

Research Project Number TPF-5(193) Supplement #88

PERFORMANCE EVALUATION OF NEW JERSEY'S PORTABLE CONCRETE BARRIER WITH A BACK-SIDE PINNED CONFIGURATION AND GROUTED TOES – TEST NO. NJPCB-6

Submitted by

Surajkumar K. Bhakta, M.S.M.E. Former Graduate Research Assistant Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

Ronald K. Faller, Ph.D., P.E. Research Professor MwRSF Director John D. Reid, Ph.D. Professor

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue, Trenton, New Jersey 08625

MwRSF Research Report No. TRP-03-373-18

December 14, 2018

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-373-18	2.		3. Recipient's Accession No.	
4. Title and Subtitle			5. Report Date	
Performance Evaluation of New Jo			December 14, 2018	
Side Pinned Configuration and Gr	outed Toes – Test No. NJI	CD-0	6.	
7. Author(s)			8. Performing Organization Report No.	
Bhakta, S.K., Lechtenberg, K.A., I Urbank, E.L.	Faller, R.K., Reid, J.D., Bi	elenberg, R.W., and	TRP-03-373-18	
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln			10. Project/Task/Work Unit No.	
Main Office:Outdoor Test Site:Prem S. Paul Research Center at Whittier School4630 N.W. 36th StreetRoom 130, 2200 Vine StreetLincoln, Nebraska 68583-0853			11. Contract © or Grant (G) No. TPF-5(193) Supplement #88	
12. Sponsoring Organization Name and AddressNew Jersey Department of Transportation1035 Parkway AvenueTrenton, New Jersey 08625			13. Type of Report and Period Covered Final Report: 2015 - 2018	
			14. Sponsoring Agency Code	
15. Supplementary Notes Prepared in cooperation with U.S.	Department of Transporta	tion, Federal Highway	Administration.	
16. Abstract This report documents a full-scale crash test conducted in support of a study to investigate the performance of New Jersey Department of Transportation's (NJDOT) Precast Concrete Curb, Construction Barrier, which will be referred to as portable concrete barrier (PCB) in various configurations. This represents the sixth system as part of this study. The primary objective of this research effort was to evaluate the safety performance of the NJDOT PCB, Type 4 (Alternative B) with a back-side pinned configuration and grouted toes, corresponding connection type C in the 2015 NJDOT <i>Roadway Design Manual</i> . Barrier nos. 1 and 10 were anchored on both sides, and barrier nos. 2 through 9 were anchored only on the back side to the concrete tarmac through the pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins inserted into 1¼-in. (32-mm) diameter drilled holes in the concrete tarmac. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments. The barrier was evaluated according to the Test Level 3 (TL-3) criteria set forth in the <i>Manual for Assessing Safety Hardware, Second Edition</i> (MASH 2016). The research study included one full-scale vehicle crash test with a 2270P pickup truck. Following the successful redirection of the pickup truck, the safety performance of the system was determined to be acceptable according to the test designation no. 3-11 evaluation criteria specified in MASH 2016. The 1100C small car crash test was deemed unnecessary due to previous testing. The barrier successfully met MASH 2016 TL-3 criteria. This report is the sixth of nine documents in the nine-test series.				

17. Document Analysis/Descripto Highway Safety, Crash Test, Roa Compliance Test, MASH 2016, L Concrete Barrier, PCB, Anchored	dside Appurtenances, ongitudinal Barrier, Portable	 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified	143		

DISCLAIMER STATEMENT

This report was completed with funding from the New Jersey Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Jennifer Schmidt, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New Jersey Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical Testing Division
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician II
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Construction and Testing Technician I
M.T. Ramel, B.S.C.M., former Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
Undergraduate and Graduate Research Assistants

New Jersey Department of Transportation

Dave Bizuga, former Senior Executive Manager, Roadway Design Group 1 Giri Venkiteela, Research Project Manager, NJDOT Bureau of Research Hung Tang, Design Standards Bureau, Roadway Standards Unit Lee Steiner, Project Engineer, Bureau of Traffic Engineering

TABLE OF CONTENTS

DISCLAIMER STATEMENT	TECHNICAL REPORT DOCUMENTATION PAGE	i
INDEPENDENT APPROVING AUTHORITY. ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS. iv LIST OF FIGURES vi LIST OF TABLES ix 1 INTRODUCTION 1 1.1 Background 1 1.2 Objective 2 1.3 Scope 2 2 TEST REQUIREMENTS AND EVALUATION CRITERIA 3 2.1 Test Requirements 3 2.2 Evaluation Criteria 4 3 DESIGN DETAILS 6 4 TEST CONDITIONS 25 4.1 Test Facility 25 4.2 Vehicle Tow and Guidance System 25 4.3 Itset Vehicle 25 4.4 Simulated Occupant 30 4.5.1 Accelerometers 30 4.5.2 Rate Transducers 30 4.5.3 Actoreflective Optic Speed Trap 30 4.5.4 Digital Photography 31 5 FULL-SCALE CRASH TEST NO. NJPCB-6 33 5.1 Weather Conditions 33 5.2 Test Description 33 5.3 Barrier Damage 35 5.4 Vehicle Damage 35 5.5 Occupant Risk<	DISCLAIMER STATEMENT	ii
ACKNOWLEDGEMENTSiii TABLE OF CONTENTSiv LIST OF FIGURES	UNCERTAINTY OF MEASUREMENT STATEMENT	ii
TABLE OF CONTENTS.ivLIST OF FIGURESviLIST OF TABLESix1 INTRODUCTION11.1 Background11.2 Objective21.3 Scope22 TEST REQUIREMENTS AND EVALUATION CRITERIA32.1 Test Requirements32.2 Evaluation Criteria43 DESIGN DETAILS64 TEST CONDITIONS254.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Test Vehicle254.4 Simulated Occupant304.5.1 Accelerometers304.5.3 Retroreflective Optic Speed Trap304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6.335.1 Weather Conditions335.2 Test Description335.4 Vehicle Damage365.5 Occupant Risk36	INDEPENDENT APPROVING AUTHORITY	ii
LIST OF FIGURESviLIST OF TABLESix1 INTRODUCTION11.1 Background11.2 Objective21.3 Scope22 TEST REQUIREMENTS AND EVALUATION CRITERIA32.1 Test Requirements32.2 Evaluation Criteria43 DESIGN DETAILS64 TEST CONDITIONS254.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Test Vehicle254.4 Simulated Occupant304.5 Data Acquisition Systems304.5.1 Accelerometers304.5.2 Rate Transducers304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6335.1 Weather Conditions335.3 Barrier Damage355.4 Vehicle Damage365.5 Occupant Risk36	ACKNOWLEDGEMENTS	iii
LIST OF TABLESix1 INTRODUCTION11.1 Background11.2 Objective21.3 Scope22 TEST REQUIREMENTS AND EVALUATION CRITERIA32.1 Test Requirements32.2 Evaluation Criteria43 DESIGN DETAILS64 TEST CONDITIONS254.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Simulated Occupant304.5 Data Acquisition Systems304.5.1 Accelerometers304.5.2 Rate Transducers304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6335.3 Barrier Damage355.4 Vehicle Damage355.5 Occupant Risk365.5 Occupant Risk38	TABLE OF CONTENTS	iv
1 INTRODUCTION 1 1.1 Background 1 1.2 Objective 2 1.3 Scope 2 2 TEST REQUIREMENTS AND EVALUATION CRITERIA 3 2.1 Test Requirements 3 2.2 Evaluation Criteria 4 3 DESIGN DETAILS 6 4 TEST CONDITIONS 25 4.1 Test Facility 25 4.2 Vehicle Tow and Guidance System 25 4.3 Inst Vehicle 25 4.4 Simulated Occupant 30 4.5.1 Accelerometers 30 4.5.2 Rate Transducers 30 4.5.3 Retroreflective Optic Speed Trap 30 4.5.4 Digital Photography 31 5 FULL-SCALE CRASH TEST NO. NJPCB-6 33 5.1 Weather Conditions 33 5.2 Test Description 33 5.3 Barrier Damage 35 5.4 Vehicle Damage 35 5.5 Occupant Risk 38	LIST OF FIGURES	vi
1.1 Background11.2 Objective21.3 Scope221.3 Scope2 TEST REQUIREMENTS AND EVALUATION CRITERIA32.1 Test Requirements32.2 Evaluation Criteria43 DESIGN DETAILS64 TEST CONDITIONS254.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Test Vehicle254.4 Simulated Occupant304.5.1 Accelerometers304.5.2 Rate Transducers304.5.3 Retroreflective Optic Speed Trap304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6335.1 Weather Conditions335.3 Barrier Damage355.4 Vehicle Damage355.4 Vehicle Damage365.5 Occupant Risk38	LIST OF TABLES	ix
2.1 Test Requirements32.2 Evaluation Criteria43 DESIGN DETAILS64 TEST CONDITIONS254.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Test Vehicle254.4 Simulated Occupant304.5 Data Acquisition Systems304.5.1 Accelerometers304.5.2 Rate Transducers304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6335.1 Weather Conditions335.2 Test Description335.3 Barrier Damage355.4 Vehicle Damage365.5 Occupant Risk38	1.1 Background 1.2 Objective	
4 TEST CONDITIONS.254.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Test Vehicle254.4 Simulated Occupant304.5 Data Acquisition Systems304.5.1 Accelerometers304.5.2 Rate Transducers304.5.3 Retroreflective Optic Speed Trap304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6.335.1 Weather Conditions335.2 Test Description335.3 Barrier Damage355.4 Vehicle Damage365.5 Occupant Risk38	2.1 Test Requirements	
4.1 Test Facility254.2 Vehicle Tow and Guidance System254.3 Test Vehicle254.4 Simulated Occupant304.5 Data Acquisition Systems304.5.1 Accelerometers304.5.2 Rate Transducers304.5.3 Retroreflective Optic Speed Trap304.5.4 Digital Photography315 FULL-SCALE CRASH TEST NO. NJPCB-6335.1 Weather Conditions335.2 Test Description335.3 Barrier Damage355.4 Vehicle Damage365.5 Occupant Risk38	3 DESIGN DETAILS	6
5.1 Weather Conditions335.2 Test Description335.3 Barrier Damage355.4 Vehicle Damage365.5 Occupant Risk38	 4.1 Test Facility	25 25 25 30 30 30 30 30 30 30
6 SUMMARY AND CONCLUSIONS	 5.1 Weather Conditions	

7 COMPARISON TO) TEST NO. NYTCB-5	
8 MASH IMPLEME	NTATION	
9 REFERENCES		
10 APPENDICES		
Appendix A.	NJDOT PCB Standard Plans	
	Material Specifications	
Appendix C.	Concrete Tarmac Strength	
Appendix D.	Vehicle Center of Gravity Determination	
	Vehicle Deformation Records	
Appendix F.	Accelerometer and Rate Transducer Data Plots	

LIST OF FIGURES

Figure 1. Test Installation Layout, Test No. NJPCB-6	7
Figure 2. PCB Pin Anchor Details, Test No. NJPCB-6	8
Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-6	
Figure 4. PCB Details, Test No. NJPCB-6	
Figure 5. PCB Reinforcement Details, Test No. NJPCB-6	11
Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-6	
Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-6	13
Figure 8. PCB Connection Key Component Details, Test No. NJPCB-6	
Figure 9. PCB Connection Socket Details, Test No. NJPCB-6	15
Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-6	16
Figure 11. Connection Key Placement Details, Test No. NJPCB-6	17
Figure 12. PCB Reinforcement Details, Test No. NJPCB-6	18
Figure 13. General Notes, Test No. NJPCB-6	19
Figure 14. Bill of Materials, Test No. NJPCB-6	
Figure 15. NJDOT PCB with Back-Side Pinned Configuration and Grouted Toes Test	
Installation, Test No. NJPCB-6	21
Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-6	22
Figure 17. PCB Back-Side Pin Anchor Recesses, Test No. NJPCB-6	23
Figure 18. Grout at Toes Between PCBs, Test No. NJPCB-6	24
Figure 19. Test Vehicle, Test No. NJPCB-6	
Figure 20. Test Vehicle's Interior Floorboards, Test No. NJPCB-6	27
Figure 21. Vehicle Dimensions, Test No. NJPCB-6	
Figure 22. Target Geometry, Test No. NJPCB-6	29
Figure 23. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-6	32
Figure 24. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
NJPCB-6	36
Figure 25. Summary of Test Results and Sequential Photographs, Test No. NJPCB-6	39
Figure 26. Additional Sequential Photographs, Test No. NJPCB-6	40
Figure 27. Additional Sequential Photographs, Test No. NJPCB-6	41
Figure 28. Documentary Photographs, Test No. NJPCB-6	
Figure 29. Documentary Photographs, Test No. NJPCB-6	43
Figure 30. Documentary Photographs, Test No. NJPCB-6	44
Figure 31. Documentary Photographs, Test No. NJPCB-6	45
Figure 32. Impact Location, Test No. NJPCB-6	
Figure 33. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-6	47
Figure 34. System Damage – Front, Back, Upstream and Downstream Views, Test No.	
NJPCB-6	
Figure 35. Barrier Nos. 2 and 3 – Traffic and Back Side Damage, Test No. NJPCB-6	49
Figure 36. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-6	50
Figure 37. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-6	
Figure 38. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-6	
Figure 39. Barrier Nos. 6 and 7 - Traffic and Back Side Damage, Test No. NJPCB-6	
Figure 40. Vehicle Damage, Test No. NJPCB-6	
Figure 41. Vehicle Damage on Impact Side, Test No. NJPCB-6	
Figure 42. Vehicle Windshield and Side Window Damage, Test No. NJPCB-6	56

Figure 43. Occupant Compartment Deformation, Test No. NJPCB-6	57
Figure 44. Undercarriage Damage, Test No. NJPCB-6	58
Figure 45. Deflection Comparisons – Test Nos. NJPCB-6 and NYTCB-5	63
Figure A-1. NJDOT PCB Standard Plans	
Figure A-2. NJDOT PCB Standard Plans	
Figure A-3. NJDOT PCB Standard Plans	
Figure A-4. NJDOT PCB Standard Plans	
Figure A-5. NJDOT PCB Standard Plans	
Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-6	
Figure B-3. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-6	
Figure B-4. Anchor Pins Material Certificate, Test No. NJPCB-6	
Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-10. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-11. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-12. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-13. Rebar No. 4 Material Certificate, Test No. NJPCB-6	
Figure B-14. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-15. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-16. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-17. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-18. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-19. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-20. Rebar No. 6 Material Certificate, Test No. NJPCB-6	
Figure B-21. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-22. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-23. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-24. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-25. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-26. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-27. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-28. Steel Tube Material Certificate, Test No. NJPCB-6	
Figure B-29. 2-in. \times ¹ / ₄ -in. (51-mm \times 6-mm) Bent Steel Plate, Test No. NJPCB-6	
Figure B-30. 2-in. \times ¹ / ₄ -in. (51-mm \times 6-mm) Bent Steel Plate, Test No. NJPCB-6	
Figure B-31. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6	
Figure B-32. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6	
Figure B-33. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6	
Figure B-34. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6	
Figure B-35. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6	
Figure B-36. Non-Shrink Grout Specifications, Test No. NJPCB-6	
Figure B-37. Non-Shrink Grout Specifications, Test No. NJPCB-6	
Figure B-38. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-6	
Figure C-1. Concrete Tarmac Strength Test Figure C-2. Concrete Tarmac Strength Test	
	110

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-61	18
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-61	20
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-61	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-61	22
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-61	23
Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-61	24
Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-61	25
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-61	27
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-61	28
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-61	29
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-61	30
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-61	31
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-61	32
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-61	33
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. NJPCB-61	34
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-61	35
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-61	36
Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-61	37
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-61	38
Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-61	39
Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-61	40
Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-61	41
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. NJPCB-61	42

LIST OF TABLES

Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]	1
Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]	1
Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier	5
Table 5. Weather Conditions, Test No. NJPCB-6	33
Table 6. Sequential Description of Impact Events, Test No. NJPCB-6	33
Table 7. Maximum Occupant Compartment Deformations by Location	37
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-6	38
Table 9. Summary of Safety Performance Evaluation	60
Table 10. Comparison of Pinned Back Side Only Systems	62
Table B-1. Bill of Materials, Test No. NJPCB-6	76

1 INTRODUCTION

1.1 Background

The New Jersey Department of Transportation (NJDOT) currently uses a New Jersey shape, Precast Concrete Curb, Concrete Barrier, which will be referred to as portable concrete barrier (PCB), with a vertical, I-beam connection pin to attach barriers end to end within their work zones and construction areas. The 2013 NJDOT *Roadway Design Manual* [1] provides guidance on allowable barrier deflections for various classes of PCB joint treatments, as shown in Table 1. The current 2015 NJDOT *Roadway Design Manual* [2] provides guidance on allowable deflections for various connection types, as shown in Table 2.

Table 1. 2013 NJDOT	' Roadway Design	Manual PCB	Guidance [1]
14010 1. 2013 10001	Roudina Design	i manaan i OD	

Joint Class	Use	Joint Treatment
А	Allowable movement over 16 to 24 inches	Connection Key only
В	Allowable movement over 11 to 16 inches	Connection Key and grout in every joint
С	Allowable movement of 11 inches	Connection Key and grout in every joint and pin every other unit. In units to be anchored, pin should be required in every recess
D	No allowable movement (i.e., bridge parapet)	Connection Key and grout in every joint and bolt every anchor pocket hole in every unit.

Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]

Connection Type	Use	Joint Treatment*
А	Maximum allowable deflection of 41 inches	Connection Key and barrier end sections fully pinned
В	Maximum allowable deflection of 28 inches (Cannot be used with traffic on both sides of the barrier.)	Connection Key, 6" by 6" box beam, and barrier end sections fully pinned
С	Maximum allowable deflection of 11 inches	Connection Key, construction side of all sections pinned, and barrier end sections fully pinned

* Barrier end sections fully pinned – first and last barrier segments of the entire run regardless of connection type have pins in every anchor recess on both sides.

The guidance provided in both the 2013 and 2015 *Roadway Design Manual* was based on test data obtained from previous testing standards, which needs to be updated to be consistent with current crash testing standards and a changing vehicle fleet. Crash testing of other PCB systems under the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3] has indicated that dynamic barrier deflections can increase significantly when compared to dynamic deflections based on older crash test data. Thus, a need exists to

investigate the performance of the NJDOT PCB system in various configurations in order to provide updated design guidance. The NJDOT PCB standard plans are shown in Appendix A.

1.2 Objective

The objective of this research effort was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) with a back-side pinned configuration and grouted toes, corresponding to connection type C in the 2015 NJDOT *Roadway Design Manual*. The system was to be evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3].

1.3 Scope

The research objective was achieved through completion of several tasks. One full-scale crash test was conducted on the PCB system according to MASH 2016 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the PCB system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. Note that there is no difference between MASH 2009 [4] and MASH 2016 for most longitudinal barriers, such as the PCB system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 3. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62 (100)	25	A,D,F,H,I

 Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 4.

In test no. 7069-3, a rigid, F-shape, concrete bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-8]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ¹/₂-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid barriers as seen in test no. 47 [10]. As such, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any

tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the ve to a controlled stop; the vehicle should not penetrate, underrid override the installation although controlled lateral deflection o test article is acceptable.			
Occupant	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
Risk		Occupant Impact Velocity Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)	
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
		Occupant Ridedown Acceleration Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	15.0 g's	20.49 g's	

3 DESIGN DETAILS

The test installation consisted of ten 20-ft (6.1-m) long NJDOT PCBs with a back-side pinned configuration and grouted toes as shown in Figures 1 through 14. This system uses NJDOT barriers, Type 4 (Alternative B) with connection type C, as specified in the 2015 NJDOT *Roadway Design Manual*. Photographs of the test installation are shown in Figures 15 through 18. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The concrete mix for the barrier sections required a minimum 28-day compressive strength of 3,700 psi (25.5 MPa). A minimum concrete cover of 1½ in. (38 mm) was used along all rebar in the barrier. All of the steel reinforcement in the barrier was ASTM A615 Grade 60 rebar and consisted of four No. 6 longitudinal bars, eight No. 4 bars for the vertical stirrups, four No. 6 lateral bars, and nine No. 4 bars for the anchor hole reinforcement loops. The section reinforcement details are shown in Figures 5 and 6.

The barrier sections were connected with a connection key, as shown in Figures 7 through 11 and 16. The connection key assembly consisted of ½-in. (13-mm) thick, ASTM A36 steel plates welded together to form the key shape. A connection socket was configured at each end of the PCB section, as shown in Figures 2, 15, and 16. The connection socket consisted of three ASTM A36 steel plates welded on the sides of an ASTM A500 Grade B or C steel tube, as shown in Figures 9 and 10. The connection key was inserted into the steel tubes of two adjoining PCBs to form the connection, as shown in Figure 11.

Barrier nos. 1 and 10 were anchored to the concrete tarmac on the traffic side and back side, while barrier nos. 2 through 9 were anchored to the concrete tarmac on the back side only. All anchored barriers were anchored through the pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1¹/₄-in. (32-mm) diameter holes in the concrete tarmac, as shown in Figures 1, 12 and 17. The steel pins were embedded to a depth of 5 in. (127 mm), as shown in Figure 1. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, 1¹/₄-in. (32-mm) diameter holes were drilled for pin anchors at pin recess locations. Five samples of concrete tarmac were tested from five different locations of MwRSF's Outdoor Test Site. The concrete tarmac had a compressive strength ranging between 5,970 and 7,040 psi (41.2 and 48.5 MPa), as shown in Appendix C. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments on both traffic and back sides, as shown in Figures 1, 2, and 18. The grout wedges consisted of a grout mix with a minimum 1-day compressive strength of 1,000 psi (6.9 MPa).

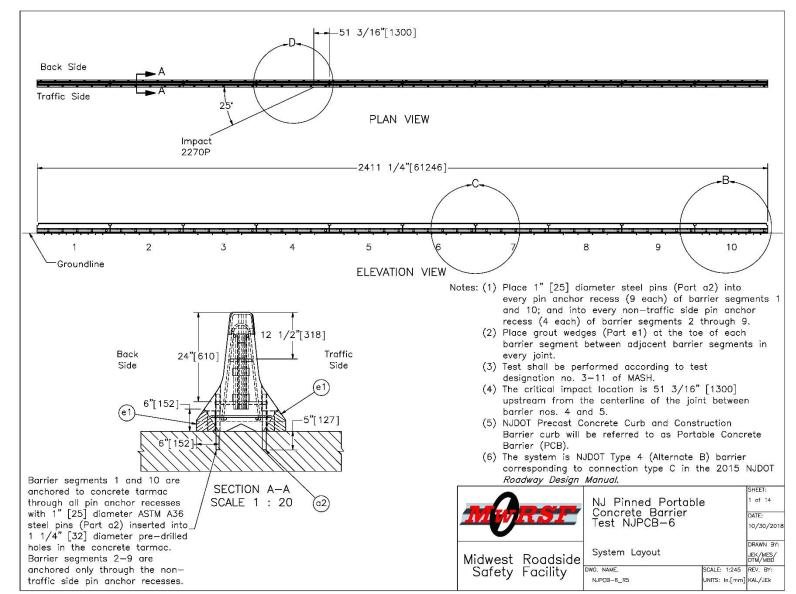


Figure 1. Test Installation Layout, Test No. NJPCB-6

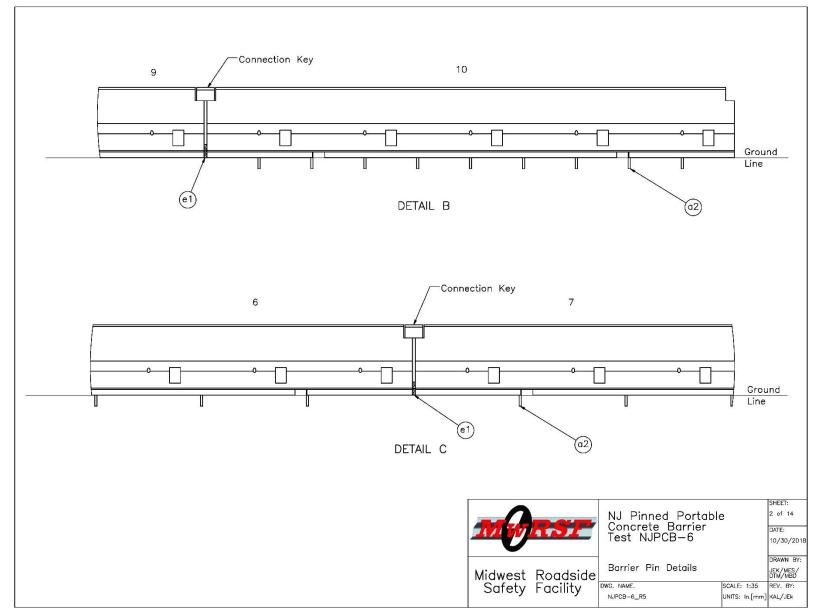


Figure 2. PCB Pin Anchor Details, Test No. NJPCB-6

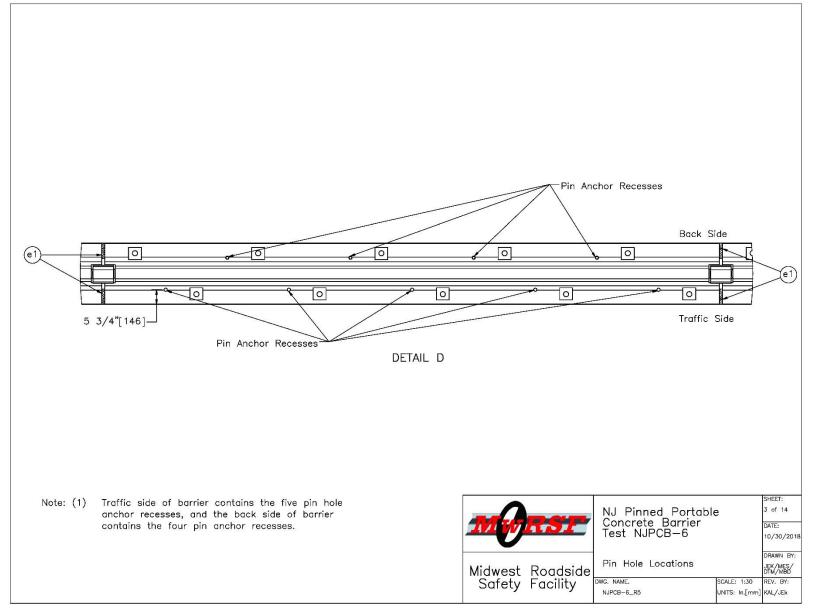


Figure 3. PCB Pin Anchor Locations, Test No. NJPCB-6

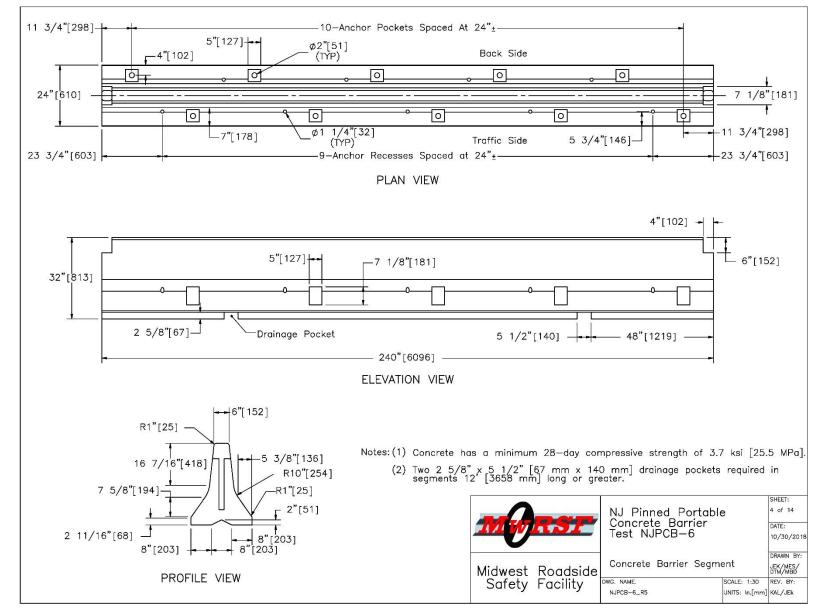


Figure 4. PCB Details, Test No. NJPCB-6

10

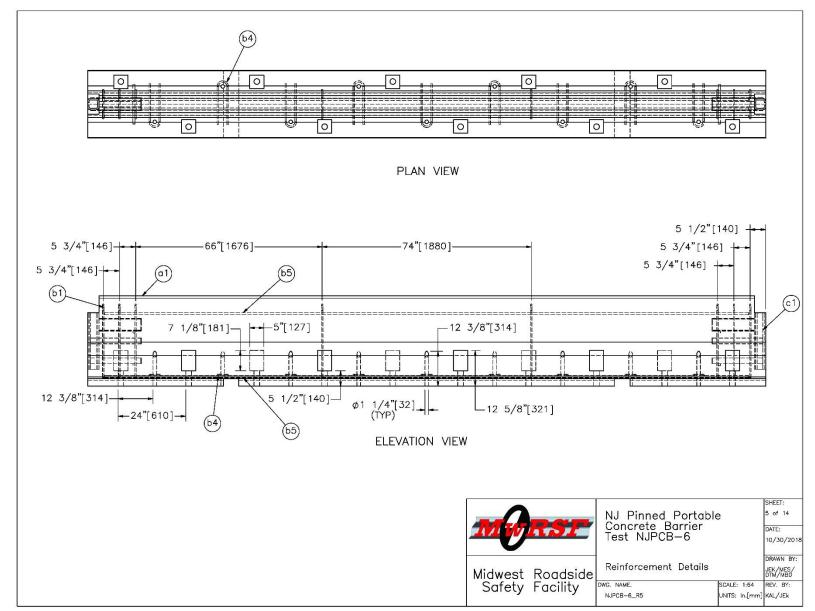


Figure 5. PCB Reinforcement Details, Test No. NJPCB-6

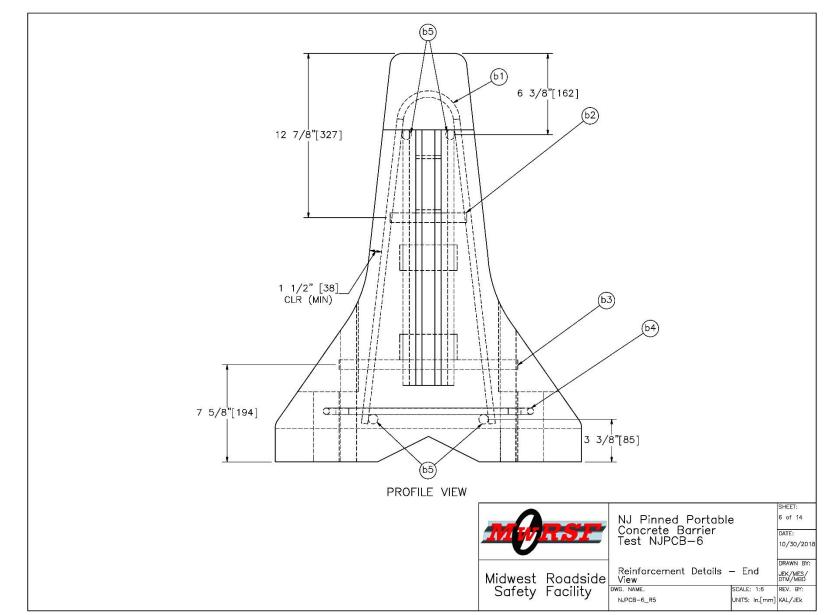


Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-6

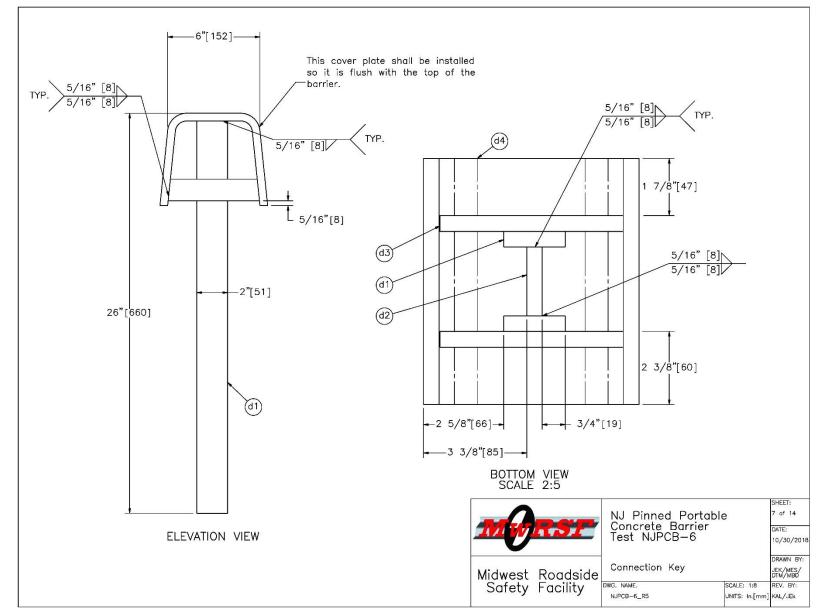


Figure 7. PCB Connection Key Assembly Details, Test No. NJPCB-6

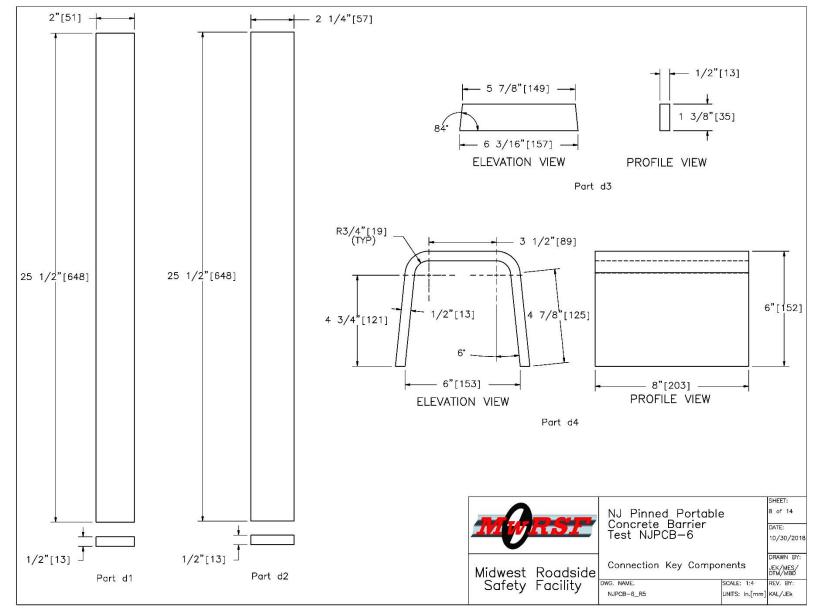


Figure 8. PCB Connection Key Component Details, Test No. NJPCB-6

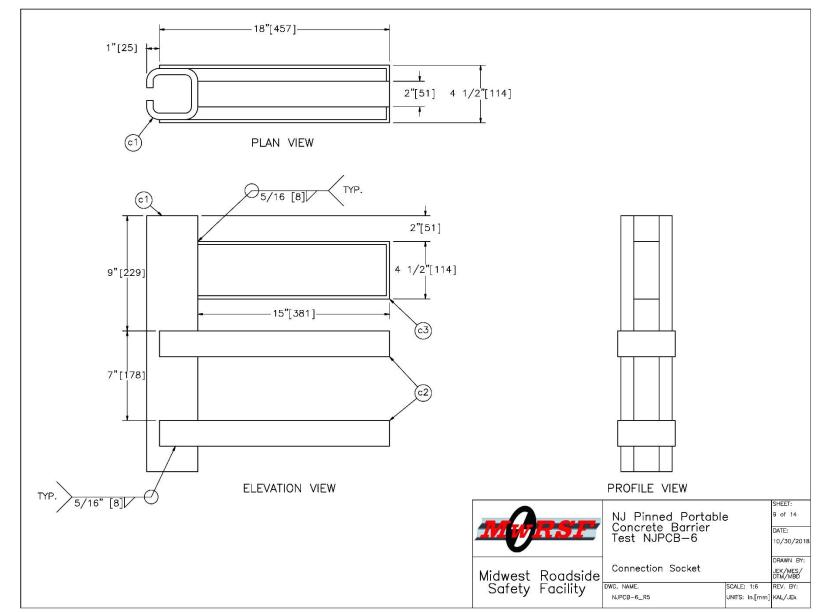


Figure 9. PCB Connection Socket Details, Test No. NJPCB-6

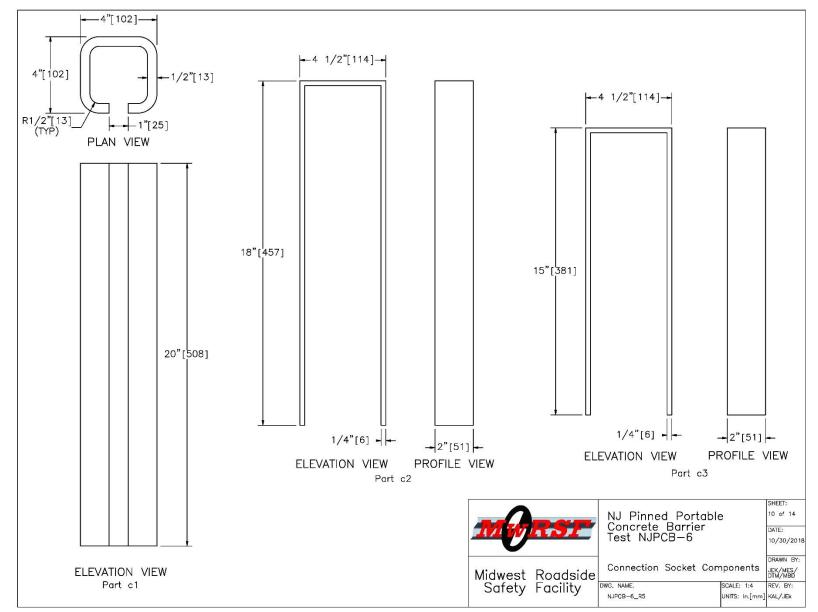


Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-6

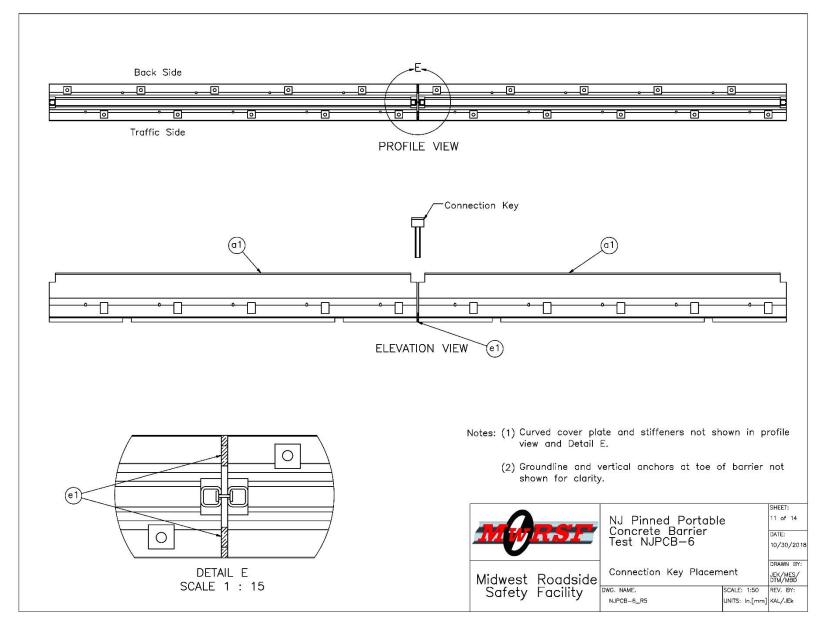


Figure 11. Connection Key Placement Details, Test No. NJPCB-6

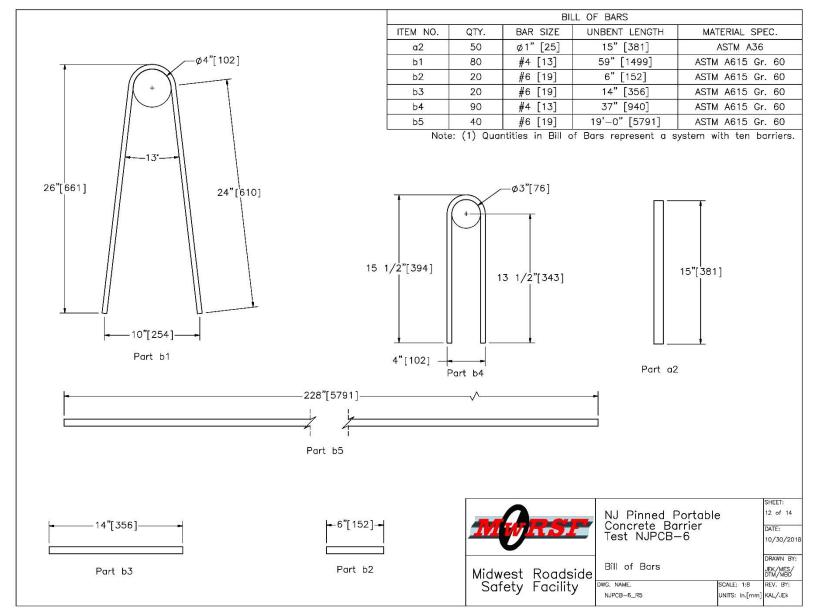


Figure 12. PCB Reinforcement Details, Test No. NJPCB-6

- (1) Minimum concrete clear cover for reinforcement steel shall be 1 1/2" [38 mm].
- (2) All end segments shall be pinned.
- (3) After a segment has been placed and the connection key inserted, pull the unit in a direction parallel to its longitudinal axis to remove any slack in the joint.
- (4) The portable concrete barrier shall be cast in steel forms.
- (5) The portable concrete barrier shall be barrier segments of 20 feet [6,096 mm]. However, other lengths may be used to meet field conditions. The number and placement of the b2 and b3 reinforcement steel will vary with the length of the barrier segment as shown on the table of variable reinforcement steel. The b5 reinforcement steel shall be 10" [254 mm] shorter than the nominal length of the barrier segments.
- (6) Reinforcing shown is the minimum required. Additional reinforcing necessary for handling shall be the option and responsibility of the contractor.
- (7) Welding and fabrication of steel structures shall be in accordance with sections 1 thru 6 of the ANSI/AASHTO/AWS D1.5 bridge welding code and section 10 of the ANSI/AWS D1 structural welding code. Surfaces to be welded shall be free of scale, slag, rust, moisture, grease or any other material that will prevent proper welding or produce objectional fumes. Welding shall be shielded metal arc welding using properly dried 5/32" [4 mm] dia. E7018 electrodes.
- (8) The length of the pins shall be such that a minimum embedment length of 5" [127 mm] is obtained when embedded into concrete pavement. When anchor pins are in place, they shall not project above the plane of the concrete surface of the barrier. Holes in bridge decks shall be 1 1/4" [32 mm] diameter maximum and made with a core drill or any other approved rotary drilling device that does not impart an impact force.
- (9) Use non-shrink grout of a plastic consistency that is listed on the QPL and conforms to ASTM C 1107 with the following amendments:
 1. Ensure that the grout has a working time of at least 30 minutes from the time the water is added.
 - 2. Match the color of the hardened grout, where visible, to the color of the adjacent hardened concrete.
 - 3. Include 1-day strength tests as part of the performance requirements of ASTM C 1107.
 - 4. Ensure that the grout contains no more than 0.05 percent chlorides or 5.0 percent sulfates by weight.
 - 5. Minimum 1-day compressive strength of 1,000 psi [6.9 MPa].
- (10) Use connection key in every joint. Grout is placed at the toe of each barrier segment between adjacent barrier segments in every joint. Pin every segment in all non-traffic side anchor pin recesses, and pin both end segments in every anchor pin recess.

M	2	RSF	NJ Pinned Portat Concrete Barrier Test NJPCB-6	ble	SHEET: 13 of 14 DATE: 10/30/2018
Midwe	st	Roadside	General Notes		DRAWN BY: JEK/MES/ DTM/MBD
Safe	ty	Facility	DWG. NAME. NJPCB-6_R5	SCALE: None UNITS: In.[mm]	REV. BY: KAL/JEk

Figure 13. General Notes, Test No. NJPCB-6

		· · · · · · · · · · · · · · · · · · ·		
ltem No.	QTY.	Description	Material Spec	Galvanization Spec
a1	10	Concrete Barrier Segment — NJDOT Type 4 Barrier (Alternate B)	f'c = 3,700 psi [25.5 MPa]	
a2	50	1" [25] Dia., 15" [381] Long Steel Anchor Pin	ASTM A36	ASTM A123*
Ь1	80	1/2" [13] Dia., 59" [1499] Long Bent Rebar	ASTM A615 Gr. 60	
b2	20	3/4" [19] Dia., 6" [152] Long Rebar	ASTM A615 Gr. 60	
b3	20	3/4" [19] Dia., 14" [356] Long Rebar	ASTM A615 Gr. 60	7
b4	90	1/2" [13] Dia., 37" [940] Long Bent Rebar	ASTM A615 Gr. 60	
b5	40	3/4" [19] Dia., 228" [5791] Long Rebar	ASTM A615 Gr. 60	-
c1	20	4"x4"x1/2" [102x102x13] x 20" [508] Long Tube	ASTM A500 Gr. B or C	.—
c2	40	40 1/2"x2"x1/4" [1,029x51x6] Bent Steel Plate	ASTM A36	-
cЗ	20	34 1/2"x2"x1/4" [876x51x6] Bent Steel Plate	ASTM A36	-
d 1	18	25 1/2"x2"x1/2" [648x51x13] Steel Plate	ASTM A36	-
d2	9	25 1/2"x2 1/4"x1/2" [648x57x13] Steel Plate	ASTM A36	-
d3	18	6 3/16"x1 3/8"x1/2" [157x35x13] Steel Plate - Stiffener	ASTM A36	
d4	9	17"x8"x1/2" [432x203x13] Bent Steel Plate - Top Plate	ASTM A36	H
e1	1	Non-Shrink Grout	Min. 1—day Compressive Strength 1,000 psi [6.9 MPa]	_

* Component does not need to be galvanized for testing purposes.

	RSF	NJ Pinned Portab Concrete Barrier Test NJPCB-6	ble	SHEET: 14 of 14 DATE: 10/30/2018
Midwest	Roadside	Bill of Materials		DRAWN BY: JEK/MES/ DTM/MBD
Safety Facility	DWG, NAME. NJPCB-6_R5	SCALE: None UNITS: In.[mm]	REV. BY: KAL/JEk	

Figure 14. Bill of Materials, Test No. NJPCB-6

Figure 15. NJDOT PCB with Back-Side Pinned Configuration and Grouted Toes Test Installation, Test No. NJPCB-6

Figure 16. PCB Connection Key and Connection Socket, Test No. NJPCB-6

Figure 17. PCB Back-Side Pin Anchor Recesses, Test No. NJPCB-6

Figure 18. Grout at Toes Between PCBs, Test No. NJPCB-6

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. NJPCB-6, a 2009 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,221 lb (2,368 kg), 5,000 lb (2,268 kg), and 5,159 lb (2,340 kg), respectively. The test vehicle is shown in Figures 19 and 20, and vehicle dimensions are shown in Figure 21. Note that pre-test photographs of the vehicle's undercarriage are not available.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 21 and 22. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 22. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial

impact with the test article to create a visual indicator of the precise time of impact on the highspeed digital videos. A remote-controlled brake system was installed in the test vehicle to bring the vehicle safely to a stop after the test.

Figure 19. Test Vehicle, Test No. NJPCB-6

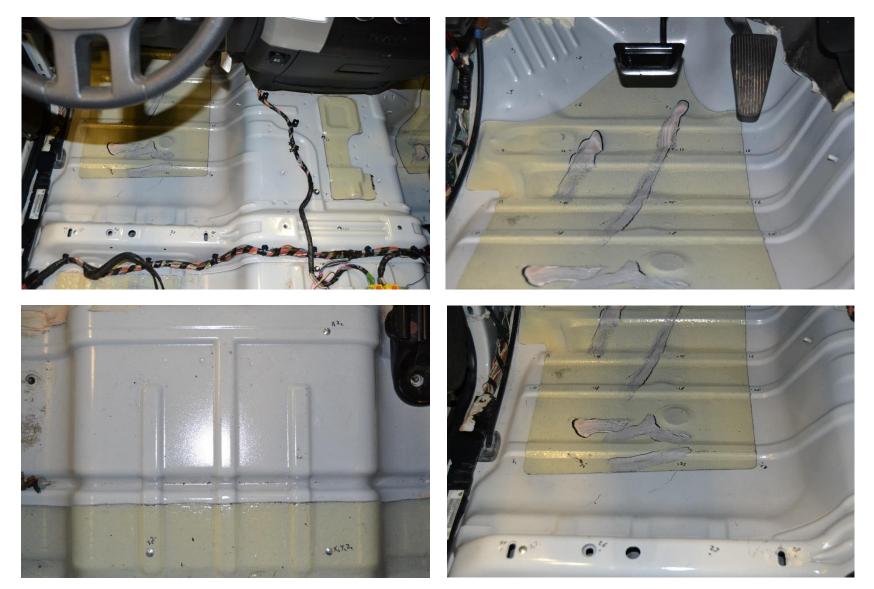


Figure 20. Test Vehicle's Interior Floorboards, Test No. NJPCB-6

Date:6/2/2017 Test Name:				NJPO	CB-6	VIN No:	1D3HB13T69S750827			
Year:	2	2009	Make:		Doc	lge	Model:	Ram	Ram 1500 Hemi	
Tire Size:	265/7	0R17 115	Tire Infla	ation Pressure:	35	Psi	Odometer:	1	71070	
	ſ	(F=			7	-	Vehicle G Target Range	eometry - in. (is listed below	mm)	
n t Wheel Track			•		m Wheel Track	a 	a: <u>76 1/2</u> 78±2 (1) c: <u>230 1/8</u> 237±13 (6	(5845) d:	74 3/8 49 3/8	(1889) (1254)
	<u></u>		/			<u> </u>	e: <u>140 1/8</u> 148±12 (3	(3559) f:	39 7/8 39±3 (1	(1013) 000±75)
le	Test Inertial C.M.				-TIRE DIA				60 11/16	-
1				+ r ++	WHEEL DIA		i: <u>12</u>		24	(610)
b	\int		- C		1	-	k: <u>20 1/8</u>	(511) I:	29 1/2	(749)
						-	m: <u>66 1/4</u> 67±1.5 (*		68 67±1.5 (1	(1727) 1700±38)
				h —			o: <u>45 1/2</u> 43±4 (1	(1156) p:	4 1/2	(114)
-	ol	Wrear	е ——	Wfront f	-		q: <u>31 1/2</u>	(800) r:	18 3/8	(467)
-		Vireur	— c ———		-		s: <u>14 1/8</u>	(359) t:	77 7/8	(1978)
Mass Distribution lb (kg)						Wheel Center Height (Front):	15	(381)		
Gross Static	LF <u>146</u>	5 (665)	RF 1466	(665)				Wheel Center Height (Rear):	15	(381)
	LR <u>112</u>	1 (508)	_RR_ <u>1107</u>	(502)			Cle	Wheel Well earance (Front):	4 7/8	(124)
							CI	Wheel Well earance (Rear):	7 7/8	(200)
Weights Ib (kg)		Curb	Test	Inertial	Gross	Static		Bottom Frame Height (Front):	9 1/2	(241)
W-front	293	7 (1332)	2834	(1285)	2931	(1329)	-	Bottom Frame Height (Rear):	26 1/8	(664)
W-rear	228	4 (1036)	2166	(982)	2228	(1011)	-	Engine Type:	Gase	oline
W-total	522	1 (2368)	5000	(2268)	5159 5165±110	(2340)	-	Engine Size:	5.	7L
			0000111	(2270100)	01001110	(2040100)	Transı	mission Type:	Auto	matic
GVWR Rating	ls Ib		Dummy I	Data				Drive Type:	RV	VD
Front _	3700			Туре:	Hybrid	II	-	Cab Style:	Crew	Cab
Rear	3900			Mass:	159 lk)	-	Bed Length:	67	7"
Total	6800		Sea	t Position:	Drive	r	-			
Note an	iy damage	prior to test				no	one			

Figure 21. Vehicle Dimensions, Test No. NJPCB-6

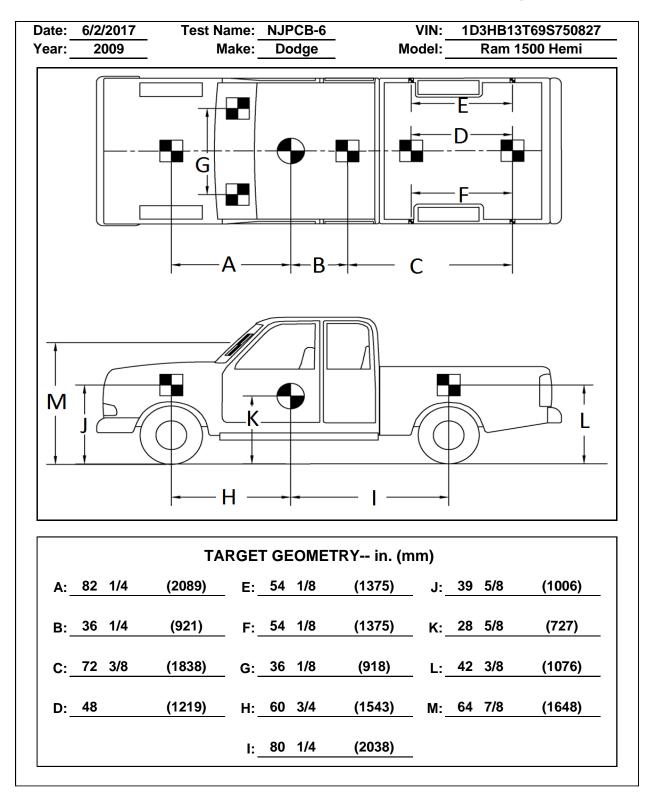


Figure 22. Target Geometry, Test No. NJPCB-6

4.4 Simulated Occupant

For test no. NJPCB-6, A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 159 lb (72 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system, based on mounting location. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical, angular rate sensor systems, which were mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders, measured the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras and eleven GoPro digital video cameras were utilized to film test no. NJPCB-6. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 23.

The high-speed digital videos were analyzed using TEMA Motion and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed digital videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.

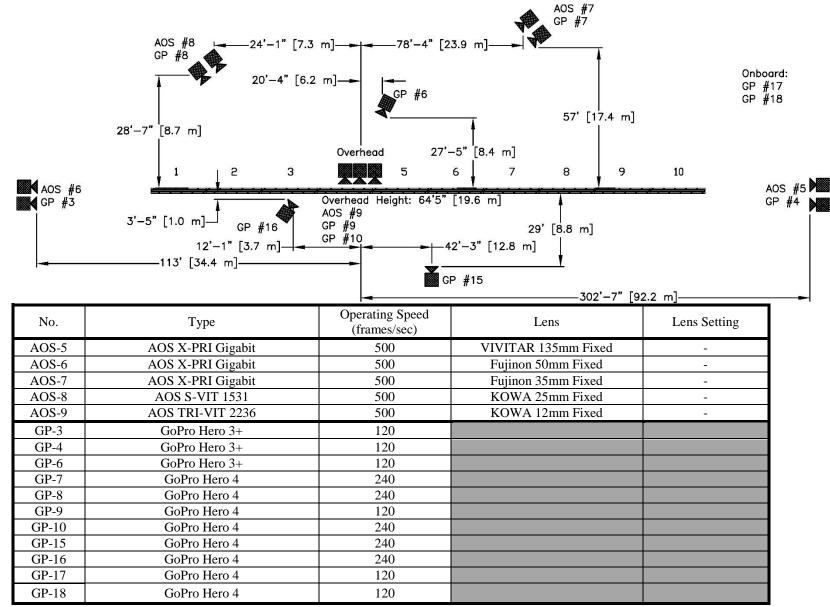


Figure 23. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-6

32

5 FULL-SCALE CRASH TEST NO. NJPCB-6

5.1 Weather Conditions

Test no. NJPCB-6 was conducted on June 2, 2017 at approximately 1:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Table 5. Weather Conditions, Test No. NJPCB-6

Temperature	87° F
Humidity	36%
Wind Speed	13 mph
Wind Direction	200° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.42 in.

5.2 Test Description

The 5,000-lb (2,268-kg) pickup truck impacted the NJDOT PCB, Type 4 (Alternative B) with a back-side pinned configuration and grouted toes, corresponding to connection type C in the 2015 NJDOT *Roadway Design Manual*, at a speed of 62.9 mph (101.3 km/h) and at an angle of 25.1 degrees. A summary of the test results and sequential photographs are shown in Figure 25. Additional sequential photographs are shown in Figure 26 and 27. Documentary photographs of the crash test are shown in Figure 28 through 31.

Initial vehicle impact was to occur 4 ft $-3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 32, which was selected using Table 2.7 of MASH 2016. The actual point of impact was $5\frac{1}{2}$ in. (140 mm) downstream from the target location. A sequential description of the impact events is contained in Table 6. The vehicle came to rest 205 ft -3 in. (62.5 m) downstream from the impact point and 21 ft -2 in. (6.4 m) laterally behind the traffic side of the barrier, after brakes were applied. The vehicle trajectory and final position are shown in Figures 25 and 33.

TIME	EVENT
(sec)	E V EIN I
0.000	Vehicle's left-front corner impacted barrier no. 4 at 3 ft $-9^{11}/_{16}$ in. (1.2 m)
0.000	upstream from the centerline of joint between barrier nos. 4 and 5.
0.002	Vehicle's left-front bumper contacted barrier no. 4.
0.004	Left corner of front bumper deformed inward.
0.008	Vehicle's left headlight contacted top of barrier no. 4.

Table 6. Sequential Description of Impact Events, Test No. NJPCB-6

0.012	Vehicle's left fender contacted barrier no. 4 and deformed.							
0.012	Vehicle's left headlight, hood, and grille deformed.							
0.022	Downstream end of barrier no. 4 deflected backward.							
	Vehicle's front bumper contacted barrier no. 5. Upstream end of barrier no. 5							
0.034	deflected backward.							
0.038	Upstream end of barrier no. 4 spalled. Vehicle yawed away from system.							
0.040	Barrier nos. 4 and 5 rolled backward.							
0.044	Vehicle's airbags deployed.							
0.046	Vehicle's windshield cracked from airbag deployment.							
0.054	Vehicle pitched upward and vehicle rolled away from system.							
0.062	Downstream end of barrier no. 5 spalled.							
0.064	Vehicle's left-front door contacted barrier no. 4 and deformed.							
0.084	Upstream end of barrier no. 3 spalled.							
0.088	Vehicle's left fender contacted barrier no. 5.							
0.098	Vehicle's left-front door contacted barrier no. 5.							
0.100	Midspan of barrier no. 5 spalled. Midspan of barrier no. 4 fractured.							
0.120	Barrier no. 6 deflected backward.							
0.138	Barrier no. 7 deflected backward and vehicle's right-front tire became airborne.							
0.160	Vehicle's left-rear tire contacted barrier no. 4.							
0.182	Vehicle's rear bumper deformed.							
0.194	Vehicle's left headlight disengaged.							
0.228	Vehicle was parallel to system at a speed of 47.8 mph (76.9 km/h).							
0.276	Vehicle's right-rear tire became airborne.							
0.282	Vehicle pitched downward and barrier no. 4 rolled toward traffic side of system.							
0.298	Vehicle's left-front tire became airborne.							
0.398	Vehicle's left-rear tire became airborne. Vehicle exited system at a speed of 46.9							
	mph (75.4 km/h) and at an angle of 8.0 degrees.							
0.610	Vehicle's right-front tire regained contact with ground.							
0.640	System came to rest.							
0.720	Vehicle rolled toward system.							
0.744	Vehicle's front bumper contacted ground.							
0.752	Vehicle pitched upward.							
0.970	Vehicle's right-front tire became airborne.							
1.012	Vehicle's left-rear tire regained contact with ground.							
1.044	Vehicle's left-front tire regained contact with ground.							
1.100	Vehicle's left-rear quarter panel deformed.							
1.120	Vehicle rolled away from system.							
1.164	Occupant's head contacted left-front window and window shattered.							
1.252	Vehicle pitched downward.							
1.376	Vehicle pitched upward.							
1.386	Vehicle yawed toward system.							
1.410	Vehicle rolled toward system.							
1.414	Vehicle's plastic bumper fascia contacted ground.							
1.644	Vehicle rolled away from system.							

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 34 through 39. Barrier damage consisted of contact and gouge marks on the front face of PCB segments, spalling of the concrete, and concrete cracking and fracture. The length of vehicle contact along the barrier was approximately 23 ft – 10¹/₄ in. (7.3 m), which spanned from 5 ft – 11¹/₄ in. (1.8 m) upstream from the center of the joint between barrier nos. 4 and 5 through 17 ft – 9 in. (5.4 m) downstream from the center of the joint between barrier nos. 4 and 5.

Tire marks were visible on the front face of barrier nos. 4 and 5. Scrape marks were also found on the front and top faces of barrier nos. 4 and 5. Grout between barrier nos. 3 and 4 and barrier nos. 4 and 5 crumbled. A 9³/₄-in. (248-mm) long crack was found on the front face of barrier no. 4 that started at the top corner of the upstream end. A 35¹/₂-in. (902-mm) long vertical crack was found on front face of barrier no. 4, 35 in. (889 mm) downstream from the midspan of the barrier. A 13-in. (330-mm) long vertical crack was found on the front face of barrier no. 4 that started 21/2 in. (64 mm) upstream from the downstream end and ended 171/2 in. (445 mm) from the top. A 36-in. (914-mm) long crack was found on the front face of barrier no. 5, 55¹/₂ in. (1.410 mm) downstream from the upstream end of the barrier. A 38¹/₂-in. (978-mm) long vertical crack that extended onto the front face and back face of barrier no. 5 was located 73 in. (1,854 mm) downstream from the upstream end. Minor cracks were found on the back side of barrier nos. 3, 6, and 7. Barrier no. 4 was fractured from top to bottom 9¹/₂-in. (241-mm) downstream from the midspan, originating from the bottom of the front face, extending vertically toward the center target, and terminating 46 in. (1,168 mm) downstream from the midspan on the back face. A 36³/₄in. long \times 6-in. wide (933-mm \times 152-mm) gouge was found 57¹/₂ in. (1,461 mm) upstream from the downstream end of barrier no. 4, and extended diagonally toward the upper-downstream corner. Barrier no. 5 was fractured from top to bottom at 85%-in. (219-mm) downstream from the midspan. A 19¹/₂-in. long \times 1¹/₂-in. wide (495-mm \times 38-mm) gouge was found 9¹/₂ in. (241 mm) downstream from the upstream end of barrier no. 5 and 91/4 in. (235 mm) from the top on the front face. A 77-in. (1,956-mm) long gouge was found on barrier no. 5 that began 55¹/₂ in. (1,410 mm) downstream from the upstream end.

A $6\frac{3}{\text{e-in}} \times 7\frac{1}{4}$ -in. $\times 7\frac{1}{8}$ -in. (162-mm $\times 184$ -mm $\times 22$ -mm) concrete piece disengaged from the back face of barrier no. 3 at the lower-upstream corner. A 17-in. \times 6-in. (432-mm \times 152-mm) concrete piece partially disengaged from the back face of barrier no. 5, 43³/₄ in. (1,111 mm) downstream from the upstream end. A 56¹/₄-in. \times 7¹/₄-in. \times 9¹/₂-in. (1,429-mm \times 184-mm \times 241mm) piece of concrete was removed from the lower-downstream end of barrier no. 4. Concrete spalling measuring 32³/₄ in. \times 12³/₄ in. \times 3¹/₂ in. (832 mm \times 324 mm \times 89 mm) and a 7-in. (178mm) long crack occurred at the lower-back upstream corner of barrier no. 4. The front side of barrier no. 5 experienced 21-in. \times 6¹/₂-in. \times 9¹/₂-in. (533-mm \times 165-mm \times 241-mm) concrete spalling at the lower-upstream corner. A $6\frac{1}{2}$ -in. × 6-in. × $\frac{1}{2}$ -in. (165-mm × 152-mm × 13-mm) piece of concrete was removed from the upper-downstream corner on the front face of barrier no. 5 below the connection key socket. A 4-in. \times 3¹/₂-in. \times 1-in. (102-mm \times 89-mm \times 25-mm) concrete piece disengaged from the back face of barrier no. 5 at the lower-upstream corner. The back side of barrier no. 5 experienced concrete spalling near the midspan of the barrier. Concrete spalling, measuring 37 in. \times 12 in. \times 3 in. (940 mm \times 305 mm \times 76 mm) occurred at the back-side downstream end of barrier no. 5. An 8-in. × 2-in. × 2-in. (203-mm × 51-mm × 51-mm) concrete piece disengaged from the back face of barrier no. 6 at the lower-upstream corner. A 10-in. \times 4in. (254-mm × 102-mm) concrete piece disengaged from the back face of barrier no. 6, 22 in. (559 mm) downstream from the midspan of the barrier. Concrete spalling, measuring $11\frac{1}{2}$ in. × 10 in. × 2 in. (292 mm × 254 mm × 51 mm), occurred at the back-side downstream end of barrier no. 6. Minor spalling occurred on the back side of barrier nos. 2 and 7.

The maximum permanent set deflection of the barrier system was 3³/₄ in. (95 mm) at the upstream end of barrier no. 5, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 15.2 in. (386 mm) at the upstream end of barrier no. 5, as determined from high-speed digital video analysis. The working width of the system was found to be 41.0 in. (1,041 mm), also determined from high-speed digital video analysis. A schematic of the permanent set, dynamic deflection, and working width is shown in Figure 25. In addition, NJDOT identifies the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 15.2 in. (386 mm).

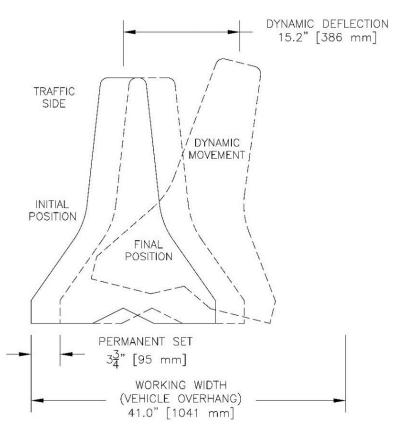


Figure 24. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. NJPCB-6

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 40 through 44. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the MASH 2016 established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of the damage was concentrated on the left–front corner and left side of the vehicle where the impact had occurred. The left side of the bumper crushed inward. The plastic bumper portion separated from the left side and bent toward the right side of the vehicle. The engine hood separated from the right fender. The left-front fender was deformed inward toward the engine compartment. The left corner of the front bumper was bent inward approximately 28 in. (711 mm) from the left side. The left-front corner of the frame rail buckled inward. A 2-in. (51-mm) gap occurred between the fender and the front bumper. Kinks and scrapes were observed on the entire front bumper. Denting, scraping, and gouging were observed on the left side of the cab. Gouging and contact marks were found at the bottom of the left-front door, starting from the front of the door and extending across the cab. A $9\frac{1}{2}$ -in. × 8-in. (241-mm × 203-mm) dent was found on the rear of the left-front door. The left headlight disengaged away from the vehicle. A tear was found on the left-rear tire extending from the outside wall through the tread and two-thirds of the way around the tire. The top of left-front door was bent outward.

The lower-left control arm was scraped, bent, and disengaged away from the steering knuckle at the joint. The left-front upper control arm was bent $6\frac{1}{2}$ in. (165 mm) upward. The left-front wheel and hub partially disengaged. The right-side engine cross member was bent. The left-front window glass shattered. The roof remained undamaged. The windshield had spider web cracking on the right side and additional cracks extending from the spider-web crack across the left side.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)		
Wheel Well & Toe Pan	45/8 (117)	≤ 9 (229)		
Floor Pan & Transmission Tunnel	5/8 (16)	≤ 12 (305)		
A-Pillar	5/8 (16)	≤5 (127)		
A-Pillar (Lateral)	$-\frac{3}{8}$ (-10)	≤3 (76)		
B-Pillar	³ ⁄ ₄ (19)	≤5 (127)		
B-Pillar (Lateral)	-5/8 (-16)	≤3 (76)		
Side Front Panel (in Front of A-Pillar)	13/8 (35)	≤ 12 (305)		
Side Door (Above Seat)	-21/2 (-64)	≤ 9 (229)		
Side Door (Below Seat)	-13/8 (-35)	≤ 12 (305)		
Roof	-1/4 (-6)	≤4 (102)		
Windshield	0 (0)	≤3 (76)		
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article		
Dash	¹ / ₂ (13)	N/A		

Table 7. Maximum Occupant Compartment Deformations by Location

Note: Negative values denote outward deformation N/A - Not applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 25. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

		Trans	MASH 2016 Limits		
Evaluation Criteria		SLICE-1			SLICE-2 (Primary)
OIV	Longitudinal	-17.74 (-5.41)	-17.30 (-5.27)	± 40 (12.2)	
ft/s (m/s)	Lateral	18.89 (5.76)	20.67 (6.30)	± 40 (12.2)	
ORA	Longitudinal	-9.84	-9.73	± 20.49	
g's	Lateral	9.87	8.43	± 20.49	
MAX. ANGULAR DISPL. deg.	Roll	-28.2	28.9	± 75	
	Pitch	-9.8	-12.2	±75	
	Yaw	40.1	39.5	not required	
THIV ft/s (m/s)		25.95 (7.91)	27.00 (8.23)	not required	
PHD g's		9.11	8.19	not required	
ASI		1.14	1.26	not required	

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-6

5.6 Discussion

The analysis of the test results showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 8.0 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NJPCB-6 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

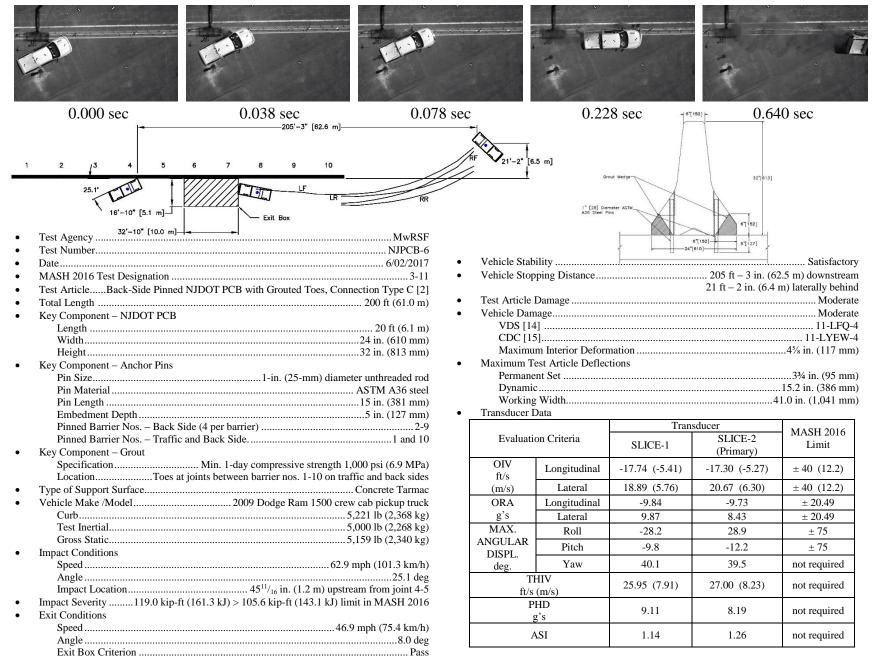


Figure 25. Summary of Test Results and Sequential Photographs, Test No. NJPCB-6

39

December 14, 2018 MwRSF Report No. TRP-03-373-18

0.000 sec

0.140 sec

0.276 sec

0.398 sec

0.640 sec

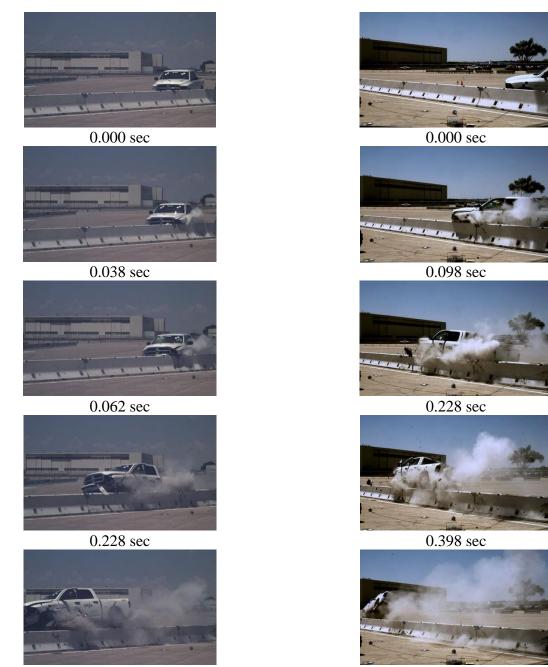
0.970 sec

0.000 sec

0.054 sec

0.160 sec

0.282 sec


0.752 sec

1.410 sec

Figure 26. Additional Sequential Photographs, Test No. NJPCB-6

December 14, 2018 MwRSF Report No. TRP-03-373-18

0.398 sec

0.720 sec

Figure 27. Additional Sequential Photographs, Test No. NJPCB-6

December 14, 2018 MwRSF Report No. TRP-03-373-18

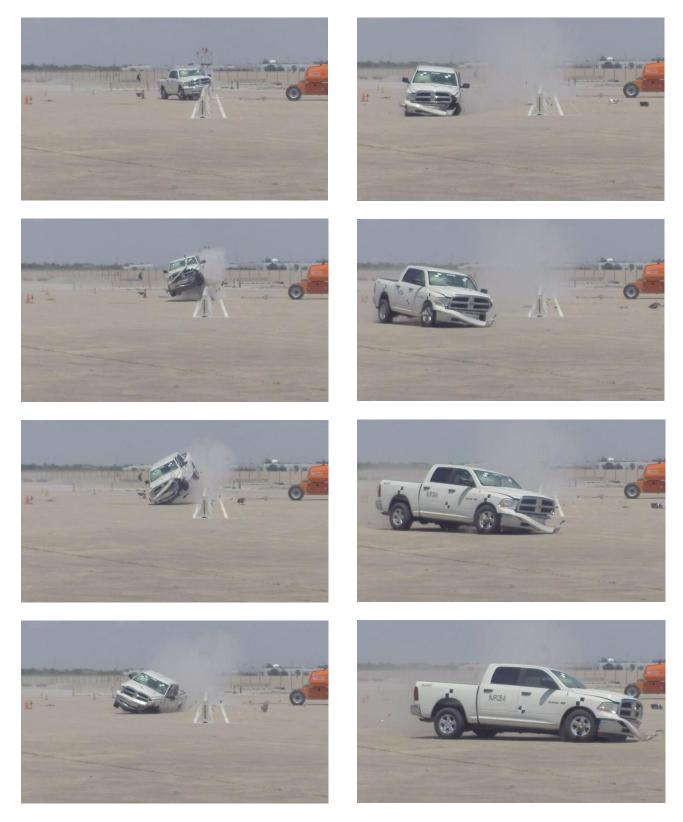


Figure 28. Documentary Photographs, Test No. NJPCB-6

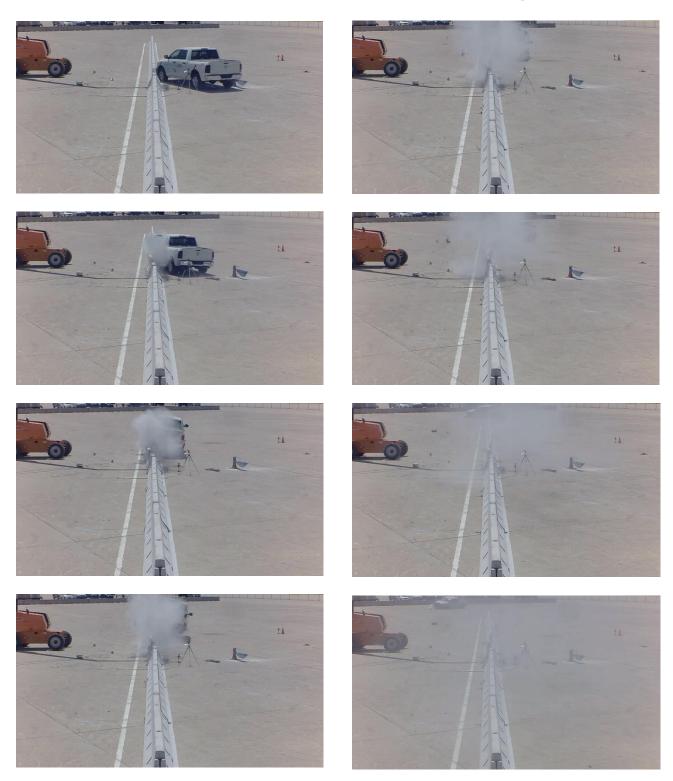


Figure 29. Documentary Photographs, Test No. NJPCB-6

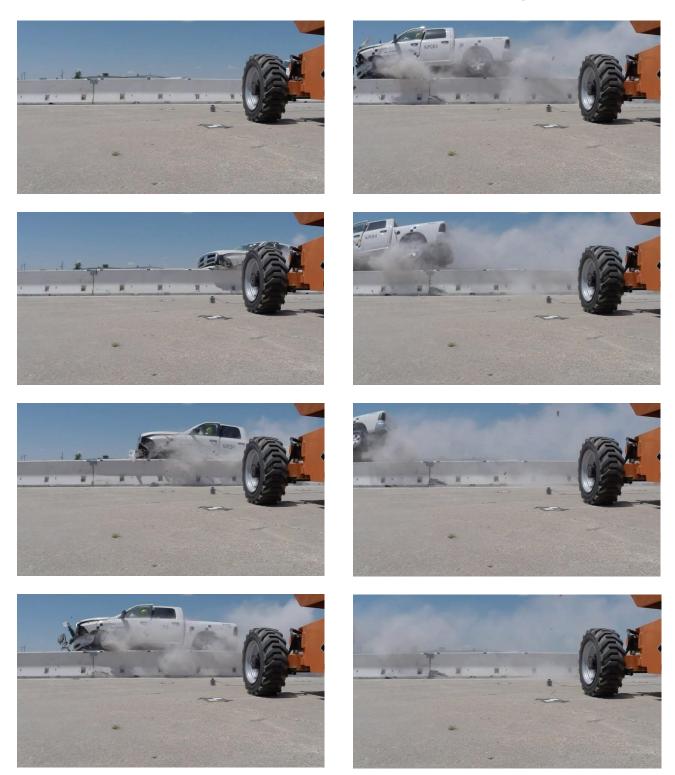


Figure 30. Documentary Photographs, Test No. NJPCB-6

Figure 31. Documentary Photographs, Test No. NJPCB-6

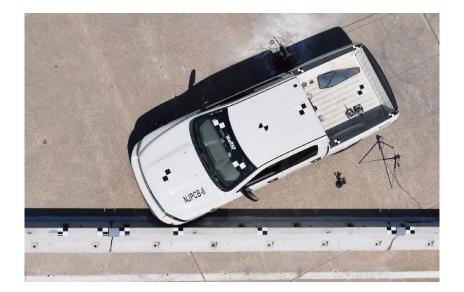


Figure 32. Impact Location, Test No. NJPCB-6

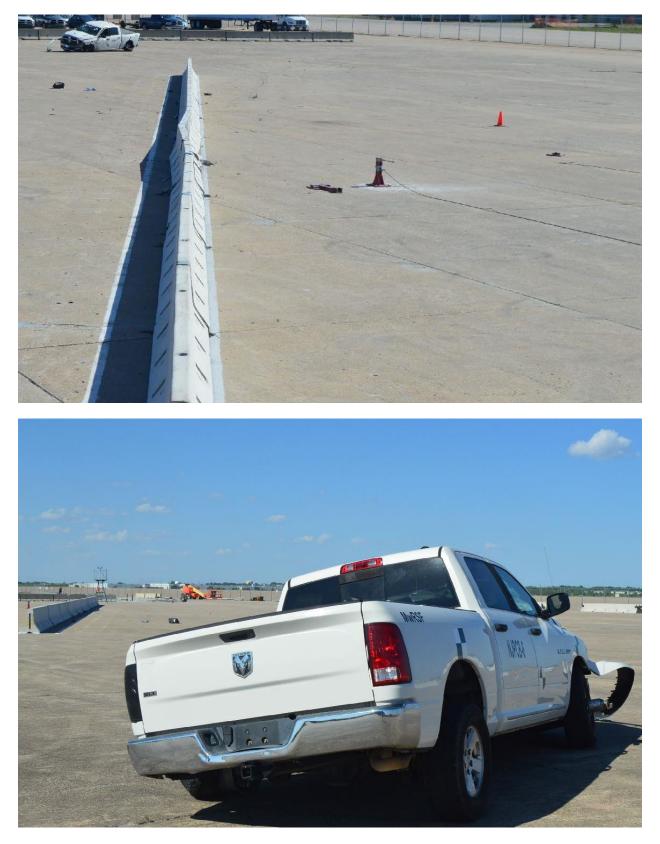


Figure 33. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-6

Figure 34. System Damage – Front, Back, Upstream and Downstream Views, Test No. NJPCB-6

(a) Traffic Side

(b) Back Side

(c) Traffic Side

(d) Back Side Figure 35. Barrier Nos. 2 and 3 – Traffic and Back Side Damage, Test No. NJPCB-6

Figure 36. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-6

(a) Traffic Side

Figure 37. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-6

(c) Back Side

(a) Traffic Side

(b) Back Side

(c) Back Side

Figure 38. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-6

(a) Traffic Side

(b) Back Side

(c) Back Side

(d) Back Side

(e) Back Side

Figure 39. Barrier Nos. 6 and 7 - Traffic and Back Side Damage, Test No. NJPCB-6

Figure 40. Vehicle Damage, Test No. NJPCB-6



Figure 41. Vehicle Damage on Impact Side, Test No. NJPCB-6

Figure 42. Vehicle Windshield and Side Window Damage, Test No. NJPCB-6

Figure 43. Occupant Compartment Deformation, Test No. NJPCB-6

Figure 44. Undercarriage Damage, Test No. NJPCB-6

6 SUMMARY AND CONCLUSIONS

Test no. NJPCB-6 was conducted on the NJDOT PCB system with a back-side pinned configuration and grouted toes according to MASH 2016 test designation no. 3-11. This system uses NJDOT barriers, Type 4 (Alternative B) with connection type C, as specified in the 2015 NJDOT *Roadway Design Manual*. Barrier nos. 1 and 10 were anchored on both sides, and barrier nos. 2 through 9 were anchored on the back side to the rigid concrete tarmac through pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins.

During test no. NJPCB-6, the 5,000-lb (2,268 kg) pickup truck impacted the NJDOT PCB system at a speed of 62.9 mph (101.3 km/h) and at an angle of 25.1 degrees, resulting in an impact severity of 119.0 kip-ft (161.3 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 46.9 mph (75.4 km/h) and at an angle of 8.0 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier and the vehicle. Barrier nos. 3, 4, 5, and 6 experienced spalling and cracking. A dynamic deflection of 15.2 in. (386 mm) and working width of 41.0 in. (1,041 mm) were observed during the test, as shown in Figure 24. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. NJPCB-6 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11. A summary of the test evaluation is shown in Table 9.

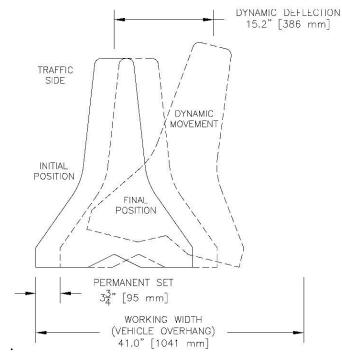
A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees. H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:	S					
Should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees. H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Network Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Image: Component Preferred Maximum Longitudinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s) I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
Should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees. H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity Limits Component Preferred H. Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:	S					
Occupant Risk maximum roll and pitch angles are not to exceed 75 degrees. H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity Limits Component Preferred Maximum Longitudinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s) I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:	S					
Occupant Risk MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity Limits Component Preferred Maximum Longitudinal and Lateral 30 ft/s (9.1 m/s) I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:	S					
Component Preferred Maximum Longitudinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s) I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
Longitudinal and Lateral30 ft/s (9.1 m/s)40 ft/s (12.2 m/s)I.The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:	S					
I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:]					
Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
Occupant Ridedown Acceleration Limits						
Occupant Ridedown Acceleration Emilits	S					
Component Preferred Maximum						
Longitudinal and Lateral15.0 g's20.49 g's						
MASH 2016 Test Designation No.						
Final Evaluation (Pass or Fail)						

Table 9. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

7 COMPARISON TO TEST NO. NYTCB-5

A summary of full-scale crash testing on one NJ PCB system (test no. NJPCB-6) and one New York PCB system (test no. NYTCB-5) [16], which were pinned only through the back-side pin anchor recesses of each barrier segment to reduce the deflection of the PCB system, is shown in Table 10. Results from these tests included the impact conditions and impact severity as well as dynamic barrier deflection, permanent set barrier deflection, working width (as measured from the original front face of the barrier), and the clear space behind the barrier. The clear space behind the barrier is used by NJDOT to define the maximum deflection of the back of the barrier from its original position. In addition, the schematic diagrams shown in Figure 45 indicate how the dynamic deflection, permanent set deflection, and working width for each crash test was defined.


A review of the results from test nos. NJPCB-6 and NYTCB-5 revealed little to no benefit in terms of barrier deflection and clear space requirements for PCBs with only back-side pins due to removal of joint slack and/or the use of grouted barrier toes. Test no. NJPCB-6, with removal of joint slack and use of grouted toes, demonstrated lower dynamic and permanent set deflections when compared to test no. NYTCB-5. Additionally, test no. NJPCB-6 demonstrated higher working width and required clear space behind the barrier due to vehicle intrusion over the top of the barrier compared to test no. NYTCB-5. This finding likely occurred in test no. NJPCB-6 as the PCBs primarily translated laterally, while the barrier segments in test no. NYTCB-5 translated laterally and had more rotation backward. Fracture and disengagement of the barrier toes was observed in both the New Jersey DOT and New York DOT crash tests, which negated the effectiveness of the joint modifications. Second, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems that utilize joint spacings up to 4 inches. Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segment, among others. Thus, some variability would be expected in barrier performance, even for basically identical systems.

Smaller reductions in PCB deflections and clear space behind the barrier were observed with the removal of joint slack and use of grouted toes. This finding was primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of barrier toes, which may improve the effectiveness of joint slack removal and the use of grouted toes.

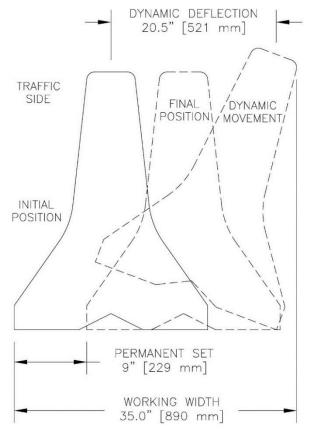

Test No.	Connection Type [2]	System Details	Permanent Set	Dynamic Deflection (DD)	Working Width (WW)	Clear Space Behind Barrier	Vehicle Roll (deg)	Vehicle Pitch (deg)	Vehicle Mass lb (kg)	Impact Speed mph (km/h)	Impact Angle (deg)	Impact Severity kip-ft (kJ)
NJPCB-6	С	Barriers 1 and 10 pinned, Barriers 2-9 pinned back side only, remove slack, grouted toes	3¾ in. (95 mm)	15.2 in. (386 mm)	41.0 in. (1,041 mm) Vehicle	15.2 in. (386 mm)	28.9	-12.2	5,000 (2,268)	62.9 (101.3)	25.1	119.0 (161.3)
NYTCB-5 [16]	N/A	Barriers 1-10 pinned back side only, slack not removed, no grouted toes	9 in. (229 mm)	20.5 in. (521 mm)	35.0 in. (889 mm)	11 in. (279 mm)	41.8	-21.2	4,953 (2247)	64.3 (103.5)	26.2	133.4 (180.9)

Table 10. Comparison of Pinned Back Side Only Systems

N/A = Not Applicable

NJPCB-6 - Only Back-Side Pinned, Joint Slack Removed, Grouted Toes

NYTCB-5 - Only Back-Side Pinned, Joint Slack Not Removed, No Grouted Toes

Figure 45. Deflection Comparisons – Test Nos. NJPCB-6 and NYTCB-5

8 MASH IMPLEMENTATION

The objective of this research was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) system with a back-side pinned configuration and grouted toes, corresponding to connection type C in the 2015 NJDOT *Roadway Design Manual*. The NJDOT barriers consisted of NJDOT PCBs joined with a connection key. Barrier nos. 1 and 10 were anchored to the concrete roadway surface through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins. Barrier nos. 2 through 9 were anchored to the concrete surface through only the four back-side pin anchor recessed. The barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed in all joints prior to installation of the steel anchor pins. A wedge of grout was placed at the toe of each joint on both the traffic side and back side of the system.

According to TL-3 evaluation criteria in MASH 2016, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

In test no. 7069-3, a rigid, F-shape bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-9]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ¹/₂-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. Therefore, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NJPCB-6, a 5,000-lb (2,268 kg) pickup truck with a simulated occupant seated in the left-front seat, impacted the NJDOT PCB system at a speed of 62.9 mph (101.3 km/h) and at an angle of 25.1 degrees, resulting in an impact severity of 119.0 kip-ft (161.3 kJ). At 0.228 sec after impact, the vehicle became parallel to the system with a speed of 47.8 mph (76.9 km/h). At 0.398 sec, the vehicle exited the system at a speed of 46.9 mph (75.4 km/h) and at an angle of 8.0 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of $4\frac{5}{8}$ in. (117 mm), which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the PCB segments as well as concrete spalling and cracking on barrier nos. 3, 4, 5, and 6. The maximum dynamic barrier deflection was 15.2 in. (386 mm), which included minor tipping of the barrier at the top surface. The working width of the PCB system was 41.0 in. (1,041 mm). All occupant risk measures were within the recommended limits, and the occupant compartment

deformations were also deemed acceptable. Therefore, the NJDOT barriers, Type 4 (Alternative B) pinned only on the back side, successfully met all the safety performance criteria of MASH 2016 test designation no. 3-11.

The NJDOT barriers, Type 4 (Alternative B) consisting of NJDOT PCB barriers joined with a connection key, joint slack removed, grouted toes, barrier nos. 1 and 10 pinned on both the traffic side and back side, and barrier nos. 2 through 9 pinned only on the back side, corresponding to connection type C in the 2015 NJDOT *Roadway Design Manual*, was successfully crash tested and evaluated according to MASH 2016 TL-3 criteria. This barrier successfully met all the requirements of MASH 2016 test designation no. 3-11. In addition, the researchers consider the system MASH 2016 compliant based on the successful test designation no. 3-11 test and the previous justification for test designation no. 3-10 being deemed not critical.

A comparison of similar PCB systems pinned only on the back side included two systems: (1) a NJ PCB system with barrier nos. 1 and 10 pinned on both front and back sides, pin anchors only on the back side of barrier nos. 2 through 9, joint slack removed, and grouted toes (test no. NJPCB-6) and (2) a New York PCB system with pin anchors only on the back side of all barriers, and without removal of joint slack or grouted toes (test no. NYTCB-5) [16]. A review of these test results (test nos. NJPCB-6 and NYTCB-5) revealed little to no benefit would be observed in reduced barrier deflections and clear space requirements for PCBs with only the back-side pinned due to joint slack removal and/or use of grouted toes as dynamic deflections and the clear space behind barrier for both tests are very similar. The finding is primarily due to no barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of steel reinforcement led to concrete fracture near the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation of the barrier joints. This concrete toe disengagement reduced the expected benefit that would have been provided by the removal of joint slack and use of grouted toes. Second, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 in. (102 mm). Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segments, among others. Thus, some variability would be expected in barrier performance even for basically identical systems.

In both the 2013 and 2015 NJDOT *Roadway Design Manual* the allowable deflection is determined by the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For connection type C, as specified in the 2015 NJDOT *Roadway Design Manual* and utilized in this system, the NJDOT maximum allowable deflection is 11 in. (279 mm). For this test, the clear space behind the barrier was 15.2 in. (386 mm). Limited reductions in PCB deflections and clear space behind the barrier were observed with joint slack removal and use of grouted toes. Again, this finding is primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of the barrier toes, which may improve the effectiveness of joint slack removal and the use of grouted toes.

9 REFERENCES

- 1. New Jersey Department of Transportation, *Roadway Design Manual*, Revised May 10, 2013.
- 2. New Jersey Department of Transportation, *Roadway Design Manual*, Revised 2015.
- 3. *Manual for Assessing Safety Hardware, Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 5. Buth, C. E., Hirsch, T. J., and McDevitt, C. F., *Performance Level 2 Bridge Railings*, Transportation Research Record No. 1258, Transportation Research Board, National Research Council, Washington, D.C., 1990.
- 6. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989
- 7. Bronstad, M. E., Calcote, L. R., and Kimball Jr, C. E., *Concrete Median Barrier Research-Vol.2 Research Report*, Report No. FHWA-RD-77-4, Submitted to the Office of Research and Development, Federal Highway Administration, Performed by Southwest Research Institute, San Antonio, TX, March 1976.
- Buth, C. E., Campise, W. L., Griffin III, L. I., Love, M. L., and Sicking, D. L., *Performance Limits of Longitudinal Barrier Systems-Volume I: Summary Report*, FHWA/RD-86/153, Final Report to the Federal Highway Administration, Office of Safety and Traffic Operations R&D, Performed by Texas Transportation Institute, Texas A&M University, College Station, TX, May 1986.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier – Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 10. Fortuniewicz, J. S., Bryden, J. E., and Phillips, R. G., *Crash Tests of Portable Concrete Median Barrier for Maintenance Zones*, Report No. FHWA/NY/RR-82/102, Final Report to the Office of Research, Development, and Technology, Federal Highway Administration, Performed by the Engineering Research and Development Bureau, New York State Department of Transportation, December 1982.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 15. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Lechtenberg, K.A., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation of a Pinned Anchoring System for New York State's Temporary Concrete Barriers – Phase II, Report No. TRP-03-224-10, Project No. TPF-5(193), Supplement #11, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, January 27, 2010.

10 APPENDICES

Appendix A. NJDOT PCB Standard Plans

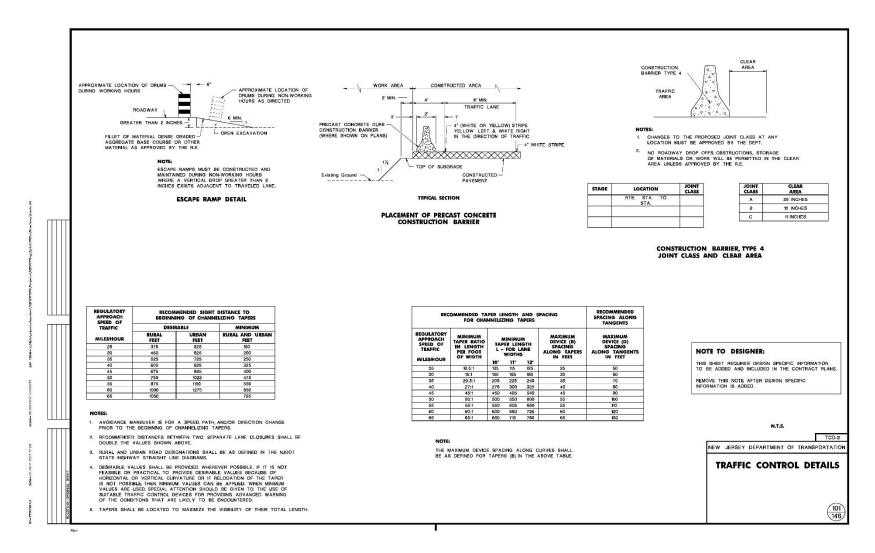


Figure A-1. NJDOT PCB Standard Plans

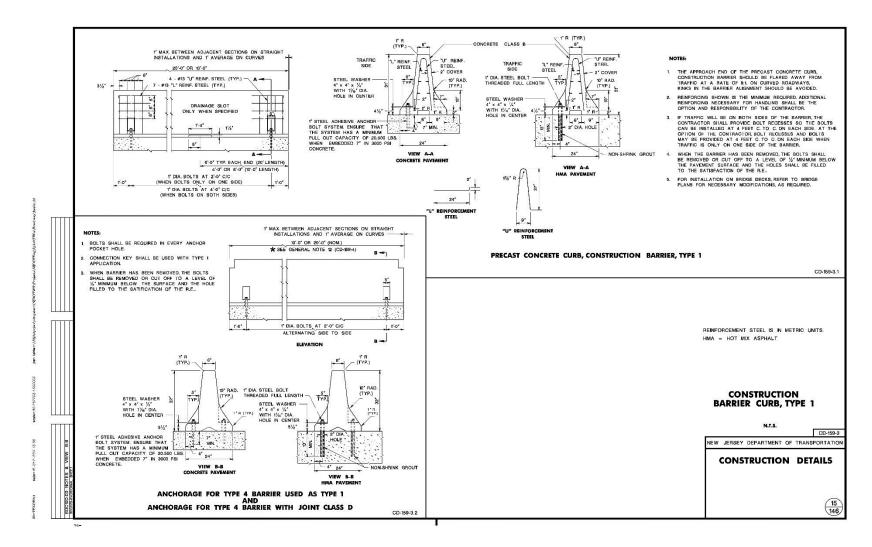


Figure A-2. NJDOT PCB Standard Plans

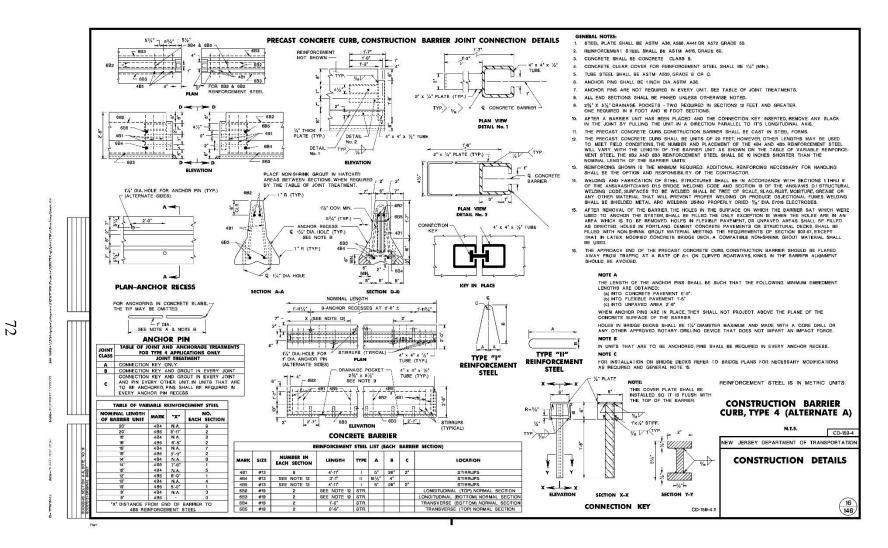
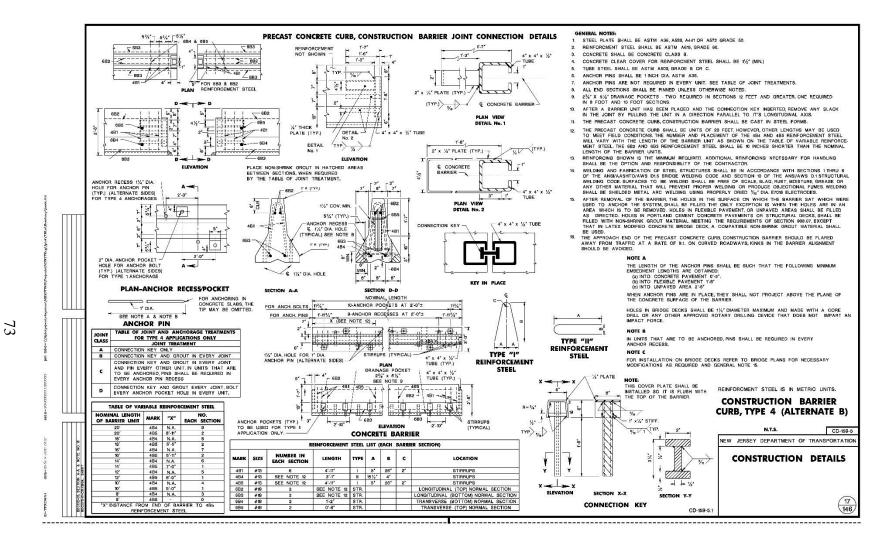



Figure A-3. NJDOT PCB Standard Plans

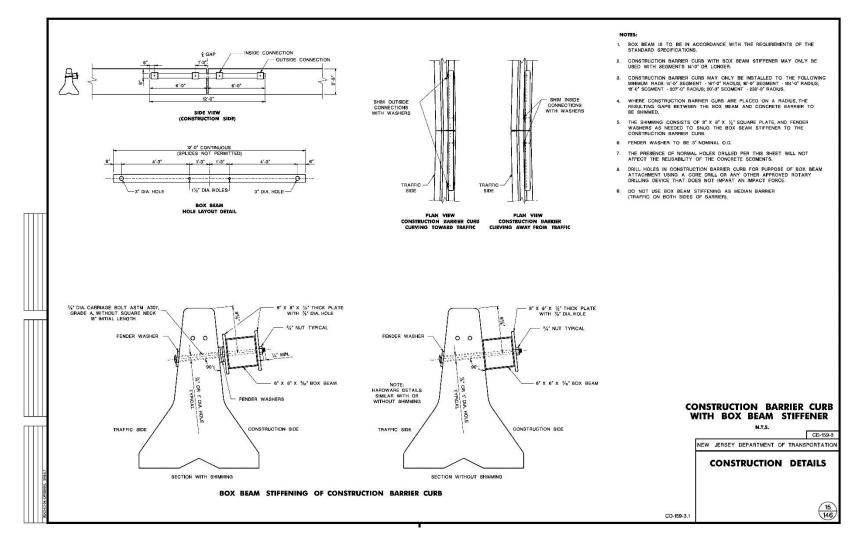
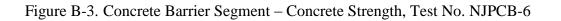


Figure A-5. NJDOT PCB Standard Plans

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference
A1	Concrete Barrier Segment	Min. f 'c = 3,700 psi (25.5 MPa)	Barrier Nos. 1, 4, 5, 6 and 10: University of Nebraska 15-563; Barrier Nos. 2, 3, 7, 8 and 9: KU3325
A2	Anchor Steel Pin	ASTM A36	Heat #54153853
B1	Rebar - #4 Vertical Stirrup	ASTM A615 Gr. 60	Barrier Nos. 1, 4, 5, 6 and 10: H#61101274, 61101493, 61101510, 61101492, 61101499, 61101772 Barrier Nos. 2, 3, 7, 8 and 9: H#JL1000, JK9068, 61108687
B2, B3	Rebar - #6 Longitudinal Bar	ASTM A615 Gr. 60	Barrier Nos. 1, 4, 5, 6 and 10: H#6115448, 61105472 Barrier Nos. 2, 3, 7, 8 and 9: H#61110285, 61110265, JL3511, JL3506, JL3505
B4	Rebar - #4 Horizontal Anchor Recess, Reinforcement Stirrup	ASTM A615 Gr. 60	Barrier Nos. 1, 4, 5, 6 and 10: H#61101274, 61101493, 61101510, 61101492, 61101499, 61101772 Barrier Nos. 2, 3, 7, 8 and 9: H#JL1000, JK9068, 61108687
В5	Rebar - #6 Top and Bottom Cross Bar	ASTM A615 Gr. 60	Barrier Nos. 1, 4, 5, 6 and 10: H#6115448, 61105472 Barrier Nos. 2, 3, 7, 8 and 9: H#61110285, 61110265, JL3511, JL3506, JL3505
C1	Steel Tube – 4"×4"×½" (102×102×12.7) thick × 20" (508) long	ASTM A500 Gr. B and C	Barrier Nos. 1, 4, 5, 6 and 10: H#821597, 1422428, M04495_1, T83539, SD5020 Barrier Nos. 2, 3, 7, 8 and 9: H#SF1424, SF4193
C2	Bent Steel Plate 1, $2^{"\times \frac{1}{4}"}$ (51×6)	ASTM A36	Barrier Nos. 1, 4, 5, 6 and 10: H#1129849 Barrier Nos. 2, 3, 7, 8 and 9: H#269878
C3	Bent Steel Plate 2, 2"×¼" (51×6)	ASTM A36	Barrier Nos. 1, 4, 5, 6 and 10: H#1129849 Barrier Nos. 2, 3, 7, 8 and 9: H#269878
D1	Steel Plate 1, 2"×½" (51×13)	ASTM A36	Barrier Nos. 1, 4, 5, 6 and 10: H#L99837 Barrier Nos. 2, 3, 7, 8 and 9: H#54148807
D2	Steel Plate 2, 2-1/4"×1/2" (51×13)	ASTM A36	Barrier Nos. 1, 4, 5, 6 and 10: H#54144612 Barrier Nos. 2, 3, 7, 8 and 9: H#54148805
D3	¹ / ₂ " (13) Steel Plate – Stiffener	ASTM A36	Barrier Nos. 1, 4, 5, 6 and 10: H#54144612, L99837 Barrier Nos. 2, 3, 7, 8 and 9: H#SF2550
D4	¹ / ₂ " (13) Steel Plate – Top Plate	ASTM A36	Barrier Nos. 1, 4, 5, 6 and 10: H#54144612, L99837 Barrier Nos. 2, 3, 7, 8 and 9: H#SF2550
E1	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi (6.9 MPa)	Advantage Grout ASTM C1107 Product Code: 67435 R: 2147369180


December 14, 2018 MwRSF Report No. TRP-03-373-18

							1	5-563									
							1.	5-505									-
Cast Date	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Air	Slump	Concrete Temp.	Ambient Temp	EMAIL, Mailed, etc
10/26/2015	1	4171	3869	4020	7	7805	7800	7803	28			0	5.5	6 3/4	60	58	
10/27/2015	1	3539	3883	3711	7	7343	7624	7484	28			0	6.8	5 3/4	62	60	
10/28/2015	1	4116	4311	4214	7	6223	6340	6282	28			0	6.0	6 1/2	64	64	
10/29/2015	1	3831	3544	3688	7	7046	6998	7022	28			0	5.8	6 1/2	67	68	
10/30/2015	3	4571	4608	4590	7	6337	6235	6286	28			0	6.0	6 1/2	64	63	
11/2/2015	1	3125	3062	3094	7	6887	6748	6818	28			0	6.2	5 3/4	64	62	
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					-
	1			0	7			0	28			0					-
	1			0	7			0	28			0		-			-
	1			0	7			0	28			0					
	1			0	7			0	28			0					-
				0	7			0	28			0					
	1																-
	1			0	7			0	28			0	-	-			-
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					-
	1			0	7			0	28			0					-
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					

KU3325 Midwest Roadside Safety University of Nebraska

20' Temporary Barrier with socket and key connection

Production date	Quantity to ship	Cylinder Breaks 3 Day Results
5-1-17B	3	5199
4-13-17B	1	5130
4-28-17B	3	5024
4-27-17B	3	4834
4-27-17A	3	4697
4-26-17A	3	5134
4-25-17B	3	5516
4-25-17A	1	5223

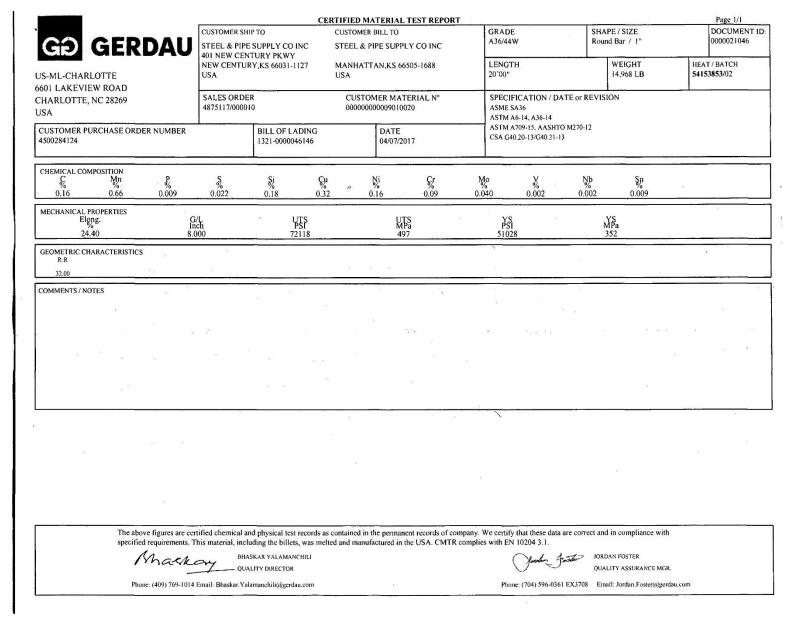


Figure B-4. Anchor Pins Material Certificate, Test No. NJPCB-6

141.22					CERTIF	TED MATERIA	L TEST REPO	RT					Page 1/1
GÐ	GER	DAU	CUSTOMER SHI RB STEEL SUF 2000 EDDYSTO	PLY CO INC	RE	STOMER BILL TO STEEL SUPPLY 0 EDDYSTONE	CO INC	PARK	GRADE 60 (420)			PE / SIZE r / #4 (13MM)	X050.11
US-ML-SAYRE NORTH CROSS			EDDYSTONE,I USA	PA 19022	EDI USA	DYSTONE, PA 19	022-1588	- Aux	LENGTH 40'00"			WEIGHT 5,050 LB	HEAT / BATCH 61101274/02
SAYREVILLE, 1 USA			SALES ORDER 1785955/00001			CUSTOMER MA	TERIAL N"			ATION / DA 5/A615M-14	TE or REVIS	ION	L
CUSTOMER PU BB 22777	RCHASE ORDE	R NUMBER		BILL OF LA 1331-000002		DATE 01/23/2	015						
CHEMICAL COM C 0.43	POSITION Mn 0.66	P 0.012	\$ 0.048	Si 0.23	Çu % 0.43	Nj 0.16	۶۲ 0.05	M 9 0.0		Şn 0.019	¥ % 0.017	CEqyA706 0.56	
MECHANICAL PR YS 6685 6740	I 50	Mi 46 46	1	93	TS SI 950 100	U M 6 6	TS Pa 48 56		G/L Inch 8.000 8.000		C 10 20	3/L am 20.0 20.0	
MECHANICAL PR Elop 13.5 13.5	ig. i0	Bend Ol Ol											
GEOMETRIC CHA %Light % 4.10 3.20	RACTERISTICS Def Hgt Inch 0.030 8,030	Def Gap Inch 0.099 0.099	DetSpace Inch 0.320 0.320										
COMMENTS / NOT This grade meets the		e following grades											
		e figures are certi requirements. Th Haske		physical test n ing the billets, CAR VALAMANCE IV DIRECTOR	fred include and .	ed in the permanent manufactured in t	nt records of co te USA. CMTR	complies	with EN 1021	these data are 04 3.1.		compliance with	

Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-6

2. A. S. 19 - 1		CER	TIFIED MA	TERIAL TE	ST REPORT						Page 1/1
GÐ GERDAU	CUSTOMER SHI		CUSTOMER F	UPPLY CO I			GRADE 60 (420)			PB/SIZE r/#4(13MM)	
US-MI-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONE,I USA	A 19022	EDDYSTON				LENGTH 40'00'			WEIGHT 5,023 LB	HEAT / BATCH 61101493/04
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/00001		CUSTON	IER MATER	IAL Nº			CATION / DAT 15/A6[5M-14	TE of REVIS	ION	
CUSTOMER PURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243		DATE 01/23/2015							
CHEMICAL COMPOSITION P C Min P % % % 0.42 0.65 0.012	\$ 0.058	Si ǵ % %	0.	Vi % 15	Cr % 0.09	M.	56	Sn 0.020	V 0.009	CEqyA706 0.56	
71350	YS 119a 192 191	UTS PS1 104900 105600		UTS MPa 723 728			G/L Inch 8.000 8.000		2	G/L mm 200.0 200.0	
%	udTest DK. DK										
GEOMETRIC CHARACTERISTICS Valight Def Higt Def Gap Ve Inch Inch 2.70 0.032 0.098 1.40 0.034 0.099	Def3pace Inco 0.321 0.321										
COMMENTS / NOTES This grade meets the requirements for the following grade	05:										
The above figures are o	rtified chemical an	d physical test records as c	ontained in th	e permanent i	words of compa	ıy. W	e certify th	at these data ar	e correct and	in compliance with	
spectine requirements.		ding the billets, was melter SKAR YALAMANCHILI LITY DIRECTOR	ממתאנת סנוא א	clured in the	JOA. CMIK CON			0204 3.1.	S JOSE QUA	EPH T HONOC LITY ASSURANCE MGR.	
L											

Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-6

		CER	RTIFIED MATERIAL TE	ST REPORT				Page 1/1
GÐ GERDAU	CUSTOMER SHI RE STEEL SUP 2000 EDDYST	PLY CO INC	CUSTOMER BILL TO RE STEEL SUPPLY CO I (2000 EDDYSTONE INDL		GRADE 60 (420)	SHAPE / S Rebar / #4		
US-MI-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONE, USA		EDDYSTONE, PA 19022- USA	1588	LENGTH 40'00'		GHT 0 LB	HEAT/BATCH 61101510/03
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/00001		CUSTOMER MATER	IAL N⁰	SPECIFICATION / DATE ASTM A615/A615M-14	or REVISION		
CUSTOMER FURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243	DATE 01/23/2015					
CHEMICAL COMPOSITION C Mn P 0.42 0.66 0.018	8 0.046	Si Çu % % 0.21 0.30	Ni % 0.11	Gr N 0.06 0.0	fa Şu 35 0.018	ү с 0.015	EqvA706	
MECHANICAL PROPERTIES YS PSI 73400 75600	YS MPa 506 521	UTS PSI 107150 110500	UTS MPa 739 762		G/L Inch 8.000 8.000	G/L mm 200.0 200.0		
12.00	ndTest OK OK							
GEOMETRIC CHARACTERISTICS %Light Def Hgt Def Gap % Inch Inch 2.40 0.032 0.080	DefSpace Indu 0.322 0.322						-	
COMMENTS / NOTES Tais grade meets the requirements for the following gra	des:			2				
The above figures are o	ertified chemical ar	nd physical test records as e	contained in the permanent r	ecords of company. V	Ve certify that these data are o	correct and in con	pliance with	
specified requirements MacAk	BHA	iding the billets, was molto SKAR YALAMANCHILI LITY DIRECTOR	x) and manufactured in the I		with EN 10204 3.1.	JOSEPH T H QUALITY A:	OMIC SSURANCE MGR.	

Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-6

					CERTI	TED MA	TERIAL TE	ST REPOR	т		_			Page 1/1	
GÐ	GER	DAU	CUSTOMER SHI RE STEEL SUP 2000 EDDYST	PLY CO INC	RE		UPPLY CO		PK	GRADE 60 (420)			PE / SIZE 1 / #4 (131MBM)		
US-ML-SAY			EDDYSTONE, USA			DYSTON	E,PA 19022-		indi	LENGTH 40'00"			WEIGHT 10,020 LB	HEAT / BATCH 61101492/02	
SAYREVILL			SALES ORDE 1785955/00001			CUSTOM	IER MATER	IAL Nº		SPECIFIC.		TE or REVIS	ION		
CUSTOMER BB 22777	PURCHASE ORD	ER NUMBER		BILL OF LA 1331-000002			DATE 01/23/2015								
CHEMICAL C C 0.43	OMPOSITION Mn % 0.67	P 0.014	\$ 0.054	Si 0.20	Cµ 0.43	6. 0.:	li 6 21	Çr 0.10	M % 0.0	,0 64	Sn 0.018	¥ % 0.017	CEqyA706 0.57		
	L PROPERTIES YS PSI 65150 68450	4	S Pa 49 72	U 96 99	TS SI 100 600		UTS MPa 663 687			G/L Inch 8.000 8.000		2	G/L Dirti 00.0 00.0		
1	I. PROPERTIES Elong. 15.00 15.50	C	fTest K K												
GEOMETRIC %Light % 3.60 1.70	CHARACTERISTICS Def Hgt Inch 0.031 0.029	Def Gap Inch 0.078 0.090	DefSpace Inch 0.322 0.322												
COMMENTS / This grade mee	NOTES ts the requirements for	the following grade	s :												
													_		
[The abo	ve figures are cer	tified chemical an	d physical test r	ecords as conta	ined in the	e nermanent r		woony W	a cartifir that	there date or		in compliance with		
	specifie	d requirements. 1	his material, inclu	ding the billets,	, was melted and	d manufac	tured in the I	JSA. CMTR	complies	with EN 102	204 3.1.		H T HOMIC		
	,	Mark-	2 QUA	LTIY DIRECTOR					0	flagh ?	7.6	QUAL	ITY ASSURANCE MGR		

Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-6

US-ML-SAYREVILLE USA USA 40'00' 5,050 LB 6110 NORTH CROSSMAN ROAD SALES ORDER CUSTOMER MATERIAL N° SPECIFICATION / DATE or REVISION Astm Addis/addis/-14 SAVREVULLE, NJ 08872 SALES ORDER CUSTOMER MATERIAL N° SPECIFICATION / DATE or REVISION Astm Addis/addis/-14 CUSTOMER PURCHASE ORDER NUMBER BILL OF LADING DATE 01/23/2015 CHEMICAL COMPOSITION E SA SA SA SA CEq. A706 0.43 0.66 0.026 0.064 0.21 0.33 0.21 0.19 0.066 0.012 0.58 MECHANICAL PROPERTIES MPA MPA MPA MPA MPA MPA GA GA GA 0.00 0.012 0.58 0.58 V CEq. A706 0.58 V CEq. A706 0.25 0.25 0.26 0.016 0.012 0.58 0.55 0.012 0.58 0.200.0 0.200.0	т/ ватен 1499/04
US-ML-SATURE WS-ML-SA YREVTILLE NORTH CROSSMAN ROAD SAVREVILLE, NJ 08872 USA EDD YSTONE,PA 19022 USA EDD YSTONE,PA 19022-1588 USA LENGTH 40'00' WEIGHT 5,050 LB HEAR 6110 CUSTOMER PURCHASE ORDER NUMBER BB 22777 SALES ORDER NUMBER BB 22777 BILL OF LADING 1785955/000010 DATE 01/23/2015 SPECIFICATION / DATE or REVISION ASTM A615/A615/M-14 PECIFICATION / DATE or REVISION ASTM A615/A615/M-14 PECIFICATION / DATE or REVISION ASTM A615/A615/M-14 CHEMICAL COMPORTION SC 10020 BILL OF LADING 10/23 0.21 DATE 01/23/2015 DATE 01/23/2015 SPECIFICATION / DATE or REVISION ASTM A615/A615/M-14 CEQNA/706 0.016 OUTO CHEMICAL PROPERTIES VS 1 SS 2 V CEQNA/706 0.016 OUTO OUTO </td <td></td>	
SAYREVILLE, NJ 08872 USA SALES ORDER 1785955000010 CUSTOMER MATERIAL N° 1785955000010 SALES ORDER NUMBER 1785955000010 SALES ORDER NUMBER 1785955000010 BILL OF LADING 17859550000029243 DATE 01/23/2015 SPECIFICATION / DATE or REVISION ASTM A613/A613/A613/A613/A613/A613/A613/A613/	
BB 22777 1331-0000029243 01/23/2015 CHEMICAL COMPOSITION CA B S CI Ni Cf Mo Sn Y CEqx/A706 0.43 0.68 0.026 0.064 0.21 0.33 0.21 0.19 0.066 0.016 0.012 0.58 MECHANICAL PROPERTIES PS1 YS YTS YTS MFa Inch mm 0.43 0.68 0.026 0.064 0.21 0.33 0.21 0.19 0.066 0.016 0.012 0.58 MECHANICAL PROPERTIES PS1 MPa PS1 MPa Inch mm 105500 727 8.000 200.0 200.0 200.0 MECHANICAL PROPERTIES Elpng BendTest 103200 712 8.000 200.0 MECHANICAL PROPERTIES Elpng BendTest Inch Inch Inch Inch 11.00 OK OK 0.012 0.088 0.321 Inch 11.00 OK Inch Inch Inch Inch Inch 15.00 0.032 0.088 0.321 Inch Inch Inch 1.00 0.092 0.088 0.321 Inch Inch Inch<	
S Mit P S Si Cp Ni Cr Mo Sn Y CEagA706 0.43 0.68 0.026 0.064 0.21 0.33 0.21 0.19 0.066 0.016 0.012 0.58 MECHANICAL PROPERTIES YS MPa PSI MPa PSI G/L G/L G/L 70900 489 105500 727 8.000 200.0 200.0 68950 475 103200 712 8.000 200.0 200.0 MECHANICAL PROPERTIES BendTest 11.00 OK 30.000 200.0 200.0 11.00 OK OK 0.032 0.088 0.321 1.20 200.0 200.0 1.00 OK OK 0.002 0.0032 0.088 0.321	
YS1 NPa PS1 MPa find mm 70900 489 105500 727 8.000 200.0 68950 475 103200 712 8.000 200.0 MECHANICAL PROPERTIES BendTest 103200 712 8.000 200.0 MECHANICAL PROPERTIES BendTest	
Elong. b/a BendTest 11.00 OK 11.00 OK GEOMETRIC CHARACTERISTICS %Light Def Her 0 nob Inch 1.00 0.032 0.032 0.088 0.032 0.088 0.032 0.088	
Mclight Def Hgt Def Orp DefSpace % foch inch inch 1.50 0.032 0.088 0.321 1.90 0.032 0.086 0.321	
COMMENTS / NOTES This grade meets the requirements for the following grades:	
The above figures are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with	
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. HHASKAR YALAMANCHIL UALITY DIRECTOR UALITY DIRECTOR UALITY ASSURANCE MGR.	

Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-6

1.288.20					CERTIF	IED MATERIA	L TEST REPORT						Page 1/1
GÐ	GERD	DAU	CUSTOMER SHU RE STEEL SUP 2000 EDDYST	PLY CO INC	RE	TOMER BILL TO STEEL SUPPLY DEDDYSTONE		ĸ	GRADE 60 (420)			PE / SIZE : / #4 (13MM)	
US-ML-SAYRE NORTH CROSS	VILLE		EDDYSTONE,I USA			DYSTONE, PA 1			LENGTH 40700"			WEIGHT 4,008 LB	HEAT/BATCH 61101772/04
SAYREVILLE, 1 USA			SALES ORDER 1785955/00001/		(CUSTOMER MA	ATERIAL Nº		SPECIFIC ASTM A61		TE or REVIS	ON	
CUSTOMER PU BB 22777	RCHASE ORDER	NUMBER.		BILL OF LAD 1331-00000292		DATE 01/23/					,		
CHEMICAL COM C % 0.44	POSITION Min % 0.67	P % 0.019	\$ 0.059	Si % 0.20	ǵ 0.38	Ni % 0.16	Çr 0.06	M 0.0	0 47	Sn 0.017	% 0.016	CEqvA706 0.57	
MECHANICAL PF PS 664 658	S 51 00	M 45 45	58	UT: PS 9694 9774	0	ł	JTS MPa 668 674		G/L. Inch 8.000 8.000		2	3/L nm 00.0 00.0	
MECHANICAL PI Eligi 16.0 17.0	ng. 00	Bend O O	TTest K K										
GEOMETRIC CH. NLight N 1.10 0.80	ARACTERISTICS Def Hgt Endo 0.025 0.029	Def Gap Inch 0.099 0.115	DefSpace Insch 0.320 0.320										
COMMENTS / NO This grade meets the	TES e requirements for the	following grade	5.										
	The above	figures are cer	tilied chemical an	d physical test rea	ords as contai	ned in the perma	ment records of com	oenty. W	e certify tha	t these data ar	e correct and	in compliance with	
14		hark		IONG THE BILLESS, N SKAR YALAMANCH LITY DIRECTOR		ເຫລີດເປັນເອີດເປັນເອດ ແ	n the USA. CMTR c			204 3.1.	J JOSE	PH T HOMIC LITY ASSURANCE MGR.	
	5	-						V					

Figure B-10. Rebar No. 4 Material Certificate, Test No. NJPCB-6

P.O. Box 13948 Roanoke, VA 24038-3934

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com PRODUCT CERTIFICATION

 MFG LOT NBR
 HEAT NUMBER

 JL1000-376202
 JL1000

 BILL OF LADING
 SALES ORDER/LINE

 00514980
 121669 / 001

 CERT ID / REV
 00049973 / 01

SOLD TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOME 849		CUST	TOMER PA	RT	QUANTITY 25,956	BUNDL	E(S) TOT	AL PIE 288	CES	GRADE A615-60)		IENT DATE
PART NUMB	ER: R	B01979	6000CA		DESCRIPTION	N: F	Rebar # 06	(19)	60'0"	A615-60			
					A	It Certs							
STM A615/	A615M-16	GR60	AASHTO	M31/M31	M-15 GR60								
					C	hemical							
C 0.42	Mn 1.02	S 0.043	P 0.012	Si 0.26	Cr 0.11	Ni 0.10	Мо 0.03	Cu 0.26	0.00		ND 01	CE 0.68	
					Yield Ten	sile Elor	ngation						
ample-1	Yld-1	(KSI) 64.8	¥ld-1	(MPa) 447	Ultimate-1	(KSI) 103.4	Ultimate	-1 (M	(Pa) 713	Elong8"	(%) 18		
ample-2	Yld-2	(KSI) 64.3	¥ld-2	(MPa) 443	Ultimate-2	(KSI) 102.2	Ultimate	-2 (M	(Pa) 705	Elong8"	(%) 16.6		
					Me	echanica	I						
EST				RESU	ILT								
ordered" Grade	Mercury, Rad ter Inch-pound	units or SI L	Alpha source inits are to be	materials in a regarded as a	vas melted and manu any form have not be separate as defined i he inch-pound range	en used in the	production of the	nls mate	rial. No We	Id repair has	been per	formed. Any	tensile values
					id in the records of th								
	CERTIFIC					leh.J.	1	Eng	gineer o	of Tests:	Lev	/is E. Lef	twich Jr.
tc302 (v6.0)			errorit deserve	1		Page 1 of	1				Da	te Printed:	12/12/20

Figure B-11. Rebar No. 4 Material Certificate, Test No. NJPCB-6

Metal Partners International

55 South Main Street

Naperville, IL 60540

SOLD TO

Suite 304

USA

P.O. Box 13948 Roanoke, VA 24038-3934

Office: (540) 342-1831 (800) 753-3532 (540) 342-9437 Fax: www.roanokesteel.com

PRODUCT CERTIFICATION

JK9068-171121

HEAT NUMBER MFG LOT NBR JK9068 BILL OF LADING SALES ORDER/LINE 00505081 105043 / 002 CERT ID / REV 00014678 / 01

SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOMER PART BUNDLE(S) TOTAL PIECES GRADE SHIPMENT DATE CUSTOMER P.O. QUANTITY 5410 17,304 192 A615-60 05/05/2016 N/A 2 PART NUMBER RB019796000CA DESCRIPTION Rebar # 06 (19) 60'0" A615-60 Alt Certs ASTM A615/A615M-16 GR60 | AASHTO M31/M31M-15 GR60 Chemical C Mn S P Si Cr Ni Mo Cu V Nb 0.44 1.02 0.028 0.015 0.24 0.16 0.09 0.02 0.36 0.003 0.002 CE 0.71 Yield Tensile Elongation Yld-1 (KSI) Ultimate-1 (KSI) Yld-1 (MPa) Ultimate-1 (MPa) % Elong (%) Sample-1 69.5 479 109.3 754 17.5 Yld-2 (KSI) Yld-2 (MPa) Ultimate-2 (KSI) Ultimate-2 (MPa) % Elong (%) Sample-2 68.8 475 109.5 755 16.3 Mechanical TEST RESULT **Bend Test** Pass Approved ABS QA Mill. Certificate No. 12-MMPQA-676. This Material was melted and manufactured in our plant located in Roanoke, VA, USA, by basic Electric Furnace process(es) to meet the "ordered" Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weld repair has been performed. Any tensile values stated herein either inch-pound units or SI units are to be regarded as separate as defined in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is ordered, this material has been tested and meets the requirements of the inch-pound ranges. This is to certify the above to be a true and accurate report as contained in the records of this company 1.2.5 END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr. qtc302 (v6.0) Page 1 of 1 Date Printed: 05/05/2016

Figure B-12. Rebar No. 4 Material Certificate, Test No. NJPCB-6

		CE	RTIFIED MATERIAL TEST REPO	ORT		Page 1/1
G GERDAU	CUSTOMER SHI TYE BAR LLC 1050 OHIO AV GLASSPORT.	Е	CUSTOMER BILL TO TYE BAR LLC 1050 OHIO AVE GLASSPORT.PA 15045-1675	GRADE 60 (420) LENGTH	SHAPE / SIZE Rebar / #5 (16MM) WEIGHT	DOCUMENT II 00000000000 HEAT/BATCH
JS-ML-SAYREVILLE JORTH CROSSMAN ROAD	USA	115045-1075	USA	60'00"	8,636 LB	61108687/02
SAYREVILLE, NJ 08872 JSA	SALES ORDEI 4209659/00001		CUSTOMER MATERIAL Nº	SPECIFICATION / DA ASTM A615/A615M-15 E		
CUSTOMER PURCHASE ORDER NUMBER 160122		BILL OF LADING 1331-0000048641	DATE 09/15/2016			
CHEMICAL COMPOSITION P C Mn P 0.44 0.62 0.012	S% 0.061	Si Cu % % 0.19 0.31	Ni Cr % 0.17 0.14	Mo Sn % 20057 0.016	Х СЕqуА706 0.015 0.56	
65742	(\$ 1Pa 53 44	UTS PSI 97290 96645	UTS MPa 671 666	G/L Inch 8.000 8.000	G/L mm 200.0 200.0	
15.00	dTest DK DK			5		
GEOMETRIC CHARACTERISTICS %Light Def Hgt Def Gap % Inch Inch 4.50 0.035 0.095 4.60 0.035 0.095	DefSpace Inch 0.400 0.400					
OMMENTS / NOTES						
	his material, includ		ontained in the permanent records of c d and manufactured in the USA. CMT			

Figure B-13. Rebar No. 4 Material Certificate, Test No. NJPCB-6

In the second data in the second s					CER	TIFIFD MA	TERIAL T	EST REPORT						Page 1/1
			CUSTOMER SHIP	то		CUSTOMER B				GRADE			PE / SIZE / #6 (19MM)	
62	GER	DALL	RE STEEL SUP	PLY CO INC		RE STEEL S				60 (420)		Reba	7 #6 (19MM)	
EB		no	2000 EDDYSTO PARK	NE INDUSTRI		2000 EDDYS EDDYSTON		DUSTRIAL PARK 2-1588		LENGTH			WEIGHT	HEAT / BATCH
US-ML-SAYRE	VILLE		EDDYSTONE,P	A 19022		USA			1	40'00"			30,282 LB	61105448 /03
NORTH CROSS			USA			CUSTOM	IER MATE	PIAL Nº		SPECIFIC	ATION / DAT	E or REVIS	ION	
SAYREVILLE,	NJ 08872		SALES ORDER 2886827/000020			COSTON	IEK MATL				5/A615M-15			
USA							DITE							
CUSTOMER PU BB-23635	RCHASE ORDER	RNUMBER		BILL OF LAD 1331-00000389			DATE 10/08/201	15						
50-25055			1											
CHEMICAL COM	POSITION										0	N	CEau A 706	
Sector Contraction	Mn %	P %	S%	Si %	Cu % 0.33	Ę	Ni % 18	Çr %		10	Sn % 0.028	V % 0.018	CEqvA706 0.65	
0.48	0.75	0.010	0.064	0.23	0.33	0.	18	0.09	0.0)36	0.028	0.018	0.05	
MECHANICAL P		1	/\$	UT	2		UTS	S		G/L Inch			G/L mm	
PS 701	50	N	(S IPa 84	UT PS 1073	Т 318		UTS MP 740 747	a)		8.000		2	200.0	
. 705	590 590		87	1083	364		747	1		8.000		2	200.0	
MECHANICAL P		Dan	dTest								1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
Elg	ng. .00		DK											
14.			OK											
GEOMETRIC CH	ARACTERISTICS													
%Light	Def Hgt Inch	Def Gap Inch	DefSpace Inch											
5.80 5.80	0.040 0.040	0.090 0.090	0.477 0.477											
COMMENTS / NO	DTES													
	The abov	e figures are co	ertified chemical a	nd physical test r	ecords as	contained in t	he permane	ent records of comp	oany.	We certify t	hat these data a	re correct an	d in compliance with	
						ed and manufa	actured in t	he USA. CMTR co	mpne		0204 3.1.	105	ЕРН Т НОМІС	
	19	hack	ory BHA	SKAR YALAMANC	HILI					Jona.	1/2	2 10s QU	ALITY ASSURANCE MGR.	
		-	QUA	LITT DIRECTOR					L					

Figure B-14. Rebar No. 6 Material Certificate, Test No. NJPCB-6

					CEL	THEFT MA	TEDIAL T	EST REPORT						Page 1/1	
			CUSTOMER SHIF	то	CEF	CUSTOMER E		Lor Karoki	T	GRADE			PE / SIZE		
	DF	NII	RE STEEL SUP			RE STEEL S		DINC		60 (420)		Reba	r /#6 (19MM)		
GP	GERD	JAU	2000 EDDYSTC	NE INDUST	RIAL	2000 EDDYS	STONE INI	DUSTRIAL PARK		LENGTH			WEIGHT	HEAT / BATCH	1
			PARK			EDDYSTON USA	E,PA 1902	2-1588		40'00"			4,987 LB	61105472/ 03	
S-ML-SAYRE			EDDYSTONE,F	PA 19022		USA									
ORTH CROSS			SALES ORDER	2		CUSTON	MER MATE	ERIAL Nº				TE or REVIS	SION		
AYREVILLE.	NJ 08872		2886827/00002							ASTM A61	5/A615M-15				
JSA				1					-						
	RCHASE ORDER	NUMBER		BILL OF LA 1331-00000			DATE 10/08/201	15							
BB-23635				1331-0000	38304		10100								
CHEMICAL COM	POSITION Mn %	P.,%	S	Si %	Çu	1	Ni %	Çr %	M	lo	Sn %	V %	CEqvA706		
C % 0.46	% 0.72	% 0.019	% 0.048	0.21	Cu % 0.38	8 0).15	0.14	0.0	36	0.017	0.022	0.63		
													<u></u>		
MECHANICAL PE YS PS	S S		YS 1Pa	1	UTS PSI		UT	Sa		G/L Inch			G/L mm		
732	96	5	505	10	06977		738	3		8.000 8.000			200.0 200.0		
733	86	2	506	10	07455		/41			01000					
MECHANICAL P	ROPERTIES	Ber	ndTest												
13.	9		ЭK												
15.	00	i	OK												
GEOMETRIC CH	ARACTERISTICS														
%Light	Def Hgt Inch	Def Gap Inch	DefSpace Inch												
4.20 4.50	0.058	0.072	0.481 0.481												
		0107.8													
COMMENTS / NO	DTES														
										Wa cortifu	hat these date	are correct a	nd in compliance wit	th	
	The abov	ve figures are o	certified chemical a	and physical te luding the bill	est records a ets, was me	is contained in lted and manu	the perman factured in	the USA. CMTR co	mpn	es with Liv	10204		nd in compliance wit	nar;3	
				ASKAR YALAM						1	1/1	01	SEPH T HOMIC		
	/	hack	Out	ALITY DIRECTO						Jangh	1 12	QU	JALITY ASSURANCE MC	IR.	
			00		(7.62					/					

Figure B-15. Rebar No. 6 Material Certificate, Test No. NJPCB-6

GÐ	GERI	DAU	CUSTOMER SH TYE BAR LLC 1050 OHIO AV	1	C T	IFIED MAT USTOMER B YE BAR LL 050 OHIO A	ILL TO .C	EST REPOR	RT	GRADI 60 (420			APE / SIZE ar / #6 (19MM)	Page 1/1 DOCUMENT 1 0000000000
US-ML-SAYRI NORTH CROS			GLASSPORT,I USA		G	LASSPORT SA		-1675		LENGT 41'00"	Н		WEIGHT 9,606 LB	7/BATCH 0 285 /09
SAYREVILLE, JSA			SALES ORDE 4699099/00002			CUSTOM	ER MATEI	RIAL Nº			FICATION / D A A615/A615M-15 E		ION	
CUSTOMER PU 170014	JRCHASE ORDE	R NUMBER		BILL OF LA 1331-000005			DATE 02/13/2017							
CHEMICAL COM C % 0.45	1POSITION Mn % 0.64	Р % 0.014	S % 0.041	Si % 0.20	Cu % 0.28	Ni % 0.1	4	Cr % 0.21	M % 0.04		Sn % 0.011	¥ 0.019	CEqvA706 % 0.61	
MECHANICAL P PS 686 685	S SI 69	Mi 47 47	S.a. 3.2	U F 10: 10:	TTS 2440 2170		UTS MPa 706 704			G/L Inch 8.000 8.000)	2	G/L nm 00.0 00.0	
MECHANICAL PI Elo 13.1 13.1	ng. 00	Bend Of Of	<											
GEOMETRIC CH %Light % 4.00 4.10	ARACTERISTICS Def Hgt Inch 0.051 0.051	Def Gap Inch 0.074 0.074	DefSpace Inch 0.453 0.453											
omments / no	TES													
			fied chemical and s material, includ									e correct and i	n compliance with	
		hacka	QUAL.	KAR YALAMANC ITY DIRECTOR					0		1 Kom		H T HOMIC ITY ASSURANCE MGR.	
	Phone:	(409) 769-1014 Er	nail: Bhaskar.Yalan	nanchili@gerdau.	.com					Phone	: 732 259 7660	Email: joe.homi	c@gerdau.com	

Figure B-16. Rebar No. 6 Material Certificate, Test No. NJPCB-6

					CERT	IFIED MATERIAL	TEST REPO	RT				Page 1/1
GÐ	GER	DAU	CUSTOMER SHI TYE BAR LLC 1050 OHIO AV	E	T I	USTOMER BILL TO YE BAR LLC 050 OHIO AVE			GRADE 60 (420) LENGTH		PE / SIZE r / #5 (16MM) WEIGHT	DOCUMENT ID 0000000000
US-ML-SAYR			GLASSPORT,F USA	'A 15045-1673		SLASSPORT,PA 1504 ISA	5-16/5		41'00"		35,576 LB	61110265/06
NORTH CROS SAYREVILLE USA			SALES ORDER 4699099/00001			CUSTOMER MAT	ERIAL Nº		SPECIFICATION / D ASTM A615/A615M-15		ON	
CUSTOMER P 170014	URCHASE ORD	ER NUMBER	1	BILL OF L/ 1331-00000		DATE 02/13/20	17					
CHEMICAL CON C % 0.48	MPOSITION Mn % 0.63	P % 0.010	\$ 0.030	Si % 0.18	Cu % 0.34	Ni % 0.13	Çr 0.13	M % 0.0	o Sn 32 0.012	V 0.012	СЕqуд706 0.60	4
MECHANICAL F P 67 66	'S SI 134	MI 46 46	3	10	TTS SI 2850 1950	UT MP 709 703)		G/L Inch 8.000 8.000	20	i/L im 0.0 0.0	
MECHANICAL F Elg 13 13	00 .00	Bend OI OI	<									
GEOMETRIC CH %Light % 4.50 4.70	ARACTERISTICS Def Hgt Inch 0.033 0.033	Def Gap Inch 0.130 0.130	DefSpace Inch 0.400 0.400									
COMMENTS / NO	DTES											
						ained in the permanen ad manufactured in the		complies v				
	ß	hacke	Pres	CAR YALAMANC	HILI			0	langa 1 kilom	JOSEPH QUALF	I T HOMIC FY ASSURANCE MGR.	
	Phone	c: (409) 769-1014 Ei	nail: Bhaskar.Yalan	nanchili@gerdau	.com				Phone: 732 259 7660	Email: joe.homic	@gerdau.com	

Figure B-17. Rebar No. 6 Material Certificate, Test No. NJPCB-6

P.O. Box 13948 Roanoke, VA 24038-3934 Office: (540) 342-1831

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com PRODUCT CERTIFICATION

MFG LOT NBR HEAT NUMBER JL3511-479027 JL3511 BILL OF LADING SALES ORDER/LINE 00520094 129426 / 001 CERT ID / REV 00063374 / 01

SOLD TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOME 9579		CUST	OMER PA	RT	QUANTITY 17,315		DLE(S) 3		PIECES 32	GRADE A615-60)		NT DATE
PART NUMBE	R: R	B019776	5000CA		DESCRIPTIO	N :	Rebar	# 04 (1	3) 60'0'	' A615-60			
****					C	hemica	al						
C 0.41	Mn 1.05	S 0.024	P 0.012	Si 0.22	Ċr 0.16	Ni 0.10	Mo 0.02	0,2	Cu 21 0.0	V 1 002 0.00	ND)1	CE 0.68	
					Yield Ter	sile Ele	ongatio	n					
Sample-1	Yld-1	(KSI) 68.9	Yld-1	(MPa) 475	Ultimate-1	(KSI) 107.6	Ultin	nate-1	(MPa) 742	Elong8"	(%) L5.6		
Sample-2	Yld-2	(KSI) 69.5	Yld-2	(MPa) 479	Ultimate-2	(KSI) 108.2	Ultir	nate-2	(MPa) 746	Elong8"	(%) 14		
					Me	chanic	al						
TEST Bend Test				RESU Pass	0.000								
Denu lest				rase									
"ordered" Grade. stated herein eith	Mercury, Rad er inch-pound	ium or other units or SI u	Alpha source nits are to be	regarded as s	as melted and manu any form have not be separate as defined he inch-pound range	oon used in In the ASTM	the product!	on of this n	naterial. No	Wold repair has	been pe	rformed. Any te	nslle values
					d in the records of t		у.						5
END OF	CERTIFI	CATION		5	. 2. 3	the f	1	1	Enginee	r of Tests:	Lev	wis <u>E. Left</u> v	vich Jr.
qtc302 (v6.0)						Page 1 c	of 1		e a 200000000		Da	ate Printed	03/08/201

Figure B-18. Rebar No. 6 Material Certificate, Test No. NJPCB-6

Metal Partners International

55 South Main Street

Naperville, IL 60540

SOLD TO

Suite 304

USA

P.O. Box 13948 Roanoke, VA 24038-3934

PRODUCT CERTIFICATION

fice:	(540) 342-1831
	(800) 753-3532
x:	(540) 342-9437
ww.roa	anokesteel.com

MFG LOT NBR HEAT NUMBER JL3506-479027 JL3506 BILL OF LADING SALES ORDER/LINE 00520481 130004 / 001 CERT ID / REV 00064145 / 01

SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOMER P.O. CUSTOMER PART BUNDLE(S) TOTAL PIECES GRADE SHIPMENT DATE QUANTITY 9726 N/A 15,390 384 A615-60 03/13/2017 2 PART NUMBER RB019776000CA DESCRIPTION : Rebar # 04 (13) 60'0" A615-60 Chemical Si Cr Cu Nb CE C Mn S P Ni Mo V 0.42 1.11 0.025 0.010 0.24 0.11 0.09 0.02 0.21 0.003 0.001 0.69 Yield Tensile Elongation Yld-1 (KSI) Yld-1 (MPa) Ultimate-1 (KSI) Ultimate-1 (MPa) Elong8" (%) 105.2 Sample-1 467 725 15.6 67.7 Yld-2 (KSI) Yld-2 (MPa) Ultimate-2 (KSI) Ultimate-2 (MPa) Elong8" (%) Sample-2 482 109.0 752 15.6 69.9 Mechanical TEST RESULT **Bend Test** Pass Approved ABS QA Mill. Certificate No. 12-MMPQA-676. This Material was melted and manufactured in our plant located in Roanoke, VA, USA, by basic Electric Furnace process(es) to meet the "ordered" Grade. Mercury, Radium or other Alpha source materials in any form have not been used in the production of this material. No Weld repair has been performed. Any tensile values stated herein either inch-pound units or SI units are to be regarded as separate as defined in the ASTM scope for this material. All samples tested are full size. Unless a metric specification is ordered, this material has been tested and meets the requirements of the inch-pound ranges. ertify the above to be a true and accurate report as contained in the records of this J. E. G. END OF CERTIFICATION Engineer of Tests: Lewis E. Leftwich Jr. qtc302 (v6.0) Page 1 of 1 Date Printed: 03/13/2017

Figure B-19. Rebar No. 6 Material Certificate, Test No. NJPCB-6

SOLD TO

Suite 304

USA

Metal Partners International

55 South Main Street

Naperville, IL 60540

P.O. Box 13948 Roanoke, VA 24038-3934

Office: (540) 342-1831 (800) 753-3532 Fax: (540) 342-9437 www.roanokesteel.com

PRODUCT CERTIFICATION

 MFG LOT NBR
 HEAT NUMBER

 JL3505-479027
 JL3505

 BILL OF LADING
 SALES ORDER/LINE

 00520481
 130004 / 001

 CERT ID / REV
 00064144 / 01

SHIP TO Metal Partners International 55 South Main Street Suite 304 Naperville, IL 60540 USA

CUSTOME 972		1	CUSTOMI N/			NTITY , 540	BUNDLE(S	;) 1	TOTAL PIECES 762	GRADE A615-60	SHIPMENT DATE 03/13/2017
PART NUMBE	R:	RB019	7760000	CA	DES	CRIPTION	I: Ret	oar # 04	4 (13) 60'0" A	615-60	
							Chemical				
C 0.42	Mn 1.04	S 0.034	P 0.010	Si 0.24	Cr 0.08	Ni 0.08	Mo 0.02 0.2	Cu 24 0.	V Nb .003 0.001	CE 0.68	
						Yield Te	ensile Elonga	tion			
ample-1	Yld-1	(KSI) 70.5	Yld-1	(MPa) 486	Ultimate-1	(KSI) 110.0	Ultimate-1	(MPa) 759	Elong8" (% 12.		
ample-2	Yld-2	(KSI) 69.5	Yld-2	(MPa) 479	Ultimate-2	(KSI) 110.7	Ultimate-2	(MPa) 763	Elong8" (% 14.		1
						r	Mechanical				
TEST Bend Test					RESULT Pass						
"ordered" Grade. stated herein eith	Mercury, Ran er inch-pound	fium or othe d units or SI	r Alpha sourc units are to b	e materials in e regarded as	any form have not b	been used in in the ASTM	the production of this	material. I	A, USA, by basic Electric No Weld repair has been ples tested are full size.	performed. Any te	ansile values
This is to certify t	he above to b	e a true and	accurate rep	ort as contain	ed in the records of	this compan	у.				
END O	F CERT	FICATIO	ON		1.0	1	the fill		Engine	er of Tests:	Lewis E. Leftwich Jr.
qtc302 (v6.0)		admilitan da Ara					Page 1 of 1				Date Printed: 03/13/20

Figure B-20. Rebar No. 6 Material Certificate, Test No. NJPCB-6

tomer Name	Customer PO#	Shipper No Heat Number
el Modern Mfg.	Leon	273924 821597
Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1G0 Tal: 519-738-3541 Fax: 519-738-3537 Sold to Triad Metals Internationa 1 Village Road HORSHAM PA 19044-3 USA		
Material: 3.0x3.0x125x24'0"0(7x7). Salas order: 989576	Material No: 300301252400	Made In: Canada Melted in: Canada
Heat No C Mn P	Purchase Order: 75461 S Si Al Cu Cb	
	0.007 0.019 0.044 0.060 0.006 0.0	Mo Ni Cr V Ti B N 006 0.026 0.045 0.002 0.002 0.000 0.003
	nsile Eln.2in	Certification CE: 0.34
Material Note: Sales Or.Note;	7160 Psi 26.6 %	ASTM A500-13 GRADE B&C
Bundle No PCs Yield Ter M101454130 1 066980 Psi 075 Material Note: Sales Or.Note:	0.010 0.015 0.031 0.032 0.006 0.0 sile Eln.2in	Malted in: Canada 10 Ni Cr V Ti B N 02 0.011 0.032 0.002 0.002 0.000 0.000 Certification CE: 0.35 ASTM A500-13 GRADE B&C
Material: 4.0x4.0x500x40'0"0(4x2). Sales order: 995107	Material No: 400405004000	Made in: Canada Mølted in: Canada
Heat No C Mn P	Purchase Order: 76312 S Si Al Cu Cb M	o Ni Cr V Ti B N
Bundle No PCs Yield Ten	0.009 0.013 0.040 0.026 0.006 0.00 ille Eln.2in	
Mairia Balfis		

Figure B-21. Steel Tube Material Certificate, Test No. NJPCB-6

omer Name		Custom	er PO#			Shipp	er No	Heat	Numbe	r	
el Modern Mfg.		Leon				27392		8215		1	
Atlas Tube C 200 Clark St Harrow, Onta NOR 1G0 Tel: 519-7 Fax: 519-7 <u>Sold to</u>		_		STEEL	GROUP			Ref.B/L: Date: Custome	806(05.0 ar: 149	64351 88.2015 7	
1 Village F	lls International Road I PA 19044-3							<u>Shipped</u> Triad Me 3507 Gr PITTSBU USA		rnation nue 1522	al 5
Material: 4.0x4.0x50 Sales order: 99510			Material No Purchase C)			e in: Ca ed In: Ca	nada nada	
Heat No C	Min P	S	Si Al	Cu	Съ			Cr V		в	N
821597 0.210	0.780 0.011	0.009 (0.013 0.040	0.026	0.006 (0.004 0.0	013 0.0	0.00	0.002	0.000	0.004
Bundle No PCs		ensilo	Eln.2in			Certifica				CE: 0.35	5
M101454131 8 Material Note: Sales Or.Note:	069700 Psi 0	78390 Psi	27.2 %			ASTM A	4500-13	GRADE B	&C		
Material: 6.0x2.0x18 Sales order: 99510			Material No Purchase O			0			e in: Car ed in: Ca		
Heat No C		S	Si Al	Cu	Сь			Cr V		в	N
	0.790 0.010	0.008 0	.015 0.040	0.047	0.002 0	0.005 0.0	023 0.0	0.00	2 0.002	0.000	0.004
Bundle No PCs		ensile	Eln.2in			Certifica				CE: 0.33	3
M101453723 27 Material Note: Sales Or.Note:	058410 Psi 06	59080 Psi	33.3 %			ASTM A	500-13	GRADE B	kC		
Material: 6.0x6.0x18			Material No: Purchase Or						in: Car od in: Car		
Heat No C	Mn P	S	Si Al	Cu	Cb	Ma		r v	T :	в	
821531 0.190									Ti 2 0.002	B 0.000	N 0.004
Bundle No PCs		nsile	Eln.2in			Certifica		0.00		CE: 0.34	
M101456164 9	063160 Psi 07	8380 Psi	30.5 %					GRADE B8			
Material Note: Sales Or.Note:											
	74.	in Allin									
Authorized by Quality The results reported o	Assurance: on this report repre		ual attributes of	f the ma	iterial furni	ished and i	ndicate fi	ull complia	oca with	all applica	able
apoencedion and cont	ract requirements.		Page : 2 (~		ervice Ce			
S OF NORTH AMER	ic.										

Figure B-22. Steel Tube Material Certificate, Test No. NJPCB-6

Customer Name	Custome	r PO#	Shipper No	Heat Number
Seibel Modern Mfg.	Leon		273924	1422428
i.				
1855 East Chicago, II 60633 Tal: 77	Corp (Atlas Tube Chicago) 122nd Street linols, USA 3-646-4500 3-646-6128		as Tube	Ref.B/L: 80660765 Date: 04.15.2015 Customer: 1497
Sold to		MATERIAL TES	T REPORT	
	etals International 2 Road M PA 19044-3812			<u>Shipped to</u> Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA
Material: 4.0x4.0 Sales order: 985	x500x40'0"0(4x2).	Material No: 400		Mada in: USA Melted in: Russian Fad.
	C Mn P S	Purchase Order: Si Al Cu		
	200 0.930 0.007 0.010		Cb Mo Ni 0.000 0.000 0.020	Cr V Ti B N 0.030 0.000 0.000 0.000 0.006
Bundle No PC M800549020 3 Material Note:		Eln.2in	Certification ASTM A500-13 GR	CE: 0.37
Sales Or.Noto:				
Sales order: 989	-	Material No: 400 Purchase Order:		Mado in: USA Melted in: Russian Fed.
	C Min P S	Si Al Cu	Cb Ma Ni	Cr V TI B N
1422428 0.2 Bundle No PC M800549017 8 Matorial Note: Sales Or.Note:	s Yield Tensile	0.013 0.043 0.040	0.000 0.000 0.020 Certification ASTM A500-13 GR	
	x313x48'0"0(1x4).	Material No: 2000	403134800	Made in: USA
Sales order: 994	577	Purchase Order: 7	5051-replacement	Melted in: USA
Heat No () Min P S	SI Al Cu	Cb Mo Ni	Cr V Ti B N
A73575 0.20 Bundle No PCs M900754817 4 Material Note; Sales Or.Note:		Eln.2in	0.000 0.020 0.060 Certification ASTM A500-13 GR	0.050 0.001 0.002 0.000 0.009 CE: 0.31 ADE B&C
Authorized by Qua The results reports specification and c Steer ISSUE OF NORTH A	Marrie 2014 lity Assurance: d on this report represent the ontract requirements. The Des D1.1 method, THE DES ULC MERICA			no full compliance with all applicable Is Service Center Institute

Figure B-23. Steel Tube Material Certificate, Test No. NJPCB-6

Customer	Name			C	ustomer	PO#				Shipp	er No	Heat	Numb	er		
Seibel Mod	ern Mfg.			L	eon					27392	24	M044	195_1			
	1855 E Chicago	ast 122	p (Atlas Ind Street	Tube Ch	C				as	5 T (ube	Ref.	B/L: a: tomer:	8066 05.18 1497	5303 .2015	
		773-64 773-64			C	100			GROU			ous		1437		
					N	IATE	RIAL	TEST	T REF	PORT						
	1 Villa	Metal	s Intern bad PA 19									Tria 350	d Meta 7 Gran 7SBURG	d Aven	LIA	
	aterial: 4.0x			(3x2).					0500480	DO			Made ir Melted	i: USA in: USA		
He	at No	с	Mn	Р	S	SI	Al	Order: 7 Cu	5462 Cb	Mo	Ni	Cr	v	TI	В	N
MC Bu	04495_1 ndte No	0.190 PCs	0.750 Yield		ensile	0.019 Eln.2		0.050	0.004	0.004 Ca	0.010	0.040	0.001	0.001 C	0.000 E: 0.3	0.005
Ma Ma	300554030 aterial Note: los Or.Note:		072918		82550 Psi	35 %			A	STM A5	00-13 GR	ADE B&	0			

specification and contract requirements.	ctual attributes of the material	furnished and indicata full compliance with all applicable
Institute	Page: 4 Of 4	K Metals Service Center Institute

Figure B-24. Steel Tube Material Certificate, Test No. NJPCB-6

tomer Name	Custor	mer PO#		Shipper No	Heat M	Number	
el Modern Mfg.	Leon			273924	T8353	9	
Atlas ABC Corp 1355 East 122; Chicago, Illinois, 60633 Tol: 773-646 Fax: 773-646	, USA			Tube	Ref.B/L Date: Custor	: 8061: 08.22 her: 1497	9794 2014
<u>Sold to</u> Triad Metals 1 Village Ro HORSHAM F USA	: International	ATERIAL TES	ST REPO	RT	3500 N	<u>d to</u> Aetals Inter Veville Road E ISLAND	đ
Material: 4.0x4.0x375x Salos order: 934921	48'0"0(4x2).	Material No: Purchase Orde	40040375480	0		le in: USA and in: USA	
Heat No C	Mn P S	Si Al	Cu Cb	Mo Ni	Cr V	TI	8 N
	0.800 0.015 0.011		.040 0.005		0.040 0.00		0.000 0.004
Bundle Na PCs Yi M800504131 8 O	ield Tensile 71476 Psi 081675 Psi	Ein.2in		Certification TM A500-13 GRA			: 0.34
Material Note: Sales Or.Note:							
Material: 4.0x4.0x500x4 Sales order: 934921		Material No: Purchase Orde	ar: 67358		Melt	e in: USA ed in: USA	
Heat No C	Mn P S	SI AI	Cu Cb	Mo Ni	Cr V		B N
Bundle No PCs Yi	0.820 0.012 0.007 old Tensile 72654 Psi 085933 Psi	0.015 0.054 0. Eln.2in 29 %		0.004 0.010 Certification TM A500-13 GRA			0.000 0.005 : 0. 3 5
Material Note: Sales Or.Note:							
Material: 12.0x12.0x250 Sales order: 933979	x40'0"0(2x2).	Material No: Purchase Orde		00		e In: USA ed in: USA	
Heat No C	Mn P S		Cu Cb	Ma Ni	Cr V	Ti	BN
T84047 0.180 0	0.000 0.008 0.007 eld Tensila		020 0.003	0.003 0.010 Cortification	0.040 0.00	01 0.001 0	0.000 0.007
	i5286 Psi 073956 Psi	28 %	AS	TM A500-13 GRA	DE B&C		
Marrin Halfin Marvin Phillips							
specification and contra CE calculated using the	this report represent the oct requirements. AWS D1.1 method.	actual attributes of	the material fo	urnished and indic	ata full comp	ilianca with al	l applicable
Steel Tul	be	Page : 1 O	if 4	S Meta	als Service I	Center Instit	ute

Figure B-25. Steel Tube Material Certificate, Test No. NJPCB-6

Customer Name	Customer PO#		Shipper No	Heat Num	ber
Seibel Modern Mfg.	Leon		273924	SD5020	
Independence Tube)	6226 W. 74th St Chicago, IL 60638 708-496-0380 Fax: 708-563-1950			ependencetube.com itctube.com imber: DCR 250913
Sold By: INDEPENDENCE TUBE CORF 6226 W. 74th St. Chicago, IL 60638 Tei: 708-L496-0380 Fax: 708-563-1950	PORATION	Purchase Order No: 7 Sales Order No: DCR Bill of Lading No: DCI Invoice No:	64130 - 5	Shipped: Invoiced:	1/16/2015
Sold To: 2103 - TRIAD METALS 1 VILLAGE ROAD HORSHAM, PA 19044-3812		Ship To: 39 - TRIAD METALS MILE MARKER 7.3 OHIO RIVER NEVILLE ISLAND, PA			
CERTIFICATE of ANAL Customer Part No:	YSIS and TESTS		с	ertificate No: DC Test Date: 1/1	
TUBING A500 GRADE B(C) 4" SQ X 1/2" X 48'				Total Pieces 36	Total Weight 37,376
Bundle Tag Mill Heat 844458 40 SD5020 844459 40 SD5020 844460 40 SD5020 844460 40 SD5020 844461 40 SD5020	9	Weight 9,344 9,344 9,344 9,344 9,344			
Mill #: 40 Heat #: SD5020 Yield 0.1352 C Mn P 0.0500 0.3900 0.0000 0.	1: 72,300 psi Tensile: 78 S. Si Al 0040 0.2240 0.0260	Cu Cr	Mo V	Ni Nb	
Certification:	0.020 0.2240 0.0260	0.0900 0.0400 0	0.0200 0.0010	0.0300 0.00	80
I certify that the above results are Corporation. Sworn this day, 1/14	a true and correct copy 1/2015	of records prepared an	d maintained by	Independence To	ube
WE PROUDLY MANUFACTURE INDEPENDENCE TUBE PRODU AND INSPECTED IN ACCORDA	CT IS MANUFACTURE	HE USA. D. TESTED, IDARDS.	1	Mar	Timez
CURRENT STANDARDS: 	I-13	6	P		0
	-12			Jose Martinez,	QMS Manager
MATERIAL IDENTIFIED AS A500 ASTM A500 GRADE B AND A500	GRADE B(C) MEETS E GRADE C SPECIFICA	BOTH TIONS.			

Figure B-26. Steel Tube Material Certificate, Test No. NJPCB-6

and a substantial sector of the sector of th

Independen	ice Tube		CI	6226 W. 74th St hicago, IL 60638 708-496-0380 ax: 708-563-1950		Certific	·	endencetube. itctube. iber: DCR 493
Sold By: INDEPENDENCE 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950		ION	S B	urchase Order No ales Order No: DC ill of Lading No: D tvoice No:	CR 87576 - 3		hipped: 10 voiced:	0/28/2016
Sold To: 1214 - LIVINGSTO P.O. BOX 300 STAUNTON, IL 62			1 1	hip To: - LIVINGSTON P 612 ROUTE 4 NO TAUNTON, IL 620	RTH			
CERTIFICAT Customer Part No	E of ANALYSIS	and TE	STS			Certificate Test D	No: DCF Date: 10/2	
TUBING A500B N 4" SQ X 1/2" X 40 * DO NOT SWITC	,					Total I	Pieces 9	Total Weight 7,787
Bundle Tag Mill 921690 40 40	SF1425 YL	ecs .D=82600/TE .D=83800/TE		00/ELG=26.5 00/ELG=24	Y/T Ra 0.9483 0.9426	tio Piec	es \ 9	Weight 7,787
	SF1424 Carbon Eq		50000000000000000000000000000000000000				HE USA	
C Mn 0.0600 0.5700	P S 0.0080 0.0020	Si 0.2140 (Al 0.0220	Cu Cr 0.0900 0.0300	Mo \ 0.0100 0.0		Nb 0 0.010	Cb 0 0.0100
Sn N 0.0090 0.0066	B Ti 0.0002 0.0010	Ca 0.0013						
		recent LEED) informa	ation from the prod	ucina mill)			
LEED Information	A				U ,			
Method	Locatio			cycled Content	Post Consi		Post Ir	
Method EAF	Location Decatur, AL	n	Rec	cycled Content 66.1%	Post Const	54.8%		11.2%
Method EAF Mill #: 40 Heat #:	Location Decatur, AL SF1425 Carbon Eq	n : 0.1631 He	Rec eat Src C	cycled Content 66.1% Drigin: MELTED Al	Post Consi	54.8%	HE USA	11.2%
Method EAF Mill #: 40 Heat #: C Mn 0.0500 0.5800	Location Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020	n : 0.1631 He Si 0.2160 (Rec	cycled Content 66.1%	Post Consu	54.8% URED IN TH / Ni	HE USA	11.2%
Method EAF Mill #: 40 Heat #:	Locatio Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020 B Ti	n : 0.1631 He Si	eat Src C	cycled Content 66.1% Drigin: MELTED Al Cu Cr	Post Consu	54.8% URED IN TH / Ni	HE USA	11.2%
Method EAF Mill #: 40 Heat #: C Mn 0.0500 0.5800 Sn N 0.0080 0.0068	Locatio Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020 B Ti	n : 0.1631 He Si 0.2160 (Ca 0.0012	Rec eat Src C Al 0.0230	Culed Content 66.1% Drigin: MELTED Al Cu Cr 0.0900 0.0300	Post Const ND MANUFACT Mo \ 0.0100 0.00	54.8% URED IN TH / Ni	HE USA	11.2%
Method EAF Mill #: 40 Heat #: C Mn 0.0500 0.5800 Sn N 0.0080 0.0068	Location Decatur, AL SF1425 Carbon Eq P S 0.0080 0.0020 B Ti 0.0002 0.0010	n : 0.1631 He Si 0.2160 0 Ca 0.0012 recent LEEE	eat Src C Al 0.0230	Culed Content 66.1% Drigin: MELTED Al Cu Cr 0.0900 0.0300	Post Const ND MANUFACT Mo \ 0.0100 0.00	54.8%	HE USA Nb 0 0.010	11.2%

Page - 1

Figure B-27. Steel Tube Material Certificate, Test No. NJPCB-6

Independence T	ſube	Cł	226 W. 74 hicago, IL (708-496-0 x: 708-563	30638 380		ł	Certifica		ndencetube itctube per: DCR 49	.com
Sold By: INDEPENDENCE TUBE 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950	CORPORATION	S: Bi	ales Orde	r No: DCl ng No: DC	01033424 R 87579 - R 58409 -			oped: 10/ biced:	/28/2016	
Sold To: 1214 - LIVINGSTON PIF P.O. BOX 300 STAUNTON, IL 62088	PE & TUBE	1	hip To: • LIVING 612 ROU TAUNTO	TE 4 NOF		E				
CERTIFICATE of	ANALYSIS and TE	STS				Cer	tificate N	lo: DCR	493505	
Customer Part No:							Test Dat	te: 10/27	/2016	
REJECT TUBING 4" SQ X 1/2" X 34'							Total Pi€	eces 2	Total Weight 1,471	
	eat Specs F4193 YLD=77600/1	EN=8300	0/ELG=2	5.5		Ratio 349	Pieces 2		/eight 1,471	
Mill #: 40 Heat #: SF419	3 Carbon Eq: 0.1776	leat Src C	Drigin: ME	LTED AN	D MANUF	ACTURE	D IN THE	USA		
C Mn F 0.0600 0.5900 0.00		Al 0.0320	Cu 0.1000	Cr 0.0400	Mo 0.0100	V 0.0030	Ni 0.0300	Nb 0.0100	Cb 0.0100	
Sn N E 0.0060 0.0057 0.00	3 Ti Ca 004 0.0020 0.0012									
LEED Information (based	d on the most recent LEE	D informa	ition from	the produ	icing mill)					
Method	Location	Rec	ycled Co		Post C	onsumer		Post In		
EAF Deca	itur, AL			66.1%		54	.8%		11.2%	
Corporation. Sworn this of WE PROUDLY MANUFA	ACTURE ALL OUR PRO		THE USA		and mainta	ined by l	ndepende	ence Tub	e	
AND INSPECTED IN AC MATERIAL IDENTIFIED	PRODUCT IS MANUFA CORDANCE WITH AST AS A500 GRADE B(C) M AND A500 GRADE C SPE	M STAND	ARDS.),		C	his	A	len	
CURRENT STANDARDS A252-10 A500/A500M-13 A513-13 ASTM A53/A53M-12 AS A847/A847M-14 A1085/A1085M-15						Quality M			SQ CMQ/OE ms Manager	

Page - 1

Figure B-28. Steel Tube Material Certificate, Test No. NJPCB-6

MID-AMERICA STEEL CORPORATION TEST REPORT

No. F33822

TO:	SEIBEL MODERN MFG & WELDING	DATE:	02/19/13
		P.O. #:	SBJ-40
ATTN:			

TAG#	SIZE	SPEC
K78419	1/4 x 48.000 x 144.000	A-36
K78420	1/4 x 48.000 x 144.000	A-36
K78421	$1/4 \times 48.000 \times 144.000$	A-36
K78422	$1/4 \times 48.000 \times 144.000$	A-36

CHEMICAL ANALYSIS

TAG#	HEAT#	C	Mn	P	S
K78419	1129849	0.063	0.760	0.012	0.004
K78420	1129849	0.063	0.760	0.012	0.004
K78421	1129849	0.063	0.760	0.012	0.004
K78422	1129849	0.063	0.760	0.012	0.004

PHYSICAL ANALYSIS

TAG#	HEAT#	TENSILE	YIELD	ELONGATION
K78419	1129849	75,102	58,422	26%
K78420	1129849	75,102	58,422	26%
K78421	1129849	75,102	58,422	26%
K78422	1129849	75,102	58,422	26%

All material made and melted in the U.S.

.

Thank you,

JOHN RATICA MID-AMERICA STEEL CORPORATION

Figure B-29. 2-in. \times ¹/₄-in. (51-mm \times 6-mm) Bent Steel Plate, Test No. NJPCB-6

	CERTIFICATE O	F CONFORMANCE	
*PHOENIX STEEL SERVICE IN 4679 JOHNSTON PARKWAY CLEVELAND, OHIO 44128 216-332-0600	c.	DATE:	9/07/16
SOLD TO: SEIBEL MODERN MF 38 PALMER PLACE LANCASTER, NY 1		38 PALMER	DERN MFG. & WELDING PLACE NEW YORK 14086
Cust P/O# SBS-16			
SIZE: .250 X	49.00 X	144.00	
GRADE: HR A709 GR50			
DATE SHPPD: 9/07/16			
Wt.Shipped 43300			
	CHEMICAL ANALY		
Heat Number <mark>269878</mark>			
C : .05 Si: .019	Mn: 1.020	P:.007	S : .001
Cu: .129	Ti: .003 Al: .027	Cb: .001	V : .080 N : .017
B : .001	Sn: .007	Ni: .053	N : .017 Mo: .019
	PHYSICAL PROP	ERTIES	
······································			
Yield: 63700	Tensile: 77700	Elongat	zion: 30.1%
Misc Info TAG#: C401239 Misc Info *MELTED AND M	09-10-11-12-13 ANUFACTURED IN TH	E USA*	

THE ABOVE IS IN ACCORDANCE WITH OUR RECORDS. CONFORMANCE FORM REV. 10/04/12 DJD

Figure B-30. 2-in. \times ¼-in. (51-mm \times 6-mm) Bent Steel Plate, Test No. NJPCB-6

ArcelorMitt	Cl (HARRIMAN) 2404 S. ROANE S HARRIMAN, TENNE Telephone (865)	STREET HO	Village Road RSHAM PA 19 ATS-UNIS			07 Grand Aven TTSBURGH PA A	
ested in Acco ith: ASTM A6	1	Heat NO. 199 Cust.Mat.	at bars 1837	Date 09/09/2 Cust 4000888 Grade A365295 Length 20' 00"	2 Ref O Pie		
CHEMICAL	MECHANICAL	TES	ST 1	TES	ST 2	TH	EST 3
ANALYSIS	PROPERTIES	IMPERIAL	METRIC	IMPERIAL	METRIC	IMPERIAL	METRIC
C 0.13	YIELD STRENGTH	52710 PSI	363 MPa	53770 PSI	371 MPa		
Mn 0.88	TENSILE STRENGTH	72220 PSI	498 MPa	74560 PSI	514 MPa		
P 0.007	ELONGATION	25 %	25 *	25 % 8 IN	25 % 203 mm		
S 0.018 Si 0.19	GAUGE LENGTH BEND TEST DIAMETER	8 IN	203 mm	BIN	203 mm		
Cu 0.24	BEND TEST RESULTS						
Ni 0.17	SPECIMEN AREA						
Cr 0.14	REDUCTION OF AREA						
Mo 0.065	IMPACT STRENGTH						
СЪ 0.020		l		kk			
V O					and locate		ana
в	IMPACT STRENGTH IM	PERIAL MET		TERNAL CLEANLIN	HARDNES		
A1 Sn 0.012	TEST TEMP		SEVE	UENCY		RACTICE	
N 0.012	ORIENTATION		RATI		1	ON RATIO	
Ti					1		
	This heat makes the f A57250-07, A70950-10,						
Ci				to mare create .	, (Bibling), (B		
CE							
	_						
rformed in ac	y that the material tes cordance to the specifi rocessed, tested in the	cation reporte	d above. All	steel is elect	cric arc furn	ace melted (b	illets),
tarized upon	request: bscribed before me on 9	th day of Sent	ember 2015	Signed	Kaito Do	LIMBURG OUNT	ITY ASSURANCE
NAGER	and access into the	in my or depe					
and the part							

Figure B-31. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6

				CERTIFIE	D MATERIAL	TEST REPORT					×.	Page 1/1
GÐ GERD	AU	CUSTOMER SHI TRIAD METAI 3507 GRAND A	LS AVE	TRIAI MET	OMER BILL TO D METALS INTI	ERNATIONAL		GRADE GGMULTI		SHAPE / SIZE Flat Bar / 1/2 X 2		DOCUMENT II 0000000000
US-ML-CHARLOTTE 6601 LAKEVIEW ROAD		PITTSBURGH, USA	PA 15225		LAGE RD Sham,pa 19044	-3800		LENGTH 20'00"		WEIGHT 16,728 LB		HEAT / BATCH 54148807/02
CHARLOTTE, NC 28269 USA		SALES ORDER 3566020/00002		CL	JSTOMER MÁT	ERIAL N°		SPECIFICATION / DA' ASTM A529-14, A572-15 ASTM A6-14, A36-14, ASN				
CUSTOMER PURCHASE ORDER 1 90844W	UMBER		BILL OF LADIN 1321-000003907		DATE 05/10/20	16		ASTM A709-13A, AASHT CSA G40.20-13/G40.21-13		2	. ganta ta sana	
CHEMICAL COMPOSITION C Mn 0.17 0.79	% 0.011	\$ 0.035	\$i 0.21	Си 0.31	Ni 0.18	Çr 0.15	Mc % 0.06	50 0.017	Nb 0.00			
MECHANICAL PROPERTIES Elong. 25.00	G/ Inc 8.0	1 2 00	UTS PSI 78985	i	UT: MP 545	S a 5		YS PS1 56738		YS MPa 391		
GEOMETRIC CHARACTERISTICS R R 25.00		79			****			No		55		
COMMENTS / NOTES This grade meets the requirements for the fe ASTM Grades: A36; A529-50; A572-50; A CSA Grades: A4W; 50W AASHTO Grades: M270-36; M270-50 ASME Grades: SA36				2	5							
The above fi specified req	gures are certi uirements. Th	ified chemical and is material, includ	I physical test reco ding the billets, wa	rds as contained s melted and m	d in the permanen anufactured in the	it records of compa e USA. CMTR con	ny. We nplies v	certify that these data are with EN 10204 3.1.	correct a	and in compliance v	/ith	
M	arka	BHAS	KAR YALAMANCHILI ITY DIRECTOR					Josep Fri		ORDAN FOSTER PUALITY ASSURANCE	MGR.	
						12						

Figure B-32. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6

				CERT	LIFIED MATERIA	L TEST REPORT							Page 1/
GO GE	RDAU	CUSTOMER SH TRIAD META 3507 GRAND	LS	1	CUSTOMER BILL TO TRIAD METALS IN MET			GRADE GGMUL			HAPE / SIZ nt / 1/2 X 2		
S-ML-CHARLOTTE		PITTSBURGH. USA		1 F	I VILLAGE RD HORSHAM,PA 190 JSA	44-3800		LENGTH 20'00"	ł		WEIGH 4,979 L		HEAT / BATCH 54144612/03
HARLOTTE, NC 28269 SA		SALES ORDE 2819476/00001			CUSTOMER M	TERIAL N"		A6-13A,A	CATION / DA 36-12, ASME S 29-05(2009), A	A36-13	ISION		
CUSTOMER PURCHASE Q 33055W	RDER NUMBER		BILL OF LAD 1321-0000034		DATE 09/24/				09-13A, AASH 20-13/G40,21-1				
CHEMICAL COMPOSITION C Mn % % 0.17 0.71	P % 0.011	5 0.033	Şi 9,20	Çu % 0.47	Ni %	ςτ 0.17	Mo 94 0.03		% 0.015	Nb % 0.002		Sn % 013	1
AECHANICAL PROPERTIES Elong. 29.40	G. In 8.0	(L ch 60	UI 741	[\$ 74		175 4Pa 511		YS PSI 51422			NPa 355		
EOMETRIC CHARACTERIST R:R 22.90	ICS												
ASHTO Grades: M270-36; M27 SME Grades: SA36	3-50												
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -									******				
L.													
speerin	pove figures are certificed requirements. This	s material, includ	physical test reco	as melleo an	ained in the permane	ent records of compa he USA. CMTR con	ny. We c aplies wi	ertify that th EN 10	t these data are 204 3.1.		in complian	nce with	

Figure B-33. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6

			CERTIFIED	MATERIAL	TEST REPORT							Page	1/1
ဓာ GERDAU	CUSTOMER SHI			ER BILL TO	RNATIONAL		RADE GMULTI		SHAPE Flat Bar	/ SIZE / 1/2 X 2 1/4			JMENT I 00000
US-ML-CHARLOTTE	3507 GRAND / PITTSBURGH, USA	AVE .	MET 1 VILLAG				NGTH '00"			/EIGHT 979 LB		HEAT / BAT 54148805/0	
CHARLOTTE, NC 28269 JSA	SALES ORDER 3806947/00001		CUST	OMER MAT	ERIAL Nº	AS	ECIFICATION 5TM A529-14, A5 5TM A6-14, A36-1	72-15		ł			
CUSTOMER PURCHASE ORDER NUMBER 93494W		BILL OF LADI 1321-00000398		DATE 06/08/20	16		TM A709-13A, A A G40.20-13/G40)-12				
CHEMICAL COMPOSITION C Mn P C Mn P 0.18 0.77 0.013	\$ 0.033	\$j 0.21	Çu 0.31	№i 0.23	Çr 0.16	Mo 0.050	0.013	N 0.0	1b /0	\$n 0.016			
MECHANICAL PROPERTIES Elong. G/ % Inc 25.00 8.0	1 2h 00	UTS PSI 7543	5	UT MP 520	5		YS PS1 53469		YS MP: 369	1			
GEOMETRIC CHARACTERISTICS R:R 22.00										1	2		
ASTM Grades: A36; A529-50; A572-50; A709-36; A709- CSA Grades: 44W; 50W AASHTO Grades: M270-36; M270-50 ASME Grades: SA36	ענ												

Figure B-34. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6

	CERTIFICATE O	F CONFORMANCE		
*PHOENIX STEEL SERVICE 4679 JOHNSTON PARKWAY CLEVELAND, OHIO 44128 216-332-0600	INC.	DATE :		
SOLD TO: SEIBEL MODERN 38 PALMER PLA LANCASTER, NY	CE	38 PALME		
Cust P/O# SBR-41				
SIZE: .500	X 40.00 X	144.00		
GRADE: HR A36 *MELTED	& MANUFACTURED IN TH	E USA*		
DATE SHPPD:				
				x
	CHEMICAL ANAL			
Heat Number <mark>SF2550</mark>				
C : .216 Si: .222	Mn: .548 Ti: .002	P : .008 Cr: .033	S : .002	
Cu: .076	Al: .027	Cb: .007	V : .002 N : .0054	
B : .0002	Sn: .0051	Ca: .0012 Ni: .0232	N : .0054 Mo: .0103	
	PHYSICAL PROP	ERTIES		
Yield: 38700	Tensile: 72000	Elong	ation: 33%	
Misc Info TAG#: PS14	9410A-B-C-D			
THE ABOVE IS IN ACCORD	ANCE WITH OUR RECORD	s.		
CONFORMANCE FORM REV.				

Figure B-35. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-6

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

DESCRIPTION

The 1107 Advantage Grout is a non-shrink, nonmetallic, non-corrosive, cementitious grout that is designed to provide a controlled, positive expansion to ensure an excellent bearing area. The 1107 Advantage Grout can be mixed from a fluid to a dry pack consistency.

USE

Exterior grouting of structural column base plates, pump and machinery bases, anchoring bolts, dowels, bearing pads and keyway joints. It finds applications in paper mills, oil refineries, food plants, chemical plants, sewage and water treatment plants etc.

FEATURES

- Controlled, net positive expansion
- Non shrink
- Non metallic/non corrosive
- Pourable, pumpable or dry pack consistency
- Interior/exterior applications

PROPERTIES

Corps of Engineers Specification for non-shrink grout: CRD-C 621 Grades A, B, C ASTM C-1107 Grades A, B, C ASTM C-827 - 1107 Advantage Grout yielded a controlled positive expansion

Expansion - ASTM C-1090:

1 day: 0-0.3 3 days: 0-0.3 14 days: 0-0.3 28 days: 0-0.3

Test Results

	@ 1 Day		@ 3 Days		@ 7	Days	@ 28 Days		
Fluidity	PSI	MPa	PSI	MPa	PSI	MPa	PSI	MPa	
Dry-Pack	5000	34.5	7000	48.2	9000	62.0	10000	68.9	
Flowable	2500	17.2	5000	34.5	6000	41.4	8000	55.1	
Fluid	2000	13.8	4000	27.6	5000	34.5	7500	51.7	

Note:

The data shown is typical for controlled laboratory conditions. Reasonable variation from these results can be expected due to interlaboratory precision and bias. When testing the field mixed material, other factors such as variations in mixing, water content, temperature and curing conditions should be considered.

Estimating Guide

Yield (Flowable Consistency): 0.43 cu, ft./50 lbs. (0.0122 cu, M/22.67 kg) bag 0.59 cu, ft./50 lbs. (0.017 cu, M/22.67 kg) bag extended with 25 lbs. (11.34 kg) of washed 3/8 in. (1cm) pea gravel

Packaging

PRODUCT		S	ZE
CODE	PACKAGE	lbs	kg
67435	Bag	50	22.67
67437	Supersack	3,000	1,360.78

STORAGE

Store in a cool, dry area free from direct sunlight. Shelf life of unopened bags, when stored in a dry facility, is 12 months. Excessive temperature differential and /or high humidity can shorten the shelf life expectancy.

APPLICATION

Surface Preparation:

Thoroughly clean all contact surfaces. Existing concrete should be strong and sound. Surface should be roughened to insure bond. Metal base plates should be clean and free of oil and other contaminants. Maintain contact areas between 45°F (7°C) and 90°F (32°C) before grouting and during curing period.

Thoroughly wet concrete contact area 24 hours prior to grouting, keep wet and remove all surface water just prior to placement. If 24 hours is not possible, then saturate with water for at least 4 hours. Seal forms to prevent water or grout loss. On the placement side, provide an angle in the form high enough to assist in grouting and to maintain head pressure on the grout during the entire grouting process. Forms should be at least 1 in. (2.5 cm) higher than the bottom of the base plate.

Water Regulrements:

Desired Mix Water / 50 lbs. (22.67 kg) Bag Dry Pack: 5 pints (2.4 L) Flowable: 8 pints (3.8 L) Fluid: 9 pints (4.2 L)

Mixing:

A mechanical mixer with rotating blades like a mortar mixer is best. Small quantities can be mixed with a drill and paddle. When mixing less than a full bag, always first agitate the bag thoroughly so that a representative sample is obtained.

Visit www.daytonsuperior.com for the most up to date technical information Page 1 of 3

File Date: 3/27/2015

Figure B-36. Non-Shrink Grout Specifications, Test No. NJPCB-6

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

Place approximately 3/4 of the anticipated mix water into the mixer and add the grout mix, adding the minimum additional water necessary to achieve desired consistency.

Mix for a total of five minutes ensuring uniform consistency. For placements greater in depth than 3 in. (7.6 cm), up to 25 lbs. (11.34 kg) of washed 3/8 in. (1 cm) pea gravel must be added to each 50 lbs. (22.67 kg) bag of grout. The approximate working time (pot life) is 30 minutes but will vary somewhat with ambient conditions.

For hot weather conditions, greater than 85°F (29°C), mix with cold water approximately 40°F (4°C). For cold weather conditions, less than 50°F (10°C), mix with warm water, approximately 90°F (29°C). For additional hot and cold weather applications, contact Dayton Superior.

Placement:

Grout should be placed preferably from one side using a grout box to avoid entrapping air. Grout should not be over-worked or over-watered causing segregation or bleeding. Vent holes should be provided where necessary.

When possible, grout bolt holes first. Placement and consolidation should be continuous for any one section of the grout. When nearby equipment causes vibration of the grout, such equipment should be shut down for a period of 24 hours. Forms may be removed when grout is completely self-supporting. For best results, grout should extend downward at a 45 degree angle from the lower edge of the steel base plates or similar structures.

CLEAN UP

DEC

16

Use clean water. Hardened material will require mechanical removal methods.

CURING

Exposed grout surfaces must be cured. Dayton Superior recommends using a Dayton Superior curing compound, cure & seal or a wet cure for 3 days. Maintain the temperature of the grout and contact area at $45^{\circ}F$ (7°C) to $90^{\circ}F$ (32°C) for a minimum of 24 hours.

LIMITATIONS

FOR PROFESSIONAL USE ONLY

Do not re-temper after initial mixing Do not add other cements or additives

Setting time for the 1107 Advantage Grout will slow during cooler weather, less than 50°F (10°C) and speed up during hot weather, greater than 80°F (27°C) Prepackaged material segregates while in the bag, thus when mixing less than a full bag it is recommended to first agitate the bag to assure it is blended prior to sampling.

PRECAUTIONS

READ SDS PRIOR TO USING PRODUCT

- Product contains Crystalline Silica and Portland Cement Avoid breathing dust Silica may cause serious lung problems
- Use with adequate ventilation n Wear protective clothing, gloves and eye protection (goggles, safety glasses and/or face shield)
- Keep out of the reach of children
- Do not take internally
- In case of ingestion, seek medical help immediately
- May cause skin irritation upon contact, especially prolonged or repeated. If skin contact occurs, wash immediately with soap and water and seek medical help as needed.
- If eye contact occurs, flush immediately with clean water and seek medical help as needed
- Dispose of waste material in accordanc

MANUFACTURER

Dayton Superior Corporation 1125 Byers Road Miamisburg, OH 45342 Customer Service: 888-977-9600 Technical Services: 877-266-7732 Website: www.daytonsuperior.com

WARRANTY

Dayton Superior Corporation ("Dayton") warrants for 12 months from the date of manufacture or for the duration of the published product shelf life, whichever is less, that at the time of shipment by Dayton, the product is free of manufacturing defects and conforms to Dayton's product properties in force on the date of acceptance by Dayton of the order. Dayton shall only be liable under this warranty if the product has been applied, used, and stored in accordance with Dayton's instructions, especially surface preparation and installation, in force on the date of acceptance by Dayton of the order. The purchaser must examine the product when received and promptly notify Dayton in writing of any non-conformity before the product is used and no later than 30 days after such non-conformity is first discovered. If Dayton, in its sole discretion, determines that the product breached the above warranty, it will, in its sole discretion, replace the non-conforming product, refund the purchase price or issue a credit in the amount of the purchase price. This is the sole and exclusive remedy for breach of this warranty. Only a Dayton officer is authorized to modify this warranty. The information in this data sheet supersedes all other sales information received by the customer during the sales process. THE FOREGOING WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF DEPERATION OF LAW, COURSE OF DEALING, OTHERWISE ARISING BY OPERATION OF LAW, COURSE OF DEALING, CUSTOM, TRADE OR OTHERWISE.

Visit www.daytonsuperior.com for the most up to date technical information Page 2 of 3

File Date: 3/27/2015

Figure B-37. Non-Shrink Grout Specifications, Test No. NJPCB-6

LINCOLN OFFICE 825 "M" Street, Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 4x8

ASTM Designation: C 39

Client Name: Midwest Roadside Safety Facility Project Name: NJPCB-6 Placement Location: Cylinder A Cast 6/1

Date 02-Jun-17

ix Designati	on: C110	7 Grout						Require	ed Streng	gth: 1000					
							Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
RSF- 1	A	6/1/2017	6/2/2017	6/2/2017	1	0	1	8	4.02	12.69	41,272	3,250		5	C 1231

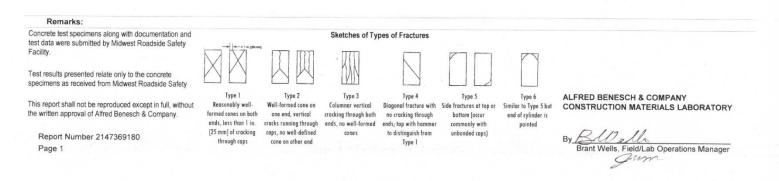


Figure B-38. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-6

Appendix C. Concrete Tarmac Strength

LINCOLN OFFICE

Client:	UNL		ASTM Design	Date:	December 10,	2010
Project:	MwRSF			Date.	oboution inj	
Placement Location:	WI - East 1, 2,	3				and the second second
Mix Type:	Class:			Mix No.:		
Type of Forms			Cement Facto		n	а
Jpc ci i ci i ci			Water-Cemen	t Ratio	n	a
Admixture Quantity	r	a	Slump Inches		n	а
Admixture Type	r	a	Unit Wt, Ibs/cu	and the second se	n	a
Admixture Quantity		ia	Air Content, %	and the second se	n	a
Average Field Temperature	r	a	Batch Volume		n	a
Temperature of Concrete F	r	a	Ticket No.		п	a
dentification Laboratory	East 1	East 2	East 3			
Date Cast						
Date Received in Laboratory	11/30/2010	11/30/2010	11/30/2010			
Date Tested						í
Days Cured in Field	10					
Days Cured in Laboratory	1.000 (k)					
Age of Test, Days	-					
_ength, in.	7.78	7.81	7.75			
Average Width (1), in.	3.72	3.72	3.72			
Cross-Sectional Area, sq. in.	10.874	10.869	10.874			
Maximum Load, Ibf	71,030	76,470	73,310			
Compressive Stength, psi	6,530	7,040	6,740			
_ength/Diameter Ratio	2.091	2.099	2.083			
Correction						
Corrected Compressive Strength,psi	0	0	0			
Type of Fracture	4	4	4		2 Carlos and Com	
Required Strength,psi						
Remarks: All concrete break data in this report was pro unless otherwise noted. This report shall not be reproduced except ir			I of Alfred Bener	sch & Company	y	Y

Figure C-1. Concrete Tarmac Strength Test

benesch

LINCOLN OFFICE 825 J Street Lincoln, NE 68508 402/479-2200

COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

1000	and the second se			Date:	December 13	, 2010
	WRSF				a participation and the	
	I - Epoxy We	est 4 &5				
	lass:			Mix No.:		
Forms			Cement Facto	r, Sks/Yd		na
			Water-Cemen	t Ratio		na
ure Quantity	П	a	Slump Inches			na
ure Type	п	a	Unit Wt, Ibs/cu	u. Ft.		na
ure Quantity	п	a	Air Content, %			na
e Field Temperature	n	a	Batch Volume	, Cu. Yds.		na
ature of Concrete F	п	a	Ticket No.			na
cation Laboratory	4	5				The second
ist			and a second	and the state of the sec		-
ceived in Laboratory	12/13/2010	12/13/2010				
sted						
ured in Field						
ured in Laboratory					Yester and the second	
Test, Days	па	na				
, in.	8.05	8.06		s he and a set of the		
e Width (1), in.	3.91	3.90	STREET, DECKS			
Sectional Area, sq. in.	11.977	11.952				
Im Load, lbf	71,500	71,630				
essive Stength, psi	5,970	5,990				
Diameter Ratio	2.061	2.065				
	0	0				
Fracture	3	3				
ed Strength.psi						
tion ted Compressive Strength,psi	0					

Figure C-2. Concrete Tarmac Strength Test

Appendix D. Vehicle Center of Gravity Determination

Year:		Test Name:		VIN:							
	2009	Make:	Dodge	Model:	R	am 1500 He	emi				
Vehicle CG D	Determination	on		Woight	Vortical CC	Vortical M					
	Equipment			•	Vertical CG						
	Equipment	Truck (Curb)		(lb.)	(in.)	(lbin.)	7				
				5221	28 3/8	148145.88	-				
	Hub	- Cara - Paulan O	(19	15	285	-				
		ation cylinder &	frame	7	26 3/4	187.25	-				
		tank (Nitrogen)		27	27	729	-				
	Strobe/Brak			5	25	125	-				
	Brake Rece			5	51 1/2	257.5	_				
		cluding DAS		50	29 3/4	1487.5	_				
	Battery			-47	41 1/2	-1950.5	_				
	Oil			-10	28	-280	4				
	Interior			-111	26 1/4	-2913.75	4				
	Fuel			-163	16	-2608	4				
	Coolant			-23	31	-713	4				
	Washer flui	-		-1	35	-35					
		ist (In Fuel Tanl		0	16	0					
+	Onboard Su	upplemental Ba	ttery	12	25 1/4	303					
						0	1				
			al Weight (lb.) Location (in.)								
		Vertical CG C.G. Calculatic	Location (in.)	28.6556	66.1/4	in	_				
Vehicle Dime Wheel Base:		Vertical CG C.G. Calculatic	Location (in.) ons Front Tr	28.6556 ack Width:		_in.	-				
		Vertical CG C.G. Calculatic	Location (in.) ons Front Tr	28.6556		in. in.	-				
Wheel Base:	140 1/8	Vertical CG C.G. Calculatic in.	Location (in.) ons Front Tr Rear Tr	28.6556 ack Width: ack Width:	68	in.	- Differenc				
Wheel Base:	140 1/8	Vertical CG C.G. Calculatio in. 2270P MAS	Location (in.) ons Front Tr Rear Tr GH Targets	28.6556 ack Width: ack Width:	68 Test Inertia	in.					
Wheel Base: Center of Gra Test Inertial W	140 1/8 wity /eight (lb.)	Vertical CG <u>C.G. Calculatic</u> in. <u>2270P MAS</u> 5000	Location (in.) ons Front Tr Rear Tr SH Targets ± 110	28.6556 ack Width: ack Width:	68 Test Inertia 5000	in.	0.				
Wheel Base: Center of Gra Test Inertial W Longitudinal C	140 1/8 avity /eight (lb.) G (in.)	Vertical CG C.G. Calculatic _in. in. 	Location (in.) ons Front Tr Rear Tr SH Targets ± 110	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215	in.	0. -2.2978				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir	140 1/8 Avity /eight (lb.) :G (in.) n.)	Vertical CG C.G. Calculatic _in. 	Location (in.) ons Front Tr Rear Tr 6H Targets ± 110 ± 4	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125	in.	0. -2.2978 N/				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i	140 1/8 ivity /eight (lb.) CG (in.) n.) n.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 3 NA 28	Location (in.) ons Front Tr Rear Tr 6H Targets ± 110 ± 4 or greater	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215	in.	0. -2.2978 N				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is	140 1/8 ivity /eight (lb.) CG (in.) n.) s measured from	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 3 NA 28 om front axle of test	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66	in.	0. -2.2978 N				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is	140 1/8 ivity /eight (lb.) CG (in.) n.) s measured from	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 3 NA 28	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66	in.	0. -2.2978 N				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is	140 1/8 vity /eight (lb.) G (in.) n.) s measured from measured from	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 3 NA 28 om front axle of test	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side	in.	0. -2.2978 N/ 0.6555				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG	140 1/8 Avity /eight (lb.) G (in.) n.) s measured fro measured fro HT (lb.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side	in. I	0. -2.2978 N/ 0.6555 HT (Ib.)				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH	140 1/8 Avity /eight (lb.) G (in.) n.) n.) s measured from measured from HT (lb.) Left	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi Right	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side TEST INER	in. I TIAL WEIGI	0. -2.2978 N. 0.6555 HT (Ib.) Right				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH Front	140 1/8 avity /eight (lb.) G (in.) n.) s measured fror measured fror HT (lb.) Left 1511	Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi Right 1426	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side TEST INER Front	in. I I I Left 1380	0. -2.2978 N. 0.6555 HT (Ib.) Right 1454				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH	140 1/8 Avity /eight (lb.) G (in.) n.) n.) s measured from measured from HT (lb.) Left	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi Right	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side TEST INER	in. I TIAL WEIGI	0. -2.2978 N/ 0.6555 HT (Ib.) Right				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG i Note: Lateral CG CURB WEIGH Front	140 1/8 avity /eight (lb.) G (in.) n.) s measured fror measured fror HT (lb.) Left 1511	Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi Right 1426	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side TEST INER Front	in. I I I Left 1380	0. -2.2978 N/ 0.6555 HT (Ib.) Right 1454				
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	140 1/8 veight (lb.) G (in.) n.) s measured from measured from HT (lb.) Left 1511 1142	Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 0 NA 28 0 m front axle of test n centerline - positi Right 1426 1142	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater vehicle	28.6556 ack Width: ack Width:	68 Test Inertia 5000 60.70215 0.604125 28.66) side TEST INER Front Rear	in. TIAL WEIGI Left 1380 1075	Right 1454 1091				

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-6

Appendix E. Vehicle Deformation Records

Date: Year:	2/27/2017 2009		Test Name: Make:		CB-6 dge	VIN: Model:		B13T69S7 1500 Quad		-	
					PRE/POST DRPAN - SE						
	Х	Y	Z	X'	Y	Z'	ΔX	ΔΥ	ΔZ	Total ∆	Crush
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	28.771	-28.482	4.709	27.227	-27.600	5.751	-1.544	0.882	1.042	2.061	1.863
2	30.856 31.271	-24.186 -16.991	3.215 1.126	26.819 27.628	-22.576 -15.555	5.830 3.718	-4.037 -3.643	1.610	2.614 2.592	5.072 4.696	4.810 4.471
4	29.228	-12.182	2.502	27.741	-12.332	3.135	-1.488	-0.149	0.633	1.624	1.617
5	27.150	-28.955	1.862	26.038	-27.865	2.637	-1.113	1.090	0.775	1.740	1.356
6	28.175	-24.386	0.247	25.287	-22.937	2.118	-2.889	1.449	1.871	3.734	3.442
7	27.832	-17.492	-0.637	25.518	-16.217	0.493	-2.315	1.274	1.130	2.874	2.576
8	27.154	-12.738	-0.772	25.617	-12.458	-0.247	-1.537	0.280	0.525	1.648	1.625
9	24.055	-29.532	-1.241	23.621	-28.485	-0.892	-0.434	1.047	0.349	1.185	0.349
10 11	24.052	-24.564 -17.323	-1.731 -2.569	22.710 23.348	-23.836 -16.451	-1.164 -2.290	-1.341 -0.883	0.728 0.872	0.567 0.279	1.628 1.272	0.567 0.279
11	24.230 24.131	-17.323	-2.569	23.346	-16.45	-2.290	-0.663	0.872	-0.279	0.938	-0.281
13	20.013	-29.882	-3.469	20.156	-28.943	-3.787	0.144	0.939	-0.318	1.002	-0.318
14	19.912	-24.844	-3.637	19.583	-23.978	-3.579	-0.330	0.866	0.058	0.928	0.058
15	19.844	-18.355	-4.337	19.682	-17.503	-4.792	-0.162	0.852	-0.455	0.979	-0.455
16	19.900	-13.271	-4.899	19.719	-12.514	-5.186	-0.180	0.757	-0.287	0.830	-0.287
17	16.346	-29.388	-3.364	16.465	-28.604	-3.807	0.119	0.785	-0.443	0.909	-0.443
18 19	16.356 16.275	-24.636 -18.386	-3.792 -4.463	16.361 16.191	-23.877	-4.179	0.006	0.759	-0.387	0.852	-0.387 -0.321
20	16.275	-18.386	-4.463	16.191	-17.613 -12.155	-4.784 -5.382	-0.083	0.773	-0.321 -0.275	0.841	-0.321 -0.275
20	9.416	-29.243	-3.605	9.568	-28.712	-4.024	0.152	0.531	-0.419	0.693	-0.419
22	9.031	-24.315	-4.045	9.117	-23.747	-4.441	0.086	0.568	-0.397	0.698	-0.397
23	9.158	-18.303	-4.666	9.011	-17.699	-4.876	-0.147	0.604	-0.210	0.656	-0.210
24	9.506	-12.807	-5.314	9.136	-12.182	-5.451	-0.370	0.625	-0.137	0.739	-0.137
25	0.130	-26.589	0.101	0.360	-26.245	0.119	0.229	0.344	0.018	0.414	0.018
26	0.165	-21.671	-0.383	0.285	-21.252	-0.377	0.121	0.418	0.006	0.435	0.006
27 28	0.136	-16.295 -12.233	-0.951 -1.375	0.083	-15.886 -11.831	-0.982	-0.053 -0.191	0.410	-0.031 -0.096	0.414	-0.031 -0.096
20	0.140	-12.233	-1.375	-0.043	-11.031	-1.471	-0.191	0.402	-0.090	0.400	-0.090
DOOR-		17	6 10 14 1	3 7 8 11 12 5 16 9 20	ASHBO	ARD				DC	IDR
			25 <u>2</u> 6	<u>27 28</u>	Ž	Y					

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-6

	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	(in.) 59.004 61.027 61.431 59.493 57.288 57.288 57.992 57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	(in.) -34.824 -30.395 -23.003 -18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	(in.) 2.062 0.977 -0.197 1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891	FLOO X' (in.) 57.464 57.138 58.017 58.193 56.229 55.524 55.876 55.990	Y' (in.) -34.407 -29.468 -22.139 -18.946 -34.279 -29.239 -22.239 -22.404	Z' (in.) 2.726 3.501 2.262 2.132 -0.377	(in.) -1.541 -3.889 -3.414 -1.300	(in.) 0.417 0.926 0.864	(in.) 0.664 2.525 2.458	(in.) 1.729 4.728 4.295	(in.) 1.678 4.637
POINT (in.) (in.) <th< td=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28</td><td>(in.) 59.004 61.027 61.431 59.493 57.288 57.288 57.992 57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473</td><td>(in.) -34.824 -30.395 -23.003 -18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307</td><td>(in.) 2.062 0.977 -0.197 1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891</td><td>(in.) 57.464 57.138 58.017 58.193 56.229 55.524 55.876 55.990</td><td>(in.) -34.407 -29.468 -22.139 -18.946 -34.279 -29.239 -22.404</td><td>(in.) 2.726 3.501 2.262 2.132 -0.377</td><td>(in.) -1.541 -3.889 -3.414 -1.300</td><td>(in.) 0.417 0.926 0.864</td><td>(in.) 0.664 2.525 2.458</td><td>(in.) 1.729 4.728 4.295</td><td>(in.) 1.678 4.637</td></th<>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	(in.) 59.004 61.027 61.431 59.493 57.288 57.288 57.992 57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	(in.) -34.824 -30.395 -23.003 -18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	(in.) 2.062 0.977 -0.197 1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891	(in.) 57.464 57.138 58.017 58.193 56.229 55.524 55.876 55.990	(in.) -34.407 -29.468 -22.139 -18.946 -34.279 -29.239 -22.404	(in.) 2.726 3.501 2.262 2.132 -0.377	(in.) -1.541 -3.889 -3.414 -1.300	(in.) 0.417 0.926 0.864	(in.) 0.664 2.525 2.458	(in.) 1.729 4.728 4.295	(in.) 1.678 4.637
1 59 004 -24 824 2 082 67 444 -24 4407 2 726 -1 541 0.417 0.684 1 729 1 678 2 61 027 -30 396 0.677 57 138 -20 486 3 501 -3 889 0.996 2 252 -3 414 0.864 2.455 4 295 4 297 4 59 493 -16 419 1.816 56 139 -10 247 -0 207 -10 60 0.717 0.445 1.388 1.185 6 56 348 -30 3141 -1.911 65 524 -29 239 -0 263 2.823 1.072 1.649 3.441 3.269 7 57 7992 -23 236 -1.372 55 876 -24 44 -0.389 0.340 0.123 0.384 -3.349 0.384 -0.380 0.322 1.388 1.384 9 54 155 -35 109 -4.097 -3.488 -0.994 0.810 0.123 0.384 -3.449 -0.480 0.322 1.986 0.032 1.986 0.057	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	59.004 61.027 61.431 59.493 57.288 58.348 57.992 57.336 54.155 54.146 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-34.824 -30.395 -23.003 -18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	2.062 0.977 -0.197 1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891	57.464 57.138 58.017 58.193 56.229 55.524 55.876 55.990	-34.407 -29.468 -22.139 -18.946 -34.279 -29.239 -22.404	2.726 3.501 2.262 2.132 -0.377	-1.541 -3.889 -3.414 -1.300	0.417 0.926 0.864	0.664 2.525 2.458	1.729 4.728 4.295	1.678 4.637
2 61 027 -30 395 0.977 57 138 -29 498 3.501 -3889 0.926 2.525 4.728 4.637 3 61 431 -23 033 -0.197 65 017 22 139 2.282 -3.414 0.864 2.488 4.296 4.205 4.488 4.296 4.205 4.282 -3.414 0.864 1.486 1.541 1.337 5 67 286 -34 996 0.802 65 229 -34 279 -0.377 1.060 0.717 0.485 1.386 1.384 7 67 992 -3.228 1.972 15.876 -22.044 -1.032 -2.116 0.855 0.940 2.468 2.316 8 6.7538 1.4866 1.541 55.900 -3.867 -0.240 -0.023 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861 0.123 0.861	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	61.027 61.431 59.493 57.288 58.348 57.992 57.336 54.155 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.001 50.049 46.381 46.473	-30.395 -23.003 -18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	0.977 -0.197 1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891	57.138 58.017 58.193 56.229 55.524 55.876 55.990	-29.468 -22.139 -18.946 -34.279 -29.239 -22.404	3.501 2.262 2.132 -0.377	-3.889 -3.414 -1.300	0.926 0.864	2.525 2.458	4.728 4.295	4.637
3 61 431 22.003 -0.197 56.017 -22.139 2.282 -3.414 0.864 2.488 4.295 4.207 4 56 4943 -18.149 18.18 56.139 -18.946 2.132 -1.300 -0.527 0.314 1.437 1.337 5 57.288 -34.996 -0.862 56.229 -29.239 -0.263 -2.823 1.072 1.649 3.441 3.289 7 57.962 -3.2256 -1.577 55.876 -2.2404 -1.032 -2.116 0.8510 0.123 0.890 0.322 1.386 1.384 9 54.155 -5.109 -4.086 -3.297 -3.488 -0.991 0.520 0.403 1.189 0.403 11 54.409 -2.287 -3.807 -5.24 0.810 0.123 0.891 0.52 0.524 0.812 -0.524 12 54.239 -18.601 -3.749 54.023 -18.292 -0.327 0.524 0.812 -0.524 13 50.147 -3.307 -6.213 50.260 -34.41	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	61.431 59.493 57.288 58.348 57.992 57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.001 50.049 46.381 46.473	-23.003 -18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	-0.197 1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891	58.017 58.193 56.229 55.524 55.876 55.990	-22.139 -18.946 -34.279 -29.239 -22.404	2.262 2.132 -0.377	-3.414 -1.300	0.864	2.458	4.295	
4 59 493 -18 14 91 1818 58 193 -18 944 21 32 -1 300 -0.527 0.314 1 437 1 337 5 57 288 34 996 -0.662 56 229 34 279 -0.307 -1.000 0.717 0.445 1 386 1185 7 57 982 -23 258 -1.972 55 876 -22 404 -1.022 -2 116 0.650 0.440 2 468 2.316 8 6 7 336 -18 446 -15 415 55 901 -129 -1.346 -0.600 0.322 1.388 1.185 10 54 .146 -30 094 -3.891 53.155 -22 457 -3.488 -0.991 0.520 0.403 1.189 0.403 11 54.466 -1.541 50.026 -3.446 -6.763 0.103 0.891 -0.524 0.122 -0.524 0.122 -0.524 0.122 -0.524 0.122 -0.524 0.121 -0.524 0.121 -0.524 0.121 -0.524 0.121 -0.524 0.121 -0.524 0.121 -0.524 0.121 -0.549	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	59.493 57.288 58.348 57.992 57.336 54.155 54.146 54.239 50.147 50.001 50.001 50.049 46.381 46.473	-18.419 -34.996 -30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	1.818 -0.862 -1.911 -1.972 -1.541 -4.009 -3.891	58.193 56.229 55.524 55.876 55.990	-18.946 -34.279 -29.239 -22.404	2.132 -0.377	-1.300				
6 58 348 -30.311 -1.911 55 524 -22.32 -0.263 -2.2823 1.072 1.449 3.441 3.296 7 57.992 -23.358 -1.972 55 876 -22.404 -1.032 -2.116 0.855 0.940 2.348 -0.349 0.322 1.388 1.384 9 54.155 -35.106 -4.009 53.805 -24.57 3.488 -0.349 0.403 1.193 0.403 10 54.146 3.0094 -3.881 53.155 -29.575 3.488 -0.991 0.520 0.403 1.198 0.403 11 54.409 -22.887 -3.807 53.625 -22.253 -3.745 -0.744 0.662 0.662 1.028 0.081 12 54.239 -16.801 -3.749 49.602.31 -17.91 -29.514 -5.92 -0.221 0.662 0.662 0.622 0.524 1.052 -0.549 14 50.001 -23.731 56.55 5.927	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28	58.348 57.992 57.336 54.155 54.146 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-30.311 -23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	-1.911 -1.972 -1.541 -4.009 -3.891	55.524 55.876 55.990	-29.239 -22.404		1 060			1.437	
7 57 992 -23.258 -1.972 55.876 -22.404 -1.032 -2.116 0.855 0.940 2.468 2.316 8 57.336 -18.486 -1.541 55.990 -18.666 -1.219 -1.346 -0.080 0.322 1.386 1.384 9 54.155 -33.109 -4.009 53.806 -34.299 -3.887 -0.349 0.810 0.123 0.881 0.123 10 54.446 -30.094 -3.891 53.155 -22.252 -3.745 -0.620 0.062 1.028 0.062 11 54.409 -2.2877 -3.807 -5.222 -3.745 -0.540 0.622 0.062 1.028 0.062 12 54.209 -18.601 -3.749 54.023 -18.619 -4.272 -0.215 0.550 -0.201 0.847 -0.201 14 50.050 -30.266 5.719 49.971 -2.968 -5.297 -0.125 0.764 -0.663 1019 -0.643 14 50.061 -2.373 -5.649.991 -17.93 6.0447	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	57.992 57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-23.258 -18.486 -35.109 -30.094 -22.887 -18.601 -35.307	-1.972 -1.541 -4.009 -3.891	55.876 55.990	-22.404	-0.263					
8 57.336 -18.466 -1.541 55.900 -18.666 -1.219 -1.346 -0.080 0.322 1.386 1.384 9 54.155 -35.109 -4.009 53.806 -34.299 -3.887 -0.349 0.810 0.123 0.891 0.123 10 54.146 -30.094 -3.897 53.655 -29.575 -3.488 -0.991 0.520 0.403 1.189 0.403 11 54.409 -22.887 -3.807 53.625 -22.225 -3.745 -0.784 0.662 0.062 1.028 0.062 12 55.4239 -18.601 -3.749 54.023 -18.014 -4.772 -0.215 0.554 0.652 0.524 0.812 -0.549 13 50.147 -35.307 -6.213 50.250 -3.4416 6.763 0.103 0.891 -0.549 1.052 -0.544 14 50.001 -23.731 -6.634 49.977 -22.968 -6.297 -0.125 0.764 -0.663 1.091 -0.6639 15 50.001 -23.7479 <td>8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 </td> <td>57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473</td> <td>-18.486 -35.109 -30.094 -22.887 -18.601 -35.307</td> <td>-1.541 -4.009 -3.891</td> <td>55.990</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	57.336 54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-18.486 -35.109 -30.094 -22.887 -18.601 -35.307	-1.541 -4.009 -3.891	55.990							
9 54.155 -35.109 -4.009 53.806 -34.299 -3.887 -0.349 0.810 0.123 0.081 0.123 10 54.146 -30.094 -3.891 53.155 -29.575 -3.488 -0.991 0.520 0.403 1.189 0.403 11 54.409 -22.887 -3.807 55.625 -22.225 -3.745 0.520 0.652 0.652 0.652 0.652 0.652 0.652 0.524 0.812 -0.524 13 50.147 -35.507 -6.213 50.250 -34.416 -6.763 0.103 0.891 1.052 -0.524 0.812 -0.524 14 50.050 -30.269 -5.719 49.721 -29.68 -6.297 -0.125 0.765 -0.201 0.847 -0.201 15 50.001 -23.731 -6.634 49.877 -29.268 -6.297 -0.125 0.764 -0.663 0.411 1.087 -0.211 0.847 -0.211 0.847 -0.211 0.847 -0.211 0.841 -0.515 0.841 -0.610 0.670 </td <td>9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28</td> <td>54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473</td> <td>-35.109 -30.094 -22.887 -18.601 -35.307</td> <td>-4.009 -3.891</td> <td></td> <td>18 566</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	54.155 54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-35.109 -30.094 -22.887 -18.601 -35.307	-4.009 -3.891		18 566						
10 54.146 -30.094 -3.891 53.652 -22.225 -3.745 -0.784 0.662 1.028 0.062 11 54.409 -22.887 -3.807 53.625 -22.225 -3.745 -0.784 0.662 0.062 1.028 0.062 12 54.239 -16.601 -3.749 54.023 -18.019 -4.272 -0.215 0.524 0.812 -0.524 14 50.060 -30.269 -5.719 49.721 -29.814 5.920 0.329 0.755 -0.201 0.847 -0.201 15 50.001 -23.731 -5.634 49.877 -22.968 -6.297 -0.125 0.764 -0.663 1.019 -0.631 16 50.0049 -16.646 -5.576 49.991 -17.33 -0.0471 0.873 -0.0616 0.896 0.966 -0.689 0.996 -0.663 1.019 -0.616 0.870 -0.616 0.870 -0.616 0.870 -0.616 0.871 -0.515 0.831 -0.515 0.831 -0.515 0.831 -0.515 0.831	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	54.146 54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-30.094 -22.887 -18.601 -35.307	-3.891								
11 54.409 -22.887 -3.807 53.625 -22.225 -3.745 -0.744 0.662 1.028 0.062 12 54.239 -18.601 -3.749 54.023 -18.019 -4.272 -0.215 0.562 -0.524 0.812 -0.524 13 50.047 -33.607 -6.213 50.250 -34.416 -6.763 0.103 0.591 -0.549 1.052 -0.544 14 50.050 -32.289 -5.719 49.721 -29.514 -5.520 -0.764 -0.663 1.019 -0.643 1.081 -0.471 0.857 -0.713 -0.471 0.857 -0.471 15 50.001 -32.958 -5.831 46.479 -29.344 -6.447 -0.066 0.870 -0.649 -0.659 -0.689 -0.689 -0.649 -0.610 0.870 -0.610 0.870 -0.610 0.870 -0.610 0.871 -0.670 0.873 -0.670 0.869 -0.440 0.802 -0.644 0.610 0.70 0.610 0.77 -0.610 0.77 -0.610 0.77 <td< td=""><td>12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28</td><td>54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473</td><td>-22.887 -18.601 -35.307</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28	54.409 54.239 50.147 50.050 50.001 50.049 46.381 46.473	-22.887 -18.601 -35.307									
13 50.147 -35.307 -6.213 50.250 -34.416 -6.763 0.103 0.891 -0.549 1.052 -0.549 14 50.050 -30.269 -5.719 49.721 -29.514 -5.920 -0.329 0.755 -0.201 0.847 -0.201 15 50.001 -23.731 -5.634 49.977 -22.968 -6.297 -0.125 0.764 -0.663 1.019 -0.663 16 50.049 -18.646 -5.576 49.991 -17.933 6.048 -0.057 0.713 -0.471 0.857 -0.471 17 46.381 -34.749 -5.997 46.568 -34.055 -6.686 0.067 0.713 -0.471 0.857 -0.471 17 46.373 -29.58 -5.831 46.475 -29.344 -6.447 0.006 0.614 -0.616 0.870 -0.616 18 46.473 -23.958 -5.633 39.267 -29.344 -6.447 0.036 0.669 -0.440 0.802 -0.440 21 39.473 -34.388 -6.13	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	50.147 50.050 50.001 50.049 46.381 46.473	-35.307				-3.745	-0.784	0.662	0.062	1.028	
14 50.050 -30.289 -5.719 49.721 -29.514 5.200 -0.329 0.755 -0.201 0.847 -0.201 15 50.049 -18.646 -5.576 49.991 -17.933 -6.048 -0.057 0.713 -0.471 0.857 -0.471 17 46.381 -34.749 -5.997 46.568 -34.055 -6.686 0.186 0.694 -0.616 0.870 -0.618 18 46.473 -29.958 -5.831 46.479 -29.044 -6.239 -0.057 0.649 -0.515 0.831 -0.616 0.870 -0.689 18 46.473 -29.958 -5.831 46.455 -23.044 -6.239 -0.057 0.649 -0.515 0.531 -0.515 20 46.501 -18.183 -5.693 46.465 -17.514 -6.133 -0.036 0.669 -0.440 0.802 -0.404 21 39.478 -34.588 -6.135 39.709 -34.000 6.805 0.221 0.501 0.471 0.610 0.767 -0.610 23<	14 15 16 17 18 20 21 22 23 24 25 26 27 28	50.050 50.001 50.049 46.381 46.473										
15 50 001 -23 731 -5634 49 877 -22 968 -6.297 -0.125 0.764 -0.663 1 019 -0.663 16 50.049 -18.646 -5.576 49.991 -17.933 -6.048 -0.057 0.713 -0.471 0.857 -0.471 17 46.381 -34.749 -5.997 46.568 -3.4055 -6.686 0.186 0.690 -0.689 18 46.473 -29.958 -5.831 46.479 -29.344 -6.447 0.006 0.614 -0.616 0.870 -0.616 19 46.413 -23.692 -5.724 46.355 -23.044 -6.239 -0.057 0.649 -0.515 0.831 -0.616 20 46.501 -18.183 -5.693 46.455 -17.514 -6.133 -0.036 0.649 0.610 0.77 -0.610 21 39.478 -34.588 -6.135 39.709 -34.080 -6.805 -0.276 0.648 -0.276 0.648 -0.276 0.644 -0.276 0.648 -0.276 0.648 -0.276	15 16 17 18 19 20 21 22 23 24 25 26 27 28	50.001 50.049 46.381 46.473	-30 269									
16 50.049 -18.646 -5.576 49.991 -17.933 -6.048 -0.057 0.713 -0.471 0.857 -0.471 17 43.81 -34.749 -5.997 46.658 -34.055 -6.686 0.186 0.694 -0.689 0.996 -0.689 18 46.473 -22.958 -5.831 46.479 -29.344 -6.239 -0.057 0.649 -0.515 0.831 -0.515 20 46.501 -18.183 -5.693 46.455 -17.514 -6.133 0.036 0.669 -0.440 0.802 -0.440 21 39.478 -34.588 -6.135 39.709 -34.080 -6.657 0.086 0.457 -0.610 0.767 -0.610 23 39.271 -23.554 -5.807 39.208 -23.003 -6.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 0.648 -0.276 <td< td=""><td>16 17 18 19 20 21 22 23 24 25 26 27 28</td><td>50.049 46.381 46.473</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	16 17 18 19 20 21 22 23 24 25 26 27 28	50.049 46.381 46.473										
17 46.381 -34.749 -5.997 46.568 -34.055 -6.686 0.186 0.694 -0.689 0.996 -0.689 18 46.473 -29.958 -5.831 46.479 -29.344 -6.429 0.006 0.614 -0.616 0.870 -0.616 19 46.413 -29.658 -5.724 46.355 -23.044 -6.429 -0.067 0.649 -0.515 0.831 -0.616 20 46.501 -18.183 -5.693 46.465 -17.514 -6.133 -0.036 0.669 -0.440 0.802 -0.440 21 39.478 -34.588 -6.135 39.709 -34.080 -6.687 0.086 0.457 -0.610 0.767 0.640 22 39.471 -23.554 -5.831 39.298 -23.003 -6.216 0.027 0.551 -0.385 0.673 -0.385 24 39.618 -18.29 -5.807 39.461 -17.464 -6.083 -1.176 0.386 0.673 -0.385 25 30.312 -7.34 -1.892 30.503<	17 18 19 20 21 22 23 24 25 26 27 28	46.381 46.473										
18 46.473 -29.958 -5.831 46.479 -29.344 -6.447 0.006 0.614 -0.616 0.870 -0.616 19 46.413 -23.692 -5.724 48.355 -23.044 -6.239 -0.057 0.649 -0.515 0.831 -0.515 20 46.501 -18.183 -5.693 346.465 -17.514 -6.133 -0.036 0.669 -0.440 0.802 -0.440 21 39.478 -34.588 -6.135 39.709 -34.080 -6.805 0.231 0.509 -0.670 0.873 -0.670 22 39.180 -29.556 -5.557 39.267 -29.099 -6.567 0.086 0.457 -0.610 0.767 -0.610 23 39.271 -23.554 -5.837 39.298 -23.003 -6.216 0.027 0.561 -0.385 0.673 -0.386 24 39.618 -18.022 -5.807 39.461 -17.464 -6.083 -0.179 0.384 -0.276 0.444 -0.276 0.444 -0.276 0.484 -0.276 <td>18 19 20 21 22 23 24 25 26 27 28</td> <td>46.473</td> <td></td>	18 19 20 21 22 23 24 25 26 27 28	46.473										
20 46.501 -18.183 -5.693 46.465 -17.514 -6.133 -0.036 0.669 -0.440 0.802 -0.440 21 39.478 -34.588 -6.135 39.709 -34.080 -6.805 0.231 0.509 -0.670 0.873 -0.670 22 39.180 -29.556 -5.957 39.267 -29.099 -6.567 0.066 0.457 -0.610 0.767 -0.610 23 39.271 -23.554 -5.807 39.461 -17.464 -6.083 -0.157 0.565 -0.276 0.648 -0.276 24 39.618 -18.029 -5.807 39.461 -17.464 -6.083 -0.157 0.565 -0.276 0.648 -0.276 25 30.314 -32.266 -2.019 30.542 -32.002 -2.212 0.228 0.264 -0.194 0.399 -0.179 26 30.310 -21.960 -1.795 30.423 -21.639 -1.973 0.112 0.321 -0.178 0.384 -0.218 28 30.312 -17.845 -1.	20 21 22 23 24 25 26 27 28											
21 39.478 -34.588 -6.135 39.709 -34.080 -6.805 0.231 0.609 -0.670 0.873 -0.670 22 39.180 -29.556 -5.957 39.267 -29.099 -6.567 0.086 0.457 -0.610 0.767 -0.610 23 39.271 -23.554 -5.831 39.298 -23.003 -6.216 0.027 0.551 -0.385 0.673 -0.385 24 39.618 -18.029 -5.807 39.461 -17.464 -6.083 -0.157 0.565 -0.276 0.648 -0.276 25 30.314 -32.266 -2.019 30.542 -32.002 -2.212 0.228 0.264 -0.194 0.399 -0.179 26 30.392 -27.374 -1.892 30.603 -27.064 -2.070 0.111 0.311 -0.178 0.384 -0.178 27 30.310 -21.960 -1.795 30.423 -1.639 -1.973 0.112 0.321 -0.178 0.384 -0.218 28 30.312 -17.845 -1.718	21 22 23 24 25 26 27 28											
22 39.180 -29.556 -5.957 39.267 -29.099 -6.567 0.086 0.457 -0.610 0.767 -0.610 23 39.271 -23.554 -5.831 39.298 -23.003 -6.216 0.027 0.551 -0.385 0.673 -0.385 24 39.618 -18.029 -5.807 39.461 -17.464 -6.083 -0.157 0.565 -0.276 0.648 -0.276 25 30.314 -32.266 -2.019 30.542 -32.002 -2.212 0.228 0.264 -0.194 0.399 -0.176 26 30.310 -21.960 -1.795 30.423 -21.639 -1.973 0.112 0.321 -0.178 0.384 -0.178 27 30.310 -21.960 -1.795 30.423 -21.639 -1.973 0.112 0.376 -0.218 0.435 -0.218 28 30.312 -17.845 -1.718 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 10 14 15 16	22 23 24 25 26 27 28											
23 39.271 -23.554 -5.831 39.298 -23.003 -6.216 0.027 0.551 -0.385 0.673 -0.385 24 39.618 -18.029 -5.807 39.461 -17.464 -6.083 -0.157 0.565 -0.276 0.648 -0.276 25 30.314 -32.266 -2.019 30.542 -32.003 -2.212 0.228 0.264 -0.194 0.399 -0.179 26 30.301 -21.960 -1.795 30.423 -21.639 -1.973 0.112 0.321 -0.178 0.384 -0.178 28 30.312 -17.845 -1.718 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 DASHBOARD 1 92 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 DASHBOARD 1 93 -1.78 -0.218 0.435 -0.218 1 -1.718 30.344 -17.469 -1.936 0.	23 24 25 26 27 28											
24 39.618 -18.029 -5.807 39.461 -17.464 -6.083 -0.157 0.565 -0.276 0.648 -0.276 25 30.314 -32.266 -2.019 30.542 -32.002 -2.212 0.228 0.264 -0.194 0.399 -0.194 26 30.392 -27.374 -1.892 30.503 -27.064 -2.070 0.111 0.311 -0.179 0.375 -0.179 27 30.310 -21.960 -1.795 30.423 -21.639 -1.936 0.031 0.321 -0.178 0.384 -0.178 28 30.312 -17.845 -1.718 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 DASHBOARD 1 14 15 16 17 18 19 20 21 22 23 24 24 24 24 24 24 24 24 24 25 26 26 26 26 26 26 26 26 26 <t< td=""><td>24 25 26 27 28</td><td>1.0.0011.917345207.9784</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	24 25 26 27 28	1.0.0011.917345207.9784										
25 30.314 -32.266 -2.019 30.542 -32.002 -2.212 0.228 0.264 -0.194 0.399 -0.194 26 30.392 -27.374 -1.892 30.503 -27.064 -2.070 0.111 0.311 -0.179 0.375 -0.179 27 30.310 -21.960 -1.795 30.423 -21.639 -1.973 0.112 0.321 -0.178 0.384 -0.178 28 30.312 -17.845 -1.718 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 DASHBEARD DASHBEARD 1 14 15 16 17 18 19 20 21 22 23 24 <td< td=""><td>25 26 27 28</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	25 26 27 28											
27 30.310 -21.960 -1.795 30.423 -21.639 -1.973 0.112 0.321 -0.178 0.384 -0.178 28 30.312 -17.845 -1.718 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 Note: Crush column is deformation perpendicular to the plane area of interest DASHBOARD 1 <td>27 28</td> <td></td>	27 28											
28 30.312 -17.845 -1.718 30.344 -17.469 -1.936 0.031 0.376 -0.218 0.435 -0.218 Note: Crush column is deformation perpendicular to the plane area of interest DASHBOARD 1	28								0.311	-0.179		
Description							SA - STALL SOLD			23/29/37/2012/18/201		2000
DASHBOARD		30.312	-17.845	-1.718	30.344	-17.469	-1.936	0.031	0.376	-0.218	0.435	-0.218
DASHBOARD 1 2 3 4 5 6 7 8 10 11 12 14 15 16 17 18 19 20 21 22 23 24 DODD												
	DOOR		5 6 10 14 17 18 21 22	7 4 11 12 15 10 19 2 23 2	2 3 0 4							IDR

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-6

						POST CRU USH - SET						
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)	Crush (in.)
DASH	1	14.593	-27.832	27.246	14.737	-27.779	27.235	0.144	0.053	-0.011	0.154	0.154
	2	12.506	-15.920	29.798	12.521	-15.781	29.774	0.015	0.139	-0.024	0.142	0.142
	3	11.201	2.939	25.024	11.048	3.019	24.942	-0.154	0.079	-0.082	0.191	0.191
	4 5	11.739 9.838	-28.418 -16.843	17.184 15.322	11.900 9.794	-28.339 -16.767	17.178 15.353	0.161 -0.044	0.079	-0.006 0.031	0.180	0.180
	6	8.732	1.630	13.116	8.549	1.615	13.100	-0.044	-0.015	-0.015	0.093	0.093
- -	7	20.621	-31.681	8.226	20.800	-30.574	8.175	0.179	1.107	-0.013	1.123	1.107
SIDE PANEL	8	25.328	-31.801	8.226 8.204	25.480	-30.574	8.078	0.179	1.107	-0.051	1.123	1.107
	9	22.405	-32.057	4.408	22.583	-30.090	4.300	0.179	1.332	-0.120	1.348	1.332
	10	-16.011	-31.859	25.088	-16.024	-34.236	25.464	-0.013	-2.377	0.376	2.406	-2.377
B	10	-0.778	-31.480	24.830	-0.763	-33.254	25.183	0.016	-1.774	0.353	1.809	-1.774
IMPACT SIDE DOOR	12	12.084	-31.375	24.670	12.111	-32.501	24.825	0.027	-1.126	0.155	1.137	-1.126
	13	-14.850	-33.288	11.970	-14.855	-34.141	12.204	-0.005	-0.852	0.234	0.884	-0.852
	14	1.682	-33.863	10.694	1.576	-34.866	10.894	-0.106	-1.004	0.200	1.029	-1.004
≥	15	11.502	-32.944	11.227	11.134	-33.268	11.309	-0.368	-0.325	0.082	0.498	-0.325
	16	2.807	-21.631	43.162	2.928	-21.646	43.126	0.121	-0.016	-0.036	0.127	-0.036
	17	5.330	-14.063	42.709	5.353	-14.150	42.641	0.023	-0.087	-0.068	0.113	-0.068
	18	6.361	-8.882	42.344	6.327	-8.895	42.253	-0.034	-0.014	-0.091	0.098	-0.091
	19	7.312	-1.426	41.692	7.217	-1.459	41.560	-0.095	-0.033	-0.132	0.166	-0.132
	20	7.464	3.617	41.212	7.287	3.554	41.078	-0.177	-0.063	-0.134	0.231	-0.134
	21	-2.894	-19.143	45.815	-2.882	-19.224	45.797	0.012	-0.081	-0.018	0.084	-0.018
ROOF	22	-1.642	-12.792	45.576	-1.673	-12.895	45.523	-0.031	-0.103	-0.053	0.120	-0.053
ŏ	23	-0.608	-7.961	45.211	-0.635	-8.031	45.119	-0.027	-0.070	-0.092	0.119	-0.092
Ľ.	24	0.554	-1.084	44.538	0.460	-1.084	44.403	-0.094	0.001	-0.135	0.164	-0.135
	25	0.531	3.751	44.106	0.376	3.648	43.960	-0.154	-0.103	-0.146	0.236	-0.146
	26	-10.752	-18.312	46.655	-10.771	-18.461	46.623	-0.019	-0.149	-0.033	0.153	-0.033
	27	-9.807	-12.506	46.504	-9.821	-12.608	46.442	-0.013	-0.101	-0.063	0.120	-0.063
	28	-9.193	-7.804	46.220	-9.246	-7.928	46.134	-0.053	-0.124	-0.086	0.160	-0.086
	29 30	-8.964 -8.537	-1.632 3.390	45.762 45.280	-9.011 -8.644	-1.791 3.239	45.645 45.142	-0.047 -0.107	-0.160 -0.152	-0.117 -0.138	0.203	-0.117 -0.138
	31					-23.388				0.008		
R	31	3.693 9.523	-23.332 -24.960	41.726 38.682	3.786 9.532	-23.366	41.734 38.688	0.093	-0.056 0.001	0.008	0.109	-0.056
A PILLAR	32	9.523	-24.960	38.662	9.532	-24.960	33.976	0.009	-0.003	-0.011	0.063	-0.003
료	34	19.857	-27.885	30.548	19.955	-27.876	30.525	0.002	0.009	-0.022	0.102	0.009
	35	-22.694	-29.702	24.769	-22.507	-30.227	24.929	0.035	-0.525	0.160	0.580	-0.525
	36	-19.203	-29.643	24.709	-19.073	-30.227	25.084	0.130	-0.506	0.100	0.541	-0.525
B PILLAR	37	-23.191	-28.364	31.001	-23.044	-28.813	31.141	0.146	-0.449	0.140	0.493	-0.449
	38	-19.893	-28.180	31.464	-19.730	-28.603	31.665	0.140	-0.422	0.200	0.495	-0.422
	39	-23.594	-24.970	38.625	-23.461	-25.317	38.691	0.133	-0.347	0.067	0.378	-0.347
	40	-20.755	-24.829	38.809	-20.642	-25.159	38.862	0.112	-0.329	0.053	0.352	-0.329
lote: Cru		s deformation							Annaras-12 - 20205			

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-6

	· · · · ·		1							r	1	-
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔΥ (in.)	ΔΖ (in.)	Total ∆ (in.)	Crush (in.)
DASH	1	45.043	-36.976	24.558	45.327	-37.197	24.290	0.285	-0.221	-0.268	0.449	0.449
	2	43.060	-25.445	28.586	43.324	-25.558	28.410	0.264	-0.113	-0.177	0.337	0.337
	3	41.787	-6.128	26.157	42.045	-6.277	26.008	0.259	-0.149	-0.149	0.334	0.334
	4 5	42.059 40.221	-36.276 -24.518	14.539 14.121	42.309 40.331	-36.410 -24.697	14.268 13.983	0.250	-0.134 -0.179	-0.271 -0.138	0.392	0.392
	6	39.189	-5.982	14.121	39.306	-6.151	14.141	0.117	-0.169	-0.137	0.231	0.247
_	7	50.817	-38.439	5.189	51.040	-37.582	4.826	0.223	0.857	-0.363	0.957	0.857
SIDE PANEL	8	55.524	-38.565	4.996	55.742	-37.751	4.669	0.218	0.814	-0.327	0.904	0.814
PA SI	9	52.544	-38.345	1.313	52.728	-37.261	1.005	0.184	1.085	-0.308	1.142	1.085
IMPACT SIDE DOOR	10	14.300	-40.512	22.334	14.464	-42.999	22.142	0.164	-2.488	-0.192	2.500	-2.488
	11	29.619	-40.170	21.953	29.699	-42.181	21.732	0.080	-2.011	-0.221	2.025	-2.011
	12	42.481	-40.116	21.578	42.571	-41.527	21.303	0.090	-1.411	-0.275	1.440	-1.411
	13	15.422	-40.324	9.108	15.465	-41.225	9.006	0.043	-0.901	-0.102	0.907	-0.901
	14	31.858	-40.819	7.627	31.813	-41.969	7.359	-0.045	-1.150	-0.268	1.182	-1.150
	15	41.669	-40.016	8.109	41.423	-40.543	7.791	-0.246	-0.527	-0.318	0.663	-0.527
	16 17	33.502 36.071	-32.677 -25.110	41.254 41.709	33.800 36.403	-33.004 -25.480	41.023 41.423	0.298	-0.326 -0.370	-0.230 -0.286	0.499	-0.230 -0.286
	17	37.093	-19.984	41.709	37.425	-20.304	41.423	0.332	-0.320	-0.286	0.542	-0.286
	19	38.071	-12.544	42.235	38.374	-12.794	41.962	0.303	-0.251	-0.273	0.479	-0.200
	20	38.211	-7.487	42.405	38.543	-7.774	42.106	0.332	-0.286	-0.299	0.531	-0.299
	21	27.808	-30.559	44.267	28.159	-30.875	44.042	0.351	-0.315	-0.226	0.523	-0.226
Ц	22	29.050	-24.191	44.815	29.441	-24.518	44.570	0.391	-0.327	-0.245	0.565	-0.245
ROOF	23	30.153	-19.389	45.022	30.473	-19.688	44.786	0.320	-0.299	-0.236	0.498	-0.236
Ľ.	24	31.299	-12.414	45.204	31.699	-12.700	44.937	0.401	-0.286	-0.266	0.560	-0.266
	25	31.253	-7.648	45.378	31.616	-7.951	45.120	0.363	-0.303	-0.258	0.538	-0.258
	26 27	19.940 20.960	-29.774	45.304	20.287	-30.101 -24.299	45.111	0.347	-0.327 -0.385	-0.193 -0.199	0.514	-0.193
	27	20.960	-23.914 -19.296	45.863 46.152	21.323 21.913	-24.299	45.664 45.952	0.363	-0.365	-0.199	0.585	-0.199 -0.199
	20	21.846	-13.169	46.451	22.246	-13.495	46.248	0.400	-0.326	-0.203	0.554	-0.203
	30	22.268	-8.058	46.593	22.649	-8.433	46.390	0.382	-0.375	-0.203	0.572	-0.203
A PILLAR	31	34.305	-34.201	39.687	34.674	-34.564	39.389	0.369	-0.363	-0.297	0.597	-0.363
	32	40.029	-35.449	36.385	40.399	-35.818	36.050	0.370	-0.370	-0.335	0.621	-0.370
	33	45.807	-36.411	31.423	46.092	-36.766	31.053	0.285	-0.355	-0.370	0.587	-0.355
	34	50.285	-37.400	27.803	50.570	-37.753	27.389	0.286	-0.353	-0.415	0.615	-0.353
B PILLAR	35	7.668	-38.281	22.394	8.000	-38.879	22.275	0.332	-0.598	-0.119	0.694	-0.598
	36	11.211	-38.263	22.514	11.511	-38.857	22.470	0.300	-0.595	-0.044	0.667	-0.595
	37	7.278	-37.717	28.718	7.562	-38.265	28.631	0.284	-0.548	-0.087	0.623	-0.548
	38 39	10.599 6.974	-37.610 -35.285	29.161 36.697	10.898 7.294	-38.171 -35.759	29.080 36.587	0.300	-0.561 -0.473	-0.080 -0.110	0.641	-0.561
	40	9.806	-35.285	36.847	10.209	-35.663	36.709	0.320	-0.473	-0.138	0.582	-0.473 -0.473
lote: Cru	sh column i	s deformatio										

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-6

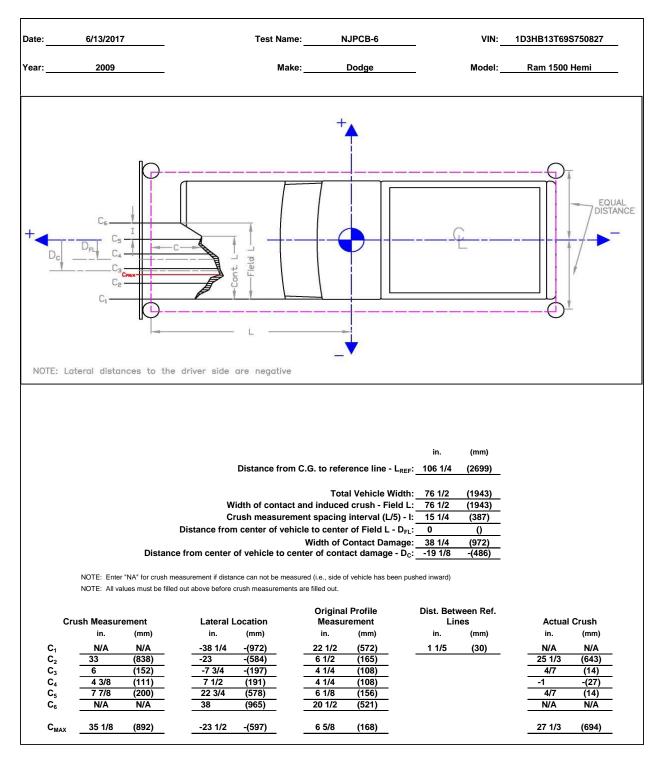


Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-6

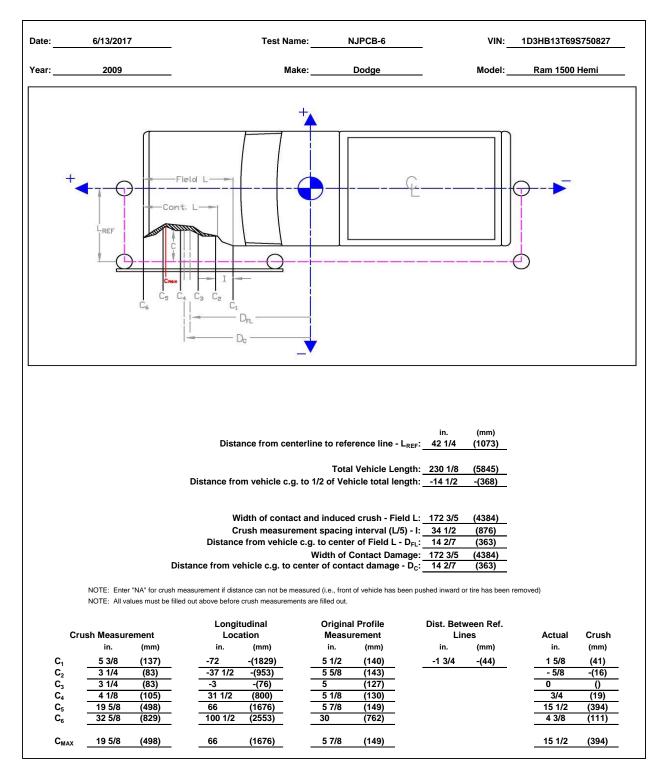


Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-6

Appendix F. Accelerometer and Rate Transducer Data Plots

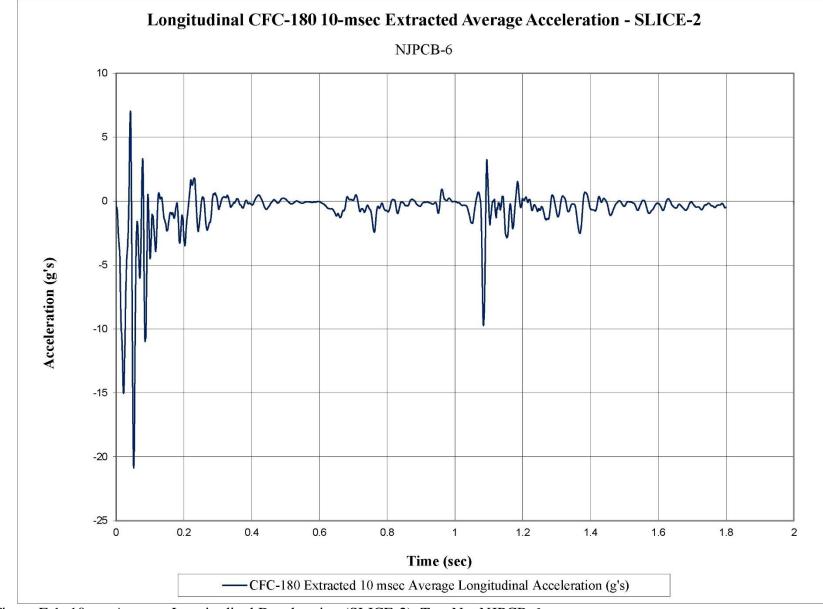


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-6

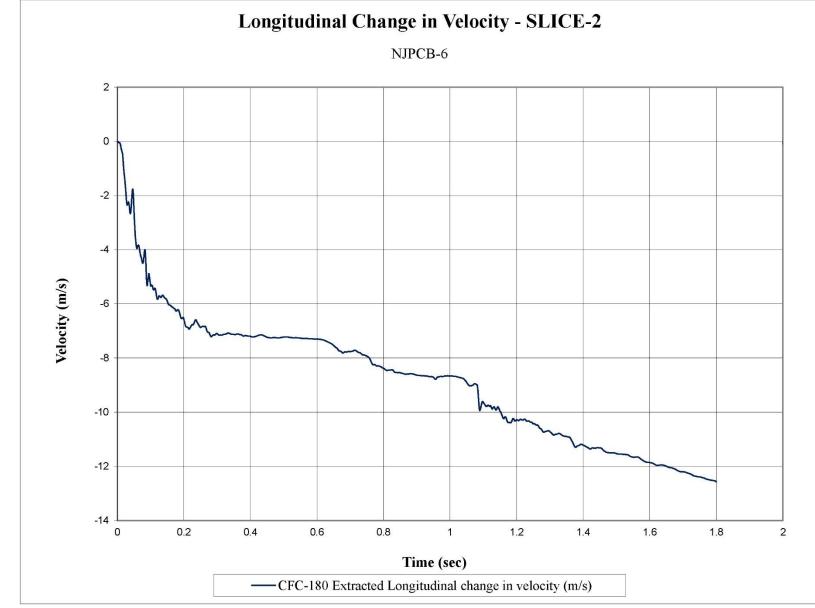


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-6

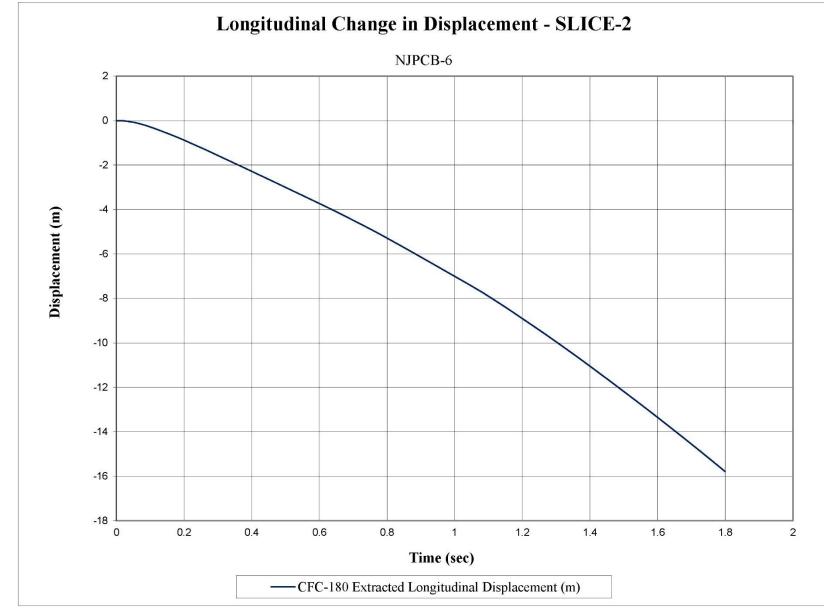


Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-6

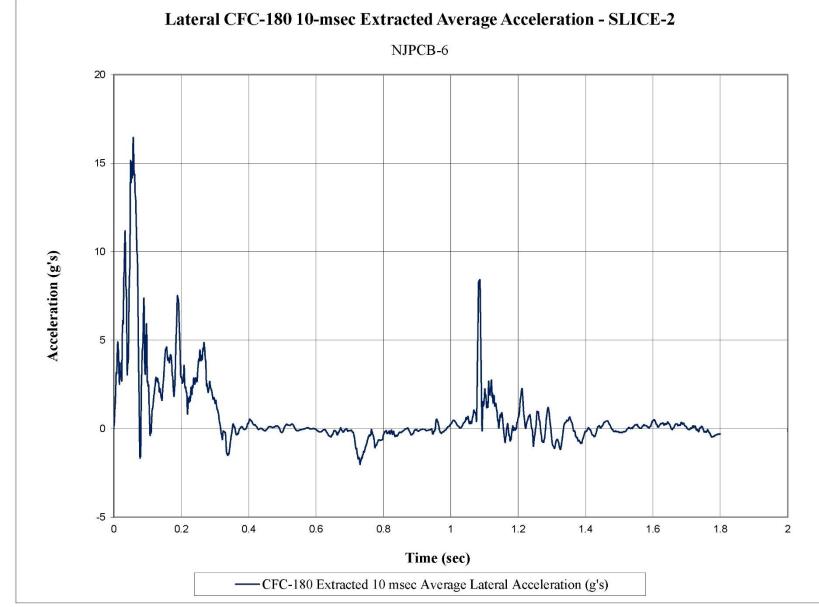


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-6

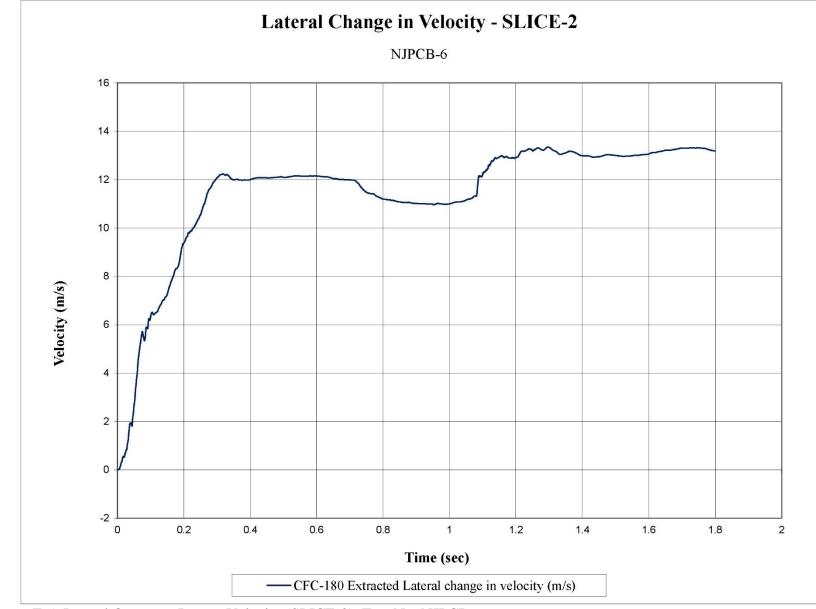


Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-6

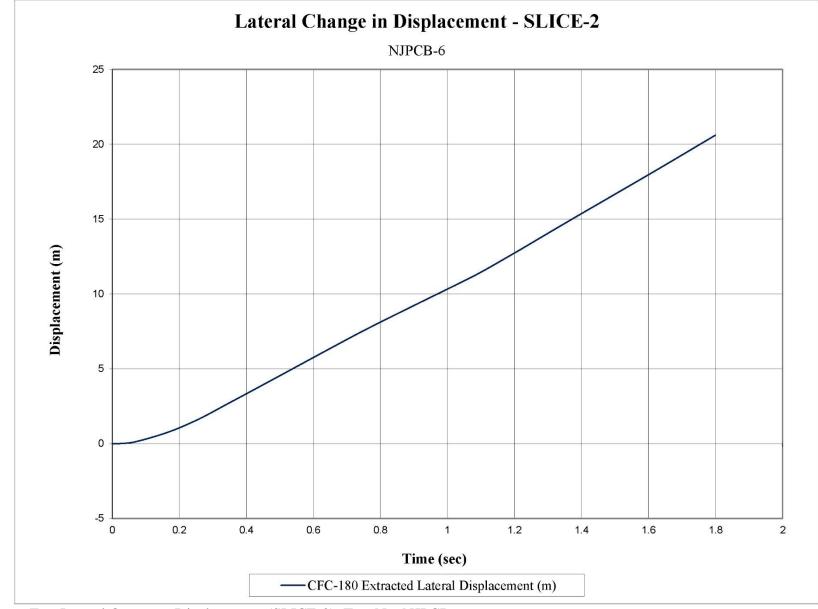


Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-6

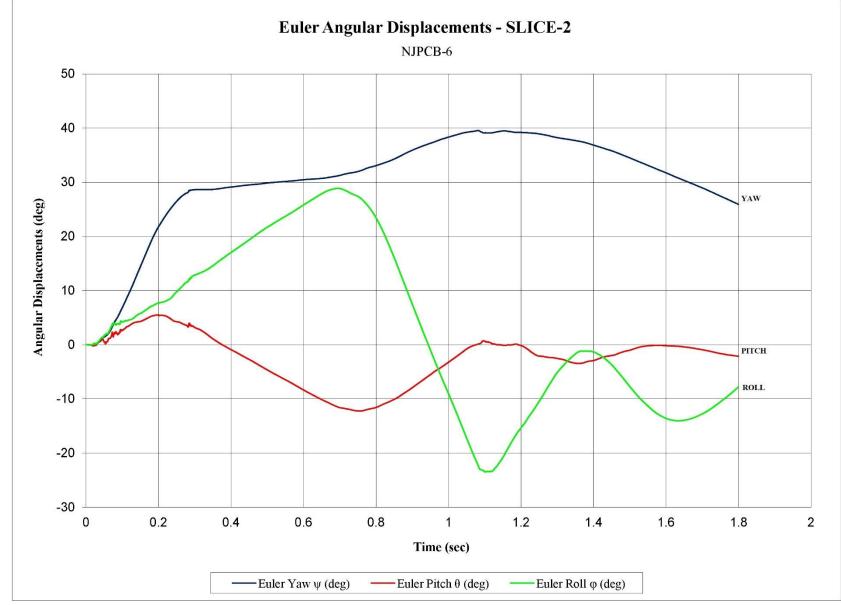


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-6

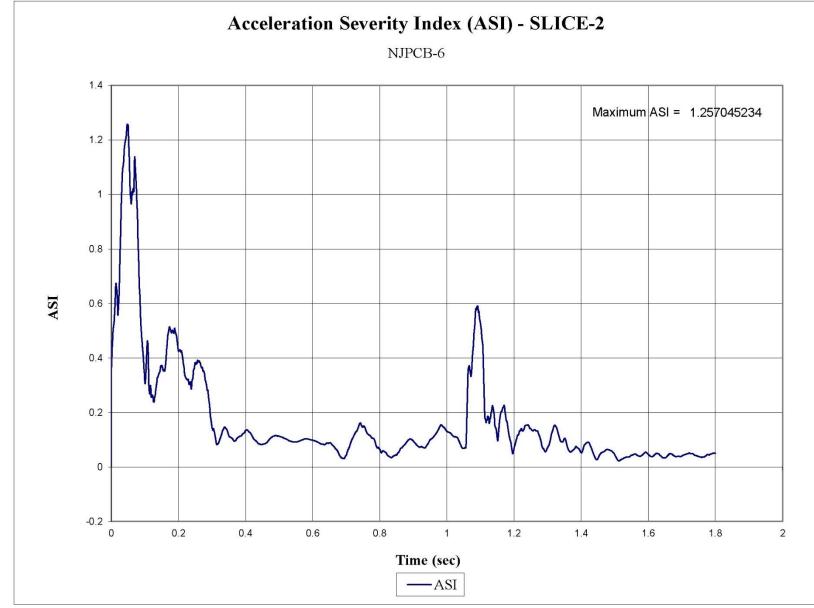


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. NJPCB-6

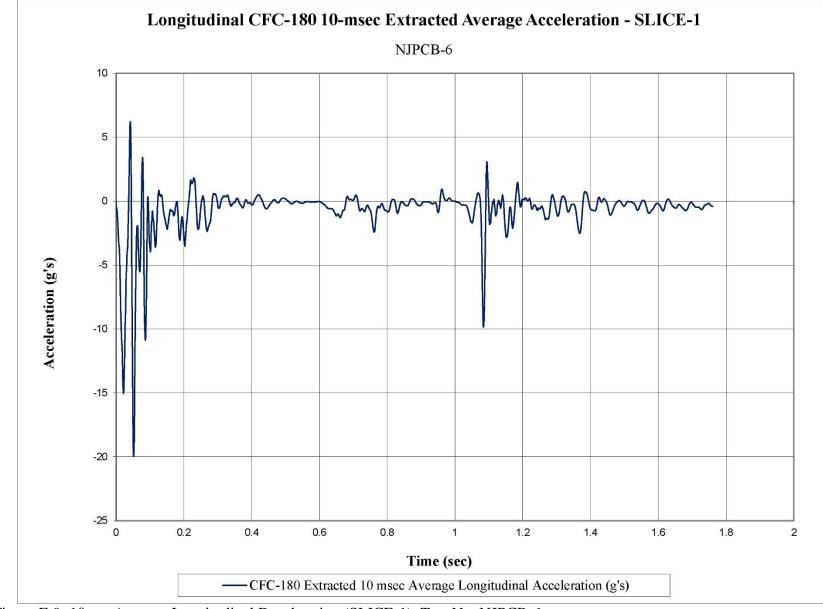


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-6

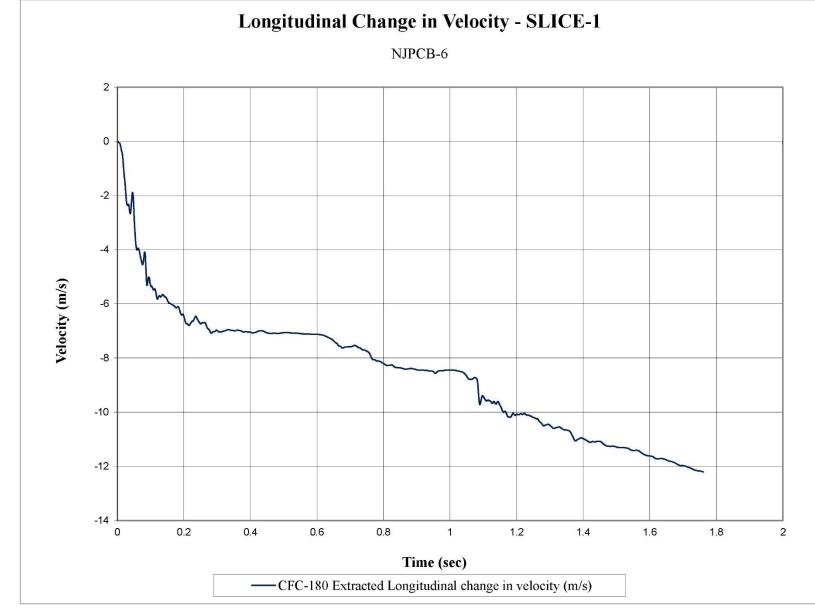


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-6

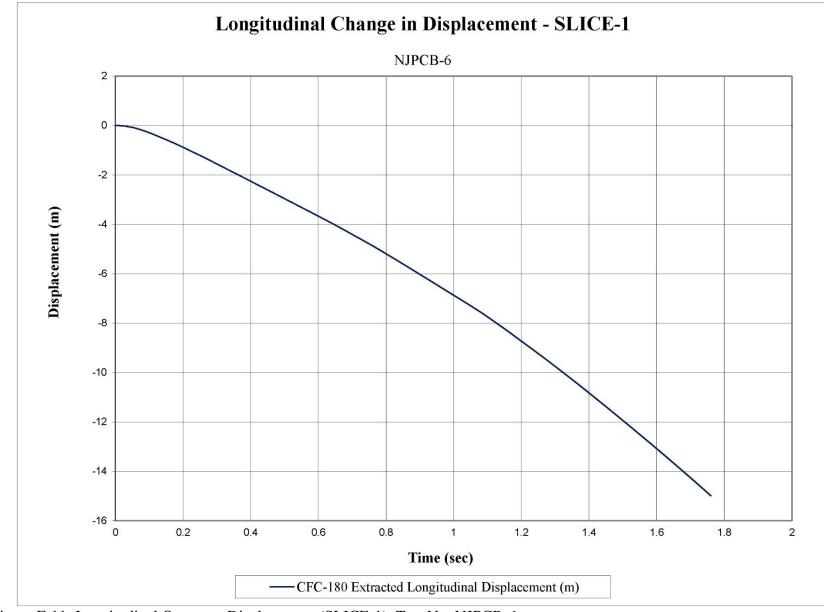


Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-6

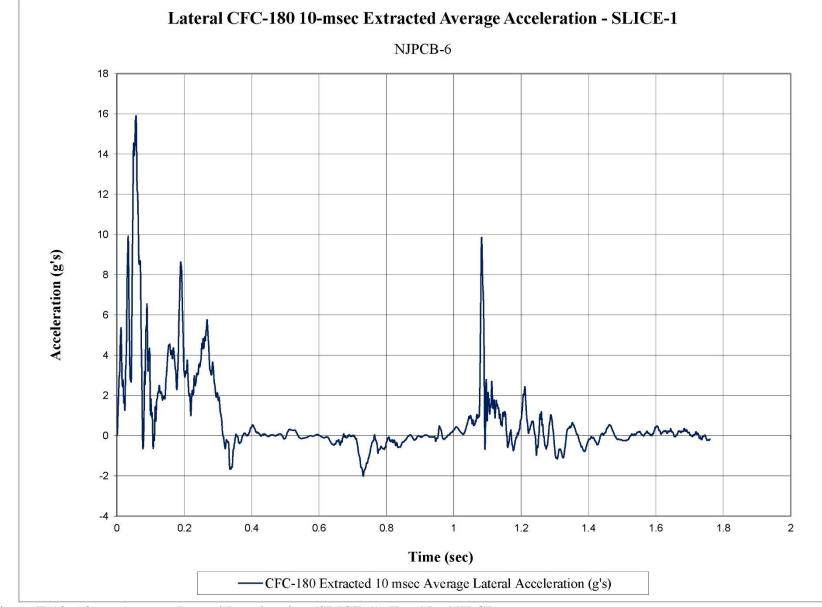


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-6

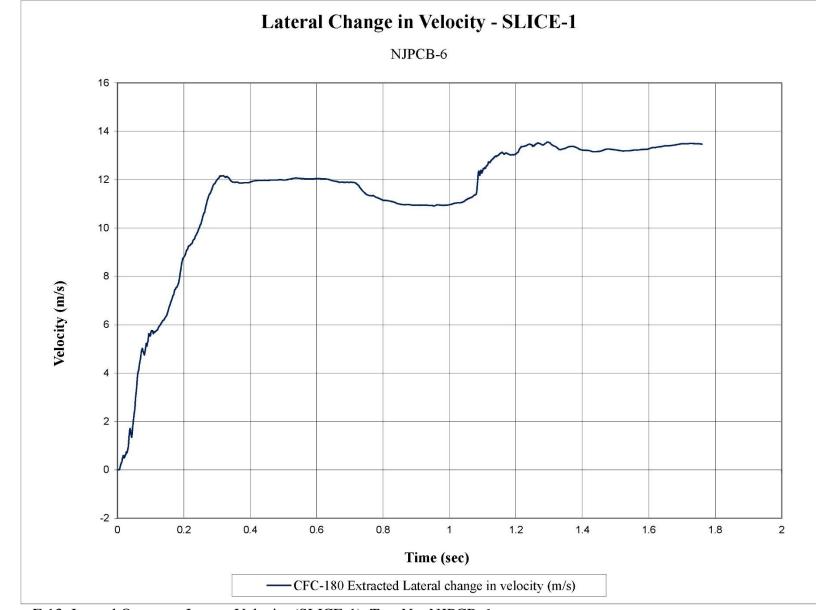


Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-6



Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-6

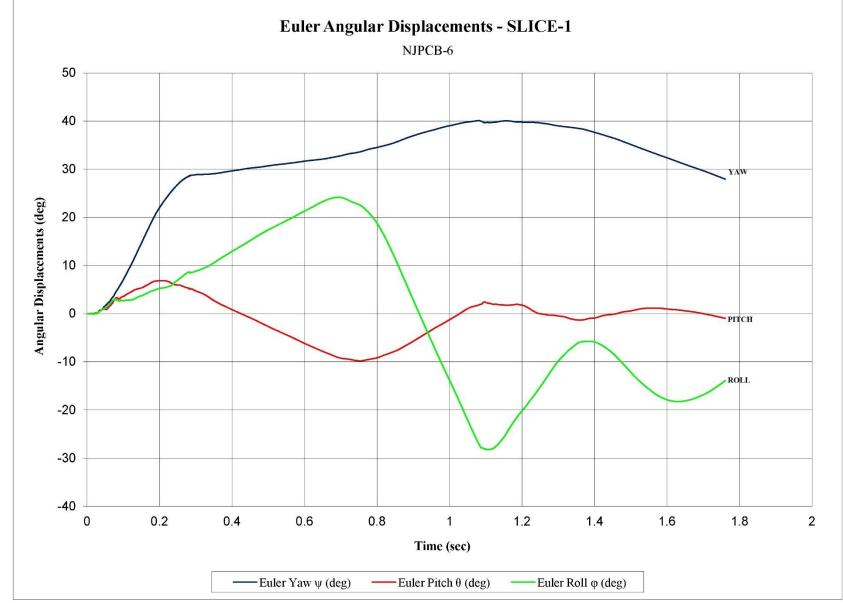


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-6

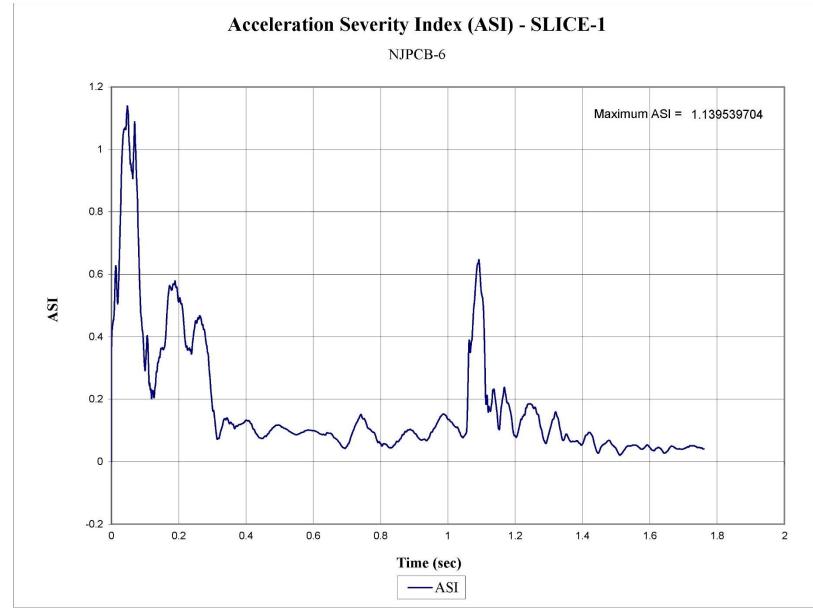


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. NJPCB-6

END OF DOCUMENT