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1 INTRODUCTION 

1.1 Problem Statement 

Cable guardrail has been in use along roadsides since the 1930’s [1]. More recently, cable 

guardrails have become increasingly popular due to several benefits over the more common    

W–Beam guardrail [2] including: 

 lower initial costs; 

 easier repair after vehicle impacts; 

 increased visibility behind the barriers (aesthetics and safety); and 

 reduction or elimination of snow drifting against barrier. 

In the 1980’s and 1990’s, all cable guardrail systems in use were low-tension systems. 

Recently, high-tension, cable guardrail systems have been developed and are gaining in 

popularity. High-tension systems have several advantages over low-tension systems [3]: 

 lower system deflections; 

 reduced maintenance costs; and 

 ability to remain effective after vehicle impact. 

There are numerous high-tension, cable guardrail designs available for installations along 

roadsides, all of which utilize one of the five currently-approved, high-tension, cable end 

terminal designs. However, all of the end terminal designs are proprietary. In 2006, a research 

program was begun at the Midwest Roadside Safety Facility (MwRSF) to develop a non-

proprietary, high-tension, cable guardrail that would meet FHWA’s crashworthiness 

requirements for a guardrail system. As part of that program, a new end terminal design is 

necessary that safely anchors and terminates the guardrail cables.  
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1.2 Background 

In the early 2000’s, a series of tests were conducted at MwRSF on a non-proprietary, 

low-tension, end terminal design [4]. Although the end result of the testing program produced an 

accepted design [5], high vehicle roll angles were observed during the 820C testing program 

which were caused by the interaction between the vehicle and the end terminal.  

There are many similarities between high-tension and low-tension, cable guardrail end 

terminals. Therefore, it is reasonable to expect that some of the same issues experienced in low-

tension end terminal testing will also occur in high-tension tests and should be taken into 

consideration with a high-tension, cable end terminal design. 

Aside from the change from low cable tension to high cable tension, a change in testing 

criteria has also been implemented for end terminals after the testing of the low-tension, cable 

guardrail was conducted. The low-tension, end terminal tests were accomplished under National 

Cooperative Highway Research Program (NCHRP) Report No. 350 testing criteria [6]. The 

current testing criterion is specified in the Manual for Assessing Safety Hardware (MASH) [7]. 

Many of the test conditions and evaluation criterion are similar; however, one notable change is 

that the vehicles utilized under MASH criteria are significantly more massive than those used 

under NCHRP Report No. 350 criteria. The standard car mass increased from 1,808 to 2,425 lb 

(820 to 1,100 kg), and the standard pickup truck mass increased from 4,409 to 5,004 lb (2,000 to 

2,270 kg). A comparison of the testing criteria specified by the two standards is shown in Table 

1. 

Although some of the test designation numbers were altered, the only new test added 

with the MASH testing criteria was test no. 3-38 which designates an end terminal impact with a 

3,307-lb (1,500-kg) sedan. Many of the test conditions remained unchanged. Aside from the
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Table 1. Comparison of MASH and NCHRP 350 Testing Criteria for Test Level 3 

 
G = Gating Terminal 
NG= Non-Gating Terminal

Test 

No.

Terminal 

Type
Vehicle 

Impact 

Speed     

mph (kph)

Impact 

Angle   

(deg)

Impact Location
Test 

No.

Terminal 

Type
Vehicle 

Impact 

Speed     

mph (kph)

Impact 

Angle   

(deg)

Impact Location

3‐30 G/NG 820C 62.1 (100) 0 Start of Terminal 3‐30 G/NG 1100C 62.1 (100) 0 Start of Terminal

3‐31 G/NG 2000P 62.1 (100) 0 Start of Terminal 3‐31 G/NG 2270P 62.1 (100) 0 Start of Terminal

3‐32 G/NG 820C 62.1 (100) 15 Start of Terminal 3‐32 G/NG 1100C 62.1 (100) 15 Start of Terminal

3‐33 G/NG 2000P 62.1 (100) 15 Start of Terminal 3‐33 G/NG 2270P 62.1 (100) 15 Start of Terminal

3‐34 G 820C 62.1 (100) 15 Critical Impact Point 3‐34 G/NG 1100C 62.1 (100) 15 Critical Impact Point

3‐35 G 2000P 62.1 (100) 20 Start of Length of Need 3‐35 G/NG 2270P 62.1 (100) 25 Start of Length of Need

3‐36 NG 820C 62.1 (100) 15 Start of Length of Need 3‐36 G/NG 2270P 62.1 (100) 25 Critical Impact Point

3‐37 NG 2000P 62.1 (100) 20 Start of Length of Need 3‐37 G/NG 2270P 62.1 (100) 25 Reverse Direction

3‐38 NG 2000P 62.1 (100) 20 Critical Impact Point 3‐38 G/NG 1500A 62.1 (100) 0 Start of Terminal

3‐39 G/NG 2000P 62.1 (100) 20 Reverse Direction

NCHRP 350 MASH
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increased vehicle masses, the impact angles for several of the truck tests (2000P vs. 2270P) were 

increased by 5 degrees which increases the impact severity of those tests.  

1.3 Research Objectives 

The main research objective for this study was to evaluate cable guardrail end terminal 

designs and to produce recommendations for a high-tension, cable guardrail end terminal design 

that would safely perform under the Test Level 3 (TL-3) MASH crash testing criteria. A 

particular emphasis of the research efforts were placed on developing a design for the cable 

anchor hardware, as that component has a substantial influence on the overall safety performance 

of the end terminal system. 

1.4 Scope 

The research effort began with a literature review of previous crash testing of high-

tension, cable guardrail end terminals. An analysis of approved, proprietary designs was also 

conducted to identify any features that may improve or weaken system performance. Following 

the literature review, modeling and simulation efforts were undertaken to analyze the low-

tension, cable end terminal design that was crash tested at MwRSF in the 2000’s. This model 

was validated and studied to determine the causes of the degraded vehicle stability that was 

exhibited during full-scale crash testing. 

Next, bogie testing and simulation was conducted on a high-tension, cable anchor design. 

Data from the testing and simulation was used to develop recommendations and a design for a 

new high-tension, cable anchor. Along with the anchor design, conclusions from the literature 

review and study of the low-tension, cable end terminal tests were combined to produce a final 

set of recommendations for a high-tension, cable end terminal design.  
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1.5 Research Approach 

A non-proprietary, high-tension, cable end terminal design was needed to safely 

terminate the non-proprietary high-tension, cable guardrail system. As an initial effort in the 

design process, a literature review was conducted to collect data on other high-tension designs, 

including testing on cable barrier designs that had failed or had not yet been approved. The 

results of the literature review are detailed in Chapter 2. 

After the literature review was concluded, the non-proprietary, low-tension, cable end 

terminal that was previously tested at MwRSF was further evaluated. The evaluation consisted of 

a simulation study and analysis of the low-tension end terminal’s performance during full-scale 

crash testing. The end terminal system was deemed satisfactory and was approved for use on 

roadsides; however, the vehicle/barrier interaction produced high vehicle roll and yaw angles and 

left room for future design improvements. The simulation study is presented in Chapter 3. 

The history and development of the current, high-tension, cable anchor design was 

detailed and presented in Chapter 4. Technical drawings of the assembly are also provided in the 

chapter. 

Next, an initial computer simulation study was conducted utilizing the current, high-

tension, cable anchor bracket assembly. The simulation was utilized to evaluate the capability of 

the finite element code as a predictive evaluation tool. The development of the model and results 

of the simulation are presented in Chapter 5. 

After the initial simulation of the current, high-tension, cable anchor bracket assembly, a 

bogie test was conducted to evaluate both the current design and the simulation results. The 

bogie test was designed to mimic the simulation model. The setup and methods used to conduct 
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the bogie test are provided in Chapter 6. Results and discussion of the bogie test are detailed in 

Chapter 7. 

Next, the results of the physical bogie test and the initial simulation of the current high-

tension, cable anchor bracket were compared and discussed. The results and findings are 

provided in Chapter 8. 

Finally, the results of the literature review, low-tension end terminal analysis, initial 

simulation, and bogie testing were used to redesign the high-tension, cable anchor bracket. 

Simulation, 3-D modeling, and hand calculations were the primary tools utilized to evaluate 

modifications made to the cable anchor bracket assembly. The development of the cable anchor 

bracket design, results of the conducted simulations, and technical drawings for a redesigned, 

high-tension, cable anchor bracket are presented in Chapter 9.  

Data and findings from the literature review, analysis of test results, and simulations 

results were then compiled and used to develop a final set of design recommendations for the 

high-tension, cable end terminal. Conclusions and recommendations are presented in Chapter 10. 
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2 LITERATURE REVIEW 

2.1 Introduction 

A preliminary review of high-tension, cable guardrail end terminals was conducted. 

Information pertaining to high-tension, cable end terminal designs, full-scale crash testing 

results, as well as high-tension, cable system characteristics were reviewed, and the relevant 

material is summarized in the ensuing section. 

In order for roadside barrier hardware, cable or otherwise, to be utilized along federal-aid 

highways, that component and/or system must be crash tested using guidelines and requirements 

specified by the Federal Highway Administration (FHWA). Thus, all currently-approved, high-

tension, cable guardrail end terminal designs were tested, evaluated, and granted acceptance 

using testing criteria published in the National Cooperative Highway Research Program 

(NCHRP) Report No. 350. The actual impact conditions under which the proprietary, high-

tension end terminal designs were tested are listed and detailed in the current chapter. 

A total of 7 crash tests were required to evaluate a gating end terminal design, while 8 

crash tests were required for a non-gating end terminal design within the NCHRP Report No. 

350 impact safety standards. Currently, all approved designs are gating end terminals. An 

NCHRP Report No. 350 test matrix for end terminal systems was previously shown in Table 1. 

2.2 Previously-Tested High-Tension, Cable End Terminal Designs 

Currently, there are six approved, high-tension, cable end terminal designs, all of which 

are proprietary. The results of the full-scale testing required for system acceptance was tabulated 

for the sake of comparison and is shown in Table 2. Certain tests may be deemed unnecessary for 

a given design if another test is determined to be more critical. Note that due to the fact that these 
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designs are proprietary, the availability of results from full-scale crash testing is dependent on 

what is provided by the proprietors. 

Table 2. NCHRP 350 Crash Testing Results on Proprietary, High-Tension, Cable Barriers [8-12]     

 
N/A – Not Available 

Test 

Designation

Test 

Vehicle

Impact 

Speed 

mph    

(kph)

Impact 

Angle 

(deg)

Impact Location

Exit 

Speed  

mph 

(kph)

% Speed 

Reduction

Max   

Roll  

(deg)

Max 

Pitch  

(deg)

Max   

Yaw  

(deg)

3‐30 820c
62.9    

(101.2)
0.3  At post no. 1

53.5  

(86.1)
14.94 ‐9.7 4.8 6.2

3‐34 820c
62.3    

(100.3)
15.2 42.9 in. (1090 mm) upstream of post no. 3 N/A N/A ‐27.9 4.9 21.9

3‐35 2000p
63.2    

(101.7)
20.4 23.6 in. (599 mm) downstream of post no. 4 N/A N/A 14.4 ‐10.4 21.1

3‐39 820c
63.4    

(102.0)
20.5 At post no. 4, reverse direction

46.3 

(74.5)
26.97 6.9 ‐10.2 ‐1.7

3‐30 820c
62.7    

(100.9)
0.0 At post no. 1 N/A N/A 38.9 N/A 20.7

3‐34 820c
61.5    

(99.0)
14.0 Midspan between post nos. 1 and 2 N/A N/A ‐13.0 N/A 32.4

3‐35 2000p
61.8    

(99.5)
23.0 63 in. (1600 mm) upstream from post no. 6 N/A N/A ‐6.2 N/A 20.0

3‐39 820c
63.1    

(101.5)
21.5

Midspan between post nos. 4 and 5, 

reverse direction
N/A N/A 12.4 N/A 41.9

3‐30 820c
62.3    

(100.3)
0.0 At post no. 1

49.2   

(79.2)
21.03 21.9 ‐12.8 8.9

3‐32 820c
64.1    

(103.2)
15.0 At post no. 1

55.2   

(88.8)
13.88 ‐27.1 ‐7.4 ‐19.2

3‐35 2000p
62.1    

(100.0)
20 At post no. 5

23.7  

(38.1)  
61.84 44.2 7.7 51.0

3‐39 820c
61.5    

(99.0)
20 At post no. 3, reverse direction

0       

(0)
100.00 ‐53.9 ‐60.5 ‐15.5

3‐30 820c
63.4   

(102.0)
0.0 At post no. 1

60.3    

(97.0)
4.89 47.6 15.8 9.0

3‐34 820c
63.1    

(101.5)
15.0 Unknown

58.4    

(94.0)
7.45 31.3 6.9 21.2

3‐35 2000p
63.3    

(101.9)
20 Unknown

54.1    

(87.1)
14.53 15.2 3.9 27.1

3‐39 820c
61.5    

(99.0)
20 At post no. 11, reverse direction

39.1    

(62.9)
36.42 14.4 11.6 81.1

3‐30 820c
60.7    

(97.7)
0 At post no. 1 N/A N/A ‐14.2 11.3 135.8

3‐32 820c
61.5    

(99.0)
14.4 At post no. 1

57.5    

(92.5)
6.50 14.2 ‐13.5 160.4

3‐35 2000p
63.2    

(101.7)
20.3 Between post nos. 4 and 5

45.4    

(73.1)
28.16 ‐7.1 ‐3.2 42.3

3‐39 820c
62.9    

(101.2)
20

157.5 in. (4000 mm) upstream of terminal 

trigger post
N/A N/A 7.5 ‐14.8 ‐45.4

Safence

Armorflex

Manufacturer

Testing Results

TTI

Brifen

Gibraltar
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FFigure 3. TTI Ennd Terminal, Teechnical Drawinng
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photographs it appears that the vehicle was aligned with respect to CRP post no. 3 in the end 

terminal. CRP post no. 3 was offset from the tangent of the system and resulted in the vehicle’s 

centerline being closely aligned with the centerline of the U-Channel line posts. This alignment 

resulted in a favorable vehicle trajectory after the vehicle had passed through the three 

breakaway terminal posts. The centerline vehicle impact with the line posts eliminated much of 

the yawing and instability concerns observed in other systems.  

While this alignment is perfectly acceptable, it poses concern for increased vehicle 

instability should a vehicle strike the end terminal at a different lateral offset. One of the risks 

associated with an off-center impact is the inevitable yawing of the vehicle. With increased yaw 

motion, vehicle behavior will be much more similar to that seen in crash tests with other end 

terminal designs. As such, the trajectory of the vehicle will be more erratic and unpredictable 

after impact with the terminal. Beyond vehicle yawing and trajectory, it is unclear how the 

system’s performance might be affected. 

2.2.2 Brifen 

Brifen USA, Inc. successfully tested a high-tension end terminal design in the fall of 

2003 [9]. Brifen’s design incorporated an angled post no. 2 with proprietary “S” or “Z” posts for 

the remainder of the system. The cables were terminated using an anchor bracket that was 

secured to a buried, concrete block. The Brifen design utilized four system cables. A technical 

drawing of the system layout is shown in Figure 4. 

The Brifen end terminal system performed satisfactorily under full-scale crash testing 

according to the NCHRP Report No. 350 requirements. In all tests, the vehicle was brought to a 

controlled stop without rollover, excessive decelerations, or excessive damage to the occupant 

compartment. However, there may be some issues that potentially degrade impact performance.
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FFigure 4. Brifenn End Terminal, Technical Drawwing
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In test 3-30, the vehicle impacted the end terminal at a 0-degree angle and a ¼-point lateral 

offset. During the test, the vehicle ramped up the cables and rolled nearly 40 degrees. After 

ramping up and over angled post no. 2, the vehicle came back into contact with the ground off to 

the side of the system. 

At the present, there is no mechanism to release the cables during end-on impacts with 

the terminal. In the case of a centerline vehicular impact on the end terminal system, it is 

possible that the vehicle could ramp up the cables and land on top of one or more line posts, 

possibly puncturing the undercarriage of the occupant compartment. Such an occurrence would 

be hazardous to occupants for several reasons. First, a penetrating post could directly cause harm 

to an occupant. Second, the airborne vehicle could become entangled within or snagged on 

system components, thus resulting in rapid decelerations and/or vehicle instabilities, such as 

rollover. 

2.2.3 Gibraltar 

Gibraltar Cable Barrier Systems, L.P. designed and successfully tested a high-tension, 

three-cable end terminal in 2005 [10]. Gibraltar’s design incorporated a cable release anchor post 

which was designed to release the cables in the case of an end-on impact with the terminal. The 

barrier system consisted of “C” section posts throughout the terminal region as well as for line 

posts. Post no. 2 was angled at 6 degrees with respect to vertical, and post nos. 2 and 3 utilized 

holes at ground level to weaken the terminal posts. 

A Gibraltar cable barrier end terminal installed in a median application is shown in 

Figure 5. Technical drawings of the system layout and photographs of the constructed end 

terminal are shown in Figure 6. 
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FFigure 6. Gibralltar End Terminnal, Technical Drrawing
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FFigure 8. Safencce End Terminaal, Technical Draawing
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Test 3-39, a reverse direction terminal impact, exhibited a controlled, safe vehicle 

interaction. There was no observable snag, and the vehicle passed through the anchor before 

coming to a controlled stop. In test 3-30, the vehicle rode up the cables before being deflected off 

to one side.  

Safence’s end terminal testing resulted in higher values of vehicle roll and pitch than 

were typically seen in other testing. However, considering the gradual slope of the cables, the 

vehicle exhibited more roll prior to losing contact with the system. Like Brifen’s system, the 

vehicle was safely redirected, or allowed to pass through the system in all tests. The same 

potential for vehicle damage was evident. While test 3-30 successfully directed the vehicle out of 

the end terminal, it was determined that the successful redirection was in large part due to the ¼-

point offset impact with the end terminal. A centerline vehicular impact with the terminal end 

could pose significant risk for the vehicle to land on top of posts, thus increasing the potential for 

penetration of the undercarriage and putting the occupants in considerable danger. 

2.2.5 Armorflex 

Armorflex designed and successfully tested a high-tension, four-cable end terminal in 

2008 [12]. The Armorflex end terminal consisted of a trigger post and line posts with oval 

shaped cross sections. The unique trigger post design consisted of an angled post assembly that 

was used to connect anchor cables to the line cables. The trigger post was designed to release the 

line cables when impacted by a vehicle. The trigger post assembly is shown in Figure 9. 

Technical drawings of the system layout and photographs of the constructed end terminal are 

shown in Figure 10.  
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FFigure 10. Armoorwire End Termminal, Technicaal Drawing
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2.3 Discussion 

From the survey of various approved, high-tension end terminal designs, it is apparent 

that certain end terminal design features are beneficial for improving performance and 

somefeatures have significant detrimental effects. Weak or weakened terminal posts performed 

well in TTI (with NUCOR posts) and Gibraltar’s end terminal testing programs. In TTI’s testing, 

the vehicle traveled down the centerline of the system without any induced roll or pitch that 

could potentially arise from the vehicle ramping up a post with stronger cross sectional 

properties. In systems with relatively close terminal post spacing, weak posts are especially 

important as any pitching or rolling effects from vehicle to post impacts will be compounded due 

to the shorter recovery time in between posts.  

Terminal post spacing was found to range between 90 in. (2,286 mm) (Gibraltar) and 

39.6 in. (1,006 mm) (Safence). Note that the one exception is the Armorflex system which 

transitioned directly from the anchor to the system posts and did not utilize any special terminal 

posts. The systems that utilized the shorter terminal post spacing exhibited higher roll and yaw 

angles than the systems with greater post spacing. The shorter post spacing undoubtedly directly 

contributed to degraded stability as frequent, off-centered impacts with terminal posts induced 

higher roll and yaw angles on the vehicle. The end terminal systems with increased terminal post 

spacing showed a more controlled vehicle trajectory, which may lead to even better vehicle 

stability. However, it is unclear as to whether an increased post spacing will negatively affect the 

redirective capabilities of the end terminal system. 

The most noteworthy feature that was found during the literature review was the ability 

for the cables to release away from the end anchorage in the event of an inline, terminal impact. 

Three of the five approved high-tension end terminal designs have this ability. During testing, 
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the two designs that did not incorporate a mechanism to release the cables exhibited increased 

vehicle motions and more dangerous vehicle trajectories than observed for the other systems. 

Vehicle trajectories in those tests exhibited roll angles upwards of 40 degrees as well as 

excessive yawing. As noted earlier, different vehicle impact conditions (vehicle inline, for 

instance) could result in even more erratic vehicle behavior and potential harm to occupants. 
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3 EVALUATION OF THE LOW-TENSION, THREE-CABLE END TERMINAL TEST 

SERIES 

3.1 Background 

In the early 2000s, MwRSF conducted four full-scale crash tests on a low-tension, three-

cable end terminal design [4]. The first test, test no. CT-1, was conducted according to test 

designation 3-35. The final three tests were conducted according to test designation 3-30. Test 

nos. CT-2 and CT-3 failed due to vehicle rollover. The final test (test no. CT-4) was successful, 

although high roll and yaw angles were observed during vehicle trajectory. Other NCHRP 

Report No. 350 tests for the low-tension, three-cable end terminal were deemed unnecessary for 

the evaluation of the system design because previous full-scale testing of similar end terminals 

exhibited good crash performance.  

Based on the safety performance exhibited by the low-tension, three-cable end terminal 

design, as well as the desire to utilize similar technology in a high-tension, four-cable barrier 

system, further analysis of the end terminal was conducted. Although there are differences 

between the low-tension, three-cable and the high-tension, four-cable end terminal systems, the 

design intent and expectation for performance are identical. Both systems must: 

1) allow for the release of the cables when impacted by vehicles at the anchor end; 

2) allow the impacting vehicle to safely traverse through the barrier system without an 

unstable vehicle trajectory; and 

3) not pose undue risk to the vehicle occupants by means of excessive vehicle 

decelerations, penetration of the occupant compartment, or severe interior occupant 

compartment damage. 
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An increased understanding of the mechanisms that caused the poor performance observed in 

test nos. CT-2 and CT-3 as well as the high roll and yaw angles in test no. CT-4, was deemed 

necessary to improve the design for use in the high-tension, four-cable end terminal. 

3.2 Simulation of the Low-Tension, Three-Cable End Terminal 

In order to analyze the effect that the different system components had on the 

performance of the low-tension, three-cable end terminal design, a validated end terminal finite 

element model was necessary. An end terminal model was constructed consisting of the low-

tension, three-cable anchor bracket assembly, slip base post no. 1, five slip base terminal posts, 

and three wire rope cables. The terminal model was impacted by a Geo Metro vehicle model. 

Prior to assembling the end terminal, each component was individually constructed and 

simulated to simplify the eventual integration of the components. Each component model is 

described in detail herein. The modeling and analysis was accomplished using the explicit, non-

linear finite element code LS-DYNA, developed by the Livermore Software Technology 

Corporation [13]. 

3.2.1 Low-Tension, Three-Cable, Anchor Bracket Assembly 

Technical drawings of the low-tension, three-cable, anchor bracket assembly are shown 

in Figures 11 through 13. Shell elements were used to create all parts of the anchor bracket 

assembly. A Belytschko-Leviathan shell formulation was selected based on previous parameter 

testing [14]. The nodes on the base plate of the cable anchor bracket assembly were fully 

constrained to prevent any movement by the baseplate during the simulation. The model of the 

anchor assembly is shown in Figure 14. 
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FFigure 11. Low--Tension, Cablee Anchor Brackeet Assembly Details  
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FFigure 12. Low--Tension, Cablee Anchor Brackeet Component DDetails  
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FFigure 13. Low--Tension, Cablee Anchor Brackeet Component DDetails
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3.2.6 Model Construction 

Once each component model had been statically simulated to guarantee its individual 

efficacy, they were combined to create an abbreviated end terminal model identical to that used 

in full-scale crash test no. CT-4. The model included the cable anchor assembly, 3 system cables, 

slip base post no. 1, five slip base line posts, and the Geo Metro vehicle model. An automatic 

single surface contact was utilized as a global contact for system self-interaction as well as 

vehicle-system interaction. The Metro was given an initial velocity of 61.4 mph (98.8 km/h) and  

a ¼-point lateral offset toward the passenger side to reflect the impact conditions of test no. CT-

4. 

3.2.7 End Terminal Model Validation 

The main criteria used to evaluate and validate the end terminal model were: 

 vehicle yaw data; 

 vehicle trajectory; and 

 visual comparison of component and vehicle damage. 

During the initial simulations, the initial yaw of the Geo Metro did not match the test 

results obtained from CT-4. Upon further examination of the high-speed video from CT-4, it was 

determined that an initial yaw motion was imparted to the vehicle as a result of the tow and 

guidance process. As the vehicle neared the impact point, the guide flag, which maintains the 

vehicle’s heading angle during towing, was detached from the vehicle. The guide flag release 

was accomplished through an impact with a shear post on the right side of the vehicle. Ideally the 

guide flag/shear post impact will be trivial. However, during test no. CT-4, the impact may have 

been significant enough that the vehicle began to yaw prior to impacting the cable anchor’s 

release lever.  
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To further investigate the guide flag/shear post impact, the accelerometer data from the 

test was reanalyzed to examine events prior to the vehicle entering the guardrail system. At 

approximately the same time as the guide flag/shear post impact, there was a 1.8 g deceleration 

applied to the vehicle. At the point of the application of that deceleration, the applied force was 

approximately 2.5 kips (11.1 kN). Due to the off-center point of application, it is possible that the 

resultant force imparted an initial yawing motion to the vehicle. Overhead photographs of the 

guide flag impact are shown in Figures 18 and 19. 

In order to match the initial yaw motion of the vehicle as it impacted the cable release 

lever, an initial yaw rate of 15 deg/s was applied to the Geo Metro model. After the initial yaw 

was applied to the vehicle, the simulated trajectory of the Geo Metro more closely matched that 

observed in test no. CT-4. Vehicle yaw data from the simulation and test no. CT-4 are shown in 

Figure 20. Sequential images for the simulated and actual vehicle trajectories are shown in 

Figure 21. Geo Metro vehicle positions at 500 ms after impact are compared between the actual 

test and simulation results and are shown in Figure 22.  

Although the first portion of the simulation matched well with test no. CT-4, the vehicle 

trajectories began to diverge after 300 ms. A review of the high-speed video of test CT-4 

revealed that this divergence in vehicle trajectories was partially due to vehicle contact with 

system debris. The debris included top sections of slip base posts, cable compensators, and the 

cable release lever from the end anchor. During test CT-4, this debris was overridden by the Geo 

Metro, thus resulting in increased vehicle yawing and also vehicle roll toward the driver’s side 

that nearly led to rollover. As shown in Figure 23, the yawed vehicle has contacted and begun to 

override the system debris in test CT-4. 
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3.2.8 Discussion 

3.2.8.1 Vehicle Trajectory 

Through 300 ms, the simulated vehicle trajectory and yaw motion observed in the low-

tension, three-cable end terminal model matched well with the actual results obtained in test CT- 

4. Although the trajectories began to diverge as the vehicles exited the terminals, valuable 

information was obtained from the simulation. The main cause of the divergent exit trajectories 

and near rollover in test no. CT-4 was likely due to the actual Geo Metro contacting and 

overriding the debris from detached end terminal components. The movement of the system 

debris and location of the vehicle-to-debris contact is highly dependent on ground conditions as 

well as bumper characteristics. As such, these vehicle-to-barrier interactions are very difficult to 

accurately simulate. Improvements to the simulation model could be made with further 

development of the ground and bumper models. For the current application, however, the utilized 

models proved sufficient. 

Another sensitive part of the end terminal system was the interaction between the cable 

compensators and slip base post no. 1. In the “best” simulation model, it was discovered that the 

cables immediately downstream from slip base post no. 1 coiled on the downstream face of the 

web. This action forced the detached slip base post section up onto the hood of the vehicle, 

which prevented the simulated vehicle from overriding the post section. In test CT-4, the cable 

compensators located between slip base post nos. 1 and 2 similarly impacted the downstream 

face of the web on slip base post no. 1 and forced the post section onto the hood of the vehicle. 

The vehicle-to-post interactions for both the simulation and test CT-4 are shown in Figure 24. 
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3.2.8.2 Slip Base Post Performance Analysis 

3.2.8.2.1 Full-Scale Testing Evaluation 

The slip base posts served their intended purpose by releasing upon impact in the weak-

axis direction. This quick release prevented the vehicle from overriding and ramping up the post, 

as was seen in previous testing with other post options [4]. However, after the slip base post 

released, the detached top sections proved to be potentially hazardous debris. This behavior was 

exhibited in both simulations as well as physical testing. The detached post section trajectory 

was erratic and unpredictable. These detached posts have the potential to cluster together and 

cause vehicle instabilities, as seen in test no. CT-4. This hazard may be reduced if the post 

sections were retained or if a standard post with a decreased section modulus in the weak-axis 

direction were utilized in place of the slip base post assembly.  

3.2.8.2.2 M4x3.2 (M102x4.8) Replacement Post Option 

The S3x5.7 (S76x8.5) post has been used in previous, non-proprietary, cable end terminal 

designs. Full-scale testing showed that the S3x5.7 (S76x8.5) post has the propensity to cause 

vehicle rollover due to repeated impacts between terminal posts and the test vehicle. Therefore, a 

post with reduced weak-axis bending and/or shear strength is desired.  

One terminal post replacement option is the M4x3.2 (M102x4.8) post section. The 

M4x3.2 (M102x4.8) section was selected to analyze due to its similar strong-axis bending 

strength as compared with the S3x5.7 (S76x8.5) section. The M4x3.2 (M102x4.8) section also 

has the greatest weak-axis bending strength reduction (compared to S3x5.7 (S76x8.5)) relative to 

other standard M section post options. The M4x3.2 (M102x4.8) section post has a 47 percent 

reduction in weak-axis bending strength, and an 18 percent reduction in bending strength in the 

strong-axis direction, as compared to the S3x5.7 (S76x8.5) post section.  
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An S3x5.7 (S76x8.5) post with 1/8-in. (3.2-mm) cuts in each flange exhibited desirable 

strength characteristics for a terminal post. The modified post had similar maximum impact force 

values in both the strong-axis and the weak-axis orientations as compared with an unmodified 

S3x5.7 (S76x8.5) post. The vertical impact force, however, showed a 54 percent decrease in 

weak-axis strength. The vertical impact forces are important in this case since these are 

indicative of the posts ability to impart uplift forces on a vehicle and subsequently, could result 

in pitching and rolling if the force is high enough. Since the vertical impact forces were reduced 

by 54 percent in the weak-axis direction, the modified posts will be less likely to cause rollover 

in the event of a terminal impact. The vertical force data from bogie testing of the cut post 

section as compared to a non-cut section is shown in Table 3. 

Table 3. Vertical Impact Forces, Cut Cable Post Bogie Testing [18] 

 
 

Although the S3x5.7 (S76x8.5) post with cut flanges showed favorable strength 

characteristics in the bogie testing program, the modified post was not selected for full-scale 

crash testing. There was some question as to whether the cuts in the flanges could be 

manufactured in a consistent manner and allow for predictable crack propagation. Another issue 

Strong‐Axis Weak‐Axis Strong Axis Weak Axis

S3x5.7             

(S76x8.5)

1.94        

(31,791)

0.66          

(10,816)

1.9         

(8.5)

3.8         

(16.9)

S3x5.7 (S76x8.5) with 

1/8‐in. Saw Cuts in 
Flanges

1.69          

(27,694)

0.46          

(7,538)

1.9         

(8.5)

1.8         

(8.0)

Post Section

Plastic Section Modulus, Z    

in.3                                       

(mm3)

Vertical Impact Force     

kips                   

(kN)
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3.2.8.2.4 Terminal Post Replacement Options Summary 

The slip base post assembly utilized in the non-proprietary, low-tension, cable end 

terminal led to significant vehicular roll and yaw motions during the full-scale crash testing. 

Potential replacement options include an M4x3.2 (M102x4.8) post or a weakened S3x5.7 

(S76x8.5) post. The M4x3.2 (M102x4.8) post is similar to the S3x5.7 (S76x8.5) in strong-axis 

bending strength. However, its weak-axis bending strength is significantly reduced, which 

diminishes its propensity to cause vehicle rollover. The weakened S3x5.7 (S76x8.5) post may be 

preferable because it simplifies the construction of the non-proprietary cable guardrail system. 

However, its strength characteristics are not as desirable as that of the M4x3.2 (M102x4.8) post 

section. Both the M4x3.2 (M102x4.8) section post and modified S3x5.7 (S76x8.5) post options 

have reduced torsional stiffness as compared with the S3x5.7 (S76x8.5) section. The reduction in 

torsional stiffness may require a relatively close terminal post spacing in order to adequately 

support cables during a terminal redirection impact, however this issue requires further 

investigation. A comparison of the post strength is shown in Table 4. 

The use of one of the replacement post options could potentially increase the robustness 

of the end terminal design by eliminating the unpredictable interactions between detached post 

sections and the impacting vehicle. As a result, the overall safety performance and ease of 

assembly of the end terminal design would be improved. 
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Table 4. Post Strength Properties 

 
*Theoretically Derived Values 

3.3 Conclusions 

An investigation of the vehicle trajectory and stability exhibited in the low-tension, cable 

end terminal test series (CT series) was undertaken. To analyze the system, a model of the low-

tension, cable end terminal system was developed using finite element software. The model was 

then validated using test data from the physical crash test no. CT-4.  

Analysis of the simulation results revealed that the vehicle had an initial yaw prior to 

impact with the system. The initial yaw was due to the impact between the vehicle’s guide flag 

and the shear post on the tow line. This initial yaw intensified the yawing that was generated by 

off-centered anchor and post impacts once the vehicle entered the system. The vehicle yaw, 

while not solely responsible for the near vehicle rollover, contributed to the erratic vehicle 

trajectory.  

Strong‐Axis Weak‐Axis Strong‐Axis Weak‐Axis Strong‐Axis Weak‐Axis

S3x5.7              

(S76x8.5)

1.94          

(31,791)

0.66          

(10,816)

104.8       

(11.8)

35.6        

(4.0)

6.9        

(30.7)

2.3        

(10.2)

S3x5.7 (S76x8.5) with 

1/8‐in. Saw Cuts in 

Flanges

1.69          

(27,694)

0.46          

(7,538)

91.3        

(10.3)

24.8        

(2.8)        

6.5        

(28.9)

2.7        

(12.0)

S3x5.7 (S76x8.5) with 

ø3/8‐in. (9.5‐mm) 

Weakening Holes

1.45          

(23,761)

0.39          

(6,391)

78.3        

(8.8)

21.1        

(2.4)

5.2*       

(2.3)

 1.4*       

(6.2) 

M4x3.2              

(M102x4.8)

1.68          

(27,530)

0.35          

(5,735)

90.7        

(10.2)

18.9        

(2.1)

5.7*       

(2.5)

 1.2*       

(5.2)

Slip Base Post ‐ ‐ ‐ ‐ ‐
4.3        

(19.1)

0.8*      

(90.4)

‐

‐

 0.1*  

(11.3)

Torsional 

Strength   

kip‐in.     

(N‐m)

1.0*      

(113.0)

Plastic Bending Moment  

kip‐in.                 

(kN‐m) 

Impact Force          

kips                  

(kN)Post Section

Plastic Section Modulus, Z    

in.3                                       

(mm3)
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The vehicle impacted the system and began to yaw. As mentioned previously, the yaw 

alone was not cause for concern as the vehicle will still remain stable and balanced. The vehicle 

then overrode a cluster of system debris. System debris included cable compensators, detached, 

top sections of slip base post assemblies, and the cable release lever. The interaction between the 

right-front vehicle tire and undercarriage with the system debris caused abrupt vehicle 

decelerations, sharp increases in yaw rate, and induced a roll toward the driver side of the 

vehicle. This resulted in the near vehicle rollover that occurred in test no. CT-4. 

Since cable end terminal components and features are similar regardless of the designed 

cable tension, it is possible that the non-proprietary, high-tension, cable end terminal will exhibit 

similar vehicle trajectory, yaw, and roll angles if no modifications are made to the end terminal 

design. While the cable anchor served its intended purpose, the crashworthiness of the design 

would be improved if the cable anchor was redesigned. The cable release lever was allowed to 

detach from the assembly post-cable release. The detached release lever’s trajectory was 

unpredictable, and in the case of test no. CT-4, the interaction between the release lever and the 

vehicle contributed to high vehicle roll and yaw angles. These angular motions nearly resulted in 

vehicle rollover.  

The slip base posts also activated as intended. However, much like the cable release 

lever, interaction between the vehicle and the detached top post sections resulted in unintended 

vehicle decelerations, yaw, and roll. Although the slip base post assembly has several features 

that are beneficial to satisfactory terminal performance, the unpredictability of the detached post 

sections makes it less than ideal to use slip base posts in future systems. 

Alternate options for the slip base post assemblies include an M4x3.2 (M102x4.8) post 

and modified S3x5.7 (S76x8.5) post options. The alternate post options have lower weak-axis 
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bending strength as compared to the S3x5.7 (S76x8.5) post. Thus, it would be less likely to 

induce vehicle rollover. The replacement options also would not introduce system debris into the 

vehicle path that could cause vehicle instabilities. A detailed investigation including bogie 

testing, full-scale crash testing, and further simulation would be necessary to verify that either 

the M4x3.2 (M102x4.8) post section or one of the modified S3x5.7 (S76x8.5) post sections are 

indeed viable replacement options. 
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4 CURRENT, HIGH-TENSION, CABLE ANCHOR BRACKET DESIGN 

With the ongoing development of high-tension, cable median barriers for use in ditch 

applications, it was deemed necessary to also continue to develop a crashworthy cable end 

terminal system for anchoring the cables. As noted previously, MwRSF developed, crash tested, 

and obtained FHWA’s acceptance of a low-tension, cable guardrail end terminal. Subsequently, 

the anchor bracket assembly was adapted for use with a high-tension, four-cable end terminal 

system. In the low-tension end terminal testing, the anchor bracket and cable release mechanism 

performed well. During testing, there was no indication that the end terminal would not perform 

well in high-tension applications as well as with more cables. 

Therefore, the anchor bracket assembly was modified for a high-tension, four-cable 

system. Modifications included: 

 widening the entire anchor bracket assembly to accommodate an extra system cable; 

 adding a 4th slot on the cable plate to accommodate 4th system cable; 

 adding extra internal gussets to strengthen the assembly against increased cable 

loading; 

 increasing the height of outer gussets to provide extra support for the cable plate; and 

 altering the release lever and release lever support geometry to accommodate the 

revised slope of the end cables that are terminated at the cable bracket assembly. 

Detailed drawings of the high-tension, cable anchor bracket assembly are shown in 

Figures 28 through 32. 
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FFigure 28. Cablee Anchor Brackket Assembly Drrawings 
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FFigure 29. Cablee Anchor Brackket Assembly Deetails 
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FFigure 30. Cablee Anchor Brackket Component DDetails 
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FFigure 31. Cablee Release Leverr Assembly Detaails 
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FFigure 32. Bill oof Materials, Caable Anchor Braacket Assembly

M
w

R
S

F R
eport N

o. T
R

P-03-268-12 

 

July 17, 2012  
M

w
R

S
F

R
eportN

o
T

R
P

03
268

12



July 17, 2012  
MwRSF Report No. TRP-03-268-12 

 

57 
 

5 INITIAL COMPUTER SIMULATION 

5.1 Introduction 

Finite element modeling can be a useful tool in the design process. If an accurate model 

is obtained, it can be used in place of costly physical testing to evaluate potential designs. A 

finite element model of the high-tension, cable anchor bracket assembly was created in order to 

assess the capability of finite element modeling as a predictive design tool. Simulations were 

conducted with an abbreviated finite element model of the high-tension, cable end terminal. 

Subsequent physical bogie testing of the anchor was used to evaluate the current, high-tension, 

cable anchor design as well as the predictive capabilities of the finite element model. 

During the low-tension end terminal validation, the model closely replicated the 

mechanics of the cable anchor bracket assembly during the release of the cables. After the 

successful modeling of the low-tension, cable anchor bracket and end terminal, it was hoped that 

the high-tension, cable anchor bracket model would be replicated as well.  

Many of the system components in the high-tension, cable end terminal are similar to 

components in the low-tension, cable end terminal. One difference, however, is that the cable 

compensators utilized in low-tension systems are not necessary in high-tension systems. The 

elimination of the cable compensators reduces the amount of debris that could possibly cause 

vehicle instabilities observed during end-on terminal impacts. The only other significant 

difference between the two systems is small variations in component geometry. Materials used 

for fabricating many of the components were unchanged from the low-tension system to the 

high-tension system. As such, the material models and element formulations were reused from 

the low-tension end terminal model and applied to the high-tension model.  
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5.2 Abbreviated, High-Tension, Cable End Terminal System Model 

To evaluate the high-tension, cable anchor bracket model, an abbreviated high-tension, 

cable end terminal model was created. This system was then impacted with a bogie vehicle 

model to simulate a dynamic component test. The abbreviated high-tension, cable end terminal 

model consisted of four main components:  

 the high-tension, cable anchor bracket assembly; 

 one slip base post assembly; 

 four system cables; and 

 bogie model. 

Detailed descriptions of the individual components and the techniques used to model them are 

discussed in the ensuing sections. 

5.2.1 High-Tension, Cable Anchor Bracket Assembly 

The cable anchor bracket was modeled using a combination of three-noded and four-

noded shell elements. The cable release lever was also modeled using shell elements. Eight-

noded hexagonal elements were used to model the anchor bolts and their associated washers. 

ASTM A36 steel material properties were specified for all components of the cable anchor 

bracket model, and ASTM A307 steel material properties were used for the bolts. A Belytschko-

Leviathan element formulation was specified for all shell elements and a Fully Integrated S/R 

solid element formulation was used for all solid elements. A summary of the anchor bracket 

assembly components and their associated element and material types is shown in Table 5. A 

comparison of the physical cable anchor bracket and its finite element model as well as a close 

up of the component meshing is shown in Figures 33 and 34. 
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FFigure 34. Cablee Anchor Brackket and Finite Ellement Model
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5.2.2 Slip Base Post Assembly 

The slip base post assembly utilized in the end terminal simulation was modeled to reflect 

the geometry and slip characteristics of the physical post assembly. The S3x5.7 (S76x8.5) 

portion of the post was meshed with three-noded and four-noded shell elements. A Belytshcko-

Leviathan element formulation was specified for the post elements. The cable hangar attached to 

the post was meshed with three-noded shell elements. Various physical tests have shown this 

component to be very robust; therefore, a rigid material type was applied to reduce 

computational time.  

The base plate components that comprised the slip interface were modeled with solid 

elements. A Fully Integrated S/R solid element formulation was used. Solid elements were used 

to model the slip connection to better define the contact surfaces. The bolts and washers utilized 

in the slip connection were also meshed with solid elements and a Fully Integrated S/R element 

formulation. The washers utilized between the slip plates and under the bolt heads and nuts were 

specified as rigid. Note that although the component modeling was accomplished for this 

simulation effort, the slip connection model was taken from a previous study [15].  

The slip connection support plates, as well as the assembly base plate, were meshed with 

three-noded and four-noded shell elements. A Fully Integrated shell element formulation was 

specified for both the supports and the base plate. The wedge bolts and washers used to anchor 

the assembly were meshed with solid elements. Fully Integrated S/R element formulations were 

used for both the bolts and the washers. The washers were again specified as rigid. ASTM A36 

steel material properties were specified for all steel plate components and ASTM A307 steel 

material properties were used for the slip base bolts and the wedge bolts. Component modeling 

information is tabulated in Table 6. A comparison of the physical cable anchor bracket and its 
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finite element model, as well as a close up of the component meshing, is shown in Figures Figure 

35 and Figure 36. 

Table 6. Summary of Slip Base Post Model Properties 

 

5.2.3 System Cables 

The cable model used in the high-tension simulation differed from the model used for the 

low-tension end terminal validation. The cable model used in the current component test 

simulation model was the result of a previous study [20]. However, at the time of the low-tension 

end terminal validation there were some issues with the cable model that prevented its use. Since 

then, the issues were corrected and the model was available for use. The new cable model has 

several advantages over the older model, including accuracy and usability. The cables main 

purpose in the simulation is to provide a load on the cable anchor bracket. Thus, it is reasonable 

to assume that changing cable models would have a negligible effect on the performance of the 

anchor or the simulation in general. 

S3x5.7 Post Shell ASTM A36

Cable Hangar Shell ASTM A36

Top Slip Base Plate Shell ASTM A36

Bottom Slip Base Plate  Shell ASTM A36

Slip Base Bolts Solid ASTM A307

Slip Base Washers Solid ASTM A36

Slip Base Support Plates Shell ASTM A36

Post Assembly Base Plate Shell ASTM A36

Wedge Bolt Anchors Solid ASTM A307

Anchor Washers Solid ASTM A36Fully Integrated, S/R Rigid

Belytschko‐Leviathan Piecewise, Linear Plastic

Belytschko‐Leviathan Piecewise, Linear Plastic

Fully Integrated, S/R Piecewise, Linear Plastic

Piecewise, Linear PlasticFully Integrated, S/R

Fully Integrated, S/R Rigid

Belytschko‐Leviathan Rigid

Belytschko‐Leviathan Piecewise, Linear Plastic

Belytschko‐Leviathan Piecewise, Linear Plastic

Part Name
Element 

Type
Element Formulation

Material 

Type
Material Formulation

Belytschko‐Leviathan Piecewise, Linear Plastic
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FFigure 36. Slip BBase Post Assemmbly and Finite Element Model
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5.3 Bogie Test Simulation 

The bogie model was given an initial velocity of 45.0 mph (72.4 km/h). The centerline of 

the bogie impact head was aligned with the vertical centerline of the cable release lever. An 

automatic single surface contact was used to specify contact between the slip base post assembly, 

cable anchor bracket assembly, and the bogie’s impact head. An automatic nodes to surface 

contact was used with the cable model to better capture the cable interaction with the cable 

hangar, bogie impact head, and any other system components that may contact the cables. 

Initial impact was between the center of the bogie head and the center of the cable release 

lever. A sequential description of the simulated impact events is contained in Table 7. Sequential 

images of the simulation are shown in Figure 39. 

The bogie velocity in the simulation was captured to analyze the impact events between 

the bogie, cable anchor assembly, and slip base post. To capture the bogie velocity, a node 

located at the bogie’s center of mass was tracked throughout the simulation. 

After the bogie impact with the anchor bracket, the bogie’s longitudinal velocity 

remained constant for a short time before contacting the system cables and other detached anchor 

bracket components. The simulated bogie velocity after impact with the cable anchor bracket 

stabilized to 44.4 mph (71.5 km/h). The associated change in velocity due to the anchor impact 

was 0.6 mph (1.0 km/h). The bogie head impact with the system cables resulted in a linear 

decrease in velocity beginning at roughly 61 ms. The total loss in velocity from the cable impact 

was 0.5 mph (0.8 km/h). The bogie then impacted the slip base post, thus resulting in an 

additional bogie velocity reduction of 0.9 mph (1.4 km/h). The velocity data from the simulation 

is shown in Figure 40. 
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Table 7. Sequential Description of Impact Events, Initial Simulation 

 

TIME    
(sec)

EVENT

0.000
The cable release lever began to rotate backwards as the bogie impacted and entered the 

system. The cable end fitters began to translate upwards and out of their respective slots as the 
cable release lever rotated backwards.

0.019 The cable end fitters fully released from the cable anchor bracket.

0.024
The cross bar on the cable release lever assembly impacted the middle two system cables, 

causing the cables to begin to wrap around the cross bar.

0.026 The cable release lever assembly lost contact with the cable anchor bracket.

0.052
The top of the cable release lever impacted the ground. The middle two system cables are still 

wrapped around the cross bar of the cable release lever assembly and continued to pull the 
assembly downstream.

0.063

The bogie head impacted the top system cable.0.053

0.110 The bogie head impacted the upstream edge of the slip base post.

0.129
The bottom slip base plate seperated from the slip base supports due to element failure along 

the component boundary. The element failure occurred due to the slip base mechanism failing to 
activate. The failure of the plate-support boundary marked the end of the simulation.

The bogie head simultaneously impacted the middle two system cables.

0.066
The bottom cable impacted the bogie head. All four cables began to coil on the front of the 

bogie head.
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6 HIGH-TENSION, CABLE END TERMINAL BOGIE TESTING 

6.1 Purpose 

In order to evaluate the current design and to validate the simulation, bogie testing was 

performed on an identical terminal system. The test results were needed to evaluate anchor 

design performance, structural adequacy, and potential for damage or failure. If the design 

worked well and the model proved accurate, then other simulations with alternate high-tension 

anchor designs could be analyzed with confidence. 

An evaluation of the structural capacity of the current, high-tension, cable anchor bracket 

was previously incorporated into numerous barrier systems that were subjected to full-scale crash 

testing. However, the impact performance of the anchor bracket assembly has never been 

investigated during vehicle impacts on the end terminal. Based on investigation of the low-

tension end terminal system, there are concerns with some design aspects of the low-tension, 

cable anchor bracket that were utilized in the current, high-tension, cable anchor bracket. These 

features could increase the propensity for vehicle instabilities in small car impacts with the high-

tension end terminal system. 

With this in mind, component testing was used to verify assumptions, investigate 

concerns, and determine if design modifications were necessary. The dynamic testing was 

conducted at the MwRSF Proving Grounds in Lincoln, Nebraska. 

6.2 Scope 

A bogie test was conducted on an abbreviated version of a high-tension, cable end 

terminal. The abbreviated system consisted of two high-tension, cable anchor brackets, two slip 

base post assemblies, and four system cables. The system was installed on a concrete tarmac at 

MwRSF’s outdoor testing facility. The target test conditions consisted of an impact speed of 45 
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mph (72.4 km/h) with the bogie’s impact head centered and aligned with the center of the cable 

release lever on the cable anchor bracket. The targeted impact height for the test was 19 in. (483 

mm), as measured from the ground to the horizontal centerline of the bogie impact head. This 

height was selected to simulate the bumper height of a Kia Rio. 

6.3 System Details 

The cable barrier test system used for the bogie test consisted of three main components: 

(1) cable anchor bracket assemblies; (2) slip base post assemblies; and (3) system cables. 

Descriptions of each of these assemblies and the components that comprise the assembly can be 

found in the following sections. Photographs of the system prior to testing are shown in Figure 

41. Design drawings for the test articles are shown in Figures 42 through 48.  

6.3.1 Cable Anchor Bracket Assemblies 

The cable anchor bracket assemblies consisted of five components: (1) cable release 

lever; (2) anchor baseplate; (3) anchor cable plate; (4) anchor support gussets; and (5) release 

lever support gussets. The cable release lever consisted of two 17-in. (432-mm) long, 1 1/4-in. x 

1 1/4-in. x 3/16-in. (32-mm x 32-mm x 4.8-mm) thick steel tubes welded to a 3 1/2-in. x 13 1/2-

in. x 1/2-in. (89-mm x 343-mm x 12.7-mm) thick steel baseplate. Two 3 1/4-in. x 1 3/4-in. x 1/2-

in. (83-mm x 44-mm x 12.7-mm) thick, triangular steel gussets were welded between the 

baseplate and the steel tubes to increase the bending capacity of the connection. A 5-in. long 

(127-mm), 1 1/4-in. x 1 1/4-in. x 3/16-in. (32-mm x 32-mm x 4.8-mm) steel tube was welded 

between the two vertical tubes to aid in the distribution of forces throughout the assembly.  



 

 

Figure 411. Bogie Tesst System Seetup, Test No
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FFigure 42. Bogie Test Layout, TTest No. HTCT--1 
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FFigure 43. Cablee Anchor Brackket Assembly Deetails, Test No. HTCT-1 
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FFigure 44. Slip BBase Post Assemmbly Details, Teest No. HTCT-11 
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FFigure 45. Slip BBase Post Compponent Details, Test No. HTCTT-1 
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FFigure 46. Slip BBase Post Compponent Details, Test No. HTCTT-1 
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FFigure 47. Cablee End Fitters annd Turnbuckle DDetails, Test No.. HTCT-1 
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FFigure 48. Bill oof Materials, Test No. HTCT-1
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The cable anchor bracket consisted of a 9-in. x 15 1/4-in. x 1/2-in. (229-mm x 387-mm x 

12.7-mm) thick steel baseplate with a 5-in. x 15 1/4-in. x 3/8-in. (127-mm x 387-mm x 9.5-mm) 

thick steel cable plate welded at a 65-degree angle. Eight 1-in. (25-mm) diameter holes were 

drilled into the baseplate in order to anchor the assembly. Four 1 1/8-in. (29-mm) diameter 

notches were cut into the cable plate in order to secure the cables to the assembly. Two 4 1/2-in. 

x 6-in. x 1 1/2-in. (114-mm x 152-mm x 38-mm) thick gussets were welded to the baseplate and 

the cable plate at the edges of the assembly. Three smaller gussets, each measuring 3 3/16-in. x 3 

5/16-in. x 1/2-in. (81-mm x 84-mm x 12.7-mm), were welded to the cable plate and base plate at 

interior locations. On the front of the assembly, two rectangular gussets, measuring 3 1/2-in. x 2 

3/8-in. x 1/2-in. (89-mm x 60-mm x 12.7-mm), were welded to the cable plate. A 9-in. x 5-in. x 

1/2-in. (229-mm x 127-mm x 12.7-mm) thick support plate was also welded to the front gussets. 

A 3/4-in. (19.1-mm) diameter hole was cut into each gusset as well as a 1 1/2-in. (38-mm) 

diameter hole in the support plate to aid in the galvanization process. The gussets and the support 

plate provided the surface for rotation of the cable release lever. 

The cable anchor brackets were secured to the testing surface using eight 3/4-in. (19.1-

mm) diameter x 12-in. (305-mm) long ASTM A193 Grade B7 threaded rods with hex nuts and 

washers. The threaded rods were epoxied 10 1/2-in. (267-mm) into the concrete.  

All steel plate used in the cable anchor bracket assembly conformed to ASTM A36 

specifications. All steel tubing used in the assembly conformed to ASTM A500 Grade B 

specifications. 

6.3.2 Slip Base Post Assemblies 

The slip base post assemblies consisted of two sub-assemblies: (1) top post section and 

(2) base assembly. The top post section was comprised of a 28 1/8-in. (714-mm) long, S3x5.7 
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(S76x8.5) steel post that was welded to a 4 15/16-in. x 4-in. x 3/8-in. (125-mm x 102-mm x 9.5-

mm) thick steel base plate. A cable hangar was welded to the outer surface of a flange of the 

S3x5.7 (S76x8.5) post to support the cables. The cable hangar was machined out of a 2-in. x 15-

in. x 1/2-in. (51-mm x 381-mm x 12.7-mm) thick steel plate. 

The base of the slip base post assembly was comprised of a 15-in. x 15-in. x 1/4-in. (381-

mm x 381-mm x 6.4-mm) steel base plate with two 4 15/16-in. x 1 1/4-in. x 1/2-in. (125-mm x 

32-mm x 12.7-mm) thick steel plates welded to the top surface. A 4 15/16-in. x 9-in. x 1/2-in. 

(125-mm x 229-mm x 12.7-mm) thick steel slip base plate was welded to the top of the two 

plates to provide a support surface for the top post section. The base assembly was secured to the 

concrete tarmac using four 3/4-in. (19.1-mm) diameter wedge bolt anchors and washers.  

The top post section and base section were then assembled using four 1/2-in. (12.7-mm) 

diameter x 2-in. (51-mm) long ASTM A307 bolts with washers and nuts used to form the slip 

base connection. All steel used to fabricate the slip base post assembly conformed to ASTM A36 

specifications.  

6.3.3 System Cables 

Four 3/4-in. (19.1-mm) diameter, 3x7 wire rope cables were used in the barrier system. 

The cables were tightened through the use of cable turnbuckles. The ends of the cable contained 

threaded rod fittings that terminated in the cable anchor bracket. Each threaded rod was secured 

in a cable anchor slot with a 3-in. x 2 3/8-in. x 1/2-in. (76-mm x 60-mm x 12.7-mm) thick plate 

washer and two 3/4-in. (19.1-mm) diameter heavy hex nuts. 
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A pickup truck with a reverse cable tow and guide rail system was used to propel and 

direct the bogie. The bogie was accelerated toward the system along the guidance system, which 

consisted of a steel pipe anchored above the tarmac. The bogie wheels were aligned for caster 

and toe-in values of zero so that the bogie would track properly. When the bogie reached the end 

of the guidance system, it was released from the tow cable, allowing it to be free rolling when it 

struck the cable release lever. A remote braking system was installed on the bogie to provide for 

safe deceleration of the bogie after the test. 

6.4.2 Accelerometer 

One tri-axial, piezo-resistive, accelerometer system Model EDR-3 with a range of ±200 

g’s was developed by Instrumented Sensor Technology (IST) of Okemos, Michigan and was 

mounted on the frame on the bogie near its center of gravity. Data sampling was at 3,200 Hz 

with a 1,120 Hz Butterworth low-pass filter with a -3 dB cut-off. Computer software, “DynaMax 

1 3/4” and a customized “Microsoft Excel” worksheet were used to analyze and plot the 

accelerometer data [21].  

6.4.3 Pressure Tape Switches 

Four pressure tape switches, spaced at 3-ft (0.9-m) intervals and placed near the end of 

the bogie track, were used to determine the speed of the bogie before the impact. As the right-

front tire of the bogie passed over each tape switch, a strobe light was fired sending an electronic 

timing signal to the data acquisition system. Test speeds were determined by dividing the 

measured distance between the switches by the time between the electronic signals. 

6.4.4 Digital Cameras 

Three high-speed AOS XPRI digital video cameras, each with operating speeds of 500 

frames/sec, were used to film the bogie test. Three JVC digital video cameras, each with an 
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operating speed of 29.97 frames/sec, were also used to film the bogie test. Camera locations and 

camera lens information is shown in Table 8. 

Table 8. Camera Locations, Speeds, and Lens Settings 

 

6.5 Data Processing 

The electronic accelerometer data obtained in dynamic testing was filtered using the SAE 

Class 60 Butterworth filter conforming to the SAE J211/1 specifications [22]. The pertinent 

acceleration signal was extracted from the bulk of the data signals. The processed acceleration 

data was then multiplied by the mass of the bogie to get the impact force using Newton’s Second 

Law. Next, the acceleration trace was integrated to find the change in velocity versus time. Initial 

velocity of the bogie, calculated from the pressure tape switch data, was then used to determine 

the bogie velocity, and the calculated velocity trace was integrated to find the bogie’s 

displacement. Combining the previous results, a force vs. deflection curve was plotted for each 

test. Finally, integration of the force vs. deflection curve provided the energy vs. deflection curve 

for each test. 

Camera 
No.

Type
Operating 

Speed  
(frames/sec)

Lens/Setting Location/Distance

5 Vitcam X-PRI 500
Fujinon 50 mm 

Fixed
70 in. Away, Perpendicular to Upstream 

Anchor, and 35 in. Downstream

6 Vitcam X-PRI 500
Canon 17-102 

/ 102
237 in. Away, Perpendicular to 

Upstream Anchor

7 Vitcam X-PRI 500
Nikon 50 mm 

Fixed
344 in. Away, Perpendicular to First 

Slip Base Post

2 JVC - GZ - MG27u (Everio) 29.97 -
567 in. Away, Perpendicular with the 

Center of the System 

3 JVC - GZ - MG27u (Everio) 29.97 -
344 in. Away, Perpendicular to First 

Slip Base Post

4 JVC - GZ - MG27u (Everio) 29.97 -
344 in. Away, Perpendicular to First 

Slip Base Post
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7 BOGIE TESTING – TEST NO. HTCT-1 

7.1 Procedures 

From the bogie test, information was desired to analyze the mechanics and structural 

adequacy of the cable anchor bracket assembly. Characterization of the bogie deceleration and 

force loading on the cable anchor bracket and lever arm was also of utmost importance in the 

test.  

Although the acceleration data was applied from the bogie impact location, the data came 

from the center of gravity of the bogie. Error was added to the data since the bogie was not 

perfectly rigid and sustained vibrations. The bogie may have also rotated during impact, causing 

differences in accelerations between the bogie center of mass and the bogie impact head. While 

these issues may affect the data, the data was deemed sufficiently valid. Filtering procedures 

were applied to the data to smooth out vibrations, and the rotations of the bogie during test were 

minor. 

The accelerometer data for the bogie test was processed in order to obtain acceleration, 

velocity, and deflection curves. The values described herein were calculated from the EDR-3 

data curves. 

7.2 Test Description, Test No. HTCT-1 

Test no. HTCT-1 was performed at 0 degrees and 44.9 mph (72.3 km/h) with the bogie 

impact head centered on the cable release lever. A sequential description of the impact events is 

contained in Table 9. During the test, the guide bracket and roller bearing on the bogie snagged 

on a concrete edge after exiting the test setup, and the bogie came to a rest roughly 43 ft (13.1 m) 

downstream from the downstream anchor bracket. Time-sequential documentary photographs of 

the test are shown in Figures 50 and 51. 
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Table 9. Sequential Description of Impact Events, Test No. HTCT-1 

 
 

7.3 System Damage 

The damage to system components in test no. HTCT-1 was moderate. Both of the slip 

base post assembly bases buckled under impact loading, and the top S3x5.7 (S76x8.5) post 

sections fractured off of the lower assembly due to weld failure in both cases. The detached 

S3x5.7 (S76x8.5) post sections exhibited some plastic bending in the impact region. 

 

TIME    
(sec)

Cables have been fully released from their respective slots.0.018

0.200

The bogie impacted the second slip base post.0.370

The left-front tire of the bogie impacted the downstream cable anchor bracket, causing the 
bogie to roll.

0.530

Bogie impacted the downstream cable release lever.0.510

The bogie exited the field of view.0.770

EVENT

The system cables began to coil on the front of the bogie's impact head.0.040

The bogie impacted slip base post no. 1.

The welds between the top S3x5.7 post section and the slip plate on the second slip base 
post assembly broke prior to activation of the slip base mechanism, at roughly this time.

0.380

The welds between the top S3x5.7 post section and the slip plate broke causing the post to 
fail prior to activation of the slip base mechanism.

0.124

The bogie head impacted the cable turnbuckle from the second highest mounted cable.

0.116

Baseplate of slip base post no. 1 began to buckle as the slip connection did not immediately 
activate.

0.118

The cable release lever began to rotate backwards, forcing the cable end fitters up and out of 
their respective slots on the cable anchor bracket.

0.000

Slip base post no. 1 began to deflect upstream due to the stretching of the cables from the 
prying action of the release lever.

0.006
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The upper edges of the cable slots on the upstream cable anchor bracket assembly 

showed some plastic bending as the cables were forced out of the slots. Other components of the 

cable anchor bracket assembly were undamaged. There was some contact and/or gouging on the 

base plate of the upstream cable release lever due to highly concentrated contact forces with the 

cable end fitters. However, there was no plastic bending in the base plate or the vertical impact 

tubes. Damage photos are shown in Figures 52 through 58. 

Force, velocity, and energy dissipation curves for the bogie test were created from 

accelerometer data and are shown in Figures 59, 60, and 61, respectively. Also, standard 

MwRSF bogie test documentation sheets can be found in Appendix C.  

The maximum force during the test was due to the bogie impacting the two slip base 

posts. Peak force levels of 14.6 kips (65.0 kN) at 120 ms and 15.3 kips (68.1 kN) at 387 ms were 

experienced for the first and second slip base posts, respectively. Recall that in both cases, the 

slip base mechanism did not activate but rather the assembly failed due to weld fracture at the 

base of the upper post section and the support plate buckling. Had the slip base post functioned 

as designed it could be expected that the force levels would be lower.  

The peak force for the bogie impact with the upstream cable anchor assembly was 5.0 

kips (22.2 kN) which occurred at approximately 5 ms. Although the peak force was significant, 

the duration of the impact event was relatively short, which resulted in only 21.8 kip-in. (2.5 kN-

m) of energy being dissipated. The energy loss equates to a 0.3 mph (0.5 km/h) decrease in bogie 

velocity. The bogie impacts with the slip base posts absorbed an average of 43 kip-in. (4.9 kN-

m) per impact. The impacts resulted in an average speed loss of 0.7 mph (1.1 km/h) per impact. 

At approximately 270 ms after impact, the bogie head impacted one of the cable 

turnbuckles. This impact resulted in a 6.5-kip (28.9-kN) force on the bogie. At approximately 
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520 ms, the bogie head impacted the downstream cable release lever. The peak force from 

impact was 3.2 kips (14.2 kN), or 32 percent less than that of the impact with the upstream 

anchor.  

One reason for the significantly reduced peak impact force on the downstream cable 

anchor assembly was that the cable tension had been reduced to 0 after the release of the cables 

from the upstream anchor. The majority of the resistive force from impact with the cable anchor 

bracket assemblies comes from the prying action of the cables from the slots. In order to release 

the cables from the slots, the release lever must overcome the force of friction caused by the 

cable tension on the cable plate. Since the cables had been released, there was no friction force to 

overcome, thus resulting in a lower resistive force.  

The bogie’s left-front wheel impacted the downstream cable anchor bracket at 

approximately 573 ms. The impact resulted in a peak force of 9.2 kip (40.9 kN). After the bogie 

impact with the downstream cable anchor bracket, the bogie continued out of the system before 

coming to a stop downstream of the test setup.  
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Figure 566. System D
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Figure 577. System D
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Figure 59. Force vs. Time, Test No. HTCT-1 

 

Figure 60. Longitudinal Velocity vs. Time, Test No. HTCT-1 
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Figure 61. Energy vs. Time, Test No. HTCT-1 
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8 SIMULATION MODEL EVALUATION 

8.1 Introduction 

The results from the cable end terminal simulation and the associated physical bogie 

testing were compared to determine the effectiveness and accuracy of the simulation model. If 

the model showed good initial agreement with the physical testing, alternate high-tension, cable 

anchor bracket designs could be modeled and evaluated with confidence. 

The main criteria used to evaluate the end terminal model were: 

 mechanics of the cable release process; 

 impact times of major system components; 

 accelerometer data; and 

 component damage. 

8.2 High-Speed Video Comparison 

High-speed video from test no. HTCT-1 was used to incrementally compare the release 

mechanics of the cables from the cable anchor bracket to the mechanics observed in the 

simulation model. A sequential comparison of the cable release event is shown in Figure 62. The 

cables showed smooth release without snag in both the simulation as well as the physical test. 

The cables fully released from the cable anchor bracket at roughly 18 ms as compared to 20 ms 

in the physical test. The error in release times could partially be attributed to frame rate 

limitations in physical testing. The frame rate on the actual high-speed cameras was 500 

frames/sec. While this limitation is likely not the sole cause of the error, it could have 

contributed to the difference in release time.  

The timing of the bogie impact with the slip base post correlated well between the 

simulation and the physical test. The bogie in the simulation impacted the slip base post at 111 
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ms. The bogie in test no. HTCT-1 impacted the slip base post at 116 ms. The error could again 

be partially attributed to frame rate limitations with the high-speed cameras or simplifications 

and assumptions made in the simulation model that led to a divergence from actual component 

behavior. Differences in cable material properties and interactions with the bogie impact head 

could have resulted in higher longitudinal changes in bogie velocity (Δv’s) and also contributed 

to the error. The higher Δv’s would increase the time between the initial impact with the cable 

lever arm and the impact with the slip base post. A sequential comparison of test no. HTCT-1 

and the associated simulation is shown in Figure 63. 

8.3 Accelerometer Data Comparison 

Bogie velocity was also used to evaluate the accuracy of the simulation model. 

Accelerometer data captured during the actual and simulated bogie tests was processed in order 

to calculate and compare bogie velocities. The bogie velocities for the simulation and physical 

test are shown in Figure 64. The velocity trace is plotted through the impact with the upstream 

cable anchor assembly. However, it is cut off prior to the bogie’s impact with the slip base post. 

Although similar failure modes were exhibited in both the simulation and the physical testing, 

the main focus of the comparison is the modeling of the cable anchor bracket and its release 

mechanics. 

 The velocity data agreed well between the physical bogie test and the simulation. The 

average error in velocity between the physical test and numerical simulation was 0.79 percent. 

After the anchor bracket impact, the bogie velocity in both the simulation and physical test 

stabilized for a short time before small impacts with the system cables and other detached anchor 

bracket components. These secondary impacts caused small velocity reductions at roughly 35 ms 

after initial impact. The stabilized velocity in test no. HTCT-1 after impact with the cable anchor 
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FFigure 67. Releaase Lever Interaaction with System Cables, Test
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trajectory of the lever do not match exactly between the simulation and physical test, the fact that 

the cables wrapped around the crossbar in both events further support that the cable release event 

is being simulated accurately.  

8.5 Discussion and Conclusions 

Data from the simulation of the high-tension, cable anchor bracket and abbreviated end 

terminal model was compared with physical data from component testing. The timing of the 

cable release mechanism correlated well between the physical test and simulation. The cable 

release times and the bogie impact times with the slip base post in the physical test and the 

simulation were within 2 ms and 6 ms of each other, respectively. The velocity data obtained 

from the physical test and the simulation also compared well with less than 1 percent error in the 

bogie’s Δv after impact with the cable anchor bracket assembly.  

The discrepancy between the impact times can partially be attributed to differences in 

system cable dynamics and trajectory as they impacted the bogie head. The cables appeared to 

coil more on the bogie head during the physical test, which would have resulted in a greater Δv. 

Frame rate limitations with the high-speed cameras used in the bogie test could have also 

introduced some uncertainty with exact event times.  

There was very little component damage to the cable anchor bracket during test no. 

HTCT-1. Damage that did occur to the anchor bracket was concentrated in the cable plate. The 

deformation to the cable plate on the anchor bracket was replicated well during the simulation. 

No other permanent deformation to the anchor bracket or its components occurred during the 

bogie test.  

In both the simulation and the physical test, the system cables wrapped around the cable 

release lever and pulled it downstream. The trajectory and dynamics of the release lever were not 
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replicated very accurately. The trajectory, however, is highly dependent on the lever’s interaction 

with the system cables, among other things. The cable model is sufficiently accurate for its 

intended use in simulations. However, there are differences and simplifications used to model the 

cables that would unrealistically effect its interaction with other system components. Small 

differences in mass distribution over the cable lever could also have large effects on the 

dynamics and trajectory of the assembly.  

With the agreement between the results of the simulation and the subsequent test no. 

HTCT-1, the simulation model can be used with confidence. Moving forward, alternate anchor 

bracket designs and modifications can be first evaluated using the model.  

Although simulation is a powerful tool, it cannot be used to definitively evaluate designs. 

Physical testing is still the most important aspect of the design process. The model is, however, 

sufficiently accurate to identify potential problems with prospective high-tension, cable anchor 

bracket designs. Once the most promising design candidates have been identified, they can then 

be further evaluated with component and full-scale testing to definitively assess their 

effectiveness.
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9 REDESIGN OF THE HIGH-TENSION, CABLE ANCHOR BRACKET ASSEMBLY 

9.1 Introduction 

The current, high-tension, cable anchor bracket assembly design was modeled to function 

much like the previously-tested, low-tension, cable anchor bracket assembly. Unlike the low-

tension, cable anchor bracket assembly, the high-tension design has not been fully evaluated in 

full-scale crash testing. Since the designs are similar, however, it can be expected that the high-

tension, cable anchor bracket assembly will perform comparably to the low-tension design in 

many aspects. As such, any issues that were exposed during full-scale testing of the low-tension, 

cable anchor bracket assembly will also likely be evident with the high-tension design.  

With this in mind, a redesign of the high-tension, cable anchor bracket assembly was 

necessary to ensure that future testing would not be subject to the same issues as its low-tension 

counterpart. Alternative designs for the high-tension, cable anchor bracket assembly were 

modeled and evaluated. The finite element code LS-DYNA was the primary evaluation tool 

utilized in the design process.  

Simulation results with the current design showed good initial agreement. Therefore, it is 

reasonable to assume that modeling alternative designs can be used as a good initial evaluation 

of potential designs. Data obtained from test no. HTCT-1 was also used to support alternative 

design components and features. Design methodology, criteria, and results are summarized in the 

ensuing chapter. 

9.2 Design Issues 

The first step in the redesign of the high-tension, cable anchor bracket assembly was to 

identify areas for improvement from the previous design as well as the current design. The new 

design should not pose any additional concerns. Data from previous testing as well as simulation 
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results were used to detect issues and concerns with the low-tension, cable anchor bracket 

assembly and the current, high-tension, cable anchor bracket assembly design. 

It is important to remember that there are several desirable features of the low-tension, 

cable anchor bracket assembly. Primarily, it performed well in full-scale crash testing as it 

smoothly released the system cables upon vehicle impact with the cable release lever. The 

anchor bracket assembly also successfully anchored the system cables during system strength 

tests. The high-tension design has been used with tangent system tests and has proved to be 

structurally adequate [23]. The current cable anchor bracket assembly demonstrated positive 

structural performance during full-scale crash testing beyond the length-of-need as part of 

several research and development programs. Thus, the structural features of the cable anchor 

bracket assembly were kept intact with only minimal changes to component geometry.  

9.2.1 Cable Release Lever 

Based on crash testing performance, the low-tension, cable end terminal was approved 

for roadside implementation. The vehicle trajectory and interaction with the system resulted in 

high roll and yaw angles and caused some concern over vehicle stability. The cable anchor 

assembly contributed to the exhibited trajectory as the cable release lever impacted the underside 

of the vehicle and wedged into the ground. The impact resulted in increased vehicle 

decelerations and a yaw and roll force being applied to the right side of the vehicle. To eliminate 

any secondary impacts, the cable release lever must not be pulled downstream by the system 

cables. This change would eliminate any unintended, secondary impacts between the cable 

release lever and the vehicle, thereby reducing the magnitude of yaw and roll exhibited by the 

impacting vehicle. 
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To protect against the cable release lever being pulled downstream, it could be secured to 

the cable anchor bracket assembly with a rotational joint. There would still be potential for the 

cable release lever to be pulled downstream, however, since previous testing showed that the 

cables consistently wrapped around the lever’s cross arm. This behavior resulted in the cable 

release lever being pulled downstream as the cables retracted from the downstream tension. 

Therefore, the cross arm of the cable release lever was eliminated.  

The cross arm was a precautionary component in the original design to ensure a 

distributed load was applied to the release lever base plate in order to allow for a smooth, even 

rotation and release of the cables. In previous testing, however, there was never any indication 

that the cross arm was necessary for the successful release of the cables. Based on these 

observations, it is assumed that the elimination of the cross arm will have little to no effect on the 

release mechanics or overall performance of the cable anchor bracket assembly. 

9.2.2 Cable Release Lever Rotation Point 

Another issue that was identified in the simulation of the current, high-tension, cable 

anchor design was that the release of the cables occurred over a period of 18 ms, while the 

release of the cables in the low-tension design took only 8 ms. Both designs successfully released 

the cables; however, a longer release time may result in greater decelerations and increased yaw 

imparted to the vehicle. While vehicle yaw alone is not a concern, minimizing it is preferred to 

obtain a stable vehicle trajectory.  

The increased release time is partially due to a higher friction force that must be 

overcome during the rotation of the cable release lever assembly. The higher friction force 

results from the increased cable tension and the additional system cable. A free body diagram of 

the forces involved in the release of the cables is shown in Figure 68.  
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9.2.3 Cable Anchor Bracket Assembly Geometry 

The overall dimensions (i.e., height and width) of the current, high-tension, cable anchor 

bracket assembly design also raised some concerns. MASH specifies that a breakaway device 

shall have a stub height of no higher than 4-in. (102-mm) [7]. While the cable anchor bracket 

assembly is not technically a breakaway device, the fixed anchor portion of the assembly could 

pose some risk of undercarriage damage to the impacting vehicle if it is too high. The current 

height of the assembly is 5-in. (127-mm). In order to mitigate risks of undercarriage damage and 

occupant risk, the gusset and cable plate height should be decreased by 1-in. (25-mm) so that the 

assembly would meet the MASH specification.  

Another concern regarding the geometry of the current, high-tension, cable anchor 

bracket assembly pertains to its overall width. The current assembly is shown in Figure 70. 

During the assembly of the four cables and end fitting hardware and placement into the cable 

anchor bracket assembly, space may be somewhat limited. This could potentially result in 

difficult system construction.  

In the current design, four cable end fitters are placed side by side in their respective 

slots, thus leaving very little room for adjustments within the assembly. Cable tension is 

achieved by tightening the inline cable turnbuckles and cable end fitters. As cable tension is 

increased, the cable end fitters move closer together horizontally, thus reducing the spacing 

between them. This movement is exhibited in Figure 71. 

The smaller the spacing between the end fitters, the more difficult it is to assemble the 

anchor bracket. There is also a limit to how much slack can be taken up in the end fitters since 

the end fitters will eventually contact each other and cause flexural deformations in the threaded 

rods.  
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To eliminate any uncertainty with the performance of the cable anchor bracket assembly, 

the new design for the cable anchor bracket assembly should be widened. Widening the anchor 

bracket assembly would also improve the ease of assembly of the anchor bracket and cable end 

fitters, as well as allow for sufficient play in the cable end fitter assemblies.  

9.3 Alternate Design Development 

Based on the investigation of the low-tension, cable end terminal tests as well as in-field 

cable anchor bracket assembly observations, the following design aspects were incorporated into 

a redesign of the high-tension, cable anchor bracket assembly: 

 rotating cable release lever with means of retention during impact;  

 increased height of rotation point for cable release lever relative to cable slots; 

 reduced overall height of cable anchor bracket assembly to 4-in. (102-mm); and 

 widened cable anchor bracket assembly from 15 1/4-in. to 19 3/4-in. (387-mm to 502-

mm).  

9.3.1 Redesigned, High-Tension, Cable Anchor Bracket Assembly Model 

Development 

In order to evaluate potential designs and modifications, a finite element model was 

developed for use with the LS-DYNA FE code. An initial, finite element model of the 

redesigned cable anchor bracket assembly is shown in Figure 72. 

The primary purpose of the redesigned, high-tension, cable anchor bracket assembly was 

to release the system cables when the cable release lever was impacted by a vehicle. Since the 

mechanics enabling the release of the cables was similar to those in the previous design, many of 

the element and material formulations were reused. Geometric modifications had to be made to 

many components to incorporate the previously-outlined design changes. 
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using eight-noded hexagonal elements. A piecewise-linear, plastic material model with ASTM 

A307 steel material properties was specified for the bolt model. A Fully Integrated S/R solid 

element formulation was used for the solid elements. 

9.3.2 Model Development Simulations 

Once a finite element model of the redesigned, high-tension, cable anchor bracket 

assembly had been completed, the model was inserted into the previously-constructed bogie test 

simulation model. The current design of the high-tension, cable anchor bracket assembly model 

used in the validated simulation was replaced with the redesigned anchor model to evaluate its 

performance and identify any potential design issues. Similar bogie impact conditions were used. 

9.3.2.1 Simulation No. 1 - Initial Anchor Bracket Assembly Model 

Initial simulations with the redesigned, cable anchor bracket assembly resulted in 

questionable performance. Although the assembly did release the cables, the cable release lever 

was not retained. The retention of the cable release lever was one of the primary goals of the 

redesign. The cable release lever as it is detaching from the anchor bracket assembly during the 

simulation is shown in Figure 75.  

It was determined that the cable anchor bracket rotation support bracket’s geometry and 

performance was the primary cause for the cable release lever not being retained. Deformation in 

the bracket slot as well as the bracket height allowed for the cable release lever rotation bolts to 

slide upwards out of the slot. It was concluded that the bracket’s geometry was the primary 

reason the cable release lever was able to disengage from the rest of the assembly.  
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Although the cable tension was doubled, the maximum impact force imparted to the 

bogie was only 1 percent higher as compared with the simulation with the design tension. This is 

in part due to anchor component deformation that occurred in the simulation with increased cable 

tension. Although the normal force was increased significantly, plastic deformation in the cable 

release lever and cable plate absorbed energy reducing the peak impact forces. No plastic 

deformation to the cable anchor bracket assembly was seen in the simulation with the design 

tension. The average force after the maximum in the simulation with double tension was 1.5 kips 

(6.7 kN) as compared to 1.2 kips (5.3 kN) in the simulation with design tension. The increased 

average force and elongated cable release time also resulted in more energy dissipation by the 

bogie due to the larger sliding friction force. The simulation resultant forces on the bogie head 

from initial impact are shown in Figure 91. 

 
Figure 91. Impact Force Comparison, Increased Cable Tension vs. Design Tension 
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9.3.2.6 Simulation No. 6 –Anchor Impact at Oblique Angle 

The redesigned, high-tension, cable anchor bracket has exhibited good performance and 

release mechanics with inline impacts, however the likelihood of a perfectly aligned vehicle 

orientation in a roadside impact is minimal. Roadside vehicle interactions with anchors will more 

commonly be oblique impacts. Because of this, the cable release mechanics must function in the 

event that the cable anchor bracket assembly is impacted at an oblique angle.  

To evaluate the robustness of the redesigned cable anchor bracket assembly’s cable 

release mechanics, a simulation was conducted with the bogie impacting the anchor assembly at 

an angle of 15 degrees. The bogie head was aligned with the center of the redesigned anchor 

assembly. The impact angle was selected to reflect impact orientation requirements for MASH 

Test No. 3-33. An impact speed of 45.0 mph (72.4 km/h) was used. 

The bogie impacted one of the vertical release lever tubes and smoothly rotated the cables 

out of their respective slots on the cable plate. The cable release lever base plate exhibited 

noticeable bending during the cable release process, primarily due to the forces exerted on the 

impact tubes out of plane with the rotational joint. There was some permanent deformation in the 

vertical impact tubes at the conclusion of the simulation, however, since the cables were released 

smoothly and the oblique impact scenario is a worst case scenario, the deformation was deemed 

acceptable. Sequential images of the oblique impact simulation are shown in Figure 92. The 

plastic deformation in the cable release lever assembly is shown in Figure 93. 
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constraints, the upward motion of the cable release lever was facilitated by deformation in both 

the support bracket slots and deformation in the rotational bolt. The bolt was fully removed from 

the slots in both brackets roughly 18 ms after initial bogie impact with the vertical impact tube. 

As the cable release lever was displaced upwards, it also began to force the cables end  

fitters out of their respective slots on the cable plate. The cables were fully released from the 

cable plate at roughly 21 ms after initial bogie impact with the vertical impact tube. Sequential 

images of the simulation are shown in Figure 95. Note that in the side view of the simulation, the 

right-front wheel of the bogie has been hidden to clarify the behavior of the release lever 

assembly. 

There was significant plastic bending in the vertical impact tube that was initially 

impacted as well as the cable release lever cable plate. Both support brackets and the rotation 

bolt also sustained significant plastic deformation. The permanent damage to the cable release 

lever assembly, support brackets, and rotation bolt is shown in Figure 96. 

Although the anchor bracket assembly would require significant repair after impact, the 

release lever was allowed to disengage from the anchor bracket assembly during the reverse 

direction impact. This ability greatly reduces any concerns that a vehicle will snag on the cables 

or impact lever in a reverse direction impact. Although the redesigned anchor bracket assembly 

model exhibited potential in the reverse direction impact simulation, physical testing is still 

necessary to definitively evaluate the reverse direction release mechanics. 
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9.4 Final Design and Simulation 

9.4.1 Final Redesigned Cable Anchor Bracket Assembly 

The simulation of the redesigned cable anchor bracket assembly exhibited good 

mechanics and behavior in simulation nos. 4, 5, 6, and 7. To fully evaluate the final design, the 

scenario when both vertical tubes were impacted was simulated. Results from the final 

simulation could also be used to compare the final design to initial concepts as well as the 

current, high-tension, cable anchor bracket assembly. The final finite element model of the cable 

anchor bracket assembly is shown in Figure 97. Technical drawings of the cable anchor bracket 

assembly are shown in Figures 98 through 102. 

9.4.2 Simulation 

The bogie model was given an initial velocity of 45.0 mph (72.4 km/h). The center of the 

bogie’s impact head was aligned with the center of the release lever. An automatic single surface 

contact was used to specify contact between the slip base post assembly, cable anchor bracket 

assembly, and the bogie impact head. An automatic nodes to surface contact was used with the 

cable model to better capture the cable interaction with the cable hangar, bogie impact head, and 

any other system components that may contact the cables. 

Initial impact was between the center of the bogie head and the center of the cable release lever. 

A sequential description of the impact events is contained in Table 11. Sequential images of the 

simulation are shown in Figure 103. Note that the outer wheel of the bogie is not shown to 

clarify the release mechanics of the anchor assembly. 

Damage to the cable anchor assembly was minimal. The cable plate sustained no plastic 

deformation. The rotational joint for the cable release lever remained intact throughout the 

impact event. The only component of the rotational joint that sustained permanent damage was 
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FFigure 101. Cabble Release Leveer Component DDetails 
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FFigure 102. Reddesigned, High-TTension, Cable Anchor Brackett Bill of Materiaals
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Table 11. Sequential Description of Impact Events, Final Redesign 

 
 

TIME    
(sec)

EVENT

The cable release lever began to rotate backward smoothly and evenly immediately after 
initial impact with the bogie head.

0.125

The bogie head impacted the remaining three system cables simultaneously. All four cables 
are now in contact with the bogie head and begin to coil against it.

0.065

The bogie head imapcted the upstream side of the slip base post.0.107

0.000

All four system cables have been released from their respective slots on the cable anchor 
bracket.

0.022

The top of the cable release lever impacted the ground. After the lever rebounded, it 
remained connected to the cable anchor bracket assembly.

0.044

The bogie head impacted the top system cable.0.061

The bottom slip base post base plate seperated from the slip base post support plates. The 
failure of the slip base post was due to element erosion along the boundary between the 

bottom slip base post plate and the slip base post support plates.
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deformation in the cable plate flanges after release of the cables. To eliminate the damage, the 

thickness of the cable plate was increased. The structural cable anchor gussets used to support 

the cable plate were also modified to reduce any bending in the cable plate flanges. The height of 

the interior gussets was increased to provide extra support during the release of the cables. The 

increased gusset height also increased the weldable area between the structural gussets and the 

cable plate.  

These modifications eliminated much of the plastic deformation to the assembly, and in 

many impact scenarios would ultimately allow the assembly to be reused through multiple 

impacts. The maximum von Mises’ stress in the cable plate was reduced from 58.5 to 48.4 ksi 

(403.3 to 333.7 MPa). The final simulation showed no permanent deformation to the cable 

anchor bracket assembly. Based on analysis of the simulation results and engineering judgment, 

a replacement of the rotational bolt would allow the assembly to be reused without concern for 

structural adequacy or unintended release mechanics upon impact. Substituting the currently 

specified bolt in the assembly with one fabricated from a higher grade steel could potentially 

eliminate the deformation entirely, and is also an option. The maximum stress in the anchor 

bracket components are shown in Figure 108. 

The bogie velocity from the simulation with the current, high-tension, cable anchor 

bracket assembly design as well as that of the redesigned anchor bracket assembly exhibited 

similar trends. The Δv due to impacts were 0.48 mph (0.77 km/h) and 0.56 mph (0.90 km/h) for 

the redesign and current simulations, respectively. As such, the impact severity due to the 

bogie’s impact with the cable release lever was reduced in the redesigned anchor bracket 

assembly simulation as compared to the simulation with the current anchor bracket assembly. 

The impact severity from the redesigned, high-tension, cable anchor bracket assembly was 
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166.44 lb-in. (18.81 N-m) compared to 225.72 lb-in. (25.50 N-m) for the current anchor bracket 

assembly. The differences in impact severities resulted in a 26 percent reduction between the 

current design and the redesigned cable anchor bracket assembly. A comparison of the bogie 

velocity in the current, high-tension, cable anchor bracket assembly simulation and the 

redesigned, high-tension, cable anchor bracket assembly simulation is shown in Figure 109.  

 

 
 

Figure 109. Anchor Bracket Assembly Simulations Velocity Comparison 
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release the cables with less applied force, thus lowering decelerations and Δv. One consequence 

of increasing the moment arm is that the vertical, cable release tubes will be subjected to higher 

bending stresses. However, after review of the simulation results, there was no indication that 

tube deformation would be a potential issue.  

The redesigned, high-tension, cable anchor bracket assembly performed well in 

simulations with an abbreviated cable end terminal model. The redesigned hardware eliminated 

many of the crash performance issues that were identified with the current, high-tension, cable 

anchor bracket assembly. Although the new design has only been evaluated through numerical 

modeling, previous comparisons between simulation models and physical testing yielded good 

initial agreement. Therefore, it is recommended that the redesigned cable anchor bracket 

assembly be subjected to physical component testing to further evaluate its crashworthiness. 
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10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

10.1 Summary 

A new, non-proprietary, high-tension, cable end terminal design was investigated to 

provide State DOT’s with an alternate option to the proprietary designs that are currently 

available. A literature review of high-tension, cable end terminals revealed that cable anchors 

with a means of releasing the system cables provided a more crashworthy and robust end 

terminal system. Terminal post characteristics were also critical to the success of the system. 

Weak-sectioned terminal posts reduced the threat of vehicle rollover in the case of end-on, 

terminal impacts. 

A study of the non-proprietary, low-tension end terminal system developed by MwRSF 

was conducted. The high vehicle roll and yaw angles exhibited in test no. CT-4 were the result of 

a combination of initial vehicle yaw motion as well as vehicle interaction with system debris, 

including detached slip base post sections and the cable release lever. 

Due to the contribution of the low-tension, cable anchor bracket assembly to the vehicle 

trajectory in test no. CT-4, and the similarities between the low-tension, anchor bracket and the 

current, high-tension, cable anchor bracket design, a further analysis of the high-tension, anchor 

bracket assembly was deemed necessary. Simulation and bogie testing were used to study the 

assembly. Analysis showed that the current, high-tension, cable anchor bracket assembly 

exhibited similar behavior and cable release mechanics as the previously-tested, low-tension, 

cable anchor bracket assembly. Thus, there was concern that similar vehicle instabilities may be 

witnessed during full-scale crash testing of the current design.  

Therefore, the high-tension, cable anchor bracket assembly was redesigned to improve 

the crashworthiness of the assembly and end terminal system as a whole. The redesigned 
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assembly was shortened to conform to MASH stub height criteria for breakaway devices. The 

front end of the assembly was redesigned in order to retain the cable release lever. The 

redesigned cable anchor bracket assembly was modeled, simulated, and analyzed. The assembly 

released the cables in a similar manner as both the non-proprietary, low-tension and current, 

high-tension, cable anchor bracket assemblies. The anchor bracket assembly successfully 

retained the cable release lever after release of the cables. The retention of the cable release lever 

eliminates any potential for undercarriage damage or vehicle interaction with the lever further 

into the system. Additionally, the modified design reduced the impact severity between the 

vehicle and the vertical, cable release tubes by 26 percent, as compared with the current, non-

proprietary, cable anchor design. 

Various alternate impact simulations were conducted including scenarios where only one 

vertical tube was impacted, reverse direction impacts, angled, frontal impacts, and impacts with 

cable tensions at higher than design specification. Although there was some plastic deformation 

exhibited in alternate impact simulations, the cables were released as intended, or in the case of 

the reverse direction impact, the cable release lever disengaged from the anchor bracket as 

designed. Since these scenarios represent non-ideal impact situations, the plastic deformation 

was deemed acceptable. Technical drawings for the assembly were provided in Section 9.4.1.  

The investigation of test no. CT-4 also showed that the slip base post may be a less than 

ideal option for terminal applications. Although the initial impacts with slip base posts did not 

produce rollover, secondary impacts with slip base post assembly debris resulted in high roll 

angles and vehicle instabilities. 

 An analysis of the standard M4x3.2 (M102x4.8) post or a weakened S3x5.7 (S76x8.5) 

post showed that they may be viable replacement options for the slip base post in the terminal. 
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All alternate post sections have a diminished bending strength in the weak-axis direction, as 

compared with an S3x5.7 (S76x8.5) post. The lower strength in the weak-axis direction may 

prevent the vehicle from ramping up the post during end-on impacts. Also, the post would not 

introduce any debris into the path of the vehicle that could be hazardous to the stability of the 

vehicle and the safety of the occupants. Further investigation is required, however, before a 

decision can be made regarding a selection of a terminal post type. 

10.2 Conclusions and Recommendations 

Results from all aspects of the study were combined to form the following final set of 

recommendations for future development of a non-proprietary, high-tension, cable end terminal 

design: 

 Replace the current, high-tension, cable anchor bracket assembly with redesigned anchor 

bracket assembly;  

 further investigate the M4x3.2 (M102x4.8) post or comparable weak-sectioned post for 

use in the terminal region through simulation, bogie testing, and full-scale testing; and 

 further investigate the implications of reduced terminal post torsional stiffness on 

redirection terminal impacts to determine if a 16-ft (4.9-m) terminal post spacing is still 

adequate. 

A redesigned non-proprietary, high-tension, cable anchor showed promising results in 

simulations. The redesigned anchor released the system cables when impacted end-on and 

successfully retained the cable release lever after the impact event. Although the redesigned 

cable anchor bracket assembly would require physical bogie testing to further evaluate the 

design, simulation results indicated that the redesigned assembly has potential to improve the 

safety and crashworthiness of the non-proprietary, high-tension, cable end terminal design.  
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Based on the study of current cable end terminal systems, it is recommended that further 

investigation of an alternate terminal post for the non-proprietary, high-tension, cable end 

terminal design be undertaken. The non-proprietary, low-tension design utilized slip base posts 

in the terminal region. These post assemblies, however, caused high vehicle roll and yaw angles 

in full-scale crash testing due to detached post sections interacting with the undercarriage of the 

test vehicle. In order to prevent system debris from causing vehicle stability issues in future tests, 

the slip base posts could potentially be replaced with an assembly that does not completely 

detach from its base, but rather is retained throughout the impact event. Preliminary investigation 

indicated that an M4x3.2 (M102x4.8) post, weakened S3x5.7 (S76x8.5) post, or similar weak-

sectioned post may be viable replacement options. However, these alternatives require further 

investigation prior to full-scale crash testing. 

Finally, a 16-ft (4.9-m) terminal post spacing was utilized in the low-tension, cable end 

terminal test series (CT series). No issues were discovered during analysis of the crash test series 

that were directly related to the terminal post spacing. Furthermore, in end terminal simulations 

the post spacing did not negatively affect the crashworthiness of the system. However, if one of 

the recommended alternate post sections is selected for use in the terminal region, further 

investigation may be required. Due to the alternate terminal post’s reduced torsional stiffness, as 

compared with an S3x5.7 (S76x8.5) section, it is unclear whether an M4x3.2 (M102x4.8) post or 

modified S3x5.7 (S76x8.5) post would be able to adequately support the system cables in a 

redirection terminal impact. 

Other approved, high-tension, cable end terminal designs utilize post spacing of 90 in. 

(2,286 mm) or less. The benefit of such short post spacing is that the extra posts provide 
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increased support for the system cables in redirecting impacting vehicles. If larger post spacing is 

adequate for redirecting impacting vehicles, the system would be cheaper and simpler to install. 

Other primary features of the terminal system, such as cable tension and number of 

system cables, are dependent upon the design of the non-proprietary, high-tension, cable 

guardrail system, which is still in development. At the time of the research and design of the 

non-proprietary, high-tension, cable end terminal, the utilized features reflected the latest 

revision of the high-tension guardrail system. 

10.2.1 Future Work 

The conclusions and recommendations presented in the previous sections are the result of 

the conducted research, development, and analysis of high-tension, cable guardrail end terminal 

components. Although the redesigned, high-tension, cable anchor bracket assembly design 

exhibited good mechanics in simulation, the design should be subjected to component testing to 

validate the simulation results and further evaluate its functionality. Other recommendations 

including certain alternate terminal post types should also undergo component testing to fully 

assess their strength properties. The following component tests are recommended to further 

evaluate the proposed designs: 

 bogie test with the redesigned cable anchor assembly in abbreviated end terminal with 

inline orientation; 

 bogie test with the redesigned cable anchor with 15-degree impact orientation; and 

 bogie tests with the M4x3.2 (M102x4.8) post and S3x5.7 (S76x8.5) post with weakening 

holes to determine dynamic bending strength properties of each post type so that 

comprehensive comparison between terminal post options can be made. 
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Simulation of alternate terminal posts and post spacing can also be used to preliminarily 

evaluate configurations of posts and post spacing to determine which show potential for use in 

full-scale crash testing of a new end terminal system. 

If no design issues or concerns are exposed during component testing, full-scale testing 

can be accomplished. Full-scale crash testing of the non-proprietary, high-tension, cable 

guardrail end terminal design to MASH terminal requirements is necessary for FHWA 

acceptance. Testing of the terminal’s length of need can be utilized to definitively evaluate 

terminal post spacing. A summary of MASH testing requirements and recommendations for a 

full-scale testing program with the new, non-proprietary, high-tension, cable end terminal system 

is shown in Table 12. Note that some tests may be deemed less critical after component testing 

has been accomplished and evaluated. Only after a full evaluation of the non-proprietary, high-

tension, cable guardrail end terminal through full-scale crash testing can the terminal be 

implemented along state highways and roadways. 



 
 
 

 

July 17, 2012  
M

w
R

S
F

 R
eport N

o. T
R

P
-03-268-12 

168 

Table 12. Recommended MASH Testing 

  

3‐30 1100C
62.1 

(100)
0

Anchor ‐ 1/4 Point Vehicle 

Offset
Y

3‐31 2270P
62.1     

(100)
0 Anchor ‐ Vehicle Centered N

3‐32 1100C
62.1     

(100)
15 Anchor Y

3‐33 2270P
62.1     

(100)
15 Anchor N

3‐34 1100C
62.1     

(100)
15 Critical Impact Point N

3‐35 2270P
62.1     

(100)
25

Beginning of Length of 

Need
Y

3‐36 2270P
62.1     

(100)
25 Critical Impact Point N

3‐37 2270P
62.1     

(100)
25 Reverse Direction Y

3‐38 1500A
62.1     

(100)
0 Anchor ‐ Vehicle Centered N

Necessary to evaluate selection of terminal post and redesigned anchor

Small car stability is more critical test (3‐30)

Necessary to evaluate small car stability and anchor release mechanics in non‐ideal 

vehicle impact orientation on the anchor

CommentTest No.
Vehicle 

Type

Impact 

Speed 

mph     

(kph)

Impact 

Angle 

(Degrees)

Impact Location
Recommended 

(Y/N)

Small car stability in angled impact is more critical (3‐32)

Strength test of anchor is more critical (3‐34)

Necessary to evaluate structural adequacy of the redesigned anchor

Evaluation of anchor's structural characteristics more critical (3‐35)

Small car stability is more critical test (3‐30)

Necessary to evaluate ability of redesigned anchor and cable release lever to 

disengage in a reverse direction impact without causing significant snag to vehicle or 

other potentially hazardous vehicle interaction
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Appendix A. Initial Simulation Results - Metric 
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Figure A-1. Bogie Velocity, Initial Simulation
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Appendix B. Bogie Test Results - Metric 
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Figure B-1. Force vs. Time, Test No. HTCT-1 
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Figure B-2. Velocity vs. Time, Test No. HTCT-1 
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Figure B-3. Energy vs. Time, Test No. HTCT-1 
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FFigure B-4. Boggie Velocity Commparison, Test NNo. HTCT-1 vs
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Appendix C. Standard MwRSF Bogie Test Sheet, Test No. HTCT-1 
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Figure C-1. Results of Test No. HTCT-1 – English 
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Figure C-2. Results of Test No. HTCT-1 – Metric 
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Appendix D. Redesigned Cable Anchor Bracket Simulation Results – Metric 
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Figure D-1. Impact Force Comparison, Increased Cable Tension vs. Design Tension 
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Figure D-2. Bogie Velocity, Final Redesign 
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Figure D-3. Anchor Bracket Assembly Simulations Velocity Comparison
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