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1 INTRODUCTION
1.1 Problem Statement

Over the last 30 years, severa bridge railing and median barrier systems have been
developed for safely redirecting heavy tractor-trailer vehicles. For al of those systems, the lower
portion of thereinforced concrete parapets consisted of asolid barrier with either avertical or sloped
front-face geometry. As such, none of these barrier systems were purely configured as abeam and
post system. For years, beam and post railing systems(i.e., open concrete bridgerailings) have been
used throughout the United States (U.S.) for several reasons. First, theseopenrailing systemsreadily
allow for water to drain over the deck edge. Second, these railing systemsreduce the propensity for
snow accumul ation adjacent to the parapet’ sbase during high-wind situationsaswell asduring snow
removal operations. Finally, these railing systems provide improved aesthetics through the use of
an open rail configuration, often an open concrete rail. Consequently, the existing open concrete
bridgerailingswere devel oped to redirect small cars, sedans, light trucks, and single-unit trucks but
not heavy, tractor-trailer vehicles.

In 2002, the Nebraska Department of Roads (NDOR) determined that there existed a need
for anew bridge railing system that would: (1) redirect heavy, tractor-trailer vehicles; (2) provide
increased motorist safety by using a more vertical front-face geometry; (3) provide adequate
hydraulic water runoff and reduced propensity for snow accumulation; and (4) exhibit improved
aesthetic qualities. Assuch, NDOR partnered with the Midwest Roadside Safety Facility (MwWRSF)
of the University of Nebraska-Lincolnin order to develop anew, high-performance, aesthetic, open

concrete bridge railing for attachment to reinforced concrete bridge decks.



1.2 Objective

The objective of the research project wasto design an aesthetic open concrete bridgerailing
system and evaluate its safety performance through full-scale crash testing. The bridge rail system
wasto be evaluated according to the Test Level 5 (TL-5) safety performance criteriaset forthinthe
National Cooperative Highway Research Program (NCHRP) Report No. 350, Recommended
Procedures for the Safety Performance Evaluation of Highway Features (1).
1.3 Scope

The research objective was achieved by performing several tasks. First, aliterature review
was conducted on previously crash tested bridge rails and median barriers using tractor-trailer
vehicles. Next, a conceptual development and design phase was undertaken to determine the
appearance, geometry, and general configuration of the barrier system. After the final design was
completed, the bridge rail system was fabricated and constructed at the MWRSF’ s outdoor test
facility. Following the fabrication of the bridge system, one full-scale vehicle crash test was
performed using atractor/van trailer, weighing approximately 36,000 kg (79,366 |bs), with atarget
impact speed and an angle of 80.0 km/h (49.7 mph) and 15 degrees, respectively. Finally, the test
results were analyzed, evaluated, and documented. Additional structural analysis and design for
severa variationsof theoriginal TL-5 aesthetic open concrete bridgerail wasalso performed. These
designvariationswill be contained in an alternative publication. Conclusionsand recommendations

werethen madethat pertain to the safety performance of the aesthetic concrete bridgerailing system.



2LITERATURE REVIEW AND BARRIER INVESTIGATION

For this study, a literature review was performed in order to acquire information on the
testing of barrier systems capable of redirecting heavy, tractor-trailer vehicles. The information
garnered from this review was used to provide insight into the actual design lateral impact |oad as
well asthe minimum barrier configuration (i.e., reinforcement, size, thickness, structural capacity,
anchorage, etc.) deemed necessary to redirect heavy vehicles. For this study, results from previous
crashtestsconductedintorigid barrier systemswere deemed more appropriatefor consideration and
further evaluation, thus resulting in the selection of eleven tractor-trailer vehicle crash tests with
grossvehicleweightsranging approximately between 22,680 kg (50,000 | bs) and 36,287 kg (80,000
Ibs). These eleven tests were conducted on rigid bridge railings and median barriersin the 1980's
through the 1990's in the U.S. (2-11). All of these referenced crash tests were performed by the
Texas Transportation Institute (TTI) of Texas A&M University.

Tables 1 and 2 contain a summary of the test information and parameters for the tractor-
trailer barrier impactsidentified above. Table 3 containsasummary of thetest conditionsand results
for the tractor-trailer barrier impacts identified previously. Finally, barrier displacements and
calculated barrier capacities for selected barrier configurations chosen from these crash tests is
provided in Table 4.

As previously mentioned, abarrier’ sredirective capacity, R, can be determined using the
yield-line analysis and strength design procedure presented in References (12) and (13). For this
procedure, abarrier’ sredirective capacity islargely based on the moment capacity of thewall, M,,,
the cantilever capacity between the parapet and thefoundation, M, the capacity of additional beams

located near the top of the parapet, Mg, and the height of the parapet, H. In addition, R, is
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Table 4. Summary of Barrier Displacements and Barrier Capacities for Selected Heavy, Tractor-
Trailer Vehicle Crash Tests.

Barrier Yield-Line Redirective
L%Gt Ref S Oence Displacement Barrier Capacity, R, (kips)
' ' (in) TTI MWRSF

7046-3 4 NA NA NA
7046-4 4 NA NA NA
7046-9 4 NA NA NA
7069-13 8-9 NA 198 210
7069-10 8-9 NA 127 129

4798-13 3 NA NA Est. > 793®

7162-1 2 NA NA Est. > 158@
1 5-6 4.0 (Dynamic) NA NA
2416-1 7 10.8 (Dynamic) | NA NA
6 10 12 (P.S) NA NA
405511-2 11 NA 198 210

NA - Not available

P.S. - Permanent Set

@ - Vertical steel reinforcement was not used to anchor the parapet to the foundation nor to provide
the cantilevered moment capacity of the wall, M.. An estimate for the torsional capacity of the
reinforced wall provided abasisfor M for usewithintheyield-line analysis procedurefor concrete
parapets. An estimate for the barrier’ s redirective capacity, R, is shown above.

@ - Vertical steel reinforcement was not used to anchor the parapet to the foundation nor to provide
the cantilevered moment capacity of thewall, M. An estimate for the torsional capacity of the un-
reinforced wall provided abasisfor M for usewithintheyield-line analysis procedurefor concrete
parapets. An estimate for the barrier’s redirective capacity, R, is shown above.

11b =0.2248089 N
1lin.=25.4mm



significantly influenced by thelocation of theimpact region on the parapet. For example, an impact
within an interior region of the parapet provides increased redirective capacity over that occurring
near the end of or at an expansion joint within asimilarly reinforced parapet. As shown in Table 4,
R, valuesfor the F-shape and vertical concrete bridge railings have been determined by both TTI
and MwWRSF. For the F-shape bridge railing, TTI and MwRSF determined R, to be 565 and 574 N
(127 and 129 kips), respectively. For the vertical bridgerailing, TTI and MwWRSF determined R,
to be 881 and 934 N (198 and 210 kips), respectively. Therefore, it can be stated that the predicted
barrier capacities correlated reasonably well when determined by independent research
organizations.

In addition to thesetwo single-faced parapets, two other concrete parapetswere analyzed by
MwRSF researchers- theun-reinforced and reinforced versionsof the symmetric, New Jersey shape
concrete median barrier. These two parapets were determined to be of special interest sincethey are
includedin AASHTO’ s Roadside Design Guide (14) and typically are used in median applications
where protection for heavy trucks is desired. For both of these designs, no vertical steel
reinforcement was utilized to anchor the barrier systems to their foundations. However, a 76-mm
(3-in.) asphaltic concrete pad was placed near each barrier’s base and on both sides in order to
provide resistance to lateral movement.

During both crash tests, the full-size New Jersey barriers redirected the impacting tractor-
trailer vehicles without significant consequence. For both configurations, the barriers appeared to
have remained attached to the foundation surface without rotation upward nor backward. Since no
physical attachment was provided between each barrier and its foundation, there must have been

other mechanisms which contributed to the barrier’ s effective cantilevered moment capacity, and



ultimately to the barrier’s overall redirective capacity. Other possible mechanisms for resisting
barrier uplift and rotation may haveincluded: (1) the barrier’ storsional capacity; (2) the downward
vehicular load applied to the barrier resulting from atrailer box leaning on the top of the parapet;
(3) the barrier’s dead weight based on an unknown effective length and limited by the barrier’s
bending capacity about thetransverse barrier axis; (4) thetrans ational and rotational inertial forces
generated as a result of the significant barrier mass and resistance to movement; and (5) the
frictional forces generated between the asphaltic concrete overlay and the toe of the concrete
barrier’ straffic-side face while based on some effective length.

Although several mechanismsmay actually contribute to the cantilevered moment capacity,
MwRSF researchersbelieved that the barrier’ storsional capacity may havethelargest influence on
this M. parameter out of the five items listed above. An attempt was then made to quantify the
torsional capacitiesfor both the un-reinforced and reinforced versionsof the 1,067-mm (42-in.) high
symmetric, New-Jersey shape concrete median barrier using the elementary procedures identified
in reinforced concrete design texts published by Wang and Salmon (15) and MacGregor (16). For
the un-reinforced Ontario tall wall, the minimum nominal torsional capacity was believed to be
greater than or equal to 43.3 kN-m (489 kip-in). For the reinforced New Jersey parapet, the
minimum nominal torsional capacity was believed to be greater than or equal to 163.3 KN-m (1,845
kip-in). Torsional capacities were then adjusted using a reduction factor of ¢ = 0.85. Using the
analytical procedures described above, the redirective capacities for the un-reinforced Ontario tall
wall and reinforced New Jersey barrier were estimated to be greater than or equal to 703 N (158
kips) and 3,527 N (793 kips), respectively.

Based on these results, several conclusions can be made. First, the 1,067-mm (42-in.) tall,



reinforced New Jersey shape concrete median barrier provides significant reserve capacity above
that needed to redirect TL-5 tractor-trailer vehicles. Therefore, it isbelieved that thisbarrier should
be further optimized using a reduction of the longitudinal and vertical steel reinforcement.

Second, the redirective capacity of the non-reinforced Ontario tall wall was significantly
lower than that provided by the other 1,067-mm (42-in.) tall concrete parapets evaluated according
to the actual TL-5 impact conditions. Following areview of the test results, it should be noted that
some of the vehicle ballast broke loose and fell out of the side of the trailer box during the impact
event. |t was also observed that the trailer’ srear tandem axle assembly broke away from thetrailer
box prior to the impact between the barrier and the trailer’ s tandem axle. Therefore, the potential
existsthat the un-reinforced concrete median barrier may not have experienced the full impact |oad
nor the double load pulse that would have been observed had the ballast remained in place and the
rear tandem remained attached to the trailer. However, the non-reinforced Ontario tall wall was
found to meet the heavy vehicle impact safety standards.

Although TL-5 heavy vehicleimpactsinto un-reinforced concrete median barriersmay result
in increased barrier damage, barrier performance is still judged acceptable when the vehicle is

contained and redirected on the traffic-side face of the barrier system.

10



3 DESIGN IMPACT LOAD
3.1 Instrumented Wall Testing with Heavy Vehicles

In 1989, researchersat the TTI completed a study to determine the magnitude and duration
of the dynamic lateral |oads occurring when heavy vehiclesimpact rigid concrete barriers (4). Inan
effort to measure these loads, a 2,286-mm (90-in.) tall rigid concrete wall was constructed and
instrumented with load cells. Methodologies were also presented for calculating the impact force
from the onboard vehicle accelerometer data. For each test, a comparison was then made between
the measured dynamic wall loads and that determined from the vehicle accelerometers. A total of
ten full-scale vehicle crash tests were performed, consisting of a full-size sedan, pickup trucks,
Chevrolet Suburbans, a single-unit truck, an inter-city bus, tractor van-trailers, and a tractor tank-
trailer.

Three full-scale vehicle crash tests were performed with tractor-trailer vehicles ranging in
weight from approximately 22,680 kg (50,000 Ibs) to 36,287 kg (80,000 Ibs), as summarized in
Table5. For the 36,287-kg (80,000-1b) vehicletests, the peak impact forceswere measured to be 979
N (220kips) and 1,815 N (408 kips) for thevan- and tanker-styletrailers, respectively. During these
sametests, the peak impact forcesimparted to thewall by thetractor’ srear tandem axleswerefound
tobe 783 N (176 kips) and 943 N (212 kips) for the van- and tanker-style trailers, respectively. For
the 22,680-kg (50,000-1b) vehicletest, apeak impact force of 667 N (150 kips) wasimparted to the
wall, occurring as aresult of the impact by the tractor’s rear tandem axles.

Based on the 36,287-kg (80,000-1b) truck test results, alateral impact force between 783 N
(176 kips) and 943 N (212 kips) would seem appropriatefor designing 1,067-mm (42-in.) highrigid

parapets; since, therail design would be governed by theload imparted by the tractor’ srear tandem

11
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axles versus the peak load measured higher up the instrumented “tall” wall. Additionaly, if one
considered the results from the 22,680-kg (50,000-1b) truck test, a higher lateral impact load may
need to be considered than that discussed previously. In past research, it has been reported that the
lateral impact force is approximately proportional to the impact severity for a given test. For
convenience, the target impact severities for the 22,680-kg (50,000-1b) and 36,287-kg (80,000-1b)
truck test conditions have been provided in Table 6. Therefore, if an adjustment were made to the
lateral load based on an increase in impact severity for the TL-5 test condition, then the lateral
impact force would be increased by nearly 63 percent or to aforce level of 1,085 N (244 kips).
3.2 Load Estimation Using Linear Regression

Following areview of the instrumented wall results for both the 22,680-kg (50,000-1b) and
36,287-kg (80,000-Ib) tractor-trailer crash tests, it was determined that a more rational method for
estimating the design impact load was required. Therefore, MWRSF researchers performed alinear
regression on the estimated lateral peak |oad versusimpact severity for aselected number of tractor-
trailer tests. Thislinear regression analysis was conducted for both the total impact severity of the
tractor trailer aswell asfor the impact severity of the tractor’ srear tandem axles. For thisanalysis,
thelateral peak loads were cal culated using the 50-msec average lateral accel erations multiplied by
the corresponding weights (i.e., total vehicle weight or weight on tandems). The six tractor-trailer
crash tests used for thisinvestigation were TT1 test nos. 7069-10, 4798-13, 7162-1, 2416-1, 6, and
405511-2, as shown in Tables 1 through 4.

For thelinear regression analysisof theimpact |oad and severity data, the general curvewas
determined to be of the general form:

y=m*x+b (D)

13
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where y - barrier impact load, kips,
x - calculated impact severity, kip-ft,
m - slope of the line, and
b - vertical ordinate for the line at x=0 and set equal to 0.
For this case, the slope coefficient, m, was determined using the following expression:
m=Y x*y /Y x? 2
wherei = 1ton (n=6for thisanaysis).
From the analysis based on using the total vehicleimpact severity, thefollowing linear relationship
was determined:

Y = (0.5543) * X1, (3)

where Y - design impact load, kips, and
X;y - total vehicle impact severity, kip-ft.

Thisrelationship is shown graphically in Figure 1.
Fromthe analysi sbased on using theimpact severity for thetractor’ srear tandem axle, thefollowing
relationship was determined:

Y =(1.2988) * Xgr (4

where Y - design impact load, kips, and
Xy - Impact severity for tractor’ s rear tandem axle, kip-ft.

Thisrelationship is shown graphically in Figure 2.

Using Equation (3), the design impact |oad was estimated for two tractor-trailer vehicle test
cases, asprovided in Table 7a. For the TL-5 impact condition of NCHRP Report No. 350, adesign
impact load was calculated to be 1,081 N (243 kips). For the PL-3 impact condition found in
AASHTO' sGuide Specificationsfor Bridge Railings (17), adesignimpact |oad of 689 N (155 kips)

was determined.
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In order to use Equation (4) to estimate the design impact load, it was first necessary to
determine the weight carried by the tractor’ s rear tandem axles. For the eleven trucksidentified in
Tables 1 through 4, the average weight on the tractor’ srear tandem axle for the 22,680-kg (50,000-
Ib) and 36,287-kg (80,000-Ib) trucks were 9,640 kg (21,252 Ibs) and 15,488 kg (34,145 lbs),
respectively. Once the weights had been estimated, the corresponding impact severities were
calculated using the appropriate impact speed and angle of the test conditions. As shown in Table
7b, the estimate for the design impact |oad was then determined using Equation (4) for the TL-5and
PL -3 tractor-trailer impact conditions. For the TL-5 impact condition of NCHRP Report No. 350,
adesign impact load was calculated to be 1,103 N (248 kips). For the PL-3 impact condition found
in AASHTO' s Guide Specifications for Bridge Railings, adesign impact |oad of 681 N (153 kips)
was determined.

3.3 Final Peak Design L oad Range

In summary, the analytical investigation hasresulted in apeak design load ranging between

681 to 689 N (153 to 155 kips) and 1,081 to 1,103 N (243 to 248 kips) for the AASHTO PL-3 and

NCHRP 350 TL-5 impact conditions, respectively.
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4 DESIGN METHODOLOGY

4.1 Barrier Capacity Consider ations

Once peak lateral loads were determined, it was then necessary to compare that |oad to the
predicted capacitiesof existing railing configurations. Four barrier systemswere sel ected for further
examination: (1) the 1,067-mm (42-in.) tall F-Shape, half-section bridge railing system [test no.
7069-10] (8-9), asshownin Figures 3 and 4; (2) the 1,067-mm (42-in.) tall, vertical concrete bridge
railing system [test no. 405511-2] (11), asshown in Figures 5 and 6; (3) the 1,067-mm (42-in.) tall,
non-reinforced New Jersey Shape concrete median barrier, or “Ontario tall wall,” [test no. 7162-1]
(2), asshownin Figure 7; and (4) the 1,067-mm (42-in.) tall, reinforced New Jersey shape concrete
median barrier [test no. 4798-13] (3), as shown in Figure 8.

4.1.1 F-Shape, Half-Section Bridge Railing (PL-3 Impact Condition)

Asshownin Table 4, the F-Shape, half-section bridge railing system was estimated to have
a redirective barrier capacity, RW, ranging between 565 N (127 kips) and 574 N (129 kips)
according to the yield-line analysis procedures provided in References (12) and (13). For test no.
7069-10, the actual impact severitiesfor the entire vehicle and tractor’ srear tandemswere 361.5 kJ
(266.6 kip-ft) and 157.3 kJ (116.0 kip-ft), respectively. Theseimpact severitieswould haveresulted
in peak design loads, according to Equations 3 and 4, equal to 658 N (148 kips) and 672 N (151
kips), respectively.

During the crash test, the tractor-trailer vehicle was successfully redirected by the bridge
railing system and without damageto the parapet. However, using theyield-lineanalysisprocedure,
greater damage to the barrier system would have been expected under thisimpact condition since

the predicted peak |oad was approximately 17 percent greater than the rated redirective capacity.

20



Thisresult may indicatethat theyield-lineanalysis procedure underestimatestheredirective barrier

capacity of asolid, reinforced concrete parapet.

21
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4.1.2 Vertical Bridge Railing (PL-5 Impact Condition)

As shown in Table 4, the vertical concrete bridge railing system was estimated to have a
redirective barrier capacity, R, ranging between 881 N (198 kips) and 934 N (210 kips) according
to the yield-line analysis procedures provided in References (12) and (13). For test no. 405511-2,
the actual impact severities for the entire vehicle and tractor’ s rear tandems were 559.3 kJ (412.5
kip-ft) and 241.3kJ(178.0 kip-ft), respectively. Theseimpact severitieswould haveresulted in peak
design loads, according to Equations 3 and 4, equal to 1,019 N (229 kips) and 1,028 N (231 kips),
respectively.

During the crash test, the tractor-trailer vehicle was successfully redirected by the bridge
railing system, without damage to the parapet. From the yield-line analysis procedure, once again,
greater damage to the barrier system would have been expected since the predicted peak load was
approximately 13 percent greater than the rated redirective capacity. Again, thisresult may indicate
that the yield-line analysis procedure underestimates the redirective barrier capacity of a solid,
reinforced concrete parapet.

4.1.3 Non-Reinfor ced, New Jer sey Shape Concrete Median Barrier (PL-5 Impact Condition)

Asdiscussed in Chapter 2, the non-reinforced, New Jersey Shape concrete median barrier
successfully redirected a heavy, tractor-trailer vehicle. During the impact event, however, some
vehicle ballast became dislodged and fell outside of the trailer, and the trailer’ s rear tandem axle
assembly broke away fromthetrailer. For test no. 7162-1, the actual impact severitiesfor theentire
vehicle and tractor’'s rear tandems were 605.4 kJ (446.5 kip-ft) and 259.9 kJ (191.7 kip-ft),
respectively. These impact severities would have resulted in peak design loads, according to

Equations 3 and 4, equal to 1,099 N (247 kips) and 1,108 N (249 kips), respectively. With the

28



shifting ballast and significant trailer damage, it islikely that these estimated peak |oads would not
likely have been imparted to the barrier system. However, areview of the peak 0.050-sec average
lateral decelerations showed that asignificant lateral load was likely imparted to the barrier by the
tractor’s rear tandems.

Before crash testing, five shrinkage cracks were noted in the barrier. During the test, the
barrier appeared to have remained attached to the foundati on without rotation upward nor backward.
Following thetest, one of the original five cracksincreased in width from 4.8 mm (3/16in.) t0 6.35
mm (1/4in.), and anew crack, measuring 1.6 mm (1/16 in.) wide, formed upstream of impact.

Due to the interest in this barrier, MWRSF researchers attempted to estimate the barrier’s
redirective capacity using estimates of strengthsin lieu of the cantilevered moment capacity. Thus,
aspreviously discussed in Chapter 2, researchers substituted the barrier’ storsional capacity into the
yield-line analysis expression in order to approximate a minimum redirective capacity. Using a
conservativevauefor torsional strength, combined with amoment capacity of thewall set equal to
zero, a conservative estimate for the barrier’ s redirective capacity was found to be at least 703 N
(158 kips). It should be noted that this barrier capacity is much less than the 1,103-N (248-kip)
estimated load imparted to this parapet. Therefore, it is believed that other factors may have
contributed to the barrier’ s capacity. First, the torsional capacity may have been greater than the
conservative value used in the analysis. Second, frictional forces generated between the asphalt
overlay and the barrier’ s toe may have provided additional cantilevered capacity and resistance to
overturning. Third, other factorsidentified in Chapter 2 may also have contributed to an increased
barrier capacity. Finally, the trandlational and rotational inertial effects may have further aided in

the vehicle' s containment and redirection.
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This analysis demonstrates that the yield-line analytical procedure underestimates a solid,
concrete barrier’s redirective capacity.

4.1.4Reinfor ced, New Jer sey ShapeConcreteMedian Barrier (PL-51mpact Condition)

As discussed in Chapter 2, the reinforced, New Jersey Shape concrete median barrier
successfully redirected a heavy, tractor-trailer vehicle. For test no. 4798-13, the actual impact
severitiesfor the entire vehicle and tractor’ srear tandemswere 795.7 kJ (586.9 kip-ft) and 337.5 kJ
(248.9 kip-ft), respectively. These impact severities would have resulted in peak design loads,
according to Equations 3 and 4, equal to 1,446 N (325 kips) and 1,437 N (323 kips), respectively.
Using the peak 0.050-sec average lateral deceleration of 9.3 G’s multiplied by the weight on the
tractor’ s rear tandem axle of 15,427 kg (34,010 |bs), a peak lateral 0ad imparted to the reinforced
barrier was approximated to be 1,406 N (316 kips). Thisresult correlates very well with the results
obtained from Equations 3 and 4.

During the test, the barrier appeared to have remained attached to the foundation without
rotation upward or backward. Due to the interest in this barrier, MWRSF researchers attempted to
estimate the barrier’s redirective capacity using alternative strengths in lieu of the cantilevered
moment capacity. Researcherssubstituted the barrier’ storsional capacity intotheyield-lineanalysis
expression in order to approximate aminimum redirective capacity. Using aconservative valuefor
torsional strength, combined with acal culated moment capacity of thewall, aconservative estimate
for the barrier’s redirective capacity was found to be at least 3,527 N (793 kips). This barrier
capacity is much greater than the peak design load ranging between 1,081 N (243 kips) and 1,103
N (248 kips) for the TL-5 impact conditions. It should be noted that this estimated barrier capacity

would not be possible without the consideration of the torsional strength of the reinforced concrete
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parapet in the yield-line analytical procedure.

Once again, this analysis demonstrated that the yield-line analytical procedure
underestimates a solid, concrete barrier’ s redirective capacity.
4.2 Two Design Philosophies

Based on theimpact |oad investigation and the eval uation of existing barrier configurations
previously presented, MWRSF researchers evaluated the two basic philosophies for designing the
813-mm (42-in.) and 1,295-mm (51-in.) tall, F-shape, half-section concretebarriersto meet the TL-5
safety performance criteria. The first design philosophy consisted of using the new TL-5 design
impact load, which ranged between 1,081 N (243 kips) and 1,103 N (248 kips), in combination with
a “modified” yield-line analysis procedure. The “modified” yield-line analysis procedure
incorporates the torsional capacity of the solid, concrete parapet. Since limited analysis has been
conducted in order to investigate this hypothesis, it does not seem appropriate to employ this
“modified” analytical procedure at this time.

The second design philosophy utilized the existing yield-line analytical procedure in
combination with a scaled-down design impact load. This scaled-down design impact load
considered two major factors. (1) the redirective capacity of the successfully crash tested vertical
wall, as determined by both TTI and MwRSF, and (2) the difference between the actual impact
severity of test no. 405511-2 and thetarget impact severity for the TL-5 impact condition. Asshown
in Table 4, the redirective barrier capacity for the vertical wall was determined to be 881 N (198
kips) and 934 N (210 kips), as determined by TTI and MwRSF, respectively, thus resulting in an
average capacity of 907 N (204 kips). Thetarget impact severity for the TL-5 impact condition was

595.5 kJ (439.2 kip-ft) or approximately 6.5 percent greater than the impact severity for the actual
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crash test. Therefore, it was deemed appropriate to increase the required barrier capacity by 6.5
percent to the design impact load ranging between 939 N (211 kips) and 996 N (224 kips) or to an

average design impact load value of approximately 965 N (217 kips).
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5 CONCEPTUAL DEVELOPMENT OF A NEW BRIDGE RAILING
5.1 Structural and Geometric Consider ations

Aspreviously noted, the objective of thisresearch project wasto develop an aesthetic, open
concrete bridgerailing to meet the TL-5 safety performance criteria. For thiseffort and as discussed
in Chapter 4, a design impact load value of approximately 965 N (217 kips) was utilized to size
bridge railing system, more specifically, the reinforced concrete post and rail members as well as
the connection between the posts and the bridge deck. For the design, several configurations were
analyzed in order to obtain areasonable bridge railing system that met the design impact load. As
such, redirective barrier capacities were obtained using the yield-line analytical procedures
previously outlined for open concrete railings (12-13) and using a 2.44-m (8-ft) distributed length
for the applied load. A total of 513 design combinations were analyzed using clear gap openings
ranging between 0.91 to 2.44 m (3 to 8 ft) and variations in steel reinforcement and post and rail
geometries.

For thefinal open concrete rail design, aredirective capacity of approximately 925 N (208
kips) wascal culated using aheight of 813 mm (32in.) for the main longitudinal structural member’s
top front corner. Thisanalysisutilized aminimum 28-day concrete compressive strength of 34 MPa
(5,000 psi) and Grade 60 steel reinforcement. An upper caprailing, measuring 10-in. tall, wasplaced
on top of the main longitudinal structural member in order to bring the total barrier height to 1,067
mm (42 in.). The upper cap railing was deemed necessary for reducing theroll motion of thetrailer
box over the top of the railing by providing vertical support for the lower edge of the impact side
of the trailer. It is noted that the redirective capacity of the cap rail was not incorporated into the

barrier’s overall capacity for two reasons. First, it was not believed to significantly add to the
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barrier’ soverall lateral resistance. Second, during the vehicleto barrier contact, it was believed that
the cap rail may encounter moderate damage and/or fracture such that itslateral flexural resistance
would be negated even though its compressive strength would remain adequate to resist truck roll
and lean onto its upper surface.

The upper cap rail was also setback (distance) from the front face of the main longitudinal
structural member, starting at a height of 870 mm (34.25 in.) and continuing to the 1,067-mm (42-
in.) top height. Thisupper rail setback distance wasincorporated in order to reduce the potential for
the occupant’ s head to extend out of the side windows during oblique small car impacts and contact
thebarrier face. MWRSF researchersbelieved that theincorporation of an upper rail setback, varying
between 114 to 140 mm (4% and 5%>in.), would significantly reduce the serious risk to the
occupants during head-slap against the upper face of tall, rigid parapets.

Below the rail and at the post locations, the front face of the posts were setback
approximately 51mm (2 in.) from front face of the lower rail and approximately 89 mm (3%2in.)
away from the front face of two protruding longitudinal asperities. In addition, the leading edge of
the post on both the upstream and downstream sides was setback an additional 76 mm (3in.), thus
bringing the total setback away from the front face of the lower rail to 127 mm (5 in.). MwWRSF
researchers determined that the propensity for small car and pickup truck wheel snag against the
posts would be virtually eliminated by this setback.

The final open concrete bridge railing was configured with an 1,829-mm (6-ft 0-in.) long
clear gap opening between the outer ends of the 762-mm (30-in.) long by 267-mm (10%in.) wide
by 305-mm (12-in.) tall posts. Theconcrete postswere spaced on 2,591-mm (8-ft 6-in.) centers. This

configuration provided a sufficient gap opening width under the rail for water runoff and was



believed to provide a more open and aesthetic appearance for the motoring public. As previously
mentioned, two protruding longitudinal asperities were placed along the rail’ s front face for both
aesthetic and performance reasons. With regard to performance, MwWRSF researchers believed that
the asperitieswould provide increased vehicle to barrier interlock, thereby reducing the propensity
for small cars and light trucks to climb and/or vault the barrier system as well as decrease vehicle
instabilities during redirection.

Final and complete design details for the TL-5 open concrete bridge railing system are

provided in Chapter 7 of this report.
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6 TEST REQUIREMENTSAND EVALUATION CRITERIA
6.1 Test Requirements

Longitudinal barriers, such as aesthetic open concrete bridge rails, must satisfy the
requirements provided in NCHRP Report No. 350 to be accepted for use on National Highway
System (NHS) construction projects or as areplacement for existing systems not meeting current
safety standards. According to TL-5 criteriafound in NCHRP Report No. 350, the bridge railing
system must be subjected to threefull-scale vehicle crash tests. Thethree crash testsare asfollows:

1. Test Designation 5-10: An 820-kg (1,808-1b) small car impacting the bridge

railing system at anominal speed and angle of 100.0 km/h (62.1 mph) and 20
degrees, respectively.

2. Test Designation 5-11: A 2,000-kg (4,409-1b) pickup truck impacting the

bridgerailing system at anominal speed and angle of 100.0 km/h (62.1 mph)
and 25 degrees, respectively.

3. Test Designation 5-12: A 36,000-kg (79,366-1b) tractor-trailer unitimpacting

the bridge railing system at a nominal speed and angle of 80.0 km/h (49.7
mph) and 15 degrees, respectively.

Although the small car and pickup truck tests are used to evaluate the overall performance
of the length-of-need section and occupant risk problems arising from the snagging or overturning
of the vehicle, both tests were deemed unnecessary based on previous testing of open concrete
bridge railing systems. Performed by ENSCO, Inc. (18), an open concrete bridge railing system,
with a clear opening height of 330 mm (13 in.) and a post setback distance of 51 mm (2 in.), had
been successfully tested and evaluated in accordance with the performance criteria of NCHRP
Report No. 230, Recommended Procedures for the Safety Performance Evaluation of Highway

Appurtenances (19). Therefore, on the basis of the previous small car test results, an 820-kg (1,808-

Ib) small car crash test was considered unnecessary for thisproject. Inaddition, MWRSF researchers
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have conducted severa studies involving the analysis, design, testing, and evaluation of open
concretebridgerailing systems (20-23). For theseresearch efforts, two different saf ety performance
criteriawere utilized - the Performance Level 1 and 2 criteria provided in American Association of
State Highway and Transportation Officials(AASHTO’ s) Guide Specificationsfor Bridge Rails(17)
andthe Test Level 3 criteriain NCHRP Report No. 350 (1). Once again, the crash test results have
demonstrated that the use of a 330-mm (13-in.) clear opening height and a 51-mm (2-in.) post
setback distance were adequate for preventing excessive pickup truck wheel for oblique impacts
with ¥+ton pickup trucks. Therefore, a 2,000-kg (4,409-1b) pickup truck crash test was also
considered unnecessary for this project. The test conditions for TL-5 longitudinal barriers are
summarized in Table 8.
6.2 Evaluation Criteria

Evaluation criteriafor full-scale vehicle crash testing are based on three appraisal areas: (1)
structural adequacy; (2) occupant risk; and (3) vehicle trgectory after collision. Criteria for
structural adequacy are intended to evaluate the ability of the bridge railing to contain, redirect, or
allow controlled vehicle penetration in a predictable manner. Occupant risk eval uates the degree of
hazard to occupants in the impacting vehicle. Vehicle trgjectory after collision is ameasure of the
potential for the post-impact trgjectory of the vehicle to cause subsequent multi-vehicle accidents.
This criterion also indicates the potential safety hazard for the occupants of other vehicles or the
occupants of the impacting vehicle when subjected to secondary collisionswith other fixed objects.
These three evaluation criteria are defined in Table 9. The full-scale vehicle crash test was

conducted and reported in accordance with the procedures provided in NCHRP Report No. 350.
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Table 8. NCHRP Report No. 350 Test Level 5 Crash Test Conditions

Impact Conditions

Test Test Test Speed Evauation
Article Designation | Vehicle Angle Criteria®
(km/h) | (mph) | (degrees)
5-10 820C 100 62.1 20 A.D.FH.IKM
Longitudinal 511 2000p | 100 | 621 25 AD.FK.LM
Barrier
5-12 36000V | 80 497 15 A.D.GKM

! Evaluation criteriaexplained in Table 9.
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Table 9. NCHRP Report No. 350 Evaluation Criteriafor Crash Tests (1)

Structural
Adequacy

A.

Test article should contain and redirect the vehicle; the vehicle should not
penetrate, underride, or overridetheinstallation although controlled lateral
deflection of thetest article is acceptable.

Occupant
Risk

Detached elements, fragments or other debris from the test article should
not penetrate or show potential for penetrating the occupant compartment,
or present an undue hazard to other traffic, pedestrians, or personnel in a
work zone. Deformationsof, or intrusionsinto, the occupant compartment
that could cause serious injuries should not be permitted.

The vehicle should remain upright during and after collision although
moderate roll, pitching, and yawing are acceptable.

It is preferable, although not essential, that the vehicle remain upright
during and after collision.

Longitudinal and lateral occupant impact velocities should fall below the
preferred value of 9 m/s (29.53 ft/s), or at least below the maximum
allowable value of 12 m/s (39.37 ft/s).

Longitudinal and lateral occupant ridedown accel erationsshouldfall below
the preferred value of 15 g's, or at least below the maximum allowable
valueof 20g's.

Vehicle
Traectory

After collisionit is preferable that the vehicle's trgjectory not intrude into
adjacent traffic lanes.

The occupant impact velocity in the longitudinal direction should not
exceed 12 m/sec (39.37 ft/sec), and the occupant ridedown acceleration in
the longitudinal direction should not exceed 20 G’s.

The exit angle from the test article preferably should be less than 60
percent of test impact angle measured at time of vehicle loss of contact
with test device.
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7 DESIGN DETAILS

The test installation consisted of a reinforced, open concrete bridge rail attached to a
reinforced bridge deck system, as shown in Figures 9 through 13. The corresponding English-unit
drawings are shown in Appendix A. Photographs of the test installation are shown in Figures 14
through 19.

7.1 Bridge Substructure

One grade beam was constructed adjacent to the existing concrete slab. This grade beam
measured 457-mm (18-in.) wide by 318-mm (12.5-in.) high to the bottom of the bridge deck and
spanned the entire 37.03 m (121 ft - 6 in.) of bridge deck length. Steel reinforcement for this grade
beam consisted of No. 6 vertical bars spaced 305 mm (12 in.) on center which were tied to the
corresponding transverse deck bars. All steel reinforcement in the concrete grade beamswas Grade
60 epoxy-coated rebar.

Another grade beam was constructed 1,626 mm (64 in.) away from the existing concrete
slab. This grade beam measured 457-mm (18-in.) wide by 457-mm (18-in.) high and spanned the
entire 37.03 m (121 ft - 6 in.) of bridge deck length. The steel reinforcement for the grade beam
utilized No. 3 and 4 longitudinal barsand No. 6 vertical bars. Each of the four runsof No. 3 and six
runs of No. 4 longitudinal rebar was 36.93-m (121-ft 2-in.) long. The spacing of the longitudinal
barsare shownin Figures 9 through 11, 14, and 15. The length of thelongitudinal bar can bevaried
aslong as the minimum lap length of 610 mm (24 in.) ismaintained. The vertical barsin the grade
beam were 838-mm (33-in.) long and spaced 305 mm (12 in.) on center, as shown in Figures 9
through 11, 14, and 15.

The bridge deck measured 3,404-mm (134-in.) wide by 203-mm (8-in.) thick by 37.03-m
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(121-ft 6-in.) long. The concrete used for the concrete grade beams and the concrete deck consisted
of a Nebraska 47-BD Mix, with a minimum compressive strength of 34.47 MPa (5,000 psi). The
actual concrete compressive strength for the bridge deck on test day, as determined from concrete
cylinder testing, was found to be approximately 41.25 MPa (5,983 psi). A minimum concrete cover
of 51 mm (2in.) was used for all the rebar placed within the bridge deck, except for the bottom of
the bridge deck between the grade beam and existing concrete slab.

The steel reinforcement for the bridge deck utilized No. 4 and 5 longitudinal bars and No.
4, 5, and 6 transverse bars. Each of the eleven runs of No. 4 and twelve runs of No. 5 longitudinal
rebar was 36.93-m (121-ft 2-in.) long and spaced 305 mm (12 in.) on center. The length of the
longitudinal bar can be varied aslong as the minimum lap length of 610 mm (24 in.) is maintained.
Thetransverse barsin the bridge deck were 3.05-m (10-ft) long. The No. 4 and 6 transverse barsin
the top layer were alternated and spaced 152 mm (6 in.) on center. The No. 5 transverse barsin the
bottom layer were spaced 305 mm (12 in.) on center. The No. 6 bent bars in the bridge deck were
positioned near the existing concrete slab and spaced 305 mm (12 in.) on center. These bent bars
werelapped with and tied to the corresponding transverse deck bars. In addition, 1,067-mm (42-in.)
long No. 8 transverse bars were embedded 305 mm (12 in.) into the existing apron and spaced 305
mm (12in.) and 610 mm (24 in.) on center in theimpact and non-impact region, respectively. These
barswere lapped with and tied to the longitudinal deck bars. Bridge deck reinforcement details are
shown in Figures 9 through 15 and Appendix A.
7.2 Bridge Rail

The37.03-m (121-ft 6-in.) long, aesthetic open concrete bridgerail consisted of areinforced

concrete parapet, as shown in Figures 9, 11, 18, and 19 . The entire system was 356-mm (14-in.)
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wideby 762-mm (30-in.) deep with a1,067-mm (42-in.) top mounting height, as measured from the
top of the concrete bridge deck to the top of therail. The bridge rail was cast in place on top of the
concrete bridge posts with a 51-mm (2-in.) overhang on the front face of the posts and flush with
the back side of the posts. Fifteen bridge posts, measuring 267-mm (10.5-in.) wide by 762-mm (30-
in.) long by 305-mm (12-in.) high, were used to support the bridge rail. Bridge posts were spaced
2,591 mm (8 ft - 6 in.) on centers along the length of the bridge railing, as shown in Figures 9
through 11, 18, and 19.

The concrete used for the bridge rail and posts consisted of Nebraska 47-BD Mix, with a
minimum compressivestrength of 34.47 MPa (5,000 psi).Thebridgerail and postswerecast inplace
in two separate pours, half of the bridge rail and posts cast during each pour. The actual concrete
compressive strength for the first-half and second-half of the bridge rail and posts on test day, as
determined from concrete cylinder testing, were found to be approximately 37.46 MPa (5,434 psi)
and 39.43 MPa (5,720 psi), respectively. A minimum concrete cover of 51 mm (2 in.) was used for
all the rebar placed within the bridge rail and posts. All steel reinforcement in the bridge rail and
posts was Grade 60 epoxy-coated rebar. The bridge rail and post reinforcement details are shown
in Figures 9 through 17.

The steel reinforcement for the bridgerail utilized No. 6 longitudinal barsand No. 4 vertical
loop and U-shaped bars. Each of the ten longitudinal rebar was 36.93-m (121-ft 2-in.) long. The
length of the longitudinal bar can be varied as long as the minimum lap length of 610 mm (24 in.)
is maintained. The transverse and vertical spacings of the longitudinal bars varied, as shown in
Figures 10 through 12. The vertical loop bars were 1,276-mm (50.25-in.) long and were bent into

a rectangular shape. The longitudinal spacings of the vertical loop bars were 152 mm (6 in.) on
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center. Thevertical U-shaped barswere 1,143-mm (45-in.) longand werebentintoa® U” shape. The
longitudinal spacings of the vertical U-shaped bars were 305 mm (12 in.) on center.

The steel reinforcement for the bridge posts consisted of No. 4 bars for the horizontal loop
barsand No. 6 barsfor thevertical L-shaped bars, asshownin Figures 10 through 13. The horizontal
loop bars were 1,441-mm (56.75-in.) long and were bent into a rectangular shape. The vertical
spacings of the post loop barswere 95 mm (3.75in.) on center. The post-to-deck attachment utilized
thirteen vertical, L-shaped barsin each post, asshownin Figures 10 through 13. TheNo. 6 barswere
2,007-mm (79-in.) long. Thelongitudinal and transverse spacingsof thevertical, L-shaped barswere

approximately 102 mm (4 in.) on center.
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Figure 14. Bridge Deck Rebar Reinforcement
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Figure 15. Bridge Deck Construction
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Figure 19. NDOR’s TL-5 Aesthetic Open Concrete Bridge Rail
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8 TEST CONDITIONS
8.1 Test Facility

The testing facility is located at the Lincoln Air-Park on the northwest (NW) side of the
Lincoln Municipal Airport and isapproximately 8.0 km (5 mi.) NW of the University of Nebraska-
Lincoln.

8.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test
vehicle. Thedistancetravel ed and the speed of thetow vehiclewere one-half that of thetest vehicle.
Thetest vehiclewasreleased from the tow cable before impact with the bridgerail system. A digital
speedometer was located on the tow vehicle to increase the accuracy of the test vehicle impact
Speed.

A vehicle guidance system developed by Hinch (24) was used to steer the test vehicle. A
guide-flag, attached to the front-right wheel and the guide cable, was sheared off beforeimpact with
thebridgerail system. The9.5-mm (0.375-in.) diameter guide cablewastensioned to approximately
15.6 kN (3,500 Ibf), and supported lateraly and vertically every 30.48 m (100 ft) by hinged
stanchions. The hinged stanchions stood upright while holding up the guide cable, but asthevehicle
was towed down the line, the guide-flag struck and knocked each stanchion to the ground. For test
ACBR-1, the vehicle guidance system was 929.6-m (3,050-ft) long.

8.3 Test Vehicles

For test ACBR-1, a 1989 GMC Brigadier T/S Tractor with a 1989 Great Dane Trailer was

used asthetest vehicle. Thetest inertial and gross static weights were 35,822 kg (78,975 Ibs). The

test vehicleis shown in Figure 20, and vehicle dimensions are shown in Figure 21.
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Figure 20. Test Vehicle, Test ACBR-1
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Dote: ___8/21/03 Test Number: ACBR-1
Tractor:
VIN No.: 4GTT9C4C3KVB00398 Moke: General _Motors Model: Brigadier
Year: __1989 Odometer: 754,596
Trailer:
VIN No.:_1GAA9623LBOS6E236  Make: Great Dane Model: Brigadier
Year: 989
P R A
e T ]
- £ o ®
N— - w
! q\ -
OO0 MNEMOONN
v
LI ~ | A
G
—8 c D 3 F K —
\ v A v v
My My M3 Mg Ms
Vehicle Geometry — mm (in.)
A___2600 (102.375) G 5525 (217.5) N 83 (3.25) T 1080 (42.5)
B 711 (28) H 1854 (73) 0 556 (21.875) u 648 (25.5)
C 3683 (145) J 1797 (70.75) P 2019_(79.5) v 940 (37)
1] 1302 (51.25) K 927 (36.5) o 1822 (71.75) W 4007 (157.75)
E B331 (328) L 1232 (48.5) R 1965 (77.375)
F 1245 (49) M 984 (38.75) S 610 (24)
Mass — kg (ib.) Curb Test Inerticl Gross_Static

My 3651 _(8050) 3844 (8475) 3844 (8475)
Mo 3368 _(7425) 8596 (18950) 8596 (18950)
M3 2495 (5500) 8063 (17775) 8063 (17775)
Mgy 2234 (4925) 7269 (16025) 7269 (16025)
M5 2098 (4625) 8051 (17750) 8051 (17750)
M 13846 (30525) 35822 (78975) 35822 (7B975)

Note ony domage prior to test: Minor cosmetic, rusty tractor cab

Figure 21. Vehicle Dimensions, Test ACBR-1
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Thelongitudinal component of the center of gravity wasdetermined using the measured axle
weights. Thelocation of thefinal centersof gravity are shownin Figures20 and 21. Vehicle ballast,
consisting of steel panels, concrete barriers, and foam blocks, was used to obtain the desired test
weight.

Square black and white-checkered targets were placed on the vehicle to aid in the analysis
of the high-speed film and E/cam and Photron video, asshown in Figure 22. Checkered targetswere
placed on the center of gravity, on the driver’s side door, on the passenger’ s side door, and on the
roof of the vehicle. The remaining targets were located for reference so that they could be viewed
from the high-speed cameras for film analysis.

Thefront wheelsof thetest vehiclewerealigned for camber, caster, and toe-in valuesof zero
so that the vehicle would track properly aong the guide cable. Two 5B flash bulbs were mounted
on both the hood and roof of the vehicle to pinpoint the time of impact with the bridge rail on the
high-speed film, E/cam video, and Photron video. The flash bulbs were fired by a pressure tape
switch mounted on the front face of the bumper. A remote-controlled brake system wasinstalled in
the test vehicle so the vehicle could be brought safely to a stop after the test.

8.4 Data Acquisition Systems

8.4.1 Accelerometers

One triaxial piezoresistive accelerometer system with a range of +200 G's was used to
measuretheaccelerationinthelongitudinal, lateral, and vertical directionsat asamplerateof 10,000
Hz. The environmental shock and vibration sensor/recorder system, Model EDR-4M6, was
developed by Instrumented Sensor Technology (IST) of Okemos, Michigan and includes three

differential channelsaswell asthree single-ended channels. The EDR-4 was configured with 6 Mb
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C 82 (32.25) G 325 (128) K 175 (68.875) 0] 165 (65)
D 521 (205) H 595 (234.25) L 381 (150)

Figure 22. Vehicle Target Locations, Test ACBR-1
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of RAM memory and a 1,500 Hz lowpass filter. Computer software, “DynaMax 1 (DM-1)” and
“DADISP’, was used to analyze and plot the accel erometer data.

Another triaxial piezoresistive accelerometer systemwith arange of +200 G’ swasalso used
to measure the acceleration in the longitudinal, lateral, and vertical directions at a sample rate of
3,200 Hz. The environmental shock and vibration sensor/recorder system, Model EDR-3, was
developed by Instrumental Sensor Technology (IST) of Okemos, Michigan. The EDR-3 was
configured with 256 Kb of RAM memory and a 1,120 Hz lowpass filter. Computer software,
“DynaMax 1 (DM-1)" and “DADISP", was used to analyze and plot the accelerometer data.

It should be noted that the EDR-4 unit was located just beneath the tractor’s frame at the
centerline of the rear tandems. In addition, the EDR-3 unit was located at the longitudinal center of
gravity of the ballast on the trailer but below the trailer floor.

8.4.2 Rate Transducers

A Humphrey 3-axis rate transducer with a range of 360 degrees/sec in each of the three
directions (pitch, roll, and yaw) was used to measure the rates of motion of thetest vehicle. Therate
transducer was rigidly attached to the vehicle near the center of gravity of the test vehicle. Rate
transducer signals, excited by a 28-volt DC power source, were received through the three single-
ended channelslocated externally on the EDR-4M 6 and stored intheinternal memory. Theraw data
measurements were then downloaded for analysis and plotted. Computer software, “DynaMax 1
(DM-1)" and “DADIiSP’, was used to analyze and plot the rate transducer data

8.4.3 High-Speed Photography

For test ACBR-1, three high-speed 16-mm Red L ake L ocam cameras, with operating speeds

of approximately 500 frames/sec, were used to film the crash test. One Photron high-speed video

60



camera and five high-speed Red Lake E/cam video cameras, all with operating speeds of 500
frames/sec, were also used to film the crash test. Six Canon digital video cameras, with a standard
operating speed of 29.97 frames/sec, were also used to film the crash test. A Locam (with awide-
angle 12.5-mm lens), a high-speed Photron video camera (with a 12.5-mm lens), and three Canon
digital video camerawere placed abovethetest installation to provide afield of view perpendicular
totheground. A Locam, aCanon digital video camera, and aNikon F5 35-mm camerawere placed
downstream from the impact point and had a field of view parallel to the barrier. A high-speed
E/cam video camerawas placed downstream from theimpact point and behind thebarrier. A Locam,
ahigh-speed E/cam video camera, and aCanon digital video camerawere placed upstream fromthe
impact point and had afield of view parallel to the barrier. A high-speed E/cam video camerawas
placed upstream from the point of impact and behind the barrier and focused on post no. 3 of the
system. Another high-speed E/cam video camera was placed downstream from the point of impact
and behind the barrier and focused on post no. 4 of the system. Another high-speed E/cam video
camerawas placed downstream from the point of impact and behind the barrier and focused on post
no. 5 of the system. A Canon digital video camerawas placed on the traffic side of the barrier and
had afield of view perpendicular to the barrier. A schematic of all sixteen cameralocationsfor test
ACBR-1isshowninFigure 23. The Locam films, Photron video, and E/cam videos were analyzed
using the Vanguard Motion Analyzer, ImageExpress MotionPlus software, and Redlake Motion
Scope software, respectively. Actual cameraspeed and cameradivergence factorswere considered
in the analysis of the high-speed film.
8.4.4 Pressure Tape Switches

For test ACBR-1, five pressure-activated tape switches, spaced at 2-m (6.56-ft) intervals,
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were used to determine the speed of the vehicle beforeimpact. Each tape switch fired astrobe light
which sent an electronic timing signal to the dataacquisition system astheright-front tire of the test
vehicle passed over it. Test vehicle speed wasdetermined from el ectroni c timing mark datarecorded
using the"Test Point" software. Strobelightsand high-speed film analysisare used only asabackup

in the event that vehicle speed cannot be determined from the electronic data.
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9CRASH TEST NO.1

9.1 Test ACBR-1

The 35,822-kg (78,975-1b) tractor-trailer unit impacted the open concrete bridge rail at a
speed of 79.6 km/h (49.4 mph) and at an angle of 16.3 degrees. A summary of the test results and
sequential photographs are shown in Figure 24. The summary of the test results and sequential
photographs in English units are shown in Appendix B. Additional sequential photographs are
shown in Figures 25 through 29. Documentary photographs of the crash test are shown in Figures
30 and 31.
9.2 Test Description

Initial vehicleimpact occurred at the midspan between post nos. 3 and 4, asshownin Figure
32. Shortly after impact, the right-front corner of the right-front fender impacted the bridge rail
dightly downstream of the midspan between post nos. 3 and 4. At 0.018 sec after impact the
tractor’ sright-front fender crushed inward and upward and mounted the top of the barrier. At 0.056
sec, the tractor’ s left-front wheel rotated inward toward the engine as the tractor rolled clockwise
(CW). At 0.070 sec, the right-front fender mounted the bridge rail completely as the right-front
corner of the hood impacted the bridgerail and damaged the concrete. At this sametime, the tractor
began to redirect, and the trailer continued along the line of impact. At 0.090 sec, the tractor rolled
counter-clockwise (CCW) toward the bridge rail. At this same time, the right-front corner of the
fender intruded over the back edge of the bridge rail, and the concrete sustained extensive damage.
At 0.138 sec, the right-front corner of the hood intruded over the back edge of the bridge rail and
damage to the top of the concrete bridgerail continued. At this sametime, the left edge of the hood

near the windshield began to tear. At 0.160 sec, the tractor continued to roll CCW toward the rail



with the right-side exhaust pipe in contact with the bridgerail. At 0.172 sec, the right-front corner
of the trailer impacted the bridge rail near the original impact point and caused more extensive
concrete damage. At thissametime, thetractor yawed CW, and theroof hatch jarred open. At 0.206
sec, thetractor continued to yaw CW and thetrailer, which remained in contact with the bridgerail,
rolled dlightly CW toward the barrier. At this same time, the center of the hood was positioned near
the front edge of the bridge rail, the back portion of the hood continued to fracture near the
windshield, and the gap between the | eft-side door and | eft-front fender increased. At 0.238 sec, the
crack in the hood propagated toward the right side as the tractor continued to roll CW toward the
bridgerail. At thissametime, the deformed | eft-front tire assembly was airborne. At 0.260 sec, the
right-front corner of thetrailer intruded over the back-side edge of the bridgerail. At thissametime,
the CW rall of the tractor increased. At 0.290 sec, the tractor appeared to be redirecting. At 0.356
sec, the right-rear corner of the tractor contacted the bridge rail. At this same time, the extent of
intrusion of thetrailer’ sright-front corner increased. At 0.387 sec, thetrailer pitched slightly toward
the right-front corner. At 0.455 sec, the back edge of the tractor’ s hood pitched forward. At 0.483
sec, concrete damage increased dueto trailer contact. At 0.495 sec, the front of the tractor pitched
downward as the right-front fender disengaged from the tractor. At 0.519 sec, theright edge of the
front grill disengaged. At 0.545 sec, thetrailer exhibited significant CW roll toward the bridge rail
with the left-rear tandems off the ground. At 0.627 sec, the trailer continued to roll CW toward the
bridge rail, and the right-rear corner of the trailer began to intruded over the bridge rail. At 0.679
sec, the trailer’s right-rear corner intruded over the back side of the bridge rail as the trailer
experienced extensive CW roll. At 0.767 sec, alarge area of concrete, slightly upstream of impact,

began to crack asthetrailer tire contacted that area. At 0.809 sec, this same large area of concrete
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crumbled and disengaged from the rest of the bridge rail system. At 0.919 sec, the trailer
experienced increased CW roll and the bridge rail experienced increased concrete damage as the
trailer traveled along the system. At about 2 sec after impact, the vehicle lost all contact with the
bridge rail and exited the system at an angle of approximately 5 degrees. The vehicle came to rest
125.25 m (410 ft - 11 in.) downstream from impact and 52.82 m (173 ft - 3in.) laterally behind a
line projected parallel to the traffic-side face of the open concrete bridge rail. The tragjectory and
final position of the tractor-trailer unit are shown in Figures 24 and 33.

9.3 Barrier Damage

Damage to the open concrete bridge rail was moderate, as shown in Figures 34 through 52.
Barrier damage consisted of contact and gouge marks, concrete deck, post, and rail cracking, and
gpalling of the concrete. The length of vehicle contact aong the concrete bridge rail was
approximately 19 m (63 ft), which spanned from the upstream edge of post no. 3 through 305 mm
(12 in.) downstream from the downstream edge of post no. 10.

Black contact markswere found on the bottom groove of therail starting at 584 mm (23in.)
upstream from the upstream edge of post no. 4 through the upstream edge of post no. 5. Minor black
marks were also found on the bottom edge of the rail’ s bottom groove between post nos. 5 and 6.
Black contact marks were also found on the lower asperity of the rail beginning 381 mm (15 in.)
downstream from the downstream edge of post no. 3 and continuing for 610 mm (24 in.)
downstream. Black contact markswere also found on the lower asperity from the downstream edge
of post no. 5 through 457 mm (18 in.) upstream from the upstream edge of post no. 8. Additional
black contact marks were found on the lower asperity 940 mm (37 in.) downstream from the
upstream edge of post no. 9 through 1,041 mm (41 in.) upstream from the upstream edge of post no.
11. Black contact marks were found on the middle groove from the center of post no. 4 through
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midpoint between post nos. 5 and 6. From 203 mm (8 in.) downstream from the upstream edge of
post no. 3 through post no. 8, black contact marks were found on the upper asperity. A 2,718-mm
(207-in.) long black mark was also found on the upper asperity beginning 178 mm (7 in.)
downstream from the downstream edge of post no. 9. A 610-mm (24-in.) long black mark wasfound
on the top portion of the rail at the downstream edge of post no. 3. A 38-mm (1.5-in.) wide black
mark was found on the center of the rail’s top portion between post nos. 3 and 6. Rusty-yellow
colored markings were found on the top of the rail from post no. 4 to post no. 6.

Damage to the rail also consisted of major cracking. One 1.6-mm (0.0625-in.) wide crack
originated at the bottom edge of the bottom groove at 813 mm (32 in.) upstream of the upstream
edge of post no. 3 and continued to the top edge of thetop of therail at the downstream edge of post
no. 3. Another 1.6-mm (0.0625-in.) wide crack originated on the bottom edge of the bottom groove
at 864 mm (34 in.) upstream of the upstream edge of post no. 6 and continued up to the top edge of
the top of the rail near the upstream edge of post no. 6. A third 1.6-mm (0.0625-in.) wide crack
originated at the bottom edge of the bottom groove at 406 mm (16 in.) downstream of the upstream
edge of post no. 6 and propagated to the top edge of the rail’ s top portion near the upstream edge
of post no. 7. A fourth 1.6-mm (0.0625-in.) wide crack originated at the bottom edge of the bottom
grooveat 457 mm (18in.) upstream of the upstream edge of post no. 7 and continued to the top edge
of thetop of therail at the downstream edge of post no. 7. A fifth 1.6-mm (0.0625-in.) wide crack
originated at the bottom edge of the bottom groove at 610 mm (24 in.) downstream from the
downstream edge of post no. 7 and propagated to the damage at the top edge of the rail at post no.
8. A final 1.6-mm (0.0625-in.) wide crack originated at the bottom edge of the bottom groove at 508

mm (20 in.) upstream of the upstream edge of post no. 8 and continued to the top edge of the top of
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therail at the center of post no. 8. Minor cracks were also found in the rail between post nos. 1 and
10.

A 76-mm by 76-mm (3-in. by 3-in.) piece of concrete was removed from the rail’ s bottom
groove at 432-mm (17-in.) upstream from the upstream edge of post no. 7. Another piece of
concrete, measuring 76 mm by 102 mm (3in. by 4in.), wasremoved from therail’ s bottom groove
at 1,168-mm (46-in.) upstream from the upstream edge of post no. 8. Concrete surface damage was
found on the lower asperity between post nos. 3 and 6 and post nos. 9 and 11. The rail’s lower
asperity was completely removed between 381 mm (15 in.) and 610 mm (24 in.) upstream of the
upstream edge of post no. 4 and also from 686 (27 in.) upstream from the upstream edge of post no.
5 through the center of post no. 5. Concrete surface damage, approximately 178-mm (7-in.) long,
was found on the upper asperity beginning at the upstream edge of post no. 3. Concrete surface
damage was found on the top edge of the upper asperity from post no. 7 to post no. 8. Concrete
surface damage, 965-mm (38-in.) long, was found on the upper asperity beginning 762 mm (30in.)
upstream of the upstream edge of post no. 9. A major piece of concrete was removed from the top
portion of therail at post no. 3, as shown in Figures 34 and 36 through 42. The top portion of the
rail encountered minor concrete surface damage from post no. 3 through the midspan between post
nos. 7 and 8. The top portion of the rail also encountered major concrete damage at the midspan
between post nos. 7 and 8, as shown in Figures 34, 37, 39, 41, and 43. Minor concrete damage was
found on the rail’ stop portion from post no. 8 to post no. 9.

Damage to the deck consisted of cracking and concrete spalling at the posts, as shown in
Figures 46 through 52. At post no. 1, a406-mm (16-in.) long crack originated at the backside of the
deck and propagated toward the center of the deck. At post no. 2, a 660-mm (26-in.) long crack
originated at the back side of the deck and propagated toward the center of the deck. At both post
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nos. 3 and 7, a559-mm (22-in.) long crack originated at the backside of the deck and propagated
toward the center of thedeck. At post no. 4, a635-mm (25-in.) long crack originated at the back side
of the deck and propagated toward the center of the deck. At both post nos. 5 and 6, a483-mm (19-
in.) long crack originated at the back side of the deck and propagated toward the center of the deck.
At post no. 8, a305-mm (12-in.) long crack originated at the back side of the deck and propagated
toward the center of the deck. Concrete spalling of the concrete bridge deck was found at post nos.
1 through 6, as shown in Figure 46 through 52. Detailed sketches of the concrete failure and
cracking at post nos. 1 through 8 are shown in Appendix C.

Thebridgerail encountered minor permanent set deflections, and minor dynamic deflections
were also observed. The maximum dynamic lateral deflection, as determined from high-speed film
anaysis, was 285 mm (11.22 in.). The working width of the system was found to be 1,916 mm
(75.431in.).

9.4 Vehicle Damage

Exterior vehicle damage was moderate, as shown in Figures 53 through 57. Occupant
compartment deformations were negligible, as shown in Figure 58. The left side of the floorboard
opened up and the frame channel section was protruding into the occupant compartment, as shown
in Figure 58. The hood was fractured and disengaged from the rest of the tractor. The front bumper
disengaged from the lower-left connection on the long frame horn but remained attached at the
upper-left connection. The front bumper also buckled around the right-side frame horn and at the
left-sideend. Theleft-sidefiberglassfuel tank cover was creased and al so fractured at its midpoint.
The outer and front faces of theright-side fuel tank encountered heavy contact marks, the front face
was also crushed inward approximately 305 mm (12 in.), and the inner-lower corner wastorn open.
Theleft-side fender disengaged at the lower-front connection and the fiberglasswas fractured. The
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right-sidefender and lower fiberglass piece a so disengaged. Theright-side steel frame encountered
major deformations at the front, especially near the bumper attachment, and the long steel frame
member remai ned undamaged on the left-side. The lower-left side shock attachment and two of the
three |eft-side leaf springs disengaged; however, the right-rear suspension, springs, and right side
of thedrive shaft remai ned undamaged. Thebottom shock mount and theright-side axledisengaged.
Theinner left-side tie rod connection fractured at the ball joint. The side wall of the outer-left rear
tandem tire encountered a 610-mm (24-in.) long slice, and the rim encountered a 406-mm (16-in.)
long bend. Theleft-front tire only encountered scuff marks on thetire wall. Both right-rear tandem
tires encountered heavy scuff marks on their sidewalls and major rim damage around their entire
perimeters. Theright-sidefront wheel assembly was deformed upward and backward into theengine
compartment. Theright-front wheel lug nutswere ground down and had concrete embedded inthem.
The right-front wheel’ s steel rim encountered a 203-mm (8-in.) long dent, and minor scuff marks
werefound onthetire’ ssidewall. All components above the bottom of theleft- and right-side doors,
abovethefront axleand frame, and under the hood along with theleft-side fuel tank and battery box,
aswell as all window glass remained undamaged.

Scrape marks were found along the entire lower portion of the trailer’s right side due to
contact with the concrete bridgerail. The support framewas a so deformed along theright side. The
trailer’ sright-rear tandem wheels encountered significant steel rim damage and scuff marks on the
tire'souter sidewalls. Thetrailer’ s left-rear tandem wheels remained undamaged.

9.5 Occupant Risk Values

Although not required and assuming the accel erometer recorder readingscould privide some
measure of occupant risk, the tractor’s longitudinal and lateral occupant impact velocities were
determined to be 0.91 m/sec (2.99 ft/sec) and 5.50 m/sec (18.05 ft/sec), respectively, at thelocations
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of the EDR-4 and EDR-3 boxes. Likewise, the trailer’s longitudinal and lateral occupant impact
velocities were determined to be 1.08 m/sec (3.55 ft/sec) and 2.32 m/sec (7.60 ft/sec), respectively.
Similarly, the tractor's maximum 0.010-sec average occupant ridedown decelerations in the
longitudinal and lateral directionswere 8.05g'/-6.98 g'sand 6.06 g’'s/-7.91 g's, respectively. The
trailer’ smaximum 0.010-sec average occupant ridedown decel erationsinthelongitudinal and lateral
directionswere 3.52 g's/-2.17 g'sand 11.74 g's/-7.88 g's, respectively. Once again and although
ot required, it is noted that the occupant impact velocities (OIV’'s) and occupant ridedown
decelerations (ORD’ s) were within the suggested limits provided in NCHRP Report No. 350. The
results of the occupant risk, determined from the accel erometer data, are summarized in Figure 24.
Results are shown graphically in Appendix D.
9.6 Discussion

The analysis of the test results for test ACBR-1 showed that the aesthetic open concrete
bridgerail adequately contained and redirected the vehicle with controlled | ateral displacements of
the bridge rail. There were no detached elements nor fragments which showed potential for
penetrating the occupant compartment nor presented undue hazard to other traffic. Deformationsof,
or intrusioninto, the occupant compartment that could have caused seriousinjury did not occur. The
test vehicle did not penetrate nor ride over the bridge rail and remained upright during and after the
collision. Vehicle roll, pitch, and yaw angular displacements were noted, but they were deemed
acceptabl e because they did not adversely influence occupant risk safety criterianor causerollover.
After collision, the vehicle s trgjectory did not intrude into adjacent traffic lanes. In addition, the
vehicle sexit anglewaslessthan 60 percent of theimpact angle. Therefore, test ACBR-1 conducted
on the open concrete bridge rail was determined to be acceptable according to the TL-5 safety
performance criteriafound in NCHRP Report No. 350.
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0.050 sec

0.207 sec

0.311 sec

0.373 sec

0.475 sec

0.539 sec

Figure 25. Additional Sequential Photographs, Test ACBR-1
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0.000 sec 0.288 sec

0.050 sec 0.355 sec

0.076 sec 0.435 sec

0.146 sec 0.775 sec

0.198 sec 0.877 sec

Figure 26. Additional Sequential Photographs, Test ACBR-1
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0.000 sec 0.000 sec

0.082 sec 0.133 sec

0.300 sec

0.467 sec

RS il |

0.186 sec 0.534 sec
Figure 27. Additional Sequential Photographs, Test ACBR-1
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0.000 sec

0.133 sec 0.868 sec

!
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Figure 28. Additional Sequential Photographs, Test ACBR-1
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0.801 sec

Figure 29. Additional Sequential Photographs, Test ACBR-1
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Figure 30. Documentary Photographs, Test ACBR-1
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Figure 31. Documentary Photographs, Test ACBR-1
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Figure 32. Impact Location, Test ACBR-1
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Figure 33. Vehicle Final Position and Trajectory Marks, Test ACBR-1
81



Figure 34. Bridge Rail Damage, Test ACBR-1
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Figure 35. Bridge Rail Damage, Test ACBR-1
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Figure 36. Bridge Rail Damage, Test ACBR-1
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Figure 39. Traffic-Side Bridge Rail Damage at Spans Between Post Nos. 5through 8, Test ACBR-1
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Figure 41. Back-Side Bridge Rail Damage at Spans Between Post Nos. 5 through 8, Test ACBR-1
89



T-49DV 91 ‘v Yybnoays T 'SON 150d e afewreq ey abplig apis-oiel] zyainbiH

90



T-490V o1

‘8 YBNoJY1 G 'SON 1S0d e affewre( |y abplig epiS-olifel] ey ainbid

91



T-490V 191 ‘2T UBnouy) 6 'SON 150d Te abeweq |y aBpLg apIS-o1el L v 8B

92



Figure 45. Traffic-Side Bridge Rail Damage at Post Nos. 13 through 15, Test ACBR-1
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Figure 46. Back-Side Bridge Rail and Deck Damage at Post Nos. 1 through 3, Test ACBR-1
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Figure 47. Back-Side Bridge Rail and Deck Damage at Post Nos. 4 through 6, Test ACBR-1
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Figure 48. Back-Side Bridge Rail and Deck Damage at Post Nos. 7 through 9, Test ACBR-1
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Figure 52. Bridge Post No. 7 Damage, Test ACBR-1
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Figure 53. Vehicle Damage, Test ACBR-1
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Figure 54. Vehicle Damage, Test ACBR-1
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Figure 56. Vehicle Damage, Test ACBR-1
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Figure 57. Vehicle Damage, Test ACBR-1
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Figure 58. Occupant Compartment Damage, Test ACBR-1
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10 SUMMARY AND CONCLUSIONS
An aesthetic, open concrete bridge rail was developed, constructed, and full-scale vehicle
crash tested. One full-scale vehicle crash test, using atractor-trailer vehicle, was performed on the
bridgerailing system and was determined to be acceptableaccording to the TL-5 safety performance
criteriapresented in NCHRP Report No. 350. The bridgerailing safely redirected the tractor-trailer
vehicle with moderate barrier deflections. A summary of the safety performance evaluation is

provided in Table 3.
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Table 10. Summary of Safety Performance Evaluation Results

Evauation
Factors

Evauation Criteria

Test
ACBR-1

Test article should contain and redirect the vehicle; the
vehicle should not penetrate, underride, or override the
installation although controlled | ateral deflectionsof the
test article is acceptable.

Occupant
Risk

Detached elements, fragments or other debris from the
test article should not penetrate or show potential for
penetrating the occupant compartment, or present an
undue hazard to other traffic, pedestrians, or personnel
in awork zone. Deformations of, or intrusions into, the
occupant compartment that could cause seriousinjuries
should not be permitted.

It is preferable, athough not essential, that the vehicle
remain upright during and after collision.

Vehicle

After collison it is preferable that the vehicle's
trajectory not intrude into adjacent traffic lanes.

Trajectory M.

The exit angle from the test article preferably should be
less than 60 percent of test impact angle measured at
time of vehicle loss of contact with test device.

S - Satisfactory

M - Margind

U - Unsatisfactory
NA - Not Availabl

e
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11 RECOMMENDATIONS
An open concrete bridge rail, as described in this report, was developed and successfully
crash tested according to the TL-5 criteriafound in NCHRP Report No. 350. Theresults of thistest
indicate that this design is asuitable design for use on Federal-aid highways. However, any design
modifications made to the bridge railing system can only be verified through the use of full-scale

crash testing.
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APPENDIX A
English-Unit System Drawings
Figure A-1. Layout for NDOR’s TL-5 Aesthetic Open Concrete Bridge Rail (English)
Figure A-2. NDOR'’s TL-5 Aesthetic Open Concrete Bridge Rail Design Details (English)

Figure A-3. NDOR'’s TL-5 Aesthetic Open Concrete Bridge Rail Attachment to Existing Concrete
Design Details (English)

Figure A-4. NDOR'’s TL-5 Aesthetic Open Concrete Bridge Rail Design Typical Rail and Post
Details (English)

Figure A-5. NDOR’'s TL-5 Aesthetic Open Concrete Bridge Rail Design Reinforcement
Details (English)
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APPENDIX B
Test Summary Sheet in English Units, Test ACBR-1

Figure B-1. Summary of Test Results and Sequential Photographs (English), Test ACBR-1
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APPENDIX C
Concrete Damage Sketches, Test ACBR-1
Figure C-1. Concrete Damage — Back-side of Rail at Post Nos. 1, Test ACBR-1
Figure C-2. Concrete Damage — Back-side of Rail at Post Nos. 2, Test ACBR-1
Figure C-3. Concrete Damage — Back-side of Rail at Post Nos. 3, Test ACBR-1
Figure C-4. Concrete Damage — Back-side of Rail at Post Nos. 4, Test ACBR-1
Figure C-5. Concrete Damage — Back-side of Rail at Post Nos. 5, Test ACBR-1
Figure C-6. Concrete Damage — Back-side of Rail at Post Nos. 6, Test ACBR-1
Figure C-7. Concrete Damage — Back-side of Rail at Post Nos. 7, Test ACBR-1

Figure C-8. Concrete Damage — Back-side of Rail at Post Nos. 8, Test ACBR-1
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APPENDIX D
Accelerometer and Rate Transducer Data Analysis, Test ACBR-1

Figure D-1. Graph of 10-ms Average Longitudinal Deceleration (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-2. Graph of Longitudinal Occupant Impact Velocity (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-3. Graph of Longitudinal Occupant Displacement (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-4. Graph of 50-ms Average Longitudinal Deceleration (CFC 60 Filtered) of the Tractor,
Test ACBR-1

Figure D-5. Graph of 10-ms Average Lateral Deceleration (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-6. Graph of Lateral Occupant Impact Velocity (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-7. Graph of Lateral Occupant Displacement (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-8. Graph of 50-ms Average Lateral Deceleration (CFC 60 Filtered) of the Tractor,
Test ACBR-1

Figure D-9. Comparison Graph of Vehicle Accelerations (CFC 60 Filtered) of the Tractor,
Test ACBR-1

Figure D-10. Comparison Graph of 50-ms Average V ehicle Accel erations (CFC 60 Filtered) of the
Tractor, Test ACBR-1

Figure D-11. Comparison Graph of Vehicle Velocity Change (CFC 180 Filtered) of the Tractor,
Test ACBR-1

Figure D-12. Graph of 10-msAverage Longitudinal Deceleration (CFC 180 Filtered) of the Trailer,
Test ACBR-1

Figure D-13. Graph of Longitudinal Occupant Impact Velocity (CFC 180 Filtered) of the Trailer,
Test ACBR-1
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Figure D-14. Graph of Longitudinal Occupant Displacement (CFC 180 Filtered) of the Trailer,
Test ACBR-1

Figure D-15. Graph of 50-ms Average Longitudinal Deceleration (CFC 60 Filtered) of the Trailer,
Test ACBR-1

Figure D-16. Graph of 10-ms Average Lateral Deceleration (CFC 180 Filtered) of the Trailer,
Test ACBR-1

Figure D-17. Graph of Lateral Occupant Impact Velocity (CFC 180 Filtered) of the Trailer,
Test ACBR-1

Figure D-18. Graph of Lateral Occupant Displacement (CFC 180 Filtered) of the Trailer,
Test ACBR-1

Figure D-19. Graph of 50-ms Average Lateral Deceleration (CFC 60 Filtered) of the Trailer,
Test ACBR-1

Figure D-20. Comparison Graph of Vehicle Accelerations (CFC 60 Filtered) of the Trailer,
Test ACBR-1

Figure D-21. Comparison Graph of 50-ms Average V ehicle Accelerations (CFC 60 Filtered) of the
Trailer, Test ACBR-1

Figure D-22. Comparison Graph of Vehicle Velocity Change (CFC 180 Filtered) of the Traliler,
Test ACBR-1
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