Tie-Down Temporary Barrier System: Strap Fasteners

■ Fasteners used in the crash test were Red Head 19 mm drop-in anchor with 19 mm dia x 57 mm ISO Class 8.8 bolts.

- ISO Class 8.8 capscrews meet the mechanical and chemical requirements of ISO 898/I, ASTM F568 and SAE J1199.
- ASTM F568 is a metric specification. The equivalent US customary Specification is ASTM A449
- All Values shown based on $\mathrm{f}^{\prime} \mathrm{c}=\mathbf{4 0 0 0} \mathbf{~ p s i}$ concrete and 3/4" Anchor Dia. Embedment determined by linear interpolation.
- Required Ultimate Tension $=\mathbf{1 7 , 0 0 0} \mathrm{lbs}$. Required Ultimate Shear $=13,500 \mathrm{lbs}$. Values obtain from researcher.

NG = No Good
[1] Embedment required for an ultimate tension capacity of $17,000 \mathrm{lbs}$
2] Slab thickness must be 1.5 times the embedment (See the footnotes in the ICBO reports.). Therefore, these anchors will not work on thin bridge deck slabs.
[3] The manufacture's catalog values for ultimate tension are greater than the independent test results.

Results and Recommendations

There are three basic types of anchors:

1.) Drop-in Expandable Sleeve Anchors.

This type of anchor was used in the original test, but now is not considered adequate by the researcher.
Also, this type of anchor has an ultimate tension capacity well below the required ultimate tension capacity of 17,000 lbs
2.) Wedge Type Expansion Anchors.

This type of anchor will develop the required ultimate tension capacity, but at a depth that would preclude it's use on thin slabs
The ICBO Evaluation Reports note that the thickness of the concrete anchored into must be 1.5 times the embedment
3.) Concrete Screw Anchors.

These anchors meet the required ultimate tension capacity of $17,000 \mathrm{lbs}$. They have the advantage of easy removal.
They come in one inch incremental lengths. These are the anchors recommended for use by KDOT.

Concrete f'c $=4000 \mathrm{psi}$	Minimum ${ }^{[4]}$	Actual Required	Manufacture Catalog Ultimate ${ }^{[5]}$: 4000psi Concrete			Required	Manufacture's	Manufacture's Required	Thickness of Material
Concrete Screw Anchor:	Required Embedment	Field Embedment				Hole Depth	Anchor Length	Addition Depth	Being Anchored
Red Head LTD Anchors	4-1/4"	$4 "$	16178		18094	5"	4-1/2"	$1{ }^{\prime \prime}$	1/2"
Red Head LTD Anchors	4-1/4"	$5{ }^{\prime \prime}$	20904	4	23132	$6{ }^{\prime \prime}$	5-1/2"	$1{ }^{\prime \prime}$	1/2"
Power Fasteners Wedge-Bolt Anchor	4-5/8"	4-1/2"	16752		24800	5-1/4"	$5 "$	3/4"	1/2"
Power Fasteners Wedge-Bolt Anchor	4-5/8"	5-1/2"	20658		28665	6-1/4"	$6 "$	3/4"	1/2"
Simpson Titen HD Anchor	4-5/8"	4-1/2"	15980		22917	5-1/4"	$5 "$	$3 / 44^{[6]}$	1/2"
Simpson Titen HD Anchor	4-5/8"	5-1/2"	18401		24680	6-1/4"	$6 "$	$3 / 44^{[6]}$	1/2"

4] Embedment required for an ultimate tension capacity of $17,000 \mathrm{lbs}$
5] The Manufacture's recommend an allowable load based on a Safety Factor of 4
6] No information given in the Manufacture's documentation. One anchor diameter assumed.
The requirement of providing an Ultimate Tension Capacity of $17,000 \mathrm{lbs}$, severely limits the number of anchors which can be used. It is common practice that the anchor mbedment depth should be kept in the upper two-thirds of the concrete slab. For a typical 8 " thin slab this would be an embedment of $5-1 / 4^{\prime \prime}$ or less.
If this practice were to be observed, then only one anchor would meet both requirements (See: 4) and the other manufacture's would be eliminated because they
manufacture their anchors in whole inch increments. If the strength of the anchors used in the actual test were the criteria, then all three types of anchors could be used.

