sizes in soil is described in Chapter 12, and Chapter 13 presents computer simulation findings with the final Ponderosa Pine and Douglas Fir post size recommendations. Finally,

Chapter 14 summarizes the study and its findings and presents a recommendation for future work.

2 LITERATURE REVIEW

2.1 Prior Wood Post Testing

A limited amount of research has been conducted on round wooden posts. This section is a summary of those studies and results that are relevant to this project.

2.1.1 Static and Dynamic Post Testing

Beginning in 1960, Graham et al. [10] conducted a six-year program to develop revised standards for the state's traffic barriers. Both bogie and full-scale tests were conducted to identify the capacity and safety performance of various guardrail posts in rigid foundations and soils. The bogie test results are presented in Table 1.

Table 1. Dynamic Post Strength

Post	Force	Max. Resistance (lb.)					
Fost	Force	Fine Sand	Speed (mph)	Glacial Till	Speed (mph)	Concrete	Speed (mph)
	Lateral					5800	20
Steel S3x5.7	Lateral					5400	10
Steel SSAS.1	Longitudinal					1500	20
	Longitualilai					2000	10
	Lateral					3700	20
3 in. by 2 in. by 3/16 in. Steel	Lateral					4100	20
Tube	Longitudinal					2500	20
	Longitudinai					2900	10
2.25 in. by 2 in. by 4.1 lb/ft Steel	Lateral					4700	10
Right of Way Fence Posts	Longitudinal					2100	30
right of way rence rosts	Longitudinai					2400	30
	Lateral	5500	20	13100	20		
		3800	10	10200	20		
		6200	10	7800	10		
Steel W6x8.5	Longitudinal	3800	20	4500	20		
		3000	20	4500	20		
		3800	20	4600	20		
		3600	10	3800	10		
Cedar (6 in. by 8 in.)		5800	20	10400	20		
	Lateral	4800	10	7100	20		
				8400	10		
		5800	20	9500	10		
	Longitudinal	6600	20	7000	10		
		5200	10	6700	20		

In 1961, Cichowski et al. [11] conducted several static post tests and full-scale crash tests at the General Motors Proving Ground. Static post tests were conducted on both the weak axis (side impact) and the strong axis (front impact) of concrete, steel, and

rectangular wood posts. The maximum measured breaking strength for each type of post is listed in Table 2. A 457-mm (18-in.) load height was used for all of the tests.

Table 2. Static Post Breaking Strength

Post Type	Size	Treatment/Details	Details	Side Impact (lbs)	Front Impact (lbs)
		No Treatment		23500	23900
Wood	6 in. x 8 in.	4 Yrs. Pressure		21500	24100
vvood	0 111. X 0 111.	5 Yrs. Pressure		21200	25700
		6 Yrs. Dipped		13000	16000
Steel		6 x 4 in I Beam		3700	1300
		1/2 in. Vertical Rebar	1/4 in. Horizontal Rebar	5800	8200
Concrete	6 in. x 8 in.	1/2 III. Vertical Nebal	3/8 in. Horizontal Rebar	5800	7800
Concrete	O III. X O III.	5/8 in. Vertical Rebar	1/4 in. Horizontal Rebar	4300	9700
		3/6 III. Vertical Nebal	3/8 in. Horizontal Rebar	4600	10500

In a study conducted by Michie and Gatchell in 1974 [12], southern pine, red oak, and steel posts were tested with a pendulum. The testing showed that 152 mm x 152 mm (6 in. x 6 in.) and 152 mm x 203 mm (6 in. x 8 in.) wood posts have qualities equal or superior to those of W6x8.5 and S3x5.7 steel posts. They also concluded, similar to Rohde and Reid, that the performance of wood posts greatly depends on the location of knots. In their report, Michie and Gatchell suggested selecting posts based on the grain distortion caused by knots, avoiding knots that distort the grain in the tension face for more than a third of the width of the face.

Also in 1974, Michie, Gatchell, and Duke [13] performed dynamic tests on both round and rectangular wood posts of varying species and sizes fixed in a sleeve with an impact height of 610 mm (24 in.). Sizes ranged from 102-mm x 102-mm (4-in x 4-in.) to 203-mm x 203-mm (8-in x 8-in.), and included both rectangular and round cross-sections. The species tested consisted of Douglas Fir, Red Pine, Red Oak, and Southern Pine. Although no soil interaction was taken into account, the researchers concluded that the specific shape has little influence on results stating, "...the engineer can use sawed or

round material and expect equal performance for equal moments of inertia." Results from the experiment are shown in the Table 3 and Table 4 for round and rectangular post data, respectively.

Table 3. Dynamic Post Testing Results by Michie

Species	Nominal Width	Nominal Depth	Peak Force	Average Force	Fracture Energy
	(in.)	(in.)	(kips)	(kips)	(ft-kips)
	4.0	4.0	5.5	2.6	2.18
Red Oak	4.0	6.0	10.9	5.5	4.05
Neu Oak	6.0	6.0	11.6	5.1	3.54
	6.0	8.0	22.0	7.9	7.42
	4.0	6.0	8.2	3.6	2.35
Southern Pine	6.0	6.0	10.0	3.8	2.80
	8.0	8.0	26.1	10.1	11.80
	4.0	4.0	5.5	2.6	2.18
Douglas Fir	4.0	6.0	10.9	5.5	4.05
Douglas I II	6.0	8.0	11.6	5.1	3.54
	8.0	8.0	22.0	7.9	7.42

Table 4. Dynamic Post Testing Results for Red and Southern Yellow Pine Species

	Diameter Peak Avg. Force Force (in.) (kips) (kips)		Fracture Energy (ft- kips)	
Southern Yellow Pine	9	16.8	7.2	5.46
	6.10	4.1	2.2	0.92
	6.50	7.9	3.9	1.99
	6.60	5.7	2.8	1.28
	6.75	8.0	3.8	1.99
	7.25	12.0	6.5	3.50
	8.60	16.0	9.1	4.45
	9.10	17.1	10.3	5.66
Red Pine	9.30	21.4	9.8	7.65
i i i i i i i i i i i i i i i i i i i	6.50	8.1	3.6	1.81
	7.00	11.1	6.3	3.50
	7.00	6.5	2.7	1.81
	7.25	7.4	2.9	2.16
	7.75	16.8	11.7	6.50
	8.15	13.2	7.6	3.99
	8.50	21.3	20.5	10.57
	9.75	19.8	12.4	6.23

In 1978, Calcote et al. [14] studied the effects of soil on the performance of guardrail posts. Eighty pendulum tests were conducted on steel and wood posts in four different types of soil. As a control value, the tests were also conducted with posts in a fixed support. For this experiment, 152-mm x 203 mm (6-in x 8 in.) Douglas Fir posts were used with an 889-mm (35-in.) embedment depth. The mode of failure for all strong axis tests was soil yielding. For the weak-axis tests, the failure mode was generally post fracture with the exception of the saturated clay test in which the soil failed first.

Another study by Jeyapalan et al. [15] in 1984 compared 178-mm (7-in.) round Southern Yellow Pine (SYP) posts to W152x12.6 (W6x8.5) steel posts. In the study, three static tests were conducted for each of two types of soil, cohesive and cohesionless. Of the three tests in each soil type, two were steel posts embedded at depths of 1118 mm (44 in.) and 965 mm (38 in.), and one test consisted of a round wood post embedded at

965 mm (38 in.), all with a load height of 533 mm (21 in.). From these tests, the researchers concluded that round wood posts and steel posts perform very similarly. In the cohesive soil test, the 1118-mm (44-in.) deep steel post had nearly identical results to the 965-mm (38-in.) deep wooden post. The peak force and energy dissipated by the wood post were 16.5 kN (3.7 kips) and 5.7 kJ (50.4 kip-in.), respectively, while the equivalent values for the steel post were 16.9 kN (3.8 kips) and 5.8 kJ (51.6 kip-in.), respectively. The 965-mm (38-in.) deep steel post test resulted in 14.7 kN (3.3 kips) and 5.2 kJ (45.6 kip-in.) respectively, approximately 10 percent less than that observed for the round wooden post. In the cohesionless soil, the 1118-mm (44-in.) deep post surpassed the round post in both peak force and energy by about 20 percent, with a peak force of 17.3 kN (3.9 kips) and an energy value of 7.0 kJ (62.4 kip-in.). The 965-mm (38-in.) deep steel post, however, showed a higher peak force, 14.7 kN (3.3 kips), but a lower amount of absorbed energy, 5.7 kJ (50.4 kip-in.), than the round post.

In the dynamic tests in cohesive soil, the steel post's performance exceeded that of the wooden post in both peak force and total energy absorbed. Peak force for the steel post was 76 kN (17 kips) while the wood post's peak force was 73 kN (16 kips). The energy absorbed was 40.5 kJ (359 kip-in.) for the steel post and 36.9 kJ (326 kip-in.) for the wood post. A comparison for the cohesionless soil was not available due to the wood post fracturing almost immediately.

Based upon these static and dynamic tests, the researchers concluded that steel posts are sufficient substitutes for round posts used in guardrail systems found in Texas. The authors did caution that more tests should be completed in the future.

Bronstad et al. [16] conducted a study in 1988 on bridge rail transitions. A total of twelve pendulum tests were performed on both wood and steel posts. The impact height was 533 mm (21 in.) with a 1814-kg (4000-lb) pendulum. The different types of steel posts were tested at an embedment depth of 1118 mm (44 in.), with and without a 460 mm x 610 mm (18 in. x 24 in.) soil paddle, while the various sizes of wood posts used a 914-mm (36-in.) embedment depth. The results, presented in Table 5, showed two important findings: (1) the soil paddle does not make a significant difference in the stiffness or maximum force and (2) the W6x15.5 posts are nearly as stiff as the 254-mm x 254-mm (10-in x 10-in.) wood posts.

Table 5. Southwest Research Institute Pendulum Test Results

Test Category	Post Type	Maximum Force (Kips)	Avgerage Stiffness (k/in.)	Total Impulse (k-sec.)	Failure Type
	12 x 12 in. Wood	20.7	3.41	2.274	Soil Yield
	12 x 12 in. Wood	23.8	3.41	2.271	Soil Yield
Square	10 x 10 in. Wood	16.3	2.55	1.544	Soil Yield
Square	10 x 10 in. Wood	16.4	2.55	NA	Post Fracture
	8 x 8 in Wood	13.2	1.67	1.287	Soil Yield
	8 x 8 in Wood	11.6	1.07	1.091	Soil Yield
	W6x15.5 With paddles	20.4	2.4	2.475	Soil Yield
	W6x15.5 With paddles	18.3	2.4	2.45	Soil Yield
	W6x15.5 Without paddles	19.2	2.28	2.637	Soil Yield
	W6x15.5 Without paddles	17.3	2.20	2.215	Soil Yield
	W6x8.5	12.7		0.572	Soil Yield
Strong Axis	W6x8.5	12.7	2.46	0.879	Soil Yield
Stilling Axis	W6x8.5	10.2		0.5	Soil Yield
	W6x8.5	8.3		0.667	Soil Yield
	6 x 8 in. Wood	11.7		0.699	Soil Yield
	6 x 8 in. Wood	6.4	1.56	0.514	Soil Yield
	6 x 8 in. Wood	7.3	1.50	0.529	Soil Yield
	6 x 8 in. Wood	7.2		0.437	Soil Yield
	W6x15.5	10.8	1.3	1.74	Post Yield
	W6x15.5	10.5	1.0	1.717	Post Yield
	W6x8.5	4.8		0.28	Post Yield
	W6x8.5	4.1	1.15	0.243	Post Yield
Weak Axis	W6x8.5	5.1	1.15	0.287	Post Yield
	W6x8.5	4.3		0.284	Post Yield
	6 x 8 in. Wood	11.2		0.154	Post Fracture
	6 x 8 in. Wood	6.5	1.95	0.103	Post Fracture
	6 x 8 in. Wood	8	1.30	NA	Soil Yield
	6 x 8 in. Wood	11.1		0.186	Post Fracture

In 1995, Rohde and Reid [17-19] studied grading specifications and requirements for wood posts in W-beam guardrail. The authors noted that the grade of a post was significantly influenced by wane, missing wood on the corners of the post, even when it was located at the ends of the posts where it has little or no influence on performance. To deal with this problem, the posts were graded twice, once according to the Southern Pine Inspection Bureau (SPIB) standards [20] and a second time without considering wane on the ends of the posts. This re-grading significantly altered the grade of many posts.

After completing static and dynamic tests, the researchers concluded that there was no significant benefit achieved by requiring Grade 1 SPIB posts and suggested lowering the requirement to Grade 2 with the wane and knot criteria relaxed at the ends of the posts. The results were believed to effectively lower the costs of guardrail installations without adversely impacting its safety performance.

In 1996, Holloway et al. [21] conducted a study to evaluate a deeper post embedment. In this study, the researchers examined the use of a 1270-mm (50-in.) embedment depth as opposed to the standard 1118-m (44-in.) depth for both 152-mm x 203-mm (6-in. x 8-in.) grade 2 Southern Yellow Pine timber posts and W152x13.4 (W6x9) steel posts. Five dynamic tests were conducted for each, with one of the five utilizing the extended embedment depth. The researchers noted that timber posts performed better than steel in all cases. The test results also suggested that the additional 152 mm (6 in.) of embedment depth made little difference in the stiffness or the dynamic performance of the posts. This conclusion is contradictory to most other studies concerning post embedment depth and may be attributed to the very small sample size used in the tests or other variables not considered during the testing.

Goeller et al. [22], also completed post testing in 1997 for a project studying the soil-post interaction forces during a guardrail impact. Twenty-nine post tests were conducted in soil, eleven of which were 152-mm x 203-mm (6-in. x 8-in.) wood posts, twelve of which were W6x9 steel posts, and the remainder of which were W6x16 steel posts. The results showed that the wood posts produced a lower force than the steel posts and that a triangular soil pressure distribution most closely approximated the test data.

Also in 1997, Smith et al. [23] studied the interaction of posts and guardrail. Smith concluded that the reaction of the post during vehicular collisions significantly changes depending on the soil moisture content, stating that the higher the moisture content, the lower the load capacity. Results from the ten timber tests are shown in Table 6. An impact height of 544 mm (21.4 in.) was used for all tests.

Table 6. Post Testing Matrix and Test Results Summary

Post		Soil		Peak Force	Residual Force
Length (in.)	Embedment Depth (in.)	Material	Moisture Content (%)	(kips)	(kips)
72	44	Cohesive	17.5	14	13.63
72	44	Cohesive	21.7	6.5	4.77
72	44	Cohesive	23	4.8	4.84
72	44	Cohesive	20.6	6.95	5.56
72	44	Cohesive	12.1	15	11.82
72	44	Cohesive	12.7	11	10.82
78	52	Cohesive	12.7	10.7	0
78	52	Cohesive	13.1	14	13.56
72	44	Noncohesive	2.9	9.25	5
72	44	Noncohesive	4.1	4.11	1.75

Another study of the interaction of guardrail posts and soil was conducted by Coon et al. [24]. The study examined W152x13.5 (W6x9) and W152x23.8 (W6x16) steel posts and 152-mm x 203-mm (6-in. x 8-in.) wood posts with a 549-mm (21.6-in.) impact height as well as a 1092-mm (43-in.) embedment depth. The researchers found

that the energy absorbed when a wood post fractured was significantly lower than when a post rotated in the soil.

Also in 1998, Denman and Welch [25] developed the REGENT System, a flared-end terminal created to meet NCHRP Report 350 [26] Test Level 3 requirements. During their research, they noticed several problems that were attributed to the variation in the posts. For instance, in a system constructed with several Grade 2 posts followed by a Dense Select Structural post, the vehicle had a tendency to snag on the stronger post causing it to spin or rollover. After investigating the availability and the cost of stronger posts, it was decided to utilize a dual grading system, where the area 305 mm (12 in.) above and below the ground line was required to meet the select structural requirements and the remainder of the post length was allowed to fall into Grade 2.

A project completed by Kuipers and Reid [27] in 2003 studied the embedment depth for the steel posts used in the Midwest Guardrail System (MGS). In the post study, ten dynamic bogie tests were completed using standard W152x23.8 (W6x16) posts with an impact height of 630 mm (24.8 in.). W152x23.8 (W6x16) posts were used instead of the W152x13.4 (W6x9) typically used in the MGS system to avoid significant yielding of the posts during the tests, allowing researchers to focus on the influence of the soil behavior on the system.

Results from three specific tests in the study, NPGB 4, 9, and 10, are shown in Figure 1. The force from the three tests averaged about 35.1 kN (7.9 kips), with local force peaks exceeding that.

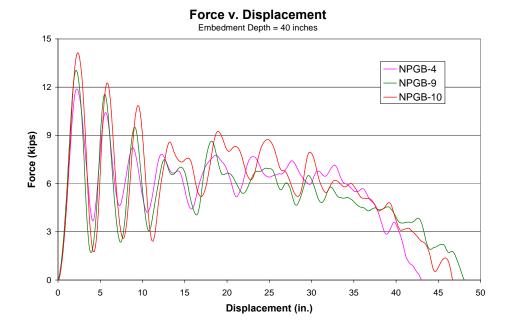


Figure 1. NPGB 4, 9, and 10 Bogie Testing Results

In the tests, it was noted that the shallow posts with a 939.8-mm (37-in.) embedment depth pulled out of the soil while the majority simply rotated in the soil. The report also showed that more energy was absorbed by the system when the posts rotated in the soil rather than being pulled out of the ground. The average energy absorbed by the rotating posts with a 1016-mm (40-in.) embedment depth was 29.8 kJ (263.8 kip-in.), while that of the posts utilizing a 940-mm (37-in.) embedment depth was only 24.9 kJ (220.4 kip-in.), resulting in a 16 percent decrease.

2.1.2 Full-Scale Crash Testing

In 1967, the federal government required that all guardrail systems pass dynamic testing. By doing so, the cost of guardrail increased by more than one dollar per foot. Bronstad [28] of SwRI and Burket of the Ohio Department of Highways looked for a way to reduce the cost. In order to verify compliance with the new regulations, six full-scale sedan crash tests were performed on several variations of the existing Ohio W-beam guardrail system. Each test examined an inexpensive modification that could be made on in-place guardrail systems, therefore avoiding the cost of replacement. Results are shown in Table 7.

Table 7. 1971 Southwest Research Institute Testing Summary

Test No.	Post Size	Weight (lbs)	Speed (mph)	Impact Angle (degrees)	Results
ODH-1	4 x 4 in.	4589	67	25	Vehicle Rolled
ODH-2	4 x 6 in.	4404	62	25.3	Good Redirection
ODH-3	7 in. diameter	4445	62.5	28.7	Vehicle Rolled
ODH-4	6 in. diameter	4242	63.1	28.3	Good Redirection (High Roll Angle)
ODH-5	6 x 6 in. Notched	4407	70.8	26.7	Good Redirection

Tests ODH 2, 4, and 5 were considered successful tests, and all three would be able to be used in roadside applications. Tests ODH 1 and 3 failed due to the vehicle rolling.

In 1988, Sicking et al. [29] conducted a study to optimize strong-post W-beam guardrail systems to lower the costs of installation and maintenance. Several full-scale sedan crash tests were completed, including tests on W-beam guardrail systems using round, 178-mm (7-in.) diameter wood posts and W152x12.6 (W6x8.5) steel posts with both 965-mm (38-in.) and 1219-mm (48-in.) embedment depths. It was found that the designs utilizing wood posts carried a much lower cost than systems using the equivalent steel counterparts. The study also found that by using an increased post spacing of 2,540

mm (100 in.) and a new 965-mm (38-in.) embedment depth, the cost for both steel and wood systems could be drastically reduced. Lastly, the report added that block-outs could be used if desired, but they were not found to be cost beneficial. The block-outs would only help to alleviate wheel snag that proved to be only a minor issue in the tests conducted.

Also in 1988, Sicking et al. [30] developed two new end treatments for the standard guardrail system that met the NCHRP 230 [31] requirements. This research effort included full-scale vehicle crash tests of a guardrail system with round, wood posts. Domed 178-mm (7-in.) diameter by 1,905-mm (75-in.) long posts were used in the system with a 965-mm (38-in.) embedment depth and a top of rail height of 686 mm (27 in.). The tests included both head-on and rail-face impacts, and proved that terminals utilizing round wood posts met impact performance guidelines.

In 1995, Bligh and Bullard [32-34] conducted a full-scale crash test of W-beam guardrail with round, Southern Pine posts. This particular test followed NCHRP Report 350 test designation 3-11, using a 2,000-kg (4409-lb) pickup truck impacting at 100 km/h (62.14 mph) and 25 degrees. The Southern Pine posts were 184 mm (7.25 in.) in diameter by 1,905 mm (75 in.) long and spaced at 1905 mm (75 in.). The embedment depth was 1,118 mm (44 in.). The blockouts were fabricated with one concave side to meet flush with the round posts. The test was successful since the vehicle was safely contained and redirected with little damage or intrusion into the occupant compartment. The researchers determined the most critical concern with the test to be the high exit angle of 26.1 degrees. However, upon review of the vehicle trajectory after leaving the rail, the possible problems derived from this high exit angle were considered to be

minimal. Therefore, TTI researchers suggested that the round post system was nearly equivalent to the standard G4(2W) system and was an acceptable substitute.

In another research project, Rosson, Bierman, and Rohde [35-36] looked at methods to reduce the deflection of guardrail placed directly in front of roadside hazards. Four full-scale crash tests were conducted using steel posts, and computer simulations were used in place of four additional tests with timber posts. To complete the simulations, twenty dynamic post tests were completed, with the results presented in Table 8. The researchers found that the best option was to reduce the post spacing to half the normal spacing.

Table 8. Rosson, Bierman and Rohde Post Test Summary

Soil Type	Moisture Content	Embedment Depth	Post Type	Avgerage Force (kips)	Peak Force (kips)	Fracture Energy (kip-in.)
	Low (12%)	Extended 1270 mm (50 in.)	Steel	10.76	13.45	225.96
			Timber	10.72	13.4	225.12
		Standard 1118 mm (44 in.)	Steel	13.56 9.85	16.95 12.31	284.76 206.85
				8.55	10.69	179.55
			Timber	11.82	14.78	248.22
Clay				10.82	13.53	227.22
Clay		Standard 1118 mm (44 in.)	Steel	11.29	14.11	237.09
	Optimum (17%)			8.31	10.39	174.51
High (25%)			Timber	13.63	17.04	286.23
				5.56	6.95	116.76
		Standard 1118 mm (44 in.)	Steel	4.44	5.55	93.24
	High (25%)			4.88	6.1	102.48
	1 light (2570)		Timber	4.77	5.96	101.64
				4.87	6.05	135.24
Sand	Unsaturated	Standard 1118 mm (44 in.)	Steel	5.97	7.16	125.37
				4.43	5.54	93.03
Sanu			Timber	6.44	8.05	135.24
				2.49	3.11	52.29

An additional project utilizing round wooden posts in a guardrail transition to concrete bridge rail was completed in 1999 by Buth et al. [37]. The Southern Pine posts used were 178 mm (7 in.) in diameter and 1905 mm (75 in.) long with a 1118-mm (44-in.) embedment depth. Once again, blockouts with a concave side were used to make a flush connection between the post and the blockout. The first test failed to meet NCHRP

Report 350 requirements, but with the insertion of two 3200 mm (126 in.) long pieces of 89 mm (3.5 in.) diameter pipe into the tubular rail element, the system proved to be adequate.

In 2004, Seckinger et al. [38-39] issued a report on a study of guardrail systems encased in pavement mow strips. In the study, steel and 178-mm (7-in.) diameter round, Southern Pine posts were tested in mow strips constructed of concrete or asphalt with various types of fill, including grout, asphalt, and rubber mats. After both bogie and full-scale testing, the recommendation was to assure a minimum 457-mm x 457-mm (18-in. x 18-in.) leave-out, or gap in the mow strip, and to fill the leave-out with a standard two-sack grout. Systems using both W152x13.4 (W6x9) steel and 178-mm (7-in.) diameter, round wood posts were successfully tested. The results showed the importance of post rotation in the success of guardrail systems. If rotation was not important, no leave-out would be required.

In summary, numerous bogie tests have been conducted on steel, rectangular wood, and round wood guardrail posts in both soil and a cantilever sleeve. Cantilever tests on round posts were conducted for Red Pine on posts with diameters ranging from 155 mm (6.1 in.) to 248 mm (9.75 in.), and led to the conclusion that for an equivalent moment of inertia, rectangular and round wood posts behaved the same.

Soil bogie tests were also conducted for a variety of posts. Round wood tests included a test on a 178 mm (7 in.) diameter SYP post embedded at 965 mm (38 in.), which showed behavior similar to steel posts embedded at 1118 mm (44 in.). Other soil tests largely concentrated on steel posts and 152-mm x 203-mm (6-in. x 8-in.) rectangular wood posts. The general trend was that the two behaved very similarly, with some tests

suggesting steel posts were better and others suggesting wood posts were better. Another conclusion that was made from the testing was that increased soil moisture content lowered the capacity of the soil, and therefore the energy absorbed by a given type of post.

Full-scale crash tests were also conducted to meet NCHRP Report 230 requirements. These tests include those conducted at TTI on a standard guardrail system built with 178-mm (7-in.) diameter SYP posts embedded at both 965 mm (38 in.) and 1219 mm (48 in.). NCHRP Report 230 tests were also conducted on end treatments for the system using the same 178-mm (7-in.) diameter posts. The results suggested that utilizing round wood posts lowered the cost of the system.

Those full-scale tests meeting the requirements of NCHRP Report 350 include tests conducted on a guardrail system and a bridge rail transition section, respectively utilizing 184-mm (7.25-in.) diameter and 178-mm (7-in.) diameter SYP posts, both of which were embedded at 1118 mm (44 in.), respectively. The success of these systems formed the foundation for the work in this study.

The effects of concrete or asphalt mow strips were also investigated under NCHRP Report 350 for a system using 178-mm (7-in.) diameter SYP posts. The findings specified a minimum leave out section of 457-mm x 457-mm (18-in. x 18-in.).

2.2 Grading

In the United States, six associations are responsible for establishing and publishing grading rules. Since this study was limited to the Douglas Fir and Ponderosa Pine species, only two were determined to be applicable, the Western Wood Products Association (WWPA) [40] and the West Coast Lumber Inspection Bureau [41].

Although not an exact science, grading lumber is a means of separating the lumber by its quality, strength, and appearance. One set of grading rules, published by the WWPA, pertains to the Ponderosa Pine and Douglas Fir species. These rules separate timber into eight categories, Select Structural, No. 1, No. 2, and No. 3, and four corresponding dense categories. Dense grades follow the same guidelines as the other four categories, but have 6 or more annual rings per inch with 1/3 or more of the ring being summerwood. The grading criteria are listed in Table 9. Lumber can also be categorized as dense if at least 1/2 of the material is summerwood.

Table 9. WWPA Timber Grading Summary

Defect	Select Structural	No. 1	No. 2	No. 3	
Checks	Seasoning checks - single or opposite with sum less than half the thickness of a piece	Seasoning checks - single or opposite with sum less than half the thickness of a piece	Seasoning Checks	Seasoning Checks	
Pockets	Medium Pitch Pockets	Medium Pitch Pockets	Pitch or Bark Pockets	Pitch or Bark Pockets	
Slope of Grain	1 in 12	1 in 10	1 in 6	No Limit	
Shakes	1/3 Thickness on end	1/3 Thickness on end	1/2 length, 1/2 thickness, limited as splits if through ends	Full length if not continuous	
Splits	Equal in length to 3/4 thickness of the piece or equivalent end checks	Equal in length to width of the piece or equivalent end checks	Medium or equivalent end checks	1/4 length	
Wane	1/8 width of any face or equivalent slightly more for short distances	1/4 width of any face or equivalent slightly more for short distances	1/3 width of any face or equivalent slightly more for short distances	1/3 width of any face or equivalent slightly more for short distances	
Skips	Occasional 1/16 in deep, 2' long	Occasional 1/8 in deep, 2' long	1/8" deep, 2' long, 1/16" deep if full length	1/8" in both width and thickness if surfaced, 1/2" scant if rough	
Knots	As Per Table 13				

The WWPA rules contain many different criteria for knots depending on the grade. Table 10 shows the acceptable knot sizes for the top three grades. Knots for Grade No. 3 are simply limited to ³/₄ the width of the face on which the knot is found. In the WWPA rules, the knot size permitted on the widest face is permitted on all faces.

Table 10. WWPA Knot Grading Criteria

Wide Face	Knot Size Permitted				
Width	Select Structural Timbers	Grade No. 1	Grade No. 2		
5"	1"	1-1/2"	2-1/4"		
6"	1-1/4"	1-7/8"	2-3/4"		
8"	1-5/8"	2-1/2"	3-3/4"		
10"	2"	3-1/8"	4-3/4"		
12"	2-3/8"	3-3/4"	5-3/4"		
14"	2-1/2"	4"	6-3/4"		
16"	2-3/4"	4-1/4"	7-3/4"		
18"	3"	4-1/2"	8-3/4"		

The second set of grading rules is Standard No. 17, written by the West Coast Lumber Inspection Bureau (WCLB). This standard pertains to the Douglas Fir species and specifies grading rules identical to those of the WWPA with two exceptions. First, Standard No. 17 does not separate mining grades from post and timber grades as the WWPA does. Second, there is no No. 3 grading category. Since, mining grades are not assigned stress values, they will not be relevant to the study. The relevant WCLB grades are Select Structural, No. 1 Structural, and No. 2 Structural. These grades are exactly equivalent to WWPA grades Select Structural, No.1, and No. 2, respectively.

3 SAMPLING

3.1 Sample Collection

Initially, a post diameter was selected for the two species based on the success of 184-mm (7.25-in.) diameter Southern Pine guardrail posts in the full-scale crash tests conducted by Bligh and Bullard [32-34] in 1995. Sizes were determined based on tabulated Douglas Fir and Ponderosa Pine strength values to carry a bending moment equivalent to that of the Southern Pine posts. These sizes were 216 mm (8.5 in.) for Ponderosa Pine and 191 mm (7.5 in.) for Douglas Fir as shown in Figure 2. The 1981-mm (78-in.) length was arbitrarily selected to assure enough length to increase the post embedment depth if needed.

Figure 2. Major Dimensions of Round Wood Posts

Unlike some materials, wood is highly variable. Its strength can drastically change with variation in species, ring density, knot size and density, moisture content, and even region of origin. Ponderosa Pine is simply not as strong as Douglas Fir, and both are typically weaker than Southern Yellow Pine.

Attempting to investigate the effects of the two most influential variables, knots and ring density, three categories of posts were defined. The categories were low ring density without knots (BASELINE), low ring density with knots (KNOTS), and high ring density without knots (HRD). Posts were categorized based on ring density, knot frequency, and knot density. Posts with 4 or fewer rings-per-inch were defined as low ring density and 6 or more rings-per-inch were defined as high rings density. Posts with any knots larger than 63.5 mm (2.5 in.) in diameter were placed in the knots category, while posts with knots that were less than 38.1 mm (1.5 in.) in diameter were considered to be without knots and could be placed in the baseline or HRD categories. A portion of the testing was intended to isolate the properties of posts in these three categories and a portion was intended to determine the properties of the random population.

Categorized posts were selected first to assure that each category had a sample of 10 posts. When those 30 posts were selected, another 40 posts were randomly pulled from the production line to establish a random population sample for static testing. Ponderosa Pine samples were donated by Hill Products Group, and Douglas Fir samples were donated by All-Weather Wood Products.

When the sample arrived at the test site, researchers estimated the Modulus of Elasticity (MOE) for each post using a stress wave technique [42]. Using this technique, each post was tapped once with a hammer, sending a stress wave through the post. At the same time, a sensor determined the time the stress wave took to travel to the other end of the post and return. Knowing this time and the length of the post, the wave velocity could be calculated and used with the mass density to determine the MOE. Posts were then ranked within each category by the estimated MOE values. Once the order was

determined, the posts were paired in order, making a total of five pairs per category. With both posts in a pair having similar MOE values, one was randomly chosen to be sent to the Forest Products Lab for static testing and the other remained in Lincoln for dynamic testing.

3.2 Sample Documentation

The posts were extensively documented. Moisture contents were measured at three locations: 533 mm (21 in.), 991 mm (39 in.), and 1448 mm (57 in.) from the bottom of the post using a pin-type moisture meter. The area within this region was defined as the critical zone, the zone where fracture was likely to occur. Circumference was also measured in the three locations of the critical zone and additionally at both the top and bottom of the post. Weights and lengths were measured to determine an approximate density. Ring counts were taken over a three-inch length, and knots were carefully documented. Photographs of each post were also taken during documentation.

To record the knots on the round posts, a unique procedure had to be adopted. A circular template with a radial mark at every 5th degree, similar to a protractor, was created to sit on top of the post. An arrow was randomly drawn on the top of the posts, defining the front of each post, and the zero-degree mark was aligned with the arrow. Each knot was given an angle and a distance from the top of the post down to the center of the knot. Additionally, dimensions were recorded for the size of each knot. The same procedure was used for gouges and other defects in the posts. Summaries of the documentation are presented in Table 11 and Table 12. Tables containing all of the post properties are presented in Appendix A.

Table 11. Ponderosa Pine Pre-test Documentation

	Post	Weight	Avg.	Circum	ference (i	n.)	Volume	Density		ture Conter	nt (%)	Ring
	Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	Density (rings/in.)
	101	77	77.979	25.958	26.125	26.000	4191	0.0184	20	19	19	6.00
	104	119.5	78.042	28.250	27.750	28.125	4923	0.0243	22	19	23	5.67
	105	115	78.042	27.708	27.375	27.500	4742	0.0243	19	16	26	7.33
	106	73	77.875	27.917	28.125	27.375	4822	0.0151	32,21	33,19	29,18	5.67
	109	81	78.000	26.333	25.625	28.125	4355	0.0186	20	18	17	5.00
	111	105	78.000	27.792	27.750	27.750	4790	0.0219	19	19	22	14.00
Ponderosa Pine	112	112	78.000	28.083	27.000	28.125	4847	0.0231	23	19	19	25.00
Ponderc	117	77	78.083	27.917	27.625	27.500	4805	0.0160	20	22	18	18.33
	118	102	77.938	28.125	27.500	28.000	4875	0.0209	19	20	19	9.33
	120	128	78.021	27.708	27.500	27.750	4758	0.0269	20	19	22	12.67
	122	110	78.063	28.417	30.375	27.750	5078	0.0217	21	19	23	11.00
	123	75	78.000	25.333	27.125	26.250	4104	0.0183	23	20	16	11.67
	124	99	78.042	27.833	27.875	28.250	4832	0.0205	22	23	19	16.67
	127	116	78.021	27.750	27.500	28.000	4781	0.0243	25	22	28	13.00
	128	83	78.000	25.833	27.375	25.375	4192	0.0198	16	15	16	10.67

Table 12. Douglas Fir Pre-test Documentation

	Post	Weight	Avg.		ference (i	n.)	Volume	Density		ture Conter	nt (%)	Ring
	Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	Density (rings/in.)
	2	55	78.250	23.083	22.625	23.500	3308	0.0166	30	25	43	9.67
	3	63	77.958	22.542	22.875	22.750	3175	0.0198	51,26	45,28	54,30	25.67
	6	58	77.083	22.958	23.000	22.375	3252	0.0178	23	22	24	8.00
	9	59	78.000	22.917	22.625	23.375	3267	0.0181	26	26	24	14.33
	10	60	78.042	23.042	22.500	22.750	3264	0.0184	21	20	31	7.00
	11	55	78.042	23.083	22.625	23.000	3287	0.0167	22	33	22	19.33
Douglas Fir	13	62	77.521	22.958	22.750	23.000	3267	0.0190	43	30	51	8.33
Doug	15	71	78.000	22.833	22.875	23.125	3249	0.0219	45	39	50	11.00
	18	50	78.000	22.667	22.250	22.375	3163	0.0158	27	26	31	10.00
	20	56	78.000	22.833	22.750	22.875	3236	0.0173	21	23	25	13.00
	22	46	77.917	23.208	23.500	23.000	3348	0.0137	30	26	32	5.33
	24	63	77.438	22.542	23.125	22.500	3177	0.0198	34	28	32	5.33
	25	63	77.750	23.583	23.500	23.500	3447	0.0183	50	53	45	7.33
	26	56	77.375	23.000	23.000	22.250	3256	0.0172	55	27	48	6.33
	27	49	77.500	23.125	23.125	22.875	3310	0.0148	22	30	25	6.00

As the moisture content of a wood post increases up to 23 percent, the strength of the wood fibers within the post decreases. Beyond 23 percent, the wood strength is fairly constant. In their actual use, the moisture content may exceed 23 percent, and therefore the posts would be saturated. Upon completion of documentation, the posts were placed in a 1219-mm (48-in.) deep tank of water in an effort to saturate the critical zone of the posts, replicating the worst case scenario the posts may when used in a guardrail system.

The moisture content and weight of the posts were measured again on test day to give a more accurate representation of the posts after they had been soaked in water. The results of those measurements are shown in Table 13 and Table 14. Note that all of the posts were saturated in the critical region.

Table 13. Douglas Fir Test Day Measurements

		Weight		Moisture Content (%	b)	Circumference at Bottom
Test No.	Post No.	(lbs)	21 in. from Top	Mid-Length	21 in. from Bottom	(in.)
DF-1	2	76	10	37	59	23 5/8
DF-2	3	76	16	40	56	22 7/8
DF-3	6	64	16	50	65	22 3/4
DF-4	9	64	15	30	64	23 1/2
DF-5	10	67	16	67	64	23
DF-6	11	74	15	41	63	23 1/4
DF-7	13	73	17	62	59	23 1/8
DF-8	15	82	16	55	59	23 3/8
DF-9	18	70	18	31	61	23
DF-10	20	73	15	51	57	23 1/4
DF-11	22	61	24	29	37	23 1/4
DF-12	24	61	17	28	31	22 3/4
DF-13	25	75	40	31	32	23 5/8
DF-14	26	68	18	26	45	22 1/2
DF-15	27	64	22	51	61	23 1/2

Table 14. Ponderosa Pine Test Day Measurements

		Weight	N	loisture Content (%)	Circumference at Bottom
Test No.	Post No.	(lbs)	21 in. from Top	Mid-Length	21 in. from Bottom	(in.)
PP-1	101	113	17	39	43	26
PP-2	104	130	16	27	26	28
PP-3	105	131	16	28	31	27 1/2
PP-4	106	97	15	39	38	27 1/2
PP-5	109	90	13	18	38	29 1/4
PP-6	111	120	15	35	38	28 3/4
PP-7	112	128	19	26	27	29 1/4
PP-8	117	101	15	33	38	28 3/4
PP-9	118	112	15	23	36	28
PP-10	120	130	17	29	30	28
PP-11	122	149	19	51	49	27 3/4
PP-12	123	103	31	48	41	27 1/4
PP-13	124	133	17	43	52	29 3/8
PP-14	127	125	21	32	36	28
PP-15	128	93	26	42	47	25 1/2

4 PHYSICAL TESTING - ROUND ONE

4.1 Purpose

In previous research, there has been no dynamic testing of round Ponderosa Pine or Douglas Fir posts, and therefore bogie tests were undertaken on both species to determine their dynamic properties.

4.2 Scope

Initial bogie tests were conducted with the round posts installed in a rigid steel sleeve embedded in concrete. Fifteen tests were conducted for both species. The target impact condition for the tests was 32 km/h (20 mph), with the impact occurring at the centerline of the bogie, 632 mm (24.875 in.) above the ground. The angle of impact was irrelevant since a round cross-section does not have a strong or weak axis. Therefore, the arrow randomly drawn on the top of the post during documentation was used as the impact side. The testing matrix for the thirty initial tests is shown in Figure 3 below, and the test setup and impact conditions are shown in Figure 4.

			Post Length	Post Diameter
Test No.	Post No.	Wooden Post Type	(in.)	(in.)
DF-1	2	Douglas Fir	78.3	7.35
DF-2	3	Douglas Fir	78.0	7.18
DF-3	6	Douglas Fir	77.1	7.31
DF-4	9	Douglas Fir	78.0	7.29
DF-5	10	Douglas Fir	78.0	7.33
DF-6	11	Douglas Fir	78.0	7.35
DF-7	13	Douglas Fir	77.5	7.31
DF-8	15	Douglas Fir	78.0	7.27
DF-9	18	Douglas Fir	78.0	7.22
DF-10	20	Douglas Fir	78.0	7.27
DF-11	22	Douglas Fir	77.9	7.39
DF-12	24	Douglas Fir	77.4	7.18
DF-13	25	Douglas Fir	77.8	7.51
DF-14	26	Douglas Fir	77.4	7.32
DF-15	27	Douglas Fir	77.5	7.36
PP-1	101	Ponderosa Pine	78.0	8.26
PP-2	104	Ponderosa Pine	78.0	8.99
PP-3	105	Ponderosa Pine	78.0	8.82
PP-4	106	Ponderosa Pine	77.9	8.89
PP-5	109	Ponderosa Pine	78.0	8.38
PP-6	111	Ponderosa Pine	78.0	8.85
PP-7	112	Ponderosa Pine	78.0	8.94
PP-8	117	Ponderosa Pine	78.1	8.89
PP-9	118	Ponderosa Pine	77.9	8.95
PP-10	120	Ponderosa Pine	78.0	8.82
PP-11	122	Ponderosa Pine	78.1	9.05
PP-12	123	Ponderosa Pine	78.0	8.06
PP-13	124	Ponderosa Pine	78.0	8.86
PP-14	127	Ponderosa Pine	78.0	8.83
PP-15	128	Ponderosa Pine	78.0	8.22

NOTES:

- (1) TARGET SPEED = 20 MPH
- (2) IMPACT ORIENTATION: CENTERLINE OF POST (W/ARROW POINTING TOWARD BOGIE) AND CENTERLINE OF BOGIE

Figure 3. Bogie Testing Matrix

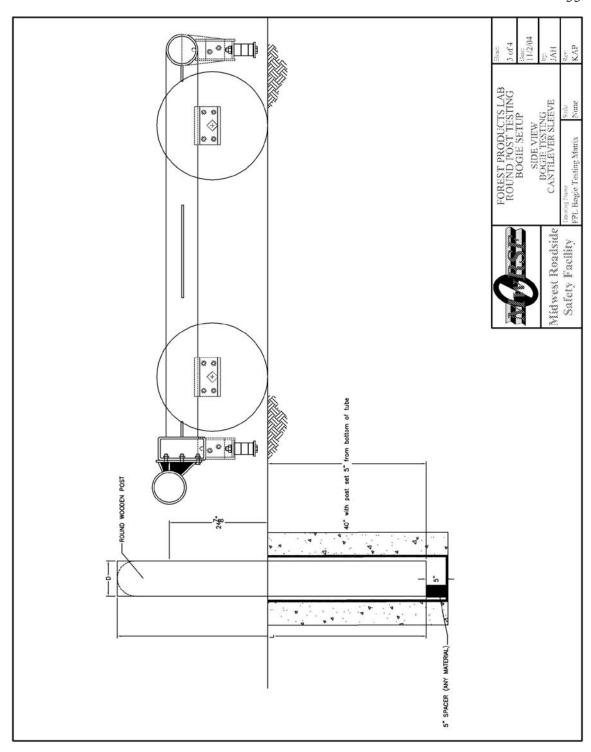


Figure 4. Bogie Testing Setup

4.3 Round Wood Post

Compared to steel sections, wood posts have highly variable sizes. Although two posts may have the same nominal diameter, it is not likely that the actual diameters will be the same. Because of this, it is incorrect to compare the resistive moments or resistive forces of the posts directly. Instead, a factor must be introduced that allows comparisons to be made between posts with different sizes. This factor is the Modulus of Rupture.

The Modulus of Rupture (MOR) is the maximum stress felt in the outer fibers of the post. The MOR is calculated by dividing the maximum bogie impact moment, M_{MAX} , by the section modulus, S, of the post. Because it is a stress value, the cross-section and the applied moment have already been taken into account, making it possible to compare post strengths without consideration of the cross-section or loading condition.

$$MOR = \frac{M_{MAX}}{S} \qquad S = \frac{(\pi)(r)^3}{4}$$

Figure 5. Bending Stress Distribution

4.4 Equipment and Instrumentation

A variety of equipment and instrumentation was used to record and collect data. It was important to gather correct data using affordable instrumentation in order to understand and derive meaningful conclusions of the physical tests. Equipment and instruments utilized in this testing included:

Bogie

- Accelerometer
- Pressure Tape Switches
- Photography Cameras
- Digital Video Cameras

4.4.1 Bogie

A rigid-frame bogie was used to impact the posts. A variable height, detachable impact head was constructed and used in the testing. The bogie head was constructed of 203-mm (8-in.) diameter, 12.5-mm (0.5-in.) thick standard steel pipe, with 19-mm (0.75-in.) neoprene belting wrapped around the pipe to prevent local damage to the post from the impact. The impact head was bolted to the bogie vehicle, creating a rigid frame. The bogie with the impact head is shown on the guidance track in Figure 6. Use of this impact head allowed a 632-mm (24.875-in.) impact height, corresponding to the MGS mounting height. The weight of the bogie with the addition of the mountable impact head was 728 kg (1605 lbs). The speed chosen for the first set of impact tests, 32 km/h (20 mph), approximated the lateral velocity of the posts in a full scale system impact.

A pickup truck with a reverse cable tow system was used to propel the bogie. When the bogie reached the end of the guidance system, it was released from the tow cable, allowing it to be free rolling when it impacted the post. A remote braking system was installed on the bogie allowing it to be safely brought to rest after the test.

Figure 6. Rigid Frame Bogie on Guidance Track

4.4.2 Accelerometer

One triaxial piezoresistive accelerometer system with a range of ±200 G's was mounted on the bogie vehicle near its center of gravity, and used to measure the acceleration in the longitudinal, lateral, and vertical directions at a sample rate of 3,200 Hz. The accelerometer, Model EDR-3, was developed by Instrumental Sensor Technology (IST) of Okemos, Michigan. The EDR-3 was configured with 256 Kb of RAM memory and a 1,120 Hz lowpass filter. Computer software, "DynaMax 1 (DM-1)" and "DADiSP", were used to analyze and plot the accelerometer data.

4.4.3 Pressure Tape Switches

Three pressure tape switches, spaced at 1-m (3.3-ft) intervals and placed near the end of the bogie track, were used to determine the speed of the bogie before the impact. As the front left tire of the bogie passed over each tape switch, a strobe light was fired sending an electronic timing signal to the data acquisition system. The system recorded the signals and the time each occurred. The speed was then calculated using the spacing between the sensors and the time between the signals.

4.4.4 Photography Cameras

One high-speed Photron digital video camera or one high-speed VITcam digital video camera, both with speeds of 500 frames per second, was used to document each test. One Canon digital video camera with a speed of 29.97 frames per second was also employed to document each test. Both cameras were placed approximately 25 ft from the centerline of the posts, with a field of view perpendicular to the bogie's direction of travel. Flood lights were used to light the base of the posts, allowing the fracture and fracture surface to be clearly examined in the videos. A Nikon Coolpix 8700 digital camera was used to document pre- and post-test conditions of each post.

4.5 Data Processing

Initially, the data was filtered using a SAE Class 60 Butterworth filter conforming to the SAE J211/1 specifications [43-44]. The processed acceleration data was then multiplied by the mass of the bogie to get the impact force using Newton's Second Law. Next, the acceleration trace was integrated to find the change in velocity. Initial velocity of the bogie, calculated using the data from the pressure tape switches, was then used to determine the bogie velocity throughout the test. The calculated bogie's velocity trace was then integrated to find the displacement. Subsequently, the force-deflection curve was plotted for each test. Finally, integration of the force-deflection curve provided the energy-displacement curve for each test.

4.6 End of Test Determination

During an impact, the accelerometer records the accelerations the bogie feels from all sources, not just the post. Because of this, vibrations in the bogie vehicle, impact head, and accelerometer mounting assembly are also recorded and result in a high

frequency acceleration trace. Since the bogie vehicle may still be vibrating after the impact event, the data may extend well beyond the failure of the post. For this reason, the end of the test needed to be defined in some manner.

In general, this event time was identified as the third time the filtered acceleration trace crossed the X-axis from positive to negative. However, in many cases this resulted in unreasonably long test durations, so two limits were established. First, all tests were limited to a 20 in. maximum deflection because it was decided that no post would have the capacity to deflect more than 508 mm (20 in.) in a cantilever sleeve without complete fracture. Second, each test was limited by the bogie-post contact time. For each test, the high-speed video was used to establish the length of time the bogie was actually in contact with the post. This time was then used to define the end of the test.

5 ROUND 1 CANTILEVER TEST RESULTS

5.1 Introduction

Accelerometer data was processed for each test in order to obtain acceleration, velocity, and displacement curves, as well as force-deflection curves. Individual test results are provided in Appendix B. A summary of all of the round one tests is provided in Table 15 for the Ponderosa Pine species and Table 16 for the Douglas Fir species.

5.2 MOR Results

The MOR was calculated for each test and is shown in the mentioned tables. Douglas Fir resulted in the highest average MOR value of 59.4 MPa (8.6 ksi), and Ponderosa Pine resulted in an average MOR value of 49.0 MPa (7.1 ksi). As expected due to the dynamic nature of the testing and the benefits of the round cross-section, both MOR averages were higher than the tabulated values of 52 MPa (7.5 ksi) for Douglas Fir and 35 MPa (5.1 ksi) for Ponderosa Pine found in the Wood Handbook [45].

5.2.1 Ponderosa Pine

The 48.0 MPa (7.1 ksi) average MOR for Ponderosa Pine can also be broken down into three categories. The baseline category, low ring density without knots, showed the lowest MOR with a value of 39.0 MPa (5.66 ksi). The high ring density category showed the highest MOR with a value of 63.3 MPa (9.18 ksi), while the knots category fell in between with an MOR of 44.8 MPa (6.50 ksi). Although the results may seem alarming since the knots category fell above the baseline category, special attention should be given to the ring density of the posts within the knots category as it was, on average, more than twice as high as the ring density of the posts within the baseline

category. This is likely the reason the knots category was stronger than the baseline category.

5.2.2 Douglas Fir

Similar to Ponderosa Pine, the baseline category also ranked lowest for the Douglas Fir tests with an average MOR of 51.7 MPa (7.50 ksi). Next highest was the knots category at 60.9 MPa (8.83 ksi). Highest for the species, the HRD average MOR was 65.5 MPa (9.50 ksi). The difference between the highest and lowest categories was more than 25 percent, a significant variation for posts of the same species from the same region. Once again, the average ring density for the knots category was more than twice that of the baseline category, likely resulting in a large influence on strength.

These results demonstrate that there may be some correlation between the presence of knots and a higher ring density. The random sample, however, does not strongly support this, since posts with small knots also have a high ring density. Instead, it suggests that the average ring density for the baseline category was abnormally low. For Ponderosa Pine, the average ring density for the baseline category was 5.9 rings-perinch, while the random population average was 11.6 rings-per-inch. The same is true for Douglas Fir in which case the average ring density for the baseline category was 6.1 rings-per-inch, and the random population average was 10 rings-per-inch.

5.3 Force Results

As stated previously, the guardrail posts must have sufficient strength to overcome the soil resisting moment. This means that the peak force a post is able to resist is a key factor in determining its acceptability.

5.3.1 Ponderosa Pine

For the Ponderosa Pine species, the average peak force was 83.6 kN (18.8 kips) with a standard deviation of 28.8 kN (6.5 kips). The maximum force from this set of tests was 144.3 kN (32.4 kips) and was from test PP-7, a HRD post. The minimum force was 56.8 kN (12.8 kips). The highest average force for a category was 112.9 kN (25.4 kips) for the HRD category. The knots category was next with 73.3 kN (16.5 kips). Finally, the baseline category showed the lowest average force at 64.7 kN (14.5 kips).

5.3.2 Douglas Fir

The second species had a lower average peak force value of 58.7 kN (13.2 kips), but also had a much smaller diameter. From the MOR data, if posts of the two species would have been the same size, the Douglas Fir posts would have had the higher peak force capacity.

The standard deviation for the tests was 13.2 kN (2.8 kips). The post with the highest peak load was DF-2 from the HRD category with a peak of 83.5 kN (18.8 kips). The lowest force value was 39.8 kN (9.0 kips) recorded from test DF-11 which was one of the five baseline tests. The averages for individual categories were 64.4 kN (14.5 kips) for the HRD category, 59.7 kN (13.4 kips) for the knots category, and 51.0 kN (11.7 kips) for the baseline category.

Table 15. Dynamic Ponderosa Pine Round Wood Post Test Results

			ory	Ring	Ave	rage			Pea	ak Ford	е					Ruptur	е		Moisture	Modu	ulus of	lm	pact
	Post	Post	ego	Density	Dian	•	Time	Fo	rce	Defle	ction	En	ergy	Time	Defle	ection	En	ergy	Content	Ru	oture		ocity
	Test No.	No.	Cat	rings/in.	mm	(in.)	ms	kN	(kips)	mm	(in.)	kJ	(kip-in.)	ms	mm	(in.)	kJ	(kip-in.)	(%)	Мра	(k/in. ²)	m/s	(mph)
	PP-1	101	Е	6.00	210	(8.3)	5.3	57.1	(12.8)	49	(1.9)	1.24	(10.9)	46.6	410	(16.2)	3.80	(33.7)	43	39.8	(5.77)	9.2	(20.6)
	PP-2	104	뵘	5.67	228	(9.0)	5.6	66.5	(15.0)	50	(2.0)	1.51	(13.3)	60.6	509	(19.9)	4.65	(41.1)	26	35.9	(5.21)	8.9	(20.0)
	PP-3	105	SEL	7.33	224	(8.8)	5.6	75.1	(16.9)	50	(2.0)	1.76	(15.6)	15.3	132	(5.2)	5.11	(45.3)	31	43.0	(6.24)	9.0	(20.2)
	PP-4	106	BAS	5.67	226	(8.9)	5.3	61.5	(13.8)	49	(1.9)	1.42	(12.6)	35	317	(12.5)	2.59	(22.9)	38	34.4	(4.99)	9.4	(21.0)
	PP-5	109		5.00	213	(8.4)	12.2	63.2	(14.2)	108	(4.3)	3.26	(28.9)	53.1	451	(17.7)	5.26	(46.6)	38	42.1	(6.11)	9.1	(20.4)
	BASELIN	NE Ave	rage	5.93	220	(8.7)	6.8	64.7	(14.5)	61	(2.4)	1.84	(16.3)	42.12	364	(14.3)	4.28	(37.9)	35	39.0	(5.66)	9.1	(20.4)
	PP-11	122		11.00	230	(9.0)	6.6	83.4	(18.8)	61	(2.4)	1.98	(17.6)	16.3	145	(5.7)	5.56	(49.2)	49	44.3	(6.42)	9.3	(20.9)
Pine	PP-12	123	Z	11.67	205	(8.1)	5.6	56.8	(12.8)	52	(2.0)	1.32	(11.7)	45.9	410	(16.1)	3.10	(27.5)	41	42.5	(6.17)	9.3	(20.8)
	PP-13	124	KNO	16.67	225	(8.9)	5.9	70.7	(15.9)	54	(2.1)	1.63	(14.4)	12.2	109	(4.3)	3.46	(30.7)	52	39.9	(5.79)	9.2	(20.5)
osa	PP-14	127	조	13.00	224	(8.8)	13.1	92.9	(20.9)	115	(4.5)	4.89	(43.3)	16.3	141	(5.5)	6.53	(57.8)	36	52.9	(7.68)	9.1	(20.3)
ē	PP-15	128		12.67	209	(8.2)	5.3	62.9	(14.1)	46	(1.8)	1.27	(11.3)	24.1	199	(7.8)	4.14	(36.7)	47	44.4	(6.44)	8.7	(19.5)
ğ	KNOTS	S Avera	ge	13.00	218	(8.6)	7.3	73.3	(16.5)	66	(2.6)	2.22	(19.6)	22.96	201	(7.9)	4.56	(40.4)	45	44.8	(6.50)	9.1	(20.4)
Po	PP-6	111		14.00	225	(8.8)	12.5	137.0	(30.8)	114	(4.5)	6.23	(55.1)	53.4	438	(17.2)	10.32	(91.4)	38	77.7	(11.28)	9.4	(21.1)
	PP-7	112	۵	25.00	227	(8.9)	12.5	144.3	(32.4)	111	(4.4)	6.33	(56.0)	67.5	507	(20.0)	14.26	(126.2)	27	79.3	(11.51)	9.2	(20.7)
	PP-8	117	H	18.33	226	(8.9)	12.2	96.7	(21.7)	111	(4.4)	4.72	(41.8)	16.6	147	(5.8)	6.58	(58.3)	38	54.1	(7.85)	9.3	(20.9)
	PP-9	118	1 -	9.33	227	(9.0)	5.6	67.8	(15.2)	52	(2.0)	1.52	(13.4)	35.6	314	(12.3)	4.37	(38.6)	36	37.1	(5.38)	9.3	(20.8)
	PP-10	120		12.67	224	(8.8)	11.6	118.9	(26.7)	101	(4.0)	5.41	(47.9)	65.6	508	(20.0)	9.81	(86.8)	30	68.1	(9.87)	9.0	(20.2)
	HRD	Averag	е	15.87	226	(8.9)	10.88	112.9	(25.4)	98	(3.8)	4.84	(42.8)	47.74	383	(15.1)	9.07	(80.3)	34	63.3	(9.18)	9.3	(20.7)
		Avg.		11.60	221	(8.7)	8.326667	83.6	(18.8)	75	(2.9)	2.97	(26.2)	37.6	316	(12.4)	5.97	(52.8)	38	49.04	(7.1)	9.2	(20.5)
	St.	Dev.		5.54	8.04	(0.3)	3.427091	28.8	(6.5)	30	(1.2)	1.97	(17.4)	19.9	156	(6.1)	3.19	(28.3)	8	14.67	(2.1)	0.2	(0.4)

*Data Filtered According to SAE J211/1 Requirements

Limited by Maximum Deflection Criterion (20 in.)

Limited by Time of Contact

Table 16. Dynamic Douglas Fir Round Wood Post Test Results

			ory	Ring	Ave	rage			Pea	ak Ford	се					Ruptur	е		Moisture	Modu	ılus of	lm	pact
	Post	Post	egc	Density	Dian	•	Time	Fo	rce	Defle	ection	En	ergy	Time	Defle	ection	En	ergy	Content	Ru	oture		ocity
	Test No.	No.	Cat	rings/in.	mm	(in.)	ms	kN	(kips)	mm	(in.)	kJ	(kip-in.)	ms	mm	(in.)	kJ	(kip-in.)	(%)	Мра	(k/in. ²)	m/s	(mph)
	DF-11	22	Ш	5.33	187	(7.4)	5	39.8	(9.0)	45	(1.8)	0.88	(7.8)	40.6	359	(14.1)	2.69	(23.8)	37	38.8	(5.63)	9.1	(20.4)
	DF-12	24	뵘	5.33	182	(7.2)	12.5	65.1	(14.6)	113	(4.5)	3.04	(26.9)	28.8	254	(10.0)	3.67	(32.5)	31	69.2	(10.04)	9.2	(20.7)
	DF-13	25	SEL	7.33	191	(7.5)	5.6	56.6	(12.7)	52	(2.0)	1.29	(11.4)	36.9	326	(12.8)	3.74	(33.1)	32	52.6	(7.62)	9.2	(20.7)
	DF-14	26	< <	6.33	186	(7.3)	11.9	47.1	(10.6)	106	(4.2)	2.81	(24.8)	60.6	506	(19.9)	6.76	(59.8)	45	47.2	(6.84)	9.1	(20.3)
	DF-15	27	В	6.00	187	(7.4)	11.6	51.5	(11.6)	105	(4.1)	2.75	(24.3)	37.2	326	(12.9)	4.63	(41.0)	61	50.7	(7.36)	9.2	(20.6)
	BASELIN	NE Ave	rage	6.07	187	(7.4)	9.32	52.0	(11.7)	84	(3.3)	2.15	(19.1)	40.82	354	(13.9)	4.30	(38.0)	41	51.7	(7.50)	9.2	(20.5)
	DF-6	11		19.33	186	(7.3)	11.9	53.8	(12.1)	108	(4.3)	3.24	(28.7)	50.9	446	(17.5)	5.24	(46.4)	63	53.3	(7.73)	9.3	(20.9)
	DF-7	13	2	8.33	185	(7.3)	5.3	44.1	(9.9)	47	(1.9)	0.94	(8.3)	20.3	177	(7.0)	2.50	(22.1)	59	44.4	(6.44)	9.0	(20.1)
证	DF-8	15	V V V	11.00	184	(7.3)	11.9	76.9	(17.3)	100	(3.9)	3.39	(30.0)	64.7	506	(19.9)	6.58	(58.2)	59	78.7	(11.42)	8.6	(19.3)
as	DF-9	18	조	10.00	183	(7.2)	12.5	68.0	(15.3)	110	(4.3)	3.27	(28.9)	40.6	345	(13.6)	5.08	(45.0)	61	71.1	(10.32)	9.0	(20.2)
lgn	DF-10	20		13.00	184	(7.3)	12.5	55.7	(12.5)	113	(4.4)	3.24	(28.7)	39.7	348	(13.7)	4.02	(35.6)	57	57.0	(8.26)	9.2	(20.7)
lõ	KNOTS	S Avera	ige	12.33	185	(7.3)	10.82	59.7	(13.4)	96	(3.8)	2.82	(24.9)	43.24	364	(14.3)	4.68	(41.5)	60	60.9	(8.83)	9.0	(20.2)
-	DF-1	2		9.67	186	(7.3)	11.9	73.1	(16.4)	107	(4.2)	3.39	(30.0)	45.9	392	(15.4)	5.86	(51.9)	59	72.4	(10.50)	9.2	(20.5)
	DF-2	3		25.67	182	(7.2)	12.5	83.5	(18.8)	112	(4.4)	3.78	(33.5)	62.5	508	(20.0)	8.64	(76.5)	56	88.7	(12.87)	9.1	(20.4)
	DF-3	6	품	8.00	185	(7.3)	12.2	60.0	(13.5)	110	(4.3)	2.89	(25.6)	39.7	345	(13.6)	4.44	(39.3)	65	60.3	(8.75)	9.2	(20.5)
	DF-4	9	1 -	14.33	185	(7.3)	12.5	60.0	(13.5)	105	(4.1)	2.71	(24.0)	63.4	504	(19.8)	4.87	(43.1)	64	60.7	(8.81)	8.6	(19.2)
	DF-5	10		7.00	186	(7.3)	5.6	45.6	(10.3)	51	(2.0)	1.08	(9.5)	36.9	324	(12.7)	3.57	(31.6)	64	45.4	(6.59)	9.2	(20.5)
	HRD	Averaç	je	12.93	185	(7.3)	10.94	64.4	(14.5)	97	(3.8)	2.77	(24.5)	49.68	414	(16.3)	5.47	(48.5)	62	65.5	(9.50)	9.1	(20.2)
	Overal	I Avera	ige	10.44	185	(7.3)	10.36	58.7	(13.2)	92	(3.6)	2.58	(22.8)	44.6	378	(14.9)	4.82	(42.6)	54	59.37	(8.6)	9.1	(20.3)
	Standard	d Devia	ation	5.70	2.14	(0.1)	3.12771	12.7	(2.8)	27	(1.1)	1.00	(8.9)	13.3	99	(3.9)	1.64	(14.5)	12	14.14	(2.1)	0.2	(0.5)

*Data Filtered According to SAE J211/1 Requirements

Limited by Maximum Deflection Criterion (20 in.)

Limited by Time of Contact

6 PRELIMINARY POST SIZE DETERMINATION

When the preliminary bogie tests were completed, it was necessary to adjust the post sizes for each species. The selected sizes needed to be large enough to give the post sufficient strength to rotate through the soil rather than fracture, but also be as small as possible to save on material costs. To determine this size, a statistical analysis of post strength was used along with two secondary methods, the static and the dynamic methods. The statistical analysis, called the probability method, was structured to limit the probability of failure of a guardrail system during a design limit impact to a defined level. The static method was designed to equate the capacity of the Douglas Fir and Ponderosa Pine posts to that of Southern Yellow Pine posts which had previously been accepted for use in guardrail systems. The dynamic method was based on allowable stress design, using the MOR from the knots category, historically the lowest, to assure that posts were large enough to endure the soil forces. The last two methods were used to verify the results of the first, and all three methods are presented below.

6.1 Probability Method

Initially, an acceptable level of risk was established. That level of risk was selected as a three percent chance that the structure would fail when a design limit impact occurred on a guardrail installed in strong soils, at any given location. Three percent may seem high, but the strong soil and extreme impact conditions that will be used in the full-scale and bogie testing have an impact on the failure level. The vast majority of soils across the nation would not be capable of developing resistance forces equivalent to those of the strong soil used in the tests. In addition, the impact conditions represent a worst

case scenario of ran-off-road crashes. Those two factors considered, the risk of post failure would be dramatically lower for most roadside installations.

The next decision to be made was the determination of failure. One study, completed by Reid and Rohde [17-19], suggested that a standard guardrail system should meet the NCHRP Report 350 Test 3-11 requirements even after three consecutive posts failed. BARRIER VII was used to investigate the effects of weak posts on the MGS system in order to determine the appropriate failure criteria.

6.1.1 BARRIER VII Modeling

Barrier VII is a non-linear, 2-dimensional (2-D) computer simulation program that was used to model the guardrail system. The program was used in lieu of other vehicle-barrier impact simulation programs because of its extensive use and validation in previous impacts. The program has been used to model longitudinal barriers since 1980, and has been validated on a wide variety of systems including guardrail, guardrail transitions, flexible barriers, box beams, and timber railings. In addition, the use of BARRIER VII has been recommended in NCHRP Report 350, and, in some cases, has been accepted as a sufficient substitute for full-scale testing by the Federal Highway Administration [46].

6.1.2 MGS Model

The baseline MGS BARRIER VII model was taken from a previous model developed and validated by Kuipers [47]. The model had 173 nodes and 201 members, including 172 beam elements and 29 post elements. A typical model is presented in Appendix C along with an AutoCAD schematic of the model. Properties for the

rectangular wood anchor posts, which differed from the steel posts found throughout the system, were not adjusted because the same anchors will be utilized in the new system.

The properties for the steel posts used throughout the remainder of the system were also left alone since bogie-soil behavior was unknown for the round posts. Initially, a modification was considered to adjust the longitudinal properties of the post to match the lateral properties since the soil behavior of a round post would be independent of the direction of impact. However, unlike steel posts, the round posts are able to rotate fairly easily around their vertical axis, greatly reducing their longitudinal force capacity. Since that magnitude of this reduction was not quantifiable, their longitudinal properties were also approximated based on the model's steel post definition. This seemed to be a reasonable assumption since the target behavior for the round posts was to be equivalent to a W152x13.4 (W6x9) steel post.

6.1.3 BARRIER VII Results

Simulations were completed on the system for models with 0, 1, 2, 3, and 4 consecutive weak posts. The weak post model was defined with the same parameters as a strong post except for its failure deflection. The weak post failure deflection was defined at 61 mm (2.4 in.) to assure that the posts failed. This deflection was based on soil bogie testing in which wood posts fractured at a very low deflection. Impact points were at 283 mm (9.375 in.) increments, beginning 953 mm (37.5 in.) upstream of the first weak post and ending 953 mm (37.5 in.) downstream of the last weak post.

The parameters collected from the simulations include maximum dynamic deflection, maximum rail tension, rail slope, and wheel snag. The rail slope is the maximum slope of the rail in the horizontal plane as shown in Figure 7, with the lateral

direction being the y-axis and the longitudinal direction being the x-axis. The values were determined to give an estimate of the potential for pocketing. The steeper the rail, the greater the chance the vehicle will pocket. Since rail slope varies with the number of nodes used in its approximation, both a 3 node and 5 node analyses were completed.

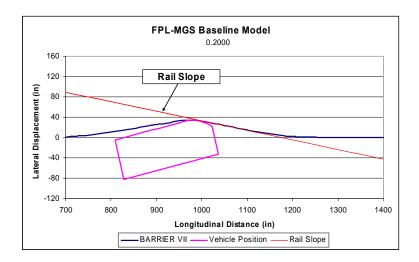


Figure 7. Rail Slope Diagram

Wheel snag parameters consist of two important values, snag and dy. Snag is the amount of overlap between the vehicle tire and the post transverse to the system at the ground level. The variable dy is simply the deflection of the post at the center height of the rail, which is used to determine the deflection of the post at the height of the snag calculation. Both are illustrated in Figure 8.

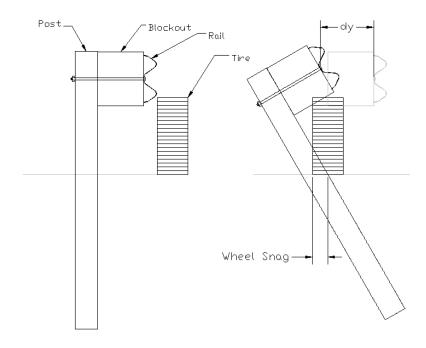


Figure 8. Wheel Snag Diagram

The maximum results are summarized in Table 17. This implies that the values from the various categories presented for each model are not necessarily from the same run, but rather the most critical for each category from any of the runs.

Table 17. FPL BARRIER VII Results Summary

No. Weak	Maximum	Maximum Rail	Pocketing	g Analysis	Snag Ar	nalysis **
Posts	Deflection	Tension	3 Node	5 Node	Snag	dy
	(in.)	(kips)	(Rail S	Slope)	(in.)	(in.)
0	40.3	67.6	0.292	0.286	5.78	14.68
1	46.5	65.5	0.345	0.317	5.47	14.98
2	49.5	67.3	0.345	0.320	5.54	14.93
3	51.6	67.3	0.345	0.325	5.39	14.51
4	54.0	68.9	0.345	0.324	5.54	14.83

^{**} Wheel snag was not reported when dy exceeded 15 in. because the post was considered to be broken.

The results from the FPL simulations show that there is no distinct point at which one additional failed post will cause the system to drastically fail. However, the general trend in the data shows that the more consecutive weak posts the system contains, the

more severe the impact criteria. Maximum deflection, maximum rail tension, and maximum rail slope all show a general increase as the number of failed posts increased.

One interesting phenomenon was the decrease in rail tension from the baseline model to that with one, two, and three weak posts. This decrease was attributed to the longitudinal strength of the posts. When one post failed, the restraint on the rail was reduced, lowering the maximum rail tension. However, as more posts failed, the increased deflection caused the tension to increase once again.

Although the simulation did not identify a specific failure criterion, one still needed to be determined. Clearly the case with four weak posts was the worst. It exceeded the MGS baseline model in deflection by nearly 356 mm (14 in.), with the total deflection as high as 1372 mm (54 in.).

At some level, the maximum deflection will be so high that the system will need to be placed too far from the obstacle it is shielding to be feasible for use in many locations. Median widths, right-of-way distances, and bridge span lengths restrict the amount of deflection a guardrail system is allowed. Therefore, a maximum allowable deflection for the system was established at 1321 mm (52 in.). A larger maximum deflection could have been chosen, but the clearance needed for installation would also have increased. 1321 mm (52 in.) seemed to be a reasonable limit on the deflection.

The conclusion from the previous study by Rohde and Reid was that three consecutive failed posts would constitute an acceptable system, but four consecutive failed posts would not. This conclusion was based on engineering judgment and the results of BARRIER VII computer simulation completed in their study. This 4 post limit was also the result found by enforcing the 1321-mm (52-in.) maximum deflection

criterion. Therefore, the probability that four consecutive posts would fracture prematurely needed to be less than three percent.

6.1.4 Post Reliability

If the probability of a single post failing is represented as P_f , it can be shown that the probability of four consecutive posts failing is $(P_f)^4$, which must be less than 0.03. Therefore, the probability of a single post failing, P_f , must be less than $(0.03)^{1/4} = 0.42$. For the purposes of the project, a maximum allowable P_f value of 0.4 was chosen.

The next step in the post size selection was to determine a minimum required force, or the minimum force that a post needed to resist if it were to rotate in the soil rather than fracture. Historical bogie testing results were examined and are presented in Figure 9. Bogie test nos. NPGB-4, 9, and 10 were conducted on W6x16 steel posts using a 1,016-mm (40-in.) embedment depth [27]. For these tests, the resisting force averaged approximately 35 kN (7.9 kips). To account for the local peaks exceeding this average value, as shown in Figure 9, a 20-percent increase was added to the force, thus making the minimum force for the current tests about 42 kN (9.5 kips).

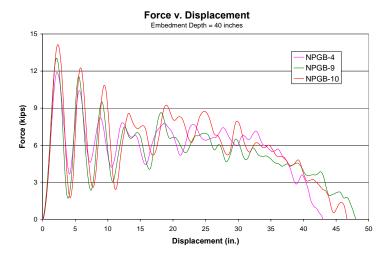


Figure 9. Force vs. Deflection NPGB - 4, 9, and 10

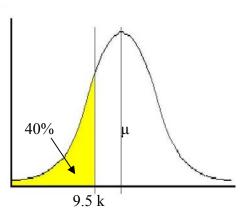
To meet the established probability requirements, 60 percent of the posts must exceed the 42-kN (9.5-kip) force limit. Using the average standard deviation and mean from the 15 dynamic bogie tests and assuming a normal distribution, the required mean peak force level that would return a 40 percent probability value of 42 kN (9.5 kips) was calculated for each species as follows.

$$X = \mu_X + Z \sigma_X$$
$$\mu_X = X - Z \sigma_X$$

$$Z = \Phi^{-1}(P) = -0.25$$

 Φ = Standard Normal Distribution Function

P = Required Probability (0.4)


 μ_X = Required Sample Mean

 $\sigma_{\rm X}$ = Sample Standard Deviation

X = 40% Probability Force ≥ 9.5 kips

$$\sigma_{\rm X} = \begin{cases} 2.8 \text{ kips (Douglas Fir)} \\ 6.5 \text{ kips (Ponderosa Pine)} \end{cases}$$

$$\mu_{X} = \begin{cases} 10.2 \text{ kips (Douglas Fir)} \\ 11.2 \text{ kips (Ponderosa Pine)} \end{cases}$$

This required mean peak force was then used to calculate a required diameter of the posts based on the average dynamic modulus of rupture (MOR) values for each species. The equations used for the calculations are presented below followed by the results which are summarized in Table 18.

$$M = (L)(P)$$

L = Impact Height

P = Impact Force

$$\sigma_b = MOR$$

$$d = \sqrt[3]{\frac{32 M}{\pi \sigma_b}}.$$

Table 18. Probability Method Calculation Summary

		L	I	Ρ		σ_{b}		M	(d
	mm	(in.)	kN	(kips)	MPa	(kips/in. ²)	kN-m	(kip-in.)	mm	(in.)
Douglas Fir	632	24.875	45.4	10.2	59.3	8.6	28.7	253.7	170	6.69
Ponderosa Pine	632	24.875	49.8	11.2	49.0	7.1	31.5	278.6	187	7.36

According to the probability method, 60 percent of 6.69-in. diameter Douglas Fir and 7.36-in. diameter Ponderosa Pine posts should reach or exceed 42 kN (9.5 kips) when impacted at 632 mm (24.875 in.) in a cantilever sleeve. This being stated, it should also be noted that the method used to determine these values has several limitations. First, the sample only included 15 posts, a very small sample considering the variability of wood. Second, the properties from the three categories were not weighted, but rather lumped together equally without consideration of their respective representation in the total post population. This meant that the mean determined from the testing may not have been an accurate representation of the total population. Third, lumping the data together also made it difficult to say how grading criteria affect the results.

6.2 Static Method

The second method used in determining post size was based on the results of the 40 static tests. This method began with the preliminary assumption that a 184-mm (7.25-in.) diameter Southern Yellow Pine (SYP) post was more than sufficiently strong for use in the W-beam guardrail system. This fact was based on successful full-scale crash tests conducted at TTI where 178-mm (7.00-in.) diameter and 184-mm (7.25-in.) diameter SYP posts were used in two barrier systems which met the NCHRP Report No. 230 and NCHRP Report No. 350 requirements respectively [32-34].

An alternate species was believed to have sufficient capacity if its static strength was found to be equal to that of a 178-mm (7.0-in.) diameter SYP post. The smaller

diameter was selected because it passed the test. To generate an SYP data set, 15 static tests were conducted on the species in the same manner as the DF and PP posts. The 5th percentile, SYP capacity was found to be 24 kN (5.4 kips) based on a 5th percentile overall MOR of 27.5 MPa (3.993 ksi) and the 178 mm (7.0-in.) diameter. The 5th percentile value implied that 95 percent of 178 mm (7.0-in.) diameter SYP posts would reach a resisting force of 24 kN (5.4 kips) or higher. It should be noted that the 5th percentile was selected because it is commonly used in the timber industry. Although the results would differ, any percentile could have been chosen to complete the calculations.

The same standard was established for the other two species. In both Ponderosa Pine and Douglas Fir, 95 percent of the posts were required to reach or exceed a resisting force of 24 kN (5.4 kips). Using the 5th percentile MOR value determined for each of the two species, the diameter required to meet the force criteria was determined. Equations used in this method are provided below, followed by a summary of the calculations in Table 19.

$$M = (L)(P)$$

L = Impact Height

P = SYP Impact Force (5.4 kips)

$$\sigma_{\text{Static}} = \text{MOR}_{5\%}$$

$$d = \sqrt[3]{\frac{32 M}{\pi \sigma_{Static}}}$$

Table 19. Static Method Calculation Summary

	I	_	I)		σ_{b}		M	(t
	mm	(in.)	kN	(kips)	MPa	(kips/in.²)	kN-m	(kip-in.)	mm	(in.)
Douglas Fir	631.83	24.875	24.0	5.4	38.0	5.516	15.2	134.3	160	6.28
Ponderosa Pine	631.83	24.875	24.0	5.4	24.1	3.497	15.2	134.3	186	7.31

The method suggests that 95 percent of the posts with a diameter of 160 mm (6.28 in.) for Douglas Fir or 186 mm (7.31 in.) for Ponderosa Pine will reach or exceed a static load of 24 kN (5.4 kips) at the 632 mm (24.875-in.) load height. As with the probability method, some limitations exist. Again, the properties for the three categories were lumped together with the same consequences as before. Although a normal distribution was assumed, the parameters used to develop the distribution may not have been thoroughly representative of the population.

6.3 Dynamic Method

The third and final calculation method combined parts of each of the previous calculation methods. In this method, the average MOR value determined for the knots category for both species was used to determine a diameter that would be capable of carrying a 44.5-kN (10-kip) applied load.

The increased load was determined from the results of tests NPGB 4, 9, and 10 as before, but was selected to be high enough to exceed the majority of the local peaks in the force data. Previously, the estimated soil force was based on a 20 percent increase from the average rather than the magnitudes of individual peaks.

Although the baseline posts showed the lowest MOR for both species, the knots category was selected as the critical category. This was done because it was believed that the baseline results were misleadingly low due to the relatively low ring density of the posts within the category. It was suspected that for a more similar average ring density, the MOR for the knots category would fall well below that for the baseline category. The equations used for the dynamic method are shown below, followed by a summary of the calculations in Table 20.

$$M = (L)(P)$$

L = Impact Height

P = Impact Force

 $\sigma_b = \mathrm{MOR}_{\mathrm{Dynamic}\,\mathrm{Knots}}$

d = diameter

$$d = \sqrt[3]{\frac{32 \text{ M}}{\pi \, \sigma_b}}$$

Table 20. Dynamic Method Calculation Summary

	ı	L	ı	0		σ_{b}		M	Ū	d
	mm	(in.)	kN	(kips)	MPa	(kips/in. ²)	kN-m	(kip-in.)	mm	(in.)
Douglas Fir	631.83	24.875	44.5	10	60.9	8.83	28.1	248.8	168	6.6
Ponderosa Pine	631.83	24.875	44.5	10	44.8	6.5	28.1	248.8	185	7.3

The dynamic method was based on allowable stress design, unlike the other two methods that were founded on probability. This method concluded that the critical knots category, with an average diameter of 168 mm (6.6 in.) for Douglas Fir and 185 mm (7.3 in.) for Ponderosa Pine, will have an average dynamic capacity of 44.5 kN (10 kips) at 632 mm (24.875 in.). Again, the method has several drawbacks, the first of which is the unknown population strength distribution. The knots category may represent 90 percent of the population, in which case 45 percent of the posts would not reach the suggested capacity. In turn this would result in a 4.1 percent chance of failure in the full system due to four consecutive posts failing. On a similar note, the distribution of the other two categories was not considered. A portion of the posts in those categories may also fall below the required capacity, depending on the average and magnitude of the standard deviation within the category.

6.4 Post Size Conclusion and Summary

After considering the results from all three methods, a final size was determined for each of the wood species. Final suggested diameters were rounded up to the nearest quarter of an inch for manufacturing purposes. The final diameters were based on the probability method, but were also supported by the dynamic method which resulted in similar minimum diameter values that would be identical after rounding. The static method resulted in a slightly smaller diameter for Ponderosa Pine, and a significantly smaller diameter for Douglas Fir. Similarities between the results of the three methods offered assurance that diameters determined using the probability method were reasonable and accurate. The sizes determined with each method and the suggested sizes are presented in Table 21 below. These suggested sizes should be used in a second round of cantilever testing to assure that the MOR does not vary with post diameter.

Table 21. Post Diameter Calculation Summary

	Suggested	d Diameter (in	.)	
Species	Probability Method	Static Method	Dynamic Method	Suggested
Douglas Fir	6.69	6.28	6.60	6.75
Ponderosa Pine	7.36	7.31	7.30	7.50

7 INERTIAL EFFECTS

7.1 Introduction

As stated previously in Section 6.2, the most important parameter of the bogie testing was the peak force generated by the post before fracture. If the peak post capacity exceeds the peak resisting force of the soil, the posts should be capable of rotating rather than fracturing. Preliminarily, this force was selected as the highest peak of the filtered force verses time plot, but after the data was processed, analyzed, and preliminary post sizes selected, questions arose with regard to its appropriateness.

A sample raw acceleration plot is presented in Figure 10. The bogie acceleration trace exhibits two large distinct and separate acceleration peaks. The question was, is wood capable of behaving like this plot suggests?

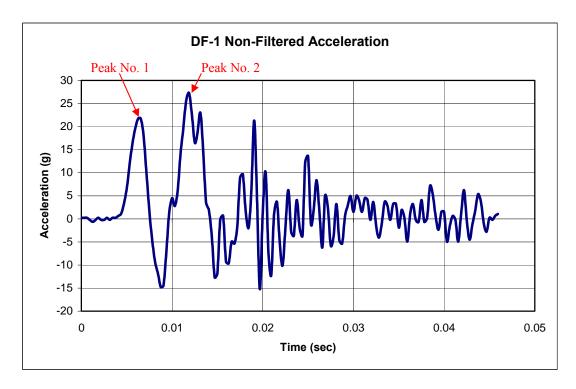


Figure 10. Bogie Test DF-1 Non-Filtered Acceleration

The data shown in Figure 10 suggested that the wood post reached a peak force, relaxed, and then reached a second peak force, sometimes higher and sometimes lower than the first. The cases in which the second peak was lower than the first suggest that the fibers reached some maximum stress value, relaxed, and then failed at some stress value lower than the maximum reached previously.

Another possible explanation of this behavior was a sequential failure in which the outer fibers fractured, allowing increased deflection in the post. As the post deflected farther, the layers failed sequentially at lower and lower peak force values. If this was indeed the case, a clear failure should have been evident as the peak force was reached. In this explanation, as a wood specimen begins to bend, tensile and compressive stresses develop in the wood fibers, with the maximum stress occurring at the extreme edges of the cross section. When the fibers within the wood reach their ultimate strength or stress, those fibers will fracture and carry no load at all. This behavior is much different than that observed in ductile materials, such as mild steel. As the fibers fracture, the effective cross section is reduced ring by ring, and the bending moment capacity gets smaller and smaller. This suggests that the posts should reach some peak force value, at which the outer fibers begin to fail, and then the force should drop off rapidly as the cross section shrinks. Such behavior cannot explain the phenomenon shown in Figure 10, especially if the first peak exceeded the second.

Although the second explanation is a clear possibility, typical wood behavior suggested a much different performance than the first explanation. Wood typically behaves in a very brittle manner, with a near linear stress-strain relationship. This means that the stress in the wood fibers should increase until failure at their ultimate stress. If

the applied stress never exceeds the ultimate capacity of the wood, the fibers should not break. If the applied stress was removed and reapplied, the stress in the fibers should decrease, and then increase until the failure stress or the maximum applied stress was reached. They should never fail at a stress below that already reached since it in turn must have been below the ultimate strength if the fibers did not fracture.

7.2 Fracture Time Investigation

To investigate this phenomenon further, the high-speed digital video footage from the post bogie tests was studied. The videos were used to identify the point at which the outer fibers in the posts clearly failed. In many tests, this failure point was very apparent and took place between two consecutive frames. For those tests, the numbers of the two consecutive frames were recorded along with the number of the impact frame or the frame in which the bogie first contacted the post. Examples of all three frames are shown in Figure 11, Figure 12, and Figure 13 for a post with the critical region painted white to show the fracture very clearly. Figure 11 depicts the frame at impact, Figure 12 shows the frame prior to post fracture, and Figure 13 shows the frame immediately after post fracture.

Figure 11. Bogie-Post Impact – Frame 102

Figure 12. Post Bending Prior to Fracture - Frame 107

Figure 13. Post After Fracture - Frame 108

The frame numbers from the three figures were also used to calculate the time between them. For instance, since the camera recorded at a rate of 500 frames per second, the time between consecutive frames is approximately 0.002 seconds. For test no. DF-1, the three frame nos. were 144, 147, and 148. Therefore, the time between impact and frame no. 147 was 0.006 seconds and the time between frame nos. 147 and 148 was 0.002 seconds. Plotting these times on the longitudinal acceleration plots, with the first rise in acceleration considered as the impact, will show where the fractures occurred relative to the acceleration peaks. A plot of this comparison for test no. DF-1 is shown in Figure 14.

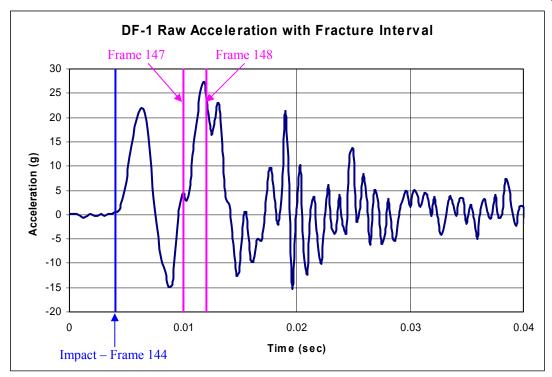


Figure 14. DF-1 Raw Acceleration with Fracture Interval

Similar plots are shown below in Figure 14 through Figure 39 for the remainder of the round one post tests in which a visible fracture was present. Impact is not labeled on these plots, but is always taken as the first rise in acceleration, similar to the plot of test no. DF-1. Plots containing more than two frame lines displayed more than one distinct fracture with a fracture occurring between each pair of lines.

Before considering the plots in detail, attention should be drawn to two inaccuracies that may affect the analysis. The first was the inaccuracy in determining the impact time. Although the frame selected as the impact frame was the first frame showing contact between the post and the bogie, it did not mean that the time associated with that frame was the time of the first contact. In fact, the initial impact could have occurred up to 0.002 seconds prior to that frame. This meant that the fracture window could shift up to 0.002 seconds to the right, in some cases shifting to encompass the

maximum acceleration peak. This is shown by the additional shading in Figure 18. The second inaccuracy was the visibility of the fracture. As stated, several tests did not exhibit a visible fracture. Hence, the first fracture may not have been visible initially, and the broken fibers only became visible after the second or third fracture event. This may explain some cases such as that of Figures 20, 23, 25, 29, 33, 38, and 39 in which the fracture interval as shown did not make sense even including a 0.002 second shift.

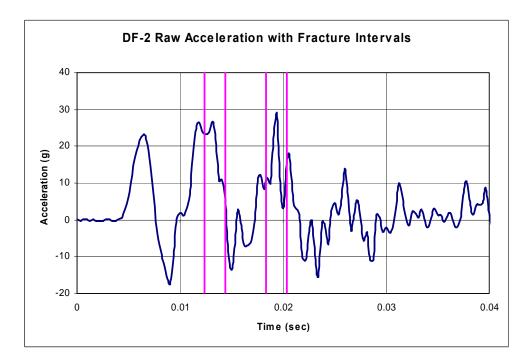


Figure 15. DF-2 Raw Acceleration with Fracture Intervals

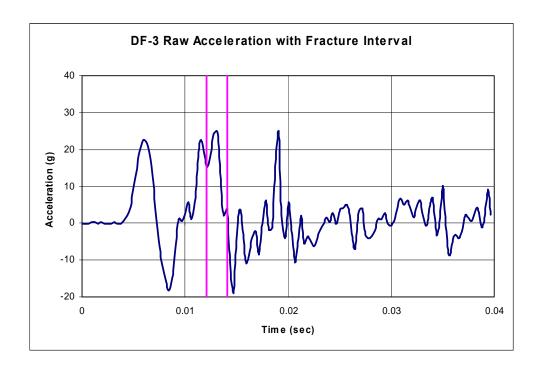


Figure 16. DF-3 Raw Acceleration with Fracture Interval

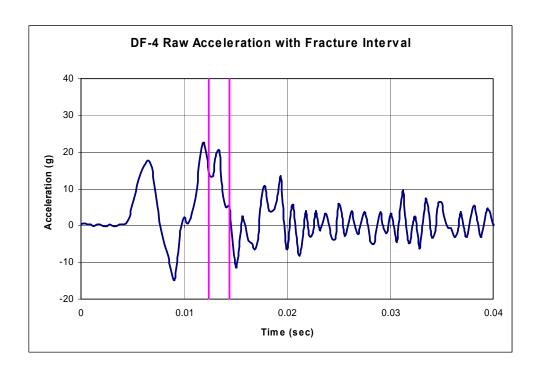


Figure 17. DF-4 Raw Acceleration with Fracture Interval

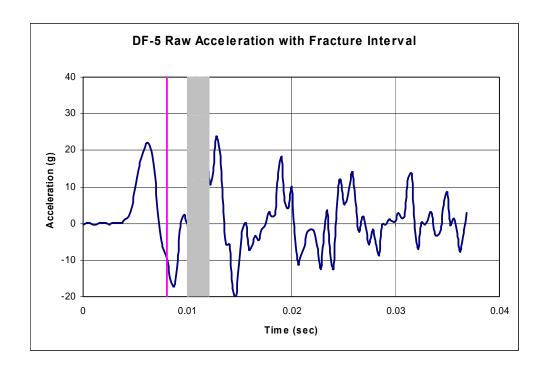


Figure 18. DF-5 Raw Acceleration with Fracture Interval

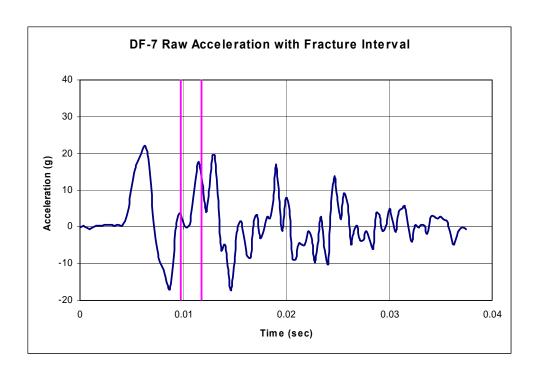


Figure 19. DF-7 Raw Acceleration with Fracture Interval

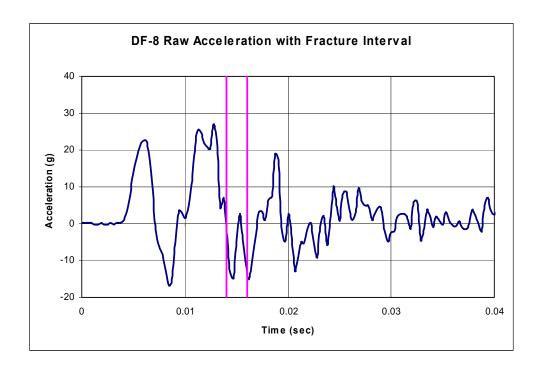


Figure 20. DF-8 Raw Acceleration with Fracture Interval

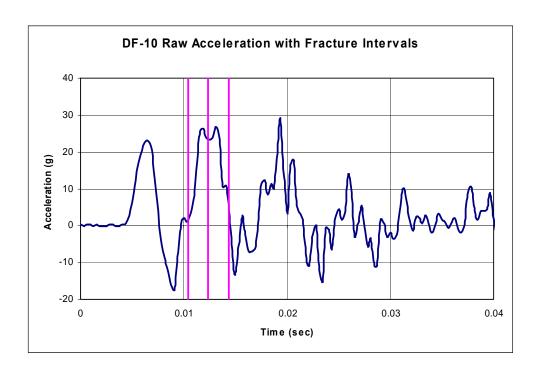


Figure 21. DF-10 Raw Acceleration with Fracture Intervals

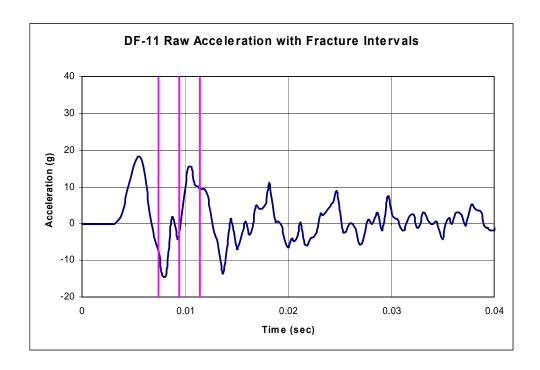


Figure 22. DF-11 Raw Acceleration with Fracture Intervals

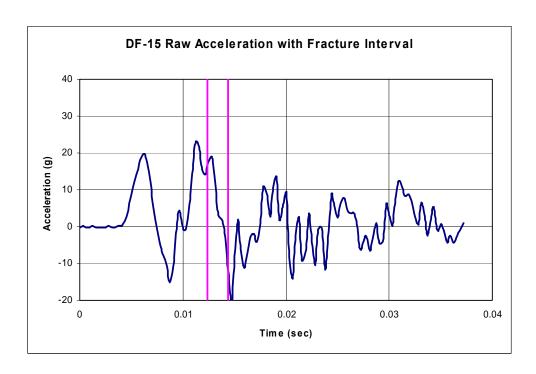


Figure 23. DF-15 Raw Acceleration with Fracture Interval

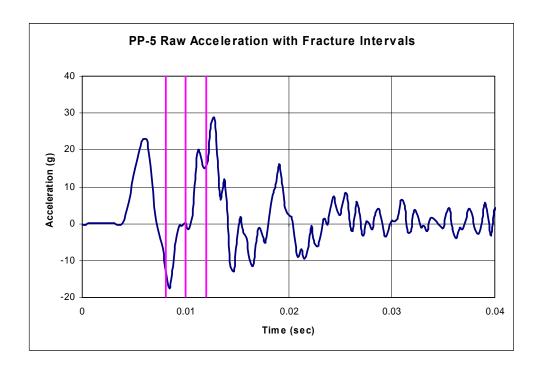


Figure 24. PP-5 Raw Acceleration with Fracture Intervals

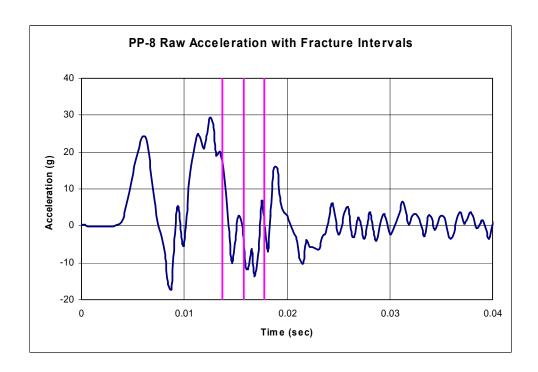


Figure 25. PP-8 Raw Acceleration with Fracture Intervals

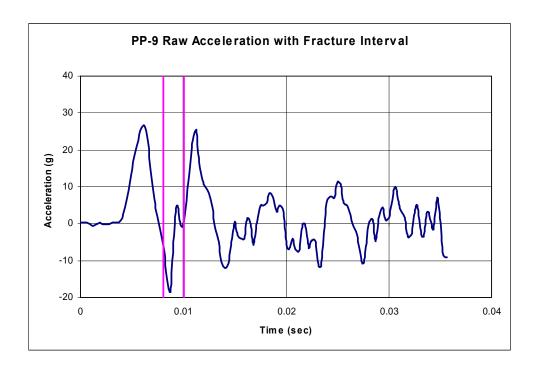


Figure 26. PP-9 Raw Acceleration with Fracture Interval

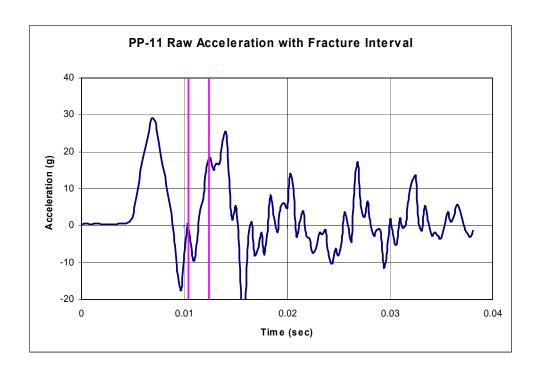


Figure 27. PP-11 Raw Acceleration with Fracture Interval

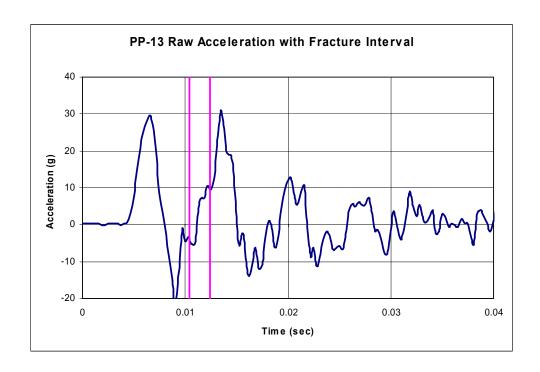


Figure 28. PP-13 Raw Acceleration with Fracture Interval

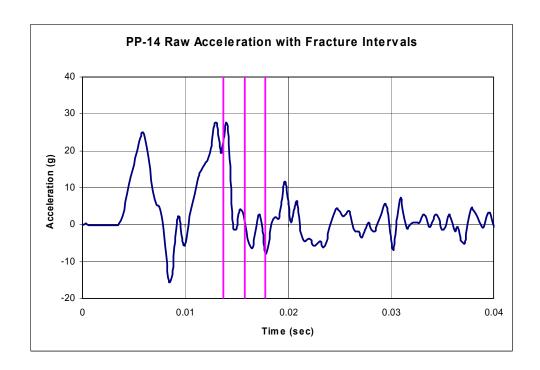


Figure 29. PP-14 Raw Acceleration with Fracture Intervals

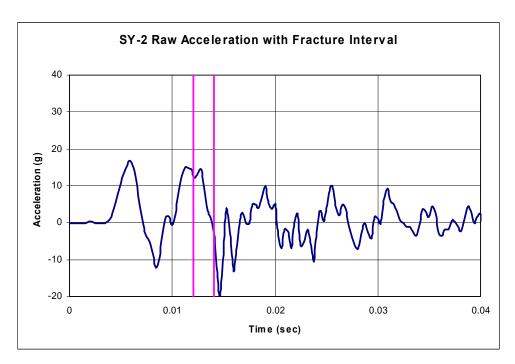


Figure 30. SY-2 Raw Acceleration with Fracture Interval

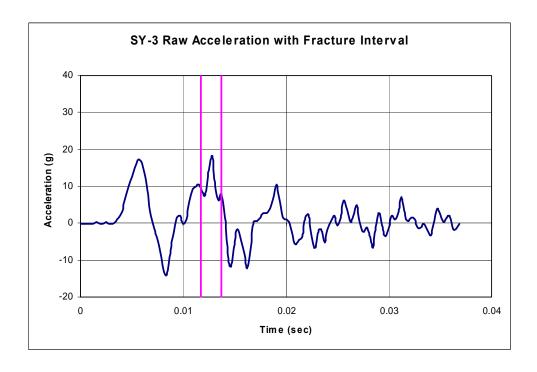


Figure 31. SY-3 Raw Acceleration with Fracture Interval

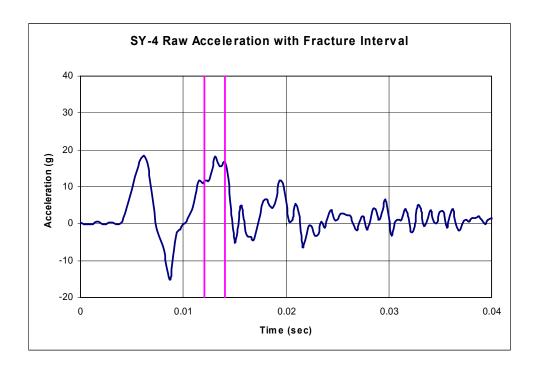


Figure 32. SY-4 Raw Acceleration with Fracture Interval

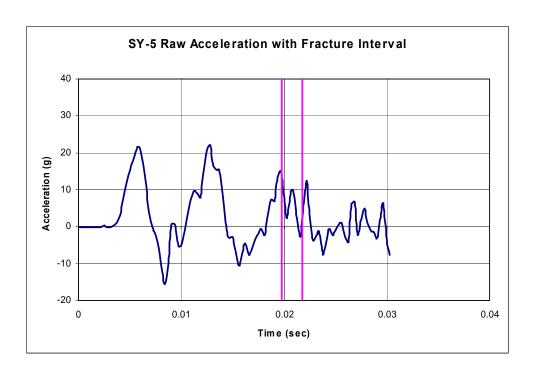


Figure 33. SY-5 Raw Acceleration with Fracture Interval

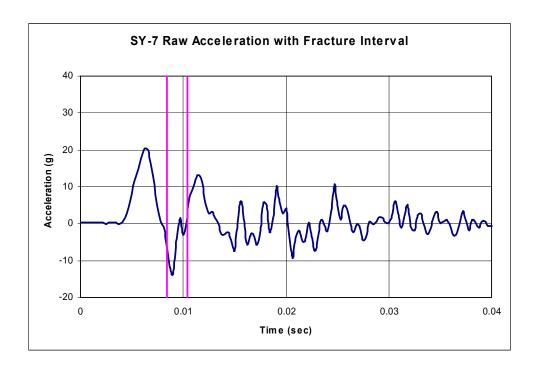


Figure 34. SY-7 Raw Acceleration with Fracture Interval

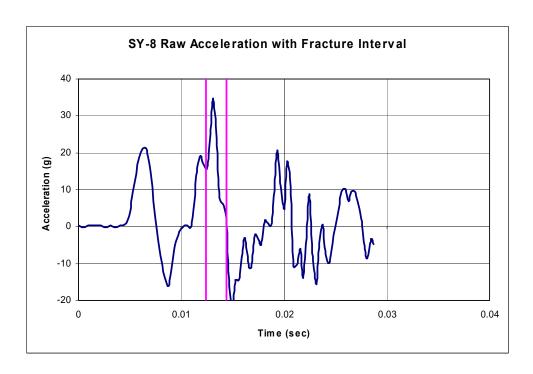


Figure 35. SY-8 Raw Acceleration with Fracture Interval

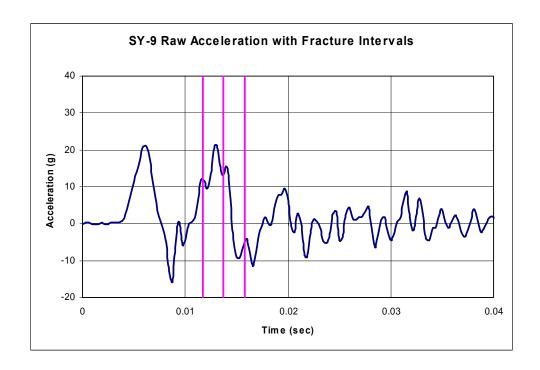


Figure 36. SY-9 Raw Acceleration with Fracture Intervals

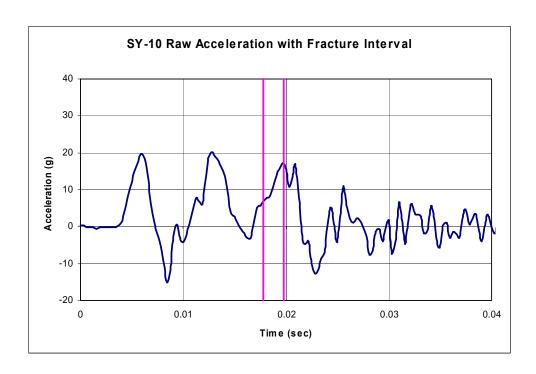


Figure 37. SY-10 Raw Acceleration with Fracture Interval

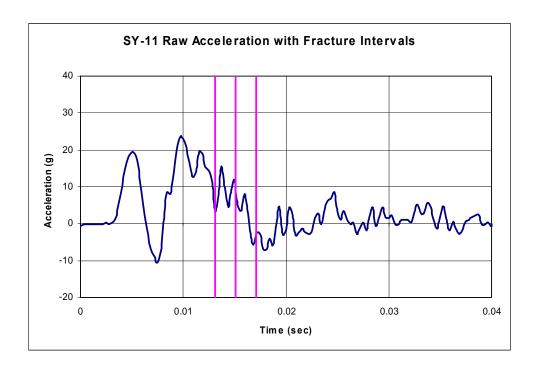


Figure 38. SY-11 Raw Acceleration with Fracture Intervals

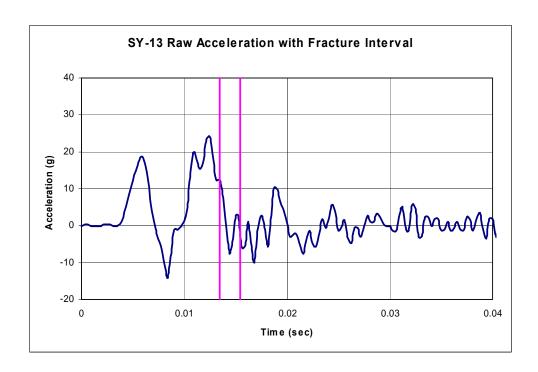


Figure 39. SY-13 Raw Acceleration with Fracture Interval

If the initial peak force was the maximum, and the post was indeed bending during that time, it should have failed during that spike rather than at a subsequent lower spike. However, none of the tests exhibited this behavior. This will be discussed in Section 7.3.

7.3 Possible Explanation – The Inertial Spike Theory

7.3.1 Explanation and Physical Description

When completing the bogie tests with the posts inserted in a fixed sleeve, some compliance must have existed between the post and the sleeve. This compliance occurred as a result of the shimming methods used to more rigidly fix the post in the foundation as well as from the variability in the cross section and straightness of the post. If the posts were perfect cylinders, the compliance in the system might have been negligible. However, when using wood posts, it was not possible to shim the post so every inch of its length was rigidly fixed.

Assuming this compliance exists, it would allow some, initial, free rotation and translation of the post as it was impacted by the bogie. Since the post was at rest, some initial force would be required to cause this motion, and the impulse of such a force should be equal to the change in momentum of the post, or its total momentum since the post began at rest.

If, during this initial rotation and translation, the posts were not bending, but rather just moving, the wood fibers in the posts would not be under any significant stress. In this case, the entire initial impulse force from the bogie was causing the post to move but not bend. Therefore, the initial impulse magnitude would have no meaning in relation to the strength of the posts.

7.3.2 Impulse and Analysis

The first pieces of supporting evidence were the acceleration trace vs. fracture time plots, which strongly supported the inertial spike theory. As shown in the plots, none of the failures occurred during the initial acceleration spike. Rather, the failures generally took place at a global or local peak sometime after the initial spike.

The next piece of supporting evidence was a simple impulse-momentum calculation. If the first spike was indeed caused by the inertia of the post, the impulse from the spike should have been equal to the change in momentum of the post. To investigate this comparison, the angular momentum of each post was calculated, converted to linear momentum, and compared to the impulse of the initial force spike from the acceleration trace. The momentum calculations were made assuming that: (1) each post rotated at the ground level with the impact height of each post moving at the initial velocity of the bogic head and (2) the mass of each post was distributed evenly throughout its length. The momentum calculation is shown below [48]. The calculated values and the comparisons for each test are presented in Table 22 through Table 24.

The momentum to impulse ratio clearly shows that the two values are very close for each test. The Douglas Fir tests appear to be the most different, with the change in momentum averaging 83 percent of the impulse. For the Ponderosa Pine and Southern Yellow Pine species, the average difference is much smaller. Change in momentum averaged 107 percent of the impulse for Ponderosa Pine, and 100 percent for the Southern Yellow Pine. The similarity of the results strongly supports the inertial spike theory.

$$\omega = \frac{V}{H_I}$$

V =Initial Bogie Velocity

 $H_I = \text{Impact Height}$

 ω = Angular Velocity

* Note that the Moment of Inertia calculation divided the post in two for simplicity.

$$I_{Cylinder} = \frac{mr^2}{4} + \frac{mL^2}{3}$$

 $I_{Cylinder}$ = Moment of inertia of a solid cylinder about one end

$$I_{\textit{Total}} = I_1 + I_2$$

 I_1 = Moment of inertia of the above ground portion

 I_2 = Moment of inertia of the below ground portion

L = Length of the upper or lower portions of the post

r =Radius of the post

$$m_{1} = \left(\frac{W}{32.174 \frac{ft}{s^{2}}}\right) \left(\frac{L_{T} - 40 in.}{L_{T}}\right)$$

$$m_2 = \left(\frac{W}{32.174 \frac{ft}{s^2}}\right) \left(\frac{40 \, in.}{L_T}\right)$$

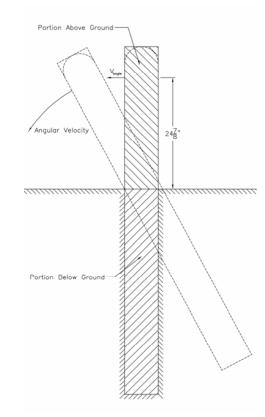
W =Weight of the post

 L_T = Total length of the post

$$H_G = I_{Total}\omega$$

 H_G = Angular momentum of the post

$$M = \frac{H_G}{H_I}$$


M = Linear Momentum

$$I = \int F dt$$

F =Bogie force

I = Impulse

$$I = \Delta M = M_{Final} - M_{Initial} = M_{Final} = M$$

*Velocity of the post at MGS height just after impact was assumed to be equal to the initial velocity of the bogie. This assumption was supported by: (1) film analysis that showed no separation between the post and the impact head, and (2) no significant amount of bogie velocity reduction during the initial portion of the impact.

Table 22. Douglas Fir Impulse-Momentum Comparison

	_	Momentum H _G)		omentum M)	*Impu	ılse (I)	Ratio	Ratio
Test No.	J-s	(ft-lbs-sec)	N-sec	(lb-sec)	N-s	(lb-sec)	I / M	M / I
DF-1	166.11	(122.52)	262.90	(59.10)	289.45	(65.07)	1.10	0.91
DF-2	164.28	(121.17)	260.00	(58.45)	315.20	(70.86)	1.21	0.82
DF-3	135.86	(100.20)	215.02	(48.34)	285.30	(64.14)	1.33	0.75
DF-4	130.09	(95.95)	205.89	(46.29)	245.37	(55.16)	1.19	0.84
DF-5	145.72	(107.48)	230.62	(51.85)	288.07	(64.76)	1.25	0.80
DF-6	163.57	(120.64)	258.87	(58.20)	299.55	(67.34)	1.16	0.86
DF-7	153.41	(113.15)	242.79	(54.58)	277.71	(62.43)	1.14	0.87
DF-8	167.38	(123.45)	264.91	(59.55)	306.70	(68.95)	1.16	0.86
DF-9	149.39	(110.19)	236.43	(53.15)	281.27	(63.23)	1.19	0.84
DF-10	159.76	(117.83)	252.84	(56.84)	316.76	(71.21)	1.25	0.80
DF-11	131.68	(97.12)	208.40	(46.85)	240.61	(54.09)	1.15	0.87
DF-12	131.71	(97.14)	208.44	(46.86)	282.77	(63.57)	1.36	0.74
DF-13	163.20	(120.37)	258.28	(58.06)	323.82	(72.80)	1.25	0.80
DF-14	143.99	(106.20)	227.89	(51.23)	278.46	(62.60)	1.22	0.82
DF-15	138.10	(101.86)	218.56	(49.13)	254.83	(57.29)	1.17	0.86
Average	149.62	(110.35)	236.79	(53.23)	285.72	(64.23)	1.21	0.83

^{*}Calculation based on JFdt.

Table 23. Ponderosa Pine Impulse-Momentum Comparison

	_	Momentum H _G)		omentum M)	*lmpu	ılse (I)	Ratio	Ratio
Test No.	J-s	(ft-lbs-sec)	N-sec	(lb-sec)	N-s	(lb-sec)	I/M	M / I
PP-1	247.02	(182.19)	390.94	(87.89)	325.64	(73.21)	0.83	1.20
PP-2	276.11	(203.65)	436.99	(98.24)	369.11	(82.98)	0.84	1.18
PP-3	281.85	(207.88)	446.08	(100.28)	432.56	(97.24)	0.97	1.03
PP-4	215.32	(158.81)	340.77	(76.61)	353.78	(79.53)	1.04	0.96
PP-5	194.30	(143.31)	307.51	(69.13)	306.66	(68.94)	1.00	1.00
PP-6	268.92	(198.34)	425.60	(95.68)	465.33	(104.61)	1.09	0.91
PP-7	281.15	(207.37)	444.97	(100.03)	425.69	(95.70)	0.96	1.05
PP-8	224.17	(165.34)	354.79	(79.76)	348.19	(78.28)	0.98	1.02
PP-9	247.21	(182.33)	391.25	(87.96)	374.23	(84.13)	0.96	1.05
PP-10	278.34	(205.29)	440.51	(99.03)	392.66	(88.27)	0.89	1.12
PP-11	331.15	(244.25)	524.10	(117.82)	472.98	(106.33)	0.90	1.11
PP-12	227.25	(167.61)	359.65	(80.85)	318.13	(71.52)	0.88	1.13
PP-13	290.09	(213.96)	459.12	(103.21)	417.85	(93.94)	0.91	1.10
PP-14	269.45	(198.73)	426.44	(95.87)	373.21	(83.90)	0.88	1.14
PP-15	233.09	(171.92)	368.90	(82.93)	380.34	(85.50)	1.03	0.97
Average	257.70	(190.07)	407.84	(91.69)	383.76	(86.27)	0.94	1.07

^{*}Calculation based on JFdt.

Table 24. Southern Yellow Pine Impulse-Momentum Comparison

	•	Momentum H _G)		omentum M)	*Impı	ılse (I)	Ratio	Ratio
Test No.	J-s (ft-lbs-sec)		N-sec	(lb-sec)	N-s	(lb-sec)	I / M	M / I
SY-1	174.43	(128.65)	276.06	(62.06)	307.01	(69.02)	1.11	0.90
SY-2	151.58	(111.80)	239.89	(53.93)	221.13	(49.71)	0.92	1.08
SY-3	170.06	(125.43)	269.15	(60.51)	238.29	(53.57)	0.89	1.13
SY-4	144.59	(106.64)	228.83	(51.44)	249.89	(56.18)	1.09	0.92
SY-5	181.68	(134.00)	287.54	(64.64)	294.00	(66.09)	1.02	0.98
SY-6	189.49	(139.76)	299.89	(67.42)	290.26	(65.25)	0.97	1.03
SY-7	183.62	(135.43)	290.60	(65.33)	293.53	(65.99)	1.01	0.99
SY-8	175.17	(129.20)	277.23	(62.32)	271.42	(61.02)	0.98	1.02
SY-9	186.69	(137.70)	295.47	(66.42)	300.33	(67.52)	1.02	0.98
SY-10	181.63	(133.96)	287.46	(64.62)	265.29	(59.64)	0.92	1.08
SY-11	172.62	(127.32)	273.20	(61.42)	259.56	(58.35)	0.95	1.05
SY-12	158.93	(117.22)	251.54	(56.55)	243.57	(54.76)	0.97	1.03
SY-13	139.40	(102.81)	220.62	(49.60)	246.49	(55.41)	1.12	0.90
SY-14	185.79	(137.03)	294.04	(66.10)	272.03	(61.15)	0.93	1.08
SY-15	169.66	(125.14)	268.52	(60.37)	307.06	(69.03)	1.14	0.87
Average	171.02	(126.14)	270.67	(60.85)	270.66	(60.85)	1.00	1.00

^{*}Calculation based on JFdt.

The final piece of supporting evidence was a bogie test completed at MwRSF in December of 2004. The test was conducted in soil on a 1778 mm (70 in.) W6x16 steel post with a 1016 mm (40 in.) embedment depth. For the test, the post was cut into two pieces at 101.6 mm (4 in.) above the ground line and re-connected with a hinge on the back side. This allowed the post to rotate freely as it bent backwards. To measure the actual load in the post, a load cell was placed on the front side of the post, connecting the top and bottom sections. With the exception of the soil, the post was impacted using the same conditions as those used in the round post study. The data from the load cell was compared to that from the accelerometer, and the results are presented in Figure 40.

The graph clearly shows that the data from the accelerometer contained an initial spike that was not present in the data from the load cell. This suggested that there was indeed an additional force felt by the bogie that was not due to the bending of the post but rather due to the acceleration of the post and the soil. Although this test was completed

in soil, it suggests that there is indeed an inertial spike at the front end of the accelerometer data.

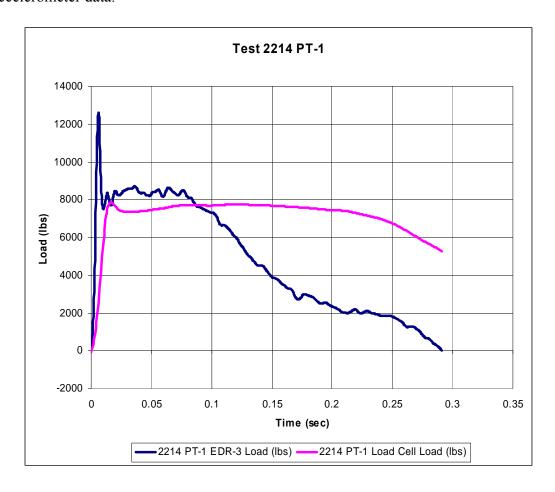


Figure 40. Bogie Force and Post Force Test PT-1

7.3.3 Distinction between Real and Inertial Forces

If the inertial spike theory is true, the inertial force and the real resistive force need to be separated to determine the actual strength of the posts. When the post tests were conducted with some amount of compliance in the sleeve, the inertial force was very distinct. However, the less compliance that exists, the more vague the distinction will become. For example, in a fully fixed test where the posts were embedded in

concrete, the inertial and real forces would be combined into a single spike and distinguishing between the two would be impossible.

7.4 Effects of the Inertial Spike Theory

Consideration of the inertial spike theory may have a significant effect on some of the post tests while having little or no effect on others. In the cases in which the inertial spike was lower than a subsequent spike, very little change will occur. Several of these tests were filtered without the inertial spike, but only very slight changes were noted in the peak force levels.

For the cases in which the inertial spike was also the maximum spike, the theory may have significant effects. The first problem was that excluding the inertial spike severely reduced the calculated strength of the posts because the maximum force was significantly lowered. However, considering the inertial spike theory in more detail, the strength of the post may not be as low as this new analysis suggests.

If the bogie impacts a post and causes it to rotate, the fixed sleeve must eventually bring the base of the post to a stop, or it would never fracture. If the inertia of the post is great enough, the sleeve's slowing force may cause bending in the post or even failure. If this occurs, the additional force from the bogie, required to fracture the post, may only be responsible for a small portion of the ultimate stress in the fibers since the two opposing forces act simultaneously. When this occurs, determining the force that was required to fracture the post is very difficult. In the other scenario, when the inertial force is great enough that the sleeve's slowing force can fail the fibers by itself, the bogie may not even apply additional force to fracture the post. This potential scenario greatly complicates efforts to eliminate the effects of the inertial spike from the analysis.

Because the theory had a potentially significant effect on the future tests within the project, three additional bogic tests were conducted at half the impact speed to prove or disprove that inertia caused the initial spike in the dynamic data. If inertia did cause the initial spike, the impulse should also be cut in half because the momentum of the post was cut in half.

7.4.1 Predicted Impulse and Angular Momentum

Using the same procedures as before, the angular momentum, linear momentum, and impulse were predicted for the tests and are shown in Table 25. It was assumed that the impulse would be the same as the calculated momentum as it was for the previous Southern Yellow Pine post tests.

Table 25. Supplemental Bogie Testing Predictions

	Dry Weight	Wet Weight	Angular Momentum (H _G)		Linear Momentum (M)		Predicted Impulse (I)		Predicted Peak Force	Peak Force (Test Results)
Post No.	(lb)	(lb)	J-s	(ft-lbs-sec)	N-sec	(lb-sec)	N-s	(lb-sec)	(k)	(k)
SYPI-A	64	69	98.26	(72.47)	155.51	(34.96)	155.51	(34.96)	16.35	22.30
SYPI-B	75	80	86.31	(63.66)	136.59	(30.71)	136.59	(30.71)	14.36	20.20
SYPI-C	67	73	70.67	(52.12)	111.85	(25.14)	111.85	(25.14)	11.76	17.90

A significant assumption was made to calculate the peak force. This assumption was the duration of the impulse. If the duration of the impulse was the same as the previous tests at 32 km/hr (20 mph), the peak force would be half of what it was previously. If the duration of the impulse was twice the previous duration, the peak force would be a quarter of its previous value.

Based on prior experience, the duration of an impact is often fairly independent of the impact velocity. This meant that the duration of the impact event would be approximately the same as before, and for the purposes of the project, it will be assumed to be exactly the same. Therefore, an impulse duration of 0.003208 sec, which was the average duration for the previous tests, was chosen.

A semi-parabolic impulse spike approximation was used to calculate the peak force because it more closely approximated the physical test data than a triangular or parabolic distribution. The Impulse was approximated as:

$$I = \frac{2(\Delta t)(F_{Peak})}{3}$$

Rearranging the equation for peak load resulted in the expression shown below, which was then used to determine the force values for each post. These results are also shown in Table 25.

$$F_{Peak} = \frac{3(I)}{2(\Delta t)}$$

7.4.2 Supplemental Testing

Three supplemental bogie tests were conducted on round Southern Yellow Pine posts from the same lot as those tested previously. In this set of tests, the impact speed was reduced and all other factors were held consistent with the previous tests. Note that test no. SYPI-3 was conducted at 6.1 m/s (13.6 mph) rather than the anticipated 4.5 m/s (10 mph.).

When the tests were completed, the accelerometer data was analyzed and investigated as before. The test results for peak acceleration, peak force, impulse, linear momentum, as calculated previously, and impact speed are presented and compared to the previous tests in Table 26. Complete results for the three tests are provided in Appendix D, and a summary of the test results is provided in Table 27. A ratio of the

results from the supplemental tests to the results from the original tests is also calculated to show its similarity to the ratio of the impact speeds.

Table 26. Supplemental Bogie Test Results Comparison

	Peak	Peak	Predicted	Impulse	Linear	Impact
	Acceleration	Force	Peak Force	(I)	Momentum (M)	Speed
Test No.	(G's)	(Kips)	(Kips)	(lb-sec)	(lb-sec)	(ft/s)
SYPI-1	11.17	17.92	11.76	31.35	25.14	14.67
SYPI-2	12.61	20.23	14.36	38.26	30.71	14.90
SYPI 1-2 Average	11.89	19.08	13.06	34.81	27.93	14.78
SY 1-15 Average	19.99	32.08		60.85	60.85	29.00
Ratio	0.595	0.595		0.572	0.459	0.510
SYPI-3	13.92	22.34	16.35	40.17	34.96	19.88
SY 1-15 Average	19.99	32.08		60.85	60.85	29.00
Ratio	0.696	0.696		0.660	0.575	0.686

The results shown in Table 26 were very close to those shown in Table 25, which were predicted by the inertial spike theory. For the first two supplemental tests, conducted at approximately 4.5 m/s (10.0 mph), the peak acceleration, peak force, and impulse of the initial acceleration spike should have been approximately half of the values determined for tests conducted at 8.9 m/s (20 mph). As shown in Table 26, the new values ranged from 57 percent to 60 percent of the old, very close to what was expected. The third test, conducted at approximately 5.8 m/s (13 mph), should have reached peak acceleration, peak force, and impulse values for the initial acceleration spike that were about 65 percent of the values determined for the previous tests. Again, the results support this with values ranging from 66 percent to 70 percent of the previous results. These comparisons offer significant support for the inertial spike theory.

A comparison of the acceleration vs. time plots is shown in Figure 41 and Figure 42. In test no. SY-3, shown in Figure 41, the initial spike of the filtered acceleration exceeded the second peak. However, when the velocity was decreased for test no. SYPI-

3, shown in Figure 42, the initial spike in the filtered data was just slightly over half of the second spike. Clearly, the impact velocity has a large effect on the magnitude of the initial filtered acceleration spike.

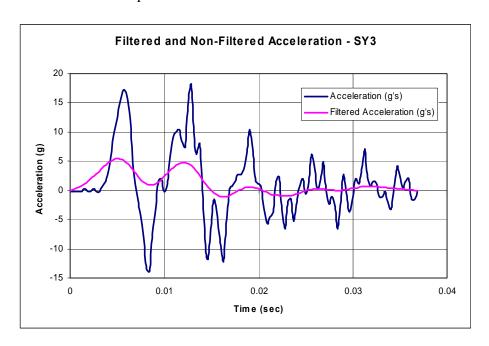


Figure 41. Acceleration vs. Time - Test No. SY-3

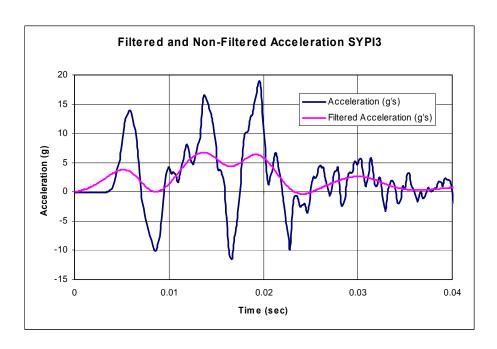


Figure 42. Acceleration vs. Time - Test No. SYPI-3

Table 27. Supplemental Bogie Test Results Summary

				Ring	Ave	rage		Peak Force Rupture					Moisture	Modu	lus of	lm	pact						
	Post	Post	Post	Density	Dian	neter	Time	Fo	rce	Defle	ction	En	ergy	Time	Defle	ection	En	ergy	Content	Rup	ture	Vel	ocity
	Test No.	Number	Category	rings/in.	mm	(in.)	ms	kN	(kips)	mm	(in.)	kJ	(kip-in.)	ms	mm	(in.)	kJ	(kip-in.)	(%)	Мра	(k/in. ²)	m/s	(mph)
ē	SYPI-1	С	NA	4.00	177	(6.9)	19.2	57.1	(12.8)	81	(3.2)	2.27	(20.1)	197.6	457	(18.0)	6.23	(55.4)	26	54.4	(7.89)	4.5	(10.0)
S	SYPI-2	В	NA	10.33	186	(7.3)	26.2	63.9	(14.4)	106	(4.2)	3.87	(34.3)	155.9	216	(8.5)	7.50	(66.4)	22	70.2	(10.18)	4.5	(10.2)
<u>=</u>	SYPI-3	Α	NA	2.67	185	(7.3)	13.6	48.1	(10.8)	81	(3.2)	1.39	(12.3)	88.2	463	(18.2)	4.40	(39.0)	28	46.6	(6.75)	6.1	(13.6)
ert	0	verall Ave	rage	5.67	182	(7.2)	19.66667	56.3	(12.7)	89	(3.5)	2.51	(22.2)	147.2	378	(14.9)	6.05	(53.6)	25	57.05	(8.3)	5.0	(11.2)
=	Sta	ndard Dev	riation	4.09	5.16	(0.2)	6.31295	7.9	(1.8)	15	(0.6)	1.26	(11.2)	55.2	141	(5.5)	1.56	(13.8)	3	12.05	(1.7)	0.9	(2.0)

*Data Filtered According to SAE J211/1 Requirements

Limited by Maximum Deflection Criterion (20 in.)
Limited by Time of Contact

^{*}Peak forces included in Table 27 are filtered as previous test results, and therefore differ from those shown in Table 25 and Table 26, which are unfiltered.

7.4.3 Effects of Inertial Spike on Post Size

The cases in which the inertial spike was not the maximum overall force will have no effect on the post size determination. However, for the other cases, the MOR for the individual tests would decrease, reducing the overall average MOR for the species. This in turn would increase the recommended diameter for the posts. Unfortunately, the second set of posts was ordered before the inertial effects were fully investigated. Therefore, no diameter modification could be made prior to the second round of testing.

Instead, some modifications were made to the impact conditions. As shown in tests SYPI 1 through 3, the initial spike could be significantly reduced by lowering the impact velocity of the bogie. In fact, if the velocity of the bogie was halved, the initial impulse should also be halved. Although the modification will not eliminate the inertia problem, it will significantly reduce it and should help in determining the actual fracturing force for each post.

7.4.4 Effects on Future Testing

In future tests, similar adjustments should be made. Although changing the restraint conditions would also modify the results, the alteration could make the peak force determination more difficult as alluded to previously. Therefore, the only change that is suggested is the reduction of the impact speed.

The new theory offers further understanding into the physics of cantilever post impacts and will likely help fine tune bogie testing procedures used in the future. Clearly the historic methods of testing cannot produce accurate results and should be abandoned.

8 PHYSICAL TESTING - ROUND TWO

8.1 Purpose

After determining that the original post diameter chosen for each of the species was too large, an additional 15 dynamic bogie tests of each species were conducted on posts of the smaller diameters determined in Chapter 6. Again, the posts were divided into three categories, knots, baseline, and high ring density, and again the purpose of the testing was to evaluate the strength of the posts in bending.

8.2 Pretest Documentation and Preparation

Prior to post testing, the samples were extensively documented using all of the same techniques that were used in the first round. In addition, the critical region for each of the posts was painted white. This painted region greatly increased the visibility of the post fracture because it caused the cracks in the surface to appear very dark against the white background. The test documentation summaries are presented below in Table 28 and Table 29. Tables containing knot locations and sizes are presented in Appendix A. In addition, the posts were soaked in tanks of water to increase the moisture content as in the first round of testing. Table 30 and Table 31 show the recorded test day values for moisture content, weight, and base circumference.

Table 28. Ponderosa Pine Round Two Pre-Test Documentation

	Post	Weight	Avg.		nference (i	n.)	Volume	Density	Mois	ture Conte	nt (%)	Ring Density
	Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	(rings/in.)
	502	58	78.125	22.208	22.625	22.875	3105	0.0187	15	17	17	5.67
	505	59	78.042	22.458	21.250	24.500	3167	0.0186	15	17	15	6.33
	506	48	78.083	22.208	22.750	25.125	3201	0.0150	17	15	17	4.67
	508	55	78.000	22.667	22.000	25.000	3263	0.0169	10	9	10	4.33
	510	53	78.000	20.083	20.750	21.625	2586	0.0205	14	13	12	3.33
	515	48	78.042	19.917	20.500	22.000	2557	0.0188	36	30	44	5.33
sa Pine	516	47	78.000	20.833	22.000	21.750	2769	0.0170	17	16	17	7.00
Ponderosa Pine	517	45	77.958	21.583	21.250	21.500	2875	0.0157	13	13	13	5.33
	518	57	78.125	21.208	21.750	22.250	2852	0.0200	30	31	27	6.67
	519	43	78.167	20.250	19.500	20.750	2537	0.0169	14	15	19	7.67
	521	66	78.042	23.833	24.000	24.500	3563	0.0185	14	14	15	15.00
	526	54	78.125	23.708	23.875	24.000	3511	0.0154	16	16	17	19.33
	527	56	78.083	22.375	22.250	23.750	3157	0.0177	18	16	22	13.33
	528	67	78.125	23.292	23.375	23.875	3393	0.0197	11	13	11	26.33
	530	73	78.146	23.083	23.625	24.000	3367	0.0217	33	43	31	15.00

Table 29. Douglas Fir Round Two Pre-Test Documentation

	Post	Weight	Avg.		nference (i	n.)	Volume	Density		ture Conter	nt (%)	Ring
	Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	Density (rings/in.)
	401	63	78.125	19.917	19.125	20.500	2458	0.0256	65	58	71	3.67
	403	55	78.188	22.542	21.250	24.000	3165	0.0174	67	65	63	4.33
	404	78	78.167	22.083	20.000	22.500	2971	0.0263	53	49	39	4.33
	405	63	78.125	21.375	20.500	22.625	2852	0.0221	65	67	71	4.00
	410	59	78.167	22.292	21.750	23.125	3097	0.0191	66	65	69	3.67
	414	52	78.125	21.625	20.750	22.250	2894	0.0180	47	56	51	4.00
Douglas Fir	415	59	78.146	21.792	20.750	22.625	2943	0.0200	74	71	74	3.67
Doug	417	58	78.083	20.750	20.875	23.125	2764	0.0210	60	63	61	3.67
	418	65	78.125	23.083	22.250	24.125	3319	0.0196	22	30	29	5.67
	419	65	78.167	22.208	21.500	22.875	3062	0.0212	32	48	48	5.67
	421	68	78.146	21.917	21.625	22.375	2988	0.0228	60	66	63	12.33
	422	71	78.125	21.458	20.500	20.750	2799	0.0254	21	21	22	7.67
	425	62	78.167	21.083	20.500	21.250	2745	0.0226	36	32	26	9.33
	426	63	78.125	22.042	22.000	22.625	3036	0.0207	67	65	70	8.33
	429	69	78.125	22.792	22.625	23.250	3238	0.0213	59	39	70	5.67

Table 30. Ponderosa Pine Round Two Test Day Measurements

		Weight	N	Noisture Content (%	%)	Circumference at Bottom
Test No.	Post No.	(lbs)	21 in. from Top	Center	21 in. from Bottom	(in.)
PP-16	502	66	15	15	42	23 1/4
PP-17	505	69	14	29	48	24 7/8
PP-18	506	63	15	26	46	25 1/2
PP-19	508	68	16	23	48	25 1/4
PP-20	510	55	15	45	48	22
PP-21	515	54	14	44	46	22 1/4
PP-22	516	52	15	15	49	22 1/2
PP-23	517	51	13	15	46	22 1/4
PP-24	518	62	18	25	34	22 1/4
PP-25	519	46	14	16	38	21
PP-26	521	77	11	21	40	25 1/8
PP-27	526	71	19	34	46	24 1/2
PP-28	527	77	58	64	58	23 7/8
PP-29	528	75	17	41	39	24 1/4
PP-30	530	87	34	46	43	24

Table 31. Douglas Fir Round Two Test Day Measurements

		Weight		Moisture Content (%	b)	Circumference at Bottom
Test No.	Post No.	(lbs)	21 in. from Top	Center	21 in. from Bottom	(in.)
DF-16	401	59	25	58	70	22 1/8
DF-17	403	56	23	59	61	23 7/8
DF-18	404	79	30	45	54	22 3/4
DF-19	405	59	28	46	70	22 1/2
DF-20	410	60	21	35	66	23 1/4
DF-21	414	51	23	41	65	22 1/2
DF-22	415	60	49	59	72	22 3/4
DF-23	417	59	52	62	64	23 1/4
DF-24	418	69	21	46	61	24 1/2
DF-25	419	64	23	66	63	23 1/8
DF-26	421	64	21	67	60	22 3/8
DF-27	422	68	19	51	60	23 1/4
DF-28	425	65	20	27	63	21 1/2
DF-29	426	62	19	29	71	22 3/4
DF-30	429	69	25	54	59	23 3/8

8.3 Scope

The second series of bogie tests was conducted with the round posts installed in a rigid steel sleeve that was embedded in concrete. Fifteen tests were conducted for each species with a centerline impact at approximately 13 mph, 632 mm (24.875 in.) above the ground. The speed was reduced from the first round of testing in order to reduce the inertial spike discussed previously. Also in the second round of tests, the posts were arranged so the most knotty face was oriented toward the impacting bogie (i.e., placing the critical knots in the tension face). This arrangement was not followed in the first round of tests. The testing matrix for the second round of tests is shown in Figure 43 below. The test setup is identical to the previous setup.

			Post Length	Post Diameter
Test No.	Post No.	Wooden Post Type	(in.)	(in.)
DF-16	401	Douglas Fir	78.1	6.34
DF-17	403	Douglas Fir	78.2	7.18
DF-18	404	Douglas Fir	78.2	7.03
DF-19	405	Douglas Fir	78.1	6.80
DF-20	410	Douglas Fir	78.2	7.10
DF-21	414	Douglas Fir	78.1	7.88
DF-22	415	Douglas Fir	78.1	6.94
DF-23	417	Douglas Fir	78.1	6.60
DF-24	418	Douglas Fir	78.1	7.35
DF-25	419	Douglas Fir	78.2	7.07
DF-26	421	Douglas Fir	78.1	6.98
DF-27	422	Douglas Fir	78.1	6.83
DF-28	425	Douglas Fir	78.2	6.71
DF-29	426	Douglas Fir	78.1	7.02
DF-30	429	Douglas Fir	78.1	7.25
PP-16	502	Ponderosa Pine	78.1	7.07
PP-17	505	Ponderosa Pine	78.0	7.15
PP-18	506	Ponderosa Pine	78.1	7.07
PP-19	508	Ponderosa Pine	78.0	7.22
PP-20	510	Ponderosa Pine	78.0	6.39
PP-21	515	Ponderosa Pine	78.0	6.34
PP-22	516	Ponderosa Pine	78.0	6.63
PP-23	517	Ponderosa Pine	78.0	6.87
PP-24	518	Ponderosa Pine	78.1	6.75
PP-25	519	Ponderosa Pine	78.2	6.45
PP-26	521	Ponderosa Pine	78.0	7.59
PP-27	526	Ponderosa Pine	78.1	7.55
PP-28	527	Ponderosa Pine	78.1	7.12
PP-29	528	Ponderosa Pine	78.1	7.41
PP-30	530	Ponderosa Pine	78.1	7.35

NOTES:

⁽²⁾ IMPACT ORIENTATION: CENTERLINE OF POST (W/ARROW POINTING TOWARD BOGIE) AND CENTERLINE OF BOGIE

Figure 43. Round Two Bogie Testing Matrix

⁽¹⁾ TARGET SPEED = 13 MPH (NOT LOWER)

9 SYSTEM DETAILS – ROUND TWO

9.1 Round Wood Posts

All of the round post samples were again donated by companies in the forestry industry. The Ponderosa Pine samples were donated by Hill Products Group, and the Douglas Fir samples were donated by All-Weather Wood Products.

The nominal length of the posts was again 1,905 mm (78 in.). The nominal target diameter of the posts was 171 mm (6.75 in.) for Douglas Fir and 191 mm (7.5 in.) for Ponderosa Pine. Figure 44 shows the dimensions for each of the selected posts.

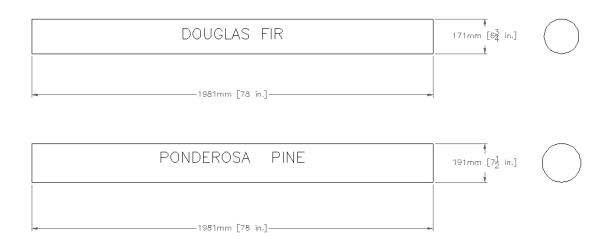


Figure 44. Major Dimensions of Round Wood Posts - Round Two Testing

9.2 Equipment and Instrumentation

The equipment and instrumentation used in the second round of tests was largely the same as that used in the first round. The only exception was the use of two additional high-speed digital video cameras. During the second round of tests, one high-speed Photron digital video camera and two high-speed VITcam digital video cameras, all with speeds of 500 frames per second, were used to record the events. One of the high-speed

cameras was focused on the base of the post, clearly displaying the fracture as it occurred. A second camera was focused on the impact location, which was used to investigate any interaction between the bogie impact head and the posts.

As in the previous round of testing, the cameras were placed approximately 25 ft from the centerline of the posts, with a field of view perpendicular to the bogie's direction of travel. When needed, flood lights were used to light the base of the posts. The recorded acceleration data was processed in the same manner as that recorded in the first round of bogie tests. The end of the test was also determined in the same manner as before.

10 ROUND 2 CANTILEVER TEST RESULTS

Bogie vehicle acceleration traces were processed for each of the tests in order to determine acceleration, velocity, and displacement curves, as well as force-deflection curves using the procedure described previously. Results for individual tests can be found in Appendix E, and test results and summary data can be found in Table 32 and Table 33 for Ponderosa Pine and Douglas Fir, respectively.

10.1 MOR Results

Similar to the first round of tests, an MOR value was calculated for each of the 45 tests and is shown in the mentioned tables. The highest average MOR was 57 MPa (8.3 ksi) for the Douglas Fir posts, and the lowest average MOR was 49 MPa (7.2 ksi) for the Ponderosa Pine posts. The average MOR values were very similar to those from the previous round of testing, with the average for Ponderosa Pine increasing by 1 percent, and that for Douglas Fir decreasing by 3 percent.

10.1.1 Ponderosa Pine

Ponderosa Pine had an average MOR of 49 MPa (7.2 ksi). The knots category showed an MOR of 46 MPa (6.7 ksi), a 2 percent increase, the baseline category showed an MOR of 50 MPa (7.3 ksi), a 29 percent increase, and the HRD category showed an MOR of 52 MPa (7.6 ksi), an 18 percent decrease. The highest MOR was 71.0 MPa (10.30 ksi) for test PP-26 in the HRD category, and the lowest was 31.9 MPa (4.62 ksi) for test PP-19 in the knots category. Clearly, there was a significant difference between the two extremes. In addition to the presence of knots, a likely explanation was the difference in ring density from 15.0 rings-per-inch for PP-26 to 4.33 rings-per-inch for PP-19.

10.1.2 Douglas Fir

The Douglas Fir tests showed an overall decrease in MOR of 3 percent. This drop corresponded to an average MOR value of 57 MPa (8.3 ksi). The lowest average MOR for the individual categories was 49 MPa (7.2 ksi) for the knots category, a 16 percent decrease from the previous round of tests, and the highest was 69 MPa (10 ksi) for the HRD category, a 6 percent increase. The baseline category fell in the middle with an average MOR of 53 MPa (7.6 ksi), a 1 percent increase from the previous testing. The highest MOR for an individual test was 77 MPa (11 ksi) for test DF-28 in the HRD category, and the lowest MOR was 26 MPa (3.7 ksi) for test DF-17 in the knots category. Again the difference could be attributed to the presence of knots and a decreased ring density of 4.33 rings-per-inch for DF-17 as compared to 9.33 rings-per-inch for DF-28.

The differences in the average MOR between the two rounds of testing have significant effects on the suggested diameter for both species. For instance, the 6 percent increase noticed in the Douglas Fir HRD category would constitute a 3-mm (0.125-in.) decrease in diameter. As this percentage increases, it begins to make significant differences in the amount of material in a post. Placing the knots in the tension face clearly lowered the MOR for the knots category, which may have significant effects on the final size of the posts. Orienting the knots may not have been completely warranted since posts installed in the field will be placed randomly rather than in the worst-case orientation.

10.2 Force Results

As with the previous testing, it was important for the posts to have sufficient strength to be able to rotate in the soil rather than fracture. Therefore, the peak force that

a post can resist was a very important factor. The difficulty in comparing peak forces was that the posts were of different sizes. Although all of the posts of a given species were intended to be the same size, there was a significant variation caused by the processing. This variation is considerably larger in the second round of tests than in the first round. It should also be noted that the actual average diameter was not as accurate in the second round as it was in the first. For instance, the nominal suggested diameter of the Ponderosa Pine samples was 191 mm (7.5 in.), yet the actual average diameter was only 178 mm (7.0 in.). Therefore, using the peak force as an indicator of the strength of the posts was difficult because, for a given wood strength, a 178 mm (7.0 in.) diameter post would have a 23 percent lower fracture force than a 191 mm (7.5 in.) diameter post.

10.2.1 Ponderosa Pine

For Ponderosa Pine, the overall average peak force was 43.6 kN (9.8 kips). The standard deviation for this value was 13.1 kN (3.0 kips). Once again, the three categories demonstrated very different force levels. The average peak force for the knots category was 39.2 kN (8.8 kips), the average peak force for the baseline category was 37.1 kN (8.3 kips), and the average peak force for the HRD category was 54.5 kN (12.3 kips). Test PP-26, of the HRD category, had the highest peak force at 79.0 kN (17.8 kips). Test PP-19, of the knots category, resulted in the lowest peak force of 30.5 kN (6.9 kips), which is less than 1 standard deviation from the mean. This implies that the data is not perfectly normally distributed, but rather right-skewed, and is probably due to the very small sample size.

Contrary to what may be expected, the knots category did not demonstrate the lowest average force value, but rather the baseline category. This can be explained by the

size of the posts and the MOR. As shown in Section 11.1.2, the MOR for the baseline category was higher than that for the knots category. However, in the knots category, the average diameter was 177 mm (7.0 in.), while the average diameter for the baseline category was only 168 mm (6.6 in.). This makes the average force from the knots category higher than that of the baseline category.

10.2.2 Douglas Fir

Lastly, the Douglas Fir posts resulted in the highest overall average peak force of 48.5 kN (10.9 kips) with a standard deviation of 12.2 kN (2.7 kips). The highest individual peak force was found in the baseline category from test DF-24, which was 60.5 kN (13.6 kips). The lowest individual peak force was 23.9 kN (5.4 kips) found in test DF-17 of the knots category. The knots category had the lowest average peak force with 40.7 kN (9.2 kips), the baseline category was in the middle with 45.6 kN (10.3 kips), and the HRD category resulted in the highest average peak force with 59.1 kN (13.3 kips).

The average peak force values for Douglas Fir followed the pattern that was expected, with average peak force increasing from knots to baseline to HRD. In the case of Douglas Fir, the diameters of the posts were much more consistent. The knots category averaged 175 mm (6.9 in.) and the baseline and HRD categories both averaged 177 mm (7.0 in.). This result would further support the ranking of peak force from knots to baseline to HRD.

Table 32. Ponderosa Pine Round Wood Post Test Results - Round Two Testing

			ory	Ring	Ave	rage			Pea	ak Ford	е					Ruptur	е		Moisture	Modu	ılus of	lmi	pact
	Post	Post	teg	Density	Dian	_	Time	Fo	rce	Defle	ection	En	ergy	Time	Defle	ection	En	ergy	Content	Ru	oture		ocity
	Test No.	No.	ပ္မ	rings/in.	mm	(in.)	ms	kN	(kips)	mm	(in.)	kJ	(kip-in.)	ms	mm	(in.)	kJ	(kip-in.)	(%)	Мра	(k/in. ²)	m/s	(mph)
	PP-16	502		5.67	179	(7.1)	15.0	41.6	(9.3)	82	(3.2)	1.20	(10.6)	56.6	291	(11.5)	2.78	(24.6)	42	46.2	(6.70)	6.2	(13.8)
	PP-17	505	2	6.33	181	(7.1)	14.1	44.9	(10.1)	80	(3.2)	1.21	(10.7)	22.5	126	(5.0)	1.63	(14.4)	48	48.2	(7.00)	6.1	(13.5)
	PP-18	506	KNO	4.67	179	(7.1)	15.0	41.7	(9.4)	92	(3.6)	1.32	(11.7)	22.8	137	(5.4)	1.74	(15.4)	46	46.4	(6.73)	5.9	(13.2)
	PP-19	508	조	4.33	183	(7.2)	13.4	30.5	(6.9)	81	(3.2)	1.06	(9.4)	22.5	134	(5.3)	1.36	(12.0)	48	31.9	(4.62)	5.9	(13.2)
	PP-20	510		3.33	162	(6.4)	25.0	37.6	(8.5)	153	(6.0)	1.26	(11.1)	33.1	200	(7.9)	1.70	(15.0)	48	56.5	(8.20)	6.1	(13.6)
	KNOTS	S Avera	ge	4.87	177	(7.0)	16.5	39.2	(8.8)	97	(3.8)	1.21	(10.7)	31.5	178	(7.0)	1.84	(16.3)	46	45.8	(6.65)	6.0	(13.5)
	PP-21	515	Ш	5.33	161	(6.3)	15.9	31.6	(7.1)	97	(3.8)	1.12	(9.9)	89.7	510	(20.1)	3.35	(29.7)	46	48.6	(7.05)	6.1	(13.8)
Pine	PP-22	516	\exists	7.00	168	(6.6)	13.8	42.6	(9.6)	86	(3.4)	1.22	(10.8)	26.3	159	(6.3)	2.33	(20.6)	49	57.3	(8.31)	5.9	(13.3)
	PP-23	517	교	5.33	174	(6.9)	15.6	32.5	(7.3)	94	(3.7)	1.12	(9.9)	45.6	266	(10.5)	2.12	(18.8)	46	39.4	(5.71)	6.3	(14.1)
sa	PP-24	518	AS	6.67	171	(6.8)	15.9	46.1	(10.4)	100	(3.9)	1.65	(14.6)	88.4	508	(20.0)	3.73	(33.0)	34	58.8	(8.53)	6.4	(14.3)
ero	PP-25	519	B	7.67	164	(6.4)	13.8	32.8	(7.4)	87	(3.4)	1.03	(9.1)	55.3	327	(12.9)	3.87	(34.3)	38	48.1	(6.98)	5.8	(13.0)
ğ	BASELIN	NE Ave	age	6.40	168	(6.6)	15.0	37.1	(8.3)	93	(3.7)	1.23	(10.9)	61.1	354	(13.9)	3.08	(27.3)	43	50.4	(7.32)	6.1	(13.7)
Po	PP-26	521		15.00	193	(7.6)	20.6	79.0	(17.8)	122	(4.8)	4.50	(39.8)	75.9	384	(15.1)	6.66	(59.0)	40	71.0	(10.30)	6.1	(13.7)
	PP-27	526		19.33	192	(7.5)	20.9	65.1	(14.6)	116	(4.6)	2.85	(25.2)	55.3	278	(10.9)	4.46	(39.5)	46	59.5	(8.63)	6.2	(13.9)
	PP-28	527		13.33	181	(7.1)	15.3	40.3	(9.1)	93	(3.7)	1.51	(13.4)	89.7	493	(19.4)	4.18	(37.0)	58	43.8	(6.36)	6.2	(14.0)
	PP-29	528	1	26.33	188	(7.4)	20.0	50.3	(11.3)	114	(4.5)	3.24	(28.7)	122.8	508	(20.0)	9.85	(87.2)	39	48.5	(7.03)	6.2	(14.0)
	PP-30	530	I	15.00	186	(7.3)	15.3	37.9	(8.5)	92	(3.6)	1.47	(13.0)	50.0	282	(11.1)	3.43	(30.3)	43	37.6	(5.45)	5.9	(13.2)
	HRD	Averag	е	17.80	188	(7.4)	18.4	54.5	(12.3)	108	(4.2)	2.72	(24.0)	78.7	389	(15.3)	5.72	(50.6)	45	52.1	(7.55)	6.1	(13.7)
	A	lvg.		9.69	178	(7.0)	16.6	43.6	(9.8)	99	(3.9)	1.72	(15.2)	57.1	307	(12.1)	3.55	(31.4)	45	49.46	(7.2)	6.1	(13.6)
	St.	Dev.	·	6.65	10.4	(0.4)	3.4	13.1	(3.0)	20	(8.0)	1.01	(8.9)	30.5	144	(5.7)	2.24	(19.8)	6	9.91	(1.4)	0.2	(0.4)

*Data Filtered According to SAE J211/1 Requirements

Limited by Maximum Deflection Criterion (20 in.)

Limited by Time of Contact

Table 33. Douglas Fir Round Wood Post Test Results - Round Two Testing

			ory	Ring	Ave	rage			Pea	ak Ford	се					Ruptur	е		Moisture	Modu	llus of		
	Post	Post	egc	Density		neter	Time	Fo	rce	Defle	ection	En	ergy	Time	Defle	ection	En	ergy	Content		ture	Impact '	Velocity
	Test No.	No.	Cat	rings/in.	mm	(in.)	ms	kN	(kips)	mm	(in.)	kJ	(kip-in.)	ms	mm	(in.)	kJ	(kip-in.)	(%)	Мра	(k/in. ²)	m/s	(mph)
	DF-16	401		3.67	161	(6.3)	12.2	38.9	(8.8)	74	(2.9)	1.20	(10.6)	90.9	510	(20.1)	3.52	(31.2)	70	60.0	(8.70)	6.2	(13.8)
	DF-17	403	Z	4.33	182	(7.2)	13.1	23.9	(5.4)	78	(3.1)	0.99	(8.8)	52.2	302	(11.9)	1.45	(12.8)	61	25.5	(3.69)	6.1	(13.5)
	DF-18	404	Ö	4.33	178	(7.0)	14.4	58.4	(13.1)	83	(3.3)	1.93	(17.1)	105.3	509	(20.0)	5.80	(51.3)	54	66.1	(9.58)	5.9	(13.2)
	DF-19	405	Σ̈́	4.00	173	(6.8)	14.4	45.4	(10.2)	83	(3.3)	1.44	(12.7)	68.4	371	(14.6)	2.78	(24.6)	70	56.5	(8.20)	5.9	(13.2)
	DF-20	410		3.67	180	(7.1)	12.5	37.1	(8.3)	74	(2.9)	1.26	(11.1)	65.6	368	(14.5)	2.59	(22.9)	66	40.8	(5.91)	6.1	(13.6)
	KNOTS	S Averaç	je	4.00	175	(6.9)	13.3	40.7	(9.2)	78	(3.1)	1.36	(12.1)	76.5	412	(16.2)	3.23	(28.6)	64	49.8	(7.22)	6.0	(13.5)
	DF-21	414	Е	4.00	175	(6.9)	12.5	40.8	(9.2)	75	(3.0)	1.39	(12.3)	56.3	323	(12.7)	2.29	(20.2)	65	49.1	(7.12)	6.1	(13.8)
١.	DF-22	415	Z	3.67	176	(6.9)	13.8	31.5	(7.1)	80	(3.1)	1.17	(10.4)	43.8	247	(9.7)	1.78	(15.7)	72	37.1	(5.38)	5.9	(13.3)
:Ξ	DF-23	417	핔	3.67	168	(6.6)	12.2	40.6	(9.1)	75	(3.0)	1.46	(12.9)	54.4	322	(12.7)	2.30	(20.4)	64	55.3	(8.02)	6.3	(14.1)
as	DF-24	418	AS	5.67	186	(7.3)	14.1	60.5	(13.6)	88	(3.5)	2.02	(17.8)	90.6	510	(20.1)	4.66	(41.2)	61	59.9	(8.68)	6.4	(14.3)
ngla	DF-25	419	В	5.67	179	(7.1)	13.8	54.8	(12.3)	78	(3.1)	1.54	(13.6)	101.6	509	(20.0)	4.01	(35.5)	63	60.9	(8.83)	5.8	(13.0)
١ĕ	BASELIN	NE Aver	age	4.53	177	(7.0)	13.3	45.6	(10.3)	79	(3.1)	1.52	(13.4)	69.3	382	(15.0)	3.01	(26.6)	65	52.5	(7.61)	6.1	(13.7)
-	DF-26	421		12.33	177	(7.0)	20.3	60.4	(13.6)	118	(4.6)	3.66	(32.4)	63.1	319	(12.6)	6.11	(54.1)	60	69.8	(10.13)	6.1	(13.7)
	DF-27	422	\circ	7.67	173	(6.8)	20.6	59.3	(13.3)	121	(4.8)	3.79	(33.6)	184.1	508	(20.0)	13.74	(121.6)	60	73.1	(10.60)	6.2	(13.9)
	DF-28	425	HRD	9.33	170	(6.7)	13.4	59.1	(13.3)	82	(3.2)	1.85	(16.4)	110.3	509	(20.0)	8.39	(74.2)	63	76.8	(11.13)	6.2	(14.0)
	DF-29	426	_	8.33	178	(7.0)	21.6	58.2	(13.1)	128	(5.1)	3.71	(32.8)	68.7	365	(14.4)	5.47	(48.4)	71	66.2	(9.60)	6.2	(14.0)
	DF-30	429		5.67	184	(7.3)	14.7	58.6	(13.2)	85	(3.3)	1.67	(14.8)	104.1	509	(20.0)	5.24	(46.4)	59	60.3	(8.75)	5.9	(13.2)
	HRD	Average		8.67	177	(7.0)	18.1	59.1	(13.3)	107	(4.2)	2.94	(26.0)	106.1	442	(17.4)	7.79	(68.9)	63	69.2	(10.04)	6.1	(13.7)
	P	۷vg.		5.73	176	(6.9)	14.9	48.5	(10.9)	88	(3.5)	1.94	(17.2)	84.0	412	(16.2)	4.67	(41.4)	64	57.15	(8.3)	6.1	(13.6)
	St.	Dev.		2.59	6.56	(0.3)	3.2	12.2	(2.7)	18	(0.7)	0.97	(8.6)	35.3	99	(3.9)	3.16	(28.0)	5	13.99	(2.0)	0.2	(0.4)

*Data Filtered According to SAE J211/1 Requirements

Limited by Maximum Deflection Criterion (20 in.)

Limited by Time of Contact

10.3 Adjusted Peak Force

As noted in the Section 10.2, it was difficult to compare peak forces for posts that varied in size. As such, an adjusted peak force was calculated based on a post's MOR and nominal diameter. This adjusted peak force was simply a prediction of the peak force for the specified diameter that could be used to make comparisons between individual categories and individual posts.

To calculate such a predicted force, the method presented in Chapter 6 was used. Once again, this assumed a linear stress distribution and standard elastic bending theory. The adjusted force values were calculated for each of the posts at their nominal size for round 2 and are shown in Table 34 and Table 35 below.

Table 34. Ponderosa Pine – Adjusted Peak Force

	Post	Post	Post	-	Diameter Peak Force
	Test No.	Number	Category	kN	(kips)
	PP-16	502	KNOTS	49.6	(11.16)
	PP-17	505	KNOTS	51.8	(11.65)
	PP-18	506	KNOTS	49.8	(11.20)
	PP-19	508	KNOTS	34.2	(7.69)
	PP-20	510	KNOTS	60.7	(13.65)
	K	NOTS Ave	erage	49.2	(11.07)
	PP-21	515	BASELINE	52.2	(11.74)
Pine	PP-22	516	BASELINE	61.6	(13.84)
	PP-23	517	BASELINE	42.3	(9.51)
Sa	PP-24	518	BASELINE	63.2	(14.20)
erc	PP-25	519	BASELINE	51.7	(11.62)
Ponderosa	BAS	SELINE A	verage	54.2	(12.18)
Ро	PP-26	521	HRD	76.3	(17.16)
	PP-27	526	HRD	63.9	(14.36)
	PP-28	527	HRD	47.1	(10.58)
	PP-29	528	HRD	52.1	(11.71)
	PP-30	530	HRD	40.3	(9.07)
		HRD Aver	age	55.9	(12.58)
		Avg.	·	53.13	(11.9)
		St. Dev	'.	10.65	(2.4)

Table 35. Douglas Fir - Adjusted Peak Force

	Post	Post	Post	00	Diameter Peak Force
	Test No.		Category	kN	(kips)
	DF-16	401	KNOTS	47.0	(10.56)
	DF-17	403	KNOTS	19.9	(4.48)
	DF-18	404	KNOTS	51.7	(11.63)
	DF-19	405	KNOTS	44.3	(9.96)
	DF-20	410	KNOTS	31.9	(7.18)
	K	NOTS Ave	erage	39.0	(8.76)
	DF-21	414	BASELINE	38.5	(8.65)
	DF-22	415	BASELINE	29.1	(6.53)
Fir	DF-23	417	BASELINE	43.3	(9.73)
as	DF-24	418	BASELINE	46.9	(10.54)
lgn	DF-25	419	BASELINE	47.7	(10.72)
Douglas	BAS	SELINE A	verage	41.1	(9.23)
	DF-26	421	HRD	54.7	(12.29)
	DF-27	422	HRD	57.2	(12.86)
	DF-28	425	HRD	60.1	(13.51)
	DF-29	426	HRD	51.8	(11.65)
	DF-30	429	HRD	47.2	(10.62)
		HRD Aver	age	54.2	(12.19)
		Avg.		44.75	(10.1)
		St. Dev		10.96	(2.5)

10.3.1 Ponderosa Pine

Adjusted peak forces for the Ponderosa Pine tests are shown in Table 34. As anticipated, for this species, the category trend is shown with knots as the weakest and high ring density as the strongest.

10.3.2 Douglas Fir

The adjusted peak forces for the Douglas Fir tests are shown in Table 35. Once again, the trend continued with the knots category being the weakest and the high ring density category being the strongest.

11 INTERMEDIATE POST SIZE DETERMINATION

11.1 Overview

After completing the second round of cantilever bogie tests, it was necessary to determine a post diameter in order to proceed with soil bogie tests. The method used to determine this size was a more refined version of the probability method presented previously. Similar to the former method, the new method established a required minimum force capacity of 9.5 kips, which was based on previous post testing. Also similar to the previous method, a 3 percent failure rate was established as an acceptable level of risk for the system to fail due to the failure of four consecutive posts when the system is subjected to the NCHRP Report 350 Test Level-3 criteria.

11.2 Probability Method for Determining Size

A post size had to be determined for each species that would allow each post to have a probability of fracture less than 40 percent. That is, a probability that the post will break, rather than rotate through the soil. Therefore, a strength distribution was needed for each species in order to determine the 40th percentile MOR.

11.2.1 Strength Distribution Model

To develop such a model, a random sample was needed. In the study, the only truly random population sample was tested statically. All the dynamic tests were conducted on posts in subcategories of the population, and the percentage of the population that each category represented was unknown. Therefore, the only data that could be used to construct a population distribution was the random static testing.

The problem with using the static data to construct a distribution was that the strength values that needed to be considered were dynamic strength values, not static

strength values. The dynamic strength exceeded the static strength. To account for this, a dynamic magnification factor was estimated and applied to the random static test results. The dynamic magnification factor was determined based on the testing in the individual subcategories of Baseline, High Ring Density, and Knots. The static and dynamic tests were compared and the ratio between them was determined for each category within each species, as shown in Table 36 and Table 37. This adjustment was made for both the first and second round cantilever tests, and the overall average for each species was used as the final magnification factor.

Looking carefully at the data, one will notice that there are some apparent shortcomings in this determination. Clearly, there is a large variability in the dynamic magnification factor and the average MOR values. In some cases such as the round 1 Ponderosa Pine tests, the MOR trend between categories is different for the static and dynamic tests. Another weakness is the arrangement of knots. In the second round, the dynamic tests were completed with the most knotty face as the impact face. This was not the case for the static tests, and likely resulted in a misleadingly low dynamic magnification factor. If this is the case, the shortcoming will result in a low dynamic MOR and hence a high suggested diameter.

The magnification factor was then applied to the static MOR, generating a random sample of dynamic test results that could be used to determine the size of post necessary to resist the soil forces.

Table 36. Dynamic Magnification Factor - Round 1 Bogie Testing

Ro	und 1 T	ests		Knots	Baseline	HRD	Average
	osa	Average MOR	Static Testing	3.9	4.7	6.65	
	Ponderosa Pine	(ksi)	Dynamic Testing	6.5	5.66	9.18	
	Por	Dynamic Mag	nification Factor	1.67	1.20	1.38	1.42
	as	Average MOR	Static Testing	6.16	7.04	7.29	
	Douglas Fir	(ksi)	(ksi) Dynamic Testing		7.5	9.5	
	ŏ	Dynamic Mag	nification Factor	1.43	1.07	1.30	1.27

Table 37. Dynamic Magnification Factor - Round 2 Bogie Testing

R	ound 2 T	ests		Knots	Baseline	HRD	Average	Overall Average
	osa	Average MOR	Static Testing	5.069	5.069	6.607		
	Ponderosa Pine	(ksi)	Dynamic Testing	6.65	7.32	7.55		
	Por	Dynamic Mag	nification Factor	1.31	1.44	1.14	1.30	1.36
	; Fir	Average MOR	Static Testing	5.775	6.047	9.112		
	Douglas	(ksi)	(ksi) Dynamic Testing		7.61	10.04		
	Dou	Dynamic Mag	nification Factor	1.25	1.26	1.10	1.20	1.24

Values presented in Table 36 include the inertial effects found in the first round of testing which may overestimate the dynamic magnification factors. To account for this, the inertial spikes were removed from the data and the dynamic magnification factors were re-calculated and are presented in Table 38.

Table 38. Dynamic Magnification Factor Excluding Inertial Effects

F	Round 1 T	ests		Knots	Baseline	HRD	Average	Overall Average
	osa	Average MOR	Static Testing	3.9	4.7	6.65		
	Ponderosa Pine	(ksi)	Dynamic Testing	5.6	5.4	8.8		
	Por	Dynamic Mag	nification Factor	1.44	1.15	1.32	1.30	1.30
	as	Average MOR	Static Testing	6.16	7.04	7.29		
	ouglas Fir	(ksi)	Dynamic Testing	8.4	6.3	9.5		
	Doi	Dynamic Mag	nification Factor	1.36	0.89	1.30	1.19	1.20

With the unknown effects of the inertia spike on the fracture of the post discussed in Chapter 7, the lower dynamic magnification factors may predict dynamic strengths that are below the actual capacity of the posts. However, including the inertial effects may over-estimate actual dynamic strengths. In addition, the dynamic magnification factors calculated from the second round of testing may also underestimate actual dynamic strengths as discussed previously.

Therefore, both sets of dynamic magnification factors were used in the subsequent calculations. Since the two effects likely offset one another, the results based on the original magnification factors, including inertial effects, are presented within the text. The results based on the modified magnification factors, excluding inertial effects, are presented in Appendix F. The final size recommendation, excluding inertial effects, increased the target diameter for Ponderosa Pine by 6.35 mm (0.25 in.), but did not change the Douglas Fir results.

With this dynamic adjustment completed, there was still one stipulation that was unaccounted for, the grading criteria. Clearly, if all grades of posts were eligible to be used in the system, the average MOR would be lowered significantly. This in turn would increase the required post diameter. Therefore, it was decided that a grading criteria should be established to specify the minimum post quality that was acceptable for use in the system. The grading criteria needed to be strict enough to assure a high quality, and therefore a relatively small post size, but loose enough to include a large percentage of the population that it remained economical to produce the posts.

The final grading criteria were determined by investigating the effects on the average MOR of removing a portion of the posts within each species that failed to meet a

certain grading criteria. For instance, within the Ponderosa Pine species, removing the posts with knots exceeding 102 mm (4 in.) in diameter and ring densities less than or equal to 6 rings-per-inch, raised the average MOR by 2 percent, increased its standard deviation by 6 percent, and only eliminated 8 percent of the population. For Douglas Fir, the criteria raised the MOR by 3 percent, decreased the standard deviation by 8 percent, and eliminated 17 percent of the population. The final criteria are presented below.

Douglas Fir:

- Maximum 2 in. diameter knot size.
- Ring of 6 rings-per-inch or more.

Ponderosa Pine:

- Maximum 4 in. diameter knot size.
- Ring density of 6 rings-per-inch or more.

After the grading criteria were specified, the random samples were sorted to exclude those posts that would not have fallen into the acceptable range. The remaining acceptable samples made up the target population and were used to develop a strength distribution that was in turn used to determine the acceptable diameters. Distribution plots for both the random population sample and the target population sample are shown in Figure 45 and Figure 46 for a generated sample of 1000 posts each. Static MOR, dynamic MOR, and the respective standard deviations are shown in Table 39 and Table 40 for the random and target populations of each species.

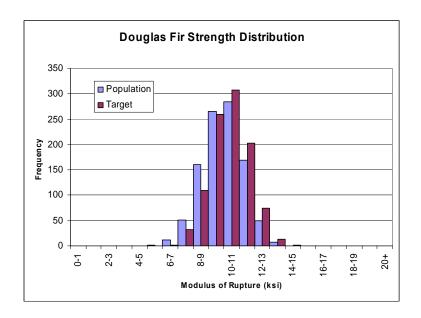


Figure 45. Douglas Fir Population and Target Population Strength Distribution

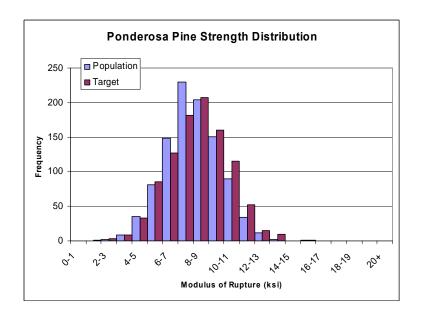


Figure 46. Ponderosa Pine Population and Target Population Strength Distribution

It is clear from the two figures and tables that the target population has a higher mean MOR than the general population. This is reasonable since the target population excludes some posts which fall at the lower end of the population distribution in terms of quality. From Table 39 and Table 40, it is apparent that the target category for Ponderosa

Pine was less of an improvement than that for Douglas Fir. With the MOR jumping by only 0.9 MPa (0.13 ksi), and the standard deviation increasing, the minimum diameter calculated for the population and the target population may be very similar as will be discussed in Section 11.2.2. However, it is important to maintain some minimum grading criteria so that timber producers will not allow poorer and poorer material into the manufacturing process.

Table 39. Douglas Fir Random Sample Testing Results

Douglas Fir				
	Static Test	ing Results	Adjusted Dyn	amic Results
Sample	Mean MOR (ksi)	Standard Deviation (ksi)	Mean MOR (ksi)	Standard Deviation (ksi)
Random Population Sample	8.10	1.07	10.00	1.33
Target Population Sample			10.34	1.22

Table 40. Ponderosa Pine Random Sample Testing Results

Ponderosa Pine				
	Static Test	ing Results	Adjusted Dyn	amic Results
Sample	Mean MOR (ksi)	Standard	Mean MOR (ksi)	Standard
Campie	Wear Work (Roi)	Deviation (ksi)	Wican Work (Roi)	Deviation (ksi)
Random Population Sample	5.95	1.33	8.09	1.81
Target Population Sample			8.22	1.93

11.2.2 Minimum Size Determination

The proper minimum size was then determined using elastic bending equations and the estimated MOR. As stated previously, 60 percent of the posts must withstand an impact force of 42 kN (9.5 kips) at a height of 632 mm (24.875 in.), or a bending moment capacity of 26.7 kN-m (236 kip-in.). This meant that the post diameter needed to be selected so a post with an ultimate strength equal to the 40 percent MOR value would have a moment capacity of 26.7 kN-m (236 kip-in.). The equation used to determine the diameter was a form of the simple elastic bending stress equation and is shown below.

$$d = \sqrt[3]{\frac{(32)(L)(P)}{(\pi)(40\% \text{ MOR})}}$$

Mean MOR, standard deviation, 40 percent MOR, and the calculated minimum diameter are shown in Table 41 for both Douglas Fir and Ponderosa Pine graded populations. Final minimum diameter values were rounded up from the values shown to the nearest quarter of an inch for manufacturing purposes.

Douglas Fir Ponderosa Pine Мра (ksi) Мра (ksi) Mean MOR (8.22)71.29 (10.34)56.67 Standard Deviation 8.41 (1.22)13.31 (1.93)40% MOR 69.15 (10.03)53.30 (7.73)Minimum Diameter 158 mm (6.21 in.) 172 mm (6.78 in.)

Table 41. Minimum Diameter Calculation

As alluded to, the minimum calculated diameter for the Ponderosa Pine population was 173 mm (6.8 in.), only 0.5 mm (0.02 in.) larger than the target population. Although this is the case, the minimum grading criteria needs to remain for quality assurance purposes as discussed in Section 11.2.1.

The minimum diameter was determined, and an acceptable range and target diameter needed to be established. The range of acceptable post diameters was set at 1 in. to allow some tolerance in the manufacturing process. The lower bound of the range was set at the minimum diameter and the target diameter was set 6.4 mm (0.25 in.) above the lower bound. The calculated diameters are shown below. The minimum diameter for each species was 12.7 mm (0.5 in.) less than the diameter recommended previously.

Douglas Fir:

•
$$165 \text{ mm}$$
 $^{+19 \text{ mm}}_{-6 \text{ mm}}$ $\left(6.5 \text{ in.} ^{+0.75 \text{ in.}}_{-0.25 \text{ in.}}\right)$

Ponderosa Pine:

•
$$184 \text{ mm}$$
 $^{+19 \text{ mm}}_{-6 \text{ mm}}$ $\left(7.25 \text{ in.} ^{+0.75 \text{ in.}}_{-0.25 \text{ in.}}\right)$

Target values were specified simply to give producers a size that was above the minimum requirement. The actual target diameter could have been selected as any value within the range and was much less important than the range itself. Although post producers will attempt to find posts meeting the target diameter, when few are available, they will inevitably select posts from their stockpile that fall anywhere within the specified range.

Rounding the minimum diameter up to the nearest ¼ in. resulted in a probability of failure for each post that was lower than originally suggested. For 159-mm (6.25-in.) Douglas Fir posts, the probability of failure was just over 35 percent, 5 percent lower than desired. For Ponderosa Pine, the increase to 178 mm (7 in.) lowered the probability of failure to 27 percent, 13 percent lower than what was needed. These adjustments also increase the reliability of the guardrail system. For a Douglas Fir system, the probability of failure, due to four consecutive failed posts, with 159-mm (6.25-in.) diameter posts was about 1.5 percent. For a 178-mm (7-in.) Ponderosa Pine system, the probability of failure was less than 1 percent.

Finally, allowing posts with diameters larger than the target values significantly reduces the probability of failure for each post and the system. For instance, the probability that a 178-mm (7-in.) diameter Douglas Fir post will fail is 0.4 percent, leading to a very small probability that the system will fail due to the failure of the posts. The same is true for Ponderosa Pine in which a 197-mm (7.75-in.) diameter post has a

probability of failure just under 6 percent. This also corresponds to a very small system failure probability.

12 PHYSICAL TESTING – SOIL BOGIE TESTING

12.1 Scope

After determining the minimum diameter required for the posts to rotate in soil rather than fracture, soil bogie tests were completed to verify the results. Initially, a total of six soil tests were completed for Douglas Fir and Ponderosa Pine, three for each species. A 1016-mm (40-in.) embedment depth, the standard embedment depth for the MGS system, was used as the starting point for the first two tests of each species. The tests were conducted at approximately 25 mph. This velocity was chosen so the kinetic energy of the bogie exceeded the energy absorbed in the previous soil-post tests which were used to determine the approximate peak load. Prior to testing, the moisture content and diameter of each post was measured and recorded. The soil bogie test setup is shown in Figure 47.

For the preliminary soil tests, the species of the posts was ignored, assuming that the behavior of a 203 mm (8 in.) diameter Ponderosa Pine post and a 203 mm (8 in.) Southern Yellow Pine post will be the same as long as neither post fractures. Therefore, the species of the post did not always correspond to the test name. Based on the same reasoning, the posts were not soaked in water as soaking should not have affected the soil response.

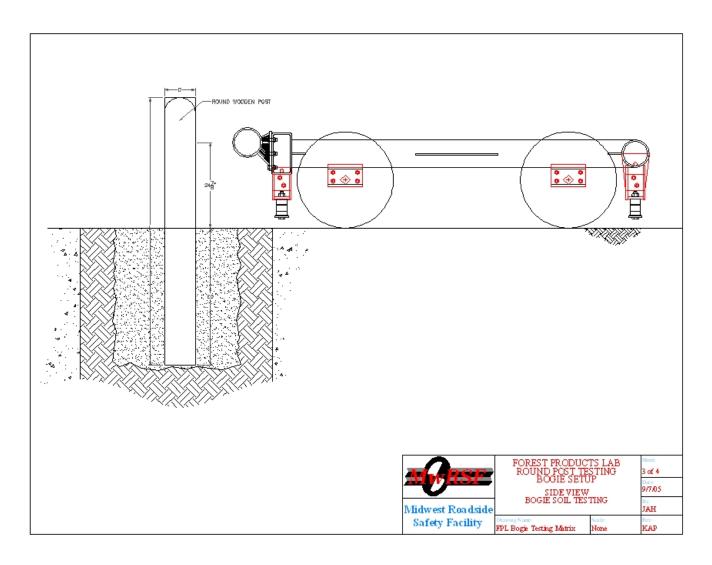


Figure 47. Soil Bogie Test Setup

12.2 Results

The raw data was once again recorded using a triaxial piezoresistive accelerometer system recording at 3,200 Hz, three pressure tape switches, and a series of cameras including two high speed VITcam digital video cameras, and a JVC digital video camera.

The data was processed using the same methods as the cantilever sleeve tests. The end of the test was determined as the most appropriate of the first, second, or third time the acceleration trace crossed the X-axis from positive to negative. Summaries of the results for all the soil tests are presented in Table 42 and Table 43, with complete results for each test presented in Appendix G.

The energy and deflection quantities were estimated at three times throughout the tests, the time corresponding to the peak force, the time corresponding to 381 mm (15 in.) of deflection, and at the end of the test. Data was provided at 381 mm (15 in.) deflection because previous studies show that the rail typically separates from the post at around 381 mm (15 in.) of deflection, making the post ineffective beyond this point.

12.2.1 Ponderosa Pine

As shown in Table 42, the first two Ponderosa Pine tests, PP-31 and 32, ended in post fracture and absorbed a very small amount of energy compared with previous soil tests. When this occurred, the embedment depth for the third test, PP-33, was reduced to 940 mm (37 in.), but the post still fractured.

Table 42. Soil Bogie Test Overview

	Post Test			In Soil D)iameter	Embedment Depth	Moisture Content	Impact	Velocity	Final Post
	No.	Test Date	Species	mm	(in.)	(in.)	(%)	m/s	(mph)	Status
	PP-31	9/16/2005	PP	183.76	(7.24)	40.00	29	11.7	(26.2)	Fractured
	PP-32	9/19/2005	PP	184.77	(7.28)	40.00	48	10.9	(24.5)	Fractured
۵	PP-33	9/29/2005	SYP	185.93	(7.32)	37.00	10	11.5	(25.7)	Fractured
Pine			Avg.	184.82	(7.28)		29	11.4	(25.5)	
			St. Dev.	1.09	(0.04)		19	0.4	(0.9)	
Ponderosa	PP-34	11/7/2005	PP	202.44	(7.97)	37.00	25	10.9	(24.3)	Rotated
de	PP-35	11/7/2005	PP	200.66	(7.90)	37.00	24	11.3	(25.3)	Rotated
ou	PP-36	11/7/2005	PP	199.14	(7.84)	37.00	20	10.6	(23.8)	Rotated
•	PP-37	11/7/2005	PP	194.06	(7.64)	37.00	23	11.2	(25.1)	Rotated
			Avg.	199.07	(7.84)		23	11.0	(24.6)	
			St. Dev.	3.61	(0.14)		2	0.3	(0.7)	
	DF-31	9/19/2005	SYP	165.48	(6.52)	40.00	17	11.1	(24.8)	Rotated
	DF-32	9/19/2005	PP	165.48	(6.52)	40.00	15	10.9	(24.4)	Fractured
l _	DF-33	9/23/2005	SYP	168.28	(6.63)	37.00	17	10.8	(24.2)	Fractured
Ë			Avg.	166.41	(6.56)		16	10.9	(24.4)	
Douglas			St. Dev.	1.61	(0.06)		1	0.1	(0.3)	
- Bn	DF-34	10/4/2005	DF	181.86	(7.16)	37.00	15	11.2	(25.1)	Rotated
0	DF-35	10/5/2005	DF	180.34	(7.10)	37.00	19	11.5	(25.7)	Rotated
_	DF-36	10/5/2005	DF	175.26	(6.90)	37.00	18	11.1	(24.8)	Fractured
			Avg.	179.15	(7.05)		17	11.3	(25.2)	
			St. Dev.	3.46	(0.14)		2	0.2	(0.4)	

 Table 43. Soil Bogie Test Results Summary

					Peak Force)			381 mm	(15 in.) De	flection			Final		
	Post Test	Time	Fo	rce	Defle	ection	En	ergy	Time	Ene	ergy	Time	Defle	ection	End	ergy
	No.	ms	kN	(kips)	mm	(in.)	kJ	(kip-in.)	ms	kJ	(kip-in.)	ms	mm	(in.)	kJ	(kip-in.)
	PP-31	11.9	50.5	(11.3)	137	(5.4)	4.22	(37.4)	34.7	9.63	(85.3)	57.2	618	(24.3)	10.17	(90.0)
	PP-32	6.3	43.6	(9.8)	68	(2.7)	1.20	(10.6)	N/A	N,	/A	29.4	312	(12.3)	3.34	(29.6)
ø	PP-33	5.6	52.2	(11.7)	64	(2.5)	1.44	(12.8)	35.3	11.20	(99.2)	102.8	969	(38.1)	24.34	(215.4)
Pine	Avg.	7.9	48.7	(11.0)	90	(3.5)	2.29	(20.3)	35.0	10.42	(92.2)	63.1	633	(24.9)	12.62	(111.7)
	St. Dev.	3.5	4.6	(1.0)	41	(1.6)	1.68	(14.9)	0.4	1.11	(9.8)	37.1	329	(12.9)	10.71	(94.8)
Ponderosa	PP-34	5.6	93.6	(21.0)	61	(2.4)	2.60	(23.0)	38.8	14.39	(127.3)	136.6	1059	(41.7)	29.37	(259.9)
de	PP-35	5.3	76.0	(17.1)	60	(2.3)	2.00	(17.7)	35.9	9.65	(85.4)	147.8	1322	(52.0)	26.41	(233.8)
٦	PP-36	5.3	88.4	(19.9)	56	(2.2)	2.28	(20.2)	38.1	7.52	(66.6)	130.0	1179	(46.4)	17.88	(158.2)
-	PP-37	5.3	62.2	(14.0)	59	(2.3)	1.74	(15.4)	35.6	6.69	(59.2)	149.1	1401	(55.2)	21.44	(189.7)
	Avg.	5.4	80.0	(18.0)	59	(2.3)	2.16	(19.1)	37.1	9.56	(84.6)	140.9	1240	(48.8)	23.77	(210.4)
	St. Dev.	0.1	14.0	(3.1)	2	(0.1)	0.37	(3.3)	1.6	3.45	(30.5)	9.2	152	(6.0)	5.12	(45.3)
	DF-31	5.9	40.9	(9.2)	65	(2.6)	1.21	(10.7)	36.6	10.62	(94.0)	177.5	1346	(53.0)	33.25	(294.3)
	DF-32	5.9	57.1	(12.8)	64	(2.5)	1.62	(14.3)	N/A	N.	/A	35.6	376	(14.8)	3.60	(31.9)
_	DF-33	6.3	57.1	(12.8)	67	(2.6)	1.64	(14.5)	36.9	6.53	(57.8)	60.0	608	(23.9)	7.75	(68.6)
ιË	Avg.	6.0	51.7	(11.6)	66	(2.6)	1.49	(13.2)	36.8	8.58	(75.9)	91.0	777	(30.6)	14.87	(131.6)
Douglas	St. Dev.	0.2	9.3	(2.1)	1	(0.1)	0.24	(2.1)	0.2	2.89	(25.6)	75.9	506	(19.9)	16.05	(142.1)
Вn	DF-34	6.3	81.9	(18.4)	70	(2.7)	2.49	(22.0)	36.3	9.43	(83.5)	151.9	1344	(52.9)	25.56	(226.3)
8	DF-35	5.6	52.8	(11.9)	64	(2.5)	1.59	(14.1)	35.9	14.25	(126.1)	144.7	1202	(47.3)	32.14	(284.5)
	DF-36	5.3	50.1	(11.3)	59	(2.3)	1.34	(11.8)	36.9	12.64	(111.9)	69.1	682	(26.8)	14.01	(124.0)
	Avg.	5.7	61.6	(13.9)	64	(2.5)	1.80	(16.0)	36.4	12.11	(107.2)	121.9	1076	(42.4)	23.90	(211.6)
	St. Dev.	0.5	17.6	(4.0)	5	(0.2)	0.61	(5.4)	0.5	2.45	(21.7)	45.9	349	(13.7)	9.18	(81.2)

Analyzing the data showed that the peak force averaged 48.7 kN (11.0 kips), with the highest peak reaching 52.2 kN (11.7 kips). This average peak force would produce a maximum stress of 53 MPa (7.7 ksi), which was still less than the average MOR for the species. However, 41 percent of the post population was weaker than this, which implied that all three posts were in the lower 41 percent of the distribution.

The 48.7 kN (11.0 kips) average was 15 percent higher than the anticipated 42 kN (9.5 kips), suggesting that the posts were undersized. This high force peak may have been due to the differences in the cross-sections of the round wooden posts and the NPGB tests used to estimate the force. Although their round cross-section should more easily cut through the soil, the wooden posts were wider than the steel posts, counter acting the effects of the shape. The wooden posts also were likely to have different surface interactions with the soil due to the roughness of the wood grain that was not present in the steel posts. Finally, differences in the soil gradation, amount of soil compaction, and methods used to compact the soil could have had some effect.

12.2.2 Douglas Fir

Unlike the Ponderosa Pine tests, one of the first two Douglas Fir tests ended in soil failure, with the rotation of the post absorbing 33.25 kJ (294.3 kip-in.) of energy as shown in Table 43. Since one of the posts did fail, a reduced embedment depth of 940 mm (37 in.) was also tried for the Douglas Fir posts, and as in Ponderosa Pine, this shallower post fractured rather than rotating.

With a 51.7 kN (11.6 kips) average peak load for the first three tests, the data analysis again suggested that the peak forces in the soil tests were higher than anticipated.

Unlike Ponderosa Pine, the average peak force for Douglas Fir corresponded to a

maximum bending stress that exceeded the average MOR, suggesting that over half of the post population should have failed.

The average peak force exceeded the predicted load by 22 percent, and the highest of the peaks reached 57.1 kN (12.8 kips), exceeding the prediction by nearly 35 percent. The results suggested the Douglas Fir posts were also too small. Again the increased force was likely due to differences in cross-section, surface friction, and soil compaction between the NPGB and round wooden post tests.

In order for the posts to rotate through the soil, one of two changes needed to be made. The first option was to decrease the force required for the post to move through the soil. The second option was to increase the force required to break the post. A decreased in the soil force could be reached by reducing the embedment depth of the posts from 940 mm (37 in.) to 864 mm (34 in.) or less, but doing so might have caused the posts to be pulled out of the soil before they were allowed to rotate through the soil. This behavior was observed by Kuipers and Reid in their NPGB post study, in which the W6x16 steel posts began pulling out of the soil at an embedment depth of 940 mm (37 in.). The study showed that the posts which had pulled out of the soil absorbed less energy than those did not. The pullout phenomenon was not observed in the round wood post testing, but reducing the embedment depth further, may well have led to the same problem.

To increase the post breaking force, the grading criteria could be tightened, allowing only top quality posts to be installed in the system, or the diameter of the posts could be increased. Tightening the grading criteria would eliminate a larger percentage of the posts, making the system more and more expensive to construct. Increasing the

diameter would increase the soil resistance and also the post rotation force which already exceeded the optimal force level of 42.3 kN (9.5 kips) for MGS.

Although a reduced post embedment depth could have been tested, the results of such testing would not have been conclusive. In the strong soil used for the testing, post pull-out may not have occurred even at the reduced embedment depth. In the weaker soils that are found in the majority of the guardrail installation locations, the posts may pull-out of the soil with a much lower resistance. Therefore, testing at a reduced embedment depth might not have accurately predicted the potential for post pull-out.

Of the two remaining options, adjusting the grading criteria was avoided to keep the cost of the system as low as possible and allow the highest percentage of forest thinning material to be used. The final option, increasing the post diameter, was selected although the impact force exceeded the optimum level. Choosing this option, the system would still function adequately, just not optimally.

12.3 Re-Evaluation of Post Size

After the initial soil bogie tests showed that the selected diameter for the two species was too small, the size was re-evaluated. Once again the refined probability method was employed. The anticipated peak force was increased to 53 kN (12 kips) for the Douglas Fir samples, and 58 kN (13 kips) for the Ponderosa Pine samples. The anticipated force level was higher for the Ponderosa Pine species to account for the larger diameter which would be required to move more soil and would create a flatter cross-section that was more resistant to soil rotation. In addition, a more realistic soil pressure distribution was used to determine the maximum moment in the post. The assumed soil distribution was based on a study conducted by Goeller at MwRSF [22]. Goeller found

that the soil distribution shown in Figure 48 was the most accurate. However, it did not exactly match the results of the round post testing.

In the Douglas Fir and Ponderosa Pine testing, the fracture surface ranged from 51 mm (2 in.) to 203 mm (8 in.) lower than those found in the cantilever tests, and averaged about 102 mm (4 in.) below the ground. Assuming this would also be the location of the maximum moment, the soil pressure distribution needed to be adjusted to reflect this. The second check that was made was to determine the rotation point of a round post during a soil test. Similar to Goeller's results, the rotation point was approximately 305 mm (12 in.) below the ground. Therefore, the soil pressure switched directions at 305 mm (12 in.) below the ground as before. Adjusting the pressure distribution so the maximum moment was approximately 102 mm (4 in.) below the surface resulted in the distribution shown in Figure 49.

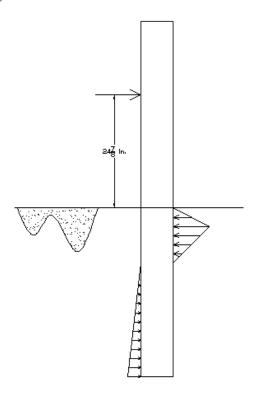


Figure 48. Initial Soil Pressure Distribution [22]

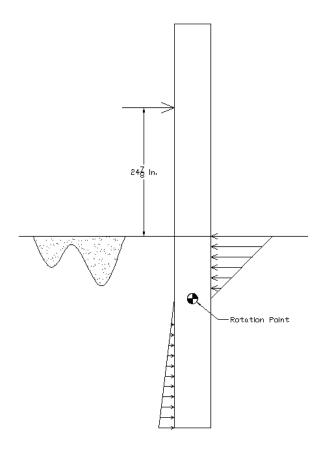


Figure 49. Soil Force Distribution

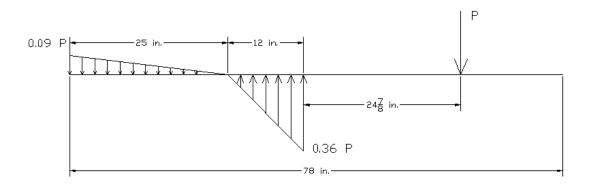


Figure 50. Post Free-Body Diagram

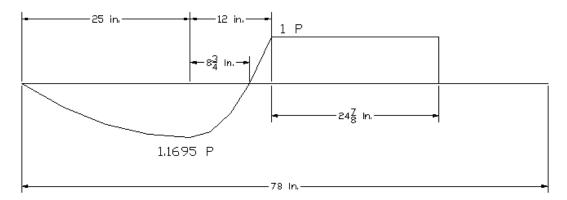


Figure 51. Post Shear Force Diagram

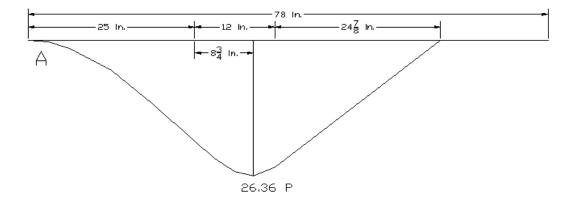


Figure 52. Post Bending Moment Diagram

The modified pressure distribution effectively increased the maximum moment by 6 percent from (24.875)(P) kip-in. to (26.387)(P) kip-in. as shown in Figure 52, where P was the peak load in kips at the impact height. It should be noted that the actual soil pressure distribution and rotation point vary with each individual test and depend on numerous factors such as soil compaction, soil moisture content, and embedment depth. Many soil pressure distribution models have been developed, but the distribution shown in Figure 49 seemed to fit the post fracture results the most closely.

With the increased peak force and modified pressure distribution, the probability method returned minimum diameter values of 195 mm (7.67 in.) for Ponderosa Pine and 174 mm (6.85 in.) for Douglas Fir. Rounding to the next highest quarter inch, the acceptable ranges of post sizes were determined as follows.

Ponderosa Pine:

$$203 \text{ mm} + 19 \text{ mm} = \left(8.00 \text{ in.} + 0.75 \text{ in.} -0.25 \text{ in.}\right)$$

Douglas Fir:

$$184 \text{ mm} + 19 \text{ mm} - 6 \text{ mm}$$
 $\left(7.25 \text{ in.} + 0.75 \text{ in.} -0.25 \text{ in.}\right)$

12.4 Results – Additional Soil Tests

As shown in Table 42, additional tests were conducted on posts with diameters exceeding the new minimum calculated diameter. An embedment depth of 940 mm (37 in.) was chosen for the tests, and the impact speed of 25 mph remained the same. Since the majority of the posts fractured in the previous tests, the decision was made to use the species of wood corresponding to the test name, unlike the initial soil tests.

12.4.1 Ponderosa Pine

Four additional soil tests were conducted for the Ponderosa Pine species. Post specifications are shown in Table 42, and results are shown in Table 43. Clearly for this series of tests, the energy absorbed through 381 mm (15 in.) of displacement increased with increasing diameter. The smallest post, 194 mm (7.64 in.) diameter, fell outside the acceptable range, but still ended in soil failure.

The absorbed energy after 381 mm (15 in.) of deflection was as small as 6.69 kJ (59.2 kip-in.) and as high as 14.39 kJ (127.3 kip-in.), higher than any of the other soil

tests. The average energy was 9.56 kJ (84.6 kip-in.), which was lower than the 13.9 kJ (122 kip-in.) absorbed by a standard 152 mm x 203 mm (6 in. x 8 in.) rectangular wood post embedded at 940 mm (37 in.), tested at MwRSF in September, 2005. The average was also lower than the 10.5 kJ (92.5 kip-in.) of energy absorbed by standard W152x13.4 (W6x9) steel posts embedded at 940 mm (37 in.) [27]. This suggests that an MGS system utilizing round Ponderosa Pine posts would deflect more than a system constructed with steel posts or rectangular wood posts.

Clearly, there were significant differences in energy absorption between the Douglas Fir and Ponderosa Pine samples, with the average energy absorbed by the Ponderosa Pine posts less than 80 percent of that by Douglas Fir posts. There was also a large amount of variation between tests within the Ponderosa Pine species. At 381 mm (15 in.) of deflection, test no. PP-34 had absorbed more than twice as much energy as PP-37.

The differences in the testing were not consistent, nor entirely explainable by theory. Larger diameter posts should generate larger soil forces, but this was not always the case. Therefore, the differences must be attributed to other testing variables such as soil variation. The soil gradation, soil moisture content, amount of soil compaction, and method of soil compaction could all have made significant differences in the post-soil interaction, and therefore effect the post-soil forces.

12.4.2 Douglas Fir

Three additional tests were conducted for Douglas Fir, with Table 43 showing the results. The diameters for the three posts were 182 mm (7.16 in.), 180 mm (7.10 in.), and 175 mm (6.9 in.). Both tests conducted on posts with diameters within the acceptable

range ended successfully with soil failure. However, test DF-36 did not result in soil failure, but rather post fracture. Although 175 mm (6.9 in.) did exceed the minimum suggested diameter of 173 mm (6.8 in.), the failure should not be alarming. The probability that such a post would fail under a 50.1 kN (11.3 kip) peak load was 19 percent. It seems reasonable that this specific post could have fallen within the 19 percent that should fail.

The energy absorbed by the post rotation at 381 mm (15 in.) ranged from 9.43 kJ (83.5 kip-in.) to 14.25 kJ (126.1 kip-in.), and averaged 12.11 kJ (107.2 kip-in.). In comparison, these values were lower than the energy absorbed by standard 152 mm x 203 mm (6 in. x 8 in.) rectangular wood posts in tests conducted at MwRSF in September, 2005, but higher than the standard W152x13.4 (W6x9) steel posts used in the MGS system [27]. Similar to Ponderosa Pine, this suggests that the deflection of a system using round Douglas Fir posts would be less than a system utilizing steel posts, but more than a system utilizing rectangular wood posts.

12.4.3 Testing Conclusion

Unlike the first set of soil tests, in the second round, less than 40 percent of the posts within each species failed. Even though the number of tests conducted was small, the results supported the conclusion that the suggested minimum diameter was no longer inadequate.

While this is true, one should notice that in several of the tests, the peak soil forces exceeded the target failure capacity. For instance, in test no. PP-34, the peak load of 93.6 kN (21.0 kips) exceeded the predicted 57.8-kN (13.0-kip) load by over 60

percent. For Douglas Fir, peak forces for test no. DF-34 exceeded the predicted 53.4-kN (12.0-kip) load by more than 50 percent.

This known, one might wonder why such a small percentage of the posts actually fractured. There are several possible explanations, the first of which is inertial effects. As discussed in Chapter 7, some of the force felt by the bogie vehicle was required to initiate movement in the post, not causing the post to bend. The inertial effects must have also existed in soil testing, and may have been even greater than the cantilever tests since the bogie not only had to move the post, but also the soil. Therefore, peak forces felt by the bogie could have been much higher than those felt by the post, possibly overestimating the required diameter.

A second explanation is the quality of the posts. With a small number of tests, the quality of sample could have been higher or lower than average. If the sample was higher than average, the posts could have easily carried the higher load without fracture. However, not knowing the strength of the sample, it is impossible to know if this was the case.

13 BARRIER VII MODELING - SYSTEM EVALUATION

As a final step prior to a full-scale crash test, Barrier VII [8] was utilized to predict the behavior of the MGS system constructed with the recommended round wooden post sizes.

13.1 Round Post Properties – BARRIER VII Model

Representative round post models needed to be developed to generate more accurate simulations with BARRIER VII. Since the results from the testing varied extensively and inconsistently, the seven tests were combined to determine a single BARRIER VII round post model. This action was reasonable because the target properties for the posts were independent of their species, and no adjustments will be made to the system to account for any differences.

In the BARRIER VII model, post load curves were approximated using a perfectly plastic model similar to that shown in Figure 53. To define the curve, the stiffness, yield force, yield moment, and maximum deflection were defined.

Although the model is not a perfect representation of the test results, it does offer a very simple and somewhat accurate representation of a post rotating through soil. In the initial portion of the curve, the force resistance increases as the post begins to move and compress the soil. Eventually, the force reaches its yield point, P_y , and the stress on the soil is great enough that the soil fails and allows the post to rotate through with a constant force. At some point, the post reaches a maximum deflection, Δ_{Fail} , at which it separates from the rail making it ineffective, with no resistive capacity.

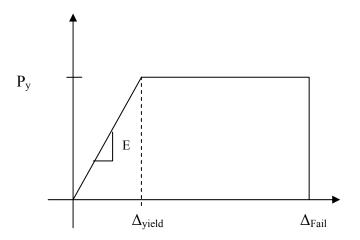
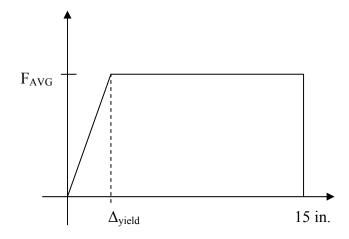



Figure 53. Barrier VII Post Strength Model

Knowing that in a typical impact, the posts and the rail separate after approximately 381 mm (15 in.) of deflection, the parameters of the post model were based on the behavior of the post up to that point. Therefore, the maximum deflection was set at 381 mm (15 in.).

To determine the yield moment, M_y, the average force, P_y, through the 381 mm (15 in.) deflection was multiplied by the impact height, h. The average force was determined by equating the average energy dissipated in the actual tests to that in the BARRIER VII force model, as shown in the calculations below. A similar procedure, in which the average slope of the actual initial force spike was equated to the slope of the BARRIER VII model, was used to determine the stiffness. Calculations are also shown below.

$$AREA = F_{AVG} \left(\left(\frac{\Delta y}{2} \right) + \left(15 - \Delta y \right) \right)$$

AREA = Average Energy at 15 in.

$$SLOPE = \frac{F_{AVG}}{\Delta y}$$

SLOPE = Average Slope

Properties from the seven soil tests that were relevant to the BARRIER VII post model are summarized in Table 44 for the lateral direction. The average energy and average slope were used to determine F_{AVG} equal to 28.9 kN (6.49 kips) and Δ_y equal to 24 mm (0.96 in.). A plot of the seven soil tests with the BARRIER VII lateral post model is shown in Figure 54.

Table 44. BARRIER VII Round Wooden Post Lateral Properties Summary

Test No.	Energy at 38	1 mm (15 in.)	Peak	Force	Defle	ction	Sl	ope
Test No.	kJ	(kip-in.)	kN	(kips)	mm	(in.)	kN/mm	(kips/in.)
DF-34	9.4	(83.5)	81.9	(18.4)	70	(2.7)	1.17	(6.72)
DF-35	14.3	(126.1)	52.8	(11.9)	64	(2.5)	0.83	(4.69)
DF-36	12.6	(111.9)	50.1	(11.3)	59	(2.3)	0.85	(4.86)
PP-34	14.4	(127.3)	93.6	(21.0)	61	(2.4)	1.54	(8.82)
PP-35	9.6	(85.4)	76.0	(17.1)	60	(2.3)	1.27	(7.27)
PP-36	7.5	(66.6)	88.4	(19.9)	56	(2.2)	1.58	(8.99)
PP-37	6.7	(59.2)	62.2	(14.0)	59	(2.3)	1.05	(6.00)
Overall Average	10.7	(94.3)	72.1	(16.2)	61	(2.4)	1.18	(6.75)

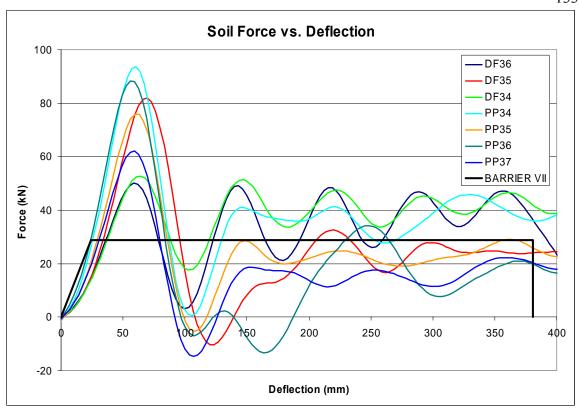


Figure 54. Lateral Capacity BARRIER VII Model

Since the longitudinal load on the posts is applied very slowly, the capacity in that direction was based on the results of static testing by Jeyapalan [15], previously discussed in Chapter 2. For this direction of loading, the BARRIER VII F_{AVG} and Δ_y properties were determined as 16.5 kN (3.7 kips) and 70 mm (2.76 in.), respectively. For comparison purposes, the BARRIER VII parameters used for the standard MGS model with W6x9 steel posts were $F_{AVG} = 25.8$ kN (5.8 kips) and $\Delta_y = 24$ mm (0.96 in.).

13.2 BARRIER VII Results

BARRIER VII simulations were completed for a baseline model and models with 1, 2, 3, and 4 consecutive weak posts. The simulations were conducted in same manner as before with the same weak post model. Once again, the parameters collected from the

simulations included maximum dynamic deflection, maximum rail tension, rail slope, and wheel snag. Results from the simulations are presented in Table 45.

Table 45. FPL BARRIER VII Results Summary

No.	Maximum	Maximum	Pocketing Analysis		Sn	S **	
Weak	Deflection	Rail Tension	3 Node	5 Node	Node	Snag	dy
	(in.)	(kips)	(Rail S	Slope)	(no.)	(in.)	(in.)
0	40.5	65.9	0.345	0.317	96	6.29	14.38
1	44.6	66.7	0.357	0.331	105	6.14	14.66
2	47.9	68.0	0.357	0.332	114	6.36	15.00
3	49.9	68.1	0.358	0.338	122	6.16	14.99
4	52.2	69.2	0.357	0.337	130	6.36	14.99

^{**} Wheel snag was not reported when dy exceeded 15 in, because the post was considered to be broken.

The results compiled are the maximum quantity for each category for the given model. This implies that for each model, quantities in different categories are not necessarily from the same run within the model, but a combination of the most critical values from all the runs.

These results did not show a distinct point at which one additional failed post would cause the system to drastically fail. However, a four consecutive post failure matched the previous limit that a maximum deflection in excess of 1321 mm (52 in.) was too large, and therefore, system failure was determined to be caused by the fracture or failure of four consecutive posts. Again, the 1321-mm (52-in.) limit could be increased or reduced, but was selected based on engineering judgment because it seemed to be a reasonable limit.

14 SUMMARY AND FULL-SCALE TEST RECOMMENDATION

14.1 Summary

In the study, small diameter Douglas Fir and Ponderosa Pine round wood posts were investigated for use in an MGS guardrail system. The introduction of such a system would open a new product market for the timber industry, help facilitate the cost of removing dangerous forest fire fuels, and serve as an effective and economical alternative to other barrier systems used on today's roadways.

The study began with two rounds of cantilever bogie tests that isolated the behavior and strength of the posts. The objective of the testing was to optimize the diameter of the posts used in the new system, maintaining a careful balance between cost and effectiveness. The determination of the post diameter was based on the strength of the posts and estimated soil resistance from previous post testing. After the first round of testing, the diameter values of 171 mm (6.75 in.) for the Douglas Fir species and 191 mm (7.5 in.) for the Ponderosa Pine species were estimated to be sufficient.

However, following the first round of tests, significant flaws were found in the standard testing methods used in cantilever bogie tests. These flaws had the potential to overestimate post strength by as much as 50 percent due to the effects of inertia, leading to inaccurate and misleading diameter calculations. After identifying the problem, an alternate procedure was investigated with a series of three additional cantilever bogie tests. The tests confirmed the problem and showed that a reduction in bogie impact speed would significantly reduce the inertial effects, leading to a much more accurate prediction of ultimate fiber stress. Unfortunately, the flaws were not identified in time to modify the

original diameter calculations as the posts had already been ordered, but the adjustments were utilized in the second round of tests.

The second round of cantilever bogie tests was conducted with the reduced bogie impact speed. When the tests were completed, a diameter range was chosen for each species to proceed with soil tests. The target diameter values were 165 mm (6.5 in.) for Douglas Fir and 184 mm (7.25 in.) for Ponderosa Pine, both with an acceptable range of 6 mm (0.25 in.) below and 19 mm (0.75 in.) above the target. The second round of cantilever tests was also used to develop a grading criterion for the two species. The grading criterion was based on the population distribution of knots and ring density. It needed to be tight enough to reduce the diameter of the posts as much as possible, but relaxed enough to allow a high percentage of the posts to qualify. Bogie soil tests were conducted to verify these results.

The initial soil bogie tests showed that the estimated soil resistance force was 20 percent lower than the actual force determined from the testing. Because of this, five of the first six posts tested fractured rather than rotating as desired. Although the embedment of the posts could have been reduced to bring the peak force closer to the optimal 42.3 kN (9.5 kips), such a reduction could also lead to a reduced energy absorption capacity caused by the posts pulling out of the soil. Therefore, it was decided to increase the post diameter and accept a force level that exceeded the optimum level.

Based on the peak resisting force determined from the six initial tests, the target nominal diameter was adjusted to 184 mm (7.25 in.) for Douglas Fir and 203 mm (8.00 in.) for Ponderosa Pine. The acceptable ranges remained at 6 mm (0.25 in.) below the target and 19 mm (0.75 in.) above the target.

A second set of seven bogie tests – three for Douglas Fir and four for Ponderosa Pine – was conducted on posts of the new diameter, this time with six of the posts rotating through the soil and only one fracturing.

For Ponderosa Pine, the final target diameter was 203 mm (8.00 in.), with an acceptable range from 197 mm (7.75 in.) to 222 mm (8.75 in.). The standard deviation for the posts was determined as 8 mm (0.3 in.) from the random population sample. Using Monte Carlo simulation, a 1,000-sample population was developed from these parameters based on a normal distribution. Once the size distribution was developed, a second simulation was completed to develop an MOR for each of the generated post diameters. These two models were combined with elastic bending equations to determine the peak force capacity for each of the generated samples. Once this was determined, the average peak force and standard deviation was determined and used to determine the percentage of the posts falling below the 58-kN (13-kip) requirement.

For the target diameter, the average peak force was determined as 69.6 kN (15.64 kips) with a standard deviation of 18.2 kN (4.09 kips). This resulted in a 26 percent chance of post failure, falling below the desired limit. For the mid-range diameter of 210 mm (8.25 in.), the average was 76.3 kN (17.15 kips) with a standard deviation of 19.8 kN (4.45 kips), lowering the probability of failure to 18 percent. Based on these calculations, the probability that the entire system may fail due to four consecutive posts failing is somewhere between 0.1 and 0.5 percent.

It should be noted that this determination is not the probability that the system will fail, but the probability that four consecutive posts will fail when impacted under the

NCHRP Report 350 Test Designation 3-11 criteria. This four post failure would in turn lead to a deflection exceeding the maximum allowable deflection of 1321 mm (52 in.).

The actual failure probability for the entire system under such impact conditions would depend on the probability of failure for the rail, the anchors, the bolts, and all other parts of the system. These parts were not considered in the failure calculations because the research focused on the behavior of the posts.

Additionally, the probability that the system would fail when installed along roadways across the country would depend on soil and impact severity variations. As stated previously, the criteria set forth in NCHRP Report 350 Test Designation 3-11 for soil and impact conditions represent a "worst practical condition." In Report 350, the impact speed and angle have been selected near the 85th percentile of all ran-off-road passenger vehicle accidents, the test vehicles have been chosen as 5th and 95th percentile vehicle weights, and the impact location has been specified as the location most likely to result in failure. Combining these factors shows that the vast majority of actual vehicular impacts with the guardrail system will be less severe than the tested case.

The same Monte Carlo procedure was followed for Douglas Fir which had a final target diameter of 184 mm (7.25 in.), with an acceptable range from 178 mm (7.0 in.) to 203 mm (8.0 in.). The standard deviation for the Douglas Fir post diameter was 5 mm (0.2 in.). An average peak force of 65.2 kN (14.65 kips) with a standard deviation of 9.5 kN (2.14 kips) was determined for the target diameter, and an average of 72.1 kN (16.2 kips) with a standard deviation of 10.5 kN (2.36 kips) was determined for the mid-range diameter. The probability of a post falling below the 53.4 kN (12 kip) limit was 12.2 percent for the target diameter and 3.2 percent for the mid-range diameter. This meant

the probability of the system failing due to four consecutive failed posts was less than a tenth of a percent in both cases.

Because the probability of post failure was so much lower for Douglas Fir than for Ponderosa Pine, the effects of reducing the Douglas Fir target post diameter were investigated by generating another force capacity model. The model used a decreased mean diameter value of 178 mm (7.00 in.) and determined an average peak load of 58.3 kN (13.1 kips) with a standard deviation of 8.5 kN (1.90 kips). This distribution resulted in a 27.6 percent chance that any one given post would have a capacity less than the 53.4 kN (12-kip) limit, well below the 40 percent limit. Reducing the diameter further would result in a chance of failure exceeding that limit. With the decreased diameter, the probability that the system would fail due to four consecutive failed posts increased to 0.6 percent, which was still less than the 3-percent limit.

14.2 Future Work

Two full-scale crash tests are recommended, one for each species. The full-scale crash tests should be used to verify the results found herein and validate the system to the NCHRP Report No. 350 standards.

Two factors, target diameter and grading criteria, need to be considered in the final recommendation. The grading criteria for the posts used in the full-scale tests should meet the grading criteria established for each species. Since the grading criteria are based on the population of the production line, meaning that the vast majority of the posts leaving the manufacturing line will exceed these criteria, no effort should be made to select posts of the lowest possible quality. In selecting a target diameter and range, more care should be taken.

When producers fill a post order, they will select posts fitting the size range from a stock pile on site. Timber producers will attempt to find posts with diameters close to the established target, but will inevitably select any material that falls within the upper and lower bounds of the established range. Therefore, the average diameter of the selected posts will probably fall somewhere between the target and the mid-range of the limits. The standard deviation should be fairly consistent. Knowing this, the probability of failure for a single post will fall between two extremes, that for the target diameter, and that for the mid-range diameter.

In full-scale testing, the more critical of the two cases should be tested, implying that the posts should be selected with a sample average near the target diameter rather than an average near the mid-range diameter.

The recommended grading criteria and diameter ranges for the full-scale tests are presented below for each species. In addition, posts of both species must meet the general grading criteria discussed previously and presented in Appendix H.

14.2.1 Ponderosa Pine

Specific grading criteria for Ponderosa Pine include limitations on knots and ring density. Any knots found on the surface of the post shall be less than or equal to 102 mm (4 in.) in diameter. Ring density should not be less than 6 rings-per-inch as averaged over a 76 mm (3 in.) length. The average diameter for the posts installed for the full-scale test should be about 203 mm (8.00 in.), and all individual post diameters must fall between 197 mm (7.75 in.) and 222 mm (8.75 in.).

14.2.2 Douglas Fir

Douglas Fir grading specifications also include limits on knot size and ring density. For the Douglas Fir species, the maximum allowable knot diameter is 51 mm (2 in.). As with Ponderosa Pine, the ring density of the posts should not be less than 6 ringsper-inch as averaged over a 76 mm (3 in.) length. Based on the reduced diameter probability calculations, the average diameter of the posts installed for the full-scale test should be approximately 178 mm (7.00 in.). Individual post diameters should fall between 171 mm (6.75 in.) and 197 mm (7.75 in.).

14.2.3 System Details

The two full-scale crash tests should be conducted on a standard MGS installation, with the standard steel posts replaced by the round timber posts embedded 940 mm (37 in.), and the rectangular blockouts replaced with special concave blockouts made to fit the posts. All other aspects of the system should remain the same, including all anchor post details, rail mounting height, and post spacing.

15 REFERENCES

- 1. Collaborative Approach for Reducing Wildland Fire Risks to Communities and the Environment.
- 2. Gorte, R.W., *Forest Fires and Forest Health*, CRS Report 95-511, CRS Report for Congress. 14 July 1995. National Council for Science and the Environment. 21 July 2003 http://www.ncseonline.org/NLE/CRSreports/Forests/for-5.cfm?&CFID=8838268&CFTOKEN=73094314.
- 3. LeVan-Green, S.L., Livingston, J.M., *Uses for Small-Diameter and Low-Value Forest Thinnings*, Ecological Restoration March 2003: 34-38.
- 4. Paun, D., and Jackson, G., *Potential for Expanding Small-Diameter Timber Market Assessing Use of Wood Posts in Highway Applications*, General Technical Report FPL-GTR-120, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wisconsin, 2000.
- 5. Sicking, D.L., Reid, J.D., and Rohde, J.R., *Development of the Midwest Guardrail System*. Transportation Research Record 1797 (2002): 45-52.
- 6. Faller, R.K., Polivka, K.A., Kuipers, B.D., Bielenberg, R.W., Reid, J.D., and Rohde, J.R., *Midwest Guardrail System for Standard and Special Applications*, 2004 Catalog of Practical Papers, Paper No. 04-4778, Safety, Division A Technical Activities, Group 2 Standing Committees and Task Forces, Subject Area Design, Transportation Research Board, Washington D.C., 2004 accepted.
- 7. Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., Bielenberg, R.W., and Kuipers, B.D., *Development of the Midwest Guardrail System for Standard and Reduced Post Spacing and in Combination with Curbs*, MwRSF Research Report No. TRP-03-139-03, Draft Report to the Midwest States Regional Pooled Fund Program, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, Report in Progress.
- 8. Powell, G. H. (1973). "A computer program for evaluation of automobile barrier systems." Rep. No. DOT-RD-73-51, FHWA, U.S. Dept. of Transportation, Washington, D.C.
- 9. American National Standards Institute, "Wood Poles" ANSI 05.1, 1992.
- 10. Graham, M.D., Burnett, W.C., Gibson, J.L., and Freer, R.H., *New Highway Barriers: The Practical Application of Theoretical Design*, <u>Highway Research</u> Record Number 174 (1967): 88-103.

- 11. Cichowski, W.G., Skeels, P.C., and Hawkins, W.R., *Guardrail Installations Appraisal by Proving Ground Car Impact, and Laboratory Tests*, General Motors Proving Ground, Milford, Michigan, 1961.
- 12. Gatchell, C.J., and Michie, J.D., *Pendulum Impact Tests of Wooden and Steel Highway Guardrail Posts*, USDA Forest Service Research PAPER NE-311, Northeastern Forest Experiment Station, Upper Darby, Pennsylvania, 1974.
- 13. Michie, J.D, Gatchell, C.J., and Duke, T.J., *Dynamic Evaluation of Timber Posts for Highway Guardrails*, <u>Highway Research Record 343</u> (1971): 19-33.
- 14. Calcote, L.R., and Kimball, C.E., *Properties of Guardrail Posts for Various Soil Types*. Transportation Research Record 679 (1978): 22-25.
- 15. Jeyapalan, J.K., Dewey, J.F., Hirsch, T.J., Ross, H.E., and Cooner, H., *Soil-Foundation Interaction Behavior of Highway Guardrail Posts*. <u>Transportation</u> Research Record 970 (1984): 37-47.
- 16. Bronstad, M.E., Calcote, L.R., Ray, M.H., and Mayer, J.B., *Guardrail-Bridge Rail Transition Designs Volume 1*, Research Report. Publication No. FHWA/RD-86/178 (1988).
- 17. J.R. Rohde and J.D. Reid, *Evaluation of the Performance Criteria for Wood Posts in Strong-Post W-Beam Guardrail*, TRB Paper 971206, Transportation Research Board 76th Annual Meeting, January 1997.
- 18. Rohde, J.R., Reid, J.D., and Sicking, D.L., *Evaluation of the Effect of Wood Quality on W-beam Guardrail Performance*, Transportation Research Report No. TRP-03-60-96, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 1995.
- 19. Rohde, J.R., and Reid, J.D., Evaluation of the Performance Criteria for Wood Posts in Strong-Post W-Beam Guardrail, Research Report, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 1995.
- 20. Southern Pine Inspection Bureau, *Standard Grading Rules*. July, 2002.
- 21. Holloway, J.C., Bierman, M.G., Pfeifer, B.G., Rosson, B.T., and Sicking, D.L., Performance Evaluation of KDOT W-Beam Systems Volume II: Component Testing and Computer Simulation, Research Report TRP-03-39-96, Midwest Roadside Safety Facility, The University of Nebraska-Lincoln, Lincoln, May, 1996.
- 22. Goeller, M.D. and Rohde, J.R., *Soil Behavior During a Guardrail Post Impact*. Thesis Report, Midwest Roadside Safety Facility, The University of Nebraska-Lincoln, Lincoln, Nebraska, May 2000.

- 23. Smith, R.P. and Rohde, J.R., *Quantification of Guardrail Post-Soil Interaction*. Thesis Report, Midwest Roadside Safety Facility, The University of Nebraska-Lincoln, Lincoln, Nebraska, August 1997.
- 24. Coon, B.A., Reid, J.D., and Rohde, J.R., *Dynamic Impact Testing of Guardrail Posts Embedded in Soil*. Research Report TRP-03-77-98, Midwest Roadside Safety Facility, The University of Nebraska-Lincoln, Lincoln, Nebraska, July 1999.
- 25. Denman and Welch, *Development of a Flared end Terminal to NCHRP Report* 350, E-TECH Testing Services, Inc., Rocklin, California, December 1998.
- 26. Ross, H.E., Sicking, D.L., Zimmer, R.A. and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Research Program (NCHRP) Report No. 350, Transportation Research Board, Washington, D.C., 1993.
- 27. Kuipers, B.D., and Reid, J.D., *Testing of W152X23.8 (W6X16) Steel Posts-Soil Embedment Depth Study for the Midwest Guardrail System.* Research Report TRP-03-136-03, Midwest Roadside Safety Facility, The University of Nebraska-Lincoln, Lincoln, Nebraska, June (2003).
- 28. Bronstad, M.E., and Burket, R.B., Evaluation of Timber Weak-Post Guardrail Systems. Highway Research Record 343 (1971): 34-43.
- 29. Sicking, D.L., Bligh, R.P., and Ross, Jr., H.E., *Optimization of Strong Post W-Beam Guardrail*, Research Report 1147-1F, Texas Transportation Institute, The Texas A & M University System, College Station, Texas, November, 1988.
- 30. Sicking, D.L., Qureshy, A.B., Bligh, R.P., Ross, H.E., and Buth C.E., *Development of New Guardrail End Treatments*, Research Report 404-1F, Texas Transportation Institute, The Texas A & M University System, College Station, Texas, October 1988.
- 31. Michie, J.D., NCHRP Report 230: Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances. TRB, National Research Council, Washington, D.C., 1981.
- 32. Bligh, R.P., Sicking, D.L., and Ross Jr., H.E., *Development of a Strong Beam Guardrail-to-Bridge-Rail Transition*, Transportation Research Record 1198 (1988): 105-116.
- 33. Bligh, R.P., and Sicking, D.L., *Applications of Barrier VII in Design of Flexible Barriers*, Transportation Research Record 1233 (1989): 117-123.

- 34. Bligh, R.P., and Bullard, D.L., *Crash Testing and Evaluation of Round, Wood Post, W-Beam Guardrail System*, Research Study No. 405391, Texas Transportation Institute, The Texas A & M University System, College Station, Texas, October 1995.
- 35. Rosson, B.T., Bierman, M.G., and Rohde, J.r., *Assessment of Guardrail-Strengthening Techniques*, <u>Transportation Research Record 1528</u> (1996): 69-77.
- 36. Bierman, M.G., *Behavior of Guardrail Posts to Lateral Impact Loads*, Thesis Report, Midwest Roadside Safety Facility, The University of Nebraska-Lincoln, Lincoln, Nebraska, December 1995.
- 37. Buth, C.E., Williams, W.F., Bligh, R.P., and Menges, W.L., *Tests 9,10 and 11: NCHRP Report 350 Test 3-21 of the Texas Tubular W-Beam Transition*, Research Report 1804-9, Texas Transportation Institute, The Texas A & M University System, College Station, Texas, November 1999.
- 38. Seckinger, N.R., Abu-Odeh, A., Bligh, R.P., and Roschke, P.N., *Evaluation of Guardrail Systems Performance when Encased in Pavement Mow Strips*, TRB 2004 Annual Meeting CD-ROM, Texas Transportation Institute, The Texas A&M University, College Station, College Station, Texas, January 2004.
- 39. Seckinger, N.R., Abu-Odeh, A., Bligh, R.P., and Roschke, P.N., "Performance of Guardrail Systems Encased in Pavement Mow Strips," *ASCE Journal of Transportation Engineering*, Vol. 131, No. 11, Nov. 2005, pp. 851-860.
- 40. Western Wood Products Association, *Western Lumber Grading Rules 98*. March, 1998.
- 41. West Coast Lumber Inspection Bureau, Standard No. 17 Grading Rules for West Coast Lumber. September, 2004.
- 42. Ross, R.J. and Pellerin, R.F., *Nondestructive Testing for Assessing Wood Members in Structures: A Review*, General Technical Report FPL-GTR-70 (Rev.). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
- 43. Society of Automotive Engineers (SAE), Instrumentation for Impact Test Part 1 Electronic Instrumentation SAE J211/1 MAR95, New York City, NY, 1999.
- 44. Coon, Brian A., *Methodology for Digital Filtering of Data Using DADiSP*, *Research Report*, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln Nebraska, 1999.

- 45. U.S. Department of Agriculture Forest Products Laboratory, Wood Handbook, 1999.
- 46. Coon, Brian A., and Reid, J.D., Barrier VII A Brief Overview, General Report. Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln Nebraska, 2003.
- 47. Kuipers, Beau D., Identification of a Critical Flare Rate for W-Beam Guardrail in High-Speed Facilities Using Computer Simulation, A Thesis, University of Nebraska-Lincoln, Lincoln Nebraska, 2004.
- 48. Beer, Ferdinand P., and E. Russell Johnston Jr. *Vector Mechanics for Engineers Dynamics, Sixth Edition*. Boston: WCB McGraw-Hill, 1996.

16 APPENDICES

Appendix A. Knot Location Documentation Tables

- Table A-1. Knot Locations for Douglas Fir Posts Cantilever Testing Round 1
- Table A-2. Douglas Fir Length and Circumference Measurement
- Table A-3. Douglas Fir Pre-test Documentation
- Table A-4. Knot Locations for Ponderosa Pine Posts Cantilever Testing Round 1
- Table A-5. Ponderosa Pine Length and Circumference Measurements
- Table A-6. Ponderosa Pine Pre-test Documentation
- Table A-7. Knot Locations for Douglas Fir Posts Cantilever Testing Round 2
- Table A-8. Douglas Fir Round 2 Length and Circumference Measurements
- Table A-9. Douglas Fir Round 2 Pre-test Documentation
- Table A-10. Knot Locations for Ponderosa Pine Posts Cantilever Testing Round 2
- Table A-11. Ponderosa Pine Round 2 Length and Circumference Measurements
- Table A-12. Ponderosa Pine Round 2 Pre-test Documentation

Table A-1. Knot Locations for Douglas Fir Posts Cantilever Testing Round ${\bf 1}$

	Knot L	ocation	Knot Size	
Post	Distance	CCW from	Longeth v \\/idth	Comments
Number	from Top	Front	Length x Width	Comments
	(in.)	(degrees)	(in.) (in.)	
	7.750	95	2.0000 x 2.0000	
	24.500	60	0.7500 x 1.5000	
	32.500	35	0.7500 x 0.7500	
	57.875	95	1.5000 x 1.5000	
	24.250	180	1.5000 x 2.0000	
	33.000	140	1.2500 x 1.7500	
	41.500	175	1.5000 x 1.7500	
	50.625	165	0.5000 x 0.5000	
	44.000	160	0.3750 x 0.3750	
2	46.750	160	0.3750 x 0.3750	
	68.250	160	1.7500 x 2.5000	
	11.375	230	0.7500 x 0.7500	
	8.375	290	1.2500 x 1.8750	
	25.000	290	0.2500 x 0.2500	
	33.500	270	1.5000 x 1.5000	
	40.000	260	1.5000 x 1.5000	
	57.750	255	1.5000 x 1.5000	
	69.250	260	1.0000 x 1.2500	
	51.000	285	0.5000 x 0.5000	
3			X	NO KNOTS
	1.375	185	1.2500 x 1.2500	
	1.750	130	1.1250 x 1.1250	
	12.125	170	0.7500 x 0.7500	
	14.125	110	1.2500 x 1.0000	
	2.625	80	1.1250 x 1.1250	
	68.500 58.875	145 135	1.0000 x 1.2500	
	20.625	125	0.7500 x 0.7500 0.2500 x 0.2500	
	22.250	105	1.0000 x 1.0000	
	45.500	100	1.0000 x 1.0000	
	69.125	75	0.7500 x 0.7500	
	67.375	20	0.3750 x 0.3750	
	58.625	20	1.0000 x 1.0000	
_	47.000	40	0.6250 x 0.6250	
6	44.125	355	0.7500 x 0.7500	
	26.875	10	0.5000 x 0.5000	
	25.000	330	0.7500 x 0.7500	
	25.125	345	0.1875 x 0.1875	
	17.375	25	1.2500 x 1.2500	
	12.938	70	1.0000 x 1.0000	
	21.250	65	0.5000 x 0.5000	
	0.750	20	0.2500 x 0.2500	
	13.250	335	1.5000 x 1.5000	
	69.500	335	1.2500 x 1.2500	
	1.500	270	1.6250 x 1.2500	
	15.375	230	1.5000 x 2.2500	
	43.250	205	0.6250 x 0.6250	
	69.500	205	1.0000 x 1.5000	

	Knot L	ocation	Knot Size	130
Post	Distance	CCW from	Length x Width	Comments
Number	from Top	Front		Comments
	(in.)	(degrees)	(in.) (in.)	
	6.375	20	1.2500 x 1.5000	
	18.375 6.875	10 325	1.0000 x 1.0000 0.5625 x 0.6250	
	32.375	335	1.0000 x 1.0000	
	34.125	10	0.3125 x 0.3125	
	30.250	25	0.3750 x 0.3750	
	30.250	45	1.8750 x 1.3750	
	45.875	20	0.6250 x 0.6250	
	61.000	40	1.2500 x 1.3750	
9	65.125 59.750	80 335	0.5000 x 0.5000 0.7500 x 0.7500	
J	44.688	320	0.8125 x 0.6875	
	46.375	270	0.3125 x 0.3125	
	19.375	295	0.3750 x 0.3750	
	32.250	245	0.3750 x 0.3750	
	61.250	225	0.2500 x 0.2500	
	6.125	160	0.8125 x 0.6875	
	59.375 45.750	165 145	0.6250 x 0.6250 0.6250 x 0.6250	
	31.875	120	0.7500 x 0.8750	
	19.750	95	1.2500 x 1.7500	
	12.250	0	1.5000 x 1.2500	
	16.688	20	0.3750 x 0.3750	
	1.375	320	0.1250 x 0.1250	
	20.000	305	2 SMALL KNOTS	
	33.375	10	0.2500 x 0.2500	
	36.625 51.375	50 75	1.0000 x 1.2500 0.7500 x 0.3750	
	44.250	30	0.2500 x 0.3750	
	54.500	25	0.2500 x 0.2500	
	75.250	35	3 SMALL KNOTS	
	75.500	65	0.2500 x 0.2500	
	76.250	100	0.8750 x 1.5000	
	52.500 34.750	120 105	0.7500 x 0.7500 0.3750 x 0.3750	
	13.125	95	1.0000 x 1.0000	
	40.250	95		(0.125 IN. AND 0.25 IN.)
	11.375	70	1.7500 x 1.7500	,
	10.375	145	0.3125 x 0.3125	
	10.375	135	0.2500 x 0.2500	
10	25.500	165	0.2500 x 0.2500	
10	1.125 34.750	170 170	0.3750 x 0.5000 0.3750 x 0.5000	
	54.750	155	0.3750 x 0.3000 0.3750 x 0.3750	
	73.250	155	0.3750 x 0.3750	
	65.500	200	0.6250 x 0.7500	
	47.000	200	0.5000 x 0.5000	
	51.125	185	0.3750 x 0.3750	
	51.938	215	1.0000 x 1.0000	
	21.750 20.375	205 210	0.2500 x 0.2500 0.1250 x 0.1250	
	11.938	195	0.7500 x 0.7500	
	11.000	265	1.3750 x 1.7500	
	14.375	285	0.5000 x 0.5000	
	37.625	235	0.8750 x 1.0000	
	42.500	230	0.2500 x 0.2500	
	56.000	265	0.2500 x 0.2500	
	51.750 44.250	300 305	1.2500 x 1.2500 0.3750 x 0.3750	
	38.875	305	0.8750 x 0.3750 0.8750 x 1.0000	
	50.875	345	0.8750 x 1.0000	
	76.250	350	1.1250 x 1.1250	

	17 (1		I/ 1 O'	
Daat		ocation	Knot Size	
Post	Distance	CCW from	Length x Width	Comments
Number	from Top	Front	(in) (in)	
	(in.) 7.500	(degrees) 155	(in.) (in.) 3 SMALL KNOTS	
	9.000	85	2.5000 x 3.5000	
	5.500	80	5.0000 x 1.2500	GOUGE
	7.750	85	1.2500 x 1.2500	
	17.750	125	2.0000 x 2.0000	
	32.250	125	0.7500 x 0.7500	
	22.250	160	2.0000 x 2.5000	
	43.000	150	1.7500 x 2.5000	
	50.750	140	0.2500 x 0.2500	
	54.750	150	0.2500 x 0.2500	
	62.250 67.375	135 170	2.0000 x 2.0000 0.2500 x 0.2500	
	46.000	120	2.0000 x 2.0000	
	59.000	85	1.0000 x 1.5000	
4.4	61.000	45	0.3750 x 0.3750	
11	42.500	45	0.6250 x 0.6250	Grain distortion from 40 deg. to 80 deg. about 39 in down.
	8.500	340	1.7500 x 2.0000	
	5.750	330	0.6250 x 0.6250	
	14.250	320	1.2500 x 2.0000	
	13.625	300	0.7500 x 0.7500	
	28.875	325	1.0000 x 1.5000	
	53.500 62.750	350 320	1.0000 x 2.0000 2.2500 x 2.0000	
	44.250	295	1.2500 x 2.0000	
	53.000	285	0.7500 x 0.7500	
	22.750	265	1.7500 x 2.2500	
	69.750	235	2.0000 x 2.0000	
	45.500	235	0.4375 x 0.4375	
	6.500	235	0.5000 x 0.5000	
	7.125	225	0.2500 x 0.2500	
	11.125	5	0.2500 x 0.2500	
	8.875	305	1.5000 x 1.7500	
	22.500	330	2.0000 x 1.2500	
	36.125 49.875	345 355	1.5000 x 1.5000 2.0000 x 1.5000	
	53.500	0	0.6250 x 0.6250	
	71.000	0	1.5000 x 1.5000	
	58.875	15	0.3750 x 0.3750	
	39.125	25	1.0000 x 1.0000	
	6.750	40	1.0000 x 1.0000	
	73.625	45	1.2500 x 1.5000	
	75.625	330	1.2500 x 1.2500	
	73.625	60	0.2500 x 0.2500	
	22.750	75	1.3750 x 1.7500	
	36.500 40.000	100	1.3750 x 1.7500 0.5000 x 0.5000	
	50.625	100	1.5000 x 0.5000	
	70.875	120	1.5000 x 1.5000 1.5000 x 2.0000	
13	43.250	125	0.2500 x 0.2500	
	56.625	125	0.3750 x 0.3750	
	53.000	145	1.5000 x 1.7500	
	21.875	165	1.5000 x 2.0000	
	5.500	115	1.1250 x 1.1250	
	8.750	115	0.7500 x 0.7500	
	27.250	175	0.3750 x 0.3750	
	14.125	185	0.2500 x 0.2500	
	74.250 37.000	175 210	1.5000 x 1.5000 1.2500 x 2.0000	
	top	185	2.0000 x 2.0000	
	9.125	200	0.8750 x 0.8750	
	21.625	245	1.5000 x 2.0000	
ł	5.750	280	1.2500 x 1.2500	
	25.250	280	1.2500 x 1.2500	
	40.000	280	1.7500 x 1.7500	
	52.000	275	1.5000 x 1.5000	
	59.125	260	0.7500 x 1.1250	
	9.250	315	1.0000 x 1.0000	

	KIIOLE	ocation	Knot	Size	
Post	Distance	CCW from	Length >	v Width	Comments
Number	from Top	Front	Lengui 7	x vviairi	Comments
	(in.)	(degrees)	(in.)	(in.)	
	16.375	215	1.0000 >	x 1.0000	
i E	23.500	225	0.6250	x 0.6250	
i E	30.250	190	1.0000	x 1.0000	
i L	42.125	200	0.8750	x 0.8750	
ĺ	47.875	230	0.6250	x 0.6250	
ĺ	75.500	175		x 1.2500	
i	48.500	145	1.7500	x 1.7500	
i L	7.125	155	0.2500		
i L	9.688	140		x 0.2500	
i L	54.750	120		x 1.5000	
i L	43.250	100		x 2.2500	
i L	23.500	110	2.0000		
15	16.250	55		x 2.0000	
i L	48.500	40		x 2.1250	
i L	bottom	60		x 0.7500	
i L	55.750	35	0.5000		
i L	60.000	345		x 0.5000	
i -	30.375	0		x 1.0625	
i -	27.500	325	0.7500		
i -	0.625	330	0.8750		
i I-	3.000	227		x 0.7500	
i -	9.625	290	0.6250		
i -	20.125	295		x 0.5000	
-	30.500	270	0.7500		
-	36.750	245		x 0.2500	
i -	2.750	60	0.2500		
i -	19.500	355		x 1.0000	
i -	18.375	305		x 1.5000	
i -	50.875 66.250	310 290		x 1.2500 x 1.7500	
i -	51.625	<u> </u>		x 0.6875	
i -	67.375	25	0.3750		
i -	18.000	60		x 0.6250	
	69.125	75	0.3750		
(51.625	115		x 0.4375	
18	66.750	150	0.6250		
1 ⊩	21.375	175		x 1.0000	
i ⊩	68.500	180	0.8750		
i F	66.375	200		KNOTS	
i F	69.000	200		x 0.2500	
i F	39.375	200		x 2.0000	
∤	18.375	230		x 1.8750	
i F	38.500	270		x 2.0000	
i F	52.125	225		x 1.5000	
(F	59.250	215		x 0.3750	

	Knot L	ocation	Knot Siz	e	133
Post	Distance	CCW from	Length x \	∆/idth	Comments
Number	from Top	Front	Lengin X V	viuii	Comments
	(in.)	(degrees)	(in.)	(in.)	
	73.750	270	1 SMALL K	NOT	
	74.250	240	1 SMALL K	NOT	
	21.000	15	5.7500 x 2	.0000	
	15.125	20	0.3750 x 0		
	24.750	10	0.7500 x 0		
	31.500	55	0.3750 x 0		
	35.625	50	0.5000 x 0		
	77.250	10	0.2500 x 0		
	51.688	0	0.3125 x 0		
	77.000	320	1.0000 x 1		
	62.125	285	0.3750 x 0		
	41.750	330	0.3750 x 0		
	14.875	295	0.3750 x 0		
	27.750	295	0.5000 x 0		
20	39.000	295	0.5000 x 0		
20	1.375	230	0.5000 x 0		
	15.125	205	1.2500 x 1 1.2500 x 1		
	26.875	205			
	39.625 71.750	185 195	1.5000 x 1 1.6250 x 1		
	76.000	145	1.5000 x 1		
	50.750	165	2.0000 x 1		
	28.375	125	0.5000 x 0		
	14.500	120	1.5000 x 1		
	14.000	95	0.3750 x 0		
	TOP	130	1.3750 x 1		GOLIGE
	38.625	105	1.7500 x 2		00002
	51.375	90	1.5000 x 2		
	75.000	100	1.5000 x 2		
	51.000	70	0.5000 x 0		
	top	60	2.0000 x 2	.0000	
	12.750	285	0.7500 x 0	.7500	
	35.750	275	1.1250 x 1	.1250	
	37.875	315	0.6250 x 0	.6250	
	60.750	265	1.1250 x 1	.1250	
	33.625	345	1.0000 x 1	.0000	
	60.875	15	1.0000 x 1		-
	64.625	45	0.1875 x 0		
	47.750	55	0.1250 x 0		
	39.250	25	0.2500 x 0		
	11.250	25	1.0000 x 1		
	34.375	65	1.1250 x 1		
22	14.750	95	0.7500 x 0		
	9.500	105	1.5000 x 1		
	60.250	90	1.0000 x 1		
	50.000	90	0.3750 x 0		
	36.500	125	1.1250 x 1		
	70.750	150	0.2500 x 0		
	11.750	190	1.1250 x 1		
	9.625	220	1.1250 x 1		
	34.500 61.625	195 170	1.1250 x 1 1.1250 x 1		
	59.500		1.1250 x 1		
	42.375	225 210	0.2500 x 0		
		1	0.2500 x 0		
	70.000	235	U.∠UUU X U	.∠ა∪∪	

	Knot L	ocation	Kno	t Size	
Post	Distance	CCW from			
Number	from Top	Front	Length	x Width	Comments
	(in.)	(degrees)	(in.)	(in.)	
	3.250	345		x 0.3750	
	9.125	0		x 0.3750	
	13.625	350		x 0.2500	
	25.750	310		x 1.0000	
	2.125	280		x 0.7500	
	11.750	285		x 0.7500	
	33.750	250		x 0.7500	
	39.938	300		x 0.1250	
	45.500	300		x 1.0000	
	74.250	290		x 0.5000	
	48.000	320		x 0.3750	
	76.250	45		x 0.5000	
	47.000	75		x 0.7500	
0.4	40.500	95		x 0.1250	
24	28.250	85		x 0.6250	
	29.375	135		x 1.3750	
	25.250	90		x 1.5000	
	2.125	75		x 1.0000	
	5.875	105	0.3750	x 0.3750	
	73.875	150	1.5000	x 2.0000	
	46.125	175	1.3750	x 1.5000	
	2.625	180	2.0000	x 1.2500	
	76.500	210	1.5000	x 1.5000	
	69.000	195	0.1875	x 0.1875	
	40.000	320	0.1250	x 0.1250	
	17.375	210		x 0.2500	
	4.750	215	0.6250	x 0.6250	
	10.750	225		x 0.1250	
	1.875	315		x 2.5000	
	0.250	220		x 1.5000	
	14.375	295		x 2.2500	
	31.500	305		x 0.5000	
	41.750	280		x 2.2500	
	55.250	325		x 1.5000	
	65.750	355		x 1.0000	
	75.375	320		x 1.5000	
	70.250	295		x 0.3750	
	64.500	260		x 2.0000	
	31.000	240		x 0.2500	
	56.750	240		x 0.7500	
	76.500	205		x 1.0000	
	28.250	215		x 1.8750	
25	14.750	210		x 1.0000	
20	41.000 36.000	195 200		x 2.2500 x 0.2500	
	19.250	140		x 1.0000	
	55.375	145		x 2.0000	
	64.375	145		x 1.2500	
	73.875	160		x 1.2500 x 1.7500	
	66.375	95		x 0.2500	
	2.000	100		x 0.2500 x 0.7500	
	14.125	105		x 1.2500	
	28.250	95		x 1.0000	
	32.688	145		x 0.2500	
	43.500	70		x 1.2500	
	56.000	60		x 0.6250	
	75.500	60		x 1.0000	
	30.500	30		x 1.0000	
	14.250	25		x 1.2500	
	200				

	Knot L	ocation	Knot	Size	
Post	Distance	CCW from	Longth	x Width	Comments
Number	from Top	Front	Lengur	x vvidili	Comments
	(in.)	(degrees)	(in.)	(in.)	
	23.875	0	0.1250	x 0.5000	
	45.875	35		x 0.2500	
	66.500	25	1.5000	x 1.5000	
	36.875	345		x 1.2500	
	44.875	325		x 1.6250	
	23.750	285		x 1.5000	
	52.250	265		x 0.7500	
	66.625	235		x 1.5000	
	45.625	195		x 1.3750	
26	76.500	155		x 0.2500	
	62.000	135		x 0.3750	
	43.625	130		x 0.5000	
	58.313	140		x 0.2500	
	34.750	175		x 0.2500	
	23.625	180		x 0.7500	
	24.875	145		x 0.5000	
	36.250	120		x 0.2500	
	22.250	90		x 0.3750	
	67.500	115		x 0.7500	
	5.000	320		x 1.3750	
	10.875	340		x 0.4375	
	18.000	0		x 0.2500	
	26.250	310		x 1.0000	
	42.250	0		x 0.2500	
	49.125	0		x 1.0000	
	71.750	340		x 1.5000	
	56.250	305		x 0.3750	
	63.000	315		x 0.2500 x 1.0000	
	50.250 38.500	295 275		x 0.3750	
	71.500	255		x 0.6250	
	49.125	240		x 0.7500	
27	7.500	250		x 0.7500	
	27.500	220		x 1.0000	
	72.500	195		x 1.2500	
	5.375	165		x 1.0000	
Ĭ	23.750	170		x 1.0000	
	26.750	90		x 1.2500	
	34.750	105		x 0.3750	
	50.750	105		x 1.2500	
	71.250	95		x 1.5000	
	56.750	105		x 0.2500	
	5.875	45		x 1.5000	
	23.500	15		x 3.0000	
	49.625	45		x 1.7500	

Table A-2. Douglas Fir Length and Circumference Measurement

Length (in.) Avg. Length (in.) Circumfere Contain (in.) 78.250 78.250 Top 22.875 78.250 78.250 Mid-length 22.875	Average
(in.) (in.) Location Zone 78.250 Top 22.875 78.250 78.250 Mid-length 22.875	Average
78.250 Top 22.875 78.250 78.250 Mid-length 22.875	5
78.250 78.250 Mid-length 22.875	
78.250 Bottom 23.500	
77.938 Top 22.625	
77.938 77.958 Mid-length 22.375	
78.000 Bottom 22.625	
77.125 Top 23.125	
77.063 77.083 Mid-length 22.875	
77.063 Bottom 22.875	
78.000 Top 22.875	
77.938 78.000 Mid-length 22.750	
78.063 Bottom 23.125	
78.063 Top 22.875	
78.000 78.042 Mid-length 23.000	
78.063 Bottom 23.250	
78.063 Top 23.125	
78.000 78.042 Mid-length 23.000	
78.063 Bottom 23.125	
77 500 Top 23 000	
77.500 77.521 Mid-length 22.625	
77.563 Bottom 23.250	
77.500 77.521 Mid-length 22.625 77.563 Bottom 23.250 78.000 78.000 Top 22.750 78.000 Mid-length 22.750	
78.000 78.000 Mid-length 22.750	
78.000 Bottom 23.000	
78.000 Top 22.625	
78.000 78.000 Mid-length 22.500	
78.000 Bottom 22.875	
78.000 Top 23.125	
78.000 78.000 Mid-length 22.625	
78.000 Bottom 22.750	
77.938 Top 23.250	
77.938 77.917 Mid-length 23.000	
77.875 Bottom 23.375	
77.438 Top 22.500	
77.438 77.438 Mid-length 22.250	
77.438 Bottom 22.875	
77.750 Top 23.625	
77.750 77.750 Mid-length 23.375	
77.750 Bottom 23.750	
77.375 Top 23.250	
77.375 77.375 Mid-length 22.875	
77.375 Bottom 22.875	
77.500 Top 22.875	
77.500 77.500 Mid-length 23.125	
77.500 Bottom 23.375	

*Critical Zone Measurement Locations:

Top – 57 in. from bottom

Mid-length – 39 in. from bottom

Bottom – 21 in. from bottom.

Table A-3. Douglas Fir Pre-test Documentation

	Post	Weight	Avg.	Circum	ference (i	n.)	Volume	Density	Mois	ture Conte	nt (%)	Ring
	Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	Density (rings/in.)
	2	55	78.250	23.083	22.625	23.500	3308	0.0166	30	25	43	9.67
	3	63	77.958	22.542	22.875	22.750	3175	0.0198	51,26	45,28	54,30	25.67
	6	58	77.083	22.958	23.000	22.375	3252	0.0178	23	22	24	8.00
	9	59	78.000	22.917	22.625	23.375	3267	0.0181	26	26	24	14.33
	10	60	78.042	23.042	22.500	22.750	3264	0.0184	21	20	31	7.00
	11	55	78.042	23.083	22.625	23.000	3287	0.0167	22	33	22	19.33
Douglas Fir	13	62	77.521	22.958	22.750	23.000	3267	0.0190	43	30	51	8.33
Doug	15	71	78.000	22.833	22.875	23.125	3249	0.0219	45	39	50	11.00
	18	50	78.000	22.667	22.250	22.375	3163	0.0158	27	26	31	10.00
	20	56	78.000	22.833	22.750	22.875	3236	0.0173	21	23	25	13.00
	22	46	77.917	23.208	23.500	23.000	3348	0.0137	30	26	32	5.33
	24	63	77.438	22.542	23.125	22.500	3177	0.0198	34	28	32	5.33
	25	63	77.750	23.583	23.500	23.500	3447	0.0183	50	53	45	7.33
	26	56	77.375	23.000	23.000	22.250	3256	0.0172	55	27	48	6.33
	27	49	77.500	23.125	23.125	22.875	3310	0.0148	22	30	25	6.00

Table A-4. Knot Locations for Ponderosa Pine Posts Cantilever Testing Round 1

	Knot L	ocation	Knot S	Size	
Post	Distance	CCW from	يد طفوموا	ما 4 ام	Comments
Number	from Top	Front	Length x	vvidtri	Comments
	(in.)	(degrees)	(in.)	(in.)	
	1.750	55	2.0000 x	2.3750	
	2.750	0	0.6250 x	0.6250	
	15.500	25	0.8750 x	0.8750	
	29.375	10	1.3750 x	1.5000	
	45.125	345	2.0000 x	2.3750	
	58.500	10	1.3750 x	1.5000	
	68.000	45	1.3750 x	1.5000	
	45.375	85	1.5000 x	1.6250	
	29.500	110	1.1250 x		
	16.063	125	1.1250 x		
	47.625	125	1.0000 x		
101	59.750	155	0.5000 x		
	69.000	140	0.4375 x		
	TOP	145	2.0000 x		
	TOP	230	1.7500 x		
	13.875	225	2.0000 x		
	30.500	170	0.5000 x		
	43.750	250	2.2500 x		
	30.375	280	0.5000 x		
	16.063	300	0.2500 x		
	58.875	275	0.6250 x		
	67.500	285	1.8750 x		
	0.750	310	1.5000 x		
	TOP	90	1.5000 x		
	3.500 3.625	65 60	0.3750 x		
	9.625	20	0.3750 x 1.5000 x		
	22.375	80	1.1250 x		
	47.125	50	0.2500 x		
	49.250	70	2.2500 x		
	60.250	40	1.2500 x		
	68.000	110	3.0000 x		
	7.750	140	1.6250 x		
	25.750	145	0.5000 x		
	37.438	125	2.0000 x		
104	53.063	165	0.6250 x		
	2.500	200	0.7500 x		
	21.500	200	3.3750 x		
	12.000	250	0.3125 x		
	37.500	260	3.7500 x		
	62.000	265	0.8750 x		
	71.625	245	0.2500 x	0.2500	
	51.000	305	1.0000 x		
	25.313	310	0.6250 x	0.6250	
	8.625	315	2.0000 x		
	25.000	10		0.6875	
	39.250	350		1.0000	
	70.000	355	1.0000 x	1.0000	

	Knot L	ocation	Kno	ot S	Size	159
Post	Distance	CCW from	Lamette		VAZ: -lub	Comments
Number	from Top	Front	Length	Х	vviatn	Comments
	(in.)	(degrees)	(in.)		(in.)	
	3.500	135	0.7500			
	1.375	120			1.1250	
	19.125	110			0.5000	
	3.250	20			2.0000	
	37.500 54.000	180 205			2.0000 3.7500	
	51.313	100			1.1250	
	24.125	25			1.1250	
	25.875	30				GOUGE
	21.250	10	0.1875	Χ	0.1875	
	21.125	35			0.2500	
	22.688	50			0.2500	
105	34.500	60			0.3125	
	70.000	30			2.5000	
	70.750	0			0.5000	
	72.000 22.000	340 260			3.0000 0.5000	
	18.125	270			0.5000	
	23.500	255			1.0000	
	38.000	260			1.7500	
	70.750	250	1.7500			
	52.250	300	1.0000	Х	1.5000	
	20.125	320	1.5000		1.5000	
	воттом	360				GOUGE
	BOTTOM					GOUGE (0.75 in. deep)
	26.000					GOUGE (0.5 in. deep)
	68.125	100			0.2500	
	75.750	85 115			0.8750 0.4375	
	0.500 11.125	100			0.5000	
	25.000	115			0.5000	
	26.750	110			0.5000	
106	27.500	75			1.0000	
	44.125	65	1.5000	Х	1.2500	
	6.875	50	0.7500	Χ	0.7500	
	27.375	25			0.8750	
	71.875	25	2.0000			
	TOP	0			3.0000	
	43.750	280			2.0000	
	14.750	135 155	1.5000			
	30.750 43.250	90			1.3750 2.1250	
	56.125	65			1.0000	
	70.000	70			0.3750	
	68.875	135			1.2500	
	45.000	150			1.5000	
	64.750	185	2.7500	Х	1.7500	
	15.875	215	1.0000	Χ	1.1250	
	29.875	235			1.3750	
109	44.125	235			1.2500	
	65.250	250			1.0000	
	56.250 15.275	275			1.2500	
	15.375	285			1.6250	
	68.375 45.000	290 370			0.8750 1.1250	
	29.750	345			1.5000	
	55.500	350			1.3750	
	45.250	20			1.0000	
	16.188	5			1.0625	
	4.000	35	2.0000	х	2.0000	GOUGE

		ocation	Knot Size	100
Post	Distance	CCW from	Length x Width	Comments
Number	from Top	Front	Lengin X Widin	Confinents
	(in.)	(degrees)	(in.) (in.)	
	27.875	95	0.5000 x 0.5000	
	54.750	100	1.0000 x 1.0000	
	61.625	90	0.5625 x 0.5625	
	61.000	195	1.0000 x 1.3750	
111	39.000	230	1.0000 x 1.0000	
	21.750	245	0.6875 x 0.6875	
	70.500	245	0.7500 x 0.7500	
	52.625	280	0.2500 x 0.2500	
	14.125	280	0.3750 x 0.3750	
	3.563	40	0.2500 x 0.2500	
	9.813	20	0.2500 x 0.2500	
	24.750	20	0.2500 x 0.2500	
	31.125	80	0.3125 x 0.3125	
	18.438	90	0.3750 x 0.3750	
	24.375	110	0.5000 x 0.5000	
	5.375	115	0.2500 x 0.2500	
	9.000	140	0.5000 x 0.5000	
112	1.500	175	0.7500 x 1.0000	
	39.500	165	0.5000 x 0.5000	
	52.375	165	0.3125 x 0.3125	
	49.000	225	0.3125 x 0.3125	
	18.688	225	0.3750 x 0.3750	
	24.750	230	0.3750 x 0.3750	
	30.875	205	0.3750 x 0.3750	
	8.250	260	0.5625 x 0.5625	
	48.500	320	0.3750 x 0.3750	
	1.750	55	0.7500 x 1.0000	
	14.125	45 20	0.6250 x 0.6250	
	31.250 24.125	85	0.5000 x 0.5000 0.7500 x 0.7500	
	39.750	25	0.7500 x 0.7500 0.3750 x 0.3750	
	47.000	20	0.6250 x 0.7500	
	69.625	40	0.5000 x 0.5000	
	76.250	45	0.3750 x 0.3750	
	58.750	330	0.4375 x 0.4375	
	68.500		0.4375 x 0.4375	
	61.250	90	0.4373 x 0.4373	
	44.375	70	0.5000 x 0.5000	
	39.125	110	0.5625 x 0.5625	
447	0.438	115	0.2500 x 0.2500	
117	31.500	115	0.3750 x 0.3750	
	48.625	140	0.6250 x 0.6250	
	60.125	175	0.3750 x 0.3750	
	12.750	155	0.8750 x 1.1250	
	17.375	180	0.8750 x 1.1250	
	76.500	140	0.3125 x 0.3125	
	75.625	205	0.3750 x 0.3750	
	68.313	235	0.5625 x 0.5625	
	47.375	190	0.7500 x 1.1250	
	1.000	260	1.2500 x 1.5000	
	28.625	230	0.8750 x 1.2500	
	48.500	255	0.5000 x 0.5000	
	19.500	325	0.3125 x 0.3125	
	2.000	340	0.2500 x 0.2500	

	Knot L	ocation	Knot S	Size	101
Post	Distance	CCW from	Length x	\/\idth	Comments
Number	from Top	Front	Lengui X	WIGHT	Comments
	(in.)	(degrees)	(in.)	(in.)	
	10.625	350	0.7500 x		
	TOP	5	1.2500 x		
	26.750	350	0.7500 x	0.7500	
	36.000	0	1.0000 x		
	47.500	290	1.2500 x		
	37.500	265	1.1250 x		
	9.625	245	0.6250 x		
118	TOP	220	1.2500 x		
	28.250	220	1.2500 x		
	49.625	205	1.3750 x		
	38.000	170	1.2500 x		
	9.750	145	0.8750 x		
	26.125	105	0.4375 x		
	47.500	80	0.5000 x		
	77.000	95	0.3750 x		
	23.750	35	0.8750 x		
	3.625	75	0.5000 x		
	36.500	10	0.3750 x		
	39.750	120	0.7500 x		
	24.625	135	0.5625 x		
	3.000	175	0.7500 x		
120	17.000	190	0.6250 x		
120	43.750	185 225	0.8125 x 0.5000 x		
	35.688		0.5000 x		
	40.125 48.125	225 235	0.6250 x		
	31.500	245	0.6875 x		
	57.625	285	0.5625 x		
	8.500	310	0.2500 x		
	18.063	315	0.3750 x		
	13.500	300	2.0000 x		
	21.375	295	0.3750 x		
	34.375	310	0.7500 x		
	44.500	290	0.5625 x		
	53.000	275	1.2500 x		
	69.375	290	1.0000 x		
	49.625	5	0.6250 x	0.6250	
	65.500	20	0.2500 x		
	TOP	60	1.7500 x	1.7500	
	10.000	85	0.2500 x	0.2500	
122	36.375	90	2.2500 x		
	34.688	95	0.1250 x		
	52.750	150	0.1250 x	1.5000	
	23.875	165	1.0000 x	1.3750	
	71.250	175	3.0000 x	1.6250	
	46.500	205	2.0000 x		
	43.500	210	0.4375 x		
	34.250	230	1.3750 x		
	11.750	200	1.3750 x		
	10.000	250	0.3750 x		
	TOP	255	1.0000 x	1.0000	

		ocation	Knot	Size	102
Post	Distance	CCW from Front	Longth v	√ \\/idth	Comments
Number	from Top	Front	Length X	vvidiri	Odminionis
	(in.)	(degrees)	(in.)	(in.)	
	17.625	355	0.6250 x	0.6250	
	5.500	340	3.0000 x	2.1250	
	37.250	20	1.5000 x	1.0000	
	41.000	15	0.2500 x	0.2500	
	46.750	5	2.2500 x	1.5000	
	62.125	25	1.2500 x	1.0000	
	BOTTOM	355	0.6250 x	0.6250	
	77.250	300	0.7500 x	0.7500	
	61.250	300	1.1250 x	1.1250	
	47.375	310	0.8750 x		
	35.625	315	2.0000 x	1.2500	
123	40.000	275	0.5000 x	0.5000	
120	46.375	230	1.5000 x	1.0000	
	63.250	235	0.3750 x		
	77.250	215	0.5000 x		
	25.750	65	0.4375 x	0.4375	
	17.875	170	1.0000 x	1.2500	
	6.500	165	1.5000 x	1.7500	
	40.875	135	0.3750 x	0.3750	
	77.125	135	1.2500 x	1.2500	
	6.500	85	0.8750 x	0.8750	
	25.875	95	0.5000 x	0.5000	
	62.750	100	0.7500 x	0.7500	
	40.500	75	0.6250 x	0.6250	
	15.750	65	1.2500 x	1.5000	
	20.000	10	0.5000 x		
	26.875	355	0.6250 x		
	34.375	5	0.5000 x		
	51.375	15	0.5000 x		
	61.625	20	0.8750 x		
	59.250	65	0.7500 x		
	37.000	115	2.2500 x		
	59.500	120	1.3750 x		
	59.625	145	1.1250 x		
	0.500	110	0.3750 x		
124	2.500	170	0.1250 x		
	25.438	170	0.5000 x		
	71.000	165	2.2500 x		
	14.250		1.0000 x		
	3.813	230	0.1875 x		
	34.250	220	0.6250 x		
	65.000	220	2.8750 x		
	61.750	250	0.3750 ×		
	54.500	255	1.2500 x		
	BOTTOM	285	1.0000 x		
	36.500	305	1.1250 x		
	59.750	315	0.2500 x	0.2500	

	Knot L	ocation	Knot S	Size	
Post	Distance	CCW from			Comments
Number	from Top	Front	Length x	Wiath	Comments
	(in.)	(degrees)	(in.)	(in.)	
	10.375	355	0.3125 x	0.3125	
	16.500	320	0.7500 x		
	8.313	290	1.6250 x		
	2.313	302	0.2500 x		
	1.625 10.000	232 180	0.5000 x 0.2500 x		
	1.313	160	0.8750 x		
	15.625	175	2.0000 x		
	16.250	75	0.3750 x	0.3750	
	8.250	55	0.3125 x		
	24.875	55	1.6250 x		
	35.125 55.125	80 115	1.2500 x 1.5000 x		
	76.750	160	1.0625 x		
127	37.938	190	0.1250 x		
	46.750	190	0.3750 x		
	70.250	210	0.6250 x		
	56.563	220	1.0000 x		
	25.750	285	1.0000 x		
	38.250 42.000	260 275	1.0000 x 3.0000 x		
	55.438	320	1.6250 x		
	70.000	330	0.2500 x		
	46.750	10	0.6250 x		
	56.625	45	0.3125 x	0.3125	
	TOP	30	0.7500 x		
	BOTTOM	85	0.7500 x		
	69.500 70.250	130 120	0.2500 x 0.2500 x		
	10.500	30	5.0000 x		
	11.813	50	0.1250 x		
	13.250	85	0.3750 x	0.3750	
	26.250	40	2.0000 x		GOUGE
	4.000	345	2.0000 x		
	20.000 38.125	345 345	0.6250 x 2.0000 x		
	51.000	350	2.5000 x		
	68.000	20	2.0000 x		GOUGE
	71.625	15	0.7500 x		
	63.500	45	1.5000 x		
	20.375	70	0.6250 x		
	37.125	60	1.7500 x 1.3750 x		
	49.500 4.875	100 105	1.6250 x		
	66.750	120	0.7500 x		
	71.125	120	0.6250 x		
128	37.750	135	0.8750 x		
120	43.000	180	7.7500 x		GOUGE
	26.500	145	1.0000 x		
	7.250 12.000	170 170	0.1250 x 0.2500 x		
	19.375	180	0.2300 x		
	37.375	200	1.0000 x		
	47.500	170	0.2500 x	0.2500	
	62.625	205	0.1250 x		
	70.250	210	0.5000 x		
	49.500	225	1.0000 x		
	67.375 61.750	230 250	1.1250 x 0.6250 x		
	20.625	265	1.5000 x		
	27.000	265	1.5000 x		
	13.000	280	0.6250 x	0.5000	
	47.875	290	0.5000 x		
	63.375	310	2.0000 x		
	17.875	345	0.1250 x	0.1250	

Table A-5. Ponderosa Pine Length and Circumference Measurements

	Length Avg.		Circ	umference	(in.)		
		Length	Location	Critical	Critical		
	(in.)	(in.)	Location	Zone	Zone		
	77.938 77.938 78.063		Top	25.750	05.050		
		77.979	Mid-length	26.000	25.958		
			Bottom	26.125			
	78.125		Тор	27.750	28.250		
	78.000	78.042	Mid-length	28.500			
	78.000		Bottom	28.500			
	78.000		Top	28.125	07.700		
	78.000	78.042	Mid-length	27.625	27.708		
	78.125		Bottom	27.375			
	78.000		Top	28.125			
	78.000	77.875	Mid-length	28.000	27.917		
	77.625		Bottom	27.625	27.517		
	78.000		Тор	25.875			
	78.000	78.000	Mid-length	26.375	26.333		
	78.000		Bottom	26.750			
	78.000	78.000	Top	27.500			
	78.000		Mid-length	27.875	27.792		
	78.000		Bottom	28.000			
ne	78.000		Тор	27.750			
P	78.000	78.000	Mid-length	28.125	28.083		
Sa	78.000		Bottom	28.375			
Ponderosa Pine	78.000		Тор	27.750	27.917 28.125		
пd	78.125	78.083	Mid-length	27.875			
Ро	78.125		Bottom	28.125			
	78.000		Тор	28.125			
	77.813	77.938	Mid-length	28.125			
	78.000		Bottom	28.125			
	78.000		Тор	27.375			
	78.000	78.021	Mid-length	27.750	27.708		
	78.063		Bottom	28.000			
	78.063		Тор	28.125			
	78.063	78.063	Mid-length	28.375	28.417		
	78.063		Bottom	28.750			
	78.000		Тор	25.000			
	78.000	78.000	Mid-length	25.125	25.333		
	78.000	78.042	Bottom	25.875			
	78.063		Тор	27.500			
	78.000		Mid-length	27.625	27.833		
	78.063		Bottom	28.375			
	78.063		Тор	27.500			
	78.000	78.021	Mid-length	27.625	27.750		
	78.000		Bottom	28.125			
	78.000		Тор	26.250			
	78.000	78.000	Mid-length	25.750	25.833		
	78.000		Bottom	25.500			

*Critical Zone Measurement Locations:

Top – 57 in. from bottom
Mid-length – 39 in. from bottom
Bottom – 21 in. from bottom.

Table A-6. Ponderosa Pine Pre-test Documentation

	Doot	Weight	Avg.	Circum	ference (i	n.)	Volume	Density	Mois	ture Conte	nt (%)	Ring
	Post Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	Density (rings/in.)
	101	77	77.979	25.958	26.125	26.000	4191	0.0184	20	19	19	6.00
	104	119.5	78.042	28.250	27.750	28.125	4923	0.0243	22	19	23	5.67
	105	115	78.042	27.708	27.375	27.500	4742	0.0243	19	16	26	7.33
	106	73	77.875	27.917	28.125	27.375	4822	0.0151	32,21	33,19	29,18	5.67
	109	81	78.000	26.333	25.625	28.125	4355	0.0186	20	18	17	5.00
	111	105	78.000	27.792	27.750	27.750	4790	0.0219	19	19	22	14.00
Ponderosa Pine	112	112	78.000	28.083	27.000	28.125	4847	0.0231	23	19	19	25.00
Ponder	117	77	78.083	27.917	27.625	27.500	4805	0.0160	20	22	18	18.33
	118	102	77.938	28.125	27.500	28.000	4875	0.0209	19	20	19	9.33
	120	128	78.021	27.708	27.500	27.750	4758	0.0269	20	19	22	12.67
	122	110	78.063	28.417	30.375	27.750	5078	0.0217	21	19	23	11.00
	123	75	78.000	25.333	27.125	26.250	4104	0.0183	23	20	16	11.67
	124	99	78.042	27.833	27.875	28.250	4832	0.0205	22	23	19	16.67
	127	116	78.021	27.750	27.500	28.000	4781	0.0243	25	22	28	13.00
	128	83	78.000	25.833	27.375	25.375	4192	0.0198	16	15	16	10.67

Table A-7. Knot Locations for Douglas Fir Posts Cantilever Testing Round 2

	Knot Lo	ocation		
	From	Front	Knot	
Post	Bottom	CCM	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
401	14.75	0	0.5	
401	42.5	10	0.25	
401	61	10	1.5	
401	23.75	55	1	- ((
401	10.25	60		2 (.125") knots
401 401	31.5	60	1.5 0.25	
401	45.25 5	70 90	0.25	
401	57.75	90	1.25	
401	12	120	0.5	
401	17	160	1	
401	40	170	0.25	
401	41	170	0.25	
401	48	170	0.25	
401	57.25	180	1	
401	26	200		2(.25") knots
401	8	230	0.75	
401	12	240	0.5	
401	52.25	270	0.5	
401 401	22.25 31.5	290 310	1.5 1.5	
401	45.5	310		
401	11.75	320	0.25	
401	66	320	1.5	
401	53.75	330		gouge (2"x2")
403	37.125	0	1.5	gouge (2 A2)
403	11.375	5	0.625	
403	46.125	5	0.25	
403	20.625	10	0.25	
403	33.125	10	0.375	
403	72	15	0.375	
403	6.375	20	0.25	
403	57	30	0.25	
403	76.25	40	0.25	
403 403	62.875 0.625	45 55	1.25 0.25	
403	14.625	60	0.23	
403	32.625	65	0.375	
403	8.5	80	0.625	
403	39	90	2	
403	15.75	105	1.5	
403	59.125	105	0.375	
403	52.375	120	0.25	
403	34.625	125	0.75	
403	13.5	135	1	
403	27.5	160		
403	11.5	165	1.5	
403 403	15.75 70	215 215	1.25 0.25	
403	12	220	0.25	
403	52.875	230	0.375	
403	38.5	235	1.25	
403	55.25	255	0.5	
403	70.625	275	0.25	
403	26.375	280	0.375	
403	34.125	285	1.125	
403	10	290	0.375	
403	77.375	300	0.25	
403	15.25	310	1.5	
403	63.875	310	1.25	
403	60	330	1	
403	54.375	340	0.25	

	Knot Lo	ocation		
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
404	49.375	5	0.375	
404	68.75	15	1.5	
404	39.625	20	0.25	
404 404	27.75 63.5	25	1.25 1.5x1.25	
404	75.75	40	0.25	
404	2.25	45	1.5	
404	11.375	65	0.25	
404	47.75	80	0.75	
404	30.125	90	1.25	
404	22.125	125	0.5	
404	60.5	125	1.25	
404	37.75	130	0.5	
404	48.125	145	0.5	
404	29.25	155	1.25	
404 404	73.5 36.625	165 170	0.5	
404	64.375	170	1.5	
404	17.5	175	1.5	
404	51	190	1	
404	55.5	190	0.5	
404	3.125	200	0.75	
404	24.625	215	1.25	
404	41.625	235	0.5	
404	30.875	260	2	
404	67.5	260		
404	60.25		2.25x2	
404	75	285	0.5	
404	45.375	295	0.5	
404	8.875	315	0.75	
404 404	18 24.5	325 325	0.25 1.5	
404	0.5	330	1.5	
405	24.5	20	1.5	
405	56.5		1.5x1	
405	2.25	50	1.25	
405	16.25	70	0.5	
405	52	70	0.5	
405	77.5	70	1.25	
405	72	80	1.25	
405	63	110		
405	10.5	120	0.25	
405	21	130	0.5	
405	25.5	130		
405 405	33 37.5	130 170	2x1.5	
405	54	170	1	
405	17.75	180	0.25	
405	2.75	200	2	
405	70.25	200		
405	13.75	220	0.25	
405	35.25	240	1.75	
405	57.5	240	0.5	
405	1	280	1.25	
405	76.5	280	1.5	
405	11	310	0.5	
405	47.5	310	0.25	
405	59 21	310	0.75	
405	21 37	330	0.75 1.5	
405 405	62.5	350 350	0.75	
405	0∠.5	330	0.75	

	Knot Lo	ocation		168
	From	Front	Knot	
Post	Bottom	CCM	Diameter	
Number	(in.)	(Deg.)	` '	Comments:
410	70.625	0	1.25	
410	8.5	5	0.25	
410	56.25	15	0.25	
410	28	20	1	
410	15.75	25	0.25	
410	18.25	30	0.25	
410	66.25	30	0.75	
410	7	40	0.25	
410	59.5	40	0.25	
	TOP	40	1	
410	37.75	45 50	1.75	
410	0		1.25	
410	10	60	0.25	
410 410	24 59.75	60 80	0.25 0.25	
410	21.875	80 85	1.25	
410	21.875 40.75	95 95	1.25	
410	14.625	100	0.25	
410	76.5	100	1.5	
410	31.75	110	0.5	
410	51.75	120	0.25	
410	62	120	0.25	
410	65.5	125	0.25	
410	36.125	130	0.25	
410	71.25	130	0.23	
410	15.25	135	0.25	
410	21	150	0.25	
410	1.5	155	0.575	
410	59.25	160	0.25	
410	40	165	1.5	
410	56.375	170	0.25	
410	7.875	180	0.25	
410	50.5	180	0.25	
410	77.25	185	2	
410	15.25	195	0.25	
410	34	200	1.25	
410	26.75	213	0.375	
410		215	0.25	
410	61.375	215	0.375	
410	68.375	220	0.75	
410	24	235	0.5	
410	40.25	235	2.25	
410	1	240	1.5	
410	54.75	255	0.25	
410	20.75	265	0.375	
410	38.875	275	2	
410	52.25	280	0.25	
410	76.75	280	2.25	
410	61.125	290	0.25	
410	32.875	300	1.25	
410	2.875	305	2	
410	27.75	305	0.5	
410	18.75	310	0.375	
410	13.75		.5x.25	
410	75.375	330	1.5	
410	59.25	340	0.5	
410	41	345	2	

Post Number Common Common Front Number Common Comm		Knot Lo	ocation		109
Post Number Num				Knot	
Number (in.) (Deg.) (in.) Comments:	Post	Bottom	CCW		
414 2 0 1.5 414 54 10 0.25 414 56.5 20 0.5 414 39.5 80 1.5 414 28 110 0.78 414 64.25 120 0.5 414 45.5 160 0.25 414 45.5 160 0.25 414 41 45.5 160 0.25 414 41 45.5 160 0.25 414 41 45.5 160 0.25 414 56.5 180 0.5 414 66.5 180 0.5 414 66.5 180 0.5 414 66.5 180 0.5 414 66.5 180 0.5 414 66.7 180 0.25 414 66.7 180 0.25 414 66.7 0.25 414 60.76 270 0.25 414 60.76 270 0.25 414 66.5 20 0.25 414 66.5 20 0.25 414 66.5 20 0.25 415 66.5 20 0.25 416 66.5 20 0.25 417 66.6 20 0.25 418 60.76 270 0.25 419 60.75 270 0.25 419 60.75 270 0.25 410 60.75 270 0.25 411 80.75 20 0.25 412 80.75 20 0.25 413 80.75 20 0.25 414 80.75 20 0.25 415 60.75 20 0.25 416 60.75 20 0.25 417 80.75 20 0.25 418 80.75 20 0.25 419 80.75 20 0.25 419 80.75 20 0.25 419 80.75 20 0.25 419 80.75 20 0.25 419 80.75 20 0.25 419 80.75 20 0.25 410 80.75 20 0.25 411 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.25 415 80.75 20 0.5 415					Comments:
414 54 10 0.25 414 39.5 80 1.5 414 28 110 0.75 414 6.25 120 0.5 414 6.25 130 0.5 414 4.5.5 150 0.25 414 4.5.5 150 0.25 414 5.5.2 130 0.5 414 6.5.5 130 0.5 414 10 0.75 414 11 0.5 10 0.75 414 11 0.5 10 0.75 414 12 0.5 170 1 414 12 0.5 170 1 415 12 0.5 170 1 416 12 0.5 180 0.5 417 12 0.5 180 0.5 418 18.5 200 0.5 419 18.5 200 0.25 419 18.5 200 0.25 419 18.5 200 0.5				. ,	Comments.
414 56.5 20 0.5 414 28 110 0.75 414 64.25 120 0.5 414 64.25 120 0.5 414 42.5 170 1 1 414 45.5 160 0.25 414 25. 170 1 1 414 41 180 1 414 55.25 180 0.5 414 66.5 180 0.5 414 66.5 180 0.5 414 26.5 210 0.25 414 26.5 210 0.25 414 26.5 25 0.0 0.25 414 56.2 10 0.25 414 26.5 20 0.25 414 26.5 210 0.25 414 26.5 220 0.25 414 26.5 230 0.5 414 26.5 230 0.5 414 26.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 250 0.5 415 61.25 15 0.25 416 60 350 0.25 417 48 340 0.25 418 60 15 1.5 419 147 5 40 1 418 147 5 40 1 418 147 5 40 0.5 418 38.75 45 0.5 418 38.75 45 0.5 419 38.75 45 0.5 415 46 66 0.25 415 13.5 115 0.25 415 38.75 125 0.375 415 38.75 125 0.375 415 13.5 115 0.25 415 13.5 115 0.25 415 145 15 1.5 415 15 1.5 415 13.5 115 0.25 415 15 1.5 415 13.5 115 0.25 415 15 1.5 415					
414 39.5 80 1.5 414 64.25 120 0.5 414 64.25 120 0.5 414 65.5 160 0.25 414 2.5 170 1 414 45.5 160 0.25 414 2.5 170 1 414 41 18.0 1 414 55.25 180 0.5 414 45.5 180 0.5 414 45.5 180 0.5 414 18.5 200 0.25 414 25.5 26 0.5 414 26.5 180 0.5 414 26.5 180 0.5 414 26.5 180 0.5 414 26.5 180 0.5 414 26.5 180 0.5 414 26.5 180 0.5 414 26.5 270 0.5 414 28.5 28.0 0.5 414 28.0 0.25 (375") knots 414 19.75 290 0.5 414 66.5 270 0.5 414 66.5 125 0.5 415 61.25 15 0.25 416 61.25 15 0.25 417 61.25 15 0.25 418 61.25 15 0.25 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.376 419 61.25 15 0.25 419 61.25					
414					
414 64.25 120 0.5 414 62.5 130 0.5 414 45.5 160 0.26 414 2.5 170 1 414 41 180 1 414 55.25 180 0.5 414 18.5 200 0.25 414 18.5 200 0.25 414 26.5 180 0.5 414 270 0.5 414 28.5 200 0.25 414 28.07 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 68.5 270 0.5 414 68.3 0.25 414 66.3 350 0.25 414 66.3 350 0.25 415 61.25 15 0.25 416 61.25 15 0.25 417 66.125 15 0.25 418 61.25 15 0.25 419 61.25 15 0.25					
414 6.25 130 0.5 414 45.5 160 0.25 414 2.5 170 1 414 41 180 1 414 66.5 180 0.5 414 66.5 180 0.5 414 18.5 200 0.5 414 56.2 10 0.25 414 29.5 260 0.5 414 29.5 260 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 56.2 270 0.5 414 66.5 270 0.5 415 60.5 270 0.5 416 66.5 270 0.5 417 66.5 270 0.5 418 19.75 290 0.5 419 19.75 290 0.5 419 19.75 290 0.5 419 19.75 290 0.5 411 48 340 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 1475 40 1 415 13.5 5.75 35 0.75 415 14.75 40 1 415 38.76 46 0.25 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 3.875 125 0.375 415 1.5 0.625 415 1.5 0.375 415 1.5 0.625 415 1.5 0.375 415 1.5 0.625 415 1.5 0.375 415 1.5 0.625 415 1.5 0.375					
414 45.5 160 0.25 414 2.5 170 1 414 411 180 1 414 55.25 180 0.5 414 66.5 180 0.5 414 18.6 200 0.25 414 26 230 0.5 414 26 230 0.5 414 26 230 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 19.75 290 0.5 414 66.3 30 0.25 414 19.75 290 0.5 414 66.3 50 0.25 415 6.125 15 0.25 415 33.75 35 0.75 415 38.75 45 0.25 415 48.25 55 0.5 415 48.25 55 0.5 415 48.25 55 0.5 415 48.25 55 0.5 415 3.875 125 0.375 415 4.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1					
414					
414 41 180 1 414 55.25 180 0.5 414 66.5 180 0.5 414 18.5 200 0.25 414 26 230 0.5 414 26 230 0.5 414 29.5 260 0.5 414 66.5 270 0.25 414 66.5 270 0.25 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 19.75 290 0.5 414 66 350 0.25 414 66 350 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 415 13.75 30 0.75 416 147 14.76 40 1 417 14.76 40 1 418 38.78 45 0.25 419 48.26 55 0.5 419 48.26 55 0.5 419 48.26 55 0.5 419 73.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.37 105 0.25 419 74.					
414 55.25 180 0.5 414 66.5 180 0.5 414 18.5 200 0.25 414 56 210 0.25 414 26 230 0.5 414 29.5 260 0.5 414 60.75 270 0.25 414 66.5 270 0.5 414 66.5 270 0.5 414 54 280 0.25 2 (.375') knots 414 19.75 290 0.5 414 48 340 0.25 414 66 350 0.25 415 60.15 1.5 415 80.15 3.75 35 0.5 416 6.125 15 0.25 417 418 60.15 1.5 418 19.76 20.15 419 19.76 20.15 419 19.76 20.15 410 19.76 20.15 411 19.76 20.15 411 19.76 20.15 411 19.76 20.15 412 19.76 20.15 413 19.76 20.15 414 66.35 15 0.25 415 14.76 40 1 415 14.76 40 1 416 14.76 40 1 417 14.76 40 1 418 14.76 40 1 419 14.76 40 1 419 14.76 40 1 419 14.76 40 1 419 14.76 40 1 410 14.76 40 1 411 14.76 40 1 415 13.5 15 0.25 415 3 55 0.5 415 48.26 55 0.5 415 48.26 55 0.5 415 48.26 55 0.5 415 48.26 55 0.5 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 120 0.75 415 415 42.6 160 1.5 415 42.6 160 1.5 415 42.6 160 1.5 415 42.6 160 1.5 415 42.6 160 1.5 415 42.6 160 1.5 415 43.75 200 1.25 415 18.875 200 1.25 415 18.875 200 1.25 415 18.875 200 1.25 415 19.25 270 0.25 415 19.25 270 0.25 415 19.25 270 0.25 415 19.25 270 0.25 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.76 310 1 415 11.77 315 315 0.25 415 11.77 315 315 0.25 415 11.77 315 315 0.25 415 11.77 315 315 0.25 415 11.77 315 310 0.25 415 11.77 315 310 0.25 415 11.77 315 310 0.25 415 11.77 310 0.25					
414 66.5 180 0.5 414 18.5 200 0.25 414 26 230 0.5 414 29.5 260 0.5 414 60.75 270 0.25 414 66.5 270 0.25 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 414 66.5 270 0.5 415 19.5 290 0.5 416 61.5 15 0.25 417 66.125 15 0.25 418 61.5 15 0.25 419 61.5 15 0.5 419 61.5 15 0.5 415 38.75 35 0.75 415 38.75 45 0.25 415 39 110 0.25 415 39 110 0.25 415 38.75 125 0.375 415 3.875 125 0.375 415 3.875 125 0.375 415 13.5 115 0.625 415 75.75 140 0.75 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 125 0.375 415 13.5 125 0.375 415 13.5 125 0.375 415 13.5 125 0.375 415 14.5 15 175 0.75 415 18.875 200 1.25 415 20.25 415 20.25 415 30.375 415					
414 18.5 200 0.25 414 56 210 0.25 414 29.5 260 0.5 414 60.75 270 0.25 414 66.5 270 0.5 414 19.75 290 0.5 414 19.75 290 0.5 414 48 340 0.25 414 48 340 0.25 415 6.125 15 0.25 415 60 15 1.5 415 60 15 1.5 415 33.75 35 0.75 415 38.75 45 0.25 415 38.75 45 0.25 415 48.25 55 0.5 415 48.25 55 0.5 415 39 110 0.25 415 39 110 0.25 415 39 110					
414 56 210 0.25 414 26 230 0.5 414 20.75 270 0.25 414 60.75 270 0.25 414 66.5 270 0.5 414 54 280 0.25 2 (.375") knots 414 19.75 290 0.5 414 48 340 0.25 414 66 350 0.25 415 6.125 15 0.25 415 60 15 1.5 415 60 15 1.5 415 53.75 35 0.75 415 38.75 45 0.25 415 33.55 0.5 415 46 65 0.25 415 46 65 0.25 415 46 65 0.25 415 39 110 0.25 415 53 120					
414 26 230 0.5 414 29.5 260 0.25 414 60.75 270 0.25 414 66.5 270 0.5 414 48 280 0.25 2 (.375') knots 414 48 340 0.25 414 68 350 0.25 415 6.125 15 0.25 415 60 15 1.5 415 60 15 1.5 415 53.75 35 0.75 415 38.75 40 1 415 38.75 45 0.25 415 38.75 45 0.25 415 38.75 45 0.25 415 38.75 45 0.25 415 38.25 55 0.5 415 48.26 55 0.5 415 39 110 0.25 415 38.75					
414					
414 60.75 270 0.25 414 66.5 270 0.5 414 54 280 0.25 2 (.375') knots 414 19.75 290 0.5 414 66 350 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 53.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 48.25 55 0.5 415 48.25 55 0.5 415 71.375 105 0.25 415 13.5 115 0.625 415 13.875 120 0.75 415 40.025 125 125 125 125 125 125 125 125 125 1					
414 66.5 270 0.5 414 54 280 0.25 2 (.375") knots 414 19.75 290 0.5 414 48 340 0.25 414 66 350 0.25 415 6.125 15 0.25 415 6.125 15 0.25 415 14.75 40 1 415 38.75 45 0.25 415 48.25 55 0.5 415 48.25 55 0.5 415 39 110 0.25 415 39 110 0.25 415 38.75 105 0.25 415 13.5 115 0.625 415 39 110 0.25 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 145 75.75 140 0.75 415 145 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 145 0.75 415 15.75 200 1.25 415 15.75 200 1.25 415 15.75 220 1.5 415 15.5 1.5 415 15.					
414 54 280 0.25 2 (.375") knots 414 19.76 290 0.5 414 48 340 0.25 414 66 350 0.25 415 6.125 15 0.25 415 60 15 1.5 415 53.75 35 0.75 415 14.76 40 1 415 38.75 45 0.25 416 48.25 55 0.5 417 48 66 66 0.25 418 71.375 105 0.25 419 39 110 0.25 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 115 0.625 415 13.5 120 0.75 415 3.876 125 0.376 415 4.25 155 1.5 415 4.25 155 1.5 415 5.3 120 0.75 415 1.5 1.5 1.5 415 5.3 120 0.75 415 1.5 1.5 1.5 1.5 415 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1					
414 19.75 290 0.5 414 48 340 0.25 415 6.125 15 0.25 415 60 15 1.5 415 53.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 48.25 55 0.5 415 48.25 55 0.5 415 46 65 0.25 415 71.375 105 0.25 415 39 110 0.25 415 39 110 0.25 415 39 120 0.75 415 38.75 120 0.75 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 35 120 0.75 415 38.75 125 0.375 415 38.75 140 0.75 415 38.75 140 0.75 415 40 0.75 0.75 415 40 0.75 0.75 415					2 (375") knots
414 48 340 0.25 414 66 350 0.25 415 60 15 1.5 415 53.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 3 55 0.5 415 46 65 0.25 415 46 65 0.25 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 35 125 0.5 415 39 110 0.25 415 35 120 0.75 415 3875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 40.25 160 1.5 415 40.625 175 0.375 415					2 (.373) KIIUIS
414 66 350 0.25 415 6.125 15 0.25 415 53.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 3 55 0.5 415 48.25 55 0.5 415 71.375 105 0.25 415 73.375 105 0.25 415 39 110 0.25 415 33 115 0.625 415 33 120 0.75 415 33 100 0.75 415 33 100 0.75 415 39 110 0.25 415 33 120 0.75 415 38.75 125 0.375 415 60 125 2 415 60 125 2 415 40 0.75 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 18.875 200 1.25 415 45.625 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
415 6.125 15 0.25 415 60 15 1.5 415 14.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 3 55 0.5 415 46 66 0.25 415 46 66 0.25 415 71.375 105 0.25 415 39 110 0.25 415 13.5 115 0.625 415 53 120 0.75 415 38.75 125 0.375 415 53 120 0.75 415 38.75 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 15 175 0.75 415 18.75 200 1.25 415 18.75 200 1.25 415 18.75 200 1.25 415 18.75 200 1.25 415 18.875 205 0.375 415					
415 60 15 1.5 415 53.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 3 55 0.5 415 48.25 55 0.5 415 46 65 0.25 415 71.375 105 0.25 415 39 110 0.25 415 39 110 0.25 415 39 120 0.75 415 38.75 125 0.375 415 60 125 2 415 75.75 140 0.75 415 60 125 2 415 75.75 140 0.75 415 425 160 1.5 415 45 20 1.5 415 15 175 0.75 415 46 25 160 1.5 415 18.75 200 1.25					
415 53.75 35 0.75 415 14.75 40 1 415 38.75 45 0.25 415 3 55 0.5 415 48.25 55 0.5 415 46 66 60.25 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 38.75 125 0.375 415 38.75 125 0.375 415 38.75 125 0.375 415 60 125 2 415 75.75 140 0.75 415 40.62 175 0.75 415 40.62 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.75 200 1.25 415 18.875 200 1.25 415 18.625 205 0.375 415 45.625 205 0.375 415 57.5 220 1.5 415 57.5 220 1.5					
415 14.75 40 1 415 38.75 45 0.25 415 48.25 55 0.5 415 46 65 0.25 415 39 110 0.25 415 39 110 0.25 415 39 110 0.25 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 4.25 160 1.5 415 4.25 160 1.5 415 4.25 160 1.5 415 4.25 160 1.5 415 4.5 20 1.25 415 4.5 20 1.25 415 4.5 20 1.25 415 4.5 20 1.25 415 4.5 20 1.25 415 4.5 20 1.25 415 45.625 205 0.375 415 45.625 205 0.375 415 57.5 220 1.5 415					
415 38.75 45 0.25 415 3 55 0.5 415 48.25 55 0.5 415 71.375 105 0.25 415 39 110 0.25 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 4.25 160 1.5 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 18.6625 205 0.375 415 56.625 205 0.375 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 60.75 225 0.75 415 40.875 270 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
415 3 55 0.5 415 48.25 55 0.5 415 71.375 105 0.25 415 71.375 105 0.25 415 39 110 0.25 415 13.5 115 0.625 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 4.25 160 1.5 415 4.25 160 1.5 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 40.625 175 0.375 415 18.875 200 1.25 415 45.625 205 0.375 415 45.625 205 0.375 415 57.5 220 1.5 415 57.5 220 1.5 <td></td> <td></td> <td></td> <td></td> <td></td>					
415 48.25 55 0.5 415 46 65 0.25 415 71.375 105 0.25 415 39 110 0.25 415 13.5 115 0.625 415 53 120 0.75 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 40.625 175 0.375 415 18.75 200 1.25 415 45.625 205 0.375 415 45.625 205 0.375 415 45.625 205 0.375 415 57.5 220 1.5 415 55.5 225 0.75 415 55.5 225 0.75 415 55.5 225 0.75 415 55.5 225 0.75 415 40.875 270 0.5					
415 46 65 0.25 415 71.375 105 0.25 415 39 110 0.25 415 13.5 115 0.625 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 4.25 160 1.5 415 15 175 0.375 415 18.75 200 1.25 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 45.625 205 0.375 415 56.075 220 1.25 415 57.5 220 1.5 415 57.5 20 1.5 415 57.5 20 1.5 415 57.5 20 1.5 415 57.5 20 1.5 415 40.875 270 1.25					
415 71.375 105 0.25 415 39 110 0.25 415 13.5 115 0.625 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 5.6 210 1.25 415 57.5 220 1.5 415 57.5 220 1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 40.875 270 0.25 415 40.875 270 0.5 415 40.875 270 0.5 415 17.75 310 1 <					
415 39 110 0.25 415 13.5 115 0.625 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 45.625 205 0.375 415 57.5 220 1.5 415 57.5 220 1.5 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 19.25 270 1.25 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 71.75 315 0.25 415 71.75 315 0.25 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
415 13.5 115 0.625 415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 45 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 40.875 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 315 0.25 415 17.75 315 0.25 415 20 320 2 415 27.25 340 0.25 <					
415 53 120 0.75 415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 9.25 270 1.25 415 19.25 270 1.25 415 40.875 270 0.25 415 40.875 270 0.5 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 315 0.25 415 17.75 315 0.25 415 20 320 2 415 27.25 340 0.25					
415 3.875 125 0.375 415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 4.625 175 0.375 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 71.75 315 0.25 415 71.75 315 0.25 415 27.25 340 0.25 415 41.125 340 0.375					
415 60 125 2 415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 0.1 415 71.75 315 0.25 415 71.75 315 0.25 415 27.25 340 0.25 415 41.125 340 0.375					
415 75.75 140 0.75 415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 20 155 1.5 415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.26 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 40.875 270 0.5 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 27.25 340 0.25 415 41.125 340 0.375					
415 4.25 160 1.5 415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 15 175 0.75 415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 40.625 175 0.375 415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 18.75 200 1.25 415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 18.875 200 1.25 415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 45.625 205 0.375 415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 27.25 340 0.25 415 41.125 340 0.375					
415 54 210 1.25 415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 57.5 220 1.5 415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 60.75 220 2.5x1.5 415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 5.5 225 0.75 415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 19.25 270 1.25 415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 31.75 270 0.25 415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 40.875 270 0.5 415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 0.5 310 0.25 415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 11.75 310 1 415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 71.75 315 0.25 415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 20 320 2 415 27.25 340 0.25 415 41.125 340 0.375					
415 27.25 340 0.25 415 41.125 340 0.375					
415 41.125 340 0.375					
415 44.5 350 1				0.375	
	415	44.5	350	1	

	Knot Lo	ocation		
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
417	34.5	0	0.875	
417	41.625	10	1	
417	77	10	1	
417	57.375	30	0.25	
417	0	35	1	
417	4	35	1.5	
417	43.375	75	1.125	
417	65.875	90	0.75	
417	19.5	100	0.25	
417 417	73	100	1.5	
417	2.25 27.125	105 130	0.375	
417	76	135	1.5	
417	36	140	1.5	
417	38.5	170	1	
417	3.5	195	1.5	
417	18.25	195	0.125	
417	43.25	195	1.25	
417	62.375	210	0.25	
417	67.875	220	1.25	
417	74.75	230	1.5	
417	20.75	235	0.25	
417	27.75	270	0.75	
417	55.5	270	0.5	
417	44.75	280	0.25	
417	4.25	295	1.25	
417	0	305	2	
417	40	310	1.375	
417	56	310	0.75	
417 417	26.25 19.25	315 320	0.25 0.25	
417	74.25	325	1	
417	63.5	335	0.25	
417	27.75	350	0.75	
	TOP	5	1.25	
418	11.125	55	0.25	
418	46.75	60	0.5	
418	75.5	60	0.75	
418	22	75	1.25	
418	51.375	85	0.75	
418	78.625	95	0.75	
418	22.25	125	0.5	
418	45.375	130	0.375	
	0-67"		Split	
418	48.625	180	1 75	
418	76.75	180	1.75	
418 418	24.75 50.125	200 220	1.5 2	
418	21.25	225	0.5	
	TOP	250	2	
418	45.75	255	1.25	
418	40.875	270	0.25	
418	7.75	280	0.25	
418	13.625	285	0.25	
418	75.25	285	1.5	
418	46.75	310	1.25	
418	22.25	315	1.75	
418	49.25	330	1	
418	70.5	340	0.25	
418	40.25	345	0.25	

	Knot Lo			
	From	Front	Knot	
Post Number	Bottom (in.)	CCW (Deg.)	Diameter (in.)	Comments:
419	45.375	(Deg.)	(III. <i>)</i>	Comments.
419	12.25	45	1	
419	3	50	0.375	
419	21.5	70	1.125	
419	47.375	125	0.5	
419 419	22.875 54.5	135 140	0.125	
419	11.75	145	0.75	
419	17.5	180	1	
419	68.875	180	0.25	
419	32.25	200	0.5	
419 419	22.375 44.25	230 240	1.25 1.5	
419	61.875	240	0.5	
419	82.75	245	1.25	
419	2.25	265	1	
419	4.875	265	0.125	
419	68.5	270	0.375	
419 419	33.5 18	305 330	0.375 0.75	
419	45.875	330	0.75	
	TOP	330	0.75	
419	54.125	345	1.125	
419	23.625	350	1.25	
419	38.5	355	0.625	
421 421	53 32.375	0 5	0.375 0.625	
421	8.125	10	0.025	
421	69.375	40	0.375	
421	18.625	45	0.75	
421	45.625	55	1	
421	13.125	65	0.25	
421 421	48.5 0	70 80	1	
421	28.5	80	0.625	
421	5.375	90	0.75	
421	TOP	95	0.75	
421	16.5	115	0.625	
421	54.5	130	0.5	
421 421	70 32.75	140 145	0.75 0.5	
421	66.375	145	0.25	
421	57.5	165	0.5	
421	26.375	170	0.25	
421	46.375	180	0.75	
421	8.5	205	0.75	
421 421	40 0.5	205 225	0.25 0.5	
421	19.5	225	0.75	
421	32.75	255	0.75	
421	8.75	260	0.625	
421	16.5	260	0.375	
421 421	19.375 54.75	270 270	0.25	
421	54.75	270 270	0.25 0.75	
421	66.375	285	0.75	
421	69.75	285	0.75	
421	41.5	290	0.25	
421	4.25	295	0.25	
421	46.125	295	0.75	
421 421	77.125 0	305 325	0.25 0.75	
421	23.5	330	0.75	
421	41.125	345	0.375	
421	69.375	350	0.875	

▎▗▗▐	E 11 0 100			
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
422	56.5	5	0.5	
422	25	10	0.625	
422 T		30	0.5	
422	42.5	80	0.25	
422	28.875	95	0.25	
422	44.375	120	0.375	
422	30.125	155	0.375	
422	57.5	185	0.375	
422	6.75	190	0.25	
422	4	250	0.25	
422	9	260	0.25	
422	44.375	260	0.375	
422	29	285	0.375	
422	10	305	0.25	
422	58.625	320	0.625	
422	29.875	340	0.625	
422	43.5	350	0.5	
425	58.625	0	0.5	
425	1.75	5	0.5	
425	41	5	0.5	
425	19	20	0.5	
425	32.625	25	0.375	
425	61.25	30	0.625	
425	51.25	45	0.25	
425	42.5	60	0.75	
425	71	60	0.5	
425	0.875	65	0.75	
425	57.125	80	0.75	
425 425	77.375 20.375	85 100	0.625 0.625	
425	38.5	100	0.625	
425	61.5	125	0.5	
425	22.75	145	0.625	
425	22.73	155	0.025	
425	58.875	155	0.375	
425	14.75	160	0.375	
425	39.5	165	0.375	
425	52	185	0.375	
425	21.25	205	0.25	
425	59.75	215	0.375	
425	42.5		.625x.25	
425	40.625	275	0.25	
425	60.8	280	0.25	
425	21.25	325	0.5	
425	54.5	330	0.25	
425	70.875	350	0.125	
425	37.25	355	0.25	

	Knot Lo	ocation		
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
426 426	28 17.25	0 30	0.125 0.5	
426	42.75	30	0.5	
426	77	30	0.5	
426	20.25	40	0.5	
426 426	75 5.5	40 80	0.5 0.25	
426	12	80	0.125	
426	63	80	0.25	
426	41.5	110	0.75	
426	14.25	140	0.5	
426 426	57.5 75.5	140 140	0.125 0.75	
426	31.5	150	0.75	
426	66.5	150	0.5	
426	20.25	180	0.75	
426 426	13 25.75	190 190	0.25	
426	35.75 7.5	200	0.5 0.25	
426	43.25	230	0.75	
426	19	240	0.5	
426	31.5	260	0.25	
426 426	75 62.5	260 280	0.5 0.25	
426	19.75	290	0.25	
426	8	310	0.125	
426	39.75	340	0.5	
426	71	350	0.25	
429 431	5.5 22.75	170 0	0.5 0.625	
431	37.125	20	0.025	
431	4.75	25	0.5	
431	32.25	45	0.375	
431 431	74.75	130	0.375	
431	30.75 37	135 135	0.25 0.5	
431	63.25	150	0.375	
431	26	155	0.25	
431	43.625	155	0.75	
431 431	68.375 10.25	170 180	0.5 1.5	
431	58.875	180	1.5	
431	5	185	0.375	
431	38.125	190	1	
431 431	54.375 76	195 205	1.25 1	
431	32	205	1.5	
431	15.25	225	1.0	
431	27.5	225	0.75	
431	17.875	230	0.375	
431 431	63.5 25.375	240 245	0.625 1.25	
431	54.875	245	0.75	
431	4.5	260	1.25	
431	35.5	260	0.25	
431	69.5	265	0.625	
431 431	44.375 37.875	275 295	0.375 0.375	
431	58.5	295	0.375	
431	10	305	0.75	
431	31	305	0.25	
431 431	68.75 74.75	325 340	0.25 0.25	
431	0.5	340	0.25	
431	62.875	350	0.25	
431	41.75	355	0.25	

	Knot Lo	ocation		1/4
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	. ,	Comments:
432	9	10	0.5	
432	31	10		
432	61.125	20	0.25	
432	4.375	25	1.5	
432	46.875	35	1	
432 432	41.875 66.25	40 40	1.5 0.25	
432	75	40	0.25	
432	53.875	45	0.25	
432	54.125	80	0.25	
432	44.75	90	0.23	
432	69.75	90	0.5	
432	12.75	100	0.75	
432	15.25	125	1	
432	72.75	125	0.5	
432	33	145	0.375	
432	35.75	150	0.375	
432	47.25	155	1	
432	13.375	160	0.75	
432	27.75	165	0.25	
432	10.5	170	0.5	
432	75.375	170	1.25	
432	4.875	225	0.75	
432	3.375	245	0.5	
432	75.625	270	1.7500	
432	70	295	1.25	
432	71.625	320	1.5	
432	14.875	325	2	
432	21.125	335	0.25	
432	63	335	0.25	
432	72.875	350	1	
433	1	10	0.125	
433	55.5	15	0.25	
433 433	36.25 12.625	20 30	0.375 0.5	
433	69.5	35	1.5	
433	20.5	40	1.5	
433	44.75	40	1.5	
433	16.125		0.25	
433	43.875	85	0.75	
433	19.375	100	0.5	
433	71.375	100	0.75	
433	62.5	105	0.2500	
433	70		0.5	
433	20.625	175	0.375	
433	44	175	0.5	
433	14.125	200	0.25	
433	17.25	235	0.25	
433	70	235	0.625	
433	19.25	270	0.625	
433	43.25	270	0.25	
433	45	300	0.875	
433	68.375	300	0.25	
433	29	310	0.125	
433	71.625	320	1	
433	19.75	330	1	
433	41.75	340	1.5	
433	14.375	350	0.625	

	Knot Lo			1/3
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
434	5.25	0	0.25	
434	48	20	0.5	
434	39	30	0.5	
434	28.5	40	1	
434	62	40	0.75	
434	16	50	0.75	
434	5.5	60	1.5	
434	35.5	100	0.5	
434	47.5	110	0.75	
434	63	110	0.25	
434	12	120		
434 434	17 38	130 130	0.75	
434	5	140	0.75	
434	27	150	0.5	
434	15.75	180	0.25	
434	28.75	180	0.25	
434	39	180	0.5	
435	0.5	0	0.75	
435	67	0	0.75	
435	41.25	10	0.75	
435	25	20	1	
435	60.25	30	0.25	
435	14	40	0.25	
435	46.75	40	1.25	
435	38.5	60	0.25	
435	43.5	60	1	
435	23	90	0.75	
435	66.5	100	1.25	
435	25.25	120	0.75	
435	34.25	120	0.25	
435	59.25	120	0.25	
435	38	130	0.25	
435	45.5	130	0.5	
435	67	140	0.5	
435	0.5	150	0.5	
435	56.25	160	0.25	
435	43.25	170	0.5	
435	22.5	180	0.5	
435	62	180	0.25	
435	12.75	190	0.25	
435	47	210	0.5	
435	24.5	220	0.5	
435	68	240	0.5	
435	47	260	0.75	
435	25.5	290	0.5	
435	65.25	300	0.5	
435	67.25	300	0.5	
435	23	330	0.5	
435	46	330	0.75	

Table A-8. Douglas Fir – Round 2 - Length and Circumference Measurements

	Length	Avg.	Circ	umference	(in.)	
	(in.)	Length	Location	Critical	Critical	
	(111.)	(in.)	Location	Zone	Zone	
	78.125		Тор	19.500		
	78.125	78.125	Mid-length	19.750	19.917	
	78.125		Bottom	20.500		
	78.188		Тор	22.375		
	78.188	78.188	Mid-length	22.250	22.542	
	78.188		Bottom	23.000		
	78.125		Тор	21.500		
	78.250	78.167	Mid-length	22.000	22.083	
	78.125		Bottom	22.750		
	78.125		Тор	20.750		
	78.125	78.125	Mid-length	21.375	21.375	
	78.125		Bottom	22.000		
	78.125		Тор	21.250		
	78.250	78.167	Mid-length	22.625	22.292	
	78.125		Bottom	23.000		
	78.125		Тор	20.750		
	78.125	78.125	Mid-length	22.000	21.625	
	78.125		Bottom	22.125		
	78.125	78.146	Тор	21.125		
Fir	78.125		Mid-length	21.750	21.792	
as	78.188		Bottom	22.500		
Douglas Fir	78.125		Тор	20.125		
)or	78.125	78.083	Mid-length	21.000	20.750	
	78.000		Bottom	21.125		
	78.125		Тор	22.375		
	78.125	78.125	Mid-length	23.000	23.083	
	78.125		Bottom	23.875		
	78.125		Тор	21.625		
	78.125	78.167	Mid-length	22.125	22.208	
	78.250		Bottom	22.875		
	78.125		Тор	21.750		
	78.125	78.146	Mid-length	21.875	21.917	
	78.188		Bottom	22.125		
	78.125		Тор	20.875		
	78.125	78.125	Mid-length	21.625	21.458	
	78.125		Bottom	21.875		
	78.125		Тор	20.875		
	78.250	78.167	Mid-length	21.000	21.083	
	78.125		Bottom	21.375		
	78.125		Тор	21.875		
	78.125	78.125	Mid-length	22.000	22.042	
	78.125		Bottom	22.250		
	78.125		Тор	22.625		
	78.125	78.125	Mid-length	22.500	22.792	
	78.125		Bottom	23.250		
	78.125		Bottom	23.250		

Table A-9. Douglas Fir Round 2 Pre-test Documentation

	Post	Weight	Avg.	Circur	nference (i	n.)	Volume	Density		ture Conter	nt (%)	Ring
	Number	(lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	Density (rings/in.)
	401	63	78.125	19.917	19.125	20.500	2458	0.0256	65	58	71	3.67
	403	55	78.188	22.542	21.250	24.000	3165	0.0174	67	65	63	4.33
	404	78	78.167	22.083	20.000	22.500	2971	0.0263	53	49	39	4.33
	405	63	78.125	21.375	20.500	22.625	2852	0.0221	65	67	71	4.00
	410	59	78.167	22.292	21.750	23.125	3097	0.0191	66	65	69	3.67
	414	52	78.125	21.625	20.750	22.250	2894	0.0180	47	56	51	4.00
Douglas Fir	415	59	78.146	21.792	20.750	22.625	2943	0.0200	74	71	74	3.67
Doug	417	58	78.083	20.750	20.875	23.125	2764	0.0210	60	63	61	3.67
	418	65	78.125	23.083	22.250	24.125	3319	0.0196	22	30	29	5.67
	419	65	78.167	22.208	21.500	22.875	3062	0.0212	32	48	48	5.67
	421	68	78.146	21.917	21.625	22.375	2988	0.0228	60	66	63	12.33
	422	71	78.125	21.458	20.500	20.750	2799	0.0254	21	21	22	7.67
	425	62	78.167	21.083	20.500	21.250	2745	0.0226	36	32	26	9.33
	426	63	78.125	22.042	22.000	22.625	3036	0.0207	67	65	70	8.33
	429	69	78.125	22.792	22.625	23.250	3238	0.0213	59	39	70	5.67

Table A-10. Knot Locations for Ponderosa Pine Posts Cantilever Testing Round 2

	Knot Lo			
l [From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
502	3.125	0	2	
502	2.875	20	0.25	
502	47.5	30		
502	62	30		
502	60.375	55		
502	33.375	70		
502	49.875	115		
502	63.75		2x1.75	
502	7		2x1.75	
502	22		2x1.25	
502	31.875	145		
502	5.5	155		
502	12	160		
502	61.5	175	0.5	
502	50.25	205	2	
502	32.625	230		
502	12.25	245	0.5	
502	20.5	245	1.75	
502	62.625	250	1.5	
502	48.375	265	0.375	
502	33	295	1.5	
502	12.5	315	1	
502	63.25	325	1	
502	49.5	330		
502	19.625	350		
502	31.875	355		
505	10.25	0	2 3x2	
505	51.5			
505 505	65.75 48.125	30 80		
505	48.125 38.5	90		
505	8.125		5x2	
505	65	120		
505	6.25	150		
505	23.75		2.75x1.5	
505	23.73 51		3x2.25	
505	40		2x.75	
505	67.25		4x2.5	
505	07.25			
505	15.75	200		
505	64.75	230		
505	50	250		
505	67.125		2.5x2	
505	13.625	330		
505	6.75	345		
505	0.73	545	0.23	

Т	Knot Lo	ocation		
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
506	5.5	5	0.75	
506	18.25	15	0.25	
506	38.75	15	1.5	
506 506	52 16		1.25x1 2.75x2	
506	16 3		4x2.5	
506	29.75	70	2.25	
506	70.125	105	2.5	
506	54.75	115		
506	29	170	3x2	
506	39.5	170	1	
506	72.625	170	0.5	
506	52.5	180	1.25	
506	5.25	190	1.25	
506 506	17.875 39	205 225	0.5 1.75	
506	39	225	1.75	
506	15.625		2x1.5	
506	52.5		.75x.25	
506	29	310	1.75	
506	69	310		
508	54.5	0	2	
508	23.875	20	0.25	
508	15.25	40	1.5	
508	38.875	40	0.25	
508	26.5		3x1.875	
508 508	62.25 15.5	110 115	0.25 2.5	
508	71	125		
508	41.5		3.25x2	
508	0	145	2	
508	51.5	180	0.25	
508	26.75	190	3x2	
508	14.25	200	1	
508	72.625	220	0.625	
508	24.125	255	0.125	
508 508	15.75 40.75	260 270	2.25 2.5	
508	54.5		2.5x1.75	
508	13.375	330	0.375	
508	25.75	330	2	
508	40.375	345	1.75	
508	64	350	0.75	
508	71.5	350	0.5	
510	5	15	2	
510 510	24.25	25 45	1.25	
510 510	30 61.375	45 45	1.75 1.75	
510	9.25	45 65	1.75	
510	9.25	120	2	
510	62		3x2	
510	18.5	125	1.125	
510	24.375	135	1.25	
510	35	150		
510	27.625	160		
510	19	205	1.5	
510	9.625	210		
510 510	36.75		1.25x1	
510 510	20.375 7.375	275 285	0.875 0.25	
510	44.25	320	1.125	
510	19	330	1.5	

	Knot Lo	ocation		
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
515	52.75		3.25x1.75	
515	25.5	25	1.5	
515	0	30	1.5	
515	5.75	35	1.25	
515	34.875	60		
515	13.25	80	2	
515 515	6.5 35.125	285 300	0.75 2	
515	20.5	325	0.75	
515	11.875	350	0.75	
515	33.625	350	0.625	
515	32.125	360		
515	35.5	360		
516	76	30		FROM TOP
516	55	80	0.75	FROM TOP
516	65.5	80	0.25	FROM TOP
516	74.25	100		FROM TOP
516	55	130		FROM TOP
516	76	150		FROM TOP
516	67	160		FROM TOP
516	56	210		FROM TOP
516	66	220		FROM TOP
516	68	270		FROM TOP
516 516	55.5 67	350 360		FROM TOP FROM TOP
517	31.75	5		I KOW TOP
517	49.5	20	1.5	
517	62	40		
517	23	50		
517	74.75	50	1.125	
517	39.75	70	1	
517	32.125	80	1.75	
517	9.25	95	1.75	
517	31.125	150	0.375	
517	48	150	0.75	
517	74.25	150	1.5	
517	23.625	170	1.75	
517	60.875	170	1.25	
517 517	71.625 72.25	200 200		
517	6.125	210	0.25	
517	48.875	230		
517	32.5	245		
517	22.375	280		
517	71.875	280		
517	39.5	300	1	
518	13.5	25		
518	11.5	65		
518	60.75	110		
518	64.125		1.75x1.25	
518	48.375	155		
518	30.25		0.75	
518	33		2.5x1.5 1	
518 518	0 22.25		2x1.5	
518	31.25		0.125	
518	50.875		4x2.5	
518	8.25	325		
518	66.25		4x2.25	
	20.00			

Knot Location				
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
519 519	49.875 68.625	0 10	0.5 1.25	
519	57.625	20	1.25	
519	4.125	55	0.75	
519	57.375	65	0.875	
519	65.625	80	0.25	
519 519	29.375 51.625	110 120	1.5	
519	0 0	125	1	
519	67.25	190		
519	31.125	200		
519	58	205	1.5	
519 521	29.75 24.5	335 170	1.5 0.75	
521	8.5	190	0.75	
521	53.5	200	0.25	
521	46	230	1	
521	77.5	300	0.75	
	NO KNOTS		0.005	
527 527	5.875 13.625	<u>5</u> 10	0.625 0.25	
527	63.5	20	0.25	
527	24.875	50	0.375	
527	10.625	160	0.625	
527	31.375	170	0.75	
527	5.375	180	1 25	
527 527	20.25 16.5	230 320	1.25 0.75	
528	58.75	140	0.75	
528	70.375	190	0.5	
528	60.25	210	0.5	
528	76.375	240		
530 530	52.875 54.875	230 245		
530	61	275		
530	52.625		1.25x1	
575	64	0	1.5	
575	22.25		2.5x1	
575	53.5		3x1.875 1.75	
575 575	70.125 42.5		1.75 1.25x1	
575	17.25		1.25x.25	
575	33.875	130	1.5	
575	53.125	130		
575	51.375	135		
575 575	71.375 58	135 140	2x1.75 1.25	
575	18.5	155	0.75	
575	5	185	2	
575	7.75	190	0.75	
575	71.5	190	1	
575	74.75 25.625	190 205		
575 575	13.375	205		
575	34.875	210		
575	22	225	2x1.5	
575	58.875	225		
575	62.875	270		
575 575	35 71.75	275 275	0.75 2.5x1.5	
575	19		0.5	
	65.5-69.25		1" wide	ROTTED
575	44.375	295	0.5	
575	8.25	305	1	
575 575	50.25 27.25	310 330	0.5	
5/5	21.25	330	1	

	Knot Location		1	102
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
576	9.625	5	2	
576	36.375	5	0.25	
576	71.875		2x1	Rotted
576	37.875		1.625x1	
576	69.25	100	1	
576	23.375	145	0.375	
576	12.25	165	0.25	
576	71.125	170	1	
576	35-55	180		Rotted Knot 2" Wide
576	26.125	210	0.875	
576	11.25	220	0.25	
576	57.125	255	0.875	
576	23.25	275	0.25	
576	12.5	290	0.375	
576	54.125	325	1.25	
576	35.5	330	0.25	
576	1.75	350	0.25	
577	61	50	0.5	
577	46.25	80	0.25	
577	51.5	110	0.25	
577	72.25	120	0.5	
577	61	140	0.5	
577	69.5	150	0.125	
577	43.25	180	0.25	
577	13.75	300	0.25	
577	61	340	0.5	
578	4.25	30	0.25	
578	68.5	65	1.25	
578	74.5	90		
578	29.25		1.25x1	
578	5.875	130		
578 570	39		1.75x1	
578 579	10.875	140	0.375	
578 579	44.375	180	0.5	
578 579	19.25 52.625	185	0.625	
578 579		210	0.25 1.125	
578 578	38 49	260 265	0.25	
578		265 265		
578	72.375 53		5x1.5	
578	51.375	305	0.75	
578	56.875	320	0.75	
578	00.675	350	0.375	
578	57.25	350		
578	11.875		2x1.5	
5/8	11.875	<i>ა</i> ეე	C.1 X	

	Knot Location			
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
579	72	20	0.75	
579	27		2x1	
579	11		1.5x1	
579	33.25	80	0.5	
579 579	48.25 27	90	2 1.75x1	
579	45.25	130		
579	60.5		2x1.5	
579	10.5	150	1	
579	25	170	0.75	
579	9.25	190	0.5	
579	47.25	190	0.5	
579	61	210	1.75	
579	33.25	220	0.375	
579	36 57.05	280	1.5	
579 579	57.25 73.75	280 300	0.25 1.5	
579	8.75	320	0.5	
579	47	325	1.5	
580	2.25	0	0.75	
580	11.5	5	1	
580	TOP	35	0.75	
580	36.25	50	1.5x1	
580	23.5	80	0.375	
580	67	120	0.75	
580	22.125	145	0.5	
580	0.75 11.25	150		
580 580	37	150	0.75 2x1.25	
580	62.5	190	0.375	
580	67.5	210		
580	22.5	220	0.75	
580	52	230	2.5x1.25	
580	22	270	1.25	ROT ON POST 290-220 3.5" to 19.5"
580	1	280	1	
580	37	280		
	TOP	290	0.75	
580 580	54.25 38.375	310 330	0.875 0.375	
580	66.25	335	0.375	
580	22	350	0.75	
580	38	355	0.75	
581	36	0	1	
581	6	10	1	
581	44		1.5x1	
581	25.75	50	1	
581	8.75	90	0.5	
581	4.25	100		
581	12.75	100	0.975	
581 581	56.5 69.75	110 150	0.875 6x1.75	
581	19.5	160	0.875	
581	25.25	170	1	
581	58.25	180	1.5	
581	38.25	220	1.5	
581	5.625	230	0.75	
581	25	250		Through 31 in. 1.625 in. wide (large gouge)
581	20	270	1.5	
581	73	270	0.25	
581	12.5	310		
581	56.5	320	2	
581 581	59.5 49.375	330	2x1.5 0.25	
581	9.25	700		
301	9.20	700	1.123	

	Knot Location			184
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
582	27.625	25	0.75	
582	49.25		1.5x1	
582	37.75	55	0.25	
582	43.125	65	0.75	
582	41.75	80	1	
582	34.75	95	0.75	
582	38	100	0.25	
582	55.5	100	0.5	
582	31.25	125	0.75	
582	38.75	140		
582	39.75		2x1.25	
582	61.5	145	0.5	
582	27.625	155	0.75	
582	24.5	160	0.625	
582	73	165	0.25	
582	43.125	210	1.25	
582	19.5	220	0.5	
582	74.75	225	0.75	
582	70.75	230	1.75	
582	24.125	240	0.625	
582	35.125	245	0.5	
582	9	250	0.375	
582	67.75		1.25x.75	
582	74.75 14.75	280	0.5	
582		320	1.5	
582	58.25	320	0.75	
582 582	61.5 18.625	350 360	0.25 0.75	
582	74.5	360	0.75	
583	11	0	0.025	
583	32.5	20	0.5	
583	52.5	30	0.5	
583	68	50	0.5	
583	7	60	0.75	
583	62.5	150	0.75	
583	69	160	1.25	
583	24.5	170	0.5	
583	32.75	180	1.25	
583	15	200	0.5	
583	11.25	220		gouge (2"x6")
583	62	220	0.5	gg- ∖- ··▼ /
583	68	220	0.75	
583	20	230	0.5	
583	50	230	1.5	
583	43.5	250	1.0	
583	57	250	0.5	
583	7	270	1	
583	41	270	0.5	gouge (7.75" long x 1" wide)
583	27.25	310	1.25	<u> </u>
583	14.75	320	0.75	
583	18	330	0.25	
583	42.75	340	1	

	Knot Location			
	From	Front	Knot	
Post	Bottom	CCW	Diameter	
Number	(in.)	(Deg.)	(in.)	Comments:
584	0-TOP	0	Split	NOT CONTINUOUS
584	58.375	50	0.375	
584	41	55	0.5	
584	42.25	170	.5x.25	
584	74.5	175	1x.75	
584	40-TOP	200	Split	
585	75.75	10	0.375	
585	33.625	20	0.5	
585	22	40	2	
585	9.625	50	1.125	
585	68.25	50	4x2.5	
585	45.625	70	0.5	
585	57.5	80	1.5	
585	23.125	100	0.125	
585	10.75	120	0.125	
585	44.75	145	1.75	
585	22.75	170	1.5	
585	10.125	180	1.625	
585	45.125	220	0.5	
585	45.875	230		
585	21	260	3.5x2.5	
585	10.875	280		
585	23.25	330	0.375	
585	77	330	2.5	
585	10.625	340	0.25	
585	68.25	350	0.5	

Table A-11. Ponderosa Pine - Round 2 - Length and Circumference Measurements

	1	Avg.	Circumference (in.)					
	Length	Length	Lacation	Critical Critical				
	(in.)	(in.)	Location	Zone	Zone			
	78.125	, ,	Тор	22.375				
	78.125	78.125	Mid-length	21.750	22.208			
	78.125		Bottom	22.500				
	78.125		Тор	22.125				
	78.000	78.042	Mid-length	22.500	22.458			
	78.000		Bottom	22.750				
	78.125		Тор	22.000	22.208			
	78.125	78.083	Mid-length	21.750				
	78.000		Bottom	22.875				
	78.000		Top	21.625				
	78.000	78.000	Mid-length	22.375	22.667			
	78.000		Bottom	24.000				
	78.000		Тор	20.625				
	78.000	78.000	Mid-length	19.250	20.083			
	78.000		Bottom	20.375				
	78.000		Тор	19.375				
	78.125	78.042	Mid-length	19.750	19.917			
	78.000		Bottom	20.625				
ne	78.000		Тор	21.000				
P	78.000	78.000	Mid-length	20.750	20.833			
sa	78.000		Bottom	20.750				
Ponderosa Pine	77.875		Тор	21.250				
þ	78.000	77.958	Mid-length	22.000	21.583			
P _O	78.000		Bottom	21.500				
-	78.125		Top	21.500				
	78.125	78.125	Mid-length	20.750	21.208			
	78.125		Bottom	21.375				
	78.125		Top	20.250				
	78.125	78.167	Mid-length	20.250	20.250			
	78.250		Bottom	20.250				
	78.000		Тор	23.250				
	78.000	78.042	Mid-length	23.500	23.833			
	78.125		Bottom	24.750				
	78.125		Тор	24.000				
	78.125	78.125	Mid-length	23.125	23.708			
	78.125		Bottom	24.000				
	78.000		Тор	22.250				
	78.125	78.083	Mid-length	22.125	22.375			
	78.125		Bottom	22.750				
	78.125		Тор	23.250				
	78.125	78.125	Mid-length	23.500	23.292			
	78.125		Bottom	23.125				
	78.125		Тор	22.875				
	78.188	78.146	Mid-length	22.750	23.083			
	78.125		Bottom	23.625				
—	0							

Table A-12. Ponderosa Pine Round 2 Pre-test Documentation

	Post	Mainles	Avg.	Circumference (in.)			Volume	Density	Mois	ture Conte	nt (%)	Ring Density
	Number	Weight (lb)	Length (in.)	Critical Zone Average	Тор	Bottom	(in. ³)	(lb/in. ³)	21" From Top	21" From Bottom	Center	(rings/in.)
	502	58	78.125	22.208	22.625	22.875	3105	0.0187	15	17	17	5.67
	505	59	78.042	22.458	21.250	24.500	3167	0.0186	15	17	15	6.33
	506	48	78.083	22.208	22.750	25.125	3201	0.0150	17	15	17	4.67
	508	55	78.000	22.667	22.000	25.000	3263	0.0169	10	9	10	4.33
	510	53	78.000	20.083	20.750	21.625	2586	0.0205	14	13	12	3.33
	515	48	78.042	19.917	20.500	22.000	2557	0.0188	36	30	44	5.33
Ponderosa Pine	516	47	78.000	20.833	22.000	21.750	2769	0.0170	17	16	17	7.00
Pondero	517	45	77.958	21.583	21.250	21.500	2875	0.0157	13	13	13	5.33
	518	57	78.125	21.208	21.750	22.250	2852	0.0200	30	31	27	6.67
	519	43	78.167	20.250	19.500	20.750	2537	0.0169	14	15	19	7.67
	521	66	78.042	23.833	24.000	24.500	3563	0.0185	14	14	15	15.00
	526	54	78.125	23.708	23.875	24.000	3511	0.0154	16	16	17	19.33
	527	56	78.083	22.375	22.250	23.750	3157	0.0177	18	16	22	13.33
	528	67	78.125	23.292	23.375	23.875	3393	0.0197	11	13	11	26.33
	530	73	78.146	23.083	23.625	24.000	3367	0.0217	33	43	31	15.00

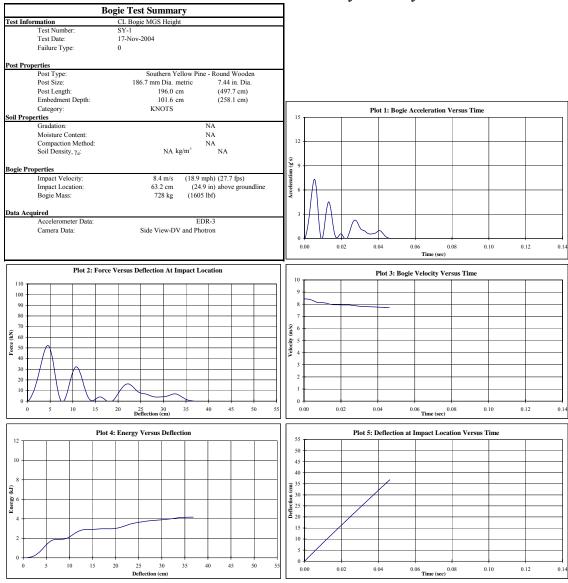


Figure 55. Results of Test No. SY-1

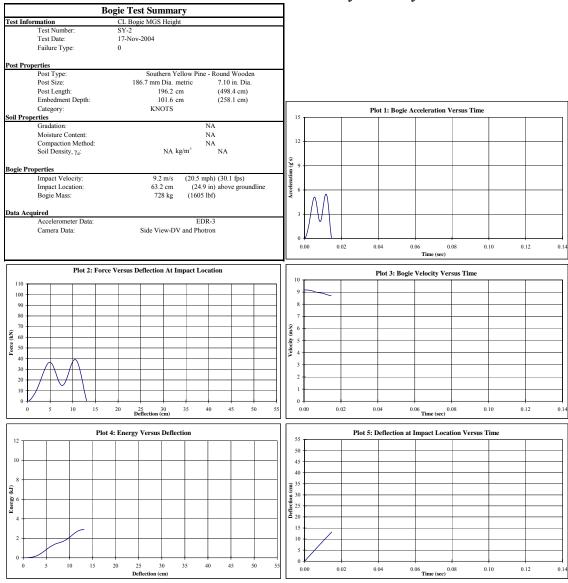


Figure 56. Results of Test No. SY-2

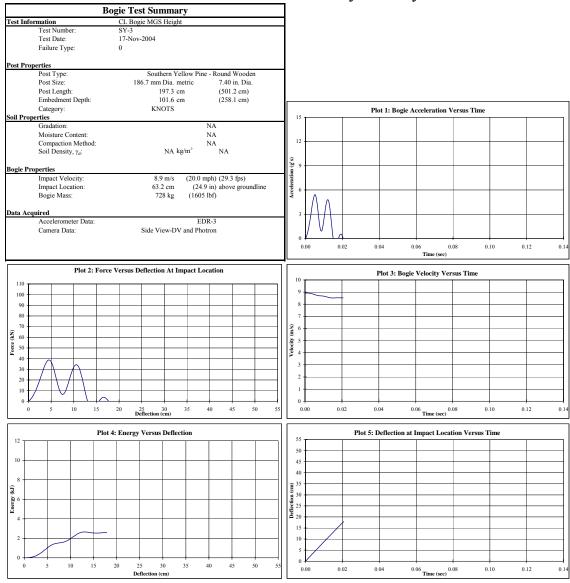


Figure 57. Results of Test No. SY-3

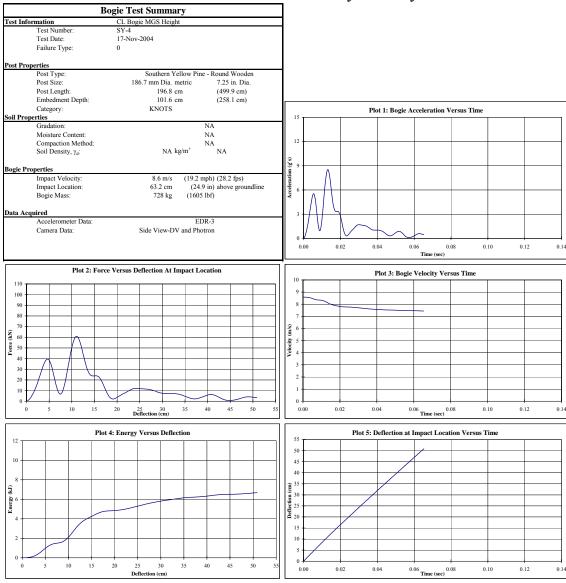


Figure 58. Results of Test No. SY-4

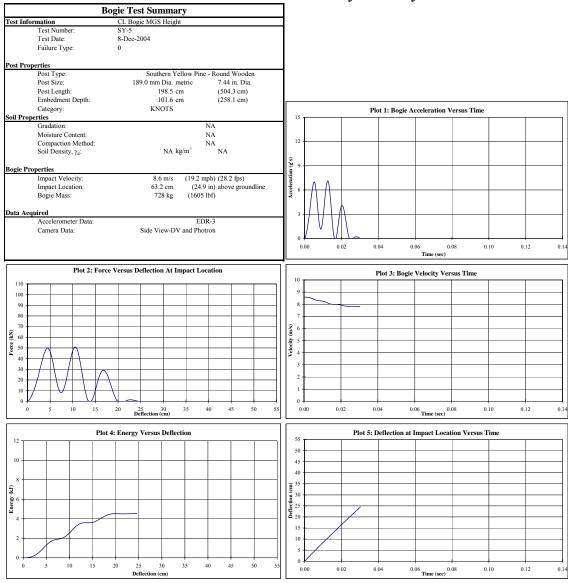


Figure 59. Results of Test No. SY-5

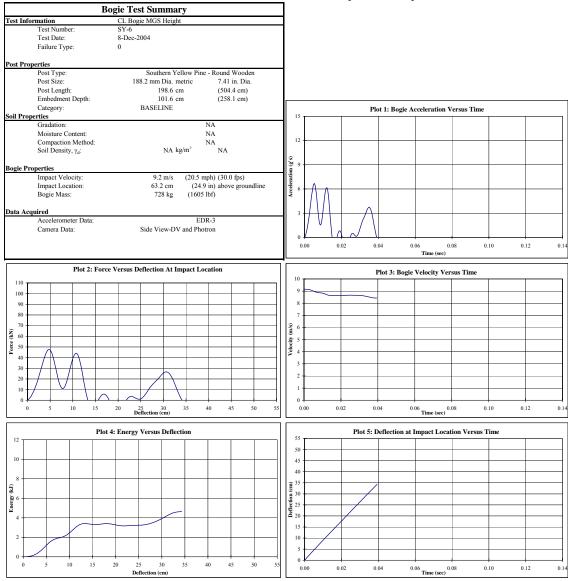


Figure 60. Results of Test No. SY-6

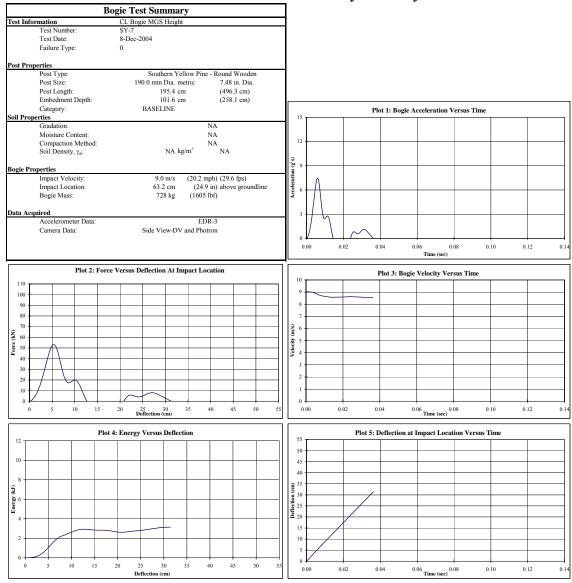


Figure 61. Results of Test No. SY-7

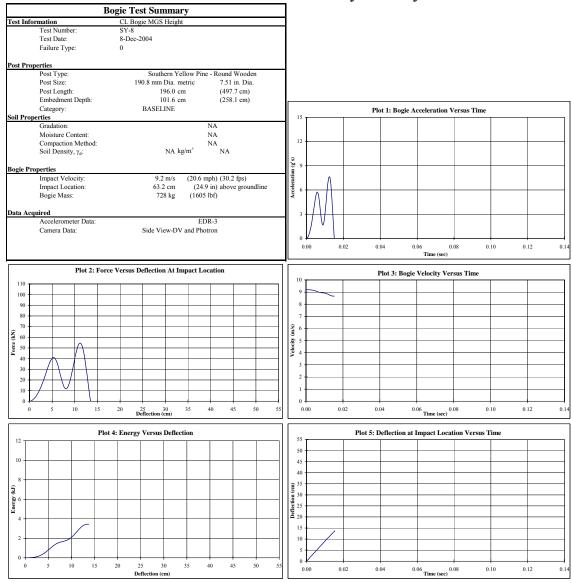


Figure 62. Results of Test No. SY-8

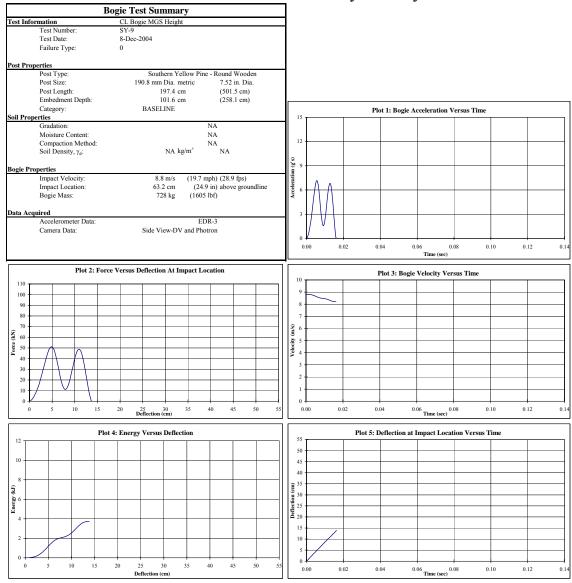


Figure 63. Results of Test No. SY-9

Figure 64. Results of Test No. SY-10

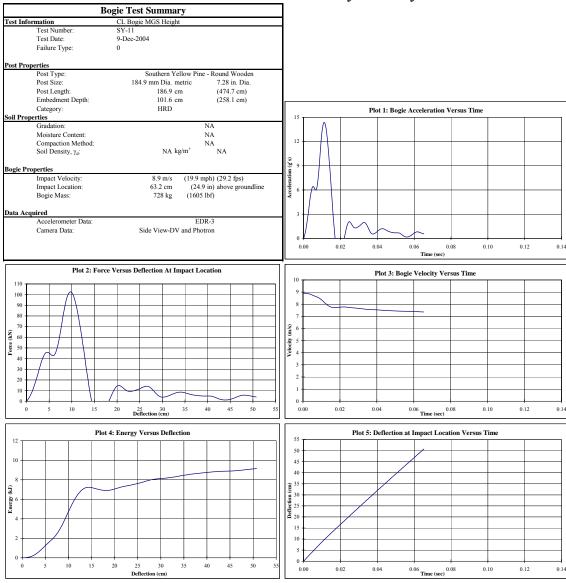


Figure 65. Results of Test No. SY-11

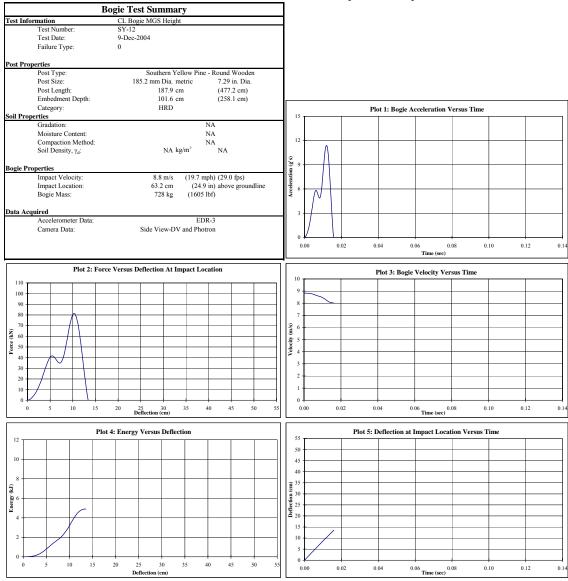


Figure 66. Results of Test No. SY-12

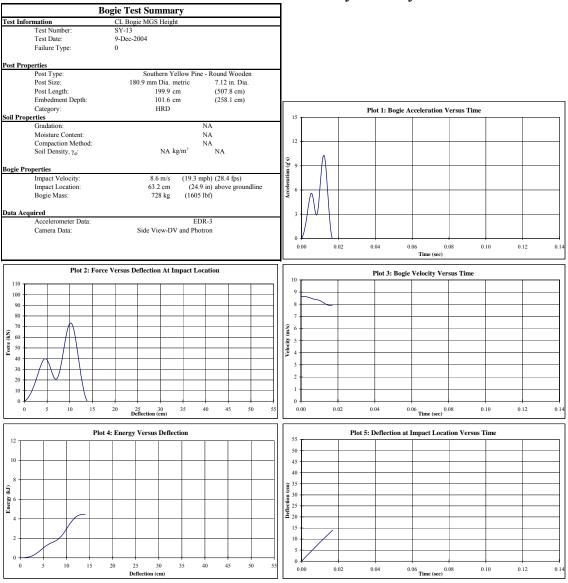


Figure 67. Results of Test No. SY-13

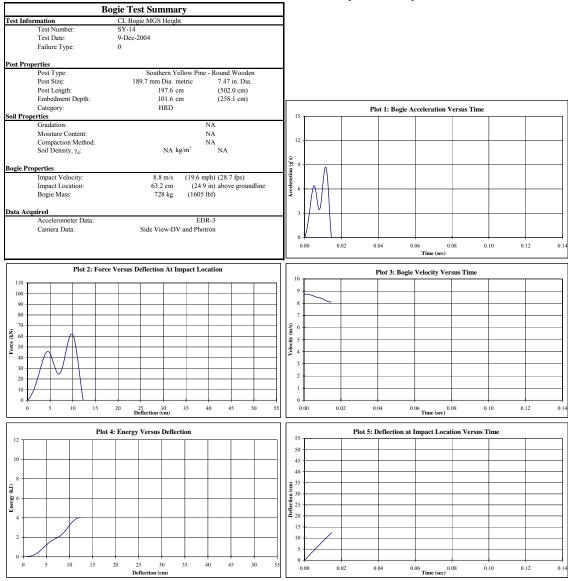


Figure 68. Results of Test No. SY-14

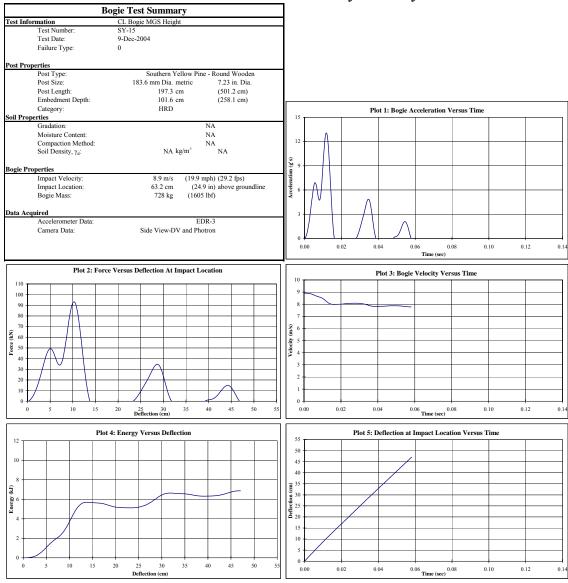


Figure 69. Results of Test No. SY-15

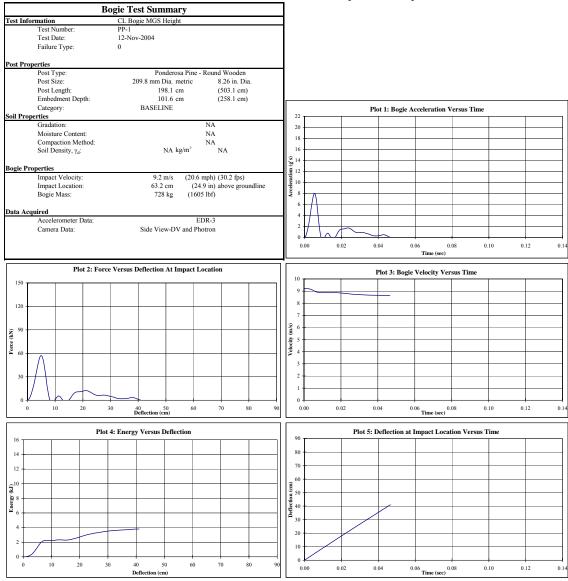


Figure 70. Results of Test No. PP-1

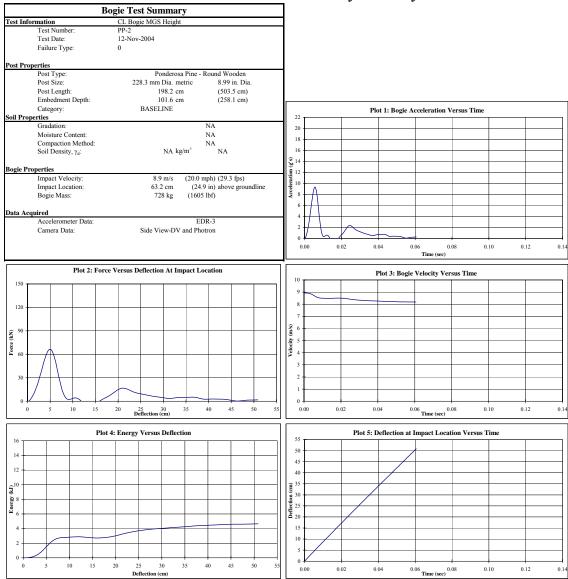


Figure 71. Results of Test No. PP-2

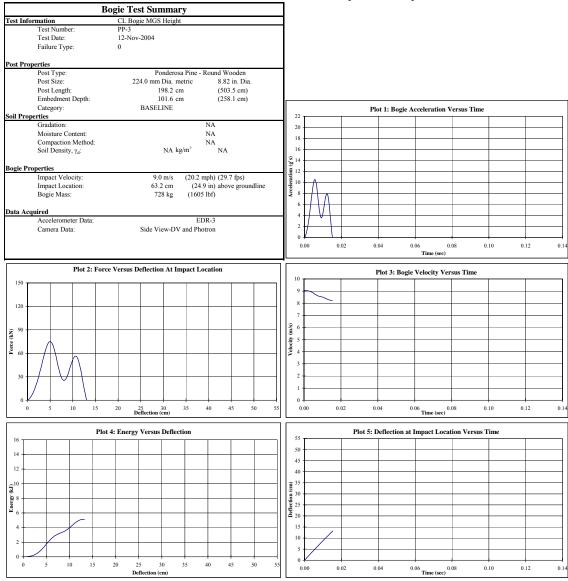


Figure 72. Results of Test No. PP-3

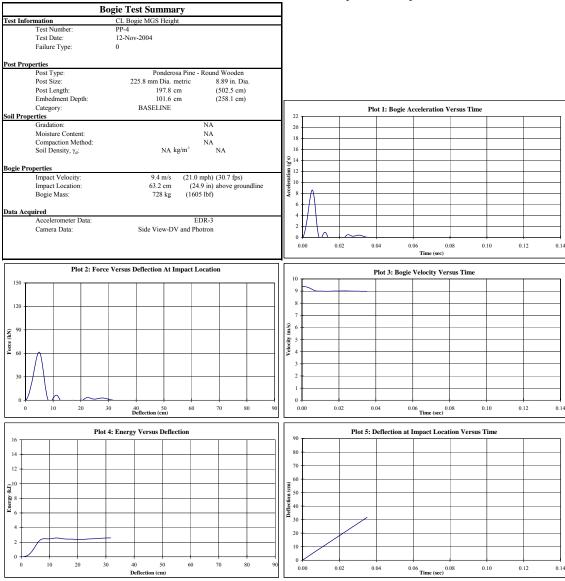


Figure 73. Results of Test No. PP-4

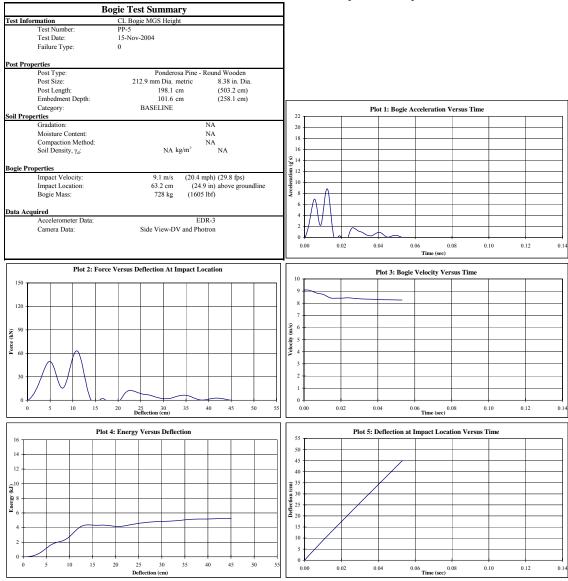


Figure 74. Results of Test No. PP-5

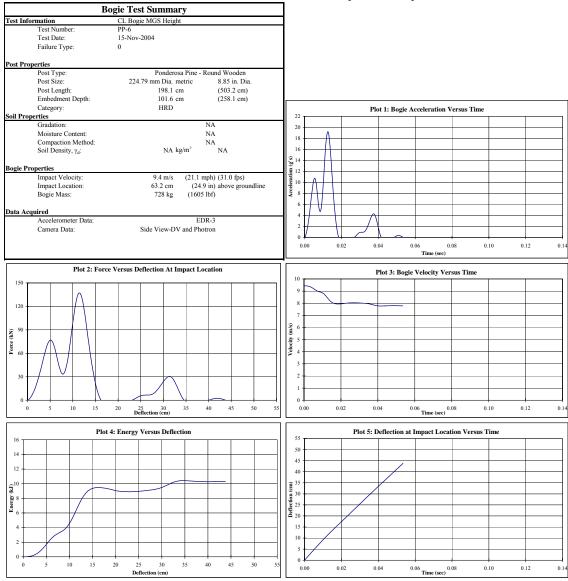


Figure 75. Results of Test No. PP-6

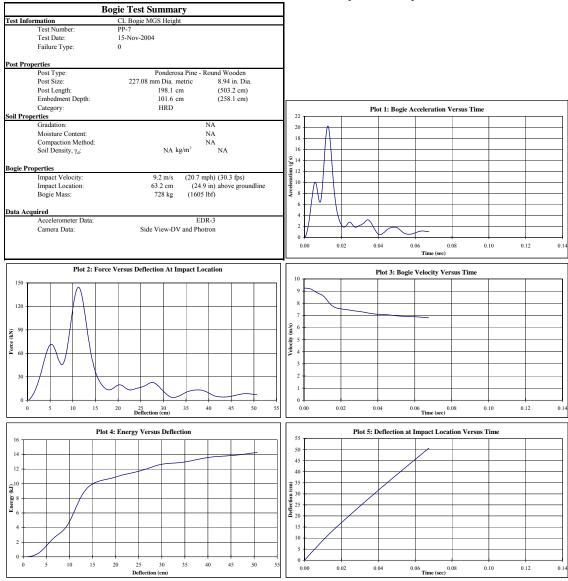


Figure 76. Results of Test No. PP-7

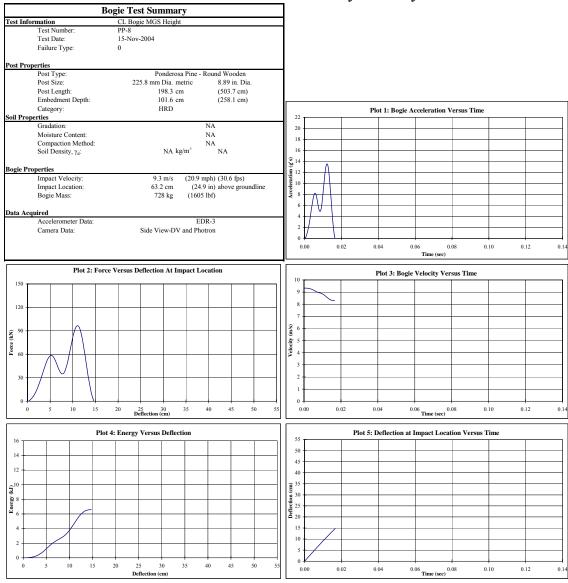


Figure 77. Results of Test No. PP-8

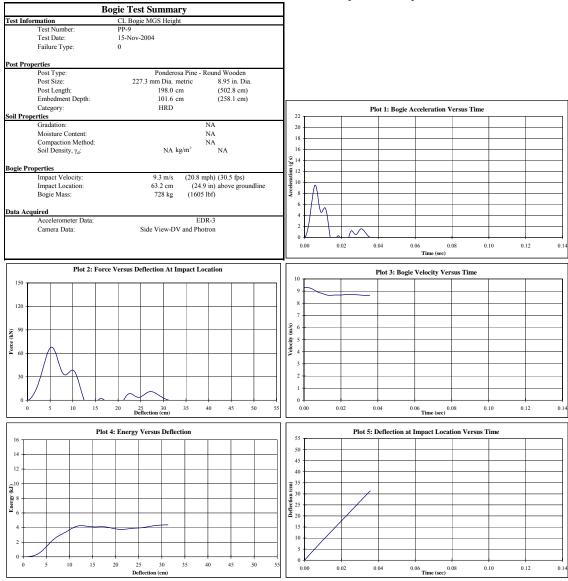


Figure 78. Results of Test No. PP-9

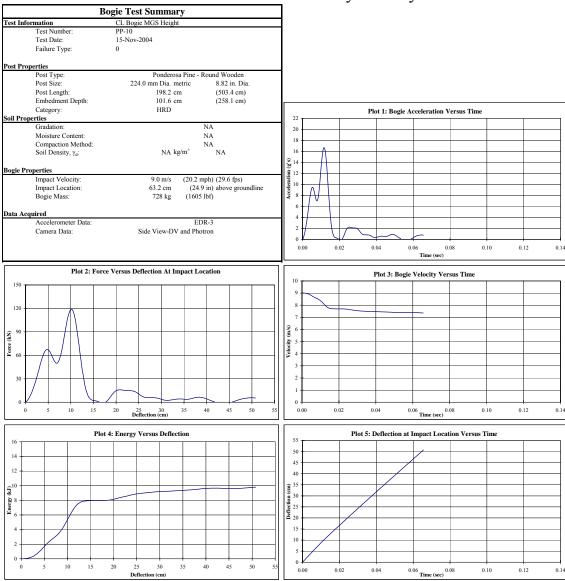


Figure 79. Results of Test No. PP-10

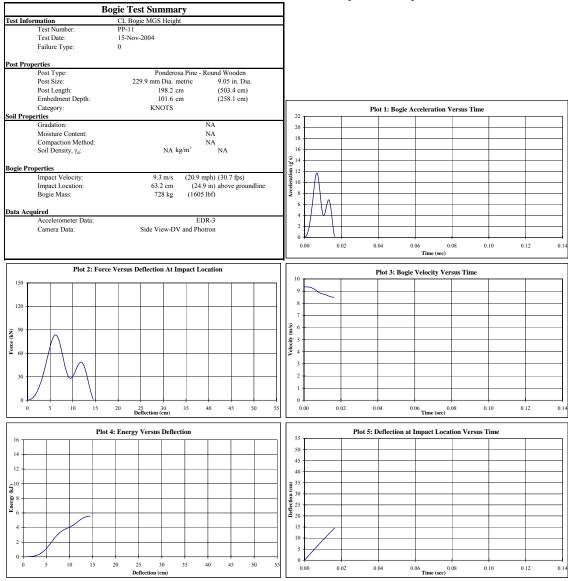


Figure 80. Results of Test No. PP-11

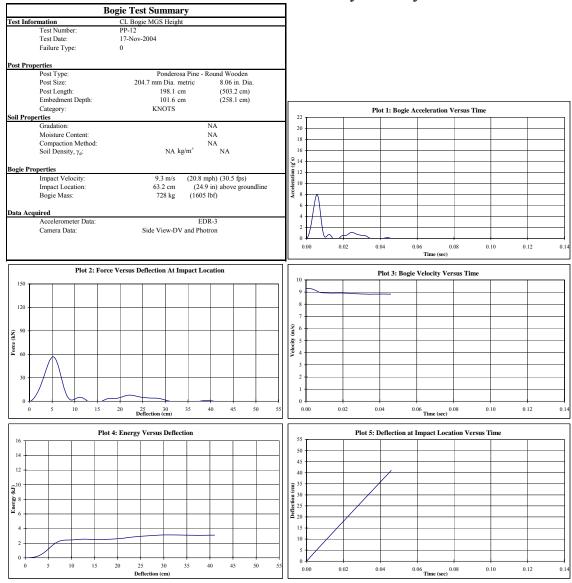


Figure 81. Results of Test No. PP-12

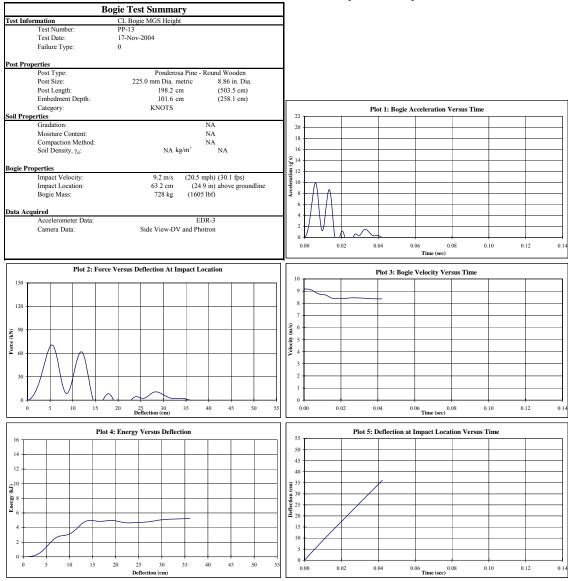


Figure 82. Results of Test No. PP-13

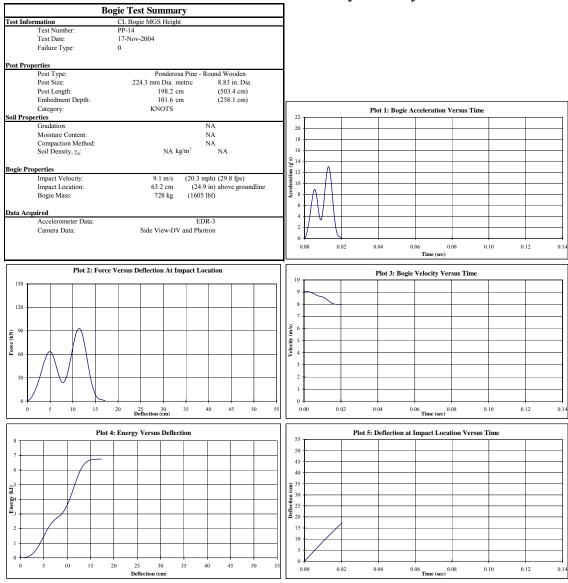


Figure 83. Results of Test No. PP-14

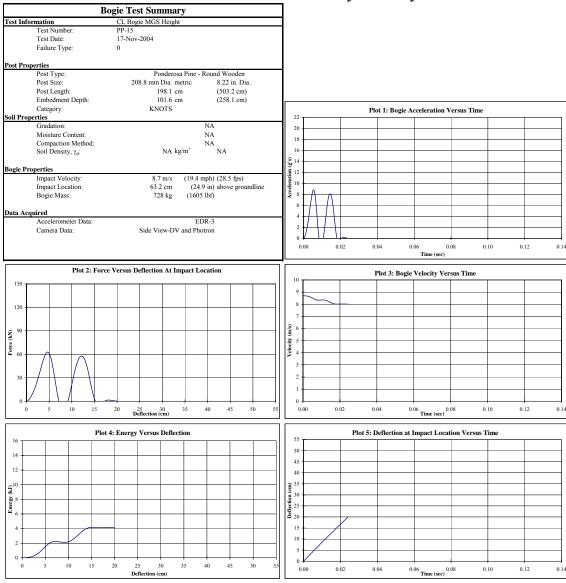


Figure 84. Results of Test No. PP-15

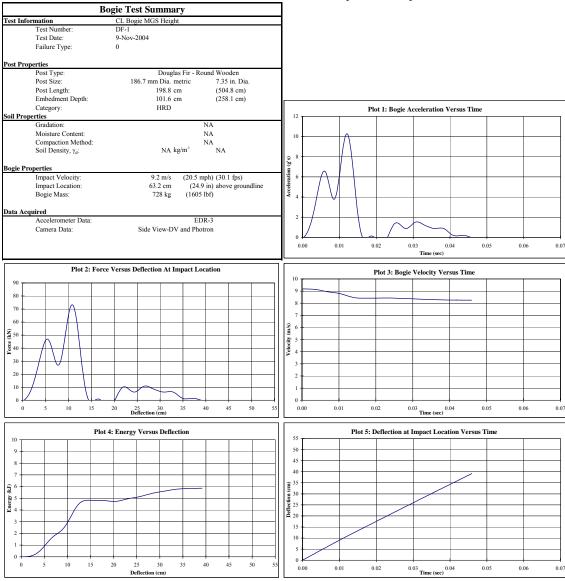


Figure 85. Results of Test No. DF-1

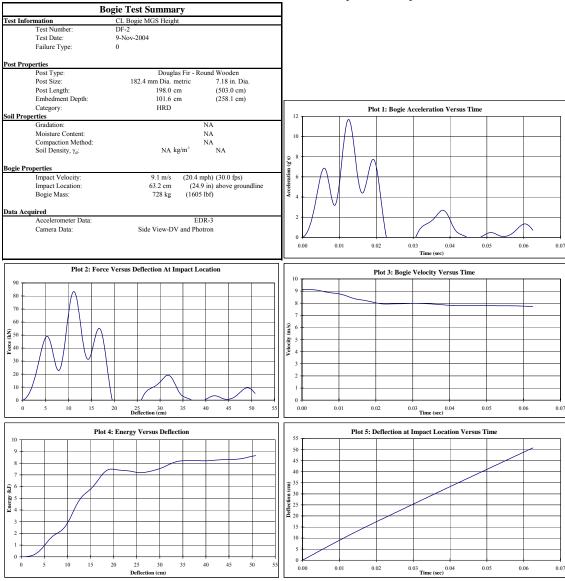


Figure 86. Results of Test No. DF-2

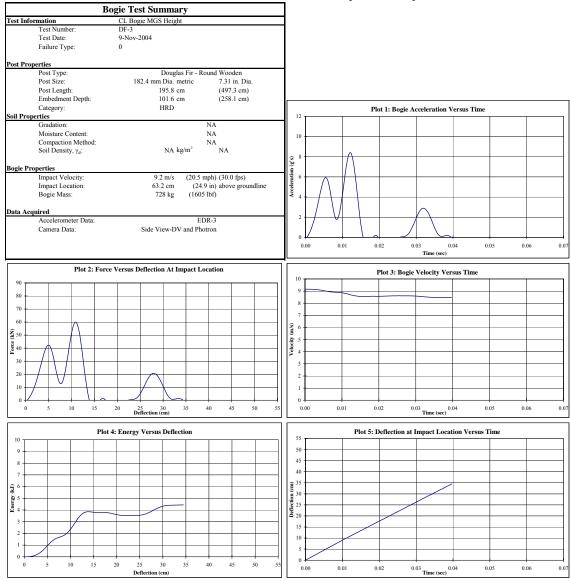


Figure 87. Results of Test No. DF-3

Figure 88. Results of Test No. DF-4

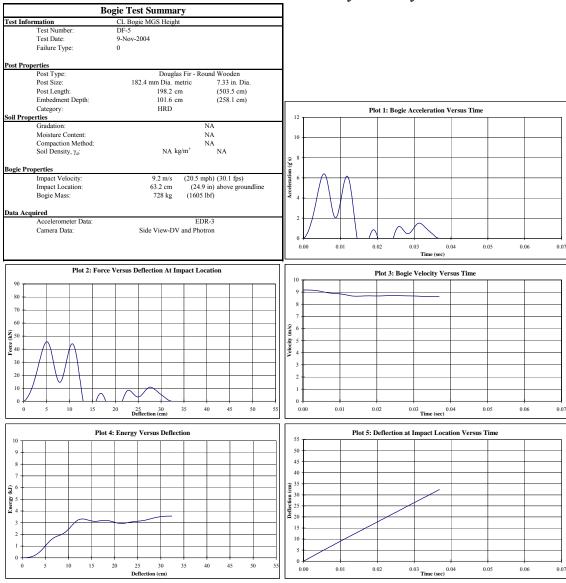


Figure 89. Results of Test No. DF-5

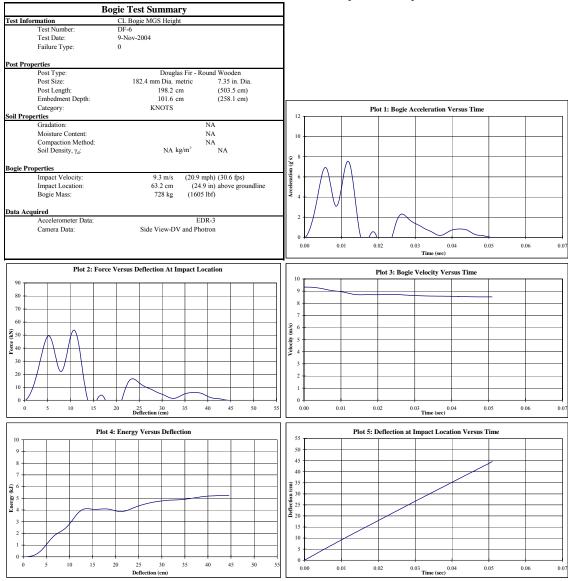


Figure 90. Results of Test No. DF-6

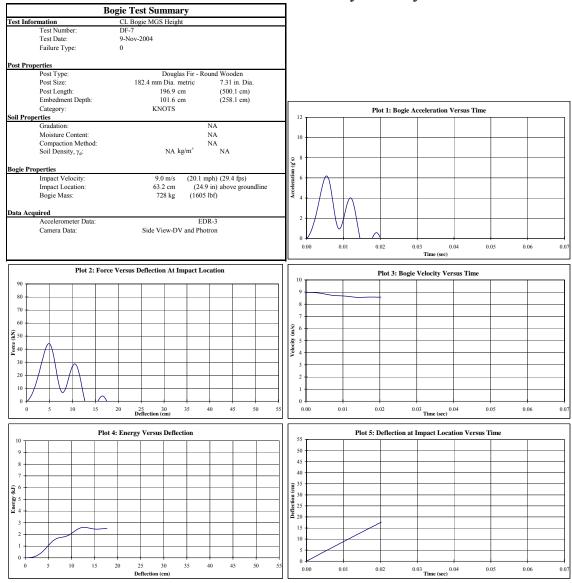


Figure 91. Results of Test No. DF-7

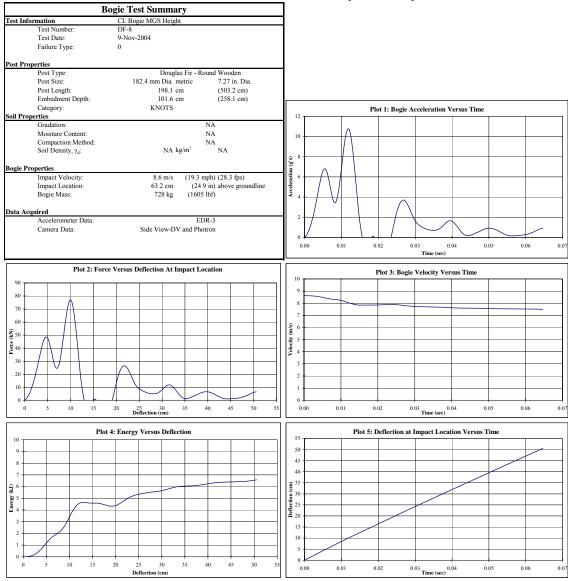


Figure 92. Results of Test No. DF-8

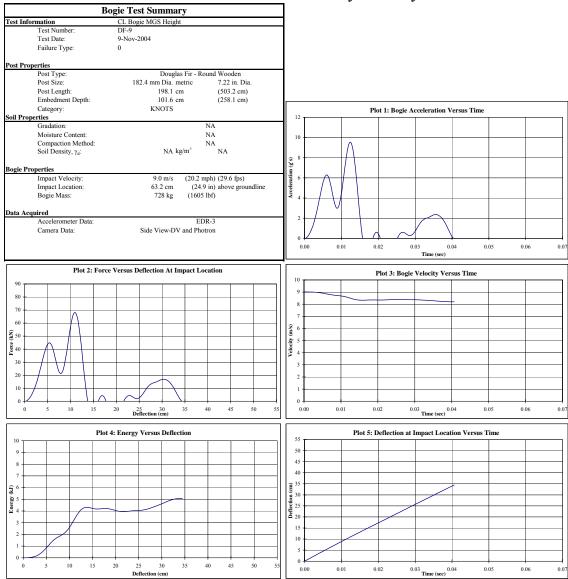


Figure 93. Results of Test No. DF-9

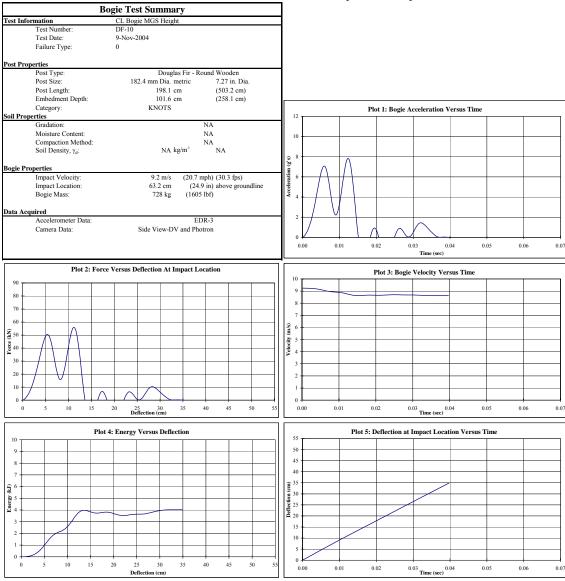


Figure 94. Results of Test No. DF-10

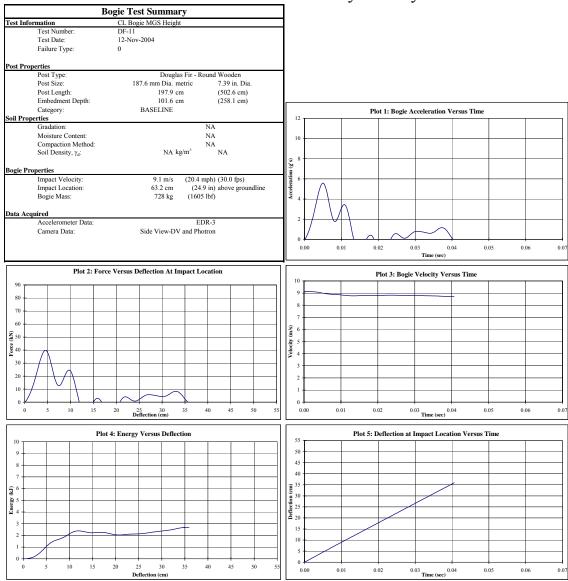


Figure 95. Results of Test No. DF-11

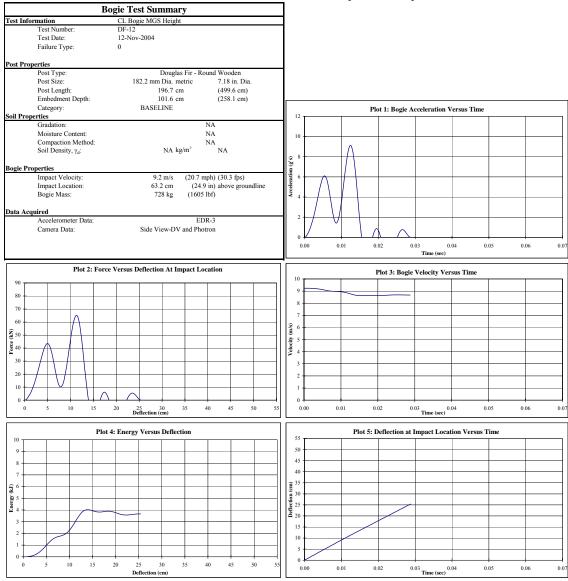


Figure 96. Results of Test No. DF-12

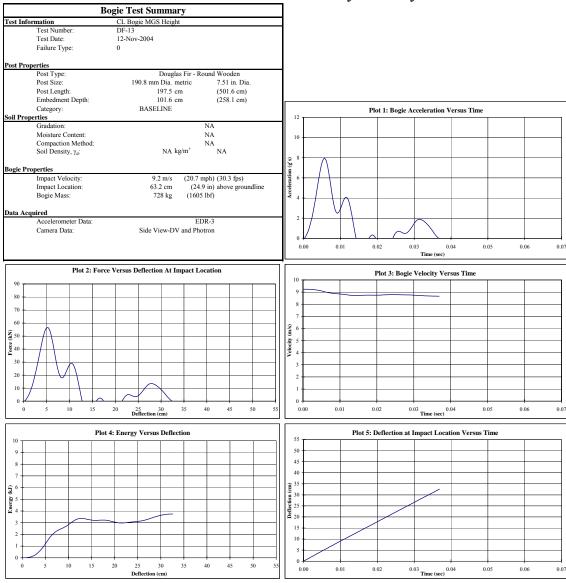


Figure 97. Results of Test No. DF-13

Figure 98. Results of Test No. DF-14

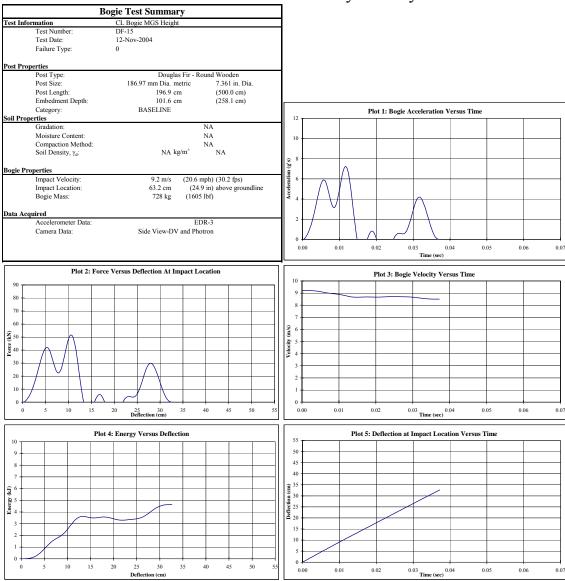
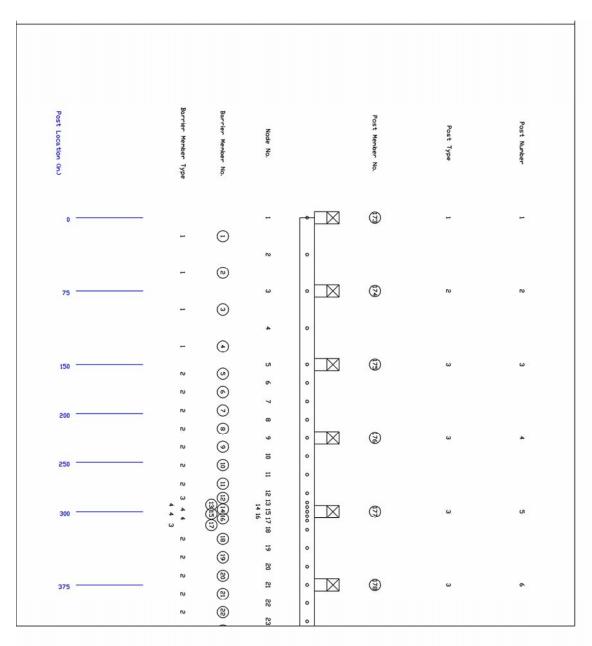



Figure 99. Results of Test No. DF-15

							43
	2 2	24	0				
450	. 2 (3)		•	(3)	ω	7	
	P (26)	500	0				
	2 (8)	577	0				
525	2 (28)	29	• 🗆	(1)	ω	00	
	r (3)		•				
	P (3)	Sifed a	0				
600		32 33 35 37 34 36 38		(B)	ω	٠	
	3 3 8	8	0				
	" " (±) (±)	±	0				
675	(2) (3) (3) (3) (3) (4) (4) (4) (4) (4) (5) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	.		(8)	ω	10	
	3 3 (d)	\$	0				
	3 3 (4) 3 3	8 5	0				
750		25		(ω	E	
	3 3 (S)	4	0	- 574 - 174			
	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	56	0				
925		59		(8)	ω	To .	
023	ω (B)	62	0	•			
	3 (S)	2	0				
1186	3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	67 69 71	8 -	(9)	ω	2.	
900		72		(3)	W	ü	
	(a) (a) (a) (a) (b) (a) (a) (a) (a) (a) (b) (a) (b) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	73	0				
	3 3 (3)	76	0	<u> </u>			
975	3 3	79		(3)	ω	7	
	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	88	0				
	<u> </u>	8 8	0				

						4
1050	ω ω (Θ)	858789 91 1 8688 90 34)8488 90		(6)	ω	ä
1125		94 96 98) (94) (96) (98)		(89)	ω	56
1200		01 10:30:5107 10 10:2 10:4:06 10:8		(3)	ω	IJ
1275	3 (1)	111 113 115 117 10 112 114 116 1		3	ω	18
1350		17 119 121 123 125 118 120 122 124 11		9	ω	19
1425	3 (B) 3 (B) 3 (B)	127 129 131 1: 26 128 130 132 150 (23) (33) (33		(3)	ω	20
1500	— · · · · · · · · · · · · · · · · · · ·	[4		(9)	ω	52
1575	n (13 144 145 1		9	ω	8
	no ((46) (47) (48)	0			0)

								4
1650	ru	(4)	9 ::		W)		ω	
	n	(3)	150	۰				
	ru	(<u>5</u>)	12	٥				
	n	(53)	152 1	°			D)	
1725	no no	(53)	153 154	•	(3)	ω	24	
	ro	(2)	1	0				
	ro	(5) (5) (5) (6) (6) (6)	155 1	0				
		98	561571:	8	(5)	. av	D)	
1800			158160		9	ω	S	
	N	6	€	•				
	ro	6	15657/59/61162 163 164 158160	0				
	N	3		°	(B)	8929	D	
1875	n)	(H) (H) (H)	165 16	•	(9)	ω	26	
	n	(3)	166 167 168 169	0				
	N	(5)	57 16					
1.001	n	(3)	8	. 🖂	(9)	ω	27	
1950		(6)	ě		(a)		7	
		٧	170					
		(3)	•	1000				
2025	_	•	171	•	(2)	N	28	
2023	_	(3)	_		•			
		•	172					
	_	(73)	ю					
2100	_	4	173		(2)	-	29	
2.00			w		•		<u> </u>	
7	Ber	Bo			7			
Post Location (in.)	Barrier Member Type	Barrier Member No.	8		Post Member No.	Pos	Post	
ocatio	Membe	Memb	Node No.		fembe	Post Type	Post Number	
n Ch.	r Typ	er No	,		8	ő	3	
•	ě							

BARRIER VII - Input Deck - Approximated Round Post

```
FPL-MGS Baseline Model With Approx. Round Posts FPL-B-1.b7
            28
                 1 201 73
    0.0001
              0.0001
                          2.000 2000
                                         0
                                                 1.0
                        10 500
    2
        10
             10
                 10
                                   1
            0.0
                       0.0
    1
          75.00
    3
                       0.0
    5
         150.00
                       0.0
    9
         225.00
                       0.0
   12
         281.25
                       0.0
        290.625
   13
                       0.0
       295.3125
   14
                       0.0
   15
         300.00
                       0.0
       304.6875
   16
                       0.0
   17
        309.375
                       0.0
         318.75
   18
                       0.0
         375.00
   21
                       0.0
   25
         450.00
                       0.0
   29
         525.00
                       0.0
   32
         581.25
                       0.0
   33
        590.625
                       0.0
   34
       595.3125
                       0.0
   35
         600.00
                       0.0
       604.6875
   36
                       0.0
   37
        609.375
                       0.0
   38
         618.75
                       0.0
   44
         675.00
                       0.0
   52
         750.00
                       0.0
   60
         825.00
                       0.0
   66
         881.25
                       0.0
        890.625
   67
                       0.0
   68
       895.3125
                       0.0
   69
         900.00
                       0.0
   70
       904.6875
                       0.0
   71
        909.375
                       0.0
   72
         918.75
                       0.0
   78
         975.00
                       0.0
   84
        1031.25
                       0.0
   85
      1040.625
                       0.0
   86 1045.3125
                       0.0
   87
        1050.00
                       0.0
   88 1054.6875
                       0.0
   89
      1059.375
                       0.0
   90
        1068.75
                       0.0
   96
        1125.00
                       0.0
  102
        1181.25
                       0.0
  103
      1190.625
                       0.0
  104 1195.3125
                       0.0
  105
        1200.00
                       0.0
  106 1204.6875
                       0.0
  107
       1209.375
                       0.0
  108
        1218.75
                       0.0
        1275.00
  114
                       0.0
  122
        1350.00
                       0.0
  130
        1425.00
                       0.0
  136
        1481.25
                       0.0
  137
      1490.625
                       0.0
  138 1495.3125
                       0.0
  139
        1500.00
                       0.0
  140 1504.6875
                       0.0
  141 1509.375
                       0.0
  142
        1518.75
                       0.0
  145
        1575.00
                       0.0
  149
        1650.00
                       0.0
  153
        1725.00
                       0.0
  156
        1781.25
                       0.0
  157 1790.625
                       0.0
  158 1795.3125
                       0.0
  159
        1800.00
```

160 161 162 165 169 171 173 1 3 5 9 18 21 225 29 38 44 52 78 90 108 112 123 165 165 169 171 173 163 163 163 163 163 163 163 163 163 16	181 187 195 202 210 3 5 9 12 25 29 32 44 52 60 66 78 84 96 102 136 145 145 147 173 173 173 173 173 173 174 162 162 162 162 162 162 162 162	6875 8.755 8.755 50.000 50.000 1132 2233 2233 11 171 161 151 141 111 111 111 111 111 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		167 157 147 127 117 107 77 67 57 47 37 27 77	166 156 146 136 116 96 86 76 66 56 46 36 26 16 6	165 155 145 135 115 105 95 45 75 65 55 45 25 15	164 154 144 124 114 94 84 74 64 54 44 24 14				240
3 100	2 4	1											
1 12-Gaı		2.29 Beam		1.99	3	7.50	300	00.0		6.92	99.5	68.5	0.05
2 12-Gaı		2.29 Beam		1.99	1	8.75	300	00.0		6.92	99.5	68.5	0.05
3 12-Gaı		2.29 Beam		1.99	9	.375	300	00.0		6.92	99.5	68.5	0.05
4 12-Gau 300	ige W-	2.29		1.99	4.	6875	300	00.0		6.92	99.5	68.5	0.05
1 Simula	24 ated S	trong	g Ancl	nor Po	ost		15.0	6.0	1	.00.0	675.0	675.0	0.05
2 Second		.875		0.00	15.0	3.0		3.0	1	.00.0	150.0	225.00	0.05
3 FPL St	24	.875		0.0			15.0	6.75		60.0	92.88	143.65	0.05

	15.0		15.0		15.0	15.0				241
4	24	.875		0.0		1.34 6.75	60.0	92.88	143.65	0.05
FPL Weak Round Post Overall 7.0 7.0 2.4 2.4										
1	1		4		101		0.0	0.0		
5	5	6 12	11	1			0.0	0.0		
12 13	12 13	13 14			103 104		0.0	0.0		
14	14	15			104		0.0	0.0		
15	15	16			104		0.0	0.0		
16	16 17	17			104		0.0	0.0		
17 18	18	18 19	31	1	103 102	0.0	0.0	0.0		
32	32	33			103		0.0	0.0		
33	33	34			104		0.0	0.0		
34 35	34 35	35 36			$104 \\ 104$		0.0	0.0		
36	36	37			104		0.0	0.0		
37	37	38	66	1			0.0	0.0		
67 68	67 68	68 69			$104 \\ 104$		0.0	0.0		
69	69	70			104		0.0	0.0		
70	70	71			104		0.0	0.0		
71	71	72	84	1			0.0	0.0		
85 86	85 86	86 87			104 104		0.0	0.0		
87	87	88			104		0.0	0.0		
88	88	89	1.00	-	104		0.0	0.0		
89 103	89 103	90 104	102	Τ	103 104		0.0	0.0		
104	104	105			104		0.0	0.0		
105	105	106			104		0.0	0.0		
106 107	106 107	107 108	136	1	104 103		0.0	0.0		
137	137	138	130	_	103		0.0	0.0		
138	138	139			104		0.0	0.0		
139 140	139 140	140 141			$104 \\ 104$		0.0	0.0		
141	141	142			103		0.0	0.0		
142	142	143	155	1			0.0	0.0		
156 157	156 157	157 158			103		0.0	0.0		
158	158	159			$104 \\ 104$		0.0	0.0		
159	159	160			104		0.0	0.0		
160	160	161			104		0.0	0.0		
161 162	161 162	162 163	168	1	103 102	0.0	0.0	0.0		
169	169	170	172	1	101	0.0	0.0	0.0		
	1				301	0.0	0.0	0.0	0.0	0.0
174 175	3 5				302 303	0.0	0.0	0.0	0.0	0.0
176	9				303	0.0	0.0	0.0	0.0	0.0
177	15				303	0.0	0.0	0.0	0.0	0.0
178 179	21 25				303 303	0.0	0.0	0.0	0.0	0.0
180	29				303	0.0	0.0	0.0	0.0	0.0
181	35				303	0.0	0.0	0.0	0.0	0.0
182 183	44 52				303 303	0.0	0.0	0.0	0.0	0.0
184	60				303	0.0	0.0	0.0	0.0	0.0
185	69				303	0.0	0.0	0.0	0.0	0.0
186 187	78 87				303 303	0.0	0.0	0.0	0.0	0.0
188	96				303	0.0	0.0	0.0	0.0	0.0
189 190	105				303	0.0	0.0	0.0	0.0	0.0
190	114 122				303 303	0.0	0.0	0.0	0.0	0.0
192	130				303	0.0	0.0	0.0	0.0	0.0
193	139				303	0.0	0.0	0.0	0.0	0.0
194 195	145 149				303 303	0.0	0.0	0.0	0.0	0.0
196	153				303	0.0	0.0	0.0	0.0	0.0

```
242
                               0.0
197 159
                          303
                                               0.0
                                                        0.0
                                                                    0.0
                                                                              0.0
198 165
                          303
                                    0.0
                                               0.0
                                                         0.0
                                                                    0.0
                                                                              0.0
199
     169
                          303
                                    0.0
                                               0.0
                                                         0.0
                                                                    0.0
                                                                              0.0
200 171
                          302
                                    0.0
                                               0.0
                                                         0.0
                                                                    0.0
                                                                              0.0
                              4
201 173
                                               0.0
                                                         0.0
                                                                    0.0
                                                                              0.0
                          301
                                    0.0
                                    0
  4400.0
          47400.0 20
                                          25
                          6
                                      17.0
               0.12
                            6.00
7.00
  1
       0.055
        0.057
                   0.15
                                        18.0
  3
        0.062
                   0.18
                             10.00
                                        12.0
  4
        0.110
                   0.35
                             12.00
                                          6.0
        0.35
                   0.45
                             6.00
                                          5.0
                   1.50
  6
         1.45
                            15.00
                                         1.0
                            1 12.0
  1
       100.75
                 15.875
                                            1
                                                      0
                                                           0
                 27.875
  2
       100.75
                                   12.0
                            1
                                            1
                                                 1
                                                      0
                                                           0
                 39.875
                                  12.0
  3
       100.75
                            2
                                            1
                                                 1
                                                      0
                                                           0
  4
        88.75
                 39.875
                            2
                                   12.0
                                                           0
                                            1
                                                 1
                                                      0
  5
        76.75
                 39.875
                            2
                                   12.0
                                                      0
                                                           0
                                            1
                                                 1
  6
        64.75
                 39.875
                            2
                                   12.0
                                            1
                                                           0
  7
        52.75
                 39.875
                            2
                                                      0
                                                           0
                                   12.0
                                            1
                                                 1
                            2
  8
        40.75
                 39.875
                                   12.0
                                            1
                                                 1
                                                      0
                                                           0
        28.75
                 39.875
                            2
  9
                                   12.0
                                            1
                                                 1
                                                      0
                                                           0
 10
       16.75
                 39.875
                            2
                                   12.0
                                                      0
                                                           0
                                            1
                                                 1
 11
       -13.25
                 39.875
                            3
                                   12.0
                                            1
                                                 1
                                                      0
                                                           0
      -33.25
                 39.875
 12
                            3
                                   12.0
                                            1
                                                 1
                                                      0
                                                           0
 13
       -53.25
                 39.875
                            3
                                   12.0
                                            1
                                                           0
 14
       -73.25
                 39.875
                            3
                                   12.0
                                           1
                                                 1
                                                      0
                                                           0
      -93.25
                 39.875
 15
                            3
                                   12.0
                                            1
                                                 1
                                                      0
                                                           0
      -113.25
                39.875
                                   12.0
                                                           0
 16
                            4
                                            1
                                                 1
 17
                -39.875
      -113.25
                                            0
                                                 Ω
                                                      Ω
                                                           0
                            4
                                   12.0
 18
       100.75
                -39.875
                            1
                                   12.0
                                            0
                                                 0
                                                      0
                                                           0
                 37.75
 19
       69.25
                            5
                                   1.0
                                           1
                                                      0
                                                           0
                                                 1
 20
       -62.75
                  37.75
                            6
                                    1.0
                                           1
                                                      0
                                                           0
                                     608.
       69.25
                  32.75
                               0.0
  1
                 -32.75
       69.25
                                        608.
  2
                               0.0
  3
       -62.75
                 32.75
                               0.0
                                        492.
  4
       -62.75
                 -32.75
                               0.0
                                        492.
  1
       100.75
                  39.88
  2
      -113.25
                  39.88
  3
      -113.25
                 -39.88
  4
       100.75
                 -39.88
  5
        5.00
                  2.50
  6
        5.00
                  -2.50
  7
        -5.00
                  -2.50
                  2.50
  8
        -5.00
  9
        83.75
                  37.75
 10
                  27.75
        83.75
 11
        54.75
                  27.75
        54.75
 12
                  37.75
 13
        83.75
                 -27.75
 14
        83.75
                 -37.75
 15
        54.75
                 -37.75
 16
        54.75
                 -27.75
 17
       -48.25
                  37.75
       -48.25
 18
                  27.75
       -77.25
                  27.75
 19
       -77.25
                  37.75
 20
 21
       -48.25
                 -27.75
       -48.25
                 -37.75
 22
                 -37.75
 23
       -77.25
 24
       -77.25
                  -27.75
       0.00
 25
                  0.00
       787.50
                    0.0
                              25.0
                                       62.14
                                                  0.0
                                                              0.0
                                                                         1.0
```

BARRIER VII - Input Deck - Average Round Post

```
FPL-MGS Baseline Model With Overall Approx. Round Posts FPL-B-1.b7
       71 28 1 201 73 2
    0.0001
              0.0001
                          2.000 2000
                                        0
                                                 1.0
                        10 500
    2
        10
            10
                 10
                                   1
            0.0
                       0.0
    1
          75.00
    3
                       0.0
    5
         150.00
                       0.0
    9
         225.00
                      0.0
   12
         281.25
                       0.0
        290.625
   13
                      0.0
       295.3125
   14
                      0.0
   15
         300.00
                       0.0
       304.6875
   16
                      0.0
   17
        309.375
                       0.0
         318.75
   18
                      0.0
         375.00
   21
                      0.0
   25
         450.00
                      0.0
   29
         525.00
                      0.0
   32
         581.25
                       0.0
   33
        590.625
                      0.0
   34
       595.3125
                      0.0
   35
         600.00
                      0.0
       604.6875
   36
                      0.0
   37
        609.375
                      0.0
   38
         618.75
                      0.0
   44
         675.00
                       0.0
   52
         750.00
                      0.0
   60
         825.00
                      0.0
   66
         881.25
                      0.0
        890.625
   67
                      0.0
   68
       895.3125
                      0.0
   69
         900.00
                      0.0
   70
       904.6875
                      0.0
   71
        909.375
                      0.0
   72
         918.75
                      0.0
   78
         975.00
                      0.0
   84
        1031.25
                      0.0
      1040.625
   85
                      0.0
   86 1045.3125
                      0.0
   87
        1050.00
                       0.0
   88 1054.6875
                       0.0
   89
      1059.375
                      0.0
   90
        1068.75
                      0.0
   96
        1125.00
                      0.0
  102
        1181.25
                      0.0
  103 1190.625
                       0.0
  104 1195.3125
                      0.0
  105
        1200.00
                      0.0
  106 1204.6875
                      0.0
  107
       1209.375
                      0.0
  108
        1218.75
                      0.0
        1275.00
  114
                      0.0
  122
        1350.00
                       0.0
  130
        1425.00
                      0.0
  136
        1481.25
                      0.0
  137
      1490.625
                      0.0
  138 1495.3125
                      0.0
  139
        1500.00
                      0.0
  140 1504.6875
                      0.0
  141 1509.375
                      0.0
  142
        1518.75
                      0.0
  145
        1575.00
                      0.0
  149
        1650.00
                      0.0
  153
        1725.00
                      0.0
  156
        1781.25
                      0.0
  157 1790.625
                      0.0
  158 1795.3125
                       0.0
```

159

1800.00

0.0

161 162 165 169 171 173 1 1 3 5 9 18 21 25 29 38 44 52 60 72 78 90 96 108 114 122 145 165 169 171 173 163 163 163 163 163 163 163 163 163 16	187 195 202 210 3 5 9 12 21 25 29 32 44 52 60 66 78 84 96 102 114 122 130 136 145 149 153 156 165 171 173 172 162 112 112 112 122 112 122 122 122 12	.375 8.75 5.00 0.00 0.00 1 1 3 2 2 2 3 3 2 5 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 5 2 2 3 3 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	167 157 147 137 127 117 77 67 57 47 27 17 7	166 156 146 136 116 106 96 86 76 66 46 36 26 16 6	165 155 145 135 115 105 95 85 75 65 45 35 25 15 5	164 154 144 114 114 114 114 114 14 14 14 44 44				244
3 100 1	2 4	1 2.29		1.99	3	7.50	300	00.0		6.92	99.5	68.5	0.05
12-Gau 2	1.99					6.92		99.5	68.5	0.05			
					9.375		30000.0		6.92		99.5	68.5	0.05
					4.6875		30000.0		6.92		99.5	68.5	0.05
12-Gauge W-Beam 300 4 1 24.875 0.00						6.0		6.0	1	00.0	675.0	675.0	0.05
Simula	st		15.0		_		2.2.0	3.3.0					
2 Second	24 l BCT	.875 Post		0.00		3.0			1	00.0	150.0	225.00	0.05
3 FPL St		.875		0.0			15.0	6.75		60.0	92.00	161.50	0.05

	15.0		15 0		15 0	15.0				245
4	24	.875		0.0		1.34 6.75	60.0	92.00	161.50	0.05
FPL We	ak Ro	und F				2.4				
1	1	2	4		101		0.0	0.0		
5	5	6	11	1			0.0	0.0		
12 13	12 13	13 14			103 104		0.0	0.0		
14	14	15			104		0.0	0.0		
15	15	16			104		0.0	0.0		
16	16	17			104		0.0	0.0		
17 18	17 18	18 19	2.1	1	103 102	0.0	0.0	0.0		
32	32	33	31		103		0.0	0.0		
33	33	34			104		0.0	0.0		
34	34	35			104		0.0	0.0		
35 36	35 36	36 37			$104 \\ 104$		0.0	0.0		
37	37	38	66	1			0.0	0.0		
67	67	68			104		0.0	0.0		
68	68 69	69 70			104		0.0	0.0		
69 70	70	70 71			$104 \\ 104$		0.0	0.0		
71	71	72	84	1			0.0	0.0		
85	85	86			104		0.0	0.0		
86 87	86 87	87 88			$104 \\ 104$		0.0	0.0		
88	88	89			104		0.0	0.0		
89	89	90	102	1			0.0	0.0		
103	103	104			104		0.0	0.0		
104 105	104 105	105 106			$104 \\ 104$		0.0	0.0		
106	106	107			104		0.0	0.0		
107	107	108	136	1			0.0	0.0		
137 138	137 138	138 139			$104 \\ 104$		0.0	0.0		
139	139	140			104		0.0	0.0		
140	140	141			104		0.0	0.0		
141	141	142		-	103		0.0	0.0		
142 156	142 156	143 157	155	1	102 103		0.0	0.0		
157	157	158			103		0.0	0.0		
158	158	159			104		0.0	0.0		
159	159	160			104		0.0	0.0		
160 161	160 161	161 162			104 103	0.0	0.0	0.0		
162	162	163	168	1	102	0.0	0.0	0.0		
169	169	170	172	1	101	0.0	0.0	0.0	0.0	0 0
173 174	1 3				301 302	0.0	0.0	0.0	0.0	0.0
175	5				303	0.0	0.0	0.0	0.0	0.0
176	9				303	0.0	0.0	0.0	0.0	0.0
177 178	15 21				303 303	0.0	0.0	0.0	0.0	0.0
179	25				303	0.0	0.0	0.0	0.0	0.0
180	29				303	0.0	0.0	0.0	0.0	0.0
181	35				303	0.0	0.0	0.0	0.0	0.0
182 183	44 52				303 303	0.0	0.0	0.0	0.0	0.0
184	60				303	0.0	0.0	0.0	0.0	0.0
185	69				303	0.0	0.0	0.0	0.0	0.0
186 187	78 87				303 303	0.0	0.0	0.0	0.0	0.0
188	96				303	0.0	0.0	0.0	0.0	0.0
189	105				303	0.0	0.0	0.0	0.0	0.0
190 191	114 122				303	0.0	0.0	0.0	0.0	0.0
191	130				303 303	0.0	0.0	0.0	0.0	0.0
193	139				303	0.0	0.0	0.0	0.0	0.0
194	145				303	0.0	0.0	0.0	0.0	0.0
195 196	149 153				303 303	0.0	0.0	0.0	0.0	0.0
					505	0.0	5.5	J. J	J.J	J. 0

```
246
                               0.0
197 159
                          303
                                               0.0
                                                        0.0
                                                                    0.0
                                                                               0.0
198 165
                          303
                                    0.0
                                               0.0
                                                         0.0
                                                                    0.0
                                                                               0.0
199
     169
                          303
                                     0.0
                                               0.0
                                                          0.0
                                                                    0.0
                                                                               0.0
200 171
                          302
                                    0.0
                                               0.0
                                                          0.0
                                                                    0.0
                                                                               0.0
                              4
201 173
                                               0.0
                                                         0.0
                                                                    0.0
                                                                               0.0
                          301
                                    0.0
                                     0
  4400.0
          47400.0 20
                                           25
                           6
                            6.00
7.00
                                      17.0
                0.12
  1
       0.055
        0.057
                   0.15
                                         18.0
  3
        0.062
                   0.18
                             10.00
                                         12.0
  4
        0.110
                   0.35
                             12.00
                                          6.0
        0.35
                   0.45
                             6.00
                                          5.0
                   1.50
  6
         1.45
                             15.00
                                          1.0
                                12.0
  1
       100.75
                  15.875
                                            1
                                                       0
                                                            0
                  27.875
  2
       100.75
                                   12.0
                            1
                                            1
                                                 1
                                                       0
                                                            0
                  39.875
                                   12.0
  3
       100.75
                            2
                                            1
                                                 1
                                                       0
                                                            0
  4
        88.75
                  39.875
                            2
                                   12.0
                                                            0
                                            1
                                                 1
                                                       0
  5
        76.75
                  39.875
                            2
                                   12.0
                                                       0
                                                            0
                                            1
                                                 1
  6
        64.75
                  39.875
                            2
                                   12.0
                                            1
                                                            0
  7
        52.75
                  39.875
                            2
                                                       0
                                                            0
                                   12.0
                                            1
                                                 1
                            2
  8
        40.75
                  39.875
                                   12.0
                                            1
                                                 1
                                                       0
                                                            0
        28.75
                  39.875
                            2
  9
                                   12.0
                                            1
                                                 1
                                                       0
                                                            0
 10
       16.75
                  39.875
                            2
                                   12.0
                                                       0
                                                            0
                                            1
                                                 1
 11
       -13.25
                  39.875
                            3
                                    12.0
                                            1
                                                 1
                                                       0
                                                            0
       -33.25
                  39.875
 12
                            3
                                   12.0
                                            1
                                                 1
                                                       0
                                                            0
 13
       -53.25
                  39.875
                            3
                                   12.0
                                            1
                                                 1
                                                            0
 14
       -73.25
                  39.875
                            3
                                   12.0
                                            1
                                                 1
                                                       0
                                                            0
       -93.25
                  39.875
 15
                            3
                                   12.0
                                            1
                                                 1
                                                       0
                                                            0
      -113.25
                 39.875
                                   12.0
                                                            0
 16
                            4
                                            1
                                                 1
 17
                -39.875
      -113.25
                                            0
                                                 Ω
                                                       Ω
                                                            0
                            4
                                   12.0
 18
       100.75
                -39.875
                            1
                                    12.0
                                            0
                                                 0
                                                       0
                                                            0
                 37.75
 19
       69.25
                            5
                                   1.0
                                            1
                                                       0
                                                            0
                                                 1
 20
       -62.75
                  37.75
                            6
                                    1.0
                                           1
                                                       0
                                                            0
       69.25
                  32.75
                               0.0
                                         608.
  1
                 -32.75
       69.25
                                         608.
  2
                               0.0
  3
       -62.75
                  32.75
                               0.0
                                         492.
  4
       -62.75
                  -32.75
                               0.0
                                         492.
  1
       100.75
                  39.88
  2
      -113.25
                  39.88
  3
      -113.25
                  -39.88
  4
       100.75
                 -39.88
  5
        5.00
                  2.50
  6
        5.00
                  -2.50
  7
        -5.00
                  -2.50
                  2.50
  8
        -5.00
  9
        83.75
                  37.75
 10
                  27.75
        83.75
 11
        54.75
                  27.75
        54.75
 12
                  37.75
 13
        83.75
                  -27.75
 14
        83.75
                  -37.75
 15
        54.75
                  -37.75
 16
        54.75
                  -27.75
 17
       -48.25
                  37.75
       -48.25
 18
                  27.75
       -77.25
                  27.75
 19
       -77.25
                  37.75
 20
 21
       -48.25
                  -27.75
       -48.25
                  -37.75
 22
                  -37.75
 23
       -77.25
 24
       -77.25
                  -27.75
 25
       0.00
                  0.00
       787.50
                    0.0
                              25.0
                                        62.14
                                                   0.0
                                                               0.0
                                                                         1.0
```

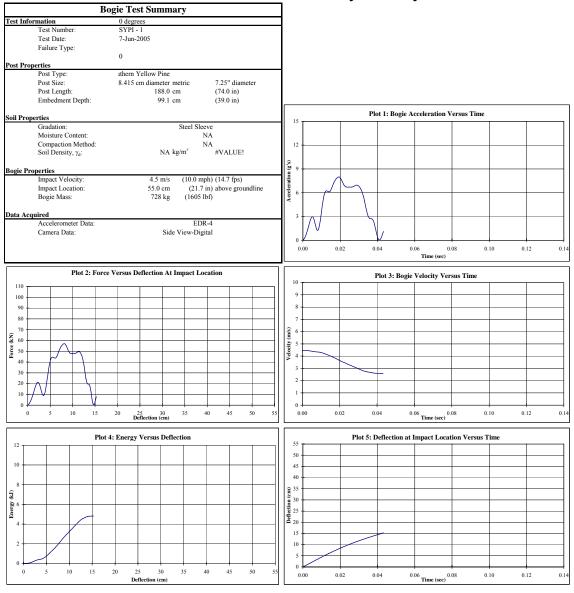


Figure 100. Results of Test No. SYPI-1

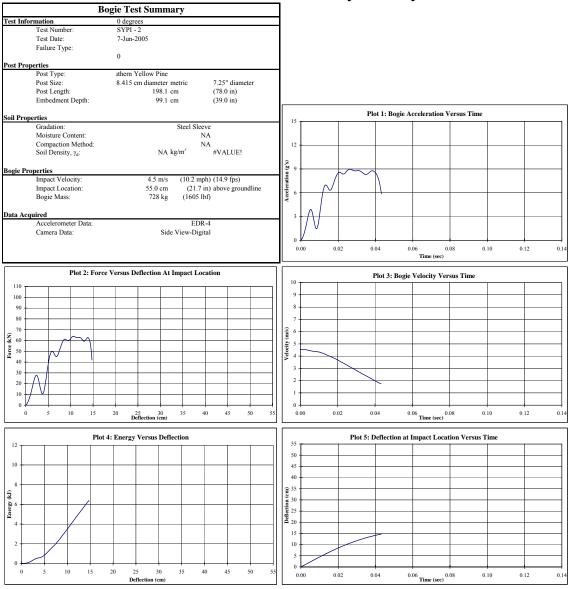


Figure 101. Results of Test No. SYPI-2

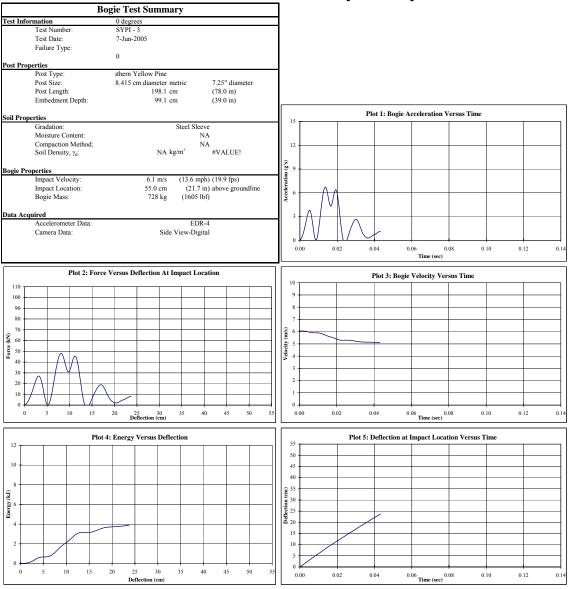


Figure 102. Results of Test No. SYPI-3

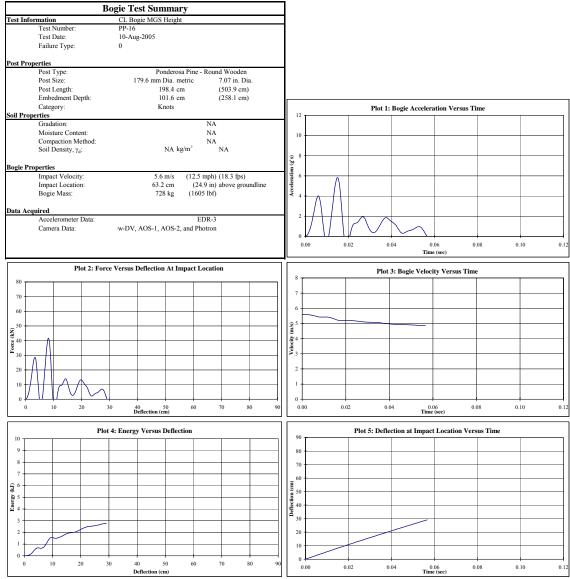


Figure 103. Results of Test No. PP-16

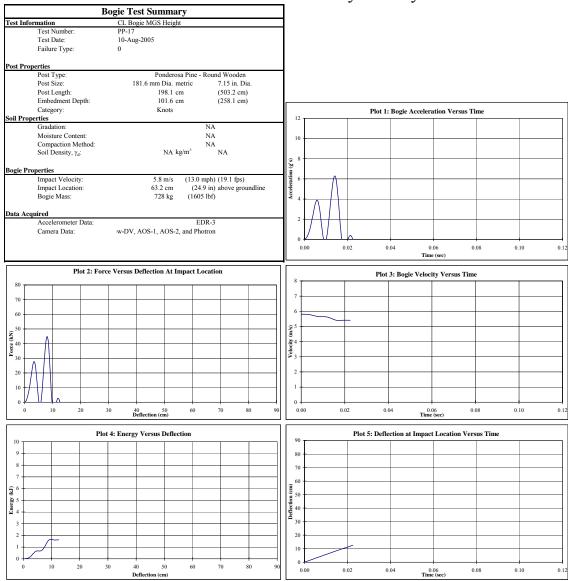


Figure 104. Results of Test No. PP-17

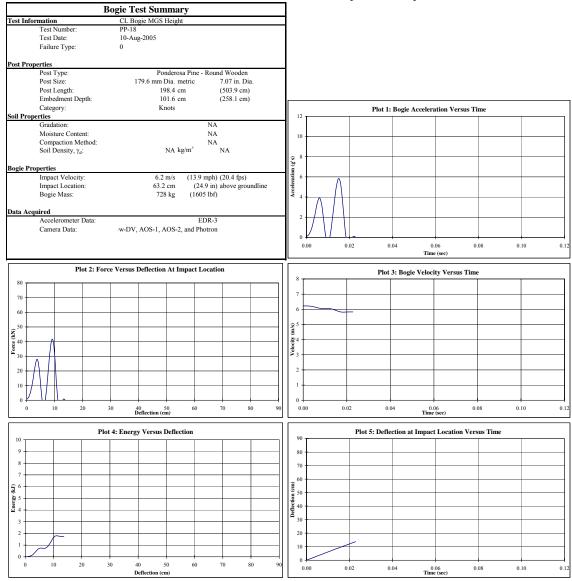


Figure 105. Results of Test No. PP-18

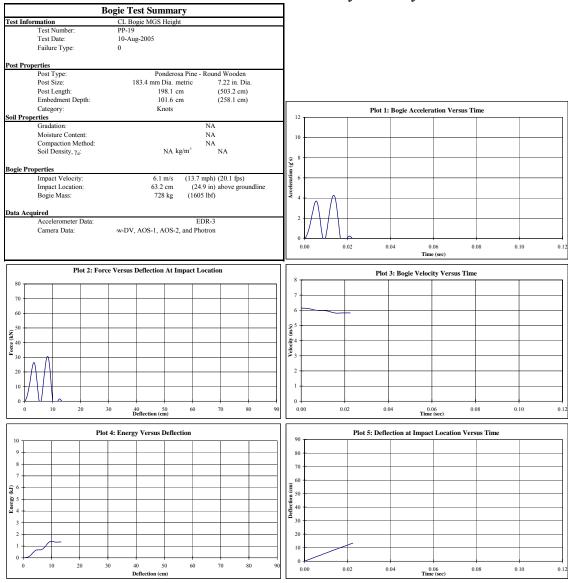


Figure 106. Results of Test No. PP-19

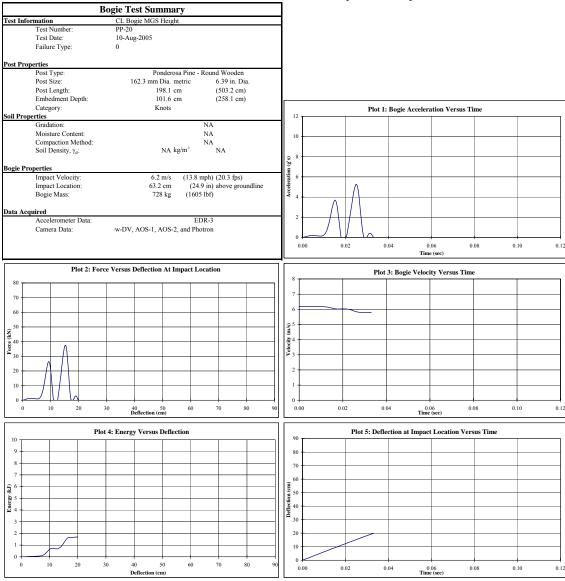


Figure 107. Results of Test No. PP-20

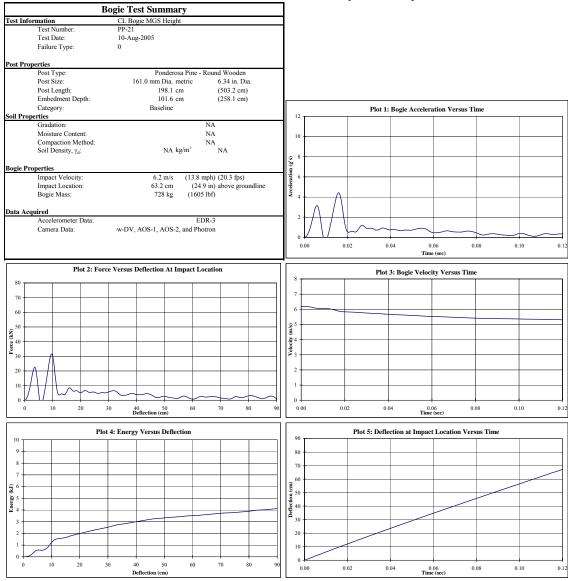


Figure 108. Results of Test No. PP-21



Figure 109. Results of Test No. PP-22

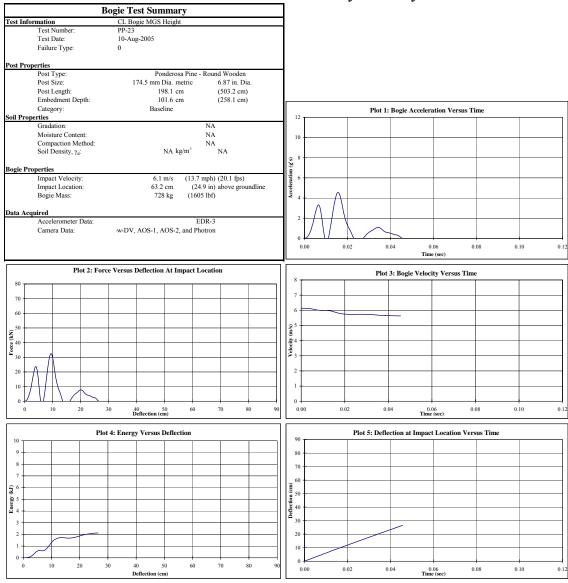


Figure 110. Results of Test No. PP-23

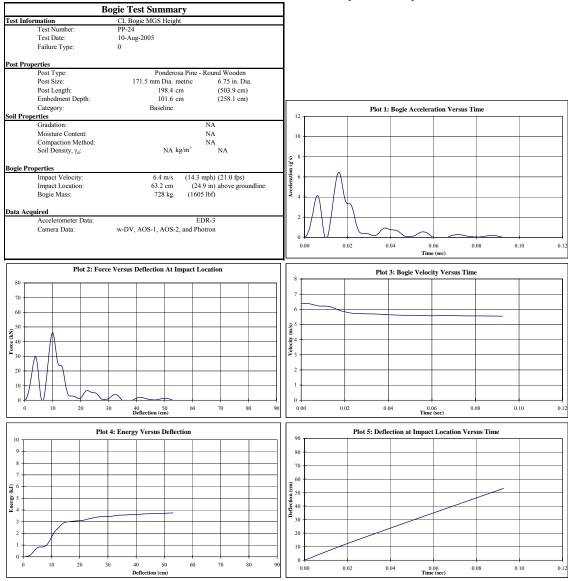


Figure 111. Results of Test No. PP-24

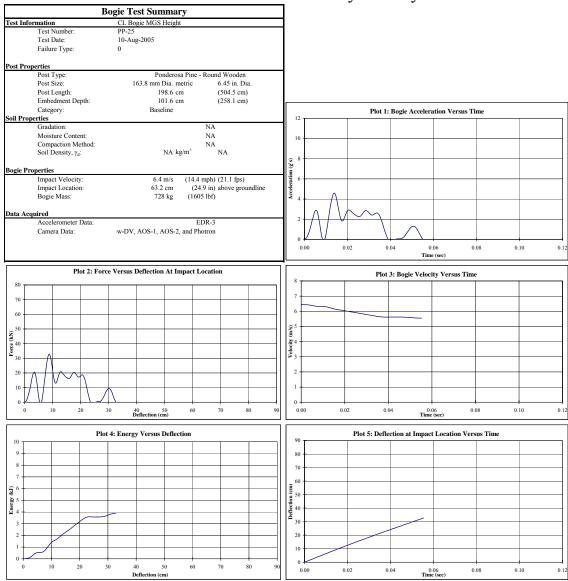


Figure 112. Results of Test No. PP-25

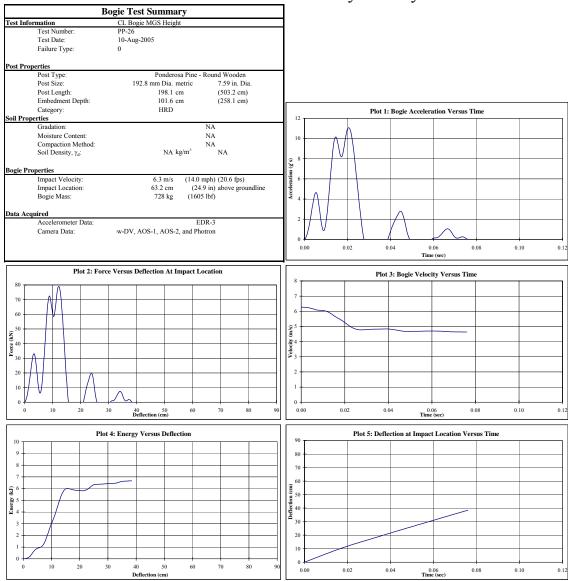


Figure 113. Results of Test No. PP-26

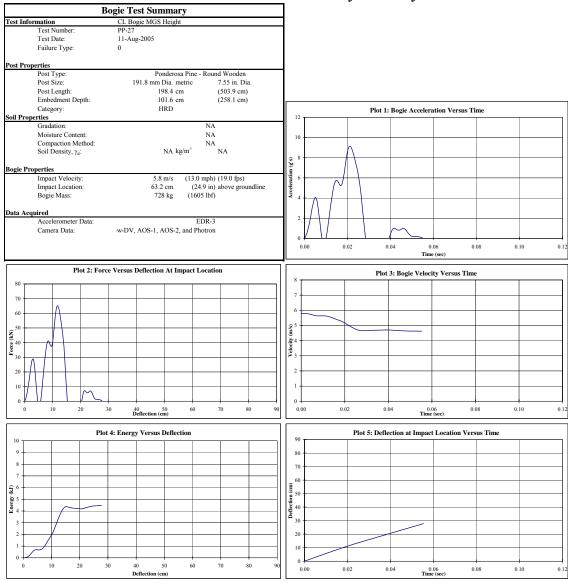


Figure 114. Results of Test No. PP-27

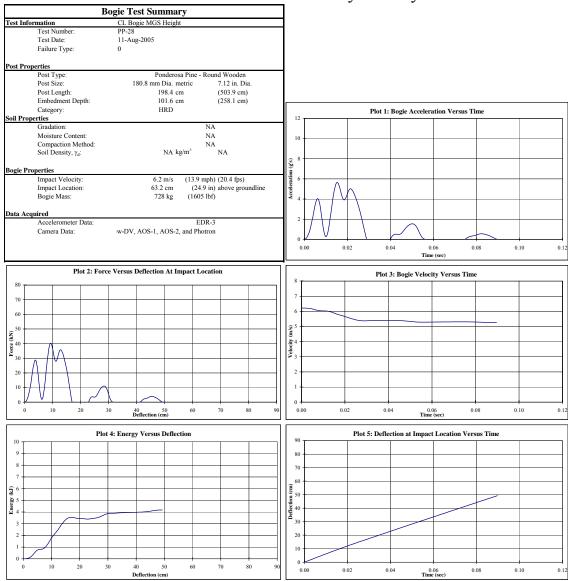


Figure 115. Results of Test No. PP-28

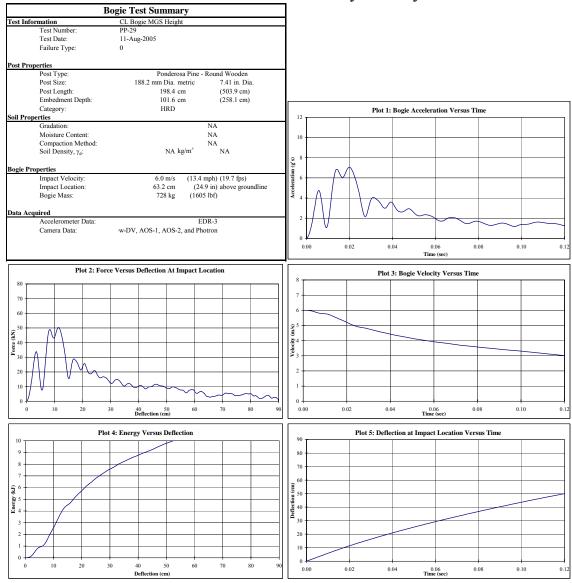


Figure 116. Results of Test No. PP-29

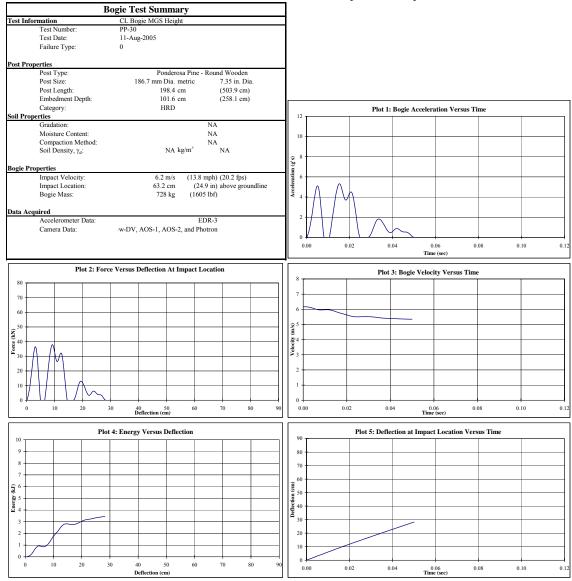


Figure 117. Results of Test No. PP-30

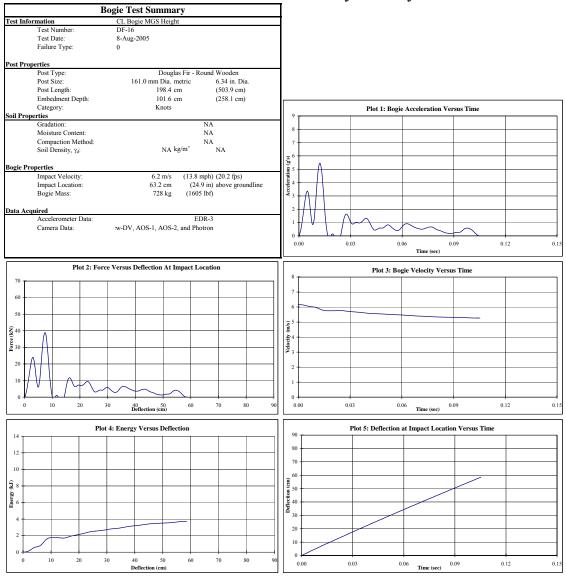


Figure 118. Results of Test No. DF-16

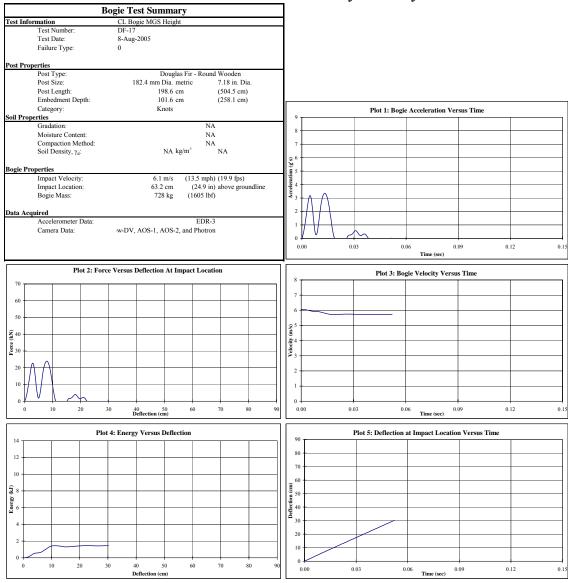


Figure 119. Results of Test No. DF-17

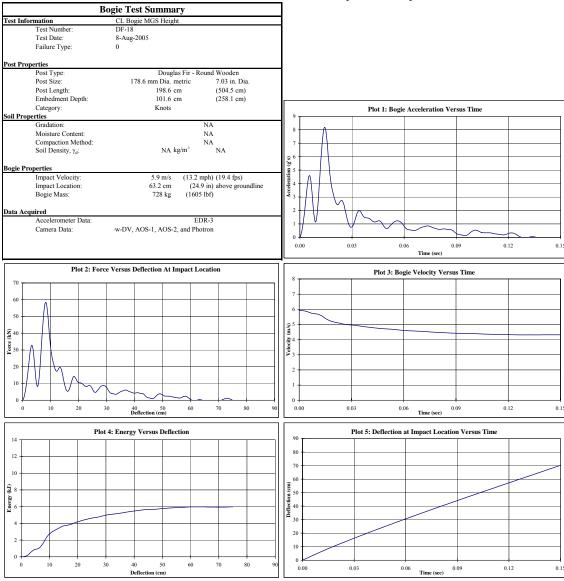


Figure 120. Results of Test No. DF-18

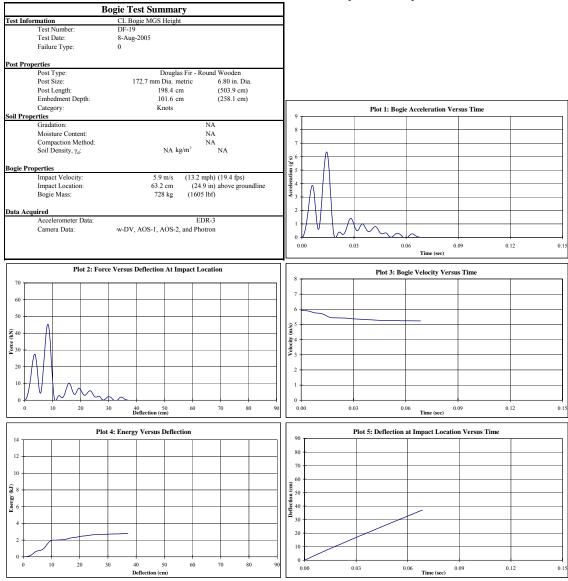


Figure 121. Results of Test No. DF-19

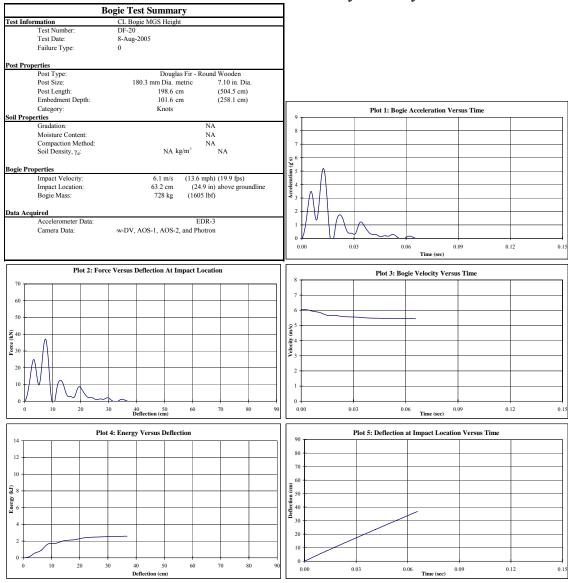


Figure 122. Results of Test No. DF-20

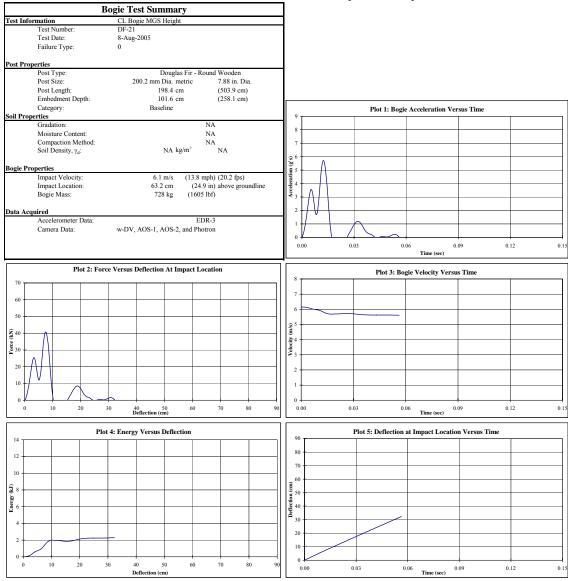


Figure 123. Results of Test No. DF-21

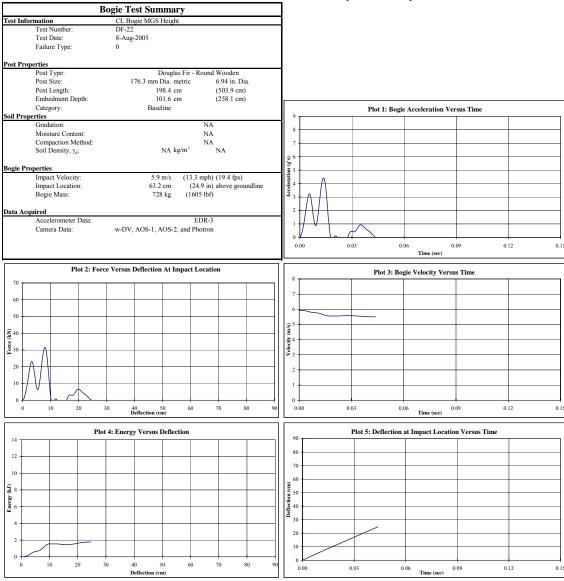


Figure 124. Results of Test No. DF-22

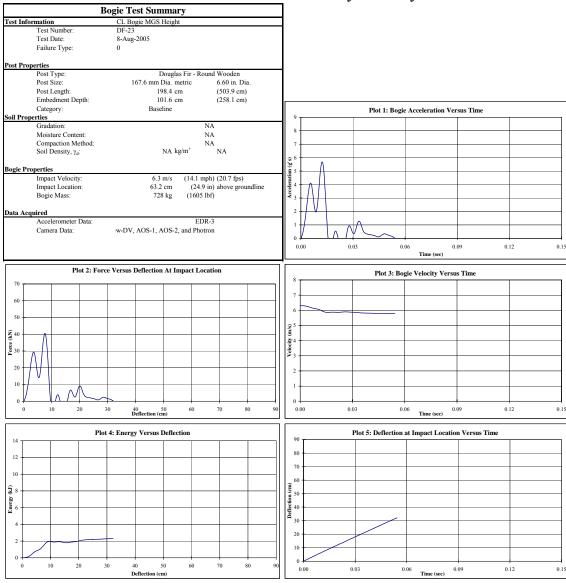


Figure 125. Results of Test No. DF-23

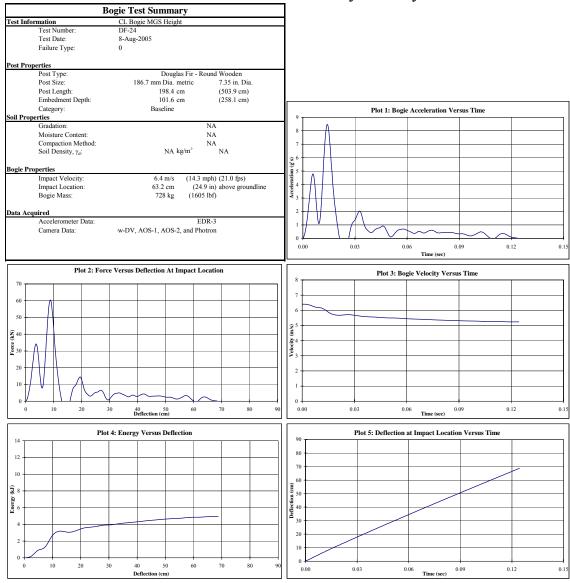


Figure 126. Results of Test No. DF-24

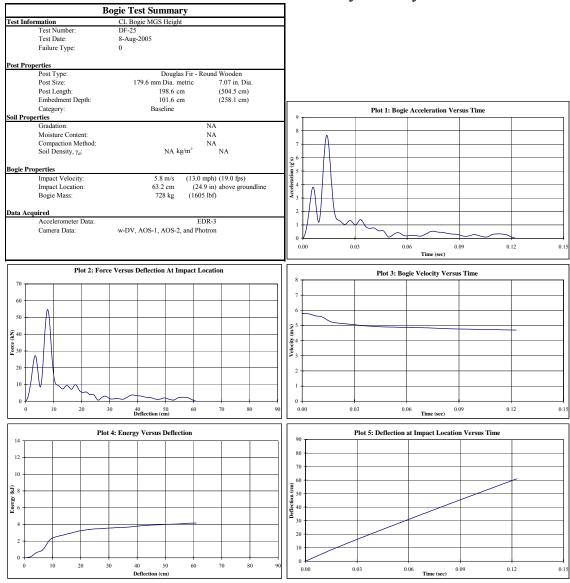


Figure 127. Results of Test No. DF-25

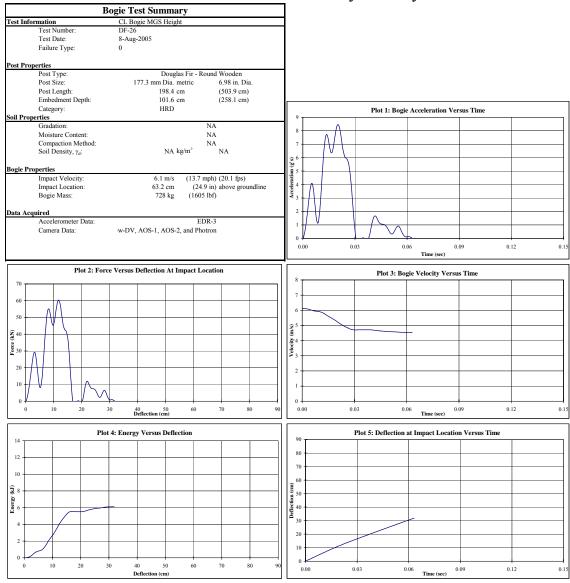


Figure 128. Results of Test No. DF-26

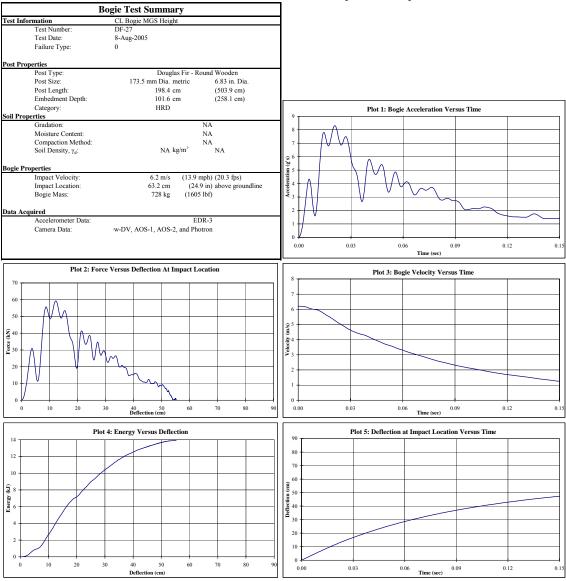


Figure 129. Results of Test No. DF-27

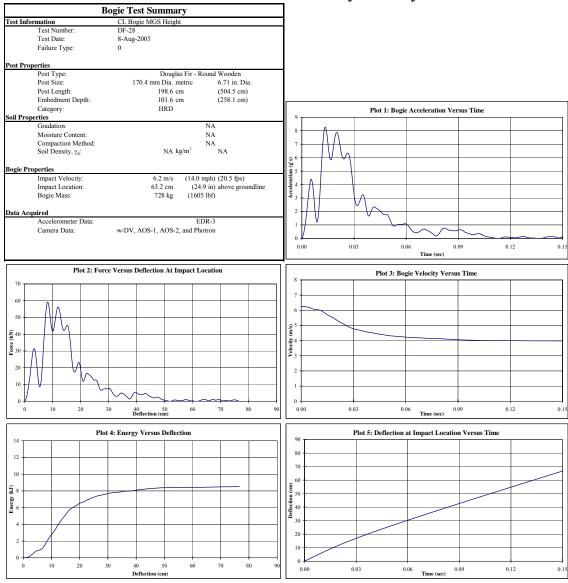


Figure 130. Results of Test No. DF-28

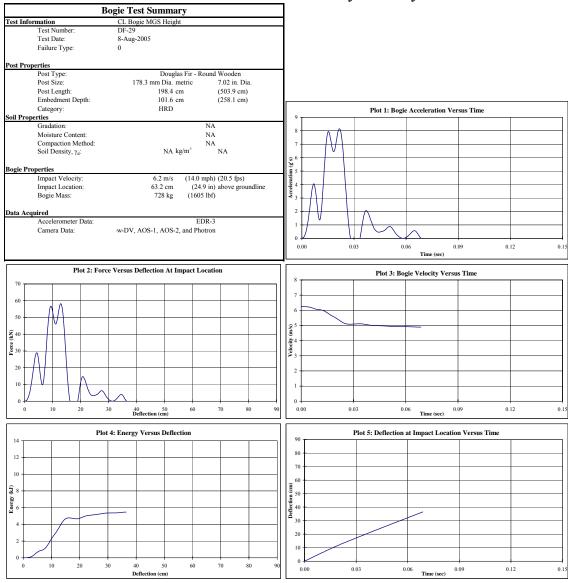


Figure 131. Results of Test No. DF-29

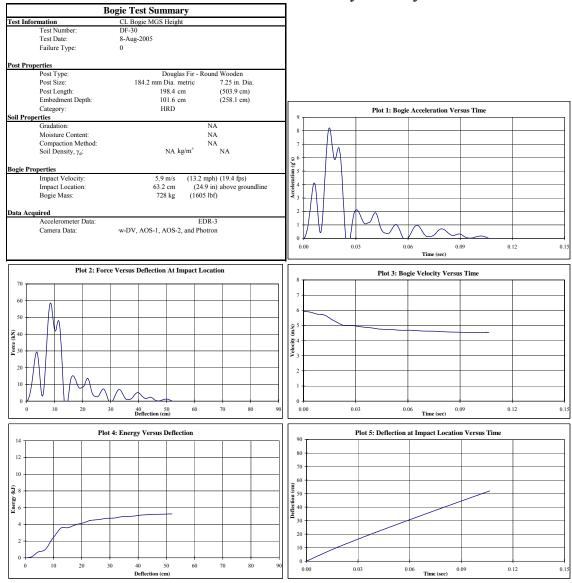


Figure 132. Results of Test No. DF-30

Table 46 Douglas Fir Random Sample Testing Results – Excluding Inertia

Douglas Fir								
	Static Testing Results		Adjusted Dynamic Results					
Sample	Mean MOR (ksi)	Standard Deviation (ksi)	Mean MOR (ksi)	Standard Deviation (ksi)				
Random Population Sample	8.10	1.07	9.72	1.28				
Target Population Sample			10.04	1.21				

Table 47. Ponderosa Pine Random Sample Testing Results – Excluding Inertia

Ponderosa Pine								
	Static Testi	ing Results	Adjusted Dynamic Results					
Sample	Mean MOR (ksi)	Standard Deviation (ksi)	Mean MOR (ksi)	Standard Deviation (ksi)				
Random Population Sample	5.95	1.33	7.70	1.73				
Target Population Sample			7.85	1.84				

Table 48. Minimum Diameter Calculation – Excluding Inertia

	Douglas Fir		Ponderosa Pine		
	Мра	(ksi)	Мра	(ksi)	
Mean MOR	69.22	(10.04)	54.12	(7.85)	
Standard Deviation	8.55	(1.24)	12.69	(1.84)	
40% MOR	67.09	(9.73)	50.88	(7.38)	
Minimum Diameter	160 mm	(6.27 in.)	175 mm	(6.88 in.)	

Douglas Fir:

•
$$171 \text{ mm}$$
 $^{+19 \text{ mm}}_{-6 \text{ mm}}$ $\left(6.75 \text{ in.} + 0.75 \text{ in.}\right)$ -0.25 in.

Ponderosa Pine:

•
$$184 \text{ mm}$$
 $^{+19 \text{ mm}}_{-6 \text{ mm}}$ $\left(7.25 \text{ in.} ^{+0.75 \text{ in.}}_{-0.25 \text{ in.}}\right)$

The probability of failure for the 165-mm (6.5-in.) Douglas Fir posts was just under 15 percent, 25 percent lower than desired. With the 165-mm (6.5-in.) diameter Douglas Fir posts, the probability of system failure was less than 0.1 percent. For Ponderosa Pine, the probability of failure remained the same as presented in Chapter 11.

Re-Evaluation of Post Size

With the increased peak force and modified pressure distribution determined in Chapter 12, the probability method returned minimum diameter values of 198 mm (7.78 in.) for Ponderosa Pine and 176 mm (6.91 in.) for Douglas Fir. Rounding to the next highest quarter inch, the acceptable ranges of post sizes were determined as follows.

Ponderosa Pine:

$$210 \text{ mm} + 19 \text{ mm}$$
 $\left(8.25 \text{ in.} + 0.75 \text{ in.}\right)$ $\left(-0.25 \text{ in.}\right)$

Douglas Fir:

$$184 \text{ mm}$$
 $^{+19 \text{ mm}}_{-6 \text{ mm}}$ $\left(7.25 \text{ in.} ^{+0.75 \text{ in.}}_{-0.25 \text{ in.}}\right)$

Monte Carlo simulation was utilized, as in Chapter 14, to simulate a 1,000 sample population of Ponderosa Pine posts based on the indicated size and strength distributions. Final results for Douglas Fir did not change and therefore were not simulated.

For the 210-mm (8.25-in.) target diameter, Ponderosa Pine had an average peak force of 16.2 kips with a standard deviation of 4.3 kips. For the 216-mm (8.5-in.) midrange diameter, Ponderosa Pine averaged 18.2 kips of force with a standard deviation of 4.6 kips. The probability of post failure was 22 percent for the target diameter and 13 percent for the mid-range diameter, making the probability of system failure less than a quarter of a percent.

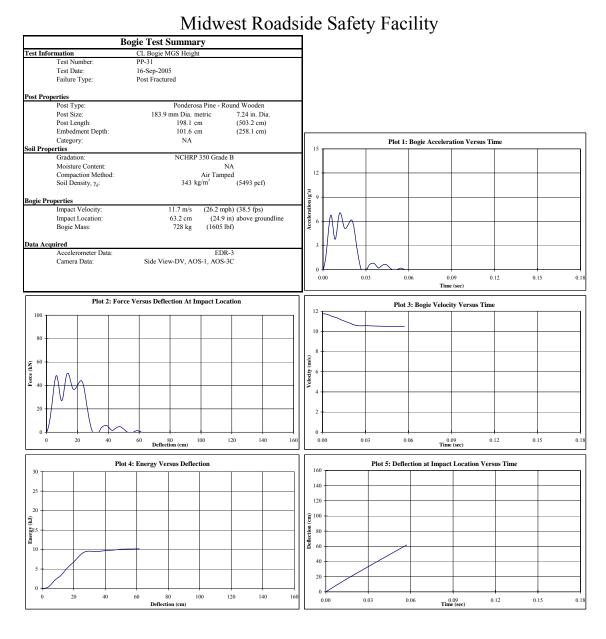


Figure 133. Results of Test No. PP-31

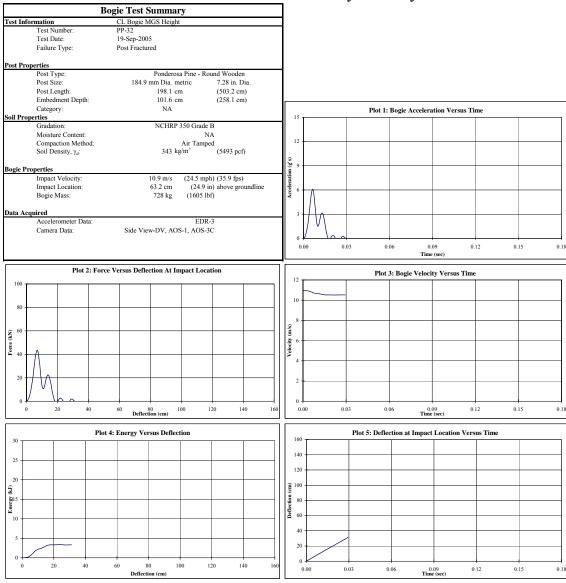


Figure 134. Results of Test No. PP-32

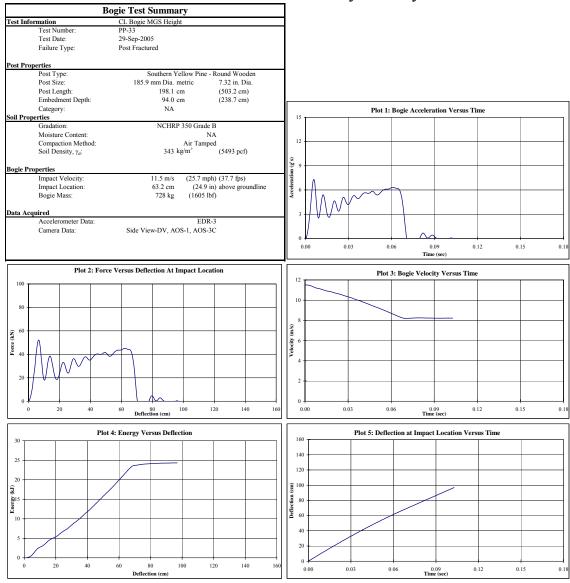


Figure 135. Results of Test No. PP-33

Figure 136. Results of Test No. PP-34

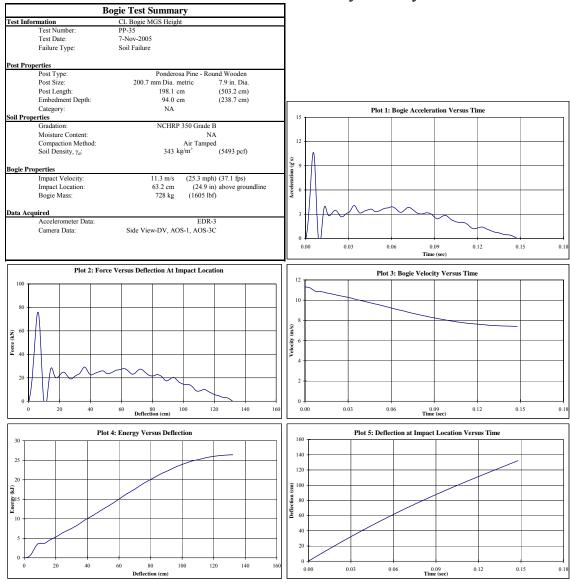


Figure 137. Results of Test No. PP-35

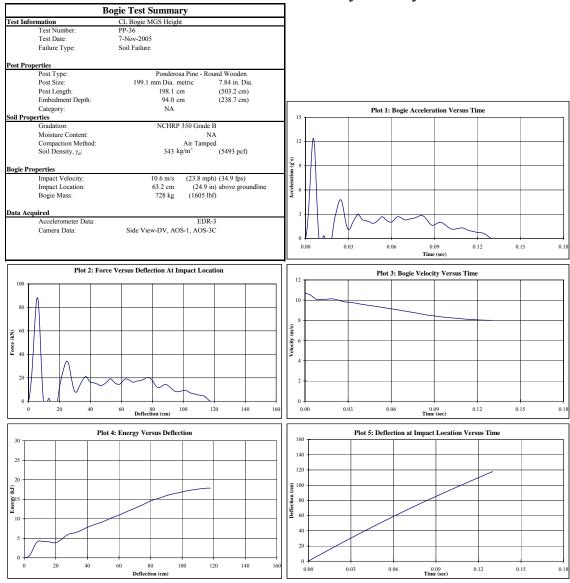


Figure 138. Results of Test No. PP-36

Figure 139. Results of Test No. PP-37

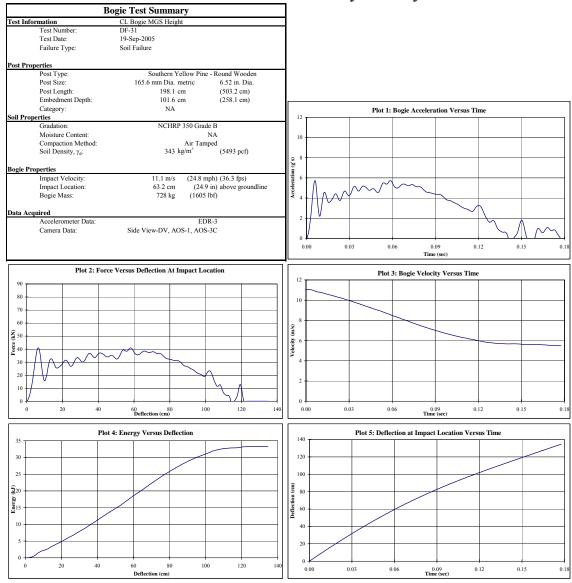


Figure 140. Results of Test No. DF-31

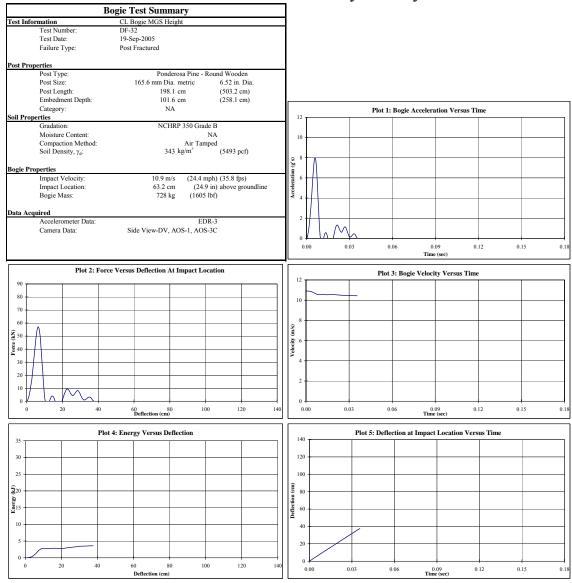


Figure 141. Results of Test No. DF-32

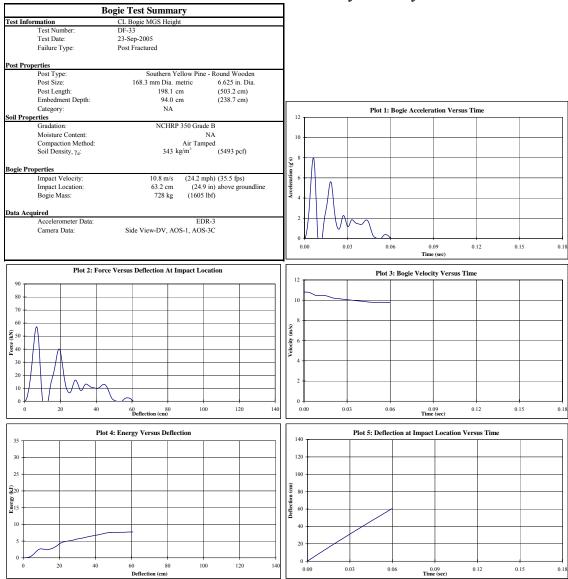


Figure 142. Results of Test No. DF-33

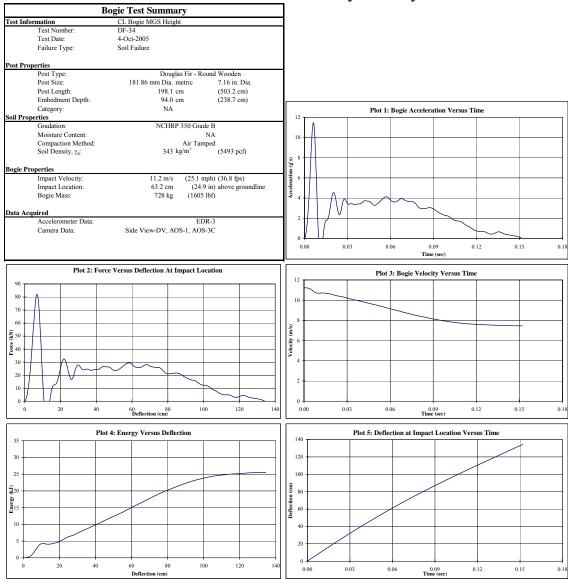


Figure 143. Results of Test No. DF-34

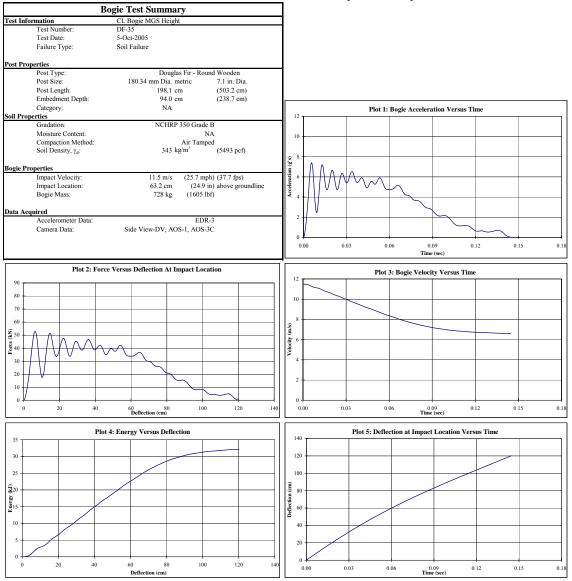


Figure 144. Results of Test No. DF-35

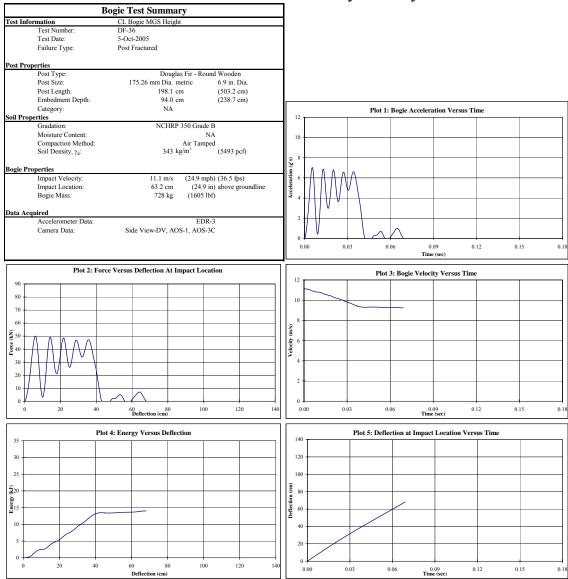


Figure 145. Results of Test No. DF-36

All posts shall meet the current quality requirements of the American National Standards Institute (ANSI) 05.1, "Wood Poles" except as supplemented herein:

Manufacture:

All posts shall be smooth shaved by machine. No "ringing" of the posts, as caused by improperly adjusted peeling machine, is permitted. All outer and inner bark shall be removed during the shaving process. All knots and knobs shall be trimmed smooth and flush with the surface of the posts. The guardrail posts will be a minimum of 1.75-m (69-in.) long. The use of peeler cores is prohibited.

Ground-line:

The ground-line, for the purpose of applying these restrictions of ANSI 05.1 that reference the ground-line, shall be defined as being located 914-mm (36-in.) from the butt end of each post.

Size:

The size of the posts shall be classified based on their diameter at the ground-line and their length and will be species specific. The ground-line diameter shall be specified by diameter in 6-mm (½-in.) breaks. The length shall be specified in 300-mm (1-ft) breaks. Dimension shall apply to fully seasoned posts. When measured between their extreme ends, the post shall be no shorter than the specified lengths but may be up to 75-mm (3-in.) longer.

Scars:

Scars are permitted in the middle third as defined in ANSI 05.1 provided that the depth of the trimmed scar is not more than (1 in.).

Shape and Straightness:

All timber posts shall be nominally round in cross section. A straight line drawn from the centerline of the top to the center of the butt of any post shall not deviate from the centerline of the post more than 32 mm (1 ½ in.) at any point. Posts shall be free from reverse bends.

Splits and Shakes:

Splits or ring shakes are not permitted in the top two thirds of the post. Splits not to exceed the diameter in length are permitted in the bottom third of the post. A single shake is permitted in the bottom third, provided it is not wider than one-half the butt diameter.

Decay:

Allowed in knots only.

Holes:

Pin holes 1-mm (1/16-in.) or less are not restricted.

Slope of Grain:

1 in 10.

Compression Wood:

Not allowed, in the outer 25-mm (1-in.) or if exceeding ½ of the radius.

Timber Spacers:

When timber spacers are required, the timber species shall be the same as those furnished for the timber posts. The size and hole location shall be as shown on the plans, with a tolerance of 6-mm (½-in.), Spacers shall be of medium grain, at least four (4) rings per inch on one end, and free from splits, shakes, compression wood or decay in any form. Individual knots, knot clusters or knots in the same cross section of a face are permitted, provided they are sound or firm, and are limited in cumulative width (when measured between lines parallel to the edges) to no more than one-half the width of the face. Wane or the absence of wood is limited to one-third of the face on no more than 10 percent of the lot. Slope of grain deviation is limited to one in six. The material may be rough sawn or surfaced, full size, hit or miss, with a tolerance of 6-mm (¼-in.) for all dimensions.

Treatment:

Treating - American Wood-Preservers' Association (AWPA) – Book of Standards (BOS) U1-05 use category system UCS: user specification for treated wood; commodity specification B; Posts; Wood for Highway Construction must be met using the methods outlined in AWPA BOS T1-05 Section 8.2.

Each post treated shall have a minimum sapwood depth of 19 mm (3/4 in.) as determined by examination of the tops and butts of each post. Material that has been air dried or kiln dried shall be inspected for moisture content in accordance with AWPA standard M2 prior to treatment. Tests of representative pieces shall be conducted. The lot shall be considered acceptable when the average moisture content does not exceed 25 percent. Pieces exceeding 29 percent moisture content shall be rejected and removed from the lot.