

Midwest Pooled Fund Research Program Fiscal Years 2017-2019 (Years 27 through 29) Research Project Number TPF-5(193) Supplement #105 NDOT Sponsoring Agency Code RPFP-17-MGS-1

MGS WITH CURB AND OMITTED POST: EVALUATION TO MASH 2016 TEST DESIGNATION NO. 3-10

Submitted by

Scott K. Rosenbaugh, M.S.C.E., E.I.T. Research Engineer Cody S. Stolle, Ph.D. Research Assistant Professor

Kellon B. Ronspies, B.S.M.E. Graduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-393-19

April 12, 2019

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-393-19	2.		3. Recipient's Accession No.
4. Title and Subtitle MGS with Curb and Omitted Post: Evaluation to MASH 2016 Test Designation No. 3-10			5. Report DateApril 12, 20196.
7. Author(s) Rosenbaugh, S.K., Stolle, C.S., an	nd Ronspies, K.B.		8. Performing Organization Report No. TRP-03-393-19
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln			10. Project/Task/Work Unit No.
Main Office: Prem S. Paul Research Center at V Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract © or Grant (G) No. TPF-5 (193) Supplement #105
12. Sponsoring Organization Nan Midwest Pooled Fund Program			13. Type of Report and Period Covered Final Report: 2015 – 2019
Nebraska Department of Transpo 1500 Nebraska Highway 2 Lincoln, Nebraska 68502	rtation		14. Sponsoring Agency Code RPFP-17-MGS-1
15. Supplementary Notes Prepared in cooperation with U.S.	Department of Tr	ansportation Federal Highway	Administration

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

The use of curbs along roads is often required for certain functions such as drainage control, right-of-way reduction and sidewalk separation. However, curbs along roadways can adversely affect the interaction of errant vehicles with roadside barriers. When curbs are placed near guardrail systems, the propensity for vehicle underride, override, and instability increases. Additionally, the presence of drainage features often prevent the placement of guardrail posts, thus requiring a post to be omitted. Thus, the test installation evaluated herein consisted of the Midwest Guardrail System (MGS) placed with the front face of the guardrail located 6 in. (152 mm) behind a 6-in. (152-mm) tall, AASHTO Type B curb and one post omitted near the middle of the system, resulting in a 12.5-ft (3.8 m) span between two posts.

Test no. MGSCO-1 was conducted on standard MGS with the rail mounted 32 in. (813 mm) above the roadway. During test no. MGSCO-1, the W-beam ruptured at the splice located within the unsupported span, and the test vehicle penetrated behind the system and eventually rolled over. To strengthen the system, 37.5 ft (11.4 m) of nested rail was recommended for placement around the location of the omitted post. During test no. MGSCO-2, the vehicle was successfully contained and redirected without any evidence of rail tearing. The vehicle remained stable, and all of the vehicle decelerations met the allowable limits. Thus, test MGSCO-2 passed the safety criteria of MASH 2016 test designation no. 3-10. Additional testing according to MASH 2016 test designation no. 3-11 is recommended to complete the MASH 2016 testing matrix prior to the implementation of the system on roadways.

17. Document Analysis/Descriptors Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Test Level 3, Curb, Guardrail, Omitted Post, Nested W-Beam, MGS		 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
Omitted Post, Nested W-Beam, MGS19. Security Class (this report) Unclassified20. Security Class (this page) Unclassified		21. No. of Pages 185	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the state highway departments participating in the Midwest Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Jennifer Schmidt, Research Assistant Professor.

ACKNOWLEDGMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest Pooled Fund Program funded by the California Department of Transportation, Florida Department of Transportation, Illinois Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, New Jersey Department of Transportation, North Carolina Department of Transportation, South Department of Transportation, Virginia Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

R.K. Faller, Ph.D., P.E., Research Professor & MwRSF Director J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., E.I.T., Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer R.W. Bielenberg, M.S.M.E., E.I.T., Research Engineer J.D. Schmidt, Ph.D., P.E., Research Assistant Professor M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I M.T. Ramel, B.S.C.M., former Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T. Donahoo, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist M.A. Rasmussen, Former Engineering Technician Undergraduate and Graduate Research Assistants

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Illinois Department of Transportation

Filiberto Sotelo, Safety Evaluation Engineer Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Todd Shields, P.E., Maintenance Field Support Manager Katherine Smutzer, P.E., Standards Engineer

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Thomas Rhoads, P.E., Road Design Leader, Bureau of Road Design Brian Kierath Jr., Engineering Associate III, Bureau

of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Ronald Effland, P.E., ACTAR, LCI, Non-Motorized Transportation Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer Jim Knott, P.E., Construction Engineer Mike Owen, P.E., State Roadway Design Engineer Jodi Gibson, Research Coordinator

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development
D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer
Brian Mayhew, P.E., State Traffic Safety Engineer
Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

Mark H. Anthony, P.E., Letting Preparation Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Bernie Clocksin, P.E., Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

- Charles Patterson, P.E., Standards/Special Design Section Manager
- Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

- Erik Emerson, P.E., Standards Development Engineer
- Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGMENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xi
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	
3 DESIGN DETAILS – TEST NO. MGSCO-1	5
 4 TEST CONDITIONS. 4.1 Test Facility	21 21 21 29 29 29 29 29 29 29 29 30
 5 FULL-SCALE CRASH TEST NO. MGSCO-1 5.1 Selection of the Critical Impact Point 5.2 Static Soil Test 5.3 Weather Conditions 5.4 Test Description 5.5 Barrier Damage 5.6 Vehicle Damage 5.7 Occupant Risk 	33 34 34 35 35

6 DESIGN DETAILS	5 – TEST NO. MGSCO-2	
7 FULL-SCALE CRA	ASH TEST NO. MGSCO-2	71
7.1 Static Soil	Test	71
7.2 Weather C	Conditions	71
7.3 Test Desc	iption	71
7.4 Barrier Da	mage	
	amage	
7.6 Occupant	Risk	
	1	
	CONCLUSIONS	
10 APPENDICES		
Appendix A.	Material Specifications	
Appendix B.	Vehicle Center of Gravity Determination	
Appendix C.	Static Soil Tests	
Appendix D.	Vehicle Deformation Records	
Appendix E.	Accelerometer and Rate Transducer Data Plots, Test No. MGS	SCO-1 151
Appendix F.	Accelerometer and Rate Transducer Data Plots, Test No. MGS	SCO-2 168

LIST OF FIGURES

Figure 1. MGS Offset 6 in. (152 mm) from 6-in. (152-mm) AASHTO Type B Curb [3-5]	
Figure 2. System Layout, Test No. MGSCO-1	
Figure 3. System Profile, Curb Geometry, and Reinforcement Details, Test No. MGSCO-1	
Figure 4. Splice and Post Detail, Test No. MGSCO-1	
Figure 5. End Anchorage Detail, Test No. MGSCO-1	9
Figure 6. MGS End Anchorage Detail, Test No. MGSCO-1	
Figure 7. Post Nos. 3 through 27 Component Details, Test No. MGSCO-1	11
Figure 8. MGS BCT Timber Post and Foundation Tube Detail, Test No. MGSCO-1	
Figure 9. MGS BCT Anchor Cable, Test No. MGSCO-1	13
Figure 10. MGS BCT Post Components and Anchor Bracket, Test No. MGSCO-1	14
Figure 11. Groundline Strut Details, Test No. MGSCO-1	15
Figure 12. Rail Details, Test No. MGSCO-1	16
Figure 13. Attachment and Connection Hardware, Test No. MGSCO-1	17
Figure 14. Bill of Materials, Test No. MGSCO-1	18
Figure 15. Test Installation Photographs, Test No. MGSCO-1	19
Figure 16. Test Installation Photographs, Test No. MGSCO-1	
Figure 17. Test Vehicle, Test No. MGSCO-1	22
Figure 18. Vehicle Dimensions, Test No. MGSCO-1	
Figure 19. Test Vehicle, Test No. MGSCO-2	24
Figure 20. Test Vehicle's Undercarriage and Interior Floorboards, Test No. MGSCO-2	
Figure 21. Vehicle Dimensions, Test No. MGSCO-2	26
Figure 22. Target Geometry, Test No. MGSCO-1	
Figure 23. Target Geometry, Test No. MGSCO-2	
Figure 24. Camera Locations, Speeds, and Lens Settings, Test No. MGSCO-1	31
Figure 25. Camera Locations, Speeds, and Lens Settings, Test No. MGSCO-2	
Figure 26. Impact Location, Test No. MGSCO-1	36
Figure 27. Sequential Photographs, Test No. MGSCO-1	38
Figure 28. Additional Sequential Photographs, Test No. MGSCO-1	
Figure 29. Documentary Photographs, Test No. MGSCO-1	40
Figure 30. On-Board Documentary Photographs, Test No. MGSCO-1	
Figure 31. Vehicle Final Position, Test No. MGSCO-1	
Figure 32. System Damage, Test No. MGSCO-1	
Figure 33. System Damage, Post Nos. 14 through 18, Test No. MGSCO-1	44
Figure 34. Rail Damage, Upstream from Rupture, Test No. MGSCO-1	
Figure 35. Rail Damage, Downstream from Rupture, Test No. MGSCO-1	46
Figure 36. Rail Rupture at Splice, Test No. MGSCO-1	
Figure 37. Vehicle Damage, Test No. MGSCO-1	
Figure 38. Additional Vehicle Damage, Test No. MGSCO-1	50
Figure 39. Vehicle Windshield Damage, Test No. MGSCO-1	
Figure 40. Occupant Compartment and Undercarriage Damage, Test No. MGSCO-1	52
Figure 41. Summary of Test Results and Sequential Photographs, Test No. MGSCO-1	
Figure 42. System Layout, Test No. MGSCO-2	
Figure 43. System Profile, Curb Geometry and Reinforcement Details, Test No. MGSCO-2	
Figure 44. Splice and Post Detail, Test No. MGSCO-2	
Figure 45. End Anchorage Detail, Test No. MGSCO-2	

Figure 46. MGS End Anchorage Detail, Test No. MGSCO-2	61
Figure 47. Post Nos. 3 through 27 Component Details, Test No. MGSCO-2	62
Figure 48. MGS BCT Timber Post and Foundation Tube Detail, Test No. MGSCO-2	63
Figure 49. MGS BCT Anchor Cable, Test No. MGSCO-2	
Figure 50. MGS BCT Post Components and Anchor Bracket, Test No. MGSCO-2	65
Figure 51. Groundline Strut Details, Test No. MGSCO-2	
Figure 52. Rail Details, Test No. MGSCO-2	
Figure 53. Attachment and Connection Hardware, Test No. MGSCO-2	
Figure 54. Bill of Materials, Test No. MGSCO-2	
Figure 55. Test Installation Photographs, Test No. MGSCO-2	
Figure 56. Impact Location, Test No. MGSCO-2	72
Figure 57. Sequential Photographs, Test No. MGSCO-2	74
Figure 58. Additional Sequential Photographs, Test No. MGSCO-2	
Figure 59. Additional Documentary Photographs, Test No. MGSCO-2	
Figure 60. Additional Documentary Photographs, Test No. MGSCO-2	
Figure 61. Vehicle Final Position and Trajectory Marks, Test No. MGSCO-2	
Figure 62. System Damage, Test No. MGSCO-2	80
Figure 63. Additional System Damage, Test No. MGSCO-2	81
Figure 64. System Damage, Post Nos. 13 and 14, Test No. MGSCO-2	
Figure 65. System Damage, Post Nos. 15 through 18, Test No. MGSCO-2	
Figure 66. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
MGSCO-2	
Figure 67. Vehicle Damage, Test No. MGSCO-2	
Figure 68. Additional Vehicle Damage, Test No. MGSCO-2	
Figure 69. Occupant Compartment and Undercarriage Damage, Test No. MGSCO-2	
Figure 70. Summary of Test Results and Sequential Photographs, Test No. MGSCO-2	90
Figure A-1. 12-ft – 6-in. (3.8-m) W-Beam MGS Section and End Section, Test Nos.	0.0
	98
Figure A-2. 6-ft – 3-in. (1.9-m) W-Beam MGS Section, Test Nos. MGSCO-1 and	99
MGSCO-2 Figure A-3. 72-in. (1,829-mm) Long Steel Post, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-4. 72-in. (1,829-mm) Long Steel Post, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-4. 72-in. (1,829-init) Long Steel Post, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-5. Timber Blockout for Steel Posts, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-0. Timber Blockout for Steel Posts, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-8. Double-Headed Nails, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-9. BCT Timber Post, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-10. Foundation Tube, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-11. Ground Strut Assembly, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-12. Ground Strut Assembly, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-13. BCT Post Sleeve, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-14. Anchor Bearing Plate, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-15. Anchor Bracket Assembly, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-16. BCT Anchor Cable, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-17. 14-in. (356-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-18. 14-in. (356-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2	
Figure A-19. ⁵ / ₈ -in. (16-mm) Diameter Nut, Test Nos. MGSCO-1 and MGSCO-2	
	-

Figure A-20. 10-in. (254-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2117 Figure A-21. 10-in. (254-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2118 Figure A-22. 1¹/₄-in. (32-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2119 Figure A-23. 1¹/₄-in. (32-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2120 Figure A-24. 10-in. (254-mm) Long Hex Head Bolt, Test Nos. MGSCO-1 and MGSCO-2.....121 Figure A-25. %-in. (16-mm) Diameter Hex Nuts, Test Nos. MGSCO-1 and MGSCO-2.....122 Figure A-26. 1¹/₂-in. (38-mm) Long Hex Head Bolt, Test Nos. MGSCO-1 and MGSCO-2......123 Figure A-27. 8-in. (203-mm) Long Hex Head Bolt, Test Nos. MGSCO-1 and MGSCO-2......124 Figure A-28. ⁷/₈-in. (22-mm) Diameter Nuts, Test Nos. MGSCO-1 and MGSCO-2......125 Figure A-29. 7/8-in. (22-mm) Diameter Washer, Test Nos. MGSCO-1 and MGSCO-2.....126 Figure A-30. Curb Concrete, Test Nos. MGSCO-1 and MGSCO-2127 Figure A-31. 819-in. (20,803-mm) Long Rebar, Test Nos. MGSCO-1 and MGSCO-2.....128 Figure A-32. 16-in. (406-mm) Long Rebar, Test Nos. MGSCO-1 and MGSCO-2.....129 Figure B-1. Vehicle Mass Distribution, Test No. MGSCO-1......131 Figure B-2. Vehicle Mass Distribution, Test No. MGSCO-2......132 Figure C-1. Soil Strength, Initial Calibration Tests, Test No. MGSCO-1......134 Figure C-3. Soil Strength, Initial Calibration Tests, Test No. MGSCO-2......136 Figure C-4. Static Soil Test, Test No. MGSCO-2137 Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSCO-1......139 Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSCO-1......140 Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. MGSCO-1141 Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. MGSCO-1142 Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSCO-1......143 Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSCO-1144 Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSCO-2.....145 Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSCO-2.....146 Figure D-9. Occupant Compartment Deformation Data - Set 1, Test No. MGSCO-2147 Figure D-10. Occupant Compartment Deformation Data - Set 2, Test No. MGSCO-2.....148 Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSCO-2......149 Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSCO-2150 Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSCO-1152 Figure E-2. Longitudinal Occupant Velocity (SLICE-1), Test No. MGSCO-1153 Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSCO-1......154 Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSCO-1......155 Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSCO-1156 Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSCO-1157 Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSCO-1......158 Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGSCO-1......159 Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSCO-1160 Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSCO-1.....161 Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSCO-1.....162 Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSCO-1.....163 Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSCO-1164 Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSCO-1165 Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSCO-1......166 Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGSCO-1167

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSCO-2	169
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSCO-2	170
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSCO-2	171
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSCO-2	172
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSCO-2	173
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. MGSCO-2	174
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. MGSCO-2	175
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. MGSCO-2	176
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSCO-2	177
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSCO-2	178
Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSCO-2	179
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSCO-2	180
Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSCO-2	181
Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. MGSCO-2	182
Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. MGSCO-2	183
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. MGSCO-2	184

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	4
Table 3. BARRIER VII Simulation Results	34
Table 4. Weather Conditions, Test No. MGSCO-1	35
Table 5. Sequential Description of Impact Events, Test No. MGSCO-1	37
Table 6. Maximum Occupant Compartment Intrusion by Location	53
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSCO-1	54
Table 8. Weather Conditions, Test No. MGSCO-2	71
Table 9. Sequential Description of Impact Events, Test No. MGSCO-2	73
Table 10. Maximum Occupant Compartment Intrusion by Location	88
Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSCO-2	89
Table 12. Summary of Safety Performance Evaluation	92
Table A-1. Bill of Materials, Test Nos. MGSCO-1 and MGSCO-2	97

1 INTRODUCTION

1.1 Background

The use of curbs along roads is often required for certain functions such as drainage control, right-of-way reduction and sidewalk separation. However, curbs along roadways can adversely affect the interaction of errant vehicles with roadside barriers. When curbs are placed near guardrail systems, the propensity for vehicle underride, override, and instability increases. The Midwest Guardrail System (MGS) installed behind curbs is a common hardware configuration used by state departments of transportation (DOT) that had not yet been evaluated to the *Manual for Assessing Safety Hardware* (MASH 2016) Test Level 3 (TL-3) conditions [1-2]. During the early development of the MGS, the guardrail system was successfully crash tested in combination with a curb to National Cooperative Highway Research Program (NCHRP) Report No. 350 TL-3 requirements [3-5]. The curb was placed at a 6-in. (152-mm) offset from the front face of the guardrail, as shown in Figure 1. However, only the small pickup truck test 3-11 was conducted to verify the crashworthiness of the system installed adjacent to a curb.

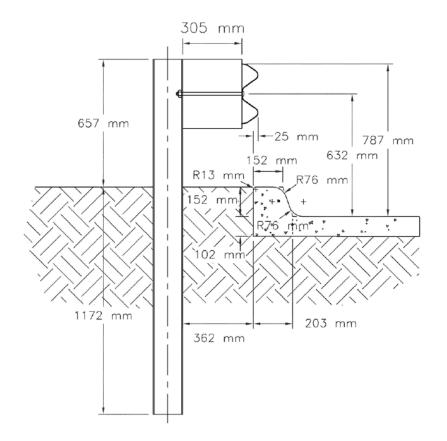


Figure 1. MGS Offset 6 in. (152 mm) from 6-in. (152-mm) AASHTO Type B Curb [3-5]

Roadside obstructions sometimes prevent proper post placement within a run of guardrail. To avoid obstacles, one approved alternative is to install a long-span system for an unsupported span up to 25 ft wide (7.6 m). However, the MGS long-span system developed at the Midwest Roadside Safety Facility (MwRSF) requires the use of three CRT posts adjacent to the unsupported span to prevent pocketing and high rail tension [6].

Previously, the MGS with an omitted post without the use of CRT posts was crash tested to MASH 2016 TL-3 test no. 3-11 and adequately redirected the 2270P pickup truck when installed on level terrain and in a tangent configuration [7]. Concerns existed that the omission of a single post within a standard length of MGS guardrail would lead to high rail loads, barrier pocketing, and vehicle instability. In order to evaluate the performance of the MGS with a single omitted post, a full-scale crash test was performed according to the TL-3 safety performance criteria defined in MASH 2016, test designation no. 3-11 [7]. Test no. MGSMP-1 consisted of a 4,934-lb (2,238-kg) pickup truck impacting the MGS with an omitted post at a speed of 63.4 mph (102.1 km/h) and an angle of 25.3 degrees. The vehicle was contained and smoothly redirected, and test no. MGSMP-1 met the MASH 2016 safety criteria.

Following the evaluation of the MGS with an omitted post, MwRSF considered the application of an omitted post when a curb was present. The MGS in combination with curbs has never been evaluated with a small car or to the safety performance criteria of MASH 2016. Recent MASH 2016 small car testing of the MGS stiffness transition with curb resulted in W-beam rail rupture due to partial vehicle underride and a vertical load being imparted to the rail [8]. An omitted post within an MGS installation with curb may cause similar results as the vehicle would be allowed to travel farther into the system and impart vertical loads to the W-beam rail and splices. There is also potential for the combination of an omitted post and curb to increase rail loading, rail pocketing, and vehicle instability when impacted with the 2270P vehicle. Therefore, the Midwest Pooled Fund member states funded a research study to evaluate the performance of the MGS installed with an omitted post and in conjunction with a 6-in. (152-mm) tall AASHTO Type B curb.

1.2 Objective

The objective of this research was to evaluate the performance of the MGS installed with the face of the rail offset 6-in. (152-mm), as measured from the face at mid-height of the 6-in. (152-mm) tall AASHTO Type B curb with a single omitted post according to MASH 2016 TL-3 safety criteria. Both MASH 2016 test designation nos. 3-10 and 3-11 were originally to be included in the evaluation. However, due to the failure observed during test no. MGSCO-1, a MASH 2016 test designation no. 3-10 criteria. As such, MASH 2016 test designation no. 3-11 was not conducted during this research study.

1.3 Scope

The research objective was achieved through the completion of several tasks. The MGS with a 6-in. (152-mm) offset from a 6-in. (152-mm) tall, AASHTO Type B curb was designed and drawn in CAD. Barrier VII was used to identify the critical impact point of the system based on stiffness and the likelihood for rail rupture or release. A full-scale test was conducted according to MASH 2016 test designation no. 3-10, which resulted in a failure. After the test failure, the system was redesigned by nesting the 12-gauge metric W-beam rail around the omitted post location. An additional full-scale test was conducted according to MASH 2016 test designation no. 3-10. Following the successful completion of the second test, test results were analyzed, evaluated and documented. Conclusions and recommendations were then made pertaining to the safety performance of the MGS with a curb and an omitted post.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as W-beam guardrails, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [1]. Note that there is no difference between MASH 2009 [2] and MASH 2016 for longitudinal barriers, such as the system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. Note, both crash tests described herein were conducted in accordance with MASH 2016 test designation no. 3-10. Evaluation of the system according to MASH 2016 test designation no. 3-11 will need to be completed in a separate project in order to complete the testing matrix.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight lb (kg)	Speed mph (km/h)	Angle deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the MGS installed 6 in. (152 mm) behind the face at mid-height of an AASHTO Type B curb to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016.

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	 D. Detached elements, fragments or other debris from the test article shou not penetrate or show potential for penetrating the occupa compartment, or present an undue hazard to other traffic, pedestrians, personnel in a work zone. Deformations of, or intrusions into, th occupant compartment should not exceed limits set forth in Section 5.2 and Appendix E of MASH 2016. 					
	F.	The vehicle should remain u maximum roll and pitch angles				
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant In	npact Velocity Limit	s		
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s(12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component Preferred Maximu				
		Longitudinal and Lateral	15.0 g's	20.49 g's		

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 (W152x23.8) posts are installed near the impact region utilizing the same installation procedures are the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm). If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

3 DESIGN DETAILS – TEST NO. MGSCO-1

The test installation consisted of 12-gauge (2.7-mm) AASHTO M180 standard W-beam guardrail, W6x8.5 steel posts with timber blockouts, and MGS end anchorages. The total system length was 182 ft – $3\frac{1}{2}$ in. (55.6 m). The system was installed with the face of the guardrail located 6 in. (152 mm) behind the face of a 6-in. (152-mm) tall AASHTO Type B curb at mid-height, as shown in Figures 2 through 14. Photographs of the test installation are shown Figures 15 and 16. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The test installation was constructed using twenty-eight guardrail posts. Post nos. 3 through 26 were standard 72-in. (1,829-mm) long W6x8.5, ASTM A992 steel guardrail posts. Post nos. 3-26 were each embedded to a depth of 45 in. (1,143 mm), and post nos. 1, 2, 27, and 28 were embedded to a depth of 39 in. (991 mm). All posts were embedded in well-graded gravel (GW) and were spaced 75 in. (1,905 mm) on center. One post was omitted between post nos. 13 and 14, which created an unsupported span length of 150 in. (3,810 mm) between these posts. Timber blockouts measuring 6 in. x 12 in. x 14¹/₄ in. long (152 mm x 305 mm x 362 mm) were used to block the rail away from the front face of each steel post. The W-beam guardrail was mounted with a top-rail height of 32 in. (813 mm) measured from the surface of the roadway. The system was raised 1 in. (25 mm) from its nominal 31-in. (787-mm) rail height to evaluate the potential of the small car to extend under the rail under standard construction tolerances. Splice joints, which were oriented to prevent vehicle snag, were used between posts to connect the guardrail where necessary, as shown in Figure 4.

A 6-in. (152-mm) tall, AASHTO Type B curb spanned from post nos. 9 through 19. The curb was located 6 in. (152 mm) in front of the face of the rail, as measured from the face of curb at mid-height. Soil was backfilled behind the curb flush to the top surface of the curb. The soil backfill extended a minimum of 5 ft (1.5 m) behind the curb. A replica concrete gutter was created by casting a 4-in. (102-mm) deep by 48-in. (1,219-mm) wide concrete slab in front of the curb. The concrete used to cast the curb and gutter had a minimum compressive strength of 4,000 psi (27.6 MPa). The curb was reinforced by a single no. 4 rebar extending longitudinally.

The upstream and downstream ends of the guardrail installation were configured with a non-proprietary end anchorage system [9-12]. The guardrail anchorage system had a comparable strength to other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts.

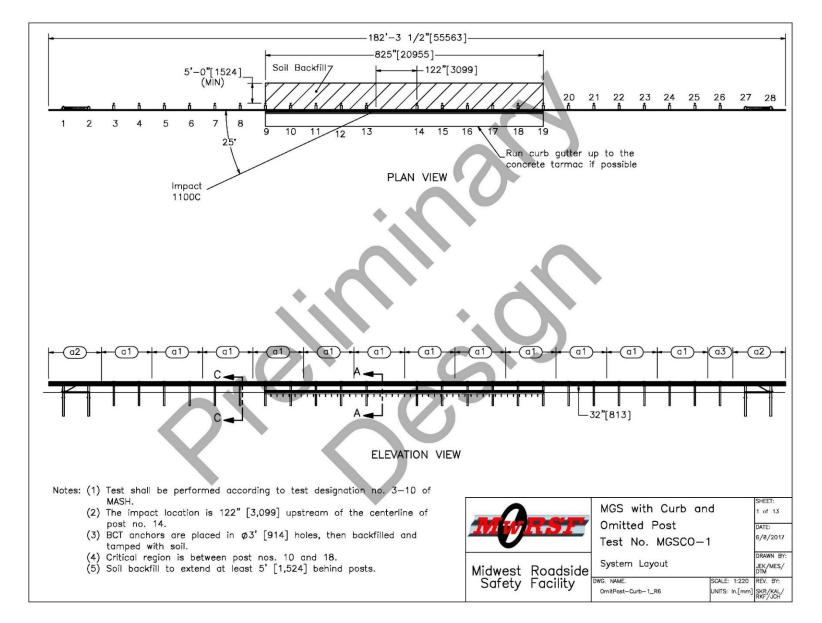


Figure 2. System Layout, Test No. MGSCO-1

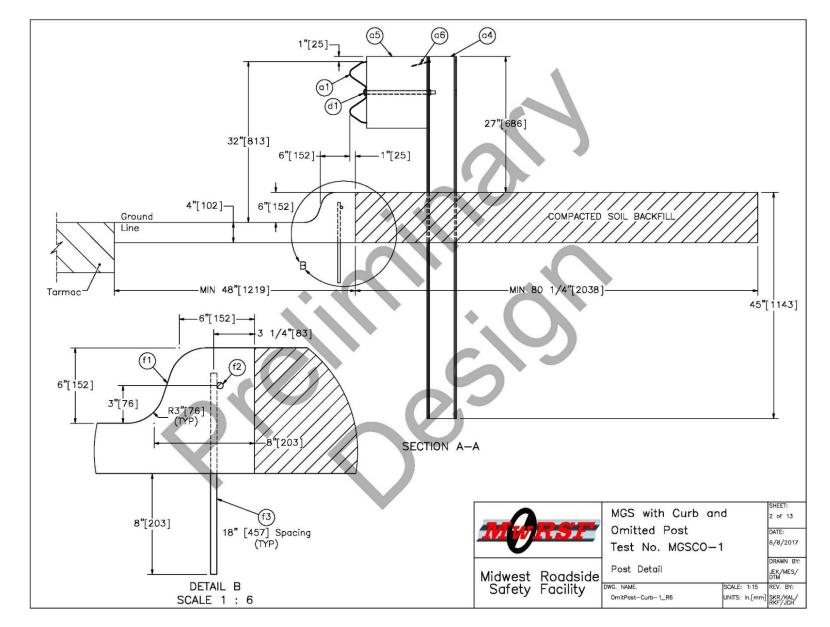


Figure 3. System Profile, Curb Geometry, and Reinforcement Details, Test No. MGSCO-1

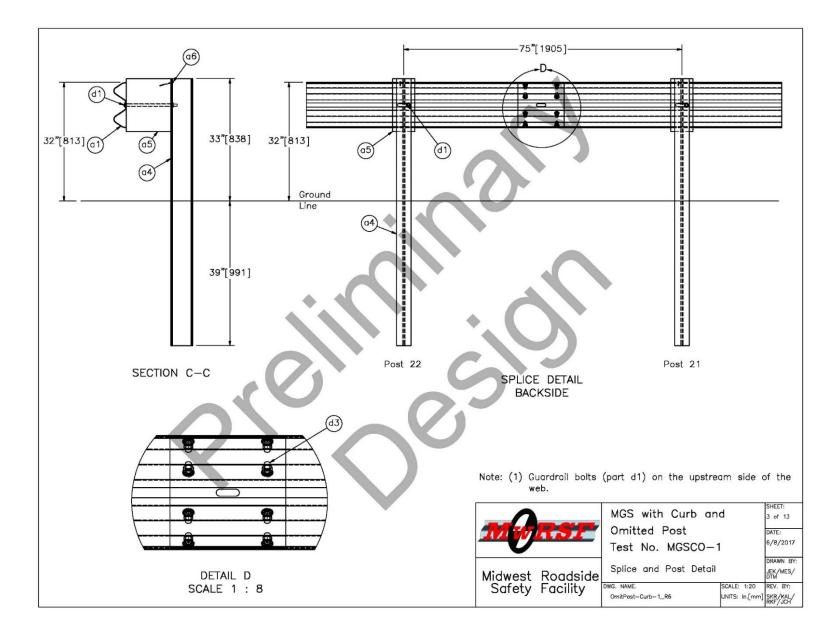


Figure 4. Splice and Post Detail, Test No. MGSCO-1

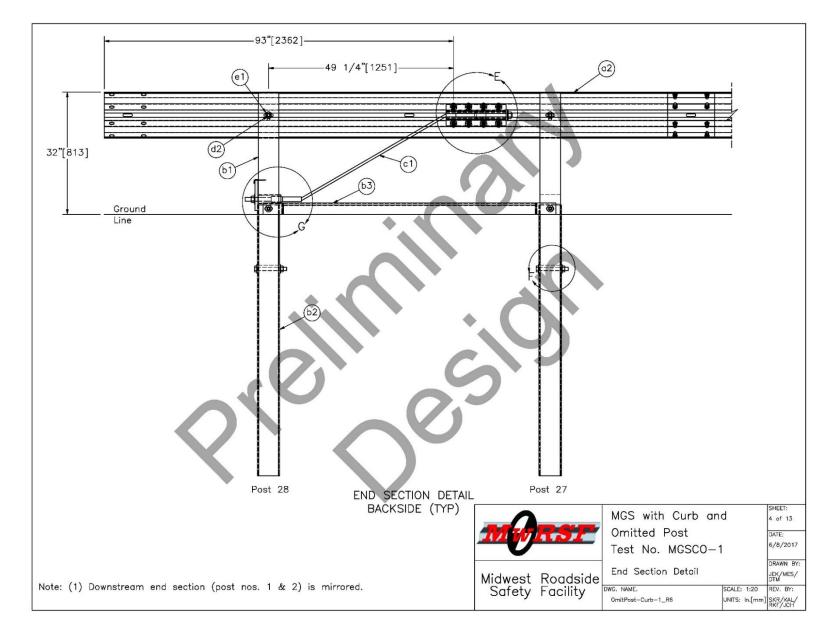


Figure 5. End Anchorage Detail, Test No. MGSCO-1

9

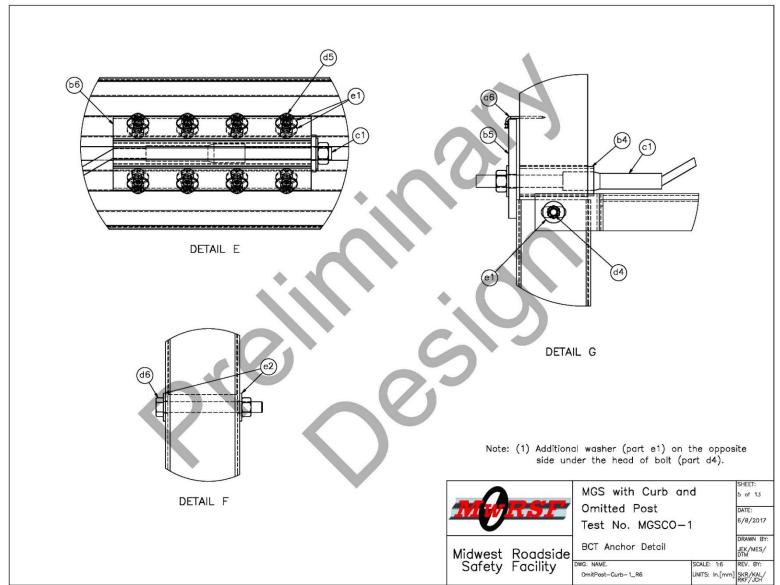


Figure 6. MGS End Anchorage Detail, Test No. MGSCO-1

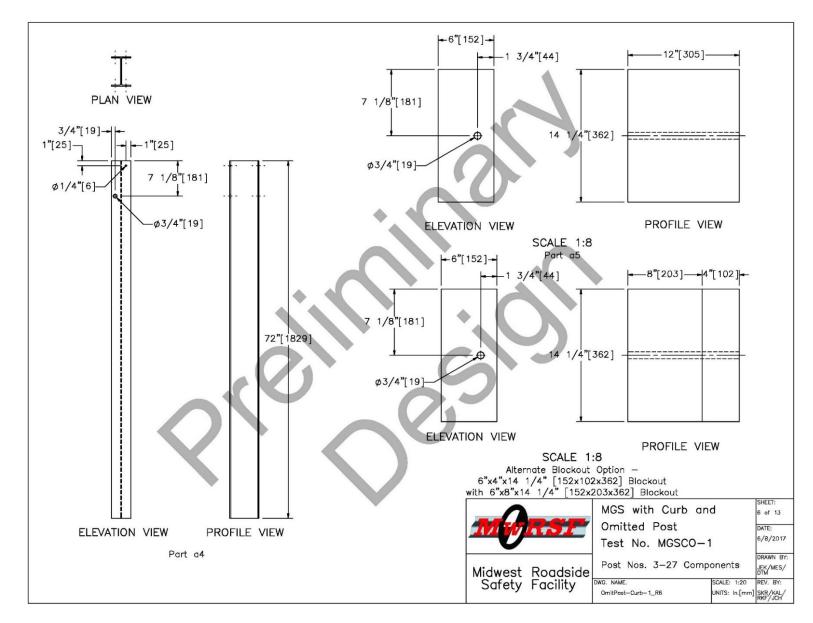


Figure 7. Post Nos. 3 through 27 Component Details, Test No. MGSCO-1

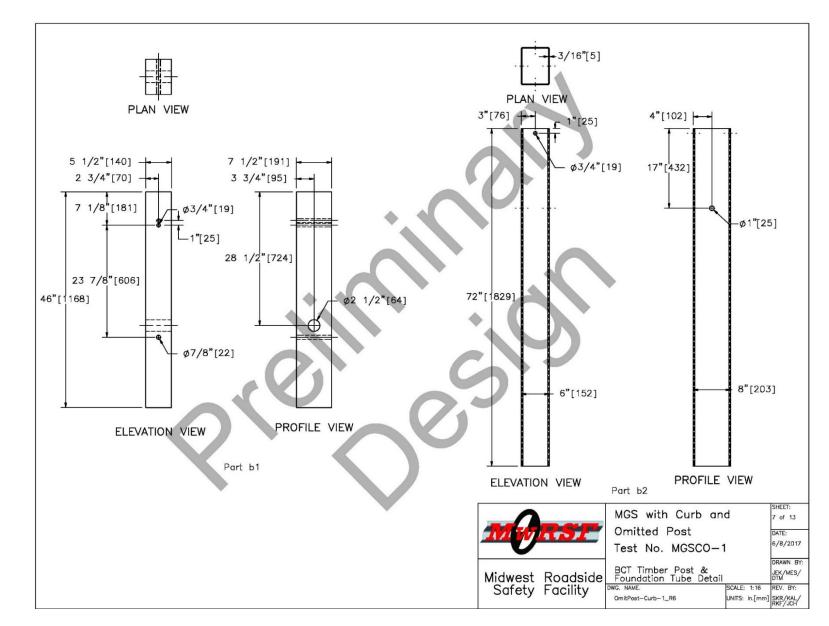


Figure 8. MGS BCT Timber Post and Foundation Tube Detail, Test No. MGSCO-1

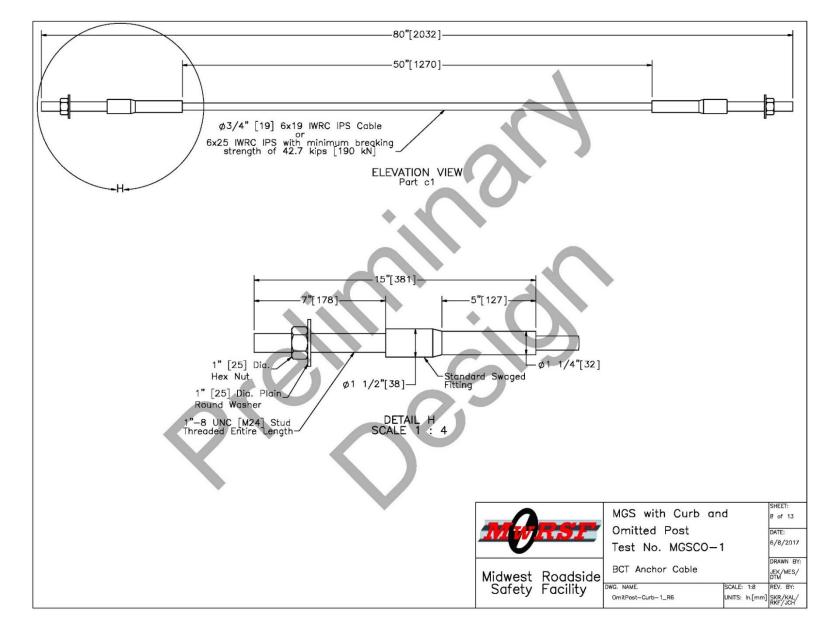


Figure 9. MGS BCT Anchor Cable, Test No. MGSCO-1

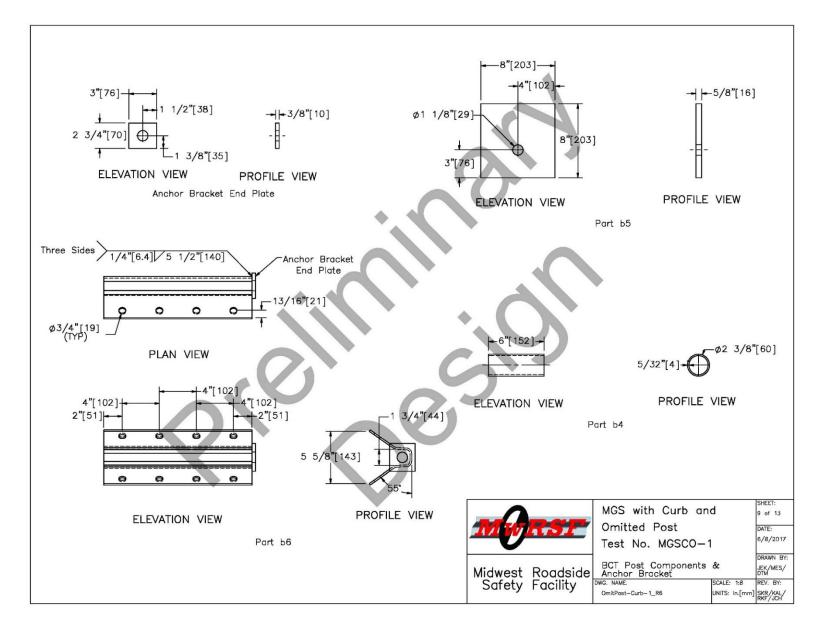


Figure 10. MGS BCT Post Components and Anchor Bracket, Test No. MGSCO-1

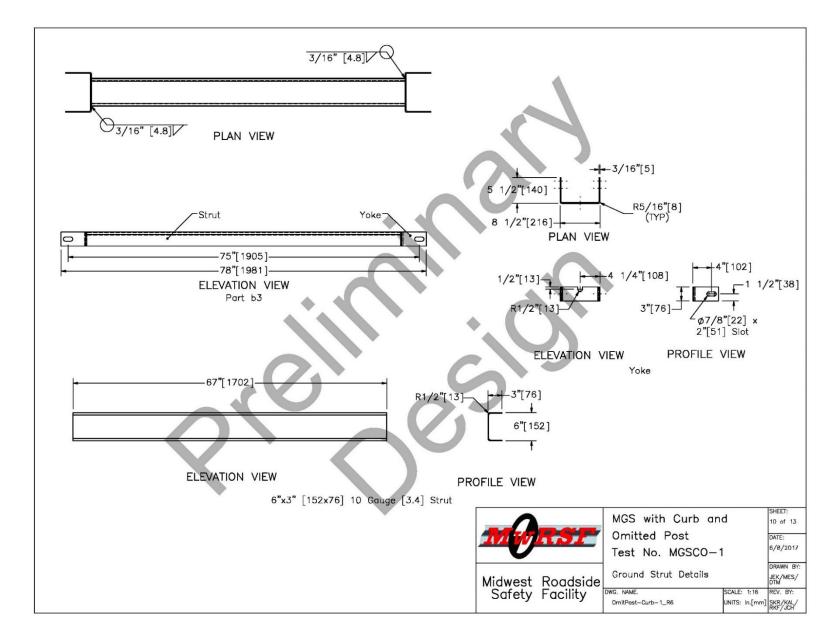


Figure 11. Groundline Strut Details, Test No. MGSCO-1

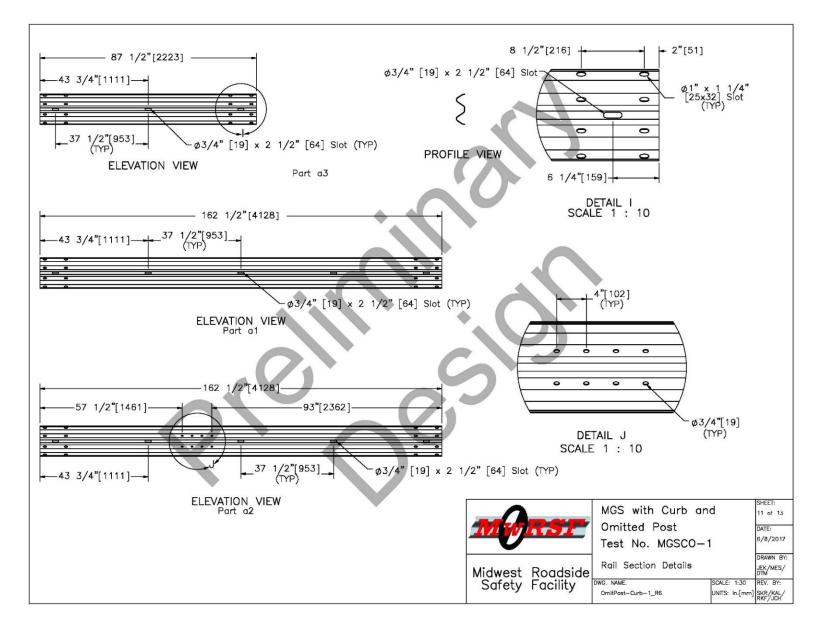


Figure 12. Rail Details, Test No. MGSCO-1

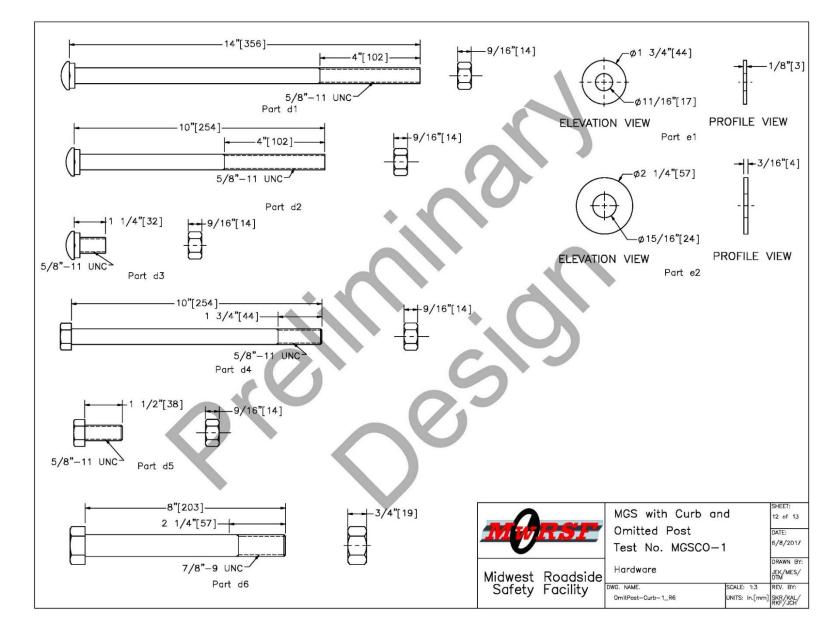


Figure 13. Attachment and Connection Hardware, Test No. MGSCO-1

Item	QTY.	Description	Material Spec	Galvanization Spec	Hardware
No.		1			Guide
a1	12	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
۵2	2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	24	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992 Min. 50 ksi [345 MPa]	ASTM A123	PWE06
α5	24	6"x12"x14 1/4" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No.1 or better	-	PDB10a
a6	26	16D Double Head Nail	-	-	-
Ь1	4	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	PDF01
b2	4	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
b4	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
b5	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b6	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c1	2	BCT Anchor Cable		-	FCA01
d1	24	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB06
d2	4	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
d3	112	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
d4	4	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d5	16	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
d6	4	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
e1	44	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
f1	1	Curb	f'c = 4,000 psi [27.6 MPa]	-	-
f2	1	#4 Rebar 819" [20,803] Long	ASTM A615 Gr. 60	-	-
f3	45	#4 Rebar 16" [406] Long	ASTM A615 Gr. 60	-	-
				MGS with Curb and Omitted Post Test No. MGSCO-1	SHEET: 13 of 13 DATE: 6/8/2017
			Midwes	t Roadside Bill of Materials	DRAWN BY: JEK/MES/ DTM
			Safety	y Facility DWG. NAME. OrmitPost-Curb-1_R6 UNITS: In	n.[mm] SKR/KAL/ RKF/JCH

Figure 14. Bill of Materials, Test No. MGSCO-1

Figure 15. Test Installation Photographs, Test No. MGSCO-1

Figure 16. Test Installation Photographs, Test No. MGSCO-1

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [13] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. MGSCO-1, 2009 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,458 lb (1,115 kg), 2,438 lb (1,106 kg), and 2,604 lb (1,181 kg), respectively. The test vehicle is shown in Figure 17, and vehicle dimensions are shown in Figure 18. Pre-test photographs of the vehicle's interior floorboards and undercarriage for test no. MGSCO-1 are not available.

For test no. MGSCO-2, a 2011 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,440 lb (1,107 kg), 2,404 lb (1,090 kg), and 2,566 lb (1,164 kg), respectively. The test vehicle is shown in Figures 19 and 20, and vehicle dimensions are shown in Figure 21.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [14]. The location of the final c.g. for test no. MGSCO-1 is shown in Figures 18 and 22. The location of the final c.g. for test no. MGSCO-2 is shown in Figures 21 and 23. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 22 and 23. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

Figure 17. Test Vehicle, Test No. MGSCO-1

Date:	8/28/201	17	Test Number:		MGSCO-1		VIN: KMHCN4AC1AU480683			
Year:	2009	2009		Make:		ndai	Model:	Accent		
Tire Size:	Size: 185/65 R14		Tire Inflation Pressure:		32 Psi		Odometer:	125370		
							Vehicle Geometry - in. (mm) Target Ranges listed below			
		0			کے vehicle	n t	65±3 (1 c: <u>168 1/4</u> 169±8 (4 e: <u>98 7/8</u> 98±5 (2) g: <u>22 7/8</u>	300±200) (2511) 1 500±125)		(941)
-		//		<i>M</i>			i: <u>16 1/2</u> k: <u>16 1/4</u>		j: <u>20 3/4</u> I: <u>20 3/4</u>	(527)
							m: <u>56 1/2</u> 56±2 (1	<u>(1435)</u> n 425±50)	n: <u>57 1/8</u> 56±2 (14	(1451) 125±50)
			 s				o: <u>28</u> 24±4 (6	(711) p	: 2	(51)
	f w	h T front	e	d √V _{rear}			q:24 1/8	(613) I	r: 15 3/8	(391)
	•	none	L	· reu	-		s: <u>121/8</u>	(308) 1	t: <u>64 3/4</u>	(1645)
Gross Static	2018/07 (B-1294-1240)	(kg) (372) (234)	RF <u>795</u>	(361)			Тор	of radiator cor suppor Wheel Cente	t: <u>29 1/2</u> er	(749)
	LR <u>515</u>	(204)	RR <u>474</u>	(215)				Height (Front Wheel Cente	ər	(273) (279)
Weights lb (kg) Curb			Test Inertial		Gross Static		Cl	Height (Rear Wheel We earance (Front)	(657)
W-front	1560	(708)	1524	(691)	1615	(733)	c	Wheel We learance (Rear): 25	(633)
W-rear	898	(407)	914	(415)	989	(449)		Bottom Fram Height (Front): 8 3/8	(213)
W-total	2458	(1115)	2438	(1106)	2604	(1181)		Bottom Fram Height (Rear		(184)
			2420±5:	5 (1100±25)	2585±55 (1175±50)		Engine Type	e: Gaso	oline
GVWR Ratings lb Dummy Data							Engine Size	e: <u>1.</u> 6	SL	
Front: 1918			Type:	Type: Hybrid II		Transr	mission Type: <u>Automatic</u>			
Rear:	Rear: 1874			Mass:	Mass: 166 lb			Drive Type: FWD		/D
Total: _	3638			Seat Position:	Driv	ver	:			
Note any damage prior to test: NONE										

Figure 18. Vehicle Dimensions, Test No. MGSCO-1

Figure 19. Test Vehicle, Test No. MGSCO-2

Figure 20. Test Vehicle's Undercarriage and Interior Floorboards, Test No. MGSCO-2

Date:	2/6/20	18		Test Name:	MGS	CO-2	VIN No:	KMHCN4	AC1BU61	14772
Year:	2011	[Make:	Hyu	ndai	Model:	A	Accent	
Tire Size:	P185/65	R14	Tire Infla	tion Pressure:	32	Psi	Odometer:	1	26220	
	M			N		▲ 	G5 1/4 65±3 (1) C: 168 1/4 169±8 (4) E: 98 1/2 98±5 (25)	(4274) D: 300±200) F: (2502) F: 500±125) F:	58 33 1/4 ^{35±4 (\$} 37 1/4	(1473) (845) 900±100) (946)
			Te	st Inertial CG			G: 22 13/16	<u>(579)</u> H:	35 5/8 39±4 (9	(905) 990±100)
P	R			D	đ	B	l: <u>8 1/2</u> K: <u>12</u>		23 1/2 23	(597) (584)
			9 S				M: 58 1/8 56±2 (1		57 1/2 56±2 (1	(1461) 1425±50)
- 1		_н_+	, t			ł	O: 27 5/8 24±4 (6)		2 3/4	(70)
2	- D		Е	── ► │ ╺ ── F			Q: 24	(610) R:	15 1/2	(394)
1	-		— C ——		-		S: <u>12</u>	(305) T:	64	(1626)
Mass Distrib	ution lb. (kg	,					U (i	mpact width):	58	(1473)
Gross Static		(378)	RF 782	(355)			Тор	of radiator core support:	28 3/4	(730)
Cioss claire	LR 478	(217)	RR 472	(214)				Wheel Center Height (Front):		(276)
								Wheel Center Height (Rear):	11 1/4	(286)
Weights Ib. (kg)	Cı	ırb	Test l	nertial	Gross	Static	Cle	Wheel Well earance (Front):	24 7/8	(632)
W-front	1567	(711)	1535	(696)	1616	(733)	C	Wheel Well earance (Rear):	24 7/8	(632)
W-rear	873	(396)	869	(394)	950	(431)		Bottom Frame Height (Front):	6	(152)
W-total	2440	(1107)	2404	(1090) (1100±25)	2566	(1164)		Bottom Frame Height (Rear):	16	(406)
			2420±55	(1100±25)	2080±00	(1175±50)		Engine Type:	Gas	oline
GVWR Rating	gs Ib.		Surrogate	e Occupant Dat	ta			Engine Size:	1.	.6L
Front	1918			Туре:	Hybrid		Transr	nission Type:	Auto	matic
Rear	1874			Mass:	161 lb	s.		Drive Type:	F۱	ND
Total	3638		Seat	Position:	Left					
Note an	ıy damage pri	or to test:				No	ne			

Figure 21. Vehicle Dimensions, Test No. MGSCO-2

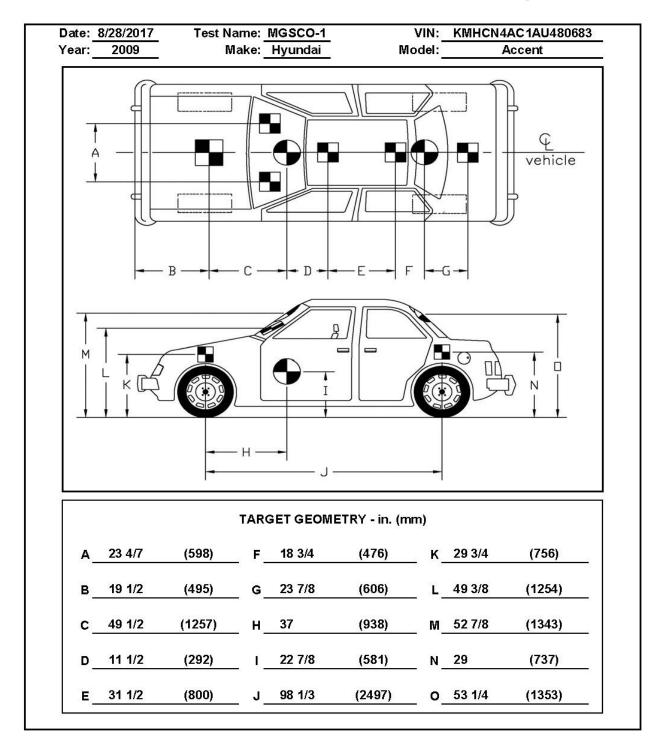


Figure 22. Target Geometry, Test No. MGSCO-1

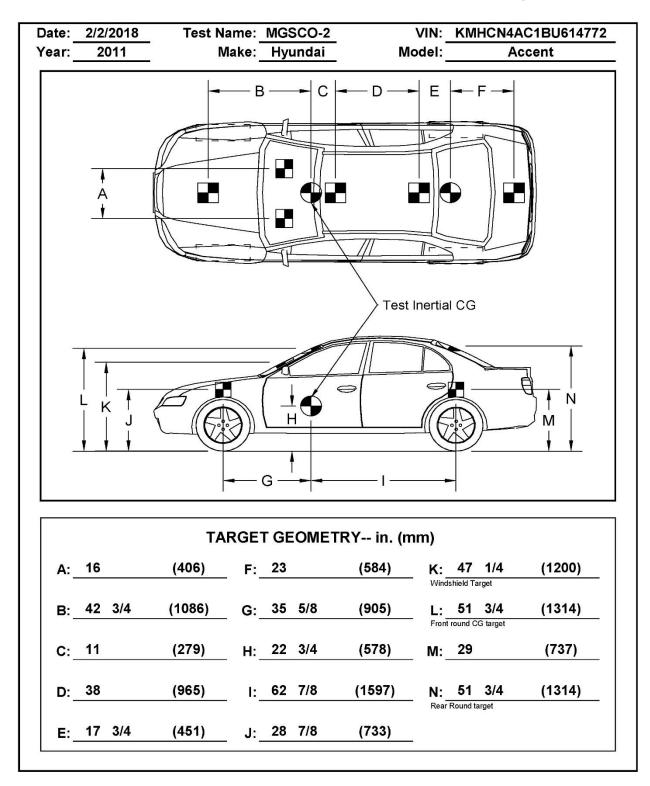


Figure 23. Target Geometry, Test No. MGSCO-2

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted to the dashes of both vehicles. Each bulb was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

4.4 Simulated Occupant

For test nos. MGSCO-1 and MGSCO-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicles with the seat belt fastened. The dummy, which had a weight of 166 lb (75 kg) and 161 lb (73 kg) for test nos. MGSCO-1 and MGSCO-2, respectively, was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

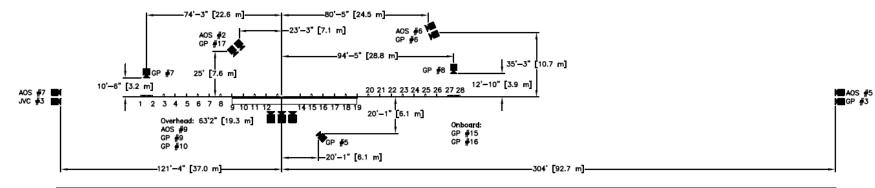
4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [15].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system for test no. MGSCO-1, and the SLICE-2 unit was designated as the primary system for test no. MGSCO-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras, ten GoPro digital video cameras, and one JVC digital video camera were utilized to film test no. MGSCO-1. Five AOS high-speed digital video cameras, ten GoPro digital video cameras, and two JVC digital video cameras were utilized to film test no. MGSCO-2.Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 24 and 25.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon digital still camera was also used to document pre- and post-test conditions for both tests.

No.	Туре	Operating Speed (frames/sec)	Lens
AOS-2	AOS Vitcam	500	KOWA 25 mm Fixed
AOS-5	AOS X-PRI	500	VIVITAR 135 mm Fixed
AOS-6	AOS X-PRI	500	FUJINON 35 mm Fixed
AOS-7	AOS X-PRI	500	FUJINON 50 mm Fixed
AOS-9	AOS TRI-VIT 2236	500	KOWA 12 mm Fixed
GP-3	GoPro Hero 3	60	
GP-5	GoPro Hero 3+	120	
GP-6	GoPro Hero 3+	120	
GP-7	GoPro Hero 4	240	
GP-8	GoPro Hero 4	240	
GP-9	GoPro Hero 4	120	
GP-10	GoPro Hero 4	240	
GP-15	GoPro Hero 4	120	
GP-16	GoPro Hero 4	120	
GP-17	GoPro Hero 4	240	
JVC-3	JVC – GZ-MG27u (Everio)	29.97	

Figure 24. Camera Locations, Speeds, and Lens Settings, Test No. MGSCO-1

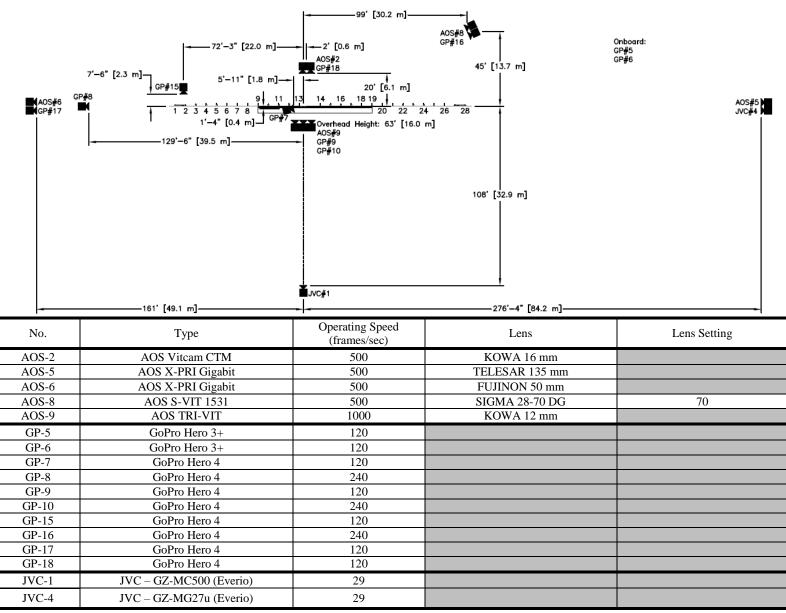


Figure 25. Camera Locations, Speeds, and Lens Settings, Test No. MGSCO-2

5 FULL-SCALE CRASH TEST NO. MGSCO-1

5.1 Selection of the Critical Impact Point

The BARRIER VII computer program [16] was utilized to select the critical impact point for the test, as recommended in Section 2.3.1 of MASH 2016. An MGS model with a single omitted post and the same length as the test installation was created and validated against test no. MGSMP-1, which was the full-scale test previously conducted on the MGS with an omitted post [7]. After the model was validated, the strength of the posts were increased to reflect the increased embedment depth and decreased effective rail height caused by the soil backfill behind the curb of the test installation described herein. Impacts were then simulated on the MGS with curb and omitted post model according to the impact conditions of MASH 2016 test designation no. 3-10, an 1100C small car impacting at 62 mph (100 km/hr) and 25 degrees. Simulated impacts were conducted at 9.375-in. (238-mm) intervals along the length of the barrier system. The results of this analysis are shown in Table 3 where the impact point is identified as a distance upstream from post no. 14, or the first post downstream from the omitted post.

For each simulated impact point, the maximum dynamic deflection, extent of the snag on post no. 14, maximum pocketing angle, and the maximum rail force was documented. Pocketing occurs when a flexible barrier deflects sufficiently to allow the front of the vehicle to engage the blunt end of the stiffer barrier. The risk of a high-deceleration pocketing event has been correlated to the maximum angle between the deflected guardrail and the downstream section of rail. Vehicle snag was measured as the lateral extent of the front tire beyond the face of the post at the time of tire-to-post contact, and pocketing angles were measured over 37.5-in. (953-mm) segments of rail. The maximum rail deflections were all similar and only varied by a couple of inches. Vehicle snag and maximum pocketing angle were the highest for impacts near the upstream end of the elongated span, while rail forces peaked during impacts near the middle of the elongated span. Ultimately, the critical impact point was identified as 121.875 in. (3,096 mm) upstream from post no. 14, which was located at the upstream end of the elongated span, due to this impact point having the highest snag potential, second highest pocketing angle, and a rail force within 5 percent of the recorded maximum force. The distance to the critical impact point was rounded to 122 in. (3,099 mm) upstream of post no. 14 for the physical crash test.

Impact Point Distance	Maximum Rail	Vehicle Snag	Maximum	Maximum
US from Post No. 14	Deflection	on Post No. 14	Pocketing Angle	Rail Force
(in.)	(in.)	(in.)	(deg.)	(kip)
225	22.03	-	12.38	58.38
215.625	23.05	-	13.52	61.87
206.25	24.37	-	14.64	65.28
196.875	24.79	-	15.18	65.94
187.5	22.85	-	14.11	66.16
178.125	23.01	-	14.56	68.52
168.75	22.70	0.98	14.89	67.94
159.375	22.66	2.08	15.09	68.64
150	22.85	2.67	15.25	69.12
140.625	23.15	4.18	15.37	68.19
131.25	23.8	5.00	15.64	68.52
121.875	24.31	5.41	15.86	68.63
112.5	24.66	5.31	16	67.74
103.125	24.82	5.12	15.73	68.75
93.75	25.49	4.65	15.09	71.7
84.375	25.87	3.99	14.05	71.53
75	25.97	3.21	12.32	70.19
65.625	26.06	2.00	9.86	68.63
56.25	26.13	0.39	6.59	66.82
46.875	25.92	-	3.12	67.58
37.5	25.35	-	1.3	68.05

Table 3. BARRIER VII Simulation Results

5.2 Static Soil Test

Before full-scale crash test no. MGSCO-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.3 Weather Conditions

Test no. MGSCO-1 was conducted on August 28, 2017 at approximately 3:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 4.

Temperature	78° F
Humidity	52%
Wind Speed	7 mph
Wind Direction	30° from True North
Sky Conditions	Partly Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.09 in.
Previous 7-Day Precipitation	0.09 in.

Table 4. Weather Conditions, Test No. MGSCO-1

5.4 Test Description

Initial vehicle impact was to occur 122 in. (3,099 mm) upstream from the centerline of post no. 14, as shown in Figure 26, which was selected using BARRIER VII analysis. The 2,438-lb (1,106-kg) vehicle impacted the MGS with curb and an omitted post at a speed of 64.1 mph (103 km/h) and at an angle of 25.7 degrees. The actual point of impact was 2.7 in. (69 mm) upstream from target impact. Initially, the guardrail captured the front of the vehicle and began to redirect it. At around 0.130 s after impact, the rail ruptured at the splice located within the elongated span while the vehicle was in contact with this region of the barrier. The tear in the upstream (front) rail segment went through the upstream-bottom splice bolt hole and extended up through the center of the splice. Subsequently, the vehicle penetrated the system and eventually rolled over behind the barrier. The vehicle came to rest 91 ft (28 m) downstream from impact and 15 ft – 6 in. (4.7 m) laterally behind the barrier system.

A detailed description of the sequential impact events is contained in Table 5. Sequential photographs are shown in Figures 27 and 28. Documentary photographs of the crash test are shown in Figures 29 and 30. The vehicle trajectory and final position are shown in Figure 31.

5.5 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 32 through 36. Barrier damage consisted of contact marks, deformed and torn W-beam rail, bent and twisted posts, and deformed post-to-rail attachment hardware and blockouts. The length of vehicle contact along the barrier was approximately 29 ft -1 in. (8.8 m) which spanned from point of impact downstream to post no. 17.

Damage to the curb consisted of tire marks and minor scrapes. Post nos. 11 through 13 were twisted to face downstream, and the back flange of post nos. 12 and 13 had minor buckling of their back flanges near the ground line. Soil heaves and craters formed at the base of post nos. 14 through 18. Post nos. 14 and 15 were bent backward and downstream, contained several contact marks along their front flanges, and were disengaged from their blockouts, as shown in Figure 33. Post no. 16 was bent backward and downstream, twisted to face downstream, and contained contact marks on the upstream edges of both flanges. Post no. 17 was bent backward and downstream, but to a lesser degree than the adjacent upstream posts. Post no. 18 was bent slightly downstream and twisted to face downstream.

Figure 26. Impact Location, Test No. MGSCO-1

TIME (s)	EVENT
0.000	Vehicle's left-front tire contacted curb 124.7 in. (3,167 mm) upstream from the centerline of post no. 14.
0.004	Vehicle's front bumper contacted rail between post nos. 13 and 14 and deformed.
0.014	Vehicle's hood contacted rail and began to override the rail.
0.018	Post no. 14 deflected downstream. Vehicle rolled away from barrier.
0.026	Post no. 13 deflected backward.
0.032	Post no. 14 deflected backward.
0.036	Post no. 13 twisted counterclockwise.
0.048	Vehicle's left-front door contacted rail.
0.072	Vehicle pitched upward.
0.094	Soil heave formed on downstream side of post no. 14. Vehicle's right fender deformed. Vehicle's left-rear tire contacted curb. Vehicle's front bumper contacted post no. 14.
0.102	Rail disengaged from bolt at post no. 14.
0.104	Post no. 14 bent backward and downstream. Post no. 15 deflected downstream.
0.114	Post no. 15 twisted clockwise and deflected backward.
0.116	Blockout disengaged from post no. 14.
0.132	Rail ruptured at the splice between post nos. 13 and 14 (upstream segment tore). Vehicle penetrated system.
0.152	Vehicle's left-front tire became airborne.
0.166	Vehicle's right-front tire contacted curb. Vehicle's front bumper contacted post no. 15.
0.180	Vehicle's hood was unlatched and extended over the rail.
0.186	Blockout disengaged from post no. 15. Vehicle's right fender contacted rail. Blockout at post no. 15 split vertically through bolt hole.
0.190	Rail disengaged from bolt at post no. 16.
0.206	Rail disengaged from bolt at post no. 15.
0.216	Vehicle's windshield cracked due to contact with hood.
0.256	Rail disengaged from bolt at post no. 17. Vehicle rolled toward barrier
0.284	Vehicle's right-front tire contacted post no. 16. Vehicle's left-rear tire regained contact with ground.
0.840	Vehicle rolled onto its left side.
1.300	Vehicle rolled onto its roof.
2.500	Vehicle was upright with all four wheels on the ground.
3.500	Vehicle came to rest behind barrier.

Table 5. Sequential Description of Impact Events, Test No. MGSCO-1

0.048 s

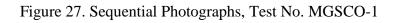
0.118 s

0.418 s

0.000 s

0.058 s

0.120 s


0.202 s

0.440 s

0.844 s



Figure 28. Additional Sequential Photographs, Test No. MGSCO-1

Figure 29. Documentary Photographs, Test No. MGSCO-1

Figure 30. On-Board Documentary Photographs, Test No. MGSCO-1

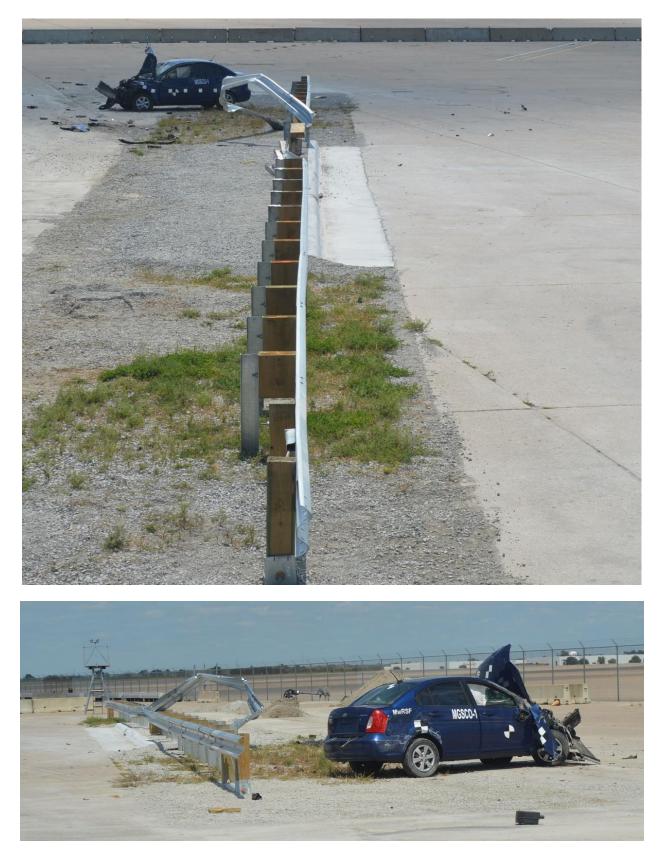


Figure 31. Vehicle Final Position, Test No. MGSCO-1

Figure 32. System Damage, Test No. MGSCO-1

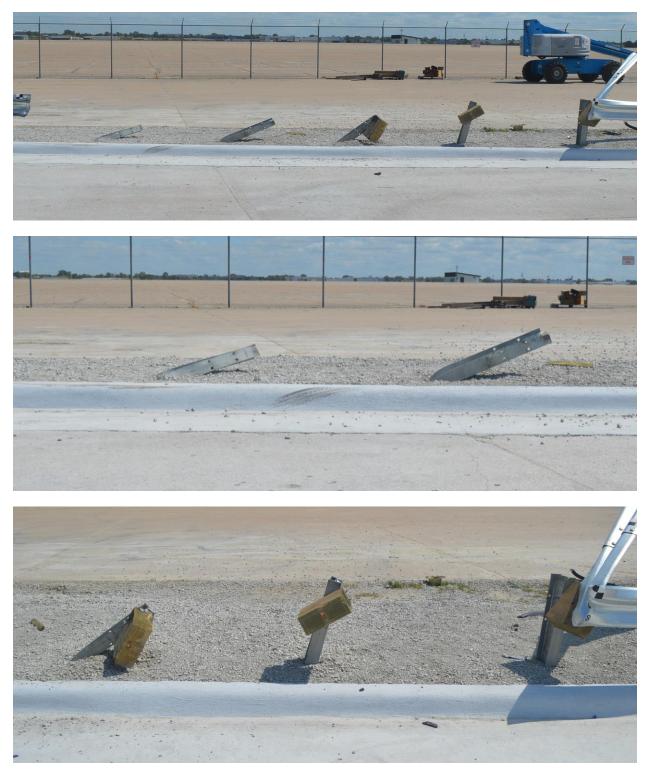


Figure 33. System Damage, Post Nos. 14 through 18, Test No. MGSCO-1

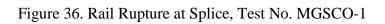


Figure 34. Rail Damage, Upstream from Rupture, Test No. MGSCO-1

Figure 35. Rail Damage, Downstream from Rupture, Test No. MGSCO-1

The guardrail experienced various degrees of bending, flattening, denting, kinking, and scraping extending from 2 in. (51 mm) downstream from post no. 12 and extending 1 in. (25 mm) upstream from post no. 20, as shown in Figures 34 through 36. The rail was detached from post nos. 13 through 18. The rail was completely torn at the splice located between post nos. 13 and 14, which placed it within the elongated span length. The tear on the upstream rail segment (front side of splice) went through the lower-upstream bolt hole, through the bolt slot located at the center of the splice, and continued up through between the columns of splice bolt holes, as shown in Figure 36. Partial rail tears were found at the attachment bolt slots for post nos. 14 through 16 where the guardrail bolts pulled through the rail. The maximum deflection and permanent set of the barrier system were not defined due to rail tearing and system failure.

5.6 Vehicle Damage

The damage to the vehicle was severe, as shown in Figures 37 through 40. The maximum occupant compartment intrusion are listed in Table 6 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. The windshield intrusion was found to exceed the MASH 2016 intrusion limits. Additionally, the right-front and left-front side windows were shattered, but this was the result of the vehicle rolling over and not from contact with the system. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

Damage consisting of crushing, denting, scrapes, and gouges was spread across the front, sides, and top of the vehicle. The front bumper cover was disengaged from the vehicle. The hood was unlatched, buckled, and deformed. The frame horns of the chassis were bent to the left side. The engine cradle was crushed along the leading edge, and the rear section was dented and crushed in the center. Scrapes were observed on the right-side floor pan. The largest scrape measured 17 in. (432 mm) long and ½ in. (13 mm) deep. The lower radiator support was crushed along its leading edge along its width. Slight scraping was found along the spare tire well, but the brake lines were undamaged.

The left-front fender panel was buckled, partially disengaged, and contained a 30-in. (762-mm) by 6-in. (152-mm) gouge. The left-side mirror was disengaged, and the door handle was torn off of the left-rear side door. The left-rear side panel was dented behind the rear door. The left-rear fender panel was dented. The roof was deformed due to rollover during the crash. The windshield was cracked, and the left-front and right-front side windows were shattered. Undercarriage damage consisted of damage to the left-front shock and spring, which included a slight bend in the shock and a 1-in. (25-mm) long scrape on the spring. The right-front spring had two 2-in. (51-mm) long scrapes. Both the left-rear and right-rear springs and bump stops were undamaged, and both rear shocks experienced a $\frac{1}{2}$ -in. x $\frac{1}{2}$ -in. (13-mm x 13-mm) scrape as a result of wheel rub. The left-side control arm was damaged, and the right-side control arm was scraped. The rear suspension was undamaged; however, each shock had a $\frac{1}{2}$ -in. x $\frac{1}{2}$ -in. (13-mm x 13-mm) scrape due to wheel rub. The left-lower control arm wheel joint was damaged, and the right-lower control arm was scraped. Both the transmission and oil pan experienced minor scraping.

Figure 37. Vehicle Damage, Test No. MGSCO-1

April 12, 2019 MwRSF Report No. TRP-03-393-19

Figure 38. Additional Vehicle Damage, Test No. MGSCO-1

April 12, 2019 MwRSF Report No. TRP-03-393-19

Figure 39. Vehicle Windshield Damage, Test No. MGSCO-1

Figure 40. Occupant Compartment and Undercarriage Damage, Test No. MGSCO-1

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	¹ / ₂ (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	¹ / ₂ (13)	≤ 12 (305)
A- and B-Pillars	³ / ₈ (10)	≤ 5 (127)
A- and B-Pillars (Lateral)	1/8 (3)	≤3 (76)
Side Front Panel (in Front of A-Pillar)	³ / ₈ (10)	≤ 12 (305)
Side Door (Above Seat)	³ / ₈ (10)	≤ 9 (229)
Side Door (Below Seat)	⁵ / ₈ (16)	≤ 12 (305)
Roof	11⁄2 (38)	≤4 (102)
Windshield	4 (102)	≤3 (76)
Side Windows	Both front side windows shattered*	No shattering resulting from contact with structural member of test article
Dash	³ / ₈ (10)	N/A

Table 6. Maximum Occupant Compartment Intrusion by Location

N/A - Not applicable

*Side windows were shattered as a result of contact with the ground during vehicle rollover, not contact with the system.

5.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 10-ms average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 7. Vehicle pitch and yaw angular displacements were deemed acceptable because they did not adversely influence occupant risk, however, the roll angular displacements exceeded the limit set forth in MASH 2016 due to vehicle rollover. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

5.8 Discussion

A summary of the test results and sequential photographs are shown in Figure 41. The analysis of the test results for test no. MGSCO-1 showed that the system did not adequately contain and redirect the 1100C vehicle. The rail completely tore at the splice located within the elongated span length. Subsequently, the test vehicle penetrated the barrier and eventually rolled over. Additionally, the windshield crush of 4 in. (102 mm) exceeded the MASH 2016 limits for occupant compartment crush. Due to these three failures, test no. MGSCO-1 did not satisfy the MASH 2016 safety performance criteria for test designation no. 3-10.

Evaluation Criteria		Trans	MASH 2016		
		SLICE-1 (primary)	SLICE-2	Limits	
OIV Longitudinal		-23.62 (-7.20)	-23.54 (-7.17)	±40 (12.2)	
ft/s (m/s)	Lateral	13.84 (4.22)	12.53 (3.82)	±40 (12.2)	
ORA	Longitudinal	-13.37	-12.23	±20.49	
g's	Lateral	-9.20 -10.55		±20.49	
MAX.	Roll	-368.0	-367.6	±75	
ANGULAR DISPL.	Pitch	-11.0	15.1	±75	
deg.	Yaw	271.0	268.6	not required	
THIV ft/s (m/s)		24.87 (7.58)	25.26 (7.70)	not required	
PHD g's		14.70	13.59	not required	
ŀ	ASI	1.03	0.99	not required	

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSCO-1

- C								
	0.000 s	0.034 s	0.094 s		0.202	2 s	0.7	90 s
 Tes Date MA Tes Tot 	at Number ASH 2016 Test Designation No at Article al Length y Component – Steel W-Beam Gu	MwR <u>LR</u> <u>14 15 16 17 18 19 20 21 22 23 24 25 26 27 2</u> MwR MGS co August 28, 20 	D-1 D17 -10 vost m)	Gr	32"[8 4"[102]] round ne	1"[25] 13] 6"[152] 6"[152] 1	27"[6	
	Top Mounting Height y Component – Steel Post Shape Length Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth		ace 5x9 m) m) m)	VDS [17] . CDC [18] Maximum I Test Article Dat Maximum Test Permanent S Dynamic	Interior Deformat mage Article Deflectio Set	ion	11-LFC	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A N/A
	Top Mounting Height y Component – Steel Post Shape Length Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout		ace 5x9 m) m) m) m)	VDS [17] . CDC [18] Maximum I Test Article Dar Maximum Test Permanent S Dynamic Working W	Interior Deformat mage Article Deflectio Set 'idth	ionns	11-LFC	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A N/A
• Ke	Top Mounting Height y Component – Steel Post Shape Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26		ace (x9 m) m) m) m) m)	VDS [17] . CDC [18] Maximum I Test Article Dat Maximum Test Permanent S Dynamic	Interior Deformat mage Article Deflectio Set 'idth	ion	11-LFC	Q-5 and 11-L&T-2 11-LDAO-3 4 in. (102 mm) Extensive N/A N/A
• Ke • Soi	Top Mounting Height y Component – Steel Post Shape Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26 1 Type hicle Make /Model		ace ix9 m) m) m) m) w) W) ent	VDS [17] CDC [18] Maximum I Test Article Dar Maximum Test Permanent S Dynamic Working W Transducer Data	Interior Deformat mage Article Deflectio Set 'idth	ion ns	11-LFC	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive
• Ke • Soi	Top Mounting Height y Component – Steel Post Shape Length Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26 1 Type hicle Make /Model Curb Test Inertial		ace ix9 m) m) m) m) w) ent kg) kg)	VDS [17] CDC [18] Maximum I Test Article Dan Maximum Test Permanent Dynamic Working W Transducer Data Evaluatio	Interior Deformat mage Article Deflectio Set /idth a	ion ns Trans SLICE-1	ducer	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A N/A MASH 2016
KeSoiVe	Top Mounting Height y Component – Steel Post Shape Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26 1 Type hicle Make /Model Curb Test Inertial Gross Static		ace ix9 m) m) m) m) w) ent kg) kg)	VDS [17] CDC [18] Maximum I Test Article Dan Maximum Test Permanent Dynamic Working W Transducer Data Evaluatio	Interior Deformat mage Article Deflectio Set /idth a n Criteria	ion ns Trans SLICE-1 (primary)	ducer SLICE-2	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A N/A MASH 2016 Limit
KeSoiVe	Top Mounting Height y Component – Steel Post Shape Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26 1 Type hicle Make /Model Curb Test Inertial Gross Static pact Conditions		ace 5x9 m) m) m) m) w) w) ent kg) kg) kg)	VDS [17] CDC [18] Maximum I Test Article Dan Maximum Test Permanent Dynamic Working W Transducer Data Evaluatio	Interior Deformat mage Article Deflectio Set 	ion ns Trans SLICE-1 (primary) -23.62 (-7.20)	ducer SLICE-2 -23.54 (-7.17)	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A MASH 2016 Limit ±40 (12.2)
KeSoiVe	Top Mounting Height y Component – Steel Post Shape Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26 1 Type hicle Make /Model Curb Test Inertial Gross Static pact Conditions Speed		ace 5x9 m) m) m) m) m) m) w) ent kg) kg) kg) /h)	VDS [17] . CDC [18] Maximum I Test Article Dan Maximum Test Permanent S Dynamic Working W Transducer Data Evaluatio OIV ft/s (m/s)	Interior Deformat mage	ion ns SLICE-1 (primary) -23.62 (-7.20) 13.84 (4.22)	ducer SLICE-2 -23.54 (-7.17) 12.53 (3.82)	Q-5 and 11-L&T-2 11-LDAO-3 4 in. (102 mm) Extensive N/A
KeSoiVe	Top Mounting Height y Component – Steel Post Shape Post Nos. 1-12, 15-28 Spacing Post Nos. 13-14 Spacing Embedment Depth y Component – Wood Blockout Post Nos. 3-26 1 Type hicle Make /Model Curb Test Inertial Gross Static pact Conditions Speed Angle		ace 5x9 m) m) m) m) m) m) w) ent kg) kg) kg) /h) eg.	VDS [17] CDC [18] Maximum I Test Article Dan Maximum Test Permanent 3 Dynamic Working W Transducer Data Evaluatio OIV ft/s (m/s) ORA g's MAX	Interior Deformat mage	Trans SLICE-1 (primary) -23.62 (-7.20) 13.84 (4.22) -13.37	ducer SLICE-2 -23.54 (-7.17) 12.53 (3.82) -12.23	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A
 Ke Soi Ve Imp Imp 	Top Mounting Height		ace 5x9 m) m) m) m) m) w) w) ent kg) kg) kg) kg) ld ld ld ld ld ld ld ld ld ld	VDS [17] . CDC [18] Maximum I Test Article Dan Maximum Test Permanent S Dynamic Working W Transducer Data Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR	Interior Deformat mage	Trans SLICE-1 (primary) -23.62 (-7.20) 13.84 (4.22) -13.37 -9.20	ducer SLICE-2 -23.54 (-7.17) 12.53 (3.82) -12.23 -10.55	2-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A N/A MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49
 Ke Soi Ve Imj Imj Exi 	Top Mounting Height		ace 5x9 m) m) m) m) m) w) w) ent kg) kg) kg) kg) ld ld eg. 14 016 em	VDS [17] . CDC [18] Maximum I Test Article Dan Maximum Test Permanent S Dynamic Working W Transducer Data Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP.	Interior Deformat mage Article Deflectio Set 	ion ns SLICE-1 (primary) -23.62 (-7.20) 13.84 (4.22) -13.37 -9.20 -368.0	ducer SLICE-2 -23.54 (-7.17) 12.53 (3.82) -12.23 -10.55 -367.6	2-5 and 11-L&T-2 11-LDAO-3 4 in. (102 mm) Extensive N/A N/A MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75
 Ke Soi Ve Imp Imp Exi Exi 	Top Mounting Height		ace 5x9 m) m) m) m) m) * W) ent kg) kg) kg) /h) eg. 14 016 em I/A	VDS [17] . CDC [18] Maximum I Test Article Dan Maximum Test Permanent S Dynamic Working W Transducer Data Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP. deg.	Interior Deformat mage Article Deflectio Set /idtha on Criteria Longitudinal Lateral Longitudinal Lateral Roll Pitch Yaw	ion ns SLICE-1 (primary) -23.62 (-7.20) 13.84 (4.22) -13.37 -9.20 -368.0 -11.0 271.0	ducer SLICE-2 -23.54 (-7.17) 12.53 (3.82) -12.23 -10.55 -367.6 15.1 268.6	2-5 and 11-L&T-2 11-LDAO-3 4 in. (102 mm) Extensive N/A N/A MASH 2016 Limit ±40 (12.2) ±40 (12.2) ±20.49 ±20.49 ±75 ±75 Not required
 Ke Soi Ve Imp Imp Exi Exi Ve 	Top Mounting Height		ace ix9 m) m) m) m) m) * W) ent kg) kg) kg) kg) /h) eg. 14 016 em I/A ory	VDS [17] . CDC [18] Maximum I Test Article Dan Maximum Test Permanent S Dynamic Working W Transducer Data Evaluatio OIV ft/s (m/s) ORA g's MAX ANGULAR DISP.	Interior Deformat mage	ion ns SLICE-1 (primary) -23.62 (-7.20) 13.84 (4.22) -13.37 -9.20 -368.0 -11.0	ducer SLICE-2 -23.54 (-7.17) 12.53 (3.82) -12.23 -10.55 -367.6 15.1	Q-5 and 11-L&T-2 4 in. (102 mm) Extensive N/A N/A MASH 2016 Limit ±40 (12.2) ±20.49 ±20.49 ±75 ±75

Figure 41. Summary of Test Results and Sequential Photographs, Test No. MGSCO-1

6 DESIGN DETAILS – TEST NO. MGSCO-2

After the failure of test no. MGSCO-1, the system needed to be modified to improve its crashworthiness. Through discussions with the project sponsors, the selected modification was to incorporate nested W-beam rail around the omitted post location to increase the rail strength and prevent premature failure. The rails were nested such that the two upstream rails were placed in front of the two downstream rails. This option was desired most because it did not require a change to the curb geometry nor the use of specialized parts. To ensure adequate rail strength around the omitted post, nested rail was recommended to extend at least two posts beyond each side of the elongated span length. In other words, nested rail was recommended to encompass the elongated span and the two adjacent 75-in. (1,905-mm) spans on each side. Thus, the MGS in combination with a curb and an omitted post was modified to include 37.5 ft (11.4 m) of nested rail at the location of the omitted post.

The test article from the previous test was repaired and modified for test no. MGSCO-2. The upstream and downstream anchorages were reinstalled, and post nos. 13 through 20 were replaced. The only unique design feature for test no. MGSCO-2 was the addition of three W-beam rail sections creating nested guardrail that extended from the splice between post nos. 10 and 11 to the splice between post nos. 15 and 16. Details of the installation can be seen in Figures 42 through 54. Photographs of the test installation are shown in Figure 55. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

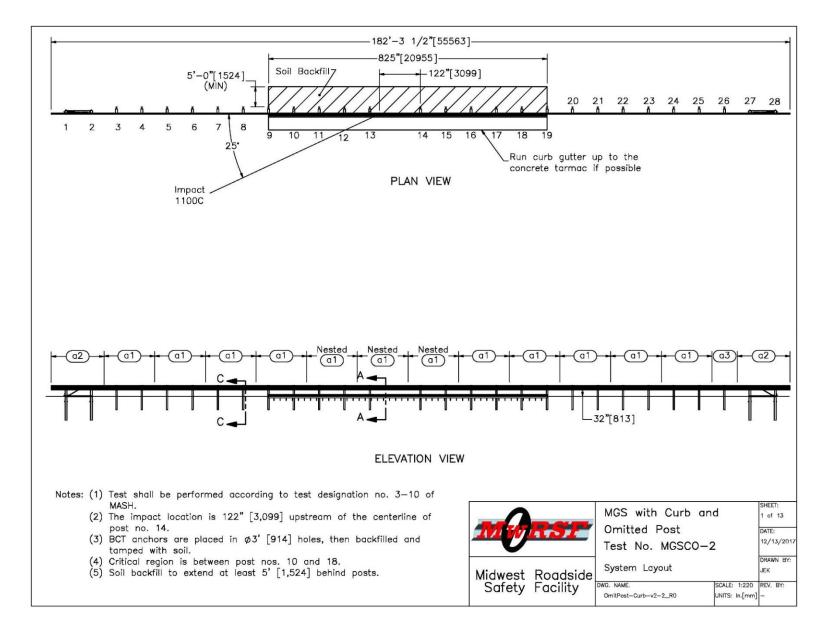


Figure 42. System Layout, Test No. MGSCO-2

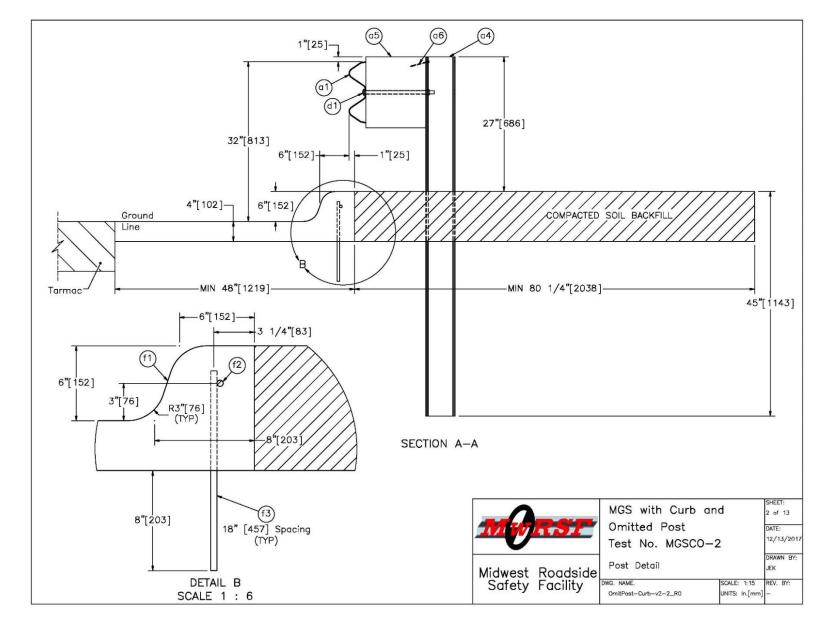


Figure 43. System Profile, Curb Geometry and Reinforcement Details, Test No. MGSCO-2

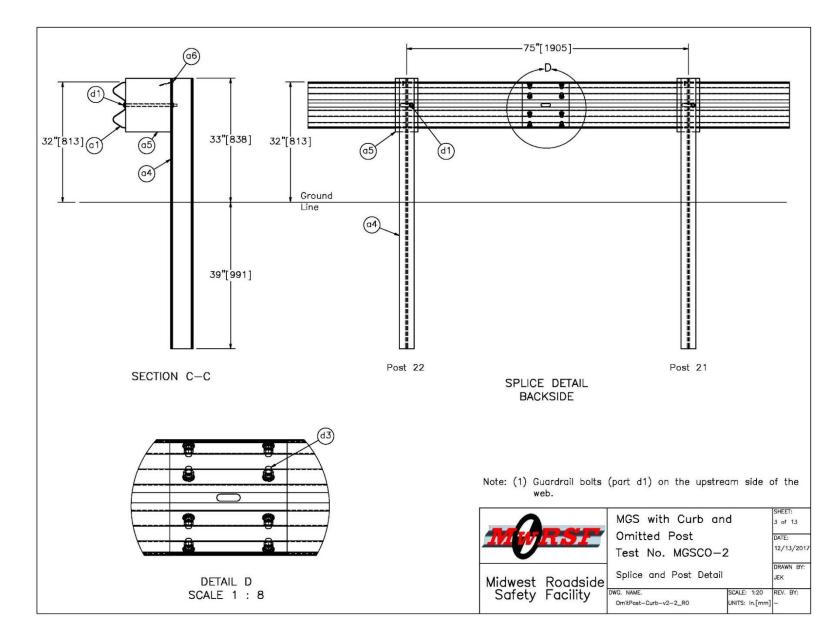
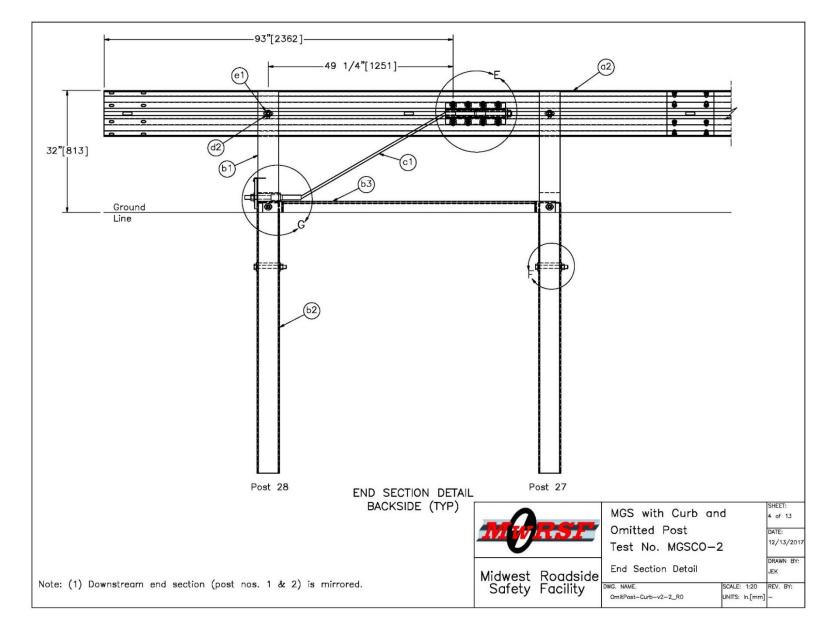



Figure 44. Splice and Post Detail, Test No. MGSCO-2

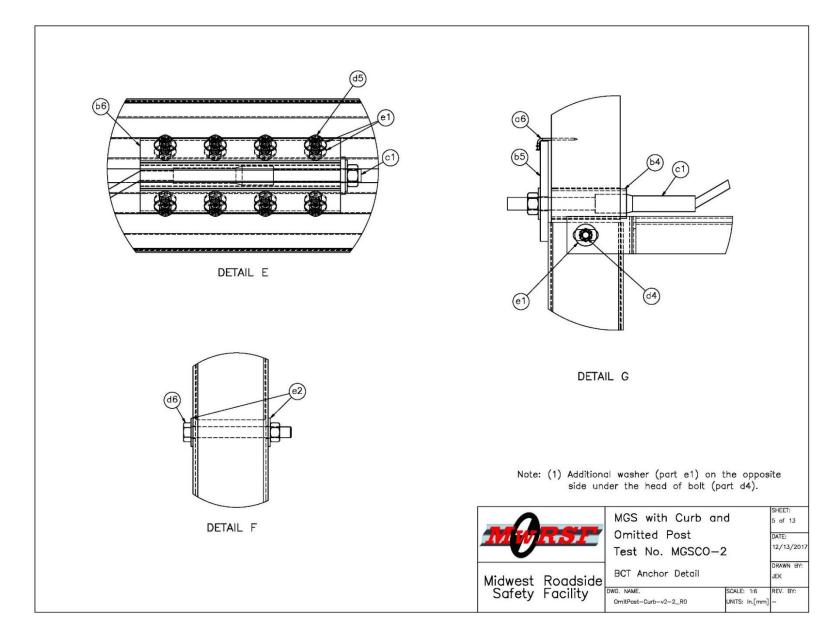
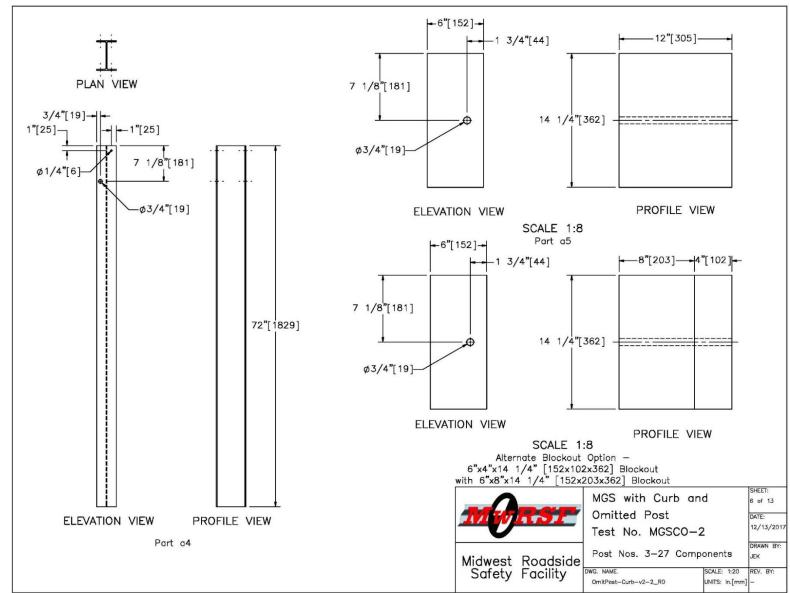



Figure 46. MGS End Anchorage Detail, Test No. MGSCO-2

April 12, 2019 MwRSF Report No. TRP-03-393-19

Figure 47. Post Nos. 3 through 27 Component Details, Test No. MGSCO-2

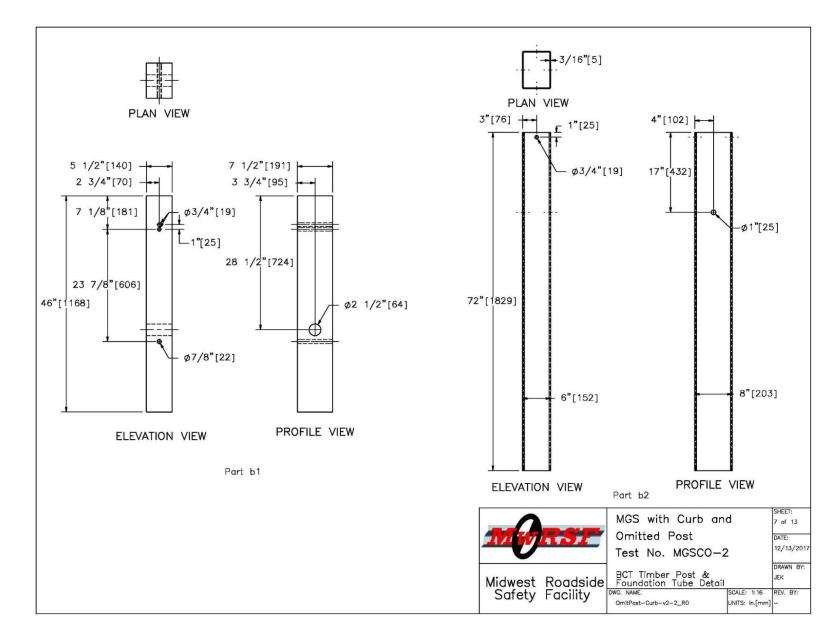


Figure 48. MGS BCT Timber Post and Foundation Tube Detail, Test No. MGSCO-2

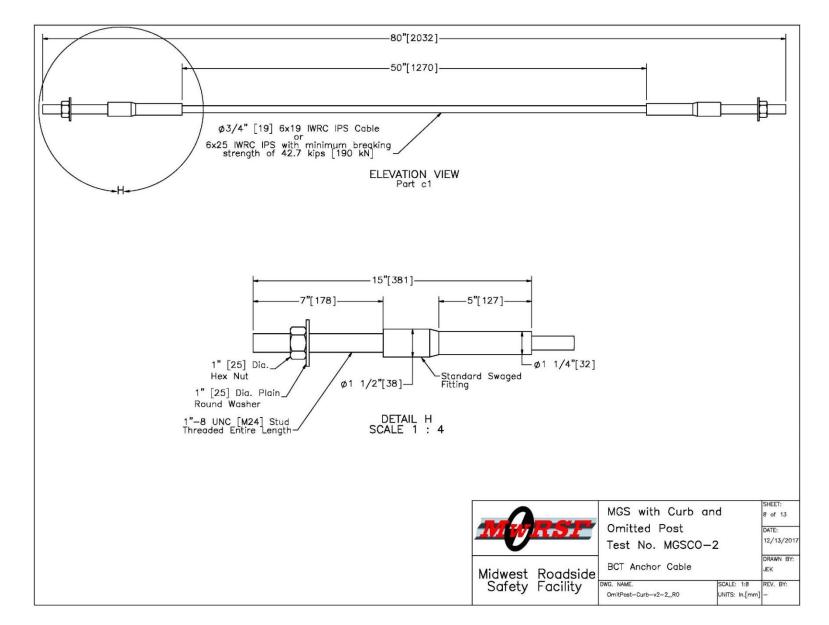


Figure 49. MGS BCT Anchor Cable, Test No. MGSCO-2

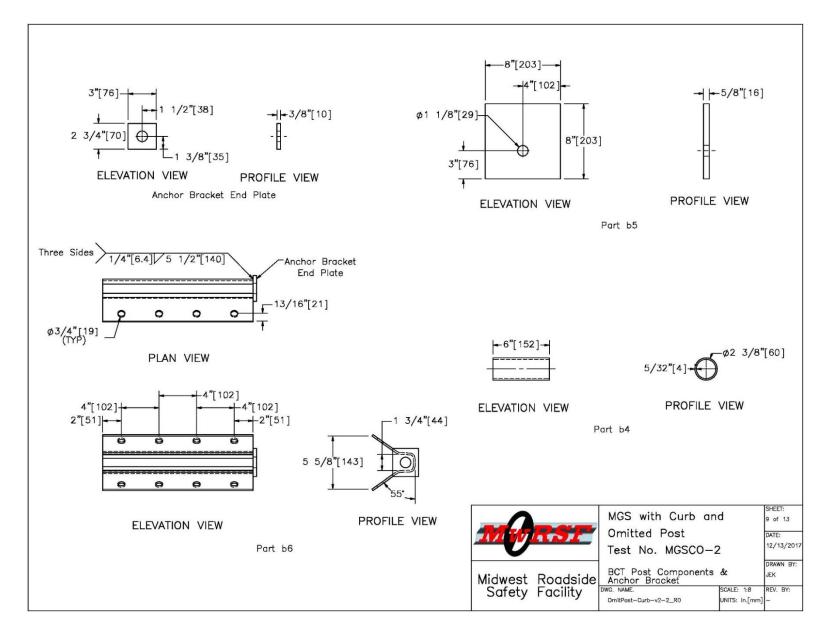


Figure 50. MGS BCT Post Components and Anchor Bracket, Test No. MGSCO-2

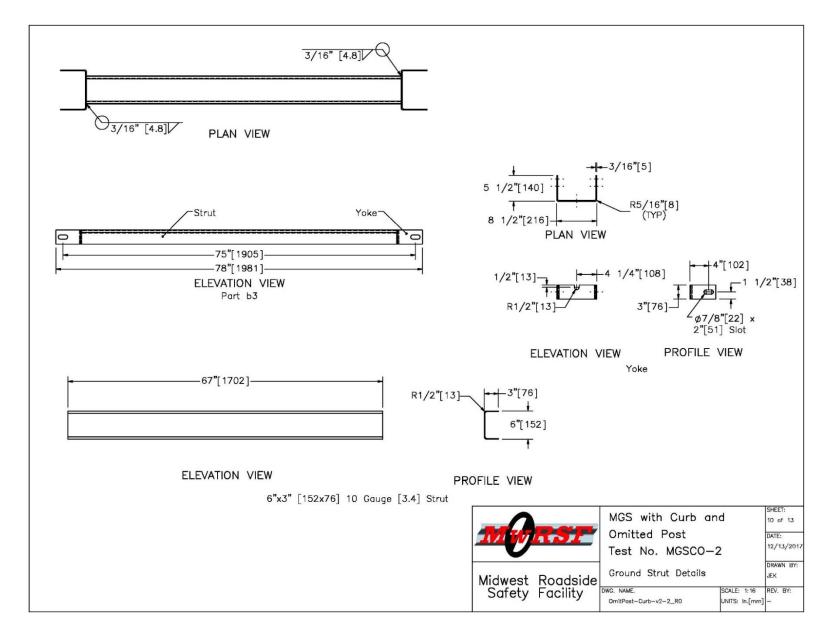


Figure 51. Groundline Strut Details, Test No. MGSCO-2

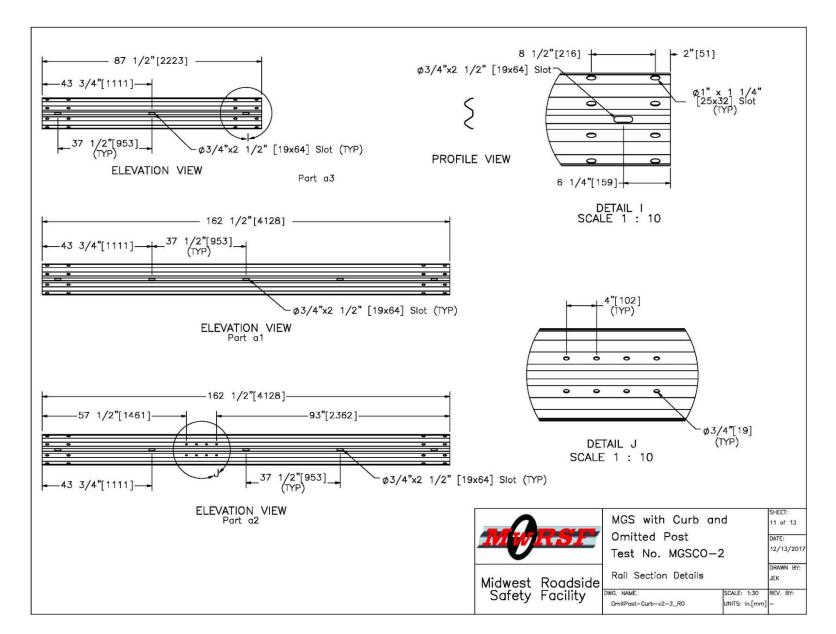


Figure 52. Rail Details, Test No. MGSCO-2

67

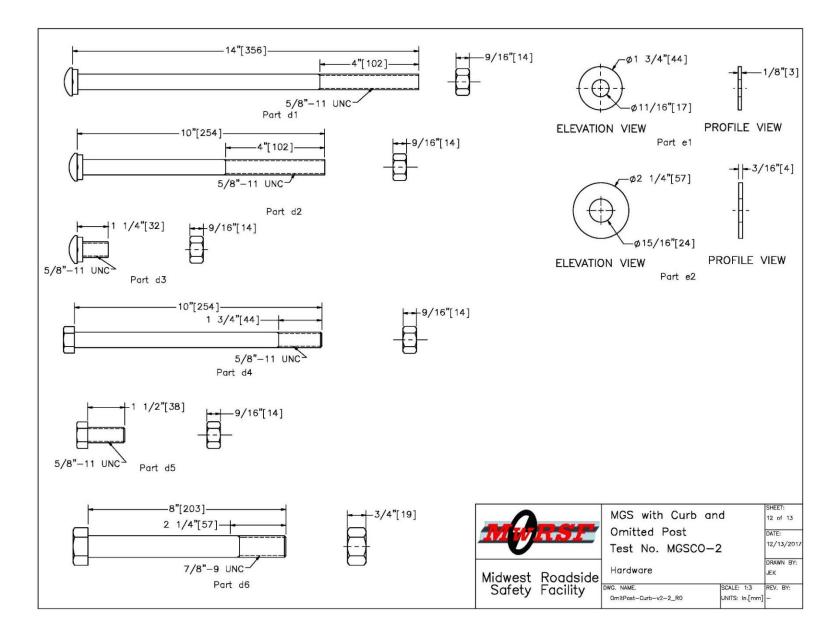


Figure 53. Attachment and Connection Hardware, Test No. MGSCO-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	15	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" [3,810] 12 gauge [2.7] W-Bearn MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
۵3	1	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a4	24	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1.829] Steel Post	ASTM A992 Min. 50 ksi [345 MPa]	ASTM A123	PWE06
a5	24	6"x12"x14 1/4" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No.1 or bette	er –	PDB10a
a6	26	16D Double Head Nail	-	-	—
Ь1	4	BCT Timber Post – MGS Height	SYP Grade No. 1 or bett (No knots 18" [457] above below ground tension fac	ter e or — ce)	PDF01
b2	4	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
b4		2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule	40 ASTM A123	FMM02
b5	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b6	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c1	2	BCT Anchor Cable	—	-	FCA01
d1	24	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. Nut – ASTM A563A	A ASTM A153 or B695 Class 55 or F2329	FBB06
d2	4	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. Nut – ASTM A563A	A ASTM A153 or B695 Class 55 or F2329	FBB03
d3*	112	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. Nut – ASTM A563A	A ASTM A153 or B695 Class 55 or F2329	FBB01
d4	4	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. Nut – ASTM A563A	A ASTM A153 or B695 Class 55 or F2329	FBX16a
d5	16	5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. Nut – ASTM A563A	A ASTM A153 or B695 Class 55 or F2329	FBX16a
d6	4	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. Nut – ASTM A563A	A ASTM A153 or B695 Class 55 or F2329	Т
e1	44	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	1
f1	1	Curb	f'c = 4,000 psi [27.6 Mf	Pa] –	-
f2		#4 Rebar 819" [20,803] Long	ASTM A615 Gr. 60	-	-
f3	45	#4 Rebar 16" [406] Long	ASTM A615 Gr. 60	-	-
* 2"	[51]	Long Guardrail Bolts (FBB02) may be used in place of	part d3 at nested splice lo	ocations.	
				MGS with Curb and Omitted Post Test No. MGSCO-2	SHEET: 13 of 13 DATE: 12/13/2017 DRAWN BY:
				west Roadside afety Facility Bill of Materials DWG. NAME. OrnitPost-Curb-v2-2_RO	JEK one REV. BY:

Figure 54. Bill of Materials, Test No. MGSCO-2

Figure 55. Test Installation Photographs, Test No. MGSCO-2

7 FULL-SCALE CRASH TEST NO. MGSCO-2

7.1 Static Soil Test

Before full-scale crash test no. MGSCO-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength and full-scale crash testing could be conducted on the barrier system.

7.2 Weather Conditions

Test no. MGSCO-2 was conducted on February 2, 2018 at approximately 3:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 8.

Temperature	37° F
Humidity	39%
Wind Speed	24 mph
Wind Direction	200° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 8. Weather Conditions, Test No. MGSCO-2

7.3 Test Description

Initial vehicle impact was to occur 122 in. (3,099 mm) upstream from the centerline of post no. 14, as shown in Figure 56, which was selected from the BARRIER VII analysis and remained the same as in test no. MGSCO-1. The 2,404-lb (1,090-kg) vehicle impacted the MGS with curb and omitted post at a speed of 63.2 mph (102 km/h) and at an angle of 24.7 degrees. The actual point of impact was 3.2 in. (81 mm) upstream from the targeted location. During the impact event, the vehicle was captured and redirected without any evidence of rail tearing. The vehicle snagged on and overrode post nos. 14 and 15, the first two posts downstream from impact, which caused the vehicle to not become parallel to the system and yaw back toward the barrier as it was exiting the system. However, the vehicle remained stable throughout impact and came to rest 56 ft – 8 in (17.3 m) downstream from impact and 11 ft – 7 in. (3.5 m) in front of the barrier after brakes were applied.

A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figures 57 and 58. Documentary photographs of the crash test are shown in Figures 59 through 60. The vehicle trajectory and final position are shown in Figure 61.



Figure 56. Impact Location, Test No. MGSCO-2

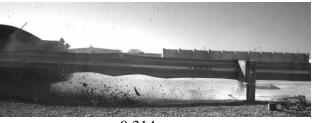
TIME (s)	EVENT		
0.000	Vehicle's left-front tire contacted curb.		
0.004	Vehicle's front bumper contacted rail 119.8 in. (3,042 mm) upstream from post no. 14.		
0.014	Vehicle's left fender contacted rail.		
0.020	Post no. 13 deflected backward. Vehicle's hood contacted rail.		
0.034	Post no. 14 deflected backward.		
0.078	Post no. 14 deflected downstream. Vehicle's left-front door contacted rail.		
0.092	Vehicle's left-rear tire contacted curb.		
0.100	Vehicle's front bumper cover contacted curb.		
0.104	Post no. 14 bent downstream.		
0.106 Post no. 15 deflected backward.			
0.110	Vehicle's front bumper contacted post no. 14.		
0.118	Vehicle's left-rear tire became airborne.		
0.120 Section of vehicle's front bumper cover disengaged.			
0.122 Rail disengaged from bolt at post no. 14.			
0.126	Blockout at post no. 14 fractured.		
0.135	Post no. 16 deflected backward.		
0.173	Post no. 15 deflected downstream.		
0.192	Post no. 15 bent downstream.		
0.210	Vehicle's front bumper contacted post no. 15		
0.224	Rail disengaged from bolt at post no. 15.		
0.270	Vehicle yawed toward barrier.		
0.316	Post no. 16 deflected downstream.		
0.322	Vehicle's left-rear tire regained contact with ground.		
0.402	Rail disengaged from bolt at post no. 16.		
0.504	Rail disengaged from bolt at post no. 17.		
0.558	Vehicle exited system at 26.5 mph (42.6 km/h) and angle of 9.3 degrees while yawing toward the barrier.		
1.144	Vehicle's front bumper contacted rail between post nos. 20 and 21.		
1.302	Vehicle's front bumper cover disengaged.		
1.800	Vehicle exited system at 20.8 mph (33.5 km/h).		
4.000	Vehicle came to rest facing the barrier.		

Table 9. Sequential Description of Impact Events, Test No. MGSCO-2

*Unable to determine the moment the vehicle came to rest

0.000 s

0.020 s


0.048 s

0.314 s

0.000 s

0.056 s

0.132 s

0.218 s

0.558 s

1.380 s

Figure 57. Sequential Photographs, Test No. MGSCO-2

0.000 s

0.030 s

0.076 s

0.116 s

0.202 s

0.554 s

0.000 s

0.044 s

0.120 s

0.282 s

0.572 s

1.268 s

Figure 58. Additional Sequential Photographs, Test No. MGSCO-2



Figure 59. Additional Documentary Photographs, Test No. MGSCO-2

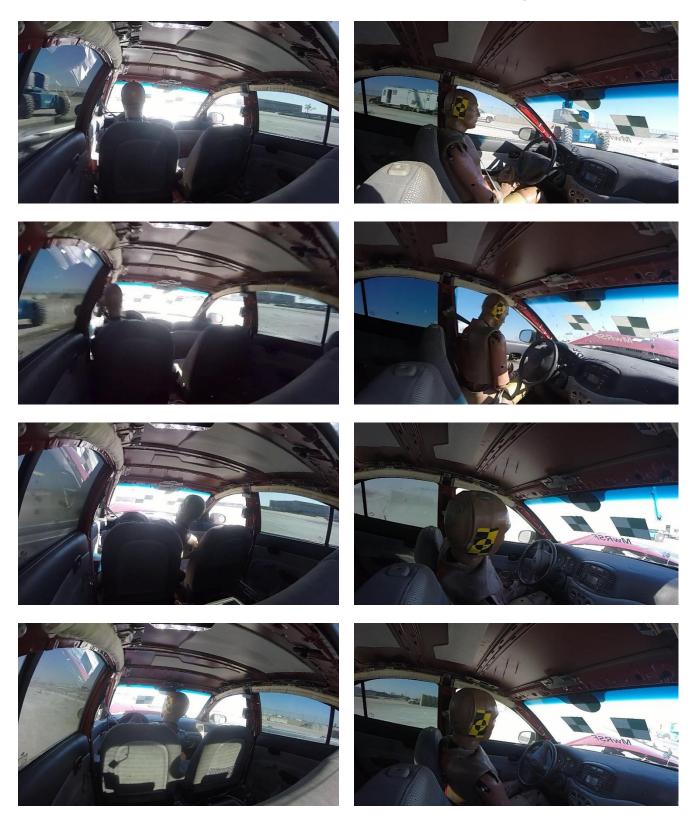


Figure 60. Additional Documentary Photographs, Test No. MGSCO-2

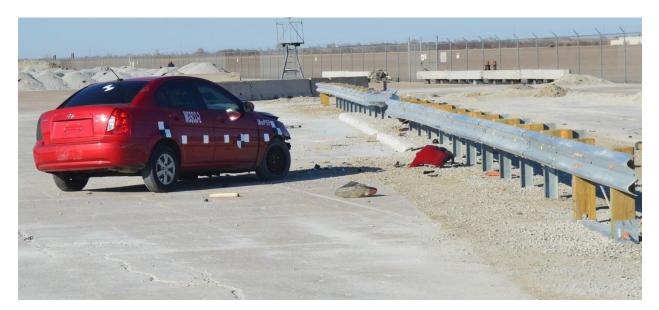


Figure 61. Vehicle Final Position and Trajectory Marks, Test No. MGSCO-2

7.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 62 through 65. Barrier damage consisted of contact marks, bent and deformed posts, fractured blockouts, and deformed W-beam guardrail. The length of vehicle contact along the barrier was approximately 29 ft – 2.2 in. (8.9 m) which spanned from 10 ft – 5.2 in. (3.2 m) upstream from the centerline of post no. 14 downstream to post no. 17. Contact marks and video analysis indicated the vehicle briefly re-contacted the rail approximately 17 in. (432 mm) downstream from post no. 20 before rebounding off of post no. 21 and coming to rest.

Tire marks were found on the curb near the point of impact and on the top of the curb in front of post no. 14. The rail experienced bending, kinking, and flattening at multiple locations spanning from post nos. 13 to 17. The rail was disengaged from the guardrail bolts at post nos. 14 through 17. The maximum lateral splice separation was measured to be $\frac{3}{8}$ in. (10 mm) at the splice between post nos. 15 and 16. There was no evidence of rail tearing.

Post nos. 14 and 15 were bent backward and downstream as they had been overridden by the vehicle. Post nos. 13 and 16 were only slightly deflected backward. The guardrail bolt tore out of the bolt hole on post no. 14, while the guardrail bolt at post no. 15 was bent approximately 90 degrees. The blockouts from post nos. 14 and 15 were fractured and disengaged, and the blockout on post no. 16 was vertically split near its back-downstream corner. The majority of the posts outside of the contact region were twisted to face the impacted area.

The maximum lateral permanent set of the barrier system, including guardrail and post deflection, was 16³/₄ in. (425 mm) which occurred 37.5 in. (953 mm) upstream from post no. 14, as measured in the field. The maximum lateral dynamic barrier deflection, including deformation of the MGS along the top surface, was 23.4 in. (594 mm) at post no. 14. The lateral post dynamic deflection was 20.2 in. (513 mm), and the lateral rail dynamic deflection was 23.4 in. (594 mm). The rail and post dynamic deflections were determined from high-speed digital video analysis. The working width of the system was found to be 39.4 in. (1,001 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 66.

7.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 67 through 69. The maximum occupant compartment intrusions are listed in Table 10 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the front and the front-left corner of the vehicle. The front bumper cover disengaged from the vehicle. The left side of the front bumper was dented inward approximately 8 in. (203 mm) and down approximately 10 degrees. The right frame horn was separated from the front bumper at the weld. The radiator was crushed in $2\frac{1}{2}$ in. (64 mm) from the top, and the condenser was dented $2\frac{1}{2}$ in. (64 mm) from the top. The upper support for the

radiator was ripped off its attachment mounts. The left side of the hood crumpled and the right side of the hood was dented and deflected. The vehicle's headlights were crushed and disengaged. The left-front fender was crushed inward toward the engine bay. The left-front wheel rim was dented along the edge, and a 3-in. (76-mm) gouge was found on the inside of the tire's side wall. The vehicle's windshield was cracked near the center toward the left side. The roof and remaining window glass remained undamaged.

Figure 62. System Damage, Test No. MGSCO-2

Figure 63. Additional System Damage, Test No. MGSCO-2

Figure 64. System Damage, Post Nos. 13 and 14, Test No. MGSCO-2

Figure 65. System Damage, Post Nos. 15 through 18, Test No. MGSCO-2

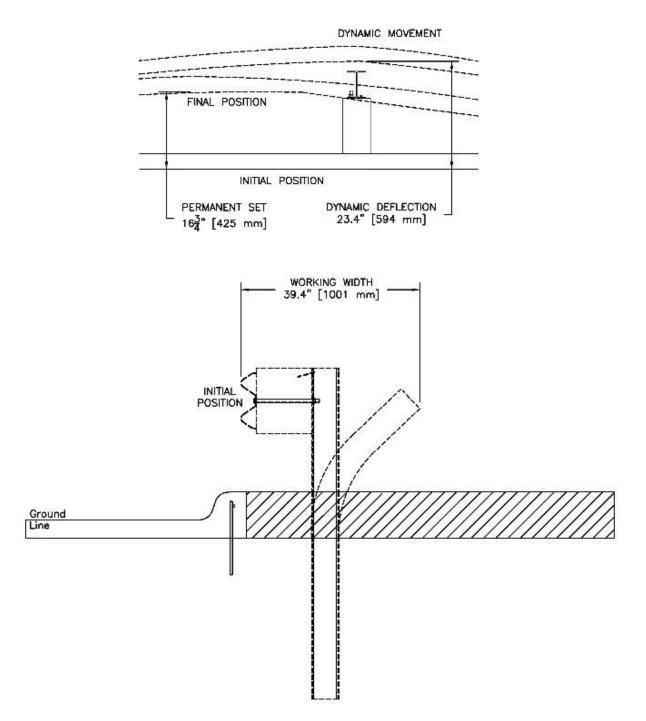


Figure 66. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. MGSCO-2



Figure 67. Vehicle Damage, Test No. MGSCO-2

April 12, 2019 MwRSF Report No. TRP-03-393-19

Figure 68. Additional Vehicle Damage, Test No. MGSCO-2

MWRSF

Figure 69. Occupant Compartment and Undercarriage Damage, Test No. MGSCO-2

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)		
Wheel Well & Toe Pan	¹ / ₂ (13)	≤9 (229)		
Floor Pan & Transmission Tunnel	1/8 (3)	≤ 12 (305)		
A- and B-Pillars	¹ ⁄4 (6)	≤ 5 (127)		
A- and B-Pillars (Lateral)	1/8 (3)	≤ 3 (76)		
Side Front Panel (in Front of A-Pillar)	¹ / ₂ (13)	≤ 12 (305)		
Side Door (Above Seat)	³ / ₈ (10)	≤9 (229)		
Side Door (Below Seat)	³ / ₈ (10)	≤ 12 (305)		
Roof	1/8 (3)	≤4 (102)		
Windshield	0	≤ 3 (76)		
Side Window	Intact	No shattering resulting from contact with structural member of test article		
Dash	1⁄4 (6)	N/A		

Table 10. Maximum Occupant Compartment Intrusion by Location

N/A – Not applicable

Damage to the vehicle's undercarriage included bending of the middle of the left-front strut. No additional damage to the suspension was observed. A dent was observed on the front of the transmission pan, and the oil pan was scratched. Gouges were observed on the bottom of the lower-front engine mount. The left-side frame horn was crushed inward and down, and the rightfront corner of the engine and transmission cradle bent in and up at the point of initial impact. Scrapes and gouges were found along the back section of the cradle.

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 10-ms average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 11. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 11. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

		Trans	MASH 2016		
Evaluati	on Criteria	SLICE-1	SLICE-2 (Primary)	Limits	
OIV	Longitudinal	-33.40 (-10.18)	-33.25 (-10.13)	±40 (12.2)	
ft/s (m/s)	Lateral	20.65 (6.29)	19.95 (6.08)	±40 (12.2)	
ORA	Longitudinal	-10.96	-10.04	±20.49	
g's	Lateral	10.31	9.58	±20.49	
MAX.	Roll	12.6	14.1	±75	
ANGULAR DISPL.	Pitch	-3.8	-4.1	±75	
deg.	Yaw	-31.1	-30.3	not required	
	HIV (m/s)	28.64 (8.73)	29.63 (9.03)	not required	
_	HD g's	15.01	13.71	not required	
	ASI	1.11	1.08	not required	

Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSCO-2

7.7 Discussion

The analysis of the test results for test no. MGSCO-2 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 70. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, as they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 16.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSCO-2 was determined to satisfy the MASH 2016 safety performance criteria for test designation no. 3-10.

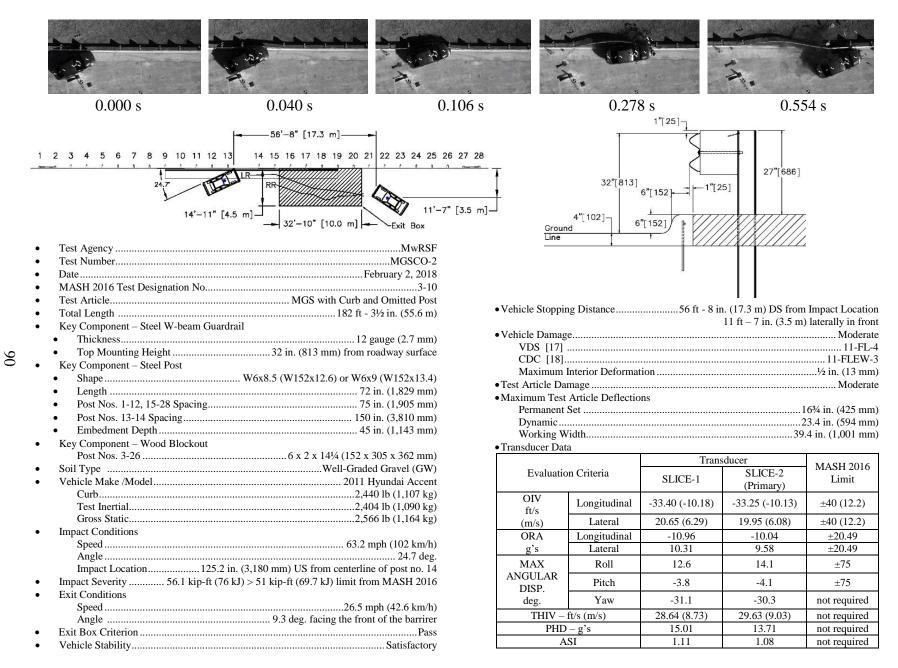


Figure 70. Summary of Test Results and Sequential Photographs, Test No. MGSCO-2

April 12, 2019 MwRSF Report No. TRP-03-393-19

8 SUMMARY AND CONCLUSIONS

The objective of this project was to evaluate the MGS in combination with a curb and an omitted post in accordance with MASH 2016 TL-3 criteria. The test article utilized for full-scale crash testing consisted of the MGS placed with the face of the rail offset 6 in. (152 mm) behind a 6-in (152-mm) tall AASHTO Type B curb. Additionally, one post was omitted from the middle of the barrier system creating a single elongated rail span of 150 in. (3,810 mm).

In test no. MGSCO-1, the 2,438-lb (1,106-kg) small car impacted the MGS with a curb and omitted post at a speed of 64.1 mph (103 km/h) an angle of 25.7 degrees, at a location 124.7 in. (3,167 mm) upstream from the centerline of post no. 14, thus resulting in an impact severity of 62.9 kip-ft (85 kJ). During the impact event, the W-beam rail ruptured at the splice located within the elongated span length, and the vehicle penetrated the system and eventually rolled over. Additionally, the windshield crush of 4 in. (102mm) exceeded the allowable limits for occupant compartment deformation. Thus, test no. MGSCO-1 failed to satisfy safety performance criteria for MASH 2016 test no. 3-10. Rail rupture was believed to be related to the concentrated loading of the bumper on the rail, the increased stiffness of the post with the additional embedment, and the vertical and twisting forces applied by the small car bumper wedging under the rail.

To strengthen the rail and prevent premature failure, the system was modified to incorporate 37.5 ft (11.4 m) of nested guardrail encompassing the elongated rail span and the two adjacent 75-in. (1,905-mm) spans on each side. The modified system was then retested according to MASH 2016 test designation no. 3-10. In test no. MGSCO-2 the 2,404-lb (1,090-kg) small car impacted the MGS with a curb and an omitted post at a speed of 63.2 mph (102 km/h) an angle of 24.7 degrees, at a location 125.2 in. (3,180 mm) upstream from the centerline of post no. 14, thus resulting in an impact severity of 56.1 kip-ft (76 kJ). The vehicle was captured and redirected without any evidence of rail tearing. The vehicle remained upright and stable through the test, and all vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. Therefore, test no. MGSCO-2 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-10. A summary of both test evaluations is shown in Table 12.

The project was originally intended to include both tests within the MASH 2016 TL-3 matrix, test designation nos. 3-10 and 3-11 with the small car and pickup truck, respectively. However, the failure experienced during test no. MGSCO-1 required a design modification and retesting to MASH 2016 test designation no. 3-10 impact conditions. Although test no. MGSCO-2 passed the safety performance criteria of MASH 2016 test designation no. 3-10, the system must also be tested to MASH 2016 test no. 3-11 criteria in order to complete the MASH 2016 TL-3 evaluation matrix and be deemed crashworthy. Subsequently, an additional project containing a MASH 3-11 test on the system was funded as part of the 2018 Midwest Pooled Fund Program and is scheduled to be completed in 2020.

Evaluation Factors	Evaluation Criteria			Test No. MGSCO-1	Test No. MGSCO-2	
Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			U	S
	D	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.			S	S
		 Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. 			U	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			U	S
Occupant Risk	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			S	S
		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum	-	
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				S
		Occupant Ridedown	Acceleration	Limits	S	3
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH 2016 Test Designation No.					3-10	3-10
Final Evaluation (Pass or Fail)				Fail	Pass	

Table 12. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

9 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 2. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 3. Sicking, D.L., Reid, J.D., and Rohde, J.R., *Development of the Midwest Guardrail System*, Journal of the Transportation Research Board, Transportation Research Record No. 1797, Presented in Washington, D.C., January 2002, pp. 44-52.
- 4. Faller, R.K., Polivka, K.A., Kuipers, B.D., Bielenberg, R.W., Reid, J.D., Rohde, J.R., and Sicking, D.L., Midwest Guardrail System for Standard *and Special Applications*, Journal of the Transportation Research Board, Transportation Research Record No. 1890, Washington, D.C., January 2004, pp. 19-33.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., Bielenberg, R.W., and Kuipers, B.D., *Development of the Midwest Guardrail System (MGS)* for Standard and Reduced Post Spacing and in Combination with Curbs, Report No. TRP-03-139-04, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, September 2004.
- 6. Bielenberg, R.W., Faller, R.K., Sicking, D.L., Rohde, J.R., and Reid, J.D., *Midwest Guardrail System for Long-Span Culvert Applications*, Journal of the Transportation Resarch Board No. 2025, Washington, D.C., January 2007.
- Lingenfelter, J.L., Rosenbaugh, S.K., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., and Reid, J.D., *Midwest Guardrail System (MGS) with an Omitted Post*, Report No. TRP-03-326-16, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, 2016.
- 8. Winkelbauer, B.J., Putjenter, J., Rosenbaugh, S.K., Lechtenberg, K.A., Bielenberg, R.W., Faller, R.K., and Reid, J.D., *Dynamic Evaluation of MGS Stiffness Transition with Curb*, Research Report No. TRP-03-291-14, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, June 30, 2014.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.

- Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 12. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 13. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 14. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 15. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 16. Powell, G.H., Barrier VII: A Computer Program For Evaluation of Automobile Barrier Systems, Prepared for: Federal Highway Administration, Report No. FHWA RD-73-51, April 1973.
- 17. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

10 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Spec	Reference No.
al	12' – 6" [3,810] 12 gauge [2.7] W- Beam MGS Section	AASHTO M180	H#9411949
a2	12' – 6" [3,810] 12 gauge [2.7] W- Beam MGS End Section	AASHTO M180	H#9411949
a3	6' – 3" [1,905] 12 gauge [2.7] W- Beam MGS Section	AASHTO M180	H#515691
a4	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long Steel Post	ASTM A992 Min. 50 ksi [345 MPa]	H#55044258 H#55044251
a5	6" x 12" x 14¼" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No. 1 or better	Ch#21327 Ch#18379 Part#GR61214BLK
a6	16D Double Head Nail	-	Order#E000357170
b1	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension force)	Ch#22927 Part#GS6846PST
b2	72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#0173175
b3	Ground Strut Assembly	ASTM A1011	H#163375
b4	2 ³ / ₈ " [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#A79999
b5	8" x 8" x 5%" [203x203x16] Anchor Bearing Plate	ASTM A36	H#DL15103543
b6	Anchor Bracket Assembly	ASTM A36	H#JK16101488
c1	BCT Anchor Cable	-	Part#3012G
d1	%" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolts: H#NF16100453 H#6600679 Nuts: H#10446960
d2	⁵ %" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolts: H#20351510 H#20297970 Nuts: H#10446960
d3	%" [16] Dia. UNC, 1¼" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolts: H#20337380 L#005377 Nuts: H#10446960
d4	⁵ %" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolts: H#DL15107048 Nuts: Part#36713
d5	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₂ " [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	Bolts: H#816070039 Nuts: Part#36713
d6	⁷ / ₈ " [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A36 Gr. A Nut – ASTM A563A	Bolts: H#2038622 Nuts: H#12101054
e1	5/8" [16] Dia. Plain Round Washer	ASTM F844	n/a
e2	⁷ / ₈ " [22] Dia. Plain Round Washer	ASTM F844	L#16H-168236-30
f1	Curb	f'c = 4,000 psi [27.6 MPa]	Ticket#1215828
f2	#4 Rebar 819" [20,803] Long	ASTM A615 Gr. 60	H#JW16104719
f3	#4 Rebar 16" [406] Long	ASTM A615 Gr. 60	H#58028856

Table A-1. Bill of Materials, Test Nos. MGSCO-1 and MGSCO-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	UNIVERSITY OF 401 CANFIELD / P O BOX 880439 LINCOLN,NE,68	admin Bldg Ə					Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No.:	7/9/2015 4500274709/ 07/0 UNIVERSITY OF TESTING COIL 183306	Contraction and a start of the start of	COLN			
HT # code	Heat #	c.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	10	A	2	12GA 25FT WB T2 MGS ANCHOR PANEL
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	100	A	2	12GA 12FT6IN/3FT1 1/2IN WB T2
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	20	A	2	12GA 25FT0IN 3FT1 1/2IN WB T2

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-423 & ASTM-653 All Gelvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

-Telas

By: Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

DAWN R. BATTON NOTARY PUBLIC STATE OF OHIO Comm. Expires March 03, 2018 Recorded in Portage County

Figure A-1. 12-ft - 6-in. (3.8-m) W-Beam MGS Section and End Section, Test Nos. MGSCO-1 and MGSCO-2

						Certifie	d inal	ysis							Trinis		icts I-C
Trinity Hig	ghway Pr	oducts, LLC													1		7
550 East R	obb Ave					Order 1	Number: 1164'	746									
Lima, OH 4	5801					Custo	mer PO: 2563										
		EST MACH.& SUPPL	V CO				Number: 6950	0						A	s of: 5/16/12	2	
customer:			LICU.					0									
	P. O. B	OX 703				Doct	ument #: 1										
						Ship	oped To: NE										
	MILFO	RD, NE 68405				U	se State: KS										
Project:	RESAL																
10,000.	TCEO/TE			-													
Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat #	Yield	TS	Elg	С	Mn	Р	s s	Cu	Cb Cr	Vn	ACW
			M-180	A	2	515664	64,600	74,600	25.0	0.067	0.740	0.009 0.0	0.01	0 0.019	0.000 0.022	0.000	4
			M-180	А	2	515665	64,300	73,800	27.0	0.063	0.750	0.012 0.0	0.00 80	7 0.018	0.000 0.027	0.000	4
		a.	M-180	А	2	515666	64,700	74,200	27.0	0.067	0.740	0.009 0.0	0.01	0 0.031	0.000 0.023	0.000	4
			M-180	А	2	515669	64,500	74,100	26.0	0.063	0.790	0.014 0.0	0.00	9 0.017	0.000 0.028	0.000	4
			M-180	A	2	515690	63,000	71,800	27.0	0.059	0.720	0.010 0.0	08 0.01	3 0.024	0.000 0.042	0.000	4
			M-180	А	2	515691	64,000	72,300	27.0	0.060	0.740	0.009 0.0	08 0.01	0 0.021	0.000 0.032	0.000	4
			M-180	A	2	515696	62,900	72,500	28.0	0.058	0.740	0.013 0.0	08 0.01	1 0.029	0.000 0.046	0.000	4
			M-180	A	2	515696	63,900	73,400	29.0	0.058	0.740	0.013 0.0	08 0.01	1 0.029	0.000 0.046	0.000	4
			M-180	A	2	515700	67,800	77,700	28.0	0.065	0.800	0.013 0.0	09 0.01	2 0.036	0.000 0.035	0.000	4
			M-180	А	2	515701	64,300	74,200	28.0	0.064	0.800	0.013 0.0	10 0.01	0 0.030	0.000 0.029	0.000	4
			M-180	A	2	515701	65,200	73,700	28.0	0.064	0.800	0.013 0.0	10 0.01	0 0.030	0.000 0.029	0.000	4
			M-180	A	2	521448	65,400	75,600	28.0	0.074	0.078	0.014 0.0	12 0.01	0 0.060	0.000 0.058	0.000	4
			M-180	А	2	616037	67,800	78,000	26.0	0.065	0.830	0.014 0.0	07 0.01	6 0.023	0.000 0.026	0.000	4
			M-180	A	2	616038	65,500	73,700	24.0	0.070	0.740	0.009 0.0	06 0.01	5 0.014	0.000 0.018	0.000	4
			M-180	А	2	616041	63,700	74,300	28.0	0.065	0.760	0.013 0.0	08 0.00	9 0.028	0.000 0.029	0.000) 4
			M-180	A	2	616043	62,700	71,800	27.0	0.067	0.740	0.013 0.0	08 0.01	0 0.034	0.000 0.031	0.000) 4
			M-180	A	2	616043	64,900	77,000	25.0	0.067	0.740	0.013 0.0	08 0.01	0 0.034	0.000 0.031	0.000) 4
			M-180	A	2	616067	63,200	73,300	28.0	0.063	0.750	0.013 0.0	10 0.01	2 0.035	0.000 0.032	0.000) 4
			M-180	A	2	616069	62,600	73,100	26.0	0.064	0.750	0.008 0.0	07 0.01	1 0.026	0.000 0.022	0.000) 4
			M-180	A	2	616070	62,800	73,000	29.0	0.060	0.730	0.014 0.0	08 0.0	2 0.021	0.000 0.032	0.000) 4
			M-180	A	2	616071	64,000	74,000	28.0	0.061	0.760	0.016 0.0	07 0.0	1 0.021	0.000 0.028	0.000) 4
			M-180	А	2	616072	63,800	74,200	29.0	0.066	0.750	0.014 0.0	09 0.0	0 0.026	0.000 0.039	0.000) 4
			M-180	A	2	616073	63,900	73,300	27.0	0.064	0.760	0.016 0.0	09 0.0	.2 0.024	0.000 0.041	0.000) 4
			M-180	A	2	616073	65,000	74,500	28.0	0.064	0.760	0.016 0.0	09 0.0	2 0.024	0.000 0.04	0.000) 4
			M-180	A	2	621267	65,000	74,800	29.0	0.066	0.780	0.015 0.0	13 0.00	0.068			
	12365G	T12/12'6/8@1'6.75/S	M-180	A.	2	151877	58,680	77,470	010	0.00	0 000	0 0 1 0 0 0	1001	0 0.120	0.00 0.050	0 000	

2 of 4

Figure A-2. 6-ft – 3-in. (1.9-m) W-Beam MGS Section, Test Nos. MGSCO-1 and MGSCO-2

CHEMICAL COMPOSITION P S Si Ou Ni Cr Mo Sn Y Mp 0.13 0.90 0.010 0.028 0.18 0.29 0.10 0.06 0.031 0.016 0.016 0.000 MECHANICAL PROPERTIES YS (2%) UTS MSa UTS G/L Elgng. 2000 71200 359 491 8.000 20.50 31600 69800 3356 481 8.000 23.40	JS-ML-CARTI 84 OLD GRAS CARTERSVILI JSA	RTERSVILLE RASSDALE ROAD NE ILLE, GA 30121 R PURCHASE ORDER NUMBER IB-B0600800 COMPOSITION Mn P 0.90 0.010 L PROPERTIES S 0.2% I PSI I S1600 7 51600 6	CUSTOMER SI HIGHWAY S 473 W FAIRO MARION,OH USA SALES ORD 3399484/0000	AFETY CORP BROUND ST 43302-1701 ER	CUSI HIGI GLA USA C	ERTIFIED MATERIAL TEST RE CUSTOMER BILL TO HIGHWAY SAFETY CORP GLASTONBURY,CT 06033-0355 USA CUSTOMER MATERIAL N° DATE 03/30/2016			IRADE 1992/A709-36 ENGTH 2'00" IPECIFICATION / DA SITM A5-14 SITM A709-13A SITM A709-13A SITM A709-13 SITM A992-11 SIA G40.21-13 345WM	Wide X 13.	WEIGHT 44,982 LB	Page 1/1 DOCUMENT II 000000000 T / BATCH 14258/02		
YS_0.2% UTS YS G/L Elong. PSI PSI MPa Inch % 52000 71200 359 491 8.000 20.50 51600 69800 356 481 8.000 23.40	Se	Mn	Р 0.010	\$ 0.028	Şi %	Cu % 0.29	Ni 0.10	Çr %		Şn 0.016	V % 0.016	Nb 0.000		
COMMENTS / NOTES	YS (PS 520	IB-B0600800 MPOSITION Mn P S S Si Ch 0.90 0.010 0.028 0.18 0.29 ROPERTIES 2% UTS MFa 000 71200 3559 500 69800 3556		9	491			8.000	20).50				
	'OMMENTS / NC	ARTERSVILLE GRASSDALE ROAD NE SVILLE, GA 30121 ER PURCHASE ORDER NUMBER IB-B0600800 L COMPOSITION Mn P 0.90 0.010 CAL PROPERTIES YS 0.2% PSI S2000 71200 51600 69800												
				0 100000	KING AL									

	aterial, including the billets, was melted and manufactured in the	e USA. CMTR complies with EN 10204 3.1.	
Mackan	BHASKAR YALAMANCHILI	sparces	YAN WANG QUALITY ASSURANCE MGR.
	QUALITY DIRECTOR		QUALITY ASSURANCE MGR.

Figure A-3. 72-in. (1,829-mm) Long Steel Post, Test Nos. MGSCO-1 and MGSCO-2

100

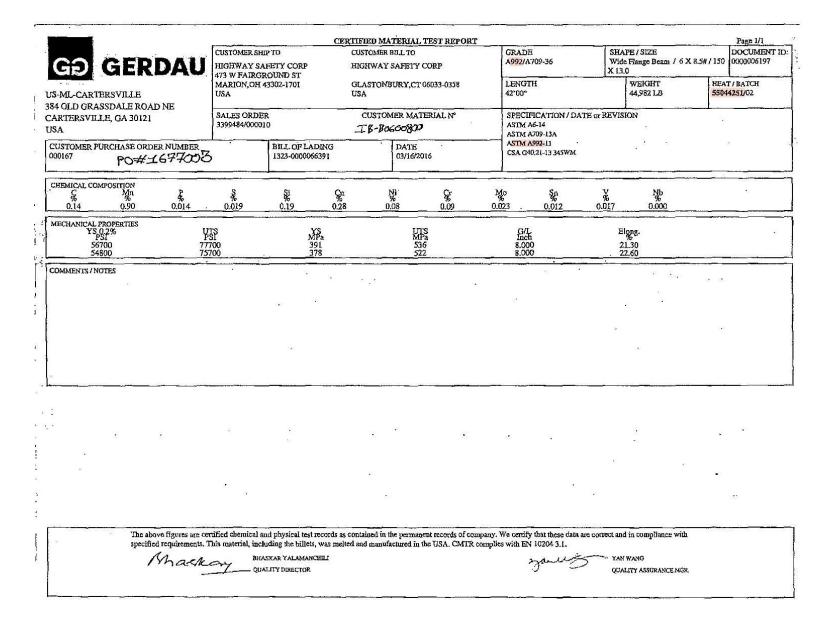


Figure A-4. 72-in. (1,829-mm) Long Steel Post, Test Nos. MGSCO-1 and MGSCO-2

	NEBRASKA WOOD PRESERV	VERS, INC.	8 -	
	Pone 4	02-773-4319 02-773-4513		
	2 6x12x14 Timber Block			
COC Jun	e2016 SMT Black Pain	tiags		
			Date:	10/29/15
Ta -	CERTIFICAT	E OF COMPLIA	NCE	
Shipped TO:	Midwest Machinay.	BOI #	100529	37
	# 3161	Preservative: <u>CCA</u>		
		110501744170. <u>CC1</u>		MINUCED_
Part #	Physical Description	# of Pieces	Charge #	Tested Retenti
4	5×12-14" and Bla	& 84	21327	.658 pit
C	the second			
		_	х. _э .	
			· .	
			· .	
		· · · · ·	· .	
	** ₁ . * 2		· .	
	···		· .	
certify the above r	eferenced material has been	VA: Central Nebraska W products listed above hav	e been treated in accorda	ince with AWPA
certify the above r roduced, treated ar	eferenced material has been nd tested in accordance with AW mms to AASHTO M133 & M168	PA products listed above have standards. Section 236 of	e been treated in accords the VDOT Road & Brid	ance with AWPA lge Specifications and

Figure A-5. Timber Blockout for Steel Posts, Test Nos. MGSCO-1 and MGSCO-2

			CENTRA NEBRAS WOOD		IS, INC.					
			P. C). Box 630 • S Pone 402- FAX 402-	773-4319	079			1	
						CI		voice _/		
								d To <u>M la</u>		
						C	astome	r PO _	2892	
		C	entral Ne				s, Inc			
		-	Cer	tification	n of Insp	ection	۵.,			
	Date:		4/23/14		_		245			
Specific	ations:	Highw	vay Construct	ion Use						
			CA-C 0.60							
			<u></u>	- <u>P</u>	-//	20				
Charge #	Date Treated	Grade	Materia Length &		# Pieces	White Moisture Readings	# of E	etration Borings & nforming	Reter	tual ntions forming
3379	4/14/14	181	6×12-14"	Blogs	756	19	160	95%	.651	pet
3379	4/16/14	dK1	618-22"	Blocks	84	19	40	95%	.65(pet
									ļ	
										(. *)
plore	•		d and reasor mence materi			ected in acc	ordanc	e with th	e above	
	ed specific		a sine o manori	ar this could	ere erret migh,		or acuit	S multi		
-	SAA	0			1	shie				
- 4	mitte	de	ager			19/19				

Figure A-6. Timber Blockout for Steel Posts, Test Nos. MGSCO-1 and MGSCO-2

	WOOD PRESERVE	Sutton, NE 68979		
	Pone 402	2-773-4319 2-773-4513		
*	6x12x14 B/0			
	Orange Paint			
	R#17-395			
	Purchased for Th	rie Buttress	Data	7/26/16
			Date	1/00/10
Part #	Physical Description	# of Pieces	Charge #	Tested Retent
40755	6×8-14" BLK	126	22416	,676
GR 61214 BL	6x12-14" OCD BLK	Big 84	21292	. 623
		Bb 84	22397	,607
1	1	. 168	22421	,733
	-			
	العني الم		10 M	
	e referenced material has been		Wood Preservers certifies t we been treated in accordation	
	ve referenced material has been	1 . 1 . 1		nce with AWPA

Figure A-7. Timber Blockout for Steel Posts, Test Nos. MGSCO-1 and MGSCO-2

Certificate of Compliance

600 N County Elmhurst IL (60126-2081	University of Nebraska Midwest Roadside Safety Facility	Purchase Order E000357170		Page 1 of 1
630-600-3600 chi.sales@mo		M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802	Order Placed By Shaun M Tighe		
		Attention: Shaun M Tighe Midwest Roadside Safety Facility	McMaster-Carr Number 2098331-01		
Line	Product		Ordered	Shipped	
1 97812A1	09 Steel Double-Headed Na Packs of 5	ail Size 16D, 3" Length, .16" Shank Diameter, 200) Pieces/Pack, 5 Packs	5	

Certificate of compliance

105

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Weich

Sarah Weinberg Compliance Manager

Figure A-8. Double-Headed Nails, Test Nos. MGSCO-1 and MGSCO-2

	CENTRAL NEBRASKA WOOD PRESERVERS			
	P. O. Box 630 • Su			
	Pone 402-7 FAX 402-7	73-4319		
R#17-28	2 BCT Posts 70 Acct AND \	Nood Blocks f	or Bullnose	
Nov2016	SMT Wood Blockouts are	painted Light	Blue	
<i>6</i>	ъ.		Date: _	и/11/16
	CERTIFICATE (): Midwest Machinery 254 90# 3339	pp ¹ 7 BOL# _	100 5 5387	
Customer P		Preservative: O	<u>CA-C_0.60 pcf A</u>	WPA UC4B
Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GR6806:587	bx8-6.5" PST	35	22973	:679
GR 6806.5CPT	6x8-6.5" CRT	35	82973	.679
GS6846PST	5.5-7.5-46:BCT	42.	22927	.638
6R61214BCK	- 6x12-14" OCD	168	22927	.638
			k	

Figure A-9. BCT Timber Post, Test Nos. MGSCO-1 and MGSCO-2

of the second	Certified Analysis	Hughway Products
Trinity Highway Products, LLC		TV
550 East Robb Ave.	Order Number: 1215324 Prod Ln Grp: 9-End Terminals (Dom)	
Lima, OH 45801	Customer PO: 2884	As of: 4/14/14
Castomer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 80821 Ship Date:	
P. O. BOX 703	Document #: 1 Foundation Tubes	Green Paint
	Shipped To: NE	
MILFORD, NE 68405	Use State: KS R#15-0157 Septem	iber 2014 SMT
Project: STOCK		

Qty	Part #	Description	Spec Cl	L TY	Heat Code/ Heat		Yield	TS	Elg	С	Mn	P	S	Si	Cu	Cb	Cr	Vв	AC
10	701A	25X11.75X16 CAB ANC	A-36		A3V3361		48,600	69,000	29,1	0.180	0.410	0.010	0,005	0.040	0,270	0.000	0.070	0.001	4
	701A		A-36		JJ4744		50,500	71,900	30.0	0.150	1.060	0.010	0.035	0.240	0.270	0.002	0.090	0.021	4
12	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500		0173175		55,871	74,495	31.0	0.160	0.610	0.012	0.009	0.010	0.030	0.000	0.030	0.000	4
15	736G	5'/TUBE SL/.188"X6"X8"FLA	A-500		0173175		55,871	74,495	31.0	0.160	0.610	0.012	0.009	0.01.0	0.030	0.000	0.030	0.000	4
12	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500		0173175	-	55,871	74,495	31.0	0.160	0.610	0.012	0.009	0.010	0.030	0.000	0.030	0.000	4
5	783A	5/8X8X8 BEAR PL 3/16 STP	A-36		10903960		56,000	79,500	28.0	0.180	0.810	0.009	0.005	0.020	0.100	0.012	0.030	0.000	4
	783A		A-36		DL13106973		57,000	72,000	22.0	0.160	0.720	0.012	0.022	0.190	0.360	0.002	0.120	0.050	4
20	3000G	CBL 3/4X6'6/DBL	HW		99692														
25	4063B	WD 6'0 POST 6X8 CRT	HW		43360														
	4147B	WD 3'9 POST 5.5"X7.5"	HW		2401			×											
20	15000G	6'0 SYT PST/8.5/31" GR HT	A-36		34940		46,000	66,000	25.3	0.130	0.640	0.012	0.043	0.220	0.310	0.001	0.100	0.002	4
10	19948G	.135(10Ga)X1.75X1.75	HW		P34744														
2	33795G	SYT-3"AN STRT 3-HL 6'6	A-36		JJ6421		53,600	73,400	31.3	0.140	1.050	0.009	0.028	0.210	0.280	0.000	0.100	0.022	4
4	34053A	SRT-31 TRM UP PST 2'6.625	A-36		JJ5463		56,300	77,700	31.3	0.170	1.070	0.009	0.016	0.240	0.220	0.002	0.080	0.020	4
																	1	of 3	

Figure A-10. Foundation Tube, Test Nos. MGSCO-1 and MGSCO-2

	Cer	tified A	nalysis					Time	Highomy	auch E
Frinity Highway Products, LLC										7
550 East Robb Ave.		Order Number:	1214903 P	rod Ln Grp: 9-J	End Termin	als (Dom)	l.			r
.ima, OH 45801	2	Customer PO:	2878				A	s of: 3/	7/14	
Customer: MIDWEST MACH.& SUPPLY CO.		BOL Number:	80278	Ship Date:						
P. O. BOX 703		Document #:	1							
	1 D 51	Shipped To:	NE							
MILFORD, NE 68405		Use State:	KS							
Project: STOCK		8		ud . Ind.						
Qty Part# Description Spec CL	TY Heat Code/	Heat Yi	eld TS	Elg C	Ma P	s	Si Cu	Cb	Cr V	n ACW
36 749G TS 8X6X3/16X6'-0" SLEEVE A-500	0173175	55,8	371 74,495	31.0 0.160	0.610 0.012	0.009 0.0	10 0.030	0.000 0	.030 0.00	0 4
20 3000G CBL 3/4X6'6/DBL HW	98790									
	1 (20.00)	10.7		22.0.0.100	0.000 0.011	0.000 0.0		0.000 (
22 9852A STRUT & YOKE ASSY A-1011-SS	. 163375	48,3	380 64,020	32.9 0.190	0.520 0.011	0.003 0.0	30 0.110	0.000 0	.050 0.00	04
9852A A-36	11237730	45,5	500 70,000	30.0 0.170	0.500 0.010	0.008 0.0	20 0.080	0.000 0	.070 0.00	1 4
Ground Strut Green Pa	aint									
R#15-0157 September 2	2014 SMT									
Jpon delivery, all materials subject to Trinity Highway Proc	ducts . LLC Storage	Stain Policy No. I	G-002.							
LL STEEL USED WAS MELTED AND MANUFACTURED I	8 (F)	1.		Т.						
LL GUARDRAIL MEETS AASHTO M-180, ALL STRU										
LL COATINGS PROCESSES OF THE STEEL OR IRON ARE LL GALVANIZED MATERIAL CONFORMS WITH ASTM-1			ES WITH THE "BU	JY AMERICA A	CL.					
ALL GALVANIZED MATERIAL CONFORMS WITH ASTM.			HIPMENTS)							
INISHED GOOD PART NUMBERS ENDING IN SUFFI	X B,P, OR S, ARE	UNCOATED								
OLTS COMPLY WITH ASTM A-307 SPECIFICATION	S AND ARE GAL	VANIZED IN ACC	CORDANCE WI	TH ASTM A-15	3, UNLES	S OTHER	WISE ST	ATED		
TUTS COMPLY WITH ASTM A-563 SPECIFICATIONS VASHERS COMPLY WITH ASTM F-436 SPECIFICATION A						OTHERW	TSE STA	TED.		
				I E WITH ANTA	15-7329					

1. of 2

Figure A-11. Ground Strut Assembly, Test Nos. MGSCO-1 and MGSCO-2

Customer:	MEDWEST MACH & SUPPLY CO. P. O. BOX 81097	Sales Order: 1093497 Customer PO: 2030 BOL # 43073 Document # 1	Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS
	LINCOLN, NE 68501-1097		
		Trinity Highway Produ	icts. LLC
	Certificate O	f Compliance For Trinity Industries, Inc.	** SLOTTED RAIL. TERMINAL. **
		NCHRP Report 350 C	
			•
feces	Description		
14	5/8"X10" GR BOLT A307	and a fair water of the fair of the cost of the cost of the cost of the cost of the fair of the cost of the cost	ĸġĊĸĸĸĸĸġſĸĿŦĸĸĊĬĸġĊġĸġĸġĸĸĸĸĸĸŢġĊġĸĸĸţġŎĸĸĊġĊġĊĸġſĸġĊĸġĊĸġĊĸġĊĸġĊĸġĊĸġĊĸġĊġĊġĊŎĊŎĸĿĸĸĸĸĸĸĸţĸĸĊĸġĊġĊġĊĸŎĿĸŔĸĸĸĸĸ
.92	5/8"X18" GR BOLT A307	12	
2	1" ROUND WASHER F844		
92	1" HEX NUT A563 WD 6'0 POST 6X8 CRT		MACAN
92	WD BLK 6X8X14 DR	×.	MGSBR
4	NAIL 16d SRT		
·4	And a second		
32	WD 39 POST 5.5X7.5 BAND		
128	STRUT & YOKE ASSY		
32	SLOT GUARD '98		Ground Strut
24	3/8 X 3 X 4 PL WASHER		
			090453-8
pon delive	ery, all materials subject to Trinity Highway	Products, LLC Storage Stain Policy No. LG	-002.
		TURED IN USA AND COMPLIES WITH	THE BUY AMERICA ACT
LL GUAE	URAIL MEETS AASHTO M-180, ALL S	TRUCTURAL STEEL MEETS ASTM A36	THE BUY AMERICA ACT
LL GUAE	URAIL MEETS AASHTO M-180, ALL S' R GALVANIZED MATERIAL CONFORM	IRUCTURAL STEEL MEETS ASTM A36	
LL GUAE LL OTHE OLTS CO	RDRAIL MEETS AASHTO M-180, ALL S SR GALVANIZED MATERIAL CONFORM MPLY WITH ASTM A-307 SPECIFICAT.	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. IONS AND ARE GALVANIZED IN ACCO	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
LL GUAE LL OTHE OLTS CO UTS CON	RDRAIL MEETS AASHTO M-180, ALL S R GALVANIZED MATERIAL CONFORM MPLY WITH ASTM A-307 SPECIFICAT MPLY WITH ASTM A-563 SPECIFICATION	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. IONS AND ARE GALVANIZED IN ACCOR INS AND ARE GALVANIZED IN ACCOR	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. DANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
LL GUAE LL OTHE OLTS CO UTS CON 4" DIA CA	RDRAIL MEETS AASHTO M-180, ALL S R GALVANIZED MATERIAL CONFORM MPLY WITH ASTM A-307 SPECIFICAT APLY WITH ASTM A-563 SPECIFICATION BLE 6X19 ZINC COATED SWAGED FND A	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. IONS AND ARE GALVANIZED IN ACCOR INS AND ARE GALVANIZED IN ACCOR	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
LL GUAE OLTS CO TUTS CON 4" DIA CA IRENGTH	RDRAIL MEETS AASHTO M-180, ALL S R GALVANIZED MATERIAL CONFOR MPLY WITH ASTM A-307 SPECIFICAT APLY WITH ASTM A-563 SPECIFICATION BLE 6X19 ZINC COATED SWAGED END A - 49100 LB	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. IONS AND ARE GALVANIZED IN ACCO INS AND ARE GALVANIZED IN ACCOR ISI C-1035 STEEL ANNEALED STUD 1" DIA	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. DANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
LL GUAE OLTS CO UTS CON 4" DIA CA IRENGTH	RDRAIL MEETS AASHTO M-180, ALL S R GALVANIZED MATERIAL CONFOR MPLY WITH ASTM A-307 SPECIFICAT APLY WITH ASTM A-563 SPECIFICATION BLE 6X19 ZINC COATED SWAGED END A - 49100 LB	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. IONS AND ARE GALVANIZED IN ACCO INS AND ARE GALVANIZED IN ACCOR ISI C-1035 STEEL ANNEALED STUD 1" DIA	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. DANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
LL GUAE LL OTHE OLTS CO UTS CON 4" DIA CA IRENOTH	RDRAIL MEETS AASHTO M-180, ALL S R GALVANIZED MATERIAL CONFORM MPLY WITH ASTM A-307 SPECIFICAT APLY WITH ASTM A-563 SPECIFICATION BLE 6X19 ZINC COATED SWAGED FND A	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. IONS AND ARE GALVANIZED IN ACCO INS AND ARE GALVANIZED IN ACCOR ISI C-1035 STEEL ANNEALED STUD 1" DIA SMICTUR 19(h day of June, 2008	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. DANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. ASTM 449 AASHTO M30, TYPE II BREAKING
LL GUAE LL OTHE OLTS CO UTS CON 4" DIA CA IRENOTH	RDRAIL MEETS AASHTO M-180, ALL S R GALVANIZED MATERIAL CONFORM MPLY WITH ASTM A-307 SPECIFICAT: APLY WITH ASTM A-563 SPECIFICATION BLE 6X19 ZINC COATED SWAGED END A - 49100 LB b, County of Aller. Swom and Subscribed befor	IRUCTURAL STEEL MEETS ASTM A36 AS WITH ASTM-123. ONS AND ARE GALVANIZED IN ACCOR INS AND ARE GALVANIZED IN ACCOR ISI C 1035 STEEL ANNEALED STUD 1" DIA STRETHIN 30th day of June, 2008	DRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. DANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

Figure A-12. Ground Strut Assembly, Test Nos. MGSCO-1 and MGSCO-2

				L VENTURES	And the second s				
Customer: SPS - New Cer	tury			Sue 02.375		Customer Order 4500269918	Nos	Data: 07/25/2016	
401 New Cent NEW CENTURY	ny Parkway	1127		Gmgs: .154		Delivery No:82 Losd No.3774			
				Specification: ASTM A500-	-13 Gr.B/C	, ASTM A53-1	2 Gr.B BNT ⁴ , A	SME SA53 Gr.B BNT	•
			1.5	1		1999 - F	-		
•	field (SI 13.2	Tensile KSI 67.3	Elonga % 2 /r 31.00			R#17	'-175 H	#A79999	
		a si ca				BCT	Post S	leeves Q	TY
						Oct	2016 S	MT	
Heat No A79989	C 0.0700	MN 1 0.8400 0	P 0.0110	S 0.0040	SI 0.0200	CU 0.1500		CR MO 0.0600 0.0200	V 0.00
		194	ř. +	÷		1.1			
		$a_{2} = e^{-\delta}$		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -					
						1 - ²⁴ 4 (2)	1. 1. 1		
				le des		5 ° 6 9 °		A 16 1	
			5	** 	1	10.0		2	
	3					· ·			
We hereby certil manufacturing is grade tiles above	y that all ten in accordant . This prod		in this n planster ctured in	sport are correct s encompassed accordance with	i within th th your pu	e scope of the rchase order n	specifications d	npany. All testing an enoted in the specific	
This material has process, testing,			t with m	ercury, any of	its compo	unds, or any n	nercury bearing o	levices during our ma	nufacturi
This material is i	n compliance	with EN 10204	Section	4.1 Inspection	Certificate	Type 3.1			
This material has	passed ND	E (eddy current,	A309) Le	sting. This ma	aterial has	passed flatten	ing tests.		
Tensile test com	pleted using	teat specimen w	nith 3/4°	reduced area.	*				
			ġ.		2	STEEL VEN	TURES, LLC	iba EXLTUBE	
						1 .0	1111		
						1			
						prat	and		
		4 3 27				prat	andy		

Figure A-13. BCT Post Sleeve, Test Nos. MGSCO-1 and MGSCO-2

HUC			Mill Certificati 7/30/2015	on	MTR #: 0000087896 300 Steel Mil Road DARLINGTON, SC 29540 (843) 393-5841
NUCOR COP	EL SOUTH CA	ROLINA			Fax: (843) 395-8701
Sold To: TRINI ROLL PO B DALL	TY INDUSTRIES IN FORM ACCOUNTIN OX 568887 AS, TX 75356-8887 689-0847 214) 589-8535	С	Ship To:	TRINITY INDUSTRIES LIMA 550 E. ROBB AVENUE PLANT 55 JIMA, OH 45801-0000 214) 589-8407 Fax: (214) 589-8420	
Customer P.O.	171075			Sales Order	229472.1
		lin .		Part Number	
Product Group	Merchant Bar Qua		a de la competencia d		
Grade	NUCOR MULTIGE	RADE		Lot #	DL1510354303
Size	5/8x8" Flat			Heat #	
Product	5/8x8" Flat 20' NU	COR MULTIGRADE		B.L. Number	C1-668702
Description	NUCOR MULTIGE	RADE		Load Number	C1-347435
Customer Spec				Customer Part #	100395B
I hereby certify that the	material described herein ha	as been manufactured in accor	dance with the specifications and s	landards listed above and that it satisfies	those requirements.
0.15% 0.7 Ti CE4	115 /in P /5% 0.013% 4020 84%	S Si 0.025% 0.20%	Cu Ni 0.36% 0.09%	Cr Mo 0.09% 0.021%	V Cb Sn 0.0500% 0.003% 0.016%
/ield 2: 58,000psi		Tens	ile 2: 74,000psi	Elon	gation 25% in 8"(% in 203.3mm)
				STM A36/A36M-12, A529/529 C G40.21-04 GR44W(300W) & M-07, QQ-S-741D, KILLED FG BEEN USED IN THE PRODU	

Figure A-14. Anchor Bearing Plate, Test Nos. MGSCO-1 and MGSCO-2

NUCOR STE	EL JACKSON,	INC.	N	7/27/20	16			NUC	OR STEEL 36 Flo Fax	R #: M1-15090 JACKSON, INC 30 Fourth Stree wood, MS 3923 (601) 939-162 : (601) 936-620
PO BO BIRMI	NL STEEL INC ACCOUNTS PAYAE X 98 NGHAM, AL 35202-(599-8000 205) 599-8052	3LE 0098		S	(205)	AL STEEL I MESSER-4 INGHAM, 4 599-8000 205) 599-8	NC JRPORT HWY L 35222 J52			
Customer P.O.	00771356					T	Sales Order	343125.5		
Product Group	Merchant Bar Qual	lity	8.2.40%++56+2%++4%++4,4%++4,4%+7%+	**************************************			Part Number	53500300	24010W0	
Grade	NUCOR MULTIGR	ADE					Lot#	JK161014	18801	
Size	1/2x3" Flat						Heat#	JK161014	188	
Product	1/2x3" Flat 20' NUC	COR MULTIG	RADE		andan dan dari dari dari dari dari dari dari dari		B.L. Number	M1-42989	8	
Description	NUCOR MULTIGR	ADE					Load Number	M1-15090		
Customer Spec							stomer Part #	00777557		e da martina
hereby certify that the r	nalerial described herein ha	is been manufactu	red in accordance	with the specific	stions and standard	is listed above	and that il salisfies	those requireme	nis.	
toli Date: 4/5/201	anna ann an 1993 an 1996 ann an 1997 anns an 1	2016 Qty :	ihlpped LBS:		y Shipped Pc	5.40				
C 1 0,16% 0.1 CE4020 CE	An P 78% 0.017% A529 39%	S 0.028%	Si 0.20%	Cu 0.28%	Ni 0.09%	Cr 0.14%	Mo 0.020%	V 0.0280%	Cb 0.001%	Sn 0.010%
(ield 1: 56,172psi	A G4020, AASHTO RBON EQUIVALEN 6	T		: 75,460psi			t.	igation: 25%	· · · ·	
(ield 1: 56,172psi	a second and a second second second	τ.		: 75,460psi : 76,500psi		ulaegyae kotikti di	t.	igation: 25% igation 25%	· · · ·	
(ield 1: 56,172psi (ield 2: 56,126psi	a second and a second second second	65 	Tensile 2	: 76,500psi	TS OF: ASTM R50W(350W)	A36/36M, AASHTO	Elon	igation 25%	In 8"(% in 2	
'ield 1: 56,172psi 'ield 2: 56,126psi	6 ments: NUCOR MUL ASTM709/709M GR TS EN 10204 SEC 3	65 	Tensile 2	: 76,500psi	TŠ OF: ASTM R50W(350W)	азб/збм, ааснто 1	Elon	igation 25%	In 8"(% in 2	and the second second
Vield 1: 56,172psi Vield 2: 56,126psi Specification: Com 572/572M GR50 A336/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN 10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 M270/M270M 0	igation 25% 29M GR50 A 3R36/GR50	In 8"(% in 2 STM ASME	03.3mm)
(ield 1: 56,172ps) (ield 2: 56,126ps) Specification: Com 572/572M GR50 5436/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF		Elon ASTM A529/52 M270/M270M C M2T0/M270M C MELTING, HA HAS NOT BE	gation 25% 29M GR50 Å 3R36/GR50 VE OCCUR VE OCCUR	In 8"(% in 2 STM ASME	03.3mm)
(ield 1: 56,172ps) (ield 2: 56,126ps) Specification: Com 572/572M GR50 5436/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 W270/M270M C MELTING HA HAS NOT BE	gation 25% 29M GR50 A GR36/GR50 WE OCCUR EEN USED IN	In 8"(% in 2 STM ASME	03.3mm)
Vield 1: 56,172psi Vield 2: 56,126psi Specification: Com 572/572M GR50 A336/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 M270/M270M C M2T0/M270M C MELTING, HA HAS NOT BE	gation 25% 29M GR50 A GR36/GR50 WE OCCUR EEN USED IN	In 8"(% in 2 STM ASME	03.3mm)
Vield 1: 56,172psi Vield 2: 56,126psi Specification: Com 572/572M GR50 A336/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 W270/M270M C MELTING HA HAS NOT BE	gation 25% 29M GR50 A GR36/GR50 WE OCCUR EEN USED IN	In 8"(% in 2 STM ASME	03.3mm)
	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 W270/M270M C MELTING HA HAS NOT BE	gation 25% 29M GR50 A GR36/GR50 WE OCCUR EEN USED IN	In 8"(% in 2 STM ASME	03.3mm)
(ield 1: 56,172ps) (ield 2: 56,126ps) Specification Com 572/572M GR50 5A36/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	: 76,500psi QUIREMEN IAW(300W)/C MENTS	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 W270/M270M C MELTING HA HAS NOT BE	gation 25% 29M GR50 A GR36/GR50 WE OCCUR EEN USED IN	In 8"(% in 2 STM ASME	03.3mm)
(ield 1: 56,172ps) (ield 2: 56,126ps) Specification Com SA72/572M GR50 SA36/SA36M MEE	6 ments: NUCOR MUL ASTM709/709M GR TS EN10204 SEC 3	TIGRADE ME 36/GR50 CSA 11 REPORTIN	Tensile 2 ETS THE RE G40.21 GR4 IG REQUIRE	EQUIREMEN AW(300W)C MENTS NLS IN THIS D FREE ME	PRODUCT, IF	NCLUDING ANY FORM	Elon ASTM A529/52 W270/M270M C MELTING HA HAS NOT BE	gation 25% 29M GR50 A GR36/GR50 WE OCCUR EEN USED IN	In 8"(% in 2 STM ASME	03.3mm)

Figure A-15. Anchor Bracket Assembly, Test Nos. MGSCO-1 and MGSCO-2

Feb 15th 2017

SOLD TO: GREGORY INDUSTRIES, INC. 4100 13TH ST, SW CANTON, OH. 44710 SHIP TO: HIGHWAY – FINISHED GOODS GREGORY INDUSTRIES, INC. ATTN: STEVE PENNINGTON CANTON, OH 44710

R#17-700

CERTIFICATON BCT Cables Yellow Paint

CGLP ORDER# 256284 GREGORY PO# 36454

THIS LETTER AND THE ENCLOSED ATTACHMENTS ARE TO CERTIFY THAT THE FOLLOWING ITEMS WERE 100% MANUFACTURED IN THE UNITED STATES OF AMERICA.

1,330 PCS, PART# 3012G, 3/4IN X 6FT 6IN DOUBLE SWAGE GUARD RAIL ASSEMBLYS.

THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, 100% MELTED & MANUFACTURED IN THE USA. THESE ITEMS ARE HOT DIPPED GALVANIZED TO ASTM-153 SPECIFICATIONS AND STANDARDS, GALV PROCESS ALSO TOOK PLACE IN THE U.S.A.

ATTACHMENTS:

(WIRE ROPE) WIRECO WORLD GROUP REEL# 428-671806-1; HEAT# .15R582807; 16R584001; 72987C; 16R586548; 73253F; 16R588160; 16R584967; 16R585464; 16R586547; 14R574048; 14R571682; 16R586549; 16R586401; (ROCKY MOUNTAIN STEEL / EVRAZ)

(END FITTINGS) REMLINGER MFG: HEAT#S 75063022; 75062074; 765063075 (GERDAU NORTH AMERICA)

VERY TRULY YOURS

BILL KOTARSKI GEN MGR CLEV OFFICE

HEADQUARTERS

FLINT

CLEVELAND

BRANCH

12801 UNIVERSAL DRIVE TAYLOR, MI 48180 NEW PH# (734) 947-4000 NEW FAX# (734) 947-4004 G2427 E. JUDD ROAD BURTON, MI 48529 PH# (810) 744-4540 FAX# (810) 744-1588 BRANCH 5213 GRANT AVE CLEVELAND, OH 44105 PH# (216) 641-4100 FAX# (216) 641-1814

Figure A-16. BCT Anchor Cable, Test Nos. MGSCO-1 and MGSCO-2

R#16-692 5/8"x14"GR Bolt Orange Paint H#16100453 L#28667-B June2016 SMT

CERTIFICATE OF COMPLIANCE

400

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 176703

SHIPPER #: 057716 DATE SHIPPED: 05/17/2016

LOT#: 28667-B

SPECIFICATION: ASTM A307, GRADE A MILD CARBON STEEL BOLTS

TENSILE:	SPEC:	60,000 psi*min	RESULTS:	78,080
				7.6,544
HARDNESS	3	100 max		82.10
				83.50

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 28667-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Р	S	Si
NUCOR	1010	NF16100453	.12	.56	.006	.030	.19

QUANTITY AND DESCRIPTION:

5,950 PCS 5/8" X 14" GUARD RAIL BOLT P/N 3540G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

omas APPROVED SIGNATORY

Figure A-17. 14-in. (356-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2

FASTENERS & FITTINGS INC.

901 STEELES AVENUE EAST

ISO 9001 REGISTERED COMPANY

MILTON, ONTARIO L9T 5H3 PHONE: (905) 670-2503 FAX: (905) 670-2506, TOLL FREE: 1-800-613-4094

CERTIFICATE OF CONFORMANCE

USTO	OMER	: ROLL	FORM GROUP	OUR PACKING SLIP NO:	: 66192
USTO	OMER PO NO	: 18329		OUR INVOICE NO:	:
TEM		: GUARD	RAIL BOLT	SUPPLIER INVOICE NO	: HSW07046
SIZE		: 5/8" - 1	1 x 14" H.D.G	BULK LOT NO / PO No.	: 1017
IEAT	NO	: 660067	9	DATE	: 12-Jun-07
No	Test	ltem	Specs /	Standards / Criteria	Result
1	Appearance	e	Per ASTM F 81	2-95	OK
2	Thread		Go & No Go and	d P.D & M.D	OK
3	Mark				307 A N
4	Coating Thi	ickness	CSA-CSAG-164-M Clas	s 5(Min 65um or 2.54 mills)Avg.	70.8
5	Mass of Co	ating	CSA-CSAG-164-M Clas	s 5(Min 460g/m2 or 1.5 oz/ft2)Avg.	505.3
			Head Diameter(31.80-34.85)	32.36-33.51
			Head Height(7.2	20-10.26)	8.62-9.39
6	Dimension		Shoulder Width	O(22.25-23.77)	22.68-23.21
0	Dimensions	5	Shoulder Width	V(15.08-16.66)	15.76-16.33
			Shoulder Depth	P(4.78-6.29)	5.61-6.01
			Length(351.03-3	359.15)	353.77-355.20
7	Tensile Str	ength	Min 60,000 PSI		61,500-64,000 PSI
8	Material		Per ASTM (A30	7)	OK

Material Chemical Composition:

С	Si	Mn	Р	S
%	%	%	%	%
0.12	0.18	0.46	0.028	0.02

Hot Dip Galvanizing Inspection Certificate:

(Test Standard CSAG-164-M class 5)

Test of No.			Weig	ht of co	ating tes	t		G/m ² over
1	70	73	70	69	72	72	71.0	506.9
2	72	68	72	72	68	72	70.7	504.6
3	69	72	70	68	72	72	70.5	503.4
4	71	70	71	72	69	71	70.7	504.6
5	72	70	72	72	71	69	71.0	506.9
erage of The Average							70.8	505.3

Muhammad Ashraf

905-670-2503 ext 328 16 Aug 2011

2-0063-11X1400"SGUG (HSW07046) WO# 11165 PPS# 66192 CustPO# 18329 Aug16-2011

Figure A-18. 14-in. (356-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2

CERTIFICATION

DATE: 10/28/2016

CUSTOMER Trinity Highway Plant #55 550 E. Robb Ave. Attn: Phil Speck Lima, OH 45801 DESCRIPTION Nut Guard Rail 5/8-11 A563 GRA HDG + .031 EFG PART NUMBER: 221914 CUSTOMER P.O. 177002 LOT NUMBER 0055551-116146 MATERIAL 1018 CUSTOMER PART NUMBER 003340G ELGIN FASTENER GROUP BEREA PLANT

INVOICE 46048 SHIP DATE 10/28/2016 HEAT NUMBER 10446960 QUANTITY 26000

 HARDNESS:
 8 89.5

 PROOF LOAD:
 5 samples passed at 75,000 psi min.

 PLATING:
 Hot Dip Galvanized - Pass

All parts processed Mercury free and without Welds.

We hereby certify that to our actual knowledge the information contained herein is correct. We also certify that all parts substantially conform to SAE, ASTM, or customer specifications as agreed upon. The product has been manufactured and tested in accordance with our Quality Assurance manual. The above data accurately represents values provided by our suppliers or values generated in the EFG – Berea Plant laboratory. All manufacturing processes for these parts occurred in the United States of America.

This document may only be reproduced without alteration and only for the purpose of certifying the same or lesser quantity of the product specified here.

The recording of false, fictitious or fraudulent statements or entries on this document may be punishable as a felony under Federal Statutes.

Doe Kilpatrick

Joe Kilpatrick Quality Technician

ENGINEERED FASTENING SOLUTIONS

Figure A-19. ⁵/₈-in. (16-mm) Diameter Nut, Test Nos. MGSCO-1 and MGSCO-2

											355566 THON December 16, 2015 16,702 PCS. 16,702 PCS. 16,702 355676 150424L 16,702 PCS. 16,702 35573 35575 35575 35575 35575 35575 355757 3557575 355757 355					
425 East O'Connor Ave. Lima, Ohio 45801 419-227-1296 MATERIAL CERTIFICATION Customer: Stock Date: December 16, 2015 Invoice Number: Lot Number: Lot Number: 1504241 Part Number: 3500G Quantity: 16,702 Part Number: 20351510 Boit Numbers: Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C 20351510 0.9 Astronomic Astronomy and the state of a stat																
Orange Paint H#20351510 L#150424L 356.6 Sold ATTENTITY HIGHWAY PRODUCTS, LLC 425 East O'Connor Ave. Lima, Ohio 45801 19-227-1296 Image: December 16, 2015 MATERIAL CERTIFICATION Content of the second																
Crange Paint H#20351510 L#150424L CREARING OF PRODUCTS, LLC A25 East O'CONDO' AVE. Labor Date: December 16, 2015 Invoice Number: Lot Number: Date: December 16, 2015 Invoice Number: Lot Number: Description: 5/8" x 10" G.R. Heat Description: 6/6" Numbers:																
Part Number Description Specific Heat C 20351510 .09 HOT DIP GA													-			
Daví Mau			25000				L						-			
$\begin{array}{c} 35 \times 56 \times$																
Descrip	otion:	5/8"	Arrange Paint H#20351510 L#150424L 35666 RINITY HIGHWAY PRODUCTS, LLC 425 East O'Connor Ave. $11ma$, Ohio 45801 419 -227-1296 119 -227-1296 119 -227-1296 MATERIAL CERTIFICATION 119 -227-1296 119 -227-1296 Stock Date: December 16, 2015 Invoice Number: $150424L$ $150424L$ 3500G Quantity: $16,702$ Pcs. $3500G$ Numbers: 25000 25000 $3500G$ Quantity: $16,702$ 25000 $3500G$ Quantity: $16,702$ 00010001000 30007000010001000000000													
	1			1										T		1
-1-									ATCON	V	(30	123	251	13	
Heat	С	MN	P	S	SI	NI	CR	MO	CU	SN	N mber 16, 2015 50424L 16,702 Pcs. 702 V AL N B TI NB .001 .028 .007 .0001 .001 .001 .028 .007 .0001 .001 .001 .001 .028 .007 .0001 .001 .001 .001 .028 .007 .0001 .001 .001 .001 .028 .007 .0001 .001 .001 .001 .028 .007 .0001 .001 .001 .003 .004 .007 .0001 .001 .001 .004 .028 .007 .0001 .001 .001 .005 .007 .0001 .001 .001 .001 .005 .007 .0001 .001 .001 .001 .006 .007 .0001 .001 .001 .001 .006 .007 .0001 .001 .001 .001 <tr< th=""></tr<>					
20351510	.09	.33	.007	.002	.06	.04	.05	.01	.06	.004	.001	.028	.007	.0001	.001	
														-		1
																1
								TECI	IVE C	COAT	ING					
WE HER	*** THE N EBY CI	**THIS 1ATEF ERTIF	PROD HAL US Y THA COUNT	t Ave.T UCT W SED IN T TO TI	hickne /AS MA THIS P HE BES	ess / Mil NUFAC PRODUC ST OF C	s) CTURE CT WA OUR KI COF	D IN T S MEL NOWLI RECT.	2. HE UNI TED AI EDGE A	52 ITED S ND MA	(2.0 Mils TATES NUFAC	OF AN TURE	D IN T	HE U.S.	HEREI	

Figure A-20. 10-in. (254-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2

June 2015 SMT White Paint June 2015 SMT White Paint TRINITY HIGHWAY PRODUCTS, LLC 425 East O'Connor Ave. Lima, Ohie 45801 419-227-1296 MATERIAL CERTIFICATION Customer: Stock MATERIAL CERTIFICATION Number: June 25,2014 Invoice Number: Lot Number: 140530L Part Number: 3500G Quantify: 17,173 Pcs. Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C MN P SI Nu CR MATERIAL CHEMISTRY			5,	/8x10" G	uard	rail	Bol	t				
HINTY HIGHWAY PRODUCTS, LLC ASSESSED Listan, Ohio 4580; Listan, Ohio 4580; ASSESSED MATERIAL CERTIFICATION MATERIAL CERTIFICATION MATERIAL CERTIFICATION MATERIAL CERTIFICATION MATERIAL CERTIFICATION MATERIAL CERTIFICATION Colspan="2">Mate:	$ \sigma r = \sigma r r_{1} = -\frac{1}{2} \sigma $	7 K K		une 2015	SMT	Whi	te I	aint	5	-	ser	nh
AIS SI AISOLO CONNOT AVE. Linna, Ohio 45801 AMATERIAL CERTIFICATION MATERIAL CERTIFICATION Part Number: Lot Number: Lot Number: Description: S78* 10* G.R. Bolt Numbers: Description: S78* 10* G.R. Bolt Numbers: MATERIAL CHEMISTRY Heat Optication: ASTM A307-A / A153 / F2320 MATERIAL CHEMISTRY Heat Optication: ASTM A307-A / A153 / F2320 DEScription: PLATING OR PROTECTIVE COATING Heat PLATING OR PROTECTIVE COATING Heat is product was ManUs										*		
AIS SI AISOLO CONNOT AVE. Linna, Ohio 45801 AMATERIAL CERTIFICATION MATERIAL CERTIFICATION Part Number: Lot Number: Lot Number: Description: S78* 10* G.R. Bolt Numbers: Description: S78* 10* G.R. Bolt Numbers: MATERIAL CHEMISTRY Heat Optication: ASTM A307-A / A153 / F2320 MATERIAL CHEMISTRY Heat Optication: ASTM A307-A / A153 / F2320 DEScription: PLATING OR PROTECTIVE COATING Heat PLATING OR PROTECTIVE COATING Heat is product was ManUs			5							٠.		
Lina, Ohio 45801 419-227-1296 //3 MATERIAL CERTIFICATION Date: June 25,2014 //3 Customer: Stock Date: June 25,2014 Invoice Number: 140530L //3 Part Number: 3500G Quantify: 17,173 Part Number: 3500G Quantify: 17,173 Pescription: 5/8" x 10" G.R. Heat Bolt 20297970 Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C MIN S SI NI CR MATERIAL CHEMISTRY Heat C MIN S SI NI CR MOZ297970 09 Jai Odi MIN <td></td> <td>TRINITY B</td> <td>HIGHWAY</td> <td>PRODUCT</td> <td>S, LL</td> <td>G</td> <td>B</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>		TRINITY B	HIGHWAY	PRODUCT	S, LL	G	B		1			
MATERIAL CERTIFICATION Customer: Stock Date: June 25,2014 //3 Customer: Stock Date: June 25,2014 //3 Part Number: Stock Quantify: 17,173 Pcs.		42 42			and the second	icrea		+ 2	And a second	80	<u> </u>	
MATERIAL CERTIFICATION //3 Customer: Stock Date: June 25,2014 Invoice Number: Lot Number: Lot Number:			10					10 1	A. A.			
Invoice Number:			,									
Invoice Number:		۰.	MATER	HAL CER	FIFIC	ATIO	N	•			1	1311
Lot Number: 140530L Part Number: 3500G Quantify: 17,173 Pcs. Description: 5/8" x 10" G.R. Heat 20297970 17,173 Pcs. Bolt Numbers: Image: Construction of the state of the sta	Customer:	Stock					ne 25,2	014			/	/
Part Number: 3500G Quantify: 17,173 Pcs. Description: 5/8" x 10" G.R. Heat 20297970 17,173 Bolt Numbers:	*		•				1050	nesses services	Mitrass			
Description: 5/8" x 10" G.R. Heat 20297970 17,173 Bolt Numbers;	Part Number:	3500G	1	1477210	man state e.	State of the second		ALL CALLER OF	2			
Bolt Numbers; Specification: ASTM A307-A / A153 / F2329 MATERIAL CHEMISTRY Heat C MN P SI NI CR MO CU SN V AL N B TI N 10287970 .09 .33 .006 .001 .06 .03 .04 .01 .08 .002 .001 .026 .008 .0001 .001 <td></td> <td>Har</td> <td>R. Heat</td> <td>the second se</td> <td>1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</td> <td>1000</td> <td>No. of Concession, Name</td> <td>ľ.</td> <td>1 03.</td> <td></td> <td></td> <td></td>		Har	R. Heat	the second se	1 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1000	No. of Concession, Name	ľ.	1 03.			
MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI N 10297970 .09 .33 .006 .001 .06 .03 .04 .01 .08 .002 .001 .026 .008 .001	eserithnoil:			ii.			-					
MATERIAL CHEMISTRY Heat C MN P S SI NI CR MO CU SN V AL N B TI N 10297970 .09 .33 .006 .001 .06 .03 .04 .01 .08 .002 .001 .026 .008 .001	_		-	1.000								
Heat C MN P S SI NI CR MO CU SN V AL N B TI N 10297970 09 33 006 001 06 03 04 01 08 002 001 026 008 001 01 01	Specifica	tion: <u>ASTM A3</u>	.307-A / A153 /	/ F2329								
00297970 .09 .33 .006 .001 .06 .03 .04 .01 .08 .002 .001 .026 .008 .001 <t< td=""><td></td><td></td><td>MAT</td><td>ERIAL CH</td><td>EMISTI</td><td>RY.</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			MAT	ERIAL CH	EMISTI	RY.						
PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave. Thigkness / Mils)			1	T	1					B.	TI	NB
PLATING OR PROTECTIVE COATING HOT DIP GALVANIZED (Lot Ave.Thickness / Mils)2.54(2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PEODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN	and the second se	,33 ,006 ,00	01 .06 .03	.04 .01	.08	.002	.001	.026	:008	.0001	.001	.002
HOT DIP GALVANIZED (Lot Ave. Thiskness / Mils) 2.54 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT.				+							-	
HOT DIP GALVANIZED (Lot Ave. Thiskness / Mils) 2.54 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT.										1	-ihi m	
HOT DIP GALVANIZED (Lot Ave. Thiskness / Mils) 2.54 (2.0 Mils Minimum) ****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT.			THE LOUISICE C	DD DD OTDC		0.100	NTCT.					- date and
****THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA**** THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO. COUNTY OF ALLEN	UOT DID GAL	AMIZED / of Asy							.it			
THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC STATE OF OHIO, COUNTY OF ALLEN			A ACT OF A AND		1 I	ne in			-	F 4.4.4.6		
WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT. TRINITY HIGHWAY PRODUCTS LLC		1000 1000 100 - 200 - 100					•		a freeze			
TRINITY HIGHWAY PRODUCTS LLC												IN IS
STATE OF OHIO, COUNTY OF ALLEN	 Sector State 	N. 170	18 (Terru)	CORRECT	f,	1	11	1	1 /	1	/	
STATE OF OHIO, COUNTY OF ALLEN			÷.		5	Kin	A	ft.	1	/		
STATE OF OHIO, COUNTY OF ALLEN			10		1	TRIN	ITYHI	GHWAY	PRO	DUCTS	LLC	
SWORN AND SUBSERIBED BEFURE WE THIS 11 TH TANK AND AND TO F	STATE OF C	HIO, COUNTY O	OF ALLEN	1.167.4	1	٨	Ö	Onid				Ĵ.
OL . A	SWORN AND S		1		Tay o	30	T	Q. C. T				1
Sharr Stain NOTARY PUBLIC		Staun	2									2
ANAL 425 E. O'CONNOR AVENUE LIMA, OHIO 45801 419-227-1296.	_ Mary I	425 E. O'CONN SHERRI BRAUN	NOR AVENUE	LIMA, O	HIO 458(2.00	• ••		
Notary Public, State of Ohlo My Commission Expires	Stary 1	Notary Public, St	State of Ohlo		r	NÔ.		1.991 1.1.93	, et tracket	i		
JUL 1 1 2014		I wy commandi	8		N	K J	VL 1	1 201	4			3
		April 20, 2019				1 1						
Thilly Highway Products, LLC Dailed, Texas Flant 99	Coronal Coronal	April 20, 2019	1		. 0		11-1		unitin' I	in		

Figure A-21. 10-in. (254-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2

Customer:	Bennett Bolt Works, Inc.	Date:	11/7/2014
Description:	5/8-11 x 1-1/4 Guard Rail Bolt A307 HDG-A153 Class C	P/N:	62C125BSP3
Order No:	827556	Lot #:	0090480-KD

Physical Test

69-100HRB			Proof Load	Ultimate Tensile		
			LBS.	PSI	LBS. ≥13,560	PSI ≥60,000
88		0.226			18,100	80,002
93		0.226			18,050	79,781
93		0.226			17,995	79,538
92		0.226			18,030	79,693
94		0.226			17,950	79,339
	93 93 92	93 93 92	93 0.226 93 0.226 92 0.226	88 0.226 93 0.226 93 0.226 93 0.226 92 0.226	88 0.226 93 0.226 93 0.226 93 0.226 92 0.226	No.226 ≥13,560 88 0.226 18,100 93 0.226 18,050 93 0.226 17,995 92 0.226 18,030

Chemistry

Heat #	С	MN	P	S	SI	NI	CR	MO	PB	V	В	AL	CU	Other
20337380	.14	.35	.008	.002	.070	.03	.06	.01	-	.001	.0001	.050	.05	-

Dimensional Check

Head Height:	.293	Thread Length:	.971	
.292/.332	.305	Full Thread	.973	
Body Diameter:	.621		.980	
.594/.656	.635			
Length:	1.281	Point:	IN THE DIE	
1.188/1.312	1.276	Total Volume:	224,113 pcs	
	1.271	Pc Wt:	178.84/1,000 Pcs.	

SILO FASTENERS

1415 S BENHAM ROAD	Name:	TERRYELKINS
		CAMA YARDA
VERSAILLES IND 47042	Title:	-QUALITY MANAGER
	Date:	10/7/2014

Figure A-22. 1¹/₄-in. (32-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2

Customer:	Trinity Highway Products	Date:	10-28-16	
Description:	5/8-11 x 1-1/4 Guard Rail Bolt A307 HDG-A153 Class C	P/N:	003360G	
Order No:	40563	Lot #:	0053777-AAJ	

Physical Test

Sample	Hardness 69-100HRB	Plating	Stress Area	Proof Load	Ultimate Tensile		
Required				LBS.	PS1	LBS. ≥13,560	PSI ≥60,000
1	84		0.226			21,500	95,200
2	85		0.226			21,400	94,700
3	86		0.226			21,500	95,100
4	84		0.226			22,400	94,600
5	85		0.226			21,300	94,300

Chemistry

Heat #	С	MN	Р	5	SI	NI	CR	MO	PB	٧	В	AL	CU	Other
0435580	,16	.68	.007	.013	.220	.04	.07	.01		.002	.0001	.023	.07	+

Dimensional Check

Head Height:	ht: .230 Thread Length:		1.031	
.220/.250	.234	Full Thread	1.033	
Body Diameter:	.618	1.00 MIN	1.034	
.594/.656	.621			
Length:	1.244	Point:	IN THE DIE	
1.188/1.312	1.250	Total Volume:	224,000 pcs	
	1.269	Pc Wt:	178.84/1,000 Pcs.	

SILO FASTENERS

1415 S BENHAM ROAD	Name:	JOE KILPATRICK	
		Au st	
VERSAILLES IND 47042	Title:	QUALITY TECHNICIAN	
	Date:	10-28-16	
			_

Figure A-23. 1¹/₄-in. (32-mm) Long Guardrail Bolt, Test Nos. MGSCO-1 and MGSCO-2

NUCOR

NUCOR CORPORATION NUCOR STEEL SOUTH CAROLINA

Mill Certification 3/11/2016

MTR #: C1-366222 300 Steel Mill Road DARLINGTON, SC 29540 (843) 393-5841 Fax: (843) 395-6701

BIRMINGHAM FASTENER & SUPPLY PO BOX 10323 BIRMINGHAM, AL 35202-0323 (205) 595-3511 Fax: (205) 591-0244 Sold To:

Ship To: BIRMINGHAM FASTENER & SUPPLY 931 AVE W PO BOX 10323 BIRMINGHAM, AL 35202-0000 (205) 595-3511 Fax: (205) 591-0244

Customer P.O.	M7812	Sales Order	238747.1
Product Group	Merchant Bar Quality	Part Number	30000562480DES0
Grade	ASTM A307-55, F1554-07a gr 55, S1. AASHTO M314 GR 55, S1	Lot #	DL1510704804
Size	9/16" (.5625) Round	Heat #	DL15107048
Product	9/16" (.5625) Round 40' A307-55	B.L. Number	C1-686488
Description	A307-55	Load Number	C1-366222
Customer Spec		Customer Part #	

Roll Date: 1/28/2016 Melt Date: 12/5/2015 Qty Shipped LBS: 17,494 Qty Shipped Pcs: 517

Melt Date: 12/5/2015

С	Mn	V	Si	S	P	Cu	Cr	Ni	Mo	Cb	CE1554
0.22%	0.82%	0.0410%	0.27%	0.010%	0.007%	0.20%	0.10%	0.06%	0.015%	0.001%	0.37%
E1554: CE	per F1554 (3R55, \$1									
toll Date: 1	/28/2016										
rield 1: 67,0	00psi			Tensile	1: 87,000psi			El	ongation: 21%	5 in 8"(% in 2	(03.3mm)
Yield 2: 66,000psi				Tensile 2: 88,000psi Elongation 21% in 8"(% in 2					03.3mm)		
Reduction of	Area: 50.43	1%		Reduct	ion of Area #2	: 53.52%					

Specification Comments:

WELDING OR WELD REPAIR WAS NOT PERFORMED ON THIS MATERIAL MELTED AND MANUFACTURED IN THE USA MERCURY, RADIUM, OR ALPHA SOURCE MATERIALS IN ANY FORM HAVE NOT BEEN USED IN THE PRODUCTION OF THIS ATERIAL

	Λ	
	from H Ren	
	James H. Blew	
NBAtG-10 January 1, 2012	Division Metallurgist	Page 1 of 2

Figure A-24. 10-in. (254-mm) Long Hex Head Bolt, Test Nos. MGSCO-1 and MGSCO-2

R#16-0217

BCT Hex Nuts December 2015 SMT

22979 Stelfast Parkway Strongsville, Ohio 44149 Fastenal part#36713

ngsville, Ohio 44149 Control# 210101523

CERTIFICATE OF CONFORMANCE

DESCRIPTION OF MATERIAL AND SPECIFICATIONS

- Sales Order #: 129980
- Part No: AFH2G0625C
- Cust Part No: 36713
- Quantity (PCS): 1200
- Description: 5/8-11 Fin Hx Nut Gr2 HDG/TOS 0.020
- Specification: SAE J995(99) GRADE 2 / ANSI B18.2.2
- Stelfast I.D. NO: 595689-0201087
- Customer PO: 210101523
- Warehouse: DAL

The data in this report is a true representation of the information provided by the material supplier certifying that the product meets the mechanical and material requirements of the listed specification. This certificate applies to the product shown on this document, as supplied by STELFAST INC. Alterations to the product by our customer or a third party shall render this certificate void.

This document may only be reproduced unaltered and only for certifying the same or lesser quantity of the product specified herein. Reproduction or alteration of this document for any other purpose is prohibited.

Stelfast certifies parts to the above description. The customer part number is only for reference purposes.

David Biss

Quality Manager

December 07, 2015

Page 1 of 1

Figure A-25. ⁵/₈-in. (16-mm) Diameter Hex Nuts, Test Nos. MGSCO-1 and MGSCO-2

CERTIFIED MATERIAL TEST REPORTFORASTM A307, GRADE A - MACHINE BOLTS

FACTORY:NINGBO ECONOMIC & TECHNICAL DEVELOPMENT REPORT DATE:2016/12/29ZONE YONGGANG FASTENERS CO., LTD.R#17-507 H#816070039

FuShan South Road No.17, BeiLun NingBo China BCT Cable Bracket Bolts

MANUFACTURE DATE:2016/12/2

TEL#(852)25423366

ADDRESS:

 CUSTOMER: FASTENAL
 MFG LOT NUMBER:M-2016HT927-9

 SAMPE SIZE: ACC.TO Dimension:ASME B18.18-11;Mechanical Properties:ASTM F1470-12

 MANU QTY: 4800PCS
 SHIPPED QTY: 4800PCS

 SIZE: 5(8,11)(1/2)
 UDC

SIZE: 5/8-11X1 1/2 HDG HEADMARKS: 307A PLUS NY

PO NUMBER:220023115

PART NO:1191919

STEEL PROPERTIES: MATERIAL TYPE:Q195

HEAT NUMBER: 816070039

CHEMISTRY SPEC:	C %*100	Mn%*100	P %*1000	S %*1000			
Grade A ASTM A307-12	0.29max	1.20 max	0.04max	0.15max			
TEST:	0.07	0.28	0.016	0.003			
DIMENSIONAL INSPECTIONS	Unit:	inch	10 INC	SPECIFICA	TION: ASM	AE B18.2.1	- 2012
CHARACTERISTICS	SPEC	IFIED		ACTUAL	RESULT	ACC.	REJ.
******	******	*******	*****	*******	******	******	******
VISUAL	ASTM F78	38-2013		PASS	ED	22	0
THREAD	ASME B1.	1-2003,3A G	O,2A NOGO	PASS	ED	15	· 0
WIDTH FLATS	0.90	5-0.938		0.915-	0.928	4	0
WIDTH A/C	1.033	3-1.083		1.048-	1.057	4	0
HEAD HEIGHT	0.37	8-0.444		0.394-	0.424	4	0
THREAD LENGTH	1.42	0-1.560		1.435-	1.541	15	0
LENGTH	1.42	0-1.560		1.435-	1.541	_15	0
MECHANICAL PROPERTIES:			SPECIFICA	TION: ASTN	M A307-201	2 GR-A	
CHARACTERISTICS TEST	METHOD	SPEC	CIFIED	ACTUAL	. RESULT	ACC.	REJ.
******	*****	******	******	******	*****	*****	*****
CORE HARDNESS : ASTM F	506-2014	69-10	0 HRB	76-79	HRB	4	0
WEDGE TENSILE: ASTM F	506-2014	Min	60 KSI	65-69) KSI	4	0
CHARACTERISTICS TEST	METHOD	SPEC	CIFIED	ACTUAL	RESULT	ACC.	REJ.
COATINGS OF ZINC:		SPECIFIAT	ION:ASTM	F2329-2013			
HOT DIP GALVANIZED ASTM B	568-98(2104)	Min C	.0017"	0.0017" -	-0.0018"	4	00
ALL TESTS IN ACCORDANC	E WITH	THE METH	ODS PRESC	CRIBED IN	THE APP	PLICABLE	
ASTM SPECIFICATION. WE			DATA IS A				
INFORMATION PROVIDED BY	THE MATH	ERIAL SUPP	LIER AND	OUR TEST	ING LABO	DRATORY.	
INFORMATION PROVIDED BY Maker's ISO# 00109Q1	6722R3M/33	02 1 k	Carristan Andrews	ANDARA (A) TRADACT IS	3443 (69.233) 3443 (69.233)		
		7194	e yozugalig fa	STI 1322 (1)			
			C 900	100 C			
		(SIGNATU	RE NO.A	WAR MGE	2)		2.5

(SIGNATURE 1940.A.) HAB MGR.) (NAME OF MANUFACTURER)

Figure A-26. 1¹/₂-in. (38-mm) Long Hex Head Bolt, Test Nos. MGSCO-1 and MGSCO-2

Figure A-27. 8-in. (203-mm) Long Hex Head Bolt, Test Nos. MGSCO-1 and MGSCO-2

124

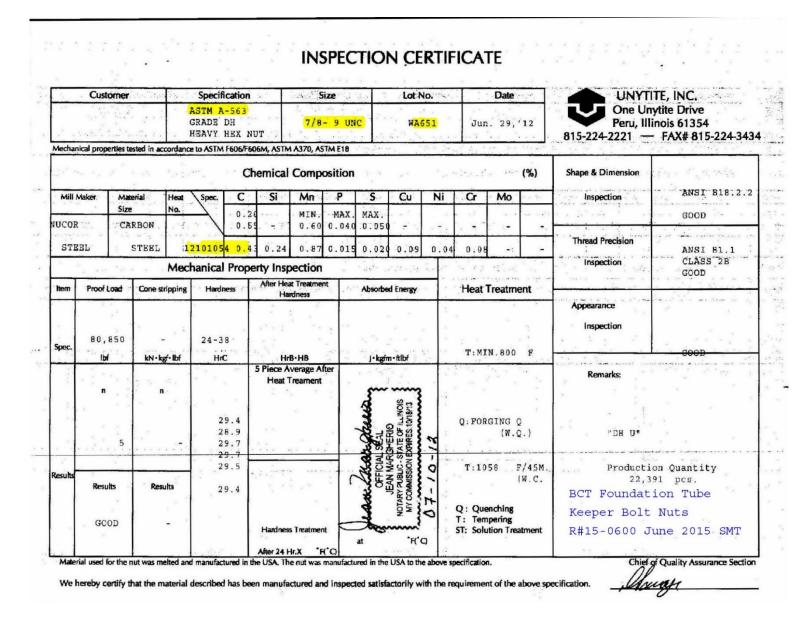


Figure A-28. 7/8-in. (22-mm) Diameter Nuts, Test Nos. MGSCO-1 and MGSCO-2

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: IFI & MORGAN LTD. FACTORY ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

DESCRIPTION: 1 INVOICE NBR: TD16680155 PART NBR.: 33188 LOT NO.: 16H-168236-30

DATE: 2016-10-08 ORDER NBR. 210114135 QUANTITY:3240PCS

DIMENSIONS

(UNIT:INCH)

			R	ESUL	Т	
	STANDARD	1	2	3	4	5 -
INSIDE DIA	1.055-1.092	1.068	1.068	1.067	1.069	1.068
OUTSIDE DIA	2.493-2.530	2.514	2.513	2.514	2.514	2.511
THICKNESS	0.136-0.192	0.146	0.149	0.152	0.152	0.147

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT.

CHARACTERISTICS	SPECIFIED	ACTUAL RESULT	ACC	. REJ.
HOT DIP GALVANIZED A	STM F2329			
4 m	Min 43 um	48-64um	8	0

NOTE

1. QUANTITY OF SAMPLES: 5 PCS 2. JUDGEMENT: GOOD 3. CHIEF INSPECTOR: QUANLITY CONTROL

Figure A-29. 7/8-in. (22-mm) Diameter Washer, Test Nos. MGSCO-1 and MGSCO-2

LINCOLN OFFICE 825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39 Date 10-Aug-17

Client Name: Midwest Roadside Safety Facility Project Name: Omitted Post Placement Location: Curb A

Mix Designation: N/A

Required Strength:

						1	aboratory	Test Data	3						
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Drays Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in	Diameter of Specimen, in.	Eros s-S ectional Area, sq.in.	Maximum Load, Ibf	Compressive Strongth, psi.	Re quir ed Stre ngth, psi.	Турө of Fracture	ASTAI Practice for Capping Specimen
MMO- 3	А	8/4/2017	8/10/2017	8/10/2017	6	n	6	12	6.00	28.27	120,650	4 270		6	C 1231

1 cc. Midwest Roadside Safety Facility

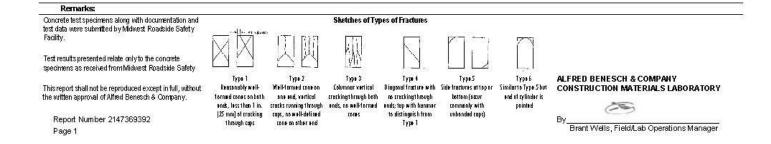


Figure A-30. Curb Concrete, Test Nos. MGSCO-1 and MGSCO-2

NUCOR NUCOR CORPORATION NUCOR STEEL TEXAS

Sold To:

Mill Certification 8/2/2016

MTR #: J1-347424 8812 Hwy 79 W Jewett, TX 75846 (903) 626-4461 Fax: (903) 626-6290

ADELPHIA METALS I LLC 1930 E MARLTON PIKE M-66 CHERRY HILL, NJ 08003 (856) 988-8889 Fax: (856) 988-8090

Ship To: ADELPHIA METALS-CUST PU N/A JEWETT, TX 75846 (856) 988-8889 Fax: (856) 988-8163

Customer P.O.	818359	Sales Order	236478.5
Product Group	Rebar	Part Number	900000132404200
Grade	ASTM A615/A615M-14 GR 60[420] AASHTO M31-07	Lot #	JW1610471901
Size	13/#4 Rebar	Heat #	JW16104719
Product	13/#4 Rebar 20' A615M GR420 (Gr60)	B.L. Number	J1-745944
Description	A615M GR 420 (Gr60)	Load Number	J1-347424
Customer Spec		Customer Part #	

Roll Date: 6/22/2016 Melt Date: 6/18/2016 Qty Shipped LBS: 48,096 Qty Shipped Pcs: 3,600

C	Mn	P	S	Si	Cu	Ni	Cr	Mo	V	Cb
0.38%	0.98%	0.011%	0.021%	0.19%	0.30%	0.15%	0.16%	0.042%	0.0032%	0.000%
Yield 1: 63,9 Bend OK	00psi			Tensile	1: 101,000ps	i		El	ongation: 15%	in 8"(% in 203.3mm)

Specification Comments:

Comments: E-mail: websales@nstexas.com

All manufacturing processes of the steel, including melting, casting & hot rolling, have been performed in U.S.A
 Mercury in any form has not been used in the production or testing of this product.
 Welding or weld repair was not performed on this material.
 This material conforms to the specifications described on this document and may not be reproduced, except in full, without written approval of Nucor Corporation.
 Results reported for ASTM E45 (Inclusion content) and ASTM E381 (Macro-etch) are provided as interpretation of ASTM procedures.

Rela R Vartari

Bhargava R Vantari **Division Metallurgist**

Page 1 of 1

NBMG-10 January 1, 2012

Figure A-31. 819-in. (20,803-mm) Long Rebar, Test Nos. MGSCO-1 and MGSCO-2

ලා GER	DAU	CUSTOMER SH NEBCO INC STEEL DIVISI	ON	CUSTO	D MATERIAI DMER BILL TO CRETE INDUS			GRADE 60 (420)		PE / SIZE r / #4 (13MM)		Page 1/1 DOCUMENT I 0000000000
JS-ML-MIDLOTHIAN 00 WARD ROAD		HAVELOCK,N USA		USA	OLN,NE 68529			LENGTH 60'00"		WEIGHT 46,534 LB	HEA 580	AT / BATCH 28856/02
MDLOTHIAN, TX 76065 JSA		SALES ORDE 4777299/00001		CU	STOMER MA	TERIAL N°		SPECIFICATION / DA ASTM A615/A615M-15 E		ON		
CUSTOMER PURCHASE ORDE 123808	R NUMBER		BILL OF LADIN 1327-000022679		DATE 02/28/2	017						
CHEMICAL COMPOSITION C Mn % % 0.46 0.91	P 0.016	\$ 0.031	Si 0.26	Cu %	Ni % 0.12	Çr % 0.20	M % 0.03	o Sn 26 0.006	¥ 0.004	Nb %0.000	A1 % 0.003	
CHEMICAL COMPOSITION CEquation 0.65												
MECHANICAL PROPERTIES YS PSI 69462	M1 47	S Pa 9	UTS PSI 110140)	U' M 7:	TS Pa 59		G/L Inch 8.000	0 1 20	3/L nm 00.0		
MECHANICAL PROPERTIES Elong. 13.90	Bend											
COMMENTS / NOTES												
								e certify that these data ar	e correct and i	n compliance with		
	harke	BHAS	ding the billets, was SKAR YALAMANCHILI LITY DIRECTOR		anufactured in 1	the USA. CMTR	complies	Jour Lidam	1 Cartanna Martin	ARRINGTON		
Phon	e: (409) 769-1014 1		manchili@gerdau.com					Phone: 972-779-1872	,		m	

Figure A-32. 16-in. (406-mm) Long Rebar, Test Nos. MGSCO-1 and MGSCO-2

Appendix B. Vehicle Center of Gravity Determination

Date:		_Test Name:		VIN:			U480683
Year: _	2009	_ маке:	Hyundai	Model:		Accent	
Vehicle CG	Dotormi	nation					
venicie Ce	Determin	lation			Weight		
Ň	/EHICLE	Equipment			(lb)		
-	-	Unbalasted C	ar (Curh)		2458		
		Hub		2	19		
		Brake activat	ion cylinder 8	frame	7		
		Pneumatic ta			22		
		Strobe/Brake			6		
Ŧ		Brake Reciev			4		
		CG Plate incl			13		
		Battery	Ŭ		-30		
<u>-</u>	-	Oil		2	-13		
-		Interior			-57		
		Fuel			-14		
-		Coolant			-5		
-		Washer fluid		5	-1		
4	-	Water Ballast	: (In Fuel Tan	k)	0		
	-	Onboard Batt	ery		14		
	-						
И	lote: (+) is add	ded equipment to v Est	vehicle, (-) is rem imated Total '	0.00		2	
			imated Total '	0.00	2423) n.	_
Vehicle Dime	ensions fo	Est r C.G. Calcula	imated Total tions Front Tr	Weight (lb)	2423 56 1/2		_
_ Vehicle Dim Roof Height: _	ensions fo 58	Est <u>r C.G. Calcula</u> _in.	imated Total tions Front Tr	Weight (lb) ack Width:	2423 56 1/2	n.	-
<u>Vehicle Dim</u> Roof Height: Wheel Base: Center of Gr	ensions fo 58 98 7/8 avity	Est <u>r C.G. Calcula</u> _in.	imated Total ' tions Front Tr Rear Tr	Weight (lb) ack Width: ack Width:	2423 56 1/2	in. in.	– Difference
<u>Vehicle Dim</u> Roof Height: Wheel Base: Center of Gr Test Inertial V	ensions fo 58 98 7/8 avity Weight (Ib)	Est <u>r C.G. Calcula</u> in. in. 1100C MAS 2420	imated Total tions Front Tr Rear Tr BH Targets ± 55	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Fest Inertial 2438	in. in.	1
Vehicle Dimo Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal (ensions fo 58 98 7/8 avity Weight (Ib) CG (in.)	Est <u>r C.G. Calcula</u> _in. _ in. _ 1100C MAS	imated Total tions Front Tr Rear Tr BH Targets ± 55	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Test Inertial 2438 37.06799	in. in.	1 -1.932013
Vehicle Dim Roof Height: _ Wheel Base: _ Center of Gr Test Inertial V Longitudinal C Lateral CG (i	avity CG (in.) in.)	Est <u>r C.G. Calcula</u> _in. _in. _ 1100C MAS 2420 39 NA	imated Total tions Front Tr Rear Tr BH Targets ± 55	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Test Inertial 2438 37.06799 0.419452	in. in.	
Vehicle Dim Roof Height: _ Wheel Base: _ Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) in.) (in.)	Est in. 	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Test Inertial 2438 37.06799	in. in.	1 -1.932013 N
Vehicle Dim Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal Lateral CG (i Vertical CG (i Note: Long. CG	ensions fo 58 98 7/8 avity Weight (Ib) CG (in.) in.) (in.) is measured f	Est in. in. 1100C MAS 2420 39 NA NA NA	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Fest Inertial 2438 37.06799 0.419452 22.88543	in. in.	1 -1.932013 N
Vehicle Dim Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal Lateral CG (i Vertical CG (i Note: Long. CG	ensions fo 58 98 7/8 avity Weight (Ib) CG (in.) in.) (in.) is measured f	Est in. 	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Fest Inertial 2438 37.06799 0.419452 22.88543	in. in.	1 -1.932013 N
Vehicle Dim Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal Lateral CG (i Vertical CG (i Note: Long. CG	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) in.) (in.) is measured fr 3 measured fr	Est in. in. 1100C MAS 2420 39 NA NA NA	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 57 1/8 Fest Inertial 2438 37.06799 0.419452 22.88543	n. n.	1 -1.932013 N N
Vehicle Dim Roof Height: Wheel Base: Test Inertial V Longitudinal Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CC	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) is measured f G measured fr HT (Ib)	Est <u>r C.G. Calcula</u> _in. _in. in. 	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 <u>56 1/2</u> 57 1/8 Fest Inertial 2438 37.06799 0.419452 22.88543 er) side	n. n. TIAL WEI	1.932013 N N GHT (Ib)
Vehicle Dime Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CC	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) is measured f G measured fr HT (Ib) Left	Est <u>r C.G. Calcula</u> in. in. <u>1100C MAS</u> 2420 39 NA NA from front axle of to om centerline - po Right	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 <u>56 1/2</u> 57 1/8 57 1/8 57 1/9 57 1/8 57 1 57 1	n. n. TIAL WEI	1 -1.932013 N N GHT (Ib) Right
Vehicle Dime Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CC CURB WEIG	ensions fo 58 98 7/8 avity Weight (Ib) CG (in.) in.) (in.) is measured fr HT (Ib) Left 803	Est <u>r C.G. Calcula</u> _in. <u>1100C MAS</u> 2420 39 NA NA from front axle of tr om centerline - po Right 757	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 i 57 1/8 i Fest Inertial 2438 37.06799 0.419452 22.88543 er) side TEST INER Front	n. n. TIAL WEI Left 767	1.932013 N N GHT (Ib) Right 757
Vehicle Dime Roof Height: Wheel Base: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CC	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) is measured f G measured fr HT (Ib) Left	Est <u>r C.G. Calcula</u> in. in. <u>1100C MAS</u> 2420 39 NA NA from front axle of to om centerline - po Right	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 <u>56 1/2</u> 57 1/8 57 1/8 57 1/9 57 1/8 57 1 57 1	n. n. TIAL WEI	1.932013 N N GHT (Ib) Right
Vehicle Dime Roof Height:	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) in.) (in.) (in.) is measured fr HT (Ib) Left 803 435	Est r C.G. Calcula in. in. 1100C MAS 2420 39 NA 2420 39 NA NA from front axle of to om centerline - po Right 757 463	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 i 57 1/8 i Fest Inertial 2438 37.06799 0.419452 22.88543 er) side TEST INER Front Rear	n. in. TIAL WEI Left 767 434	1 -1.932013 N N GHT (Ib) Right 757 480
Vehicle Dime Roof Height:	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) in.) (in.) is measured fr HT (Ib) Left 803 435 1560	Est r C.G. Calcula in. in. 1100C MAS 2420 39 NA 2420 39 NA NA from front axle of to om centerline - po Right 757 463 Ib	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 i 57 1/8 i Fest Inertial 2438 37.06799 0.419452 22.88543 er) side TEST INER Front Rear FRONT	n. in. TIAL WEI Left 767 434 1524	1 -1.932013 N N GHT (Ib) Right 757 480 Ib
Vehicle Dime Roof Height:	ensions fo 58 98 7/8 avity Aveight (Ib) CG (in.) in.) (in.) (in.) is measured fr HT (Ib) Left 803 435	Est r C.G. Calcula in. in. 1100C MAS 2420 39 NA 2420 39 NA NA from front axle of to om centerline - po Right 757 463	imated Total tions Front Tr Rear Tr SH Targets ± 55 ± 4 est vehicle	Weight (lb) ack Width: ack Width:	2423 56 1/2 i 57 1/8 i Fest Inertial 2438 37.06799 0.419452 22.88543 er) side TEST INER Front Rear	n. in. TIAL WEI Left 767 434	1.932013 N N GHT (Ib) Right 757 480

Figure B-1. Vehicle Mass Distribution, Test No. MGSCO-1

Date: Year:			MGSCO-2 Hyundai	VIN: Model:	Tanito	Accent	614772
rear.	2011	Wake.	nyunuai	Mouel.		Accent	
Vahiala CC I	Determinati						
Vehicle CG	Determinati	ion			Weight		
	Vehicle Eq	uipment			(lb)		
	+	Unballasted C	ar (Curb)		2440		
	+	Hub	()		19		
	+	Brake activati	on cylinder & f	rame	7		
		Pneumatic tar			28		
	+	Strobe/Brake	Battery		5		
	+	Brake Receive			5		
	+	CG Plate inclu	uding DAS		13		
		Battery			-30		
	2 <u>0</u> 2 15	Oil			-6		
	(m) 	Interior			-63		
		Fuel			-21 -7		
		Coolant			-7		
	+	Washer fluid	(In Fuel Tank)		0		
	+		olemental Batt	onv	14		
		Onboard Sup	Jiementai Datt		14		
	Note: (+) is ac	dded equipment to v Est	rehicle, (-) is remo imated Total V				
	ensions for	Est C.G. Calculatio	imated Total V	/eight (lb)	2404		_
Wheel Base:	ensions for 98 1/2	Est <u>C.G. Calculatio</u> _in.	imated Total V ons Front Tra	/eight (lb)	2404 58 1/8	in.	
	ensions for 98 1/2	Est C.G. Calculatio	imated Total V ons Front Tra	/eight (lb)	2404 58 1/8	in. in.	-
Wheel Base:	ensions for 98 1/2	Est <u>C.G. Calculatio</u> _in.	imated Total V ons Front Tra	/eight (lb)	2404 58 1/8		-
Wheel Base:	ensions for 98 1/2 58	Est <u>C.G. Calculatio</u> _in.	imated Total V ons Front Tra Rear Tra	veight (lb) ck Width: ck Width:	2404 58 1/8		- Differen
Wheel Base: Roof Height:	ensions for 98 1/2 58 avity	Est <u>C.G. Calculatio</u> in. in.	imated Total V ons Front Tra Rear Tra SH Targets	veight (lb) ck Width: ck Width:	2404 58 1/8 57 1/2		
Wheel Base: Roof Height: Center of Gra	ensions for 98 1/2 58 avity Veight (Ib)	Est	imated Total V ons Front Tra Rear Tra SH Targets	veight (lb) ck Width: ck Width:	2404 58 1/8 57 1/2 Test Inertial		-16
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i	avity Veight (Ib) CG (in.)	Est <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 <u>39</u> NA	imated Total V ons Front Tra Rear Tra SH Targets ± 55	veight (lb) ck Width: ck Width:	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877		-16 -3.394
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal (avity Veight (Ib) CG (in.)	Est <u>C.G. Calculatio</u> in. <u>1100C MAS</u> 2420 39	imated Total V ons Front Tra Rear Tra SH Targets ± 55	veight (lb) ck Width: ck Width:	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865		-16 -3.394 1
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured fro	Est C.G. Calculatio in. in. 1100C MAS 2420 39 NA NA om front axle of test	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	/eight (lb) ck Width: ck Width:	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80		-16 -3.394 1
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured fro	Est <u>C.G. Calculatio</u> in. <u>1100C MAS</u> <u>2420</u> <u>39</u> NA NA	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	/eight (lb) ck Width: ck Width:	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80		Differen -16 -3.394 1
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) (in.) is measured from 6 measured from	Est C.G. Calculatio in. in. 1100C MAS 2420 39 NA NA om front axle of test	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80	in.	-16 -3.394 1 1
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal (Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured fro measured fro HT (Ib)	Est	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80 side	IN.	-1(-3.394 1 1 1
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG CURB WEIG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured from HT (Ib) Left	Est	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80 side TEST INER	IN.	-1(-3.394 I I I HT (Ib) Right
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG CURB WEIG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured fro B measured fro HT (Ib) Left 808	Est	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80 side TEST INERT	In.	-1(-3.394 I I I HT (Ib) Right 764
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG CURB WEIG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured from HT (Ib) Left	Est	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80 side TEST INER	IN.	-1(-3.394 I I I HT (Ib) Right
Wheel Base: Roof Height: Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG CURB WEIG Front Rear	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured from HT (Ib) Left 808 425	Est	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80 side TEST INERT Front Rear	In. FIAL WEIGI Left 771 423	-16 -3.394 I I HT (Ib) Right 764 446
Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CG CURB WEIG	ensions for 98 1/2 58 avity Veight (Ib) CG (in.) n.) is measured fro B measured fro HT (Ib) Left 808	Est	imated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	veight (lb)	2404 58 1/8 57 1/2 Test Inertial 2404 35.605865 0.1923877 22.80 side TEST INERT	In.	-1(-3.394 I I I HT (Ib) Right 764

Figure B-2. Vehicle Mass Distribution, Test No. MGSCO-2

Appendix C. Static Soil Tests

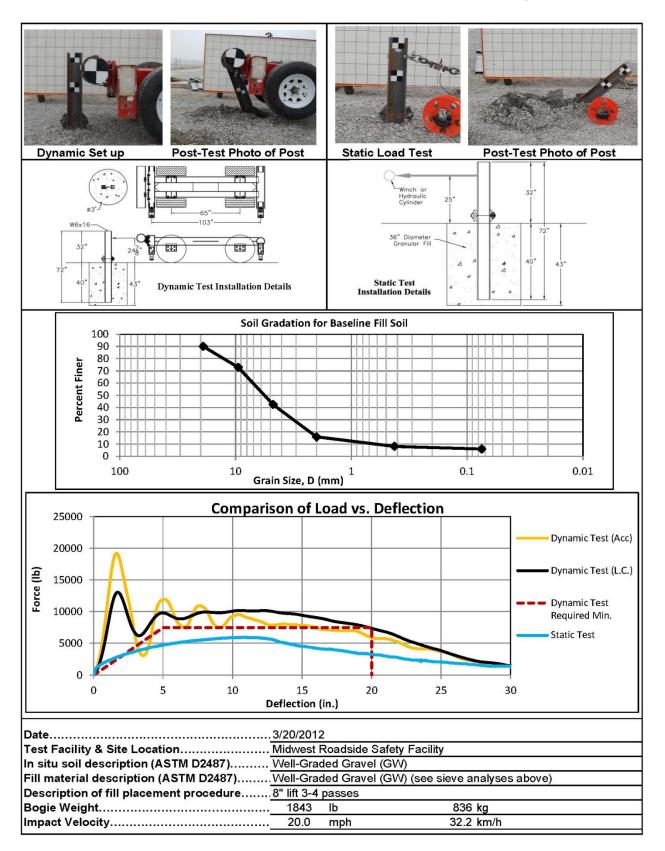


Figure C-1. Soil Strength, Initial Calibration Tests, Test No. MGSCO-1

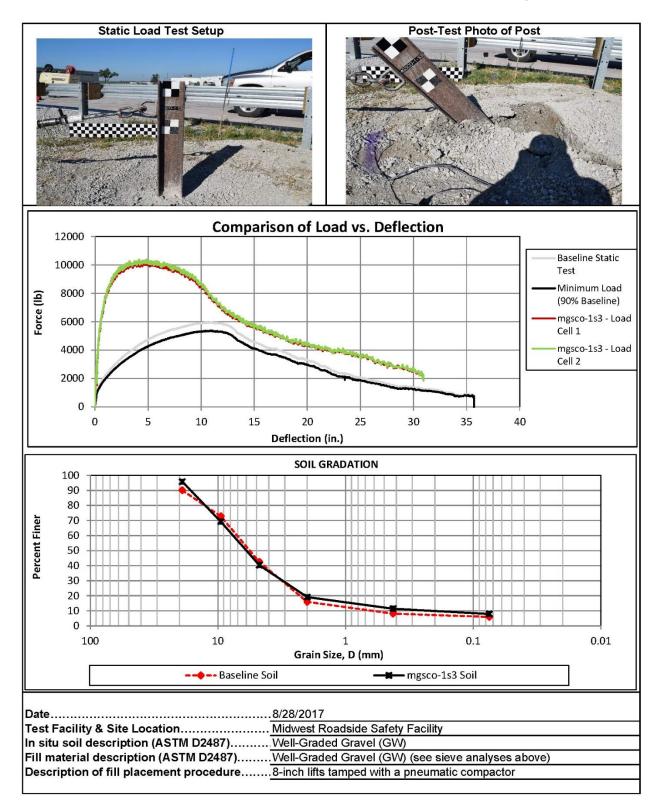


Figure C-2. Static Soil Test, Test No. MGSCO-1

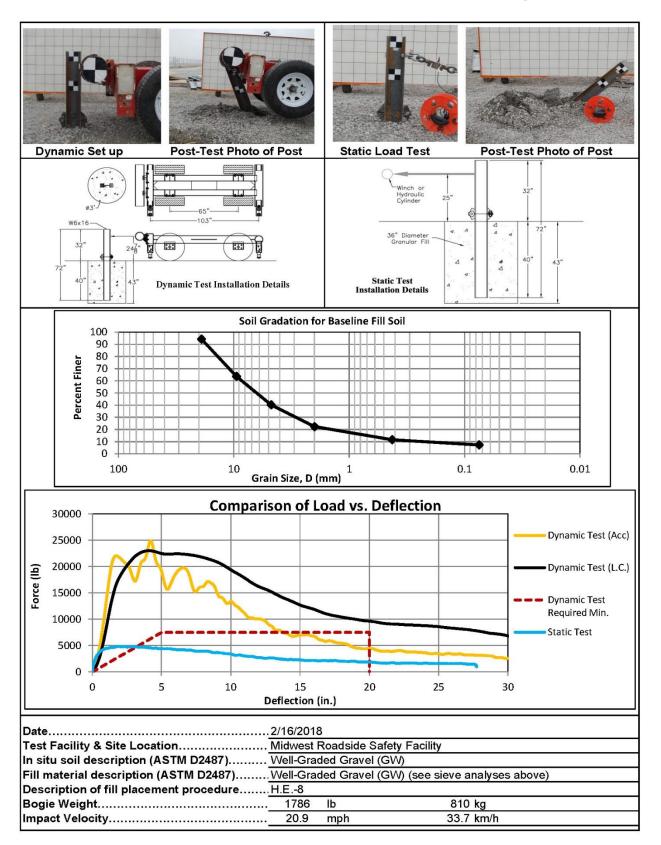


Figure C-3. Soil Strength, Initial Calibration Tests, Test No. MGSCO-2

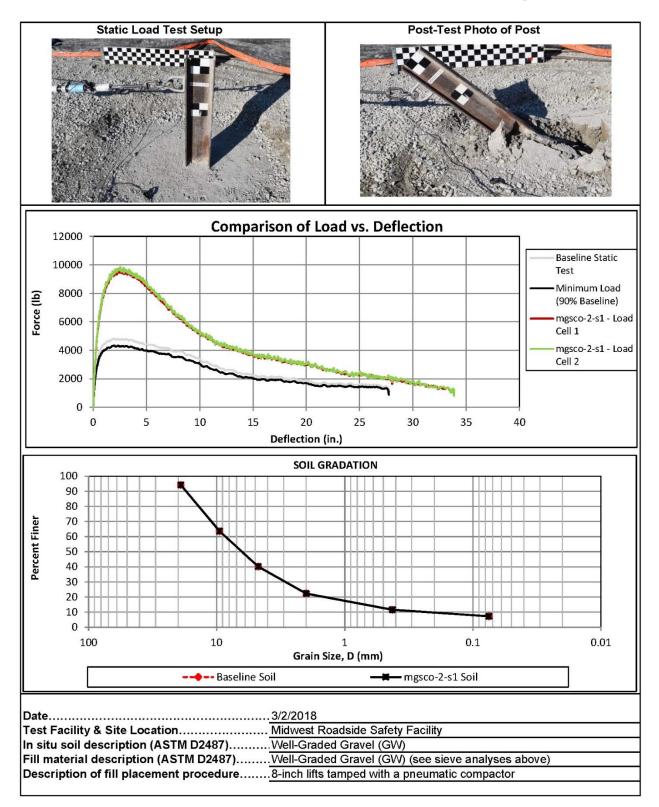


Figure C-4. Static Soil Test, Test No. MGSCO-2

Appendix D. Vehicle Deformation Records

-

	9/4/2017 2009	. ']		MGSCO-1 Hyundai		VIN: Model:		N4AC1AU4 Accent	80683	
					E PRE/POS ORPAN - S					
	Х	Y	Z	Χ'	Y'	Z'	ΔX	ΔY	ΔZ	Total ∆
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	27.710	-21.212	2.223	27.329	-21.347	2.187	-0.381	-0.136	-0.037	0.407
2	28.571 27.495	-17.583 -11.986	-1.997 -2.602	28.278 27.257	-17.770 -12.289	-1.990 -2.515	-0.293 -0.238	-0.187 -0.303	0.007 0.087	0.347
4	27.433	-5.808	-2.761	27.013	-6.114	-2.674	-0.204	-0.305	0.087	0.333
5	25.350	-19.114	-3.832	25.176	-19.363	-3.778	-0.174	-0.249	0.054	0.309
6	24.764	-14.943	-3.703	24.503	-15.098	-3.690	-0.261	-0.156	0.013	0.304
7	24.880	-11.745	-3.881	24.637	-11.950	-3.844	-0.243	-0.205	0.038	0.320
8	24.439	-5.960	-4.105	24.267	-6.235	-4.052	-0.172	-0.275	0.053	0.329
9 10	20.665	-19.019 -15.113	-5.072 -4.822	20.503 19.946	-19.283 -15.275	-5.093 -4.825	-0.162 -0.266	-0.264 -0.162	-0.021 -0.003	0.310
11	19.752	-11.093	-5.022	19.543	-11.213	-5.009	-0.200	-0.102	0.015	0.242
12	19.065	-5.846	-4.805	18.852	-6.055	-4.785	-0.213	-0.209	0.020	0.299
13	15.419	-22.319	-5.197	15.216	-22.614	-5.202	-0.203	-0.295	-0.005	0.358
14	14.661	-16.901	-4.655	14.416	-17.124	-4.666	-0.246	-0.223	-0.012	0.332
15	14.397	-11.651	-4.632	14.156	-11.895	-4.620	-0.241	-0.244	0.013	0.344
16 17	14.098 11.325	-6.486 -23.018	-5.176 -4.925	13.875 11.083	-6.662 -23.238	-5.161 -4.941	-0.223 -0.243	-0.176 -0.220	0.015	0.284
17	11.026	-23.018	-4.920	10.799	-23.230	-4.941	-0.243	-0.220	-0.018	0.328
19	10.632	-11.522	-4.355	10.352	-11.710	-4.359	-0.280	-0.188	-0.003	0.337
20	10.515	-6.661	-5.047	10.244	-6.806	-5.023	-0.271	-0.144	0.024	0.308
21	6.970	-22.350	-4.509	6.813	-22.651	-4.524	-0.157	-0.300	-0.015	0.339
22	7.010	-17.259	-4.056	6.847	-17.449	-4.084	-0.163	-0.190	-0.028	0.252
23	7.211 6.874	-11.043 -6.473	-4.122 -4.569	6.958 6.595	-11.366 -6.648	-4.142 -4.565	-0.253 -0.280	-0.322 -0.175	-0.020 0.004	0.410
24	0.457	-23.167	0.052	0.395	-23.457	0.047	-0.200	-0.173	-0.004	0.354
26	0.435	-17.773	-0.024	0.202	-18.052	-0.033	-0.233	-0.279	-0.009	0.364
27	0.403	-12.263	-0.048	0.213	-12.437	-0.069	-0.190	-0.174	-0.021	0.258
28	0.230	-6.430	-0.103	0.039	-6.735	-0.127	-0.191	-0.305	-0.024	0.361
							-			
DOOR-			$ \begin{array}{c} 1 \\ 5 \\ 9 \\ 13 \\ 17 \\ 18 \\ 21 \\ 25 \\ 25 \\ 26 \\ 25 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26$	6 7 10 11 4 15 3 19 2 23	4 HBDAR: 8 12 16 20 24 ×				D	DOR

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSCO-1

Date: Year:	9/4/2017 2009	. 1		MGSCO-1 Hyundai		VIN: Model:	KMHC	N4AC1AU4 Accent	80683	
					PRE/POS ORPAN - S					
	Х	Y	Z	X'	Y'	Z'	ΔX	ΔY	ΔZ	Total ∆
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1 2	66.865 66.893	-33.365 -29.436	-19.261 -23.287	67.009 67.243	-33.460 -29.571	-19.043 -22.993	0.145	-0.096 -0.135	0.218	0.279 0.476
3	65.924	-23.811	-23.287	66.202	-29.071	-22.993	0.330	-0.133	0.295	0.478
4	65.702	-17.544	-22.755	66.028	-17.797	-22.447	0.326	-0.253	0.309	0.515
5	63.487	-30.776	-24.617	63.783	-31.017	-24.363	0.296	-0.241	0.254	0.458
6	62.910	-26.592	-24.043	63.255	-26.695	-23.758	0.345	-0.103	0.285	0.459
7	63.098	-23.380	-23.945	63.407	-23.579	-23.660	0.309	-0.199	0.285	0.465
8	62.727 58.652	-17.642 -30.532	-23.583 -24.991	63.079 59.017	-17.841 -30.806	-23.298 -24.788	0.353	-0.199 -0.274	0.285	0.495
10	58.212	-26.658	-24.283	58.553	-26.825	-24.067	0.303	-0.166	0.205	0.437
11	57.830	-22.534	-24.058	58.173	-22.772	-23.818	0.344	-0.237	0.240	0.481
12	57.315	-17.476	-23.285	57.615	-17.699	-23.030	0.301	-0.223	0.255	0.453
13	53.395	-33.820	-24.425	53.721	-34.021	-24.242	0.326	-0.200	0.183	0.424
14 15	52.827 52.627	-28.465 -23.175	-23.287	53.134 53.000	-28.635 -23.393	-23.094 -22.544	0.307	-0.170 -0.217	0.193	0.401
16	52.827	-18.035	-22.743	52.711	-18.263	-22.587	0.373	-0.217	0.201	0.470
17	49.428	-34.561	-23.471	49.739	-34.672	-23.323	0.311	-0.111	0.148	0.362
18	49.268	-28.961	-22.383	49.575	-29.140	-22.217	0.307	-0.179	0.166	0.392
19	48.955	-23.108	-21.774	49.254	-23.306	-21.594	0.299	-0.197	0.179	0.401
20	48.766	-18.185	-21.988	49.120	-18.370	-21.803	0.354	-0.185	0.186	0.440
21 22	45.238 45.425	-33.880 -28.867	-22.221 -21.335	45.618 45.805	-34.126 -29.070	-22.098 -21.215	0.380	-0.246 -0.202	0.123	0.470 0.447
22	45.675	-22.780	-20.892	45.803	-22.982	-20.764	0.348	-0.202	0.120	0.447
24	45.293	-18.072	-20.850	45.670	-18.266	-20.712	0.377	-0.194	0.138	0.447
25	39.619	-35.092	-16.615	39.911	-35.287	-16.480	0.292	-0.195	0.135	0.376
26	39.678	-29.780	-16.231	39.956	-29.990	-16.110	0.278	-0.210	0.121	0.368
27	39.697	-24.153	-15.752	40.029	-24.453	-15.653	0.332	-0.300	0.099	0.458
28	39.686	-18.472	-15.304	39.909	-18.702	-15.161	0.223	-0.230	0.143	0.351
	<u> </u>									
DOOR-			16 20		X				D	DOR

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSCO-1

						/POST CRU RUSH - SET					
	DOINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
	POINT 1	16.054	-21.670	22.597	15.785	-21.868	22.588	-0.269	-0.199	-0.010	0.334
	2	12.622	-12.950	26.432	12.314	-13.159	22.568	-0.209	-0.199	0.009	0.334
ж	3	14.345	1.261	24.016	14.041	1.094	24.031	-0.303	-0.167	0.005	0.347
DASH	4	14.601	-20.492	12.695	14.295	-20.708	12.690	-0.305	-0.216	-0.005	0.374
	5	15.546	-11.964	10.506	15.193	-12.028	10.559	-0.354	-0.064	0.053	0.363
	6	10.672	0.924	11.824	10.335	0.753	11.857	-0.337	-0.171	0.033	0.380
шЦ	7	19.119	-25.920	3.176	18.874	-26.122	3.203	-0.245	-0.202	0.027	0.319
SIDE PANEL	8	23.068	-25.782	6.554	22.877	-25.945	6.507	-0.191	-0.163	-0.047	0.255
	9	25.441	-26.175	3.151	25.136	-26.367	3.137	-0.306	-0.192	-0.014	0.361
ЭС	10	-8.699	-27.438	24.981	-8.886	-27.606	25.022	-0.186	-0.168	0.040	0.254
S S S C	11	3.177	-27.137	23.332	2.957	-27.202	23.378	-0.220	-0.066	0.046	0.234
E Q	12	14.806	-26.943	21.533	14.555	-26.926	21.464	-0.252	0.017	-0.069	0.262
IMPACT SIDE DOOR	13	-9.011	-28.293	10.287	-9.229	-28.610	10.282	-0.218	-0.317	-0.005	0.384
	14 15	6.924	-27.875	7.820	6.766	-28.404	7.744	-0.158	-0.530	-0.076	0.558
		15.601	-27.023	9.621	15.409	-27.267	9.594	-0.192	-0.244	-0.027	0.311
	16 17	3.555 3.971	-18.144 -14.041	39.756 40.002	3.393 3.933	-18.201 -14.213	39.950 40.503	-0.161 -0.039	-0.057 -0.172	0.194	0.259
	17	4.279	-9.958	40.002	4.376	-14.213	40.975	0.039	-0.172	0.302	0.332
	19	4.424	-4.112	40.309	4.554	-4.334	41.483	0.130	-0.222	1.174	1.202
	20	4.442	0.439	40.274	4.543	0.207	41.408	0.100	-0.232	1.134	1.162
	21	-2.282	-16.783	42.607	-2.509	-17.001	42.582	-0.227	-0.218	-0.025	0.315
ш	22	-1.974	-13.294	42.823	-2.150	-13.424	43.158	-0.176	-0.130	0.334	0.400
ROOF	23	-1.770	-9.264	43.012	-1.812	-9.516	43.487	-0.042	-0.252	0.474	0.539
ά.	24	-1.661	-3.850	43.143	-1.789	-3.948	43.760	-0.128	-0.097	0.617	0.638
	25	-1.675	0.123	43.148	-1.715	-0.091	43.757	-0.040	-0.213	0.610	0.647
	26	-7.427	-16.116	43.918	-7.734	-16.265	43.835	-0.308	-0.149	-0.083	0.352
	27	-7.292	-13.097	44.132	-7.467	-13.302	44.409	-0.175	-0.205	0.277	0.386
	28	-6.973	-9.366	44.292	-7.204	-9.474	44.713	-0.231	-0.108	0.421	0.492
	29 30	-6.867 -6.789	-4.249 -0.262	44.436	-7.022	-4.467	44.881	-0.155	-0.218	0.444	0.519
				44.435	-6.918	-0.395	44.875	-0.129	-0.134	0.440	0.478
A PILLAR	31 32	21.956 16.175	-24.974 -23.984	24.826 29.685	21.775 15.987	-25.115 -24.064	24.755 29.617	-0.181 -0.188	-0.141 -0.080	-0.071 -0.068	0.240
₹ Ì	33	11.851	-23.304	32.801	11.652	-23.161	32.713	-0.199	-0.056	-0.008	0.215
Б	34	6.677	-22.032	36.115	6.514	-22.075	36.029	-0.164	-0.043	-0.087	0.190
	35	-18.869	-26.551	23.389	-18.972	-26.671	23.413	-0.103	-0.120	0.024	0.160
~	36	-15.240	-26.381	24.211	-15.389	-26.511	24.198	-0.149	-0.130	-0.013	0.198
-AF	37	-19.309	-25.740	29.957	-19.462	-25.845	29.919	-0.153	-0.105	-0.038	0.189
B PILLAR	38	-15.339	-25.502	30.110	-15.500	-25.591	30.145	-0.161	-0.089	0.035	0.187
ш	39	-19.617	-23.224	37.340	-19.711	-23.300	37.305	-0.094	-0.076	-0.035	0.126
	40	-16.524	-22.883	37.606	-16.581	-22.925	37.613	-0.057	-0.042	0.007	0.071

Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. MGSCO-1

					HICLE PRE						
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
	1	59.091	-35.651	2.734	59.271	-35.760	2.956	0.180	-0.109	0.223	0.306
	2	56.504	-27.250	7.791	56.655	-27.445	8.070	0.151	-0.195	0.278	0.372
DASH	3	57.995	-12.864	6.430	58.115	-13.115	6.655	0.119	-0.251	0.225	0.358
DA	4	55.854	-33.575	-6.665	56.090	-33.725	-6.510	0.236	-0.150	0.155	0.319
	5	56.527	-24.828	-8.193	56.725	-25.027	-7.939	0.198	-0.199	0.254	0.378
	6	52.174	-12.187	-4.864	52.259	-12.445	-4.546	0.085	-0.258	0.318	0.418
SIDE PANEL	7	58.489	-38.135	-17.233	58.804	-38.284	-17.036	0.314	-0.149	0.197	0.400
	8	63.013	-38.296	-14.600	63.044	-38.404	-14.536	0.031	-0.108	0.064	0.130
	9	64.670	-38.388	-18.394	64.978	-38.523	-18.150	0.308	-0.135	0.244	0.415
IMPACT SIDE DOOR	10	35.071	-41.580	9.107	35.325	-41.733	9.231	0.254	-0.153	0.125	0.321
NIC R	11	46.453	-41.128	5.406	46.678	-41.177	5.574	0.225	-0.050	0.168	0.285
58	12	57.582	-40.773	1.401	57.713	-40.725	1.677	0.132	0.048	0.276	0.310
A Q	13	32.096	-41.126	-5.311	32.334	-41.426	-5.185	0.238	-0.300	0.125	0.403
M	14 15	47.372 56.198	-40.488 -39.798	-10.617 -10.391	47.648 56.528	-41.001 -39.994	-10.501 -10.237	0.276	-0.513 -0.195	0.116 0.154	0.593
_											
	16 17	49.983	-33.681 -29.558	22.098 22.598	50.225	-33.657 -29.680	22.491 23.320	0.242	0.025	0.394	0.463
	17	50.541 50.953	-29.558	22.098	50.892 51.438	-29.080	23.320	0.351	-0.122	0.721	0.811
	19	51.109	-19.790	23.731	51.849	-20.038	24.975	0.740	-0.249	1.244	1.469
	20	51.226	-15.193	24.086	51.939	-15.503	25.275	0.740	-0.310	1.188	1.400
	21	44.787	-32.591	26.074	44.929	-32.654	26.222	0.142	-0.063	0.148	0.214
ш	22	45.148	-29.019	26.578	45.428	-29.288	26.995	0.280	-0.269	0.417	0.570
ROOF	23	45.510	-25.084	27.033	45.870	-25.261	27.637	0.360	-0.177	0.604	0.725
Ř	24	45.652	-19.668	27.658	45.983	-19.943	28.379	0.331	-0.275	0.721	0.840
	25	45.729	-15.740	27.995	46.182	-16.007	28.684	0.453	-0.267	0.689	0.867
	26	39.922	-31.981	28.392	40.016	-32.085	28.421	0.094	-0.104	0.030	0.143
	27	40.153	-29.011	28.837	40.390	-29.164	29.214	0.237	-0.153	0.376	0.471
	28	40.547	-25.232	29.278	40.858	-25.456	29.750	0.310	-0.225	0.472	0.608
	29	40.802	-20.201	29.821	41.013	-20.371	30.384	0.211	-0.170	0.562	0.624
	30	40.998	-16.176	30.138	41.295	-16.439	30.665	0.297	-0.263	0.527	0.659
R	31	65.228	-39.100	3.500	65.508	-39.209	3.736	0.280	-0.109	0.236	0.382
A PILLAR	32 33	60.397 56.858	-38.543 -37.961	9.472 13.327	60.598 57.021	-38.583 -37.987	9.750 13.446	0.200	-0.040	0.279 0.119	0.345
ШЦ	33	52.301	-37.961	17.621	57.021	-37.987	17.809	0.183	-0.027	0.119	0.204
	35	24.815	-40.555	9.482	25.127	-40.671	9.535	0.312	-0.008	0.053	0.200
	36	24.815	-40.555	9.482	25.127	-40.671	9.535	0.312	-0.115	0.053	0.357
B PILLAR	30	25.622	-40.457	16.042	25.870	-40.577	16.086	0.309	-0.120	0.125	0.354
ILL B	38	29.431	-40.108	15.506	29.728	-40.420	15.623	0.246	-0.034	0.117	0.209
西	39	26.677	-38.485	23.514	26.824	-38.543	23.660	0.147	-0.058	0.146	0.215
	40	29.843	-38.157	23.259	29.936	-38.187	23.406	0.093	-0.030	0.147	0.177

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MGSCO-1

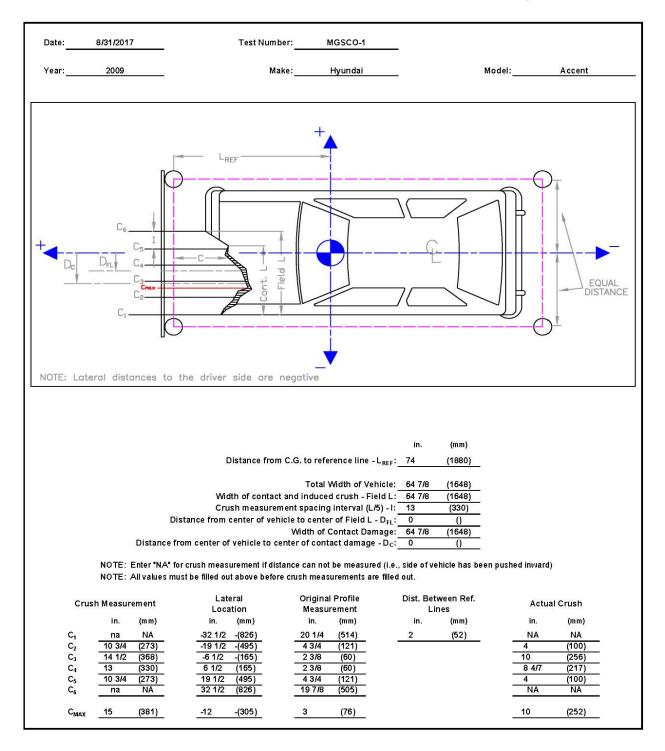


Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSCO-1

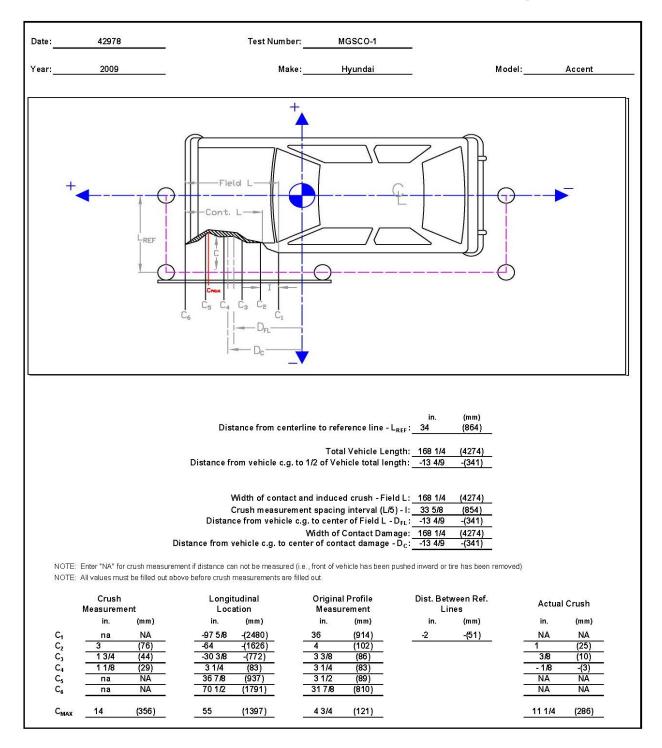


Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSCO-1

Date: Year:		2018 011	т	est Name: Make:		CO-2 ndai	VIN: Model:		N4AC1BU Accent	614772	
						PRE/POS ORPAN - S					
	DOINIT	Х	Y	Z	Χ'	Y'	Z'	ΔX	ΔY	ΔZ	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	62.409 64.516	-32.063 -29.208	1.173	62.222 64.248	-31.405 -28.510	0.989	0.187 0.268	0.658	-0.184 -0.186	0.263
μ	3	64.989	-24.266	-2.630	65.094	-23.932	-2.662	-0.105	0.334	-0.032	0.027
AN N	4	64.023	-17.155	-3.246	64.214	-16.874	-3.215	-0.192	0.281	0.032	0.194
	5	61.071	-31.588	-3.735	61.226	-31.254	-3.887	-0.156	0.334	-0.152	0.218
TOE PAN - WHEEL WELL	6	61.813	-26.985	-4.147	62.006	-26.717	-4.137	-0.192	0.268	0.010	0.192
>	7	61.422 61.468	-22.272 -16.655	-4.639 -4.849	61.631 61.708	-22.009 -16.436	-4.655 -4.776	-0.209	0.263 0.218	-0.016 0.072	0.209
<u> </u>	9	54.744	-33.088	-4.849	55.036	-32.767	-6.953	-0.240	0.322	-0.012	-0.016
	10	54.962	-28.334	-7.128	55.206	-28.058	-7.159	-0.244	0.276	-0.031	-0.031
	11	54.698	-22.695	-7.179	54.869	-22.434	-7.199	-0.171	0.260	-0.020	-0.020
	12	54.306	-17.525	-7.060	54.516	-17.193	-7.008	-0.211	0.332	0.052	0.052
	13	50.711	-33.402	-7.637	50.978	-33.138	-7.654	-0.267	0.264	-0.018	-0.018
	14 15	50.601 50.253	-28.146 -22.577	-7.265 -7.331	50.813 50.442	-27.851 -22.225	-7.295 -7.292	-0.212	0.295	-0.031 0.038	-0.031 0.038
	10	50.255	-17.567	-7.864	50.442	-17.303	-7.823	-0.261	0.352	0.038	0.038
_	17	47.308	-34.062	-7.740	47.531	-33.755	-7.763	-0.223	0.307	-0.023	-0.023
FLOOR PAN	18	47.322	-28.233	-7.357	47.479	-27.973	-7.388	-0.158	0.260	-0.030	-0.030
R L	19	47.143	-22.502	-7.406	47.381	-22.230	-7.386	-0.238	0.272	0.020	0.020
8	20	47.644	-17.348	-8.027	47.899	-17.161	-8.039	-0.255	0.187	-0.012	-0.012
님	21 22	44.221 44.075	-34.347 -28.623	-7.690 -7.426	44.435 44.250	-34.018 -28.338	-7.724 -7.458	-0.214 -0.175	0.328	-0.033 -0.032	-0.033 -0.032
	22	44.075	-22.739	-7.420	44.230	-22.484	-7.438	-0.212	0.255	-0.032	-0.032
	24	44.740	-17.348	-8.089	44.969	-17.102	-8.070	-0.230	0.245	0.019	0.019
	25	40.875	-32.452	-7.780	41.128	-32.381	-7.800	-0.253	0.071	-0.020	-0.020
	26	40.708	-29.101	-7.504	40.928	-28.791	-7.527	-0.220	0.310	-0.023	-0.023
	27	40.797	-22.932	-7.535	41.013	-22.596	-7.577	-0.216	0.336	-0.042	-0.042
	28 29	41.371 35.208	-17.406 -29.568	-7.938 -4.059	41.531 35.454	-17.181 -29.331	-7.971 -4.081	-0.161 -0.246	0.224 0.237	-0.033 -0.021	-0.033
	30	35.125	-21.349	-4.132	35.407	-21.096	-4.164	-0.282	0.253	-0.021	-0.021
		<u> </u>	2 3 7	4 []] 8)ASHB	DARD					
DOOR		21 25 2		12 16 20 24 28	X	Y				DC	JOR

Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSCO-2

Date: Year:	2/6/2 20		•		MGS Hyu		Model:	KMHC	Accent	014/72	
real.	20	1.1	84. 	Wake.	Пус	illual	Model.		Accent		•
						PRE/POS ORPAN - S					
		Х	Y	Z	Χ'	Ϋ́	Z'	ΔX	ΔY	ΔZ	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	52.782	-20.211	5.724	52.317	-19.890	5.561	0.465	0.321	-0.164	0.493
. 🗖	2	54.915	-17.369	4.121	54.378	-17.001	3.979	0.536	0.368	-0.142	0.555
N N N	3	55.442 54.593	-12.402	2.002	55.288	-12.398	2.031	0.154	0.005	0.029	0.157
E P	4 5	51.378	-5.267 -19.637	1.508 0.846	54.537 51.264	-5.315 -19.617	0.702	0.056	0.048	0.129 -0.143	0.140
ËЩ	6	52.196	-15.042	0.493	52.128	-15.092	0.537	0.069	-0.050	0.045	0.082
TOE PAN - WHEEL WELL	7	51.881	-10.316	0.078	51.837	-10.368	0.123	0.044	-0.052	0.045	0.063
	8	52.024	-4.697	-0.047	52.020	-4.796	0.117	0.003	-0.099	0.164	0.164
	9	44.979	-20.976	-2.282	45.008	-20.947	-2.314	-0.030	0.029	-0.033	-0.033
	10	45.278	-16.224	-2.403	45.266	-16.239	-2.424	0.012	-0.015	-0.021	-0.021
	11	45.113	-10.581	-2.364	45.037	-10.610	-2.342	0.076	-0.029	0.023	0.023
	12	44.814	-5.408	-2.161	44.788	-5.368	-2.037	0.026	0.039	0.124	0.124
	13	40.931	-21.209	-2.924	40.936	-21.226	-2.971 -2.499	-0.005	-0.017	-0.047	-0.047
	14 15	40.920 40.669	-15.958 -10.383	-2.471 -2.447	40.877	-15.945 -10.315	-2.499	0.042	0.012	-0.029 0.073	-0.029 0.073
	16	40.678	-5.366	-2.903	40.703	-5.384	-2.802	-0.025	-0.019	0.101	0.101
_	17	37.515	-21.808	-2.985	37.476	-21.775	-3.048	0.039	0.032	-0.063	-0.063
FLOOR PAN	18	37.638	-15.986	-2.514	37.540	-16.003	-2.551	0.098	-0.017	-0.037	-0.037
RP	19	37.560	-10.253	-2.473	37.553	-10.260	-2.428	0.007	-0.007	0.045	0.045
8	20	38.143	-5.099	-3.023	38.160	-5.189	-2.981	-0.017	-0.090	0.042	0.042
FLO	21	34.425	-22.039	-2.893	34.376	-21.980	-2.974	0.048	0.058	-0.082	-0.082
	22	34.384	-16.318	-2.539	34.304	-16.304	-2.588	0.080	0.014	-0.049	-0.049
	23 24	34.889 35.238	-10.442 -5.047	-2.489 -3.041	34.854 35.232	-10.461 -5.074	-2.497 -2.974	0.035	-0.019 -0.027	-0.007 0.067	-0.007 0.067
	24	31.112	-20.047	-2.902	31.100	-20.279	-2.974	0.000	-0.027	-0.072	-0.072
	26	31.008	-16.736	-2.573	30.974	-16.692	-2.623	0.035	0.044	-0.050	-0.050
	27	31.206	-10.569	-2.512	31.177	-10.500	-2.545	0.030	0.069	-0.034	-0.034
	28	31.872	-5.049	-2.840	31.795	-5.089	-2.832	0.077	-0.041	0.007	0.007
	29	25.554	-17.160	0.949	25.534	-17.201	0.881	0.020	-0.041	-0.067	-0.067
Nata: A	30	25.615	-8.941	1.002	25.644	-8.967 inward tov	0.971	-0.028	-0.026	-0.031	-0.031
DOOR			9 13 17 21 2	6 7 10 1 14 1 18 1 22 2 5 26	DASHB 4 1 12 5 16 9 20 3 24 7 28 30					D(JOR
			//		X	Y					

Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSCO-2

Year:	20	11				CO-2 ndai			Accent		- 10 - 10
	-					E/POST CF RUSH - SE					
		Х	Y	Z	Χ'	Y'	Z'	ΔX	ΔY	ΔZ	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	48.280	-9.292	21.248	48.241	-9.059	21.331	0.039	0.233	0.082	0.250
-	2	49.289	-19.812	23.162	49.298	-19.612	23.250	-0.009	0.200	0.088	0.218
DASH	3	49.624	-28.640	22.302	49.681	-28.441	22.359	-0.057	0.200	0.057	0.215
D	4	44.194	-9.615	14.435	44.199	-9.408	14.563	-0.005	0.206	0.128	0.243
	5	47.160	-22.079	9.493	47.098	-21.823	9.602	0.062	0.256	0.109	0.285
	6	46.716	-32.394	15.177	46.690	-32.175	15.257	0.027	0.218	0.080	0.234
SIDE	7	53.170	-36.805	-0.659	53.181	-36.589	-0.630	-0.011	0.216	0.029	0.216
SIL	8	58.650 57.541	-36.853 -36.748	-0.916 3.581	58.610 57.868	-36.597 -36.284	-0.904 3.642	0.040	0.255 0.464	0.012	0.255
Н	10 11	21.294	-37.293	19.935	20.985	-37.298	20.090	0.309	-0.005	0.155	-0.005
llo R	11	33.585 47.026	-37.368 -37.504	19.344 18.689	33.423 46.753	-37.178 -37.069	19.377 18.797	0.161 0.273	0.191 0.434	0.032	0.191
58	12	23.173	-37.859	9.399	22.992	-38.023	9.524	0.273	-0.163	0.124	-0.163
IMPACT SIDE DOOR	14	33.497	-37.922	9.315	33.341	-38.018	9.330	0.157	-0.096	0.015	-0.096
	15	46.922	-37.974	8.439	46.729	-37.639	8.495	0.193	0.335	0.056	0.335
	16	34.644	-28.106	35.837	34.611	-27.960	35.958	0.033	0.146	0.121	0.121
	17	35.599	-19.976	36.264	35.635	-19.811	36.325	-0.036	0.140	0.061	0.061
	18	36.012	-10.771	36.366	36.055	-10.525	36.388	-0.043	0.245	0.021	0.021
	19	30.270	-27.587	37.150	30.293	-27.477	37.268	-0.023	0.110	0.118	0.118
	20	31.175	-20.484	37.459	31.191	-20.382	37.585	-0.015	0.103	0.126	0.126
	21	32.216	-10.055	36.872	32.196	-9.997	36.916	0.020	0.057	0.043	0.043
щ	22	28.081	-27.482	38.087	28.129	-27.414	38.172	-0.048	0.068	0.084	0.084
ROOF	23	28.789	-20.705	38.504	28.739	-20.559	38.594	0.049	0.146	0.090	0.090
Ř	24	29.064	-15.706	38.659	29.126	-15.597	38.713	-0.061	0.109	0.054	0.054
	25	29.156	-10.205	38.699	29.227	-10.116	38.737	-0.071	0.088	0.038	0.038
	26	25.787	-27.336	38.451	25.830	-27.280	38.531	-0.044	0.057	0.080	0.080
	27	26.291	-23.717	38.701	26.325	-23.595	38.784	-0.034	0.122	0.082	0.082
	28	26.556	-19.002	38.950	26.573	-18.903	39.022	-0.017	0.099	0.072	0.072
	29	27.085	-14.479	39.019	27.064	-14.357	39.088	0.021	0.121	0.069	0.069
	30	27.153	-10.058	39.035	27.149	-9.971	39.087	0.004	0.087	0.052	0.052
R	31	52.310	-35.506	24.223	52.350	-35.362	24.276 27.725	-0.041	0.145	0.054	0.160
A PILLAR	32 33	47.116 41.622	-34.400 -33.141	27.621 30.724	47.043 41.690	-34.253 -33.022	30.814	0.073 -0.068	0.147 0.119	0.105	0.195
Ы	33	35.442	-33.141	34.208	35.579	-33.022	34.124	-0.088	0.091	-0.084	0.184
	35	11.131	-32.381	32.667	11.050	-32.233	32.851	0.081	0.148	0.184	0.250
2010.20	36	15.725	-32.361	27.982	15.752	-33.968	28.076	-0.027	0.148	0.184	0.200
AR	37	12.130	-35.771	24.390	12.110	-35.679	24.554	0.019	0.092	0.164	0.140
B PILLAR	38	17.192	-35.842	20.847	17.231	-35.774	20.895	-0.039	0.068	0.048	0.092
L L	39	13.392	-36.119	17.878	13.419	-36.046	17.990	-0.026	0.072	0.112	0.136
	40	18.197	-36.205	13.994	18.211	-36.147	14.118	-0.014	0.058	0.125	0.138
lote: A	positive va	alue for ΔX ,	ΔY , and ΔZ	Z will denot	te crushing	inward tow	vard the oc	cupant con	npartment		

Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. MGSCO-2

	20			VEI	HICLE PRE	CO-2 ndai E/POST CF	RUSH				
i						RUSH - SE	-19200 - 74				
		X	Y (in.)	Z	X'	Y'	Z'	ΔX	ΔY	ΔZ	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	39.112	2.273	26.358	39.006	2.250	26.561	0.106	0.023	0.203	0.230
т	2	39.960	-8.289	28.112	39.879	-8.361	28.237	0.081	-0.072	0.126	0.166
DASH	3	40.122	-17.109	27.126	40.078	-17.174	27.151	0.043	-0.065	0.024	0.082
	4	34.918	2.119	19.605	34.878	2.128	19.838	0.040	-0.009	0.232	0.236
	5	37.583 37.039	-10.327 -20.710	14.448 19.996	37.475 36.931	-10.229 -20.693	14.573 20.006	0.108 0.108	0.098	0.125 0.010	0.192
	7	43.169	-25.014	4.003	43.146	-20.893	3.949	0.023		-0.055	
SIDE PANEL	8	43.169	-25.014	3.661	43.146	-24.881	3.949	0.023	0.133 0.168	-0.055	0.133
SII	9	47.605	-25.094	8.175	47.888	-24.988	8.168	-0.283	0.334	-0.007	0.334
	10	11.607	-25.220	25.080	11.190	-25.424	25.042	0.418	-0.204	-0.038	-0.204
DE	10	23.884	-25.506	24.298	23.619	-25.527	24.179	0.265	-0.021	-0.119	-0.021
S SI	12	37.309	-25.873	23.432	36.940	-25.664	23.438	0.369	0.209	0.005	0.209
δQ	13	13.315	-25.672	14.509	13.057	-25.954	14.439	0.258	-0.282	-0.071	-0.282
IMPACT SIDE DOOR	14	23.634	-25.919	14.264	23.401	-26.146	14.117	0.233	-0.227	-0.147	-0.227
	15	37.040	-26.198	13.180	36.783	-26.006	13.127	0.257	0.192	-0.053	0.192
	16	25.361	-16.496	40.898	25.183	-16.702	40.941	0.178	-0.205	0.043	0.043
	17	26.470	-8.391	41.420	26.371	-8.584	41.472	0.100	-0.193	0.051	0.051
	18	27.051	0.803	41.643	26.973	0.689	41.731	0.078	0.114	0.089	0.089
	19	21.018	-15.917	42.285	20.891	-16.164	42.314	0.127	-0.247	0.029	0.029
	20	22.057	-8.837	42.677	21.931	-9.096	42.774	0.125	-0.259	0.097	0.097
	21	23.277	1.580	42.217	23.131	1.279	42.318	0.146	0.300	0.101	0.101
ROOF	22	18.847	-15.786	43.257	18.740	-16.079	43.245	0.106	-0.293	-0.012	-0.012
õ	23	19.682	-9.030	43.755	19.489	-9.248	43.809	0.194	-0.219	0.054	0.054
UL.	24	20.051	-4.039 1.459	43.975	19.974 20.182	-4.298	44.031 44.172	0.077	-0.259	0.056	0.056
	25 26	20.243 16.561	-15.605	44.089 43.658	16.449	1.178 -15.908	43.636	0.061	0.281 -0.304	0.084	0.084
	20	17.134	-11.999	43.000	17.018	-12.240	43.962	0.112	-0.304	0.022	0.022
	28	17.134	-7.293	43.350	17.361	-7.560	43.302	0.110	-0.242	0.012	0.012
	20	18.100	-2.781	44.382	17.941	-3.028	44.458	0.127	-0.246	0.076	0.076
	30	18.248	1.637	44.458	18.112	1.355	44.552	0.136	0.282	0.094	0.094
~	31	42.712	-24.048	28.911	42.634	-24.185	28.884	0.077	-0.137	-0.027	0.160
A PILLAR	32	37.591	-22.896	32.404	37.391	-23.050	32.421	0.200	-0.154	0.017	0.253
	33	32.169	-21.583	35.608	32.100	-21.785	35.602	0.069	-0.202	-0.006	0.213
٩	34	26.070	-20.085	39.207	26.058	-20.332	39.016	0.012	-0.246	-0.191	0.312
	35	1.729	-20.305	38.033	1.507	-20.449	38.031	0.222	-0.144	-0.002	0.265
۲r	36	6.220	-22.008	33.255	6.118	-22.169	33.162	0.103	-0.161	-0.093	0.213
B .LAR	37	2.541	-23.596	29.696	2.402	-23.732	29.648	0.139	-0.136	-0.047	0.200
B	38	7.547	-23.709	26.074	7.476	-23.846	25.925	0.071	-0.137	-0.149	0.214
-	39	3.698	-23.875	23.161	3.625	-23.980	23.063	0.073	-0.105	-0.098	0.161
1-4 2	40	8.440	-23.994	19.202	8.368	-24.088	19.131	0.072	-0.095	-0.071	0.138
iote: A	positive va	ilue for ΔX ,	ΔY, and Δ	∠ will deno	ie crushing	inward tow	ard the oc	cupant con	npartment		

Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. MGSCO-2

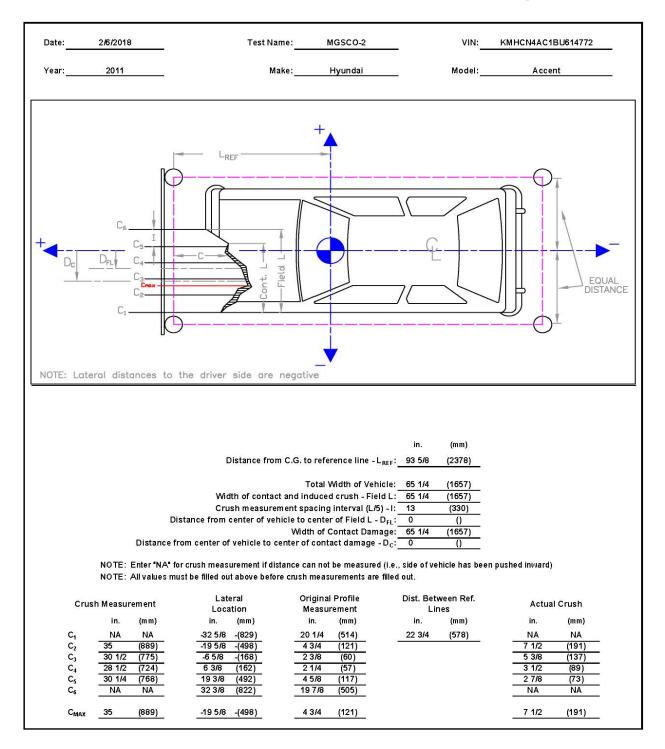


Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSCO-2

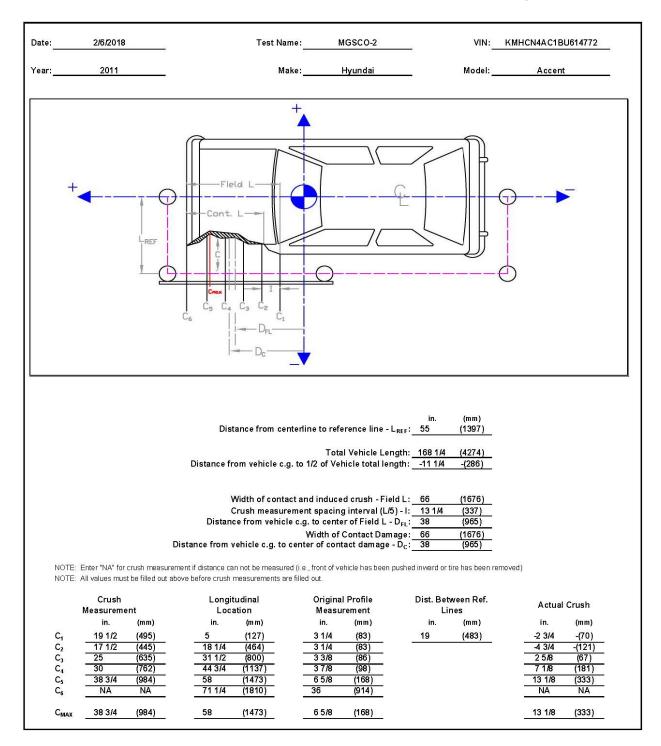


Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSCO-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGSCO-1

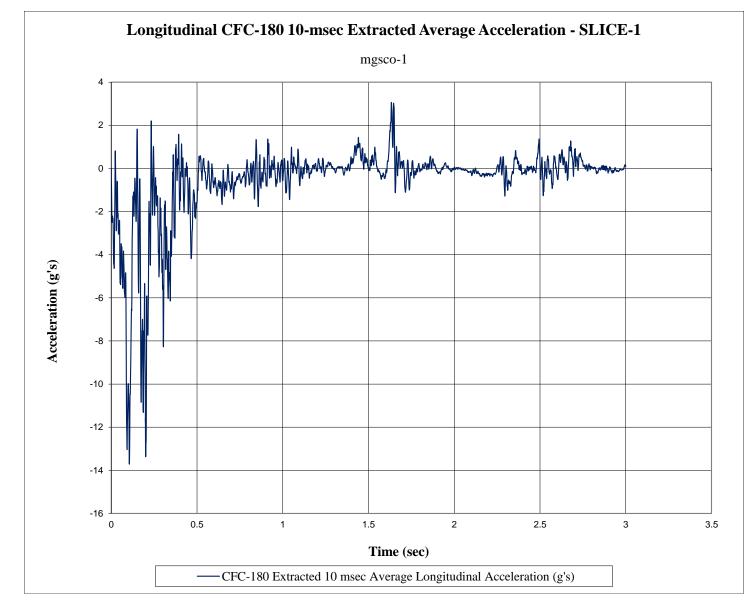


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSCO-1

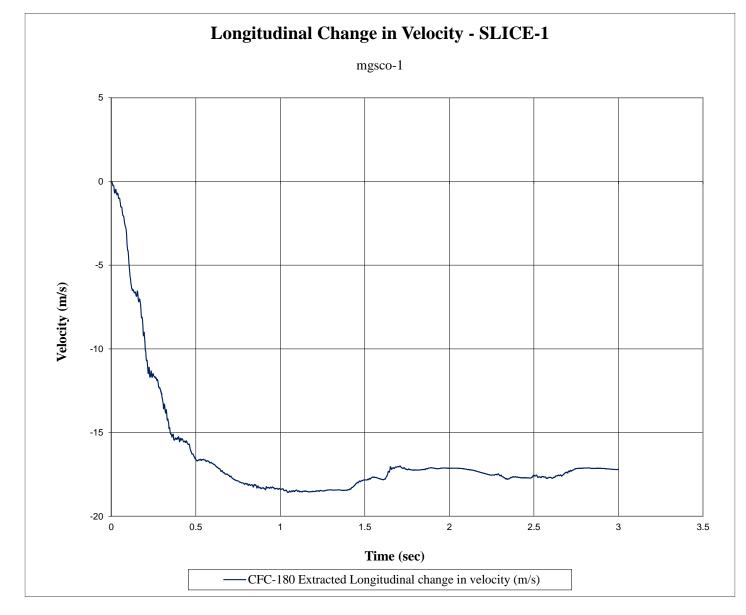


Figure E-2. Longitudinal Occupant Velocity (SLICE-1), Test No. MGSCO-1

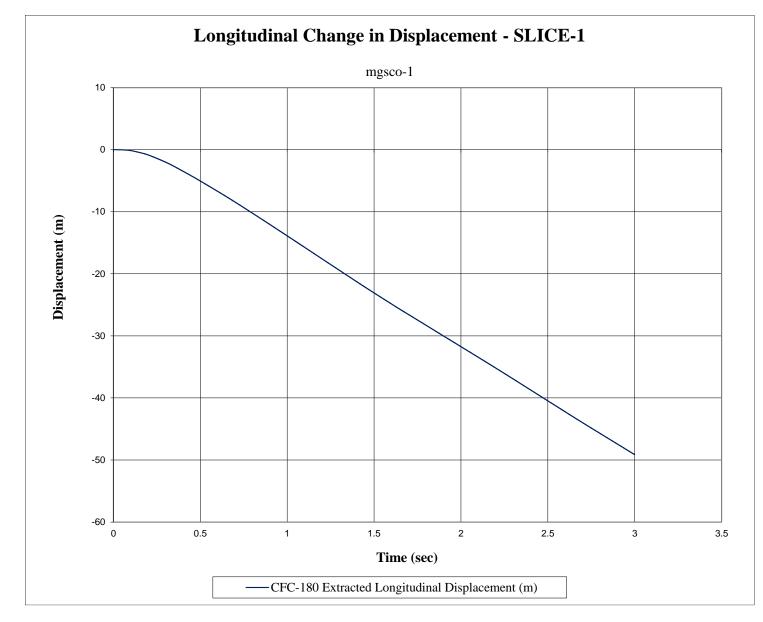


Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSCO-1

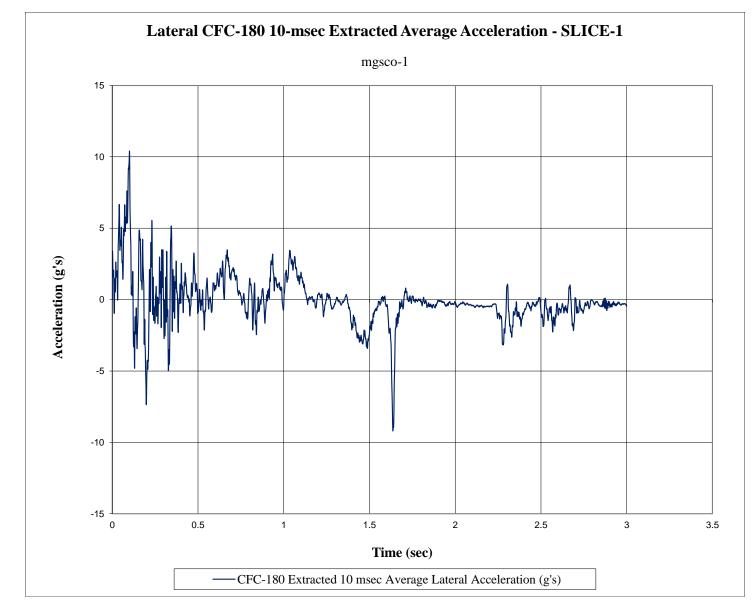


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSCO-1

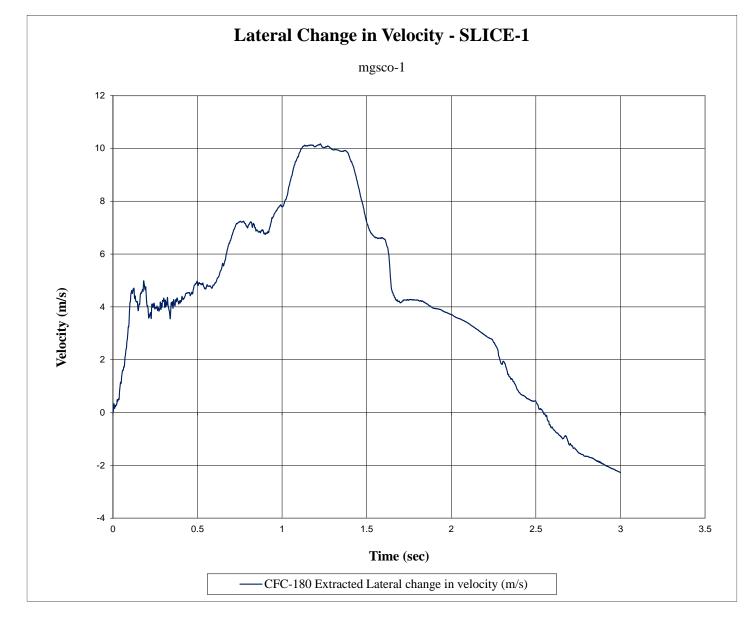


Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSCO-1

Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSCO-1

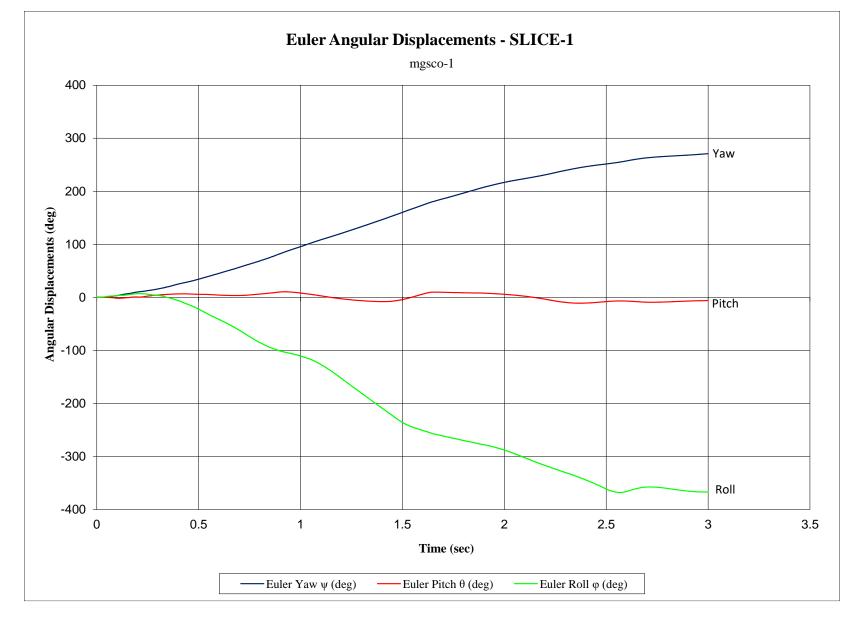


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSCO-1

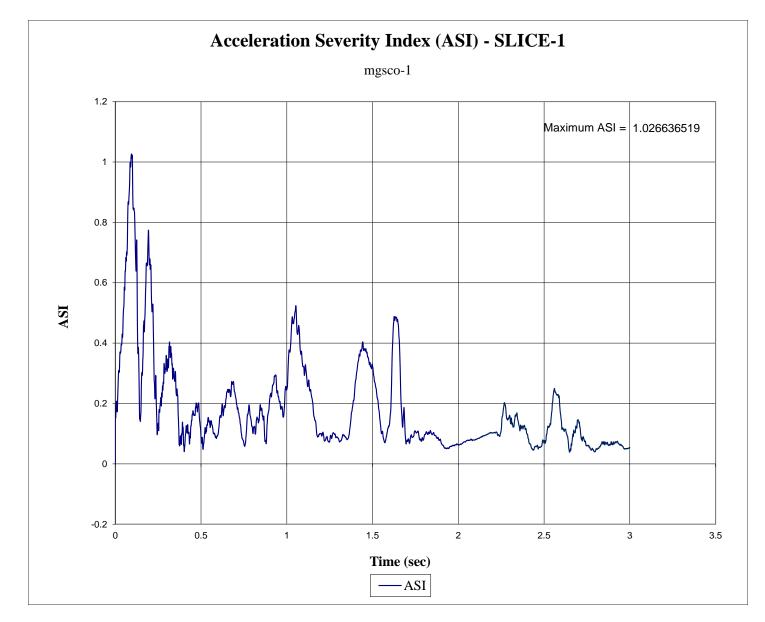


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGSCO-1

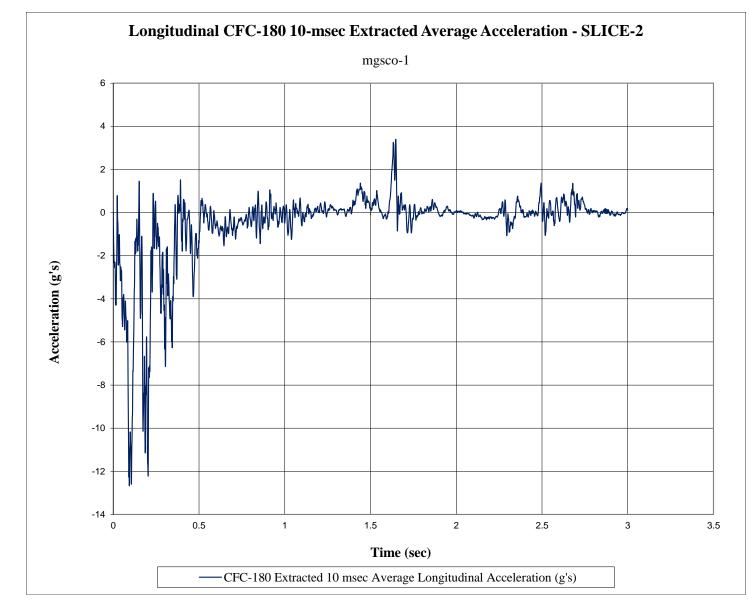


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSCO-1

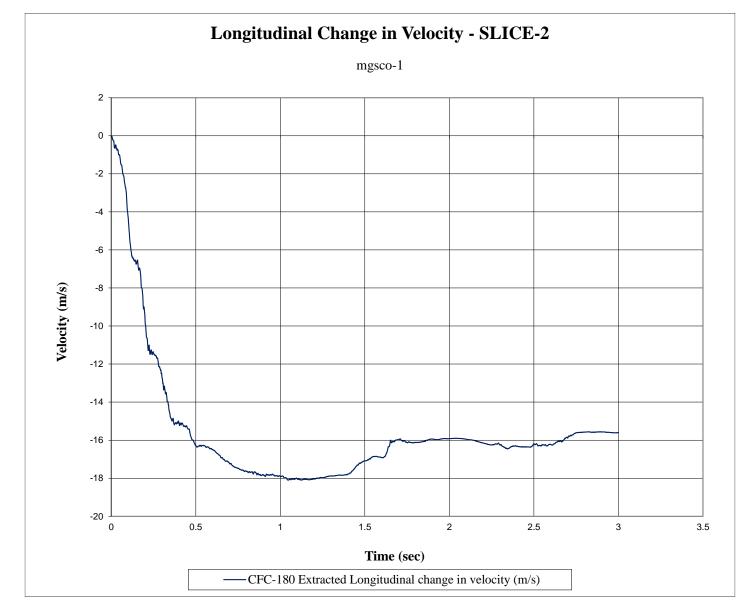


Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSCO-1

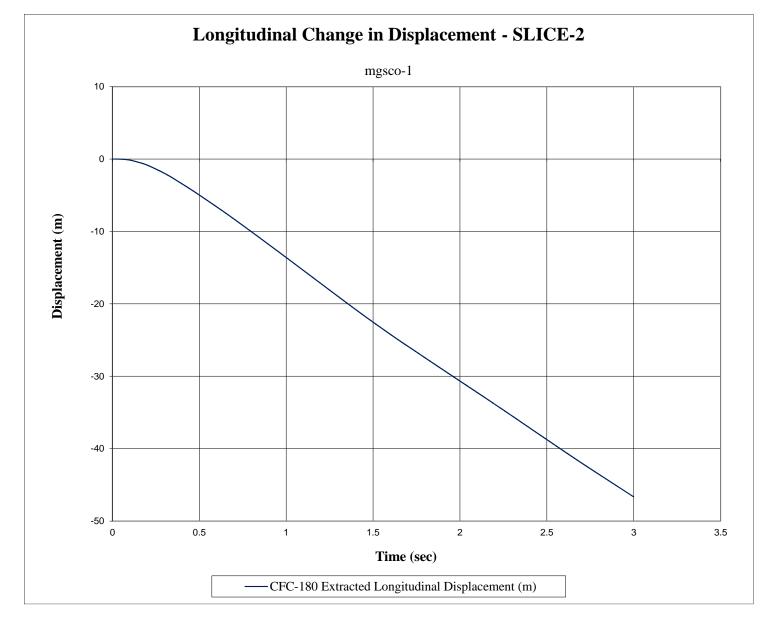


Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSCO-1

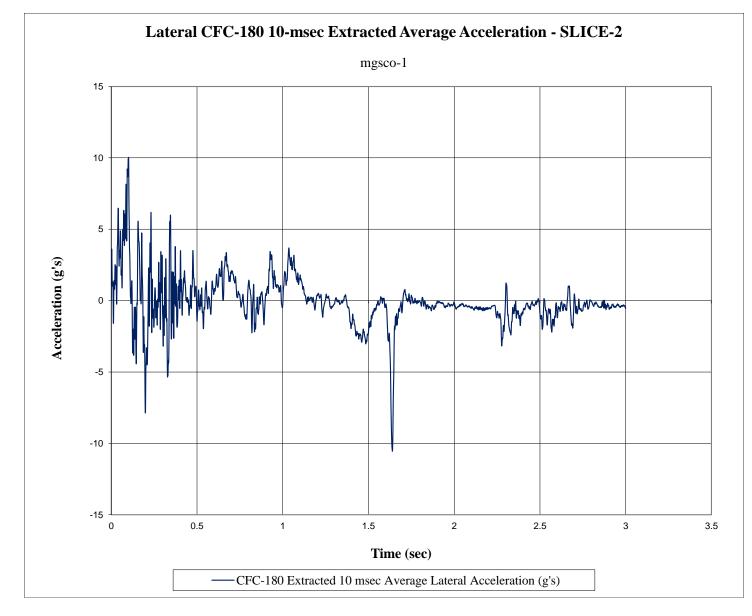


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSCO-1

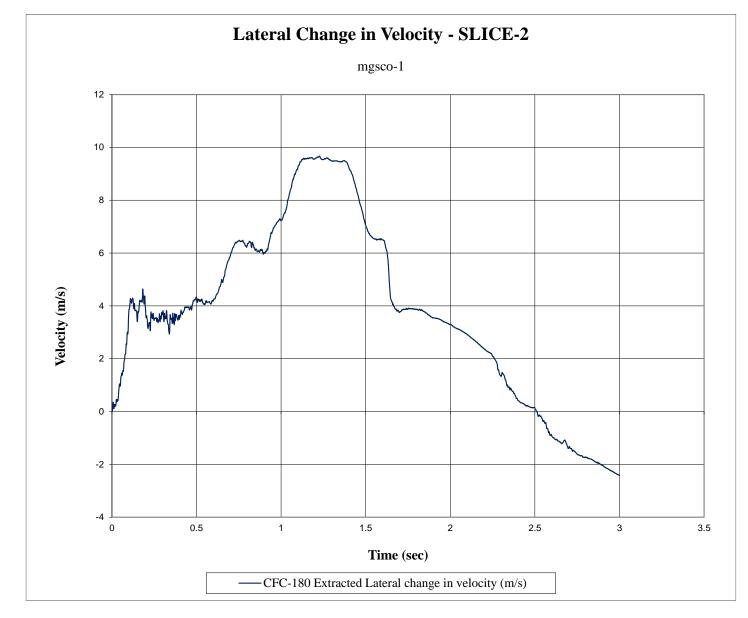


Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSCO-1

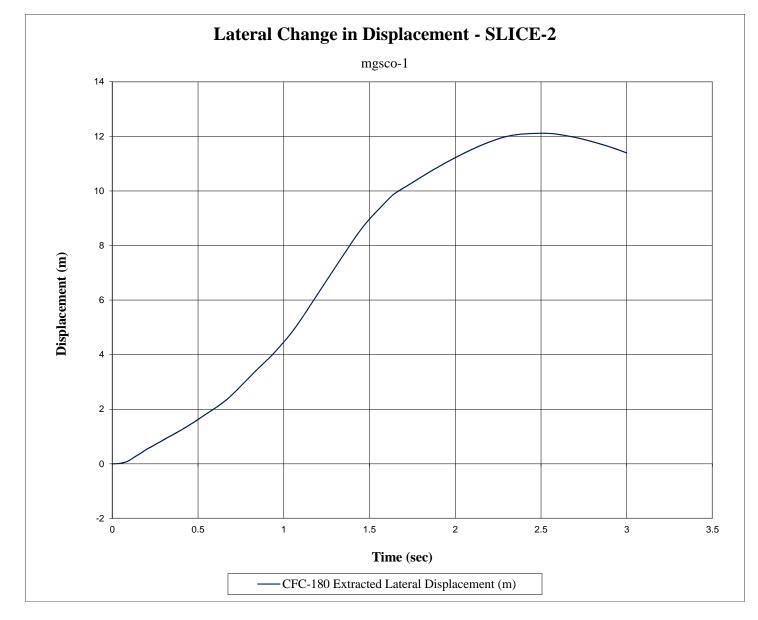


Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSCO-1

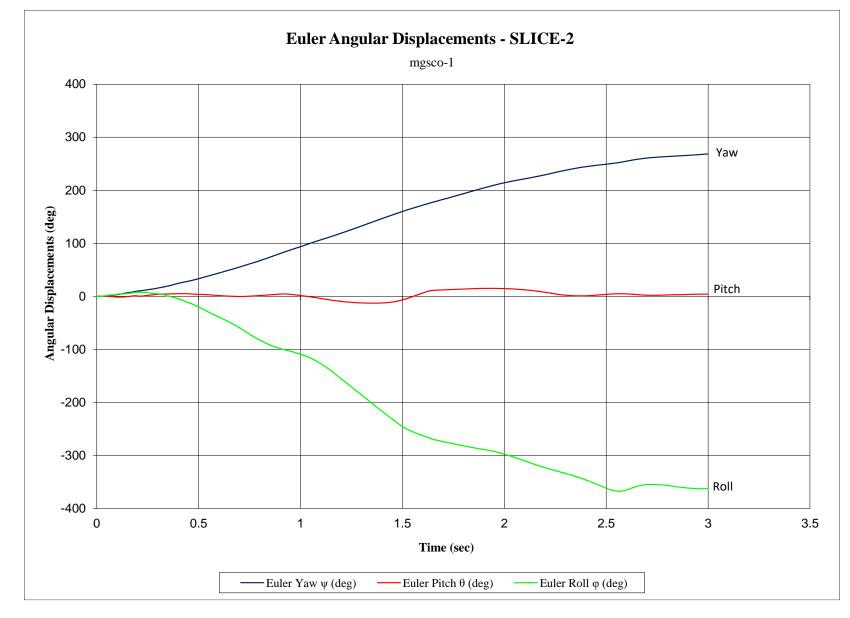


Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSCO-1

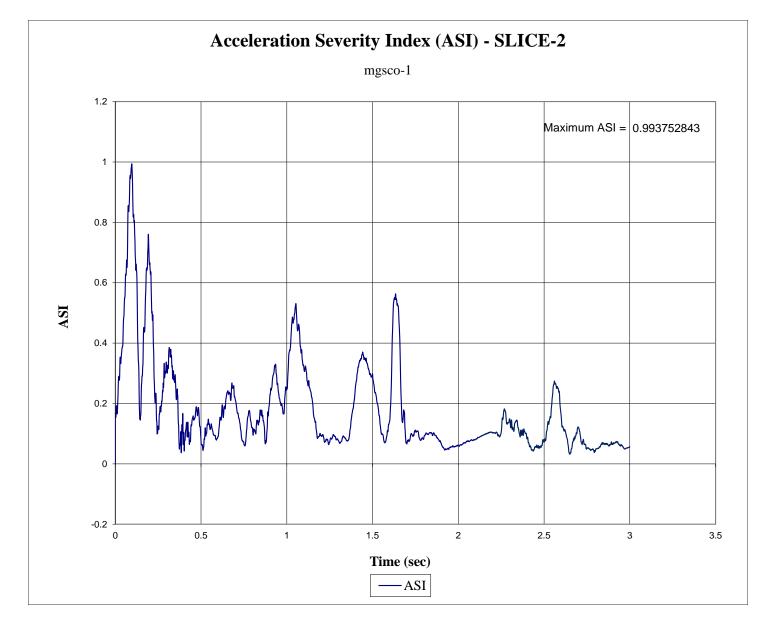


Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGSCO-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MGSCO-2

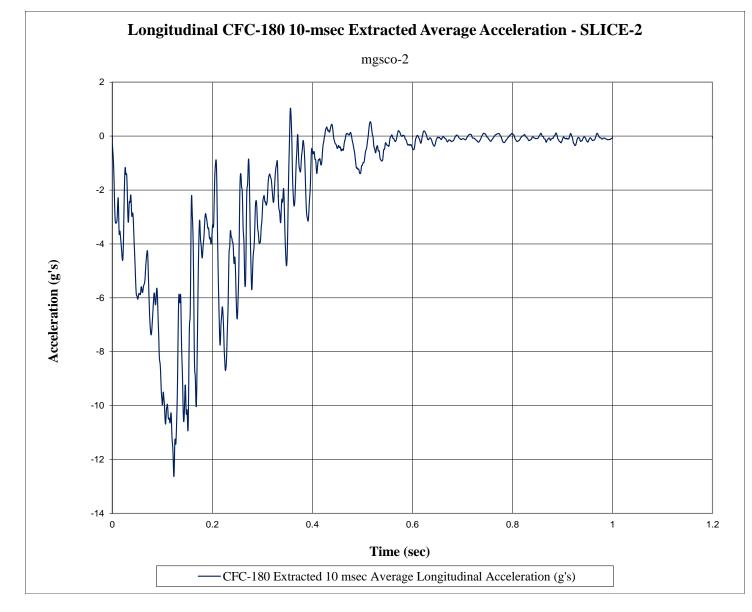


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSCO-2

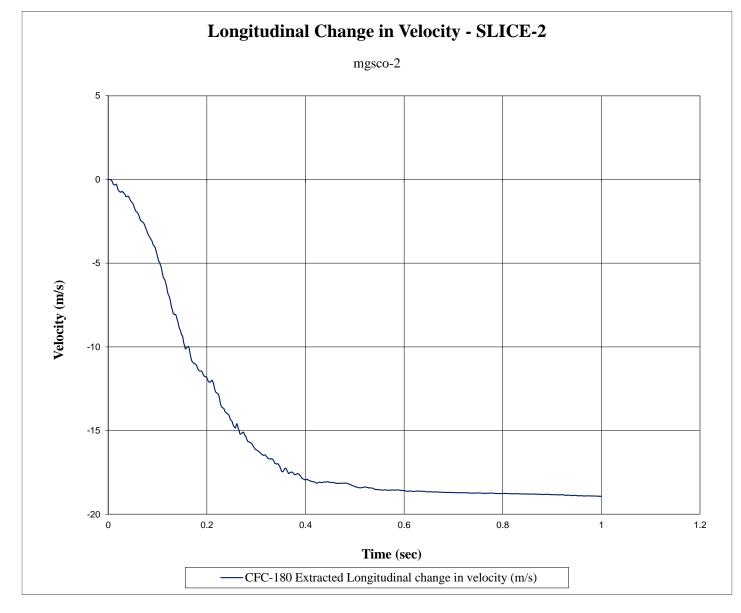


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSCO-2

Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSCO-2

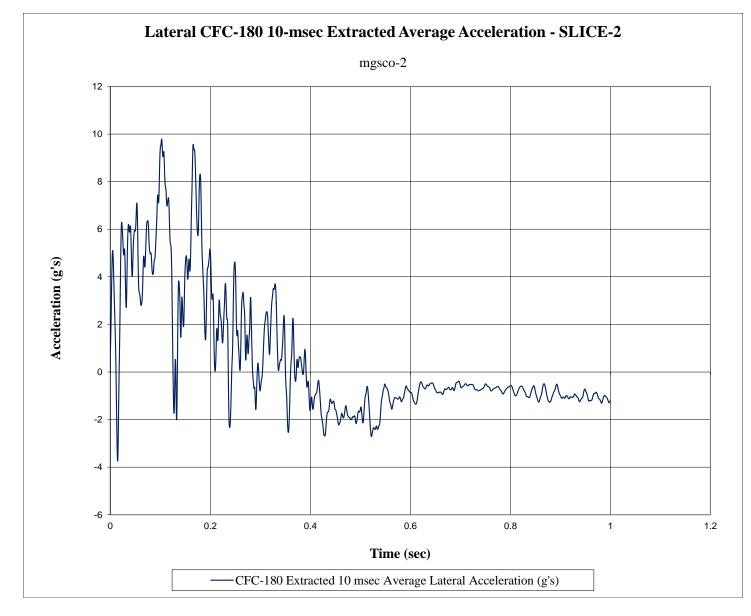


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSCO-2

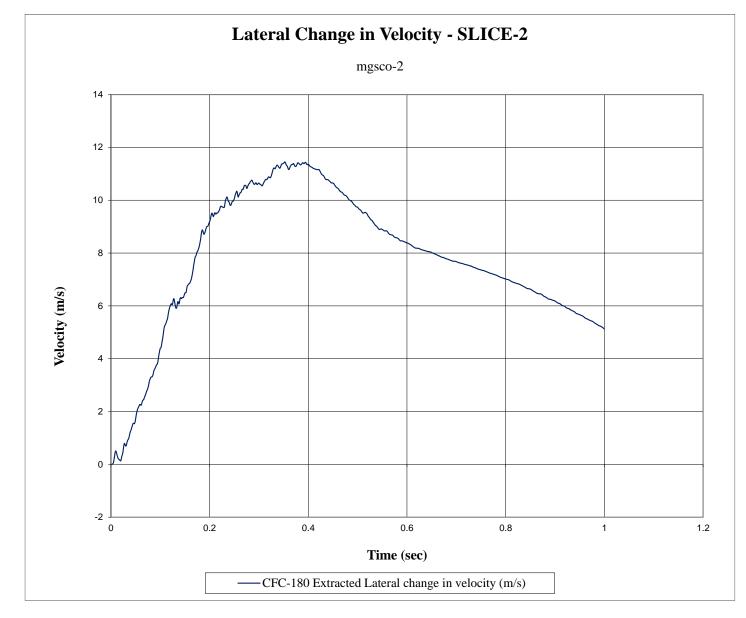


Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSCO-2



Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. MGSCO-2

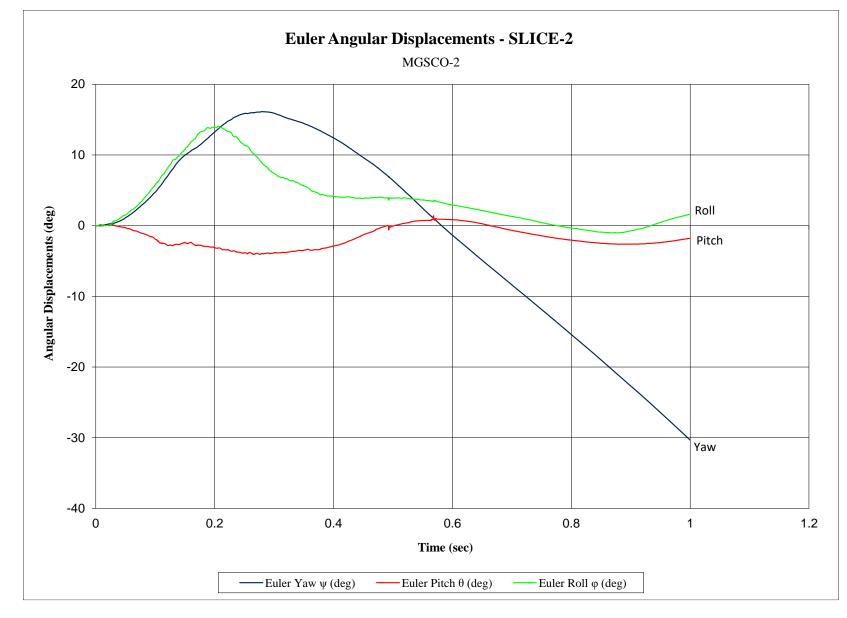


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. MGSCO-2

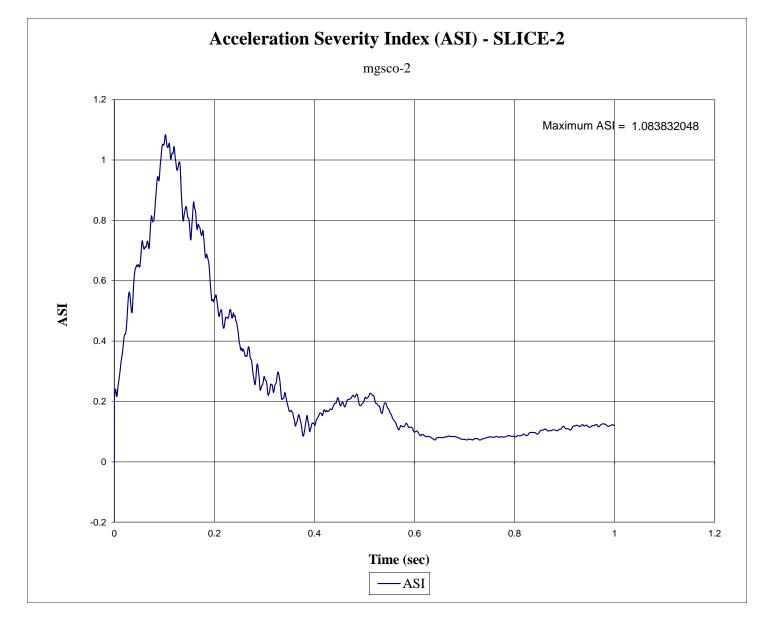


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. MGSCO-2

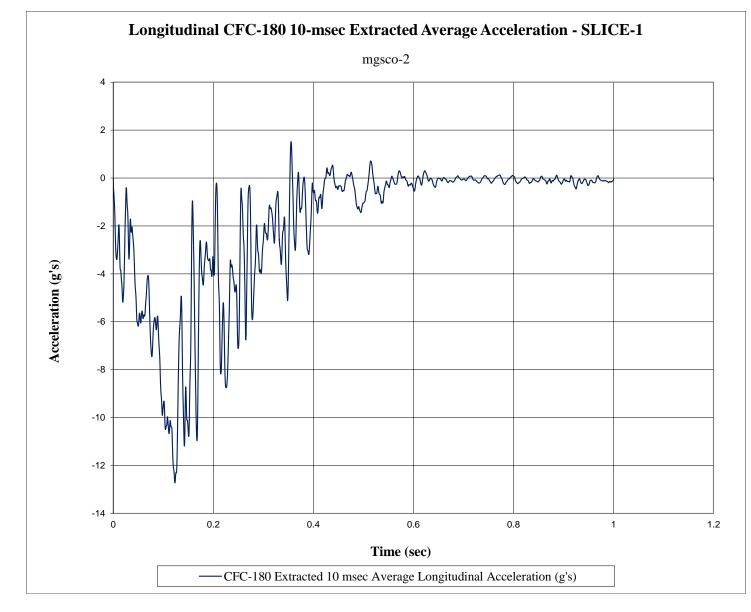


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSCO-2

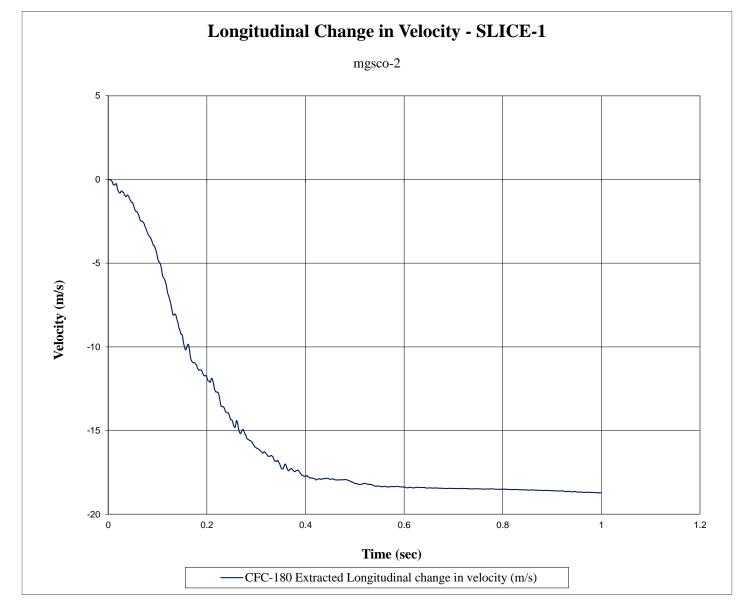


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSCO-2

Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSCO-2

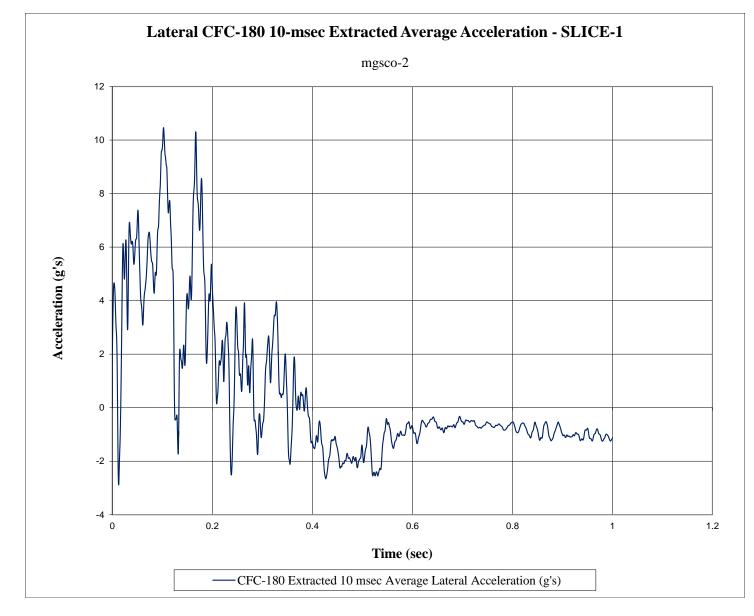


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSCO-2

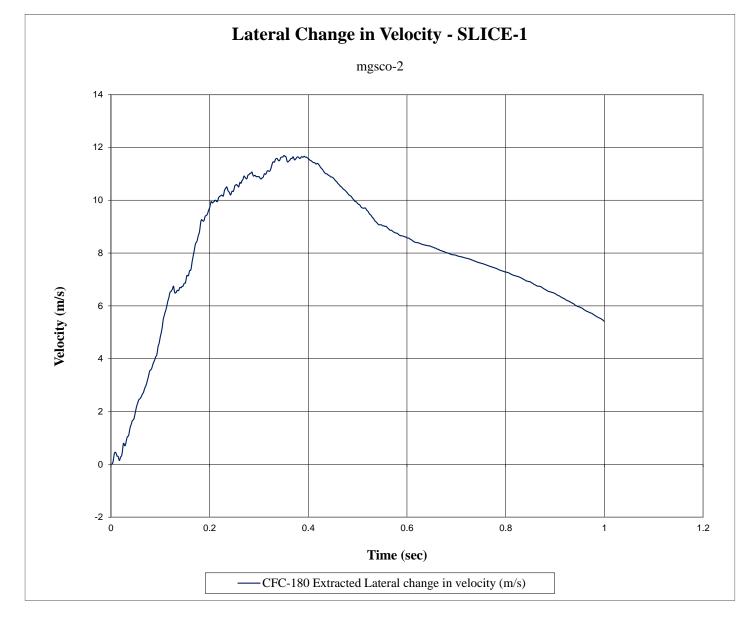


Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSCO-2

Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. MGSCO-2

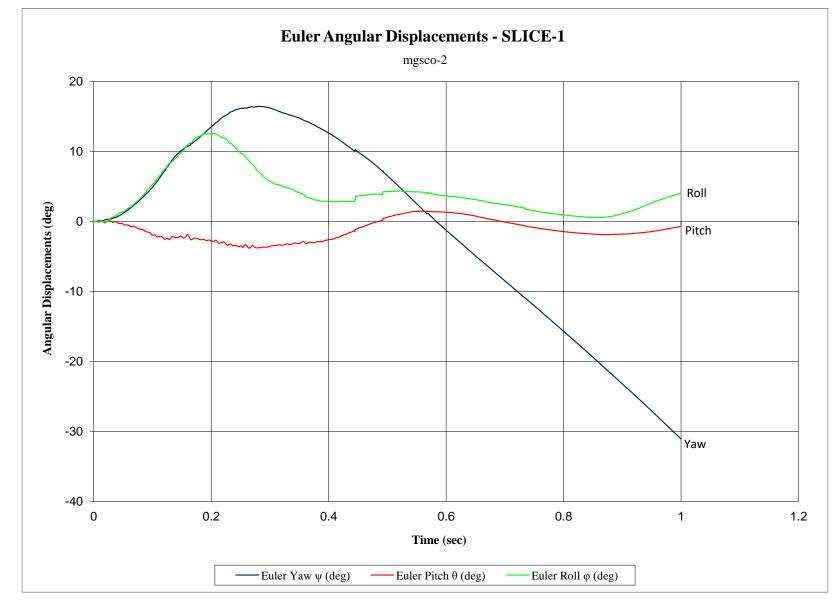


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. MGSCO-2

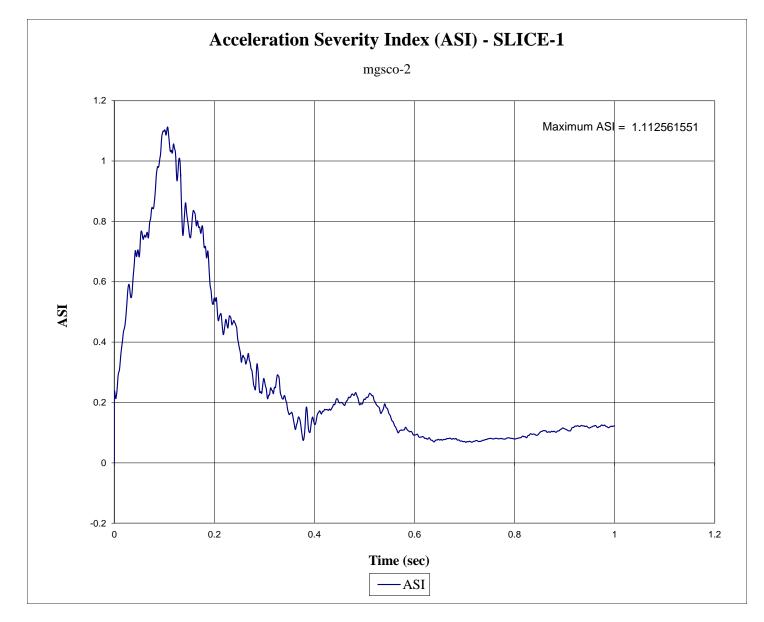


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. MGSCO-2

END OF DOCUMENT