

Research Project Number TPF-5(193) Supplement #115

EVALUATION OF THE MINNESOTA NOISE

WALL AND RUBRAIL SYSTEM

Submitted by

Jennifer D. Schmidt, Ph.D., P.E. Research Assistant Professor

Ronald K. Faller, Ph.D., P.E. MwRSF Director & Research Professor

James C. Holloway, M.S.C.E., E.I.T. Assistant Director – Physical Testing Division Nathan Asselin Undergraduate Research Assistant

Wyatt G. Fallet, B.S.C.E. Graduate Research Assistant

Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MINNESOTA DEPARTMENT OF TRANSPORTATION 395 John Ireland Boulevard St. Paul, Minnesota 55155

MwRSF Research Report No. TRP-03-396-19

January 31, 2019

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-396-19	2.		3. Recipient's Accession No.
4. Title and Subtitle Evaluation of the Minnesota Noise Wall and Rubrail System		5. Report Date	
		6.	
7. Author(s) Schmidt, J.D., Asselin, N., Faller, R.K., Fallet, W.G., Holloway, J.C., and Lechtenberg, K.A.		8. Performing Organization Report No. TRP-03-396-19	
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln	e and Address v (MwRSF)		10. Project/Task/Work Unit No.
Main Office: Prem S. Paul Research Center at Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract © or Grant (G) No. TPF-5 (193) Supplement #115
12. Sponsoring Organization Nan Minnesota Department of Transp	ne and Address ortation		13. Type of Report and Period Covered Final Report: 2017 – 2019
St. Paul, Minnesota 55155			14. Sponsoring Agency Code
15. Supplementary Notes			

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

The Minnesota Department of Transportation had previously successfully evaluated a noise wall and rubrail system under the NCHRP Report No. 350 safety performance criteria. The rubrail in this system was re-sized, and the system was evaluated with the latest crash testing standard, the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH 2016)*. The noise wall and timber rubrail system consisted of an 89-ft (27.1-m) long timber rubrail in front of twelve 18-ft (5.5-m) tall concrete posts with a wooden noise wall.

During test no. MNNW-1, with the noise wall installed on the back side of the posts, the 2270P pickup truck impacted the barrier at a 24.7-degree angle at a speed of 63.0 mph (101.4 km/h). The vehicle was captured and redirected by the system and satisfied the safety performance criteria for MASH 2016 test designation no. 3-11. In test no. MNNW-2, with the noise wall installed on the back side of the posts, the 1100C small car impacted the barrier at a 25.4-degree angle with a speed of 63.1 mph (101.5 km/h). The vehicle was captured and redirected by the system and satisfied the safety performance criteria for MASH 2016 test designation no. 3-10. During test no. MNNW-3, with the noise wall installed on the front side of the posts, the 2270P pickup truck impacted the barrier at a 25.9 degree angle with a speed of 61.2 mph (98.5 km/h). The vehicle was captured and redirected by the safety performance criteria for MASH 2016 test designation no. 3-11.

17. Document Analysis/Descriptors		18. Availability Statement		
Highway Safety, Crash Test, Roadside Appurtenances,		No restrictions. Document available from: National		
Compliance Test, MASH 2016, Test Level 3, TL-3, Noise Wall,		Technical Information Services, Springfield, Virginia		
Timber Rubrail, Timber Barrier, and Concrete Posts		22161		
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 289	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation and the Minnesota Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Minnesota Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mr. Scott K. Rosenbaugh, Research Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Minnesota Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor
R.W. Bielenberg, M.S.M.E., E.I.T., Research Engineer
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
C.S. Stolle, Ph.D., Research Assistant Professor
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician I
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Engineering Technician
J.E. Kohtz, B.S.M.E., CAD Technician
E.L. Urbank, B.A., Research Communication Specialist
Undergraduate and Graduate Research Assistants

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, Assistant Design Standards Engineer

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE
DISCLAIMER STATEMENT
UNCERTAINTY OF MEASUREMENT STATEMENTi
INDEPENDENT APPROVING AUTHORITYi
ACKNOWLEDGEMENTSii
TABLE OF CONTENTS iv
LIST OF FIGURES
LIST OF TABLESxii
1 INTRODUCTION 1 1.1 Background and Problem Statement. 1 1.2 Objective 2 1.3 Scope 2
2 BARRIER DESIGN
3 TEST REQUIREMENTS AND EVALUATION CRITERIA
4 TEST CONDITIONS. 7 4.1 Test Facility 7 4.2 Vehicle Tow and Guidance System 7 4.3 Test Vehicles. 7 4.4 Simulated Occupants 8 4.5 Data Acquisition Systems 8 4.5.1 Accelerometers 8 4.5.2 Rate Transducers. 21 4.5.3 Retroreflective Optic Speed Trap 21 4.5.4 Digital Photography 21
5 DESIGN DETAILS – TEST NOS. MNNW-1 AND MNNW-2
6 FULL-SCALE CRASH TEST NO. MNNW-1 50 6.1 Static Soil Test 50 6.2 Weather Conditions 50 6.3 Test Description 50 6.4 Barrier Damage 52 6.5 Vehicle Damage 52

6.6 Occupant	Risk	53
6.7 Discussion	1	
7 EUL SCALE CD	SUTEST NO MNINW 2	60
7 1 Static Soil	ASH TEST NO. MINNW-2 Test	
7.1 Static Soli 7.2 Weather C	I est	68
7.2 Weather C	intion	68
7.5 Test Deser 7 4 Barrier Da	mage	70
7.5 Vehicle Da	amage	70
7.6 Occupant	Risk	
7.7 Discussion	L	
8 DESIGN DETAILS	– TEST NO. MNNW-3	
9 FULL-SCALE CRA	ASH TEST NO. MNNW-3	
9.1 Static Soil	Test	
9.2 Weather C	onditions	
9.3 Test Desci	iption	
9.4 Barrier Da	mage	
9.5 Vehicle Da	amage	
9.6 Occupant	Risk	
9.7 Discussion	1	
		100
10 DISCUSSION		129
11 SUMMARY, CON	ICLUSIONS, AND RECOMMENDATIONS	
12 MASH EVALUA	ΓΙΟΝ	134
13 REFERENCES		
14 APPENDICES		174
Appendix A	Noise Wall and Rubrail with Concrete Posts Standard Plans	175
Appendix R	Vehicle Center of Gravity Determination	182
Appendix C	Material Specifications	186
Appendix D	Static Soil Tests	216
Appendix E	Vehicle Deformation Records	219
Appendix F	Accelerometer and Rate Transducer Data Plots. Test No. MNN	W-1238
Appendix G.	Accelerometer and Rate Transducer Data Plots, Test No. MNN	W-2 255
Appendix H.	Accelerometer and Rate Transducer Data Plots. Test No. MNN	W-3 272
11		··· · · —

LIST OF FIGURES

Figure 31. BCT Anchor Cable Assembly Details, Test Nos. MNNW-1 and MNNW-2	
(Recommended updates provided in Chapter 12)	42
Figure 32. Hardware, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided	
in Chapter 12)	43
Figure 33. Bill of Materials, Test Nos. MNNW-1 and MNNW-2 (Recommended updates	
provided in Chapter 12)	44
Figure 34. Bill of Materials, Test Nos. MNNW-1 and MNNW-2 (Recommended updates	
provided in Chapter 12)	45
Figure 35. Test Installation Photographs, Test No. MNNW-1	46
Figure 36. Test Installation Photographs, Test No. MNNW-1	47
Figure 37. Test Installation Photographs, Test No. MNNW-2	48
Figure 38. Test Installation Photographs, Test No. MNNW-2	49
Figure 39. Summary of Test Results and Sequential Photographs, Test No. MNNW-1	55
Figure 40. Additional Sequential Photographs, Test No. MNNW-1	56
Figure 41. Documentary Photographs, Test No. MNNW-1	57
Figure 42. Documentary Photographs, Test No. MNNW-1	58
Figure 43. Documentary Photographs, Test No. MNNW-1	59
Figure 44. Documentary Photographs, Test No. MNNW-1	60
Figure 45. Documentary Photographs, Test No. MNNW-1	61
Figure 46. Impact Location, Test No. MNNW-1	62
Figure 47. Vehicle Final Position and Trajectory Marks, Test No. MNNW-1	63
Figure 48. System Damage, Test No. MNNW-1	64
Figure 49. System Damage, Test No. MNNW-1	65
Figure 50. Vehicle Undercarriage and Occupant Compartment Damage, Test No.	
MNNW-1	66
Figure 51. Vehicle Damage, Test No. MNNW-1	67
Figure 52. Summary of Test Results and Sequential Photographs, Test No. MNNW-2	73
Figure 53. Additional Sequential Photographs, Test No. MNNW-2	74
Figure 54. Documentary Photographs, Test No. MNNW-2	75
Figure 55. Documentary Photographs, Test No. MNNW-2	76
Figure 56. Documentary Photographs, Test No. MNNW-2	77
Figure 57. Documentary Photographs, Test No. MNNW-2	78
Figure 58. Documentary Photographs, Test No. MNNW-2	79
Figure 59. Impact Location, Test No. MNNW-2	80
Figure 60. Vehicle Final Position and Trajectory Marks, Test No. MNNW-2	81
Figure 61. System Damage, Test No. MNNW-2	82
Figure 62. System Damage, Test No. MNNW-2	83
Figure 63. Vehicle Undercarriage and Occupant Compartment Damage, Test No.	
MNNW-2	84
Figure 64. Vehicle Damage, Test No. MNNW-2	85
Figure 65. Vehicle Damage, Test No. MNNW-2	86
Figure 66. System Layout, Test No. MNNW-3 (Recommended updates provided in	
Chapter 12)	89
Figure 67. Rail Section Details, Test No. MNNW-3 (Recommended updates provided in	
Chapter 12)	90
Figure 68. Noise Wall Details, Test No. MNNW-3 (Recommended updates provided in	90

Figure	69. Post Attachment Nailing Pattern, Test No. MNNW-3 (Recommended updates	
	provided in Chapter 12)	92
Figure	70. Timber Rail Downstream End Segment Details, Test No. MNNW-3	
	(Recommended updates provided in Chapter 12)	93
Figure	71. Timber Rail, Test Nos. Test No. MNNW-3 (Recommended updates provided in	
-	Chapter 12)	94
Figure	72. Timber Rail Upstream End Segment, Test No. MNNW-3 (Recommended	
-	updates provided in Chapter 12)	95
Figure	73. Anchor Plate Assembly, Test No. MNNW-3 (Recommended updates provided	
U	in Chapter 12)	96
Figure	74. Cable Anchor Plate Components, Test No. MNNW-3 (Recommended updates	
U	provided in Chapter 12)	97
Figure	75. Concrete Post Details, Test No. MNNW-3 (Recommended updates provided in	
U	Chapter 12)	98
Figure	76. Concrete Post Reinforcement, Test No. MNNW-3 (Recommended updates	
U	provided in Chapter 12)	99
Figure	77. Splice Plate Details, Test No. MNNW-3 (Recommended updates provided in	
U	Chapter 12)	100
Figure	78. Noise Wall Components, Test Nos. Test No. MNNW-3 (Recommended updates	
U	provided in Chapter 12)	101
Figure	79. Wood Plank Details, Test No. MNNW-3 (Recommended updates provided in	
U	Chapter 12)	102
Figure	80. BCT Anchor Cable Assembly Details, Test No. MNNW-3 (Recommended	
U	updates provided in Chapter 12).	103
Figure	81. Hardware, Test No. MNNW-3 (Recommended updates provided in Chapter 12)	104
Figure	82. Bill of Materials, Test No. MNNW-3 (Recommended updates provided in	
C	Chapter 12)	105
Figure	83. Bill of Materials, Test No. MNNW-3 (Recommended updates provided in	
U	Chapter 12)	106
Figure	84. Test Installation Photographs, Test No. MNNW-3	107
Figure	85. Test Installation Photographs, Test No. MNNW-3	108
Figure	86. Summary of Test Results and Sequential Photographs, Test No. MNNW-3	115
Figure	87. Additional Sequential Photographs, Test No. MNNW-3	116
Figure	88. Documentary Photographs, Test No. MNNW-3	117
Figure	89. Documentary Photographs, Test No. MNNW-3	118
Figure	90. Documentary Photographs, Test No. MNNW-3	119
Figure	91. Documentary Photographs, Test No. MNNW-3	120
Figure	92. Documentary Photographs, Test No. MNNW-3	121
Figure	93. Impact Location, Test No. MNNW-3	122
Figure	94. Vehicle Final Position and Trajectory Marks, Test No. MNNW-3	123
Figure	95. System Damage, Test No. MNNW-3	124
Figure	96. System Damage, Test No. MNNW-3	125
Figure	97. Vehicle Undercarriage and Occupant Compartment Damage, Test No.	
-	MNNW-3	126
Figure	98. Vehicle Damage, Test No. MNNW-3	127
Figure	99. Vehicle Damage, Test No. MNNW-3	128
Figure	100. Estimated Lateral Barrier Loads, Test Nos. MNNW-1 through MNNW-3	130

Figure	101. Final Details, Back-Side Noise Wall	137
Figure	102. Rail Section Details, Back-Side Noise Wall	138
Figure	103. Noise Wall Details, Back-Side Noise Wall	139
Figure	104. Timber Rail Downstream End Segment and Blockout Details, Back-Side Noise	
C	Wall	140
Figure	105. Timber Rail, Back-Side Noise Wall	141
Figure	106. Timber Rail Upstream End Segment, Back-Side Noise Wall	142
Figure	107. Anchor Plate Assembly, Back-Side Noise Wall	143
Figure	108. Cable Anchor Plate Components, Back-Side Noise Wall	144
Figure	109. Concrete Post Details, Back-Side Noise Wall	145
Figure	110. Concrete Post Reinforcement, Back-Side Noise Wall	146
Figure	111. Splice Plate Details, Back-Side Noise Wall	147
Figure	112. Noise Wall Components, Back-Side Noise Wall	148
Figure	113. Wood Plank Details, Back-Side Noise Wall	149
Figure	114. BCT Anchor Cable Assembly Details, Back-Side Noise Wall	150
Figure	115. Hardware, Back-Side Noise Wall	151
Figure	116. Bill of Materials, Back-Side Noise Wall	152
Figure	117. Bill of Materials, Back-Side Noise Wall (continued)	153
Figure	118. Final Details, Front-Side Noise Wall	154
Figure	119. Rail Section Details, Front-Side Noise Wall	155
Figure	120. Noise Wall Details, Front-Side Noise Wall	156
Figure	121. Post Attachment Nailing Pattern, Front-Side Noise Wall	157
Figure	122. Timber Rail Downstream Segment, Front-Side Noise Wall	158
Figure	123. Timber Rail, Front-Side Noise Wall	159
Figure	124. Timber Rail Upstream End Segment, Front-Side Noise Wall	160
Figure	125. Anchor Plate Assembly, Front-Side Noise Wall	161
Figure	126. Cable Anchor Plate Components, Front-Side Noise Wall	162
Figure	127. Concrete Post Details, Front-Side Noise Wall	
Figure	128. Concrete Post Reinforcement, Front-Side Noise Wall	164
Figure	129. Splice Plate Details, Front-Side Noise Wall	
Figure	130. Noise Wall Components, Front-Side Noise Wall	166
Figure	131. Wood Plank Details, Front-Side Noise Wall	167
Figure	132. BCT Anchor Cable Assembly Details, Front-Side Noise Wall	168
Figure	133. Hardware, Front-Side Noise Wall	169
Figure	134. Bill of Materials, Front-Side Noise Wall	170
Figure	135. Bill of Materials, Front-Side Noise Wall (continued)	171
Figure	A-1. Wood Planking Noise Wall with Concrete Posts	176
Figure	A-2. Wood Planking Noise Wall with Concrete Posts	177
Figure	A-3. Wood Planking Noise Wall with Concrete Posts	178
Figure	A-4. Glue Laminated Rubrail (Concrete Posts) – General Layout	179
Figure	A-5. Glue Laminated Rubrail (Concrete Posts) – Rubrail Sections and Spacer Block	180
Figure	A-6. Glue Laminated Rubrail (Concrete Posts) – Anchor Cable, Anchor Plate, and	
C	Splice Plate	181
Figure	B-1. Vehicle Mass Distribution, Test No. MNNW-1	183
Figure	B-2. Vehicle Mass Distribution, Test No. MNNW-2	184
Figure	B-3. Vehicle Mass Distribution, Test No. MNNW-3	185
-		

Figure C-1. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1,	
MNNW-2, and MNNW-3	189
Figure C-2. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1,	
MNNW-2, and MNNW-3	190
Figure C-3. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1,	
MNNW-2, and MNNW-3	191
Figure C-4. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1.	
MNNW-2, and MNNW-3	192
Figure C-5. Steel Plate Material Certificate, Test Nos. MNNW-1, MNNW-2, and	
MNNW-3	193
Figure C-6. Steel Gusset Material Certificate, Test Nos. MNNW-1, MNNW-2, and	
MNNW-3	194
Figure C-7. Steel Plate Material Certificate, Test Nos. MNNW-1, MNNW-2, and	
MNNW-3	195
Figure C-8. Concrete Post Material Certificate, Test Nos. MNNW-1, MNNW-2, and	
MNNW-3	196
Figure C-9. Rebar Material Certificate. Test Nos. MNNW-1. MNNW-2. and MNNW-3	197
Figure C-10. Pre-Stressed Strand Material Certificate, Test Nos, MNNW-1, MNNW-2, and	
MNNW-3	198
Figure C-11. Wood Plank, Nailer, and Batten Material Specification, Test Nos. MNNW-1.	
MNNW-2. and MNNW-3	199
Figure C-12. Wood Plank, Nailer, and Batten Material Specification, Test Nos, MNNW-1.	
MNNW-2. and MNNW-3.	200
Figure C-13. BCT Anchor Cable Material Certificate. Test Nos. MNNW-1 and MNNW-2	201
Figure C-14. Anchor Bearing Plate (South) and BCT Anchor Cable Material Certificate.	
Test Nos. MNNW-1. MNNW-2. and MNNW-3.	202
Figure C-15. Anchor Bearing Plate (North) Material Certificate. Test Nos. MNNW-1.	
MNNW-2. and MNNW-3	203
Figure C-16. BCT Post Sleeve Material Certificate. Test Nos. MNNW-1. MNNW-2. and	
MNNW-3	204
Figure C-17. Round Head Bolts Material Certificate, Test Nos. MNNW-1 and MNNW-2	205
Figure C-18. Hex Nut Certificate of Conformance, Test Nos. MNNW-1 and MNNW-2	206
Figure C-19. Round Head Bolt Material Certificate. Test No. MNNW-3	207
Figure C-20. Round Head Bolt Material Certificate, Test No. MNNW-3	208
Figure C-21. Shank Nail Receipt, Test Nos, MNNW-1, MNNW-2, and MNNW-3	209
Figure C-22. Screw Certificate of Conformance. Test Nos. MNNW-1. MNNW-2. and	
MNNW-3	210
Figure C-23. Bolt and Washer Certificate of Compliance. Test Nos. MNNW-1. MNNW-2.	
and MNNW-3	211
Figure C-24 Concrete Anchor Certificate of Conformance, Test Nos, MNNW-1	
MNNW-2. and MNNW-3.	212
Figure C-25 Concrete Anchor Certificate of Conformance, Test Nos, MNNW-1.	
MNNW-2. and MNNW-3	213
Figure C-26. Round Washer Material Certificate Test Nos MNNW-1 MNNW-2 and	
MNNW-3	214
Figure C-27 Round Washer Material Certificate Test Nos MNNW-1 MNNW-2 and	
MNNW-3	215

Figure D-1. Soil Strength, Initial Calibration Tests, Test No. MNNW-1	217
Figure D-2. Static Soil Test, Test No. MNNW-1	218
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. MNNW-1	220
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. MNNW-1	221
Figure E-3. Occupant Compartment Deformation Data - Set 1, Test No. MNNW-1	222
Figure E-4. Occupant Compartment Deformation Data - Set 2, Test No. MNNW-1	223
Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. MNNW-1	224
Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. MNNW-1	225
Figure E-7. Floor Pan Deformation Data – Set 1, Test No. MNNW-2	226
Figure E-8. Floor Pan Deformation Data – Set 2, Test No. MNNW-2	227
Figure E-9. Occupant Compartment Deformation Data – Set 1, Test No. MNNW-2	228
Figure E-10. Occupant Compartment Deformation Data - Set 2, Test No. MNNW-2	229
Figure E-11. Exterior Vehicle Crush (NASS) - Front, Test No. MNNW-2	230
Figure E-12. Exterior Vehicle Crush (NASS) - Side, Test No. MNNW-2	231
Figure E-13. Floor Pan Deformation Data – Set 1, Test No. MNNW-3	232
Figure E-14. Floor Pan Deformation Data – Set 2, Test No. MNNW-3	233
Figure E-15. Occupant Compartment Deformation Data - Set 1, Test No. MNNW-3	234
Figure E-16. Occupant Compartment Deformation Data - Set 2, Test No. MNNW-3	235
Figure E-17. Exterior Vehicle Crush (NASS) - Front, Test No. MNNW-3	236
Figure E-18. Exterior Vehicle Crush (NASS) - Side, Test No. MNNW-2	237
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNNW-1	239
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNNW-1	240
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNNW-1	241
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNNW-1	242
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNNW-1	243
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MNNW-1	244
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MNNW-1	245
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MNNW-1	246
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNNW-1	247
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNNW-1	248
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNNW-1	249
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNNW-1	250
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNNW-1	251
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MNNW-1	252
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MNNW-1	253
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MNNW-1	254
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNNW-2	256
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNNW-2	257
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNNW-2	258
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNNW-2	259
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNNW-2	260
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MNNW-2	261
Figure G-7. venicle Angular Displacements (SLICE-1), Test No. MINNW-2	262
Figure G-8. Acceleration Severity Index (SLICE-1), 1est No. MNNW-2	
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNNW-2	264
Figure G-10. Longitudinal Occupant Impact velocity (SLICE-2), Test No. MINNW-2	203
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test NO. MINNW-2	200

Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNNW-2	267
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNNW-2	268
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MNNW-2	269
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MNNW-2	270
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MNNW-2	271
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNNW-3	273
Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNNW-3	274
Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNNW-3	275
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNNW-3	276
Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNNW-3	277
Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. MNNW-3	278
Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. MNNW-3	279
Figure H-8. Acceleration Severity Index (SLICE-1), Test No. MNNW-3	280
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNNW-3	281
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNNW-3	282
Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNNW-3	283
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNNW-3	284
Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNNW-3	285
Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. MNNW-3	286
Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. MNNW-3	287
Figure H-16. Acceleration Severity Index (SLICE-2), Test No. MNNW-3	288

LIST OF TABLES

4
6
50
51
53
54
68
69
71
72
09
10
13
14
33
87
88

1 INTRODUCTION

1.1 Background and Problem Statement

The Minnesota Department of Transportation's (MnDOT's) glue-laminated timber rubrail was developed for situations where a noise wall will be located within the clear zone and when other types of protection are not considered desirable [1]. An example of an installed configuration is shown in Figure 1, and the standard plans are shown in Appendix A.

Figure 1. MnDOT Noise Wall and Rubrail Installation

The crashworthiness of this combination noise wall and barrier system was previously evaluated according to the National Cooperative Highway Research Program (NCHRP) Report No. 350, *Recommended Procedures for the Safety Performance Evaluation of Highway Features* [2]. The test installation consisted of 81 ft (24.7 m) of glulam timber rail sections that were supported by eleven reinforced concrete posts [1]. The noise wall wood planks were not installed. Test no. MNTR-1 was conducted using a 4,386-lb (1,989-kg) pickup truck impacting at a speed of 61.8 mph (99.5 km/h) and at an angle of 25.3 degrees. The glulam rail and noise wall barrier system successfully contained and redirected the pickup truck according to the Test Level 3 (TL-3) criteria published in NCHRP Report No. 350. However, the noise wall and rubrail system had not been evaluated with the latest crash testing standard, the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH 2016)* [3]. Therefore, a need existed to evaluate the rubrail design according the TL-3 requirements found in MASH 2016.

1.2 Objective

The objective of the research project was to modify an existing design and evaluate the safety performance of the MnDOT noise wall system with glulam timber rubrail. The system was to be evaluated according to the TL-3 safety performance criteria set forth in MASH 2016. In addition, the glulam rubrail was to be analyzed and modified, if necessary. Two configurations were to be evaluated – one with the wood noise wall planks installed on the back side of the concrete posts and another with planks installed on the front side of the concrete posts. The successful crash testing of the noise wall system will allow for its continued use on Minnesota highways and roadways, thus ensuring the safety of the motoring public with the current vehicle fleet.

1.3 Scope

The research objective was achieved through the completion of several tasks. First, an analysis phase was conducted in order to evaluate the capacity of the existing timber rubrail, and the timber rail was redesigned. After the final design was completed, the system was fabricated and constructed at the Midwest Roadside Safety Facility (MwRSF) Outdoor Test Site. Three full scale vehicle crash tests were performed with a 5,000-lb (2,270-kg) pickup truck using back-side sound panels, a 2,420-lb (1,100-kg) small passenger car using back-side sound panels, and a 5,000-lb (2,270 kg) pickup truck using front-side sound panels. Each of the tests utilized a target impact speed of 62 mph (100.0 km/h) and a target impact angle of 25 degrees for MASH 2016 TL-3 impact conditions. Finally, the test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the noise wall and glulam timber rubrail system.

2 BARRIER DESIGN

Minnesota's existing standard plans for the noise wall and rubrail system are shown in Appendix A. The rubrail is currently specified as a glue-laminated wood rubrail fabricated with Combination No. 48 Southern Pine or Combination No. 2 Western Species material, measuring 8³/₄ in. (222 mm) deep by 13¹/₂ in. (343 mm) tall. The rubrail configuration was successfully tested under NCHRP Report No. 350 test designation no. 3-11 impact conditions, and the rail sustained no major damage [1]. However, the nominal impact severity of test designation no. 3-11 has increased 13.3 percent, from 101.5 kip-ft (137.6 kJ) under NCHRP Report No. 350 to 115.1 kip-ft (156.1 kJ) under MASH 2016. This increase is due to an increase in vehicle mass in the modern vehicle fleet. The lateral design force for a NCHRP Report No. 350 TL-3 bridge rail, which is commonly used for roadside barriers as well, has historically been 54.0 kips (240 kN) applied over a 4-ft (1.2-m) length [4]. Recently, the final report on NCHRP Project 22-20 [5] recommended a 70-kip (311-kN) load applied over a 4-ft (1.2 m) length for barrier design under MASH 2016 TL-3 [5]. With the increased impact severity and lateral force, the existing rubrail may not have a sufficient capacity under MASH test designation no. 3-11 impact conditions. Thus, the capacity of the rail was evaluated.

The American Wood Council's *National Design Specification (NDS) for Wood Construction* was utilized to evaluate the capacity of the glue-laminated rubrail [6]. The allowable bending stress to use for design was 4.49 ksi (31.0 MPa) and 4.04 ksi (27.9 MPa) for Combination No. 48 Southern Pine and Combination No. 2 Western Species, respectively. Utilizing the 70-kip (311-kN) load distributed over 4 ft (1.2 m) and assuming a simply-supported connection at the posts spaced 8 ft (2.4 m) apart, the calculated bending stress was 7.31 ksi (50.4 MPa), which is much greater than the allowable bending stress. Utilizing the 54-kip (240-kN) load distributed over 4 ft (1.2 m) and assuming a simply-supported connection at the posts spaced 8 ft (2.4 m) apart, the calculated bending stress was 5.64 ksi (38.9 MPa), which was 25.6 percent greater than the allowable bending stress for Combination No. 2 Western Species. Since the rubrail in the original crash test did not fail due to excessive bending stress, the calculations were believed to be conservative.

The researchers believed that the same ratios of actual/allowable bending stress with the 54-kip (240-kN) load (1.256 for Combination No. 48 Southern Pine and 1.396 for Combination No. 2 Western Species) could be utilized for the rail design with the 70-kip (311.4-kN) load without excessive bending stress occurring in the MASH 2016 test designation no. 3-11 crash test. A 10-in. (254-mm) deep by 13½-in. (343-mm) tall rubrail was calculated to produce similar actual/allowable bending stress ratios and was anticipated to perform acceptably. However, a 10-in. (254-mm) deep beam is considered to be non-standard size. Therefore, a 10¾-in. (273-mm) deep by 13½-in. (343-mm) tall rubrail, which is a standard glue-laminated size, was calculated to produce an actual/allowable bending stress ratio of 1.112 and 1.234 percent for the Combination No. 48 Southern Pine and Combination No. 2 Western Species, respectively. Since these ratios are less than the ratios of the prior crash-tested rubrail, the research team believed that they would perform acceptably, and that the rubrail section would not fail due to excessive bending stress. Therefore, a 10¾-in. (273-mm) deep by 13½-in. (343-mm) tall glue-laminated wood rubrail fabricated with Combination No. 48 Southern Pine or Combination No. 2 Western

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

Longitudinal barriers, such as the noise wall and timber rubrail system, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

Note that there is no difference between MASH 2009 and MASH 2016 for longitudinal barriers, such as the system tested in this project, except additional occupant compartment deformation measurements and documentation are required by MASH 2016. For the evaluation of the back-side noise wall configuration, both test designation nos. 3-10 and 3-11 were conducted. For the evaluation of the front-side noise wall configuration, only test designation no. 3-11 was conducted. Test designation no. 3-10 with the front-side noise wall configuration was deemed to be non-critical if test designation no. 3-11 with the front-side configuration and both back-side configuration tests were successful. The system was expected to have a similar stiffness with the front-side and back-side configurations and the car could potentially extend farther under or over top of the rail with the back-side configuration. Thus, the back-side wall configuration was used for test designation no. 3-10.

	Test	Test Vehicle	Vehicle	Impact C	onditions		
Test Article	Designation No.		Weight lb (kg)	Speed mph (km/h)	Angle deg.	Evaluation Criteria ¹	
Longitudinal Barrier	3-10	1100C	2,420 (1,100)	62 (100.0)	25	A,D,F,H,I	
	3-11	2270P	5,000 (2,270)	62 (100.0)	25	A,D,F,H,I	

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the noise wall system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are

summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur for any soil-dependent system. Due to the large post section, heavy mass, and significant post embedment depth, the system should have adequate strength in varying soil types and was not considered to have soil dependence under TL-3 impact loading. However, the soil strength was still evaluated prior to the first full-scale crash test, but it was not re-evaluated before subsequent tests. A W6x16 (W152x23.8) post was installed near the impact region utilizing a similar installation procedure as the system itself. Prior to full-scale crash testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm), as measured at a height of 25 in. (635 mm) above the ground line. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

Structural Adequacy	A.	Cest article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral leflection of the test article is acceptable.								
	D.	Detached elements, fragment should not penetrate or show compartment, or present a pedestrians, or personnel in intrusions into, the occupant set forth in Section 5.2.2 and a	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.							
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.								
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:								
Risk		Occupant Impact Velocity Limits								
		Component	Preferred	Maximum						
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)						
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix Section A5.2.2 of MASH 2016 for calculation procedure) she satisfy the following limits:								
		Occupant Ridedown Acceleration Limits								
		Component	Preferred	Maximum						
		Longitudinal and Lateral	15.0 g's	20.49 g's						

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [7] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. MNNW-1, a 2010 Dodge Ram 1500 Crew Cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,264 lb (2,388 kg), 5,056 lb (2,293 kg), and 5,214 lb (2,365 kg), respectively. The test vehicle is shown in Figures 2 and 3, and vehicle dimensions are shown in Figure 4.

For test no. MNNW-2, a 2010 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,476 lb (1,123 kg), 2,431 lb (1,103 kg), and 2,595 lb (1,177 kg), respectively. The test vehicle is shown in Figures 5 and 6, and vehicle dimensions are shown in Figure 7.

For test no. MNNW-3, a 2011 Dodge Ram 1500 Crew Cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,265 lb (2,388 kg), 5,028 lb (2,281 kg), and 5,188 lb (2,353 kg), respectively. The test vehicle is shown in Figures 8 and 9, and vehicle dimensions are shown in Figure 10.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [8] was used to determine the vertical component of the c.g. for the pickup trucks. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [9]. The location of the final c.g. is shown in Figures 4 and 11 for

test no. MNNW-1, Figures 7 and 12 for test no. MNNW-2, and Figures 10 and 13 for test no. MNNW-3. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in 11 through 13. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on each vehicle's right-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the front bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after each test.

4.4 Simulated Occupants

For test nos. MNNW-1, MNNW-2, and MNNW-3, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of each test vehicle with the seat belt fastened. The three dummies, which had final weights of 161 lb (73 kg), 161 lb (73 kg), and 160 lb (73 kg) for test nos. MNNW-1, MNNW-2, and MNNW-3, respectively, were represented by model no. 572 and were manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummies were not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [10].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. For test nos. MNNW-1 and MNNW-3, the SLICE-2 unit was designated as the primary system. For test no. MNNW-2, the SLICE-1 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

Figure 2. Test Vehicle, Test No. MNNW-1

Figure 3. Test Vehicle's Interior Floorboard and Undercarriage, Test No. MNNW-1

Date:	2/27/2018	8	Test Name:	MNNW-1	VIN No:	1D7RB10	CT0AS214	480
Year:	2010		Make:	Dodge	Model:	Model: RAM 1500 Crew		
Tire Size:	275-60 R2	20 Tire Infla	tion Pressure:	35 Psi	Odometer:	1	1598	
+	The search	4			Vehicle Ge Target Ranges	ometry - in. (I listed below	nm)	
					A: 76 1/2 78±2 (198 C: 229 3/8 237±13 (60) E: 140 1/2 148±12 (37)	(1943) B: :00±50) D: (5826) D: 20±325) F: (3569) F:	75 3/4 70 7/8 39±3 (10 48	(1924) (1800) 00±75) (1219)
		Test Iner	tial CG		G: 29 9/16	(751) H:_	61	(1549)
	- Q		F	f	l: 13 3/4	(349) J:	25 1/2	(648)
P-+	R-			B I	K: 22	(559) L:	30 1/2	(775)
	Tal				M: 68 1/4	<u>(1734)</u> N: _	68 3/8	(1737)
<u> </u>		G 1	s I	к і • • •	0: <u>45 1/4</u> 43±4 (110	(1149) P:_ 0±75)	4 3/4	(121)
-	— D — - -	E	F	=	Q: 32 3/4	(832) R:	21 1/2	(546)
-		c			S: <u>16</u>	(406) T:	76 1/2	(1943)
Mass Distrib	ution lb (ka)				U (im	pact width):	35 3/4	(908)
Gross Static	LF <u>1471</u>	(667) RF 1490	(676)		1	Wheel Center leight (Front):	15 1/2	(394)
	LR 1097	(498) RR 1156	(524)			Height (Rear):	15 3/4	(400)
					Clea	Wheel Well rance (Front):	36	(914)
Weights Ib (kg)	Curb	o Test	Inertial	Gross Static	Cle	Wheel Well arance (Rear): _	39 1/4	(997)
W-front	2955 ((1340)2860	(1297)	2961 (1343)	. 1	Bottom Frame leight (Front): _	19	(483)
W-rear	2309	(1047) 2196	(996)	2253 (1022)		Bottom Frame Height (Rear): _	26 3/4	(679)
W-total	5264	(2388) 5056	(2293)	5214 (2365)	E	ngine Type:	Gaso	line
		5000±11	0 (2270±50)	5165±110 (2343±50)	Ì	Engine Size:	5.7	L
GVWR Ratin	gs Ib	Surroga	te Occupant Data		Transm	ission Type:	Auton	natic
Front	3700		Туре:	Hybrid II		Drive Type:	RW	′D
Rear	3900		Mass:	161 lb		Cab Style:	Crew	Cab
Total	6700	Sea	t Position:	Right Front		Bed Length:	67	
Note any damage prior to test: Left box side above and behind rear wheel is scraped dand dented.								

Figure 4. Vehicle Dimensions, Test No. MNNW-1

Figure 5. Test Vehicle, Test No. MNNW-2

Figure 6. Test Vehicle's Interior Floorboard and Undercarriage, Test No. MNNW-2

13

Date:	2/27/20	18		Test Name	:MNN	IW-2	VIN No:	KMHCN	I4ACXBU61	10901
Year:	2010			Make	e: Hyu	ndai	Model:		Accent	
Tire Size:	185/65F	814	Tire Inflat	ion Pressure	: 32	Psi	Odometer:		200164	
1-	1					•	Vehicle G Target Range	eometry - in es listed below	. (mm)	
	M			N		 	A: 65 3/4 65±3 (1/ C: 168 3/8 169±8 (4/ E: 98 3/4 98±5 (25	(1670) E 650±75) E (4277) C 300±200) C (2508) F 500±125) F	3: <u>57</u> 0: <u>34 1/2</u> 35±4 (9 5: <u>35 3/4</u>	(1448) (876) 000±100) (908)
			Tes	st Inertial CG			G: 22 7/16	(570) H	1: 36 5/8 39±4 (9	(930)
	- Q -	-					l: 7 1/2	(191)	J: <u>21</u>	(533)
. Р.———————————————————————————————————	R			D	Ð	B	K: <u>11 1/8</u>	(283)	l: 23 1/2	(597)
			s			K L L	M: <u>57 7/8</u> 56±2 (1-	(1470) N 425±50)	l: <u>57</u> 56±2 (1	(1448) (425±50)
+	-	_н+-	ł			•	O: <u>27 1/2</u> 24±4 (6)	(699) F 00±100)	P: 4 1/2	(114)
	- D	0007	— E ———		- F		Q: 22 1/2	(572) F	R: 15 1/2	(394)
			— C ——		-		S: <u>11 3/4</u>	(298) 1	: <u>64 1/2</u>	(1638)
Mass Distrib	ution Ib (kg)						U (i	mpact width): _ 28 7/8	(733)
Gross Static	LF 804	(365)	RF 809	(367)			Тор	of radiator con suppor	re t: 28 1/2	(724)
	LR 479	(217)	RR 503	(228)				Wheel Center Height (Front	er): 10 3/4	(273)
								Wheel Cente Height (Rear	ər):11	(279)
Weights Ib (kg)	Cu	rb	Test Ir	nertial	Gross	Static	Cle	Wheel We earance (Front):3 1/4	(83)
W-front	1577	(715)	1530	(694)	1613	(732)	CI	Wheel We learance (Rear): 23/4	(70)
W-rear	899	(408)	901	(409)	982	(445)		Bottom Fram Height (Front	ie): 6	(152)
W-total	2476	(1123)	2431	(1103)	2595	(1177)		Bottom Fram Height (Rear	ie): 9 5/8	(244)
			2420±55 (1100±25)	2585±55	(1175±50)		Engine Type	e: Gas	oline
GVWR Rating	gs Ib		Surrogate	Occupant D	ata			Engine Size	e: <u>1.6L</u>	4 cyl
Front	1918			Туре:	Hybrid	111	Transr	nission Type	: Auto	matic
Rear	1874			Mass:	161 I	b		Drive Type	:F\	ND
Total	3638		Seat	Position:	Passen	ger				
Note any damage prior to test: Small dents and scrapes along the right side rear door.										

Figure 7. Vehicle Dimensions, Test No. MNNW-2

Figure 8. Test Vehicle, Test No. MNNW-3

Figure 9. Test Vehicle's Interior Floorboard and Undercarriage, Test No. MNNW-3

Date:	4/4/201	8		Test Name	: MNI	NW-3	VIN No:	1D7RE	B1CP7BX64	6567
Year:	2011			Make	e: Do	dge	Model:		Ram 1500	
Tire Size:	265/70 F	R17	Tire Inflat	ion Pressure	e: 37	Psi	Odometer:		182968	
							Vehicle G Target Range	ieometry - in as listed below	ı. (mm)	
) Test Inerti			Ţ	A: 76 1/2 78±2 (1) C: 229 7/8 237±13 (6 E: 140 1/2 148±12 (3 G: 28 5/8 min: 28	(1943) I 950±50) [5839) I (5839) [35669) I (35669) I I (727) I I 8 (710) I I	B: 74 D: 42 3/8 $39\pm3(1)$ F: 47 H: 61 3/16 $63\pm4(1)$	(1880) (1076) 000±75) (1194) (1554) 375±100)
			G -	s			I: <u>12</u> K: <u>21</u> M: <u>66 1/4</u> <u>67±1.5 (r</u> O: <u>44 1/8</u> <u>43±4 (1</u>	(305) (533) (1683) (1700±38) (1121) 100±75)	J: <u>23 3/4</u> L: <u>29 1/2</u> N: <u>67 3/4</u> ^{67±1.5 (} P: <u>5</u>	(603) (749) (1721) ^(1700±38) (127)
-		-н	— E-——	1	— F — •		Q: <u>31</u>	(787)	R: <u>18 1/2</u>	(470)
-			C		-		S: <u>15 3/8</u>	(391)	T: <u>75 5/8</u>	(1921)
Mass Distrib	ution lb (ka)						U (i	mpact width	n): <u>35 1/2</u>	(902)
Gross Static	LF <u>1444</u> LR <u>1161</u>	(655) (527)	RF <u>1492</u> RR <u>1091</u>	(677) (495)			Cia	Wheel Cent Height (From Wheel Cent Height (Rea Wheel We earance (From	rer t): <u>15</u> rer r): <u>15 1/4</u> ell t): <u>34 1/2</u>	(381) (387) (876)
Weights Ib (kg)	Cu	rb	Test li	nertial	Gross	Static	CI	Wheel We learance (Rea	ell r): 38	(965)
W-front	2940	(1334)	2839	(1288)	2936	(1332)		Bottom Fran Height (Fron	ne t): 18 1/2	(470)
W-rear	2325	(1055)	2189	(993)	2252	(1021)		Bottom Fran Height (Rea	ne r): 26 1/2	(673)
W-total	5265	(2388)	5028 5000±110	(2281) (2270±50)	5188 5165±110	(2353) 0 (2343±50)		Engine Type	e: 8cyl	. Gas
GVWP Patin	as lb		Surroaate	Occupant P	lata		Traper	nission Tur	e. <u>4</u>	
Front	3700		Sunogate	Type	Hybrid	4 11	Tails	Drive Tvo	e: RV	VD
Rear	3900			Mass:	160	b		Cab Style	e: Crew	/ Cab
Total	6800		Seat	Position:	Righ	nt		Bed Lengt	h: 6	7"
Note any damage prior to test: None										

Figure 10. Vehicle Dimensions, Test No. MNNW-3

Figure 11. Target Geometry, Test No. MNNW-1

Figure 12. Target Geometry, Test No. MNNW-2

Figure 13. Target Geometry, Test No. MNNW-3

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Four AOS high-speed digital video cameras, eleven GoPro digital video cameras, and two JVC digital video cameras were utilized to film test no. MNNW-1. Four AOS high-speed digital video cameras, ten GoPro digital video cameras, and two JVC digital video cameras were utilized to film test no. MNNW-2. Three AOS high-speed digital video cameras, ten GoPro digital video cameras, and two JVC digital video cameras, ten GoPro digital video cameras were used to film test no. MNNW-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 14 through 16 for test nos. MNNW-1 through MNNW-3, respectively.

The high-speed videos were analyzed using TEMA Motion and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon digital still camera was also used to document preand post-test conditions for all tests.

	GP #15	2.0			
	107' [32.6 m]+10'-6"	[3.2 m]			
AOS #6 GP #7 JVC #1 23'−6"	$ \begin{array}{c} 15' [4.6 m] \\ 3'-6" [1.1 m] \\ GP \#16 \\ GP \#16 \\ GP \#16 \\ GP \#16 \\ GP \#17 \\ 3' [0.9 m] - GP \#18 \\ [7.2 m] 6" [0.2 m] \\ GP \#8 \\ - 32' [9.8 m] - 48'-8" [14] \end{array} $	82' [25.0 m] Height: 9.4 m] GP #3 10 11 12 m]	Onboard: GP #5 GP #6		AOS #5 JVC #4
_	1'-8" [0.5 m]		280'-10" [85.6 m]		+
No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting	
AOS-2	AOS Vitcam	500	KOWA 16mm Fixed	-	
AOS-5	AOS X-PRI	500	Telesar 135mm Fixed	-	
AOS-6	AOS X-PRI	500	Fujinon 50 Fixed	-	
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm Fixed	-	
GP-3	GoPro Hero 3+ w/ Cosmicar 12.5mm	120			
GP-5	GoPro Hero 3+	120			
GP-6	GoPro Hero 3+	120			
GP-7	GoPro Hero 4	120			
GP-8	GoPro Hero 4	240			
GP-9	GoPro Hero 4	120			
GP-10	GoPro Hero 4	240			
GP-15	GoPro Hero 4	120			
GP-16	GoPro Hero 4	240			
GP-17	GoPro Hero 4	120			
GP-18	GoPro Hero 4	120			
JVC-1	JVC – G2-MC500 (Everio)	30			
JVC-4	JVC – G2-MG27u (Everio)	30			

Figure 14. Camera Locations, Speeds, and Lens Settings, Test No. MNNW-1

Figure 15. Camera Locations, Speeds, and Lens Settings, Test No. MNNW-2

Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. MNNW-3

January 31, 2019 MwRSF Report No. TRP-03-396-19

5 DESIGN DETAILS – TEST NOS. MNNW-1 AND MNNW-2

MnDOT utilizes several different post sizes, embedment depths, and wall heights to meet the noise wall requirements for various areas. A noise wall system with the same height as used in test no. MNTR-1 was selected for evaluation herein. This system was configured with one of the smaller wall heights and embedment depths utilized by MnDOT, which still provided a very stiff and strong system when placed in soil. Based on prior testing, the selected test configuration parameters were believed to serve as a valid indicator of performance for the other configurations.

The test installation consisted of a wood plank noise wall with concrete posts and a glulam timber rubrail, as shown in Figures 17 through 34 for test nos. MNNW-1 and MNNW-2. Photographs of the test installation are shown in Figures 35 and 36 for test no. MNNW-1 and Figures 37 and 38 for test no. MNNW-2. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix C.

The test installation for the barrier system was composed of a wood plank noise wall, which spanned across twelve concrete support posts and was protected by 89 ft (27.1 m) of glulam timber rail sections, as shown in Figures 17 and 18. The total width of the system from the front of the glulam timber rail to the back of the wood batten was 40³/₄ in. (1,035 mm). The glulam timber for the rail members and spacer blocks was fabricated with Combination No. 2 West Coast Douglas Fir material, as specified in AASHTO's LRFD Bridge Design Specifications [4], which was slightly weaker than Combination no. 48 Southern Pine. The glulam was treated with pentachlorophenol in heavy oil to a minimum net retention of 0.6 lb/ft³ (9.6 kg/m³), as specified in AWPA Standard U1 to the requirements of Use Category 4A (UC4A) [11]. The rail members were 13¹/₂ in. (343 mm) wide by 10³/₄ in. (273 mm) deep with a 30-in. (762-mm) top mounting height, as measured from the ground line to the top of the rubrail. Five H-shaped steel assemblies were used to splice together the rail ends, thus resulting in the total rail length. The H-shaped, welded splice plates consisted of two ASTM A36 steel plates measuring 13¹/₂ in. wide x 29¹/₄ in. long x ³/₈ in. thick (343 mm x 743 mm x 10 mm) and one orthogonal ASTM A36 steel plate measuring 13¹/₂ in. wide x 10 in. long x ³/₈ in. thick (343 mm x 254 mm x 10 mm) welded together as shown in Figure 28. At all rail splice locations, eight 1¹/₄in. (32-mm) diameter by 14-in. (356-mm) long ASTM A307 Grade A galvanized dome head bolts with a 1¼-in. (32-mm) diameter flat washer and a 1¼-in. (32-mm) diameter hex nut were used to attach to rail sections to the splice plates, as shown in Figures 17 through 19 and 28. The rubrail was offset away from the posts with spacer blocks measuring 9 in. wide x 6 in. deep x 13¹/₂ in. long (229 mm x 152 mm x 343 mm), as shown in Figures 17 through 19 and 30.

Although it was preferred to use dome head bolts to attach the rubrail and spacer blocks to the concrete posts, round head bolts in combination with a washer, equivalent in diameter to the dome head bolts, were used instead of dome head bolts. Through this substitution, the two post-to-rail bolts were ³/₄-in. (19-mm) diameter by 18-in. (457-mm) long ASTM A307 Grade A galvanized round head bolts with a flat head key with a ³/₄-in. (19-mm) diameter washer that had an outer diameter of 2 in. (51 mm). The post-to-rail bolts were attached to the concrete posts with field-installed threaded inserts.

A wood plank noise wall system was attached to the back side of the concrete posts. The noise wall planks consisted of 2-in. x 8-in. x 16-ft (51-mm x 203-mm x 4.9-m) tongue and

groove wood planks with a minimum bending stress of 1,500 psi (10.3 MPa). The planks were attached to the concrete posts with a 2-in. x 8-in. x 10-ft (51-mm x 203-mm x 3.0-m) wood batten with a minimum bending stress of 1,500 psi (10.3 MPa) and a 3-in. x 10-in. x 10-ft (76-mm x 254-mm x 3.0-m) wood nailer with a minimum bending stress of 1,200 psi (8.3 MPa). The noise wall planks, nailer, and batten were obtained at a lower grade than specified. However, the reduced strength of these timber products was deemed non-critical to the crashworthiness of the noise wall system.

The entire system was constructed with twelve prestressed concrete posts, as shown in Figures 17, 26, 27, and 29. All twelve posts were concrete sections measuring 12 in. wide x 18 in. deep x 18 ft long (305 mm x 457 mm x 5.5 m), as shown in Figure 26. The concrete posts were spaced 8 ft (2.4 m) on center along the length of the system with a soil embedment depth of 8 ft (2.4 m), as shown in Figures 17 and 18. The posts were installed in a compacted coarse crushed limestone soil. The concrete used for the prestressed concrete posts had a minimum compressive strength of 5,500 psi (37.9 MPa).

The concrete posts utilized in the test installation were configured with the longitudinal prestressing strands in lieu of longitudinal reinforcement bars, as shown in Figure 26. The steel prestressing strands consisted of ½-in. (12.7-mm) diameter, 270-ksi (1,862-MPa) LO-LAX prestress strands extending the length of the post. The loop bars were no. 3 reinforcing bars, 53 in. (1.3 m) long, bent into a rectangular shape, and were spaced 18 in. (457 mm) on center. A minimum concrete cover of 2 in. (51 mm) was used for all the rebar and strands placed within the posts. The reinforcing bars in the post were ASTM A615 Grade 60 epoxy-coated rebar. The post reinforcement details are shown in Figures 26 and 27.

A BCT anchor cable assembly attached the end post to a cable anchor bracket on the back of the rubrail. Each cable anchor bracket was attached to the rail section with eight 1¹/₄-in. (32-mm) diameter by 14-in. (356-mm) long ASTM A307 Grade A galvanized dome head bolts and a 1¹/₄-in. (32-mm) diameter hex nut.

During installation of the test article, a few items were modified to ease construction, including:

- (1) The slots in the rubrail were not in the correct location. Thus, some slots in the rail were enlarged to align post-to-rail bolts with the threaded inserts in the concrete posts. At post no. 5, a 2¹/₂-in. (64-mm) outer diameter washer was utilized due to an oversized hole in the rail.
- (2) The galvanized post-to-rail bolt threads were not compatible with the threads in the zinc-plated, threaded inserts that were installed in the posts. Thus, the galvanization was stripped from the threaded ends of bolts so that they could be installed.
- (3) The ends of the timber rubrails required planing to fit within the H-shaped splice plates.
- (4) For testing purposes only, double-headed nails were used instead of part g3 to allow the noise wall sections to remain intact when switching from the back-side noise wall configuration to the front-side noise wall configuration.

After construction of the system, a few modifications were identified that would ease construction of future installations. Although the noise wall and rubrail system can be installed in the as-tested configuration shown in Figures 17 through 34, MwRSF would recommend future installations utilize the modified system details shown in Chapter 12.

Figure 17. System Layout, Test No. MNNW-1 (Recommended updates provided in Chapter 12)

Figure 18. System Layout, Test No. MNNW-2 (Recommended updates provided in Chapter 12)

Figure 19. Rail Section Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 20. Noise Wall Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 21. Timber Rail Downstream End Segment Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 22. Timber Rail, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 23. Timber Rail Upstream End Segment, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 24. Anchor Plate Assembly, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 25. Cable Anchor Plate Components, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 26. Concrete Post Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 27. Concrete Post Reinforcement, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 28. Splice Plate Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 29. Noise Wall Components, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 30. Wood Plank Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 31. BCT Anchor Cable Assembly Details, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 32. Hardware, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Item No.	QTY.	Description	Material Specification		Treatment Specification	Haro	dware uide
a1	1	125 5/8"x13 1/2"x10 3/4" [3,191x343x273] Timber Rail End Section	GLULAM – Comb. 48(SP) specié) or Comb. 2(Western es)	See Notes 1-3		_
۵2	4	191 1/4"x13 1/2"x10 3/4" [4,858x343x273] Timber Rail Section	GLULAM – Comb. 48(SP) specié	GLULAM - Comb. 48(SP) or Comb. 2(Western species)			<u></u> 2
a3	1	173 5/8"x13 1/2"x10 3/4" [4,410x343x273] Timber Rail End Section	GLULAM – Comb. 48(SP) specié) or Comb. 2(Western es)	See Notes 1–3		-
۵4	12	13 1/2"x9"x6" [343x229x152] Wood Blockout	GLULAM – Comb. 48(SP) specié) or Comb. 2(Western es)	See Notes 1–3		-
b1	2	10 1/2"x9"x3/8" [229x267x10] Steel Plate	ASTM /	A36	ASTM A123**		<u></u>
b2	4	3"x3"x1/4" [76x76x6] Steel Gusset	ASTM /	A36	ASTM A123**		-
b3	2	3"x3"x1/2" [76x76x13] Steel Plate	ASTM /	A36	ASTM A123**		
c1	12	12"x18" [305x457], 18' [5,486] Long Concrete Post	Min. f'c = 5,500 p MnDOT miz	osi [37.9 MPa] x 3W82	_		_
c2	156	3/8" [10] Dia., 53" [1,346] Long Rebar	ASTM A615	Gr. 60	Epoxy Coated (ASTM A775 A934)	or	_
c3*	48	5/8" [16] Dia., 210" [5,334] Long Rebar	ASTM A615	Gr. 60	Epoxy Coated (ASTM A775 A934)	or	
c4*	48	1/2" [13] Dia, 7—Wire Pre—Stressing Strand, 216" [5,486] Long	ASTM A416	Gr. 270	-		-
d1	10	29 1/4"x13 1/2"x3/8" [743x343x10] Steel Plate	ASTM /	A36	ASTM A123**		-
d2	5	13 1/2"x10"x3/8" [343x254x10] Steel Plate	ASTM /	A36	ASTM A123**		_
e1	12	3"x10" [76x254], 10' [3,048] Long Vertical Wood Nailer	SYP Gr. No. 1 Dense or sawn or Douglas Fir Douglas Fir-Larch (North Douglas Fir-South Select with min F'b = 1,20	better standard rough -Larch No. 1 or) Select Structural or Structural or equivalent 20 psi [8.3 MPa]	See Note 4	,	_
e2	17	2"x8" [51x203], 8' [2,438] Long Tongue and Groove Wood Plank	SYP Gr. Select Structural Douglas Fir—Larch Select Structural or equivalent with min F'b = 1,500 psi [10.3 MPa]		See Note 4		<u>- 1</u> 5
e3	85	2"x8" [51x203], 16' [4,877] Long Tongue and Groove Wood Plank	SYP Gr. Select Structural Douglas Fir—Larch Select Structural or equivalent with min F'b = 1,500 psi [10.3 MPa]		See Note 4		<u>-</u> 7
e4	12	2"x8" [51x203], 10' [3,048] Long Wood Batten	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 10 psi [10.3 MPa]	See Note 4		_
e5	2	2"x4" [51x102], 10' [3,048] Long Wood Plank	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 10 psi [10.3 MPa]	See Note 4	5	_
*Use either part c3 or c4. ** Weld before advanization.							
Notes: (1) Timber rail sections and blockouts shall be treated with							
		pentachiorophenoi (PCP-A) in neavy oil to a mining 0.6 km/s^3 is associated with AWDA S	num net retention of		MNDOT Noise Wall		SHEEI: 16 of 17
		requirements of Use Category 4A (UC4A).	atanaara or to the	MARSE	Timber Rail	-	DATE:
	(2)) Wood shall be cut, drilled, and completely fabricated prior to			Test No. MNNW-1		11/13/2018
	treatment with preservative. Drain excess chemicals and dry all						DRAWN BY:
	(3)	All field cuts, bore holes, and damages shall be tr	reated with	Midwest Roadsic	Bill of Materials		DTM/JEK/ MES/DJW
	(-)	material acceptable to the engineer prior to install	ation.	Safety Facility	DWG. NAME.	SCALE: None	REV. BY:
	(4)	Provide preservative treated timber products per Spec. 3491.			MNNW-1_R22	JNITS: in.[mm]	JEK/KAL/JD S/RKF/JCH

Figure 33. Bill of Materials, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
f1	2	BCT Anchor Cable			FCA01
f2	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
f3	2	2 3/8" [60] O.D. x 12" [305] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	-
g1	48	1 1/4"—7 UNC [M30x3.5], 14" [356] Long Round Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB09a
g2	24	3/4"—10 UNC [M20x2.5], 18" [457] Long Round Head Bolt with Flat Head Key	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB08a
g3	969	16D Ring Shank Nail	-	_	-
g4	408	No. 8 x 2 1/2" [64] Long Bugle Head Exterior Screw	-	ASTM A153 or B695 Class 55	-
g5	36	1/2" [13] Dia. Round Plate Washer	ASTM F844	ASTM A123 or A153 or F2329	2-3
g6	36	1/2"-6 Coil Thread [M14x4], 3" [76] Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	Ţ
g7	24	3/4"-10 UNC [M20x2.5] Drop-In Concrete Anchor	Hilti Item No. 258541	Zinc-Plated	
g8	72	1/2"-6 Coil Thread [M14x4] Concrete Anchor	As Supplied	Galvanize per spec. 3392 or electroplate per ASTM B633 SC4 Type II	_
g9	48	1 1/4" [32] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC30a
g10*	24	3/4" [19] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a

* Washer plates with a 2 1/2" [64] outer diameter and thickness of 1/8" [3] were substituted at post no. 5.

M	T	MNDOT Noise Wall Timber Rail Test No. MNNW-1		SHEET: 17 of 17 DATE: 11/13/2018
Midwest Roa	dside	Bill of Materials		DRAWN BY: DTM/JEK/ MES/DJW
Safety Faci	lity	DWG. NAME. MNNW-1_R22	SCALE: None UNITS: in.[mm]	REV. BY: JEK/KAL/JD S/RKF/JCH

Figure 34. Bill of Materials, Test Nos. MNNW-1 and MNNW-2 (Recommended updates provided in Chapter 12)

Figure 35. Test Installation Photographs, Test No. MNNW-1

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 36. Test Installation Photographs, Test No. MNNW-1

Figure 37. Test Installation Photographs, Test No. MNNW-2

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 38. Test Installation Photographs, Test No. MNNW-2

6 FULL-SCALE CRASH TEST NO. MNNW-1

6.1 Static Soil Test

Before full-scale crash test no. MNNW-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix D, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. MNNW-1 was conducted on February 28, 2018 at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	44° F
Humidity	68%
Wind Speed	17 mph
Wind Direction	20° from True North
Sky Conditions	Overcast
Visibility	7 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.25 in.

Table 3. Weather Conditions, Test No. MNNW-1

6.3 Test Description

Since minimal deflection was expected near the ground line, the noise wall system was thought to behave similarly to a rigid barrier. Table 2.7 of MASH 2016 recommends using an impact point approximately 4.3 ft (1.3 m) upstream from a post or splice for rigid barriers. However, due to similarities between the noise wall previously evaluated under NCHRP Report No. 350 in test no. MNTR-1 and the modified noise wall in test no. MNNW-1, the same impact point utilized in test no. MNTR-1 was selected to maximize vehicle snag on a post [1]. Initial vehicle impact was to occur 12 in. (305 mm) upstream from the centerline of post no. 6, as shown in Figure 46, which was selected as the same impact point in test no. MNTR-1 as it produced the maximum vehicle extent behind the barrier to snag on the concrete posts.

The 5,056-lb (2,293-kg) crew cab pickup truck impacted the noise wall system at a speed of 63.0 mph (101.4 km/h) and at an angle of 24.7 degrees. The actual point of impact was about $^{7}/_{16}$ in. (11 mm) downstream from the targeted impact point. A sequential description of the impact events is contained in Table 4. A summary of the test results and sequential photographs are shown in Figure 39. Additional sequential photographs are shown in Figure 40. Documentary photographs of the crash test are shown in Figure 41. The vehicle came to rest 117 ft – 9 in. (35.9 m) downstream and 4 ft – 4 in. (1.3 m) laterally behind the barrier after brakes were applied. The vehicle trajectory and final position are shown in Figures 39 and 47.

TIME	EVENT				
	Vehicle's front humper contacted rail between post nos 5 and 6				
0.000	Vehicle's right fender contacted rail				
0.008	Vehicle's right front tire contacted rail				
0.010	Post no. 6 deflected backward				
0.024	Vehicle's grille contacted rail				
0.020	Vehicle's giffle contacted rail				
0.030	Post no. 7 deflected heelword				
0.042	Vahiala rolled toward system				
0.032	Vehicle's upper right front and right roor doors deformed				
0.000	Vehicle veryed every from system and vehicle's right front wheel disangeged				
0.008	Vehicle's aville became disenseed				
0.073	Vehicle's grine became disengaged.				
0.078	Vehicle's plastic faceic become disensed				
0.087	Vehicle's pristic fascia became disengaged.				
0.088	Proteins griffe contacted post no. /, and post no. / deflected backward.				
0.110	Post no. 6 deflected forward.				
0.122	Venicle pitched downward, and venicle's left-fear tire became airborne.				
0.136	Post no. / deflected forward.				
0.138	Vehicle's left-front tire became airborne.				
0.156	Vehicle's right-rear door contacted rail, and vehicle's grille contacted post no. 8.				
0.162	Vehicle's right-side mirror contacted post no. 7 and shattered.				
0.202	Vehicle's right quarter panel contacted rail.				
0.204	Vehicle's right-rear tire contacted rail.				
0.210	Vehicle's rear bumper contacted rail.				
0.224	Vehicle was parallel to system at a speed of 40.9 mph (65.8 km/h).				
0.244	Vehicle's right-rear tire became airborne.				
0.266	Vehicle yawed toward system.				
0.294	Vehicle exited system at a speed of 38.3 mph (61.6 km/h), and at an angle of 3.7 degrees.				
0.396	Vehicle's front bumper contacted ground.				
0.414	System came to rest.				
0.438	Vehicle rolled away from system.				
0.478	Vehicle's right headlight became disengaged.				
0.802	Vehicle's left-front tire regained contact with ground.				
0.824	Vehicle pitched upward.				
0.920	Vehicle's left headlight became disengaged.				
1.196	Vehicle's left-rear tire regained contact with ground.				
1.212	Vehicle's right-rear tire regained contact with ground.				
1.238	Vehicle's right-rear wheel became disengaged.				

Table 4. Sequential Description of Impact Events, Test No. MNNW-1

6.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figure 49. Barrier damage consisted of contact marks, splinters, and gouges on the front face of the timber rubrail. The length of vehicle contact along the barrier was approximately 14 ft – 8 in. (4.5 m), which spanned from 1 ft – $5\frac{3}{4}$ in. (0.5 m) upstream from post no. 6 to 3 ft – $8\frac{1}{4}$ in. (1.1 m) upstream from post no. 8.

The majority of the splinters on the front face of the rail were located around post nos. 5, 6, and 7, where initial impact occurred. The largest splinter was 72 in. (1,829 mm) long and began 23 in. (584 mm) upstream from post no. 6. A 54-in. (1,372-mm) long splinter and a 49-in. (1,245-mm) long splinter ran nearly parallel to each other, starting at the same point 40 in. (1,016 mm) downstream from post no. 6. The farthest upstream splinter was located 17 in. (432 mm) upstream from post no. 5, but it only measured 5 in. (127 mm) in length, 2 in. (51 mm) in width, and $\frac{1}{8}$ in. (3 mm) in height. The farthest downstream splinter was $47\frac{1}{2}$ in. (1,207 mm) long and began 17 in. (432 mm) downstream from post no. 7.

A 10-in. (254-mm) x $7\frac{1}{2}$ -in. (191-mm) x $3\frac{1}{2}$ -in. (89-mm) gouge was located 13 in. (330 mm) upstream from post no. 6. A smaller gouge was also found on the upstream face of the blockout at post no. 7 and located 2 in. (51 mm) from the bottom. A thin piece of the rail, measuring 47 in. (1,194 mm) in length, detached from its initial location at 24 in. (610 mm) downstream from post no. 6. Concrete spalled on the upstream face of post no. 7 at 49 in. (1,245 mm) from the bottom, but the noise wall itself remained undamaged.

Three post-to-rail bolts on the front face of the rail were embedded and shifted different lengths. The top post-to-rail bolt at post no. 6 was shifted 1 in. (25 mm) downstream, the top post-to-rail bolt at post no. 7 was shifted $\frac{1}{2}$ in. (13 mm) upstream, and the top post-to-rail bolt at post no. 9 was shifted $\frac{1}{2}$ in. (13 mm) downstream.

The maximum lateral permanent set of the barrier system was $\frac{7}{8}$ in. (22 mm), which occurred at the midspan of the rail between post nos. 6 and 7, as measured in the field. The maximum permanent set of the posts was $\frac{1}{4}$ in. (6 mm) at rail height of post nos. 6 and 7, as measured in the field. The maximum permanent set of the top of the posts was approximately 0.3 in. (8 mm) and 0.5 in. (13 mm) at the top of post nos. 6 and 7, respectively, as determined from high-speed digital video analysis. The maximum lateral dynamic post and rail deflections were 3.8 in. (96 mm) at the top of post no. 7 and 1.1 in. (28 mm) at the top of the rail at post no. 6, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 44.5 in. (1,132 mm) at the top of post no. 7, also determined from high-speed digital video analysis.

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figure 51. The maximum occupant compartment intrusion values are listed in Table 5 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. The entire A-pillar (lateral), side door above seat, floor pan, and roof deformed slightly outward, which is not considered crush toward

the occupant, is denoted as negative numbers in Table 5, and is not evaluated by MASH 2016 criteria. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

Location	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	1.5 (38)	≤ 9 (229)
Floor Pan & Transmission Tunnel	-2.0 (-51)	N/A
A-Pillar	0.4 (10)	≤ 5 (127)
A-Pillar (Lateral)	-1.0 (-25)	N/A
B-Pillar	0.3 (8)	≤ 5 (127)
B-Pillar (Lateral)	0.2 (5)	<i>≤</i> 3 (76)
Side Front Panel (in Front of A-Pillar)	6.1 (156)	≤ 12 (305)
Side Door (Above Seat)	-1.3 (-33)	N/A
Side Door (Below Seat)	2.6 (66)	≤ 12 (305)
Roof	-1.1 (-28)	N/A
Windshield	0 (0)	≤ 3 (76)
Side Window	No shattering	No shattering resulting from contact with structural member of test article
Dash	1.1 (28)	N/A

Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. MNNW-1

Note: Negative values denote outward deformation

N/A - Not applicable

The majority of damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The right side of the bumper was crushed inward and back, while the left side buckled outward. The size of the crush was 78 in. (1,981 mm) in length, 14 in. (356 mm) in width, and 30 in. (762 mm) in height. The right-front quarter panel was crushed 7 in. (178 mm) into the engine compartment and the cab of the vehicle. The right-front door was also crushed inward. Beginning at the front edge of the door, the area of crush was 45 in. x 20 in. (1,143 mm x 508 mm). A 39-in. (991-mm) long rip in the sheet metal also ran the length of the right-front door. The right-rear door also had a large, 42-in. (1,067-mm) long dent spanning the entire length of the door. The right side of the vehicle bed was crushed inward, causing it to bend outward 3 in. (76 mm) behind the right-rear tire. The vehicle grille disengaged upon impact with the barrier. The right side of the windshield was cracked. All other components of the vehicle were undamaged.

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are

shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 39. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

		Trans	Transducer	
Evaluati	Evaluation Criteria		SLICE-2 (primary)	Limits
OIV	Longitudinal	-24.43 (-7.45)	-24.08 (-7.34)	±40 (12.2)
ft/s (m/s)	Lateral	-23.87 (-7.27)	-26.09 (-7.95)	±40 (12.2)
ORA	Longitudinal	-7.63	-7.59	±20.49
g's	Lateral	-8.63	-7.33	±20.49
MAX.	Roll	27.7	26.7	±75
ANGULAR DISPL.	Pitch	-19.9	-21.0	±75
deg.	Yaw	30.3	30.1	not required
THIV ft/s (m/s) PHD		33.26 (10.13)	33.93 (10.34)	not required
		.	0.1.1	

9.97

1.34

9.14

1.46

not required

not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNNW-1

6.7 Discussion

g's ASI

The analysis of the test results for test no. MNNW-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 3.7 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MNNW-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

Figure 39. Summary of Test Results and Sequential Photographs, Test No. MNNW-1

Figure 40. Additional Sequential Photographs, Test No. MNNW-1

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 41. Documentary Photographs, Test No. MNNW-1

Figure 42. Documentary Photographs, Test No. MNNW-1

Figure 43. Documentary Photographs, Test No. MNNW-1

Figure 44. Documentary Photographs, Test No. MNNW-1

Figure 45. Documentary Photographs, Test No. MNNW-1

Figure 46. Impact Location, Test No. MNNW-1

Figure 47. Vehicle Final Position and Trajectory Marks, Test No. MNNW-1

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 49. System Damage, Test No. MNNW-1

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 50. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MNNW-1

Figure 51. Vehicle Damage, Test No. MNNW-1

7 FULL-SCALE CRASH TEST NO. MNNW-2

7.1 Static Soil Test

A static soil test was conducted before test no. MNNW-1, which demonstrated a soil resistance above the baseline test limits. Since the system was not deemed to have significant soil dependence as discussed previously due to large posts, heavy mass, and deep post embedment depth, a static soil test was not conducted before test no. MNNW-2.

7.2 Weather Conditions

Test no. MNNW-2 was conducted on March 9, 2018 at approximately 2:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 7.

Temperature	52° F
Humidity	34%
Wind Speed	15 mph
Wind Direction	60° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.05 in.
Previous 7-Day Precipitation	0.09 in.

Table 7. Weather Conditions, Test No. MNNW-2

7.3 Test Description

The noise wall system was thought to behave similarly to a rigid barrier since minimal deflection was expected near the ground line. Table 2.7 of MASH 2016 recommends using an impact point approximately 3.6 ft (1.1 m) upstream from a post or splice for rigid barriers. Initial vehicle impact was to occur $43^{5}/_{16}$ in. (1,100 mm) upstream from the center of the rail splice between post nos. 6 and 7, as shown in Figure 59, which was selected using Table 2.7 of MASH 2016 to maximize the probability of wheel snag.

The 2,431-lb (1,103-kg) small car impacted the noise wall system at a speed of 63.1 mph (101.5 km/h) and at an angle of 25.4 degrees. The actual point of impact was about $2\frac{7}{8}$ in. (73 mm) upstream from the targeted impact point. A sequential description of the impact events is contained in Table 8. A summary of the test results and sequential photographs are shown in Figure 52. Additional sequential photographs are shown in Figure 53. Documentary photographs of the crash test are shown in Figure 54. The vehicle came to rest 144 ft – 6 in. (44.0 m) downstream and 56 ft – 5 in. (17.2 m) laterally in front of the barrier after brakes were applied. The vehicle trajectory and final position are shown in Figures 52 and 60.

TIME (sec)	EVENT
0.000	Vehicle's front bumper contacted rail between post nos. 6 and 7.
0.006	Vehicle's front bumper deformed, and vehicle's right headlight contacted rail.
0.012	Vehicle's right-front hood contacted rail.
0.014	Vehicle's right fender contacted rail.
0.018	Vehicle's right headlight shattered.
0.020	Rail between post nos. 6 and 7 splintered.
0.024	Post no. 7 deflected backward.
0.032	Vehicle's right side grille contacted rail, and vehicle yawed away from system.
0.034	Vehicle's right-front door deformed, and vehicle pitched downward.
0.036	Post no. 6 deflected backward, and vehicle's grille deformed.
0.040	Vehicle's windshield cracked.
0.044	Vehicle's right-front door contacted rail.
0.054	Vehicle rolled away from system.
0.058	Post no. 8 deflected backward, and vehicle's roof deformed.
0.068	Vehicle's right-front tire contacted post no. 7.
0.090	Post no. 6 deflected forward.
0.098	Post no. 7 deflected forward.
0.128	Vehicle's front bumper cover deformed and contacted ground.
0.142	Post no. 8 deflected forward.
0.146	Vehicle's right-rear door contacted rail.
0.150	Vehicle rolled toward system.
0.152	Vehicle pitched upward.
0.178	Vehicle was parallel to system at a speed of 43.6 mph (70.1 km/h).
0.198	Vehicle's right quarter panel contacted rail.
0.248	Vehicle's front bumper contacted ground.
0.250	Vehicle's rear bumper contacted rail.
0.336	Vehicle exited system at a speed of 43.0 mph (69.1 km/h) and at an angle of 5.6 degrees.
0.420	Vehicle pitched downward.
0.640	Vehicle's front bumper cover contacted ground.

 Table 8. Sequential Description of Impact Events, Test No. MNNW-2

7.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 62 and 61. Barrier damage consisted of contact marks on the front face of the rail, gouging of the rail, and spacer block rotation. The length of vehicle contact along the barrier was approximately 12 ft $-7\frac{1}{2}$ in. (3.8 m), which spanned 21¹/₄ in. (540 m) downstream from the centerline of post no. 6 to 19¹/₂ in. (495 mm) upstream from the centerline of post no. 8.

The largest gouge, found on top of the rail, was $66\frac{3}{4}$ in. (1,695 mm) long and began 7 in. (178 mm) upstream from the centerline of post no. 7. Another large gouge was found toward the bottom of the rail at the centerline of post no. 7 and extended $58\frac{1}{2}$ in. (1,486 mm) downstream. Three more gouges were seen near the point of impact. Those gouges measured 47 in. (1,194 mm), 29 in. (737 mm), and 22 in. (559 mm) in length and began 6 in. (152 mm) upstream, 1 in. (25 mm) upstream, and 10 in. (254 mm) downstream from the impact point, respectively. The smallest gouge was located on the wood spacer at post no. 7 and $2\frac{1}{2}$ in. (64 mm) from the front of the concrete post. The gouge was $4\frac{1}{2}$ in. (114 mm) long, running from the bottom of the spacer block upward. The spacer blocks at post nos. 5 and 7 were both rotated $\frac{1}{8}$ in. (3 mm) upstream.

The maximum lateral permanent set of the barrier system was $\frac{1}{8}$ in. (3 mm), which occurred both at rail height of post no. 7 and at the midspan of the rail between post nos. 5 and 6, as measured in the field. The maximum lateral permanent set of the top of the posts was approximately 0.1 in. (3 mm), which occurred at the top of post no. 6, as determined from high-speed digital video analysis. The maximum lateral dynamic post and rail deflections were 4.5 in. (114 mm) at the top of post no. 7 and 1.9 in. (48 mm) at the midspan of the rail between post nos. 6 and 7, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 45.2 in. (1,148 mm) at the top of post no. 7, also determined from high-speed digital video analysis.

7.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 62 and 61. The maximum occupant compartment intrusion values are listed in Table 9 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of damage was concentrated on the right-front corner and right side of the vehicle where the impact had occurred. The right side of the front bumper was torn off 24 in. (610 mm) from the centerline of the vehicle. The right headlight was completely disengaged. The right side of the hood was crushed inward and back toward the center of the vehicle. The right fender was also crushed inward. The crushed area of the fender was 44 in. (1,118 mm) long, 23 in. (584 mm) wide, and 8 in. (203 mm) deep. An 8-in. (203-mm) section of the outer rim of the right-front wheel was bent inward toward the center axis of the wheel. The right-front door and the right-rear door were both crushed along their entire length and shifted 1 in. (25 mm) toward the back of the vehicle, although the crushing on the right-front door was more extensive than

the crushing on the right-rear door. Minor crushing was also found on the right quarter panel, just above the right-rear wheel well. The right side of the windshield was cracked, and the remainder of the vehicle was undamaged.

Location	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	0.5 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1.3 (32)	≤ 12 (305)
A-Pillar	1.0 (25)	≤ 5 (127)
A-Pillar (Lateral)	0.5 (13)	≤ 3 (76)
B-Pillar	0.4 (10)	≤ 5 (127)
B-Pillar (Lateral)	0.2 (5)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	1.9 (48)	≤ 12 (305)
Side Door (Above Seat)	1.0 (25)	≤ 9 (229)
Side Door (Below Seat)	1.2 (30)	≤ 12 (305)
Roof	0.7 (18)	≤ 4 (102)
Windshield	0 (0)	≤ 3 (76)
Side Window	No shattering	No shattering resulting from contact with structural member of test article
Dash	1.1 (28)	N/A

Table 9. Max	imum Occupan	t Compartment	Intrusion by	Location,	Test No.	MNNW-2
--------------	--------------	---------------	--------------	-----------	----------	--------

N/A – Not applicable

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 10. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 52. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Trans	MASH 2016		
		SLICE-1 (primary)	SLICE-2	Limits	
OIV	Longitudinal	-24.30 (-7.41)	-23.73 (-7.23)	±40 (12.2)	
ft/s (m/s)	Lateral	-29.79 (-9.08)	-28.42 (-8.66)	±40 (12.2)	
ORA	Longitudinal	-6.78	-6.20	±20.49	
g's	Lateral	-3.97	-4.55	±20.49	
MAX.	Roll	6.0	-3.3	±75	
ANGULAR DISPL.	Pitch	-4.1	-2.9	±75	
deg.	Yaw	-37.0	-37.2	not required	
THIV ft/s (m/s)		33.17 (10.11)	32.46 (9.90)	not required	
PHD g's		6.83	6.17	not required	
ASI		2.25	2.14	not required	

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNNW-2

7.7 Discussion

The analysis of the test results for test no. MNNW-2 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 5.6 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MNNW-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

_ 0	0.000 sec	0.100 sec	s 0.200 sec	and and a	0.300	sec + ²³ / ₁₅₉	<u>لم</u> الم	1 400 sec
	25.4	Exit Box LF LF LR LR RR RR	RF 56'-5"	17.2 m]			¹⁷ [436]	
• •	Test Agency	5 7 8 9 10 11 12 	2 3				30"[76:	2]
•	MASH 2016 Test Designation No.		• Test A	rticle D	amage	_ _	_≁	Minimal
•	Test Article		• Vehic	e Dama	ge			Moderate
•	Total Length) V	DS [12]	 			01-RFQ-4
•	Key Component - Rail		C	DC [13].				01-RYEW-3
	Length) М	aximum	Interior Deformat	ion		1.9 in. (48 mm)
	Width) • Maxin	num Tes	t Article Deflection	ns		
	Depth) Pe	rmanen	set ¹ / ₈ in. (3 m	m) at post no. 7 a	nd midspan betv	ween post nos. 5 and 6
•	Key Component - Concrete Post		D	ynamic.	·····		4.5 in. (114 m	m) at top of post no. 7
	Length) W	orking V	Width		5.2 in. (1,148 m	m) at top of post no. 7
	Width) • Transo	lucer Da	ta			
	Spacing)			Transc	lucer	MACH 2016
•	Soil Type	Coarse Crushed Limeston	e E	valuatio	n Criteria	SLICE-1	SLICE 2	MASH 2010
•	Venicle Make/Model	2010 Hyundai Accen	t			(primary)	SLICE-2	Linit
	Curb			I	Longitudinal	-24.30	-23.73	±40
	Gross Static	2,505 lb (1,105 kg	ft/s	v	Longitudinai	(-7.41)	(-7.23)	(12.2)
•	Impact Conditions		(m/s	, 5)	Lateral	-29.79	-28.42	± 40
-	Speed	63.1 mnh (101.5 km/h)	-/	Euterui	(-9.08)	(-8.66)	(12.2)
	Angle	25.4 deo	OR.	A	Longitudinal	-6.78	-6.20	±20.49
	Impact Location $46^{3/16}$ in. (1)	.173 mm) US from rail splice between post nos. 6 &	7 g's	5	Lateral	-3.97	-4.55	±20.49
•	Impact Severity 59.7 kin-ft	(80.9 kJ) > 51 kip-ft (69.7 kJ) limit from MASH 2010	5 MA	Х	Roll	6.0	-3.3	±75
•	Exit Conditions	· · · · · · · · · · · · · · · · · · ·	ANGU	LAR	Pitch	-4.0	-2.9	±75
	Speed) DIS	Р.	Verr	27.0	27.2	not required
	Angle		. deg		I aw	-57.0	-37.2	not required
•	Exit Box Criterion	Pas	s	THIV – I	tt/s (m/s)	33.17 (10.11)	32.46 (9.90)	not required
•	Vehicle Stability	Satisfactor	y	PHD	- g's	6.83	6.17	not required
•	Vehicle Stopping Distance		n	A	51	2.25	2.14	not required

Figure 52. Summary of Test Results and Sequential Photographs, Test No. MNNW-2

73

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 53. Additional Sequential Photographs, Test No. MNNW-2

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 54. Documentary Photographs, Test No. MNNW-2

Figure 55. Documentary Photographs, Test No. MNNW-2

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 56. Documentary Photographs, Test No. MNNW-2

Figure 57. Documentary Photographs, Test No. MNNW-2

Figure 58. Documentary Photographs, Test No. MNNW-2

Figure 59. Impact Location, Test No. MNNW-2

Figure 60. Vehicle Final Position and Trajectory Marks, Test No. MNNW-2

Figure 61. System Damage, Test No. MNNW-2

Figure 62. System Damage, Test No. MNNW-2

Figure 63. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MNNW-2

Figure 64. Vehicle Damage, Test No. MNNW-2

January 31, 2019 MwRSF Report No. TRP-03-396-19

85

Figure 65. Vehicle Damage, Test No. MNNW-2

8 DESIGN DETAILS – TEST NO. MNNW-3

The test installation consisted of a wood plank noise wall with concrete posts and a glulam timber rubrail, as shown in Figures 66 through 83 for test no. MNNW-3. The test installation was similar to the system evaluated in test nos. MNNW-1 and MNNW-2. Test no. MNNW-3 had the noise wall installed on the front side of the posts, utilized shorter splice bolts, and utilized hex-head bolts for the post-to-rail connection rather than using round head bolts with washers or dome head bolts. Photographs of the test installation are shown in Figures 84 and 85 for test no. MNNW-3. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix C.

The test installation for the barrier system was constructed of a wood plank noise wall, which spanned across twelve concrete support posts, and was protected by 89 ft (27.1 m) of glulam timber rail sections, as shown in Figure 66. The total width of the system from the front of the glulam timber rail to the back of the concrete post was 34³/₄ in. (883 mm). The glulam timber for the rail members was fabricated with Combination No. 2 West Coast Douglas Fir material, as specified in AASHTO's LRFD Bridge Design Specifications [4], and it was treated with pentachlorophenol in heavy oil to a minimum net retention of 0.6 lb/ft³ (9.61 kg/m³), as specified in AWPA Standard U1 to the requirements of Use Category 4A (UC4A) [11]. The rail members were $13\frac{1}{2}$ in. (343 mm) wide by $10\frac{3}{4}$ in. (273 mm) deep with a 30-in. (762-mm) top mounting height, as measured from the top of the soil surface to the top of the rubrail. Five Hshaped assemblies were used to splice together the rail ends, thus resulting in the total rail length. The H-shaped, welded splice plates consisted of two ASTM A36 steel plates measuring 13¹/₂ in. wide x 29¹/₄ in. long x ³/₈ in. thick (343 mm x 743 mm x 10 mm) and one orthogonal ASTM A36 steel plate 13¹/₂ in. wide x 10 in. long x ³/₈ in. thick (343 mm x 254 mm x 10 mm), as shown in Figure 77. At all rail splice locations, eight 1¹/₄-in. (32-mm) diameter by 12-in. (305-mm) long ASTM A307 Grade A galvanized dome head bolts with a 11/4-in. (32-mm) diameter flat washer and a 1¼-in. (32-mm) diameter hex nut were used to attach to rail sections to the splice plates, as shown in Figures 66, 67, and 77. The rubrail was offset away from the posts by 6 in. (152 mm) with the wood batten, noise wall planks, and wood nailer, as shown in Figures 66, 67, and 78.

A wood plank noise wall system was attached to the front side of the concrete posts. The noise wall planks consisted of 2-in. x 8-in. x 16-ft (51-mm x 203-mm x 4.9-m) tongue and groove wood planks with a minimum bending stress of 1,500 psi (10.3 MPa). The planks were attached to the concrete posts with a 2-in. x 8-in. x 10-ft (51-in. x 203-mm x 3.0-m) wood batten with a minimum bending stress of 1,500 psi (10.3 MPa) and a 3-in. x 10-ft (76-mm x 254-mm x 3.0-m) wood nailer with a minimum bending stress of 1,200 psi (8.3 MPa). To allow for the attachment of the anchor cable, the end two sections of noise wall planks were installed on the back side of the concrete posts.

For the third crash test, the sponsors requested that hex-head bolts be used for the post-torail connection in lieu of the specified dome head bolts. Two post-to-rail bolts were attached to the concrete posts with field-installed, threaded inserts. The hex-head bolts were ³/₄-in. (19-mm) diameter ASTM A307 Grade A by 18 in. (457 mm) long with a ³/₄-in. (19-mm) washer that had a 2-in. (51-mm) outer diameter. The hex-head bolts and washers were recessed ⁵/₈ in. (16 mm) inward from the front face of the rail so that the bolt head was flush with the front face of the rail. The entire system was constructed with twelve prestressed concrete posts, as shown in Figures 66, 74, 75, and 77. All twelve posts were concrete sections measuring 12 in. wide x 18 in. deep x 18 ft long (305 mm x 457 mm x 5.5 m), as shown in Figure 75. The concrete posts were spaced 8 ft (2.4 m) on center along the length of the system with a soil embedment depth of 8 ft (2.4 m), as shown in Figure 66. The concrete used for the prestressed concrete posts had a minimum compressive strength of 5,500 psi (37.9 MPa).

The concrete posts utilized in the test installation were configured with the longitudinal prestressing strands in lieu of longitudinal reinforcement bars, as shown in Figure 75. The steel prestressing strands consisted of ¹/₂-in. (12.7-mm) diameter, 270 ksi (1,862 MPa) LO-LAX prestress strands extending the length of the post. The loop bars were no. 3 reinforcing bars, 53 in. (1.3 m) long, bent into a rectangular shape, and were spaced 18 in. (457 mm) on center. A minimum concrete cover of 2 in. (51 mm) was used for all the rebar and strands placed within the posts. The reinforcing bars in the post were ASTM A615 Grade 60 epoxy-coated rebar. The post reinforcement details are shown in Figures 75 and 76.

A BCT anchor cable assembly attached the end post to a cable anchor bracket on the back of the rubrail. Each cable anchor bracket was attached to the rail section with eight 1¹/₄-in. (32-mm) diameter by 14-in. (356-mm) long ASTM A307 Grade A galvanized dome head bolts and a 1¹/₄-in. (32-mm) diameter hex nut.

During installation of the test article, a few items were modified to ease construction, including:

- (1) The slots in the rubrail were not in the correct location. Thus, some slots in the rail were enlarged to align post-to-rail bolts with the threaded inserts in the concrete posts. At post no. 5, a 2¹/₂-in. (64-mm) outer diameter washer was utilized due to an oversized hole in the rail.
- (2) The galvanized post-to-rail bolt threads were not compatible with the threads in the zinc-plated, threaded inserts that were installed in the posts. Thus, the galvanization was stripped from the threaded ends of the bolts so that they could be installed.
- (3) The ends of the timber rubrails required planning to fit within the H-shaped splice plates.
- (4) For testing purposes only, double-headed nails were used instead of part g3 to allow the noise wall sections to remain intact when switching from the back-side noise wall configuration to the front-side noise wall configuration.

After construction of the system, a few modifications were identified that would ease construction of future installations. Although the noise wall and rubrail system can be installed in the as-tested configuration shown in Figures 66 through 83, MwRSF would recommend future installations utilize the modified system details shown in Chapter 12.

Figure 66. System Layout, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 67. Rail Section Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

90

Figure 68. Noise Wall Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

91

Figure 69. Post Attachment Nailing Pattern, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 70. Timber Rail Downstream End Segment Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 71. Timber Rail, Test Nos. Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 72. Timber Rail Upstream End Segment, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 73. Anchor Plate Assembly, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 74. Cable Anchor Plate Components, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 75. Concrete Post Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 76. Concrete Post Reinforcement, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 77. Splice Plate Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 78. Noise Wall Components, Test Nos. Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 79. Wood Plank Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 80. BCT Anchor Cable Assembly Details, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 81. Hardware, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

ltem No.	QTY.	Description	Material Specification			Treatment Specification	n H	ardware Guide
a1	1	125 5/8"x13 1/2"x10 3/4" [3,191x343x273] Timber Rail End Section	GLULAM — Comb. 48(SP) or Comb. 2(Western species)			See Notes 1-3		1 <u></u> 1
a2	4	191 1/4"x13 1/2"x10 3/4" [4,858x343x273] Timber Rail Section	GLULAM – Comb. 48(SP) specie	l or Comb. 2 s)	2(Western	See Notes 1-3		-
a3	1	173 5/8"x13 1/2"x10 3/4" [4,410x343x273] Timber Rail End Section	GLULAM – Comb. 48(SP specie) or Comb. 2 s)	2(Western	See Notes 1-3		-
a4	2	13 1/2"x9"x6" [343x229x152] Wood Blockout	GLULAM – Comb. 48(SP specié	or Comb. 2 s)	(Western	See Notes 1-3		_
b1	2	10 1/2"x9"x3/8" [229x267x10] Steel Plate	ASTM .	436		ASTM A123**		_
b2	4	3"x3"x1/4" [76x76x6] Steel Gusset	ASTM .	436		ASTM A123**		—
bЗ	2	3"x3"x1/2" [76x76x13] Steel Plate	ASTM .	436		ASTM A123**		8 <u>-</u> 8
c1	12	12"x18" [305x457], 18' [5,486] Long Concrete Post	Min. f'c = 4,000	ksi (27.6 MP	a]	4 <u>—</u> 1		-
c2	156	3/8" [10] Dia., 53" [1,346] Long Rebar	ASTM A615	Gr. 60		Epoxy Coated (ASTM A77: A934)	5 or	
c3*	48	1/2" [13] Dia., 210" [5,334] Long Rebar	ASTM A615	Gr. 60		Epoxy Coated (ASTM A77: A934)	5 or	-
c4*	48	1/2" [13] Dia, 7-Wire Pre-Stressing Strand, 216" [5,486] Long	ASTM A416	Gr. 270				-
d1	10	29 1/4"x13 1/2"x3/8" [743x343x10] Steel Plate	ASTM .	436		ASTM A123**		-
d2	5	13 1/2"x10"x3/8" [343x254x10] Steel Plate	ASTM .	436	8 (G	ASTM A123**		-
e1	14	3"x10" [76x254], 10' [3,048] Long Vertical Wood Nailer	SYP Gr. No. 1 Dense or sawn or Douglas Fir Douglas Fir-Larch (North Douglas Fir-South Select with min F'b = 1,2'	better stand —Larch No.) Select Stru Structural or)0 psi [8.3)	ard rough 1 or Ictural or equivalent MPa]	See Note 4		-
e2	51	2"x8" [51x203], 8' [2,438] Long Tongue and Groove Wood Plank	SYP Gr. Select Douglas Fir-Larch Select with min F'b = 1,50	: Structural Structural or 0 psi [10.3	equivalent MPa]	See Note 4		-
e3	68	2"x8" [51x203], 16' [4,877] Long Tongue and Groove Wood Plank	SYP Gr. Selec: Douglas Fir-Larch Select with min F'b = 1,50	: Structural Structural or 0 psi [10.3	equivalent MPa]	See Note 4		-
e4	14	2"x8" [51x203], 10' [3,048] Long Wood Batten	SYP Gr. Select Douglas Fir-Larch Select with min F'b = 1,50	: Structural Structural or 0 psi [10.3	equivalent MPa]	See Note 4		-
e5	6	2"x4" [51x102], 10' [3,048] Long Wood Plank	SYP Gr. Select Douglas Fir-Larch Select with min F'b = 1,50	Structural Structural or 0 psi [10.3	equivalent MPa]	See Note 4		-
*Use	either	part c3 or c4. ** Weld befo	ore galvanization.	52 - 25.0°.				
Notes:	(1)	Timber rail sections and blockouts shall be treated	with					SUCCT.
		b $/ft^3$ (9.6 kg/m ³) in appardance with AWPA Stand	and 111 to the requirements			MNDOT Noise Wall		17 of 18
		Use Category 4A (UC4A).	and of to the requirements	TVI W	RSF	Timber Rail		DATE:
	(2)	Wood shall be cut, drilled, and completely fabricate treatment with preservative. Drain excess chemicals	d prior to and dry all treated			Test No. MNNW-3		11/15/2018
	(3)	wood at the place of manufacture. All field cuts, bore holes, and damages shall be tr	eated with material	Midwest	Roadside	Bill of Materials		DRAWN BY: MES/JEK/DJ W
		acceptable to the engineer prior to installation.		Safety	Facility	DWG. NAME.	SCALE: None	REV. BY:
	(4)	Provide preservative treated timber products per Sc	pec. 3491.			MNNW-3_R4	UNITS: in.[mm]	JUDS/RKF

Figure 82. Bill of Materials, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
f1	2	BCT Anchor Cable	-	-	FCA01
f2	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
f3	2	2 3/8" [60] O.D. x 12" [305] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	-
g1	48	1 1/4"—7 UNC [M30x3.5], 12 1/4" [311] Long Round Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB09a
g2	24	3/4"—10 UNC [M20x2.5], 18" [457] Long Hex Head Bolt	ASTM A307 Gr. A or Equivalent	ASTM A153 or B695 Closs 55 or F2329	FBX20a
g3	1192	16D Ring Shank Nail	.—	_	-
g4	436	No. 8 x 2 1/2" [64] Long Bugle Head Exterior Screw	-	ASTM A153 or B695 Class 55	.
g5	42	1/2" [13] Dia. Round Plate Washer	ASTM F844	ASTM A123 or A153 or F2329	-
g6	42	1/2"—6 Coil Thread [M14x4], 3" [76] Long Hex Head Bolt	ASTM A307 Gr. A or Equivalent	ASTM A153 or B695 Class 55 or F2329	-
g7	24	3/4"-10 UNC [M20x2.5] Drop-In Concrete Anchor	Hilti Item No. 258541	Zinc-Plated	-
g8	72	1/2"—6 Coil Thread [M14x4] Concrete Anchor	As Supplied	Galvanize per spec. 3392 or electroplate per ASTM B633 SC4 Type II	-
g9	48	1 1/4" [32] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC30a
g10	24	3/4" [19] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a

MARSE	MNDOT Noise Wall Timber Rail Test No. MNNW-3		SHEET: 18 of 18 DATE: 11/15/2018
Midwest Roadside	Bill of Materials		DRAWN BY: MES/JEK/D. W
Safety Facility	DWG. NAME. S MNNW-3_R4 U	SCALE: None JNITS: in.[mm]	REV. BY: JDS/RKF

Figure 83. Bill of Materials, Test No. MNNW-3 (Recommended updates provided in Chapter 12)

Figure 84. Test Installation Photographs, Test No. MNNW-3

Figure 85. Test Installation Photographs, Test No. MNNW-3

9 FULL-SCALE CRASH TEST NO. MNNW-3

9.1 Static Soil Test

A static soil test was conducted before test no. MNNW-1, which demonstrated a soil resistance above the baseline test limits. Since the system was not deemed to have significant soil dependence, as discussed previously, due to large posts, heavy mass, and deep post embedment depth, a static soil test was not conducted before test no. MNNW-3. Additionally, it was noted that a very shallow frostline existed. Since the system was not believed to have soil dependence and had deflected less than 1 in. (25 mm) at the ground line in both test nos. MNNW-1 and MNNW-2, it was determined that the shallow frost would not affect the performance of the system.

9.2 Weather Conditions

Test no. MNNW-3 was conducted on April 4, 2018 at approximately 2:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 11.

Temperature	43° F
Humidity	38%
Wind Speed	13 mph
Wind Direction	170° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.08 in.
Previous 7-Day Precipitation	0.14 in.

Table 11. Weather Conditions, Test No. MNNW-3

9.3 Test Description

The noise wall system was thought to behave similarly to a rigid barrier since minimal deflection was expected near the ground line. Table 2.7 of MASH 2016 recommends an impact point approximately 4.3 ft (1.3 m) upstream from a post or splice for rigid barriers. In test no. MNNW-1, the impact point was selected to be the same as used in test no. MNTR-1 to maximize vehicle snag on a post [1], which was 12 in. (305 mm) upstream from post no. 6, or 9 ft (2.7 m) upstream from post no. 7. After video analysis of test no. MNNW-1, the maximum vehicle extent over the rail was very near the same time that the vehicle reached post no. 7. Thus, the critical impact point for test no. MNNW-3 was believed to be in the range of a minimum of 4.3 ft (1.3 m) upstream from post no. 7 and a maximum of 9 ft (2.7 m) upstream from post no. 7. Since the pickup truck in test no. MNNW-3 would not be able to reach the concrete posts with the noise wall installed on the front side of the posts, the maximum vehicle extent would occur over a shorter longitudinal length than observed in test no. MNNW-1. Thus, the critical impact point was selected in test no. MNNW-1. Thus, the critical impact point was selected near the center of the range and also 4.3 ft (1.3 m) upstream from the rail splice between post nos. 6 and 7, or 6.3 ft (1.9 m) upstream from the centerline of post no. 6. Initial

vehicle impact was to occur $51^{3}/_{16}$ in. (1,300 mm) upstream from the center of the rail splice between post nos. 6 and 7, as shown in Figure 93, which was selected to maximize vehicle snag on the batten and splice.

The 5,028-lb (2,281-kg) crew cab pickup truck impacted the noise wall system at a speed of 61.2 mph (98.5 km/h) and at an angle of 25.9 degrees. The actual point of impact was about $1^{13}/_{16}$ in. (46 mm) downstream from the target impact point. A sequential description of the impact events is contained in Table 12. A summary of the test results and sequential photographs are shown in Figure 86. Additional sequential photographs are shown in Figure 87. Documentary photographs of the crash test are shown in Figure 88. The vehicle came to rest 74 ft – 7 in. (22.7 m) downstream and 56 ft – 11 in. (17.3 m) laterally behind the barrier after brakes were applied. The vehicle trajectory and final position are shown in Figure 86 and 94.

TIME (sec)	EVENT
0.000	Vehicle's front bumper contacted rail between post nos. 6 and 7.
0.004	Vehicle's front bumper deformed, and vehicle's right headlight contacted rail.
0.010	Vehicle's right-front tire contacted rail.
0.022	Vehicle's grille deformed.
0.026	Vehicle's right-front wheel rim deformed.
0.028	Post no. 6 deflected backward.
0.032	Post no. 7 deflected backward.
0.034	Vehicle's right-front door deformed.
0.038	Post no. 8 deflected backward.
0.044	Vehicle's hood contacted wall and deformed.
0.050	Vehicle's grille contacted wall.
0.060	Vehicle yawed away from system and pitched downward.
0.064	Vehicle rolled toward system.
0.068	Vehicle's right-side mirror contacted wall and deformed.
0.072	Vehicle's grille became disengaged.
0.078	Vehicle's hood contacted post batten no. 7.
0.088	Vehicle's right-front door contacted wall.
0.104	Vehicle's left headlight became disengaged.
0.124	Post no. 6 deflected forward.
0.126	Post no. 7 deflected forward.
0.140	Vehicle's left-rear tire became airborne.
0.142	Vehicle's right-rear door contacted rail.

0.156	Post no. 8 deflected forward.
0.232	Vehicle's right quarter panel contacted rail.
0.290	Vehicle was parallel to system at a speed of 35.0 mph (56.3 km/h).
0.304	Vehicle's right-rear tire contacted rail.
0.402	Vehicle's front bumper contacted ground.
0.450	Vehicle rolled away from system.
0.454	Vehicle's right-rear tire became airborne and exited system at a speed of 30.8 mph (49.5 km/h) and an angle of 8.4 degrees.
0.556	Vehicle yawed toward system.
0.596	Vehicle pitched upward.
0.798	Vehicle's right-rear tire regained contact with ground.
0.830	Vehicle rolled toward system.
0.832	Vehicle's left-rear tire regained contact with ground.
0.970	Vehicle pitched downward.
1.090	Vehicle's left-rear tire became airborne.
1.264	Vehicle pitched upward.
1.508	Vehicle's left-rear tire regained contact with ground.

9.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 96 and 95. Barrier damage consisted of contact marks on the front face of the rail, splintering of the timber rail, and bolt displacement. The length of vehicle contact along the barrier was approximately 12 ft $-4\frac{1}{2}$ in. (3.8 m), which spanned 14³/₄ in. (375 mm) downstream from the centerline of post no. 6 to 28³/₄ in. (730 mm) upstream from the centerline of post no. 8.

Contact marks were also visible on the front face of the noise wall and the wooden battens. Contact marks on the wall measured 30 in. (762 mm), 42 in. (1,067 mm), and 45 in. (1,143 mm) in length, respectively. The 30-in. (762-mm) mark began 20 in. (508 mm) above the top face of the rail and 16 in. (406 mm) upstream from the centerline between post nos. 6 and 7. The 42-in. (1,067-mm) mark began 8 in. (203 mm) above the top face of the rail and 22½ in. (572 mm) upstream from the centerline between post nos. 6 and 7. The 45-in. (1,143-mm) long mark began 2½ in. (64 mm) below the bottom face of the rail and 39 in. (991 mm) upstream from the centerline between post nos. 6 and 7. The 45-in. (1,143-mm) long mark began 2½ in. (64 mm) below the bottom face of the rail and 39 in. (991 mm) upstream from the centerline between post nos. 6 and 7. An 8-in. (203-mm) contact mark was also found on the wooden batten at post no. 7, about 21½ in. (546 mm) above the top face of the rail. The wood batten at post no. 7 also fractured approximately 18 in. (457 mm) from the bottom. The top and bottom post-to-rail bolts of post no. 7 were torn out of their respective holes and bent 2 in. (51 mm) downstream, and the rail splice between post nos. 6 and 7 was bent ¼ in. (6 mm) outward at its top upstream corner.

Splintering was common along the timber rail. The longest splinter damage on the rail began 8 in. (203 mm) downstream from the centerline between post nos. 6 and 7 and measured

103 in. (2,616 mm) in length. Two long splinters and a large gouge in the rail were found about 16 in. (406 mm) downstream from post no. 6 on the bottom front corner of the rail. The splinters were 26 in. (660 mm) long and $30\frac{1}{2}$ in. (775 mm) long, and the gouge was 6 in. (152 mm) long and 2 in. (51 mm) deep. On the bottom front corner of the rail, a 63-in. (1,600-mm) splinter was located 16 in. (406 mm) downstream from the centerline between post nos. 6 and 7. A $60\frac{1}{2}$ -in. (1,537-mm) long splinter began $12\frac{1}{2}$ in. (318 mm) downstream from post no. 6 and ran along the top front corner of the rail. Splintering also occurred on the top face of the rail. Three splinters measuring 74 in. (1,880 mm), 41 in. (1,041 mm), and 9 in. (229 mm) in length were found 74 in. (1,880 mm), 28 in. (711 mm), and $17\frac{1}{2}$ in. (445 mm) downstream from the rail splice between post nos. 6 and 7, respectively. An 8-in. (203-mm) splinter was also found on the wood batten at post no. 7, about 39 in. (991 mm) from the bottom of the bottom of the board.

The maximum lateral permanent set of the barrier system was ³/₈ in. (10 mm), which occurred both at the rail height of post no. 7 and at the midspan of the rail between post nos. 6 and 7, as measured in the field. The maximum lateral permanent set of the top of the posts was approximately 0.5 in. (13 mm), which occurred at the top of post no. 7, as determined from high-speed digital video analysis. The maximum lateral dynamic post and rail deflection was 7.0 in. (178 mm) at the top of post no. 7 and 1.3 in. (32.3 mm) at the midspan of the rail between post nos. 6 and 7, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 41.75 in. (1,060 mm) at the top of post no. 7, also determined from high-speed digital video analysis.

9.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 98 and 99. The maximum occupant compartment intrusion values are listed in Table 13 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. The entire A-pillar (lateral) and side door above the seat deformed outward, which is not considered crush toward the occupant, is denoted as negative numbers in Table 13, and is not evaluated by MASH 2016 criteria. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The grille and the right-front quarter panel were disengaged from the vehicle. The front bumper was crushed inward and back on the right side and bent outward in the middle. The crush on the right side of the bumper covered an area of 73 in. x 17 in. (1,854 mm x 432 mm) and penetrated to a depth of 20 in. (508 mm). A 35-in. x 14-in. (889-mm x 356-mm) section on the right side of the hood was crushed inward toward the center of the vehicle. The entire length of the right-front door was torn and crushed inward. The sheet metal tear on the right-front door was 2 in. (51 mm) wide, and the crush on the right-front door was 29 in. (737 mm). The force of impact caused the top frame of the right-front door to extend outward away from the vehicle. The right-rear door was also left ajar, but to a lesser extent. The right side of the windshield was cracked. The right-front windows shattered due to contact with the dummy's head.

Location	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	1.9 (48)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1.2 (30)	≤ 12 (305)
A-Pillar	0.6 (15)	≤ 5 (127)
A-Pillar (Lateral)	-0.8 (-20)	N/A
B-Pillar	0.1 (3)	≤ 5 (127)
B-Pillar (Lateral)	0.1 (3)	≤3 (76)
Side Front Panel (in Front of A-Pillar)	5.5 (140)	≤ 12 (305)
Side Door (Above Seat)	-4.0 (-102)	N/A
Side Door (Below Seat)	1.6 (41)	≤ 12 (305)
Roof	0.3 (8)	\leq 4 (102)
Windshield	0 (0)	≤3 (76)
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	0.4 (10)	N/A

Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. MNNW-3

Note: Negative values denote outward deformation N/A - Not applicable

9.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 14. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 14. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 86. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix H.

Evaluation Criteria		Trans	MASH 2016		
		SLICE-1	SLICE-2 (primary)	Limits	
OIV	Longitudinal	-27.45 (-8.37)	-26.65 (-8.12)	±40 (12.2)	
ft/s (m/s)	Lateral	-23.47 (-7.15)	-24.46 (-7.46)	±40 (12.2)	
ORA	Longitudinal	-7.74	-8.20	±20.49	
g's	Lateral	-7.32	-6.64	±20.49	
MAX.	Roll	11.1	6.7	±75	
ANGULAR DISPL.	Pitch	-7.2	6.1	±75	
deg.	g. Yaw -33.9		-33.7	not required	
THIV ft/s (m/s)		34.77 (10.60)	35.37 (10.78)	not required	
PHD g's		8.92	11.47	not required	
ASI		1.45	1.53	not required	

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNNW-3

9.7 Discussion

The analysis of the test results for test no. MNNW-3 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 8.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MNNW-3 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

			2)		2) 100
		0 300)O sec
Exit Box 25.9' Exit Box 25.9' 25.		0.500			3]
Test Agency				╽╢╧	
Test NumberMNNW-3					
Date				30'[762]	
MASH 2016 Test Designation No3-11					
Test ArticleMN Noise Wall				<u> </u>	
Total Length	 Test Article Da 	mage	_• <i>v</i> /-		Minimal
Key Component - Rail	 Vehicle Damag 	;e			Moderate
Length	VDS [12] .				01-RFQ-5
Width	CDC [13]				01-RYEW-5
Depth 10 ³ /4 in. (273 mm)	Maximum	Interior Deformat	10n		5.5 in. (140 mm
Key Component - Concrete Post	 Maximum Test 	Article Deflectio	ns		
Length	Duramia	Set % In. (10 m	im) at post no. 7 at	10 midspan between (178 mm) at 1	he top of post no.
Spacing $8 \text{ ft} (2.4 \text{ m})$	Working W	 /idth		(1.060 mm) at 1 in (1.060 mm) at 1	the top of post no. 7
Soil Type Coarse Crushed Limestone	Transducer Dat	a		in: (1,000 min) ut	ne top of post no. /
Vehicle Make /Model			Trans	ducer	
Curb	Evaluatio	n Criteria	CLICE 1	SLICE-2	MASH 2016
Test Inertial			SLICE-I	(primary)	Limit
Gross Static	OIV	Longitudinal	-27.45 (-8.37)	-26.65 (-8.12)	±40 (12.2)
Impact Conditions	ft/s (m/s)	Lateral	-23.47 (-7.15)	-24.46 (-7.46)	±40 (12.2)
Speed	ORA	Longitudinal	-7.74	-8.20	±20.49
All glu	g's	Lateral	-7.32	-6.64	±20.49
Impact Location	MAX	Roll	11.1	6.7	±75
Exit Conditions	ANGULAR	Pitch	-7.2	6.1	±75
Speed	DISP.	Vaw	33.0	33 7	not required
Angle	ueg.	1 aw	-33.7	-55.7	not required
Exit Box Criterion	THIV –	ft/s (m/s)	34.//	35.37 (10.78)	not required
Vehicle StabilitySatisfactory	רונס	- a's	8 07	(10.78)	not required
Vehicle Stopping Distance		- <u> </u>	1.45	1 53	not required
56 ft 11 in (17.3 m) Laterally Behind	A	51	1.43	1.55	not required

 56 ft – 11 in. (17.3 m) Laterally Behind
 ASI

 Figure 86. Summary of Test Results and Sequential Photographs, Test No. MNNW-3

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 87. Additional Sequential Photographs, Test No. MNNW-3

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 88. Documentary Photographs, Test No. MNNW-3

Figure 89. Documentary Photographs, Test No. MNNW-3

Figure 90. Documentary Photographs, Test No. MNNW-3

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 91. Documentary Photographs, Test No. MNNW-3

Figure 92. Documentary Photographs, Test No. MNNW-3

Figure 93. Impact Location, Test No. MNNW-3

Figure 94. Vehicle Final Position and Trajectory Marks, Test No. MNNW-3

Figure 95. System Damage, Test No. MNNW-3

Figure 96. System Damage, Test No. MNNW-3

Figure 97. Vehicle Undercarriage and Occupant Compartment Damage, Test No. MNNW-3

Figure 98. Vehicle Damage, Test No. MNNW-3

127

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 99. Vehicle Damage, Test No. MNNW-3

10 DISCUSSION

The three crash tests were compared, and some general conclusions were drawn. The lateral barrier force during each crash test was estimated using the primary vehicle accelerometer data. The longitudinal and lateral vehicle accelerations from each test, as measured at the vehicles' c.g., were processed using a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the lateral vehicular loading imparted to the barrier system. The estimated lateral barrier forces are shown in Figure 100.

Test nos. MNNW-1 and MNNW-3 were both conducted with the 2270P pickup truck and had impact severities of 117.2 kip-ft (158.9 kJ) and 120.4 kip-ft (163.3 kJ), respectively. Test nos. MNNW-1 and MNNW-3 showed very similar peak lateral forces of 69.8 kips (310.5 kN) and 72.9 kips (324.3 kN), respectively, which indicates that the back-side and front-side noise wall configurations performed in a very similar manner. In test no. MNNW-1, the secondary impact with the rear axle of the pickup was more significant than the secondary impact observed in test no. MNNW-3. The test no. MNNW-1 pickup truck also had much more rear axle damage than observed on the test no. MNNW-3 pickup truck. In test no. MNNW-2, the small car exerted an estimated 52.1-kip (231.8-kN) lateral impact force to the barrier. Note that the small car impact event had a noticeably shorter time duration than observed for the pickup truck crash events.

Since the pickup truck impact events revealed an estimated lateral barrier force that was much greater than observed in the small car impact, the lateral dynamic barrier deflections observed in the pickup truck tests were expected to be much greater than observed for the small car test. However, this outcome did not occur. Dynamic deflection at the top of the posts was 3.8 in. (96.5 mm), 4.5 in. (114.3 mm), and 7.0 in. (177.8 mm) for test nos. MNNW-1, MNNW-2, and MNNW-3, respectively. The increased lateral dynamic barrier deflections between tests was believed to be partially due to an accumulation of soil damage between crash tests. For this research program, all of the deeply-embedded, vertical concrete posts were reused between tests. Further, the surrounding soil was not re-compacted around the 8-ft (2.4 m) deep posts after each test. Instead, the soil was only filled in as needed to reset and plumb the posts. Thus, the soil below grade would not likely be as firmly compacted against the posts for the two later tests. Rather, slight soil gaps may have been present below grade, followed by a stiff, compacted soil interface, which would have occurred after the first impact events. Based on the lateral barrier impact forces provided in Figure 100, it is estimated that the lateral dynamic barrier deflections that would occur in test nos. MNNW-1 and MNNW-3 would be nearly identical if installed in identical soil conditions. Following this testing program, it is evident that the selected vertical concrete posts for this noise wall and glulam timber rubrail system could be impacted several times by errant vehicles before requiring resetting. However, system repair may be required for design variations that utilize smaller post cross-sections and/or shallower post embedment depths.

The maximum dynamic deflection and working width measured from high-speed video analysis occurred at the top of the posts, which were 10 ft (3.0 m) above ground. The dynamic deflection and working width near the ground line was minimal.

Figure 100. Estimated Lateral Barrier Loads, Test Nos. MNNW-1 through MNNW-3
11 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Test nos. MNNW-1, MNNW-2, and MNNW-3 were conducted on a noise wall system according to MASH 2016 test designation nos. 3-10 and 3-11. A summary of the test evaluations is shown in Table 15.

Test no. MNNW-1 was conducted according to MASH 2016 test designation no. 3-11. The barrier consisted of an 89-ft (27.1-m) timber glulam rubrail in front of twelve 18-ft (5.5-m) long concrete posts with a wooden noise wall attached to the back side of the posts. In test no. MNNW-1, the 5,056-lb (2,293-kg) pickup truck impacted the noise wall at a speed of 63.0 mph (101.4 km/h), an angle of 24.7 degrees, and at a location $11^{9}/_{16}$ in. (294 mm) upstream from the centerline of post no. 6, thus resulting in an impact severity of 117.2 kip-ft (158.9 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 38.3 mph (61.6 km/h) and an angle of 3.7 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier and moderate damage to the vehicle. All vehicle decelerations, ORAs, and OIVs fell below the recommended safety limits established in MASH 2016. Therefore, test no. MNNW-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Test no. MNNW-2 was conducted according to MASH 2016 test designation no. 3-10. The barrier consisted of an 89-ft (27.1-m) timber glulam rubrail in front of twelve 18-ft (5.5-m) long concrete posts with a wooden noise wall attached to the back side of the posts. In test no. MNNW-2, the 2,431-lb (1,103-kg) small car impacted the noise wall at a speed of 63.1 mph (101.5 km/h), an angle of 25.4 degrees, and at a location $46^{3}/_{16}$ in. (1,173 mm) upstream from the centerline of the rail splice between post nos. 6 and 7, thus resulting in an impact severity of 59.7 kip-ft (80.9 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 43.0 mph (69.1 km/h) and an angle of 5.6 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier and moderate damage to the vehicle. All vehicle decelerations, ORAs, and OIVs fell below the recommended safety limits established in MASH 2016. Therefore, test no. MNNW-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

Test no. MNNW-3 was conducted according to MASH 2016 test designation no. 3-11. The barrier consisted of an 89-ft (27.1-m) timber glulam rubrail in front of twelve 18-ft (5.5-m) long concrete posts with a wooden noise wall attached to the front side of the posts. In test no. MNNW-3, the 5,028-lb (2,281-kg) pickup truck impacted the barrier at a speed of 61.2 mph (98.5 km/h), an angle of 25.9 degrees, and at a location 49³/₈ in. (1,254 mm) upstream from the centerline of the rail splice between post nos. 6 and 7, thus resulting in an impact severity of 120.4 kip-ft (163.3 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 30.8 mph (49.5 km/h) and an angle of 8.4 degrees. The vehicle was successfully contained and smoothly redirected with minimal damage to the barrier and moderate damage to the vehicle. All vehicle decelerations, ORAs, and OIVs fell below the recommended safety limits established in MASH 2016. Therefore, test no. MNNW-3 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

A few modifications are recommended for ease of installation:

- (1) The field-installed threaded anchors should be installed by setting the rail in place and then field drilling the holes in the concrete posts at the proper location to align with the slots in the rubrail.
- (2) The galvanized post-to-rail bolt threads were not compatible with the threads in the zinc-plated, threaded inserts that were installed in the posts. It recommended that the bolts and threads have the same coating to ensure compatibility. Further, galvanized or plated female anchors should incorporate properly cut threads to accept galvanized bolts.
- (3) The ends of the glulam timber rubrails required minor planning to allow them to fit within the galvanized H-shaped splice plates. With the addition of galvanization and fabrication tolerances, it is recommended that additional planning tolerance be added to the timber rubrail ends. Thus, the notches in the timber rubrails were increased from a ³/₈-in. (9.5-mm) depth to a ⁷/₁₆-in. (11.1-mm) depth in Figures 101 through 135. Additionally, the corners of rubrails were chamfered ¹/₄-in. (6.4-mm) to fit around the welds in the H-shaped splice plates. However, due to some variations in the welds, a ⁵/₁₆-in. (7.9-mm) chamfer would allow for easier installation, as denoted in Figures 101 through 135.

The final drawing set for use in system implementation is shown in Chapter 12 in Figures 101 through 117 for the back-side noise wall configuration and Figures 118 through 135 for the front-side noise wall configuration.

Tuble 15. Dulling of Dulety I enformance Evaluations	Table 15.	Summary	of Safety	Performance	Evaluations
--	-----------	---------	-----------	-------------	--------------------

Evaluation Factors	n Evaluation Criteria			Test No. MNNW-1 (2270P)	Test No. MNNW-2 (1100C)	Test No. MNNW-3 (2270P)	
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			S	S	S	
Occupant Risk	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.			S	S	S
		2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				S	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				S	S
	Н.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupa	S	S	S		
		Component	Preferred	Maximum	_		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Ridedown Acceleration Limits			S	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
MASH 2016 Test Designation No.					3-11	3-10	3-11
Final Evaluation (Pass or Fail)				Pass	Pass	Pass	
S – Satisfactory U – Unsatisfactory NA - Not Applicable					I	ı	I

133

January 31, 2019 MwRSF Report No. TRP-03-396-19

12 MASH EVALUATION

The MnDOT noise wall and glulam timber rubrail system was evaluated to determine its compliance with MASH 2016 TL-3 evaluation criteria. The test installation of the barrier system was constructed of a wood plank noise wall, which spanned across concrete support posts, and was protected by glulam timber rail sections.

MASH 2016 currently requires two full-scale crash tests for evaluation of longitudinal barrier systems to TL-3. The back-side noise wall configuration passed both MASH 2016 TL-3 tests for longitudinal barriers, test nos. 3-10 and 3-11, and is considered acceptable for use on the roadside. The front-side noise wall configuration passed one crash test, MASH 2016 test designation no. 3-11. MASH 2016 test designation no. 3-11 was deemed more critical for evaluating vehicle snag on posts as well as investigating lateral dynamic barrier loading with the noise wall mounted to the front side of the posts. Test designation no. 3-10 was deemed unnecessary for the noise wall mounted to the front side of the posts. Both crash tests under test designation no. 3-11 (test nos. MNNW-1 and MNNW-3) with the noise wall installed on the back- and front-side faces of the posts provided similar results, and the barriers experienced very similar lateral loading. Similar to the pickup truck tests, it was expected that test designation no. 3-10 would result in similar loading with the front-side noise wall configuration as the back-side noise wall configuration. Additionally, there was minimal concern for vehicle snag as the vehicle would not be able to extend as far underneath or over top of the rubrail. Thus, the overall barrier system should also provide similar performance under MASH test designation no. 3-10 impact events using back- and front-side noise wall configurations.

Test no. MNNW-1 was conducted according to MASH 2016 test designation no. 3-11 with a 5,056-lb (2,293-kg) pickup truck impacting the noise wall (back-side configuration) at a speed of 63.0 mph (101.4 km/h), an angle of 24.7 degrees, and at a location $11^{9}/_{16}$ in. (294 mm) upstream from the centerline of post no. 6, thus resulting in an impact severity of 117.2 kip-ft (158.9 kJ). Maximum dynamic deflection and working width was 3.8 in. (97 mm) and 44.5 in. (1,130 mm), respectively, at the top of post no. 7. Test no. MNNW-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Test no. MNNW-2 was conducted according to MASH 2016 test designation no. 3-10 with a 2,431-lb (1,103-kg) small car impacting the noise wall (back-side configuration) at a speed of 63.1 mph (101.5 km/h), an angle of 25.4 degrees, and at a location $46^{3}/_{16}$ in. (1,173 mm) upstream from the centerline of the rail splice between post nos. 6 and 7, thus resulting in an impact severity of 59.7 kip-ft (80.9 kJ). Maximum dynamic deflection and working width was 4.5 in. (114 mm) and 44.5 in. (1,148 mm), respectively, at the top of post no. 7. Test no. MNNW-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

Test no. MNNW-3 was conducted according to MASH 2016 test designation no. 3-11 with a 5,028-lb (2,281-kg) pickup truck impacting the noise wall (front-side configuration) at a speed of 61.2 mph (98.5 km/h), an angle of 25.9 degrees, and at a location 49³/₈ in. (1,254 mm) upstream from the centerline of the rail splice between post nos. 6 and 7, thus resulting in an impact severity of 120.4 kip-ft (163.3 kJ). Maximum dynamic deflection and working width was 7.0 in. (178 mm) and 41.8 in. (1,062 mm), respectively, at the top of post no. 7.

The glulam timber for the rail members and spacer blocks was fabricated with Combination no. 2 Western Species, but any wood species with a stronger bending strength, including Combination No. 48 Southern Pine material, is an acceptable and equivalent alternative.

The concrete posts utilized in the test installation were configured with longitudinal prestressing strands in lieu of longitudinal reinforcement bars. However, reinforced concrete posts of equivalent strength are an acceptable alternative

The noise wall configurations with deeper embedment depths and taller noise walls are all expected to be stiffer than the as-tested systems due to increased soil resistance. All evaluation criteria in the crash tests were far from the limits published in MASH 2016. Thus, a stiffer system should also be a crashworthy configuration. Additionally, an embedment depth of 6 ft (1.8 m), which is the minimum embedment depth allowed by MnDOT, was previously tested to NCHRP Report 350 evaluation criteria and performed acceptably. Even with the increased impact severity with MASH 2013 test designation no. 3-11, it is believed that the noise wall system with 12-in. (305-mm) x 18-in. (457-mm) concrete posts with embedment depths of 6 ft (1.8 m) and greater should be crashworthy. However, the dynamic deflections may increase slightly with shallower embedment depths.

Both recessed round-head bolts and recessed hex-head bolts were evaluated in the test series and performed acceptably. Round-head bolts with a washer equivalent to size of a dome-head bolt head are believed to perform the same since they have the same sized contact area with the rubrail. Thus, round-head bolts with a washer and dome-head bolts with an ½-in. (3-mm) recess in the timber rubrail are both acceptable for use in the rail-to-post connection. Additionally, hex-head bolts with a ⁵/₈-in. (16-mm) recess are also acceptable for use in the rail-to-post connection based on test no. MNNW-3. Details for the dome-head bolts are shown in the back-side noise wall configuration in Figures 101 through 117. Details for the hex-head bolts are shown in the front-side noise wall configuration in Figures 118 through 135. However, either bolt can be use with either the back- or front-side configuration.

In test nos. MNNW-1 and MNNW-2, 14-in. (356-mm) long splice bolts were utilized and performed acceptably. In test no. MNNW-3, 12-in. (305-mm) long splice bolts were utilized and performed acceptably. The 14-in. (356-mm) long splice bolts could be utilized only in the back-side noise wall configuration. Due to the similarities in performance in both the back-side and front-side noise wall configurations, the 12-in. (305-mm) long splice bolts could be utilized in either configuration.

MnDOT may utilize 32-ft (9.8-m) long rubrails in lieu of 16-ft (4.9-m) long rubrails. Utilizing a long rubrail would decrease the number of splice plates and splice bolts necessary for construction. The capacity of the splices is similar to the capacity of the rubrail, so 32-ft (9.8-m) long rubrails used in lieu of 16-ft (4.9-m) long rubrails would also result in a crashworthy system.

The transition point from a back-side to a front-side noise wall could present a concern for vehicle snag. In test no. MNNW-1, the vehicle almost contacted the concrete post, which is located 16³/₄ in. (425 mm) behind the front face of the timber rubrail. For the noise wall configuration attached to the front side of the posts, the noise wall's vertical battens were located

10³/4 in. (273 mm) behind the front face of the timber rubrail. Thus, a narrow exposure existed where the engine hood or front fender panel could snag on vertical components with an overlap of approximately 6 in. (152 mm). The snag likely would not be too severe, but the alternating noise wall placement from the back side to the front side of posts would pose greater snag risk. The severity of this snag could be evaluated with additional crash testing to confirm its crashworthiness. Further, the end of the noise wall and glulam timber rubrail barrier system could present a snag hazard if left unprotected. It is recommended that the ends of the system be protected with an appropriate crashworthy system or extended beyond the clear zone.

Figure 101. Final Details, Back-Side Noise Wall

Figure 102. Rail Section Details, Back-Side Noise Wall

Figure 103. Noise Wall Details, Back-Side Noise Wall

Figure 104. Timber Rail Downstream End Segment and Blockout Details, Back-Side Noise Wall

Figure 105. Timber Rail, Back-Side Noise Wall

Figure 106. Timber Rail Upstream End Segment, Back-Side Noise Wall

Figure 107. Anchor Plate Assembly, Back-Side Noise Wall

Figure 108. Cable Anchor Plate Components, Back-Side Noise Wall

Figure 109. Concrete Post Details, Back-Side Noise Wall

Figure 110. Concrete Post Reinforcement, Back-Side Noise Wall

Figure 111. Splice Plate Details, Back-Side Noise Wall

Figure 112. Noise Wall Components, Back-Side Noise Wall

Figure 113. Wood Plank Details, Back-Side Noise Wall

Figure 114. BCT Anchor Cable Assembly Details, Back-Side Noise Wall

Figure 115. Hardware, Back-Side Noise Wall

Item No.	QTY.	Description	Material Spe	ecification	Treatment Specification	Hardware Guide
a1	1	125 5/8"x13 1/2"x10 3/4" [3,191x343x273] Timber Rail End Section	GLULAM - Comb. 48(SP specie) or Comb. 2(Western es)	See Notes 1-3	-
۵2	4	191 1/4"x13 1/2"x10 3/4" [4,858x343x273] Timber Rail Section	GLULAM - Comb. 48(SP specie) or Comb. 2(Western es)	See Notes 1-3	-
a3	1	173 5/8"x13 1/2"x10 3/4" [4,410x343x273] Timber Rail End Section	GLULAM - Comb. 48(SP specie) or Comb. 2(Western es)	See Notes 1-3	-
a4	12	13 1/2"x9"x6" [343x229x152] Wood Blockout	GLULAM – Comb. 48(SP specie) or Comb. 2(Western es)	See Notes 1-3	-
b1	2	10 1/2"x9"x3/8" [229x267x10] Steel Plate	ASTM	A36	ASTM A123**	-
b2	4	3"x3"x1/4" [76x76x6] Steel Gusset	ASTM	A36	ASTM A123**	-
b3	2	3"x3"x1/2" [76x76x13] Steel Plate	ASTM	A36	ASTM A123**	-
c1	12	12"x18" [305x457], 18' [5,486] Long Concrete Post	Min. f'c = 5,500 g MnDOT mi	osi [37.9 MPa] x 3W82	_	-
a1	156	3/8" [10] Dia., 53" [1,346] Long Rebar	ASTM A615	Gr. 60	Epoxy Coated (ASTM A775 (A934)	^{or} –
a2*	48	5/8" [16] Dia., 210" [5,334] Long Rebar	ASTM A615	Gr. 60	Epoxy Coated (ASTM A775 (A934)	[,] r _
c4*	48	1/2" [13] Dia, 7—Wire Pre—Stressing Strand, 216" [5,486] Long	ASTM A416	Gr. 270	-	-
d1	10	29 1/4"x13 1/2"x3/8" [743x343x10] Steel Plate	ASTM .	A36	ASTM A123**	-
d2	5	13 1/2"x10"x3/8" [343x254x10] Steel Plate	ASTM .	A36	ASTM A123**	-
e1	12	3"x10" [76x254], 10' [3,048] Long Vertical Wood Nailer	SYP Gr. No. 1 Dense or sawn or Douglas Fir Douglas Fir-Larch (North Douglas Fir-South Select with min F'b = 1,2	better standard rough Larch No. 1 or) Select Structural or Structural or equivalent 20 psi [8.3 MPa]	See Note 4	-
e2	17	2"x8" [51x203], 8' [2,438] Long Tongue and Groove Wood Plank	SYP Gr. Select Douglas Fir-Larch Select with min F'b = 1,50	t Structural Structural or equivalent 10 psi [10.3 MPa]	See Note 4	-
e3	85	2"x8" [51x203], 16' [4,877] Long Tongue and Groove Wood Plank	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 0 psi [10.3 MPa]	See Note 4	-
e4	12	2"x8" [51x203], 10' [3,048] Long Wood Batten	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 10 psi [10.3 MPa]	See Note 4	-
e5	2	2"x4" [51x102], 10' [3,048] Long Wood Plank	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 10 psi [10.3 MPa]	See Note 4	-
*Use either part c3 or c4. ** Weld before galvanization.						
Notes: (1) Timber rail sections and blockouts shall be treated with pentachlorophanal $(PCP-A)$ in heavy oil to a minimum net retention of						
		0.6 lb/ft ³ (9.6 kg/m ³) in accordance with AWPA S	tandard U1 to the		MNDOT Noise Wall	16 of 17
		requirements of Use Category 4A (UC4A).	conduita of to the	THE REST	Timber Rail	DATE:
	(2) Wood shall be cut, drilled, and completely fabricated treatment with preservative. Drain excess chemicals of		ed prior to s and dry all		Back Side Configure	ition 11/19/2018
	(3)	treated wood at the place of manufacture. All field cuts, bore holes, and damages shall be to	reated with	Midwest Roadsid	e Bill of Materials	MKB/JEK/ DJW
	(4)	material acceptable to the engineer prior to installation.) Provide preservative treated timber products per Spec. 3491.		Safety Facility	DWG. NAME. Si MNNW-FinalSet_R3 UI	ALE: None REV. BY: NITS: in.[mm] JEK/ELU/ JDS

Figure 116. Bill of Materials, Back-Side Noise Wall

Item	074			T 1 1 0 17 11	Hardware		
No.	QIY.	Description	Material Specification	Ireatment Specification	Guide		
f1	2	BCT Anchor Cable	_	_	FCA01		
f2	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01		
f3	2	2 3/8" [60] O.D. x 12" [305] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	-		
g1*	48	1 1/4"-7 UNC [M30x3.5], 14" [356] Long Dome Head Bolt and Nut	Bolt — ASTM A307 Gr. A or equivalent Nut — ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBB09a		
g2	24	3/4"—10 UNC [M20x2.5], 18" [457] Long Dome Head Bolt with a Flat Head or Other Key Shape in Center Region or Flattened Sides	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBB08a		
g3	969	16D Ring Shank Nail	-	-	-		
g4	408	No. 8 x 2 1/2" [64] Long Bugle Head Exterior Screw	-	ASTM A153 or B695 Class 55	-		
g5	36	1/2" [13] Dia. Round Plate Washer	ASTM F844	ASTM A123 or A153 or F2329	-		
g6	36	1/2"—6 Coil Thread [M14x4], 3" [76] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	-		
g7	24	3/4"-10 UNC [M20x2.5] Drop-In Concrete Anchor	Hilti Item No. 258541 or similiar	Zinc-Plated or Galvanized	-		
g8	72	1/2"-6 Coil Thread [M14x4] Concrete Anchor	As Supplied	Galvanize per spec. 3392 or electroplate per ASTM B633 SC4 Type II	-		
g9	48	1 1/4" [32] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC30a		
Note: (1) Hilti Item No. 258541 (Part g7) is not compatible with hot-dipped galvanized bolts. Recommend using inserts and bolts that are both zinc-plated or both galvanized so that thread patterns are compatible.							
			Midwest Roa Safety Fac	MNDOT Noise Wall Timber Rail Back Side Configurat Bill of Materials DWC. NAME. NNWW-FindSet_R3	SHEET: 17 of 17 DATE: 11/19/2018 DRAWN BY: MKB /JEK/ DJW LE: None REV. BY: S: in.[mm] JEK/ELU/		

Figure 117. Bill of Materials, Back-Side Noise Wall (continued)

Figure 118. Final Details, Front-Side Noise Wall

Figure 119. Rail Section Details, Front-Side Noise Wall

Figure 120. Noise Wall Details, Front-Side Noise Wall

Figure 121. Post Attachment Nailing Pattern, Front-Side Noise Wall

Figure 122. Timber Rail Downstream Segment, Front-Side Noise Wall

Figure 123. Timber Rail, Front-Side Noise Wall

Figure 124. Timber Rail Upstream End Segment, Front-Side Noise Wall

Figure 125. Anchor Plate Assembly, Front-Side Noise Wall

Figure 126. Cable Anchor Plate Components, Front-Side Noise Wall

Figure 127. Concrete Post Details, Front-Side Noise Wall

Figure 128. Concrete Post Reinforcement, Front-Side Noise Wall

Figure 129. Splice Plate Details, Front-Side Noise Wall

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure 130. Noise Wall Components, Front-Side Noise Wall

Figure 131. Wood Plank Details, Front-Side Noise Wall

Figure 132. BCT Anchor Cable Assembly Details, Front-Side Noise Wall

Figure 133. Hardware, Front-Side Noise Wall

Item	QTY.	Description	Material Spe	cification	Treatment Specification	Hardware
a1	1	125 5/8"x13 1/2"x10 3/4" [3,191x343x273] Timber Roil End Section	GLULAM - Comb. 48(SP)) or Comb. 2(Western	See Notes 1-3	
a2	4	191 1/4"x13 1/2"x10 3/4" [4,858x343x273] Timber Roil Section	GLULAM - Comb. 48(SP) specie) or Comb. 2(Western	See Notes 1-3	_
a3	1	173 5/8"x13 1/2"x10 3/4" [4,410x343x273] Timber Rail End Section	GLULAM - Comb. 48(SP) specie) or Comb. 2(Western	See Notes 1-3	-
a4	2	13 1/2"x9"x6" [343x229x152] Wood Blockout	GLULAM - Comb. 48(SP) specie) or Comb. 2(Western es)	See Notes 1-3	
b1	2	10 1/2"x9"x3/8" [229x267x10] Steel Plate	ASTM /	436	ASTM A123**	
b2	4	3"x3"x1/4" [76x76x6] Steel Gusset	ASTM /	436	ASTM A123**	-
bЗ	2	3"x3"x1/2" [76x76x13] Steel Plate	ASTM /	436	ASTM A123**	_
c1	12	12"x18" [305x457], 18' [5,486] Long Concrete Post	Min. f'c = 4,000	ksi [27.6 MPa]	_	_
c2	156	3/8" [10] Dia., 53" [1,346] Long Rebar	ASTM A615	Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
c3*	48	1/2" [13] Dia., 210" [5,334] Long Rebar	ASTM A615	Gr. 60	Epoxy Coated (ASTM A775 or A934)	-
c4*	48	1/2" [13] Dia, 7—Wire Pre-Stressing Strand, 216" [5,486] Long	ASTM A416	Gr. 270	_	_
d1	10	29 1/4"x13 1/2"x3/8" [743x343x10] Steel Plate	ASTM /	436	ASTM A123**	_
d2	5	13 1/2"x10"x3/8" [343x254x10] Steel Plate	ASTM /	436	ASTM A123**	-
e1	14	3"x10" [76x254], 10' [3,048] Long Vertical Wood Nailer	SYP Gr. No. 1 Dense or sawn or Douglas Fir Douglas Fir-Larch (North Douglas Fir-South Select with min F'b = 1,20	better standard rough -Larch No. 1 or) Select Structural or Structural or equivalent 20 psi [8.3 MPa]	See Note 4	_
e2	51	2"x8" [51x203], 8' [2,438] Long Tongue and Groove Wood Plank	SYP Gr. Select Douglas Fir-Larch Select with min F'b = 1,50	t Structural Structural or equivalent 0 psi [10.3 MPa]	See Note 4	_
e3	68	2"x8" [51x203], 16' [4,877] Long Tongue and Groove Wood Plank	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 0 psi [10.3 MPa]	See Note 4	-
e4	14	2"x8" [51x203], 10' [3,048] Long Wood Batten	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 0 psi [10.3 MPa]	See Note 4	
e5	6	2"x4" [51x102], 10' [3,048] Long Wood Plank	SYP Gr. Select Douglas Fir—Larch Select with min F'b = 1,50	t Structural Structural or equivalent 0 psi [10.3 MPa]	See Note 4	-
*Use e	either	part c3 or c4. ** Weld befo	ore galvanization.			
Notes:	(1)	Timber rail sections and blockouts shall be treated	with num net retention of 0.6			SHEET:
	(2) (3)	Ib/ft ³ (9.6 kg/m ³) in accordance with AWPA Stand- Use Category 4A (UC4A). Wood shall be cut, drilled, and completely fabricate treatment with preservative. Drain excess chemicals wood at the place of manufacture. All field cuts, bore holes, and damages shall be tr acceptable to the engineer prior to installation. Provide preservative treated timber products per Sec	and U1 to the requirements and U1 to the requirements and dry all treated eated with material	Midwest Roadsid Safety Facility	MNDOT Noise Wall Timber Rail Front Side Configuration Bill of Materials DWG. NAME: NNWM-FrontSideFind_R2 UMTS: in.	DATE: 17 of 18 DATE: 11/19/2018 DRAWN BY: JD.J./JEK/ DXW. BY: SEC. BY: [mm] ELU/JDS

Figure 134. Bill of Materials, Front-Side Noise Wall

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
f1	2	BCT Anchor Cable	_	-	FCA01
f2	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
f3	2	2 3/8" [60] O.D. x 12" [305] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	-
g 1*	48	1 1/4"-7 UNC [M30x3.5], 12 1/4" [311] Long Dome Head Bolt and Nut	Bolt — ASTM A307 Gr. A or Equivalent Nut — ASTM A563A or Equivalent	ASTM A153 or B695 Class 55 or F2329	FBB09a
g2	24	3/4"—10 UNC [M20x2.5], 18" [457] Long Hex Head Bolt	ASTM A307 Gr. A or Equivalent	ASTM A153 or B695 Class 55 or F2329	FBX20a
g3	1192	16D Ring Shank Nail	-	-	-
g4	436	No. 8 x 2 1/2" [64] Long Bugle Head Exterior Screw	-	ASTM A153 or B695 Class 55	_
g5	42	1/2" [13] Dia. Round Plate Washer	ASTM F844	ASTM A123 or A153 or F2329	-
g6	42	1/2"—6 Coil Thread [M14x4], 3" [76] Long Hex Head Bolt	ASTM A307 Gr. A or Equivalent	ASTM A153 or B695 Class 55 or F2329	-
g7	24	3/4"-10 UNC [M20x2.5] Drop-In Concrete Anchor	Hilti Item No. 258541 or Similar	Zinc-Plated or Galvanized	-
g8	72	1/2"-6 Coil Thread [M14x4] Concrete Anchor	As Supplied	Galvanize per spec. 3392 or electroplate per ASTM B633 SC4 Type II	-
g9	48	1 1/4" [32] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC30a
g10	24	3/4" [19] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a

*Anchor plate bolts can have fins or lugs. Splice bolts should not have lugs or fins.

Note: Hilti Item No. 258541 (part g7) is not compatible with hot-dipped galvanized bolts. Recommend using inserts and bolts that are both zinc-plated or both galvanized so that thread patterns are compatible.

MURSE	MNDOT Noise Wall Timber Rail Front Side Configuratior	SHEET: 18 of 18 DATE: 11/19/2018
Midwest Roadside	Bill of Materials	DRAWN BY: JDJ/JEK/ DJW
Safety Facility	DWG. NAME. SCALE: 1: MNNW-FrontSideFinal_R2 UNITS: in.	256 REV. BY: [mm] ELU/JDS

Figure 135. Bill of Materials, Front-Side Noise Wall (continued)

13 REFERENCES

- 1. Polivka, K.A., Rohde, J.R., Faller, R.K., Holloway, J.C., and Sicking, D.L., *Design and Evaluation of Minnesota's Timber Rub-Rail Noise Barriers*, Report No. TRP-03-156-05, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 8, 2005.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 3. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. AASHTO LRFD Bridge Design Specifications, Eighth Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., November 2017.
- 5. Bligh, R.P., Briaud, J.L., Abu-Odeh, A., Saez. B., D.O., Maddah, L.S., and Mi Kim, K., Design Guidelines for Test Level 3 (TL-3) Through Test Level 5 (TL-5) Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Wall, Final Report for the National Cooperative Highway Research Program, Transportation Research Board, Project No. 22-20(2), Texas Transportation Institute, College Station, Texas, June 2017.
- 6. *National Design Specification for Wood Construction*, 2015 Edition Third Electronic Version, ANSI/AWC NDS-2015, American Wood Council, October 2016.
- 7. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 8. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 9. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series – 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 10. Society of Automotive Engineers (SAE), Instrumentation for Impact Test Part 1 Electronic Instrumentation, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 11. Use Category System: User Specification for Treated Wood, Specification No. U1-17, American Wood Protection Association Standard, 2017.
- 12. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.

13. Collision Deformation Classification – Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

14 APPENDICES

Appendix A. Noise Wall and Rubrail with Concrete Posts Standard Plans

Figure A-1. Wood Planking Noise Wall with Concrete Posts

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure A-2. Wood Planking Noise Wall with Concrete Posts

Figure A-3. Wood Planking Noise Wall with Concrete Posts

January 31, 2019 MwRSF Report No. TRP-03-396-19

Figure A-4. Glue Laminated Rubrail (Concrete Posts) - General Layout

Figure A-5. Glue Laminated Rubrail (Concrete Posts) – Rubrail Sections and Spacer Block

Figure A-6. Glue Laminated Rubrail (Concrete Posts) – Anchor Cable, Anchor Plate, and Splice Plate

Appendix B. Vehicle Center of Gravity Determination

Date:	2/28/2018	Test Name:	MNNW-1	VIN:	1D7R	B1CT0AS2	14480
Year:	2010	Make:	Dodge	Model:	R/	AM 1500 Cr	ew
Vehicle CG	Determinatio	on		Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(lb)	(in.)	(lb-in.)	
+	Unballasted	Truck (Curb)		5264	29 1/4	154009.5	
+	Hub	(19	15 1/2	294.5	
+	Brake activa	tion cylinder &	frame	19	15 3/4	299.25	
+	Pneumatic ta	ank (Nitrogen)		7	28	196	
+	Strobe/Brak	e Battery		28	29	812	
+	Brake Recei	ver/Wires		5	28	140	
+	CG Plate ind	luding DAS		6	54	324	
-	Battery			42	50	2100	
-	Oil			-41	36	-1476	
-	Interior			-11	22	-242	
-	Fuel			-96	36	-3456	
_	Coolant			-188	18	-3384	
=	Washer fluid	1		-12	39	-468	
+	Water Ballas	st (In Fuel Tanl	<)	-1	40	-40	
+	Onboard Su	pplemental Ba	ttery	0	0	0	
		• •	,	14	27	378	
						0	
Vehicle Dime	ensions for C	C.G. Calculatio	ons				
Wheel Base:	140 1/2	in.	Front Tr	ack Width:	68 1/4	in.	
			Rear Tr	ack Width:	68 3/8	in.	
Center of Gra	avity	2270P MAS	H Targets		Test Inertial		Differenc
Test Inertial V	Veight (lb)	5000 :	± 110		5056		56.
Longitudinal (CG (in.)	63 :	± 4		61.02413		-1.9758
Lateral CG (i	n.)	NA			-0.189156		N
Vertical CG (in.)	28 (or greater		29.57		1.5721
Note: Long. CG	is measured fror	n front axle of test	vehicle				
Note: Lateral CG	measured from	centerline - positi	ve to vehicle righ	nt (passenger) side		
CURB WEIG	HT (lb.)				TEST INER		HT (lb.)
	Left	Right				left	Right
Front	1518	1437			Front	1/50	1/01
Poor	1150	1150			Rear	1002	1401
Neal	1159	0611			Real	1003	1113
	2055	lb			ERONIT	2860	
	/ 1111						Ih
REAR	2300	lb				2106	lb lb
	2309	lb			REAR	2196	lb lb

Figure B-1. Vehicle Mass Distribution, Test No. MNNW-1

	2/20/2010	Test Name:	MNNW-2	VIN:	KINHC	N4ACXBL	1010901
Year:	2010	Make:	Hyundai	Model:		Accent	
Vahiala 00	Defense in eff						
venicle CG I	Jeterminatio	on			\//oight		
	Vehicle Fou	ipment			(b)		
284 284	+	Unballasted C	ar (Curb)		2476		
	+	Hub			19		
	+	Brake activatio	on cylinder & f	rame	7		
	+	Pneumatic tan	k (Nitrogen)		22		
	+	Strobe/Brake	Battery		5		
	+	Brake Receive	er/Wires		5		
	+	CG Plate inclu	ding DAS		13		
	-	Battery			-38		
	-	Oil			-5		
		Interior			-41		
	-	Fuel			-12		
	-	Coolant			-5		
		Washer fluid			-8		
	+	Water Ballast	(In Fuel Tank)		0		
	+	Onboard Supp	lemental Batt	ery	13		
	-						
	-	Trunk carpet			-4		
	Note: (+) is add	ded equipment to ve Esti	ehicle, (-) is remo mated Total V	ved equipmer	nt from vehicle 2447		
Vehicle Dime	Note: (+) is add	ded equipment to vo Estin C.G. Calculatio	ehicle, (-) is remo mated Total V ons	ved equipmen	nt from vehicle 2447		
Vehicle Dime Wheel Base:	Note: (+) is add nsions for (98 3/4	ded equipment to vo Estin C.G. Calculatio in.	ehicle, (-) is remo mated Total V ns Front Tra	ved equipme Veight (Ib)	nt from vehicle 2447 57 7/8	in.	_
<u>Vehicle Dime</u> Wheel Base: Roof Height:	Note: (+) is add nsions for (98 3/4 57	ded equipment to vo Estin C.G. Calculatio in. in.	ehicle, (-) is remo mated Total V o ns Front Tra Rear Tra	ved equipmer Veight (Ib) [ack Width: ack Width:	nt from vehicle 2447 57 7/8 57	in. in.	_
Vehicle Dime Wheel Base: Roof Height:	Note: (+) is add nsions for (98 3/4 57	ded equipment to ve Estin C.G. Calculatio in. in.	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra	ved equipmer Veight (Ib) ack Width: ack Width:	nt from vehicle 2447 57 7/8 57	in. in.	_
Vehicle Dime Wheel Base: Roof Height: Center of Gra	Note: (+) is add Insions for (98 3/4 57 Avity	ded equipment to ve Estin C.G. Calculatio in. in. 1100C MAS	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets	ved equipmer Veight (Ib) ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial	in. in.	– Difference
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W	Note: (+) is add nsions for (98 3/4 57 avity /eight (lb)	ded equipment to ve Estin C.G. Calculatio in. in. in. 1100C MAS 2420 :	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55	ved equipmen Veight (Ib) ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431	in. in.	– Difference 11
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C	Note: (+) is add nsions for (98 3/4 57 avity /eight (lb) CG (in.)	ded equipment to ve Estin C.G. Calculatio in. in. 1100C MAS 2420 : 39 :	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (Ib) ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965	in. in.	Differend 11 -2.4003
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir	Note: (+) is add nsions for (98 3/4 57 Avity /eight (lb) CG (in.) 1.)	ded equipment to ve Estin C.G. Calculatio in. in. 1100C MAS 2420 : 39 : NA	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (Ib) ack Width: ack Width:	Test Inertial 2431 36.59965 -0.602491	in. in.	
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i	Note: (+) is add Insions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) in.)	ded equipment to ve Estin C.G. Calculatio in. in. in. 1100C MAS 2420 : 39 : NA NA	ehicle, (-) is remo mated Total V o ns Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (lb) ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41	in. in.	Difference 11 -2.4003 N N
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i	Note: (+) is add nsions for (98 3/4 57 Avity /eight (Ib) CG (in.) n.) s measured from	ted equipment to version Estin C.G. Calculatio in. in. 1100C MAS 2420 = 39 = NA NA NA n front axle of test	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (lb) ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41	in. in.	Differend 11 -2.4003 N N
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG i Note: Lateral CG	Note: (+) is add nsions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) s measured from measured from	ted equipment to version Estin C.G. Calculatio in. in. in. 1100C MAS 2420 = 39 = NA NA NA m front axle of test n centerline - positiv	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4 vehicle re to vehicle right	ved equipmen Veight (lb)	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side	in. in.	
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG i Note: Lateral CG	Note: (+) is add nsions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) in.) s measured from measured from HT (lb)	ted equipment to version Estin C.G. Calculatio in. in. in. 1100C MAS 2420 = 39 = NA NA m front axle of test m o centerline - positiv	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4 vehicle re to vehicle right	ved equipmen Veight (lb)	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INERT	in. in. ΓIAL WEIG	
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Vertical CG (i Note: Long. CG i Note: Lateral CG	Note: (+) is add Insions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) s measured from measured from HT (lb)	ted equipment to version of the second secon	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (lb)	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INER	in. in.	Differenci 11 -2.4003 N N SHT (Ib)
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Vertical CG (i Note: Long. CG i Note: Lateral CG	Note: (+) is add Insions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) s measured from measured from HT (lb) Left 802	ted equipment to version of the second secon	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4 vehicle re to vehicle right	ved equipmen Veight (lb)	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INERT	in. in. FIAL WEIG	Differenci 11 -2.4003 N N SHT (Ib) Right
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH	Note: (+) is add nsions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) s measured from measured from HT (lb) Left 802 450	ted equipment to version Estin C.G. Calculatio in. in. in. 1100C MAS 2420 = 39 = NA NA NA n front axle of test to centerline - positiv Right 775 440	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (Ib) [ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INERT Front Rear	in. in. FIAL WEIG Left 784	Differenci 11 -2.4003 N N HT (Ib) Right 746
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH Front Rear	Note: (+) is add sensions for (98 3/4 57 avity /eight (lb) CG (in.) n.) s measured from measured from HT (lb) Left 802 450	Add equipment to version Estin C.G. Calculatio in. in. in. 1100C MAS 2420 = 39 = NA NA NA m front axle of test were a centerline - positive Right 775 449	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (Ib) [ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INERT Front Rear	in. in. FIAL WEIG Left 784 457	Differenci 11 -2.4003 N N SHT (Ib) Right 746 444
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH Front Rear	Note: (+) is add Insions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) in.) is measured from measured from HT (lb) Left 802 450 1577	ted equipment to version Estin C.G. Calculatio in. in. 1100C MAS 2420 = 39 = NA NA m front axle of test o centerline - positiv Right 775 449 Ib	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	ved equipmen Veight (Ib) [ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INERT Rear FRONT	in. in. FIAL WEIG Left 784 457 1530	
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH Front Rear FRONT REAR	Note: (+) is add msions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) in.) s measured from measured from HT (lb) Left 802 450 1577 899	Add equipment to version of the second secon	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4	ved equipmen Veight (Ib) [ack Width: ack Width:	nt from vehicle 2447 57 7/8 57 Test Inertial 2431 36.59965 -0.602491 22.41 side TEST INERT Rear FRONT REAR	in. in. FIAL WEIG Left 784 457 1530 901	Difference 11 -2.4003 N N SHT (Ib) Right 746 444 Ib Ib
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH Front Rear FRONT REAR	Note: (+) is add msions for (98 3/4 57 Avity /eight (lb) CG (in.) n.) in.) s measured from measured from HT (lb) Left 802 450 1577 899 2476	ted equipment to version Estin C.G. Calculatio in. in. in. 1100C MAS 2420 = 39 = NA NA m front axle of test to centerline - positiv Right 775 449 Ib Ib	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra H Targets ± 55 ± 4 vehicle re to vehicle right	ved equipmen Veight (Ib) [ack Width: ack Width:	1 from vehicle 2447 2447 57 7/8 57 57 Test Inertial 2431 36.59965 -0.602491 22.41 3ide TEST INERT Rear Front Rear FRONT REAR TOTAL TOTAL	in. in. FIAL WEIG Left 784 457 1530 901	Difference 11 -2.4003 N SHT (lb) Right 746 444 lb lb lb

Figure B-2. Vehicle Mass Distribution, Test No. MNNW-2

Date:	4/4/2018	Test Name:	MNNW-3	VIN:	1D7F	RB1CP7BX6	46567
Year:	2011	Make:	Dodge	Model:		Ram 1500	
Vehicle CG I	Determinatio	on					
				Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(lb)	(in.)	(lb-in.)	_
+	Unballasted	Truck (Curb)		5265	28 3/8	149352.88]
+	Hub			19	15	285	
+	Brake activa	ation cylinder &	frame	7	29 7/8	209.125	
+	Pneumatic f	ank (Nitrogen)		22	27 1/2	605	
+	Strobe/Brak	e Battery		5	27	135	
+	Brake Rece	iver/Wires		6	51 1/2	309	
+	CG Plate in	cluding DAS		50	30 1/8	1506.25	
	Battery			-44	39 1/2	-1738	
-	Oil			-9	18	-162]
- 4	Interior			-118	25 3/4	-3038.5	
-	Fuel			-196	20 3/8	-3993.5	
.	Coolant			-9	31 1/4	-281.25	
	Washer flui	b		-1	32	-32	
+	Water Balla	st (In Fuel Tan	<)	0		0	
+	Onboard Su	ipplemental Ba	ttery	13	27 3/8	355.875	
+	Smart Barri	er Provisions		10	25 1/5	252	
						0	
Vehicle Dime	nsions for (C.G. Calculatio	ons				
Wheel Base:	140 1/2	in.	Front Tr	ack Width:	66 1/4	in.	-
		-	Rear Tr	ack Width:	67 3/4	in.	
Center of Gra	avity	2270P MAS	H Targets		Test Inertia	I	Difference
Test Inertial V	Veight (lb)	5000 :	± 110		5028		28.0
Longitudinal C	CG (in.)	63 :	± 4		61.168357		-1.8316
Lateral CG (ii	n.)	NA			-0.732896		NA
Vertical CG (i	in.)	28	or greater		28.64		0.63842
Note: Long. CG i	s measured fro	m front axle of test	vehicle				
Note: Lateral CG	measured fron	n centerline - positi	ve to vehicle righ	nt (passenger)) side		
CURB WEIGI	HT (Ib)				TEST INER	TIAL WEIGH	HT (lb)
	left	Right				left	Right
Front	1490	1450			Front	1431	1408
Rear	1170	1146			Rear	1139	1051
i (Gai	1173	1140			i veai	1130	1001
FRONT	2010	lb I			FRONT	2830	lb
REAR	2325	lb			REAR	2189	lb
	5265	- ¹			TOTAL	5029	in line
UTAL	5265	u			TIOTAL	5UZ8	a

Figure B-3. Vehicle Mass Distribution, Test No. MNNW-3

Appendix C. Material Specifications

Table C-1. Bill of Materials	, Test Nos.	MNNW-1, MNNW-	2, and MNNW-3
------------------------------	-------------	---------------	---------------

Item No.	Description	Material Specification	Reference
a1	125 5/8"x13 1/2"x10 3/4" [3,191x343x273] Timber Rail End Section	GLULAM - Comb. 48 (SP) or Comb. 2 (Western species)	CO#174067 MO#162115
a2	191 1/4"x13 1/2"x10 3/4" [4,858x343x273] Timber Rail Section	GLULAM - Comb. 48 (SP) or Comb. 2 (Western species)	CO#174067 MO#162115
a3	173 5/8"x13 1/2"x10 3/4" [4,410x343x273] Timber Rail End Section	GLULAM - Comb. 48 (SP) or Comb. 2 (Western species)	CO#174067 MO#162115
a4	13 1/2"x9"x6" [343x229x152] Wood Blockout	GLULAM - Comb. 48 (SP) or Comb. 2 (Western species)	CO#174067 MO#162115
b1	10 1/2"x9"x3/8" [229x267x10] Steel Plate	ASTM A36	H#17043961
b2	3"x3"x1/4" [76x76x6] Steel Gusset	ASTM A36	H#A7P1312
b3	3"x3"x1/2" [76x76x13] Steel Plate	ASTM A36	H#17073161
c1	12"x18" [305x457], 18' [5,486] Long Concrete Post	Min. f'c = 5,500 psi [37.9 MPa] MnDOT mix 3W82	Wieser Concrete Test, Avg. Result: 7457 ACI Grade 1
c2	3/8" [10] Dia., 53" [1,346] Long Rebar	ASTM A615 Gr. 60	H#KN16105651
c3	5/8" [16] Dia., 210" [5,334] Long Rebar	ASTM A615 Gr. 60	Not Used - Item c4 USED INSTEAD
c4	1/2" [13] Dia, 7-Wire Pre-Stressing Strand, 216" [5,486] Long	ASTM A416 Gr. 270	Coil#2344-3 H#5314572502
d1	29 1/4"x13 1/2"x3/8" [743x343x10] Steel Plate	ASTM A36	H#17043961
d2	13 1/2"x10"x3/8" [343x254x10] Steel Plate	ASTM A36	H#17043961
e1	3"x10" [76x254], 10' [3,048] Long Vertical Wood Nailer	 SYP Gr. No. 1 Dense or better standard rough sawn or Douglas Fir-Larch No. 1 or Douglas Fir-Larch (North) Select Structural or Douglas Fir-South Select Structural or equivalent with min F'b = 1,200 psi [8.3 MPa] 	Millard Lumber Order#3658140
e2	2"x8" [51x203], 8' [2,438] Long Tongue and Groove Wood Plank	SYP Gr. Select Structural Douglas Fir-Larch Select Structural or equivalent with min F'b = 1,500 psi [10.3 MPa]	Millard Lumber Order#3658140
e3	2"x8" [51x203], 16' [4,877] Long Tongue and Groove Wood Plank	SYP Gr. Select Structural Douglas Fir-Larch Select Structural or equivalent with min F'b = 1,500 psi [10.3 MPa]	Millard Lumber Order#3658140
e4	2"x8" [51x203], 10' [3,048] Long Wood Batten	SYP Gr. Select Structural Douglas Fir-Larch Select Structural or equivalent with min F'b = 1,500 psi [10.3 MPa]	Millard Lumber Order#3658140
e5	2"x4" [51x102], 10' [3,048] Long Wood Plank	SYP Gr. Select Structural Douglas Fir-Larch Select Structural or equivalent with min F'b = 1,500 psi [10.3 MPa]	Millard Lumber Order#3658140
f1	BCT Anchor Cable	-	R#17-700 Yellow OR H#119048*

January 31, 2019 MwRSF Report No. TRP-03-396-19

Item No.	Description	Material Specification	Reference
f2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	South: H#DL15103543 North: H#6106195 R#090453-9
f3	2 3/8" [60] O.D. x 12" [305] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#B712810
g1	1 1/4" [32] Dia. UNC, 14" [356] Long Round Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Invoice#103293 H#278117
g2	3/4" [19] Dia. UNC, 18" [457] Long Round Head Bolt	ASTM A307 Gr. A	Invoice#103293 H#145417 OR H#17308059-3 Red Paint;* H#184335 Unpainted;*
g3	16D Ring Shank Nail	-	Lowes Trans#9000581
g4	No. 8 x 2 1/2" [64] Long Bugle Head Exterior Screw	-	Grainger COC, Item#31JJ25
g5	1/2" [13] Dia. Round Plate Washer	ASTM F844	PCI and CONAC COC
g6	1/2"-6 [13] Coil Thread, 3" [76] Long Hex Head Bolt	ASTM A307 Gr. A	PCI and CONAC COC
g7	3/4"-10 UNC [19] Drop-In Concrete Anchor	Hilti Item No. 258541	Hilti COC
g8	1/2"-6 [13] Coil Thread Concrete Anchor	As Supplied	PO#0000017781 L#0000097318
g9	1 1/4" [32] Dia. Plain Round Washer	ASTM A844	P#33189 PO#220024755 L#M-SWE0411982-34
g10	3/4" [19] Dia. Plain Round Washer	ASTM F844	P#1133018 PO#210136785 L#17H168220-3

Table C-2. Bill of Materials, Test Nos. MNNW-1, MNNW-2, and MNNW-3 (Cont.)

*test no. MNNW-3 only

Certificate of Conformance

THE UNDERSIGNED MANUFACTURER HEREBY CERTIFIES that the structural wood products identified below and marked with a collective mark of **APA – The Engineered Wood Association (APA)** were manufactured in accordance with the specifications indicated below.

M ANSI Standard A190.1-2012, for Structural Glued Laminated Timber

Job Name:			100-11) <u>31-11-10</u>		
Job Location:					
Customer's Orde	r No.: <u>174067</u>	Date:	12-5-2017	_ Mfgr's Order No.:	162115
Distributor:	WESTERN WOOD STRUCTL	JRES			
Order Description:					

Signature:	Ron Juther de.	Name:	Ron Jubber
Company:	Zip-O-Laminators, LLC	Position:	Quality Assurance
Address:	2701 W. 1 st Ave Eugene OR 97402	Date:	12-5-2017
IT IS HEREE	BY CERTIFIED that the structural glued	laminated timber producti	on of the above-named manufacturer

IT IS HEREBY CERTIFIED that the structural glued laminated timber production of the above-named manufacturer which carries a collective mark of *APA* is subject to regular audit by *APA* – *The Engineered Wood Association,* such audit consisting of the inspection of the manufacturing process, with sampling to verify the quality of glulam construction and the adequacy of glue bond.

Steve Zylkowski by

Steve Zylkowski Director, Quality Services

REPRESENTING THE ENGINEERED WOOD INDUSTRY 7011 South 19th Street • Tacoma, Washington 98466-5333 • Phone: (253) 565-6600 • Fax: (253) 565-7265 • www.apawood.org EWS Cert Conformance pdf © 2012 APA - The Engineered Wood Association, Rev. 05/13

Figure C-1. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Consumer Information Sheet

PENTACHLOROPHENOL PRESSURE-TREATED WOOD

CONSUMER INFORMATION

This wood has been preserved by pressuretreatment with an EPA-registered pesticide containing pentachlorophenol to protect it from insect attack and decay. Wood treated with pentachlorophenol should be used only where such protection is important.

Pentachlorophenol penetrates deeply into and remains in the pressure-treated wood for a long time. Exposure to pentachlorophenol may present certain hazards. Therefore, the following precautions should be taken both when handling the treated wood and in determining where to use and dipose of the treated wood.

USE SITE PRECAUTIONS

_____Logs treated with pentachlorophenol should not be used for log homes.

Wood treated with pentachlorophenol should not be used where it will be in frequent or prolonged contact with bare skin (for example, chairs and other outdoor furniture), unless an effective sealer has been applied.

Pentachlorophenol-treated wood should not be used in residential, industrial, or commercial interiors except for laminated beams or building components which are in ground contact and are subject to decay or insect infestation and where two coats of an appropriate sealer are applied. Sealers may be applied at the installation site.

Wood treated with pentachlorophenol should not be used in the interiors of farm buildings where there may be direct contact with domestic animals or livestock which may crib (bite) or lick the wood.

In interiors of farm buildings where domestic animals or livestock are unlikely to crib (bite) or lick the wood, pentachlorophenol-treated wood may be used for building components which are in ground contact and are subject to decay or insect infestation and where two coats of an appropriate sealer are applied. Sealers may be applied at the installation site.

Do not use pentachlorophenol-treated wood for farrowing or brooding facilities.

Do not use treated wood under circumstances where the preservative may become a component of food or animal feed. Examples of such sites would be structures or containers for storing silage or food.

Do not use treated wood for cutting boards or

countertops.

Only treated wood that is visibly clean and free of surface residue should be used for patios, decks and walkways.

Do not use treated wood for construction of those portions of beehives which may come into contact with the honey.

Pentachlorophenol-treated wood should not be used where it may come into direct or indirect contact with public drinking water, except for uses involving incidental contact such as docks and bridges.

Do not use pentachlorophenol-treated wood where it may come into direct or indirect contact with drinking water for domestic animals or livestock, except for uses involving incidental contact such as docks and bridges.

HANDLING PRECAUTIONS

Dispose of treated wood by ordinary trash collection or burial. Treated wood should not be burned in open fires or in stoves, fireplaces, or residential boilers because toxic chemicals may be produced as part of the smoke and ashes. Treated wood from commercial or industrial use (e.g., construction sites) may be burned only in commercial or industrial incinerators or boilers rated at 20 million BTU/hour or greater heat input or its equivalent in accordance with state and federal regulations.

Avoid frequent or prolonged inhalation of sawdust from treated wood. When sawing and machining treated wood, wear a dust mask. Whenever possible, these operations should be performed outdoors to avoid indoor accumulations of airborne sawdust from treated wood.

Avoid frequent or prolonged skin contact with pentachlorophenol-treated wood when handling the treated wood, wear long-sleeved shirts and long pants and use gloves impervious to the chemicals (for example, gloves that are vinyl-coated).

When power-sawing and machining, wear goggles to protect eyes from flying particles.

After working with the wood, and before eating, drinking, and use of tobacco products, wash exposed areas thoroughly.

If oily preservatives or sawdust accumulate on clothes, launder before reuse. Wash work clothes separately from other household clothing.

Figure C-2. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

TREATED WOOD HAZARD LABEL

HEALTH/SAFETY ALERT

HANDLING MAY CAUSE SPLINTERS

WOOD DUST MAY CAUSE EYE AND SKIN IRRITATION

OBSERVE GOOD HYGIENE AND SAFETY PRACTICES WHEN HANDLING THIS PRODUCT

DO NOT USE THIS PRODUCT UNTIL MSDS AND CIS HAVE BEEN READ AND UNDERSTOOD

WARNING: Some forms of components of the liquid preservatives used to manufacture these products have caused lung, skin and possibly other cancers in humans occupationally or environmentally overexposed. Such hazards have not been associated with treated wood use.

THIS PRODUCT CONTAINS A CHEMICAL KNOWN TO THE STATE

OF CALIFORNIA TO CAUSE CANCER

FOR MORE INFORMATION ON PROPOSITION 65, VISIT http://oehha.ca.gov/prop65.html

Figure C-3. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Figure C-4. Timber Rail Material Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Figure C-5. Steel Plate Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Figure C-6. Steel Gusset Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Figure C-7. Steel Plate Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

W3716 U.S. HWY 10 • MAIDEN ROCK, WI 54750

(715) 647-2311 800-325-8456 Fax (715) 647-5181 Website: www.wieserconcrete.com

CONCRETE TEST RESULTS

 PROJECT: Nebraska Posts
 Testing By:
 Jason Hendricks

 CONCRETE SUPPLIER Wieser Concrete
 ACI GRADE 1

SET	TEST	POUR DATE	RESULTS	AVERAGE	TEST TYPE
	1		7348		
1	2	10/19/2017	7566	7457	28 Day
	3				-
	1				
2	2				28 Day
-	3				~
	1				
3	2				
· · · · · · · · · · · · · · · · · · ·	3				
. 3	1				
4	2				
	3				
-	1				
5	2				
	3				
G	1				
0	2				
	31				
7	2				
1	2				
	5				
			1		
			1. 11		
			yant	sand	

Figure C-8. Concrete Post Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Signature

IOLD TO:	ABC COA PO BOX 9 TULSA, O	TING CO INC 10693 NU K 74157-		IR I KANKA	KEE, IN	<i>c.</i>	CERTIF	IED MIL	L TEST	REPOR	T	Page:	1 • 1	
iHIP TO:	ABC COA 2500 W C DOOR 16/ ROSEVILI	TING CO - MN OUNTY ROAD B A LE, MN 55113-					Ship from: MTR #: 00 Nucor Ste One Nuco Bourbonna 815-937-3	: 000146382 el Kankak r Way ais, IL 601 131	2 ee, Inc. 914		B.L. N Load N	Date: umber: umber:	25-Oct-201 529492 279240	16
Materi	al Safety Data	a Sheets are available at www.nucorbar.com o	r by contacting	your Inside	sales repres	entative.				0115	MON TOO	N	BMG-08 January	1, 2012
LO" HE	Γ# ΑT#	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C NI	Mn Cr	P Mo	S V	SI Cb	Cu Sn	C.E.
P4 KN16 KN16	O# => 610511501 6105115	102016-MINN Nucor Steel - Kankakee Inc 10/#3 Rebar 40' A615M GR420 (Gr60) ASTM A615/A615M-14 GR 60[420] AASHTO M31.07	68,025 469MPa	105,418 727MPa	14.3%	ок	-3.2% .023	.37 .13	1.08 .20	.022 .036	.048 .004	.21 .001	.36	
P KN10 KN10	O# => 610511601 6105116	Melted 08/23/16 Rolled 08/2 102016-MINN Nucor Steel - Kankakee Inc 10/#3 Rebar 40' A615M GR420 (Gr60) ASTM A615/A615M-14 GR 60[420] AASHTO M31-07 Melted 08/23/16 Rolled 08/2	7/16 73,054 504MPa	109,049 752MPa	13.6%	ок	-2.1% .023	.38 .13	.99 .12	.014 .037	.048 .003	.19 .001	.39	
P KN1 KN1	0# => 610565101 6105651	102016-MINN Nucor Steel - Kankakee Inc 10/#3 Rebar 40° A615M GR420 (Gr60) ASTM A615/A615M-14 GR 60[420] AASHTO M31-07 Melted 09/29/16 Rolled 10/1	67,275 464MPa	101,464 700MPa	14.1%	ок	-2.7% .026	.38 .18	1.00 .15	.012 .059	.040 .003	.17 .001	.36	

Figure C-9. Rebar Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

18490 MAIN STREET, CONROE, TX 77385 678-633-7091

PRODUCT TEST CERTIFICATION

CUSTOMER: Wieser Concrete Products

DATE: 4/24/2017

LOCATION: 3716 US Hwy 10 Maiden Rock, WI 54750 Ph 715-647-2311

CERTIFICATION # 7702755

PURCHASE ORDER # W01205

CERTIFICATION STANDARD: ASTM A416/A416M-12

WMC HEREBY CERTIFIES THAT THE SPECIMENS TAKEN FROM PRODUCTION LOT(S) CONSISTING OF ONE OR MORE OF THE FOLLOWING LOT/SERIAL NUMBERS WERE TESTED IN ACCORDANCE WITH AND MET THE SPECIFICATION REQUIREMENTS OF ASTM A 416-10.

THE ATTACHED TEST REPORT(S) REPRESENTS THE RESULT OF SUCH TEST(S).

SIZE: 0.500 " DIAMETER

GRADE: 270K GRADE LR SEVEN WIRE STRAND ASTM A416:

COIL NUMBERS	HEAT NUMBER	
2346 -1	5314572502	
2346 -2	5314572502	
2346 -4	5314572502	
2346 -6	5314572502	
2346 -8	5314572502	
 2344 -1	5314572502	
2344 -3	5314572502	

THE PRODUCTS LISTED IN THIS CERTIFICATION WERE MANUFACTURED AND FABRICATED IN THE UNITED STATES OF AMERICA

WMC HEREBY CERTIFIES THAT THE PRESTRESSING STRAND DESCRIBED ABOVE MEETS OR EXCEEDS THE MINIMUM BONDING REQUIREMENTS AS CURRENTLY ACCEPTED IN THE NASP (NORTH AMERICAN STRAND PRODUCERS) PULL-OUT TEST AND THE MOUSTAFFA BLOCK PULL-OUT TEST.

ALL DOMESTIC PRESTRESSING STRAND WAS MADE FROM STEEL ROD THAT WAS MANUFACTURED AND PROCESSED COMPLETELY IN AMERICA. THE ROD WAS THEN MANUFACTURED INTO PC STRAND IN THE UNITED STATED AT WMC LLC, 18490 MAIN STREET CONROE, TX 77385, WITH AN AVERAGE MODULUS OF 28.8.

THE MATERIAL MEETS THE "BUY AMERICA" REQUIREMENTS OF 23 CFR 635.410.

THE PRODUCTS LISTED IN THIS CERTIFICATION WERE MANUFACTURED IN THE USA FROM WIRE ROD WHICH WAS MANUFACTURED IN THE USA.

CERTIFICATION PREPARED BY:

Figure C-10. Pre-Stressed Strand Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

20	der No	Date	Date Required	I Branch	Sales	Rep		Taken By	Card/Cardh	Sustomer	Customer Re		
30	558140	11/06/2017	00.11/28/2017	- Waveriy	Jan B	adura	J	an Badura	Cod/Cash	Sales - Jan Badura	Lumber		
Special	Instructions		Picking & Order Not	es			Server K.	Delivery Ad	dress				
Contact	Info: Eugene (Bunky) Krier 402-	560-1716	Accepted from quote	#363680				Midwest Ros College of E 4630 NW 36 Lincoln, Net Area:	adside Safety Facility ngineering, University o ith Street oraska, 68524	f Nebraska-Lincoln		
ine No	Product Code -	Description		Quantity			Weight		Qty Picked				
1	3 X 12X 12' Rou	gh Sawn Treated ** .4	0**		P	15	ea	15.000	15				
2	Vendor did not ha	ave any 3x10 10's						0.000					
3	2x8 12' treated **	.60**			P	25	ea	25.000	25				
4	2x4 12' treated **	.60**			P	5	ea	5.000	5				
5	ABOVE ITEMS S	OL RACK TB 11/15						0.000					
6								0.000					
7	*							0.000					
8	items below sol d	lock tb 11/16/17						0.000					
9	2 x 8 x 16 TNG S	YP **.40**			P	120	ea	120.000	120				
10	Sold in 12 pc. but	ndles.						0.000					
	Bv:							165.000					

Figure C-11. Wood Plank, Nailer, and Batten Material Specification, Test Nos. MNNW-1, MNNW-2, and MNNW-3

SPRENGER MIDWEST WHOLESALE LUMBER

QUOTE

Account: DOIT01 0096 Branch: SPRENGERSF

SHIP TO: Millard Lumber Inc 0355 Waverly Yard/Mfg 11200 N 148th St Waverly NE 68462

Page 1 of 1

PO: EXP DELV DATE: ACTIVATION DATE: CLOSE DATE:	REF:	TYPE: WH QUOTED FOR:Jan QUOTED BY: Brianc	Job: Ship Via: We af	RANGE	FRT TERM:	ũ.
QUANTITY UOM	ITEM/DESCRIPT	ION		PRICI	E/UOM	AMOUNT
BF × (PC) → BF → (PC) BF × (PC)	204YTFDN .60 FDN CCA TREATED # 5/12' 208YTFDN .60 FDN CCA TREATED # 25/12' 312YT GROUND CONTACT TRT 26/12' /5' We're actually sold out of 3 in lieu of the 10's you'd ask CONTACT grade treatment treatment (= of .60 level). V Grade level. 208YTTGM1 new style T&G #1 SYP GR 52/16' 720 This is the only options we s grade (= old .40) and is sold	2X4 2SYP 2X8 2SYP 3X12 SYP x12x20 for a month or so. ed for, Please note that th (= old .40 level) vs BELO Ve have NO way to get the 2X8 GUND CONTACTMCA stock for 2x8x16 T&G. It is i in 12-pc increments only.	Offering 3x12x12 ey are GROUND W GRADE grade of m in the Below			
PAYMENT TERMS:				Total		

Figure C-12. Wood Plank, Nailer, and Batten Material Specification, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Feb 15th 2017

SOLD TO: GREGORY INDUSTRIES, INC. 4100 13TH ST. SW CANTON, OH. 44710 SHIP TO: HIGHWAY – FINISHED GOODS GREGORY INDUSTRIES, INC. ATTN: STEVE PENNINGTON CANTON, OH 44710 R#17-700

CERTIFICATON BCT Cables Yellow Paint

CGLP ORDER# 256284 GREGORY PO# 36454

THIS LETTER AND THE ENCLOSED ATTACHMENTS ARE TO CERTIFY THAT THE FOLLOWING ITEMS WERE 100% MANUFACTURED IN THE UNITED STATES OF AMERICA.

1,330 PCS, PART# 3012G, 3/4IN X 6FT 6IN DOUBLE SWAGE GUARD RAIL ASSEMBLYS.

THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, 100% MELTED & MANUFACTURED IN THE USA. THESE ITEMS ARE HOT DIPPED GALVANIZED TO ASTM-153 SPECIFICATIONS AND STANDARDS, GALV PROCESS ALSO TOOK PLACE IN THE U.S.A.

ATTACHMENTS:

(WIRE ROPE) WIRECO WORLD GROUP REEL# 428-671806-1; HEAT# .15R582807; 16R584001; 72987C; 16R586548; 73253F; 16R588160; 16R584967; 16R585464; 16R586547; 14R574048; 14R571682; 16R586549; 16R586401; (ROCKY MOUNTAIN STEEL / EVRAZ)

(END FITTINGS) REMLINGER MFG: HEAT#S 75063022; 75062074; 765063075 (GERDAU NORTH AMERICA)

VERY TRULY YOURS

BILL KOTARSKI GEN MGR CLEV OFFICE

HEADQUARTERS

FLINT

BRANCH

12801 UNIVERSAL DRIVE TAYLOR, MI 48180 NEW PH# (734) 947-4000 NEW FAX# (734) 947-4004 G2427 E. JUDD ROAD BURTON, MI 48529 PH# (810) 744-4540 FAX# (810) 744-1588 BRANCH 5213 GRANT AVE CLEVELAND, OH 44105

CLEVELAND

PH# (216) 641-4100 FAX# (216) 641-1814

Figure C-13. BCT Anchor Cable Material Certificate, Test Nos. MNNW-1 and MNNW-2

Certified Analysis

Order Number: 1269489

Prod Ln Grp: 3-Guardrail (Dom)

3 of 5

Lima, OH 45801 Phn:(419) 227-1296					Customer PO: 3346						As of: 11/7/16									
Cus	tomer:	MIDW	EST MACH.& SUPPLY		BOL Number: 97457	Ship Date:							ASUI. 11///10							
		P. O. I	30X 703					Document #: 1												
								Shipped To: NE			•									
		MILFC	DRD, NE 68405					Use State: NE				5								
Pro	ject:	RESA	LE																	
	Qty	Part #	Description	Spec	CL	TY	Heat Code/ Hea	at Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACW
		701A	ANCHOF Box	A-36		3	JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	4
		701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
	4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
	20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
		738A		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
	6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
	6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
	20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
		783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
	45	3000G	CBL 3/4X6'6/DBL	HW			119048													
	7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
	4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
	450	3500G	5/8"X10" GR BOLT A307	HW			28971-В													
	1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													

Figure C-14. Anchor Bearing Plate (South) and BCT Anchor Cable Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Trinity Highway Products, LLC

550 East Robb Ave.

1 87.			1	MATER	IAL TE	EST RE	PORT						
Sold	to								_				
Steel PO B MANI USA	& Pipe ox 168 HATTA	s Supply C 38 N KS 66	ompan 505	e.					Shir 401 NEV USA	oped to el & Pipe New C V CENTI A	e Suppl Century URY KS	y Cor Parkv 66	npan /ay 031
Material: 3.0×	(2.0x188	3x40'0"0(5x4).	Ma	terial No: (0300201884	1000-В	Cust Ma	torial #-	Made in: Melted in	: USA n: USA		
Heat No	C	Mn	P S	Si	Al	Г. 4000290 Си Сь	Mo	Ni	Cr	V	7018840 Ti	в	N
B704212 Bundle No	0.200 PCs	0.450 0. Yield	.010 0.004 Tensile	0.020 Eln.2	0.000 0.0	000.000	0.000 Ce	0.000 ertification	0.000	0.000	0.000 CE	0.000	0.00
40867002 Material Note Sales Or.Note	20 :	064649 Psi	087652 P	si 24 %		4	ASTM A5	500-13 GR	ADE B&	C			
Heat No	- G-	Mn	P S	Si	A	Cu Cb	Mo	Ni	Cr	V	Ti	B	N
B712810 Bundle No MCC00005947 Material Note: Sales Or.Note	0.210 PCs 34	0.460 0. Yield 063688 Psi	012 0.002 Tensile 083220 P	0.020 Eln.2 si 25 %	0.024 0. in Rb 91	100 0.002	2 0.020 Ce	0.030 artification 500-13 GR	0.060	0.004 C	0.002 CE	0.000	0.00
B712810 Bundle No MC00005947 Material Note: Sales Or.Note Material: 2.37 Sales order:	0.210 PCs 34 5x154x 122697	0.460 0. Yield 063688 Psi 42'0"0(34x1) 6	012 0.002 Tensile 083220 P	0.020 Eln.2 si 25 % Ma	0.024 0. in Rb 91 terial No: 1	100 0.002	2 0.020 Ce ASTM AE 4200	0.030 artification 500-13 GR Cust Ma	0.060 ADE 8&	0.004 C Made in: Melted in 6420040	0.002 CE : USA n: USA 042	0.000	0.00
B712810 Bundle No MC00005947 Material Note Sales Or.Note Material: 2.37 Sales order: Heat No	0.210 PCs 7 34 25x154x 122697 C	0.460 0. Yield 063688 Psi 42'0"0(34x1) 6 Mn	012 0.002 Tensile 083220 P	0.020 Eln.2 si 25 % Ma Pur Si	0.024 0. in Rb 91 terial No: 1 chase Orde Al	100 0.002	2 0.020 Ce ASTM A5 4200 5656 Mo	0.030 artification 500-13 GR Cust Ma Ni	0.060 ADE B& terial #: Cr	0.004 C Made in: Melted in 6420040 V	0.002 CE : USA n: USA 042 Ti	0.000 2 0.3 8	0.00 2 N
B712810 Bundle No MCO0005947 Material Note: Sales Or.Note Material: 2.37 Sales order: Heat No 17037261 Bundle No 41532001 Material Note Sales Or Note	0.210 PCs 734 75x154x 122697 C 0.210 PCs 34	0.460 0. Yield 063688 Psi 42'0"0(34x1) 6 Mn 0.810 0 Yield 066144 Psi	012 0.002 Tensile 083220 P 083220 P 083220 P 083220 P 083225 P	0.020 Eln.2 si 25 % Ma Pur Si 0.020 Eln.2 si 27 %	0.024 0. in Rb 91 terial No: 1 chase Order Al 0.000 0.0	100 0.002	2 0.020 Ce ASTM AS 4200 6656 Mo Ce ASTM AS	0.030 ertification 500-13 GR Cust Ma Ni 0.000 ertification 500-13 GR	0.060 ADE B& terial #: Cr 0.000	0.004 C Made in: Meited ii 6420040 V 0.000 C	0.002 CE : USA n: USA 0.042 Ti 0.000 CE	B 0.000 B 0.000 E: 0.3	0.00 2 N 0.00 5

Figure C-16. BCT Post Sleeve Material Certificate, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

CERTIFICATE OF CONFORMANCE |

 For: CASH SALE

 PB Invoice#: 103293

 Cust PO#: MIDWEST ROADSIDE

 Date: 9/29/2017

 Shipped: 10/03/2017

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Desci +	ription: at#: 2781	1-1/4 17	4 X 14 G	ALV AST Base St	TM A307A 1 :eel: A36	ROUND HEAD	BOLT Diam:	1-1/4	Ł	
Sourc	ce: CASC	ADE ST	FEEL RLG	MILL		Proof Load	1:	0		
с:	.180	Mn:	.680	P :	.016	Hardness:	0			
s :	.018	Si:	.220	Ni:	.080	Tensile:	70,000	PSI	RA:	65.00%
Cr:	.150	Mo:	.024	Cu:	.240	Yield:	41,200	PSI	Elon:	32.00%
Pb:	.000	v :	.000	Cb:	.000	Sample Ler	ngth:	8 INCH	Ŧ	
N:	.000			CE:	.3178	Charpy:			CVN Temp	:

Description: 3/4 X 18 GALV ASTM A307A ROUND HEAD BOLT

+	at#: 1	45417	· +	Base	Steel:	A36	Dia	m: 3/4		
Sourc	ce: C	ASCADE	STEEL I	RLG MILI	Ĺ	Proof	Load:	0		
с:	.170	Mn:	.680	P	. 012	Hardne	ess:	0		
S :	.012	Si:	.270	Ni	. 060	Tensil	Le: 73,5	00 PSI	RA:	42.00%
Cr:	.100	Mo:	.021	Cu	: .240	Yield	49,2	00 PSI	Elon:	27.00%
Pb:	.000	v :	.002	Cb	: .000	Sample	e Length:	8 IN	СН	
N :	.000			CE	: .301	7 Charpy	Z :		CVN Ter	mp:

Figure C-17. Round Head Bolts Material Certificate, Test Nos. MNNW-1 and MNNW-2

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

+----+ | CERTIFICATE OF CONFORMANCE | +-----+

 For: CASH SALE

 PB Invoice#: 103293

 Cust PO#:
 MIDWEST ROADSIDE

 Date:
 9/29/2017

 Shipped:
 10/03/2017

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Nuts:

ASTM A563A HEX

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

By: Certification Department Quality Assurance Dane McKinnon

Figure C-18. Hex Nut Certificate of Conformance, Test Nos. MNNW-1 and MNNW-2

Certified Ma	aterial T	est Repor	t to BS EN 10204-2004 3.1	
FOR ASTM	A307,	GRADE	A HEX MACHINE BOLTS	

FACTORY: IFI & Mor ADDRESS: Haiyan, Z TEL:(00852)25423366 CUSTOMER: FASTENA SAMPE SIZE: ASME B18. MANU QTY: 720 PCS SIZE: 3/4-10 x 18 HDG HEADMARKS: 307A +	gan Ltd. Haiyan Offic hejiang, China .L 8 CATEGORY 2-2011; X	е ASTM F1470-2012 ТАБ	DATE: SEP 10 2016 MANU DATE: SEP 01 2010 MFG LOT NUMBER: PO NUMBER: 220021131 PART NO: 91986 3LE 2 SHIPPED QTY: 720 PCS	6 GL16088-3	5
STEEL PROPERTIES:				10,0005	
STEEL GRADE: Q195LD			HEAT NUMBER:	184335	
CHEMISTRY SPEC: TEST:	C % Mn% F 0.29 max 1.20 max 0 0.08 0.37	² % S % 0.04max 0.15max 0.028 0.026	1		
		1]		
DIMENSIONAL INSPECT	IONS	SPECIFICAT	ION: ASME B18.2.1 - 2015		
CHARACTERISTICS	SPEC	IFIED	ACTUAL RESULT	ACC.	REJ.
*****	*****	******	******	******	******
APPEARANCE	ASTM F78	8/F788M-13	PASSED	18	0
THREAD	ANSI B1.1-	2003(R08)-2A	PASSED	13	0
WIDTH FLATS	1.125-	1.088	1.112-1.110	3	0
WIDTH A/C	1.299-	1.240	1.245-1.243	3	0
HEAD HEIGHT	0.524-	0.455	0.476-0.474	3	0
BODY DIA.	0.768-	0.729	0.738-0.736	3	0
THREAD LENGTH	Min 2	.000	PASSED	3	0
LENGTH	18.140-	17.820	18.998-17.983	3	0
MECHANICAL PROPERT	'IES:	SPECIFICAT	10N: ASTM A307-2014 GR	-A	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
******	*****	*****	*****	******	******
CORE HARDNESS :	ASTM F606-2013	Max 100 HRB	79-84 HRB	3	0
WEDGE TENSILE:	ASTM F606-2013	Min 60 KSI	70-74 KSI	3	0
ELONGATION IN 2 in.	ASTM F606-2013	Min 18 %	19-21%	3	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC. *******	REJ. *******
COATINGS OF HOT DIP	ZINC S	SPECIFIATION: ASTM	F2329-2013		
Coating thickness	ASTM B568-98(2014	Min0.0017"	0.0020"	13	0
ALL TESTS IN ACCO ASTM SPECIFICATION. INFORMATION PROVID	RDANCE WITH TH WE CERTIFY TH, ED BY THE MATER	IE METHODS PRESC AT THIS DATA IAL SUPPLER AND 论验。 SIGNATURY OF U.A.N.	RIBED IN THE APPLIC. FROM REPRESENTATIO OUR TESTING LABORA 使用章 EABTIMOR FACTOR (F)	ABLE)N OF FORY.	
		WANTE OF WHILE	(ALLONICIA)		

Figure C-19. Round Head Bolt Material Certificate, Test No. MNNW-3

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 220025818 COMMODITY : HOT FORM HEX MACHINE BOLT GR-A SIZE : 3/4-10X18 NC LOT NO : 1B1782484 SHIP QUANTITY : 480 PCS LOT QUANTITY : 481 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2017/09/16

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/02/05 PACKING NO: GEM170930008 INVOICE NO: GEM/FNL-1710261N-1 PART NO: 91986 SAMPLING PLAN : ASME B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: 17308059-3 MATERIAL: X1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.3300	1.2500	0.0410		
Test Value	0. 0380	0.0800	0.2700	0.0160	0.0060	0.0300

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 1-2012

		SAMPL	ED BY : CLYAN			
INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ.	
THREAD LENGTH	9 PCS	2.0000 inch	6.2260-6.2300 inch	9	0	
MAJOR DIAMETER	9 PCS	0.7370-0.7500 inch	0.7440-0.7460 inch	9	0	
BODY DIAMETER	3 PCS	0.7290-0.7680 inch	0.7450-0.7460 inch	3	0	
WIDTH ACROSS CORNERS	3 PCS	1.2400-1.2990 inch	1.2760-1.2780 inch	3	0	
HEIGHT	3 PCS	0.4550-0.5240 inch	0.4960-0.4970 inch	3	0	
NOMINAL LENGTH	9 PCS	17.8200-18.1400 inch	17.9190-17.9270 inch	9	0	
WIDTH ACROSS FLATS	3 PCS	1.0880-1.1250 inch	1.1080-1.1100 inch	3	0	
SURFACE DISCONTINUITIES	11 PCS	ASTM F788-2013	PASSED	11	0	
THREAD	9 PCS	ASME B1.1-2003 nut	PASSED	9	0	

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

	SAMPLED BY : LUYI							
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.	
CORE HARDNESS	9 PCS	ASTM F606-2016		Max. 100 HRB	76-84 HRB	9	0	
TENSILE STRENGTH	3 PCS	ASTM F606-2016		Min. 60 KSI	72-77 KSI	3	0	
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	78. 03–85. 9	5	0	

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

1grin

page 1 of 1

Figure C-20. Round Head Bolt Material Certificate, Test No. MNNW-3

Inilles	
Luwes	
LOWE'S HOME CENTERS, LLC	
6101 APPLES WAY	
LINCOLN, NE 68516 (402) 420-3660	
- SALE -	
SALES#: \$2739LW1 1792969 TRANS#: 9000581 01-03-18	
101000 00 18 160 3-1/2-TN HG RS 64.97	
184382 30-LD 100 5-172 11 11 11	
SUBTOTAL: 64.97	
TOTAL TAX: 0.00	
INUGICE 09296 TOTAL: 04141 UISA: 64.97	
10000 A0004	
VISA:XXXXXXXXXXXX6926 ANOUNT:64.97 AUTHCD:09/244	
CHIP REFID:273909263066 01/03/18 11.25.55	
OPL - UISA CREDIT TUR: 0080008000	
AID: A000000003101001 TSI: F800	
1000 MOG	
SALVAREN	
STORE: 2739 TERMINAL: 09 01/03/18 11:30:20	
# OF ITEMS PURCHASED:	
EXCLUDES FEES, SERVICES AND SPECIAL UNDER	
THANK YOU FOR SHOPPING LOWE'S.	
SEE REVERSE SIDE FOR RETURN PULLUY.	
STORE MARHUER: NTAN LOVE	
LOWE'S PRICE MATCH GUARANTEE	
FOR MORE DETAILS, VISIT LOWES.COM/PRICEMATCH	
······································	6 34
YOUR OPINIONS COUNT!	*
* REGISTER FOR A CHANCE TO BE	×
* ONE OF FIVE \$300 WINNERS DRAWN WUNIHLY:	*
* IREGISTRESE EN EL SURTED RENSONE	*
* PARA SER UNU DE LOS CINCO GRANDONDO DE	*
* PEATSTER BY COMPLETING A GUEST SATISFACTION SURVEY	*
WITHIN ONE WEEK AT: WWW. TOWES.com/survey	*
* YOUR ID # 09296 2739 003	*
*	*
* NO PURCHASE NECESSARY TO ENTER OR WITH	. *
* VOID WHERE PRUMIBILED. MUST BE TO UN TO THE CONSULVEY	*
* UFF1010L NOLLO ********************************	***

Figure C-21. Shank Nail Receipt, Test Nos. MNNW-1, MNNW-2, and MNNW-3

Certificate of Conformance

W.W. Grainger, Inc. 100 Grainger Parkway Lake Forest, IL. 60045-5201

Attn:	SHAUN M TIGHE
	BLDG
	LINCOLN, NE, 68588-0439
Fay #	

Fax #

1309088366 Grainger Sales Order #: Customer PO #: E000480344

Dear SHAUN M TIGHE As you requested, we are providing you with the following information. We certify that, to the best of Grainger's actual knowledge, the products described below conform to the respective manufacturer's specifications as described and approved by the manufacturer.

Item #	Description	Vendor Part #	Catalog Page #	Order Quantity
31JJ25	Deck Screw,Bugle,#8,2- 1/2,Star,SST,PK2	U30250.016.0250	2107	5.000

Ala Sallar

Shea Gallup Process Management Analyst Compliance Team Grainger Industrial Supply

Figure C-22. Screw Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

January 1, 2018

CERTIFICATE OF COMPLIANCE

Product Name or Description:

All CONAC Lifting Devices including DR Anchors, A-Anchors, Flat System Anchors and Clutches, Coil Inserts, Wire Rope Anchors and Threaded Lifting System Inserts.

This is to certify that the above lifting and handling products have been manufactured and tested in accordance with the quality control plan established by ISO 9001 certified manufacturers and meet or exceed OSHA 29 CFR 1926.704 when compared to the listed catalog rating for the lifting device.

This document certifies each manufactured product can be related to a quality control plan. The manufacturing quality control tests can be made available upon written request and when appropriate.

The rated capacities are for mechanical capacity of the listed anchor or insert only. Placement, edge distances, embedment depth, concrete strength, attachment device, sling angles, and rigging consideration are not part of this certificate of compliance.

M. ann.

Michael Azarin, President U CONAC, Concrete Accessories of GA Inc. Date: 1/1/2018

QMF-029 Lifting Insert Certificate of Compliance Rev. 0 New 127 11-14-13 (11.0)

Figure C-23. Bolt and Washer Certificate of Compliance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

P.O. Box 21148 Tulsa, OK 74121 P: 800-879-8000 F: 800-879-7000

Date: 2/19/2018

Customer: UNIVERSITY OF NEBRASKA-LINCOLN

Customer PO: MnDOT Noise Wall

Subject: Certificate of Conformance - Hilti HDI Anchors

Quantity: 100 PCS / 336429 / Flush anchor HDI 3/4

To Whom it May Concern:

This is to certify that Hilti HDI Drop in Expansion Anchors, supplied on the above purchase order, are manufactured of mild carbon steel and are plated in accordance with the requirements of **Federal Specification** QQ Z 325C, superseded by **ASTM** B633 85,**Type III**, **Class** Fe/Zn 5.

The anchors conform to the description provided in Federal Specification FF S 325, Group VIII, Type I.

Sincerely,

B. Mutchell

B. Mitchell, Certification Specialist

HILTI, Inc. coc7

Figure C-24. Concrete Anchor Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

	31352
2490 Arbor Blvd. Moraine, Ohio 45439	2
Certificate of Conformance	
Date: 3	-30-17
P.O. #: 000	0017781
Company: CONTRACTORS MATERIALS	
Part Number: B16-1/2" X 4" 0.223 \ Lot: 000	0097318
Part Description: COIL INSERTS	
Summit Finishing Technologies Inc. does hereby certify that all process shipped against the above Purchase Order were processed in compli- of the specifications detailed on the said Purchase Order. Specifications Number: ASTM B633 FeZn25 TYPE III SC4 & BAKE	ssed material ance with the all
Process: 25 µm Barrel Zinc Electroplate Yellow Di-Chromate Post Treatment	
Quantity Tested: 10 Lot Quantity: 10,000	
st:/Release/Bin Number(s)	
Thickness checks at P-point: Barrel 1-1 27.84 µm Barrel 1-2 35.93 µm Barrel 1-3 36.34 µm Barrel 1-3 36.34 µm Barrel 1-4 27.37 µm Barrel 1-5 37.57 µm Barrel 2-5 38.47 µm	
Authorized Representative	Photo

Figure C-25. Concrete Anchor Certificate of Conformance, Test Nos. MNNW-1, MNNW-2, and MNNW-3

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:			DATE: 2017-07-12		
PO NUMBER: 22002478	55	MFG LO	T NUMBER: M-SWE041	1982-34	
SIZE: 1-1/4			PART NO: 33189		
HEADMARKS:			QNTY:	9,000	PCS
DIMENSIONAL INSPEC	TIONS	SPEC	IFICATION: ASME B18.	21.1(2009)
CHARACTERISTICS	SPECI	FIED	ACTUAL RESULT	ACC.	REJ.
******	***********	******	************	******	******
APPEARANCE	ASTM F	788-07	PASSED	100	0
OUTSIDE DIA	2.993-	3.030	2.998-3.001	8	0
INSIDE DIA	1.368-	1.405	1.393-1.395	8	0
THICKNESS	0.136-	0.192	0.141-0.146	8	0
HOT DIP GALVANIZED	ASTM A153 class C. RoHS Compliant	Min 0.0017"	Min 0.0018ln	8	0
ALL TESTS IN ACCORDAN WE CERTIFY THAT THIS SUPPLIER AND OUR TES MFG ISO 9001:2015 SGS	NCE WITH THE METHO. DAIA IS A TRUE REPRI TING LABORATORY. Certificate # HK04/0105	DS PRESCRIBED IN ESENTATION OF INF (SIGN (NA	THE APPLICABLE ASTM S CORMATION PROVIDED BY	<i>PECIFICA</i> / <i>THE MAT</i> MGR.) IER)	TION. ERIAL

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure C-26. Round Washer Material Certificate, Test Nos. MNNW-1, MNNW-2 and MNNW-3

3/4" x 2.000" OD Low Carbon Zinc Finish Steel USS General Purpose Flat Washer

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS ZP

FACTORY: IFI & MO	RGAN LTD		REPORT DATE: 2017	7-12-04	
ADDRESS: Chang an N	lorth Road, Wuyuan 1	Town, Haiyan, Zhejiar	ng, China MANUFACTURE DAT	ГЕ: 2017-12	2-04
COUNTRY OF ORIGIN: C	HINA				
CUSTOMER: FASTENA	AL.		MFG LOT NUMBER:	17H168220	-3
SAMPLING PLAN PER A	SME B18.18-11		PO NUMBER:2101367	85	
SIZE: 3/4 ZP	QNTY(Lot si	ze): 33600PCS			
HEADMARKS: NO MARK	< Contract of the second s		PART NO: 1133018		
DIMENSIONAL INSPECT	IONS	SPECIFICA	TION: ASTM B18.21.1-	2011	
CHARACTERISTICS	SPECIF	FIED	ACTUAL RESULT	ACC.	REJ.
*****	******	*****	****	*****	******
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	1.993-2.030		1.999-2.015	10	0
INSIDE DIA	0.805-0.842		0.819-0.828	10	0
THICKNESS	0.122-0.177		0.128-0.157	10	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
*****	*****	*****	*****	******	******
ZINC PLATED	ASTM F1941	Min 3 um	3.9-5.1um	8	0
ALL TESTS IN ACCO	RDANCE WITH TH	E METHODS PRESCI	RIBED IN THE APPL	ICABLE	
ASTM SPECIFICATION	. WE CERTIFY THA	AT THIS DATA NO RG	TROE REPRESENTAT	TION OF	
INFORMATION PROVID	DED BY THE MATER	IAL SUPPLIER AND C	URCTENTING LABOR	RATORY.	
MFG ISO9002 CERTIFICA	ATE NO.HK04/0105	(一检验专)	用章		
		QUANLITY C	ONTROL	-	
		(SIGNATURE OF Q.A	. LAD MGR.)		
		(NAME OF MANU	FACTURER)		

■ 日 扫描全能王 扫描创建

Figure C-27. Round Washer Material Certificate, Test Nos. MNNW-1, MNNW-2 and MNNW-3

Appendix D. Static Soil Tests

Figure D-1. Soil Strength, Initial Calibration Tests, Test No. MNNW-1

Figure D-2. Static Soil Test, Test No. MNNW-1

Appendix E. Vehicle Deformation Records

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. MNNW-1

	Date: Year:	2/27/ 20	2018 10	т	est Name: Make:		IW-1 dge	VIN: Model:	1D7RI RA	B1CT0AS2	214480 rew	
V Y Z X Y Z AX ΔY ΔZ Crush (n) Crush (n) <td></td> <td></td> <td></td> <td></td> <td></td> <td>VEHICLE FLOO</td> <td>PRE/POS DRPAN - S</td> <td>T CRUSH SET 2</td> <td></td> <td></td> <td></td> <td></td>						VEHICLE FLOO	PRE/POS DRPAN - S	T CRUSH SET 2				
POINT (n)	3	DOUT	Х	Y	Z	Χ'	Y'	Z'	ΔX	ΔY	ΔZ	Crush
I 0 02.467 2.963 02.475 2.147 2.067 0.332 1.326 -0.896 0.976 3 63.325 18.667 0.516 63.325 17.943 -1.006 0.020 0.0624 -1.624 1.521 1.534 5 62.262 12.442 2.302 61.878 12.906 1.141 0.384 -0.464 -1.161 1.223 7 60.948 22.882 0.048 60.590 2.037 0.788 -1.845 1.386 9 60.717 18.833 -1.025 60.351 15.062 -2.318 0.239 0.788 1.456 1.456 10 60.6068 16.326 -1.025 60.351 15.062 -2.318 0.237 1.264 -1.282 1.292 12 59.278 11.287 2.086 58.871 11.501 0.377 0.407 -0.214 -1.111 -1.111 -1.111 1.111 1.111 1.111 1.1111 1.126 2.14	—	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
VIII Z 03.302 03.304 0.000 0.020 0.024 0.004 0.017 1.110 4 63.500 14.778 0.628 63.405 17.943 1.006 0.200 0.624 1.521 1.534 4 63.500 14.778 0.628 63.405 12.906 1.141 0.384 -0.464 1.161 1.223 6 61.130 10.866 3.200 60.708 1.266 0.432 -0.380 -1.155 1.230 6 61.130 10.866 3.320 60.708 11.261 0.233 0.788 2.513 -0.0885 1.816 7 60.948 2.288 0.0351 15.062 2.238 0.239 0.786 -1.456 1.456 10 60.066 13.093 -0.296 60.551 15.062 -2.318 0.227 1.284 -1.282 1.292 11 60.402 2.391 1.214 Bad Data Bad Data Bad Data Bad Data		1	62.867	22.673	2.963	62.475	21.347	2.067	0.392	1.326	-0.896	0.978
A 6 63500 14.778 0.628 683405 14.086 0.794 0.095 0.682 14.22 1.421 1.421 1.421 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.422 1.421 1.411 1.411 1.41		- 2	63.525	18.567	0.516	63.325	17.943	-1 006	0.200	0.624	-1.521	1.173
μ μ 5 62.282 12.442 2.302 61.78 12.906 1.141 0.384 -0.464 -1.161 1.223 6 61.130 10.886 3.320 60.078 11.266 2.165 0.422 -0.380 -1.155 1.230 7 0.944 22.882 0.048 60.160 20.389 -0.837 0.788 2.513 -0.885 1.185 8 60.921 21.244 -0.836 60.590 20.379 -2.238 0.788 -1.456 1.456 10 60.606 16.326 -1.025 60.351 15.062 -2.318 0.257 1.324 -1.422 -1.221 -1.222 11 60.560 2.038 5.022 -2.318 0.257 0.234 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.111 -1.1111 -1.131 -1.329	MAN	4	63.500	14.778	0.628	63.405	14.086	-0.794	0.095	0.692	-1.422	1.425
P H 6 61.130 10.886 3.320 60.708 11.266 2.185 0.422 0.380 -1.155 1.280 7 60.942 21.248 -0.663 60.590 20.379 -2.208 0.332 0.669 -1.455 1.386 9 60.717 18.833 -1.023 60.478 18.064 -2.539 0.239 0.788 2.513 -0.865 -1.456 1.456 10 60.608 16.326 -1.025 60.351 15.062 -2.318 0.257 1.264 -1.450 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.292 1.293 1.293 1.390 1.390 1.292 1.291 1.111		5	62.262	12.442	2.302	61.878	12.906	1.141	0.384	-0.464	-1.161	1.223
S 7 60.948 22.882 0.048 60.160 20.369 -0.837 0.788 2.513 -0.885 1.185 9 60.717 18.833 -1.083 60.478 18.064 -2.539 0.239 0.768 -1.345 1.386 10 60.608 18.822 -1.025 60.351 15.062 -2.318 0.257 1.264 -1.224 -1.224 -1.224 -1.224 -1.224 -1.224 -1.224 -1.224 -1.224 -1.224 -1.224 -1.390 11 50.570 24.063 3.184 Bad Data	[2 뿐	6	61.130	10.886	3.320	60.708	11.266	2.165	0.422	-0.380	-1.155	1.230
R 60.921 21.248 -0.863 60.590 22.379 -2.208 0.339 0.768 -1.435 1.345 9 60.717 18.833 -1.025 60.351 15.062 -2.318 0.257 1.264 -1.292 -1.292 11 60.250 13.093 -0.269 60.155 12.658 -1.659 0.095 0.435 -1.390 -1.390 12 59.276 11.287 2.088 58.571 11.501 0.977 0.407 -0.214 -1.111 -1.111 13 56.570 24.603 -3.124 Bad Data	3	7	60.948	22.882	0.048	60.160	20.369	-0.837	0.788	2.513	-0.885	1.185
9 60.717 18.833 -1.023 60.351 15.064 -2.239 0.237 12.64 -1.426 -1.436 10 60.608 16.326 1.025 60.351 15.062 -2.318 0.257 12.64 -1.292 1.390 -1.390 -1.390 12 59.276 11.267 2.088 58.871 11.501 0.977 0.407 -0.214 -1.111 -1.111 13 56.570 24.603 -3.124 Bad Data Bad Bata Bad Bata Bat Bata Bata Bata		8	60.921	21.248	-0.863	60.590	20.379	-2.208	0.332	0.869	-1.345	1.386
10 60.606 16.326 -1.025 60.351 15.062 -2.318 0.257 1.264 -1.292 -1.292 11 60.250 13.093 -0.269 60.155 12.658 -16.59 0.495 0.435 1.390 0.997 0.407 -0.214 -1.111 -1.111 13 56.570 24.603 -3.124 Bad Data Bad Data<		9	60.717	18.833	-1.083	60.478	18.064	-2.539	0.239	0.768	-1.456	-1.456
11 60.250 13.093 -0.269 60.155 12.658 -1.659 0.095 0.435 -1.390 -1.390 12 59.278 11.287 2.088 58.871 11.501 0.977 0.407 -0.214 -1.111 -1.161 -1.141 -1.422 -1.492 -1.492 -1.492 -1.492 -1.492 -1.492 -1.492 -1.492 -1.492 -1.492 -1.492 -1.414 -1.492		10	60.608	16.326	-1.025	60.351	15.062	-2.318	0.257	1.264	-1.292	-1.292
No. 12 59/278 11.287 2/088 58/871 11.501 0.977 -0.214 -1.111 -1.111 13 56/570 24.603 -3.184 Bad Data		11	60.250	13.093	-0.269	60.155	12.658	-1.659	0.095	0.435	-1.390	-1.390
13 36 370 24 0.84 Data DataData Data		12	59.278	11.287	2.088	58.8/1 Red Dete	T1.501 Red Dete	0.977	0.407	-0.214 Red Dete	-1.111 Red Data	-1.111 Red Dete
R 30.422 22.33 -3.627 Data Data Data Data Data Data Data Data		13	56.422	24.603	-3.104	Bad Data	Bad Data	Bad Data	Bad Data	Bad Data	Bad Data	Bad Data
Note: A positive Output Out		14	56 518	18 624	-3.124	56 212	17 565	_4 003	0 307	1 059	_0 951	_0 951
Note: A positive value for ΔX, ΔY, and ΔZ will denote crushing inward toward the occupant compartment Note: A positive value for ΔX, ΔY, and ΔZ will denote crushing inward toward the occupant compartment		16	56.633	16.041	-2.973	56 359	15,106	-4.464	0.274	0.935	-1.492	-1.492
$\frac{4}{20} = \frac{18}{9} + \frac{55.431}{9} + \frac{10.829}{24.712} + \frac{3.944}{4.944} + \frac{49.472}{4.942} + \frac{23.977}{2.9377} + \frac{5.773}{5.773} + \frac{0.171}{0.715} + \frac{0.735}{0.629} + \frac{0.629}{0.629} + \frac{0.629}{2.049637} + \frac{21.987}{4.807} + \frac{49.49}{4.9499} + \frac{21.402}{2.5974} + \frac{5.974}{0.138} + \frac{0.585}{0.585} + \frac{1.161}{1.161} + \frac{1.161}{1.161} + \frac{1.21}{24} + \frac{49.679}{2.951} + \frac{13.64}{2.349} + \frac{1.3842}{4.807} + \frac{4.807}{49.493} + \frac{4.807}{1.842} + \frac{4.811}{9.439} + \frac{4.807}{1.221} + \frac{4.9459}{2.22} + \frac{1.364}{1.286} + \frac{1.286}{1.286} + \frac{1.286}{2.230} + \frac{1.286}{5.097} + \frac{1.286}{0.240} + \frac{1.286}{0.697} + \frac{1.286}{0.240} + \frac{1.286}{0.697} + \frac{1.286}{0.240} + \frac{1.286}{0.697} + \frac{1.286}{0.240} + \frac{1.286}{0.697} + \frac{1.286}{0.240} + \frac{1.286}{0.585} + \frac{1.221}{0.259} + \frac{1.286}{2.035} + \frac{1.221}{2.205} + \frac{1.286}{2.035} + \frac{1.286}{2.03} + 1.2$	_	17	56.401	13.245	-2.463	56,199	12.516	-4.178	0.201	0.729	-1.715	-1.715
19 49.643 24.712 -4.944 49.472 23.977 -5.773 0.171 0.735 -0.829 -0.829 20 49.637 21.987 -4.814 49.4949 21.402 -5.974 0.138 0.585 -1.161 -1.161 21 49.679 16.776 -4.797 49.438 16.247 -6.161 0.113 0.529 -1.364 -1.364 23 49.644 13.842 -4.811 49.404 13.230 -6.097 0.240 0.613 -1.286 -1.286 24 49.559 9.340 -4.620 49.319 8.804 -5.841 0.141 0.536 -1.221 -2.035 -2.046 -1.061	AN	18	55.431	10.829	0.174	55.111	10.652	-1.233	0.320	0.177	-1.406	-1.406
Q 20 49.637 21.987 -4.814 49.499 21.402 -5.974 0.138 0.585 -1.161 -1.161 21 49.679 18.743 -4.807 49.493 18.186 -6.206 0.186 0.557 -1.399 -1.399 22 49.551 16.776 -4.797 49.438 16.247 -6.161 0.113 0.529 -1.384 -1.394 23 49.644 13.842 -4.811 49.404 13.230 -6.097 0.240 0.613 -1.286 -1.286 24 49.459 9.340 -4.620 49.319 8.804 -5.841 0.141 0.536 -1.221 -1.221 25 39.819 24.20 -5.211 39.713 19.925 -6.585 -0.017 0.517 -1.413 -1.466 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1.266 -1		19	49.643	24.712	-4.944	49.472	23.977	-5.773	0.171	0.735	-0.829	-0.829
$\frac{1}{2} = \frac{21}{2} + \frac{49.679}{49.551} + \frac{18.743}{16.776} + \frac{49.493}{49.493} + \frac{18.186}{16.247} + \frac{6.206}{6.610} - \frac{0.186}{0.113} + \frac{0.557}{0.529} + \frac{1.399}{1.364} + \frac{-1.394}{1.364} + \frac{1.364}{2.23} + \frac{49.651}{49.644} + \frac{13.842}{13.842} + \frac{4.811}{4.811} + \frac{49.404}{49.404} + \frac{13.230}{13.20} + \frac{6.097}{0.240} + \frac{0.613}{0.613} + \frac{1.226}{1.226} + \frac{1.226}{1.226} + \frac{1.226}{1.226} + \frac{1.226}{2.235} + \frac{2.035}{2.2035} + \frac{2.035}{2.205} + $	Q	20	49.637	21.987	-4.814	49.499	21.402	-5.974	0.138	0.585	-1.161	-1.161
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		21	49.679	18.743	-4.807	49.493	18.186	-6.206	0.186	0.557	-1.399	-1.399
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	22	49.551	16.776	-4.797	49.438	16.247	-6.161	0.113	0.529	-1.364	-1.364
$\frac{24}{25} \frac{49,459}{39,819} \frac{9,340}{24,220} \frac{-5,201}{52,011} \frac{39,704}{39,704} \frac{23,621}{23,621} \frac{-7,236}{-7,236} \frac{0.114}{0.115} \frac{0.536}{0.598} \frac{-7,221}{-1,221} \frac{-1,221}{-1,221} \frac{-1,221}{-1,23} \frac{-1,236}{-2,035} \frac{-1,01}{-0,110} \frac{-1,141}{-1,076} \frac{-1,276}{-1,076} \frac{-1,276}{-2,9} \frac{-1,233}{-2,306} \frac{-0,109}{-0,109} \frac{-0,296}{-1,102} \frac{-1,102}{-1,102} \frac{-1,102}{-1,102} \frac{-1,102}{-2,306} \frac{-1,1972}{-0,005} \frac{-0,213}{-0,819} \frac{-0,819}{-0,819} -0,819$		23	49.644	13.842	-4.811	49.404	13.230	-6.097	0.240	0.613	-1.286	-1.286
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		24	49.459	9.340	-4.620	49.319	8.804	-5.841	0.141	0.536	-1.221	-1.221
$\frac{20}{27} \frac{39.564}{39.564} \frac{14.953}{14.953} \frac{5.141}{5.141} \frac{39.439}{39.439} \frac{14.501}{4.501} \frac{-6.407}{6.407} \frac{0.124}{0.133} \frac{0.416}{0.4152} \frac{-1.266}{-1.266} \frac{-1.266}{-1.266} \frac{-1.266}{-1.076} \frac{-1.076}{-1.076} \frac{-1.076}{-1.072} \frac{-1.076}{-1.072} \frac{-1.076}{-0.005} \frac{-1.076}{-0.05} -1.0$		25	39.819	24.220	-5.201	39.704	23.021	-7.230	0.115	0.598	-2.035	-2.035
21 39.282 10.956 -5.100 39.148 10.541 -6.176 0.133 0.416 -1.076 -1.076 29 33.519 19.759 -1.203 33.628 19.463 -2.306 -0.109 0.296 -1.102 -1.102 30 33.465 9.780 -1.153 33.460 9.567 -1.972 0.005 0.213 -0.819 -0.819 Note: A positive value for ΔX, ΔY, and ΔZ will denote crushing inward toward the occupant compartment. DASHBEARD -1.102 -1.102 -1.102 -0.819 Note: A positive value for ΔX, ΔY, and ΔZ will denote crushing inward toward the occupant compartment. DASHBEARD -1.872 0.005 0.213 -0.819 -0.819 DODR 0.54 3.2.1 -1.109 87 -1.102 -0.819 -0.819 DODR 0.29 0.005 0.213 -0.819 -0.819 -0.819 -0.819 -0.819 DODR 0.24 23.2221 20.19 -1.102 -0.819 -0.819 -0.819 -0.819 -0.819 -0.819 -0.819 -0.819 -0.819 -0.819 -0.819<		20	39.097	20.442	-5.172	39.713	14 501	-6.363	-0.017	0.517	-1.413	-1.413
29 33.519 19.759 -1.203 33.628 19.463 -2.306 -0.109 0.296 -1.102 -1.102 30 33.465 9.780 -1.153 33.460 9.567 -1.972 0.005 0.213 -0.819 -0.819 Note: A positive value for ΔX, ΔY, and ΔZ will denote crushing inward toward the occupant compartment DASHBDARD -4 32 -1.102 -1.102 -0.819 -0.819 DODR DASHBDARD -4 32 -1.102 -1.102 -0.819 -0.819		28	39.282	10.956	-5.100	39.148	10.541	-6.176	0.133	0.416	-1.076	-1.076
30 33.465 9.780 -1.153 33.460 9.567 -1.972 0.005 0.213 -0.819 -0.819 Note: A positive value for ΔX, ΔY, and ΔZ will denote crushing inward toward the occupant compartment DASHBOARD 654 3 21 -0.819 -0.819 DASHBOARD 6211 109 87 1817 1615 1413 24 23 221 2019 28 27 26 25 30 29 DOOR		29	33.519	19.759	-1.203	33.628	19.463	-2.306	-0.109	0.296	-1.102	-1.102
Note: A positive value for ΔX , ΔY , and ΔZ will denote crushing inward toward the occupant compartment DASHBOARD 9/21 109 87 18 ¹⁷ 1615 1413 24 23 2221 2019 28 27 26 25 30 29 DODR		30	33.465	9.780	-1.153	33.460	9.567	-1.972	0.005	0.213	-0.819	-0.819

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. MNNW-1

Year:	20	10		Make:	Do	dge	Model:	RA	M 1500 C	rew	
				VEI IN	HICLE PRE TERIOR C	E/POST CF RUSH - SE	RUSH ET 1				
	POINT	X (in.)	Y (in.)	Z (in.)	X (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Crush (in.)
	1	48.955	15.740	32.214	48.807	16.019	32.170	0.149	-0.280	-0.044	0.320
	2	48.324	27.034	31.717	48.105	27.281	31.810	0.219	-0.246	0.093	0.342
R	3	48.437	33.033	31.424	48.036	33.217	31.435	0.401	-0.184	0.011	0.442
DA	4	48.685	38.828	31.048	48.321	39.058	31.128	0.363	-0.230	0.080	0.438
	5	43.919	28.545	20.783	43.562	28.602	21.008	0.357	-0.058	0.224	0.425
	6	44.236	40.486	20.736	43.521	40.483	20.927	0.714	0.003	0.192	0.740
	7	53.686	48.791	3.989	52.536	43.781	4.430	1.150	5.010	0.441	5.010
	8	53.785	48.809	7.777	52.286	43.384	8.325	1.499	5.426	0.548	5.426
SA	9	57.803	48.899	8.242	56.301	42.790	8.903	1.502	6.110	0.661	6.110
ш	10	44.177	50.608	24.059	42.895	51.716	24.003	1.281	-1.108	-0.055	-1.108
	11	33.716	50.328	23.266	32.322	51.642	23.196	1.395	-1.314	-0.071	-1.314
S R	12	22.015	50.767	22.203	20.642	52.070	22.071	1.373	-1.304	-0.133	-1.304
δÅ	13	38.886	51.646	7.303	37.339	49.090	7.445	1.547	2.557	0.142	2.557
€ ⊔	14	32.925	51.074	3.066	31.254	48.852	3.270	1.670	2.222	0.204	2.222
≤	15	23.262	50.507	6.641	21.652	49.589	6.911	1.610	0.918	0.270	0.918
	16	37,722	15,164	47,755	37,667	15,768	47,430	0.055	-0.604	-0.325	-0.325
	17	37,156	25,950	47,397	36,934	26.577	47,139	0.222	-0.627	-0.258	-0.258
	18	37.048	37,146	46.815	36,860	37,791	46.525	0.188	-0.645	-0.290	-0.290
	19	33,554	15.077	49,994	33,493	15.618	49.842	0.061	-0.541	-0.152	-0.152
	20	32.293	24.342	50.016	32.109	24.912	49.857	0.183	-0.570	-0.159	-0.159
	21	30.761	34.804	49.566	30.624	35.361	49.368	0.136	-0.557	-0.198	-0.198
ш	22	29.562	14.873	50.616	29.392	15.436	50.491	0.170	-0.563	-0.125	-0.125
<u></u>	23	29.368	20.516	50.569	29.233	21.125	50.418	0.135	-0.609	-0.151	-0.151
Ř	24	27.860	27.948	50.435	27.687	28.582	50.291	0.173	-0.634	-0.144	-0.144
	25	27.188	36.171	49.917	26.931	36.748	49.776	0.256	-0.577	-0.141	-0.141
	26	25.757	15.688	50.935	25.601	16.194	50.837	0.156	-0.506	-0.098	-0.098
	27	25.273	21.553	50.887	25.131	22.065	50.772	0.142	-0.513	-0.115	-0.115
	28	24.814	28.874	50.568	24.547	29.500	50.439	0.267	-0.626	-0.129	-0.129
	29	23.813	36.112	50.226	23.585	36.691	50.092	0.228	-0.579	-0.135	-0.135
	30	18.790	23.494	51.150	18.830	23.922	51.043	-0.040	-0.428	-0.107	-0.107
	31	51.751	47.310	32.789	51.352	48.149	32.452	0.399	-0.840	-0.337	0.399
AR	32	45.446	45.540	38.552	45.141	46.223	38.223	0.305	-0.684	-0.330	0.305
	33	41.372	44.443	41.008	41.043	45.059	40.702	0.329	-0.616	-0.306	0.329
а.	34	37.371	43.720	43.779	37.041	44.339	43.506	0.330	-0.619	-0.274	0.330
	35	9,239	43,819	42,046	9.031	44.075	41,917	0.208	-0.256	-0.129	0.330
~	36	12.511	44.571	40.562	12.241	44.932	40.527	0.271	-0.361	-0.035	0.271
.ΑF	37	8.663	45.505	36.083	8.467	45.488	35.916	0.196	0.016	-0.168	0.196
	38	13.325	46.567	34.746	13.039	46.822	34.621	0.286	-0.255	-0.126	0.286
с.	39	10.018	47.333	28.589	9.761	47.177	28.419	0.256	0.156	-0.170	0.300
·	40	14.183	47.676	24.265	14.002	47.623	24.101	0.180	0.053	-0.164	0.188
₩ Note: A	38 39 40 positive va	13.325 10.018 14.183 alue for ∆X,	46.567 47.333 47.676 ΔY, and Δ	34.746 28.589 24.265 Z will deno	13.039 9.761 14.002 ote crushin	46.822 47.177 47.623 g inward to	34.621 28.419 24.101 oward the c	0.286 0.256 0.180 occupant c	-0.255 0.156 0.053 ompartme	-0.126 -0.170 -0.164 nt	0.28 0.30 0.18

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. MNNW-1

Year:	20	10	<u>.</u>	Make:	Do	dge	Model:	RA	M 1500 C	rew	
				VEI IN	HICLE PRE TERIOR C	E/POST CI RUSH - SI	RUSH ET 2				
	POINT	X (in.)	Y (in.)	Z (in.)	X (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Crush (in.)
	1	48,729	-5.224	28.048	48.624	-4,777	27,177	0.105	0.447	-0.871	0.985
	2	48.408	6.083	27.543	48.242	6.497	26.748	0.165	-0.414	-0.796	0.912
НS	3	48.685	12.076	27.244	48.338	12.430	26.332	0.347	-0.354	-0.913	1.039
)A(4	49.092	17.862	26.863	48.788	18.259	25.980	0.304	-0.397	-0.883	1.014
	5	44.013	7.707	16.621	43.598	7.878	15.996	0.415	-0.172	-0.625	0.769
	6	44.659	19.634	16.563	43.898	19.754	15.834	0.761	-0.120	-0.729	1.060
	7	54.285	27.663	-0.219	52,788	22.682	-0.803	1.496	4.981	-0.584	4,981
E E	. 8	54.395	27.682	3.569	52.578	22.318	3.098	1.818	5.364	-0.471	5.364
s PA	9	58.416	27.661	4.022	56.581	21.612	3.627	1.835	6.049	-0.394	6.049
	10	44 889	29 756	19.877	43 636	31 020	18 840	1 254	-1 264	-1 037	-1 264
IDE	10	34 422	29.765	19 116	33 054	31 247	18 172	1 368	-1 482	-0.945	-1 482
R S	12	22 734	30 525	18.088	21 378	32 004	17 197	1 356	-1 479	-0.891	-1 479
Σŏ	13	39 579	30.928	3 137	37 790	28 447	2 375	1 788	2 481	-0.762	2 481
DD	14	33 591	30 517	-1 082	31 647	28.357	-1 718	1 944	2.401	-0.637	2.401
≥	15	23 928	30 220	2 523	22 119	29,395	2 044	1 809	0.825	-0 479	0.825
	16	37 531	-5.478	13 623	37 681	-4 607	12 583	-0.151	0.872	-1.040	-1 0/0
	10	37 261	5 310	43.023	37.001	6 217	42.303	0.101	-0.808	-1.040	-1.040
	18	37.201	16 514	43.237	37.230	17 /2/	42.221	-0.005	-0.090	-1.031	-1.031
	10	33 360	-5 449	45 874	33 537	-4 621	45.050	-0.168	0.010	-0.824	-0.824
	20	32 363	3 848	45.892	32 422	4.021	45.050	-0.058	-0.862	-0.024	-0.024
	20	31 110	14 347	45 438	31 231	15 103	44 476	-0.000	-0.846	-0.074	-0.074
	21	20 374	-5 542	46 508	20 441	-4 680	45 754	-0.067	0.862	-0.753	-0.301
DOF	22	29.374	0.105	46 457	29.445	1 011	45 644	-0.110	-0.906	-0.733	-0.733
RC	24	28.033	7 575	46.321	28 112	8 508	45 485	-0.080	-0.934	-0.836	-0.836
	25	27 586	15 813	45 798	27 586	16 689	44 923	0.001	-0.876	-0.875	-0.875
	26	25.594	-4.622	46.838	25.678	-3.811	46.144	-0.084	0.812	-0.693	-0.693
	27	25.272	1.254	46.786	25.377	2.071	46.045	-0.104	-0.818	-0.741	-0.741
	28	25.015	8.584	46.462	25.003	9.517	45.668	0.012	-0.933	-0.794	-0.794
	29	24.212	15.847	46.118	24.244	16.731	45.284	-0.031	-0.884	-0.834	-0.834
	30	18.846	3.374	47.067	19.136	4.110	46.385	-0.290	-0.737	-0.681	-0.681
	31	52 396	26 257	28 588	52 096	27 267	27 201	0.300	-1 010	-1.386	0.300
AR	32	46.061	24.666	34.371	45.908	25.559	33.067	0.154	-0.893	-1.305	0.154
A	33	41.966	23.684	36.840	41.811	24.530	35.608	0.156	-0.846	-1.233	0.156
д.	34	37.956	23.074	39.624	37.827	23.944	38.468	0.129	-0.870	-1.156	0.129
	35	9 832	23 947	37 975	9 802	24 478	37 249	0.030	-0.531	-0 726	0.030
	36	13,119	24,607	36,480	13.017	25,232	35,811	0.102	-0.625	-0.669	0.102
-AF	37	9.285	25.644	32.012	9.201	25.867	31.247	0.083	-0.224	-0.766	0.083
ШЦ	38	13.970	26.576	30.661	13.792	27.060	29.882	0.178	-0.483	-0.778	0.178
д.	39	10.666	27.429	24.513	10.445	27.469	23.722	0.221	-0.040	-0.791	0.221
	40	14.827	27.653	20.176	14.641	27.764	19.345	0.186	-0.111	-0.831	0.186
lote: A	positive va	alue for ΔX ,	ΔY , and ΔZ	Z will den	ote crushin	ig inward to	oward the c	occupant c	ompartme	nt	0.100

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. MNNW-1

Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. MNNW-1

Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. MNNW-1

Date: Year:	2/27/ 20	2018 10	. т	est Name: Make:	MNN Hyu	IW-2 ndai	VIN: Model:	KMHC	N4ACXBU Accent	610901		
					VEH	ICLE PRE	POST CRI	JSH				
	1	Х	Y	Z	X'	Ϋ́	Z'	ΔΧ	ΔΥ	ΔZ	Total ∆	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	54.298	7.532	1.865	54.288	7.466	1.507	0.010	0.066	-0.357	0.363	0.010
. =	2	55.156	11.802	2.442	55.038	11.724	2.021	0.118	0.078	-0.421	0.444	0.118
NAN	3	55.577	14.904	2.677	55.4/3	14.877	2.255	0.104	0.027	-0.423	0.436	0.104
	4	54.900	9.022	2.444	51 6/8	9.570	0.073	0.129	_0.052	-0.526	0.346	0.129
ЬÄ	6	52 305	14 074	0.303	52 137	13 935	0.265	0.073	0.139	-0 444	0.000	0.073
└ ≶	7	51.727	20.015	0.461	51.644	19.979	-0.064	0.083	0.036	-0.525	0.533	0.083
	8	51.367	23.427	1.532	51.138	23.245	0.859	0.229	0.181	-0.674	0.735	0.229
	9	46.431	9.515	-1.913	46.256	9.359	-2.184	0.176	0.155	-0.271	0.358	-0.271
	10	46.119	14.284	-1.824	45.980	14.204	-2.221	0.138	0.080	-0.397	0.428	-0.397
	11	46.001	19.730	-1.793	45.914	19.507	-2.284	0.087	0.222	-0.491	0.546	-0.491
	12	46.093	23.978	-1.639	45.967	23.811	-2.164	0.125	0.167	-0.526	0.566	-0.526
	13	42.613	8.983	-2.270	42.597	8.928	-2.478	0.016	0.055	-0.207	0.215	-0.207
	14	42.250	13.6/1	-2.103	42.136	13.520	-2.283	0.114	0.151	-0.180	0.261	-0.180
	15	42.182	18.954	-1.920	42.041	18.720	-2.398	0.141	0.234	-0.473	0.540	-0.473
	10	39.486	8 719	-1.795	39 449	8.643	-2.411	0.073	0.120	-0.010	0.000	-0.010
AN	18	39.940	13.348	-2.266	39.777	13.250	-2.202	0.163	0.097	0.064	0.200	0.064
d d	19	39.553	18.456	-2.059	39.469	18.418	-2.501	0.084	0.038	-0.442	0.452	-0.442
۲ ۵	20	39.235	23.357	-2.245	39.121	23.185	-2.910	0.114	0.172	-0.665	0.696	-0.665
LC	21	35.354	8.570	-2.617	35.280	8.583	-2.895	0.074	-0.013	-0.279	0.289	-0.279
	22	35.483	12.905	-2.469	35.435	12.757	-2.606	0.048	0.148	-0.136	0.207	-0.136
	23	35.094	18.205	-2.170	35.062	18.091	-2.641	0.031	0.114	-0.471	0.485	-0.471
	24	34.831	23.115	-2.588	34.697	23.021	-3.160	0.134	0.094	-0.572	0.595	-0.572
	25	31.170	8.479	-2.285	31.134	8.424	-2.575	0.037	0.055	-0.290	0.297	-0.290
	20	31 465	18 241	-2.200	31.232	18 146	-2.703	0.040	0.040	-0.463	0.490	-0.463
	28	31.478	23.568	-2.432	31,408	23.431	-3.008	0.070	0.137	-0.576	0.596	-0.576
	29	26.021	12.267	1.349	26.033	12.239	1.001	-0.012	0.027	-0.348	0.349	-0.348
	30	26.045	20.624	1.393	26.024	20.620	0.906	0.021	0.004	-0.488	0.488	-0.488
DOOR	~~~				DAS	HBDAF	$ \begin{array}{c} \mathbb{RD}_{1} \\ 9 \\ 13 \\ 17 \\ 21 \\ 25 \\ 2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1 12 16 20 24 28 30		DO	DR
						×	Y					

Figure E-7. Floor Pan Deformation Data – Set 1, Test No. MNNW-2

Date: Year:	2/27/ 20	2018 10	. т	est Name: Make:	MNN Hyu	IW-2 ndai	VIN: Model:	KMHCI	N4ACXBU Accent	610901			
	VEHICLE PRE/POST CRUSH FLOORPAN - SET 2												
		Х	Y	Z	Χ'	Ϋ́	Z'	ΔΧ	ΔY	ΔZ	Total ∆	Crush	
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	
	1	64.304	17.061	-3.971	64.333	16.717	-3.637	-0.029	0.344	0.335	0.481	0.335	
. :::	2	65.117	21.341	-3.411	65.070	20.924	-3.027	0.047	0.418	0.384	0.569	0.387	
AN	3	64 841	24.449	-3.100	64.834	24.011	-2.743	0.051	0.438	0.445	0.627	0.448	
ШЪ	5	61.705	19,210	-5.477	61.701	18.877	-5.063	0.005	0.333	0.402	0.531	0.402	
힡핖	6	62.244	23.577	-5.154	62.235	23.112	-4.732	0.008	0.464	0.422	0.627	0.422	
. >	7	61.604	29.510	-5.426	61.632	29.123	-4.993	-0.028	0.387	0.433	0.581	0.433	
	8	61.209	32.922	-4.368	61.100	32.432	-3.987	0.109	0.490	0.381	0.631	0.396	
	9	56.419	18.946	-7.760	56.485	18.588	-7.354	-0.066	0.357	0.406	0.545	0.406	
	10	56.057	23.712	-7.690	56.099	23.421	-7.306	-0.042	0.291	0.384	0.483	0.384	
	11	55.882	29.156	-7.681	55.912	28.754	-7.272	-0.030	0.403	0.408	0.574	0.408	
	12	52 606	18.373	-7.343	52 720	18 076	-7.696	-0.007	0.434	0.403	0.535	0.403	
	14	52.195	23.058	-7.967	52.121	28.049	-7.442	0.074	-4.991	0.526	5.019	0.526	
	15	52.072	28.341	-7.812	51.643	29.178	-6.524	0.429	-0.837	1.288	1.595	1.288	
	16	52.005	33.273	-7.701	52.093	33.003	-7.375	-0.088	0.271	0.326	0.432	0.326	
z	17	49.483	18.076	-8.401	49.681	17.913	-8.094	-0.199	0.163	0.307	0.400	0.307	
PA	18	49.888	22.710	-8.130	49.917	22.418	-7.356	-0.029	0.291	0.774	0.827	0.774	
RO	19	49.448	27.814	-7.943	49.528	27.565	-7.573	-0.080	0.249	0.370	0.454	0.370	
ŏ	20	45.352	17 884	-8 463	45 468	17 640	-7.093	-0.033	0.332	0.230	0.439	0.230	
Ξ	22	45.436	22.220	-8.333	45.495	21.788	-7.856	-0.059	0.432	0.477	0.646	0.477	
	23	44.991	27.517	-8.055	45.072	27.171	-7.768	-0.081	0.346	0.288	0.457	0.288	
	24	44.678	32.422	-8.493	44.707	32.128	-8.203	-0.029	0.294	0.290	0.413	0.290	
	25	41.170	17.750	-8.133	41.253	17.492	-7.913	-0.083	0.258	0.220	0.349	0.220	
	26	41.230	22.267	-8.145	41.284	22.032	-8.022	-0.054	0.235	0.123	0.271	0.123	
	27	41.303	27.515	-0.097	41.401	27.100	-7.643	-0.038	0.330	0.253	0.418	0.253	
	20	35.979	21 499	-0.340	36.086	21 229	-4.331	-0.045	0.334	0.204	0.420	0.204	
	30	35.917	29.856	-4.505	36.036	29.477	-4.276	-0.120	0.379	0.230	0.459	0.230	
					DAS	HBOAF	RD	1 2	2 ³ 4 6 7	8			
DOOR						×	Y	13 17 21 25	10 1 14 45 18 19 22 23 26 27 29 3	1 12 16 20 24 28 30	/ DO	DR	

Figure E-8. Floor Pan Deformation Data – Set 2, Test No. MNNW-2

Year:	2/27/ 20	10	. I	est Name: Make:	MNN Hyu	NW-2 Indai	VIN: Model:	KMHC	N4ACXBU6 Accent	510901		
					VEHICLI INTERI	E PRE/POS OR CRUSI	ST CRUSH H - SET 1					
		х	Y	Z	Χ'	Υ'	Z'	ΔX	ΔY	ΔZ	Total ∆	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	38.580	2.111	26.760	38.436	2.184	26.841	0.144	-0.073	0.081	0.180	0.180
	2	38.185	9.293	26.193	37.900	9.417	26.125	0.285	-0.124	-0.068	0.318	0.318
LS	3	39.276	15.347	25.399	38.995	15.441	25.209	0.281	-0.094	-0.191	0.352	0.352
PA	4	39.233	22.286	25.253	38.839	22.366	24.713	0.394	-0.080	-0.540	0.673	0.673
	5	34.113	6.612	19.901	33.897	6.528	19.906	0.215	0.084	0.006	0.231	0.231
	6	37.124	23.172	20.121	36.617	23.042	19.587	0.507	0.130	-0.534	0.748	0.748
шШ	7	43.797	28.642	4.325	43.575	27.880	3.461	0.221	0.762	-0.864	1.173	0.762
AN	8	45.846	28.449	8.593	45.262	26.978	7.799	0.583	1.471	-0.794	1.771	1.471
° 4	9	49.133	28.618	8.386	48.625	27.125	7.748	0.509	1.493	-0.638	1.701	1.493
Ы	10	38.262	29.843	21.793	37.117	29.594	20.907	1.145	0.248	-0.886	1.469	0.248
US R	11	25.362	30.572	19.539	24.525	32.177	18.695	0.837	-1.604	-0.844	1.997	-1.604
E O	12	13.372	29.934	23.522	12.659	31.347	23.006	0.713	-1.414	-0.515	1.665	-1.414
A D	13	38.881	29.825	14.500	37.699	29.215	13.663	1.182	0.610	-0.838	1.572	0.610
MH N	14	26.520	30.659	7.258	25.660	30.789	6.521	0.860	-0.130	-0.737	1.140	-0.130
-	15	15.365	29.937	14.100	14.620	31.485	13.517	0.745	-1.547	-0.583	1.814	-1.547
	16	25.259	1.664	41.376	25.069	2.890	41.339	0.190	-1.226	-0.036	1.241	-0.036
	1/	24.893	6.627	41.444	24.803	7.951	41.382	0.091	-1.324	-0.063	1.329	-0.063
	10	24.001	12.440	41.210	24.023	13.707	41.194	0.036	-1.319	-0.010	1.320	-0.010
	19	20.334	20.302	40.799	20.029	21.000	40.000	0.005	-1.324	0.007	1.325	0.007
	20	20.340	6.008	44.030	10 015	7 301	44.050	0.140	-1.207	-0.002	1 380	-0.002
п.	22	19 699	11 419	43 990	19.593	12 785	44 060	0.106	-1.366	0.042	1.303	0.042
ō	23	19.004	18.331	43 590	18 855	19.654	43 632	0.149	-1.323	0.042	1.332	0.042
N N	24	16.581	1.752	44.741	16.508	3.019	44.927	0.073	-1.267	0.186	1.283	0.186
	25	16.345	5.580	44.753	16.326	6.908	44.878	0.019	-1.329	0.125	1.335	0.125
	26	16.505	11.188	44.532	16.431	12.439	44.623	0.074	-1.251	0.091	1.257	0.091
	27	15.964	17.652	44.146	15.797	18.917	43.992	0.167	-1.265	-0.153	1.285	-0.153
	28	13.422	3.877	45.126	13.329	5.113	45.255	0.093	-1.235	0.129	1.246	0.129
	29	13.488	8.850	45.006	13.400	10.051	45.110	0.087	-1.201	0.104	1.209	0.104
	30	13.589	14.159	44.708	13.491	15.419	44.562	0.098	-1.260	-0.146	1.272	-0.146
μ	31	42.898	27.404	29.021	42.470	27.805	28.431	0.428	-0.401	-0.590	0.832	0.428
A	32	38.141	26.423	32.394	38.003	27.140	32.074	0.138	-0.717	-0.319	0.797	0.138
	33	33.240	25.345	35.374	33.245	26.206	35.359	-0.005	-0.860	-0.016	0.860	0.000
-	34	25.885	23.941	38.480	25.989	24.931	38.714	-0.104	-0.990	0.233	1.023	0.233
	35	4.770	23.333	39.536	4.718	24.491	39.164	0.053	-1.159	-0.372	1.218	0.053
к	36	2.586	25.307	35.556	2.405	26.200	35.147	0.181	-0.893	-0.410	0.999	0.181
B	37	6.496	26.265	33.106	6.347	27.201	32.747	0.149	-0.936	-0.359	1.013	0.149
E	<u>ა</u> გ	3.515	27.520	28.720	3.298	20.1/0	28.192	0.217	-0.050	-0.528	0.865	0.217
	39	1.002	21.092	20.174	1.04/	20./0/	20.703	0.235	-0.095	-0.471	0.711	0.235
Jote [.] A	positive va	4.024	AY and A	Z0.415 Zwill deno	4.540	inward tov	vard the oc	cupant cor	npartment	-0.500	0.711	0.077
			ee (1400 8) (13008000)		G				een - Ammerika konfilialisisisisisisisisisi			

Figure E-9. Occupant Compartment Deformation Data – Set 1, Test No. MNNW-2

Year	2/2//	10		Make:	Hyu	ndai	Model:		Accent	510901		
					VEHICLI INTERI	E PRE/POS OR CRUSI	ST CRUSH H - SET 2					
		Х	Y	Z	X'	Y'	Z'	ΔX	ΔY	ΔZ	Total ∆	Crush
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	48.636	11.558	20.943	48.386	10.813	21.470	0.250	0.745	0.527	0.946	0.946
	2	48.167	18.734	20.351	47.808	18.008	20.914	0.360	0.727	0.564	0.987	0.987
Ъ.	3	49.196	24.797	19.537	48.751	24.087	20.018	0.445	0.709	0.481	0.966	0.966
A	4	49.081	31.734	19.366	48.594	30.945	19.728	0.487	0.789	0.361	0.995	0.995
_	5	44.125	15.990	14.067	43.844	15.193	14.600	0.281	0.797	0.533	0.999	0.999
	6	46.966	32.580	14.231	46.409	31.653	14.609	0.557	0.927	0.378	1.145	1.145
шШ	7	53.588	38.065	-1.582	53.468	36.946	-1.435	0.120	1.119	0.147	1.135	1.119
	8	55.637	37.908	2.688	55.119	35.981	2.931	0.518	1.927	0.243	2.010	1.927
0 A	9	58.923	38.110	2.482	58.398	36.173	2.872	0.525	1.937	0.390	2.044	1.937
ш	10	48.034	39.268	15.880	46.821	38.288	16.071	1.212	0.981	0.191	1.571	0.981
	11	35.128	39.857	13.619	34.225	40.788	13.678	0.904	-0.932	0.059	1.299	-0.932
ËÖ	12	23.144	39.108	17.600	22.263	39.789	17.883	0.880	-0.681	0.283	1.149	-0.681
A D	13	48.656	39.232	8.588	47.534	38.039	8.751	1.122	1.193	0.163	1.646	1.193
MP	14	36.290	39.913	1.338	35.526	39.623	1.508	0.764	0.289	0.170	0.834	0.289
-	15	25.140	39.100	8.179	24.409	40.091	8.419	0.731	-0.991	0.241	1.255	-0.991
	16	35.315	11.025	35.555	34.846	11.165	35.803	0.469	-0.140	0.247	0.548	0.247
	1/	34.898	15.984	35.607	34.528	16.192	35.924	0.370	-0.208	0.318	0.530	0.318
	18	34.606	21.801	35.352	34.264	22.015	35.854	0.341	-0.214	0.502	0.644	0.502
	19	33.397	29.702	34.913	33.101	29.900	30.040	0.290	-0.204	0.734	0.631	0.734
	20	20.040	15 222	28 288	29.903	15.402	30.040	0.491	-0.130	0.272	0.576	0.272
	21	29.654	20.730	38 134	29.347	20.033	38,659	0.495	-0.170	0.590	0.033	0.530
ğ	23	28.887	27.633	37 710	28 456	27 773	38 335	0.431	-0.202	0.626	0.730	0.626
N I	24	26.635	11.034	38.917	26,206	11.091	39.322	0.429	-0.057	0.404	0.592	0.404
	25	26.360	14.859	38,916	26.024	14.886	39.334	0.336	-0.027	0.418	0.537	0.418
	26	26.462	20.468	38.675	26.026	20.521	39.183	0.436	-0.052	0.508	0.671	0.508
	27	25.854	26.925	38.267	25.369	27.061	38.655	0.485	-0.137	0.388	0.636	0.388
	28	23.454	13.128	39.293	23.003	13.265	39.658	0.451	-0.136	0.365	0.596	0.365
	29	23.468	18.101	39.156	23.034	18.197	39.592	0.434	-0.096	0.435	0.622	0.435
	30	23.515	23.410	38.840	23.087	23.491	39.146	0.428	-0.081	0.306	0.532	0.306
β	31	52.692	36.902	23.119	52.147	36.425	23.564	0.545	0.477	0.446	0.850	0.850
E A	32	47.944	35.884	26.492	47.608	35.643	27.105	0.337	0.241	0.612	0.739	0.739
	33	43.053	34.766	29.475	42.790	34.598	30.306	0.263	0.168	0.831	0.887	0.887
-	34	35.711	33.297	32.583	35.526	33.206	33.581	0.185	0.091	0.998	1.019	1.019
	35	14.604	32.474	33.634	14.283	32.542	33.852	0.321	-0.069	0.218	0.394	0.388
е	36	12.401	34.411	29.646	11.997	34.336	29.770	0.404	0.076	0.124	0.430	0.430
BB	37	16.302	35.401	27.193	15.995	35.421	27.418	0.307	-0.019	0.224	0.381	0.380
E	38	13.310	36.616	22.803	12.975	36.420	22.989	0.335	0.197	0.186	0.431	0.431
	39	17.673	37.018	20.257	17.343	37.113	20.427	0.331	-0.095	0.170	0.384	0.372
lote: A	40 nositivo vo	14.415	AV and A	7 will dono	14.210	57.047	14.023	0.197	0.247	0.120	0.341	0.341

Figure E-10. Occupant Compartment Deformation Data – Set 2, Test No. MNNW-2

Figure E-11. Exterior Vehicle Crush (NASS) - Front, Test No. MNNW-2

Figure E-12. Exterior Vehicle Crush (NASS) - Side, Test No. MNNW-2

Date: Year:	4/4/2 20	2018 111			Test Name: Make:	MNN Do	W-3 dge			VIN: Model:	1D7R	B1CP7BX6 Ram 1500	46567
					VE l F	HICLE DE FLOOR P	FORMATI AN - SET	ION 1					
[Pretest	Pretest	Pretest	Posttest X	Posttest	Posttest 7	٨x ^A	AVA	۸ 7 ^A	Total A	Crush ^B	Directions
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	Y (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	61.8348	33.3253	-2.6982	59.9450	29.4505	-3.2749	1.8898	3.8748	-0.5767	4.3495	1.8898	X
-	2	62.2693	31.2544	-1.5966	61.2724	29.3262	-1.2807	0.9969	1.9282	0.3159	2.1935	1.0458	X.Z
	3	62.8402	29.7849	-0.9496	62.3078	28.6385	-0.1183	0.5324	1.1464	0.8313	1.5129	0.9872	X, Z
	4	62.9440	27.8081	-0.0158	62.5648	26.9299	0.9500	0.3792	0.8782	0.9658	1.3593	1.0376	X, Z
N C	5	62.9025	24.6086	0.0318	62.6564	23.7449	1.2138	0.2461	0.8637	1.1820	1.4845	1.2073	X, Z
ы С	6	59.2622	34.5090	1.6317	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	BAD DATA	X, Z
2 별 1	7	58.9947	29.8356	1.8407	58.3343	28.3932	2.1788	0.6604	1.4424	0.3381	1.6220	0.7419	X, Z
3	8	58.8947	26.7287	2.0202	58.8020	25.4234	2.9810	0.0927	1.3053	0.9608	1.6234	0.9653	X, Z
ľ	9	58.6783	22.5736	1.8299	58.5952	21.7746	3.1298	0.0831	0.7990	1.2999	1.5281	1.3026	X, Z
×	10	57.5577	20.5099	-0.5605	57.0550	20.4621	0.4179	0.5027	0.0478	0.9784	1.1010	1.1000	X, Z
	11	53.2310	33.3278	4.9748	53.0944	32.1373	5.2944	0.1366	1.1905	0.3196	1.2402	0.3196	Z
l î	12	53.2880	30.3505	4.8556	53.0681	29.3892	5.6418	0.2199	0.9613	0.7862	1.2612	0.7862	Z
	13	53.2866	25.0368	4.8636	53.2030	24.1057	6.0261	0.0836	0.9311	1.1625	1.4918	1.1625	Z
l î	14	52.6165	20.2609	3.1583	52.4198	19.4753	4.3896	0.1967	0.7856	1.2313	1.4738	1.2313	Z
Ĭ	15	52.1464	18.5228	1.8881	51.9422	17.8807	2.9446	0.2042	0.6421	1.0565	1.2531	1.0565	Z
	16	49.5424	33.4697	5.0764	49.5286	32.5721	6.0784	0.0138	0.8976	1.0020	1.3453	1.0020	Z
Ĩ	17	49.6122	30.4326	4.9469	49.5008	29.5056	5.9858	0.1114	0.9270	1.0389	1.3968	1.0389	Z
-	18	49.5489	24.9253	4.9721	49.4554	24.1189	6.0071	0.0935	0.8064	1.0350	1.3154	1.0350	Z
AA I	19	49.5803	19.4561	4.9597	49.4122	18.5610	5.9227	0.1681	0.8951	0.9630	1.3255	0.9630	Z
L L L	20	48.5382	15.3992	2.2494	48.4180	14.6687	2.9781	0.1202	0.7305	0.7287	1.0388	0.7287	Z
<u>⊽</u> ∵	21	43.6235	33.3737	5.0703	43.6441	32.6086	6.1082	-0.0206	0.7651	1.0379	1.2896	1.0379	Z
	22	43.6460	30.1319	4.9557	43.6478	29.4204	5.9415	-0.0018	0.7115	0.9858	1.2157	0.9858	Z
- [23	43.6963	25.0961	4.9409	43.5172	24.3009	5.7601	0.1791	0.7952	0.8192	1.1556	0.8192	Z
[24	43.7037	20.1351	4.9912	43.5210	19.3905	5.6434	0.1827	0.7446	0.6522	1.0066	0.6522	Z
[25	43.7801	16.0378	4.9917	43.4994	15.2476	5.5302	0.2807	0.7902	0.5385	0.9966	0.5385	Z
[26	39.8361	33.7275	5.3106	39.9074	33.0272	6.1508	-0.0713	0.7003	0.8402	1.0961	0.8402	Z
[27	39.9195	30.5588	5.3013	39.9313	29.6997	6.0599	-0.0118	0.8591	0.7586	1.1462	0.7586	Z
[28	39.9183	24.7673	5.2964	39.8246	24.0273	5.9626	0.0937	0.7400	0.6662	1.0001	0.6662	Z
[29	33.5472	27.5811	1.3377	33.6634	27.0485	1.7370	-0.1162	0.5326	0.3993	0.6757	0.3993	Z
	30	33.6096	19.1444	1.3679	33.5726	18.5736	1.6837	0.0370	0.5708	0.3158	0.6534	0.3158	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If no direction listed, then no intrusion is recorded, and Crush will be 0.

Figure E-13. Floor Pan Deformation Data – Set 1, Test No. MNNW-3

Date:	4/4/2	2018			Test Name:	MNN	IW-3			VIN:	1D7R	B1CP7BX6	46567
Year:	20	11			Make:	Do	dge	-		Model:		Ram 1500	
					VEI F	IICLE DE	FORMAT	ION 2					
		Pretest	Pretest	Pretest	Posttest X	Posttest	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions
	POINT	x (in.)	۲ (in.)	۲ (in.)	(in.)	۲ (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	61.1396	48.1965	-6.7376	59.2824	44.6865	-8.4099	1.8572	3.5100	-1.6723	4.3088	1.8572	X
	2	61.5566	46.1228	-5.6347	60.6259	44.5722	-6.4259	0.9307	1.5506	-0.7912	1.9740	0.9307	X
	3	62.1153	44.6490	-4.9866	61.6667	43.8887	-5.2658	0.4486	0.7603	-0.2792	0.9259	0.4486	X
z Ψ	4	62.2026	42.6720	-4.0517	61.9215	42.1887	-4.1833	0.2811	0.4833	-0.1316	0.5744	0.2811	X
₹ ≶ Ñ	5	62.1352	39.4729	-4.0025	61.9941	39.0058	-3.8898	0.1411	0.4671	0.1127	0.5008	0.1806	X, Z
ыщх	6	58.5742	49.4032	-2.4098	bad data	bad data	bad data	bad data	bad data	bad data	bad data	bad data	bad data
L L	7	58.2687	44.7323	-2.1985	57.7115	43.6922	-2.9327	0.5572	1.0401	-0.7342	1.3897	0.5572	X
>	8	58.1435	41.6263	-2.0174	58.1663	40.7271	-2.1060	-0.0228	0.8992	-0.0886	0.9038	0.0000	
	9	57.8937	37.4731	-2.2057	57.9365	37.0814	-1.9204	-0.0428	0.3917	0.2853	0.4865	0.2853	Z
	10	56.7578	35.4172	-4.5956	56.3644	35.7533	-4.6064	0.3934	-0.3361	-0.0108	0.5175	0.3934	X
	11	52.5317	48.2726	0.9305	52.5235	47.5010	0.1912	0.0082	0.7716	-0.7393	1.0686	-0.7393	Z
	12	52.5647	45.2948	0.8129	52.4818	44.7566	0.5652	0.0829	0.5382	-0.2477	0.5982	-0.2477	Z
	13	52.5204	39.9813	0.8237	52.5849	39.4762	0.9991	-0.0645	0.5051	0.1754	0.5386	0.1754	Z
	14	51.8126	35.2101	-0.8794	51.7569	34.8358	-0.5862	0.0557	0.3743	0.2932	0.4787	0.2932	Z
	15	51.3292	33.4752	-2.1490	51.2564	33.2307	-2.0116	0.0728	0.2445	0.1374	0.2898	0.1374	Z
	16	48.8443	48.4443	1.0300	48.9675	47.9672	1.0013	-0.1232	0.4771	-0.0287	0.4936	-0.0287	Z
	17	48.8896	45.4067	0.9020	48.9185	44.9003	0.9384	-0.0289	0.5064	0.0364	0.5085	0.0364	Z
7	18	48.7818	39.9002	0.9301	48.8375	39.5144	1.0118	-0.0557	0.3858	0.0817	0.3983	0.0817	Z
Al	19	48.7690	34.4309	0.9206	48.7566	33.9565	0.9812	0.0124	0.4744	0.0606	0.4784	0.0606	Z
Ϋ́Η	20	47.6957	30.3811	-1.7881	47.7113	30.0430	-1.9173	-0.0156	0.3381	-0.1292	0.3623	-0.1292	Z
8	21	42.9248	48.3962	1.0206	43.0838	48.0437	1.0808	-0.1590	0.3525	0.0602	0.3914	0.0602	Z
Ľ.	22	42.9212	45.1543	0.9077	43.0650	44.8541	0.9447	-0.1438	0.3002	0.0370	0.3349	0.0370	Z
	23	42.9308	40.1182	0.8956	42.8987	39.7341	0.8136	0.0321	0.3841	-0.0820	0.3941	-0.0820	Z
	24	42.8981	35.1574	0.9485	42.8688	34.8228	0.7441	0.0293	0.3346	-0.2044	0.3932	-0.2044	Z
	25	42.9414	31.0595	0.9512	42.8187	30.6793	0.6708	0.1227	0.3802	-0.2804	0.4881	-0.2804	Z
	26	39.1403	48.7807	1.2585	39.3506	48.4878	1.1511	-0.2103	0.2929	-0.1074	0.3762	-0.1074	Z
	27	39.1981	45.6115	1.2509	39.3515	45.1595	1.0920	-0.1534	0.4520	-0.1589	0.5031	-0.1589	Z
	28	39.1501	39.8201	1.2491	39.2062	39.4873	1.0501	-0.0561	0.3328	-0.1990	0.3918	-0.1990	<u>Z</u>
	29	32.8042	42.6832	-2.7148	33.0293	42.5094	-3.1517	-0.2251	0.1738	-0.4369	0.5213	-0.4369	Z
	30	32.7983	34.2464	-2.6801	32.8816	34.0352	-3.1228	-0.0833	0.2112	-0.4427	0.4975	-0.4427	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If no direction listed, then no intrusion is recorded, and Crush will be 0.

Figure E-14. Floor Pan Deformation Data - Set 2, Test No. MNNW-3

Date: Year:	e: 4/4/2018 r: 2011		-	Test Name: <u>MNNW-3</u> Make: <u>Dodge</u>						VIN: Model:	1D7RB1CP7BX646567 Ram 1500		
								ON T 1					
Γ		Pretest	Pretest	Pretest	Posttest X	Posttest	Posttest 7	۸X ^A	۸YA	Λ7 ^Α	Total A	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	Y (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	tor Crush ^C
	1	42.1861	4.2953	-14.7973	41.9147	4.5541	-14.5863	0.2714	-0.2588	0.2110	0.4303	0.4303	X.Y.Z
DASH (X, Y, Z)	2	44.8225	4.7014	-26.5067	44.9969	4.9453	-26.1864	-0.1744	-0.2439	0.3203	0.4387	0.4387	X, Y, Z
	3	48.1277	18.2022	-26.6980	48.3039	18.4761	-26.5302	-0.1762	-0.2739	0.1678	0.3664	0.3664	X, Y, Z
	4	48.7786	26.4635	-26.5310	48.7759	26.7780	-26.3198	0.0027	-0.3145	0.2112	0.3788	0.3788	X, Y, Z
	5	46.3741	22.7477	-22.4328	46.3328	22.9613	-22.3352	0.0413	-0.2136	0.0976	0.2384	0.2384	X, Y, Z
	6	44.2273	22.9275	-15.9147	43.9673	23.0229	-15.8944	0.2600	-0.0954	0.0203	0.2777	0.2777	X, Y, Z
SIDE ANEL (Y)	7	58.4633	36.7887	-3.9477	56.8394	31.4753	-4.1275	1.6239	5.3134	-0.1798	5.5589	5.3134	Y
	8	55.9373	37.0014	-3.3273	54.4571	32.1295	-3.3995	1.4802	4.8719	-0.0722	5.0923	4.8719	Y
<u>n</u>	9	56.1118	36.7021	-0.3703	54.8487	32.2855	-0.4112	1.2631	4.4166	-0.0409	4.5938	4.4166	Ŷ
Ы	10	42.8978	39.0887	-16.4459	41.5054	40.7124	-16.6118	1.3924	-1.6237	-0.1659	2.1454	-1.6237	Y
Ω LL	11	25.1852	39.5037	-16.7560	24.1514	43.5515	-16.7348	1.0338	-4.0478	0.0212	4.1778	-4.0478	Y V
285	12	32.5791	30 6125	-0.3153	30,1066	38 0008	-0.0102	2.0504	-2.4179	-0.3009	2.0000	-2.4179	r V
A D	1/	33 69/9	39.0123	0.7643	31 8228	30.0990	0.3595	1 8721	-0.03/1	-0.4440	1 9157	-0.03/1	v
≥ .	15	24 5481	38 9539	0.2067	22 7001	41 0436	-0.1423	1.8480	-2 0897	-0.3490	2 8114	-2 0897	Y
	16	28 7946	25 7562	-45 3135	29 2454	26 2092	-45 1638	-0.4508	-0.4530	0 1497	0.6564	0 1497	7
~	17	28.8741	22,2064	-45.6470	29.3881	22,7203	-45.4454	-0.5140	-0.5139	0.2016	0.7543	0.2016	Z
-	18	29.4845	17.8384	-45.8584	29.9629	18.3194	-45.6287	-0.4784	-0.4810	0.2297	0.7162	0.2297	Z
-	19	29.7181	13.8322	-46.0231	30.2795	14.4100	-45.7576	-0.5614	-0.5778	0.2655	0.8482	0.2655	Z
	20	29.7734	9.8263	-46.1382	30.3376	10.4055	-45.8536	-0.5642	-0.5792	0.2846	0.8572	0.2846	Z
Ω.	21	24.9369	26.0690	-45.7447	25.4277	26.5074	-45.6252	-0.4908	-0.4384	0.1195	0.6688	0.1195	Z
<u> </u>	22	25.0953	22.1594	-45.9809	25.6324	22.6008	-45.8238	-0.5371	-0.4414	0.1571	0.7127	0.1571	Z
Ъ	23	25.2927	17.7026	-46.2337	25.8713	18.2199	-46.0431	-0.5786	-0.5173	0.1906	0.7992	0.1906	Z
ê.	24	25.5737	13.6570	-46.3856	26.1357	14.2256	-46.1673	-0.5620	-0.5686	0.2183	0.8287	0.2183	Z
_	25	26.0358	9.8735	-46.5188	26.7463	10.4210	-46.2802	-0.7105	-0.5475	0.2386	0.9282	0.2386	Z
-	26	19.5230	25.8925	-46.0869	20.1322	26.3694	-46.0129	-0.6092	-0.4769	0.0740	0.7772	0.0740	Z
-	27	19.3191	21.8082	-46.4165	20.0399	22.2900	-46.3170	-0.7208	-0.4818	0.0995	0.8/2/	0.0995	
	28	19.4386	17.3172	-40.0515	20.2114	17.7478	-46.5292	-0.7728	-0.4306	0.1223	0.8931	0.1223	Z 7
~	29	19.7070	0.0052	40.0024	20.4231	10.2002	-40.0070	-0.0000	-0.4030	0.1549	0.0200	0.1549	Z 7
	30	19.9040	9.9902	-40.0030	20.3701	25.0505	-40.7314	-0.0005	-0.3930	0.1310	0.7214	0.1310	2
~ c ~	32	J2.0040	34 2634	-29.0442	10.0630	35.0000	-29.2450	-0.0000	-0.6096	0.5992	0.0131	0.5992	7
LAI	33	45 3024	33 5704	-35 1330	45 7045	34 3172	-34 7360	-0.1034	-0.7350	0.3070	0.9369	0.3010	7
PIL X, Y	34	41.5974	32.6006	-37.3103	42.0220	33,2900	-37.0704	-0.4246	-0.6894	0.2399	0.8445	0.2399	Z
₩Č	35	39.1565	32.0903	-38.9148	39.5633	32.6879	-38.6078	-0.4068	-0.5976	0.3070	0.7854	0.3070	Z
ľ	36	36.0180	31.2642	-40.6843	36.4934	31.8752	-40.5143	-0.4754	-0.6110	0.1700	0.7926	0.1700	Z
	31	52.0648	35.0489	-29.8442	52.1533	35.8585	-29.2450	-0.0885	-0.8096	0.5992	1.0111	-0.8096	Y
ΨŶ	32	48.8736	34.2634	-32.3626	49.0630	35.0024	-31.8608	-0.1894	-0.7390	0.5018	0.9131	-0.7390	Y
al C	33	45.3024	33.5704	-35.1339	45.7045	34.3172	-34.7360	-0.4021	-0.7468	0.3979	0.9369	-0.7468	Y
ater -PII	34	41.5974	32.6006	-37.3103	42.0220	33.2900	-37.0704	-0.4246	-0.6894	0.2399	0.8445	-0.6894	Y
L A	35	39.1565	32.0903	-38.9148	39.5633	32.6879	-38.6078	-0.4068	-0.5976	0.3070	0.7854	-0.5976	Y
	36	36.0180	31.2642	-40.6843	36.4934	31.8752	-40.5143	-0.4754	-0.6110	0.1700	0.7926	-0.6110	Y
B-PILLAR Maximum (X, Y, Z)	37	11.0229	32.4520	-39.1354	11.4401	32.7412	-39.2535	-0.4172	-0.2892	-0.1181	0.5212	0.0000	
	38	13.5380	35.5036	-29.3105	13.8800	35.7155	-29.3296	-0.3420	-0.2119	-0.0191	0.4028	0.0000	ļ
	39	10.1763	36.0647	-25.3679	10.4646	36.1620	-25.3923	-0.2883	-0.0973	-0.0244	0.3053	0.0000	
	40	14.1014	36.2129	-23.4456	14.3658	36.3498	-23.4441	-0.2644	-0.1369	0.0015	0.2977	0.0015	Z
3 AR	37	11.0229	32.4520	-39.1354	11.4401	32.7412	-39.2535	-0.4172	-0.2892	-0.1181	0.5212	-0.2892	<u> </u>
희머	38	13.5380	35.5036	-29.3105	13.8800	35.7155	-29.3296	-0.3420	-0.2119	-0.0191	0.4028	-0.2119	Y
ate	30	10 1763	36 0647	-25 3670	10/16/16	26 1620	1 25 2022	-0.2883	-0.0073	0 0 2 4 4	0 3053	: 0.0072	+ V

^ Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If no direction listed, then no intrusion is recorded, and Crush will be 0.

Figure E-15. Occupant Compartment Deformation Data – Set 1, Test No. MNNW-3

Date: Year:	4/4/2018 2011				Test Name: Make:	MNI Do	VW-3 dge			VIN: Model:	1D7R	B1CP7BX6 Ram 1500	46567
					VE	HICLE DE	FORMATI	ON					
					INT	ERIOR C	RUSH - SE	T 2					
		Pretest	Pretest	Pretest	Posttost X	Posttest	Posttost 7	۸VA	AXA	A 7 ^A	Total A	Cruch ^B	Direction
	DOINT	X (in)	Y (in.)	Z (in.)	(in.)	Y (in)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for
	PUINT	(11.)	10.2205	(11.)	41.0626	10.2905	10.2260	0 1056	0.0510	0.4019	0 5217	0 5217	
	2	41.2092	19.3295	-10.0331	41.0030	19.3005	-19.3209	-0 1431	-0.0510	-0.4916	0.5317	0.5317	
DASH (X, Y, Z		47 3147	33 1834	-30 7400	47 5131	33 1099	-31 4596	-0 1984	0.0045	-0.7196	0.7501	0.7501	X Y Z
	4	48.0300	41 4395	-30 5769	48.0863	41 4072	-31 3333	-0.0563	0.0700	-0 7564	0 7592	0.7592	X Y Z
	5	45.5946	37.7447	-26.4780	45.6331	37.6584	-27.2910	-0.0385	0.0863	-0.8130	0.8185	0.8185	X. Y. Z
	6	43.4462	37.9446	-19.9610	43.3256	37.8099	-20.8306	0.1206	0.1347	-0.8696	0.8882	0.8882	X. Y. Z
) DE Vel	7	57 7841	51 7005	-7 9942	56 4017	46 2181	-9 2586	1 3824	5 4824	-1 2644	5 7937	5 4824	Y
	, 8	55 2596	51 9333	-7 3752	54 0339	46 9079	-8 5162	1 2257	5 0254	-1 1410	5 2971	5.0254	Ý
PA)	9	55 4302	51 6341	-4 4179	54 4538	47 0876	-5 5331	0.9764	4 5465	-1 1152	4 7820	4 5465	Y
	10	42 2430	54 1154	-20 5011	41.0696	55 5202	-21 6968	1 1734	-1 4048	-1 1957	2 1863	-1 4048	v
DE	10	24 5343	54.6683	-20.3011	23 7504	58 5671	-21.0900	0 7830	-3.8088	-0.8755	4 0721	-3.8088	v v
S R	12	31 0270	55 12/10	-12 3750	31 3126	57 /3/1	-13 6325	0.6153	-2 3002	-1 2566	2 7000	-2 3092	
385	13	40 5880	54 6611	-3 0144	38 8821	53 0007	-13.0323	1 7059	1 5614	-1.2300	2.7000	1 5614	v
⊿ D	14	33 0354	54 6096	-3 2055	31 52/2	54 6228	-4.6311	1 5112	-0.0132	-1 3356	2.7100	-0.0132	v v
Σ	15	23 88/18	54 1322	-3.8573	22 /161	56 2351	-5.0677	1.0112	-2 1020	-1 2104	2.0103	-2 1020	v
F - (Z)	16	20.0040	40 0702	40.2607	22.4101	40.9045	40,0006	0.2242	0.0162	0.6200	0.7142	0.6200	7
	10	28.0001	40.0703	-49.3007	20.3044	40.0945	-49.9990	-0.3343	-0.0102	-0.0309	0.7142	-0.0309	7
	10	20.1021	22.0551	40,0002	20.4027	22.0026	-50.2400	0.3000	-0.0730	-0.3404	0.0710	0.3404	7
	10	20.0700	32.9331	-49.909Z	29.0031	32.9920	-30.3946	-0.3240	-0.0375	-0.4030	0.0000	-0.4000	7
	19	20.0009	20.9472	-30.0710	29.2717	29.0707	-30.4667	-0.3900	-0.1313	-0.4109	0.5004	-0.4109	7
	20	20.3030	41 2210	-10 8010	29.2010	23.0730 A1 23AA	-50.3400	-0.3700	-0.1322	-0.3019	0.3304	-0.5019	7
	21	24.1901	41.2210	-49.0019	24.0000	27 2220	-50.4504	-0.3714	-0.0134	-0.0200	0.7302	-0.0205	Z 7
	22	24.3231	32 8518	-50.0300	24.7220	32 0385	-50.3332	-0.3333	-0.0137	-0.3372	0.0000	-0.3372	7
8	23	24.7354	28 80/0	-50.2003	25 1226	28 9403	-50.8604	-0.3872	-0.1363	-0.4242	0.0403	-0.4000	7
R	24	25 1681	25.0040	-50.4302	25.6865	25 1278	-50.0004	-0.5072	-0.1303	-0.4242	0.5305	-0.4242	7
	26	18 7802	41 0865	-50 1467	19 2666	41 1566	-50 7705	-0 4864	-0.0701	-0.6238	0.7941	-0.6238	7
	27	18 5447	37 0037	-50 4743	19 1227	37 0759	-51 0345	-0 5780	-0.0722	-0.5602	0.8082	-0.5602	7
	28	18 6292	32 5118	-50 7069	19 2379	32 5302	-51 2044	-0.6087	-0.0184	-0.4975	0.7864	-0.4975	7
	29	18 9254	28 2614	-50 8555	19 3981	28 3320	-51 3041	-0 4727	-0.0706	-0.4486	0.6555	-0.4486	7
	30	19 1182	25 1857	-50 9343	19 5067	25 1651	-51 3389	-0 3885	0.0206	-0 4046	0.5613	-0 4046	7
	31	51 39/6	40.0073	-33 8020	51 5462	50 /180	-34 3753	-0.1616	-0.4207	-0.4824	0.6602	0.0000	
<u> ۲ - </u>	32	48 1886	49.9973	-36 4124	18 1228	19 5711	-36 9556	-0.23/2	-0.4207	-0.4024	0.0002	0.0000	
, Z	33	44 6135	48 5688	-39 1851	45 0310	48 9024	-39 7946	-0 4175	-0.3336	-0.6095	0.8106	0.0000	1
⊇IL Xin	34	40 9021	47 6269	-41 3628	41 3160	47 8975	-42 0867	-0 4139	-0 2706	-0 7239	0.8767	0.0000	1
-Υ Α	35	38,4579	47,1348	-42,9683	38,8367	47,3105	-43,5967	-0.3788	-0.1757	-0.6284	0.7545	0.0000	1
	36	35.3140	46.3322	-44.7388	35.7406	46.5168	-45.4685	-0.4266	-0.1846	-0.7297	0.8652	0.0000	1
A-PILLAR Lateral (Y)	31	51 3846	49 9973	-33 8929	51 5462	50 4180	-34 3753	-0.1616	-0.4207	-0.4824	0.6602	-0 4207	Y
	32	48 1886	49 2354	-36 4124	48 4228	49 5744	-36 9556	-0 2342	-0.3390	-0 5432	0.6818	-0 3390	Y
	33	44 6135	48 5688	-39 1851	45 0310	48 9024	-39 7946	-0.2342	-0.3336	-0.6095	0.8106	-0.3336	
	34	40 9021	47 6260	-41 3628	41,3160	47 8975	-42 0867	-0 4139	-0 2706	-0 7239	0.8767	-0 2706	· ·
	35	38 4570	47 1348	-42 9683	38 8367	47 3105	-43 5967	-0.3788	-0 1757	-0.6284	0 7545	-0 1757	· v
	36	35 3140	46,3322	-44 7388	35 7406	46 5168	-45 4685	-0 4266	-0 1846	-0 7297	0.8652	-0 1846	Y
B-PILLAR Maximum (X, Υ, Z)	37	10 3281	47 7157	-43 2026	10 7116	47 6969	-//3 0072	-0 3835	0.0188	-0 79/6	0.8825	0.0188	v
	38	12 8622	50 7526	-33 2720	13 27/7	50 7250	-3/ 12/1	-0.3033	0.0100	-0.7340	0.0020	0.0100	
	30	0.5023	51 3420	-33.3780	0 8000	51 2611	-34.1241	-0.4124	0.0107	-0.7401	0.0027	0.0107	
	39 40	13 / 22/	51 /60F	-23.43/4	3.0333	51 /2011	-30.1015	-0.3800	0.0009	-0.7241	0.0290	0.0009	
~ ~	40	10.9204	47 7457	42 2020	10.7446	47 6060	42 0070	0.0010	0.0401	0.7046	0.0048	0.0401	I V
βÅ	3/	10.3281	41.1151	-43.2026	10.7116	47.0909	-43.9972	-0.3835	0.0167	-0.7946	0.0527	0.0167	Y V
3-PILL ateral	<u>ა</u> გ	12.8623	50.7526	-33.3780	13.2/4/	50.7359	-34.1241	-0.4124	0.0167	-0.7461	0.8527	0.016/	Y V
	39	9.5031	51.3420	-29.43/4	9.8999	51.2611	-30.1615	-0.3968	0.0809	-0.7241	0.8296	0.0809	Y V
	40	10.4284	01.4005	-21.0132	13.6202	ə1.4204	-20.2494	-0.3918	0.0401	-0.1302	0.0349	0.0401	L Y

compartment. ^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the

component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If no direction listed, then no intrusion is recorded, and Crush will be 0.

Figure E-16. Occupant Compartment Deformation Data - Set 2, Test No. MNNW-3

Figure E-17. Exterior Vehicle Crush (NASS) - Front, Test No. MNNW-3

Figure E-18. Exterior Vehicle Crush (NASS) - Side, Test No. MNNW-2

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MNNW-1

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNNW-1

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNNW-1

Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNNW-1

Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNNW-1

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNNW-1

Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MNNW-1

Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MNNW-1

Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MNNW-1

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNNW-1

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNNW-1

Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNNW-1

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNNW-1

Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNNW-1

Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MNNW-1

Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MNNW-1

Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MNNW-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MNNW-2

Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNNW-2

Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNNW-2

Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNNW-2

Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNNW-2

Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNNW-2

Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MNNW-2

Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MNNW-2

262

Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MNNW-2

Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNNW-2

Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNNW-2

Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNNW-2

Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNNW-2

Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNNW-2

Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MNNW-2

Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MNNW-2

270

Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MNNW-2

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. MNNW-3

Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNNW-3

Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNNW-3

Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNNW-3

Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNNW-3

Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNNW-3

Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. MNNW-3

Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. MNNW-3

279

Figure H-8. Acceleration Severity Index (SLICE-1), Test No. MNNW-3

Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNNW-3

Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNNW-3

Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNNW-3

Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNNW-3

Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNNW-3

Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. MNNW-3

Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. MNNW-3

287

Figure H-16. Acceleration Severity Index (SLICE-2), Test No. MNNW-3

END OF DOCUMENT